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Summary

Nonequilibrium Molecular Dynamics Simulation of the Thermocapillary Effect

Dipl.-Ing. Holger Andreas Maier

A natural convection occurs at lateral spatiallyiafle solidfluid or liquid-fluid interfacegprobstein1994]It can play

an important role in the transport of heat or mass across such interfaces, e.g. in evaporation exsalton as they
are often employed in chemical engineer[sgerwood1975]Model systems of such interfacial systems have been
studied by different methodsdlinet2001.

A very fundamentaimethodis the usage of scalled molecular dynamics (MD) simulatiofallen2003] They model

reality on a system of massive and chargedigles (typically chosen so as to represent atoms), between which
interparticle forces (chosen so as to representiatrd intermolecular interactions) act, and solve the particle equations

of motion under external constraints, that reproduce itsaatens with the surroundings. Such a simulation could be
considered as a numerical experiment, since the underlying assumptions are so fundamental that the system should,

depending on their approximation of reality, also behave realistic on a largeinscelay situations.

We go beyond previoddD simulations of interfacial systems by considering also stationary nonequilibrium situations,
which are technically more challenging to implement. An existing model system with-liquid interfaces of Agon

like particles serv&us as a starting poifibuhn2004, [buhn2006], [bopp2008We implement a temperature gradient
parallel to the interfaces by thermostating the particles in two opposite regieceljezb boundary regions, of the
system to differentemperatures.

Vortices localig close to the interfaces, with flow from hot to cold on each side along them. These vortices have all the
characteristics ascribed to thermocapillary convection, thekmellvn Marangoni effecteber1854, [thomson1855],

[marangonil871]We shall thus assume its underlying effect (more generally known as the Marangoni effect) in action.

We then determine in detail the spatial distributions of different observables, that are related to the thermocapillary
effect, and studtheir influences in parameter variations of the simulation system. Its flows depend, among other things,

on the temperature gradient, the system geometry, and the viscosity of the liquids.

Finally, we compare the local behaviour at ligligiid with the one at other types of interfaces, e.g. liggaks and
solid-fluid. Although the convection at them may differ at first sight, similar relations apply between the local
observables as at liguldjuid interfaces. Hence, we postulate a common underlyirecteéind make suggestions for

further research into it.



Zusammenfassung

Molekulardynamische Nichtgleichgewick&mulationdes thermokapillaren Effekts

Dipl.-Ing. Holger Andreas Maier

An lateral ortlich veranderlichen fefitid und flussigfluid Phasegrenzen entstehematirliche Konvektionen
[probstein1994] Sie kdnnen den Warmedder Stofftransport Ubedie Grenze stark beeinflussem,B. bei in der
Verfahrenstechnik weit verbreitetedlerdampfungs oder FlussigExtraktionsprozesselisherwood1975] Modelle

solcher Phasengresystemavurden bereits mit verschiedenen Methoden untergootihet2001]

Die sogenannten molekulardynamischen (MD) Simulationen sind eine sehr fundamentale Nedtbn#d@03] Sie

bilden die Realitdt ab durch ein System aussseaund ladungsbehafteten Teilchen (reprasentieren Ublicherweise
Atome), zwischen denen Kréafte (reprasentieren Ublicherweise imdrintramolekulare Wechselwirkungen) wirken,

und l6sen die Teilchenbewegungsgleichungen unter externen RandbedinguagaingiWechselwirkungen mit der
Umgebung wiedergeben. Soldine Simulation kdnnte man auch als numerisches Experiment bezeichnen, da ihre
zugrundeliegenden Annahmen fmdamental sind, dass sich das System, je nach deren Realitatsnilhequf

groRera Langenskalestetsrealistisch verhalten sollte.

Wir gehen in dieser Arbeit Uber frihew#D Simulationervon Phasengrenzsystemiginaus, indem wir auch stationére
Nichtgleichgewichtszuénde simulieren, die techniselufwandiger zu implementieren sirigin bereits existierendes
Modellsystem mit flissiglissig Phasengrenzen aus Argiimlichen Teilchen dient uns als Ausgangspunkt
[buhn2004], [buhn2006], [bopp20Q8)Vir implementieren einen Temperaturgradient entlang der Phasengrenzen durch
Thermostatigren der Teilchen in zwei gegeniberliegenden Bereichen, sog. "boundary regions", des Systems auf

unterschiedlichen Temperaturen.

In der Nahe der Phasengrenzen bilden sich auf beiden Seiten Wirbel. Ihre Stromungsrichtung zeigt an der Grenze selbst
von hei3nach kalt. Diese Wirbel haben alle charakteristischen Eigenschaften einer thermokapillaren Konvektion, wie
sie der Marangoriffekt bewirkt [weber1854], [thomson1855], [marangonil87%ir nehmen daher an, dass er im

Systemauftritt.

Wir bestimmen anscigl3end im Detail die ortliche Veilung verschiedener Observahledie mit dem
thermokapillaren Effekt in Verbindung stehen, und untersuchen deren dSiaflwren in Parameterstudien des
Simulationssystems. Dessen Strémungen hangen unter anderem amvaemperaturgradient, der Systemgeometrie

undvonder Viskositat der Flissigkeiten.

Abschliel3end vergleichen wir das lokale Verhalten an fle&dgsig mit demjenigen an anderen Phasengrenzen, z.B.
flussig-gas oder festiuid. Obwohl die Konvektion arhnen vordergriindig anders aaben kannbestehen ahnliche
Beziehungen zwischen den lokalen Observablen wie an den fflisssgg Phasengrenzen. Wir postulieren daher einen
gemeinsamen Effekt, der all diesen Strémungen und zugrunde liegt und machehldgerscu dessen weiterer

Untersuchung.
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1 Introduction

Classical phenomenological equilibrium thermodynamics teaches that, dependimgeoternal
corstraints,such as temperature, pressure, and composition, a mixture @ooeniscan «ist

either as a single homogeneous phase or as an ensemble of several phases. The number of phases
function of the composition and external conditions of the mixture are typically displayed in phase
diagrams like the one shown filgure 1. Such diagrams assume that the phases are in equilibrium,

i.e. that the macroscopic quantities temperature, pressure, and chemical potentials are the same

everywhere throughout the system.

In many real cases, however, the @saarenotin equilibrium, asfor example in systems in which
two different phases welj@st brough into contact.Such anonequilibriumsystem evolves only
gradually towards aequilibrium statelts establishment manifests itself through the occurrefice o
transport phenomena of magmergy, and momentum within and between both phases. After the
equilibrium state has been reached, both phases maylcaveposition stronglyliffering between
them as well as frortheir respective initial states. Eventuallfese phases can be separated again
by mechanical means. Such "phasatacting operations" are used in chemical engineering to
acheve itsobjective: To separag mixtures of compnents Accordingly, a profound understanding

of both the equilibrium andamequilibrium states is an important constituent for the design of
chemical engineering processds. particularthe processes by which equilibrium is established
starting fromnonequilibriumstates, which can span a wide range of time constants, should be

investigated.

Macroscopically, the behaviour of equilibrium systems can be descrdsgmending on the
componentsnore or less well, by conventional thermodynami¢ais, the aforementionddgurel
compares, asn example, the experimental ligdiduid equilibria of a binary water -fbhutanol
mixture at ambient pressure with ones modelled using the NRTL equation from the
thermodynamics of mixtures [sorensenl1979]. The parameter values underlying the model data in
the figure were obtained by regression on the equilibrium measured at@&Ean consider the
coexisting phases in such a mixtusghatever thie dimensions may beas individual quasi

homogeneous domains that are separated bydimensional interfacesMesoscopicallyhowever,




the situation is less clear. The interfaces are tneensional objects and should therefore better

be called "interfacial regions".

The establishment of equilibrium frormanequilibriumsituation is much more difficult to deribe

than the equilibrium state. This is true at the macroscopic level, and even more so at the mesoscopic
one. Any such description must necessarily proceed on a local and chronological basis in order to
catch the heterogeneous and evolutionary charadtéhe systemClassical phenomenological
irreversiblethermodynamic$haase1963], [degroot1960], a linear theory, has been able to describe
the phase states as well #se transport processasside andbetweenthe phasesinder certain
circumstances. élvever, until todaythere has been little progress in incorporating the intesface
themselves, where additional phenomena occur. These "interfacial phenomena" include, among
others, the tim@&ependence of the interfacial structure and the interfacialotne¢cardin1991a],
[stuke1961].

Another important class of interfacial phenomena, directly involved in the transport processes, are
known as the Marangoni effecfgieber1854], [thomson1855], [marangonil871], [scriven1960],
[sawistowski1l971] What makesinderstanding themparticularly appealing is that they are known

to greatly increase transport rates in and across interfaces over those from exclusively molecular
transport mechanisms [colinet2001]. The Marangoni effects were iisedgs the common caes

of the convection observed experimentally in various interfacial systems. In all these experiments
the fluid at the interfacés dragged along the latter in direction of decreasing interfacial tension.
Such a spatially variabletension exig when the mterface is subject to lateral gradients of
temperature (thermocapillary effect), concentration (diffusocapillary effect), or electric charge
(electrocapillary effect) [probstein1994]. The peculiarity ofttings resultingconvection depends

each systenon its specific external constraints. Note tthet Marangoni convection should not be
confused with buoyancy driverilows like the RayleighBénard convection [oertel2002],
[ostrach1982].

Our investigations here focus on tirermocapillary effectWe stall study it particularly aliquid-
liquid interfaces, bubthers will be considered as well later omeTleft side ofFigure2 shows as
an examplea laminarthermocapillaryconvection as observed in an expemmneéee sectiod.1.1

for further details.




1.1 Motivation of this Work

One of the main reasons why interfacial phenomena in general are so little understood is the
thinness of the interface. Theadditionalappoach” in physics to study such a phenomenon would

be to interpret experiment a definite systenm terms of a phenomenological model relatihg
distortions andhe responses [haile1990f that system. This approach is illustrated at the top of
Figure 3. After such a model has matured sufficienttycan predict the system behaviour under
different inputs and even be transferred to describe similar systemsultiphase systemshe
interfaces are often asmaw as a fewnanometreand thus almoshaccessibléo experimentsOne
thenfollows different approaches which can be subdivided into two groups:

The first group builds on the phenomenological models above, which manage to describe at least
the behawur of a separate phase. They are extended to apply also to the interfaces-jnaselti
systems. Such extensions require additional more or less realistic assumptions on the properties and
onthe behaviour of the interfaces. Hence, one could call titirgsmodels "heuristic". The most
popular ones take a continuum mechanics point of view of matter. However, all these heuristic
models manage to reproduce only few selected phenomena at the interface and not its general

behaviour [rowlinson2002].

The £cond group consists ofare "fundamental approachewhichtry to explain the behaviour of
interfacial systems based on microscopic theories such as quar@cdnanics, or rather its classical

limit. It modelsmatter by a large number of mutually interagtparticles which are subject to the

laws of classical (Newtonian) mechanics. At any time, the microstate of such a model system can

thus be uniquely specified by the positions and momenta of all particles.

It is Boltzmann's fundamental ansatz that agerg over a representative set of microstates in a
system can produce any of its macroscopic observgbiks986], [hill1987], [mcquarrie2000],
[landau2007] How these microstates are obtained is irrelevant as long as they comply with the
macroscopicexternal constraints ofhe system, e.g. from thermodynamics or hydrodynamics.

Figure 4 illustrates the fundamental approach in the classical limit graphically. Originally,




Boltzmann's ansatz was developed for systemthermodynamic equilibrium only. However, it is

now applied as well to systems out of equilibrium.

Molecular simulations constitute the numerical realisation of Boltzmann's fundamental approaches.
A representative set of microstatisscomputedby brute force. The recent advent of powerful
computers has made molecular simulations very worth considasgrgng as the phenomena occur

on the length and time scales accessible to these metl{ogscally a few nanometresand

nanoseconds

In particularMolecular Dynamics (MD) simulations, which solve the system's equations of motion,
offer a wide spectrum of possibilities. So they allow not only for the computation of a set of
microstates but also deliver them chronologically ordered in tuples, givirgy ahcess to the
evolution of the system on the microscopic level, see se8tfondetails. Another advantage, that

we want to leverage in this work, is that MD simulations can replace experiments, at least in
principle [hockney1988], [frenkel2002], [haile1997].

Suppose, for example, that the velocity distribution in a Couette flow of a certaioeentpnder

given boundary conditions is to be predicted. In hydrodynamics, a suitable model would require
specfic knowledge of several things such as the material properties, when the flow turns turbulent,
whether energy dissipation must be accounted for, dtiee input required for an MD simulation,

i.e. essentially the interparticle interactions, is much nfionelamental in nature. It is generally
expected in science that a model at a more fundamental level can be simplified, or coarse grained,
through suitable averaging procedures (or integrations) leading to more specific, and hopefully
more powerful, mode for the specific properties to be investigated. Consequently, the

hydrodynamic model should alternatively even be derivable from the results of MD simulation.

Due to their analogy with, ansbmetimegheir ability to even replace the "physical expemnty,
MD simulations are also known as "numerical experiments". In some sense, the "numerical
experiment" is even superior to the "physical" one since the measurements do not perturb the
system, i.e. potentially bias the response. However, biases ansetier sources application

see e.g. sectiodbelow.




In this work we shall apply MD simulations to circumvent the experimental inaccessibility of the
interfacial region for our studies of the "thermoclpy effect”. That is, we investigate the
"thermocapillary effect'using simplifiedmodel reproductiosmof guiding liquid-liquid interfacial
systens. The advantages of oufundamentalapproach are, of course, at the price of a more
complex investigatioprocedureghanit would benecessary in following th&raditional approach

We introducedt at the beginning of this section

Before a simulation can be undertaken, gheulationsystem (i.e. the liquid, or liquids, or ...) and

the stresses or congtres applied to it must be made to mimic the physical reality as closely as
possible, keeping in mind the available material resources (i.e. computers, computer time etc.).
Likewise, the response of tlemulationsystem must, at the end, be transferrecklda the real
system. In the simulation itself, thevestigation procedureemains, in principle, analogue to the
experimental one. Theimulationsystem is disturbed in a controlled manner and its response is
measured whilé'measurement errdrsare redeed as much as possible. Vheesult from the

statistical character of the simulatidhgure3 illustratesthis procedureagain.

Modelling assumptions and technicahplifications contained i simulationsysem itself or in its
computational implementatiofimeasuremefiterrors, and the baekansfer to the real system will
ultimately be the main causes that lead to a devidiEtween the response$ the simulation
systemand of thetrue systemTo some dege, his deviation can be disentangled into its different
causedhy systematic variation of th@ssumptions andimplifications.It will be one of the major

challenges of this work tidlentify in the system behaviour tlrendsagainst the uncertainties.




1.2 Structure of this Work

Part2 will review the general state of research imterfacial phenomena as far as relevant for the
thermocapillary effect. We stated already in the previous section thaioke hew approach by
studying the thermocapillary effect in "numerical" instead of "physical experimdittis'approach
requires at first thatheir underlying systems, including the distortioass modelled appropriately
to be simulated. The "modelling assuiions” and "technical simplificationsthat have to be made
ultimately bias the resporsef the simulationsystens. In part 3, we shall briefly introduce the
basicassumptions and simplifications; they at@nslard andhtrinsic to theMD simulationmethod.

Additionally, its statistical physics background ageheral executiowill be addressed.

Detailed information on the setup, simulation, and analysis of the various systems studied in the
course of thisvork will be given inpart4. Althoughnonequilibriuminterfacial systems, i.e. binary

ones with liquidliquid interfaces subject to a lateral temperature gradaeatthe focal point of this

work, we also studd correspondingequilibrium interfacial omonequilibriumonephasesystems

for reference. Allnonequilibriumsystemswere simulated in secalled boundary driven (BD) MD
simulations. In this methgthe boundaryregions of a system are perturbed spedlifjcto establish,

in our case, different target temperatures in them. Provided the system setup is suitably chosen, the
perturbation removes the matter between the boundary regions into the aesiszplilibrium

states. For better comparability most bé tequilibrium systemsvere also simulated using this

method. In doing so, all target temperatures within a systast merelybe chosen identical.

All the aforementionedhonequilibriumand equilibrium systemwere analysed in terms of few
macroscopic olesvables Namely ones that are defined as averages over the individual microstates
of a system as for instance particle densities, temperaturesniveof mass (com) velocitie®ue

to the special character of their definitions, we can determine thssevables othefly during

our simulations to reduce their memory requirements and thus alloweltdively long runs.
Nevertheless, the scales considerable still remain small in absolute terms so that the achievable
reliability of the results is limité. Additionally, they involve further errors from various sources,
such as the modelling assumptions, the technical simplifications, or numerical errors. In particular
for the characteristinonequilibriumsystem behaviour to emerge out of them, extremmpégature

gradients of the order of 10K/nm are requirétiey make theccurrenceof the thermocapillary

1-8



effect, as known from experiments, appeaestionable. Given these errors, agd toascertain,
prior to our actual studies, that the behaviour of anulation systems displays the characteristic
trends and features observed in reality. We cbeéthkis by comparing thdocal data against our

expectations fronexperiments, theoretical considerationspiher MD simulations.

Part5 will discuss the simulation results. As a matter of fact, already the behaviour of our first
systems will turn out to match oexpectationgrom chaptei.2 quite well. There are onlgninor
anomalies. Looking for a way to reduce them even more, we explored various manipulations to
these first systems. Chaptel will discuss their responses. They concurrently tell us a lot dbeut
influences on the thermocapillary convection. We used the thus obtained findings to reduce the
simulation errors even more in later systems. Chd&p8awill compare their behaviour with the one

of the first systems usg selectedrepresentative We shall come to our actual studies of the
thermocapillary effect in chaptes.4. Individual parameters of our nonequilibrium interfacial
systems were specifically varied so as aogtlel the common alterations of a comparable system in

an experimental study, such as for instance the system dimensions, of the temperature gradient. As
intended in our "fundamental approach”, the simulation reswilis show clearly how these
alteratis affect the system behaviour, and in particular the interfacial region, on the mesoscopic
level. We shalladdressn chapter5.5 certain aspectsf the systembehaviouragain in more detail.
Finally, chapteb.6will give a glimpse beyond the liquidjuid interfaces at other ones, e.qg. liquid

gas or liquidsolid. Theyall have, different from one might expect at first sight, many local

properties in common. We shathnclude this work in pafi with a summary.




2 Review of the Interfacial Flows under a Temperature
Gradient

As already mentioned ipart 1, aninterface andhe physical processes occurring there are usually

not directly accessible to experiments dué&gsdhinness. Those few interfacial properties that can

be determined, such as the interfacial tension, hardly reveal anything about the microscopic
processes invobkd. In favourable cases, an experimental signal, containing infornaddartboth

the bulk phases (a lot) and the interfaces (a littdah be disentangleét allows for some indirect
conclusions on the influensef the interface and on their impact tme system. The existing
phenomenological models of the thermocapillary effect were mainly derived from such approaches.

Countless studies diie interfacial flowsin various setups have been reported in the literaige,

for instance,[levich1962], [nepomnyashchy2001]velarde20Q], [oertel2002] [naranayan2003]
[probsteiri994, [slattery2006] We shall distinguish here, above all, the phenomena. As stated in
the introduction, the thermocapillary effect itself is of particular interest to us. Heeedll focus

on interfaces which are subject to a lateral temperature gradient. Interfacial flows can occur as well
for a different orientation but they then sustain, eventually, also a lateral temperature gradient on
smaller scales (see secti@rl.]). We additionally focus specifically on the conventat liquid

liquid interfacesA realistic implementation of them in MD simulations requires only relatively few
simplifying assumptions compared to other ifaees under a temperature gradient (seetion

5.6). Nevertheless, our review includes also the convection at them. The findings there can help to
extend ourgeneral understandingVe shall later use facts frothis compilation to argue that our

MD simulations reproduce the reality closely enough and to formulate the questions to be studied.

At first, we shall consideexperimentalkstudies ofthe interfacial flows(see chapteR.1). Section
2.1.1 addresses théquid-fluid, i.e. liquidliquid or liquid-gas, interfacesvhere the saalled
"thermocapillary convection" occurft looks totally different in a vast array efperiments We

shall rather compile its constituent features from them instead of going into the detami®nS
2.1.2will continue with the "thermal creep"”. It is the traditional name used for the convettion a
solid-fluid, i.e. solidliquid and solidgas, interfacesWe shall extractthe actual influences and
impactsof the creegrom the three main experimental setupsparticular, the one of thenudsen

effect foretells, moreover, in som&nsethe behaviair of theliquid-liquid systems that we shall
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later study ourselves. Various phenomenological models of the interfacialvifitivize introduced

in chapter2.2 They build mainly orhydrodynamics and thermodynars. Sectio 2.3 will review
analytical interfacial models deduced from more fundamental theories. In this ¢coumkext
aforementioned solifluid interfaces are of particular interest ag&hiven a dilute gaghe thermal

creep can be explained to a large extent at the microscopic leweldiyng only the kinetic theory

of gasesSuch an explanation fails, however, for denser fluids. Since they can still exhibit thermal
creep, weshallassume a more compleXfext to be active in thenit is, presumably, a capillary

one, as wellMD simulationsin the literatureshow that the thermal creep in dense fluids always
runs, similar to the thermocapillary convection, in the direction of decreasing interfacial téhsion
this direction changes, e.g. when using a different wall potential, the creep flows invert as well.
Chapter2.4 will consider such fundamental simulation approaches to study the thermal creep. To
our knowlalge, they have not been made to the liffludl interface yet. Wavant tocatch up on

them in this work. In fact, wr simulation results in chaptds.6 will confirm the postulated
relationship between the theocapillary convection and the thermal creep at higher fluid densities.
Hence, we shall assume it, here, to be driven as well by a thermocapillary effect.
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2.1 Experimental Studies

There is a great similarity between the thermocapillary convection anetrealcreep. After all,
they differ, basically, only in the direction of the interfacial flows with respect to that of the
temperature gradient. Wahallfirst look at the experimental findings at ligefidid interfaces (see

section2.1.] and then at solifluid interfaces 2.1.2.
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2.1.1 Liquid-Fluid Interfaces

The thermocapillary convectiosan depending on the system setopgcurin various waysn a
liquid-fluid system We describe them, for instance, for different orientations of the temperature
gradient with respect to the interface below. Other factors include the composition and the
thermodynamic state of a system,dismensionsetc. . See alsischwab&98l] or [schat200] for

more detailedeviews.The variety of the thermocapillary flowsakes it hard to recoge at first

sight the essentiaimilarity that all experiments sharé/e shall describe it summarilgs a drag of

fluid in the vicinity of the inteface, along the interface, in direction of decreasing interfacial
tension.Since it decreases with the temperature in the vast majority of cases, the flows run typically
from hot to cold. They invert, however, in the rare systems with an inverse tempelgpendence

of the interfacial tension. The larger its gradient is, the stronger are generally the flows, irrespective

of their direction.

A dependence on the interfacial tension in the way described up to here clsaEmadter
thermocapillary converin. Buoyancy driven flows interfere with it in the earth's or in any other
gravitational field. They result from the temperature dependence of the fluid density, in
consequence of which the fluid is subjecatepatiallyvarying buoyang. Such interferere can be
reduced by either conducting experiments on thin fluid layers or, better, by going to microgravity
conditions. In the latter case, the interface must generally be fixed to remain observable, e.g. by
capillary forces in a gap. Buoyancy driven ahdrmocapillary flows can strongly resemble each
other and were consequently confused sometimes in the Bématilities. For the sake of
clearness, we further specify them according to the dominant underlying effect as RBglesgt
(buoyancydriven) and MarangoniBénard (thermocapillary driven)nstabilities. Tablel-2 lists
selected publications oboth, structured by orientation of the temperature gradithe role of
gravity, and the type dheinterface.

Thermocapillary Convection depending on the Orientation of the Temperature Gradient

One couldconsider thehermocapillary convection observed in an experiment as the result of the

complex interplaybetween the ifferent fluid behaviour at and remote from the interface. The
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complexity of this interplayoften impedes the unequivocal identification of the phenomena of
interest. Thus, variousydrodynamicinstabilitiescan occur, for instance Theydende the abrupt
emergence of new convection patgein a stationary nonequilibrium systemas soon asts
parametersenter certain range [benard1901], [block1956] [joseph1976a], [josephl976b],
[drazin1981], [drazin2002]One assumes it to exhibit such ahéeour in agreement with the
postulated principle of minimum entropy productigfansdorff1971] Howsoever, bth theranges

and their affiliated patterndepend strongly on the detailed system sefdp.shall goparticularly

into theinfluences ofthe angle between the predominat@mperature gradiergndthe interface

here

Already very small temperature gradients ,céroriented properly along an interfacdrive a
thermocapillary convection [schatz2001t].occuss at first in a monocellular steadyatpern, where
the fluid drag at the interface is balanced by laminar counterflowse adjacenphases. Once the
temperature gradient exceeds a critical linfiyydrodynamic instabilities emergéhey exist
generally at first as multicellular steady patte and afterwards as spatemporal structures
[schwabel999h]such as the oscillatory flows described in [chun19T8k flow will eventually

become turbuleninder even larger temperature gradients

If the predominant temperature gradient lies normdhe interfacgthe thermocapillary convection
itself occus immediately asa hydrodynamic instabilit once the gradient exceeds a certain limit.
Already minor temperature fluctuations along the interface will then becomsustdiined byhe
thermocaplary convection that they initiateBelow this instability limit both phases remain
qguiescent, neglecting the influence of disturbing tfects. The occurrence of hexagonal
MarangoniBénard rolcells [benard1900a] are probably the most familiar examgd such

instabilities, se&igureb.

As both cases discussed above shihw thermocapillary convectiosan occurin quite different

shapes, even thoughis alwaysdriven by the same thermocapillary effect.
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2.1.2 Solid-Fluid Interfaces

Theinterfacial flowsoccurringat solidfluid interfacesare behind various familiar phenomena such

as theKnudsen effect, thermoosmosis, and thermophor@s$iey dl have the samappearance

undera temperature gradient, no rtext whether the fluid phase is liquid or gaseddsst of the
experiments weréhoweverconducted for gaseous fluids, since they show a more distinct response.
Furthermore, the interactions between the gas molecules can be neglected in most cases, which
smplifies the modelling. Needless to say that gwid-fluid interactions must be taken into
consideration, which usually requires making additional assumptions. S2@iaéwill provide an

overview of the vaous modelling approaches.

We shall begin with the Knudsen effect [knudsen1910], [knudsen1927]. Considedexrately
dilute gas in a system of two vess&l4 andV2. A long capillary connects them as showrrigure

6. When bothvesselsare maintained at the same temperatlite=Ty», the system approaches
thermodynamic equilibrium witla homogeneous pressure and density distributRys=Py, and
1vi=}v2. When the vessghre adjusted teomewhatifferent tempeatures, Tvi=Tc and Ty=Ty>Tg,
however,a stationarynonequilibriumstate establishedt comes,different from what one might
expect at first sightwith a heterogeneous pressure distributi@uo-called thermal creep flows,
which typically runalong the apillary walls from the cold to the hot vessel, lie behind such an
unexpected behavioumhese flowsproduce a pressure difference between the veddglsPy,

which in turn drivesounterflows of gas at the long axis of the capillary.

There is an invese relation between ¢hpressuralifference and the intensity of the flows. It, in
turn, dependsabove all on the collisions of the gas moleculegh each other compared to those
with the containment wall8oth types of collision affect the system beloar to a different extent.
Their relative influencas described by the Knudsen numbkn=&/lL [knudsen1909], where-
represents the mean free path of a gas moleculé antharacteristic length, e.g. here the radius of
the capillaryd/2. In a system with a very small Knudsen numblige thermal creep and its
counterflow are spatially separatedhey assume circular thermocapillary convection pattern
While the thermal creep proceeds along the capillary wall,cthmterflow concentrate at the
capillary axis.Both flows interfere at first strongef the Knudsen number of the system is

increased, e.g. by reducing the capillary radius at constant vessel temperatures and average system
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pressureAs a resultthe pressure difference risésnally, a secalled "molecular flow regime'ls
reached for very large Knudsen numbers. Then, the thermep and itscounterflowcover the
entire crosssection of the capillaryNeverthelessthe pressure difference slightly decreases again
due to the strongly reducedte of collisiondetweerthe gas particlesit manifess itsef also in an
additionallyoccurring phenomenoncalled viscous slip (see secti@rB.1). Other influences on the
system behaviour are, for instantiee length of the capillary, the mean gas pressamdthe gas
viscosity,

In the abovesetup, a capillary connects both vessels. If we replace it by a porous medium, such as
metal foams or cellophane membranes [fedd&&eR, [feddersenl873], [reynoldsl1879],
[hanley1965], [hanleyl1966], a pressure difference still oc@pparently, the samprocesses as in

the Knudsen effect remain active for the altered geomé&iwy. historical reasonsone calk
specifically the effect behind this differenthermal transpiratidh Both denominations, Knudsen
effect and thermal transpiration, are kepsmte the blurredransition from capillaries to porous
media Thermal transpiration is also known to accompany the thermoosmosis [denbigh1952a],

[denbigh1952b] in membranes depending on the Knudsen number of their pores [rastogi1969].

According to Newtols third law of motion, every force has eolinterforceé of equal magnitude

and opposite direction. Thvealls of a solidnust thudeela "thermocapillarycounterforcé which is
oppositeto the one driving the thermal creep aldhgm In the phenomena imduced so far, the

solid was alwaydixed and very stiff, so that only the impact of the "thermocapillary force" on the
gas can be observed. A mobile solid should, however, be accelerated in the direction opposite to the
flux of the adjacent gas. Simplyp the gas goes to the hot region while the solid heads toward the
cold one This behaviour is shownfor instance,by Crookes radiometefcrookesl1874],
[crookes1876], [crookes1880], [schusterl880], [pringsheim1883], [sonel991], [sonel994]. It
consistsof a pivoted wheel of blades in a dilute gas. They absorb incident light on one side,
typically covered with soot, and reflect it on the othele typically covered with a shiny metal.
Hence, both sides assume different temperatures when subjected tad ight source. Their
difference drives creep flows around the edges of the blatkey, in turn, move in the opposite
direction, i.e. from hot to coldin a similar phenomenogrcalled thermophoresis, particles in
aerosols are known to migrate un@gemperature gradient towards colder regions [fresnel1825a],
[fresnell825b], [rosenblatt1946], [schadtl1961], [jacobsenl1965], [derjaguin1966], [kengl966],
[byers1969], [ivchenko1971a], [singh1972], [nishio1974], [davis1975a], [davis1975b], [fuchs1982],
[stratmann1989], [montassier1990], [chang1995].
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The phenomena introduced so far for gases agauitarly if the fluid phase is denser gasreven
aliquid. Thus,we find in the literature seversg¢ports on the Knudsen effect [knudsen19@jon
the thermophoresis [giddings1970], [mcnab1973], [schimpfl1987], [schimpfl1989], [shiund2003
The basic mechanisms of thermal crempst, therefore, work generally at sefidid interfaces
although the interactions between the fluid molecules may imave weightthan at a solidlilute
gas interface. Nevertheless, this increased weight can affect the creep significarihd,\Iefact,
predictions on its inversion in the literature (see seBrR). Howsoever, thenal creep can be
practically always expected to occur in a roll cell pattern in denser fluids dine éxtremely short
mean free path of the molecules (insofar the notion of mean freenpaibh fluidsmakes sense at
all). Both adjoining phasethengenerally accelerate in opposite directions at a dblid interface
as pointed out aboveTheir opposition makes thdifference compared to the thermocapillary
convection at liquiefluid interfaces. There, the adjoining phases accelerate in the sasugodiy

i.e. typically from hot to cold(see sectio2.3.2.
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2.2 Heuristic Models of the Interfacial Phenomena

Let us first review the continuum mechanics, that underlie the different heuristic models, before we
will look at themContinuum mechanicdescribes the behaviour of a system, e.g. its internal flows,

by applyingt he basic | aws of <c¢cl assical mechaniVcs an
of it [mcquarrie2000]. The state variables in the aforementioned laws are first defined as averages
overfinite intervals of timell &andof spacetll Jdegroot1960]Both mug be small enough to catch

the spatial and chronological variation of the system in consideration and concurrently large enough
to obtain reliable state variables. In the continuum hypothtegidocal state vaables for any such
interval are then assumhéo be continuous functions of time and space [land&]2@ne thus
obtains for each portion a set of universal balance equations that must still be extentded by
interaction with the surroundings [spurk1996]. The interaction with neighbouring portisns
included as "fluxes", e.g. of mass, momentum, and energy, with differences of the state variables,
e.g. gradients of pressure, temperature, or chemical potential, as driving "forces" [haaJg#983].
relationship between the fluxes and forces are chkexiaed by saalled"material equatioris They

depend on the type of the system. If the processes iiisteceed "moderately” [degroot1960],

these equationsare a linear combination of forgewith phenomenological coefficients whose
matrix must be gymetrical according to Onsager's reciprocity relations [onsagerl931a],
[onsager1931b].

Continuum mechanics can describe a great variety of situations in practice. Suitable boundary
conditions or material equations are typically gained empirically, &tante the frequently used
no-slip condition at interfaces or the CaudRgisson material equation [spurk1996]. While this
empirical approach has proven itself gmparate phasei is arduous for moshultiphase systems

Their interfacial phenomenare hardly accessible to experimentsstead, one resorts tweuristic
assumptionsThey supplementhe few consolidate@xperimentalfindings so as toincorporate

these phenomena. Hitherto, a variety of such phenomenological models has emerged. They are at
most satisfactory. The simplest ones (see se@i@nl) consider interfaces as tvadmensional
entities through special boundarymatching conditions, such as theslgp condition for instance.

More advancedmnodels account for the interface as a three dimensional region by means of
extended material equations (see secldh?. Let us however,take a closer look at the linear
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momentum balance firsfollowing [spurk1996] It specifies eventually the conditions for the

occurence offlows in generabnd thus alsthe creep and thermocapillary ones considered here.

We can establish linear momentum balance feach ofthe finite space intervalsi, Yconsidered
within the continuum hypothesighe total forcef on every one of them must always equal its

temporal and convective change in momentum

+(v C'b))vgz f.

Here,} represents the fluid densitythe velocity, and the local volumedrce.In practice, one can

&
Bt

F

often clearly subdivide the latterinto two contributions, depending on the dimensions of its
reference interval V

f :fint +feXt_

The longer ranged or "external forc&™', such as gravitation for instance, affeaitsspace intervals

in a system to almost the same extent. On the other hand, there is the short ranged or "internal
force", f™, for instancedue to the molecular interactiorBince t acts only between neighbouring
spaceintervals it variestypically much stronger within a syster®ne then rewrites the "internal

force" as thalivergenceof alocally applicablestress tensds, to be explained in more detail below

Thus, the linear momentum balance reads

+(v C'D)vg=E)C"S+f e (2-1)

v

Equation(2-1) has the saalled differential form. Itantegrationover a larger system portioof

o
T

v 0 | u Yre> Ug¥sults in the scalled integral form:
i f%“fﬂv ®WINV = { 9 + finfBds.
DV H DV DS

Here,n represents the local normal vector on the surigcgof the portion(seeFigure?).

The stress tensor contains the stress vecwren three macroscopically small esurfaces
perpendicular to the codinate axes at the locatian seeFigure 8 [goldstein2002]. We shall
symbolse the elements of the stress tensor by the lefigrsvhere the first subscript~y {x,y,z}

representghe component of the stressnsor on the ctdurfacel Sperpendicular to the axis

I'N{xy,Z} in the second subscript:
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as, S, S,.0
e y 0
S=§,;, =8, S, Szyg.
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The three elements with identical subscrifis; constitute normal stresses and the other six
elementsS; jshear stresseB an equibrium onephase systenthe stress tensor is diagondtile
its normal stresses equal the negative system pregurk.a simple relation does not hold in other
systems anymore. One then often simply averages the normal stresses. Their negative average
serves, at least, as a crude measor the local pressure level
] S«*+S, +S,

3

In a quiescent fluid with constant total momentuheas flows occur generally only if the forces on
the right side of the momentum balar{@el) are norzero.This includes also the interfacial flows
considered hereSincesuch flows, in particular, occur also in the absence of external faases
stated in chapte2.1, internalforces must be the cause. They exist accordimgjt@mtion(2-1) if the
divergence of the stress tensor

f"=pd, (2-2)

is nonzero. Interfaces arehowever often thinner than the range of the interatomic farddss
makes the aboveonceptionof the internal forces as surface forces appear questionable for the
small subvolumedhat arenecessary to catch the spatial variation of the interfaciabmegi
Nevertheless, we shall stick to this conception here since it is widely spread on the one hand and
can on the other hand, be showapply at least formally correbt in the case of our equilibrium
interfacial systemgsee sectiod.2.1). Section2.3 introducesexplanationf how such anon-zero
divergence can ariseasinga soliddilute gas interface as an example. Laierour actual studies

we shall estimatéhe internal forces involved in the thermocapillary effect by taking advantage of

their relation to the stress tengeee sectio.5.2).

For the sake of completeness, slall also give the other balance efjons hergas found in
[spurk1996].The internal and external forces also participate in an angular momentum bklence.

analogusto the one of the linear momentum above and requiresythenetryof the stress tensor:

s=s' (2-3)

Moreover, there is the mass conservatam Its local form reads
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m8+7E)C"DJ+uGDF:O (2-4)
g -

Equations(2-2), (2-3), and(2-4), constitutetogether the sealled mechanical balance equations.
One additionally uses the -called thermodynamic ones to describe a flow. 3Wall specify them

only verygenerally here:

“f+(u®)e:d#+a@rand

”Ef + (u ®)S = C#rev + C#rrev "

They consider the local energg, and entropys. The lefthand sides represent the chronological
and convective variation of the applicable balanced state funddotin add to its othefluxes
across the boundaries of the considered reference intetvantropy, in particular, can moreover
be produced. Its fluxes, 4, are, different from its production rai&;fey, reversible. One typically

distinguishes the exchanged energy éspdepending othe way of transportation. Heat#, is

diffusively and work,a#, nonrdiffusively transported.
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2.2.1 Heuristic Boundary Conditions

Numerousinterfacial models have emergetdased on experimental stadiof the thermocapillary

effect and of other interfacial phenomenkhe simplest models treat the interface as a two
dimensional entity as suggested byoung [youngl805], Laplace [laplacel880], and Gauss
[gauss1830].They describe eaclphase separatelyybthe establishedcontinuum mechanical
theories. The qcesses at the interfadéself, are simply accounted fothrough suitably chosen
boundary or matching conditions [levich1963juch an approach considers specifically a liquid

fluid interface as a "embrane”. It feela measureabléensionwhich depend, among othethings

on the local temperatur®/e obtain asimple hydrodynamic boundary condition by assigning the
interfacialtensiongradient to the lateral components of the stress teasan [lezich1962]. More
sophisticated formulations for boundary conditidva/e emergedup to now. Theyconsider also

other interfacial phenomena of relevanfme instancethe deformability of the interfaseand its

effect on the interfacial tensiolr on the inerfacial rheology [scriven1960a]. All in all, such
boundary conditions have been successfully used for a wide range of situations, in particular for the
prediction ofthethermocapillary convection [pearson1958], [scriven1964], [villers1992]. However,

all these models must break down when the processes at the interfaces are to be described on
length-scales smaller than its thickness, such as in coalescence or in thickiteslrinterfaces.

Let us state here for the sake of completeness that the the®p at solielilute gas interfaces is

well modelled by using the concept of an interfacial tension, although it cannot be measured there.
Instead the relevant phenomenological boundary conditions are therefore deduced from more
fundamental theorie$Ve addressuchdeductions irsection2.3, because they are also of relevance

for the thermocapillary effect.
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2.2.2 Heuristic Material Equations

So-called "diffuse interface models" accoung suggested by Poiss¢poisson1831], Maxwell
[maxwell1876], and Gibbs [gibbs1875pr the finite thickness of the interface by treating it as a
heterogeneous but continuous region. The processes in it are described by suitable extensions of the
well-known thermoe and hydrodyninic theories [anderson1998[hus, one assumes, for instance,
that theirvariables can unambiguously specify all local states inside the system on the required
length and time scales, as described previourslyection2.2 Such aspecification is, however,
complicate at the interface due to the strong variation of the "interfacial states". It, exrteolsy
otherthings thathe state of an interfacial subdomain depends not onitg state variables but also

on its interactions with the surrounding subdomains. The various "diffuse interface models" try to
take these interactions into account by supplementing the familiar baladamateriakquations

(see section 2.2) with contributions fromthe neighbouring state variablefkortewegl190],
[dunn1985], [piechor2008]Think, for instance, of the energy balance or the material equation of
the stress tensor. They drequently expandely terms that involve gradients the density oof

the composition.Sometimes, evemew state variables, e.g. a phase field, are introddced

convenience

One applies iffuse interface models to interfacial systems in and out of equilibNMeshall take

a closer look at the formemse here to clarify some terms for later use. The description simplifies
significantly in equilibriumdue to the irrelevance of the hydrodynamic proper@escurrentlythe
thermodynamic state variables can be classified into "feetiperties and "intensive densities”
[rowlinson2002] We denote by "fields" those properties that have, in agreement with the conditions
for thermodynamic equilibrium, a homogeneous distribution throughout the entire systieik,.

for instance, of theemperatureor of the diemical potentials of the individual components. The
"intensive densities'on the other handary. They are the extensive thermodynamic properties that
had to be redefined locally by relating them to another extensive property, typically on a molar or
molecular basis. Their variations aiee strongest at the interface and converge to zero deep in the
phasesHence, we can consider each phaséably remote from the interfacas a "bulk phase”
whose state persistter isolation from the rest of syste The interface, itselfconsists ofa
sequence of local stationary states that vary continuously from one "bulk phase" to the other. Each

of these states cahoweveronly exist localised between the bulk phasederthe influence of its

2-23



neighbouring w@tes- but not in an autonomous and homogeneous "bulk ph@kes'consideration

will be fundamental for the interpretation of our computer simulations.

Van der Waals Theory was presumably the first "diffuse interface modelVdpourliquid
interfacesin unary equilibrium systems [vanderWaals1893], [rowlinson1979]. Cahn and Hilliard
reformulated and extended this theory [cahn1958].neoequilibriuminterfacial systems a series

of models was developed that are, for example, reviewed in [andersonDof&}e interface

models may generally be used for thin interfaces away from the critical point. Near the critical
point, when the coherence length of fluctuations in the fluids surmounts that of the molecular
interactions, the local definitions of someoperties, in particular the thermodynamic functions,
become increasingly inapplicable [rowlinson200As a result, diffuse interface models
underestimate the thickness of the interface in such cases, which leads to an overestimation of the

phase separatio

All "extended models" fail to accounbrrectlyfor the experimentally measurable convection that
spread from the interface into the phases [pertler1995], [davis1987], [cramerl1995], [schatz2001].
Similarly, these models also fail to reproduce otheerfacial phenomena such as interfacial
rheology, diffusocapillary effects, and electrocapillary effects [stukel961], [sawistowskil971],
[sherwood1975], [levich1969].
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2.3 Fundamental Models for the Interfacial Phenomena

We can apply mre fundamental thees than e.g. the phenomenological continuum mechanics
from section 2.2 to describe the behaviour of a system. Quantuechanics is the most
fundamental ongmcquarrie1997],[dirac1999]. The molecular theorie®f gases and liquids
constituteits classical limifkennard1938][hirschfelder1966][chapman1970 Sincesuchtheories

are deterministic by naturgye must knowthe initial microstate and the external constraints of a
given system entirely in order torgaict its exact evolution. Observables, i.e. in principle
measurable quantities, are averages over such evolutions. However, the initial microstates, and
partially even the boundary conditions, remain practically indeterminable. Instead, the fundamental
theories were reformulated with a statistical character by making additional assumptions. This
major contribution to modern science is due to Ludwig Boltzmann ¢1806) who based his
consideration on classical Newtonian mechafiasquarrie2000], [landaw®7]. The underlying
concepts were later on shown to be entirely compatible with quantum mechanics. A
macroscopically unambiguously specified system state is represented by a probability distribution
function over several microstateStudying its evolutin thus amounts$o studying the one of the
system. We then obtain it®acroscopic observables by considering all microstates with their

concomitant probabilities.

The oundary conditions and material equations for the continuum mechanical descriptiattesf m
can in principle, and under special circumstances also in practice, be dbyivesing the
fundamental theories above. Such "fundamental approaches" have proven to be successful mainly
for simple molecules and dilute gases. In particule differentexplanations othe creepflows at

a soliddilute gasinterfaceunder a temperature gradient draw our attention, here. They strongly
resemble, when given small Knudsen numl¥éars 0O, the thermocapillary flows at a liqulgjuid
interface under a similagradient. There is only one major difference. The adjacent phases
accelerate typically in different directioassoliddilute gas and liquidiquid interfaceqseechapter

2.1). Neverthelesspnefeels intuitively a relationship between both phenomena, which is why we
will take a closer looktahe explanations of thermal credgelow. Since they all use the kinetic
theory of gaseswve shallfirst review it and its definition of the stress tenstames CleriMaxwell

(18311879)was presumably the first to derive a macroscopic relation for thermal ¢nesgction
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2.3.1, wewill briefly explain his derivationHitherto, more advanagmodels have been proposed

based o it, see sectio2.3.2

Kinetic Theory of Gases

The kinetic theoryof gases specifies themicroscopic state through the particle distribution
functiont, see e.g. [kennard1938$one2007] for details. In an atomic g#ss function describes
the probability of findingat the timet a particlewith the velocityu at the coordinater: G (r,u,t). If

the gas is sufficiently dilutej} can be rewritten as throduct of the local density(r,t), multiplied

by the particle velocity distribution functipf{u,t):

a (r,u,t) = 3 (r,t) f(u,t).

