
Computer Science
Department
Technische Universität
Darmstadt
SIM

Iterative Synthesis of Extremal
Fields for Near-Optimal
Feedback Control of Robotic
Systems
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Genehmigte Dissertation von Christoph Zelch aus Darmstadt
Tag der Einreichung: 7. Februar 2024, Tag der Prüfung: 18. März 2024

1. Gutachten: Prof. Dr. Oskar von Stryk
2. Gutachten: Prof. Bruce A Conway, Ph.D. (University of Illinois Urbana-Champaign)
Darmstadt, Technische Universität Darmstadt

Iterative Synthesis of Extremal Fields for Near-Optimal Feedback Control of Robotic
Systems

Accepted doctoral thesis by Christoph Zelch

Date of submission: 7. Februar 2024
Date of thesis defense: 18. März 2024

Darmstadt, Technische Universität Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-275778
URL: http://tuprints.ulb.tu-darmstadt.de/27577
Jahr der Veröffentlichung auf TUprints: 2024

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/
This work is licensed under a Creative Commons License:
Attribution–ShareAlike 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/

http://tuprints.ulb.tu-darmstadt.de/27577
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Abstract

Optimal control of robots, vehicles, or industrial plants is essential, as it can provide much
better, e.g., faster or more energy efficient, operation of these systems than hand-crafted
control policies. Optimal control theory and (numerical) methods allow the computation of
control sequences for high-dimensional dynamic systems by mathematically defining high-
level goals. It is based on mathematical nonlinear dynamics models of such systems, which
are often available in high quality for robots and vehicles, typically based on first principles
of physics (white-box approaches). However, if the computed sequence of optimal actions
is applied to a real robot, the system’s states will eventually deviate from the precomputed
trajectory due to inevitable model inaccuracies or unforeseen perturbations. This motivates
the search for a nonlinear feedback controller that provides optimal control values not
only on an optimal path but in real-time for arbitrary system states, which allows the
controlled system to proceed optimally, even in case of disturbances.

Explicit formulations of optimal feedback controllers only exist for certain systems, e.g.,
with linear dynamics and quadratic cost functions, but not for general robots with nonlinear
system dynamics. In contrast to white-box approaches based on explicit mathematical
models of system dynamics, machine learning approaches based on data-driven black-
box models can learn optimal feedback control policies for more general optimal control
problems with nonlinear systems. However, they crucially depend on the training scenarios
to collect large amounts of data and cannot generalize well beyond these, while white-box
approaches are often also useful in scenarios that have not been encountered before.

The main motivation for this thesis is to investigate the combination of white-box optimal
control approaches and black-box machine learning to benefit from the advantages of
both concepts. The focus is on the extremal field approach, where a near-optimal feedback
control policy is learned from a set of optimal reference trajectories, the extremal field. It
uses the advantages of machine learning approaches and, at the same time, leverages the
capabilities of available numerical optimal control solvers that allow the incorporation of
knowledge about the problem structure and the consideration of nonlinear constraints.

iii

In this work, the reference trajectories are computed iteratively from carefully selected
start states to use the information provided by previously computed trajectories and the
current feedback control policy approximation.

Because of the curse of dimensionality, it is challenging to cover high-dimensional joint
spaces with sufficient training data, which makes it necessary to focus on small subspaces
relevant to a specific task. To address the problem of simultaneously sufficient and
efficient coverage of a relevant part of the joint space, three complementing start state
selection strategies for the computation of the extremal field are developed. They utilize
information from the optimal control solver, from already computed optimal trajectories
and uncertainty information provided by the current approximation of the feedback policy.
Further, a switch-over to a proportional-integral (PI) controller in the vicinity of a goal
state is proposed to stabilize the system around this state without the need for large
amounts of training data in this area.

The interpolation between the optimal trajectories to fit the feedback control policy is
an essential part of the extremal field approach. It imposes specific requirements on the
approximation methods formulated in this work. Two ubiquitous function approximation
methods, Gaussian processes and artificial neural networks, are compared and analyzed
regarding their suitability for the approximation of optimal feedback control policies with
respect to these requirements.

The quality of the feedback control approximation in the extremal field approach can be
degraded if data frommultiple different solution clusters is merged since the approximation
methodmay directly interpolate between different solutions and, thus, blur their structures.
Current trajectory clustering approaches capable of addressing this problem are often
learning-based or use pointwise Euclidean distances between two trajectories. A rule-
based trajectory clustering approach is developed, which is based on the extraction of
characteristic features from motion trajectories’ graphs to create a compressed trajectory
representation. This representation can be used in an existing string kernel-based distance
measure.

The proposed methods are evaluated on different robot models with nonlinear dynamics
in simulation (including a detailed nonlinear dynamics model of an industrial robot arm)
and physical experiments (Furuta pendulum arm).

iv

Zusammenfassung

Die optimale Steuerung von Robotern, Fahrzeugen oder industriellen Anlagen ist von
entscheidender Bedeutung, da sie einen besseren, z.B. energieefizienteren oder schnelle-
ren, Betrieb dieser Systeme erlaubt, als mit manuell erstellten Kontrollstrategien möglich
ist. Die Theorie und numerischen Methoden der optimalen Steuerungen erlauben die
Berechnung von Steuersignalen für hochdimensionale dynamische Systeme auf Grundla-
ge mathematisch definierter, allgemeiner Zielvorgaben. Sie basiert auf mathematischen
Modellen der nichtlinearen Systemdynamiken, welche in vielen Fällen in hoher Qualität
für Roboter und Fahrzeuge verfügbar sind und üblicherweise auf den Gesetzen der Techni-
schen Mechanik, insbesondere der Mehrkörperdynamik, beruhen (White-Box-Verfahren).
Werden die berechneten optimalen Steuersignale jedoch auf realen Systemen ausgeführt,
so führen Modell-Ungenauigkeiten oder unvorhergesehene Störungen von außen über
kurz oder lang zu Abweichungen von der vorausberechneten Zustandstrajektorie. Dies
motiviert die Suche nach einem optimalen Regler, der optimale Steuerungen nicht nur
auf einem vorausberechneten Pfad oder einer Trajektorie des Systemzustands, sondern in
Echtzeit für beliebige Systemzustände berechnet, sodass das geregelte System sich auch
bei Störungen optimal verhält.

Explizite Formulierungen optimaler Regler existieren nur für bestimmte Systeme, wie
solchen mit linearer Dynamik und quadratischer Gütefunktion, aber nicht für beliebige
Roboter mit typischerweise nichtlinearen Systemdynamiken. Im Gegensatz zu White-
Box-Ansätzen, die auf expliziten mathematischen Modellen der Systemdynamik beruhen,
basieren Verfahren des maschinellen Lernens auf datengestützten Black-Box-Modellen und
können optimale Regler für allgemeinere Probleme mit nichtlinearen Systemdynamiken
bestimmen. Allerdings hängen diese stark von den verwendeten Trainings-Szenarien ab,
in welchen große Mengen an Trainingsdaten gesammelt werden. Sie können über diese
Szenarien hinaus jedoch nicht gut verallgemeinern. White-Box-Ansätze hingegen sind oft
auch in neuen Szenarien sehr gut anwendbar.

v

Die Hauptmotivation dieser Dissertation ist die Untersuchung der Kombination von White-
Box-Verfahren basierend auf der Theorie und Numerik optimaler Steuerungen und Black-
Box-Verfahren des maschinellen Lernens, um von den Vorteilen beider Verfahren zu
profitieren. Der Schwerpunkt liegt dabei auf dem Extremalfeld-Ansatz, bei welchem ein
annähernd optimaler Regler aus einer Reihe optimaler Referenztrajektorien gelernt wird.
Es nutzt die Vorteile maschineller Lernverfahren und gleichzeitig die Fähigkeit numeri-
scher Optimalsteuerungslöser, Vorwissen über die Problemstruktur bei der Berechnung der
optimalen Lösung zu berücksichtigen und nichtlineare Nebenbedingungen zu beachten.
In dieser Arbeit werden die Referenztrajektorien iterativ von sorgfältig ausgewählten
Startzuständen berechnet, um bei der Wahl eines Startzustands Informationen von bereits
berechneten Trajektorien und dem aktuellen Modell der optimalen Regelung berücksichti-
gen zu können.

Wegen des Fluchs der Dimensionalität (curse of dimensionality) ist es sehr schwierig,
die hochdimensionalen Zustandsräume der Gelenkwinkel eines Roboters mit Trainings-
daten vollständig abzudecken, woraus die Notwendigkeit erwächst, sich auf kleinere
Teilräume zu konzentrieren, welche für eine bestimmte Aufgabe relevant sind. Um das
Problem, einen problemrelevanten Bereich des Gelenkwinkel-Raumes ausreichend und
gleichzeitig effizient mit Daten abzudecken, zu adressieren, werden drei sich ergänzende
Strategien zur Auswahl neuer Startzustände entwickelt. Diese verwenden Informationen
von den numerischen Optimalsteuerungslösern, von bereits berechneten Trajektorien und
Unsicherheits-Schätzungen, die zur aktuellen Approximation des Reglers verfügbar sind.
Ferner wird der Ansatz vorgestellt, den gelernten Regler auf einen Proportional-Integral
(PI)-Regler umzuschalten, sobald der Systemzustand in die Nähe des Zielzustands kommt,
um das dynamische System um den Zielzustand zu stabilisieren, ohne diesen Bereich mit
vielen Trainingsdaten abdecken zu müssen.

Die Interpolation zwischen den optimalen Trajektorien zur Anpassung an die Regler ist ein
wesentlicher Bestandteil des Extremalfeld-Ansatzes. Sie stellt spezifische Anforderungen
an die Approximationsverfahren, welche in dieser Arbeit formuliert werden. Zwei gängige
Methoden zur Funktionsapproximation, Gauß-Prozesse und künstliche neuronale Netze,
werden hinsichtlich ihrer Eignung für die Approximation von optimalen Reglern auf
Grundlage dieser Anforderungen verglichen und analysiert.

Die Qualität der Approximation des optimalen Reglers im Extremalfeld-Ansatz kann sich
verschlechtern, wenn Daten aus mehreren unterschiedlichen Lösungsclustern zusammen-
geführt werden, da die Approximationsmethode zwischen diesen verschiedenen Lösungen
mit unterschiedlichen Strukturen direkt interpolieren und diese dadurch verwischen
kann. Derzeitige Ansätze zum Clustern von Trajektorien, die zur Lösung dieses Problems

vi

verwendet werden können, basieren oft auf Lernverfahren oder verwenden punktweise
euklidische Abstände zwischen zwei Trajektorien. Es wird ein regel-basierter Ansatz zum
Clustern von Trajektorien entwickelt, der darauf beruht, charakteristische Merkmale aus
den Graphen der Bewegungs-Trajektorien zu extrahieren, um daraus eine komprimier-
te Repräsentation der Trajektorie zu erstellen, welche dann in einem Distanzmaß für
Zeichenketten verwendet werden kann.

Die vorgeschlagenen Methoden werden an verschiedenen Robotermodellen mit nichtlinea-
rer Dynamik in Simulationen (einschließlich eines detaillierten nichtlinearen Dynamikmo-
dells eines Industrieroboterarms) und physikalischen Experimenten (Furuta-Pendelarm)
evaluiert.

vii

Acknowledgment

This thesis has been written during my time as a research assistant at the Simulation,
Systems Optimization and Robotics Group (SIM) at the Department of Computer Science
of the Technical University of Darmstadt.

The path to the present thesis was long and I would like to take this opportunity to thank
everyone who accompanied and supported me along this way and made all the valuable
experiences, insights, and impressions possible.

I deeply thank Prof. Dr. Oskar von Stryk for the opportunity to work in his team and do
scientific work under his supervision. I would like to thank him for his scientific guidance
and advice over the years, for his extremely helpful and constructive feedback on my work,
and for his continuous support. I am very grateful for his patience and encouragement.
Furthermore, I wish to express my gratitude to Prof. Dr. Jan Peters and acknowledge
his supervision and guidance. I would like to thank him for his repeated valuable advice
that helped me progress and for the impetus he provided at multiple occasions. Finally,
I am very grateful to Prof. Bruce A Conway, Ph.D., for agreeing to become my second
referee. I thank him for his interest in my work, his friendly and encouraging feedback,
his valuable suggestions during the final phase of my research, and his detailed comments
on the submitted version of the thesis, which helped me improve the present work.

I had the pleasure of working in a great team and would like to thank all my colleagues
for the exciting time together at SIM, for the enlightening discussions and the scientific
exchange. In particular, I want to thank Dr. Jérôme Kirchhoff for all the scientific advice
and discussions, for his competent feedback and his encouragement. I want to express my
gratitude to the IAS department for the opportunity to work in their laboratory to use
their Furuta pendulum for my experiments. In particular, I would like to thank Dr. Fabio
Muratore, who helped me getting started with the Furuta pendulum.

I would like to warmly thank Jeremy for all the discussions about machine learning and
robotics, for sharing his experience with me, and his feedback on my ideas and thoughts.

ix

Further, I am extremely grateful to my sister Ines for all her support and help. I would like
to thank her for all the invaluable discussions, for her detailed and constructive feedback,
and for proofreading large parts of this thesis.

Most of all, I wish to deeply thank my parents for all their enormous support, motivation
and their repeated encouragement that helped me continue step by step. Without their
constant moral support, I could not have finished this work.

x

Contents

List of Figures xvi

List of Tables xvii

List of Abbreviations xix

1. Introduction 1
1.1. Contribution . 3
1.2. Outline . 5

2. Optimal Control and Optimal Feedback Control 7
2.1. Problem Statement . 7

2.1.1. Numerical Methods for Trajectory Optimization 9
2.1.2. The Hamilton-Jacobi-Bellman Equation and LQR 10
2.1.3. Optimal Feedback Control . 11

2.2. Overview of Related Approaches to the Optimal Feedback Control Problem 12
2.2.1. Approaches based on the Hamilton-Jacobi-Bellman Equation 13
2.2.2. Power Series Approaches . 13
2.2.3. Compensation of Local Disturbances 14
2.2.4. Differential Dynamic Programming and Related Approaches 15
2.2.5. Approaches based on Reinforcement Learning 17
2.2.6. Model Predictive Control . 19

3. Synthesis of Extremal Field: An Iterative Approach 21
3.1. Related Work on the Iterative Extremal Field Approach 22
3.2. Successive Optimal Trajectory Generation and Approximation of a Near-

Optimal Policy . 27
3.2.1. Computation of Optimal Trajectories 28
3.2.2. Discretization of Trajectories for Training Data Extraction 29

xi

3.2.3. Selection of Start States for New Optimal Trajectories 30
3.2.4. Learning Near-Optimal Feedback Control Policies from Optimal

Trajectories . 32
3.2.5. Additional Samples around the Goal State 35

3.3. Evaluation . 35
3.3.1. Feedback Control of the Weakly Actuated Pendulum 35
3.3.2. Feedback Control of the Manutec R3 Robot Arm 39
3.3.3. Comparison with Naive Random Sampling 41

3.4. Discussion and Conclusion . 43

4. Complementing Start State Selection Methods and Explicit Goal State Handling 47
4.1. Extensions for the Iterative Extremal Field Approach 48

4.1.1. Complementing Strategies for Start State Selection 48
4.1.2. Filtering of the Training Data . 53
4.1.3. PI Control near the Goal State . 54

4.2. Evaluation . 56
4.2.1. Performance of the Start State Selection Strategies 56
4.2.2. Evaluation of the PI Control near the Goal State 67
4.2.3. Perturbed Dynamics and Exogenous Perturbations 69

4.3. Discussion and Conclusion . 77

5. Comparison of Approximate Policy Representations 81
5.1. Related Work on Approximate Policy Representations 83
5.2. Comparative Study Approach . 85

5.2.1. Selection of Function Approximators 85
5.2.2. The Steps for Evaluation and Comparison 86
5.2.3. The Dynamic Models . 87
5.2.4. The Furuta Pendulum Optimal Control Problem 88
5.2.5. Construction of the Data . 90

5.3. Performance Evaluation and Comparison 92
5.3.1. Accuracy of the Control Approximations 92
5.3.2. Local Online Gaussian Processes 96
5.3.3. Runtime Performance of the Control Approximations 97

5.4. Experiments on the Quanser Furuta Pendulum 98
5.5. Training Data using the Complementing Start State Selection Methods . . 101
5.6. Discussion and Conclusion . 101

xii

6. Identification of Solution Clusters 105
6.1. Related Work on Trajectory Clustering . 106
6.2. Description of the Feature-Based Trajectory Distance Measure 108

6.2.1. Step 1: Construction of Sequence-Based Representation 109
6.2.2. Step 2: Distance Metric for Feature Sequences 115
6.2.3. Step 3: Application of Hierarchical Clustering 118

6.3. Evaluation . 118
6.3.1. Clustering of Furuta Pendulum Motion Plans 119
6.3.2. Clustering of Manutec r3 Arm Motion Plans 125
6.3.3. Clustering of a Real-world Human Motion Dataset 128
6.3.4. Evaluation of Efforts and Runtime 133

6.4. Experiments on the Effect of Mixed Clusters on Learned Control Policies . 133
6.5. Discussion and Conclusion . 136

7. Conclusion 139
7.1. Contribution . 139
7.2. Directions for Further Work . 143

A. Appendix 145
A.1. The Gaussian Process Kernel Functions . 145
A.2. Selection of Numerical Trajectory Optimization Software 147

Bibliography 149

Own Publications 169

Use of AI tools 171

Wissenschaftlicher Werdegang 173

Erklärung laut Promotionsordnung 175

xiii

List of Figures

3.1. Flowchart of the approach . 27
3.2. Start state selection based on co-state information 31
3.3. Additional trajectories around the goal state 34
3.4. Illustration of the weakly actuated pendulum 36
3.5. Evaluation using the weakly actuated pendulum 39
3.6. Visualization and nominal joint trajectory of the Manutec r3 robot arm. . . 40
3.7. Evaluation using the Manutec r3 robot arm 42
3.8. Results for the naive sampling approach 43

4.1. Selection of times in the sensitivity-based start state selection approach . . 50
4.2. Selection of times in the simulation-based start state selection approach . . 51
4.3. Example of the Halton-based start state selection approach 52
4.4. Results for five learned control policies with different combinations of start

state selection strategies . 59
4.5. Length of constrained arcs in test set . 62
4.6. Comparison of different start state selection strategies for unbounded states 64
4.7. Comparison of the start state selection strategies from Chapter 3 and 4 . . 66
4.8. Results using four start state selection methods with and without PI control 68
4.9. Execution time of the learned controller, PI controller and optimal control 69
4.10.Evaluation with displacement during execution 71
4.11.Evaluation with perturbed system dynamics using Coulomb friction 75
4.12.Evaluation with perturbed system dynamics using Dahl friction 76