It has a MaxwelBoltzmann type inthe special case ofhaisolatedbulk gas in thermodynamic
equilibrium,

f,(u)= Ae oAl

whereA is a normakaion constant an results from the particle mass, Boltzmann's constant
ks, and the temperaturé, according tahe relation

m

b? = .
2k, T

Microscopic Definition of the Stress Tensor in a Dilute Gas

There ae generally two contributiong kinetic one,K(r), and one,l(r), from the interatomic

forces, to the microscopigefinition of the stress tens@(r). Dilute gases have onlysagnificant

kinetic contribution. It represents the average flux'@homentun, i'N{x,y,zZ}, per unit time and

area across the three macroscopically small cut surfag8gkennard1938] (se€igure9 on the

left side) They lie perpendicular to the coordinate axe@gx,y,z}, and intersect ahe locationr.

The flux, itself, happens through the movement of the particles. They carry their momentum with
them whenever they cross one of these cut surfaces. Such a crossing happens in the case of even
particle,i, whose location vector;, is pat of them, i.er;i i 8 We obtain the total flux by adding

or by withdrawing tha'-momena of the particlesdepending from which side they come:
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It occurs in the sign of the scalar product betweerp#réclevelocity, vi, and the unit vectosy,
perpendicular to the cut surface,§ The momenta carried by the particles are their mass,
multiplied by the scalar product of their velocity;, and the unit vector im-direction, g.. We
additionally mul tiply tboimakeitkcompatible with ticedhydtodymatmia t i o
definition of the stress tensdt is, according to hydrodynamica compilation of the forces per unit

area on cut surfaces whose normal vectors point in the positive directions of the coordinate axes

(seesecton 2.2).

In practice it is oftendesirable to calculate the stresasorfrom the particle distributiofunction,

a, rather than tracking the motion thfe individual particlesOne, therefore, rewrites the molecular
definition: Not just the particles crossing a cut surface are considered anymore, but all particles
inside a small macroscopic prism of the heigiti2drawn symmetrically on both sides of this
surface [heinz2005] (sdggure9 on the right side). A given particle with the velocity,u;, and an
unknown positionr;, inside the prismrosses the surfaaiuring abrief time interval i ,tonly with

a probability of(ui&)l t /;2tlattounts for the fact, that the perpendicular velocity component
(ui&) may be directed towards or away from the surface, through the factor 2. Using this
probability, we obtain the momentum transfdriey summing the particle momenta, weighted by
the corresponding probabilities, of all particles inside the prism. Additional nisetiai by u and

the area ofi Syields the momentum flux density. Its average constitutes a computationally easy to
handk definition of thekinetic conribution to the stress tensor:

< am(, ®i-)(ui®j-)>

K. =- il V=205, 3. - (2-5)
' 2dS,d g

Equation(2-5) can be further rewritten as an integral by means olbited densitiesnd the particle
velocity distribution functionParticularly in a pure substance at leasta mixtureof particles with

equal masses), the stress tensor simply amounts to

Ky =-r GG @) du e, )er (u)du. (2-6)
Here,} is thepatrticle density and(u) the particle velocity distribution function [kennard1988]

the gasWe can easily compute the integnalthermodynamicequilibrium An isolatedbulk gas

then has normal stresses of
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Koo = Kyy =Ky, == rkgT. (2-7)

XX

This equation holds approximately also in thermodynamitequilibriumif the transport processes

proceed moderately in the sense of continuum mechanicehaptr2.2).
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2.3.1 Maxwell's Explanation for the Thermal Creep

Consider as an examplea system of pure seminfinite quiescentdilute gaswhich isin contact
with a fixed seminfinite solid Its surface lieperpendicular to the-axis atz=0 (seeFigure 10).
Both the gas and the solid may $iebject to the same temperatyrgradientO T />@ while other
external influences remain absent. According to Maxwell, thermal emesgs in such a systeue
to the special twalimensional heterogeneity of the gadid interfacial regiorimaxwell1879] The
difficulties in studying such and other interfaces were described before (see §ebtidkie can,
however at least inferon this regionby looking at two particular cut-outs of the systemone
directly at and the other one far remote from the interfibey constitutéimiting caseswhich are

relatively well understooth terms of the kinetic theory of gase

Let us look at the gas away from the interface first. There, a bulk like behaviour establiihes,
heterogeneity only iny-direction. Given small temperature gradientt)e particle velocity
distribution function can most conveniently be consideasda sum of the MaxweBoltzmann

velocity distribution functionfy, and a biagf;:
f=fo+fy.

It must beantisymmetridn y-direction in order to make tleentreof massy-velocity zero,

o oo

fififd, f (u)du =0,

-o-o-o

and thus cannot contribute to the stresssorin equation(2-6). We obtain an estimate of the bias

from more advanced treatments of such heat conducting bulk[gaseard1938]
_ 5.5 2 2 6 - bz‘u‘Z
f, =Cu,& - b*|u e :
c2 +

Here,C is a normalisation constaand,uy, the @rticle velocity component ip-direction

We shall now take a closer look at the second limiting case. An adsorption layer forms at the
interface even for very low gas pressures. Its local density thus clearly exceeds the one of the bulk
gas.Incident paticles interact for different amounts of time with the adsorption layer and the solid

until they are reflected back. The longer this interaction takes for a certain particle, the more its
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velocity of reflection will be randorsed We can distinguish twoirhiting cases againThe
immediate specular reflection and the diffuse reflection after a long interaction period during which
the partcle becomes a constituent of the adsorption layer. In the diffuse tte&seelocity of
reflection is purely randonmwith probabilities according to the local particle velocity distribution
function at the solidA reflection has typically, at leasta partially diffuse characterWe can
qguantify it, for instance, by the averagercentage, calledccommodatiorcoefficient a, of the
rather diffuse reflectionm all reflections[maxwell1879] Given such a coefficient larger zetbge
particle velocity distribution function remote from the interface deviates from a more symmetric
one right atit. Computing thetransition betveen both limiting cases ian intricate task to
accomplish which requires eventually solving the Boltzmann equégemsectior2.3.2. We can,
however, anticipate that this solution must be a continuousidunct space, withncreasing rates

of change in approaching the solid. This gives risesgatially variable shear stress&, in z-
direction. They come witha nonzero divergence of the stress tensor and thus drive the thermal

creep.

In order to estirate the creep velocity, Maxwell made the rather bold assumption that the density
and the particle velocity distribution functidfu) remain homogeneous up to the solid, where all
incident particles are reemitted diffuselye. a=1 [maxwell1879]. Given a quiescent gasthe
distribution function there iussimply the one of the incident particlég{(u), superimposed with

the one of theeflectedparticles fre(u):
f=finctf rep— (fot+f1)(w<O0, Uyyuz) +o(u>0, Uyyuz)

This superimposed function entails ada$y-momentum

o oo

Ky, =- 7 AN Y. f(u)du =

-Q0-o-o

Qoo o oo

= 7 AU (fol0)+ ()du 7 b, fo(u)oti=

-o-o-o 0-o-o

Qoo

=-r ﬁﬁﬁJyuz fl(u)oU =

-o-o-o

0o o o ~ 2
=7 C .- o7 B =
g -

-g-o-o

_prC

8 b°
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from the adjacent gas layer to the sofid.a result, bth accelerate relative to each otheopposite
y-directiors. Since the solid is fixed as stated above, the relative acceleration applies also in
absolute terms to the adjacent gas layer. Its incipient motion in pogitivection affects the
superimposed particle velocity distribution function thus balancindottge ofy-momentum to the

solid. Concurrently, further remotayers of gas areas well accelerated due to its viscosity.
Eventually, a uniform thermal cregprelocity, vrc, establisheslt amounts to

Vic :§i£:§ﬁ£, (2_8)
4rT Wy 4PM Wy

based orfurther considerations [kennard1938jere, is the viscosityP the pressureandM the

molar mas®f the gas, whil&R represents the universal gas constant.

If the thermal creep cannot develop uniformly, as is typically the case in practice, velocity gradients
will occur in the gas. They canwg rise to additional slip flows along the solid for small Knudsen
Numbers. Maxwell explained this phenomenon, called viscous slip, similar to the thermal creep
above by thedifferences betweethe velocity distribution functions of the particles incidenand
reemitted fromthe adsorption laygkennard1938], [maxwell1879]. Thus, the viscous slip velgcity

Ws right at the gasolid interface must be directly proportional its normal velocity gradient

Ws =~ Zys )

wheregysis the slip coefficientWe can simply addhe velocities of viscous slip and thermal creep
in a first approximation

V=VrctWs

Given small Knudsen numberdMaxwell's expressions for thermal creep and viscous slip have
proven themselvesn principle as boundary conditions for the phenomenological description of
dilute gases in contact with a solid. Thparticularlythe thermophoresifrom section2.1.2can be
predicted with satisfactory accuradypsteirs wellknown formula for the thermophoretic velocity

of the objects in a suspension [epstein1929], for instdnskels on a continuum mechanical model

with Maxwell's expression for thermal creep as boundary condition. Even more modern models of

thermopheesis still usMaxwell'sexpressioa[brock1962].
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2.3.2 Advanced Models for the Interfacial Phenomena

Hitherto, Maxwell's treatment of thermal creep was advanced to obtain more accurate predictions
for a broader range of situations. In particular the aptiom of a constant particle distribution
function O ¢,u,t), up to the solid is abandoned. Instead one solves the mathematically difficult
Boltzmann equation [sone2007{ describes the spatial and chronological variation of the particle
distribution function. All solutionsobtainedindicate asymptoticall increasing creep veloa@s

remote from the solidTheir limiting values exceed Maxwell's result (see equati(8)) by
approximately 50% [sonel966], [sonelBRloyalkal97H], [ohwadal989a]

In addition tothe solution of the Boltzmann equation, the research concentrates on how the
interactions of the bulk gas particles with the adsorption layer affect the creep vé&oagty.small
Knudsen numberKn- 0, it has a maximunfor entirely diffuse reflectionsaEl) and decreases
towards Maxwell's derived creep velocity the more the reflections are spea#@) (
[deryagin1967], [yalamov1968], [abramov1970], [loyalkal971b], [loyalkal971c], [onishil972],
[loyalkal975], [bakanov1977c], [ivchenko19938]Jlore sophistiated treatments even charaiger
the collisions by severalccommodatiooefficients[brock1962] e.g. a thermal one,

_E-
& _—i'—év_’

and a momentum related omg,

TFhe

— Gi B Gr
m G

Here A; and A, represent the tangential components of the momerdyrandthe kinetic energy
flux density E, carried either by the incident or theflectedparticles(subscripts andr). E,, stands
for the energy flux density that would be emitted if theiipess came from an equilibrium bulk gas

at the temperatuneght in front of the solid.

One must keep in mind, however, that thiéerent charactesationsof the particle reflectionare
merely workarounds in the conception of the adsorption layétle Lis known aboutts true
processes involved [darling1995], [gross1998], [kroes1999]. Moredvéecomes increasingly
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unrealistic to assume distinct collisions with the adsorption layer for higheorgagen liquid
densities. Nevertheless, the fundartal models above can describe, either by themselves or in
combination with macroscopic theories such as continuum mechanics, the behaviour of various gas
solid systems, e.g. the Knudsen effect along a capillary [derjaguin1965], [waldmannl1966],
[waldmannB67], [sonel968a], [loyalkal969], [skakun1974], [ohwadal989b] or the thermophoretic
velocity of an object [deryagin1961], [derjaguin1962a], [deryagin1962b], [masonl1962]
[fuchs1964], [derjaguin1965], [brock1967a], [brock1967b], [bakanov1976], [gorelov1976],
[bakanov1977a], [bakanov1977a], [brock1968], [springerl970], [ivchenko1971b], [beresnev1993],
[poddoskin1982], [bakanov1991], [bakanov1992]. In more advanced treatments of such systems
with a variable normal temperature gradient along the interfaoreB72], [beresnev1985],
[aoki1989] [ohwadal992][bakanov1992][takatal995] as e.g. in the thermophoresis of highly
heat conductive objectthermal creep can even invere. the adjacent gas moves from hot to cold
along thesolid as in the thermocaplly convection Although experimental evidence is still
missing [bakanov1995], this could hit a relationship of nature whatsoever between the
thermocapillaryflows at liquidfluid and the creept solidfluid interfaceqseechapter2.1).
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2.4 MD simulations of the Thermal Creep at Solid-Fluid Interfaces

Wold and Hafskjold [wold1999haveanalysed the thermal creep of a binary mixture in a carbon
slit poreby usingNEMD simulations. Segart 3 for the details about this metho@ihe authors'
system setup resemblpsetty muchthe one used to explain the Knudsen effect in se@iar®
They chose, however, ttsystemconstrants such that the fluid was either liquid or supercritical.
Nevertheless, thereep flows occum the simulationasknown for gaseswhen the pore is made
subject to an axial temperature gradiéra.further study theinfluencesof the flows, the authos
simulated several slit pores of different widteachwith six different wall potentials: 100%, 30%,
and 14% of (i) a full 1@1-3 Steele potential [steele1974], which is attractive and repulsive, and (ii)
an altered 1€1-3 Steele potential, truncatedit first minimum and shifted to be purely repulsive.
Such potentials entail, by nature, specular wall collisidms.implementdiffuse wall collisions
instead the reflectedparticles wereassigned random watlarallel velocity componentsTheir
probabilties agreewith the Maxwell-Boltzmann distributiorat the applicable local temperature

Theauthors assess tivgensity of the thermal creep on the basis of three propefiestocal com
velocity distribution, the attenuation of the camngntseparadabn due to the Ludwigsoret effect in

the slit pore (compared to that in the bulk), and the surface tension gradient along the wall. Provided
that the slit pordas sufficiently wide, the expected laminar and stationary roll cetlsur with

thermal creeplang the wall from cold to hot for the #3 Steele potentials (i). The convectisn

the strongest for the full potential and weakdhe more the potentialare reduced. Using the
purely repulsive 141-3 Steele potentials (ii), however, the sense dtiah of the roll cells invest

with "thermal creepfrom hot to coldlts inversion comes with one in the gradient of the interfacial
tensionWe discussed previously how thatureof the wall collisions affectthethermal creep (see
section2.3). The foundinversion suggests thdte interatomic forces between the waaid the fluid
particlescan play an important role as well. In fact, we staterminea similar mean force field on

the particlesat our Iquid-liquid interfaces (see sectiénl). Later, different simplified variants of it

are implemented to establish a relationship between thermal creep and thermocapillary convection

(see sectioh.6.9.
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3 Theoretical Background of MD Simulation

It is the aim of statistical physics to explain, and ultimately predict, the macroscopic behaviour and
properties of a given "physical systenidased on the microscopic propes of its constituent
molecules [hill1987], [mcquarrie2000]. Thigquiresthat these properties can be expressed in a
suitable way; the expression is most often done in form of a "microscopic model" under
characteristic assumptiofisopp2008] The mostfrequent one is that matter consists of individual
particles (this term is taken here to mean either atoms, groups of atoms, or molecules) that interact
via "interaction potentials”. In classical statistical mechanics one assumes, moreover, that the
particles obey the equations of motion of classical mechanics (Newton's equation). The
characteristic assumptions introduced up to here are reasonable ones for chemical systems, i.e.
matter with moving masses larger than the mass of the hydrogen atom anchterapesf a few
hundred Kelvin, if chemical reactions, i.e. the transformation of one species into another, are
neglected [chandler1987].

Any "physical system" amenable to these assumptions can thus, in principierstated into a
corresponding "mael system" described mathematically by the coupled Newton equations of
motion for the particles. The number and formulation of these equations are to be chosen so as to
represent, as besis one can, the specific "physical system" and its interactionk e
surroundings (i.e. parts of the world not explicitly included in the system). "Tiasslatioft
requires further sgalled "modelling assumptions” that can be crudely subdivided into three parts:
A "molecular model" for the individual particles i®aessary that captures their geometry (i.e.
spacefilling properties) and mass distribution. Furthermore, one needs a description of the
interactions between all particles inside the system. This, the part most difficult to obtain, is,
colloquially, also kown as the “force field". Foregeld development for specific systems of
chemical, biochemical, and other interests is presently one of theemd@avourof theoretical
chemistry [stone2002] For our purposes here, however, gimplestassumptions aso these
interactions will do. Finally, the influences of the surroundings, theaied "boundary conditions"

or "constraints"must be emulated within the governing equations of the "model system"”.

According to statistical physicthe complete infor@tion concerning the chronological evolution of

the "model system” is available from its "full phase space trajectory”, i.e. the knowledge of all
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particle positions and momenta at all times. Obtaiiting} of course, impossible for many reasons
one of hem being that the initial molecular state of the relevant "physical system" cannot be
determined. Moreover, the governing system of equations for virtually all situations encountered in
experiments would simply be too complex [landau200Hese problemscan neverthelesdbe
tackled by statistical approaches which are eponymous dédarimch ofstatisticalphysics. In this

partwe shall look at tw@f them

The traditional statistical mechanical approach manages to capture parts of the "molecular
information” contained in the "full phase space trajectory” of the "model system" from its related
ensemble, separt 9. Such an ensemble constitutes a hypothetical infinite set of microscopically
different entities ofthe "model system" that are all consistent with the macroscopic state of the
given "physical system”, i.eits external constraints. Th capturingworks, however, only in

"simplé' cases, i.e. if the interactions can be expressed in very simple matladfoatis.

The simulation approach, on the other hawknowledgsthat it is not possible to generate the full
phase space trajectory. Insteadesettles for generating a representative sample. MD simulations,

in particular, compute a section of theaph space trajectory for the "model system”. In doing so
additional assumptions, we shall call them "technical simplificatjoa®' usually introduced to
solve the equations of motion efficientlyhe thus obtainedsimplified "model system" shall be
dended henceforthas the "simulation system". As long as the computed section is representative,
the results can be transferred to the "model system" and ultimately to the guiding "physical system".
Section 3.2 below gives more details on the MD simulations, their simplificatioasid their

representativeness.

Even the "molecular information" contained in the sample phase space trajectory is far too
extensive. Statistical physics, therefore, prosettdough suithle averaging procedures with
respect to the observables of interest, mostly macroscopic erggsyariables known from
reversible or irreversible thermodynamics and hydrodynamics [keizer1987]. It is at the core of
statistical mechanics to devise theseraging procedures. We shall decisively draw on this concept

for our analysis of thearious systemsimulated in this work.

3-36



In order to ease the understanding of statistical physics, however, we shall put here the cart before
the horse and look first #te analysis of the phase space trajectory in se8tlbiThe discussion of
the actual MD simulation method to obtain such phase space trajectories shall be postponed to

section3.2
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3.1 Analysis of the Phase Space Trajectory

For the sake of the argumente shallassume in this section that at least a representative sample of
the "phase space trajectory” of a "model system” is known and look into its analysie. If th
trajectory was obtained from MD simulatigrs®me minor differences must be taken carerbis

is explained in sectioB.2 Let us recall some terms first, before we will address the anaBsgis.
"phase spacewe denote a multidimensional space spanned by the positioteeamémenta of all
particles in a given system. At every instahe state of the system is uniquely represented by a
single "phase point" in this space. Consequently, the phase spacsotyajdenotes the
chronologically ordered set of "phase points" (generaytuples of numbers for a system Nf
independenpatrticles) during the evolution of the system in time. In formulae, we shall specify a
"phase point" by the two vectors of all pele positionsq(t), and all particle momentg(t), at the

timet.

Any observablgeo, is generally defined as a function of the phase space trajectory. Depending on
the definitionsof the observableghey can be grouped into different classes [all@d8]0 The
presumably most frequently used class constitute toaléed "static observables". They are simply
"time averages" ovahetime intervals ) of the instantaneous valuestb& microscopic functions
o(q(t),p(1)), of the individual "phase points" along the phase space trajectory

o) =2 pplat) plt)et 31

Note,the static observables, suah particle densities, temperatures, or presgareénstance, relate
in an equilibrium system exclusively its state and are therefore independent of the particle

masses.

Another class of observables comprises th@ot mean square (RMS) fluctuatidnef the

instantaneous function valyeshichunderlieany static observablabout their "time averages"

5(0)= Folol)- roar @2

Such root mean square fluctuatiara serve as a crude means to asteseliability of the "time

averages" that they relate to [haile1997], [rapaport2004].
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Finally, there are theso-called "dynamic observablesTheyare defined as extensions of the former
two classes using the correlation function formalisee e.gmcquarrie2000]andaccount for the

time evolution of the system on the microscopic schllete, the dynamic observables, such as
viscosities, heat conductivities, or diffusion for instance, relate in an equilibrium system exclusively

to the processes andépend therefore on the particle nesss

In this work we aremainly concerned with the observables from the first two classes introduced
above. For the sake of simplicityve shall henceforth denote the "static observables" as
"observables" and the "R#fluctuations” of the instantaneous function values underlying a "static
observable" as its "standard deviation". In formulae, graphs, and tables the "static observables" will

be designated with the lettea""and the related "standard deviation" with the lett&rftllowed by
the symbol of the instantaneous function values in brackets. This notation was adopted from

[bendat2000] in the interest of improving readability.

In principle the observables ammputableover an arbitrarily long time interval) considering an
arbitrary numberN, of particles seeequationq3-1) and(3-2) above.Macroscopic observables, as
known e.g. from thermodynamics or hydrodynamics, dypically determined to describe the
characteristic behaviour of a system. This requires eventually that the sample spans a "large
enough" number of particles andsafficiently lond' time interva) U [callen1985]. It is not easy at

all to establish whatlarge enoughand"sufficiently lond' means this may be quite different for
different observables. It is also, however, only on these scales that the cohopsearables” have

their "macroscopic meanihg

There are nowadays experimental techniques that go well beyond the classical observables of
phenomenological thermodynamics or hydrodynamics and probe matter irtispadeames down

to the molecular scales, e.g. time resolved spectroscopyemsl1978, [coppeyl980],
[beddard1993], [yoshizawal999], [reid2003]Jor microscope techniquedjke atomic force
microscopy (AFM) [binnig1986], [carpick1997], [humphris20Q5)with temporal or spatial
resolutions down to a few femtosecondsianometresin keepingwith these techniques it makes
sense to determine from the simulations "observables" also over similarly short time intervals and
small dimensions. Of course, the mdxeand Uapproach the molecular scaldbe larger the

fluctuations i.e. the uncertaintyyill be.
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Turning briefly tononequilibriumprocesses: If the processes inanequilibriumsystem proceed
moderately [degroot1960], [haasel1963] in the sense of irreleetbilrmodynamics (sgeart 10),

one can expect to compute imnalogy with the abovmentioned techniquesneaningful
observables. Otherwise the spatial and chronological resolution necessary to catch the system
behaviour may raise the uncertainties oftemputed values over all bounds. The ssdl@wvn to

which an observable can be determined with an acceptable uncedipsiydon thetype of this
observableNote that the uncertainty can possibly even be thsgied in equilibrium or stationary
nonequilibriumsystems into a "finitsize uncertainty, due to the finiteness of the underlying
system and a "statisticalincertainty”, due to the incompleteness of the phase space trajectory
[haile1997].

Any obsenable canin principle be determined by averaging the applicable microscopic function
o(q(t),p(t)), seeequationg3-1) and(3-2). Some observables, walled mechanical @s[hill1986],

are apriori easily defined in terms of such functionse.g. the pressur®, the internal energy,

the volume V, the momentum vectpip, or the particle fluxes. The definitions of additional
observables can be derived from th@eviols mechanical onesby appealing to the
phenomenological theories like thermodynamics or hydrodynanmdhis way,e.g. expressions
for the temperatuteT, the entropy S the thermodynamic function@ielmholtz free energyA,
Gibbs free energyG, enthalfy, H) or the heat fluxes are obtained [mcquarrie20Q0kewise, the
statistical mechanics of transport phenomena was first derived in fundamental wodk&.by
Kirkwood [kirkwood1946], [kirkwood1947], [kirkwood1949], [kirkwood1950]. However, many of
theseexpressionsire difficult to compute in practice,g. theentropy related properties.

One can usually recoga from the microscopic definition (the functioh of an observable down
to which length and time scales its determination makes sense. Wdetbahine specifically the
distributions of secalled "singleparticle observables"such as the ongarticle density, the
momentum, or the kinetic energyy the microscopic scale. Their functicar® simply sums of the

contributionsfrom theindividual particles [rowlinso8002.
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3.2 Simulations

We mentionedn part 3 the characteristic assumptions of classical statistical mechanics which, in
combination with further "modelling assumptions”, constitute thedation to translate a "physical
system" into a "model system" of coupled equations of motion. They can be balsed ora
suitably chosen initial phase point. MD simulations thus preserve, in keeping with Boltzmann's
vision, the time evolution of the siem, an aspect not often exploited in the traditional approaches

of statistical mechanics (spart9).

Since analytical solutiongenerallydo not exist formulti-particle model systemghey must be
solved numerically "by force". However, the limited available (or even technically feasible)
computing power and storage capacity suffice to compute barely a sample, or section, of the full
phase space trajectotMoreover, he computation requires in practicether simplifications. Thus,

the system is typically downsized to a manageable number of particles, of the order of a few
hundreds to ten thousands. Moreover, a further array of "technical simplifications" is implemented,
e.g. for the computation of thet@mactions through periodic (toroidal) boundary conditions together
with the secalled "minimum distance conventibror the truncation of thenteratomic forcesat a

certain ‘tutoff radius". These simplifications, explained thoroughly e.g. in [haile1997],
[allen2003], are to be implemented in such a way that the "simulation systensé(sien3) still

parallels the guiding "physical system" as closely as possible.

The computed sectioaf the trajectoryand thus also the determined observables saubject to
errors They can be crudely distinguished by their sources ‘intodelling errors” due to the
modelling assumptionsfinite size errors" due to the stringent spatial limitation of the systems,
"simulation errors" due to the technical simplifications, afbmerical errors e.g. from the
integration of the equations of moti¢seesection3). Nevertheless, as long as the section remains
representative, it can l@malysedwith respect to the observables of interest in the way described in
section3.1 One has to keep in mind these inaccuracies as well dsdheal" fluctuations of the
system explainedalreadyin the aforementioned sectionwyhen extrapolating from thesimulation

system" to the guiding "physical system"”.
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It is a difficult task toassess or even ensure the representativeness of a MD simulation. The biggest
problem is usually the incompleteness of tlmenputedsectionof the phase space trajectody
simulation can only count as representative with respect to certain events if they occur at
approximately the same extent and frequeasylong the full trajectoryWhile this condition
cannot be strictly erified, the calculation of certain tirerrelation functions [frenkel2002)ffers

some insightin addition, comparing the several numerical values obtained for the observables from
different parts of a computed trajectory can give h[fitcham1986] Alternatively, the values
obtained over different trajectories of the same syst@mbe compareedach of them starting from

an entirely differentinitial phase point. In the course of this work, we shall conduct such
comparisonexemplarilyfor one of our simulation systems section4.4.3 Stability estimates of

the computed observables with respect to the "simulation e@ods’humerical errors” can serve

as a further criterion. Such estimates are ofteainétl through parameter variations.

Obtaining a suitable initial phase point that is consistent with the specification of the system state is
also often not easysuch points ar@sually constructed starting from more or less arbitrary initial
conditionsin "preparational simulations"”, which have, strictly speaking, no physical meaning. Thus,
many"tricks of the trad&[allen2003] can be used in this phase of work in order to ohtstarting

point as efficiently as possibl€hapterd.4 will address this problem specifically for the systems to

be simulated here. The trajectory computed during equilibration is of course discarded when the

actual "production simulations" have been started.

A final remark conceling thenoise inthe observabledt can in practice,hardly be disentangled
into the various sourcedefined in this andn the previous section. The "statistiaaicertainty
decreasegenerallyfor a given "simulation systemWith increasing simulatiofength;"generally
because rodelling" and Simulation errors" of course increase with the number of numerical
operations, i.e. with simulation length. When everything is said and doneseumeghat thee
errorsare small and that the fluctuationssebved in the system are the true ones associated with

the "model system", and ultimately the guiding "physical system".
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3.2.1 Equilibrium MD Simulations

When the guiding "physical system" is in thermodynamic equilibrium, the derivation of the
corresponding'simulation system" is often relatively easp particular when it comes tdhe
simple systems that are also considered in traditional statistical mecidnisshe interactions of
such systems with their surroundings can tigeically emulated by usingoeriodic boundary
conditions [allen2003]. Since they preserve the particle nuni\beristhe differentsubstanceY the
system volumeV, and the total system enerdyy a soespecified NWE system can be readily
simulated if a corresponding initial phase point is provided. The equations of ractiarsually
adapted with additional pseudiarces, e.g. to establish a constant temperature or pressure through
interactions with a heat @ pressure bathNWT or N\PT systems)Also more complex boundary
conditions can be implemented using such psdadms, e.g. a solid wall’he reader is refred to
speciaised textbooks [haile1997], [sadus1999], [frenkel2002], [allen2003], [rapaport2004] for the
details of these procedures. MD simulations of systems in thermodynamic equiliablomEMD
simulations, are well established.g. in the determation of all kinds material propertieé\
multitude of papersis published every year. See for examfideveridge1989][benjamin1997]
[heinz2005], [bopp2008] for more elaborate reviews. Not to be confused wedtilibrium
simulations, the preparationsimulations carried out to obtain a suitable initial phase point are

often calledequilibrationsimulations.
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3.2.2 Nonequilibrium MD Simulations

Similar to the EMD simulations from the previous sectioanequilibriummolecular dynamics
(NEMD) simulationsattempt to compute a representative section of the phase space trajd&ory
are, however, dealing with open olosed dissipative systemaow. It is a difficult task to
implement he exchange of mass or energy with the surroundifise necessary assutigms and
simplifications can strongly bias the representativeness of the computed phase space trajectory.
Even though simulations ofionstationarysystems are still subject to research, see e.g.
[rapaport1991], [hirshfeld1998], [hirshfeld2000], [bougie2D0[okumura2003], [okumura2004],
[bougie2005], there is already a broad body of experience with simulations of stationary
nonequilibriumsystems [sarman1998], [sadus1999], [hafskjold2002a], [allen2003], [rapaport2004].
These are systems that have fullyuated to their indefinitely maintainetbnequilibriumboundary
conditions and show no macroscopically observable chahgept for some "teething problems”

to be discussed below, such stationary NEMD simulations often mimic surprisingly well the
guiding "physical systems'Thus, reasonable values for the individual transport coefficients were
determined in NEMD simulations by relating the associated driving forces with the observed fluxes
in the simulation, e.g. in [evans1982], [tenenbaum1982], [even§1886dat2002].

It soon emerged that complex experimental situations, e.g. involving several coupled transport
processes or interfaces [hafskjold1993], [ikeshoji1994], [kjelstrup1996], [wold1999], [reith2000],
[perronace2002], [xue2004], [galliero200%¢jeplak2006], [galliero2006], [koplik2006] could be
reproduced only in soalled boundary driven (BD) NEMD simulations. In analogy with reality,
these simulations incorporate the interactions of the system with its surroundings (see3ségtion
introducing secalled "boundary regions" into the "simulation system". The equations of motion of
those particles that sojourn in the "boundary regions” are perturbed so as to incorporate e.g. the in
and outfuxes of energy or momentum agalistic as possible. New patrticles can be inserted or

present ones removed in these regions to mimic thenohoutfluxesof mass.

The particles that sojourn outside of the boundary regions are subject to unperturbed Newtonian
equations of motionwith forces resulting from the interactions with neighbouring particles only.
During the simulationthis "intermediate region" is deflected intonanequilibriumstate that is

compatible with the conditions in the "boundary regiobg"interaction, i.e. exchange of mass and

3-44



energy, with them. In response to this deflectibe values of the observables of the "intermediate
region” will generally differ from those obtained if that region were in thermodynamic equilibrium.
For the diffeences to be clearly recageble in BD NEMD simulations, however, very strong
deflections of the "intermediate region" are necessary. Only thenpitsquilibriumbehaviour

emerges outside of the various simulation, statistical, and other errors irtbafentnethod.

The modifications of the equations of motion of the boundary particles vary depending on what one
wants to achieve. A number of concepts have protlemselves, see e.g. [ashurst1975],
[ciccottil980], [trozzil984], [hafskjold1995], [mullglathel997], fnullerplathel99P Mainly
periodic boundaries or wall potentials are used to delimit the exterior of the "boundary regions".
Straightforward insertion or removal of particles in the boundary regions is to be avoided, as far as
possible, sincdt entails strong noiphysical behaviour particularly in dense matter. -lror
outfluxes of energy or momentum are well accounted for by suitably adjusting the boundary particle
positions and momenta. As an example: In a first stage, preliminary pesérmeh momenta are
computedby usingthe Newtonian equations of motipwith force termsonly from the interactions

of the particleswith their neighbouringones and with the boundaries. In a second stage, the
individual particle momenta are manipulated ading to some "allocation formula" so as to

reproduce, on the average, theanoutfluxes of energy or momentum.

Even when adhering tine aforementionedoncepts, the variouso farimplementedperturbations

of the "boundary regions" manage to appmmate reality only with moderate succe3ske, for
instancethe occurrenceof "temperature jumps" at "boundary regions” that establish heat fluxes in
NEMD simulations [ciccotti1980], [hafskjold1993mlllerplathel99]¢ Such "teething problems”

are disrptive but may not be overratethstead, a system may often exhibit some unphysical
behaviouras long agt fades away quickly inside the "intermediate region". Thbka particles
sufficiently distant from the boundaries can be assumed to behave as"reaililchonequilibrium
matter (subjectof course to the "modelling assumptions” and "technical simplificationd").
constitutes the actual object of investigatiBigure11 summarigs ths situation The behavior of

the nonequilibriummatter has been shown to agree with the predictions of "thermodynamics” and
"hydrodynamics” if the deflection out of equilibrium is not too strong [rosjorde2000],
[rosjorde2001], [hafskjold1995], [rapaport2006], [xu2006]. Neveedwethe systems behave very
differently and simulation results must always be carried over to the physical system with great

care.
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Representative initial phase points for the actual production BD NEMD simulations are obtained in
preliminary "steadying siulations” during which the “intermediate region" can adapt to its
deflection away from equilibrium. The procedure corresponds to the one in the "equilibration

simulations" prior to EMD production runs.
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4 General Strategy of this Work

It is virtually impossible to translate any of the common experimental setups used for exploring the
thermocapillary convection (sehapter2.1), entirely into a system ready for MD simulatidrhis

is, however,not requiredfor our purposesWe are interested in the thermocapillary effect in
general. Hence, we devise our own simulation setup in such a way that the thermocapillary effect
occurs realistically (somewhere) inside the sys{seeFigure 12). It is sufficient that the crucial
processes involved in the thermocapillary effect become identifiable. See skdtifam further

details.

Let us stress herggain that the interpretation of the simulatiomsst be done with caution due to

the noise in consequence of the limited systems size and of the unavoidable assumptions and
simplifications required by the method. Before we can proceed with the actual investigations of the
thermocapillary effect, we musherefore gain certainty to which extent our simulations parallel
reality. We shall largely proceed by analogy between experiment and simulation. Within this
procedure wavill deduce in sectiod.2 the distritutions of the local observables to be expected in

our simulation systems. If we can find such distributions in our simulations, we shall conclude that
they are physically sound and sufficiently close to reality. In keeping with this line of argumentation
we shall check the distributions of the local observables in our first simulations of the interfacial
system.Chapter5.1 will show thatthese distributions, in particular the convection patteappear
exactly as expected, except for some minor anomalies in terms of the temperature jumps at the

boundary regions.

Computing power and memory capacity are the limiting factors of our MD simulations. In section
4.3 weshall explain how we meet these factors in the execution and analysis of the simulations.
particular, details on the definitions and the computation of our observaitiiée given. Since it

fits best in this context, wghall also introducghe scheme \wich wewill apply tosummarig the
results of the individual simulations for better understandability and comparaBéitiion4.4 will

go into the preparation and production simulations of our systemaly, Sectiond4.5will describe

the simulation code and hardware used.
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4.1 Setup of the "Simulation Systems"

The existence of a lateral temperature difference ablia-fluid or fluid-fluid interface is the
prergyuisite for the occurrence of the thermocapillary effect (sed 2). Reproduing in a
"simulation system%uch an arrangemeistdifficult. After all, we camot be externally enforagin

a straightforward wa Instead, the individual design aspeofsa systemmust bechosen from
countless variants and mutually matched in such a way that the intended arrangement indeed arises
out of a simulatior(seeFigure12). Thus,an interface irthermodynamic equilibrium, for instance,
orients depending on the system dimensions and boundary conditions as well as the thermodynamic
state of the given mixture (see sectibri.l). In addition to the requements by the intended
arrangementthe various ones required by the methodmust be met, namely simulatability,
approximation of reality, and simplicity. Thegven partly contradictthemselvesin solving this

design problem we draw on the experiences fpyavious works as much as possitléus, the
principle of minimum entropy production [degroot1960], [prigoginel961], [degroot1969],
[[aynes1980] enables predictions of what fdneourablearrangement in a stationampnequilibrium

system looks like. Momver, we build on a widespread simulation code which implements the
common assumptions and simplifications of MD simulation in a generally accepted way. Upgrades

to the code are only made as far as necessary for our purposes. Seeldgctionore details.

Earlier simulations of partially miscible substances provided us a basis for the setup of our
"simulation system"Section4.1.1will briefly review the pertindriterature concerning the general
setup and behaviour suchsystemssimulated As will be described, the simplest ones involve a
partially miscible binary mixtureconfined to a rectangular parallelepiped arrangement by periodic
boundaries. When this irture is made subject to the appropriate thermodynamic conditions, it
tends toseparaténto two continuous phasearallel to the smallest "boundary surfacesgeFigure

13). Note, we seesuch a separation in pequilibration simulations.Section 4.4.1 will describe

them in more detailProvided he saméehaviour holds also in thenequilibriumstates required

by this work, the setup can be reused to a large eXddfearent temperaturesi'¢ andTy) mustnow

only be established along the interface in NEMD simulations to allow for the thermocapillary effect
to occur. Hence, we positied two thin rectangular parallelepiped “"boundary regions"
perpendicular to the intiaces into an "interfacial system" of the kind previously descr{lsed

Figure 14): one of the "boundary regions" in the middle and the other one symmetrically at the
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"boundaries" of the periodic system. Its syatmy is thus preserved leading to four "identical”
copies of the intended arrangement. Note that the term "boundary regions" does not apply literally
due to the periodicity of our system. Rather, they can also be seen as located inside the "simulation
sysem", detached from its boundaries. Consequently, we shall henceforth name the "boundary
regions” as "thermostated regions" since this denotation is more approphatéhermostating

itself was implemented by an algorithm that alters the kinetic ee®ead the particles irside the
"thermostated regionsdt each time stepn a suitable wayo establish the desired temperatures
therein. Sectiod.1.4will give further details othe exact locations of these reggoandhe various

"thermostats'appliedto them.

We positiored a Cartesian coordinate system in the middle of our "nonequilibrium interfacial
system".The coordinate axes (also shownHigure 14) are oriented acording to the following
convention: Thez-axis lies perpendicular to the interfaces and yaxis perpendicular to the
"thermostated regions”. Consequently, ®aaxis runs along the direction in which the system is
homogeneous. Moreover, we defiitba the colder target temperatufie, is always established in
the "thermostated region" witjrcoordinates around zero. The hotter target temperaflisesre

thus always established in the "thermostated region" at the outgrTmstdinates.

As for thesubstances, we confideurselves a priori tso-callednon-charged "oneentreLennard
Jones (LJ) particles”, as they are frequently used in MD simulations. Such model peoticieer

the essential properties of (npolar) substancesn the simplespossible way through pairwise
additive interaction potentialSheycontain a repulsive part, which represents, loosely speaking,
the volume of the particle, and an attractive part, which represents the typical intermolecular
interaction between nechargel moleculesThe "molecular models", or "force fields", describing
mixtures of different species of such particles possess only few parammatease thuselatively
simple They arethe secalled LJ parameters for thgairwise interactions between likadaunlike
particles a technical parameter called theut-off radius" r., andthe particlemasseslin particular

the LJ parameters must bewtthin certain ratios to each other for a mixture of different particles to
exhibit partial miscibility. We ensed such ratios by using the LoreiiBerthelot mixing rule
[maitland1981], [delhomelle2000]. It specifisghen given the LJ parameters for the interactions of
like particles implicitly thosefor the interactions of unlike particles through-cailed mixing
parameters3andd. We shall neglect onef them d, by setting it to unitySection4.1.2will give
further details on tls mixing rule and on theumerical values of oulparticle parameters'Since

both substancesontained in our "simulation system" usuatlypy Argon we shall call them ArA
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and ArB in general.The particle mases affectthe static observable®nly in our NEMD

simulations, as we shall sder instancein sections.2.2

The above design of our simulation system is complete except for the numerical specification of the
"system constraints”, i.e. the system dimensions [, L;), the target temperatures of the
"thermostated regionsT¢ und Ty), and theparticlenumbers of both speciell{;a andNag). Only

if their values are compatible with the ones of the particle parameters, the mixtures aepaife

into the two liquid phasess intended. In fact, several entities of our system, wdébhdifferent
numerical values of the "system parameters”, i.e. "particle parameters" and/or "system constraints”,
werebe simulated in the course of this work to study their influence on the system beh&grour.

the sake of clarity, we shall designéibese simulations using a special notatibrconsists of the

letter "N" for nonequilibriumfollowed by the names of theibstanceghe numerical value of tire

mixing parameters; the cutoff radius r¢, the numerical values of the "system constrajragé

above:
N'ArA 'ArB's“'rc'NArA'NArB'LX X LyX LZ'TC'TH .

In this notation, all distances are given ianometre§1nm=1-10’m) and the temperatures in
Kelvin (K). Our first "nonequilibriuminterfacial system® it containsan ArlAr2 mixture under the

default constraints is for exampledesignated as
N-ArlAr2-0.6-1.0-3346:35244.74x8.00x9.4€100-140 .

Later, we shall also simulate systems where the parameter values of interactions among ArA and
among ArB particles represent the same substance. Thenanis appears two times in the

designation, to identify thepecialcharacter of the simulation, as e.g. in
N-Ar5Ar5-0.6-1.0-3346:35244.74x8.00x9.4€1.00-140.

We shall call such liquidiquid systems "homophasic" to distinguish them from the "heterophasic”

ones mentioned before.

All mixtureswerealso simulatedor comparisorin "corresponding equilibrium interfacial systems”
as part of our research. They harher Naa-Narg-LiXLyXL~T or Nara-Nars-LiXLyXL~E constraints,
where the lettersT" and 'E" represent the global system temperature or enaifg/shall use a
slightly modified notatiorfor these systemavhich replaceshe letter "N" by the letter "E". Other
than that, the numerical values of the applicable system constaagsven as before &dr the

length of the cut-off radius. In doing so, the global temperature is in Kelvin (K) and the global
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energy in Attojoules (1aJ=1-18). The criterion for "correspondence” between equilibrium and
nonequilibriumsystems is that tlyehave the samextanally constrained system volunvweandthe

same particle numbersN;. Moreover,the system temperature in the equilibrium systewnst
coincidewith the arithmetic average of the externally constrained boundary temperatures in the
nonequilibriumsystem.In the EMD simulations with constrained system temperature the iatter
essentially maintained through a Berendsen thermdstatridsen1984 "essentially” because we
implemened the Berendsen thermostat using our "thermostating algoritomsimplicity's sake.