5.1. Annotated Quanser Furuta pendulum . 87
5.2. Schematic and nominal joint trajectory of the Furuta pendulum. 88
5.3. Prediction times of learned controllers based on GPs and NNs 97
5.4. Furuta pendulum with perturbed dynamics using coins 98
5.5. Execution of two different control policies on the Quanser Furuta pendulum100
5.6. Furuta pendulum experiment using data from the extremal field approach 102

xv

6.1. Two different locally optimal solutions of the Furuta pendulum problem . 106
6.2. The three major steps of the trajectory clustering approach. 109
6.3. Example illustrating topographic prominence 112
6.4. Examples illustrating the construction of sequence-based representations . 113
6.5. Example illustrating feature sequence representations of trajectoriy graphs 114
6.6. Soft-matching matrix in the SVRspell algorithm 117
6.7. Euclidean vs. dynamic time warping matching 119
6.8. Clustering result of the Furuta 1 test set 121
6.9. Clustering result of the Furuta 2 test set 123
6.10.Result of the clustering of the test set Furuta 3 125
6.11.Example: Enlarged view of a motion plan showing a zig-zag path 126
6.12.Clustering result of the Manutec test set . 127
6.13.Clustering result of the Human motion 1 dataset 130
6.14.Clustering result of the Human motion 2 dataset 131
6.15.Runtime evaluation of the feature-based clustering approach 132
6.16.Three different trajectory sets from two solution clusters 134
6.17.Repeated execution of pure and mixed clusters on real Furuta pendulum . 135

xvi

List of Tables

3.1. Evaluation of the weakly actuated pendulum using different GP kernels. . 38
3.2. State and control constraints of the Manutec r3 robot arm. 41

4.1. Relaxed state constraints of the Manutec r3 robot arm. 56
4.2. Overview of the evaluation scenarios for the start state selection strategies 57

5.1. Parameters that determine the Furuta pendulum OCP. 90
5.2. State and control constraints of the Furuta pendulum. 91
5.3. Neural network training hyperparameters 92
5.4. E1.1 and E1.3: NMSE of GP kernels on large and small training sets 93
5.5. E1.2: NMSE of NNs on large subsets of the training data 93
5.6. E1.1 and E1.3: NMSE of NNs on large and small training sets 94
5.7. E1.4: NMSE of NNs and GPs on small subsets of the training data 95
5.8. Different policy approximations on real-world Furuta pendulum 99

6.1. Example: String sub-sequences . 116
6.2. Feature-based distance measure and DTW on Furuta test sets. 122
6.3. Feature-based distance measure and DTW on Manutec test set 126
6.4. Feature-based distance measure and DTW on Human motion data 129
6.5. Evaluation of pure and mixed clusters on real Furuta pendulum 135

A.1. Selection of optimal control solver software. 147

xvii

List of Abbreviations

DDP differential dynamic programming

DTW dynamic time warping

FITC fully independent training conditional

GHJB generalized Hamilton-Jacobi-Bellman

GP Gaussian process

HJB Hamilton-Jacobi-Bellman

LHS Latin hypercube sampling

LQR linear-quadratic regulator

LWPR locally weighted projection regression

ML machine learning

MLP multi-layer perceptron

MPC model predictive control

NMPC nonlinear model predictive control

NMSE normalized mean squared error

NN neural network

OCP optimal control problem

ODE ordinary differential equation

PDE partial differential equation

PI proportional-integral

RL reinforcement learning

xix

1. Introduction

Optimal control of robots, vehicles, or industrial plants offers significant advantages as
it allows one to operate them faster, more energy efficient and in some cases even more
safely than with hand-crafted control trajectories. It is commonly assumed that regular
periodic human locomotion is optimal [119, 171], such that humanoid robots intended
to provide human-like behavior should also perform at least near-optimal locomotion.
Further, energy-efficient trajectory planning makes many aerospace missions feasible in
the first place due to very limited payload for fuel [63].

Sophisticated mathematical models of the nonlinear dynamics behavior of such systems are
often available for robots and vehicles describing the evolution of their state. These models
are typically based on first principles of physics and formulated as systems of nonlinear
ordinary differential equations (ODEs) [69]. Optimal control theory [30, 170, 104, 22]
provides a basis for numerical methods that utilize these white-box system dynamics
models to compute optimal open-loop state and control trajectories [174, 21], even for
large-scale nonlinear robot dynamics models, nonlinear cost functions, and nonlinear
state and control constraints.

However, in practical applications, model inaccuracies and external disturbances or small
deviations from the measured start state are inevitable on real systems and lead to devia-
tions from the precomputed trajectory. Controlling the system away from the precomputed
optimal path requires recomputation of the optimal trajectory, which in most cases takes
too long to be performed during the robot’s motion execution. The deviations thus must be
dealt with in a non-optimal manner, e.g., by real-time trajectory tracking controllers that
try to bring the system state back onto the precomputed path. It is desirable to have some
feedback controller that provides optimal control (with respect to the current task) even
away from some precomputed time-dependent optimal trajectory. Explicit formulations
of optimal feedback controllers only exist for specific systems, e.g., with linear dynamics
and quadratic cost functions (linear-quadratic regulator (LQR)), but not for systems with

1

nonlinear dynamics or general cost functions. In contrast to white-box approaches, ma-
chine learning (ML) (and in particular reinforcement learning (RL)) approaches based on
black-box models are able to learn optimal feedback control policies for general optimal
control problems with nonlinear systems. However, they crucially depend on the training
scenarios and cannot well generalize beyond these. The advantage of white-box models
is that they can also be used in scenarios that were previously unknown. This ability is
required to train black-box ML-based models.

The main motivation for this thesis is to investigate how white-box and black-box ap-
proaches can be brought together to benefit from the advantages of both concepts. Optimal
control theory and numerical methods are combined with machine learning to leverage
the information provided by model-based numerical trajectory optimization methods that
incorporate prior knowledge about the system dynamics and its constraints and com-
pute near-optimal feedback control policies based on general nonlinear optimal control
problems for robotic systems.

A central challenge that all existing approaches that aim to calculate a global feedback
control policy have to face was coined by Bellman in 1957 as the “curse of dimensionality”
[18]. It is based on the fact that the volume of a hypercube in multi-dimensional vector
spaces grows exponentially with increasing dimensionality. Consequently, sampling in
these spaces to cover the full volume becomes increasingly difficult or, at some point,
impossible, as the computational resources of computers are limited and quickly exhausted.
This requires careful design of approaches to compute approximate feedback controllers
such that they can be scaled to more interesting but high-dimensional problems.

This work is centered around an approach called “extremal field” [64] or “trajectory
library” [172] approach to approximate a near-optimal feedback control policy for general
nonlinear robotic systems. Information from a set of optimal trajectories computed with
numerical optimal control solvers is used to iteratively learn an approximation of the
feedback control. This approach allows to utilize valuable information provided by state-
of-the-art numerical trajectory optimization methods, which can be highly beneficial for
the learning process. Optimal control solvers based on direct collocation, as used in this
thesis, can deal with highly nonlinear dynamics and path constraints.

The chapters of this work focus on the different key steps of the extremal field approach,
namely the computation of optimal trajectories, the approximation of the feedback con-
troller and the selection of start states for new optimal trajectories. In the large spaces
of high-dimensional dynamic systems, it is impracticable to cover the full state space
with trajectories (“curse of dimensionality”). The extremal field approach allows to focus
on a small subspace that is relevant for one or more tasks and cover this subspace with

2

sufficient density using as few trajectories as possible. The state space coverage is largely
determined by the start states of the trajectories; a good strategy to select start states is
thus essential to improve the scalability of the approach to problems in higher dimensions.
Feedback control policies are highly nonlinear and challenging to fit since training data is
unevenly distributed in space due to the sampling from trajectories. This requires careful
selection and tuning of the function approximation method used to approximate the
feedback control policies. The numerically computed optimal state and control trajectories
provide the training data for the feedback control approximation. Consequently, they are
a crucial part of the extremal field approach, as the quality of the available training data
strongly affects the success of the function approximation. Merkt et al. [117] consider
“learning as a way of compressing and generalizing across optimal solution samples”
in their work. They note that “discontinuity and multimodality can greatly impact the
quality of prediction obtained using function approximation as regressors smooth across
the boundaries between clusters or modalities.” In this context, multimodality occurs
when “multiple equally optimal solutions to a problem exist.” Consequently, multimodality
potentially decreases the accuracy of the approximated control policy for some optimal
control problems (OCPs). It is thus worth to take multimodality into account and analyze
its effect on the approximated control policy.

While the extremal field approach can be applied in many different areas, this thesis focuses
on the application to robotic systems. The difficulties that arise from those systems are
high nonlinearity in the system dynamics and tight real-time requirements. The nonlinear
dynamics arise from forces and moments acting along a rigid kinematic chain of usually
rotary joints that move the limbs in most modern robots. Fast and dynamic movements
of robots are necessary, e.g., for periodic transport motions of industrial robots, stable
walking of legged robots, performing tasks in reasonable speed, or immediate reactions to
changing environments. They require the feedback control values to be available within a
few milliseconds.

1.1. Contribution

The curse of dimensionality makes it necessary to carefully select start states for the
computation of optimal trajectories from which the training samples for the feedback
control approximation are taken to provide good coverage of the system’s state space.
The selection of start states has been identified as “main difficulty” by Zhong et al. [217].
However, only very few works (for example, [7, 91]) attempt to consider iterative ap-
proaches to generate reasonable new start states beyond sampling strategies. To address

3

the problem of state space coverage, this work proposes a combination of three new start
state selection methods for trajectories and random sampling around the nominal start
state to guide exploration of the relevant state space. The combination of these approaches
uses information provided by numerical optimal control solvers and by the already com-
puted state trajectories. The method uses the uncertainty information provided by the
near-optimal control policy approximation computed so far to select the next start state
from a set of candidates.

The area around the goal state (or final state) is also crucial for successfully performed
motions and must be well approximated. However, high-dimensional state spaces are
difficult to cover densely. In contrast to agents in reinforcement learning approaches,
solutions of optimal control solvers do not explore the vicinity of the goal state but
approach it directly. In this thesis, it is proposed to combine the learned feedback control
with a stabilizing proportional-integral (PI) controller around the goal state when this goal
state is fixed. This removes the necessity to ensure good coverage of the area around the
goal state, which would otherwise require careful and dense data collection in this part
of the state space. However, the PI controller is suboptimal with respect to the objective
since it does not consider the cost function. For this reason, this controller is used only for
stabilization and is applied only in a small area around the goal state.

In the iterative extremal field approach considered in this thesis, an approximation of
the global optimal feedback control policy is learned. Thus, it depends on the function
approximation method chosen to represent the policy. Similar approaches that learn a
feedback controller typically rely on a particular method without further discussing how
well this approximation approach suits their problem and how their results change when
that approach is replaced. In this work, several requirements that the fitting of near-optimal
feedback control policies imposes on the approximation methods are formulated. The
suitability and applicability of two widely used function approximation methods, Gaussian
processes (GPs) and neural networks (NNs), are analyzed and compared regarding these
requirements. While there are many general comparisons of GPs and NNs, the author
of this thesis is not aware of any comparison that respects the specific requirements of
feedback control policy approximations and focuses on these problems. The comparison
also includes experiments on a real-world Quanser Furuta pendulum [150]. Furthermore,
some extensions of GPs and NNs are considered to fulfill the formulated requirements
better, and insights into the selection of favorable hyperparameters are presented.

As noted by Merkt et al. [117], multimodality potentially decreases the accuracy of the
approximated control policy for some OCPs. One way to deal with it is to cluster all
trajectories computed to provide data for the control policy learner. The trajectories that

4

do not belong to one selected cluster are removed and not considered for training. This
eliminates the multimodality in the training data. A novel rule-based distance measure for
clustering motion trajectories is developed in this thesis to separate the solutions provided
by the optimal control solver into clusters. The novelty of the approach is the extraction
of feature data from the trajectory graphs to build a compressed representation of the
trajectories in the form of a feature sequence. These sequences can then be used in a
string kernel method by Elzinga [52, 54, 53] to compute the distances between the motion
trajectories. Advantages of the presented feature-based approach compared to the widely
used dynamic time warping (DTW) are demonstrated. Merkt et al. [117] show that
multimodality impacts the warm-start strategies using learned feedback policies based on
NNs. In this thesis, the effect of using multimodal training data on the performance of a
feedback policy based on GPs is further investigated when it is used directly to control a
real system.

1.2. Outline

In the following, the structure of this thesis will be outlined. Chapter 2 presents the
mathematical formulation of the optimal control problem considered in this thesis and
introduces the notation and terminology used. It concludes with an extensive overview
of the relevant state of research and related work divided into several subsections to
structure it with respect to the different approaches and applications.

The approach of learning a near-optimal feedback controller from a set of optimal trajec-
tories considered in this thesis consists of four main steps, presented in Chapter 3. This
chapter also introduces the first of three novel start state selection methods based on
estimates of adjoint variables provided by the optimal control solver. The benefit of this
selection method compared to naive random sampling is analyzed. Three of the four main
steps are more complex and will be examined in more detail in the following chapters.

In Chapter 4, two complementing start state selection methods based on the state sensi-
tivity and the simulation error are proposed and used together with the adjoint-based
approach from Chapter 3 and random sampling around the start state. This chapter
presents a continuation and further development of the main approach from Chapter 3.
In addition, a switch-over to a stabilizing PI controller when the system approaches this
goal state is proposed for problems with a fixed goal state.

5

The focus of Chapter 5 is on the representation of the near-optimal feedback control
policy. It contains a systematic comparison of the two most important function approxi-
mation methods NNs and GPs regarding their suitability to fit feedback control policies.
Experiments on a real-world Furuta pendulum are presented.

Chapter 6 is centered around the problem of multimodality that may occur during the
optimal trajectory computation step. This problem can be solved with trajectory clustering.
As a consequence, this chapter deals with the computation of distances between trajectories
that are required for clustering and analyzes the effect of the separation of clusters on
learning an accurate feedback control policy.

The results of the previous chapters are reviewed in Chapter 7; the findings and contri-
butions of the given work are summarized. Beyond this, this chapter addresses open
problems and further work related to the results achieved in this thesis.

6

2. Optimal Control and Optimal Feedback
Control

Optimal control problems (OCPs) are formulated in different variations in the literature.
In the next section, the mathematical notations and the formulation of the OCP considered
in this thesis is given. It is followed by a brief review of the most important numerical
methods for trajectory optimization. The chapter concludes with an extensive review of
the state-of-the-art methods for the computation of near-optimal feedback controllers for
dynamic systems.

2.1. Problem Statement

According to Siciliano and Khatib [163], robotic mechanisms are defined as “systems
of rigid bodies connected by joints”, which can be passive (unactuated) or actuated.
Kinematic joints restrict the relative motion between two bodies, the most commonly
used type of joints is a hinge (revolute joint) that allows a rotational motion around a
single axis. In this thesis, all robotic systems consist of revolute joints only. Given the
physical description of a robotic system, the position and orientation of all its bodies in
space (relative to some reference coordinate system) can be derived from the current
configuration of all joints. The joint configuration q and its time derivative q̇ are aggregated
in the state vector

x =

[︃
q
q̇

]︃
∈ Rnx (2.1)

with 2nq = nx. The control commands, often given as torques, are represented by u ∈ Rnu

with nu ≤ nq. If the inequality is strict, the robotic system is called underactuated. The
system dynamics give the behavior of a robotic system in time, depending on its current

7

state and the control applied over time. It can be described by an ordinary differential
equation (ODE)

ẋ(t) = f(x(t), u(t), t), (2.2)

where f : Rnx ×Rnu ×R→ Rnx . The dependency of x and u on time is mostly omitted
in the following for brevity. In this work, only autonomous models that are not explicitly
depending on time are considered, which reduces the ODE to ẋ = f(x, u). The function f
may or may not incorporate detailed motor models, environment information etc. The
torque that can be applied to a joint is usually constrained, which implies upper and lower
bounds on the control vector. Physical limitations of the joint position, together with
artificial bounds on the allowed joint velocity, are also reflected in the upper and lower
bounds

xmin ≤ x(t) ≤ xmax (2.3a)
umin ≤ u(t) ≤ umax. (2.3b)

More complex limits on the state or control can be modeled as inequality constraints:

g(x(t), u(t)) ≤ 0. (2.4)

The high-level description of a control task as presented in [30] is given by an objective
functional

J [u] := Φ(x(tf), tf) +

∫︂ tf

0
L(x(t), u(t), t) dt (2.5)

that consists of a running cost L (the Lagrange term) that accumulates in time and a final
cost Φ (the Mayer term) that prices the final state of the controlled system. The terminal
time tf can be fixed to some positive value or free. The initial state of the dynamic system
is given as x(0) = x0. The system state at the terminal time x(tf) may be fixed to some
state vector x(tf) = xf . In the scientific literature, this state is referred to as final state
[30, 22, 104], terminal state [30, 187] or goal state [187, 217, 10, 78]; the latter is mainly
used in this thesis. The initial and final state x0 and xf must satisfy the state bounds
(2.3a) and, if existent, the inequality constraint (2.4).

The goal of an optimal control problem is to find a control function u(t) fulfilling (2.3b)
that minimizes the objective function (2.5) such that the resulting progression of x(t) in
time starting at x0 determined by (2.2) satisfies the constraints (2.3a), (2.4) and ends at
time tf in an optionally fixed state xf .

8

2.1.1. Numerical Methods for Trajectory Optimization

Numerical methods to solve the OCP that is described in the previous section can be divided
into dynamic programming, indirect and direct methods [25]. Dynamic programming [18]
provides the global solution of an OCP but is strongly subject to the curse of dimensionality.
It is not considered further in this section.

Using indirect methods to solve an OCP requires the formulation of its first-order neces-
sary conditions (similar to the Karush-Kuhn-Tucker conditions for constrained nonlinear
optimization problems), which are transcribed into a two-point boundary value problem
(TPBVP) that needs to be solved numerically [174, 36]. The use of indirect methods
requires expert knowledge about optimal control theory and the solution structure of the
problem (the so-called switching structure incurred by constraints). Further, it requires a
good initial guess of the solution’s state and adjoint variables (also known as co-states).
This makes indirect methods challenging to be applied to real-world problems and may
explain why they are today less widely used than direct methods. However, they provide
more accurate results than direct methods [174].

Direct methods (aka. direct transcription methods) discretize the time of the OCP to
transform it into a nonlinear optimization problem [36]. Adjoint variables are not required
for this approach, so finding an initial guess for them is unnecessary. Furthermore, the
switching structure of the solution does not need to be known beforehand either. This
makes them far more easy to handle than indirect methods. Direct methods, however,
depend on an initial guess for the state and control variables. For both direct and indirect
methods, tests for sufficient conditions are often omitted and the solution is assumed to
be a local minimum [36].

Algorithms that are commonly used in the direct and indirect approaches are collocation
and shooting methods as well as heuristic approaches. Shooting and multiple shooting
methods exist for the initial value problem (direct approach) as well as for TPBVPs (indirect
method) [22]. Multiple shooting is much more stable than single shooting (where small
changes in the initial conditions can cause large changes in the final conditions, the “’tail
wagging the dog’ problem” [22]), such that it is usually preferred. Multiple shooting
methods use parameterized controls and a start state to perform explicit numerical
integration of the ODE on subintervals of the time interval. The parameterization and
free start states are corrected iteratively to reduce violations of the terminal constraints
(if existent) and the linkage constraints, which ensure a continuous solution on the full
time interval, until all constraints are satisfied [25, 122].