Go to sectiont.1.4for more detailsSince a Berendsen thermostat can disturb the system behaviour
[lemak1994], [leyssale2008fye conduatd for comparisonadditional EMD simulations of the

first systemunder the same constraints using a Ndeéver thermostainose1984][hoover1985]

or under corresponding NVé&onstraintsin sectiond.4.1, we shall findthatthere are no significant

deviationshetween the mailts of the different simulations

Finally, the phases observed in the equilibrium interfacial systerealso reproduced separately
in "correspondingnonequilibrium onephase systerisfor comparison. They have the same
dimensions and temperature coasits as the correspondingnequilibriuminterfacial system but
different particle numbersWe obtained thensimply by multiplying the phase densities in the
correspondingequilibrium interfacial system with the system volunide notation introduced
above shallalsobe usedor the nonequilibriumonephase systems. They canreeognsedby the

strongly deviating particle numbei$,a andNas, Of each species.
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4.1.1 General Setup of the Liquid-Liquid Interfacial Systems

Liquid-liquid interfacial systemat equilibrium have been studied several times in MD simulations,

see e.g. [meyer1988], [toxvaerd1992], [buhn2004a], [geysermans2005]. These systems usually have
a rectangular parallelepiped volume wiitie dimensiond.,, Ly andL; in x-, y-, andz-directon. The

partially miscible mixture to be studied is representet\ygyarticles of each constituent substgnce

Y According to common practice the systems are bordered by periodic boundaries. In this way,
unwanted side effects can be avoided, as they would e.g. occur at a solid confinement. External
fields, such as gravityare omitted for the sake of simplicity. The thermodynamic state of the
mixture is determined indirectly through the "specific boundary conditions” and the "initial phase
point” of the simulations, e.g. NVT simulations by specification of the particlambersNyof the
individual substance¥n the initial system, the system volui¢hrough the system dimensiobg

Ly, andL,, and the system temperatdie

Depending on the chosen numerical values of the specific boundary conditions, an arrangement of
two cantinuous liquid phases with a common interface estaldidhgng equilibrationas can also

be seen in sectioh.4.1 In the establishment, the phases always arrange themselves in such a way
with respect to edicother that their interfacial area minimal [scott1994], i.e. that the internal
energy of the system becomes minimal [degrootl960], [prigoginel961], [haasel963],
[degroot1969]. Within limits, this tendency can be taken advantage of, e.g. to favousia cer
arrangement of the liquid phases by a suitable choice of the composition of the mixture. Thus,
typically comparable volume fractions of both substances in binary mixtures are chosen to obtain a
flat interface which is easier to analyse. More precjselp flat interfaces occur parallel to the
smallest surfaces of the rectangular parallelepiped system in consequence of the periodic

boundaries.
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4.1.2 Molecular Models and Force Fields

In the "simulation systemall atoms (particles) of both substancesnerally called ArA and ArB

in this work (see sectiofh 1), areeachrepresented by points carrying masses depending on the type
of the particle, i.e. which species it belongsWe usedin most of our simulatinsthe molecular
mass of Argon rfa=39.95 amu=663-10%° kg), as found in the literature [atkins2002pr each
particle typemara andmaes.

The interparticle interactions, as they can be obtained from quantum mechanical calculations, see
[mcquarrie199Y for a referencewere computationally too gpensive for our simulations. Instead,

we accourded for the interactions in the extremely simplified form of "effective" Lennkodes

(LJ) pair potentials [stone2002};:

Ao 12 o
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Herg r=rj-r; stands fotthe connecting vector betweehe particles andj. It has the lengtin;. ()
and U; are the LJ interaction parameters that differ depending on the types of the interacting
particles.If we add all pair potentials between the particlasdj in a system we obtain its potential

energyu:
Uu=auy, (rij )

i>]
Its negative prtial derivatives with respect to the locations of the different particlpspduces the

forces,q, acting on them:
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Six LJ parameters are necessary to describe all possible combinations of interacting particle types in
our ArA-ArB mixture: Chaas andCaaas, Chaas andlanas, Che-as andae.as. Many value sets

of such LJ parameters have been developed empirically, especially in chemical engineering, to be
able to reproduce specific experimental observations aslglas possible in MD simulations. We

are, however, interested in the thermocapillary effect in a general way here. Accordingly, the

simulation results are not to be compared with a particular chemical system, as noted ajragdy in
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4. Thus, we simply chose characteristic LJ parameter values in the range of those typically used in
the literature. They and the particle massese moreoversystematically varied to study their
influence on the system behaviokior the sake of clarity, wehall count all particles of the same

mass and mutual LJ interaction parameters among the same substance, whatever the paramete
values of the interactions with particles of other species mayifierent particle parameter uas

of Argon were taken fronthe literaturegfmichels1949],[hansen1969][kofke1993], [buhn20044a],
[buhn2004b] Sometimes, we evewent so far as to give both components the same values for
convenience. Such a choice still allows for the necessary parsiaibility of the mixtures. It rather
depends on the subsequently discussed interaction parameters of unlike particles. To express the
relationship of the simulated substances with Argonskal designate them simply in the order of
appearance as "Arl"Ar2", etc. . In doing so, thegount only once, even if thegonstitute both
components ofhe mixture, such as in the BAr5 one studied irthapters.4 and5.5, for instance.
Nevertheless, it sometimes deasense to determine observables that relate to the ArA or the ArB
component onlye.g. in verifying the similarity of both phases within the same sy&eschapter

5.3). Then, the observables related to the first component have its desigiodibared by the
encirclednumberwith a white backgrounde.g.ja . We appendhe encircled number with a

black backgroundhstead, ifan observableelates to the second component, g.g. . Table3 lists

the particle parameter values of silnulatedsubstances togetheith their critical and triple point

data. Theywere estimated from Kofke's [kofke1993] and Agrawal's [agrawal1995] dimensionless

phase diagram for unary systems of-geatrel.J particles similar to ours

The spherical Linteraction is indeed very mhbcsimplified compared to the real interaction
between two molecules as it can e.g. be obtained from quantum mechanical calculations, see e.g.
[mcquarrie1997]. Many sets of such-pdrameters have nevertheless been developed empirically,
especially in chencal engineering, to reproduce observables (mostly thermodynamic) in MD
simulations. We are here interested in the thermocapillary effect in a general way, not in a particular
chemical system. Accordingly, the simulation results are not to be comparesbalitta system, as

noted already ipart4. We thus chos#or the interaction parametessme characteristic values, of

the orders of magnitude typically used in the literature. Different AliggenLJ parametevalues

for the interactions between like particlegere takenfrom previous works by Buhn et al.
[buhn2004a], [buhn2004b] or Hansen et al. [hansen1969]. Reasonable values for the LJ interactions
between unlike particleghaas andliaaas, Wereestimaed from those for like particldsy using a
generaked version of the empirical Lorenerthelot mixing rules [maitland1981],
[delhomelle2000]

4-54



eArA- ArB = X\/ eArA— ArAeArB- ArB

_/7(

S pa-aB = E S aA- ArA +s ArB- ArB) '

In doing so, we setthespal | ed mi xi ng pmonaatue ungy. Thel otheranixingt s ¢
parameter3; was reduced by a few tenths below its common value, also unity, to actheve
interfaces anda wide miscibility gap between ArA and ArB. As a result, the sewmydcbe
somewhat downsized and thus computiene saved without loosing the generality of the
simulations.Note, we usedtypically a relatively small mixing parametess0.6, which is even

lower than the one3=0.8, in the previously mentioned works by Buhn et [@Bluhn20044a],
[buhn2004b]

In orde to further reduce the computational costs of the force calculations, we cut all LJ pair
potentials beyond a certain distartoezero Thus only the interactions between particles that lie
closer together than this distaritad tobe computed. The introdtion of such a cuff radius re,

(as it is commonly called) for interactions that decrease with a sufficiently high power of the
particle distancer;j, is a well understood technical simplification in MD simulations [allen2003].
The proper magnitudef ¢the cutoff radius varies with the "simulation system" and the observables
of interest [haberlandt1995]. It should be chosen as short as possible to reduce computational
expense and as large as necessary to avoid artefacts. We therefore chose fuoft r@dius of
re=1nm, which slightly exceeds the often suggested lengthbdfraes the smallest LJ parameter

in the "simulation system" [haile1992]. Nevertheless, we additionally varied thedfaatdius later

on (see sectiob.2.]) to check its influence on the simulation results and thus ascertain our initial

choice.

In the same spiriseveral other such particle parameteesevaried inour simulations. See Tables

3-4 for the particle parameters of the various speeaind mixtures simulated.
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4.1.3 System Constraints

The constraints of ounonequilibriuminterfacial system, namely its dimensions, (Ly, L), the
particle numbersNara Und Nag), and the target temperaturék: (und Ty) of the thermostated
regions, were subject todiverse and partially even contradictoryequirements Let us first

recompilethemhere again from the previous sections

A simulation systemmustbe generally as large as necessary to reduce finite size effects but as
small as possible to saw®mputational expense (see sect®f). Note, when talking about the
"size" of a system here, whink of its dimensions and its particle numbersis rathergeneral
requirementmears specifically a flat simlation cell for our purposes. Its andz-dimensionsL,

andL,, must be clearly larger than customary in MD simulatimn®duce the interference between
both interfaces. Moreover, the unwanted system behaviour due to the thermostating darttabate
way to acceptable levels between the "thermostated regids".concurrentlymust make the
remaining x-dimension, Ly, and thusthe xy-cross sectional area, relatively small gt the

interfacesif they occurarrangepreferablylateral to the temperatel gradientSee chaptet. 1

Thereis, however,evenmore necessary thgast choosingthe correct system dimensions. They
must also be consistent with the thermostated temperatDrdg.then,the mixtureasumes a
partially miscibleliquid state throughout the entire systeeven if such astatewas given, their
difference still has a special importance. It must be largsough that the characteristic
nonequilibrium behaviour stands clearly out from the moigaherent to the simulatioand
concurrently small enough that the system behavimnes not becomenonstationaryand thus
impossible toanalyse We are, therefore, forced to apply temperature gradients of the order of
10K/nm, as customary in BD NEMD sidations. Wlateer theresponseof our nonequilibrium
systems, particularly with the expected thermocapillary convection in nsind,mustbe seen if

their behaviouremainsphysical and stationary under such exorbitant gradients.

We went back to prewius works by Buhn et al. [ouhn2004a], [buhn2004b] in order to break up the
above ring of interdependent requirements. The authors studied interfacial systearsady p

miscible liquids,very similar to ourArlAr2 mixture,in EMD simulations.There was docus on
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system statebetween the corresponding temperature and average density pdifs180K,
1=20.62nm") and =138K, ; =18.16nni°). Usingthesesimulations as a guidance (see also section
4.4.3, we chose the following default values for the external constraints ofanequilibrium
interfacial systemlt has the dimensionky x Ly x L, = 474 x 800 x 940nm. The numbers of
particles ardNaa=3346 und\ag=3524, which is of the same order of magnitude as required above.

In total this make®&l=6780 particles at an average system density of

6870

r= - . =19.27nm>
4.74nm B.00nm 3.40nm

The target temperatures of the "thermostated regionsTex@00K und Ty=140K. While the
system density is mediugized compared to the one in the aforementioned studies by Buhn et al.,
the target temperaturdsave approximatelyhe extremetemperaturevalues simulatecdy them

Thus, partial liquid miscibilityshouldlikely occuralso in our simulations, in particular if we keep
the further reduced mixing parameterin mind. Nevertheless, we doubtihnecked again in the first
simulations if he systems behave as intended. The results, they will be described in SHajlielr

not suggest otherwis@®nly in few of our simulations use differecbnstrained/aluesfrom theones

from abovelf they wee varied, theronly to study the& influence on the system behaviour.

Out of curiosity,we rankedthe states of our mixtures additionally in comparison to those of the
pure substances under the sateéault constraintsFigure 15 indicates the range of temperatures

over the average density. Both were reduced to dimensionless numbers by the LJ parameters of the
different pure substancesale can clearlseehow some of thesdimensionlessanges extend below

the buble point line or even the triple line. Their data were taken from the dimensionless phase
diagram of pure Atike particles byAgrawal [agrawal1995] et al. and Koflat al. [kofke1993].
Apparently the pure substances tend to evaporate and melt onlyharhgmperatures thahe

mixtures, since they do not exhibit such phase changes in our simulfah$l addresses the

phase behaviour of the mixtures in more detail.
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4.1.4 Thermostating Algorithm

In BD NEMD simulations, the momenta of the particles in the "boundary regions" are typically
manipulated after each "integration step", as described in s&#dhto carry out the exchange of
heat with the "surroundisg. Such ananipulation requires above all a realistic formulaltocate

the in- or outflux of heat in terms of kinetic energy ¢he individual particles. Concurrently, the
linear momentum of the simulated system must be presamtad allocation Different "allocation
formulae" fulfilling these requirements have proven themselaesording tothe literature
[tenenbaum1982]mullerplathe199] We picked up aformula by Hafskjold et al. [hafskjold1993]
which preserves the overall linear momentum ofheatfected "boundary region” separately and
entailsrelatively moderatenon-physical behavioum the "intermediate regias. The momentum
preservation has the advantage that "boundary regionsfannotshear the "intermediate region”

andthusinterferewith theexpected thermocapillary convectidn

In the application of the chasallocation formula, we assumhéhat the equipartition principle from
equilibrium statistical mechanics [mcquarrie20@3fulfilled. Although this assumption is certainly
wrong in our NEMD simulations, we adhdr® it for lackof better alternatives. In order to comply
with this principle, different amounts of kinetic energy must be allocatable ox-tlye andz-
movement of the particles in"Aoundary regioh We shall &plain exemplarily further below how
we implemented the allocation of a given amount of kinetic enepd§/,on the particle movement

in x-direction.A similar procedures applied to the movement in the other directions.

The "allocation formula" doefiowever,not specify according to which criteripa.g. to establish
constant heat flows, or constant teargtures, or ... )kinetic energy should be introducéto or
removed from the "boundary regions”. Hafskjold et al. originally applied their "allocation formula"
as part of a heat exchange (HEX) algorithm [hafskjold1993]. This algorithm enforces amlextern
predetermined stationary heat flux by withdrawing the corresponding amount of kinetic energy
from the particles im so-called cold'boundary region" and adding the same amount to the particles

in another sacalled hot'boundary region” after each tegration step”.
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It is however moe intuitive for our purposes to apply thermostats that maintain each "boundary
region”, henceforward called "thermostated region”, at a temperature of chiogsethermostat

require however,an additionalcontrol mebanism Its purpose is to specithe amounts of kinetic
energy that must be coupled into or out of a thermostated region to establish the desired
temperature’E, therein. In order to comply with the aboveriened equipartition principle, this
mechanismmustconsist formally of three mutually independent entities, so to speak. Each entity is
occupied with the particle movement in another direction. Using again the panmicgement as

an example, weshall explain further below how the related amount of kinetic energyl, was
computed. This computation is conducted likewise for all directions in each thermostated region
after every "integration step” of the Newtonian particle equations of motion. The thusedbtai
amounts of kinetic energiegpkk, ok, andpk, werethen allocated on the particles in thach

region using the allocation formula abo@nly after the allocatiorwe considered the phase points

in the analysis of the system behaviour.
Allocation Formula

In the allocation ofp i on the individual parti@s i, in a "thermostatedegion” theirx-velocities
Uy, arescaled toly;, by the same factql+U,) and shifted byb, to preserve concurrently the total

x-momentum of the particles:

- ( ) a rnux,i
b, =1+a,)u, +b6, with b, =-a, ——=-a,u, ..
am
The parameteU, can be computed from the total kinetic energies of the particle movement in

direction beforeK,, and after IEX, the allocation:

u<x = Kx - ng =%a [m ((1+ax)ux,i - axux,com)z - rr\(ux,i )2]

In order to do so, this equation can be rearranged to the quadratic form
O:afax +aXbX +CX

with the coefficients

a = a m (ux,i - ux,com)2

bx = a 2”\ (uf,i - ux,iux,com) = 2ax
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Cx :é. m(uf,i - lE,i):-ZI:](x'

We definel, to be

a, =-1+ [1-
aX

from the two possible solutions of the quadratic equadiecausehe other solution would reverse

the particle movement.

Note that wo importantrestrictions must be kept in mind when applyow "allocation formula

above. Thusa, amounts to twice the kinetic energy of particle movement relative toetteeof

mass ¢om) movement inx-direction al can therefore only bequal or larger than zera,O 0
Consequentlyl), becomes imaginary i, is larger thara,, c,>a, i.e. morekinetic energythana,/2

is to be withdrawn by the thermostat. Moreover, each "thermostated region" must, at all times,
contain at least two particlesd they may not beoving at the same velocity in a certain direction.

In practice, none of the above restrictions was violated duringfamyr productiorsimulations.
Temperature Control Mechanism

We implemented a general temperature control mechanism that resemblecanidler from
control systems [unbehauen200Zhus, for instance, the total amount of kinetic enecgy, to
allocate on thex-movement of the particles in a thermostated region is computed through the

equation

DK, =k, (1€ - K, )+k a (€ - K, (0)+ko[(€ - K, )J0)- (€ - K, Jt- 1.

X

Here Ky is the prevailing total kinetic energy of the particlesin a "thermostated region" as
computed from theimassesm, and their velocity components wdirection uy;, right after an

"integration step™:

2
m ux,i '

NP

N
Ki=a
i=1

The corresponding desired total kinetic enerlg,y is obtained from the total particle numpBi;

and the desirecémperatureﬁ through thdormula,
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based on the assumption from the beginning of this section that the equipartition principle holds.

The difference between the desired and the jnegatotal kinetic energy(lEx-Kx), contributes
through three additive terms ¢pk. The first summand acts as a "proportional term™" and the second
one as an "integral term" whose sum runs over all time steps from the first one to dotivelsp

latest one of a simulation. Finally, we implemented a "derivative term" which considers the change

of the diﬁerence(}Ex-KX), from the latest time step to its preceding oflee terms are weighed by

the parameterkp, k;, or kp that had to be tuned so as to ensure an opportune functioning of the
thermostats. In the tuning we defined, for simplicity's sake, that each parametier énzery
thermostated regiotihhe same value fodlahree directions of movemer¥oreover, we omittethe

"derivative term" (by settingp to zero) after a few trial simulations because the fluctuatiotize

difference,(}EX-Kx), were too strong. The results of the trial simulations are not regdwetetor the

sake of brevity.

We rathe concentrated offinding suitable values fothe parameterg& andk;. In fact several
thermostatswvith different parameter values weapplied in the course of this work. In our first
NEMD simulations, we sdtp to one, kp=1, andk; to zero, k=0. Such hermostats, henceforward
called "strict", establish the desired temperatures exactly after every "integration step” but strongly

bias the observable heat fllas we shall see ithapters.2

We therefore migated to other variantwith values ofke between zero and one, K¥<1. These
variantsadjust the kinetic energy of the thermostated regions more ganpisoceduravhich has
been proposed by Berendsen et al. [berendsen1984NY6F simulations It works quite
satisfactorilyin them [allen2003] We usd such "Berendsen thermostats" for most of our EMD
simulations in this work. In doing so, our allocation formula, whiekicallydiffers from the one
originally used by Berendsen et ahly in terms of theadditional shift of the particle velocitiess
retained for simplicity's sake. Acommended by the authorsg set theproportional term to

ke=U /t7=0.0125, wherér=0.4ps is a time constant add 5fs the length of our time steps.

A proportionalterm between zero and one,kp<l, does, however, not suffice to establish the
desired temperatures our NEMD simulations The failureresults fromthe average net exchange

of heat between the thermostated atitkr "intermediate regions". We therefo@nsideed
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additionally theintegral contributiorin the computation ofp k to compensate for the temperature
deviation. The thus obtained thermosttiall be called "loose" as opposed to the strict ones above.
We shallexplainin section5.2.3 how we determined in several trial simulatiotise parameter
values of kp=0.001 andf k;=0.0001 that we use@ventally for the loose thermostats.

We managed to use the samegramcode for EMD and NEMD simulations by reading the
parametersp, k;, andkp as well as the locations of the thermostated regions from the input files.
These locations are specified by tparametersyc andyy. Particles with an absolutecoordinate
smaller tharyc sojourn in the cold and ones with an absolut®ordinate larger thayy sojourn in

the hot thermostated region. In the EMD simulatjovs setkp=0.0125 k=kp=0 and mde thecold
region comprise the entire system while the hot regiaalocated somewhere outside. The exact
values ofyc andyy are not important as long s>yc andycCQL,/2, with Ly being they-dimension

of the simulation system. In the NEMD simulations, on the other hand, we=®025nm and
yr=L,/2-yc, which makes each thermostated region 0.25nm tllekending on the variant to use,
we specify eithekp=1 andk=kp=0 for the "strict" orkp=0.001 ki=0.0001,andkp=0 for the "loose
thermostats". When applying those thermostatswe simply disregard in the analysis that the
"integral term" must first grow over the approximately first thousand time steps (5a\BMD
simulation in order to compensate for the average net exchange of heat between the thermostated
and their intermediate regions.
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4.2 Expected Behaviour of our "Simulation Systems”

As described in sectiofy we intend to study in this work the general features of the thermocapillary
effect and desiged suitable simulation systems for this purpose. Before we came to the actual
studies, we wanted to make sure that we knew which behaviour to expect inuleesinsystems.

Direct quantitative comparisons with experimental situations would be one way to proceed. This
procedure is, however, impossible, simply because of the small system sizes or, where applicable,
the extreme temperature gradients requirechkynethod. Instead we settled for a sorttbbught
experiment in which we imagined the behaviour to expect of the systems exhibiting the
thermocapillary effect, of course in analogy with experiences from physical experiments or earlier
MD simulations. Tiese experiences are extensive enough to delimit unphysical system behaviours
and to even predict the qualitative distributions of the local thermodynamic and hydrodynamic
observables. If we find that the predictions are actually met in our simulations (@l in part5),

we shall conclude that their behaviour is sufficiently close to reality and derive insights from them.

Before we begin our thought experiment in sectb®.3 we shall briefly review the relevant
findings onother systemsthat arerelated to our novehonequilibriuminterfacial one. At first,
equilibrium interfacial systemwill be addressed in sectiof.2.1 Afterwards, weshall go into
nonequilibriumonephase systems in sectid?2.2 Both representutouts of our nonequilibrium
interfacial system. We can thus estimate its behaviour by "gluing togetigesuperimposing the
results obtained for these two systgisse sectiod.2.3. The seobtained distributions of the local
observables do, however, not account for the influence of the thermocapillary camvsetidt
additionally warp, so to speak, the estimated distributions. Experimental studies of thermocapillary

convection (see sectidhl.l) and of similar Couette and Poiseuille flows will provide furtheesl

The thermodynamic laws allow for conclusions on the global behaviour ohanequilibrium
interfacial system and its related systems even before looking ab#eiviour Thus, eaclof our
nonequilibriumsystems cate considered as an idling hesitgine connected to two heat baths of
different temperature3,c andTy. If they differ only moderately, it eventually assumes a stationary
state featuring, among other things, a timgependent system enerds, and entropyS, A=0 and

N=0. Then, the tw absolute heat fluxes across the diathermic boundaries of the engine must be

identical
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&|=|d.|=¢&
while its positive entropy production rate results from the difference between the entropy fluxes

across them

T. T, T T,

g =g g)-9. G AL -T)

Our equilbrium systems have as well closed diathermic boundaries, but they are always in contact
with a single heat bath only. Hence, it exchanges no heat with the syst#rarnmodynamic

equilibrium, making also thentropy production zero

#=0and§,,=0.
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4.2.1 Equilibrium Interfacial Systems

According to Gibbs's phase rule [gibbs1875], [findlayl951], two intensive thermodynamic
properties, e.g. the pressuRg,and the temperaturé&, of a binary twephase equilibrium system,
determine its global state, i.e. the state of the system as a whole, unambiguously. However, a local
description is often more desirable, so also for this work. In order to achieve such a description, the
system is subdivided into domaiwhosestates are tbe charactésed At sufficient distances from

the interface such a subdomain can be described as if it were a homogeneous binary phase. When
taken separately, it is charagsedaccording to Gibbs phase rule by three intensive properties, e.g.
the pressre, P, the temperature], and the moldraction, xy of one of the substance¥, A
satisfactory description of the subdomains in the interfacial reg@rbetween the phases still

subject to research. Go back to the diffuse interface models in s2@i@ror further details. Due

to the lack of such a charaagstion, the research concentrates on describing how different
observables of interest vary in going from one phase to the other one. Using mainly such variations,
we shall demonstrate in sectiéril.1that our simulation systems approximate the reality. Section

4.3will explain how we determined these observables in our simulations.

Thermodynamic Observabkes

In section 2.2.2 we made general remarks concerning the variation of the thermodynamic
observables: Intensive ones by naturecalted “field properties”, remain constant across the
interface, while "densis", i.e. quasintensive properties that are merely ratios of extensive
observables, vary. The temperature, for instance, is a field property and must thus be constantly
distributed throughout our equilibrium interfacial systems. According to van dels \&iad Cahn

Hilliard theory [cahn1958], the variation of the partial density across a {iqudl interface is
approximated by a hyperbolic tangent functidgngure 16 shows qualitatively the hyperbolic
tangent pofiles to expect for the transition from an ArA phase to an ArB phase in pozitive

direction in our equilibrium interfacial systems. The governing equations read

()= rArA(ArA); 7 wnlATB) rArA(ArA)-2 /o (ATB) 22,0

¢ Wan =
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I nB (Z) = Lot (ArA) ; e (ArB) e (ArA) -2 I e (ArB) tan%_—s,

where the z-coordinates of the Gibbs dividinsurfaces are denoted gga and eas While the
expressionsy aa(ArA), } ara(ArB), J as(ArA), and}j as(ArB), represent the partial densities in the
phase rich of the substance given in brackets,}g#(ArA) is the ArB partial density in the ArA

rich phase. The interfacial widshy ara and<¥ ars, are charactesedby thefractions

— rArA(ArA)- rArA(ArB)‘
W. . = and
o W (Z pn) ‘
Uz
W.. = I aB (AI’A)- I a8 (AI’B)‘
o W (Z ps) ‘
Uz

as indicatecexemplarilyin Figure 16. The numerators in these fractiopga(ArA) Jaa(ArB) and

}ars(ArA) jars(ArB), also express the mutusdlutionof both speciesThe smaller the differences
between both phases are, the more they are generally also alike in terms of their other observables.
Depending on the variation of the pafrtdensitiesin the interfacial regionthe overall density,

which is simply their sum, can have an extremum. In binary systems of almost immiscible
substances, similar to ours, minima occur [meyer1988], [toxvaerd1995], [hafskjold1995],
[geysermans2005]They were termed "vacuous gaps" [steckil995] and occur for formal reasons
only if the Gibbs dividing surface of each substance lies closer to the phase where this substance
constitutes the majority component. Thus we chiasEigure 16 z-locations ofeap)=T 0. 1 nm an

ears=0.1nm for the partial density profiles with identical widtfisr ara= ®a=1.0nm.

The effects of various system parameters on the variations of the thermodynamic observables across
the interface hay already been reported in the literature [meyer1988], [toxvaerd1995],
[geysermans2005]. At this point, vehall briefly dwell on the temperature effects since they are
relevant for ournonequilibrium interfacial systems Buhn et al. [buhn2004a], [buhn20£}4
[buhn2006] conducted separdfT simulations of an equilibrium interfacial system, each at a
different temperaturbut with the pressure held constalntthese simulations, the binary mixtsire

which arecomparable to ours, essentially exhibit a tiideehaviour in the classification by Scott et

al. [scott1970] and van Konynburg et al. [vankonynburg198&alsopart11). In the liquidliquid

region, the interfacial width and the mutual solubilities othbeubstances increase at higher
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temperatures until the phase separation disappears at the upper critical solution temperature (UCST)
and both phases turn into a single one. Concurrently, the numerical values of any other quasi
intensive propertyincreasigly resembleeach other in both phasasp to the UCST where the
values coincide. Contrariwise, they approach the values of the pure substances at lower

temperatures.

Hydrodynamic Observables

According to the second law of thermodynamics (see e.g. iffé8#]), the entropy of an
equilibrium system is constant so that all local com velocities must equal the system com velocity,
initially set to zero as stated in sectd. Since the shear stresses must tleugdyo, i.e. the tensor

is diagonal, only the variations of the normal stresses across an interface have been thoroughly
studied in the literature [ra01979], [walton1983], [lee1984], [nijmeijer1988], [hayel994],
[todd1995], [varnik2000], [hafskjold2002b]while the normal stresses perpendicular to the
interface,S,;in our systems, remain constant, the normal stresses lateral to the intgfandS,y

in our systems, both go through a minimuhheir variations must be identicaliel to thelateral

homogaeity of the systemHence, we shall only give their arithmetic averadgs,, if sufficient to

make a point:
_S.(2)+s,(2)
xyy f :

Away from the interfaces, where the system tends to become homogeneous in all three dimensions,
all normal stresses.i. perpendicular and lateral to the interface, have identical values close to the
system pressure. The path integral of the difference between the normal stresses perpendicular and
lateral to the interfacproduceghe surface tension,

g= ﬁszz(z) - Sxxyy(z)dz' (4'1)

We stated already in secti@® that the local volume for¢é, is thedivergenceof the stress tensor
S. When applied to thenicroscopic definition of the stress tensor from sectiégh2 this gradient
can be rewritten as the sum of two contributions:

PD&G=D0+bX& =i+k =f. 4-2)

We shall denote them simply as the kinek¢cand the interatomia, force. Both must always add

to zero in an equilibrium system since its stress tensor is diagonal with zero divergence:

f=i+k =0.
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Thus, it holds specifically izdirectionof our equilibrium interfacial systems:

k :p‘Kzz:_u(rkBT):_kTK-k/‘EZ-i :-&. (4_3)

z B B z

Mz Mz Hz Hz Mz
While the second summand is zero due to the homogeneous temperature distribution, the first

summand must be the negative interatomiltime force,i,, in the equation abovéts validity is
confirmed by the BGY equatiof-4), which backs the conception of the internal forces as surface
forces in the interfacial region (s€22). We can therefore use equatidd-3) to check the

consistency of our results in sectidri.

Figure 16 gives an impression of how the interatomic voluederces can be expected to vary

based on the hyperbolic tangent densipyofiles from the previous subsection:

i, =k, TH =
yz

— kBT WArA + kBT WArB —
z

I an (ArA) = LA (Ar B) ° k. T I as (AI’A) =L A (Ar B)
B
(Z zArA)O (Z zArE'>)o

W o coshzﬁ 8 W,g coshzg

Wan - W -

= kT

In section5.1.1we shall sea similarz-shaped variation of the interatomic volum#éorces in the

interfacial regios.

Statistical Mechanical Observables

The potential of mean force and its underlying mean interatdonce per particle have been
studied for various equilibrium systems, see e.g. [cicottil98&]llman1993], [marrink1994],
[pohorille1996], [billes2003] Both observables go back tine early theories on molecular
mechanics by aplace, Young, RayleighiMaxwell and Young [rowlinsoR00Z. In particular the

mean forces resemble those used to explain the cohesion of a liquid. It was later confirmed that they
depend on the temperature and on the particle density as predicted by ter&smivvon (BGY)

equatian. It is discussed extensively [hill1987], for instanceand reads for the interatomic force

per particles; of certain substanc®’in a mixture [billes2003]

5= kgTAINy v. (4-4)
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Here,} vis the partial density of that substanTée interatomic particle force fan analogy with

the volumeone aboveakinetic counterpary in thermodynamic equilibrium:

Uy=9~+0y=0. (4-5)
We shall computéhis counterparin our simulationgy using the BGY equatiof-4) and compare
the result to the interatomic particle force obtained directly in the simulétimapter5.1). An

agreement in suctomparisos will hint at a good approximation of reality.

For now, ve plug the hyprbolic tangent densitgprofiles fromaboveinto equation(4-4), to gain
already an impression of how the interatorparticle z-forces should vary in our equilibrium
interfacial systemsThus, thez-componentg ara Of these forcess in the case ahe first substance
callit ArA,

/Z,ArA(Z) = kBT uln /;jI;rA(Z) = kBT 1 rArA(ArA)‘ fArA(ArB) .

I wn(2) a2z- z, §
W,  COSIT

C Wan =+
The analogue equation for an ArB particle reads

1 rArB(ArA)_ I ns (ArB)

ran(z 32z- 7. 6§
as(2) Wio COSh"% Z g

¢ Was +

/z ArB(Z) = kBT uln rArB(Z) = kBT
’ Wz

All other components are zeraa@lto the homogeneity of the systems parallehéoiterface
/'X,AI'A = /y,ArA = /x,ArB = /y,ArB = 0

Figure 16 shows a typical distribution of the interatonziforces to be expected. One can tell that
thereexistsno zforce in the phases. At the interfaces, however, thiciesr are dragged back into
the phase where thepnstitutethe majority componenthey feelthe maximum drag oficentreon

the oppositesideof the interfacial region.

Note that the equatiof-3) from the prgious subsection can also be derived by plugging the BGY
equationinto the relation between the interatomic forces per unit volume and the ones per particle

from sectiord.3.5

IZ :/z,ArArArA +/

z,ArB rArB -

Hln rArA T Uln rArB
B

=kgT

fArA+k ArB =
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=k, TH .

Hz
Thus the conception of the internal forces as surface forces in continuum mechanics (see section
4.3.95 remains formally correct in our equilibrium interfacial systemspde the thinness of the
interfaces. Moreover, we shall generally assume that this conception holds also in our
nonequilibrium systems if the processes inside proceed moderately in the sense of continuum

mechanics (see secti@rp).

One obtains a free energy differengeibtegration of the negative interatomic force on a particle

from a coordinate; to thez-coordinatez,:

- Fudz=- kT[N r (2] =-keTin 2 (z) _

= - Az).
f () Az,)- Az)

Such differences and are misleadingly called "potentials edmforce" (PMF). Whenever we
report them for a particle in this work, thelgell begiven with respect to that particle being located

in the phase where it constitutes the majority comportagtire 16 also showshe PMF for each

species:
r(2)
DA A(2) =- kT IN——F—— 4-6
ArA( ) B I_ArA(ArA) ( )
and
DA,.(2) =-k Tin—7 (4-7)
he ° rArB (ArB) .
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4.2.2 Nonequilibrium One-Phase Systems

Consider a binaryonephase blk fluid under negligible gravitational influence a closed
rectangulaparallelepipectonfiguration two opposite boundary region$ which are maintained at
different temperatures. If their difference is small, the system assumes a stationary state wit
approximately linear temperature and density profildse local temperatures decrease while the
local particle overall densities increase in direction, call bf the heat flux. Concurrently, both
substancesslightly segrecate, which involves differg slopes in the partial density profiles
[ludwig1856], [soret1879], [soret1881], [eilert1914he strength of this geegation which isalso
denoted aghermal diffusion can be characteed by the secalled SoretcoefficientSy. It is the
ratio of themole fraction gradient ofone substance, call it ArAa s/ Q &nd the temperature
gradientO T / diviged by the equilibriunmole fractions of this substanoga o and of the other
substance, call it ArBag o, [Wwiegand2004], [wiegand2006]:

I S L
Sr, rA T . (4'8)
g XArA,OXArB,O IJT/W

No convection existand the stress tensor is diagonal with normal stresses that are homogeneously
distributed on a level with the system pressure throughout the entire system

Our nonequilibriumonephase systems are just of the tgescibed above when disregarding their
symmetry with respect tothe xzplane and the unphysical behaviour near and inside the
thermostated regions. Henage shallmainly look for the abovedescribed temperature, density,
com velocity and normal stresdistributions in the intermediate regions (between the thermostated
regions) to assesto what extenttheir behaviour approximateseality. However, he exact
characteristic®df these distributionare, except for the com velocitidsard to anticipatee.g. the
slopes of the density variatian&dmittedly, the linear continuum mechanics introduced in section
2.2 can describe the behaviour of suchamequilibriumonephase system as long as the processes
inside proceel moderately. In th continuum mechanicadlescription three effectsare said to
dominate the system behaviour, namely conduction, diffusion, tAedthermal diffusion
[degroot1960], [haasel963], but their phenomenological coefficients are, emceyttures of
dilute gasesdrew1952, hard to predict from the molecular properties of the substances involved
[cohen199B
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Experiments and theoretical considerations show that the Soret coefficient diverges in liquids
approaching the critical solution poifitaase1963]luettmer2002] Going from liquid densities to

lower ones, the Soret coefficient decreaséfie is known about the concentration dependence of
thethermal diffusion, except that it must become zero in the limit of a pure substance [witko200

In addition, hermal diffusionwas systematicallystudiedin NEMD simulations of characteristic
equimolar binary mixtures to obtainfurther indications on its influences [paolinil987],
[vogelsang1987], [hafskjold1995], [wold1999], [perronace2002]. Ttnessimulation results show

at least qualitativeljnow the thermal diffusiordepends on the substances, the temperature, the
pressure and the equilibrium composition of the system. As a rule of thumb, the heavier substances,
the "smallef substances, andhe substances witlthe higher interaction strengths tend to
accumulate at the cold sida equimolar binary mixtures of simple liquidbafskjold1993],
[bordat2001], [reith2000]it is, however, doubtful that all these rules apply in the same way to our
nonequilibrium onephase systems because they are far from having an equimolar overall
composition. Nevertheless, the above indications on thermal diffusion are worth mentioning here
because they demonstrate #ygplicability of our method. Thus, most NEMBimulations were
boundary driven, with extremely high temperature gradients of more than 100K/nm. Such huge
magnitudes are necessary for the influence of the temperature gradientsiongtyeilibriumone

phase system to be detectable in the noise oDaslvhulation, as stated in secti@R.2 Still the

local thermodynamic observables varied approximately linearly between the boundaries when

disregarding the unphysical system behaviour due to the perturbidoas

Lacking alternativeswe estimatd the characteristicof the temperature and density distributions
only very crudely by analogy to the behaviour of comparable substances in similar situatisns. Th
estimation is conducted exemplarilybelow for the system NArlAr2-0.6-1.0-20-7091%
4.74x8.00x9.4A100-140, where we concentrate on the intermediate region with posiive
coordinates for simplicity's sak&he results applgontrariwiseto negativey-coordinatesandareof
similar magnitudes in the otheystem Since the distributions of the temperatures and densities are
linear in y-direction their values at theentre between the thermostated regions mustthee

arithmetic average of the temperature constraints

+
T(2nm) = T, 2TH _ 100K ;140K 1o

and the overalbystem densis

Npa * Ny _ 20+7091

— = . - ©19.95nm®
L@, @, 4.74hm@.00nm®.40nm

r(2.0nm) =
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Naoa 20

AR = _ _ ° 0.056nm '
L,G, &, 4740m@&.00nma®.40nm

rArA(Z.Onm) =

r s (2.0nm) = Nwe  _ 7091 ©19.89nm*°.
LA, &, 4.74m3.00nm®.40nm

Concurrently, the difference between the temperature consjrdivided by the distance of the

thermostated regiondelivers the temperatuyegradient

E:TH - Te 140K 100K —1000£
Ly L, /2 80nm/ 2 nm

It is related to the overall densities via the thermal expansion coefficient of the rmiture

Since our Atslike particles are hardly soluble, we can assume that this coefficient is of the order of
the experimental one of pure ArgdisT 0.004K ! [stewart1989], at the conditions determined in

the corresponihg equilibrium interfacial system from the previous section, T8.1 20K and
P4 3 0 MP aTalflesld, 24, and33), so that

W_ gHW, 000410995ic1000£_ 1
Ly Ly nnr nm nm’

Hence the governing linear equations of the temperature and density distribahimiid be

approximately

T(y)= (y 2nm) + T (2.0nm) = 10£ (y 2nm) +120K (4-9)

r(y)=

L (y 2nm) +19, 95# (4-10)

(y- 2nm)+ r(2.0nm) =

EIE Elt

if we chose the values tite centrdbetween the thermostated regions as pointsfefence

The abovementionedlow mutual solubility of our Adlike particles allows also only for weak
thermal diffusion.In addition the positive temperature dependence of soisibility (see section
4.2.]) tells us that the majority component partial density must decrease stronglyin y-
direction than the overall densjtyhile the minority component partial density must increase.
maximum increase can be estimated by assuming that the dartgty of the minority component
rises from zero at the cold thermostated region to the overall system partial densitgatrthe

between the thermostated regions
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r aal )=M(y- 2nm) + 7, ,(2.0nm) =

L, /4
= 0.028% (y- 2nm)+o0. 056 (4-12)
nm nnr’
The corresponding minimum decrease of the majority component is:
1
rae(Y)=7(y)- 7 aaly)= (y 2nm) +1989——. (4-12)

We shall primarily look for theetemperature andensityy-variationsin our simulation resultésee
section5.1.2). Estimates of the other observables to be determined isiraufations can be made
at this point by plugging equation@-9) and (4-10) into equation (2-7). Thus the kinetic
contributionsto the normal stressel,y, Kyy, andK,; mustdecrease in going from the cold to the
hot thermostated region:

Ko =K, =K, =-rkgT = (4-13)

=-a 14 (y- 2nm)+1995ioc1 3800 % &o—(y- 2nm)+120|<8=
m =

nn’ = ¢ nm

:-0.0138pNK®'m‘é‘e 8 _(y- 2nm)?

e K4 (Y‘ 2nm)+2394—0—
n m

e <
=0(- 33VIPa).

Since the first summand in the brackets is small compared to the other ones, we can expect that the
decrease is approximately linedhe interatomic contributions to the normal stresbkgsl,y, and
I, must increase with the same absolutpalso that both contributions always add up to the

system pressur® (seeTablesl4, 24, and33):

|, =1, =1,=-P+rk,T =O(0OMPa).

XX yy

The divergenceof the kinetic and interatomicontributionsto the normal stresseesults in the
related volume forceg¢see equatior(4-2)), which must always add up to zermo a stationary
nonequilibriumonephasesystem It holds specifically iry-direction:

MKy blrkeT) g Wy HT
by by Wy

(4-14)

=- 1.38@0‘23igﬁ0£(y- 2nm)
K¢ nm =
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, J a 1 1 g4+ K
-1.38Q0 %= - 2nm)+109. 95—00.0— =
K g nm? v ) nnt’ =
B pN ma K K a
=-0.0138 e 16 - 2nm e 0.
K ¢ nn? v ) nm'= ¢ nnt=

Note that the kinetic volumg-forces always point towds the nearest cold thermostated region
while the (real) interatomic onegoint, onthe chronologicalaverage,towards the nearest hot
thermostated region. They can be rewritten as the sum of the partial densities multiplied by the
interatomic forces pgrarticle of the same substance:
— H A u W A HT s .
+k T—2% +kBrArA Ly +k T U)A/B +kBrArB Ly =7 an Oy,ArA 7 s Oy,ArB'(4-15)

Thisleads to the numerical estimate

a’T w uT @
+k ArA + —_
YArA B%Am Ky Wa
g2 % 1o£(y- 2nm) +120K L « O
=1.38000 % nm 70028 +10 0=0(1pN) (4-16)
%)028—(y 2nm)+0056— nm ”m8
and
aT W, pTO
=+k = 4-1
yArB B%NB U.y uy§ ( 7)
a K 9]
e 10—(y 2nm) +120K L K ©
=1.38G0 % = 7077 +10— 0= 0(0.2pN).
(y 2nm)+1989 —, "M nmg
nm -

One can tell by plugging in thextremevariations of the partial densities (equatiqdsll) and
(4-12)) that both interatomic partickeforces must be positive, the ones per particle of the minority
component being much strong&/e shall use equationg-12), (4-14), and (4-15) to check the

consistency of our simulation results in sectoh.2
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4.2.3 Nonequilibrium Interfacial Systems

Estimating he intensity of the thermocapillary convectisrdifficult. After all, its underlying effect

still lacksa general description, as mentionedoart 1. We can, however, safely assume laminar
thermocapillary flovg. Turbulent ones ar@ priori, unlikely, since they come only with extreme
shear rates on the smbdhgth scalesypically computable ira MD simulation.The results in other
systems, specifically designed to study shear flows, back this requiremest. SEveral authors
implemented for instance, Couetteor Poiseuille flows in NEMD simulationgashurst1975],
[trozzi1984],[hannon1986], [cieplak1999], [muellerplathe1999], [cieplak2000], [bordat2Tb2ly

are mostly boundary driven, with extreme velpciradients of up tau/¢y=10-13°m/s. One
applies them although they make an additional thermostating necessary to balance the energy
dissipation. Otherwise, their influence would not becaoratceableagainst the noise in the com
velocity distribution Nevertheless, the system behaviour approximates reality at sufficient distances
from the boundariesSeveral authorebtain, for instance, results on thgndmic viscositiesvhich

lie close to those determined in experimgbizrdat2002], [hannon1986], fizzi1984] Turbulent

flows, however, occur in none of thbovenentioned simulations.

Although we already expected laminar flows, we estimated, for later comparison to our results, a
conservative maximum shear rate up to which the flows remain defitateiypar. Consider, for
instance, a fully developed turbulendeconsists, in the sense &ichardson [richardson1922],
Kolmogorov and Obukhov [kolmogorovl941a], [obukhov1941b] [kolmogorov1991],
[obukhov1941] of a cascade of superposed eddies with réiffescales of motiorl.arger eddies

pass their kinetic energy to smaller and smaller ones until viscous dissipation becomes important in
them.Such dissipative eddies have a characteristic dimermsdiagn It is the one|, in the largest

eddies divided by their Reynolds numhiee, to the power of 0.7Bandau2003] [pope2003]

/,=1/Re™. (4-18)
This Reynolds numbeanvolves their aforementied characteristic length, their velocity variation

qv, as well as the fluid density, and dynamiwiscosity] :

_FIDv

R
=5
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We naively setay to | in equation(4-18), i.e. Re=1, to be on the safgde. Tha, qv must be larger
than

140060 ° ko
R " _o10p (+19
| 7 10040*°mA000S

for the smallest eddies to fit intmur systemsEquation(4-19) uses their typical propertiesrfthe
sake of simplicity.The dimension of the smallest eddiesyisically a fraction of that of the largest
eddies Hence g must in fact be much larger.