9

In addition to the parameterization of the control variable, collocation methods also
require the parameterization of the state. The state and control variables are typically
approximated using piecewise low-order polynomials [173, 22]. The integration of the
ODE is done implicitely by ensuring that the differential equation holds at predefined
collocation points on the time interval [173]. The parameters that satisfy all boundary
conditions of the OCP as well as the OCP path constraints and ODE conditions on a fixed
time grid spanned by the collocation points are determined using a constrained nonlinear
optimization problem, for which sophisticated solvers exist (e.g., SNOPT [66] or IPOPT
[199]). Alternatively, orthogonal collocation uses Legendre or Chebyshev polynomials, it
is known as the Gauss-pseudospectral method [36, 20, 55]. Collocation methods can be
used for both indirect and direct approaches, they are, however, more commonly used in
transcription methods, where they are termed “direct collocation methods” [36, 174].

The use of evolutionary algorithms and metaheuristics to solve OCPs is an alternative to
the direct and indirect methods described above. Because of their stochastic nature, these
algorithms are less likely to be trapped in local minima. Further, they do not need an
initial guess (it is chosen randomly) and they can determine beneficial parametrizations
of the state and control variables or optimal switching structures of the solution [36, 37].
Notable disadvantages are that they do not provide optimality guarantees and that path
constraints can only be considered using penalty functions, such that their accuracy is
lower than collocation or multiple shooting methods [36]. They are thus well suited to be
combined with the methods mentioned above [36].

2.1.2. The Hamilton-Jacobi-Bellman Equation and LQR

The cost-to-go at some state x̃ at time t̃ is the sum of Mayer and Lagrange term cost that
will be accumulated on an optimal path starting at the current state and time x̃(t̃).

The value function (aka. optimal return function)

V (x̃, t̃) := min
u(t)

J [u] = min
u(t)

{︃
ϕ(x(tf), tf) +

∫︂ tf

t̃
L(x(t), u(t), t) dt

}︃
(2.6)

provides for a given state the cost of an optimal path from this state to the goal state.
Using Taylor expansion, the Hamilton-Jacobi-Bellman (HJB) equation

−∂V (x(t), t)

∂t
= min

u∗(t)

{︃
L(x(t), u(t), t) +

∂V (x(t), t)

∂x
f(x(t), u(t), t)

}︃
(2.7)

10

can be derived (for more details see Bryson and Ho [30], Chapter 4.2). The HJB equation
is a first-order nonlinear partial differential equation (PDE), which is known to be difficult
to solve, because its solution, the value function, may be nondifferentiable [33] and
because the curse of dimensionality makes the problem “intractable for systems with all
but modest dimension” [78].

If the value function is known, the globally optimal control can be easily computed at
every state of the system by minimizing the right-hand side of the HJB [49]

u∗(x(t), t) = argmin
u∗(t)

{︃
L(x(t), u(t), t) +

∂V (x(t), t)

∂x
f(x(t), u(t), t)

}︃
, (2.8)

which is the state-dependent optimal feedback control.

Linear systems with quadratic performance criterion

J [u] =
1

2
x(tf)

TSx(tf) +
1

2

∫︂ tf

0
xTAx+ uTBudt (2.9)

ẋ = F (t)x(t) +G(t)u(t),

where S and A are positive semi-definite matrices and B is a positive definite matrix, are
known to have a closed form of the optimal feedback control. Its HJB equation leads to
a matrix Riccati equation that can be solved numerically, providing a matrix P (t). The
optimal feedback control for the linear-quadratic OCP (2.9) is then given by

u∗(t) = −
[︁
B(t)−1G(t)TP (t)

]︁
x(t). (2.10)

For more details, the reader is referred to Bryson and Ho [30].

2.1.3. Optimal Feedback Control

The solution of the OCP is a time-dependent control function u(t). A deviation from
the computed optimal control path leads to suboptimal performance or even infeasible
trajectories. In real-world scenarios, such deviations are practically inevitable, as there is
a variety of possible internal and external perturbations. Models of mechanical systems
are built using assumptions and simplifications, such as ignoring backlash in the gears of
joints [163] or neglecting uncertainties in the state estimation [112], modeling actuators
as perfect torque sources not subject to bandwidth limits [72] or assuming the absence
of delays [22]. Further, the parameterization or even the exact physical description of

11

higher order dynamic effects like the phenomenon of friction in the joints [4, 26], the wear
and tear of mechanical components [93], or the influence of temperature [204] is often
unknown and thus neglected in the model. Besides the fact that parts of the environment
or some of its properties may be completely unknown, the positions of known obstacles
are typically subject to measurement errors and even the exact state of the controlled
system is often uncertain due to sensor noise [163]. Examples of unforeseen events are
the breaking of a propeller blade for a flying quadrotor [79], the appearance of an obstacle
in the planned path of a moving arm [77] or ground robot, pushes during execution of
the trajectory [107], or unpredicted changes in the weather conditions during the flight
of an airplane [83]. While numerical optimal control methods are readily available to
solve OCPs for high-dimensional nonlinear dynamic systems with nonlinear constraints,
the problem of finding an optimal feedback control policy for general problems is hard.

The main approach pursued in this thesis to approximate a near-optimal feedback control
policy is called extremal field approach. It is based on the fact that, in the absence of
perturbations, the control commands on a globally optimal trajectory match the optimal
feedback control commands along this path. The idea of the extremal field approach is
to approximate from multiple optimal trajectories the optimal feedback control in the
vicinity of these trajectories.

2.2. Overview of Related Approaches to the Optimal Feedback
Control Problem

The variety of approaches is large and spans several major fields of research, such as
optimal control theory, reinforcement learning, numerics, optimization, machine learning,
robotics and control theory. Moreover, the problem formulations that are investigated
in the published works differ notably: deterministic and stochastic, state-discrete and
state-continuous, time-discrete and time-continuous, linear, control-affine and nonlin-
ear dynamics, finite-time and discounted infinite-time horizon problems, quadratic and
nonlinear cost functions, and different kinds of constraints.

Considering the range of the investigated problems and the amount of work that has
been dedicated to the respective fields, the following outline of existing work relevant
to the problem of feedback control approximation for robotic systems is therefore by no
means exhaustive. This overview is intended to provide an overview of larger classes of
methods, excluding the extremal field approach for which the existing work is discussed in
more detail in Section 3.1. The aim is to illustrate the variety of approaches, to highlight

12

important works, and to discuss the strengths and weaknesses of the various approaches
in relation to the extremal field approach on which this thesis is based.

2.2.1. Approaches based on the Hamilton-Jacobi-Bellman Equation

As outlined in Section 2.1.2, the solution of the HJB equation gives the global feedback
control of the corresponding OCP. For this reason, repeated attempts have been made to
solve this PDE numerically. A brief survey of methods is given by Horowitz in his doctoral
thesis [78].

For general nonlinear problems, a solution to (2.7) is not known. Beard et al. [14] and
others extending their work consider a simplified formulation of the OCP with control-
affine dynamics and quadratic weighted control penalty. For this problem, the optimal
feedback control can be explicitly formulated if the value function V (x) as defined in
(2.6) is known [139]. Beard et al. [14] propose to solve the generalized Hamilton-Jacobi-
Bellman (GHJB) equation, which is linear and thus easier to solve than the HJB. They show
that a solution to the original HJB equation can be found by iteratively computing the
solution of the GHJB equation and the respective approximation of the feedback control.
Since then, this method has been improved, e.g., by Park and Tsiotras [139] who propose
to use wavelets instead of polynomials as basis functions.

To reduce the computational effort of solving the HJB equation in high-dimensional spaces,
one can replace fixed grids with Monte Carlo sampled points. Chilan and Conway [33]
propose to compute the HJB solution on a quasi-Monte Carlo grid, which is more efficient
than simple Monte Carlo sampled grids since it covers a space more uniformly. They use
universal kriging to interpolate between the irregular grid points produced by quasi-Monte
Carlo sampling.

2.2.2. Power Series Approaches

Several approaches that are based on power-series expansions to solve the HJB equation
have been proposed, based on different semi-analytical methods. The underlying idea is
“based on considering the system as a perturbation of a linear system, with the control
being an extension of the linear control” [17]. For example, the Adomian decomposition
method has been proposed by Fakharian et al. [56]. Nik et al. [131] use He’s homotopy
perturbation method to solve the partial differential equation. Jafari et al. [82] show
that many of the approaches are equivalent, meaning that they lead to the same iterative

13

formula. See the references in [82] for more methods on how to solve the HJB equation
using power series expansions.

Vadali and Sharma [191] approximate the cost function with a power-series expansion
and present a method to determine optimal feedback control laws for nonlinear systems.
They demonstrate their method on one to three dimensional systems. However, they note
that “[c]onvergence of the series solution is not guaranteed for highly nonlinear systems.”

2.2.3. Compensation of Local Disturbances

Bryson and Ho [30] show in Chapter 6 how to compute a neighboring optimal feedback
controller around a nominal trajectory. For some perturbations, the system dynamics are
linearized along the nominal path. A first order expansion of the system dynamics and a
second order expansion of the performance criterion around the nominal path, with respect
to the perturbations, is called the accessory minimum problem [28]. This is exactly the
linear-quadratic problem for which a feedback control is known (see (2.9) and (2.10) in
Subsection 2.2.1) [28, 30, 142]. This leads to a feedback control û(t) = u∗(t)+ δu(t) near
the nominal path that is applicable for small perturbations, where u∗(t) is the open-loop
control of the nominal trajectory and δu(t) optimizes the accessory minimum problem that
considers the perturbations. Many of the computational work can be precomputed, such
that the local feedback control can be computed very efficiently online [142]. However, this
feedback control is only near-optimal in the immediate vicinity of the nominal trajectory,
where the first- and second-order Taylor approximation is sufficiently accurate. For highly
nonlinear problems, this region can be very small.

Büskens and Maurer [31] use sensitivity analysis to get the sensitivity differentials of an
optimal trajectory to be able to approximate in real-time the solution of a perturbed OCP.
In the problem they consider, the OCP is parameterized and solved for nominal parameters
p0. For this solution y, the sensitivity differentials ∂y(t, p0)/∂p are computed. They can
then be used online to linearly approximate the perturbed solution locally using a first
order Taylor expansion. All disturbances and perturbations of the optimal trajectory must
be represented as perturbations of the nominal parameters. The OCP may also contain
inequality constraints and constrained final state. However, this method can only deal
with local perturbations. The authors apply their method to control the industrial Manutec
r3 robot arm.

Diehl and colleagues [47, 45, 48, 46] develop a real-time approach for nonlinear model
predictive control (MPC) that is able to provide a near-optimal control command very

14

quickly after a new state estimation becomes available, which allows a fast reaction to
respond to disturbances. They propose to prepare the feedback control computation
between two steps before the new system state is known. When the new state becomes
available, the control resulting from one optimization iteration is used to control the
system. Then, before the next system state is given, the full solution of the optimization
problem is computed and used to prepare the computation of the next step.

Jardin and Bryson [84] use a neighboring optimal control approach, similar to a linear-
quadratic regulator (LQR), to compute a time-varying feedback control around a linearized
nominal trajectory. The authors comment in [83] that this method “may produce a
suboptimal result in the vicinity of a locally-optimal solution”. This is, for example, the
case if the problem is significantly nonlinear or perturbations become too large.

LQR can be used to create a local region of stability around a trajectory. Tedrake et al. [184]
“sacrifice direct attempts at obtaining optimal feedback policies in favor of [...] stronger
guarantees of getting to the goal”. For each optimal trajectory, they compute a time-varying
LQR feedback stabilization around this trajectory and estimate its region of attraction
by construction of a valid Lyapunov function (using sums-of-squares optimization) in a
maximal tube (“funnel”). Their approach is to iteratively sample random start states for
new trajectories. If this sample point is outside a stabilized region around an existing
trajectory, they compute a new optimal trajectory and its respective funnel until they
connect to an already computed funnel. With this strategy, they aim at covering the full
relevant state space.

2.2.4. Differential Dynamic Programming and Related Approaches

Using a quadratic model of the value function, differential dynamic programming (DDP) is
a second-order method that iteratively improves a local trajectory. According to Todorov
and Li, DDP is “an ideal blend of the advantages of local and global methods” [188]. It is
the basis or inspiration of many other approaches.

DDP has been proposed by Jacobson and Mayne [116, 81]. It is based on dynamic
programming “applied within a ‘tube’ around the current trajectory” [188]. The approach
“maintains a local quadratic model of the value function along the current best trajectory
[...] as well as a local linear model of the corresponding policy” [6] and iteratively improves
this locally optimal trajectory. It has second order convergence [188]. DDP provides a
local feedback control policy along the computed optimal trajectory. However, it is unable
to incorporate control constraints and requires a quadratic cost function [188].

15

Tassa and Smart [182] approximate the value function along a trajectory using a library
of locally optimal linear controllers. They consider problems with discrete-time dynamics,
but continuous states and actions. The small local area around an optimal trajectory
computed using DDP in which the feedback control can be approximated is expanded
using a library of multiple optimal trajectories. The selection of the local model at a given
state is done using the nearest-neighbor approach. The DDP algorithm is modified to
compute the quadratic model of the value function using the information from known
points in the neighborhood from other trajectories in the library. This approach requires to
solve a small system of linear equations. Further, they modify the standard DDP approach
to use a receding horizon scheme similar to MPC. They apply their method to d-link
swimmers with 14 to 34 dimensions in a viscous liquid on a planar surface that need to
reach some target point.

Todorov and Li present modified versions of the DDP approach, termed iterative linear-
quadratic regulator design (iLQR) [105] and iterative linear-quadratic Gaussian (iLQG)
[188]. They are based on “iterative linearization of the nonlinear dynamics around the
current trajectory” [188], which is iteratively improved by solving modified LQR problems
along the trajectory. This way, the method provides locally valid feedback gains along
the trajectory. iLQG is an improvement of iLQR that is applicable for stochastic nonlinear
system models and arbitrary cost functions and can also solve problems with control
constraints.

Since iLQG is “insensitive to additive noise” [188], Tassa and Todorov propose with
iterative local dynamic programming (iLDP) a local method that is tailored for nonlinear
stochastic noisy problems with non-quadratic cost functions [189]. At each time step,
states around the nominal trajectory are sampled and the local value is approximated for
each sample. The approximation of the trajectory’s value at the current time step with its
first and second derivative are approximated by fitting a function approximation to the
values at the sampled states.

Howell, Fu and Manchester [79] have taken a similar approach with Direct Policy Op-
timization (DPO), which aims to solve stochastic optimal control problems and make
them robust to perturbations and unmodeled dynamics around a nominal trajectory. They
sample a small number of start states around a nominal start state and solve the resulting
OCP (with noisy state dynamics) with a direct collocation method. The solution of the
stochastic nominal OCP together with a local feedback control policy is then estimated
from these trajectories using unscented transform. In contrast to iLDP, which is a rollout-
based approach where samples are taken around each time step, DPO uses complete

16

optimal trajectories computed with direct collocation. The start states for the optimal
trajcetores are sampled from a normal distribution.

2.2.5. Approaches based on Reinforcement Learning

Searching for a sequence of actions that optimally (with respect to some defined optimality
criterion) transfers the considered system from some initial state to a desired final state is
the core domain of optimal control theory (OC) and reinforcement learning (RL). These
two fields share many concepts and ideas. Nevertheless, there are differences in the
assumptions and objectives of these scientific disciplines. For example, optimal control
theory typically assumes a known, deterministic, and time-continuous model of the system.
In contrast, the models of the reinforcement learning community are often stochastic,
time-discrete and not (completely) known in advance. These differences induce different
approaches and techniques to find an optimal action sequence. Sutton et al. [180] and
Bennett and Parrado-Hernández [19] offer interesting perspectives on the connections
and differences between RL and OC.

RL methods depend on training data, which is time-consuming and expensive to obtain
[93]. Alternatively, training can be done in a simulated environment, which is much
cheaper and safer than data collection on real systems; however, modeling errors cause
a “reality gap” between simulation and reality that optimization-based learners usually
exploit. The resulting policy must afterward be transferred to the real environment,
termed sim-to-real transfer [216, 125]. Nevertheless, data-driven black-box approaches
like RL typically generalize less well beyond the training scenarios than model-based
white-box models.

RL is a huge field of research that has been explored for over 40 years [180]. This thesis
can only give a rough overview of a selection of key approaches. Schaal and Atkeson
[160], Kober et al. [93], Polydoros and Nalpantidis [147], and Singh et al. [164] have
written excellent surveys on which the following review is based.

Value function approaches (also known as critic-only methods) are based on the HJB
equation (see Equation (2.7)) or on its time-discrete equivalent, the Bellman Principle
of Optimality [18] and aim at approximating the value function [160, 93]. This value
function contains all information about the optimal policy, which can be obtained by
optimizing the obtained cost (or reward in machine learning (ML)) in each step, thus pure
value function approaches do not explicitly model the policy [164]. Temporal difference
learning estimates a gradient of the value function from the difference between expected

17

and received reward [93, 160]. Value function-based methods often use discretized action
spaces, they are not guaranteed to converge to a near-optimal solution [164].

Policy search methods, also called actor-only methods, directly maintain and improve
a model of the optimal feedback control. Commonly used policy search methods are
gradient-based and optimize the parameters of a control policy, which are iteratively
improved using the gradient of the cost function (or reward function in RL) with respect to
the policy parameters [160]. The main difficulty of this approach is the estimation of this
gradient. Approaches that are widely used in robotics use finite-difference estimations
based on perturbed roll-outs and likelihood ratio methods [144].

Actor-critic methods approximate both the control policy and the value function and thus
combine the advantages of the two approaches described above: the parameterized policy
approximation provides a continuous action space and the value function estimation has a
low variance compared to gradient estimations in actor-only methods [164]. The critic
evaluates the performance of the policy model and guides the update of the actor, featuring
“the local convergence properties of policy gradient algorithms while reducing the update
variance” [93].

Levine and Koltun [102, 103] describe how to incorporate information from optimal
trajectories computed with an iterative LQR solver in a policy search approach by using a
technique called importance sampling. This enables the authors to “incorporate guiding
samples into the policy search” to pretrain the policy, which is particularly useful when
complex behaviors are to be learned.

Marin, Sigaud [115] use a learning classifier system XCFS as parametric policy represen-
tation. Training of the near-optimal feedback policy is done in two stages: Firstly, the
learning classifier system is trained using near-optimal trajectories. Secondly, the XCSF
parameters are improved using a direct policy search approach. The authors evaluate
their approach on reaching motions of a robotic arm from different start states to a single
target and from a single start state to multiple different targets.