Having established the conditions for thecurrenceof the laminar thermocapillary flows, vahall

now consider theiappearancelhey should run from hot to cold along the interfaces, as in the vast
majority of experimental studies (see sectoh.]). Since the different flows cannot penetrate each
other, eight roll cellsmustoccur, compatible with the periodic boundary conditidnsthe below
discussions ofhe simulation result®n thenonequilibrium interfacial systems (see sectol), we

shall look for swch roll cells as a confirmation for the ocaence ofany "thermocapillary

convection".

Note, how the distribution of the velocity components parallel to the interfaces resembles in each
phase a Couettieoiseuille flow [spurk1996]This resemblancencreases the larger the distance
between the thermostated regions mayTie interfaces represent two confining walls that move in
direction of theemperaturgradient. As a result, a pressure gradient in opposite direction builds up.

It drives the counteddws at thecentreshetween the interface$he Knudsen effect in dense gases

has the same underlying mechanism when disregarding the different directions of the flows (see
section2.1.2. We shallalsolook in the discussions ajur systemgor such pressure differences in

connection with the thermocapillary convection.

Later, also the intensity of the convection will bdiscussedas function of different system
parameters (see.g. chapter5.4). In practice, measuringuch anintensity comeswith several
difficulties, however We shall simply assess iby using the maximum absolute com velocity
components in the system. Moreover, shallcompute also the spatialrcelation of the velocities,

v, in the style of Ramirez et al [ramirez2000]:

C :Ja &5 via', b)a(a", b)e.
"i,j G u
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Here, the fist sum runs over all subvolumesb, ), in a system while the second one includes their

applicableeight first neighbourgU }b ).

In addition to theconvection and its dependenci@ge shall checkn the discussion of the results
whether the distributions of the other local obskblea are plausible. Remember from secfoh

that continuum mechanics can describe a sysfetime processemside proceed moderatelysince

this condition will turn out to be fulfilled for the equilibrium inerfacial system and the
nonequilibriumonephase systems in chapter, we can expecthatthe same holds also for the
nonequilibriuminterfacial systemin the continuum mechanical description the above caiovec
constitutes another transport mechanidmsideghe moleculaones, namely conduction, diffusion,

and thermal diffusionintroduced previously for theonequilibriumonephase system.

Disregardthe thermocapillary convectiofor the momentand think only about the molecular
transport mechanisms. Thehe distribution of the local observables should appear approximately
as a combination of the distributions in twonequilibriumonephasesystems (see secti@gn2.2,

one for each phase, joined by various distributions of equilibrium interfacial systems (see section
4.2.]) in slabs perpendicular to the temperature gradient. That is, while each phase separately str
to mimic a stationarynonequilibriumonephase systemboth phases together strive to establish
local phase equilibria in slabs parallel to tteeplane as function of the local temperature there.
Based on these two competing tendencies, an intertaadigribution of the local thermodynamic
observables should appear that is mainly a function(direction of the temperature gradient) and

only at the interface a function e{perpendicular to the interface).

If we now also take the thermocapillacgnvection into consideration, the convective transport
"warps the distribution of the local thermodynamic observables described befaveng only a
crude idea on the intensity of the thermocapillary convection, it is difficult to anticipate the
magnitude of this perturbationAfter all, convective transport rates agenerallysubstantial in
comparison to molecular ones. However, we must also take thelshgttt scaleof the MD
simulation into consideration. The empirical dimensionl@exlet number Pe for instance,
describes the relativemfluence of molecular and convective heat transpamtthe behaviour of a
given system [bird2002]:

10 @,

_—/th

Pe
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Here,l andv are the characteristic length and velocities of the system, wlale and/ i, represent

the density, heat capacity at constant pressure tla@danal conductivity of the fluid. In the
nonequilibriuminterfacial systemall these variables are either material properties or externally
constrained, except for. We shall asume that the roll cells are approximatelyesghth of the
systemz-dimension wide|=1nm. Thenhe order of the &ld& number can be roughly estimated as
function of v with the help of the experimental material properties of Argon [vassermanl1967],
[younglove1986], [richard1989]gilgen1994], [tegeler1999]

140 m& a000<Y doooﬁ
Pe= mW 9% _po012 &,
100403 m
m K

Accordingly, for convective transport to be substantial in the thermocapillary system, the
characteristic velocity of the roll cells must be on the orddi08im/s or higherSince the roll cells

cover the entire system, the local thermodynamic observables in the phases should z2ecome
dependent in this case. Provided the expected thermocapillary convection does occur, our second
indication for the soundness of the MD simuwatiwill therefore be to see if the characteristic

velocity of the roll cellsagreeswith the distributios of the local observables the phases.
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4.3 Analysis of our "Simulation Systems”

As explained in part3, observables (in equilibrium: thermodynamic averages) tgpecally
computedrom the simulated sample of the phase space trajectory by suitable averaging procedures.
Their convergence strongly differs for each observable; single particle propertiesusaalty

much easier to obtain than collective ones. Only few observables converge sufficiently well in the
small timespace window necessary to describe riecroscopicbehaviour ina system. In this

work, we determinedfor simplicity's sake, solefstatc" (i.e. time independent) observables. Their
numerical values become more accurate the more particles are taken into consideration and the
longer they are monitoredvost of them are determined locally in our simulations. By "local
observables" we unddéasid here averagebhat arecomputed only over the particles in small
spatially fixed subvolumes of a simulation system to catcHoital character.In contrast, the
properties of all particles enter into the "glolmdservables of a system. Although thyefail to

indicate the occurrence of the thermocapillary convection, we meditbem nevertheless to
ensure the comparability of the simulations.

Besides the computing power, the memory capacity is another important limiting factor in MD
simulations. Ifwe stored according to common practicthe computed phase points during the
simulation for subsequent analyses, the amount of data would quickly skyrAckietgle phase

point, i.e. particle positions, momenta, (and possibly forces), racapmroximaely 250 kilobytes

in a system of 7000 particles. Here, it proves advantageous that we confined ourselves to determine
only static observables. The peculiarity of their definitions (s€3) makes it often m@ctical to
determine them "on the fly" during the simulations. To do so, the instantaneous function values
o(q(t),p(t)) underlying the observahl®, must be determined right after the computation of each
phase point. The numerical values) can then be computed by suitable implementation of the

following formula

rfo)=2 & ofaft, ) p(t.).

m=1

where(q(tm),p(tm)) represents the phase points at the considered,ttgeshile n is the running
number of phase pointonsideredso far.Hence the individual phase points themselvesed not
bestored which is, of course, at the expenssslghtly longer runtimes.
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In order to keep these riimes manageable, only those phase powee furthermore taken into
accountconsidered thatre chronolgically separated by roughly the relaxation time of the
observables under consideratidiie can accept the thus resulting loss of informatioe t the

strong correlation of the function values withinightime. The relaxation times of the most
observable in this work lie typically on the order offaw hundred to thousarttme steps, i.ein

our case with Argon masses, the order of picoseconds [haile1997]. We considerdgt every
thousandth timstep in the case of the global observables and evegrédth timestep in the case

of the local observable®ur production runincludet y pi cal | y 7°Simessteds)dhose ( 15 .
of the simulation system under the default constraodk, for instanceup to 300CPU hourson

our computers

The obtained observables have little significance for the sylsédraviourunless the noise ithem

is known. It is generally assessed through studies of the correlations in the instantaneous function
valuesthat underly the observabldstraatsmal986]Since wedecided todetermine them othe-

fly, however, such studies involve substantial efforstead, wepreferredto estimate the noise in

two comparatively coarse ways described in the literdhaie1997],[rapaport200§ On the one

hand, we computkalong with the observables i.e. the meang ), also the standard deviations,

0 @), of the instantaneous function value(t),p(t)), consideredsee above)

A [l Lol I -4 ol ol )

S (0) — | mL Emn=1

These standard deviations provide only crude estimates of the fluctuations in the related means,
since we lack tlb correlation coefficientsNeverthelesswet manage to catcin this way the
gualitative differences between similar systems or, in the case of the local observables, even
variations within the same system quite well (see se&idn On the other hand, we determine
several valueseg(0), for the observables over consecutive segments of the whole phase space
trajectory computed in a simulation. If these segments are long compared to the relaxation times of
the observables, their values are statistically independent. The standatibdsvof the several
values (g(0) then allow to estimatethe noise in the observable, determined from the whole

computed phase space trajectory:

4-81
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s(mfo)) ==

n-1

We typically divided the trajectory int;=3 segments. Such a divisim@meswithout extra costs
because we libour simulation code export the (intermediate) resatighow on a regular basis
reduce the severity of a potential computer fail@encurrentlywe make sure in this way that the

l ength of each s eifimesteps), tleprly exceads the ab&éralaxati¢nFires
of our observablesSome scattering in the thus obtained standard deviations is acceptable.
case of the local observables, thesgmentalstandard deviationsvere additionally spatially

averaged to obtaisinglecharacteristizvalues for the entire system.

Several static observablesre determined together with their standard deviations in the course of
this work. For the sake of simplicity, vahall divide them up into three groups aodiog to their

historical origins:

- thermodynamic observabteglarticle overall and partial densities, temperatursgstem
pressuresinternal system energiésee sectiod.3.1);

- hydrodynamic observablegentre of mass(or in brief "com") velocities, linear system

momeng, selectedstress tensor elements, surface tendises sectiod.3.2);
- statistical mechanical observabl€srces (see sectiod.3.3.

Eachsectioncontairs a brief discussiorof the instantaneous functimalueso(q(t),p(t)) underlying
the observablesAlthough their statistical mechanical definitions hodtrictly speakingonly in
thermodynamicequilibrium, we appied them likewise toour nonequilibriumsystems assuming
that the processes proceed moderately (see s&:fiprin doing so, we also neglectthe bias of
the particle velocity distribubn in consequence of tteermocapillaryconvectionevans199Q]In

addition tothe observables from the three aforementioned grdbpsopverall heain- ((§H) and
outfluxes ((ﬁc) of the nonequilibriumsystens per wnit time were determinedogether withthe

related standard deviatianBhe instantaneous function value&(t),p(t)), underlying these fluxes
eqgual thanstantaneous rates of kinetic energy coupled into or ceddf'thermostated region”

& =DK, = DK, +DK, . +DK, . and
6H = u<H = D<X,H + I:]<y,H + I:]<Z,H .

See sectiod.1.4for more details on how these rates are calculated.
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Before the local observablesudd be determined their locations and spatial resolutiad tobe
choserso as to dah the spatial variation of the system in consideratmth the locations and the
resolutionare specified through thevay of dividing the system intdhe subvolumes oiwof the
positioning of the cusurfaces They represent the refe@sfor which the local observables are
computed.We divided each ofour systems evenly into adjoining subvolumes that do not spread
across its boundaries. Dependingtioatype of a systemthe divisionwasconductedso as to obtain

slabs or cuboids. Inither case we explored suitable subvolume dimensions in a series of
production simulations of the first ArlAr2 interfacial systems under the default constBuotits.

the division and the exploratiowill be explained more in detail in see sectidr8.4 When
interpreting the result&ater in this work,we must keep in mind thahe system behaviour is,
depending on the distance from the thermostated regions, more or less unphysically perturbed by
the manipulatn of the particle velocities thesee sectior8.2.2. This behaviour can be seen
particularly well in oumonequilibriumonephase systems whictue to their homogeneitiesljow

using slabs perpendicular tfoe y-direction. We can thus achieve in it a high spatial resolution. Our
assumption is, &sed on the results for such systems in sedti®r that the unphysical behaviour
fades to insignificant levels atdistance of about 1nm from tleentreof the thermostated regions.

We will alsoestablishin the samesection however, that the error in the data at the thermostated
regions can be expected to be snifathe local observables are determined using thatively
coarse cuboiddn order to determine the spatial variation of selected stress tensor elements, we
shall position cutsurfaces at equal distances into the equilibrium systems. Suitable distanees
obtained from another series of production satiohs of the Ar1Ar2 equilibrium interfacial system
(see alsat.3.9. In this serieswe also determined a suitable value for the normal disté@ingom

the cut surfaces within which the particles are considered in the calculation of the kinetic
contribution. A drift of our systemsthat would interfere with the determination of the local

observablescould not be detected.

Theresults as obtaed directly fromour simulations arstill partly unsuitablefor our studiesn part
5. Hence we summarisd particularlythe local data by a series of measuiess (see sectiod.3.5.
Thus the volume forcesrelated to the particles of a certain substameee converted into more
meaningful foaces per particleln the interfacial systemshe distributionsof the local observables
wereadditionallyrelocated to eastheir comparison. Finally, waveragd redundantocal dataand
derived, whenever possibl@dditional properties from theto obtaina better understandin§uch

"derivational properties” ayéor instancelocations and widths of the interfaces, Sa@fficients,
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the surface tensions, or gradientsiey were computed from the averaged data according to the
applicable definitions ithapted.2 Moreover, weshallgive explicitly the maximum absolute local
y- andz- com velocity components as a measure for the intensity of the conve@aionS.1 will
discussexemplarilyalso all the non-averagedocal dataso that the reader may assure himself of
thar quality. Subsequently, wehall report the results ight away in thesummaried form and

discuss, for brevity's sake, onlyodenecessary to makepoint.

In addition to the abovementioned local data, we averatg® the global heat fluxes. Thdioth
absolutevalues must ba prioriidenticalin each of ousstationarynonequilibriumsystens. Hence,

we shallgivein Tablesl14, 24, and33 once agairthe averaged absolute heat fluxes

Q[ +]Q
0=210
They should apply as well within the related systexwross any plane perpendicular to yhaxis.
Moreover, Tables11, 21, and 30 give the thermal pseudaonductivities ay. We shall call them
pseudo because they are computed by disregardimgssible convection in the sgsts.
Accordingly, these conductivities result simply from the heat fluxes, the thermostated temperatures,
and the system dimensions according to the relation

I Q —.
" (TH - TC)LZ CD'x CD'y
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4.3.1 Thermodynamic Observables

The instantaneous particle densite® dfined as e number of particles inside a regiany
divided byits volume[allen2003] While the particle overall densitiesomprisethe total numbeny,
of all particlesin that region

N

the particlepartial densitiesalways refer to a singlésubstancg Y i.e. only thetotal rumber of

particles of that substandgy is counted

Ny

ARITRY

Instantaneous temperatseere determined both, locally and globallye definethem & each
time stephrough theelation [mcquarrie2000]

.1 2
K 2 J%Vzmj‘uj‘

(N- 8k, 3k, N-&

It baseson the assumption that the particle velocity distribution is sufficiently close to a Maxwell
Boltzmann one. In thdefinition, kg is Boltzmann's constanmivhile m andu; are the mass and the
velocity of the individual particleg, inside theconsideredregion, U VThe sum of their kinetic
energies over all particledl, has the symboK. When déermining the temperatures globally, we
reducel N by one, i.e.U=1, to account for the constraints on the particle degrees of freedom
through the periodic boundaries @fir systems. Otherwise, we simply negbeldhese constraints
andset: 0. The error resulting from the neglect

The instantaneous pressure amelinternal energy obur systens werecomputed according to their
commondefinitionsin MD simulations, see e.g. [allen2008jor the pressures, the virial route was
used.Corrections for the long range interactions in the configurational energytbe pressure

were neglected because they are difficult to consider in heterogeneous systems.
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4.3.2 Hydrodynamic Observables

The instantaneousentreof mass ¢om-) velocity was determined both, locally and gldly. It is
the sum of the linear momena, of all particles] inside a regiont Ydivided by the total number
of particles N, inside that regionifving1950]

anp,

i v
v=l"

N

In addition to this general com velocity, we also deterthoresspecifically for each substancé,

Here, Nyrepresents its total particle numb8uch specific velocities describige relative motion of

the differentparticles Molecular dffusion involves, for instance, such motions.

As stated previously, the stress tens®f(r), refers tothreemutually perpendicular cesurfaces,
U S They lie perpendicular to the coordinate axgsand intersect at the location, The value of
the stress tensor consists of two additive contributidve. defined the kinetic one already in
equation(2-5). One could call the other contributioli(r), interatomic. It accounts for the inter
and intramolecular forces that act across these cut surfaces in denseltfupscise definition
remains, howeversubject toresearch sincan unambiguous waof assigning such forces to the
different cutsurfaces has not been found jletkwood194%], [harasimal958], [schofield1982],
[rowlinson2002. For the sake of simplicitywe confined ourselveshereto the presumably most

widely usedexpressionsuggestedby Irving and Kirkwoodirving1950}
N y
Ii,j.(r): - Ea 9 Cei.sgn((rj - r)Cej.). (4-20)
j=1

Equation(4-20) has already been rewritten so as to appfyofa molecular model and forces field
[todd1995]. Similar to the kinetic contribution above, the multiplication with makes the
definition compatible with the hydrodynamic conception of the stresses tensor (see Z&ctidfe
sum over all particlesy, inside the system. A considered parti¢Jehas the locatiorr,, and feels
the net forceg, from the interactions with all other particld$e expression above can be rewritten

into an easier to implemestim
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over all pair interactiosin® r;z U5} across the cut surfageS[heinz2005] The particles involved
in each pair interactioare generally denoted byandj here. Tleir connecting vector carries the

symbol rj=r;-ri, and has the length.

The cut surface areasquiredto catch the local charactera strongly heterogeneous systara so

small that it becomes almost impossibie obtain reliable values for theelated stress tensor
elements.Since our equilibrium systems are homogenguusllelto the interfacg however, at

least some of the stress tensor elements can still be determined [todd1995], [ikeshoji2004]. Thus,
we computd following previous works 01979], [lee1984], [walton1983], [nijmeijerl1988],
[varnik2000]the stresseat differentcut surfaces parallel to the interfac&se normal stresses,,,

are

Szz(r):_ i a rnn(un Céz)2 - ia Sgr(zj - Z|)- W(rij )i (4'22)

v nl v OSZ n - “[rii] r-'J
Moreover, baed on a mathematical rearrangement indigfenition of the stress tensor [0on01960],

the normal stresses lateral to the interf&gandS,y) werealsocomputedusingthese cusurfaces

1 .. - Uu(ri')zi' X;
Sxx( ) W a.dv ( ) - Ezan Sgr(zj - Zi) |Jrij J ﬁz_:z (4_23)
_ 1 1 .. - uu(rij)zij Yi
s.(f)=- — . -z S 4-24
0= g anb.ef Faste aREERE ea

Here,X;, v, andz; are the components of the vectgy, connecting the particldsandj through the

cut surfacell S We can already tell from the denorators that the mathematical rearrangement
promotes numerical noise. They contain gdistance between both interacting particles. It can
quite often become very small during a simulation, when their connecting vector lies almost parallel
to the cut surfee. We then obtain exceptionally large results. They manifest themselves particularly

in the insular peaks that show up in some distributions datbealstresses. See elggure34m.
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4.3.3 Statistical Mechanical Observables

Besides thedensity and thecom velocity of a regiont Ywe also computk the instantaneous
interatomicforces, i, per unit volumethat act onthe particlesinside that regionin doing so, we
distinguisted the paticles by their types so that threelume force vectors are obtainad our
binarysystens of ArA and ArB:
1 .
a 9j

IArA = W
il v oArA

1 .
95,

I ArB d/ ]
il v @ArB

I_IArA-i-IArB'

Here,5is the net force acting on the partigledue to its interactios with all other particles.

Although it is irrelevant for the determination of these forces, we would like to note already at this
point thatthe first twovolume forces aboverere converted into mean forces per partigga and

9. This conversion rivolves thedivision through the applicable average particensity
subsequent to every simulation, as will be described in settB& The thus obtained forces per
particleare related to thdensities andhe potentials of mean force of the ArA and ArB partidies

theequilibrium systemsSee sectiod.2.1for more details.
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4.3.4 Locations and Spatial Resolution of the Local Observables

The locations and spatiaésolution of the local observablead tobe chosen consistent with the
simulation length so a® catch the spatial variation of the system in considerationt@ottain
reliable dataln BD NEMD simulationsthe unphysical system behaviour at the bowndegions
had to be additionally taken into consideration in the chole.shall explain it here using the
simulations of the firsAr1Ar2 systems

E-ArlAr2-0.6-1.0-3346:35244.74x8.00x9.4a.20 ber,
N-Ar1Ar2-0.6-1.0-679524-4.74x8.00x9.4d100-140,
N-Ar1Ar2-0.6-1.0-20-7091-4.74x8.00x9.401.00-140,

and NAr1Ar2-0.6-1.0-33463524-4.74x8.00x9.4aL00-140,

as examples. This choisgas kept for all subsequensimulations. Weshall begin with the local

observables associated with subvolumes and then comesindbses which relate to esurfaces.

Local Observables Associated with Subvolumes

Equilibrium interfacial systems are typically divided into slabs parallel to the interface, i.e.
perpendicular to the-axis in our systems, for the computation of lomlaservables. One thus takes
advantage of the systemisbmogeneityparallel to the interface and obtains relatively large
subvolumesConcurrently, therariations perpendicular to the interface can still be determined with

a high resolutionln Figure17, we show exemplarily the distributions of selected local observables
andof their standard deviation3hese data werebtained by using differemumbers n,, of such

slabs in EAr1Ar2-0.6-1.0-3346:35244.74x8.00x9.4AL20-ber. Noe that the data in the figure were
determined only over the first five million time stegfshe simulatiorto save computational effort.

As expected in sectiod.2.], the partial densities increaseggmoidally from the phase where the
related particles constitute the minority component to the phase where they constitute the majority
component. Moreover, the overall densities, which are simply the sum of the partial densities,
exhibit a "vacuous gap" in each irfecial region. Finally, the local temperatures are
homogeneously distributed throughout the interfacial systésmequired for a "field propertyln

this example we consider a value £288 to be the best compromise between a high spatial
resolution & the local observables and the reliability of their values. Thoth minima of the

overall densities in the interfacial reg&ror instanceare caught well while the noise remains
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acceptable. It becomes particularly apparent away from the interfalcese the system is
approximately homogeneous zrdirection.Each slab has adimension ofL/n,=0.0326nm and is
on the average populated by approximately 23 partialparticle number at the lower limit down
to which meaningful valuesf simple statidthermodynamic observablean be determined in EMD

simulations in practice [lustig1994a], [lustig1994b], [lustig1994c].

Similar to the equilibrium interfacial systems abowvee divided our nonequilibrium systems
according to their homogeneitieth doing sq we strived for comparable average subvolume
populations Beforea suitabledivision @muld be explored, however, itad tobe known how rapid

the unphysical system behaviour introduced by the thermostating digresses away from the
thermostated regionsThis digression is particularly hard to determine in tfenequilibrium
interfacial systemsincetheir heterogeneity requirgslatively large subvolume dimensions in all
directions. Instead we studied the digression using one of the first Ardveuilbrium one-phase
systems, NArlAr2-0.6-1.0679524-4.74x8.00x9.46100-140, as a representative exampldey

allow, similar to the equilibrium interfacial system abover the determination of the local
observables at a high spatial resolution. In thelisgithe system was divided according to its
homogeneity intony=288 slabs perpendicular to tlyeaxis this time.Figure 18 shows the thus
obtained distributions of selected local observables and their standaetiahs They were
determinedovea si mul at i on | e’himetstepsthé unghgsica sysiem behavidur 0
due to the thermostating manifests itself particularly in the distribution of the tempen@eees
Figure18b). They vary for instancemuch stronger at the thermostated regions than expected from
Fourier's law fourier1822, the variation beinglightly more pronouncedt thecold thermostated
region.BD NEMD simulations in the literature exhibit, even though some of them use different
thermostating algorithms, suttemperature jumpsas well[tenenbaum1982], [ikeshoji1l994The
authors ascribed thenlike occurrenceof thesejumps at the thermostated regionsthe different
densities thereSince the extension of the jumps is larger at the cold thermostated region while their
magnitude is larger at the hot thermostated regibe, temperature at theentre between the
boundary regions must lie below that of thepected temperature profiie,our systems about 0.4K
below the expected 120Kat |y|=2.0nm. Apart from the temperatures, the unphysical system
behaviour due to the thermostating appears also in the density distribution as a layering of the
particles atthe thermostated regiorfseeFigure 18a). Away from them all distributions tend to
become linear, which is the natural variation in aonequilibriumonephase systems for small
temperature gradients (semso section 4.2.2. Based on thistendency, we shall assume

conservatively that the unphysical system behaviour due to the thermostating is negligible beyond
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distances of about 1nmoim thecentresof the thermostated regiorsevertheless, we mustind in
our studieghe smaller than expected overall temperature level and tempeyajtadients in the

intermediate region.

Our nonequilibriuminterfacialsystems hava lowerhomogengy than the equilibrium onesr the
nonequilibriumonephase system3hey are only homogeneous along straight lines that lie parallel
to the interface and perpendicular to the temperature gradient, kedinection in our systems
Consequently, we had come up with a diffent way of dividing them into subvolumes suitable to
catch all characteristic spatial variatioigsing the MD simulation®f the first nonequilibrium
interfacial system N-ArlAr2-0.6-1.0-334635244.74x8.00x9.4AL00-140, as an exaple we
exploredby trial and errowvarious such ways of division and foundwtable compromisbetween
spatial resolution and uncertainty of the local observallaly its outcome shall be given here for
the sake of brevitya subdivision of the syste in y- andz-directioninto a grid ofn,=10 byn, =36
cuboids.They haveeacha volumeof 0.99nnt andthe dimensionsof L,=4.74nmby L,/n,=0.8nmby
L/n=0.26nm These dimensionige at themaxima acceptable to catch the spatial variation of the
system acaording to ourinterests Thus thez-dimension amounts to almos0% of the interfacial
width of approximately 0.6nm (s€kables11, 21, and30). Its definition is explained in section
4.2.1 They-dimension, on the other hand, is only big enoughtti&@tunphysical system behaviour
due to the thermostating concentratedess than half the number of cuboids. Other than that o
way of division haghe additional advantagbat we obtain the observables at teatresbetween

the thermostated regions for comparison to the corresponding equilibrium interfacial ssystem
Moreover, we shall see in sectiénl.2that the cuboids are so coarse that the unphysical behaviour
in the ones containing parts of the thermostated regompensategself in the related results to a

large extat. We ouldtherefore consider them as well in our studies, albeit with suspicion.

Due to thechosencoarse resolution, approximatel@ particlescan beexpected to populate each
cuboid on the averagea numberof the order of magnitudes required for simple static
thermodynamic observables in EMD simulations (see above) and as used in evaluatiBhdDof
simulations by Tenenbaum et. al. [tenenbaum1982] and Hafskjold et al. [hafskjold\8©38$ed
cuboidsof the aforementioned proportions and poputatior the evaluation of all subsequent
nonequilibriuminterfacial systemsDepending ortheir constraintsthe dimension®f the cuboids

had tobe somewhatadjusted to maintain thebavementioned average populatiolmhe same
cuboidswerealsoappliedin the other types of systems when the local data is to serve as reference

for the nonequilibriuminterfacial systems. Other than that weedslabs as in the equilibrium
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interfacial system abovd@hey are orientegerpendicular to thg-axis in thenonequilitium one
phase system&egardless of the orientatiaie thickness of the slabgsalways adjusted in such

a way that they are populated by approximately 23 particles.

Local Stresses

Computing the local stresses in a system can easily become egpafepending on how many
exploitable homogeneities exist. We shall explain it here at first in the relatively simple cases of the
equilibrium interfacialand nonequilibriumonephase system§hey are each homogeneous in two
dimensions. We then simply oladthe stress distribution along the third dimensidnyhereU=z

in the equilibrium interfacial antky in the nonequilibrium on@hase systems, by positioning
imaginary crossectional cusurfaces perpendicular to it. Thbegad equal distances apU /by,
beginning at the applicable periodic boundarigsr definition, the motion of every particle within a
distance ofili Ufrom a cutsurface (kinetic contribution) and all pair interactions across it
(interatomic force contribution) contribute to its stresses (see sdc8dh Since there are no shear
stresses, we compuatenly the normal one€quations(4-22)-(4-24) suggest themselves for the

computationsince they all applto cutsurfaces of the same orientation.

As in the case of the volume related observables above, a suitable spatial resolution of the stresses
had to be found. Since they relate, however, tesadfaces, we can position them close to each
other to catl also abrupt variations. Such a positioning comes, of course, with more computations
and thus longer simulation rdimes, the larger the spatial resolution is. We tried out different
values ofngandii Uh another series of EMD simulationa/ithout goinginto ther details,n=101
cutsurfaces and a distance ©f€0.1nm turned out appropriate for our purposes. These lengths

werealso used in all subsequent computations of the stresses.

There is no such general homogeneity in the nonequilibrium intdrfagiiems as inthe
equilibrium interfacial and nonequilibrium oidase systems above. Only the normal stresses
perpendicular to the-axis, S, exhibit an approximately homogeneous distributionxiaplanes
(see sectio®.5.2. We bok advantage of it to compute them also in tle@equilibriuminterfacial
systems in the described way. All other normal stresses vary clegrlgmalz-direction. Moreover,
spatially variable shear stresses occur in agreeméntthe flows. Wedeterminedhese variations

by using confined cesurfaces of a certain width. Such a confinement produces, of course, more
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noise in the results. We reducé, however, agairsomewhatby orienting the cusurfaces in
different directionsso as to be able to compute the stresses to their oridefaditions (see
equations(2-5) and (4-21). They are computationally bettbehaved than the previous ones

rewritten with respect to a single orientation (see e.g. equdteid)-(4-24)).

Using the nonequilibrium interfacial systeN-Ar5Ar5-0.6-1.0-3346:35244.74x8.00x9.4a100

140, as an example, we ran several simulations to find out suitable widths and locations for the
confined cutsurfacesThey allow us to determine the local stresses in the interfacial regibiss.
includesin particular the number of equal esirfaces,n=101, in a certain direction and the
distance ofti £0.1nm. For the sake of brevity, wahall presenthereonly the results of the study.
Thus, thecut-surfaces perpendicular to tkexis have a width of In. They are positioned at the
centresbetween integenanometreslong they-axis, e.g.at y=+0.5, £1.5, +2.5,.. nm. The cut
surfaces perpendicular to tlgeaxis are either positioned at theoordinates of the Gibbs dividing
surfaces or right in betwaghem into the phases. We make the phasisutdaces justeswide that

they range from one interfacial region to the other one. Catching the spatial variation of an
interfacial region, howevergquires more difficult measures. We dividets crosssectonal area

into tenths and considmiithe 2, 4, 6, 8, and 1€ntremosbnes of them in the computation of the
stresses. Then, tlmmeson bothn-nearest tenths to a Gibbs dividing surface simplythe forceon

the 2 centremostenths minus the one @he 2n-2 centremostenthsand subsequent division of the
difference by two tenths of the width of the interfacial region. We thuseddedimulate only five
overlapping cusurfacesinstead of temeighbouringones and still obtaithe same resolution.
Asymmetries constitute no problem, since applied the abovementioned procedure only in
homophasicnonequilibrium interfacial systemsFigure 19 highlights selected ctgurfaces to
illustrate again their differefibcations and orientations. Theyereused similarly in other systems

but we studed only selected ones due to thmmputational expense connected with the

determination of the localtresses
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4.3.5 Summarisation of the Local Data

Subsequent to each simudat, we convered the interatomicvolume forces iara andiars, Which
weredefined in sectiort.3.3 into interatomicforces per particleaa and 9, as used in section
4.2.1 by division throughthe applicablgartial densities

o, = in)
M )

o, = Mina)
M o)

In principle we couldhavedetermind these mean forcess wellon-the fly during the simulations.
However, the minority component doed atways populate every subvolume in a phase. Although
we computd the mean forces only subsequent to every simulation, they agree quite well with the
expected ones from the BGY equatias we shall see in sectidnl.1l The standard deviations of

the mean forces per partichere not computed.

After the conversiorof the forces abovewne averagd the local dataof the local observables in
order to easdhe comparisonof the different systemsWhen dealing withan interfacialone
however, we additionally relocatghe local data in two ways prior to tk@mmarigtion. In the
relocation we shifted first of all the distributionsincluding the ones of the normal stressesz-
direction These shifts were conded by integer multiples afhe subvolume dimension inigh
direction. Concurrently, we sticked tché convention that the phase dominated by the particles
mentioned first in the notation of the underlying system is distributed as symmetrically as possible
about thexy-plane. Full symmetry cannot be achievetbwever, because the distributions
themselvesreslightly asymmetricregardless of the nois&his asymmetry results from the coarse
spatial resolution irz-direction together with the different argements of the subvolumes in both
interfacial regions with respect to their spatial variation. In partictiar extrene values of some
observablesan deviate significantlyn the interfacial regionss e.g. in the case of the overall
densities(seeFigure 35). In order to further enhance the comparability of the distributaines
system we refleced all its local data about they-planeif the lower interfacial minimum of the

overall densities iaotlocated ahegativez-coordinates
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Subsequent to the force conversion, and possibly the relocation, above, the distributions of the local
observableswvere averaged. In this waywe reducd, on the one handiedundant dataSuch
redundancies result from the symmetriand homogeneities in our systembBus, the normal
stresses lateral to the cresectional homogeneities aur systems, e.gSy and Sy in our
equilibrium interfacialones, wereaveraged into single values represented by the sy®hg!
Moreover, sptial averaging of the local observabless possible. Weshall explain it in the
subsections below for the various types of the systémater, we also simulate as we call them,
homophasic interfacial systems. Their substances have identical intefri@oneters so that both
phases exhibit the same properties. We then additionally adettagyeelated observables in both
phases. In this averaging, particle specific observables, such as the partial densities for instance,
weregiven a new subscript, depding on whether they relate to the applicable majority or minority
component in a phaset $ometimes nmie sense to average also in systems with higher order
symmetries or homogeneities the local com velocities at conmand absolute/-coordinates

only. Such averaging simplifiesomparisos to the nonequilibriuminterfacial systemApart from

the reductionof the data, the averagingenerallyalso leads to more reliableumericalvalues

Hence, we averadgdhe volume and particle forces, whiale subgct to a particularly strong noise

(see sectiord.2.?), over all y-coordinates in the investigation region$ our nonequilibrium
systems The obtained results, we shall call theraverages, apply approximatedy thecentres
between the thermostated regions.

In order to make clear for every observable if and over what region it has been spatially averaged,
we shall introduce a special notation. It consists of the symbol g followed by the symbol of the
observale, a colon, and the designation of the regmrer which the spatial averagastaken,in
brackets.The average of the comvelocities at common- and absolute-coordinates, would for
instance be denoted af(v,):lyl,Z. Similarly, the spatial awage of the Arl partial density standard
deviations in H subvolumes of a given systemould, for example be denoted as[li(} ar1):9.
Here,the letterS states thathe entire systens considered in the averagirignally, the average

2[0() maj):P] is over the partial densities of the locally applicable majority component in both phases
of a homophasic equilibriunnterfacialsystem Furtherdesignation®f the regions averagedll be
introduced as part of the explanations belMereover, weshallgive details onthe computation of

the additional properties that are derived from thveraged data to help characterishe

distributions of the local observables.
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Equilibrium Interfacial Systems

We stated already in secti@nl.1lthat the equilibrium interfacial systems are homogeneouys in
direction and symmetric with respect to ttyeplane. This symmetry manifests itself, however, only
approximately in the distributions of the local observabtes explainedabove. We therefore
averaged solely the data at commarcoordinatesAdditional averaging is possible away from the
interfaces where the systems tend to become also homogeneadiréstion. We generally
assumd homogeneity beyond a certain, to be defi below, distance away from the interfaces. As
a result, the thus demarcated subvoluowsgdbe lumped together into "phases” (égure20). In
particular, we spatially averagiéhe different local observableathin each phase. Wghalluse the
symbol g introduced aboyéollowed by the observable in consideration and the name of the
majority component of the applicable phase in bracketsdentify such phase or, in brief; P
averages. Thus, the ones of thel particle density in the Ar2 phase would, for instance, carry the
symbol g§(} ar1):Ar2]. In chapter5.3we shall compare heterand homophasic interfacial systems.
This requires also separate averages owerdbal observables in each phase of the homophasic
systems. In order to distinguish these averages, thoseplrase rich in the first componesitall
have its name followed bihe encircled number with a white backgroua () ):Ar ]. Averages

in the otler phase append the name of the second compfaiemted bythe encircled number with

a black background.

Our systemswill turn out to behave mostly according to oexpectationsfrom section4.1.1
Particulaly, the density distributionareclosely approximated by the hyperbolic tangent functions

(see e.qg. sectios.1.]). Theythusprovide measures for the widths amlbcations of the interfaces.

We computedthes propertiesas an additionalpart of the simulation results to ease their
understanding. To benore exact, four different widths and fowrlocations are obtainedVe
distinguishthem bycomplemenhgt hei r symbol s by t,kdependingdns cr i p
whether the related interface is located at positive or negato@rdinates.Moreover we

computel averages of the four interfacial widths,

- WArA— + WArB- + WArA+ + WArB+
)
4

as well as of the twe-locations in each interfacial region,
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- ZArA- +Zz ZArA+ + ZArB+

AB or z, =
2

Z.

These averagewere also used to demarcate the "phases” in our systems as stated alove. W
consideed all subvolumes beyond a distance of two timesawerageinterfacial width from the
averagez-locations of the Gibbs diging surfaces as part of the phasése Hyperbolic tangent
density profiles generally approximattheir nearest limis by more than 99.9% at such a distance. It

is also sufficient for our purposes siraléfour interfacial widths almost agree in eacimsiation,

as do different-locations for each interface (s€ables10and20as well asTablesl1, 21, and30).

In addition to the widths and-locations of the interfaces, their tensiowgre computed by
numerical integrationas a supplement to the simulation resulb the computatignwe average
both normal stresses lateral to the interface by applying equ@tith correspondingly to our
systems Although itsintegral runs between the periodic boundaries only, i.e. Hof to H./2,

we can neglect the thus resulting error becdhsesystems are large enoudbr the phaseso
assume a buikke behaviour (see sectidnl.]). In order to obtain the interfacial tension, ttzue

of the integrahadto be halved due to its inclusion of two interfacial regions. Finally, we compute
the potentials of mean force according to equat{d+& and(4-7).

Nonequilibrium One-Phase §stems

The nonequilibriumonephase systems are fully homogeneouz-direction and symmetrical with
respect to thexy-plane as stated in sectiod.2.2 Hence, we averadethe values of the local
observablesat common absolutg-coordinates. Moreover, we compdtéhe Faverages of the
interatomicy-forces per unit volume or per particle over aitoordinates in the investigation
regions as stated above. Such averaiedl bedesignated by the symbol g folled by the
observable in consideration, the name of the majority component in the phase, and the ybsolute
coordinate, imanometresof the associated subvolumes in brackets. For simplicity's sakealive
also denote the averages at selegtedordinats as H, C-, and Maverages: The "H and "G
averages" are averages over those subvoltima¢seach into either the hot or the cold thermostated
region, whereas the "Mverage" considers the subvolumes wyticoordinates in the middle
between both region3he absolutg-coordinates are alternatively replaced by the letters H, C, M,
or | in the identification of these averagdsus, the Maverage of the Arl particle density in the

Ar2 phase would, for instance, carry the symbotgjaf:):Ar2,ly|=2.0] org[e(} ar1):Ar2,M].
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The distributions of the local observables obtained in the simulations (see &etidpmvill prove

to agree with our expectations from sectoB.2 In order to help grasp the distributions of the local
observableswe derivel additional properties from the averaged data. Thtmradients of the
temperatures and densitiegere computed by linear regression of tla@erageddata. In our
computatims wehad tomind the unphysical system behaviour due to the thermostatingesten
4.3.4). Accordingly, only the data witi+coordinates beyond a distance of 1nm fromdietresof

the thermostated regionsere considered. Finally, we determphealso the Soret coefficients
according to equatiof-8), where the substancerA is chosen to be the first mentioned one in our
denomination of the system considered &ne substanceArB is to be the secondnentioned
substance. Since timole fractions xaa andxas, must always add up to one in a binary system, we
shall give the Soret coefficients only with respect to the first mentioned substangen'ttbe
mentioned agin in the subscripfThe values of thenole fractions xaa 0 andxarso, Were obtained
from the applicable Maverages, i.e. the densities at |y|=2.0msystens with an even number of
y-coordinates, such as-Ar5Ar5-0.6-1.0-13384140964.74x16.0x18.8.110-130 for instance, we
computed the Maverages by averaging the values at the coordinates that lie closesténtties
between the thermostated regiorfSomparisons between corresponding EMD and NEMD

simulations will also use these-&/erages.

Nonequilibrium Interfacial Systems

The symmetry of thenonequilibriuminterfacial systemsvith respect to they-planeappears only
approximately in the distributions of the local observabkes explained for the equilibrium
interfacial system abovéience we generally averagkonly the data at comman and absolutg-
coordinatesHowever, the thermocapillary convectiail turn out weak so that our systems tend to
become homogeneouszrdirection away from the interfaces (see e.g. se@iar. As a result of
this tendency, wecould determine the widths and locations of the interfaces at selgeted
coordinates, as described for the equilibrium interfacial system above. Moreowauylassume
homogeneity beyah a subsequently defined distance from the interfaces andetuthp thus
demarcated subvolumes together into phasesHgeee 21). Each phase could then be considered
as a separate nonequilibrium eplease systa. Thus, we computkits abovementioned spatial
averages anthederivatioral properties defined for it. The name of the phase, that they relate to, is
simply appended to their designatiafter a colon, e.gSr:Arl in an Arl phasen order to further

chaacteri® the interfacial regions, we considdrthe nonequilibrium interfacial system as
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composed of different equilibrium ones. Thus, their abovementioned derivational propertes
computed at every-coordinate, if possible. We append it as well he tlesignations of these
properties in brackets.

Our nonequilibriuminterfacial systems will prove to behave mostly as expected for their weak
thermocapillary convection. Thus, wanfit the hyperbolic tangent profiles surprisingly well on the
density dstributions at anyy-coordinate (see e.g. secti®nl.3. The dividing surfaces in these
profiles hardly shift in z-direction when going from ong coordinateto another one. A somewhat
more distincty-dependeoe exists, however, in the case of the interfacial variation of these profiles.
Its width differs up to 25% from the oreg thecentresbetween the thermostated regions, i.e.
ly|=2.0nm.Neverthelesssuch ay-dependences small enougho safely demarcatéhe "phases” as

in an equilibrium interfacial system from above. Hemeesticked with this demarcation also in the
nonequilibrium interfacial systemBor simplicity's sake, however, the widths ardcations at the
centresbetween thethermostatedregions were also used in the demarcation at any otier
coordinate
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4.4 Preparational and Production Simulations

As mentioned inpart 3, we distinguish preparational and production simulations. In the
preparationa simulations the systems are gradually eased toward a state compatible with the
specified constrainisThis easing starts typicalliyom a nonrepresentative, but therefor easy to
provide, initial phase point of that systerepending on whethethe systm assumesa
thermodynamic quilibriumor a stationary nonequilibrium state we further distinguish the
"preparational simulations” into “"equilibration simulations” or "steadying simulatiohké
production simulations start from seprepared state and ropue, in one or several batches, an
arbitrarily long, he, arbitrarily long representative section of the phase space trajectory. Since the
preparational runs are discarded for the actual analysis of the system behaviour, "anything goes" in
them, as well s1in the generation of their initial phase points, as long as representative phase points
are produced towards the end. To ecoiserthe preparational simulations, however, initial phase

points as close as possible to the wanted final ones should be used.

Our systems (sekigure 22) differ from each other only in individual parameters, such as e.g. the
particle mass or the dimensions. We therefore reused suitable final phase points of earlier
production simulatios - after minor alterations if necessaras starting points for preparational
simulations of similar systemslowever, several initial phase points obtained through different
preparation routes were usedr fthe very firstnonequilibrium interfacial systm an ArlAr2

mixture under the default constraints. In this way we checked whether, and how far, the backstory
of such a system affects its behaviour. Sectidn3explains in detail the preparation of thesiial

phase points together with the subsequent produatios In advance of the firshonequilibrium
interfacial system we simulated its corresponding equilibrium interfacial system and
nonequilibriumonephase systems to check the suitability of siorulation code antb have as a
reference. For clarity's sake, these simulations shall be explained separately here according to the
different types of the systems. In the order of their complewty look at the preparational and
production simulatios of the equilibrium interfacial system first (see sectliahl) and afterwards

at the ones of theorrespondingnonequilibrium onephase systems (see sectid.?. They
reproduce the phases observed in the equilibrium interfacial system separately as subjects to the
default dimensions and target temperatures of ribeequilibrium interfacial system. In the

explanations below, the simulations shall be generally daafier the system. In the case of the
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preparational simulations, the first letters "N" or "E" angtten in lowercase "n" or "e'e.g.n-
ArlAr2-0.6-1.0-334635244.74x8.00x9.4a100-140. Section 4.4.4 addresse the other
preparational and production simulations of the later systems.