Kim et al. [91] use an imitation learning approach to “combining multiple [optimal]
trajectories to obtain a control policy”. They do not perturb the start states to get dif-
ferent trajectories but consider parameterized dynamics and sample a set of parameters
that “cover the space of system dynamics that are likely to be encountered during real
execution”. During iterative simulations for the different dynamics parameters, new opti-
mal trajectories are computed as soon as the state leaves the area covered with training
data (using the Maximum Mean Discrepancy metric). This is done until for all sampled
dynamics parameterizations the state space along executed trajectories is covered with

18

training data. Kim et al. also consider only partially observable dynamics, for which the
parameterization is inferred using observations.

Khadke and Geyer [89, 90] consider decomposition of the dynamic system to reduce the
curse of dimensionality when computing a feedback control. They decompose the system
dynamics of the OCP in decoupled and/or cascaded subsystems with their respective inde-
pendent sub-policies. For each lower-dimensional sub-problem, they use policy iteration
to compute the global control sub-policy. Their approach also provides suboptimality
estimates of the decompositions by computing the LQR or “DDP solutions for the original
and decomposed systems from a few initial states to estimate” the value functions; their
average difference quantifies the suboptimality. A difficulty of their approach is to find in
all possible decompositions of the system dynamics one that provides low value errors.

Su et al. [178] use inverse reinforcement learning to incorporate information from
numerical OCP solvers in RL. Samples from optimal trajectories computed using the
GPOPS solver are used as expert knowledge. A generative adversarial network is trained
to discriminate between the (optimal) expert trajectories and the trajectory data generated
using the RL approach. The information from the adversarial discriminator network is
used to optimize the feedback control policy network used in RL. The RL algorithm is an
actor-critic approach with two neural networks (NNs) that approximate the near-optimal
feedback control policy and the respective value function.

2.2.6. Model Predictive Control

Another major branch of research that is concerned with the near-optimal control of
disturbed dynamical systems is MPC (or receding horizon control). It is an online approach
that computes a solution during interaction with the real system. A new optimal trajectory
from the current state is recomputed in regular short intervals, such that deviations are
dealt with in an near-optimal manner. The challenge of these approaches arises from the
requirement of being able to recompute optimal solutions very quickly. This is done by
reducing the OCP to a short time horizon, the cost after this short time interval may be
estimated by some approximation of the value function. This simplifies the problem that
needs to be solved in each iteration. Furthermore, the OCPs considered for MPC typically
have a special form (quadratic cost function and linear or linearized system dynamics)
such that the special sparsity structure of the resulting optimization problems can be
utilized to make computations efficient. Also, the optimization methods used are able to
reuse the information provided by the previously found solution. To avoid linearization
of nonlinear systems, nonlinear model predictive control (NMPC) builds upon MPC but

19

considers nonlinear models in the receding horizon optimal control problem. NMPC is
often but not necessarily formulated for infinite time optimal control problems.

Nonetheless, for a long time, the high computational effort only allowed applications for
systems with slow dynamics, such that one of the first industrial applications was the
control of chemical plants. Advancements in the optimization procedures [94] and NMPC
[215, 74] enabled the use of NMPC in robotics, where fast movements and highly nonlinear
dynamics set high demands on the real-time capability of the approach. Examples of
NMPC applied to robotic systems are given in [205, 215, 183, 58, 210, 73, 169, 15]. While
reducing the optimal control problem to a short horizon is necessary to allow real-time
solutions, it introduces a suboptimality into the executed trajectory. The predicted (short
horizon) open-loop trajectory starting at t0 differs from the MPC’s closed-loop behavior
(since states are used for subsequent controls that are beyond the time horizon of the
current step), which itself differs from the optimal solution of the full/infinite time horizon
problem. These discrepancies are greater for shorter time horizons [59].

The use of a “terminal penalty function [...] such that a corresponding local control law
is a good approximation of the control resulting from the infinite horizon control law
[...] can recover the performance of the infinite horizon cost even for short horizons”
[59]. NMPCs with a terminal penalty term combined with a terminal region constraint
are called quasi-infinite horizon NMPCs. For these methods, a guaranteed stability proof
exists, they are inherently robust to sector bounded input uncertainties [59]. Using an
estimate of the OCP-related value function (or cost-to-go function) can have a significant
influence on the performance of the MPC scheme. Zhong et al. [217] further note that
the “more accurately the final cost [. . .], the less the method relies on the sum of the
running costs.” They estimate the value function of the OCP and use it to estimate the
cost-to go in the MPC problem, which enables them to shorten the horizon of the MPC
computation. Besides all this work, improvements on trajectory optimization software,
fast approaches to compute derivatives and better physics simulations (see, e.g., Tassa et
al. [183]) paves the way to more applications of NMPC to control robotic systems.

Song and Scaramuzza [168], [169] combine MPC with reinforcement learning: They
use trained deep NNs to provide the hyperparameters for the MPC computations. A task-
specific high-level reward function rates the quality of the parameterized MPC controller,
policy search is applied to find a policy of optimal parameters for the low-level MPC
controller that optimizes its performance with respect to this reward function. They apply
their method to steer a drone through a moving gate. Song and Scaramuzza reference
further work that connects learning approaches with MPC.

20

3. Synthesis of Extremal Field: An Iterative
Approach

This chapter presents the general framework that is used in this thesis to compute ap-
proximations of the optimal feedback control policy for a given problem. It is based on
the extremal field approach where data from a set of optimal trajectories from different
start states is used to approximate a near-optimal global feedback control policy. The
optimal trajectories are computed using the direct collocation method DIRCOL [173],
which allows to solve very general OCPs with nonlinear cost functions and nonlinear
state and control constraints. Furthermore, it is able to additionally compute estimates of
the optimal trajectory’s co-states. The policy is approximated using Gaussian processes
(GPs) [154], which provide at each point a variance value that may serve as measure of
uncertainty. In this chapter, a novel approach is proposed to iteratively select start states
for new optimal trajectories that leverages information provided by the numerical optimal
control solver and the current control policy approximation. The goal is to collect training
data efficiently by using only a small set of optimal trajectories that provides sufficient
information to cover a relevant part of the joint space.

The term extremal field approach that is used in this work dates back to Kelley [86] who
proposed in 1962 to approximate a feedback control using a “field of extremals in the
neighborhood of a predetermined extremal serving as a ‘nominal’ trajectory”. The term
extremal field refers to families of optimal trajectories [86, 30], as an extremal designates
an optimal trajectory. The name extremal field or field of extremals has since been adopted
by many researchers [30, 83, 64]. However, there have also been other terms for exactly
the same approach. In addition to extremal field, Ghosh and Conway [64] also use the
terms synthesis of optimal feedback controllers and feedback synthesis method, Pesch et
al. [143] use synthesis of optimal strategies, Atkeson and colleagues [172, 107, 8] use
trajectory libraries , Breitner [29] uses guidance synthesis. The fact that other terms may be
used to refer to the extremal field approach must be taken into account when the existing
literature is searched.

21

3.1. Related Work on the Iterative Extremal Field Approach

The discussion of existing work on (near-) optimal feedback control policies in Section 2.2
excludes methods based on the extremal field approach. These are presented in detail in
this section.

Machine learning approaches to finding a near-optimal policy usually approximate either
the value function as a solution of the Hamilton-Jacobi-Bellman equation to derive the
optimal control or directly the optimal feedback control using policy iteration. Both
approaches lack the generalization to large-scale nonlinear system dynamics and nonlinear
constraints. They usually do not account for the capable model-based numerical trajectory
optimization methods. However, some of these provide valuable information that can be
highly beneficial to be utilized for the learning process.

Compared to reinforcement learning, the advantage of the extremal field approach used
in this thesis is the direct incorporation of model knowledge into the construction of the
control policy during training. This is done indirectly using data from optimal trajectories
that comply with the known physical model of the system including its dynamics and
constraints.

Some of the first approaches that directly use trajectory information to fit an approximation
of the feedback control are proposed by Edwards and Goh [51] and Pesch et al. [143].
Edwards and Goh formulate their approach as a parameter selection problem, where a
series of optimal control problems is parameterized by the weights of a NN that represents
the feedback controller. The optimal trajectories are computed using MISER [70], in their
evaluation, they consider a flight control problem. Pesch et al. solve a pursuit-evasion
problem, a two-person differential game where a rat escapes from a cat. They also train a
NN to approximate the optimal strategy for both opponents. The open-loop trajectories
that provide the training data are computed analytically. Some years later, Hardt [76] used
a similar approach in his dissertation, controlling a jet engine compressor. He combines
a direct optimal control method with an indirect method to get more precise open-loop
trajectories.

In all three approaches, the start states of the open-loop trajectories are on regular grids
in the state space, which scales poorly for high-dimensional problems and is thus not
applicable for robots with many joints. For the three dimensional flight guidance problem
in [51], each dimension is subdivided in five grid points, which already results in a total
of 125 optimal trajectories to be computed.

22

In his master thesis, Wiratunga [203] learns a simplified inverse dynamics model for
quadrotor helicopters using Gaussian Process Regression. Optimization of parameterized
trajectories are used to generate training data for the GP. In this optimization problem,
the variance of the GP is maximized to cover areas of insufficient training data with new
trajectories. The thesis compares different sparse approximations of GP regression (includ-
ing Sparse Spectrum GP Regression), and evaluates different methods of hyperparameter
optimization. The main difference to the approach considered here is that Wiratunga
learns the inverse dynamics instead of the optimal feedback control model. The model of
the inverse dynamics is the mapping from a desired acceleration (and the current system
state) to the torque required to get this acceleration and does not consider a task-specific
objective function. Consequently, the objective function of the optimization problem
consists of a term to induce and guide the exploration of the state space and contains no
task specific optimization of the movement.

Beaudin and Lin [15] apply MPC on a quadruped robot to provide real-time control and
combine this with a trajectory optimization approach for long-term path planning. In
an offline step, optimal trajectories are generated using direct collocation for a highly
simplified robot model: The problem formulation considers only the four-dimensional state
that describes the torso position with state and control bounds and collision avoidance. A
NN that is used to predict the velocities required to proceed to the goal state is trained
on the data from these trajectories. This network is then used online to compute the
reference trajectory for the MPC approach that uses a more detailed physical model to solve
the whole-body control problem and provide the motor torques to follow this reference
trajectory. Since the previously learned policy that provides the desired velocities ensures
that the long-term goal is approached, the MPC approach uses only a short time horizon,
which reduces the complexity of the MPC.

Tsiotras and Sanz Díaz [190] compute a near-optimal feedback control for a specific
collision avoidance maneuver for cars. Their car model includes wheel dynamics and a
tire friction model. They use a GP to interpolate data from numerically computed optimal
trajectories. In their problem, they vary only a single value (initial speed) to compute
different trajectories and are therefore able to use a grid of initial states.

Merkt et al. [117] learn a feedback controller from optimal trajectories to warm-start
optimal control solvers. The use of good initial guesses to warm-start the solver reduce
the number of iterations required to find an optimal solution and increases the success
rate of the solver. The authors sample trajectories from a fixed grid of start states and use
NNs to interpolate between the optimal trajectories. In their work, they explicitly consider

23

multimodality (multiple optimal solutions to the same problem) and discontinuity (similar
problems with very different solutions).

Indirect methods for trajectory optimization provide very accurate results which makes
them attractive for space mission planning. However, they require a good initial guess of
the adjoint variables. Singh and Junkins [165] propose a variation of the extremal field
approach and use information from a set of neighboring optimal trajectories to train GPs
to provide an approximation of the adjoint variables. This enables them to recompute
optimal trajectories during a space mission very quickly, as the indirect method converges
after only a few iterations when initialized with the learned adjoint variable approximation.
They perturb the terminal conditions of the adjoint variables and integrate backwards
to create optimal trajectory bundles for training. The authors employ an extremal field
approach, but with the special feature that the goal is the approximation of the adjoint
variables and not, as usual, that of the control.

Zhong et al. [217] train a NN using trajectory data to approximate the optimal value
function. In their work, they consider very general but discrete-time problems. They
conclude that fitting the value function using trajectory data is difficult, since it is sensitive
to many parameters and “a good fit is commonly elusive”. They further note that the
“main difficulties in obtaining data arose in defining useful initial states.” This problem is
considered in Chapter 3 and 4 in this thesis.

Mordatch and Todorov [120] continue the work of Zhong et al. They also use a discrete-
time formulation of the OCP, but rely on a direct method (instead of iLQG) to compute
the optimal trajectories; they use NNs for function approximation. In their work, they
combine the solution of a collection of OCPs for different start states and the fitting of a
feedback control policy to the solution of these OCPs into a single optimization problem.
The resulting optimization problem is solved using the alternating direction method of
multipliers. They thus jointly optimize a set of trajectories from different start states and
the parameters of the corresponding feedback control policy approximation. The start
states are selected once at the beginning using random sampling and kept fixed.

Aircraft and aerospace vehicles are often exposed to strong perturbations, such as winds.
Jardin and Bryson [83] consider minimum-time paths of aircraft on a spherical earth
model in the presence of strong winds. They propose to create families of optimal paths
to some destination using backward integration of the differential equations of state and
control (the latter is derived using necessary conditions for the solution of the optimal
control problem). The optimal solution for intermediate start states is then found by
interpolation between these trajectories using Delaunay triangulation.

24

Ghosh and Conway [64, 63, 65] consider minimum-time orbit insertion and (aeroassisted)
orbit transfer problems as well as an orbital pursuit-evasion game. They use universal
kriging (which is basically GP regression [35]) to approximate the feedback control
policy from a set of optimal trajectories from different start states. To get useful initial
guesses for the numerical trajectory optimization, they apply a preprocessing step, where
unconstrained guesses are generated with a trajectory optimization method based on the
particle swarm metaheuristic [148, 37] that does not require an initial guess. The start
states are sampled around the nominal start state using Latin hypercube sampling (LHS),
which scales well to higher dimensions. In contrast to the approach presented here, their
method of start state selection is not iterative. Extending the extremal field approach,
Chilan and Conway [34] consider significant disturbances using the example of a high
speed aerospace vehicle with wind disturbances. They use real-time measurements of the
disturbances as additional inputs to the learned feedback control model, which notably
improves the performance compared to a feedback control policy that is ignorant of the
measured perturbations.

Schierman et al. [161] investigate how a vehicle flight control for re-entry can adapt
to critical failures of control effectors. They create a database of optimal trajectories by
varying the trajectory start states as well as critical parameters of the optimal control
problem. The latter enables them to simulate critical failures of control effectors that
alter lift and drag characteristics. The trajectories in the database are represented as
polynomials; polynomial neural networks (PNNs) are then used to map initial states to
the coefficients of these polynomials. The PNNs are used during flight to provide the
coefficients that constitute the trajectory for the current state and parameterization. The
critical parameters are inferred from sensor data. To make their solution robust to sensor
noise and disturbances, SChierman et al. correct the coefficients provided by the PNN
models online by applying a least-squares approach that minimizes the error and distance
to the nominal trajectory. The trajectory defined by the corrected coefficients is then used
by the adaptive guidance and the inner-loop feedback controller.

Kim et al. [91] focus on uncertain dynamics fα(xi, ui), where the uncertainty parameter
α may also be only partially observable. They train a regression function that learns a
mapping of the product of state and parameter space to the control space. Their approach is
applicable to problems with only partially observable dynamics: Get a posterior distribution
of the hidden properties based on online observations and use this instead of the parameter.
For training, they use data from optimal trajectories. Several local regressors are learned
and a distance-based criterion (maximum mean distance) is used to select the appropriate
local regressor for each query point. An iterative process is used to add additional optimal
trajectories if required: The parameter space is sampled and for each sample, the trajectory

25

from the given start state is simulated in each iteration. If for some query point no local
regressor can be found, a new trajectory is optimized starting from this query point. This
is repeated until the trajectories for all sampled parameters can be simulated without
computing new trajectories.

Atkeson and his colleagues [7, 9, 121, 172, 10, 106, 8, 107] have been working on the
approximation of global feedback control policies using locally optimal trajectories over
a period of almost 20 years. The methodology employed by the authors is focused on
DDP (cf. Section 2.2.4). However, their work is still strongly related to the iterative
extremal field approach presented in this chapter. They consider deterministic problems
where the state and control are continuous but time-discrete. Their main tool to compute
locally optimal trajectories is DDP. This method gives them a quadratic model of the
value function and a linear model of the policy along this trajectory. In some works [172,
106], they compute trajectories by first generating trajectories using another approach
like sequential quadratic programming methods [22] or the path search method A∗ and
refine the result with DDP. They ensure consistency between the computed trajectories by
recomputing them frequently using information from neighboring trajectories. New start
states, from which optimal trajectories are computed, are selected randomly, but with
several acceptance criteria based on the estimated trajectory cost to reject unnecessary or
incorrect data [10]. Furthermore, the approach presented by Atkeson and colleagues [10,
8] is one of very few that select start states iteratively to consider information collected so
far. For global approximation of the value function and control policy, they do not use
a trained function approximation, but a nearest-neighbor approach. Efficient look-ups
are done using kd-trees. While parameterized function approximations like GPs or locally
weighted projection regression (LWPR) may be more accurate, this approach makes it
easier to correct model errors from data collected online. One needs to just improve
the already computed optimal trajectories using the corrected system model, there is
no subsequent retraining of the global parameterized value function and policy model
necessary. The problems considered are one- to four-link pendulum swing-ups and balance
and periodic walking motions of a humanoid five-link robot.

Approaches for selecting (optimal) trajectories to guide data collection in order to learn a
control policy have been proposed in slightly different contexts, such as parameterized
skill learning. While this thesis focuses on learning a feedback control policy from mul-
tiple trajectories, parameterized skill learning aims at learning the policy for multiple
similar (parameterized) tasks using multiple feedback policies. These approaches need
to iteratively select new tasks for which the expensive training of a policy improves the
performance in a wide range of related problems. Baranes and Oudeyer [11] focus on
the constrained selection of new training tasks for learning parameterized policies. Their

26

Computation of
Optimal Trajectories

Discretization of
Computed Trajectories

Update of Control
Policy Approximation

Selection of
New Start States

Problem Description
and Initial Start State

IN

Near-Optimal
Control Policy

OUT

Figure 3.1.: Flowchart of the four main steps of the iterative extremal field approach.

approach uses a measure of interest based on competence progress to explore the task
space. However, Baranes and Oudeyer consider inverse dynamics models and not optimal
feedback controls. Da Silva et al. [40, 39] apply a Bayesian approach and maintain a
model of the skill performance using a GP. They select new tasks that maximize the ex-
pected improvement in overall skill performance. Since they solve families of control tasks
instead of a policy for a single task, they can reuse unsuccessful policies that appeared
during training as training samples for a different goal. Queißer et al. [151, 152] use the
“current estimate of the iteratively trained skill” to initialize the optimization of new tasks.

It should be noted that this chapter addresses the identification of trajectory start states
such that optimal trajectories starting from these states provide useful data to improve
the learned control policy. This is a different type of problem than finding good initial
guesses for warm-starting trajectory optimization as done, e.g., in [101, 113] or [117].

3.2. Successive Optimal Trajectory Generation and
Approximation of a Near-Optimal Policy

To learn a near-optimal feedback policy for a given optimal control problem (see Section
2.1), information collected from a set of optimal trajectories for different start states in
the state space is used. These trajectories are generated with the solver DIRCOL [173]
that implements a direct collocation method to solve optimal control problems.

The start states are not determined at the beginning, instead, an iterative approach is
used that allows to continually supervise the improvement of the policy, select new start
states based on progress achieved until then, and add only relevant data. The optimal
control policy is approximated by a GP, retrained in each iteration with the data points on
the optimal trajectories. The main steps of the algorithm are depicted in Figure 3.1 and

27

Algorithm 1: Pseudocode of the Iterative Extremal Field Approach
Input: problem description problem, start states startpts
Output: policy pi

for fixed number of iterations do
optTrajs← getOptimalTrajs(problem, startpts,pi)
pointList← discretizeAndSelect(optTrajs)
pi← trainGPs(pi,pointList)
startpts← getNewStartpoints(optTrajs,pi)

end

additionally outlined as pseudo-code in Algorithm 1. They are motivated and described
in more detail in the following subsections.

3.2.1. Computation of Optimal Trajectories

DIRCOL is a direct collocation method written by von Stryk [174, 173] that uses SNOPT
[66, 67] to solve optimal control problems. It allows to solve OCPs with highly nonlinear
system dynamics, nonlinear path constraints on the state and control variables and
constrained terminal states.

It requires a rough initial guess of the state and control trajectories to start the numerical
optimization; however, this guess does not need to be feasible with respect to the ODE and
other constraints. Direct collocation methods are, in general, more robust to poor initial
guesses than indirect methods [21, 149]. Nevertheless, a reasonably good user-provided
initial guess may make the difference between the success and failure of the iterative
optimization method.

Three different approaches are potentially used to get initial guesses:

(i) Linear interpolation between the start and goal state (or the expected final state if
the joint state at the end of the trajectory is not predetermined), with the control
constantly zero: This is the simplest and most unbiased initial guess. In the first
iteration, this is the only initial guess used since it requires no additional information.

(ii) An already computed trajectory that starts or passes as close as possible to the
current start state: The optimal trajectories from close but different start states often
(but not always) have a similar shape. Using an already computed solution that is

28

close to the current start state (in joint space) as initial guess leads in most cases to
convergence of the optimal control solver and helps getting consistent solutions. A
similar approach is used by Atkeson and Stephens [10] to get a globally consistent
value function estimate. However, this approach carries the risk of being biased by
the neighboring solution and finding only a local minimum instead of the global
optimum. If the distance to the closest data point is too large, intermediate start
states are added from which the corresponding optimal trajectories are computed
one after another, before the OCP for the original start state is determined. Like
that, there is an initial guess from an optimal trajectory in close proximity for each
optimal control problem.

(iii) Simulation of a trajectory using the current approximation of the optimal feedback
control: To be applicable, this approach requires a sufficiently accurate approxima-
tion in the relevant region, it is thus very error-prone in the first iterations. A similar
approach has been used by Queißer et al. [151].

Depending on the problem, the approaches above are more or less useful and are enabled
or disabled as required, apart from approach (i), which is used in any case. For each
start position, the solver is run with all enabled initial guesses to avoid using suboptimal
solutions and the best valid solution (the one with lowest total cost) is kept. DIRCOL is
started with 11 equidistant grid points; at most ten grid refinements are allowed. Further,
DIRCOL’s automatic scaling of variables and functions is enabled. If the solution process
fails, a computationally expensive homotopy approach is applied where a series of optimal
control problems are solved: The final time is increased stepwise from a small fraction to
the original value, using each time the solution of the previous run as an initial guess.

In the presented approach, the numerical optimal control solver DIRCOL can be replaced
by any other trajectory optimization method that is able to provide an estimate of the
adjoint variables, which is required for the selection of new start states (see Section 3.2.3).
Examples of existing software are given in Appendix A.2. In this thesis, DIRCOL has been
found to be a very fast and reliable solver and is therefore used as the primary tool to
solve optimal control problems.

3.2.2. Discretization of Trajectories for Training Data Extraction

The GP learns the control values evaluated at discrete data points, which makes it necessary
to extract state-control value pairs (x(ti), u(ti)) from each computed trajectory and add

29

them to the data used to train and evaluate the policy. Each trajectory provides a set of at
most N data points

S = {(x(ti), u(ti))}i=0,...,N with ti =
i · tf
N − 1

(3.1)

that are used to improve the learner. Various experiments with different numbers have
shown that the formulaN = min {130, tf/tmin} provides good results. It extracts 130 data
points from each trajectory and reduces this number for short trajectories, as a minimum
distance in time tmin between the discretization points is enforced.

GPs can not cope with redundant input data, which has been analyzed in [42]. A straight-
forward approach is to remove all points that are closer than some minimum distance
dmin to any previously added state in S. The remaining data in S is used as training data
for the learner. In Section 4.1.2, an improved procedure for selecting the data points used
is presented.

3.2.3. Selection of Start States for New Optimal Trajectories

The selection of new start states is highly relevant for the “exploration” of unknown areas
of the state space and determines how the algorithm progresses. It is important to acquire
more information in regions where a deviation from the optimal trajectory is relevant, i.e.,
where suboptimal actions cause a significant change in the total cost of the executed path.

For some optimal trajectory x(t), the relation between the co-states λ(t) (which are also
called adjoint variables) and the value function is described by

λ(t) =
∂V (x(t), t)

∂x(t)

(see [30]). Large (absolute) co-state values indicate where some deviation from the
trajectory in state has a considerable impact on the value function; Bryson and Ho [30]
thus describe them as “influence functions on [the cost] J of variations in x(t)”. This
motivates the use of the trajectory’s co-states λ(t) as an indicator for sensitive regions where
having more neighboring trajectories would be beneficial. DIRCOL allows to estimate
the Lagrange multiplier function of a computed approximation of an optimal trajectory;
these multiplier functions are represented as linear splines. In the following, a start state
selection strategy is described that uses co-state information to select new initial states
for optimal trajectories. This strategy is referred to as adjoint-based.

30

(a) Trajectory over time (b) State space view

Figure 3.2.: This example based on the weakly actuated pendulum problem (cf. Sec.
3.3.1) illustrates how start states are selected based on co-state values and
the variance of the GP. The figure shows extrema of the co-state values (large
filled marker), large normed co-state values (smaller marker on trajectory)
and the corresponding candidate start states (unfilled markers and dots).
The selected new start state at the state with the largest variance of the
current policy approximation (illustrated as a contour) is marked with an “X”.

For a new optimal trajectory, new candidate start states are added to a list of existing
candidate start states. These new candidates are selected as follows: Firstly, a list of
timestamps {ti}i is compiled from the list of times at which a local extremum occurs in
any of the nx co-states functions λj(t) with j ∈ {1, . . . , nx}, and the list of times at which
normed co-state value is large. A second list consists of nodes of the optimal trajectory’s
splines at which the normed value over all co-state is outside the 67%-quantile, this list is
thinned out so that there is a minimum time interval between its elements. See Figure
3.2a for a two-dimensional example. Secondly, the new candidate start states x̃(ti) are set
to be in some distance to the points x(ti) on a trajectory in the direction of the co-state
vector λ(ti). The Euclidean distance between x̃(ti) and x(ti) depends on the normed
co-state value and is in the interval [bl, bu]. The mapping from trajectory points x(ti) to
new candidate start states x̃(ti) is

x̃i (x(ti), λ(ti)) = x(ti) + κ (∥λ(ti)∥)λ(ti) (3.2)

with κ : λ ↦→ 1

λ

(︂
bl + (bu − bl)e

−νλ
)︂
.

31

Since large absolute co-state values indicate more sensitive regions, the distances between
respective points are smaller. The exponential decrease favors start states close to the
trajectory. The real-valued parameter ν > 0 as well as the interval [bl, bu] need to be tuned
problem-specifically. For each new optimal trajectory, the list of candidate start states is
supplemented by new start states computed using (3.2). If a start value for a new optimal
trajectory is needed, the variance of learned policy is evaluated for all these candidates
and the one with the highest variance of the current policy approximation is selected. This
is illustrated in Figure 3.2b.

An initial non-empty set of start values has to be provided with the problem formulation.
In this work, the initial set consists of a single start state; the optimal trajectory from this
start state is sometimes referred to as the reference trajectory. It should be noted that
the optimal control problems resulting from the initial start state(s) should not be too
difficult to compute because, contrary to the following iterations where already computed
trajectories and the approximation of the feedback control can be used, no problem-specific
information to generate initial guesses is available.

If the function f that determines the ODE does not explicitly depend on the j-th state
variable xj(t), then λj(t) is constant. Consequently, the presented start state selection
method will not provide any candidate start states for λj(t), as it has no extrema. Never-
theless, since all entries of the state vector are employed to select new start states and the
right-hand side of the differential equation f normally depends on at least one entry of
the state vector, at least one co-state will contribute new candidates.

3.2.4. Learning Near-Optimal Feedback Control Policies from Optimal
Trajectories

In this work, GPs are used to model the near-optimal feedback control policy approxima-
tion. GPs have been successfully used in [96, 44, 64] to approximate the control policy or
the value function of optimal control problems. GPs are so-called non-parametric function
approximators [154], which means that there is no need for a predetermined assumption
on the class of functions appropriate to fit the given data. Further, GPs need not much
data (compared to, for example, neural network functions) to achieve satisfactory approxi-
mations. The main advantage of using a GP model to approximate the near-optimal policy
is that it provides for each joint state a variance, which serves as measure of uncertainty.

Although GPs are known to be non-parametric, this does not mean that the model is free
from any assumptions on the function to be learned, but the class of functions that can be

32

modeled with a single GP model is larger than that of parametric models. The assumptions
on the learned function are mostly determined by the choice of the covariance function,
since “it encodes our assumptions about the function which we wish to learn” [154]. There
exists a large variety of well known covariance functions; see, for example, Chapter 4
in the book by Rasmussen and Williams [154]. The high order of differentiability that
is inherent to many GP kernels, like the squared exponential or radial basis function
covariance function, makes them unsuitable for modeling the feedback control policy,
which may exhibit many different local properties. A neural network kernel function
(also referred to as multi-layer perceptron (MLP) kernel) is more appropriate, as it is a
nonstationary covariance function, which allows to fit functions with both steep slopes
and smooth plateaus. In the context of large-scale terrain modeling, this kernel has also
been identified by Vasudevan et al. [194] as very suitable to model “fast-changing/large
discontinuities in data” that appear in the sensor data representing scans of large-scale
terrain.

The GP needs to be retrained each time data points of a new optimal trajectory are
added. Training requires the inversion of the kernel matrix, usually realized with a
Cholesky decomposition, whose complexity of O(n3) (for n training samples) dominates
the complexity of the overall training algorithm [154]. In consequence, a large number of
data points slows down the training and also the evaluation of the GP. To attenuate this, it
is possible to use some sparse pseudo-input model as, e.g., introduced in [167] to reduce
the computational cost for both operations. However, the use of a sparse approximation
may degrade the quality of the learned near-optimal policy.

It must be noted that a policy implemented by a GP is likely to violate the box constraints
of the control. It is possible to construct a learned policy that intrinsically complies with
box constraints by using some bijective mapping R→ (−1, 1) that is wrapped around the
Gaussian approximation. The following mapping based on the arcus tangens function is
given exemplarily to demonstrate the approach:

m(p) =
umax − umin

π
atan(p) +

umax + umin
2

(3.3)

The training data for the GP is then transformed to be
{︁
xi,m

−1 (ui)
}︁
i
and the control

approximation is the mapped output of the GP model u = m(GP(x)).

An important disadvantage of this approach is that this transformation works on open
intervals, but the control trajectories computed using DIRCOL also include values on the
boundary of the feasible region, which would be mapped to infinity. Another disadvantage
of this approach is that it introduces considerable nonlinearities into the policy model,

33

(a) All generated optimal trajectories
approach the goal state from the
same direction in a small tube.

(b) Additional short trajectories sam-
pled in the proximity of the goal
state amend this deficit.

Figure 3.3.: Example showing the sparsely sampled state space around the goal state
and the addition of additional trajectories in this area, based on the weakly
actuated pendulum problem (cf. Section 3.3.1).

which complicates learning. Finally, this approach does not generalize for nonlinear
constraints. These are the main reasons why this approach is not used in this work.
Instead, the values outside U are reset to some valid controls on the boundary of U .
Consequently, it is necessary to reset values outside U to some valid controls on the
boundary of U . In case of box constraints, this simplifies to the mapping u = m(GP(x)) of
the learned control policy with m defined as

mi(ui) :=

⎧⎪⎨⎪⎩
ui, if umin,i ≤ u ≤ umax,i

umin,i, if ui < umin,i

umax,i, if ui > umax,i

. (3.4)

This saturation of the learned control is easy to implement and efficient to compute for box
constraints. Its generalization to nonlinear constraints is the projection onto the boundary
of the feasible region.

34

3.2.5. Additional Samples around the Goal State

As can be seen in Figure 3.3a, the sampling of the state space close to the goal state may
stay sparse. All generated trajectories approach this state in a narrow tube, leaving a
significant area around the goal state unexplored. In the example shown in Figure 3.3, the
states are not constrained to the goal state at the end of the trajectory (the convergence
to the goal state is accomplished only by the formulation of the objective function). This
forces the co-states to become zero at the end point of the trajectory (for details see [30]),
leading to small co-state values and hence no new start states around the goal state.

Altogether, while the co-states give valuable information about sensible regions around
a large portion of the computed optimal trajectories, they are of little use to promote
exploration in the direct proximity of the goal state. The start state selection strategy
based on co-state values is thus complemented by adding short trajectories starting at
additional (e.g., randomly placed) positions on a ball with small (problem dependent)
radius around the goal state. These trajectories are much shorter and accordingly add
less data points to the policy learner than the ones starting from points imposed by the
method described in Section 3.2.3. In the next chapter in Section 4.1.3, an alternative
using a switch-over to a proportional-integral (PI) controller is proposed.

3.3. Evaluation

The viability of the presented iterative approach is evaluated in simulation on models of a
weakly actuated pendulum and an industrial robot arm. These two dynamic systems are
described in detail in the next subsections. The implementation is done in Matlab; the
GP implementation used is the toolbox GPmat by Lawrence and others [3]. The numerical
optimal control solver DIRCOL is written in Fortran and uses text files as input and output.
A self-written C++ wrapper allows the formulation of optimal control problems, execution
of the solver DIRCOL and retrieval of the computed solution in C++ code. MEX files provide
access to this wrapper from within Matlab.

3.3.1. Feedback Control of the Weakly Actuated Pendulum

The weakly actuated pendulum is a single-joint pendulum with system dynamics

θ̈(t) =
g

l
sin (θ(t)) +

u(t)

ml2
− µ

θ̇(t)

ml2
, (3.5)

35

Figure 3.4.: Illustration of the weakly actuated pendulum.

as given in [159, 44, 49]. The link length is l = 1m, mass m = 1 kg, friction coefficient
µ = 0.05 kgm2/s and g = 9.81m/s2. The state is defined as x = (θ θ̇)

T in (rad rad/s)T .

The system is called weakly actuated since the applicable torque is constrained to be
u ∈ [−5, 5]Nm. This restriction makes the task non-trivial, as the maximum available
torque is not sufficient to bring the pendulum from a hanging position (θ = π) to the goal
state. Accordingly, a trajectory that solves this task must contain some swing-up [49].

The quadratic cost function of the OCP is

J (x, tf) =
1

2

(︁
10x̄1(tf)

2 + 10x̄2(tf)
2
)︁
+

1

2

∫︂ tf

0
x̄1(t)

2 + x̄2(t)
2 + u(t)2 + x̄1(t)u(t) dt

(3.6)
with x̄(t) := xf − x(t), similar to [43].

The start state is fixed by constraints to be θ(0) = π, θ̇(0) = 0, which describes the
pendulum at its stable equilibrium state with hanging mass. The final state xf = (0 0)T is
not enforced by constraints but is used in the objective function (3.6) to penalize deviations
from this state at the terminal time. The OCP’s terminal time is fixed to be 8 s. This is
a large value considering that the time-optimal solution starting from (π 0)T can reach
the goal state within 3 s. Still, the cost function favors solutions that quickly approach

36

the goal state and stay there for the remaining time. The reason for the large terminal
time is to make it more likely that the optimal control solver can find a solution for more
difficult start states. The approach presented in this thesis is applicable to both problems
with fixed and free terminal time.

The state of the original problem is unconstrained. In this work, very loose constraints
of xmax = (4·2π 100)T , xmin = −xmax are used to improve efficiency of the numerical
collocation method to solve the OCP.

To find a near-optimal feedback control policy, Algorithm 1 is applied to the described
OCP. After ten iterations, the control approximation is trained with 219 samples from
ten trajectories. Eight additional trajectories around the goal state (see Chapter 3.2.5)
increase the number of training samples to 308. To give an unbiased view on the start state
selection procedure, all computed trajectories are manually checked during execution. A
re-computation is initiated if some OCP has not been successfully solved to ensure that
the trajectories for all start states are used. All trajectories and samples used for training
are depicted in Figure 3.5a as blue lines and markers.

A test set of 200 trajectories, which solve the above OCP, starting from different start states
si with 0.3 ≤ ∥ (π 0)T − si∥2 ≤ 1.0 is used to evaluate the learned feedback controller.
The trajectories of the system that result from applying the learned feedback control policy
are computed starting from each of the 200 start states of the test set. The numerical
integration method used in this chapter for evaluation is a self-written classical fourth-
order Runge-Kutta scheme with a fixed step size of 1 × 10−3 s. The total cost of the
trajectory is integrated using the trapezoidal integration rule, as the requirement for
accuracy is not as high as for the system state. In the evaluation of the results for the
weakly actuated pendulum, the goal is considered as reached if the Euclidean distance of
the state x(t) to the goal state xf is less than 10−3 and a near-optimal trajectory is said
to be found if its approximated cost is at most 110% of the trajectory cost computed by
DIRCOL for the same start state.

A selection of covariance (or kernel) functions is used for the evaluation to determine a
GP kernel capable of modeling the approximate feedback control. Radial basis function
(RBF) kernels, Matérn-3/2 and Matérn-5/2 kernels are standard kernel functions that
are often used. They are, however, both stationary models, which means that they are
“invariant to translations in the input space” [154], but this does not hold for the feedback
control. The multi-layer perceptron (MLP) kernel, also called neural network kernel [154]
or arcsin kernel, is nonstationary. It results from a neural network with a single hidden
layer where the number of hidden nodes tends to infinity [202]. The definition of several

37

GP kernel near
optimal

goal
reached failed

distance to goal cost ratio

mean var mean var

MLP 168 32 0 6.46 · 10−4 1.61 · 10−11 1.0375 0.0050
MLP (FITC) 7 139 54 1.40 · 10−3 1.90 · 10−5 1.5721 0.0467
MLP (DTCVAR) 173 22 5 3.14 · 10−4 3.78 · 10−7 1.0553 0.0094
Matérn-3/2 159 39 2 1.53 · 10−4 3.78 · 10−8 1.0834 0.0198

Table 3.1.: Evaluation results for the weakly actuated pendulum problem using different
GP kernels.

kernal functions is given in Appendix A.1; a detailed description of all covariance functions
can be found in Rasmussen and Williams’s book [154].