All preparational and production simulatiom®nducted in the course of this wotse a time step
of 5fs for the numerical integration of the equations of motion. This stefhag@roven to be a
good compromise between computational expenses and numerical accuracy in previous EMD
simulations of mixtures comparable to ours [buhn2004a], [buhn2004b], [buhn2006] using a similar

integration algorithm, viz. the Verldéteapfrog methodhockney1988].
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4.4.1 First Equilibrium Interfacial System

First of all, we checked the accuracy of our simulation code in comparison to the original
DL _POLY_2 Molecular Simulation Packagsee sectiord.5 by condicting different EMD

productionrunsof thefirst equilibrium interfacial system:

- one under the default constraintsAELAr2-0.6-1.0-3346:35244.74x8.00x9.4AL20-ber, using

our simulation code with a Berendsen thermostaexplained in sectichl,

- one under the same constrajrnEsArlAr2-0.6-1.0-334635244.74x8.00x9.4aL20-nht, using
the original DL_POLY_2 Molecular Simulation Package with a Ndséver thermostat
[nose1984], [hooverl1985] (time constéptl.25ps),

-one under NVE constraints,-Ar1Ar2-0.6-1.0-334635244.74x8.00x9.4a 7.3, using our
simulation code, where the particle numbers and system dimensions have the default values and
the value of the system energy was inherited from the fihake point of thepreceding
equilibration.

All of the simulations above ains( 1 5°%)1o0g, have equivalent constraints, and start from the
same initial phase poisb that deviations in the results can be ascribed to the implementation. We
shall desribe further belowthe preceding equilibration simulations amolw we ensuredh them

that this phase point is representative. The lastpneduction runsan be considered as physically
more sound because they generate states in the canonical or noaioabensembléaVe apply the
following notation for the three simulations above to ease their distinction. ThusVihenes of

them are complementda) the abbreviation "ber" for Berendsen thermostainht" for the Nosé

Hoover thermostatvhere appliable. TheNVEs i mul at i on has the system

the temperature constraint in the notation.

In the comparison, however, no distortions of the system behaviour relevant to our studies could be
found. Rather, the results are very similar all three simulations. Thusboth the global
temperatures and pressures, whiabcording to Gibbs phase rule (see sectigh2.]), specify
unambiguouslyhe thermodynamic state of the underlying equiliborimterfacial system with given
particle numbers, differ less than 4%, Jedle14. It might appear surprising at first sight that the
pressures and temperatures in A& simulation are distinctly smaller than in the other ovge

must however keep in mind that wénheritedan "unfavourable” value for the energy constraint,
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E=i 71.5aJ, from the final phase point of {hrecedingequilibration simulatione-Ar1Ar2-0.6-1.0-
334635244.74x8.00x9.4A120-nht, with an average energyf €(E)=1 71.3aJ. The pressure and
temperature difference could therefore be further reduced by adjusting the energy constraint to this
average value, which approximateligo continued to bebserved in the othg@roduction runsThe

mentionecenergy aveages can be found as wellTables14, 24, and33.

In addition to the global observabledso the distributins of the local observablestrongly
resemble each other the different simulationgseeFigure 23). Thus the densitiesfor instance,
deviateby less than 2%seeFigure23q). Relatively large deviations occur in the interfacial regions
where the spatial resolution is too low to catch the variations entirely. Since these deviations are
approximatelyantisymmetricabout the origin, we ascribedim to adifferent arrangement of the
simulated matter with respect to the subvoluimethe three productioruns. For the same reason,
particularly the minima ibothinterfacial regions slightly diffeevenwithin the same runVe must

bear in mind, howeer, that ahigherspatial resolutions notachievable in the determination of the

local observablesas explained irsection4.3.4 Note also that the distributions obtained from the
production simulation usgthe original DL_POLY_2 Molecular Simulation Package with a Nosé
Hoover thermostat bear relatively strong noise. To make it short we don't give any results here, but
we observed the same phenomenon when comparing NVE simulations using the original code to
ones under the same constraints using our simulation code. Since both codes strongly eesémble
otherotherwise, we ascribe the stronger noise to the application of the-ledptrog integration
algorithm [hockney1988] in theriginal code, whereas & use the numerically more accurate
Velocity-Verlet algorithm [swopel982]. Other than that, there are no resabim systematic

deviations between the simulations

Instead of comparing the results of the different simulations directly, the accuraaysialation

code can also be assessed using the deviations of selected local obsetlablesust be
homogeneously distributed throughout a systéom their systemwide value#n particular the
rescaling of the particle velocities as part of therttustating can generally induce translational or
rotational collective motions of the particles [harvey1998], [leyssale2008] in MD simulations. As
stated in sectiod.1.4 we took great care to avoid such motiom$hen implementing our
thermostating algorithibecause they interfere with the expected thermocapillary convection in our
nonequilibrium interfacial systemsHence, he EMD simulation EArlAr2-0.6-1.0-3346:3524
4.74x8.00x9.40120-ber can count as a pralinary testof our algorithm when used to implement a
Berendsen thermostdh the next sectiarwe shall test the algorithm also in NEMD simulations.
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We reset the system com velocity to zero during the preparational simulations. The local com
velocities (seeFigure 23c) arg s as in the other simulatignsomogeneously distributean this
level with standard deviations @&{v,):§ and g[i(v,):§ of less than 0.18ms/ which suppos the
suitability of our code for our studieslso the local temperaturgseeFigure23b), which serve as

another criteriongleviate by less than 0.5% from their global valueanh simulation.

Since the system behaviour in the three produdtimsis thus essentially equivalent, apart from
some minor deviations, we regard our simulation code as accurate in terms of our EMD
simulations. For convenience, we shall consider Heriteonly the productiorrun that uses a
Berendsen thermostaE-ArlAr2-0.6-1.0-3346:35244.74x8.00x9.461.20-ber, in our studies. This
simulation delivers also the initial phase point for other EMD and NEMD simulatioc@me(see
Figure22).

We obtined the initial phase point used in the productrans above from an equilibration
simulation of 30ns under the default constraieté(1Ar2-0.6-1.0-3346:35244.74x8.00x9.4€1.20-

nhf). It was runby means of the ainal DL_POLY Molecular Simulation Package. The
equilibration itself started from a mixed crystalline arrangement of the Arl and Ar2 particles in
simpleinterpenetrating orthorhombic Arl and Ar2 lattices (Begure 24). The particle velocities

were randomlyassignedaccording to their probability in the Maxwdloltzmann velocity
distribution function at 120KA NoséHoover thermostat with a time constant tgf1.25ps
[nosel1984], [hoover1985] maintained the systainthe intended temperatund/e observed
progress of the equilibration by monitoring the chronological evolution of the instantaneous local
particle densitiesThe system behaviour, shown as snapshots at different simulation tiFigsiia

25, is exactly as expected in sectidri.1 The initially randomlypositionedparticles migrate to

form heterogeneous islands which in due course aggriegatevo phaseswith the two (due to the
system symmetry) smallepbssible interfacegerpendicular to the-axis. Once the plane interfaces

are established, after about 2ns, the system remains stationary for the remainder of the equilibration
simulation. We verified the siahaty stateof the systenby averaging the instantaneolosal
observablesover three 10ns long successive segments of the computed phase space trajectory.
Thus, the densities and temperaturem thesecondsegment persisted also in the third amece

for minor deviationgseeFigure26). We therefore assume the latest phase points of the simulation
to be representative for an equilibrium interfacial system. The final phase point is then used as the
initial phase point for the EMproduction runaboveandthe NEMD steadying simulations of the

first nonequilibriuminterfacial system below sectiord.4.3

4-104



4.4.2 First Nonequilibrium One-Phase Systems

We establishedn the previous section that our thermostating algorithduces noconvection- at

least when used to implement a Berendsen thermostat. However, it still remains to be seen if the
same holds also when the algorithm is used for its original purpose: toisktstatd maintain a
temperature gradient in NEMD simulations. In order to check this, we reproduced the phases
observed in the equilibrium interfacial systeBAr1Ar2-0.6-1.0-3346:35244.74x8.00x9.4a1.20-

ber, separately imonequilibriumonephase system@N-ArlAr2-0.6-1.0-679524-4.74x8.00x9.40
100-140 and NAr1Ar2-0.6-1.0-20-7091-4.74x8.00x9.40L00-140) subject to the same dimensions

and temperature constraints as tlemequilibriuminterfacial system. The particle numbers were
simply obtained by multipipg the density phase averages, givenTable 8, with the system
volume. Figure 34ef shows the comy- and z-velocity distritutions obtained in the NEMD
producti on r ufts byoniean¥ & mw sinulatiod tofle. No convection can be
recognsedin these distributions. Instead they are approximately homogewaocadevel with the
system com velocityit was set to zeroutting the preparational simulatianshey will beexplained

further below. The standard deviations of the com velocity componenigvgfS and alis(v,):S

amount to less than 0.18mé&s in the equilibrium interfacial systems from the previous sedfv@n.

can therefore assume that our thermostating algorithm qualifies also for our NEMD simwaations
that the convection observed in thenequilibriuminterfacial systems Isaa natural causeMore
aspects in the behaviour of thenequilibriumonephase gstemswill be discussed later in section

5.1.2

For the sake of completenesge briefly explain the preparational simulations here that preceded
the production runs. The itlal phase points for these preational simulations were simply
generated by renaming the particles in the final phase poimAsfilAr2-0.6-1.0-33463524
4.74x8.00x9.40120-nht and by introducing the still missing particles at random positions until the
desired particle numbers in thestkems are reachedill particle velocities were randomly
reassigned according to their probability in the Maxs@alltzmann velocity distribution function at
120K. Then, ve conducted NEMD steadying simulations of 3qn$ &s) by means of our
simulation code(n-ArlAr2-0.6-1.0-679524-4.74x8.00x9.4AL00-140 and n-Ar1Ar2-0.6-1.0-20-
7091:4.74x8.00x9.4AL00-140). The strict thermostatprovided by it established the default

temperature differencef 40K. To avoid arithmet overflows we cappedhe particle forcedy
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using the corresponding DLCRY f unct i on dur i n{timesepy. The evalution5 0 p s
of the systems towards a stationargnequilibriumstate was observed by monitoring the local
particle densitiesand temperatures. We determined them over three successive thirds of the
computed phase space trajectorigsear temperature and density distributiomere established
already in the first third between the thermostated regiinse these distributionsersisted, apart

from minor fluctuations, in the successive segments, we assumed that the final phase points of the
steadying simulations are suitable for the production réngure 27 shows exemplarily the
densties and temperatures determineder the different thirdsin n-Arl-0.6-1.0-679524-
4.74x8.00x9.4€1.00-140.
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4.4.3 First Nonequilibrium Interfacial System

As stated in sectioB.2, a necessary condition for the repentativeness of MD simulations is the
independence of the observables from the initial phase point. We checked this condition explicitly
by usingour NEMD simulations of the firstonequilibriuminterfacial system, aArlAr2 mixture

under the default catraints (NArlAr2-0.6-1.0-334635244.74x8.00x9.4€100-140), as an
example. This system was simulated in ttseparateroductionn runs of Bns( 1 5°Airhetsteps.

They all use the sansmulation code with the strict thermostats (see sedtibd). Only the initial

phase points, which were constructed through different routes. Each such route involves
preparational simulation®ither run under different "system constraints" or starting from a
completelydifferent phase point (sdeigure 24). The subsections below describe the three routes.

In order to avoid confusion, teedifferent simulations shall be named after the system followed by
the letter "r" for "route" andits applicable number, e.g. -ArlAr2-0.6-1.0-3346:3524
4.74x800x940-100-140-r1.

Table 14 shows the values of the global observables in all three productitn The values
strongly resemble each othee.iwith difference®f less than @5%, except for the heat fluxes. We

shall see irsection5.2.3that their considerable fluctuations, i.e. with differences up to 15%, result
from the "strictthermostats applied. The distributios of the local observableslso strongly
resemble each other. For the sake of brewity compare only selected distributions as examples
here More detailed discussions will follow later in p&itAs stated akady for the equilibrium
interfacial system in sectioh4.], the deviations contain errors due to the different arrangements of
the simulated matter with respect to thebvolumes in the production runs. Thesers manifest
themselves particularly in symmetries of the deviations about the ,oegjnin the case of the
densities (sed-igure 28a). Nevertheless, theilocal values differ by less than 2#etweenthe
simulations. The temperaturesegFigure 28b) deviate by less than 0.3% and the local velocity
componentsgeeFigure 28c) by |l ess than 0.4m/s for a value
and 1m/s. Based on these resemblances under identical system constraints, weushaltleat the
system behaviour observed in the three production runs is essentially equivalent. For convenience,
we discard two production simulations in the remainder of this work and consider -@xtyAx2-
0.6-1.0-334635244.74x8.00x9.4€100-140r1. Instead, we might as well have chosen the
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simulations of the second or third route. The considered simulation delivers also the initial phase

point for the simulations of the lateonequilibriumsystems (seEigure22).

First Preparation Route

For the first preparation route, we drew upon EMD simulations of equilibrium interfacial systems
by Buhn et al[buhn2004a], [buhn2004bWe borrowed from therthe default values of our system
constraintsin terms of densitygnd thermostated temperatures (see sedtibid, as well as théJ
parameters for the interactions between like Arl and Ar2 particles (see skdtidnSlices with
thedimensionof 4.74nm x 800nm x 947nm andf 4.74nm x 400nm x 447nmwere cutfrom the

final phase points ofthe author'sNPT simulations They are eaclat ambient pressurbut at
different temperatures dfOOK, 108K, 116K, 126K, 132Kor 138K. See below for more details.

We then joined these slices with each othey-direction in increasing order of their temperatures,
as shown irFigure29, and shifted the momentum of every particle by a constantnsctihat the

total momentum of all particles amounts to zéks.a resultwe obtained an initial phase point for
our preparational simulations that accounts already for the expected temperature distribution in our

nonequilibriumsystems even though omlvery crudely.

The dimensions of the slices were chosen as follows. XkBmension equals the median of the
dimensionsLy, in the NPT simulationsby Buhn et al. The errors made by using it rather than the
actual values were small and therefoeglected.The zdimension,L;, on the other handyas
chosen to benly two-thirds of the median one of these simulations, so that both phases have
approximately the same size. Finally, tadimension Ly, was chosen in a way that the resulting
total numker of particles remains managealffégure 29 also indicates the number of particles
contained in each slice, resulting in a total of 3346 Arl and 3524 Ar2 particles. To make sure that
both phases can still develapbulklike behaviouyi.e.despite the shorterdimension, we reduced,
through the LorentBerthelot mixing parametes; the miscibility of both species and thus also the
interfacial width (see sectich1.2. Furthermore, we increased the system pressure by reducing the
z-dimension of the system boundarie4.£89.40nm. These system dimensions and particle numbers
were kept, together with the value of the mixing paramatéc6, for the other two routes and
constitute the default values for all subsequent simulations (see skdti§n
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The seconstructed phase point was used as starting point for a NEMD steadying simulation of 30ns
under the default constrain(s-Arl1Ar2-0.6-1.0-3346352447.4x8.00x94.0-100-140-r1). Particles

lying outside the boundaries at the start of the simulation were automatically reinserted by the
implementation of the periodic boundaries in DL_POLY. To avoid arithmetic overflows, the
interparticle forces were cappéd using theapplicableDL_POLY routine during the first 500fs.
Concurrently,we reset lte parameters of thermostating algorithmk#s0.1 andk;=kp=0 for this

period. As a resulipnly reduced amounts of the kinetic enenggcessary to establish the desired
temperatures in the thermostated regiamsre coupled into or out of them after each integration
step.We thenshiftedall particle momenta by a suitable amount to reset the total system momentum
and applied the strict émnmostats for the remainder of the simulation. The evolution of the system
towards its stationargonequilibriumstate was observed by monitoring the local particle densities
and temperatures. €l were determined over three successive segments of theutmmphase
space trajectory of 10ns each (s$a@gure 30). Already in the first segment approximately linear
density and temperatureprofiles are established between the thermostated regions. Sisee the
distributions also perdisapart from minor fluctuations, in the successive segments, we assumed
that the last phase points of such simulations are suitable starting points for the production runs of

the 'honequilibriuminterfacial system".

Second Preparation Route

We used he initial phase point of the EMD production simulation above also for a NEMD
steadying simulation of 30nst is under the default constrainte-Ar1Ar2-0.6-1.0-3346:3524
4.74x8.00x9.40L00-140r2) with strict thermostats/Ne observedhe removal of the sgem from
equilibrium in the same way as during the steadying simulation of the first preparation route. As
described above, the local temperatures and densitesaged over the first segment of the
computed phase space trajeciaryry linearly betweerthe "thermostated regions” (segure31).

The variation persisted when determined over the second and the third seghertherefore
assumed that the steadying simulation had reached a stationary stateHagathe last phase

point is representative for thadnequilibriuminterfacial system".
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Third Preparation Route

The initial phase point of the equilibratioe-Ar1Ar2-0.6-1.0-334635244.74x8.00x9.4AL20-nht)
discussedbove was also used in the third route foreadying simulation of 30ns under the default
constraints 1f-ArlAr2-0.6-1.0-334635244.74x8.00x9.40100-140r3). To avoid arithmetic
overflows only reduced amounts of the kinetic energy were coupled into or ¢l tfiermostated
regionsduring the firstops similarto the first preparation route abowdter this periodwe applied

the strict thermostats for the remainder of the simulation. As ircdhespondingequilibration
simulation, we monitored the instantaneous local particle densities tov@likerevolution of the
system.Thus, the mixture separates again into an Arl and an Ar2 rich phase with two flat interfaces
perpendicular to the interfac€he plane interfaces are established after about 1n$igee 32).
Additionally, we averaged the instantaneous local temperatures and particle densities over three
successive 10ns long segments of the computed phase space trajectory. Both the temperatures ant
particle densities varlinearly between the themwstated regions already in the first segment (see
Figure33). As in the other preparation routes befave assumed that the steadying simulation had
converged toward a representative stationary state because the distributibeseobbservables

persistedwhen computed over the second and the third segment.

Before we move on to th&urther simulationsin the next section, one remark ¢me system
behaviour in the preparational simulatiaesn order The plane interfacesere established more
quickly during the steadying simulation of the third preparation r@ut@rlAr2-0.6-1.0-3346
35244.74x8.00x9.4A1.00-140r3) than during the equilibration simulatio(e-Ar1Ar2-0.6-1.0-
334635244.74x8.00x9.4aL20-nht). The different speais of separationsuggestthat the phase
separation could be promoted hythermocapillary convection in the steadying simulation. It is,
however, unclear, from the particular cases considered, to what extent the preparational simulations
are representativier therelatednonstationaryonequilibriumsystems. SinceonstationaryNEMD

simulations are still subject cesearch, we do not follow um this hypothesis in our studies.
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4.4.4 Later Systems

A multitude of systems is simulated in the course of thiskw®ables5, 15, and 25 give an
overview of the detailsAdditional onesare providedinsofar as they becomeleeant, wherwe

discuss thendividual systems. As describe above, the preparatismalilation ahead of each
productionrun starts from the final phase point of an eantign with similar parameterszigure22
visualiss which parameters are altered and howrtiresfollow each other. Alterationshat do not

involve the total particle numbewere simply made by changing the input parameters, e.g. the LJ
parameters, the masses, the-afitradiusr., or the system dimensions. We stated already in the
previous section that DL_POLY automatically reinserts the partithes resideoutside of the so

defined boxbackinto the system. For alterations involving the total particle nunsleseral copies

of the final plase point are joined to form a new starting point, e.g.-iir®Ar5-0.6-1.0-3346
35244.74x8.00x18.8-100-140. To avoid arithmetic overflows following such expansjotie
maximum interparticle forces and the amounts of kinetic energy to add to or witfrdrawthe
thermostated regions must be reduced during the first time steps of the preparational simulation. If
necessary, we additionally reset the system momentum to zero by shifting all particle momenta by a

suitable amount.

Due to the similarity of thesuccessive production simulations, their intermediate preparational
simulations can be shorter than described above. Depending on the "severity" of the alterations we
chose lengths ranging from 5ns to 20ns, as showgure 22. The progress of the preparational
simulations was monitoreds described previously; for the sake of brevity, we omit the details

here.
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45 Simulation Code and Hardware

There was no readyade simulation software available for our neddsnce we upgraded an
existing code according to our needfie DL_POLY_2 Molecular Simulation Package Version
2.13, developed at Daresbury Laboratory by W. Smith, T.R. Forester and |.T. Todorov
[smith2007b]served as dasis This package provides many thie necessary features such as the

data inr/output or the calculation of the particle interactions also known as the “force field".

We implemented the thermostats necessary to deflect and maintain the simulation system out of
equilibrium. Section4.1.4 describes their algorithms in more detail. Theyk best if the particle
positions and momenta are known simultaneously at every time Btep.VerletLeapfrog
integration algorithm [hockney1988] used in thegoval DL_POLY Simulation Package computes

the particle momenta and positipf®wever,at different times Hence, wamplemented theso-

called VeloctiyVerlet algorithm [swopel982]. Both algorithms a@mparede.g.in [allen2003].

Finally, we implementedill analyses of the computed phase space trajectory, as described in
section4.1.4 Altogether,our alterationsnvolved writingmore than a thousarities of new code in
FORTRAN9O0.

Linux boxes either with two DualCore Intel Xeon® 5130 Processors and 2GB RAM on Intel®
Dual Socket Server Boards SE7520JR2, or with two €l@m@ Intel Xeon® 5355 Processors and
2GB RAM on Intel® Dual Socket Server Boards S5000P#ere used to run the codgince the
runtime ofthe DL_POLY Package scales only moderately with the number of cores on which the
computations are spread, we conducted most of our simulaemison a single coreThen, a
typical production run of’5ns took aboutl50 to 300 CPU hours depending on whiclbox was
used. They apply for the default systems with 6780 partidlesvaited up to more than a thousand
CPU hours forcomparableproduction runs of the largesystemswith about 55000 particles. The
many analyses of the computed trajectodesnandedan additional 10 to 50 per cent of the

simulation runtime.
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5 Results

Various simulations, see Figur@2 and 24, have been conducted in the course of thoskwAll
information on the setup, the preparation, the simulatiemanalysigind the expected behaviour of
these systems can be looked upant4. Here we shallreport our resultsstructured infive main
sections.Note that weshall also give in additionto the observables themselvéiseir standard
deviationsas a crude measure for the noise in the désvarious causes were distinguished

previously inpart3.

Section5.1 will discuss the values of the global observables and the distributions of the local
observables in our firggimulations Above all, we shall demonstrate that the prerequisite for our
studies,namely the approximation of reality by our systems, is fulfilled to a large eXtetite
nonequilibriumsystems minor anomalies occur due to the thermostating. They fade, however,
quickly near the thermostated regipazcept for the-dependence of ehtemperaturg-gradient in

the nonequilibriuminterfacial systemWe shall find his z-dependenc#o result from a malfunction

of our thermostating algorithm. It neglects the spatially varidi#emalconductivityperpendicular

to the interfaces. Nevemrless, such systems qualify for semiquantitative stuwdiesethe erroris
unimportant or itself subject to research. Thussialdiscussn chapters.2 mainly the influences

of various technical simplificains on the system behaviour. In particular the differences in the
distributions of the local observables often prove to be quite subtle. In order to ease the
understanding of these differences, widl preferably compare corresponding equilibrium and
nongyuilibrium systems together according to a tpart scheme: The equilibrium systems are
compared at first. Afterwards, we contrast the deviations ofdinequilibriumsystems from their
corresponding equilibrium systems. Sder example section 5.2.1, where several interfacial
systems with different cedff radii arecompared in this way.

More advanced quantitative studiegould, however,be biased by the malfunction of our

thermostating algorithmHence, wesimulatel in the later systems only mixtures with identical

particle masses analith identicalLJ parameters for the interactions of like partiqlese chapter

5.3). We shall call such interfacial systems signphomophasic” to distinguish them from the

"heterophasic" ones studied before. In most simulations, the particle parawertershosen to be

the ones frequently used for Ar in the literature, e.g.[rmchels1949], [hansen1969], or
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[kofke1993] We thusensure also better comparability of our results against third party data. In
additional simulationswe explorel different influences on the system behaviour by systematic
variation ofthe system parametefsee chaptées.4). Some of thencould be considered as physical

i.e. treyrelate directly to the system sefgpich as the external constraints for instance

Chapter5.5 will then discuss selected aspects in theaveour of the homophasimonequilibrium
interfacial systems once again in more detail. Thusskadl compare their density distributions
with onesconstructedirom several related equilibrium interfacial andnequilibriumonephase
systems As a resultwe can confirmagain the validity of our thought experiment from section
4.2.3 The differences correlate with the particle specific streaming velociti@siam-equilibrium
interfacial system.Afterwards, we shall examine the local stresses in Their different
contributions to the local forces add to zero, as required by the Nétaikes equation for the small

Reynolds numbers in the system.

Finally, we shallconsiderflows at other types of interfac#isatare subject to a lateral temperature
gradient (see chaptér6). They have many local properties in common if dense fluids are involved.
In particular, the flowdrom hot to coldalways seem to occur close where also thdighest

densityy-gradients exist.
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5.1 Approximation of Reality by our First Systems
(first heterophasic nonequilibrium interfacial and its corresponding systems)

Here, we shall demonstrate exemplarily the approximation of reality by omnuktionsby using

the results of the first system§he demonstration proceeds in parallel with chagt@rwhich
described the general behaviour to expect in each type of syEtatrs, before we can comette
nonequilibriuminterfacial system, twich is at the focal point of our studies, the corresponding
equilibrium interfacial (see sectidnl.l) andnonequilibriumonephase systems (see sectioh.?)

are addressed first. Remember from sectdof.2 that the latter reproduce the phases of the
equilibrium interfacial system separately and apply to them the same thernaostatsnperature
constraints as in theonequilibriuminterfacial system. Based on the existing experience with the
general behaviour of the equilibrium interfacial amshequilibriumonephasesystems, weshall
establish the approximation of reality by ittr@mulations.Concurrently, the quantitative simulation
results complement the outcome of our thought experiment on the expected behaviour of the
nonequilibriuminterfacial systen{seesection4.2.3, e.g. asto what concerns the peculiarities of
the Soret effect in the phases or the magnitude of the variations in the interfacial remialhg.

we will establish the approximation of reality by this systeroomparing its expected behaviour to

the observedre (seesection5.1.3.

Note that wewill first give the distributions of the local observahles an exceptigrwithout
averagingi.e. as three dimensional plots oyeandz, so that the reader may assumadelf of the

quality of the data. Some features in the distributions are, however, too intricate to be easily
recognsed from the threedimensional plots. We therefore additionallyeragd the local data
according to our scheme from sect.5 so ago represent important spatial variatianeasy to
readtwo-dimensional plots ovethey or z In particular the distributions of the observables that
relate to the locally applicable minority componeiilt turn out to besubject toa relatively strong

noise. If these distributions allow gqualitatively, we shall therefore assume supplementarily that
they have the same features as the corresponding distributions of the majority componente Thus
shall assune, for instanceif the variation of the minority component densities is linear, that the
same holds also for the minority component densities, although the relative magnitude of the
fluctuations in them may be much largApart from the local observablesso the global onesill

bereportedfor the sake of completenessd the standard deviations of all data.

5-115



5.1.1 Equilibrium Interfacial System

We shall assess here primarily the approximation of reality by the first interfacial system, E
ArlAr2-0.6-1.0-3346-35244.74x8.00x9.4a1.20-ber. Moreover, it will be exemplified how the
simulationresultswere compiled as a basis for comparistanthe correspondingionequilibrium
onephase andhonequilibriuminterfacial systersin the next sections. In the assessimee use

two criteria, which determine also the structure of this section. At fwstshall look at the
gualitative distributions of the local observables and their standard deviations to see if they accord
to our expectationfom section4.2.1 In addition we will check the quantitative consistency of
some resultdy usingdifferent established relations between individual local observablesh as

the BGY equatiorn(4-4) or by comparing their spatial averages to the related global observables.
This requires, however, reliable data with little noise so thaaweeage andedisplay then before
thecheck Since both criteria wilprove © be fulfilled to a large extdénn the subsections below, we
shall assume that the equilibrium interfacial system behaves sufficiently realistic for our studies.

Finally, the global observables themselwal be reported for the sake of completeness.

Local Observables

Figure34 shows the distributions of the local observables withautragingAs established already

in section4.4.], our thermostating algorithntself induces no convection. Insteadhe local com
velocity components (sdegure 34ef) are homogeneously distributed on a level with the ones of
the system which weraitially set to zero. Moreovewe stated already in sectigh3.4 when we

used slabs to determine the temperature and density distributions, that they accord to our
expectations from sectioh2.1 In the figures above these observables show in principle the same
behaviour, no matter that they were obtained for cuboid subvolumes nowifépartial densities
(seeFigure 34b,c) vary sigmoidally in going from one phase to the other, while their sums, i.e. the
overall densities, have a vacuous gap (Segere 34a) and the temperatures remain constant (see
Figure 34d). However, one canow see, in addition to thedependencethe homogeneity iry-
direction This is, of courseat theprice of a lowerzresolution It manifests itself clearlyn the
different shapes of both vacuous gaps. Nevertheless, the cuboid dimensions are still small enough to
catch the characteristizvariation of the systemeven in the strongly heterogeneouserfacial

regions. One can tell this, for instance, fréigure 17b where only the density minimum in the
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vacuous gap deviates significantly from the same minimum obtained for a kigksolution.
Hence,we shall simply continue assessing the approximation of reality based on the ewetield
data Theyalso serve as a reference for the other simulations to come.

Thedistributions of the other observables accasdwvellto our expections. Thus the interatomic
y-forces,g a1 andg a2, are approximately zero throughout the entire systemHigeee34i,j). The

same holds for the-forces,g a1 and 9 a2, €xcept in the interfacial regions (sEgure 34k,l).
There,z-forces of up to approximately 12pN apply whiobnverge strictlynonotonouslyto zero

away from the interfaces and which are always directed into the nearest phase where the particle in
consideration constitutes the majority component. The interatomic volume, fiorneay according

to their relationwith the partial densities and the particle forces,

= fArlsArl + rAr29Ar2’

throughout the entire system (d&gure 34g,h). Finally, the normal stressdie on the order of the
negative system pressuréhe onesperpendicular to the interface§, are homogeneously
distributed(seeTable 6) throughout the entire system, while the lateral normal streSses)dS,,
go through a maximum in each interfacial region (sekigure 34m). The fact that all the
distributions above accord to our expectatjiswpports the assumih that the behaviour of the
equilibrium interfacial system approximates reality.

Before we continue with the standard deviations in the next subsection, we first report here
explicitly the variations of the different contributions to the normal stsessk shall take these
variations into consideration when checking the consistency of our simulation results further below.
The interatomic normal stresses perpendicular to the interfacehave a rmimum in each
interfacial region, while the lateral es, Iy andlyy, have a raximum (see alsdrigure 34m). They

all converge against a phadependent common limiting value away from the interfaces. The
distributions of lhe kinetic contributions,y, Kyy, andKz, lie on top of each other and add at any
location with the interatomic normal stresseghe same directioto the normal stresseS., Sy,

Sz Only the ones lateral to the interfaa@ehibit maximathere,while the ones perpendicular to the
interfaces remain constant. Hence, they feature only reduced local pressureswihaise
clearly when we compaiia section5.1.2the global pressures of the presentildaiium interfacial

system and its correspondingnequilibriumone phase systems.

5-117



Standard Deviations of the Local Observables

Table 6 contains as a referengealso the systemaveragedstandard deviations of all the local
observables aboveln addition Figure 34a-h shows the spatial distributions of thes¢asdard
deviations.In the interfacial regions, alhése standard deviations vary in the shape of a "dike"
Moreover, theyconverge against different limiting values away from the interfagemalogy with

the local observables themselve®art 8 will address several formulas used éstimae in
equilibrium systemsthe natural fluctuationsn the overall densities, temperatures, and com
velocities.The standard deviations these observables vaity our simulatiomat leastgualitatively

in keeping with their influence on the estimatsspite the additional noise inherent to the method.
Thus the standard deviations in the Arl rich phase slightly exceed those in thecArghase

where the density is largeklso, thedikesin the interfacial regions correlate with the vacuous gaps.

In the case of the local covelocities we can even check the quantitative validity of the estimation
formula (8-4). It involves only observables that we determined tive simulation. Let us, for

instance, compute the standdeliations in the phases:

1.38Q0 ZSiOZOZK

m

D Arl= DArl) = . r . r r =36.3—

0[5 (Vy) ' ] ﬂ[s (VZ) ' ] 4.74nm®.80nm®.26nmA9.13nm *> 3.634Q0 *°kg S
1.38Q0 ZBACQZO.OK m
ds(v,): Ar2)=ds(v,): Ar2]= . . K - =356—
4.74nm@.80nm®@.26nmQA9.95nm * B.634Q0 “°kg S

We uséel the temperatures amtnsitesfrom Table8 in the computationsThey produce valuehat
approximate the standard deviations obtained in the simulation, also given in the table, quite well,
i.e. by less than 1%\ ote, while the estimates are slightly too small in the et phase, they are
slightly too large in the Ar2 rich phase. This might result from long ranged correlations of the com

velocity fluctuations in both phases.

The abovementioned qualitative and, in the case of the com velocities approximately also
guanttative, validity of the estimation formulafrom part8 supports as well thapproximation of

reality byour equilibrium interfacial systesn
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Averaging and Further Discussionof the Local Data

As describedn sectiord.3.5 we averaged the simulation results to obtain more reliable data. They
serve as a reference for comparison to other simulations. Let us have another look at these data
before we check theiguanttative consistency belowDue to the system's homogeneity yn
direction, we can average thecal observables at commancoordinatesand, in addition, the
normal stresses lateral to the interfa&sandS,y. Figure35 showstheresultingdata as function of

z Thepartial densi z-profilescan beclosely approximated by the hyperbolic tangent functiass

we expectedn sectiord.2.1 We show both the fittedensityz-profiles aml their underlying data in
Figure35ain order to demonstrate the high degree of approximatiable 10 lists theparameters

of these profiles, namgtheinterfacial width and the-locations of the Gibbs dividing surfacé$o
significant variation in the partial densigyprofiles can be recogged beyond a distance of two
times the interfacial widthy=0.57nm, from thez-locations of theGibbs dividng surfaces

3 =-2.3nm and.=2.4nm.This distancehus renders suitabte demarcate the "phases$ defined

in section4.3.5 Accordingly, we shall consider the 160 central subvolumes between the interfaces
as phases. Selected local observables are additionally averaged i abém8 lists thevalues of
thethus obtained phase, or in brief Bverages. They show, as it was found in the work of Bahn

al. [ouhn2004a], [buhn2004pihat the strongy interacting Ar2particles form a phase withhigher
overall and majority component densiand a lower minority component densitfhe local
standard deviations were averaged in the same way as their related observables and ase given a
well in the tables abové&igure35f shows thez-dependence of theormal stresses perpendicular to

the interface S, and of averaged onekateral to the interfacceSyyy In the asesthe lateral
normal stressefall approximately 2.4MPa below the negatilebal system pressuead exceed it

by more than 17MPa in the interfacial regioheperpendiculanormal stresses lie throughout the
entire system on the order of thegaibe global system pressur€able 10 lists the interfacial
tension. InFigure35c, we show additionally vector plot of the local conelocities as obtained by
spatally averaging the data at commgnand absolutg-coordinates only (see sectidi8.5. The

interfacial tension and the vector plot are for comparison to subsequent simulations.
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Consistency of the SimulatiorResults

The validity of the physical relations between the observables of a simulation hint at a good
approximation of realitySeveral relations suggest themselves for such consistency checks in our
case.Thus, Figure 35d compares the interatomic volunzdorces i, determined directly in the
simulation to thekinetic ones k,, computed from the densitiesdthe temperaturesccording to
equation(4-3). Moreover, Figure35d also shows the same forces as obtained frore-gnadient of

the interatomic normal stress&s}/O zor the negative-gradient of the kinetic normal stresses

T OHO zSimilarly, Figure 35e compares the interatompiarticle z-forces,s a1 andg ar, obtained

from the force conversion subsequent to the simulation (see sé@idnto the oneskgT B A1/O z
andksT @y Ao/O zcomputed from the partial density profiles according to the BGY equ@tidh

from section4.2.1 In eachof the abovementionedfigures, the different results agree quite well.
Significant deviations occur onbt thecentresof theinterfacial regions where the spatial resolution

of the observables is too low to catch the variation ofsystem entirely. For the sake of brevity,

we do not give any further results here, but these deviations decrease if the observables are
determined at an even higher spatiaésolution, e.g. by using slabs as explained in sedtidd

We shall thus generally assum@nsistehresultsin the equilibrium interfacial system

The consistency of our simulation results can also be checked by comparing the spatial averages of
the local observables (s@able6) to their global valueg¢seeTable 14). Thus we stated already in
section4.4.1that the local com velocities or temperatures are homogeneously distributedveh a le
with the ones of the entire systelmtegraion of thelocal pressuredd, across the entire system and

averaging the resulting integrals according to the relation

0.5L 05L, o ~
z 23S _+S,. +S_§
Y )dz Aaex Y Mz
. -o.IjLZ ) -O.DLZ§ 3 gj
g[d: 9] = = C : (5-1)

produesthe global system pressure. It must formally equal the Bheomputed via the virial
route (see sectioh.3.1). All the global observables above deviate from their related spatial system
averages by lessah0.2% or 0.002m/s in the case of the com velocitesgh deviations lie within
the uncertainty due to rousaff errors in the computation of the valuds.addition more phase

points, i.e. every hundredth, are considered in the computation of thedogadratures or normal
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stressesWe shallthereforeassume that the value$ the local andof the global observableare

consistent.

Let us mention, for the sake of completeness, two nummeclusionsfrom the established
consistencyThe one between ¢hdifferent local observables demonstrates the validity of our way
to compute the interatomic forces per particle. Remember from set8dhhow we determine
them only after a simulation by dividing the meamce on all particles of a certain substance
throughthdr quantityin a subvolumeWe must however keep in mind the relatively strong noise in
the forces per particle of the minority component. Thus, their standard desjiaftuioy):Ar2]

and afis(a2):Arl], exceed, for instance in the phases, more thatirtees the one of the forces per
majority particle, alis(ar1):Arl] and afis(r2):Ar2] (seeTable8). The second conclusiarlatesto

the interfacial density profilesdrigure 35e showsadditionallythe mearmparticleforces obtained by
plugging the fitted hyperbolic tangent partial density profiles into the BGY equation,snand

9 , a2 These ariations have about 25% smaller absolute extreme values in the interfacial regions,

which suggests that the fitted hyperbolic tangent density profiles are somewhat too flat.

Global Observables and their Standard Deviations

Let us take for the sake oftompletenessa brief look at the values of the global observables
themselves and their standard deviati(seeTable 14). The pressure has, relatively speaking, the
strongest fluctuations in comparison to the system energynmetature, which is typical fadVE

or NVT simulations of liquids. The heat flux into or out of the cold thermostated region
approximates the expectation value, zero, by less than one standard deviation. Note that the
temperature of the region, which conggs the entire system in tiNVT simulation as stated in
sectiond.], is slightly lower than the system temperature due to the different number of degrees of
freedom considered (compare secti@gh8.1 and 4.1.4. Apart from this difference the system
temperate constraint is closely met with a standard deviatiofTp6.003K.
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5.1.2 Nonequilibrium One-Phase Systems

We shall asses$iereto what extenthe simulations othe first nonequilibriumonephase system
N-Ar1Ar2-0.6-1.0-679524-4.74x8.00x9.40.00-140
and NAr1Ar2-0.6-1.0-20-7091-4.74x8.00x9.46.00- 140,

approximate realityThis approximation camjue to the unphysat nature of our thermostats, apply
only remote from them in the actual investigation regid¥e.will use in he assessment the same
two criteria as in the equilibrium interfacial system from the previous sedliorthe systems
behave as coulde expecte from previous studies (see sectb.2 and are the local simulation
results consistentRirst, we shalcompare thexpected behaviour with thistributions of the local
observablesAfterwards, we shallteck their consistendyy using the averaged data. Both criteria
will turn out to be sufficiently fulfilled forour further studiesFinally, we will report the global
observables for the sake of completeness.

Local Observables

Figure 34 shows the distributions of the local observablgghout averagingn threedimensional
plots. We established already in sectidt.2 that our thermostating algorithitself induces no
convection The local com velocity componeniseeFigure34ef) are, as expected, homogeneously
distributed on a level with the oneset to zeroof the entiresysenms. Moreover, ve stated already
in section4.3.4 when we used slabs to determine the temperature and density distributions, that
they agreein the investigation regions witbur expectations from sectich2.2 In the figures
mentionedabove these observables show the same behaviour, excepetegadditionally their
homogeneity ine-direction now. Thus, the densities and temperatures are constadirection
and vary linearly iry-direction between the thermostated regi(seeFigure34a,b,c,d): The overall
and majority component densities decreasgoing from the cold to the hot region, while the
minority component densities and the temperatures increase. Singgahations are linear, they
are expressedas well, i.e.without loss ofdetail, for the cuboid subvolumes despiige lower
resolution Hence,we shall simply continue the analysisbased on the cuboid datas in the
equilibrium interfacial system from the previous sectibhe cuboid data also have the adaiib
advantage that the unphysical behaviour near and inside the thermostatediseggiteeed outo

some extentasit will be discussed further below.
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Also the distributions of the other observaldgsee withour expectationfrom sectiord.2.2 Thus,
when disregarding the relatively strong noise in the interatomic volume forcesz-tloenponents
are approximately zero throughaachsystem while thg-components always point to the nearest
hot thermosited region(seeFigure 34g,h). The same holds for the interatonmarticleforces (see
Figure 34i-l), they-forces per minority particle clearly exceeding the oneswgority particle as
expectedFigure35e and Table 8 will show this below more clearly for the averaged d&taally,

the different normal stressés the invespation regions of each system (SEgure 34m) are
homogeneously distributed on the order of tlegativeglobal pressure (sekable 14), as we shall
see belw. Both the interatomic and kineticontributions to the normal stresses vary linearly with
identical absolute slopes between the thermostated regions, the kinetic contueatieasingn
going from the cold to the hot thermostated region. The fhet all distributions abovegree
gualitatively and as to the orders of magnitualeo quantitativelywith our expectationssupports
the assumption that theualitative behaviour of theactual investigation regions in the

nonequilibriumonephae systemspproximates reality.

Before we move on to the standard deviations, we would like to merfborthe sake of
completenessthat there are minor fluctuations in the normal stresses, particutatlye ones
perpendicular to the temperature gradi€ht,and S, near the thermostated regiofsee Figure

34m). These fluctuations correlate with the particle layeairgady describefsee sectiord.3.4).

They are, however, small inside the investigation region and can therefore be neglected in our

further considerations.

Standard Deviations of the Local Observables

Tables6-13 list alsothe standard deviations of thacal observable abovefor further reference.
The values resembleemarkablythose in the equilibrium interfacial system from the presiou
section which suggests that the additional numerical and simulation emorthe NEMD

simulationshave only little impact on the reliability of the local data.

In addition Figure 34a-h shows the standard deviations of the instantaneous function vatuais

underle the local observabless funtion of y and z. All these distributions increase within
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approaching the hot region. The standard deviations of the overall densities, temperatures, and com
velocities varyat leasiqualitativelyin keeping with theestimation formulas for equilibriunmystems

(see part8). Thus the relative increase of the density standard deviationgdinection, for
instance, is only marginaThis isin keeping with the contrary influences of the temperature and
densityvariation in the estimation formul@-3). On the other hand, both variations act strongly
promotive in the estimation formula of the temperature standard deviase@sguation(8-1),

which showaccordinglythe strongest relative increase.

Equation(8-4) allows usto estimate theom velociy standard deviations af the corresponding
equilibrium interfacial systemThey mustbe less than 1%basedits the local temperatures and
densities. Weshall use here the samexpression to estimathe extreme values of the standard

deviations in th@onequilibriumonephasesystens.

N-Ar1Ar2-0.6-1.0-679524-4.74x8.00x9.4dL00-140
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Since the differencesebwveen the resulting estimates, which are based on-taedCHaverages of
the temperatures and densitiesTable 9, and the standard deviations obtained in the simulation,
also given in the table, amount to less than 1%, wenasghat the estimation formslare valid.
This makestogether with th@bovementionedqualitative validity of the other estimation formulas
the distributiols of the com velocity standard deviations and thus the behawfoboth systems

appear plausie from a physial point of view.

Averaging and Further Discussion of the Local Observables

As explained in sectiod.3.5 the nonequilibriumonephase systems exhibit a homogendity-
directionand a symmey with respect to thezplane We tookadvantage of both bgveraging the
local observables at common absoluteoordinates and, in additiorthe normal stresses
perpendicular to the temperature gradie®y, and S, Moreover, {faverages of the intehic
volume and particle forcegerecomputed to obtain more reliable values/gt4.0nm (sedable?).
We shall checkurther belowthe consistency of our simulation resudisusing these averaged data
Figure 35 displays them as function ofy. We also computedhe y-gradients of selected observables
(seeTables12-13). In addition Table 9 lists the explicit C-, M-, and Haveragesat certainy-
coordinatesWe can tell from theaveraged density-profiles (sedrigure35a) more clearly howtte
thermal diffusion works contrariwise in both systems. Plaeticles of the majority component
always concentrate at the cold thermostated region while the ones of the minority component
concentrate at the hot thermostated regesseTable 11 for the related Soret coefficient$his
separation correlates with the proportions of the interatomic paytidkees, the ones per minority
particle clearly exceexdg the ones per majority particle.