GPmat provides several sparse approximations of the GPs based on sparse pseudo-input
models that aim to reduce the computational burden of models with large training data sets.
In this work, the abbreviations used in GPmat to denote the different sparse approximations
have been adopted. They originate from the terminology introduced in [153]. The
following sparse approximations are used: the fully independent training conditional
(FITC) by Snelson and Ghahramani [167], the partially independent training conditional
(PITC), proposed in [153], the deterministic training conditional (DTC) described by Csato
and Opper [38], and the improved version of DTC proposed by Titsias [186] (DTCVAR).

The experiments show that the MLP covariance function with a non-sparse posterior
variance approximation provides the best results for the pendulum problem. The result
achieved with this kernel function is shown in Figure 3.5. Green stars represent successful
test cases; orange stars indicate trajectories reaching the goal state with costs more than
110% of the optimum, and red stars show test cases where the goal state has been missed.
In Figure 3.5b, the ratio of 19 test cases is slightly lower than 1.0 (the minimum is 0.9816),
indicating a lower cost than the optimal trajectory computed with DIRCOL. The reason
is a less accurate cost estimation for the simulated trajectories (linear approximation,
whereas DIRCOL uses cubic spline interpolation of the states). The near-optimal feedback
controller reaches the goal state in all cases, as the Euclidean distance at the final state of
the simulated trajectory to the goal state falls below 10−3, as can be seen in Figure 3.5c.

The results for other kernels or approximated GPs are reported in Table 3.1. The
Matérn-3/2 kernel and the MLP kernel with DTCVAR provide very good results. Us-
ing the MLP kernel with the FITC approximation leads to a significant decrease in the

38

(a) The trajectories and selected data points that
are used to learn the near-optimal policy and
the results for the test set with 200 start states.

(b) Ratio “simu-
lated cost to op-
timal cost”.

(c) Euclidean
distance from
goal state at tf .

Figure 3.5.: Evaluation for the weakly actuated pendulum using a feedback control ap-
proximation based on MLP kernel function (no sparse approximation).

quality of the approximated feedback control. Almost all test instances failed using the
Matérn-5/2, the RBF kernel, the Matérn-3/2 with DTCVAR and MLP with PITC.

It must be noted that the same training set (created using the non-sparse MLP covariance
function) is used for comparing the different covariance functions and posterior variance
approximations. The effect of the GP model on the start state selection for new trajectories
during the creation of the training data set is therefore neglected. A more detailed analysis
and comparison of kernel functions and options for GPs is performed in Chapter 5. The
preliminary result that the MLP kernel is suitable for the approximation of a feedback
control policy will be used in the next subsection, where the method is applied to a more
complex dynamic model.

3.3.2. Feedback Control of the Manutec R3 Robot Arm

In the following, the presented approach is used to approximate an optimal feedback
control of the point-to-point movement of an industrial Manutec r3 robot arm. The

39

(a) Visualization of theManutec r3 robot arm. (b) Nominal optimal joint trajectory for the
Manutec r3 robot arm.

Figure 3.6.: Visualization and nominal joint trajectory of the Manutec r3 robot arm.

dynamic model of the Manutec r3 robot arm (consisting of the equations of motion and the
joint constraints) is described in [136]1. It has been formulated with focus on realism and
is highly nonlinear, which makes finding a near-optimal control for this model significantly
harder than for the weakly actuated pendulum. The robot arm has six joints, the first
three mainly determine the position of the end-effector. The model of the Manutec r3
arm does not include models of the actuator and transmission dynamics. In principle, the
modeling can be extended to also include higher order dynamics as well as bandwidth
limitations introduced by the actuators. In this thesis, only these first three joints are used.
Consequently, the state space is six-dimensional and the control space three-dimensional.

The optimal control problem is to find an energy- and time-minimal point-to-point move-
ment of the end-effector from the joint state x0 = (0 −1.5 0 0 0 0)T (hereafter referred to
as nominal start state) to the final joint state xf = (1 −1.95 1 0 0 0)T . The cost function
used throughout this thesis is

J (x, u, tf) = tf + ρ

∫︂ tf

0

3∑︂
i=1

ui(t)
2 dt (3.7)

with ρ = 10−3. It has also been used in [175] and leads to collision-free energy-minimal
movements with an additional penalty for the free terminal time. The state and control
1The implementation used in this thesis can be found at https://github.com/cztuda/semantic-
feature-clustering/blob/master/cppsrc/models/manutec/_dynamics.h.

40

https://github.com/cztuda/semantic-feature-clustering/blob/master/cppsrc/models/manutec/_dynamics.h
https://github.com/cztuda/semantic-feature-clustering/blob/master/cppsrc/models/manutec/_dynamics.h

x[0] x[1] x[2] x[3] x[4] x[5]

xmin −2.97 −2.01 −2.86 −3.1 −1.5 −5.2
xmax 2.97 2.01 2.86 3.1 1.5 5.2

(a) State Constraints

u[0] u[1] u[2]

umin −7.5 −7.5 −7.5
umax 7.5 7.5 7.5

(b) Control Constraints

Table 3.2.: Upper and lower bounds on the state and control variables of the Manutec r3
robot arm.

variables are constrained by the box constraints xmin ≤ x ≤ xmax and umin ≤ u ≤ umax,
the values are given in Table 3.2. The trajectory of the Manutec r3 robot arm performing
an optimal point-to-point movement from the nominal start state is given in Figure 3.6b.

After 20 iterations of Algorithm 1, the near-optimal feedback control policy is trained
with 869 data points from 18 optimal trajectories. Two generated trajectories have been
rejected because the optimization process failed. Together with nine additional short
optimal trajectories around the goal state, this results in a total of 1006 samples from
27 trajectories. The non-sparse GP with MLP covariance function is used again for the
approximation.

The movement of the robot arm, controlled by the near-optimal feedback control, is
simulated from 200 start configurations. The Euclidean distance of these start states to
the nominal start state x0 in joint space is between 0.1 and 0.3. The result is presented in
Figure 3.7. The terminal time of the optimal trajectory of a test instance is designated with
T1, and T2 is the time at which the minimum distance to the goal state is reached by the
test instance. It can be seen that at the terminal time of the respective optimal trajectory,
the test instances have a large distance from the goal state. This distance is reduced to
0.1 at T2, but with a significant time delay. Considering the Lagrange part of the objective
function (3.7), which is proportional to the energy cost, the approximated cost of the
simulated trajectories are for three out of four test instances below 110%. However, the
total cost of the simulated movements is much higher than the optimum, as it includes
the final time.

3.3.3. Comparison with Naive Random Sampling

Finally, the presented approach is compared with a naive start state sampling strategy.
Data from 16 trajectories that start at random start states in the joint space is used to train

41

(a) Euclid. distance at T1 (b) Euclid. distance at T2 (c) Cost ratio at T2

(d) Optimal and simulated terminal time T1 and T2 for all trajecto-
ries in the test set.

Figure 3.7.: Subfigs. 3.7a to 3.7c show the Euclidean distances from the goal state
at optimal terminal time (T1), the Euclidean distances at the time of short-
est distance (T2) and the ratio “simulated Lagrange-term cost to optimal
Lagrange-term cost” for all instances of the test set. Subfig. 3.7d shows the
optimal terminal time T1 and the time T2 at which the simulated trajectory
reaches the shortest distance to the goal state for all trajectories in the test
set.

42

(a) Time at which the closest trajectory point to the goal state has
been reached

(b) Cost ratio at
T2 of the simu-
lated to optimal
trajectories

Figure 3.8.: Results for the naive sampling approach, showing the cost ratio and the
terminal time of the test instances.

a GP with a MLP covariance function. These trajectories provide 877 data points, which
is comparable to the number of data points used in the previous evaluation. The nine
trajectories close to the goal state are reused, increasing the number of training samples
to a total of 1013. The results on the test set of 200 start configurations is given in Figure
3.8. At T1, the distance to the goal state is comparable to the distance achieved with the
proposed method. At T2 the distance is reduced to values between 0.12 and 0.15, which
is slightly worse than with the adjoint-based start state selection approach. However,
the naively learned policy needs much longer to bring the arm close to the goal state, in
consequence, the overall cost at T2 is typically also substantially higher.

3.4. Discussion and Conclusion

The results for the weakly actuated pendulum problem look convincing, but the results for
the Manutec r3 robot arm show room for improvement. In particular, the time required to
reach the shortest distance to the goal state is considerably longer than the optimal time

43

to the goal state. A critical analysis of the approach employed in this chapter reveals the
following reasons for the unsatisfactory performance of the learned control policy. The
optimal control typically exhibits high variability in the small ball around the goal state. In
higher-dimensional spaces, the few additional trajectories seem insufficient to cover the
state space in a way that allows for the accurate representation of an optimal control
policy that can effectively stabilize a more complex and higher-dimensional system around
the goal state. Furthermore, the approach to filter redundant training data to prevent
ill-conditioned GPs presented in Section 3.2.2 requires careful selection of a distance
threshold. The threshold-based approach is thus, in some cases, too strict and still not
able to reliably prevent ill-conditioned GPs in all cases. These two shortcomings will be
addressed in the next chapter.

An important limitation of the approach presented in this chapter is its dependency on
a sufficiently accurate model, which is used in the trajectory optimization step. This
model may be difficult to obtain in practice. A possible solution is the implementation of
a feedback compensation of model errors using a locally optimal tracking controller, e.g.,
similar to the approach introduced in [73]. In [72, 73], the cost function used for MPC
has been extended to penalize high frequencies of the actuators in the trajectory. The
influence of model inaccuracies on the learned feedback controller will be considered in
more detail in Section 4.2.3 and 5.4.

In this chapter, different kernels and approximation methods for GPs have been tested on
the weakly actuated pendulum problem and the MLP kernel has been identified as suitable
for the approximation of the near-optimal feedback control policy. An iterative extremal
field approach has been used to successively improve a near-optimal feedback control
using samples from optimal trajectories. Focus has been on the placement of start states
for new optimal trajectories. The proposed selection strategy employs co-state information
from existing trajectories provided by DIRCOL, which is used to identify cost-sensitive
parts of the trajectory, and the covariance of the current control policy approximation
provided by the GP, which estimates uncertainty. This information is used for the first
time to select new trajectories. The adjoint-based method of selecting start states for new
trajectories avoids full sampling of the state space, making it an effective alternative to
random sampling. It has been successfully applied to an industrial robot arm representing
realistic highly nonlinear problems with time-invariant cost functions.

44

This chapter is based on the paper “Learning Control Policies from Optimal Trajectories”,
published in IEEE International Conference on Robotics and Automation (ICRA)
[213]. It contains the following major additions: an extended presentation of the
related work, Figure 3.1, more details in Section 3.2.4, Figure 3.4, Table 3.1, revised
Figures 3.5b to 3.5c, Figure 3.6, Figures 3.7a to 3.7c and Figure 3.8b.

45

4. Complementing Start State Selection
Methods and Explicit Goal State Handling

In Chapter 3, an iterative extremal field approach with a novel start state selection
method is described to use data from optimal trajectories to learn a near-optimal state-
dependent feedback control policy represented by a GP. The advantage of the extremal
field approach is the direct incorporation of model knowledge into the construction of the
control policy during training: Data from optimal trajectories is used that complies with
the existing physical model of the system, which includes its dynamics and constraints. In
this chapter, several improvements will be proposed regarding the start state selection
method, the filtering of training data, and the stabilization of the system at the goal state.
The advancements of this chapter extend and complement the approaches presented in
Chapter 3.

The selection of start states determines the coverage of the state space with training data.
An important insight that motivates this chapter is that more than one strategy is required
to select new trajectory start states to ensure variety in the start state selection, as large
co-state values are not the only reasonable criterion for good start states.

The evaluation in Chapter 3 shows that the stabilization around the goal state becomes
increasingly difficult in higher dimensions. As described in Subsection 3.2.5, using optimal
trajectories leads to an inhomogeneous sampling of the state space in the vicinity of the
goal. In Chapter 3, this has been counteracted using additional short trajectories around
the goal state. This approach becomes impractical for higher-dimensional robot models
as the volume of a sphere with a fixed radius around some goal becomes large for higher
dimensions. This is exactly the same reason why sampling of the state space is not used.
In this chapter, a different approach will be proposed to solve this problem.

Furthermore, the GP used to approximate the feedback control policy becomes ill-conditioned
when redundant training data is used. In Section 3.2.2, a minimum distance between the
training data samples is used to filter all training data that fall below a predefined distance

47

to an existing data point. However, this method depends on tuning of the minimum
distance threshold; it is not able to prevent ill-conditioned GPs in all cases.

This chapter presents additional and complementing approaches to tackle the problems
outlined above. The evaluation done for this chapter examines the effect of external
perturbations and model inaccuracies caused, e.g., by inadequate or missing modeling of
friction. The relevant related work has been discussed in detail in Section 2.2 and 3.1
and is therefore omitted in this chapter.

4.1. Extensions for the Iterative Extremal Field Approach

The selection of start states for new trajectories is crucial, as it determines the data that is
added to the learning routine. For the method to be successful, there must be enough
information in the relevant region. This requires the optimal trajectories to be distributed
such that the learned policy can deal with unexpected deviations from the nominal path.

4.1.1. Complementing Strategies for Start State Selection

In Chapter 3, estimated co-state values (also called adjoint variables) have been used
to indicate parts of the trajectory where some deviation has a considerable impact on
the trajectory cost (see Section 3.2.3). However, the focus on the co-state variables that
identify parts of the trajectory where deviations have a high impact on the cost may not
account well for other aspects that are also important for an accurate approximation
of the optimal control policy. In the following, various start state selection strategies
intended to complement each other will be introduced. The strategies reflect the different
requirements on the trajectories that provide data to learn the near-optimal policy.

Sensitivity-Based Start State Selection

The reason for the examination of co-states in Section 3.2.3 is to identify states with
high sensitivity to the resulting trajectory cost, i.e., states that have a high impact on the
resulting trajectory cost. However, it is also essential to consider the sensitivity to the state
variable itself and to focus on regions where small deviations in the state of the trajectory
may lead to large changes and thus notably change the trajectory’s course from this point.

48

In the following, a notion of the relative perturbation error, or sensitivity of the state
variables, will be used that follows the definition in [85]. Let x(t0 + t) = M t

f,u(x(t0))
denote the numerical time integration for a fixed control function u(t) of the differential
equation f(x, u) representing the dynamical system, starting from state x(t0).

For ε > 0 small, a fixed time window δt > 0, and the j-th column vector of the identity
matrix ej , the partial sensitivity approximation of f at state x is defined as

P
Mδt

f,u,ε

j (x) =
M δt

f,u(x+ εej)−M δt
f,u(x)

ε
, (4.1)

which is the relative perturbation caused by an error ε in the state variable xj(t) after
numerical integration in x(t+ δt). Let further be

pMδt
f,u,ε

(x) =

⎛⎜⎜⎝
∥P

Mδt
f,u,ε

1 (x)∥
...

∥P
Mδt

f,u,ε
n (x)∥

⎞⎟⎟⎠ (4.2)

the sensitivity vector that holds the normed perturbation for all partial derivatives.

Note that the absolute error of the numerical integration scheme with respect to the
perturbation error ε must be sufficiently small to provide a meaningful approximation of
the sensitivity. For a given optimal trajectory (xref(t), uref(t))t∈[0,tf] with terminal time tf ,
a coarse time grid Γ = {t0, t1, . . . , tk} with t0 = 0 and tk = tf is used.

Considering the sequence of sensitivity vectors pMδt
f,u,ε

(x(t0)), …, pMδt
f,u,ε

(x(tf)) at the grid
points Γ, assume that there is a distinguished peak at time tp ∈ Γ. Identify tv ∈ Γ with
tv < tp such that ∥pMδt

f,u,ε
(x(ti))∥ is increasing for tv ≤ ti ≤ tp (see Figure 4.1).

Then the two points

xref(tv)± µsens
pMδt

f,u,ε
(x(tp))

∥pMδt
f,u,ε

(x(tp))∥
(4.3)

are added to a strategy-specific set of candidate start states for new trajectories. The idea
of equation (4.3) is to add a new trajectory in the direction of high sensitivity (at tp) to
increase the number of data points in this sensitive area. Parameter µsens controls the
distance to the reference trajectory. To improve coverage of the full area around the peak,
the point at tv < tp on the trajectory is used (from which the sensitivity starts increasing)
to move the start state of the new trajectory slightly “before” the peak.

49

Figure 4.1.: Illustrative example of the selection of times tp and tv in the start state
selection approach based on the sensitivity to state errors.

Simulation-Based Start State Selection

The rationale of the simulation-based approach is to check the tracking error of the control
learned so far in simulation and add a new trajectory where the error starts growing
significantly. For a given optimal trajectory xref(t) with control uref(t) and with terminal
time tf that has been computed in previous iterations, a trajectory is simulated using the
currently learned control policy. The start state of the simulated trajectory is the same
as that of the reference trajectory xref(0). The deviation (i.e. the error) of the resulting
trajectory (xsim(t), uGP(t)) from the reference trajectory is evaluated on a fine grid Γ. Let
tp ∈ Γ be a distinguished peak in the sequence of deviations {d (ti) : ti ∈ Γ} or the time
where the deviation exceeds some predefined threshold dmax

sim and let again Γ ∋ tv < tp be
the time from which the deviation before tp is strictly increasing, i.e., ∥d(ti+1)∥ > ∥d(ti)∥
for all tv ≤ ti < tp. A new candidate start state is then given as

xref(tv) + µsim
d(tp)

∥d(tp)∥
, (4.4)

at a user-defined distance µsim from the reference trajectory in the direction d(tv) of the
deviation occurring in simulation. This approach is illustrated in Figure 4.2. The rationale
for equation (4.4) corresponds to that for equation (4.3).

50

Figure 4.2.: Example of the selection of times tp and tv in the simulation-based start
state selection approach. Time tp can be at some maximum or (as in this
example) when the threshold is exceeded.

Halton-Based Start State Selection

The start states generated from one of the two previously described methods are typically
closer to the goal state than the start state of the original trajectory. To get some longer
trajectories, the Halton-based selection strategy selects start states in the proximity of the
initial, user provided start state x0 of the first trajectory. To keep the method deterministic,
the quasi-random Halton sequence [75] is used to compute start states for new trajectories:

x0 + µH
Hi

∥Hi∥
. (4.5)

Again, µH is some user-defined parameter that denotes the desired distance from x0, Hi

is the i-th element of the multi-dimensional Halton sequence.

An example of the sequence of start state candidates around the initial start state x0,
produced by the Halton-based approach, is depicted in Figure 4.3. Note that this approach
is a simple (quasi-) random sampling strategy. Variance information from the learner is
not taken into account. Instead, the next iterate of the Halton sequence is selected in
each step. Further, in contrast to the other approaches presented here, this start state
generation method also does not use information from already computed trajectories.