The unphysical system behaviour nélae thermostated regions disappgear some extent in the
distributions of the local observabjessobtained for the cuboid subvolume&/e can tell so by
comparing thsee distributions to the ones obtained in sect#®B.4 where slabs were used. For
instance the strong temperature variatioasdthe layering of the particles near the thermostated
regions cannot be recagad anymore. Instegdhe temperatures and densities determined for the
cuboids that contain parts of the thermostated regionsw strongly resemble the datdat is
obtained by extrapolating the density and temperatpmfiles from the investigation regions (see
Figure35a,b). In our subsequent studies we shall therefore consider, additionally, the temperatures

and densities for the cuboids outside the investigation regionecessary to make a point. The
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local volumeor particley-forces there, on the other hand, continue to be too strongly biased to be
taken as well into consideration. Their values incorporate the high unphysical force peaks seen near
the thermostated regionsee section 4.3.49 and hence are clearly larger than in the actual
investigation region (seleigure 35d,e). Inside the systemsowever, the different spatial resolution

hardly manifests itself in any of the local observables. Thus, the slopes of the temperature and of the
overall and majority component densyiprofiles differ by less than 1% from the slopes computed
from the slabrelated dataConcurrentlythe values of these profiles gH2.0nm are even closer to

each otherFigure 35f shows the normal stresses lateral to the temperature mfrelie together

with the averaged perpendicular on8g;. In Figure35c, we show additionally a vector plot of the

local com velocitiesas obtained by spatially averagitige data at commor and absolutey-
coordinates only (see sectigh3.5. This vector plot is for comparisowith the subsequent

simulations.

Consistency of the Simulation Results

We shall first check the omsistency of the simulation results kbpmparing the kinetic and
interatomicy-forces in the system. Both mumstid to zeraeverywhergsee chapte?.2 and section
4.2.2. Since the differeny-forces are subject to a relatively strong noise, we shall compare only
their l-averagesTable7 lists them for the interatomic volunyeforces, iy, determined directly from

the simulation, and the kitie ones, k/(,T), computed from the density and tesngture
distributions (equatior(4-14)). In addition, the same forces are given as obtained by spatially
averaging the/-gradients of the interatomic normal stre elg/, ) othe negativg-gradients of
the kinetic nKytyhaver the inviestigatioe eegionst (€uati(2)). We shall
assume, based on the igujjood agreement of the different resultst tha local data are consistent.

It exists similarly also in the case of the particle forces, i.e. the interatomic pgtiniees, g a1

andg arp, determined from the simulation to the ones obtained from equtat®, 5 A1(} a1, T),
and(4-17), g,ar2} ar2, T).

We canadditionally check the consistency of our simulation results by compahegystem
averages oselectedocal observables (s€kable 6) to their global values iTable 14. As stated
previouslyin section4.4.2 the local com velocities, for instance, are homogeneously distributed on
a level with the ones acdn entire ystem. Moreover, the global system pressucegained by

averaging thawegativelocal normal stresses according to equafm®), deviate by less thad.5%
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from the ones determined directly in the simulatiohgparently the smtial fluctuations in the

normal stresses near both thermostated regions cancel each other to a large extent.

Global Observables and their Standard Deviations

Different from the previous section, where only one of the thermostats (the cold one) piowvided
our algorithm was concerned widimentire system, now both thermostats maintain small regions of
asystem at different temperatures. Accordingly, there should be a macroscopically constant flux of
heat between both thermostated regions. It is contsiy@dded in the form of kinetic energy to

the hot region and removed at the same rate from the cold oneno@equilibriumonephase
systems show exactly this behavigexcept that the absolute values of the two fluxes determined in
the same simulationliffer somewhat (sedable 14). When extrapolated to the length of the
simulatiors L=75ns, this difference corresponds to a huge amount of ercengypared to the one

of the entire system, for instance
(7Q. ) - |MQe )L, = (1083nW - 101.2nW)TBns = - 5325a]

conpared to g(E)=-64.69aJ in N-ArlAr2-0.6-1.0-679524-4.74x8.00x9.46100-140. Such an
extrapolation has, however, little significance since the heat fluxes exhibit also relatively strong
fluctuations in the table. Their magnitudes imply that the thermosteisnodulatein that the
amountsby which the kinetic energs of the concerned therostated regions are altered each time
step to maintain the intended temperatatearly exceed the actual heat flux through the system
Thus we show exemplarily ifFigure 36 an excerpt of the instantaneous heat fluxes of the cold
thermostated region in-Mrl1Ar2-0.6-1.0-679524-4.74x8.00x9.40L00-140. Theyfrequently even
become positive The fluctuations are even larger at thet hbermostated region. This
ovemodulation biases theother system behaviour, however, only little so that it can establish
realistically in the intermediate regions as shown above. Moreover, we demonstrated already in
section4.4.2 that the behaviour is also stationary with respect to the global observables and the
distributions of the local observables. Nevertheless, the values of the transport rates must be
regarded with suspicion due to their large fluctustioNotethat they are much smallan the
equilibrium interfacial system from the previous sectishere our thermostatsvere applied to
implement a Berendsen thermostat. Likewise, we shall obtain more reliable results for the heat

fluxes in NEMDsimulatonsby using the loose version of our thermos(aeesection5.2.3.
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The additional numerical dnsimulation errorsthat accompanyn NEMD simulation manifest
themselvesalso in the standard deviations the other global observables (sEable 14). Their
magnitudes exceedh the case of the global temperatyré® ones in the equilibrium interfacial
systemfrom the previous section byiore than 6%. However, these errors compatesthemselves

to a large extent for the systeias a wholeso that the global pressures and temperatures resemble
those in the corresponding equilibrium interfacial system. A slight drop can be noticed in the global
temperatures. Such drops result frohe tpreviously described (see sectidiB.4) different
magnitudes and extensions of teeperaturgumps at the thermostated regio@ the other hand,

the global pressures of thenequilibriumonephase systas slightly exceed the one of their
corresponding equilibrium interfacial system due to its reductsifacial pressures (see section
5.1.7). If they are disregarded by spatially averaging the local pressittes @ach phase only, we
obtain averagew[d:Arl] and gPd:Ar2], that approximate the global pressures in the corresponding
values nonequilibrium onephase systems even better. The global energies ahalhbove
mentionedsystems vary clearlyith ther number of Ar2 particlesTheir interactions with each
other and with other particles feature largdrparametes, Ch1-a2 and 242, andthus entail on

balancesmaller system energies the more Ar2 particle are abundant.
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5.1.3 Nonequilibrium Interfacial System

We shall assess heray analogy with the equilibrium interfacial ambnequilibriumonephase
systems from the previous two sections, the approximation of reality by oundmsguilibrium
interfacial system, MrlAr2-0.6-1.0-3346:35244.74x800x9.40100-140r1. Thus, we shall first
check thequalitative system behavio@gainst the expecteshe from our thought experiment in
section4.2.3 Both will turn out to agreejuite well except for a minoremperature anomaly.
Afterwards, we shall look at theummaried local dataSince theyare consistentthis anomaly
must result from a malfunction of our thermostats that did not occur in the previous equilibrium
interfacial and nonequilibrium ornghase sstems. V¢ will ascribe it to the different heat
conductivities of both phasess error on the system behaviour is, however, difficult to disentangle.
We shall then establish thdifferent behaviour of the nonequilibrium interfacial system in
comparisond the previous equilibrium interfacial and nonequilibrium -@h@seones Finally, the
global observablewill be reported for the sake of completenddste, we shall use thmummaried

simulation results as a reference for comparisons with other systems.

Local Observables

Figure34 shows the distributions of the local observables as functioparidz, without averaging.
Let us have a look ahe local comvelocity componentdirst (seeFigure 34e,f). While evenly
distributed in thecorrespondingsystens from the previouswo sectiors (scattering around their
expectation value zero), systematic trendshame observedThus we can tell unambiguously from
the plot of they-velocities that matter flows close to the interfacésm the hot towards the cold
region with compensating counter flows ialg place in thecentreof each phasdn agreementvith
the y-velocities, the z-velocities indicate a convection away from the interfaces in the
neighbourhood of the cold thermostated regiCiose to the hot thermostated regiptiee fluid is
drawn back towards the interfaces. These features appear eight times in a simulatios toethd
symmetry required by the periodgystem boundaies and demonstrateexactly the expected
thermocapillary convectioroll cells, asdescribedn section4.2.3 We shall alscseethem inthe
behaviour ofall later discussedonequilibriuminterfacial systems (see sectidng, 5.4, and5.5).
The magnitudes and orientatioosthe comvelocitieswill always clearly exceed the fluctuations,

2[04v)] and ¢[lyv;)], in the nonequilibrium interfacial system itself or itcorresponding
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equilibrium interfacial aneconequilibriumonephase systems (s@able7). We shall thus conclude
that the observed convectiors a relidble and reproducible one, reflecting a true physical
phenomenonChapter5.4 is devoted to the quantification of this observation, which is one of the

main findings of this work.

A spatially variable stress gribution comes with the thermocapillary flows. We can tell it
particularly wellin the case othe perpendicular normal stress8s, They increase in going from
the cold to the hot thermostated reg{seeFigure 34m). Since they, in addition to that, should be
independent of, we can expect the same gradient to approximate the negative pyegsament,

3/ O in the phasesWe shall consider it as an additional measure for stiength of the
thermocapillary effectSection5.5.2will address the other aspects of the stress distribution in more

detail.

Having demonstrated the ocoence of the thermocapillary convection, we stitdympact on the
distributions of the other local observables. The maximum com velocities above amount to less than
2m/s, so that the system has only a sfatllenumber. It was generally explained in sectoR.3
Correspondingly, these distributions should approximate the ones described in our thought
experiment for negligible convective transport; i.e. the field observablgs ashe temperatures

for instance are constant in-direction while the quasntensive observablesuch & the densities

for instance converge against constant limiting values away from the interfaces but strongly vary at
them. Concurrently, all observables vary approximately linearly in going from the cold to the hot
thermostatedegion so that thez-variation of the quagntensive observables becomes weaker and
wider. As a matter of fact, owesultsmostly exhibit this behaviour. Thuas in thecorresponding
nonequilibriumonephase systemshe overall and majority componergrisities decrease linearly

in approachingthe hot thermostated region while the minority component densities and
temperatures increase (s&egure 34ab,c,d). Moreover, when disregarding the noise in the
interatomicy-forces per unit volume or per particle, they point toward the nearest hot thermostated
region, the ones peminority particle clearly exceeding the ones per majority particle Kepae

34g,i,j). The densitie and the interatomic volume and partiet®rces varyin z-directionas in the
corresponding equilibrium interfacial systéseeFigure34h,k,l). One can tell from the strengths of

the variations anttom the contowlines at the bottom of the plots that the interfaces become wider

in going from the cold to the hot thermostated region. Only the shglgpendence of the
temperatures violates our expectations. We shall see it more clearlysantimearied data further

below. Nevertheless, we can already establish here that this temperature anomaly is too small to
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biassignificantlythe qualitative distbutions of the other observables above. Hence, the qualitative

system behaviour can be assumed to be reabstieast as far as they are concerned.

Remember from thaonequilibriumonephase systems in the previous section that the unphysical
system khaviour due to the thermostating mangetsef only partly in the results for the cuboids
extending into thermostated regiofi$ie densities and the temperatures, which proved to be also
only slightly biased outside the investigation regjonsre theefore additionally consideredf
necessary to make a point. We shall do the same for the com velocities as well as the interatomic
volume and particle-forces ina nonequilibriuminterfacial system. Their results resemble the ones

obtained by extrapolatg the data in the investigation regions.

Local Standard Deviations

Tables 6-13 list also the standard devians of all the observables abové&imilar to the
nonequilibriumonephase systems from the previous section, the values resemble those in the
correspondingequilibrium interfacial system (see sectidd.2 remakably, so that the additional
errors due to the thermostating have only little impact on the reliability of the locaMitatover,
Figure34a-h shows thelocal standard deviations as functionyodndz. Their distributions are, as in
the case of the local observables themselvesssetieon4.4.3, a combination of theatain two
nonequilibrium onephase systems joined by the interfacial variations of different equilibrium
interfacial systems. Thus, the standard deviations converge against constang halites away
from the interfacedut vary in the shape of ‘aike" at them. Concurrentlythe distributions
representhe heterogeneity of the system due to its removal from equilibmuthatthey increase
with y in approachinghe hot thermostatedg®mn. The temperature anomaly described above is too
small to appear qualitativelin the standard deviationdVhen disregarding it, we can easily
establish, similar to thecorrespondingequilibrium interfacial andnonequilibrium onephase
systems, that th standard deviations of the overall densjtidse temperatures, and the com
velocitiesvary at least qualitatively according to their influence in the estimation formulagpfdm

8. Moreover, the estimate$ the com velocity standard deviations differ from the ones determined
in the simulatiorby less than 1%V e give here as an example nty the extreme estimates in each
phase, which were computed from the &hd Haverages of the temperatures and dess(see
Table9):

ds(v,): ArL]y|=36nm=gs(v,): ArL|y|=36nm°
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Hence, the distribidns of the standard deviatiornfirm, in addition to the ones of the
observables themselves, that at least the qualitative system behaviour approximatesxesggity

for the minor temperature anomaly.

Averaging and Further Discussionof the Local Observables

We ok advantage of the system's symmetry with respect txzipéane and averadehe local
observables at comman and absolutg-coordinates as described in sectB.5 The resulting
data, vhich also serve as a reference, piresentechere in different twalimensionalgraphs(see
Figure 35). Their more exact readability makeaslditional more subtle features in the system

behaviourdentifiable At first, we look at the graphs over z.

Figure 35c shows the averaged locay- and z- com velocity components. The relatively largest
absolutey-velocities of about 1.8m/s occur ihe interfacial regions af$2.0 andy|=28nm.On the
other hand, lte relatively largest absolutevelocities of about 0.9m/s occur &=B.6nm, about
0.8nm away from the interfageswhich is less thah/8. Accordingly, thecentreof each roll celiis
slightly shifted towards the nearest interface and the adjacent hot thermostated¥Megbowthis
situation once again more clearly in a vector gkge alsoFigure 35c). Note that the exact
maximum absolutg- and z-velocities are additionally listed ihable 11, as a reference. We shall

use them as a crude measure for the intensttyeathermocapillary convectiqsee sectiod.2.3.
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Figure35adisplays the densitg-profiles at different absolutgcoordinatesThe interfaces widen,

as expected, in going from the ddo the hot thermostated region while thelocations hardly

shift in z-direction. Moreover, each profile is closely approximated by the same hyperbolic tangent
functions as in an equilibrium interfacial system. This holds even outside the investrggiimms

at they-coordinates ofy|]=0.4nm or\j|=3.6nm(seeFigure 353). Table 11 gives the thus obtained
widths andz-locations of the interfaces. Tinavidths reméan far smaller than two times the ones,
¥(2.0nm)=0.56nm, at theentresdbetween the thermostated regions. Concurrentlyz-tbeations of

the interfaces shift only marginally into the Ar2 rich phase, frdfy] = 0. 4nm) =1 2. 27r
3(ly[=0.4nm)=2.39nm ta&(ly] =3 . 6 n m) =1 Z(y2R6nmMm=2.41mrd. Weoald therefore
demarcate the phases in the intended simplistic way, i.ee&yngthe nonequilibriuminterfacial
systemas an equilibrium one by using the wilths andz-locations of the interfaceat the centres
between thehermostatedegions (see sectiof.3.5. Accordingly, the central 160 subvolumes
between the phasegerelumped together into two phases for additional averaging of selected local
observales. We averagkethem in each phasefor instance, at alz- and common absolute
coordinatesTable 9 gives the € M-, and H averages at certaip-coordinates. Moreover, we
redisplay the averaged densities at diffengrmbordnates in the phases irigure 35a. Such a
presentation indicates more clearly how both substances separate between the thermostated regions
Our studies concentrate, howeveayticularly on the interfacial regions. Their dengHprofiles are

hard to include into a single plot without making it illegible. Instead, we prefer another manner of
presentation and plot the densiygradients as function af (seeas well Figure 353). They
charactese together with one of the above denstprofiles the entire density distribution. We
shall use thez-profile at y|=2.0nm for its similarity to the onef the corresponding equilibrium
interfacial system. As to the variation of the dengityradients in the interfacial regions, it is-"w
shaped" in the case of the overall densities eshaped" in the case of the partial densitidse z

profile convergesgainst different constant values away from the interfadesre the system tends

to become homogeneouszdirection. The above charaagtsion of the density distributions will

also prove advantageous for the ones of the temperatures as well @taedsdeviations of all

the local observables determined in th@nequilibriuminterfacial system. Inrable 13 we give
additionally the phasaveragedy-gradients of the densities, the temperatures, and the different
standard deations. The Soret coefficienteomputed from thesg-gradients androm the M-

averages above according to secddh 5 are given infablel1.
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The temperatures Figure 35b exhibit, at first sight, similar anomalies as in tt@responding
nonequilibriumonephase systems. Thus, the temperaturgg=t.pnm are about 1K lower than the

120K toexpectf om Fouri er 6s | aw. yigradkeatsaresflatier tnarhexpedted mp e
due to the temperature jumps at the thermostated regions. However, an additional anomaly can be
distinguished in th@onequilibriuminterfacial system: The temperatures vaigmoidally between

the slightly different limiting values in the phases. The closexpaofile lies to one of the
thermostated regions, the stronger deviate its limiting values anchahewidens the variation
between them. Accordingly, the temperatyygrofiles clearly differ in both phases (sasoFigure

35b). In order to further characise the temperature distribution in the interfacial regions, we
computel, as in he cases of the densities and standard deviations aboygrédients. They vary
sigmoidally in the interfacial regions (seéso Figure 35b). Table 13 lists additionally the phase

averaged temperatuyegradients.

Figure 35d,e redisplay the different z-profiles of the interatmic volume and particle force
components after the averagioger commoreg- and absolutg-coordinatesThe resulting data are
nevertheless subject to a relatively strong noise. Hence, we eeffeom computingy-gradients of
the different forcecomponets to describe their variation in the interfacial. Instead, theefages
of the different forcecomponentsvereadditionally computed at everycoordinate (sealsoFigure
35d,e). These averagespply approximately ay|F2.0nm. In order to establigharticularly the y-
dependence of the different interaton@dorces we compare their values at|40.4nm and
ly|=3.6nm to their -bverag@s. They-dependence of the different interatonyidorces cannot be
established at all due to the noise. However, we give additionallgble 8 their l-averages over
each phaseTheytell us at least thahe y-force per minoty particle clearly exceeds the one per

majority particle as in thecorrespondingnonequilibriumonephase systems.

Consistency of the Simulation Results

We established previously the small influence of the convective transport mooaquilibrium
interfacial systemHence, its local forces must be approximately zerequation(2-1). Moreover,
we can estimate the by using the same relations as in the corresponding equilibrium interfacial
(see section5.1.]) and nonequilibrium onphase systemgsee section5.1.2. In fact, the
interatomic volume and particle forgesbtained directly from the simulatipand their assoated

kinetic forces that arecomputed from the density and temperature distributiadd as expected,
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approximatelyto zero everywhere(equations(4-14), (4-16)-(4-17)). Thus,we compardn Figure
37a,b at the different-coordinateghe laverages of the differegtforces Table8 lists additionally
their l-averages over each pha&milarly, the different interatomi@nd kineticz-forces cancel
each otheexcept at theentreof each interfacial regiorTheir spatial resolution is too low to catch
the variation of theystemthere Figure37c compares, as an axple,the absolutevalues of these
z-forcesat the absolutg/-coordinatesof y|=0.4nm andf |y|=3.6nm Even though they lieutside
the actualinvestigation regios there is a fairly good agement of the curvesdence, we shall

generally assumeur simulation results to be consistent.

The consistency of the locabservablesntails that the mixture behaves like a real one in the
investigationregions. Consequently, the slightiependence of the temperatures must be induced
outsidethese regionsWe ascribe it tdhe spatially dependent average heat transport rates along
each thermostated regiofo understandheir cause we must take a closdook at how the
investigation regions exchange heat with the intermediate regidfes. know from the
correspondingnonequilibrium onephase systems that the Arl phase has a Iahermal
conductivitythan the Ar2 onélts different magnitudes should apynilarly in the corresponding
phases of the presembnequilibriuminterfacial system. Concurrently, thermal conduction remains
the dominant heat transport mechanismsed on the small local com velocities and thus Péclet
numbers (see sectign2.3. Hence, we can expeatpatially dependent heat flux into or out of the
thermostated regionslt is higher in the Ar2 phase than in the Arl phasfethe present
nonequilibriuminterfacial systemOur thermostatinglgorithm does, however, not account for such
dependenes.It rathermanipulatesall particle velocitiesn a certain regiory equalmeasures, i.e.

by the same scaling factor and shift summand at a certain timeTseepype of a particle or its
exact bcation inside the thermostated region are, for instance, not considerd¢de cold
thermostated regigtower temperatures wilthuson the averagestablishat those locations where
the heat flux is lower, i.e. the Arl pha3dey will, on the other had, have on the average higher
temperatures in the hot thermostated regidme fresentheterophasiconequilibriuminterfacial
systemexhibits this type of behaviouwe shalllater see it even worsenttie conductivities differ

more between both phasafsa system
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Comparison to the Local Data in theCorresponding Systems

Remember the dichotomy in our nonequilibrium interfacial system. It tries to establish local
equilibria across the interfaces but concurrently tends to separgtéiiaction due tothermal
diffusion (see sectior#.2.3. The correspondingequilibrium interfacial and nonequilibrium one
phase systems from above constitute limiting cases of these contradictory tendafecigsall
determine bre the quantitative influence of the thermocapillary convection and of the thermostating

algorithm bycomparng the different systems with each other.

At first, we shall comparethe results at theentresbetween the thermostated regions, i.e. at
ly|=20nm,with those in theorrespondingquilibrium interfacial systeni he temperature-profile
constitutes despite the diverging thermal conductivities of both phadegsta constant function

at suchy-coordinates(see Figure 38b). Its value includesonly the drop in the average system
temperature due to thdisparity of thetemperaturgumps at the thermostated regions. Hardly any
differences appear in the densities, dhds also thdnteratomic volume and particleforces

despite theseemperatur@nomalies (seBigure38a,c,d).

More significant influencesirise betweermach phasandits correspondingonequilibriumone
phase systenThus, he temperaturg-profile is steeper in the Arich phase and flatter in the Ar2
rich one(seeFigure 38b, Table 8 givesthe numbers for thg-gradients) Such a behaviour agrees
with the above described malfunction of our thermostatsto thedifferent conductivities of both
phaseqseeTable 14). Nevertheless, each of them features a stronger separatyedirgction, as
can be clearly told from the increased Soret coefficientsTabte 11). We would have expected
smaller ones at first sight besmuthe thermocapillary convection shquéven if it was weak,
sustain a better mixingdence, we shakeep an eye othis separation in our subsequent studies to
find out more about its influences. It manifests itself also in the stegpaalland parial densityy-
profiles in the Arl rich phase (sdégure 38a and Table 13). They change, however, only
marginally in theAr2 rich phasedue to thdower temperatue y-gradient thereTable 8 compares
additionally the Javerages of the different interatonyidorces in the phases of thenequilibrium
interfacial andts correspondingionequilibriumonephase system®©nly they-forces per rmority
particle strongly increase in each phase compared tmitespondinghonequilibriumonephase

system, whildheones per majority or per unit volume have approximately the same magnitudes.
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We cannot draw more conclusions from the systems abidwe.bias from the malfunctioning
thermostatsis too strong. Nevertheless, they provide already fairly good insights into their
characteristic behaviour. Hence, we shall continue to use them and similar ones inTRdpter
further semiquantitative studies where this bias is unimportant of inevitab#mterss.4 and5.5
describe more advancediantitativestudiesof sygems which have identical particle parameters for
both substances to avoid the malfunction of our thermostats.

Global Observablesand their Standard Deviations

Table 14 lists the global observables and their standard deviatiditisough both describe the
system behaviour as a wholee can learn a lot from them. Thus, the standard deviations, in
particular, have approximatetite same orders as in the corresponding nonequilibriunploase
systems. Such a behaviour is the moraurgrising if we remember thexistenceof the
thermocapillary convection and the anomalous temperatdependence in the nonequilibrium
interfacial systemHence, heycanboth hardly produceadditionalnumerical and simulation errors.
We can tell the sae from the global temperature. It droppproximately as much aas the
correspondingnonequilibrium onghase system below the one of the equilibrium interfamial
Such adrop entails concurrently slightly smaller global pressures and energies.

Let us now take a closer look at the heat flgx, It lies in between those of the corresponding
nonequilibrium onehase systems. Such ralation seems reasonable since their phases have
approximately the same composition but twice the volume of the intdriagtem.After all,

thermal conduction remains the dominant transport mechanism. We notice, however, upon closer
inspectionthe slightly increased vicinity of the heat flux to the worse heat conduatiagf the
nonequilibrium onghase systemn A lower entropy production thus also exists in the
nonequilibrium interfacial systemah could be expected by superimposing them. We shall check if
the same holds also in the systems to come. Such a behavioursuiulte principle of minimum

entropy productiorfsee sectio2.1.7).
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5.2 Examination of the Parameters and Simplifications in the
Heterophasic Systems

Molecular dynamics simulations involves detailed in chapté.2, a number of simplifications and
approximations. It is thenain purpose of thichapterto estimate, as far as possible, their influence
on the simulation results. To do soe whall comparein the sectioa below the first reference
systems from chagt 5.1 with only slightly alteredsystems They havelifferent particleparameter
values, cut-off radii, or use a modified thermostating algorithithe comparison concurrently

reveals first influences on the theocapillary effect.

Apart from the thermostatinghé truncation of the interatomic forces beyond a certairoffut
radius counts among thetrickier technical simplificatios. We manipulatd it in additional
simulations, tdind outhow much the systetmehaviour has converged (see seclidhl). In doing
so, we disregaetl possibleinterdependencies between tloece truncation andhe thermostating
procedurelt mayrather sufficeto estimate the influencef the cutoff radiusby usingalways the
same thermostat3he results confirm our chosen radiusgfl.0nm as appropriate. Concurrently,
they reflect the influence of the LB mixing parametemr of the averagesystemtemperatureA

significant improvement of the anomalous temperattdependence does, howewveof occur.

Given the missing influence of the fortrencation on the anomalous temperatendependence,

we confirmedour likely explanatiorfor it by manipulatinghe mass of the individual ArBarticles

(see sectiod.2.?. Since the static observables generally do not depend on the particle mass, their
distributions remain unaffectedy bt in equilibrium interfacial systems (see secti®ri). This
independence ceases, however,nonequilibrium systems. They involve transport processes,
described by static and, in addition, by dynamic obdd#ega Thenonequilibrium onephase
systems display clearly the response in the thermal conductivity. It increases specifiaalfyrih

rich mixture strongly with its particle mass. We can expect similar responses in the corresponding
phases of the noneijbrium interfacial system. Their stronger diverging conductivity thus likely
worsens the anomalous temperatritependencen agreement with our explanatiofhis will turn

out to be the case.
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If the thermal conductivites of both phases differ onlttle, the system behaviour approximates
reality to a large extenas demonstrated previously for the filgtLAr2 nonequilibriuminterfacial
system. Aiming atmproving this approximation, we imgmened another (loose) version of our
thermostatdo seewhether theovermodulationof the thermostatedemperaturegsee sectiorb.l)
contributes to théemperature jumps or eveo the anomalous temperature&lependenceSuch a
contributiondoes as it will turn outin the discussion of the results in sect®B.3 not occurin the
tuning the additional parameters of the loose thermostéis. heat fluxes into and out of the
thermostated regionsave less fluctuationgut at the price of strongesnesin the thermostated

temperatures.

We could imagine even more sophisticated thermostating procedures, for instance, doubling the
number of thermostats to four while maintaining the two thermostated regions and the allocation
formula: Then each thermostat would be concerned only with the particles of a certain substance in
a certain thermostated region. Developing such procedures lies, however, outside the focus of our
work. Instead, we stidd with the strict thermostats imé subsequent simulations for the sake of
comparability. There is anothesimple measure to abandon the anomalous temperature
dependence. We eqised the thermal conductivity of both phases by choosing identidal
parameters for all interactions oke particles(see chapter5.3). The absence of a tangible
archetype makes such mixture rather unorthodoXNeverthelessjt should behave realistic in
simulations since its description basesLJ potentialsThey are physically meaningful irrespective

of thar precise curve In order to improve the comparability of our results, we chose LJ parameter
values, that are frequently used in the literature, when changing them anyway. The thus obtained
homophasicAr5Ar5 system alsdehaves realistiadConcurrently its differences from the ArlAr2

system reveal the influence of thé parameters.

Note, d discussionsn chapter5.4 concernthe results irhomophasic nonedibrium interfacial
systemsof the type described abav@/e shall vary systematicalljhdse of theirparameters that
have a physical correspondence. In doings soAtfad\r5 system fromchapter5.3 frequently

saves us as a reference
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5.2.1 Influence of the Cut-Off Radius on the Local Observables

We alteed the cutoff radius in several simulations of the first heterophasic nonequilibrium
interfacial and its correspondirgystens to find out more about the influem of the truncation of
the interatomic potentials and forces. As explained in sedtib@ they are, by default, ignored for
particle distances of more thag=1.0nm to reduce computational efforts. Radiirgf0.6nm and
r=1.2nm were used additionally for comparison. They entail, approximately, a halving and a
doubling of the simulation time#n the discussions of thesultsbelow, we will be ableconfirm
once again that our initially chosen -@ft radiusof r.=1.0nm is a suitable compromise between a
proper treatment athe longerranged interatomic forces arlde computing efforts. On the other
hand, the results are also of interest because the systems rgapbtadivelyto the manipulations

of the cutoff radius in the same way as to changes of the mixing paramétethe Lorentz
Berthelot mixing rule or of the global temperature. Thus, an expansion of todf cadius, for
instancewill turn out to be in some sense equivalent to a reductioreamiiking parametes-or the

global temperature.

Local Observables

The temperatures afj¥2.0nm as well as the temperatyrgradients exhibit similar distributions in
all nonequilibrium systems, irrespective of the-cfftradius usedseeFigure 3%). We can thus
assume that their removal from equilibrium is also inside the thermostated regions similar enough to
provide a common basis of comparis&traightforward comparisons of thesults in the different
simulations thus make sense learn about the influence of the -@if radius on the system

behaviour.

The partial densities are more evenly distributed-direction in the nonequilibrium interfacial
system with the smaller cubff radius of re=0.6nm (seeFigure 39). This distribution is
accompanied by wider interfaces (Sesbles10-11) and weakemeaninteratomic particle-forces
(seeFigure39%). Moreover, we can tell from the normal stresses in the corresponding equilibrium
interfacial systemdiven in the same taldethat the magnitude of the interfacial tension decreases.

Consequently, the local states in the nonequilibrium interfacial system are shifted closer to the
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upper critical solution point. Concurrently, both substances separatestnamgly iny-direction
within each phasewith more pronounced variations of the partial dengtgradients in the
interfacial regiongseeFigure39aandTable13). Such an increased thermal separation makes sense
because the mutual solubility of both substances becomes more temperature depdredent
approaching the critical solution point. Hence, the partial dewlsgsadients in each phase are
steeper thann the corresponding nonequilibrium oepkase systemalso given in Table 13).
Moreover, both interatomic partickeforces differ, according to their relation with the dengiy

gradients, more within each phase than in its spoeding onghasesystem (sedable8).

Given the smaller cubff radius the overall densities exhibit, different from the partial densities,
more even distributions in the andz-directions (se&igure39a). This distribution manifests itself
also in the lower interatomic volumg and zforces (seeFigure 39d, and Table 8). The
thermocapillary convection weakens, but its characteristic pattern remains unchangeigysee
39%). We can tell the reduced intensity e.g. from the smaller maximum caroityetomponents
(seeTable1l). Its reduction is in agreement with the flatyegradient of the normal stressé&,
(seeFigure 39f and Table 11), which serves as a measure for the strength of the thermocapillary
effect. Moreover, the general level of all normal streseseases sincthey includefewer long

ranged attractive interatomic foraasthe usage ahe smaller radis (seelable6).

All previously described responses to the change obffutadius (seeall tables and figures
mentionedabove) invertwhen expandingt to rc=1.2nm (which, by the way, doubles the CPU
time). They are, howevemuch less pronounced than the ones observed for the reduction of the
radius torc=0.6nm and can hardly be extracted from the fluctuations in many cases. Relatively large
responses arill found in the normal stressdmjt even they exhibit a clear cargenceSince the
gualitative differences between the various simulations are martant to us than thabsolute
values of the observablewe kept thenitially chosen cubff radius ofr.=1.0nm It is a good
compromise between a more complete inolusof the longeraged interactions andhe
computational efforts. We thus wkehis value in all subsequent simulations. The standard
deviations of the local observables converge together with (eeenas well irall the tables and

figuresmentionedabove).
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Global Observables

Table 14 lists all global observables determined in the simulations with differeraftuadii. The

global pressures and energies converge, similar togbativelocal normal stresses, to lower lisit
whenwe increaseéhe cutoff radius This convergence igresumably since more, but increasingly
weaker, attractive longange interactions are considered. We cannot tell about the changes in the
convergence of the heat supply and remahely disappearin the noise of the simulations.
Nevertheless, tise fluxesalways lie belowthose n the corresponding nonequilibrium epkase
systems, which confirms again that convective transport remains negligible. The global
temperatures remaiare unaffected by tb cutoff radius since they do not relate directly to the
truncation of the particle interactions. Hardly ashangesccur in the global standard deviatipns

as in the local onedescribed befote
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5.2.2 Influence of the Thermal Conductivity on the Thermostating Artefacts

The nolecular transport phenomena, i.e. essentially heat conduction, diffusion, and thermal
diffusion, dominate the convective transpamt our nonequilibrium interfacial system#/e shall
compare belowhe first such systergstudied in chpter5.1) to oneswith the altered mass values
Mar3=3.995amu oma4,=399.5amu for the second substgngenerally called ArBThe Lennard

Jones and all other system parameteagtained their numerical valsil the alteratioa Since the
transport phenomena respond strongly to the particle mass we can learthalbmierplayas part

the system behaviour. Thus, the intensity of the thermocapillary convestibriurn out to
increasethe smaller the vissity of the mixture, i.e. essentially the smaller its particle mass, is.
Neverthelessan even more intense convectimould have to occuuntil the molecular transport
mechanisms loose their dominant roMoreover, v shall seehat the massesyasg, do not

necessarily correlate in a simple way with the strength of the thermocapillary convection.

As to the studies of the molecular transport phenomena, the anomalous tempeteperdence in

the heterophasinonequilibriuminterfacial systems must kalditionally taken into consideration.

We shallthus look at the correspondingnequilibriumonephase systems to study how each phase
responds to the change of the ArB particle masses without this artefact. In particular the
conductivities will be seerotdepend on the particle masses in such a way that our explanation for
this anomalous temperaturedependencéseesection5.1.3 is confirmed. However, before we

look at the nonequilibrium onephase systems, avshall considey as a precautigntheir
corresponding equilibrium interfaciadnes They allow us to verify oursimulation code by

confirming in then the independence of results from the particess.

Comparison of the Equilibrium Interfacial Systems

All static observables are, as they should be, similarly distributed in the equilibrium interfacial
systems with different mass&Sompare, for instance, the densitiesmigure40a. The interatomic
volume or particle forces have similar distributions as {g&eFigure40d,e). We must, of couses
disregard in the comparisons thatsstical noise andas far as thguastintensive observablesre

concerned, alsthe slightly deviating locations of the subvolumes with respect to the interfaces.
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Neverthelessthe normal stresses astightly shifted by about 0.4MPain the system with the
lightest ArB particles Figure 40f and Table 6 show that this is due ta larger interatomic
contribution. Minor temperature differences occur, moreoseen within each of the systems with
the altered ArB particle masséseeFigure 40b and Table 8). Thus, the temperature of the phase

containingmainly the heavier particles always slightly exceed the one of the other phase, i.e.
2[e(T):Arl] > g[e(T):Ar3] in N-ArlAr3-0.6-1.0-334635244.74x8.00x9.40.00-140

and

a[e(T):Ar4d] > g[e(T):Arl] in N-ArlAr4-0.6-1.0-3346:35244.74x8.00x9.41.00-140.

Neverthelesss he system aver aged Takded)pies clase ta itseset Valuesof T)
120K.We can neglectiese differences since they are so small thathbheyly manifest themselves

in the other systerbehaviour Let usstill commentbriefly on thar cause They might result from
differently severe numerical and simulation errors that depend on the particle mass. If they come on
the average with spatiallye@endent energy losses or gains, the thermostating algorithm may
produce the temperature differences through a similar mechanism as explained in5Sécion
These gains or losses, if they exist at all, will be very smallpeoed to the heat fluxe®/e shall

discuss them further below. Note that abaventioned numerical and simulatierrorscould also

explain the found pressure shift.

Most local standard deviations (s€egure 40a-d and Table 8) are smilarly distributed in the
present equilibrium interfacial systepeven though they do, strictly speaking, not count among the
static observables. Only the com velocity standard deviations, in particular the ones in the ArB rich
phases, differ significalyt while still closely approximated by the estimation formula, equation
(8-9):

dslv,): Ar3|=ds(v,): Argle

1.38Q0 23; Q198K

o

4.74nm@®.80nm.26nm0.06nm 2 .634A00' 2°kg +19.89nm * .6634000 *°kg)
=1111"
S

dslv,): Aral=ds(v,): Ar4]o

1.38@0‘23}i Q202K

0o

4.74nm@®.80nm@.26nmd0.06nm * (5.634Q00' *kg +19.89nm * (56.34A00 *kg)
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S
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We shall, therefore, consider their mass dependence as a physical fact.

Besides the local static observabld®e global ones (se€able 14) also strongly resemble each
other in the different equilibrium interfaciaysems. Take, for instance, the global energies. The
abovementioned slight shift of the normal stresses in the system with the lighter Ar3 particles
manifests itselfalso in the global pressure. Its values in the other systems are, however, very
similar. The global temperatures approximate their set value of 120K in all systems while the heat

in- or outflux (given inas well inTable14) is approximatelyzero.

Comparison of theNonequilibrium One-Phase Systems

We simulated the @ses of the equilibrium interfacial systems separately in nonequilibrium one
phase systems under the default volume and temperature constraitténg so, we catearn
about theseparatenfluence of the particle masses on the molecular transport ples@oire.
without having to worry about thele of the thermocapillary convection or theefacts due to the
thermostahg as in thenonequilibrium interfacial systems. The identity of the volume and
temperature constraints does, however, not necessarigil yet that all systems are similarly
removed from equilibrium. Depending on their composition or their ArB particle masses,
temperature jumps of different magnituaesild occurat the thermostat regiors. Hence, weshal

first check the similarityf the temperature distributions using their temperatwavbtages ang
gradients (see Tabl&and13). They hardly differ between systems rich in the sdaraeegither the

first or the second, component. Somewhat stronger differences exist between the ArA and the ArB
rich systems, but they astill small enouglso that we can proceed to study the influence of the

ArB particle masses by straightforward comgamn ofthe othembservables.

In the comparisasof the other observablege shall moreoverneglect the differences between the
numbersof particles in thenonequilibriumonephase systenthat arerich in the same, i.e. the first

or the second, compent. In fact, thee numbershould be identical since they wertemputed

from the partial densities in the phases of the equilibrium interfacial systems above, that differ only
in their particle masse#/inor deviations between such systems are, howewvevoidable Even

though these deviations propagate throughout the evaluations, they amount to only a few particles

and can thus be ignoredfely
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The partial densities respond to the alterations of the ArB particle masses only slightly in absolute
terms, but significantly as far as the thermal diffusion is concerRediember from sectiob.1.2

that the minority particles concentrattthe hot and the majority particles at the cold regibthe
onephase sstems with identical particle masses. This separation decreases, or even inverts, in the
systems with the changed ArB masses if the heavier particles are outnumbémdd\(B-0.6-1.0-
20-70894.74x8.00x9.4L00-140 and NArl1Ar4-0.6-1.0-679922-4.74x8.00x%40-100-140); it
strongly increases if they are in the majority ANLAr3-0.6-1.0-6797%22-4.74x8.00x9.40L00- 140

and NArlAr4-0.6-1.0-19-70884.74x8.00x9.46L00-140). We can tell so by comparing the
absolute differences between the partial densities in®atem (se€igure40aandTablel13). The

Soret coefficients imable 11 show the changes in the separation even role@ly. They are in
agreement with previous studiestbé thermal diffusion in equimolar mixtures of simple liquids,
where the heavier component always tends to move towards the cold region (seetse@tidme
interatomicy-forces per particle (séeable 8) differ between the systemthat arerich in the same
substanceaccording to the strength of the thermal diffusion in them. Concurrehéy is asign

of these forces fohe heavier minority particles. The overall dengiyrofiles (sed-igure40a) and

the interatomic volumg-forces (se@able8) are hardly affeed. Only a slight steepening of tire
profiles occurs in systems where both substances move towards the cold Tegipomovementis
accompanied by marginally stronger volugatrces. We shall check further below to what extent

the thermal diffusion fond in the nonequilibrium onephase systems appears also into the

correspondingnonequilibriuminterfacial systems.

As far as the other local observabéesl thestandard deviations are concerned, they respond to the
alterations of the ArB masseasostlyas in the corresponding equilibrium interfacial systems above
(seeFigure 40a-d). We saw clearly shifted normal stresseés the one of thenwith the lighter Ar3
particles.Such a shift can be identified as well in its correspondiagequilibriumonephase
system rich in the same particles (s€able 7). Hence,their mutual collisiondikely produce the

numerical and simulation errocenjecturedabove

The values of theglobal pressure®r temperatureg¢see Table 14) strongly resemble each other in
the differentnonequilibriumonephase systemdhe global temperatureme somewhat below the
ones in the corresponding equilibrium interfacial systelus to the different magnitudes and
extensions of the tempeuae jumps.We established already above thagy react mainly to the

system composition but hardly to the alterations of the ArB particle ma&sesrdingly, the
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nonequilibrium onghase systenrich in thesame, i.e. the first or the second, substamee leven
more similar global temperatureBhe same holdalso forthe global energieggiven as wellin
Table 14). The global pressures, on the other hand, continue to exceed sontlesvhia¢s in the
corresponding equilibrium ietfacial systemsThis results largely from their lower local pressures
in the interfacial regions. If thegreagaindisregarded, however, by spatially averagingribgative
normal stresse®nly within each phase of an equilibrium interfacial system, siobtained
pressures, g[d:ArA] and @d:ArB], approximate the global ones ithe corresponding
nonequilibriumonephase systegeven betterBeing strongly inversely related to the ArB particle
masses in the ArB rich systems, the heat fluxes have approximately the same maugiiteicheaA
rich ones. We give these heatx#s as well inTable 14 and derivethermal conductivities from
them(seeTablel11l). They shall be assumed below to apmyghly as well in the applicable phases

of the correspondingonequilibriuminterfacial systems.

Comparison of theNonequilibrium Interfacial Systems

Strong alterations of the original anomalous temperatm@ependence accompany the
manipulationf the ArB masses in the heterophasimequlibrium interfacial systems (sddgure
40a,b as well asTable13). Thus, the temperatusegradientin the Arl phasés already steeper than

in the other phase of theriginal Ar1Ar2 system.When the mass of the second component,
generally calledArB, is reduced tona3=3.995amu, thg-gradient in the ArB phase increases much
stronger than the one indlArl phase. \Wen ths mass isncreased tama;,=399.5amu insteadhe
temperaturey-gradient in the ArB phase drops much more than the one in the Arl gese.
explained already for the ArlArBeferencesystems above (see sectibrl.3, both alterations
correlate with the changes of the thermal conductivithéss do not determinthemhere, but we can
assume, for the same reasons as isetheferencesystems, that the thermal conductivities in the
phases of éher manipulatednonequilibrium interfacial system also resemble those in their
correspondingnonequilibriumonephase systems, i.e. the Ar3 phase has a much larger and the Ar4
phase a much smaller thermal conductivity than the Arth®@Ar2 phase. Concuently, the heat
transport in the changedonequilibriuminterfacial systems must continue to be dominated by
thermal conduction as can be told fréme z-independence of the local observables remote from the
interfaceqdiscussed below)ence the tempeaaturey-gradient in the Arl phase is steepefflatter
than in the other one, depending on whether its local heat transpetanesenaller or largerOur
above explanation of the anomalous temperatutependence in the heterophasonequilibrium

interfacial systems is thus confirmed once again.