51

Figure 4.3.: Example of the Halton-based start state selection approach for the initial
start state x0 =

[︁
0 0

]︁T (blue diamond). The sequence of the first ten new
start states (numbered red dots) on a ball with radius µH around x0.

Ensuring Feasibility and Selection of a new Start State

The new start states provided by the variants may be outside the problem’s state bounds
(2.3a). To handle this problem, one could discard the infeasible start states and select
another start state using the same selection method. While this approach is perfectly
feasible for the Halton-based approach, the adjoint-based, simulation-based and sensitivity-
based start state selection methods would quickly run out of candidate start states. Instead,
a correction is applied in this work to ensure that all start states are feasible. Assume that
an infeasible state xstart has been derived using a start state selection strategy from some
state xref (or x0 for the Halton-based strategy). The corrected state xcorr is set to be the
solution of the optimization problem

xcorr = min
ν∈R

xstart + ν (xref − xstart) (4.6)

s.t. xlb ≤ xstart − ν (xref − xstart) ≤ xub,

0 ≤ ν ≤ νub

if a solution exists. The upper bound νub = 0.7 < 1 is used to keep the resulting state away
from xref. If no solution can be found, all entries in the vector xstart are forced separately

52

to comply with the bounds: xcorr = min(max(xlb, xstart), xub), which effectively skews the
direction (xref − xstart) in which a new start state is placed.

The approach-specific set of candidate start states is expanded for the adjoint-based,
sensitivity-based and simulation-based approach each time a new optimal trajectory is
computed. If a new start state from one of these approaches is required, the element at
which the current control approximation has the highest variance value (corresponding to
uncertainty) in its candidate set is chosen. In each iteration of the algorithm, a new start
state from one of the four proposed start state selection strategies is selected in a round
robin procedure.

4.1.2. Filtering of the Training Data

A special requirement of GPs is that the set of training data {(x̃i, ũi)}i=1,...,N must not
contain duplicates, i.e.,

∀i, j ∈ {1, . . . , N} : ∥x̃i − x̃j∥ > 0 (4.7)

must hold. The reason is that, given some learning data (x̃i, ũi)i=1,...,N , predictions of
Gaussian processes require the inversion of a matrix

(︁
K + σ2I

)︁
, where I is the identity

matrix of suitable size, σ some constant denoting the noise andK is the Gramian matrix of
the vectors x̃1, . . . , x̃N with respect to the selected GP kernel function [154]. The Gramian
K is positive semi-definite by construction and positive definite if and only if the vectors
x̃i have a nonzero distance to each other. To get an invertible matrix

(︁
K + σ2I

)︁
with the

noise σ as small as possible, it is necessary to have only relevant and unique training data.
In Chapter 3, a new data point (x̃N+1, ũN+1) is rejected if its distance to another data
point in the existing learning data falls below some constant c > 0, i.e.,

min
i=1,...,N

{∥x̃N+1 − x̃i∥} < c. (4.8)

However, the parameter c must be chosen conservatively to avoid a reduction in the
quality of the GP’s performance during the algorithm’s execution. If parameter c is
chosen too small, numerical problems caused by an ill-conditioned matrix inversion must
be counteracted by introducing so-called jitter (addition of some constant value to the
diagonal of the matrix) that can be interpreted as noise. This prevents effective training and
deteriorates the training result. In contrast, training data is thinned out too aggressively
and valuable information is thrown away if the parameter c is chosen too large. This
makes it challenging to tune this parameter to learn the GP model successfully.

53

In the following, a less parameter dependent approach is proposed. This approach is
inspired by a forum post on Stack Exchange by the user Jack Fitzsimons 1. The new
training data from a trajectory is added, the resulting kernel matrix K is computed and a
QR decomposition2 to identify a linearly independent subset of columns C ⊆ {1, . . . , N}
in K is performed. The set of training data is restricted to (x̃i, ũi)i∈C , which ensures that
the kernel matrix K stays invertible despite the addition of arbitrary new data points.
This new approach more reliably filters training data that would lead to high noise. At
the same time, it effectively removes fewer points than the approach in Chapter 3, such
that more training data per trajectory can be used.

Marchildon and Zingg [114] propose a method to rescale the training data to avoid
ill-conditioned kernel matrices in GPs. With their approach, all data points can be kept.
However, their method is only applicable to rational quadratic and Matérn kernels. It
needs to be investigated further whether their method can also be applied, with or without
adaptations, to other kernels, such as MLP, which is frequently used in this thesis.

4.1.3. PI Control near the Goal State

Exact convergence towards and stabilization around the goal state xf is difficult to achieve
with the learned control, as learning data becomes sparse in its close vicinity. This has
been described in detail in Section 3.2.5 where this problem has been mitigated using
additional short trajectories sampled around the goal state to increase the number of
training data in the sparse areas. However, there are more appropriate and bespoke
methods to stabilize a controlled system around some goal state.

After the computation of the policy approximation, the error system is linearized around
x(tf), which allows the use of a LQR approach to design a PI control law around the goal
state xgoal. To deal with steady state errors (e.g., caused by model errors), the system
is augmented to implement an integral action control. The augmented LQR problem is

1https://stats.stackexchange.com/q/189816 (version: 2016-01-08)
2Matt J (2022). Extract linearly independent subset of matrix columns (https://www.mathworks.
com/matlabcentral/fileexchange/77437-extract-linearly-independent-subset-
of-matrix-columns), Matlab Central File Exchange

54

https://stats.stackexchange.com/q/189816
https://www.mathworks.com/matlabcentral/fileexchange/77437-extract-linearly-independent-subset-of-matrix-columns
https://www.mathworks.com/matlabcentral/fileexchange/77437-extract-linearly-independent-subset-of-matrix-columns
https://www.mathworks.com/matlabcentral/fileexchange/77437-extract-linearly-independent-subset-of-matrix-columns

given by

min
u

∫︂ ∞

0
x̂TQxx̂+ ûTQuû+ zTQiz dt (4.9)

s.t. ẋ = Ax̂+Bû, ż = q − qgoal,

x̂(0) = 0, z(0) = 0

x̂ := x− xgoal, û := u− ugoal

A =
∂f(x, u)

∂x

⃓⃓⃓⃓
(︁
xgoal,ugoal

)︁, B =
∂f(x, u)

∂u

⃓⃓⃓⃓
(︁
xgoal,ugoal

)︁
where z is the integrated error that augments the system. The dependency of x, u, z and q
on the time t is omitted for brevity. The solution of the quadratic optimal control problem
(4.9) is known to be

û = −Q−1
u

(︃
B
0

)︃T

P

(︃
x̂
z

)︃
, (4.10)

where P ∈ Rny×ny with ny := nx + nq is a positive definite, symmetric matrix that can be
computed numerically by solving

PA+ATP − PBQ−1
u BTP +Qx = 0, (4.11)

which is known as the algebraic Riccati equation [5]. For the original variables, this gives
the following feedback control law:

u(t) = ugoal −K(x(t)− xgoal)−Kiz(t) (4.12)

for gain matrices

K = Q−1
u

(︁
BT 0

)︁
P{1,...,nx}

Ki = Q−1
u

(︁
BT 0

)︁
P{nx+1}

where the indices {1, . . . , nx} and {nx + 1} denote the columns of matrix P . A detailed
description of LQR and integral action control can be found in [5].

Like this, the learned control does not need to reach the exact goal position but only some
ball around the final state, from which the control is passed to the computed PI controller.
This renders the use of additional short trajectories around the goal state, as described in
Section 3.2.5, unnecessary. This approach is only applicable if a fixed final state is given
in the problem description. If some or all state variables are free, then it is unclear around
which state to linearize.

55

x[0] x[1] x[2] x[3] x[4] x[5]

xmin −3.12 −2.11 −3.00 −3.15 −1.58 −5.46
xmax 3.12 2.11 3.00 3.15 1.58 5.46

Table 4.1.: The values of the box constraints on the state variables of the Manutec r3
robot arm relaxed by 5%.

4.2. Evaluation

The advancements detailed in the previous section are evaluated in simulation to obtain
highly accurate information on the behavior of the investigated system. The Manutec r3
robot arm used in Chapter 3 is revisited to allow a comparison of the results. See Section
3.3.2 for a detailed description of the optimal control problem.

In simulation, small violations of the state constraints are tolerated and the feasible region
defined by the box constraints is increased by five percent (see the values of the relaxed
state constraints in Table 4.1). The reason for this relaxation is given later in the following
subsection. If the learned controller exceeds the control bounds, the value is set to the
boundary of the feasible region.

The methods are implemented and run in Matlab 2022b. As external code, the imple-
mentation of GPs provided by the GPmat toolbox written by Lawrence et al. [3] and the
Fortran implementation of DIRCOL [173, 174] is used.

4.2.1. Performance of the Start State Selection Strategies

The first part of the evaluation aims at analyzing the contribution of each new start
state generation strategy to the resulting learned control. The performance of the GP
approximation that has been trained using all four proposed start state selection strategies
is compared with the learned near-optimal control that has been trained alike but with
one selection strategy missing. In the following, these five scenarios are referred to as full,
noAdj, noSens, noSim and noHalt. An overview of the scenarios is given in Table 4.2. For
each scenario, the iterative approach is stopped after 30 iterations, such that the number
of trajectories and consequently the number of training data is approximately the same
as in Chapter 4. The PI control close to the goal state presented in Subsection 4.1.3 is
evaluated separately in Subsection 4.2.2 and not used in this part of the evaluation.

56

full noAdj noSens noSim noHalt

Adjoint-based X X X X
Sensitivity-based X X X X
Simulation-based X X X X
Halton-based X X X X

Table 4.2.: Overview of the five scenarios (given in columns) used in the evaluation of the
start state selection strategies. The ‘X’s indicate which start state selection
strategies (given in rows) are used in which scenarios.

For each optimal trajectory (xref(t), uref(t))t∈[0,tf] of the test set, the movement of the
robot arm is simulated, starting from the start state xref(0), using all five learned control
policies one after another. Simulations are performed by the ode45 routine included in
Matlab, which is based on the Dormand-Prince integration method (with relative error
tolerance 10−8, absolute error tolerance 10−9). For this evaluation, the switch to the PI
control close to the end state xgoal is not used to avoid tampering the result. Instead,
for a simulated trajectory xsim(t), the time at which the minimal distance between the
simulated trajectory and the goal state occurs

t′f,sim := argmin
t
∥xsim(t)− xgoal∥ (4.13)

is considered as final time. The distance at the final simulation state to the goal state is
consequently given as

d := ∥xsim(t
′
f,sim)− xgoal∥. (4.14)

A simulation is performed successfully, if this distance falls below some threshold d < csucc.
This threshold is set to be csucc = 0.15 since this is the distance at which the switch to the
PI controller will be performed in the second part of the evaluation (cf. cin at the end of
Section 4.2.2). In this part, the integration method stops as soon as a constraint violation
occurs and the simulation is marked as failed.

For the comparison of the five learned control policies, the following performance criteria
are considered:

1. Distance of final state in simulation from the goal state:

∥xsim(t
′
f,sim)− xgoal∥ (4.15)

57

2. Ratio of terminal times:
t′f,sim/tf,ref (4.16)

3. Tracking error using normalized mean squared error (NMSE) on a time grid:

n−1 · Var
[︂{︁

xsim,i,j

}︁
i,j

]︂−1
n∑︂

i=1

nx∑︂
j=1

⃓⃓
xsim,i,j − xref,i,j

⃓⃓
(4.17)

Note that the definition of the NMSE in this thesis differs from that in [214] to be consistent
with the definition used in Chapter 5 and the computation of the mean square error in
Tensorflow3. Figure 4.4d is changed accordingly.

A test set of 300 optimal reference trajectories from random start states with a defined
distance to the problem start state x0 in the joint space, as given in (2.1), is used to
evaluate the performance of the five scenarios introduced above. It can be expected that
the difficulty of the test instance depends on the distance of the reference trajectory’s start
state from x0. For this reason, the test set consists of six groups of 50 trajectories, where
the start state of all trajectories in a group has the same distance from the initial start
state. The Euclidean distances are 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30. This allows the
interpretation of the result depending on different levels of difficulty.

The following parameters are used for the four start state selection methods: adjoint-based:
[bl, bu] = [0.2, 0.3] , ν = 1.2; sensitivity-based: µsens = 0.18; Halton-based: µH = 0.1;
simulation-based: µsim = 0.2, dmax

sim = 0.2. These parameters influence at which distance
to existing trajectories new start states are placed, which determines its usefulness.
Consequently, the performance of the complementing methods strongly depends on the
parameter tuning.

The results for each scenario are summarized in Figure 4.4. The Figures 4.4b to 4.4d show
only the results for the successful trajectories. The y-axes of Figures 4.4c and 4.4d are
zoomed in and show only the relevant part of the data. At a close look, it can be seen in
the results that the cost or terminal time ratio between simulated and optimal trajectories
is slightly below 1.0. This is not a flaw in the trajectory optimizer DIRCOL but results
from the fact that, by accepting all trajectories that reach some region around the goal
state, the original problem formulation has been relaxed. This makes it possible that some
simulation results “outperform” the optimal solution that actually reaches the goal state.
3https://www.tensorflow.org/api_docs/python/tf/keras/losses/MeanSquaredError

58

https://www.tensorflow.org/api_docs/python/tf/keras/losses/MeanSquaredError

(a) Number of successful simulations (in blue).

(b) Distance at closest state

Figure 4.4.: Results for five learned control policies with all start state generation strate-
gies (full) or all but one strategy (e.g., noAdj means all strategies except
adjoint-based etc.). LHS gives the results for a state-of-the-art local sam-
pling approach (Sec. 4.2.1). Subfig. 4.4a visualizes the success rate for
six different distances of start states from the nominal start state. Subfig.
4.4b presents the results for the performance criterion (4.15); the boxes en-
compass the interquartile range (IQR), the maximal whisker length is 1.5 IQR,
outliers are marked with ◦.

59

(c) Ratio of terminal times

(d) NMSE of the system state

Figure 4.4.: (continued) Results for five learned control policies with all start state gener-
ation strategies (full) or all but one strategy (e.g., noAdj means all strategies
except adjoint-based etc.). LHS gives the results for a state-of-the-art local
sampling approach (Sec. 4.2.1). Subfigs. 4.4c to 4.4d present the results
for the performance criteria (4.16) to (4.17). The boxes encompass the
interquartile range (IQR), the maximal whisker length is 1.5 IQR, outliers are
marked with ◦.

60

The bar plot shows the number of successfully solved test instances. The three box plots
visualize the result for all scenarios (see Table 4.2) with respect to the final trajectory
distance to the goal state (see (4.15)), the ratio of simulated to optimal trajectory time (see
(4.16)) and the NMSE between the states of simulated and optimal reference trajectories
(see (4.17)). The scenario full gives the highest number of successes and the best end
positions for the three shortest start state distances. The results are average for more
distant start states and the ratio of terminal times. If the sensitivity-based strategy is
missing, the ratio of terminal times is among the best, indicated by a low mean and
variance. However, the number of successes is reduced compared to the results where
this strategy is included. The distance to the goal state is average. The success rate of
the noSim scenario is average, and the distance to the goal state is small compared to
the other examined scenarios. For both criteria, noSim performs worse than full and
noSens. In addition, it has notably higher terminal times and considerably increased
NMSEs compared to noSens and full. Removing the adjoint-based or Halton-based strategy
considerably reduces the success rate, which underlines the importance of these strategies.
Although the noAdj scenario shows decent terminal time ratios (favorable means, but very
high variance for test instances with more distance start states), the NMSE is only average.
The results for noHalton are the worst of all examined scenarios for all criteria.

Overall, full and noSens are clearly the best scenarios in this evaluation; they show similarly
strong results and give a reasonable trade-off between the evaluated performance criteria
(4.15) – (4.17). While noSens shows slightly better optimality properties (terminal time
ratio and NMSE), full has a slight advantage in the success rate and the shortest distance
to the goal state. However, the latter is more important than moderately better optimality.
The learned control generated with the full scenario is thus used in the subsequent
evaluation.

Constraint Violations in the Performance Evaluation

State constraints are implicitly incorporated into the learned control policy, as the data
that is used for training satisfies these constraints. However, they are not enforced during
the execution of the learned control policy, so violations may still occur. In contrast to
the evaluation done in Chapter 3 where a self-written classical fourth-order Runge-Kutta
scheme (RK4) with fixed step size is used to simulate the systems, the simulation routine
in this chapter is the built-in Matlab function ode45. These two integration methods
behave differently if the state violates a constraint: The self-written RK4 approach resets
the system state onto the boundary of the feasible region when this region is left and

61

Figure 4.5.: Length of the constrained arcs of the test instances depending on the dis-
tance of their initial start state from x0

continues the simulation. The ode45 function, on the other hand, stops the simulation as
soon as a constraint violation occurs. This typically happens with considerable distance
to the goal state such that this instance is marked as a failure. For this reason, the state
constraints are relaxed by increasing the feasible region by 5% to allow small violations
of the state constraint. The values of the relaxed state constraints are given in Table 4.1.

Hence, while there are no failures due to violations of the state constraint in the evaluation
of Chapter 3, this occurs more frequently in the evaluation of this chapter. In fact, failure
due to the violation of state constraint is the main reason why instances fail in the
evaluation in Section 4.2.1: The reason for the failure of 53 out of 55 failed test instances
is the violation of the relaxed state constraint. Thus, only two simulations that did not
reach the goal state were not aborted prematurely.

This means that the categorization according to the distance of the start state from x0
is not sufficient to rate the difficulty of the test instances. It also depends on how close
trajectories get to the infeasible region and how long the constrained arcs in the trajectories
are. To analyze the difficulty of the test set regarding state constraints, the total time
in which some state constraint is active is approximated for each trajectory. The result
is summarized as a boxplot for each group of the test set in Figure 4.5. It can be seen
that the variance increases with increasing distance from x0. Further, the median time, in

62

which the state is constrained, is in the “0.25” group substantially higher (0.2 s) than in
all other groups (the median for trajectories with distance 0.05 is 0.188 s and the median
for distance 0.3 is 0.19 s). If the trajectories with a distance of 0.25 spend more time in a
critical state close to the boundary, then the difficulty of these test instances is higher, and
consequently, the success rate is potentially lower.

To remove the impact of the state constraints on the evaluation result and evaluate
how the learned controls perform on unbounded problems, the evaluation from Section
4.2.1 is repeated without state constraints (i.e., by relaxing the state constraints by a
factor of 500). The results are given in Figure 4.6. The overall success rate improves
significantly compared to the evaluation with state bounds (compare with Figure 4.4a)
and the differences between the different scenarios (except for the noHalton scenario,
which still has a remarkably low success rate) are negligible. The full scenario also gives
the lowest median of the shortest distance to the goal state. Its terminal time ratio is
decent but (as in the state-constrained case) exceeded by the noSens scenario. Since the
state bounds are not enforced in this evaluation, the constraint violations can be quantified.
The maximum constraint violation on the simulated trajectories of the test set is given in
Subfigure 4.6d. The differences between the scenarios are minor, apart from noAdj that is
notably increased. The mean constraint violation (given in Subfigure 4.6e) is lowest in
the full scenario and notably highest in noHalt.