5-147



Although the anomalous temperaturalependence worsens in the modifiadnequilibrium
systems, the densitgprofiles at y|=2.0nm hardlydiffer (seeFigure 40a). Moreover, they still
converge away from the interfaces (i.e. at all other absplot®rdinates), which demonstrates that
convective transport continues to be negligible. The partial densitieadnore unevenlyn y- and
z-direction. Thusgeachof the manipulatedsystens exhibits a larger absolute difference between
bothpartial densityy-gradients in the phase where the temperatgm@adient steepens and a smaller
one in the other phagseeFigure 40ab and Table 13). Concurrently, stronger variations of the
partial densitieexistin the interfacial regionsvhile their widths remain almost unaffected (see
Table 11). In order tobe able tocompare the separation of the substances within the phveses
must look at their Soret coefficients (givass well intin Table 11). They incorporate also the
different temperaturg-gradients As in the case of the ArlAr2 systems above (see sebting),

the Soret coefficient ia phase of the modified nonequilibrium interfacsystems excesdhe one

in its correspondinghonequilibriumonephase systemSurprisingly, the Soret coefficient of the

ArB phase is, however, always positive, irrespective of the mass of the ArB particles. Such a
behaviour contradicts the one observedhe correspondingionequilibriumonephase systems
above, where thbeavier particles tend to move towards the cold reghpparently, the tendency

to establish local equilibria across the interfaces dominates the one to segregate along the
temperatue gradient (thermal diffusion) in theanipulatechonequilibrium interfacial system®ur
thought experiment from secti@gh2.3postulated a competition between both tendenti&sshall

discusst in more detdilaterin the homophasic systerntseechapters.4).

The interatomic volume and particle foroeeeFigure 40d,e) are similarly distributed as in the
ArlAr2 nonequilibrium interfacial system.Their noise is too large to chedke interfacial
variations,but the taveragedy-components of these forces aalghin approximately to zemith

their related kinetic forceiseeTable8). The standard deviations of the local observatissribed

up to here aragiven together with them imll the figures and tableseferencedabove These
standard deviationsespondto the alterations of the ArB masses in the same way as in the

corresponding equilibrium interfacial systems above.

As far as the thermocapillary convecti®concernedjts generalpatternhardly changs upon
manipulatingthe ArB mass (se€&igure40c), even though the viscosities are known to be sensitive
toit. We dd not determine these viscosities explicitly but their relative magnitudes can be estimated

from the véocity standard deviation$loreover, we know from the theory of Chapman and Enskog
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[chapman1970that the viscosity of a monatomic gas increases with its particle mass. A similar
mass dependence should apply, at least qualitativellge phases considat here since their states

lie relatively close to the critical points of the pure substances. Hence, we can assume similar
viscosities for all Arl rich phases. The viscosities of the ArB rich phases, on the other hand,
increase for the lowered and decesf the increased ArB masses while having approximately the
same value as in the Arl rich phase in the system with identical particle masses. Despite these
differences, the intensity of the thermocapillary convection changes, as stated above, inra simila

way in both phases, namely inversely to the viscosity of the ArB rich phase.

We encounter another important aspect in the behaviour ohtkdied nonequilibriuminterfacial
systems if we relatthe intensity (MAX(l])) of the thermocapillary conveon to the pressurg-
gradientQd/ Qrythe phasefseeTable13). It is, & explained in sectiof.2.3 thedriving force of
the backward flovg in the phasesAccording to ouexpectationsthe pressure gradiet dJ ys the
stronger the larger the viscosity in the AtiBh phases, while theconvectionbecomsless intense
In the subsequent studies we shall keep an eythesgeproperties to find out more about their

relations.

In spite of the differences in tHecal observables between the varimmsmequilibriuminterfacial
systems, they all have surprisingly similar global temperatures, pressures, and energies, including
their standard deviations (s@&ble 14). They also approximatthe ones in the corresponding
equilibrium interfacial systems. The temperature drop is almost unaffected by the ArBTimass.
previously described disparity of the temperature jumps at the thermostated raghensoccurs
regardless ohow strongthe temperaturs vary with z. Slightly lower pressures and energies are
found according to the magnitudes of the drops. &lerageheat flux, and thus also the entropy
production, change in the same way as in the corresponding ArBiaiodquilibriumonephase
systens, i.e. both propertiesncrease for thdower ArB massand decrease for theigher one.
Nevertheless, they alwaysmain below their values in thesystems, as demonstrateceviously

for the Ar1Ar2 mixturein section5.1.3 Hence, thermal conduction is confirmed to dominate over
convective heat transport also in the modifremhequilibriuminterfacial systems. Thetasdard
deviations of the heat fluxes lie approximately atdbmetrebetween their valuaa thesameregions

of the correspondingonequilibriuminterfacial onephase systems.
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5.2.3 Influence of the Overmodulation by the Thermostats on the System
Behaviour

In the NEMD simulations discussed up to here we usechbed "strict" thermostats, seection

4.1.4 They adjust the kinetic energies of the particles so as to estabkstery time stepxactly

the intended temperatures in the "thermostated regions'a Asult, overly large fluctuations
apper in the rates of heat supp(@,, and removalQc. They can even inveftom time to timedue

to the "overmodulation" described in sectibrl.2 We thus resimulated the first heterophasic
nonequilibriuminterfacial systemN-Ar1Ar2-0.6-1.0-334635244.74x8.00x9.40100-140-r1, using

"loose" thermostats insteall-Ar1Ar2-0.6-1.0-334635244.74x8.00x9.4AL00-140Is. They adjust

the kinetic energies following the same allocation formula as the strict versiostelputise by
smaller amounts. The results will be compared below with the ones for the strict thermostat in order
to estimate the error from the overmodulatitnwill turn out to decreassignificantly with the

loose versionbut at the price of strongéuctuations in thenstantaneougemperatures. Moreover,

the reduction of the overmodulation has, contrary to our expectations, slightly adverse effects on the
temperature jumps near the thermostated regions. Hence, we shall at the end continue to use the

strict version.

Tuning of the Loose Thermostats

Before the loose thermostats could be employed, we had to pick suitable weights for their
proportional and integral terms, see sectidn4for thar definitions. The thermostatveretuned in

several simulations of the same system by a straightforward procedure described below. We
resimulated the first heterophasionequilibriuminterfacial system in several runs, setting the
thermostad to different proportnal or integral gains in each rufable 14 lists the gains together

with the resulting thermostated temperatuees well as theheaing or cooling rates of the

thermostats.

We first gradually reduced the proportional gain fraisrecommended value &$=0.0125 for a
Berendsen thermostat (see sectibh.4 while the integral gain was held constantkat0. The

results show clearlyhat, withthese settingshe loose thermostats caot provide the necessary
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capacity to maintain the intended temperatures in the thermostated régiotise contrary,hte
difference intemperature between them, and thus the heat flux through the system, degitbase
decreasingproportional gairke. Concurrently, the standard deviations ofgbkeat fluxes decrease,

while the ones of ththermostatedemperatures increase only slightly.

We then analysed the role of the integral gain in further production runs where it was gradually
varied between zerand unitywhile maintaininga constant proportional gain &$=0.0125. The
thermostated temperatures approximate the set values surprisingly well, irrespective of the chosen
integral gain.Moreover, eat fluxes similar to the ones found with strict tileostats existin the

system. The standard deviations of the heat fluxes and of the thermostated tempeatkass

with theintegral gairk;.

We can, in principle, combine the abesstablished separate influences of the different gains.
Suitably chosn values provide, when combined, a much more balanced ratio between the
fluctuations in the heat fluxes and those in the thermostated temperatures than the strict thermostats.
As far as the presemonequilibrium interfacial system is concerned, the comnaion of a
proportional gain okes=0.001 with an integral one #§=0.0001 seems to be a good choitte
produces much smaller fluctuations in the heat fluxes than the strict thermostiadsit overly

affecting theemperatures the thermostated regia

Comparison of the Simulation Results for theTuned Loose and the Strict Thermostats

We significantly reduag the fluctuations in the heat supply and removal by using the loose
thermostats (sedable 14). This is at the prie of strongerfluctuationsin the thermostated
temperatures. The general system behaviour is, however, hardly affected: We are particularly
interested in the distribution of the temperatures. The temperature jumps at the hot thermostated
region increase bwypproximately the same amouas the ones at the cold thermostated region
decrease. Accordingly, a temperature drop of about 0.4K exists at both regemshoughhe
temperatureg/-gradients remain almost unaffected (8egure41b as well asTables8 and 13). No

change can be observed in the anomalous temperatigendenceContrary to ar expectations,

the loose thermostto not produce a more realistic temperature distribution. Instead, they even

slightly exacerbate the disparity between the temperature jumps at the hot and the cold thermostated
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region. We shall thus continue to useetstrict thermostats for the futumonequilibrium

simulations

For the sake of completeness wigall take a brief look asome other observableshere The
marginal differences between both simulations result, if not from the noise, largely fronopise dr
in the temperatures (s€&gure4l as well as Table6-14). Thus, thenegativelocal normal stresses
as well as all local standard deviatiatecreaseas in previous simulationand so ddhe global
temperatures, pressures, and energies decrease. A clear response of the der=itieselbeities,

the different interatomic forcess well asthe heat supply and removal to the temperature drop

cannot be recogsedin the noise of the simulations.
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5.3 Homophasic Systems with a Better Approximation of Reality
(first homophasic nonequirium interfacial and its corresponding systems)

The ArlAr2 nonequilibrium reference systems from chaptérexhibited only minor anomalies.

They can, however, easily deteriorate in certain variations ofitindagion parameters. Think for
instance of the increased temperatgependence that resulted from the manipulations of the ArB
particle mass (see sectiér2.2. Such unphysical concomitants complicate nameanced studies

of the system behaviour. On the other hand, several adjustments to severe technical simplifications
failed to eliminate these anomalies in chapfe?. We could imagine more sophisticated
simplifications, for instance, doubling the number of thermostats tg vidnile maintaining the two
thermostated regions and the allocation formula: Then each thermostat would be concerned only
with the particles of a certain substance in a certain thermostagésh. Refining the NEMD
simulation methods lies, however, outside the focus of our work. Instead, wedstithk the strict

thermostats below for the sake of comparability.

There is another simpler measure to abandon the anomalous tempeddpesience. We keep

the mixtures "symmetric', i.e. we always give both components identical particle masses,
Mara=Marg, and identical LJ parameter valuefr the interactions of like particleSaraara=Uarsars

and Uaarn=Chsas. If the cross termor the ineractionsof unlike particlesj.e. Gaaas and Chane
and/or the mixing parameterand the thermodynamic conditions are such that the systems separate
into two liquid phases, both will have identical properties. This leads$oetlge advantageous efte

that, due to the equal thermal conductivities on both sides of the ingrtis®rtions in the
temperature-profiles are mininmsed Other biases, such as, for instance, the temperature jumps at
the thermostated regions, persist however. They milldbestaccounted for in the interpretation of

the simulation results. We shall generally call such interfacial systems "homoptaslistinguish

them from the "heterophasic" ones studied before. The absence of a tangible archetypgkasakes
homophasicsystens rather unorthodox. Neverthelessey should behave realistic i@ simulation
sincetheir description bases on LJ potentials. They are physically meaningful irrespective of their
precise curves. In order to improve the comparability of our resudtshose LJ parameter values,
that are frequently used in the literature, when changing them anpeagover, theiinfluence on

the system behaviour manifests itself in comparison to the ArlAr2 system.
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Note, allresults discussed chapter5.4 involve homophasic nonequilibrium interfacial systems of
the type described above. Wgstematicallyaried their parametersmany of them havinghysical
correspondence. Ithe variations, e Ar5Ar5 nonequilibriuminterfacial and its corresponding
systems frequently serdaus as a reference. Their functias areferencemade us discuss their

behavioumerein a separate chapter.

Since we postulatethe identity of both components, a new set of particle paramsiggestd

itself. Michels et al. determined LJ parameter values for pure Argon [michels1949] that are
frequently used in the literature. We péckhem also for both components in our Ar5Ar5 reference
systems (sedable 3) to provide a better comparability of the results with literature data. The
mixing parameterg=0.6 andd=1.0 (seeTable 4) as well as the default system constraints (see
Table5) werekept from the previous ArlAr2 reference systems for convenience. Only the particle
numbers of theorresponding nonequilibrium ofmhase systentsadto be redetermingdf course

Refer to sectiod.1.2for the general role of the different particle parameter values.

We shallcompare in the sections beldie simulation results of the different Ar1Ar2 and Ar5Ar5
reference systems. No qualitative differences will be found, except that, aseméienedabove,

the anomalous temperaturadependence tends to disappear when the phases are equal. In this
respectwe can consider the somewhat artificial system of an interface between two equal phases as
even more realistic. The influence of the LJ parameter values on thttapixae system behaviour

will turn out diverse. Thus, they produce a generally increasetial miscibility of both
components than in the ArlAr2 mixture. Moreover, a, in terms of the Soret coefficient, stronger
thermal diffusionexists in the corresponding nonequilibrium gf@ase systems. Both changes
manifest themselves also in the corregfing nonequilibriuminterfacial system. It exhibits
additionally more intense thermocapillary floyeecompanied by a steeper pressure gradient in the
phases. In all cases convective transport remains negliyugdeshall encircle the number in the
symbolof thefirst Ar5 compnent with awhite background anthe number of thesecond one with

a black backgroundn order to distinguish them in the comparisons with the ArlAr2 systems

below.
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5.3.1 Equilibrium Interfacial Systems

In the ArlAr2 mixturetheinteact i ons bet ween | i ke -pgranetérivatuese s
as those between unlike particléggan=Uar2a=Uar1ar2. The same holds also in the Ar5Ar5 mixture

except that it features somewhat smallefiphrameter values,
Oar ar =O0a ar =0a A <Oanian

lts LJ Uparameter values for the interactions between unlike partldless; , lie closer to those
for the interactions between like particlek, » and( a , than in the ArlAr2 mixture. As a
result, we would expect a more even dendisgribution in the equilibrium system-A&5Ar5-0.6-
1.0-3346:35244.74x8.00x9.461L20, than in EArlAr2-0.6-1.0-334635244.74x8.00x9.4a1.20-ber.
Also, all the other system properties should oc@gacording tosuch a more even density
distribution in a smilar way asfound in previous studies, e.gn section5.2.1 In fact, the
simulation result®elowwill confirm our expectations. Thuse are dealing with less pronounced
but therefor wider interfacial vatians of the different locabbservablesTake for instance the
abovementioned densities, the interatoraiforces, the normal stresses lateral to the interfaces, or
the local standard deviations (sEgure 42). We had toredetermine thdimits of the phases
accordingly.Their definition uses a combination of the locations and widths of the interfases,

explained in sectioA.3.5

In the Ar5Ar5 system, local obserdab, such as e.g. the densities, the normal stresses lateral to the
interfaces, or many local standard deviations, must be symmetrically distributed with respect to the
nearest interface. Such a distribution follows from the identical LJ parameter valudisef
interactions between like particles. The local observables actually exhibit this symmetry to a large
extent, when disregarding the statistical noise and the coarse spatial resolutiéig(sed?).

Minor asymmetries exist, however. They result presumably from fluctuations. Take for instance the
densities (sed-igure 42d). In particular, the phase averaged ralleand majority component
densities in the Ar rich phase exceed their values in the Arich phase. On the other hand, the
minority component densities are smallBnese asymmetries disappear, however, in systems with

a larger z-dimension(seeTable 8). Hence, we might béealing with a finite size effect here. It
manifests itselimore clearlyin the smallersystemE-Ar5Ar5-0.6-1.0-3346:35244.74x8.00x9.40

120 because its phases both have relatively #aimmensions. Ar is, however, somewhat more

abundantthan Ar and this sgregates int@a slightly wider phaseéWe shallneglect the only
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minor differences between both phadesreafterby considering them strictly identical. The
computed spatial averages (see Tah&$9 and23) incorporate their identitin the waydescribed
in sectiord.3.5

Most of the local observables differ onlytle in absolute termbetween both system# at all.
Thus, the kinetic contribution to the normal stresses is of the same magmtustgh the
heterophasic and the homophasystems(seeFigure 42f). A clearly more significant difference
exists, however, in thenteratomic contribution. Is value decreasesby more than 10MPa
throughout the entireomophasisystem. Such a shift is in agreementvitiesmaller LJG- and O
parametervalues of theAr5Ar5 mixture. They increase thenportanceof the repulsive pair
interactions for the behaviour of th&5Ar5 system. If the attractive interactiogere more
importantinstead the interatomic contribudn wouldincrease becausemore terms in its defining
equation(see sectiod.3.2 would be negativeVirtually no differencesan be recogeedbetween

both systems in terms of théircal temperatureand convelocities.

In analogy with the quasntensive observables themselves, their standard deviagi@smore
evenly distributed in the Ar5Ar5 system Moreover, they take almost identical values in both
phases. The previously established relationships leetwee local observables and their standard
deviations remain valid. As to the global observables {sdde 14), the energy and pressure
increasein the Ar5Ar5 systemTheir increase is in agreement with the higher relevanceeof t
repulsive pair interactions. We explained it above for the interatomic contribution to the normal
stresses. Thglobaltemperature has approximately theended120K while the heat flux lies close

to zero.
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5.3.2 Nonequilibrium One-Phase Systems

As explaned before, we reprodud¢he nonequilibrium behaviour of each phase separately in a, as
we call it, nonequilibrium onehase system. The two ones,-ANLAr2-0.6-1.0-679524-
4.74x8.00x9.40100-140 and NArlAr2-0.6-1.0-20-7091-4.74x8.00x9.40L00-140, for irstance,

each relate to a certain phase in the Ar1Ar2 equilibrium interfacial systéri,A2-0.6-1.0-3346
35244.74x8.00x9.461.20-ber. As seen in the previous section, both phases, which sidealty

be identical, strongly resemble each other in thaukition of theAr5Ar5 equilibrium interfacial
system.In its case, w wuld thus spare simulating two corresponding +egpuilibrium onephase
systemsA single one of their kind reproduces rather the nonequilibrium behaviour of both phases,
when taking ind account their symmetry with respect to the first and second component. As a
result,we shall use irthe discussion below the terms "majority” and "minority" component only.
The minority component is, for instance, Arin an Ar  rich phaseor Ar  inan Ar  rich one.

The component mentioned first in the notation of the nonequilibriurpbase systems will always

be the majority component, i.e. Ar in the present Ar5Ar5 systeml-Ar5Ar5-0.6-1.0-6744223
4.74x8.00x9.40100-140. We derived its particle numbers from the averaged partial densities over

both phases as explained in chagtér

The Ar5Ar5 nonequilibriumonephase system has, in comparison to the ArlAr2 ones, smalle
temperatures at theentresdetween the thermostated region$=@.0nm) but steeper temperatuye
gradients(see Figure 42b). Both differences result from the more dispanatagnitude of the
temperature jumps at the thermostated regions.nfdgnitudeat the hot regionis smaller in the
ArlAr2 systemswhile the one at the cold regig,mcomparableWe can tell so by extrapolating the
temperaturg-profiles from the investigation registo the boundary region3his greater disparity

is, however, still so small that it hardiyanifests itself also ithe other observables.

All nonequilibrium oneghase systeaiffeature linear variations of the densities about their system
averagegseeFigure 42a). The overall densities in th&r5Ar5 nonequilibriumonephase system
lie, in betweerthosein theprevious ArlAr2ones The minority component densities are larger and
the maprity component ones ammnaller We took particular interest in the spatial dependence of
the densities. Theiy-gradients are clearly steeper in #EbAr5 system. Nevertheless, it has the

weakest tendency teeparateas we can tell from the small Soefficient. Its smallness seems
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reasonable, keeping in mind the greater similarity between the LJ parameter values for the

interactions of like and unlike patrticles.

The interatomic particlg-forceson the majority and minority component particieghe Ar5Ar5
nonequilibrium onghase systerdiffer stronger(seeTable8) than in the ArlAr2 ones. This is in
agreement with the steeper partial dengityadients in the Ar5Ar5 systeand manifests itself also

in its increased valme y-forces. None of the systems exhibits a spatial dependence of the normal
stresses. They and their different contributions rather have similar magnitudes as in the
corresponding interfacial system. The local com velocities approximate their globadiyatoed

values of Om/s.

Table14 lists the global observabléar the systems studied hee mentioned already the greater
disparity between the temperature jungishe thermostated regiortkat exists in the ArSAr5
system As a result, its global temperature drgmmewhaimorethan that in the ArlAr2 systems
below theexpectable average systei@mperatureof 120K. Eventhough, the pressureof the
Ar5Ar5 system approximateble one inits corresponding equilibrium interfa¢iaystemmore than

is the case in the ArlAr2 systeniskewise, the energies differ less between the corresponding
Ar5Ar5 systems than betweéme corresponding ArlAr2 ones. This higher degree of approximation
is in agreement with the more alike particlembers(and compositiog) in the different Ar5Ar5
systems. Moreover, the interfacial variations of the lateral normal stresses are less pronounced in
the correspondingdr5Ar5 interfacial systemWe give inTable11 the thermal coductivities of the
different nonequilibrium onephase systemdiscussed hereThe one with theAr5Ar5 mixture
transfers heat the worst. There are no irregularities in the local or global standard deviations.
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5.3.3 Nonequilibrium Interfacial Systems

Theprevously describedhangedetween the two equilibrium interfacial systems,

E-Ar5Ar5-0.6-1.0-3346:3524-4.74x8.00x9.4€1.20
vs. E-Ar1Ar2-0.6-1.0-3346:3524-4.74x8.00x9.4aL.20-ber,

and between the twwonequilibriuminterfacial systems

N-Ars5Ar5-0.6-1.0-6744223-4.74x8.00x9.40.00-140
vs. N-Ar1Ar2-0.6-1.0-679524-4.74x8.00x9.40L00-140
and NAr1Ar2-0.6-1.0-20-7091-4.74x8.00x9.40.00-140,

occur, in a sort of, 'superimposed wdyalso between theiicorrespondingnonequilibrium

interfacial systeméseeFigure4?2),

N-Ar5Ar5-0.6-1.0-3346:35244.74x8.00x9.4dL00-140
vsS. NArlAr2-0.6-1.0-334635244.74x8.00x9.4aL00-140r1.

Thus,the Ar5Ar5 system features identidatal properties on both sides of an interfatéhe same
distance from itMoreover, the partial densities have a more even distributian out a more
uneven one ily-direction in the Ar5Ar5 system (s&égure42a). We shalldiscusghese findings in

more detail below.

To be able to understaride abovedescribedbehaviour, we must recall our thought experiment
from section 4.2.3 Convective transport was confirmed wboto be negligible in the
nonequilibrium interfacial systems. Hence, we can expect them to exhibit an intermediate density
distribution which reflects both their contradictory tendencies: to separatainection due to
thermal diffusion and to estabfislocal phase equilibria across the interfaces. The Ar5Ar5
nonequilibrium interfacial system, in fact, exhibits, as the ArlAr2 one before (see sedtidn

such an intermediate distribution. Its underlyingiiting cases, in which either the first or the
second tendency dominates, lie, however, much further apart. We can tell so already from the
mutual solubility's in each mixture. They depend in the Ar5Ar5 one much stronger than in the
ArlAr2 one on the tempature (sed-igure43). These data result from additional NVT simulations

of corresponding equilibrium interfacial systems at the applicable temperature and pressure levels.
Moreover, we found in the simulations of the correspogdionequilibrium onghase systems a

weaker thermal expansion and thermal diffusadrthe ArSAr5 mixture. Itthus seemsas if the
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wider spread between both limiting cases favours the thermocapillary effect: On the one hand, there
are the more intense fis (seeFigure42c). On the other hand, thereassteepey-gradient of the

nor mal stresses per pS/nseeEigutedn. It tefectsttHe tocalipressere f a c
gradient in the phasesde sectio.2.3 which relates to the counterflows thef@onsequently, a

more powerful thermocapillary effechust exist than in the ArlAr2 nonequilibrium interfacial
system We shall check below in the systems to come if the effect truly depends on the spread
between the limiting density distributions.

We see only slighguantitativedifferences between the temperatdistributionsin the systems
(seeFigure 42b). Neverthelessthese differences aneery interestingfrom a qualitative point of

view. Thus, the anomalous temperatuwreependence inhe ArlAr2 system disappears in the
Ar5Ar5 one. Instead, it exhibits constant temperatures and tempeyaijtaidients as function af

Such a behaviour is exactly as intended when we set up the homophasic systems. The unphysical
behaviour near the therntaged regins, e.g. the temperature jumgescribed in sectios.1.3

persists however or even slightly increases. As a result, somewhat lower temperagtiadsishat

the centres, i.e. af|£2.0nm, of the ASAr5 systenthanat the same locatian the ArlAr2system.

Other than thathe temperaturg-gradientsesemblégheir l-average in the heterophasic system (see
Table7). We shallreadily tradein subsequent studigke difficulties connected to the anomalous
temperature-dependence against such an increased temperature drop, especially since its bias on

the results remains rather limited.

Let us take anotmdook at the densitiefrigure 42a compares, for instance, specificatlyeir z-
profiles at y|=2.0nmin the nonequilibrium interfacial systemth those in the corresponding
equilibrium interfacialones The slightly greaterdifferencesin the case of the corresponding
Ar5Ar5 systemsresult, mainly from theaboveexplainedstrongerdisparity of the temperature
jumps at the thermostated regiomkese differences are, howewveegligible asin ArlAr2 systens
from the previous chaptera similarly close agreement exisédsoin many other observables or
their standard deviations (s&&gure 42) between the different Ar5Ar5 systemdence, we can
confidently proceed our studies of the homophasic interfacial systemparticular the results near

the thermostated regions must, of course, still be taken with care.

We give the global observablesTable14. The Ar5Ar5 nonequilibrium interfacial system exhibits

a larger disparity between themiperature jumps at the thermostated regions, as established above.
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It manifests itselfin a slightly smaller global temperature than in the ArlAr2 nonequilibrium
interfacial system. As a result, the pressure and energy differences between the corgpspondin
Ar5Ar5 systems increase somewhat compared to those between the corresponding ArlAr2 systems.
We established already in the equilibrium interfacial syst@®es sectio.3.]) the smaller system
pressures andnergiesin the Ar5Ar5than in the ArlAr2 mixture. Moreover, the Ar5Ar5 mixture
exhibited a smaller thermal conductivity in the nonequilibrium-pin@se systems (see section
5.3.2. Both trendoccursimilarly baween the corresponding nonequilibrium interfacial systems.
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5.4 Examination of the Parameters and Simplifications in the
Homophasic Systems

The Ar5Ar5 systems described in the previalapterserved additionally as a reference. We
manipulated them in adtnal simulations so as to study the influence of further system
parametersEach of the sections below discusses the response to another manipinlgiasticular

the response in the intensity of the thermocapillary convection will be aetiteeof our interest.

Go back to sectiod.2.3for different definitions of this intensity. We shall omit, for the sake of
brevity, other aspects of the system behavipautly or even completelyhat were also daussed in

the previous chaptersThus, the local standard deviations remain unmentioned. They vary in
agreement with their previously discussed relations but, as a result, provide no new insights into the

system behaviour. We carefully checked the omitte@miables, nevertheless.

The first £ction5.4.1below addressethe finite size effectsin order to study them, we expanded

the simulation system Concurrently, weadjused the particle numbers and thermostht
temperatures so as to keep its overall density, average temperature and temperatureTgradient.
results to be discussedll show that the intensity of the convection converges against an upper
limit when the system is expanded in one direction ondy, eithery or z. This limit depends
apparentlyon two factors. On the one hand, there is the interfacial character of the phenomenon.
Thus, the backflows, even if they are given more space (expansmdirigction), do not spread
arbitrarily deep intdhe phases. We are obviously dealing with a truly interfacial phenomenon. On
the other hand, there is the interference between the forward and the backflows which is particularly
strong at theentresof the roll cells. Its relevance decreases in compariedhe redirection of the

flows at the thermostated regions as we expand the system along the temperature gradignt, i.e. in
direction. Both factorsso it will turn outlater, keep, however, approximately their proportions if

we expand the system sintameously in both, i.ey- and z-, directions and maintain concurrently

the difference between the thermostated temperatures instead of the temperature gradient.

We shall look in the subsequent sections at the system response to manipulations of other
parametersThey have, different fronthe onegdiscussedefore a practical correspondence in a
experiment. Think, for instance, of the temperatures established by the thermostdisst We
redued the temperature gradierection5.4.2 discusesthe details of these reductions and how
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the system responds to thelts. flows will turn out to ben direct proportionaty with the slope of

the temperature gradienMoreover the influences of the average system terapres and
pressureswere studied We discuss the associated system responsedtion5.4.3 Generally
speaking, the flows will be found to increase with decreasing pressure; they are the strongest if the
temperatures remain somewhat below the line of the critical solution points. Finally, iee tiaar
interactions of unlike particles through the LoreB&rthelot mixing panme t e r 3 (see
5.4.4, smaller values (i.e. a smaller miscibility) leading to stronger flows. A qualitatively similar
trend exists in variations of the particle masses. Smaller, snethe discussions losV will show,

favour the convection (see sectibrt.5. Note, we studied the influence of changing the relative

mass ratio already in sectiér2.2

Each of theabove-mentioned parameter variations affect®f course,several hydrodynamic
material properties at a tinie a simulation |t is not easily possible to keegl of them constanas

usually postulated in phenomenological thermodynamics. Hence, we skdiie aretwhen we try

to isolate the influencef individual parametersn the thermocapillary convection. Nevertheless,
looking also at the variations of other observablasthe sections belowill give us some hints.

Thus, here is a second propeityadlition to the intensity of the convection, namely the interfacial
width, that responds as well strongly to timedificationsof the mixing parametes-(see section

5.4.4. Both propertieamight thus even beterrelated. Similarly, the intensity and the viscosity
seemto beinterrelated(see e.g. sectiob.4.5. These interrelations suggest an explanation for the
influence of the system temperature and pressure on the thermocapillary convection described
above. While the viscosity decreases in approaching the critical solution line, the interface widens.
Its widthincreases only very little remote from the critical line. Both variations, however, seem not
to be linear and may thus lead to a maximum in the intensityHigeee 4%). Hence, we shall
conclude that the convection intensifies with increasing temperature gradient and decreasing
viscosity or interfacial width. Such a behaviour would also be in agreement with experimental
results (see pa#).
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5.4.1 System Dimensions

Any simulation box that can be thought of for molecular simulatiomill always be small
compared to macroscopic dimensions. The assumption of periodic boundary conditisestisee

3.2, alleviates this only partly. Hence, 1 is important to checko what extent the system size
influencesthe computed observabldss influencemay be quite different fothe differentones of

them Thus, the finite size error in tisel-diffusion coefficient, for instance, decreases much slower
with increasing system size than that in many other observables [spangberg2003]. See also the
different publications by K. Binder et al. , e.g. [binder2000ijs of particular importance toheck

our nonequilibriumnterfacialsystemsalso for such effects

We increasd, with respect talifferent reference systemthe dimensions perpendiculdr, and

lateral, L,, to the interfaces. In doing so, we concurrently adplifte particle numberso as to
maintain the global system state. For the sake of simplicity, the system dimensi@smply
doubled in each change by joining two identical configurations of a smaller system. Subsequently, a
steadying simulation of 6 million time step&sconducted to obtain the new initial configuration

for the production runs. When extendingzidirection, we conducted an additional equilibration of

2 million time steps prior to the steadying. In this equilibratibie system was thermostated to

supercitical temperatures so that the steadying would result in two separate phases instead of four.

Let us begirby comparing the thermocapillary flows in the Ar5Ar5 reference syskedrSArs-
0.6-1.0-3346:35244.74x8.00x9.40100-140, and in those with the etended z-dimensions of
L,=18.8nm, NAr5Ar5-0.6-1.0-669270484.74x8.00x18.8L.00-140, and of_=37.6nm,N-Ar5Ar5-
0.61.0-13384140964.74x8.00x37.6.00-140. Figure 44a comparesthe vector plots of these
flows. Moreover, we extracted characteristic profiles of the com velocity componentsFigws,
44b shows they-velocities at the centres between the thermostated regyn.0nm and the
z-velocities at the thermostated region$sQ.4nm andy|=3.6nm as function ofz. Apparently, the
roll cells remain associated with the interfades their centres do not recefdem the interfaces to
the same degree that the system size incred$ess, they-velocity at the centres between the
interfaces is clearly reduced in the wider systepX8.8nm) and even becomes zero in the widest
one (=37.6nm). Such a behaviour canfis again that thdound convectionis indeed an

interfacial and not a bulk phenomenon.
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Let usalso compare the thermocapillary convection in systems with diffgrdintensions

N-Ar5Ar5-0.6-1.0-669270484.74x8.00x18.8115125
N-Ar5Ar5-0.6-1.0-1338414096-4.74x16.0x18.8110-130
and NAr5Ar5-0.6-1.0-26768281924.74x32.0x18.8100-140.

It makes sense in such a comparison to have the same tempgrgtadient in these systems.
(Note that ve shall study its separatenfluence thoroughlyater insection5.4.2) The ame with the
temperature difference @p ETy-Tc=10K, N-Ar5Ar5-0.6-1.0-669270484.74x8.0048.8-115125,

was used as thaeasis of comparisqrnere.As a result, & canextend they-dimension significathy

without having to increase the temperature difference above its level in previous simulations. Note
also that thez-dimension has twice itstandardlength. We thus preverd rearrangingof the
interfacesin other directions thaperpendicular to thg-axis. The ratio of lateral extensito the

width of the phases would otherwise become too unfavourable.

Figure45a compares the thermocapillary convectionddferenty-dimensionslt clearly increases

with increasing lengtlh,. Plotting the intensities of the convectionasinction of they-dimension
suggests that thegonvergetoward a limit(seeFigure45b). Such a convergendents at the role of

the fluid viscosity. The turnaround flows at the thermostated regions loose importance in systems
with largery-dimensions. Nevertheless, the convection does not incrgaseely (which it could

since we do not limit the amount of energy that tthermostatseed into and out of the system)
Thus, there must be a second mechanism, frictionsthats downthe thermocapillary effect. We

shall look at this mechanism iname detail in sectiob.5.2

In the expansions of thedimension above, we saw that a convection roll cell does not spread
without limitsinto the phasedt rather maintains approximately the same dimensian and as in
y-direction. See, for instancerigure 44. We compare here twexamplesof systemswith sucha

flow pattern.The second one of them,-Ar5Ar5-0.6-1.0-26768281924.74x16.0x37.61.00-140,

has, in comarison to the first one, MAr5Ar5-0.6-1.0-669270484.74x8.00x18.8.00-140, been

doubled (in the way explained abowe)boththey- andthe z-direction. The systems aréowever,

subject to the same temperature differencep@Ty-Tc=40K, now. We can thus try, with all due

care, to extrapolate to a situation where the system dimensions and the temperature gradients have
magnitudes more typical of "physical experimentsigure 46 showsthe convection in both

systems. The maximum velocity components (Bable 21) differ by a factor of less than 1.3. It
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might be even somewhat closer to unity, if we had compared larger sySikaysfeature an even
lower slowdownof the flows by the redirection at the thermostated regiondisasssed above for
the exclusive doublingf they-dimension It thusseems reasonable assumehat the velocities in

our simulations have roughly the same magnitudes as in typical eepésinsee sectidhl.l
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5.4.2 Temperature Difference

Using the defaultAr5Ar5 system N-Ar5Ar5-0.6-1.0-334635244.74x8.00x9.40100-140, as a
reference, we variedh additional simulationdboth thermostated terapturesso as to study
specifically the influence of their difference on the thermocapillary conveclionbe more
specific, the differences reduced from the default value@i=Ty-Tc=40K to values ofpl=20K in
N-Ar5Ar5-0.6-1.0-3346:35244.74x8.00x9.40110-130 andof gp E10K in N-Ar5Ar5-0.6-1.0-3346
35244.74x8.00x9.46115125. Figure 47a compares the comnaelocities obtained in the different
simulations. Moreover, wehowin Figure47b the intensity of the thermocapillary convectidinis
intensitycan be charactesed as explainegreviously in sectiod.2.3 by using the maximum com
y-velocities or the spml velocity correlation functionC. The someasurd intensity decreases
linearly with decreasing temperature differeng@. This confirms once again that our systems lie

within the scope of the linear response theory [kubo1957a], [kubo1957b].
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5.4.3 System Pressure and Temperature

The previous section addressed additional simulations of the Ar5Ar5 reference Sytstgnhave
different temperature differences between the thermostated regions but thihesaiobal system
state, i.e. the global pressure and temperature. We now look at simulations in which we maintained
the temperature difference but varied the global pressutéemperaturelhe pressure can only be
adjusted indirectly through other system constraigiisce our simulations are run, for reasons
explained in chapted.1l, under (NVT;T,)-conditions.To do so, we uskthe Ar5Ar5 reference
system as a starting poirt first, the thermostated temperaturesre set such that the intended
global temperature establishén a steadying simulation of 6 million time steps. Afterwards, if
necessary, we gradually adjedthe sysem x-dimensionL,, in further steadying simulations, each
of 4 million time steps, until the desired presswis reached. The thus obtained terminal system
configurationservedasa starting point for the actual production run. Since our variationsrage

to such a degree that no phase transitioc=ur, the pressure is an injective function of the
dimension, Ly, and the thermostated temperatur€s,and Ty. We vared specifically the x-
dimension in order noto affect the proportionsof the thermogaillary convectionvortices

Remember from sectich2that the system is homogeneous along this dimension.

Figure49a comparsthe trermocapillary convection in a first set of similar systems:

N-Ar5Ar5-0.6-1.0-3346:3524-4.74x8.00x9.4680-120,
N-Ar5Ar5-0.6-1.0-3346:35244.74x8.00x9.4€100-140,
N-Ar5Ar5-0.6-1.0-3346:35244.74x8.00x9.461.20-160.

Ther constraints differ only in terms of efaverageemperaturélc4=0.5(Tc+Ty). The higher it is,

the higheiis the global pressure (s@able24). We indicate these pressures and temperatures again
in Figure 48 in a cut of theAr5Ar5 PxT-diagram at the approximate system composition of
Xar a 0 .Flgure49 displays the intensities of the convectionadanction of the global pressure

or temperature. We dekd these intensities previously in secté.3 The convection clearly

strengtheawith decreasing global temperature and pressure.

In order to find out more about the isolated pressure dependence ohtleetean, we simulated

another set of systems:
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N-Ar5Ar5-0.6-1.0-3346:3524-4.50x8.00x9.40100-140,
N-Ar5Ar5-0.6-1.0-3346:35244.74x8.00x9.4€100-140,
N-Ar5Ar5-0.6-1.0-3346:35245.00«8.00x9.40100-140.

They differ only in thex-dimensions and thus the global pressures (seEigure 48). The
convection itensifieswith decreasing pressure (deigure49). Note that this pressure dependence
is stronger than in the set of sysgeabovethat have alifferent pressure and temperatuamge
Such a behaviour suggests thgiven constant pressurdsgher temperatures favoar stronger

convection.

We checkedhe abovesuggested influence of the temperature in another set of system

N-Ar5Ar5-0.6-1.0-3346:3524-4.39x8.00x9.4680-120,
N-Ar5Ar5-0.6-1.0-3346:3524-4.74x8.00x9.4dL00-140,
N-Ar5Ar5-0.6-1.0-3346:35245.22x8.00x9.40120-160.

Their x-dimensions were adjusted in the way described aBowbat all systems have the same
global pressure. These system states are also indicated RxThéiagram inFigure 48. Different
from our expectations, the thermocapillary convection weakemwever, for both the higher and
the lower temperaturgsee Figure49). Consequently, a certain intermediate temperature Ieadt
to the strongestlows. We can tell from the changes thatlies close tothe critical end point

temperature

To find out more about theegendence of this maximum, additional systems were simulated. One
of them, NAr5Ar5-0.61.0-334635244.44x8.00x9.4€100-140, has the same pressure

P4 7 6 . 6 ané the same temperature gradient a&rBiAr5-0.6-1.0-3346:35244.74x8.00x9.40
120-160, but at a lower temperature levielcomes with a slightly stronger convectiohnother
system, NArbAr5-0.6-1.0-334635245.46x8.00x9.46100-140, has the samn pressure

P4 1 3. 1ané the same temperature gradient a&rBiAr5-0.6-1.0-334635244.74x8.00x9.40
80-120, but at a higher temperature leviélcomes with a slightly weaker convectiddence, we

can assume the aboweentioned maximum of the convectiartensity decrease with decreasing
pressuresSince lowempressuresdditionally favour the convection, as seen above, we can assume
it to intensifyeven moren our systems if their global staescendsurtheralong thdiquid-liquid-

vapourthreephasdine.
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Note that the pressure and temperature dependence of the convectianh lsast at lower
temperatures,opposite to the oneof the viscosity of liquid Argon younglovel98p and,
presumably, also of our losoncentratiormixtures Both becomemoreviscousat higher pressures

and lower temperatures. In approaching the critical solution temperatures, the lower viscosities
presumably favour the convection too little to compensate fadeéheeasing spatial variati@t the

interfaces.
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5.4.4 LB Mixing Parameter

We manipulated in additional simulations of the A5Ar5 reference system the parameters that relate
directly to the substance€hapter5.3 addressed already the effect of such manipulatiortkan
comparisns of the ArLA2 with the Ar5Ar5 reference systems. It was the main purpose of these
manipulations however, to establish the better approximation of reality for symmetric interactions
between like particles. Here, we focus on the influgti the Ldparameter values haybased on

this symmetry. Thus, the LorerBerthelot mixing parameterwasvaried withinreasonabld&mits.

It specifies, as explained in sectidtl.2 the interatomic forces and potentials between unlike
particles based on those of like particles.

In addition to theAr5Ar5 reference systemN-Ar5Ar5-0.6-1.0-3346-35244.74x8.00x9.4a.00

140, similar systemswith the mixing parameter values &£0.5, NAr5Ar5-0.51.0-3346:3524
4.74x8.00x9.40100-140, and of3=0.7, NAr5Ar5-0.7-1.0-3346:35244.74x8.00x9.4€100-140,
were simulatedFigure 50a compares the thermocapillary convection for the different parameter
values.Smaller values, i.e. essentially higher miscibilities, lead to weaker fill@show inFigure

50b their intensitiesas defined previously in sectidn2.3 Theirresponse correlagavith thatto the
variation of the global pressures and temperatoess the line otfhe critical solution pointqsee
section 5.4.3. The closerthe system state lies to thime, the weaker is the occurring
thermocapillay convection A similar béhaviour appliesn the present systems except that the line
of critical solution points nowmainly shifts in comparison to the system pressures and
temperaturesvhen we manipulate the mixing paramewgeFigure51). We estimatedhe solution
pointsin the way described ipart 11 by using the virial equation of state. Althouttey are only
rough estimates, they exhibit the correct qualitatiebaviour.The larger the distance is between
the state of a given system and its applicable critical lihe strongelis the thermocapillary

convection.
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5.4.5 Particle Masses

Remember from sectioh.2.2 that the static observables in an equilibrium system should remain
unaffected by manipulatienof the particle masse€hanges that occur nevertheless in such a
simulation could rather be considered as a means to assess its deviation fromWeafibtyind

hadly any differences between the static observables in the heterophasic interfacial systems with
the different masses of the ArB particles. The dynamic observables, on the other hand, depend on
the particle massWe could see their dependence clearlytle differences between the

corresponding nonequilibrium systems.

Our thermostats have difficultiesn handling spatially variable conductivitiealong the
thermostated regionsee sectio®.2.2. Hence, ve manpulated additionally thenassesgenerally
calledmaa andma.g, of both particles simultaneousiy the homophasic nonequilibrium interfacial
and its corresponding systen#fs explained in sectiod.1.2 the sechanged particles have new
names, namely Aré with a mass mofs=3.995amu in the systeml-Ar6Ar6-0.6-1.0-33463524
4.74x8.00x9.40100-140, and Ar7 with a mass afis,7=399.5amu irthe systemN-Ar7Ar7-0.6-1.0-
334635244.74x8.00x9.40100-140. Both exhibit a qualitatively similar thermocapillary
convection as the Ar5Ar5 reference systemAfSAr5-0.6-1.0-3346-35244.74x8.00x9.40L00- 140
(seeFigure52a). The quatitative differencegurn out however,more interesting than one might
expect at firstsight They help us distinguish the static from the dynamic aspects in the system

behaviour without having to think of the different properties of the phases.

Let us take a look at select derivational properties in the systems. While the intensity (defined in
section4.2.3 of the convection (seigure52b) and the themal conductivity decrease (sé&able

21) with increasing mass, the viscosity increases. We can estimate it from the maghitode

local com velocity standard deviations, as explained in se6tth@ Other properties, thaelate to

the thermocapillary convection in the previous studies, differ only within the numerical accuracy of
the results. In particular the Soret coefficieirtsthe phasesardly exhibit any differencetsee

Table 21). Thus, all three systems feature a similar balance between the conflicting tendencies
discussed in our thought experiment (see secti@, namely toseparaten y-directionand to
establish local equilibria across the interfaces. Moreoverytpadient of the normal stresses

perpendicular to the interfaceS,, has approximately the same value in the three systsees
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Table22). It is a measuredr the strength of thelriving forcebehind theconvectionas explained in
sectiors 5.1.3 In other wordsthereis thepossibility that the thermocapillary convection, although
it has the same driving forceccurs with different intensities in a systemepending on the
viscosity. Verification of this result as a general rule in other systems would diknegardinghe
viscosity in the research into the thermocapillary effeEtnally, the global pressuresné

temperatures hardly respond to the changes of the particle masdegise83).
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5.5 Advanced Studies of the Homophasic System Behaviour

Here, we return for a more detailed analysis to some of the ArSA@nsystescribed aboveirst,

we shalllook at thelocal particle densities and their spatial distributiseesection5.5.1). It will

turn out to be as postulated in our thought experiment from secidh3 in between the
distribution to expect from the corresponding equilibrium interfacial systems and the one to expect
from the corresponding nonequilibrium epkase systems. The densities at the centres between the
thermostated regions artose to the ones the corresponding equilibrium interfacial system.
Away from the interfaces, the densities approximate the ones in the corresponding nonequilibrium
onephase system. Different particle specific motions accomgas density distribution.

We will then show by looking at the distribution of selected stress tensor elements that our systems
behave in agreement with hydrodynamisge sectiorb.5.2. Thus, a pressure glant, i.e. a
gradient of the normal stresses, drives the back flows away from the interfaces, while friction, i.e. a
gradient of the shear stresses, keeps the convection from increasing infinitely. In the interfacial
regions, the situation is, howeversseclear. Gradients of the normal stresses or of the shear stresses

might act as driving force or as a limiting factor of the convection.
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5.5.1 Analysis of the Spatial Density Distribution

Let us first review what is known abotite density distributions ira nonequilibrium interfacial
system in more detail. As we saw, for instanch@Ar5ArS5 reference system from chapte8, the
densities vary sigmoidally im-direction, i.e. in going from one phase to thkeot(sed~igure54a),

and linearly along the-direction, i.e. along the temperature gradient (Segire 54b). These
variations reflect the competing tendencies that our thought experiment from sé@iGn
postulates in the system. We estindattee density distributions to expect if either the firsttloe
second tendency dominatd$e estimation of both limiting cases will be described in detail below.
Moreover, we shall comparthem to the original density distribution, that we computed in
simulations of selected Ar5Ar5 nonequilibrium interfacialsteyns, in order to confirm this

postulate.

Remember from the studiesthepreviouschapterghat the dominant transport mechanisms are the
molecular ones in our systems and not convection. Hence, we can assume it to have little effect on
the local thermadynamic statesgnsteadthree intensive variables specdgcording to Gibbs's phase

rule [gibbs1875], [findlayl951unambiguously a local state in a phasea.both partial densities

and the temperaturesSince the different density distributions to mpare below involve
approximately the same pressures and temperatures, we can simply tell the identity of the local
states from that of the local densities. For the sake of simplicity,tbesedensitiesshallthusalso

be considered idetail inthe sulsequent studies.

When one approaches the interface from the bk téndency of thaonequilibriuminterfacial

systems to establish local equilibria between both neighbouring phases becomes more and more
apparent. It manifests itself in the sigmoidandity z-profiles which resemble those ima
equilibrium interfacial system.This similarity is quantitative at the centres between the
thermostated regian(see Figure 54c). We additionally computed a-profile of the spatially
averagedlensityy-gradients in the investigation regiofseeFigure54d). Linear regressi®of the

density data at everg-location - section4.3.5 describes them in more detailproduce these
gradients.They provide, if only approximately, another impression of the interfacial heterogeneity.
Note theirz-shapednterfacial variationi.e. theyvary between limiting values of different sig in

both phases and overshaobetween them.
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Thermal diffusion (LudwigSoret effect [ludwigl856], [soretl879], [soretl881], [eilert1914])
dominates away from the interfacéd/e can tell so fronthe convergence of the local system
behaviour against the one in the correspondimgequilibriumonephase system. Take for instance
the partial density-gradients. They tend to approach in the phases of the nonequilibrium interfacial
system N-Ar5Ar5-0.6-1.0-334635244.74x8.00x9.40100-140 the limiting values of

Q ma/ y8-0.7Inm*, a el Y90.060m™, found inits corresponding nonequilibrium oipase

system,
N-Ar5Ar5-0.6-1.0-67442234.74x8.00x9.4a1.00-140,

remote from the interfacgseeFigure54d). Thelocally computed formaboret coefficients shoa
similar convergencdehaviour Figure 54f shows them as function e the distangal, from the

Gibbs dividing surfaced he convergencbecomes even mowgearin the longer systems

N-Ar5Ar5-0.6-1.0-669270484.74x8.00x18.8100-140,
and NAr5Ar5-0.6-1.0-13381-140964.74x8.00x37.6.00-140,

that havethe samecorrespondingnonequilibrium onghase system as-Ar5Ar5-0.6-1.0-3346
35244.74x8.00x9.40100-140. Its partial density ygradients and Soret coefficksrareassumed in
the phases of the longest systéerhus, the spatial averagé the local coefficient in the regions
outside the roll cells produces a valueSpt-0.01K™. It differs only little from the one in the
nonequilibrium onephase syster§=-0.014K™. The minor difference between both values might
be due to the slight ovgaturation in the nonequilibrium ompdase system (see further below) and

the somewhat lower pressures in the nonequilibrium interfacial systemalsieR4).

Comparison to the Constructed Local Equilibrium Density Distribution

As a check, we constructed the density distribution to expettteémonequilibrium interfacial
system N-Ar5Ar5-0.6-1.0-334635244.74x8.00x9.40L00-140, according to the considerations
above The density z-profiles were computed in several simulatioois equilibrium interfacial

systems

E-Ar5Ar5-0.6-1.0-3346-:35244.74x8.00x8.74100,
E-Ar5Ar5-0.6-1.0-334635244.74x8.00x9.04110,
E-Ar5Ar5-0.6-1.0-33463524-4.74x8.00x8.74120,
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E-Ar5Ar5-0.6-1.0-3346-:35244.74x8.00x9.83L30,
andE-Ar5Ar5-0.6-1.0-3346:3524-4.74x8.00x10.4140,

at different temperatures and pressucesnparable to the ones in the reguilibrium systemWe
estimated thg-locations at which these temperatures are found in the nonequilibrium systems and
assumed the densigyprofiles of the egilibrium interfacial systems at these locatiqeseFigure

55). In doing so, the profiles had to be realigned separately for each interface by shifting them in
direction until thez-locations of the Gibbs dividg surfaces coincidd@Ve then resampled the thus
obtained density distribution by linear interpolation of each shiftptbfile and recomputed the
density data at commoncoordinatesFigure 56a shows such a&onstructeddistribution for the

Ar5Ar5 reference systemsan example.

Let us have a look ahe densityz-profile at the centres between the thermostated regions, i.e.
ly|=2.0nmhere It strongly resemblesgs already statedhe onein the corresponding equilibrium
interfacial systenof the sametemperatureThe constructed density distributi¢gseeFigure 56b)

also agees very well, which shows that our linear interpolation scheme does not introduce any bias
When one approaches the thermostated regiooth, the original and the constructed density
distribution start to differ. We can sdweetr differences particulaylwell by comparinghe densityy-
profiles in the phasegsee Figure 56c). The partial density profiles are clearly steeper in the
constructed distributionWe addtionally computedy-gradients fromthe constructed profileby

linear regression, as describi@dsection4.3.5 Theyexhibit steeper density-gradientsalsoin the
interfacial regiongseeFigure56d). Hence, our thought experiment from sectbd.3is confirmed

in that thelocal phase equilibria can generahot establif along the interface.

The distribution of the temperatures was also discussed before in chapt€hey vary linearly
between the thermostated regions. An additiarddpendence cannot be established amgrimothe
homophasic systems. Nevertheless, the temperature jumps continue to exist at the thermostated
regions. These jumps turned out, however, in chd&plidao be often too small to disturb the system
behavour significantly. The same holds also for the systems considered in the present chapter.
Hence, we do not go further in into the temperature jumps here. Similarhglthaty distribution

shall only be described, if necessary to make a point.
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Comparison to theDensity Distribution in the Nonequilibrium One-Phase System

We also simulated the corresponding nonequilibrium-mgrese system, Hr5Ar5-0.6-1.0-6744
2234.74x8.00x9.40L00-140. It reproduces the nonequilibrium behaviour of the phases saparat
from each other, as explained in chapte We canuse the thus obtained density distribution as
another standard, in addition to the com velocities, to judge how far the influence from the
interfaces sprats into the phase&igure56d comparegshe densityy-profilesin the corresponding
nonequilibrium onghase system to those in thieases of theonequilibriuminterfacial reference
system, NAr5Ar5-0.6-1.0-334635244.74x8.00x9.4A100-140. Its somewhat steeper profiles
indicate thatthe phaseseven as far away as (computationally) possible fromGiidos dividing
surface (see sectiod.3.5, do notyet exhibit full bulk propertiesReal bulk properties exist only
outside the convection roll cells, as seen in the expanded syst&nsAxb-0.6-1.0-1338414096
4.74x8.00x37.6100-140 from section5.4.1 The depth ofthe influence of an interface into the
phases can thus be estimated ftbedensityy-gradientdo be about 5.0 nm (or roughly 15 particle
diameters) under these thermodynamic conditiditss distance is more thawite the one of
2.0nm (or roughly 6 particle diameter§eyond which the densities afwithin our uncertainties)
constant functions af (seeFigure 60). Apparently, there is a couplifgetween theonvection in

the nonequilibrium interfacial system and the deviation of its dedgtyibutionfrom that in the
corresponding nonequilibrium oipdhase system. We shall study this coupling in more detail further

below using the particle specific streaming velocities.

Let us, however, firstook athow the segregation of the substances due to the thermal diffusion
varies inan interfacial region. Since its local stateannotexist in a separate "bulk" phase, it is
difficult to determine the@xactstrength of tis segegation We estimated it at least by extrapolating

its concentration dependence from outside the miscibility gapFigeee57). To do so, a series of

nonequilibrium onghase systems was simulated:

N-Ar5Ar5-0.6-1.0-696+~0-4.71x8.00x9.46100-140,
N-Ar5Ar5-0.6-1.0-6917+50-4.71x8.00x9.40100-140,
N-Ar5Ar5-0.6-1.0-6867100-4.72x8.00x9.40100-140,
N-Ar5Ar5-0.6-1.0-6817%150-4.73x8.00x9.40100-140,
andN-Ar5Ar5-0.6-1.0-6767+200-4.74x8.00x9.40.00-140
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All of them have tk same temperature constraints as wejt asmdz-dimensionsas the systenN-
Ar5Ar5-0.6-1.0-67442234.74x8.00x9.4AL00-140. The relative concentrations were however
varied We adjustedhe x-dimension in the steadying of each system until its pressu@led the
one of thenonequilibriuminterfacial systemThen followed a additionalsteadying simulatioif
another 6 million time steps.h€ thus obtained configuratisfinally servedas starting poirtfor

production rus of 15 million time steps.

The densityy-gradients inany oneof the abovementioned systems asdwayssteeper than ithe
other onesvith a smaller mole fractigrxa, , of the majority componenEigure58 plots the slope

of these gradientas function of the composition of the different systems. We see -dinean
dependence. It islearlyincreased in the oversaturated nonequilibrium-pim@se systemsigure

58 additionallyshows for comparisorhé binodal curve that we determined in several simulations
of equilibrium interfacial system#ccording to it,a segregation of thmixtureinto separatgphass
occurs forcompositiondetweerxa, =0.02 andxa, =0.98 given the pressures and temperatures in
the onephase system&Ve neglect here thadditional error in them due to the thermostating, e.g.
the temperate jumps of different magnitudes at the thermostated regions and the thus slightly
reduced average system temperaturée. Soret coefficientindicatedas well inFigure58, shows,

by tendency, a similar concentration dependence as the slope of the ggmnadients. Theedata
may be subjectot larger uncertaintiesince their computation involves several observables.
Nevertheless, we caaffirm thatthe Soret coefficient remains at first on a level of approximately
Si=-0.5%* with decreasing mole fraction and then clearly decreases aséspzasw the binodal

curve.

The concentration dependence of yhgradients and of the Soret coefficient in the 4eguilibrium
onephase systems in keeping with the observations made in the nonequilibrium interfacial
systens. Their interfacial composons lie as well inside the "equilibrium" miscibility gap of the
mixture. We would thus expect steeper dengityradients in the interfacial regions than in the
phases. This is what is founskeeFigure54d. We have described theshaped interfacial variation

of the densityy-gradientsalready abovén more detailHence, itsoccurrencenakes not only sense

in the light of the density distribution to expect from teated equilibrium interfacial systems but

also in the light of the concentration dependence of the thermal diffusion.
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Relative Motion of Both Substances

Let us first notefor the sake of clarityhat "diffusion” may have different meanings in irresible
thermodynamics and statistical mechanics. We take the term here as a spatially and temporally
averaged particle velocity with respect to the inertial sysRegular and thermal diffusion cancel

each other in a stationanonequilibriumonephase syem The traditional Ludwig-Soret effect
[ludwigl1856], [soret1879], [soret1881], [eilert191ednforms tothis cancellation. Imeans, more
precisely, that the net fluxes of thdferentsubstances are zero. We verifiedapgplicability again

in ouronephase systemsy determining théocally averagedoarticle com velocitiefor each kind

(see sectiod.3.2. We shall denote them hereafter as particle specific, for the sake of simplicity.
Figure 59 showsthese velocitiesas an example irthe system,N-Ar5Ar5-0.6-1.0-6744223
4.74x8.00x9.40100-140. The absence of any identifiable convection pattéonseither kind of

paticle is confirmed.

The nonequilibrium interfacial systems exhibit, however, different particle specific com velocities.
In fact, hey alwayshavesimilar distribuions. For the sake of brevity, we thus discuss only one set
of themhere, usings an exaple the system NAr5Ar5-0.6-1.0-13384140964.74x8.00:87.6-100-

140. Figure 59 shows a plot ofte local velocities as functierof y and z. Since the exact
numeical resultsare difficult to determine in such vector plots, Bigure59% shows moreover the
different velocity componentas function ofz only. When assessinthe relative motion of the
particles iny-direction, wefocusspecificallyon thecentresbetween the thermostated regipons.
ly|=2.0nm in the present examkeeFigure60). Some of the highestvelocitiesoccur there, so

that any particle specificdifference can be clearly identifieth addition, Figure 60 shows once
again the overall com velocities and the three regimesl in the discussion beloiwhese regions

are defined with respect to the locations of the roll c#ghin each region we spatially averajge

the overally-velocities and those of the majority and minority componésgsTable34). Thethus
obtainedaverages give a clearer picture of the relative motion in the system. Finally, we also
consideedthe local densities and densipgradients, shown as well Figure60. They are known

to control the relative motiomf the particlesin agreement withFick's first law of (regular)
diffusion [fick1855]. We have shown above in the nonequilibrium-gimese systembow its

constant of proportionality (the diffusion coefficient) depeodsheir composition.
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In the regionoutsidethe roll cellsboth particle specific velocities gras expected at the beginning
of this section,approximatelyzero (see Table 34): the partial densities and theygradients
resemble those in the cosmonding nonequilibrium onephase systemin approaching the
interfacial regions, the partial densipygradients steepeiThis typically entaik strongerdiffusion
according to Fick's law. The local composition, on the other hand, haadbs acrosghe regions
of thebackward flove. Accordingly, regular diffusion dominates there, so,tirakeeping with the
y-gradientsthe majority component flows faster than the minority (see=as well inTable 34).

Both flows must haveoppositedirectionsbecause of thdifferent signs of the gradients.

Closer to the Gibbs dividing surfades. in the region of the forward fleywe cannot telb priori

from the densities and their gradients whigipe (regular or thermia of diffusion dominates.
Regular diffusiorshouldweaken in agreement with the flattenypgradients, but we do not know
about the thermal diffusion. As mentioned befdine, local composition in the interfacial region can
hardly be reproduced in noneljorium onephase system$levertheless, regular diffusion seems
to remaindominant since both particle specific velocities differ in agreement with the partial
densityy-gradients, i.e. the majority component flows slower than the minority comp(sesas

well in Table34). If regular diffusion remains dominarthe thermabne mustbe weake as well.

We can tell so from the Soret coefficiemthich is also defined as the thermal diffusion coefficient
divided bythe molecular diffusion coefficienapproachingeroright at the Gibbs dividing surface
(see e.g.Figure 54f) where equimolar local compositions occllr.is problematic from ta
irreversible point of view ifsome ofthe phenomenological coefficients maybe due to their
coupling, also the molecular diffusion or the heat conduction coefficiedecrease because the
determinant of the phenomenological coefficients may eventaasyime undefined values. A
solution might be, to postulatenew transport mechanism that comes into action in the interfacial
region, instead. This mechanism is then apparently a convective one, as it has been for instance
predicted by Hampe [1980].
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5.5.2 Analysis of the Local Stresses

As explained in sectiog.2, a flow is said, from a hydrodynamic point of view, to be driven by
"local stresses". Each of these stresses is thought to act, as force per umh amee,of three
mutually perpendicular cut surfaces of a small volume of liquid. In a fluid phase, one typically
associates the normal stresses (diagonal elements of the stress tensor) with local pressures and th
shear stresses (efiagonal elements) witfriction (see chapte2.2). Frictional forces and those

from the spatial variation of the pressure muatcordingto the NavierStokes equation
[spurk1996], [landau2003]cancel each other in a free flow @M Reynolds numbers. In our
interfacial systems, from a microscopic point of view, the situation is less clearshale
neverthelessliscuss belovin how far these macroscopic concepts can be transferred to our present
MD simulationapproach.The flows inour interfacial systems hawes well only small Reynolds
numbers, asnentionedfor instance in secti@b.1.3or 5.3.3 Hence, no local forces should apply

on a fluid element. We cannot, however, interpret the components of these forces as sketched
above. Thus, any local pressure is, if at all, only ambiguously defined due to the anisotropy of the
normal stresses at an interface. Moreover, shear stresses couldypdsegéthe thermocapillary
convection by a mechanism similar to the one in thermal ofs=p sectior?.3.1). For a better
understanding of the thermocapillary effect in these terms, we determined the kessésin our

homophasic nonequilibrium interfacial systems.

A suitable spatial resolution had to be found first. We chose it by trial and error as described in
section4.3.4 Sinceall our nonrequilibrium intefacial systems feature similar stress distributions,

we shall discuss them here only once, using the syste#r5Ar5-0.6-1.0-33463524
4.74x8.00x9.40100-140 as an exampl&igure 61 shows the different normal e8ses as function

of y andz. They resembleat first sight, the one in an equilibrium interfacial system. Thus, in going
from one phase to the other, the normal stresses perpendicular to the interfaces remain constant
while the ones parallel to them exiila minimum. All normal stresses assume identical values

sufficiently away from the interfaces.

In the nonequilibrium interfacial systems, however, we see an addiyedependence of the
normal stresses. It is particularly strong in the interfacgibres. There, the lateral normal stresses,

Sy, decrease when moving toward the hot region. Further away from the interfaces, in the regions
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of the backward flows, the same stresses slightly increase. We plot, for instanegratdent of
the normal sessesS,, again as function af in Figure 62. Note in particular that thigradient
represents also a locgiforce. To understand why, waust remember sectior2.2 where we

rewrote the local volume force disergenceof the stress tensor:

af, g &US,, /IX+ S, /1y +1S,, /2
f=od, 6=DE=apS, /IX+US,, /Wy + 1S, /1z0. (5-2)
&, 9 SUS,. /WX + KS,, /1y + 1S, /12 2

Visualise from this definition the spatial dependence of the abueationedy-forces. They always
point in the same direction as the local flows, i.e. from hot to cold in the interfacial regions and the

other way around further away from them.

In addition to they-gradient of thdateral normal stresseS,y, the z-gradient of theshear stresses,
Sy, represents local y-force. These shear stressedscrease with mithe regions of thbackward
flows andincrease in the interfacial regiofseeFigure61c). Such avariationrepresats, according
to equation(5-2), y-forces thatlways act so as to retard the roll céliée showalsotheinteratomic
and kinetic contributiongo the shear stress&s Figure 61c. Apparently, theindividual particle
motion hardly contributes to thretardation of the roll cells.

There must bedue to the small Reynolds numbers in our systantglance between tlyeforces

from the normabtressesS,y, and tlosefrom the shear stresse&3,. We checkdthis by looking at
selected spatial averages of trgradients.At first, all y-forcesfrom the normal stressesere
spatially averagedn doing so, we distinguigld several regions accard to the sign of thesg
forces.Figure62 compares the thus obtained averages in the different regions with the actual data.
Then, we estimatkthe z-gradients by linear regression of the spatially averaged stresses in

the same regions. As expected, yhgradients of the normal stresses have approximately the same
absolute values as ttregradients of the shear stresses, but an opposite(stgfigure 62). An

even better agreement can be achieved by bringing the widths and the spatial resolution of the
differently oriented cut surfaces to a better matéls. a result, we obtain e.g. values of
O 69.55pN/nn vs. OF Ge6PN/NnT in the one and ofO§ G9.52pN/nm vs.

og A& 59N/nn? in the other interfacial regiorThe differences lie well within the numerical

accuracy of our methods.
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We take the applicability of the Navi&tokesequation as a confirmation of the approximation of
reality by our systemsThe interpretation of thenicroscopicsystem behaviour in terms of this
macroscopic model provides, however, no new insights into the thermocapillary effect itself. Let us
muse some more about the reasons before we go on with furtfesultsin the next chapter.
Although the contribution from the normal stress8s, always points in the-direction of the

flows, it would be prematuré consider them as the "driving force" behime thermocapillary
convection.t may just as well be the consequencéehefshear stresses,,, that come as welhto
existence when we establish a temperature gradient in an initially equilibrium interfacial system.
Cause and effect are hard to distiigdp in our stationarfNEMD simulations.Nondationary ones
would be more appropriate but are still subject to research. We therefore omit them here.
Nevertheless, we would like to add that the perpendicular normal str8ssasght provide a hint

to the puzzle.

In the phases, the lateral normal stresSgsand Sy, have the same values as the perpendicular
normal stressess,, They remain approximately #iese levels also in the interfacial regidese
Figure 61a). Only a minorz-dependence can be recagpd When approaching an interface, the
perpendiculanormal stresse&,, slightly decrease at the hot and increase at the cold thermostated
region.They thusproducea contibution to thez-forces here that always acts so as to retard the roll
cells. It must, in turn, be cancelled by-gradient of the shear stressgs, Otherwise, thesum of
thelocal forces would not be zero as required above. For the sake of bvexitig no check this
explicitly. Instead, we would like to call the attention to the different roles ohdineal stresses.

On one handhey promote via Sy as function ofy, and on the other hantheyretard viai.e. S; as
function ofz, the roll cels. The inverse applies to the shear stresSgsaindS,y. Such a dichotomy

can be seen as an argumagainst the normal stresses driving the thermocapillary convection. We
would then expect them to decrease all along the flows in the phases, as dulggekte stream
filament theory or the theory of potential flows [spurk1996], for instance. Both theories spply
our opinionat least approximatelyo the outermost regions of a roll cell where friction plays only a

minor role.

Concluding this sectig we would like to underline again the similarity of the stidissributionin
all our systems. lappliesas well tothe expanded systemBom section5.4.], evenif they have
regionswithout flows. Thus, theshear stresses§, for instance, increase approximately linearly
from one interfacial region to the other one in the systétAr5Ar5-0.6-1.0-1338414096
4.74x8.00x37.6100-140 (sedrigure63). Nevertheless, conggon ceasebetween theniseeFigure

5-184



44). This deviation fromthe oftenlinear relationbetweenvelocity gradients and shear stresses
might indicate that we are dealing with an instabilitgre The z-gradientof these shear stresdsss
of course, balanced lay-gr adi ent of t IS¢ Yagain mal stresses, O
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5.6 Thermocapillary Convection in the Unary Inferfacial Systems

We considered succinctly, as a complement to our main studidgse dijuid-liquid interfaces
above, a few other one3he comparisondelow will yield interesting resultsThus similar
interfacial flows occuralsoin liquid-vapour and solidiquid systems. They were simulateding
the samecodeas the liquidiquid ones beforeWe shall not discuss in detail how far thessv
systems can beoasidered to be realistic, e.g. in teraighe ratiobetweerthe mean free path in the
gas phase and the system dimensions @aerms ofthe assumed linear wall potentials, but look
only for common characteristics. Thus, the flows at lidigdid and lquid-gas interfaces, for
instance, point typically in the same direction, i.e. from hot to dad.will then comparethe
conditions in the different systems to identifie common properties that might drive the interfacial

flows.

Two important similatieswill come to mind when comparing a nonequilibrium ligligplid and a
liquid-vapour systen{see sectiorb.6.1). On one hand, therare in direction of the temperature
gradient (they-direction in our systs), density gradients for the majority and minority
components. On the other hand, the interfacial partieldsa force which, on the average, tends to
drag them into the liquid phase at liqwgds interfaces or into the one where they constitute the

mgority at liquid-liquid interfaces.

The similarities between liquitiquid and liquidvapourinterfaces exist also in comparison to solid

fluid interfaces with, as we call it here, inverse thermal creep. It runs, as the thermocapillary
convection, from &t to cold. Beforggoing go to the results, we shall first distinguish here regular
and inverted thermal creep again to prevent misunderstandings, s@dqraniore detailsSolid-

fluid interfaces involve a soalled wall potential which describes the interactions between the
particlesin the adjacent phases is typically attractiverepulsive so that an adsorption layer forms.
Then, creep flows, typically directed from cold to hot, occur in a lateral tempermgradient. J.C.
Maxwell explained thenm the case of solidlilute gas interfaces. His explanation uses the diffusive

part in the reflection atheincident gas particlesn the adsorption laydsee sectio.3.7).
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Wold et al.[wold1999 simulated thermal creep at higher fluid phase densities. They make it hard
to distinguish the adsorption layer. Nevertheless, the results clearlyhshoits diffusive character

rather retard the flows than drimg them at such densities. Different from the autharsther
simulations described so far, an additional one uses a purely repulsive wall potential. As a result,
the creep inverts. This inverted creep could be related to the thermocapillary convection found at

liquid-fluid interfaces, which are at the focus of our work.

To be able to study thavertedcreep flows in more detail, we reproduced them in a simpler-solid
fluid system than the one used by Wold et al. (see se&itod. We will seein it the same relation
between the density-gradient and the comgvelocity as in our liquidiquid and liquidvapour
systems. The interfacial mean forces per particiehe solidfluid system, they includthe internal
interactions among the particles as well as the repulsive external interactions with thareallso
similarly distributed at the three differemtterfaces Given ths similarity we shall assume a
relationship All these flows have a common underlying esff which continues to be called
"thermocapillary" here. Since particularly the occurrence of the inverted thermal creep depends on
the type of the wall potential, wéhen studiedts influence on the convection in more detail. It

respondsardly to our maipulations of the force field.

If we make the repulsive wall permeable, however, and aliowaddition to therepulsive
interactions withit, interactionswith another liquid phasen the other sidethe flows weaken
clearly (see sectio®.6.3). Such a setup strongly resembles in many aspects the previously studied
binary liquidliquid systems. Wesubsequenthappied, apart from the repulsivpermeablewall,

also other external force fields. If they are atitive instead of repulsive the thermocapillary
convection invertslt can even cross the "interfaces" if we apply a force field that always drags the
particles away from the origin of the coordinate syst#&liough such systems may lack a physical
exampe, they show clear relatiob®tween the mean forces per particle, be they externally affected
or purelyseltimposedby the formation of two distinct phases, the density distribution and the
interfacial flows. Further research into them should, in ouniopj focus on these relations on the
molecular level. There is possibly even a wato describe them analyticallywe found
thermocapillary convection even in 2D MD simulations of binary ligigdid interfaceqseepart

12). Thus, one dimension could likely be omitted, which would simplify such an analytical

approach. For the sake of brevity, we do not go into the details of 2D simulations here.
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5.6.1 Liquid-Vapour Interfaces

We simulatediquid-vapour nonequilibum interfacial systems in addition to our ligtiduid ones.

Both have a great deal in common, which may tell us about the local conditions for the occurrence
of the thermocapillary effecBince thdiquid-vapour interfaces arrange, likee liquid-liquid ones,

So as to mininsetheir surface area, see ajsart11, we could to a large extent reuse our simulation
setup from chaptet.1 In order to keep the simulah system simple, only particles thfetype Ar5

were considered. We placed 8192 of them arbitrarily inside a periodic cell of the dimensions
4.74x8.0x70.0nm and simulated until a single liquid phase had occurred. Afterwards, we ran further
steadying simiations of another six million time step80(ns) to verify its stability and finally
production simulations of fifteen million time step&{s). In doing so, temperatures=110K

and Ty=130K, which lie well between the triple point and critical pdarnperatures of Ar5 (see
Table3), were maintained in the thermostated regions. This system shall be designated, on the basis
of our previously introduced notatigisee chapted.l), as NAr5-1.0-81924.74x8.00x70.6010-

130.

We analysedhe abovementioned unary ligenépoursystemalmost in the same way as described

for thebinary liquidliquid ones beforé¢seechapter4.3). In particular, the spatial resolution of the
subvolumes was keplt has proveradequatén our previousstudies othe flows in liquid phase®f
comparable densityA subvolume in the gaghase contains, however, on the average less than one
particle when using this resolutiorSince we arehowever,not interested in the gas phase, we
refrain here from the statistical analysis which allowed us to find a suitable resolution (see section
4.3.4. We rather "worked around the problem to keep program changes at a minimuine
determination of macroscopic flows is anyhow impossible in the gas phase due to the adverse ratio
between the mean free path, which is according to the kinetic theory of gases [kennard1938]
approximately on the order of 3nm at the average system pressure and temperature, and the system
dimensions. In order to avoid divisions by zero in the simulation code, we detérrdifierent

from our previous studies, only observabtesthe fly in a simlation, whose definition does not
contain the local particle number in the denomindtmtead, lheir extensive counterpamsgeretime
averaged first, e.g. the kinetic energy in lieu of the temperature, the momentum in lieu of the com
velocity, etc. Afte a simulation, we compulehe intensive observables from the time averages of

the extensive counterparts and the particle number. This procedure has already proven useful for the
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mean forces per particle in the ligtiduid systemgqsee sectio®.1.]). It does, however, not work
for the standard deviations. We thus continued to compute thetmedly. Their resultwill be

shown as "F", ithecomputation involved a division by zero.

Figure 64a shows the densities found in the ligddpournonequilibrium interfacial system. We

can clearly see the transition from the (only partially displayed) gas phase to theiheld. The
interfacial regions seem to exhibit higher heat transport rates that manifest themselves in the flatter
temperatureg/-gradients(seeFigure 64b). This manifestationresults as explained in sectidn?2.2

from theunspecific allocation formula of our thermostaitthough the local conditions differ from

those in the previously studied ligdiduid systems, té liquid phase and its adjacent regions
exhibit a similar convection patterf:runs from hot to cold along the interfaces and the other way
round away from therfseeFigure64c). The flows spread deeper into, or even slightly beyond, the
interfacial regions, for two main reasons: On one hand, a sradtiere separates the phases from
each other (seEigure 64d,e). On the other hand, the gas phase has no sizeable opposing roll cell
that could confine the one of the liquid phase. We shall thus assume that we are dehling wit
something very similar tathermocapillary convection here. Spatially variable rates of evaporation
and condensation likely superimpose onto it, but were not determined. They exist at a very small
pressure decrease from the cold to the hot thermostgexh (sed-igure64f). We shall check the
similarity of the flows additionally in the so far unconsidered slidjdid systems.

For the sake of completes® we briefly comment on the results of two other simulated lquid
vapour systems, dr5-1.0-81924.74x8.00x70.0120-140 and NAr5-1.0-81924.74x8.00x70.0
130-:150. They differ from the one above only in terms of the thermostated temperatures. The
preparabnal and production simulations as well as their analysis were conducted in exactly the
same way. There is a diminishing of the flows. It comes with wider but weaker interfacial density
variations. The mean forces per particle decrease accordingly. Alleofbove changes are in
agreement with those found in ligdiduid systems for the increase of the average system

temperaturéseeFigure65).
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5.6.2 Solid-Fluid Interfaces

Wold et al. {vold1999 found invered thermal creep flows at sofiliiid interfaces with a purely
repulsive wall potentia{see chapteb.6). We reproduced such flows, which strongly resemble the
thermocapillary convection at liguicdquid and Iguid-gas interfaces, in a different simplified
system. It reuses to a large extent the simulation setup of our-ligp@ur systems from the
preceding section. We additionally confththe particle movement im-direction by applying an
additionalforce, 91, on the particleslt increases linearlyvith a slope ofsy; beyond a certain
distance z, from the origin (se€igure66). Both the onset and thecreaseof this forcemust be
chosenso asto reproduceessentially insurmountable walls. Particles that "collide™ with them are

specularly reflected.

We positionedN=6870 Ar5 particlesrbitrarily in between two such walls with a distance of 9.4nm

i.e. zn=%4.7nm The external force increases withslapeof s= LOpN/nm which is roughly as

steep as the maximum slopé the internal particle forcen the Ar5Ar5 liquid-liquid reference
system, N-Ar5Ar5-0.6-1.0-334635244.74x8.00x9.46100-140, from chapter 5.4 The sytem
dimensions were 4.74x8.890.0hm, of whichthe last one was simply chosen large enough to avoid
particle interactions across the periodic boundawés.include all thainderlyingparameter values
above as in previouscases,into a brief denominatiorof the simulation N-Ar5-1.0-6870
4.74x8.00%60.0-100-140ff1~4.70~1 1 (Bince the total number of particles and their accessible
volume also resemble those in the abowentionedAr5Ar5 reference system, we can expect
similar densities. They are much higher than in the studies by Wold .e¥va.willingly chose,
different from them, a very simple spatial dependence of the external force to explore the general
validity of theirfindings. Theproduction run include&5 million time steps (75ns). It continues a
steadying simulation of 6 million time steps (30ns) which cordil that our nonequilibrium sotid

liquid system had assumed a stationary stAte.analysedhe results in almost the same way as
explained for our liquidiquid systems. The large fluctuations, that likely occur due to the low
densities at the walls, conwath divisions by zero. We thus procesbhs described in the section
above Moreover, we consider and display the values of the observables only for subvolumes that
contain, on the average, at least one partit@eticularlythe z-velocity components tel themselves

for judging the intensity of the convection since they have their maxima remote from the interfaces.

5-190



Figure 67a shows the densities in thnequlibrium solid-fluid system.We can clearly see that
they decrease at the repulsive wallse additionalinteractiors with them manifesthemselveslso

in the mean forces per partidlgeeeFigure67d,e). The onesin z-direction, for instanceancrease at
first more stronglybeforeassuming dinear variationremote from the liquid phas®espite our
simplifications, i.e. the linearly increasing external forces and the "specular" wall collisaons,
inverse creep occurs as in the studies by Wold €se&Figure 67c). Its occurrencecan thus be
considered confirmed for a broader range of situations. The flows run, like in our other interfacial
systems before, from hot to caldthe region with the steeper dengptgradients and the other way
round where theyra flatter. We shall thus assume that, due to the similarity incihrevection
patternandits underlying local conditionghat all these flows are related to each other,they
result from a common effecho matter what type ahterface. We shall edinue to call them

"thermocapillary" Figure67b shows, for the sake of completeness, the temperature distribution.

We verifiedup to herghat the thermal creep can invad function of the particlevall interactions.
Its details are still unknowrSome sorbf "transitioninterval”, should exist, howevem whichonly
slight changes to the partieleall interactions result in this inversioh.is also unknown to what
extent they affect the creep flows remote from such a transition refjibeiter understanding of
their dependency could even help understand the role of the mean forces d#tuiquiterfaces.
Hence, we systematically varied in additional simulationthetolid-liquid system from above the
slope of the external force$he results will show thahe smaller it isthe more the creep flows
intensifyto our surpris€seeFigure68). Theirintensificationcontradcts, at first sight, our previous
findings at liquidfluid interfaces.They involved e.g. in sections.4.4 or 5.6.1 a more intense
convection, the wider the interia@nd thus the stronger the mean force per particle is.

The unexpectedesponseof the convectiorto our manipulations othe external force fieldff"

might alsobe causeddy thedifferent volume accessible to the particlRemember hodoweringit
favoured more intense flowsn previous studies(see sectiorb.4.1). Hence, ve attempted to
compensate forthis in additional simulations by readjus the systemx-dimension Such
manipulations should nalisturbthe flows since iextends alonghe rotationaxis of the roll cells.

We determined suitable dimensions xrdirection by adjusting them iteratively isuccessive
preparational simulationsntil the liquid bulk phaséad approximately the same particlensiéy as

in the Ar5Ar5 nonequilibrium liquidliquid system.Each preparational simulatiomas 6 million

time steps (30ndpng while the subsequent production simulations covered 15 million time steps

(75ns). The solidfluid interfacial system responds, gjéte these compensations, in the same
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gualitative way as without them (s€egure 68). We thus consider the found promotive influence,

that a slower increase of the external forces trashe convection as a phgal fact.

Note, in additiorto the dependence on the slope of the external force field, also the generally much
higher intensity of the flowgéseeTable30). It exists even if we additionally adjust tk@&imension

of the solidliquid system such that its liquid phase has approximately the same density as n liquid
fluid systems with a liquid phase of similar size. Compare, for instance the systems

N-Ar5Ar5-0.6-1.0-669270484.74x8.00x18.8.00-140
and NAr5-1.0-68704.18x8.00x9.0-100140f f 1 ~4 ..70~17 10

Apparently, not the stronger spatial variation at a liflud! interface thus favours the flows. They
rather have a maximum in the absence of particle exchanges between both phases andilaecrease
stronger they are. Hence, nseees were taken to allow for some exchange in further studies. We
simply divided an unary liquid phase into two by applying a suitable external force field. As a
result, the setup has concurrently some features of the previously studied binanjidigdid

systems. See the next section for more details.

If smaller interfacial forces fawm stronger flows, as seen in the sdlad systems above, then
why are the flows at wide liquitiquid interfaces weaker than at thin ones, as established for
instancen sectiors 5.2.10r 5.4.4 The answer is likely that the exchange of particles between both
liquid phases decelerates the flows. This would also explain why iherenuch more itense
convectionin our solid-fluid systems, which lack such an exchartban in any of the liquidiquid

systems simulated by (seeTable30). Take for instance, the liquiiquid system
N-Ar5Ar5-0.6-1.0-669270484.74x8.004.8.8-100-140.

Each of its liquid phases has approximately the same dimensions as the one in tfeidolid
system, NAr5-1.0-68704.18x8.00x50.aL00-140f f 1 ~ 4 . MMoreovet the interfacial widths

are comparabléNevertheless, the convectiontire phaes of the liquidiquid systemis only a fifth

as intense as in the liquid phase of the silil system.Hence, we took measures to allow for
some exchange in further studies. We simply dide unary liquid phase into two by applying a
suitable extmal force field. As a result, the setup has concurrently some features of the previously

studied binary liquidiquid systems. See the next section for more details.
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5.6.3 Liquid Phases Separated by an External Force

As indicated in the previous section, docuslies onthe effective interaction between two adjacent
fluid phases, which comprises also the exchange of particles betweenSbem interactions
turned out tadecelerate the flowsm comparisorto arelatedsolid-fluid system with specular wall
reflections(see sectiorb.6.2. To studyin more detailthe role of tis interaction we designed a
system of a pure liquid that separatednto two phasesy "interfacial regions!" In them,a local
external brce g9, acts oneach particleParticles that entame of these regionsceither side are
driven back into the direction where they came from. Neverthelesfritesis weak enough that
someparticlesmanage to pass. We maniputhiis strength totsidy the role of theffectiveparticle

interactionbetween both phases.

Figure69 plots the spatial variation of the external force. Its absaatmponent has an absolute
maximum ofg,=10pN atz=+2.0nm ad decreases on its both sides omatistance of 1.0nm to

zero, i.e3x,=0pN atz,=+1.0nm and at,,=t3.0nm. We simply custoisedthe solidliquid system

from the previous section accordingly. Thus, théimension was reduced back to a length of
9.4nmin order to maintain the liquid density. All other parameter values remained. We even
conducted the preparational and production simulations as well as the analysis of the results in
exactly the same way.he name of the system includes, as in previogeg;dts parameter values,

i.e. N-Ar5-1.0-68704.74x8.00x9.4AL00-140-ff2~1.0~3.0~10, to help distyuish it from other

ones

We show inFigure70athe densit distribution.A cleardepletionexistswhere the external forde
nonzera It contributes together with the interatomic forces to the meandesdin Figure70d,e.
Figure 70b shows the temperature distributiofhe convection(see Figure 70c) is only half as
intense as in theomparablesolid-liquid systems from sectiob6.2(seeTable30). It weakens even

more,if we reduce the slope of tleaternal forcgseeFigure71),

N-Ar5-1.0-68704.74x8.00x9.40100-140-ff2~1.0~3.0~1
and NAr5-1.0-68704.74x8.00x9.46100-140-ff2~1.0~3.0~100

Transferring thesdindings to liquidliquid interfaces, we suspect that the effective interaction

between both phases, which comprises also the exchange of particles, must retard the
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thermocapillary convection. Thisteractionincreases with decreasing variation of thieifacial
mean forces. As a result, we find weaKeuvs at wider interfacesThe interactionbetween both
phase<ould also explain ouresultsin section5.2.2 They are orthe ArlAr2 interfacial systems
with altered ArB particle mas3®Vithin each of them, both phasé&srned out taexhibit a convection

of approximately the same intensity although their viscosity differs strongly.

For the sake of completeness, the flows in taaditional systems withdifferent spatial
dependenciesf the external force shall be considered here. Having studied the influence of a
repulsive external force above, we now use an attractivesgnéis spatialz-dependences almost
asthat of 9, above except that the sign has chan(gegFigure 72). Figure 73a shows how the
particles accumulatehere the external forae non-zeroin the system

N-Ar5-1.0-68704.74x8.00x9.4aL00-140-ff3~1.0~3.0~10

This force superimposg with the interatomic one to vyield the distribution Figure 73e.
Concurrently, there is an inversion of tbenvectioncompared to th@bovesimulatiors with g,
(seeFigure73c). It now resemblethe "regulat thermal creep found by Wold et al. [wold1999] at
attractiverepulsive wallsThe previously described rélan between the densifygradients and the

com y-velocities remains valid, although we are dealing with inverted flows now. They still run
from hot to cold where the lower, here next to the interfaces, and the other way round where the

higher, here righat the centre of the interfaces, dengiyradients exist.

The fact, thathe abovementionedrelation is valid both in regular and inverted interfacial flows
hints at an important role of the density distribution for a general descriptidheof We
demonstrated already in sectiérb.1 that an"intermediaté density distribution appears in the
nonequilibrium liquidliquid systems. It lies between the one expected from corresponding
nonequilibrium onghaseand equilibrium interfacial systems. All deviations from sthetwo
limiting distributionsmay be unstable states that leadthe interfacial convectionFigure 73b

shows the temperature distribution. The intensity increases the steeper the slope of the force field is

N-Ar5-1.0-68704.74x8.00x9.40100-140-ff3~1.0~3.0~1
and NAr5-1.0-68704.74x8.00x9.4a100-140-ff3~1.0~3.0~100,

as seen previously in the simudeis with g, (see Figure 74). This behaviour suggests new
approaches to study tliteermocapillaryeffect. We shall come badio them at the end of this

section.
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In addition to the purely repulsive and attractes¢ernalforces before, we implemented a mixture
of both referred to a%y. Its z-component increasaa absolute terms as well frotme lower,
zp=11.0nm, andhe upper,z,,=+3.0nm, boundaries to an extreme valuggfE1pN, at thecentre
between them. Thdirection of the force is, however, such thaalivays drives the particles away
from the originof the coordinate systefseeFigure75). One could thus considerighforce either

as attractive with respect to tfthin) phasedocated at therigin or as repulsive with respect to the
other (dense)phase Figure 76a shows the resulting density distributionthe system MNAr5-1.0-
68704.74x8.00x9.4A100-140-ff4~1.0~3.0~1 We can clearly distinguish the phases on the
different sides of thé&nterfaces” The convection now crosses them, i.e. it runs from hot to cold in
the phasdocatedat the origin and the other way rouimdthe other phase (séggure76c). Such
flows appear ratheunusualat first sight, but their direction still remaing the previously
described wayrelatel to the relative magnitude of the densipgradients.For the sake of

completeness, we show the distributions of the temperatures and foFegsrai/6b,d,e.

In our opinion, further research into interfacial flows should focus strongly on the relations between
the different microscopic observahlefake, for instance, the above one between the density
gradients and the flow directiohere is still little known about the stability of the density
distributions and their response to forces, be they external as aflgidlidr intrinsic as at liqud-

fluid interfaces
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