While the scenario with all start state selection strategies performs slightly worse than
most other scenarios regarding success rate, it outperforms all other strategies in terms of
the shortest distance to the goal state and mean constraint violation. It is among the best
in terms of optimality (terminal time ratio) and maximum constraint violation.

Comparison with the Adjoint-Based Start State Selection Strategy from Chapter 3

To show that the new start state selection strategies improve the results achieved in the
previous chapter, the learned control created for the full scenario is evaluated on the test
set constructed for Chapter 3. This test set consists of 200 optimal trajectories whose
start states’ distances from x0 range from 0.1 to 0.3. Further, the evaluation code from
the Section 3.3 is used. In particular, simulations in this part rely on the self written
integration scheme that has been used for the evaluation in Section 3.3. It must be noted
that in Chapter 3, nine distinct trajectories around the goal state xf have been added to
improve convergence. These additional trajectories are not used in this chapter.

63

(a) Number of successful simulations
(in blue).

(b) Distance at closest state

(c) Ratio of terminal times

Figure 4.6.: Comparison of the five learned control policies with all start state generation
strategies on practically unbounded state. Subfig. 4.6a visualizes the suc-
cess rate for six different distances of start states from the nominal start
state. Subfigs. 4.6b to 4.6c give the results for the performance criteria (4.15)
to (4.16). Subfig. 4.6c shows only the values for successful trajectories. The
boxes encompass the interquartile range (IQR), the maximal whisker length
is 1.5 IQR, outliers are marked with ◦.

64

(d) Maximum constraint violation

(e) Mean constraint violation

Figure 4.6.: (continued) Comparison of the five learned control policies with all start state
generation strategies on practically unbounded state. The Subfigs. 4.6d
and 4.6e show the hypothetical constraint violation for the state-constrained
problem. They show only the values for successful trajectories. The boxes en-
compass the interquartile range (IQR), the maximal whisker length is 1.5 IQR,
outliers are marked with ◦.

65

(a) Shortest Distance (b) Cost Ratio (c) Terminal Time

Figure 4.7.: Comparison of results using only the adjoint-based start state selection
method presented in Chapter 3 (onlyAdj) with the results of the approach
using four different selection methods from this chapter (full).

The movement of the robot arm is simulated from the start states in the test set using
the learned control. The evaluation focuses on the shortest distance from the goal state
that is reached by the simulated arm, on the ratio of the cost at the shortest distance
to the goal state and on the times at which the shortest distance to the goal state is
reached (i.e., the terminal time of the simulated movement). The results are presented in
Figure 4.7. The new start state selection strategies significantly improve, apart from some
outliers, the shortest distance to the goal state, the cost ratios, and the terminal times
of the simulated trajectories: The shortest distance to the goal state improves for 160 of
the 200 test instances compared to the result achieved in Chapter 3. Furthermore, the
shortest distance to the goal state is reached faster and with a lower cost value.

Comparison with LHS Sampling

Random sampling of the joint space is commonly used in the extremal field approach to
select the start states for optimal trajectories. Advanced approaches sample only in a small
subspace to focus on the region around some nominal trajectory. Ghosh and Conway [64]
use Latin hypercube sampling (LHS), which is very suitable to be used in high-dimensional
joint spaces, as it “simultaneously stratifies on all input dimensions” [200]. They use the
maximin criterion for LHS to ensure good coverage of the space.

The use of the presented four complementing start state selection methods in the extremal
field approach is compared with LHS sampling using the maximin criterion on the test
set of 300 optimal trajectories. The number of sampled start states is 30, such that the
number of training samples is roughly the same as in the evaluation described in Section

66

4.2.1. The performance of the learned feedback control policy using LHS sampling to
generate start states is evaluated with respect to the three performance criteria, given by
Equations (4.15) to (4.17). The result is shown in Figure 4.4.

The success rate for the test instances with start states close to the nominal state is very
high if the near-optimal feedback policy is trained using LHS samples. However, the
success rate drops for test instances that are further away. The minimum distance of the
successful trajectories to the goal state is considerably larger, and the tracking error is
slightly larger than for the full scenario. On average, this minimum distance is reached in
less time than with the proposed method.

The evaluation shows a clear benefit of using multiple complementing start state selection
methods, where the sampling strategy is combined with approaches that use information
from the numerical optimal control solver or from already computed optimal trajectories.

4.2.2. Evaluation of the PI Control near the Goal State

In this subsection, the performance of the learned control policy combined with a linear
feedback controller around the goal state xgoal is evaluated. An LQR as given in Equation
(4.9) is used to design PI gains that can be applied in the close proximity of xgoal. The
weight matrices Qx, Qu and Qi are diagonal matrices with values as follows:

Qx = diag
(︁[︁
80 350 100 0 0 0

]︁)︁
Qu = diag

(︁[︁
1.0 1.0 1.0

]︁)︁
Qi = diag

(︁[︁
10 4500 800 0 0 0

]︁)︁
Matlab’s routine lqr is used to solve the resulting algebraic Riccati equation (4.11) and
get the gain matrices K and Ki that determine the state space controller from Equation
(4.12). For each trajectory in the test set, the simulation starts with the trained controller
evaluating the GP and switches to the PI controller (4.12) as soon as the normed distance
of the first three entries of the system state (which are the joint positions) to the goal
state falls below some threshold cin. Once the system has switched to the linear controller,
it only switches back to the learned controller if the normed distance of the full system
state to the goal state exceeds cout.

• Start LQR control when ∥x1,2,3(t)− xgoal,1,2,3∥ ≤ cin

• Leave LQR control when ∥x(t)− xgoal∥ > cout

67

(a) Shortest Distance (b) Cost Ratio (c) Terminal Time

Figure 4.8.: Comparison of results using only the adjoint-based start state selection
method presented in Chapter 3 (onlyAdj) with the results of the approach
using four selection methods with (full+PI) and without (full) PI control.

It is said that the robot approaches the goal state if the distance of system state to the goal
state falls below cin, and that the system reaches the goal state if this distance is smaller
than 10−2. In general, it is advisable to choose cout > cin to avoid that the control quickly
alternates between the learned and the PI controller. In this evaluation, the simulation is
stopped and the respective instance of the test set is marked as failed as soon as the PI
controlled system leaves the ball with radius cout around the goal state.

The movement of the robot arm is simulated starting from the start states of the trajectories
in the test set from Chapter 3 and the times needed to reach the goal state are compared.
The values cin = 0.15 and cout = 0.6 turned out to be viable. The results are given in
Figure 4.8. The trajectories reach the goal state (distance below 1× 10−2), improving the
final distance compared to the simulation without PI control approximately by a factor of
five. This comes with an increased cost and terminal time.

To further analyze the impact of the PI controller on optimality, the trajectory that results
from the PI controller (starting at the time tswitch at which the switch from the learned
to the PI controller occurs) is compared to the optimal trajectory starting from the same
state. This analysis considers only the time required to reach the goal state as criterion,
which has a large influence on the trajectory cost (see the cost function (3.7)). Figure 4.9
shows the result for all test instances. The blue bars give the switching time tswitch and
thus represent the fraction of the execution time in which the learned feedback control
is active. The red bars show the time taken by the optimal trajectory from x (tswitch) to
x (tf), and the yellow bars show the time taken by the PI controller to reach the goal state
starting from the state at which the switch occurred. The green lines give the terminal
time of the entire optimal trajectory starting from the start state x(0) of the test instance.

68

Figure 4.9.: Execution time of learned controller, PI controller and optimal control on the
test instances of the Manutec r3 robot arm. The blue bars show the time
in which the learned feedback controller is active until the switch to the PI
controller occurs. Starting at the state x (tswitch), the red bars give the time of
the optimal trajectory to reach the goal state and the yellow bars the time the
PI controllers need to reach the goal state up to 1×10−2. For comparison, the
green line gives the terminal time tf of the entire optimal trajectory starting
at the start state x0 of the test instance.

It can be seen that the PI controller takes about 18 times longer than the optimal controller
to reach the goal state. The PI controller is only active in a small ball around the goal
state, but takes about 85% of the overall trajectory time. Thus, a significant part of the
suboptimality is due to the PI controller taking a significant amount of time to reach the
goal state. The performance of the PI controller depends on its tuning, if higher gains and
joint velocities are accepted than it is able to reach the goal state faster.

4.2.3. Perturbed Dynamics and Exogenous Perturbations

Perturbations acting on the system can be caused by exogenous forces and forces due
to imperfect modeling of the system dynamics. In this section, the performance of the
near-optimal feedback control policy computed for Section 4.2.1 under these perturbations
is analyzed. The exogenous perturbation is simplified to a displacement of the system
state during execution of a trajectory, representing, for example, an idealized collision
with a lightweight object.

69

Displacement in the System State during Execution of the Learned Control

The focus of the evaluation in Section 4.2.1 is on perturbations of the trajectories’ start
states. This section will continue this investigation and also consider perturbations in
the course of the trajectories. These perturbations are simplified to be discontinuous
displacements or shifts of either the joint states or velocities. They can be interpreted as
sudden shifts or corrections in the state estimation or as short collision with a lightweight
object that causes an ‘instantaneous’ change in the joint velocity. The perturbations are
applied to the optimal point-to-point movement of the Manutec r3 robot arm that solves
the OCP described in Section 3.3.2.

To evaluate the impact of displacements representing exogenous perturbations during
execution on the performance of the learned feedback control, a test set of 300 displace-
ments of three different magnitudes is created, similar to the test set described in Section
4.2.1. All trajectories in the test set start from the same start state at x0 = (0 −1.5 0 0 0 0)T ,
but are subject to different displacements that affect either the joint states or the veloc-
ities. The optimal unperturbed trajectory starting at x0 has a length of about 0.5 s; the
displacements are applied after exactly 0.2 s in simulation. For a given magnitude µ > 0,
a displacement vpert for the joint state or the joint velocity is created as follows using a
uniformly sampled random number r ∈ U ([0, 1]):

v̂pos =

⎛⎜⎜⎜⎜⎜⎜⎝

−1 + 2r
−1 + 2r
−1 + 2r

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ , v̂vel =

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
0

−1 + r
r

−1 + 2r

⎞⎟⎟⎟⎟⎟⎟⎠
vpert =

µv̂X
∥v̂X∥

for X ∈ {pos, vel} . (4.18)

Equation (4.18) provides samples of a fixed magnitude and ensures that the displacement
does not violate the state constraint (in particular the velocity limits for x4 and x5 that
are active at t = 0.2 for the given trajectory, cf. Figure 3.6b). To create the test set, 50
displacements of magnitude µ = 0.05, µ = 0.1 and µ = 0.15 are sampled using Equation
(4.18) for both joint position and velocity, resulting in 300 perturbations.

The arm motion is simulated for 0.2 s starting from x0 to some state x(0.2) controlled by
the open-loop optimal trajectory (FF) or by the near-optimal feedback control policy (full
scenario) used in Section 4.2.1 (FB). At t = 0.2, the displacements from the test set are

70

(a) Number of successful
simulations (blue)

(b) Shortest distance to the goal
state

(c) NMSE of the system state

Figure 4.10.: Results for the feedforward optimal control (FF) and the near-optimal feed-
back policy (FB) subject to a displacement of the joint state q or joint velocity
q̇ occurring at t = 0.2 during motion. Subfig. 4.10a visualizes the success
rate for six different distances of start states from the nominal start state.
The NMSE given in Subfig. 4.10b uses the optimal reference trajectory that
takes the discontinuity into account (i.e., it continues optimally after the
displacement at t = 0.2), the time grid of optimal and simulated trajectories
are matched using DTW.

applied and the simulation is continued from this new state x̃(0.2) = x(0.2)+vpert. For the
computation of the NMSE, the optimal trajectory starting from x̃(0.2) is computed for each
perturbation in the test set using DIRCOL. The NMSE is computed on the interval [0, 0.2]
based on the original unperturbed optimal trajectory and on the interval (0.2, tf] based
on the optimal trajectory that starts from the respective perturbed state x̃(0.2). To reduce
the effect of different time scales in the trajectories, the samples from the simulated and
optimal trajectory are matched in time using dynamic time warping (DTW) (cf. Figure
6.7) before they are used to compute the NMSE. The results are presented in Figure
4.10. The success rate for the six different distances of start states to the nominal start
state is visualized in Subfigure 4.10a for the feedforward and the feedback controller,
similar to Subfigure 4.4a. Subfigure 4.10b shows the final distance to the goal state for
all simulations, subdivided depending on the displacement. Subfigure 4.10c shows the
NMSE and is restricted to successful simulations to achieve a practical scaling of the y-axis.

71

The results for the learned feedback control are consistently better than for the feedforward
control, regarding both shortest distance to the goal state and overall NMSE. Obviously, a
larger displacement causes a larger final distance to the goal state. The results presented
in this section cannot easily be compared with the results for the perturbation in the
start state (see Figure 4.4), since the perturbations in Section 4.2.1 are applied for joint
states and velocities at the same time. Nevertheless, it seems that in general the effect of
perturbations is more severe when they occur closer to the goal state.

In general, the effect of a displaced joint state on the performance of the learned feedback
controller is much stronger than the effect of a displacement with the same magnitude on
the joint velocity. The results indicate that the learned feedback control can be successfully
applied in simulations with notably larger perturbations of the velocity than applied in
this evaluation. The robustness of the learned feedback control seems to be limited with
regard to disturbances of the joint state: For displacements of more than 0.1, the success
rate of the controller on the test set decreases considerably. Further experiments have
shown that if disturbances are applied at both the start state and at t = 0.2, the learned
control is no longer successful.

To summarize, the learned near-optimal control policy is able to cope with small shifts
in the joint states and moderate perturbations in the joint velocities. The results further
show a clear advantage of the learned feedback controller compared to a simple optimal
open-loop control.

Friction Dynamics in the Manutec r3 Robot Arm

In the following, the effect of unmodeled friction will be considered using the Manutec r3
robot arm as an example. According to Dupont [50], “friction is present to some degree
in all mechanical systems”, which underlines its importance for robotic systems [26, 50,
4]. To investigate how model inaccuracies in the training data affect the quality of the
learned near-optimal feedback control, the dynamic model is extended with different
friction models: In this evaluation, the Coulomb [26] and the Dahl [41] model are
used. Both models are combined with a viscous friction [26] term, since the “majority of
servo-controlled machines [...] are lubricated with oil or grease” [4].

Hollerbach et al. [163] have noted that “Coulomb and viscous friction are the most
important components of a friction model”. At the same time, these two models are
very simple (one parameter each), their friction force is piecewise constant or depends
piecewise linearly on the velocity. The used friction models are adopted to use torques

72

instead of forces (cf. Bona and Indri [26]). According to the combined Coulomb and
viscous model [134, 26], the friction torque at joint i is given by

Fi(qi) = Fc sgn(q̇i) + σv q̇i, (4.19)

where FC is the Coulomb friction and σv is the viscous friction coefficient.

Many dynamic models are derived from the well-known Dahl model [145], which “is
basically a Coulomb friction model with a lag in the change of the friction force” [141].
Introducing an additional state to model the deflection of microscopic bristles [26], “it was
designed to simulate a symmetrical hysteresis loops [sic] observed in bearings” [145]. In
contrast to more complex models like LuGre [145], the Dahl model is unable to reproduce
stiction or the Stribeck effect. Nevertheless, the Dahl model was chosen as a supplement
to the Coulomb model for this evaluation because it depends nonlinearly on the joint
velocities and is still relatively simple with only three parameters (compared to seven
parameters of the LuGre model). For the Dahl model combined with a viscous friction
term, the friction torque at joint i is given by

Fi (q̇i) = σ0zi + σv q̇i (4.20)

żi = q̇i sgn
(︃
1− sgn (q̇i)σ0zi

Fc

)︃ ⃓⃓⃓⃓
1− sgn (q̇i)σ0zi

Fc

⃓⃓⃓⃓α
,

where z ∈ Rnq are additional internal states to describe the bristle deflection, Fc is the
Coulomb friction, σ0 the viscous friction, and 1 < α < 2 is a parameter that determines
the friction shape of the hysteresis loop [141, 145, 26]. As above, the constant σv is the
viscous friction coefficient.

The friction parameters selected for this evaluation are not based on experimental data.
The maximum external torque exerted by the Coulomb+Viscous and Dahl+Viscous friction
models is set to be approximately 5% of the maximum control torque. The parameters
for the three joints are selected as follows:

Fc =
(︁
25 50 14

)︁
[Nm]

σv =
(︁
8 32 2.7

)︁
[Ns]

σ0 =
(︁
800 1000 100

)︁
[N]

α =
(︁
1.1 1.1 1.1

)︁
[−] .

The Dahl model saturates at Fc; the maximum viscous friction torque resulting from σv
and the maximal joint velocity (see Table 3.2) is approximately the same as the Coulomb

73

friction torque. Together, they amount to approximately 5% of the maximum torque
output per robot joint (which is (945 1890 540)Nm, see [136]).

The evaluation done in Section 4.2.1 is repeated with the same policy (of the full scenario,
trained on data based on a dynamic model that does not include any friction model)
on exactly the same test set. In this section, the dynamic model used in the simulation
is extended by the two friction models described above. The results are presented in
the Figures 4.11 and 4.12. As in the foregoing paragraph, the NMSE is computed using
DTW-matched simulated and optimal trajectories. Again, Figures 4.11c, 4.11d, 4.12c
and 4.12d show only the values of successful simulations to achieve a practical scaling of
the y-axis.

As expected, trajectories that use only the optimal feedforward control computed by
DIRCOL stay far away from the goal state due to the changed dynamics and are thus all
marked as unsuccessful. The open-loop case is thus excluded in the figures showing the
ratio of terminal times and the NMSE. For all start state distances, the NMSE increases
noticeably if the system dynamics with additional friction term is used. This shows that,
regardless of the good success rate and the acceptable increase in execution time, the
movement of the system is substantially altered by the changed system dynamics.

For the test instances with start states close to the nominal start state (0.05 to 0.15), the
median of the shortest distance to the goal state and the median of the ratio of terminal
times (see Equation (4.16)) increases slightly if the perturbed system dynamics is used in
the evaluation. For the more difficult test instances (0.20 to 0.30), hardly any difference
can be detected or the median is even smaller than in the evaluation without friction.

It is understandable that the effect of friction on the performance of the learned control is
clearly recognizable for trajectories that are closer to the nominal trajectory, since here
the learned control is trained better and provides decent performance for the unperturbed
system dynamics. However, it is remarkable that the learned control still works relatively
well for more distant trajectories and brings the system state close to the goal state in the
majority of cases. Interestingly, it can be seen that the success rate even improves if the
Dahl friction model is used in the evaluation. While the median distance from the goal
state is slightly increased in evaluations with friction (as noticed above), it stays below
the threshold of 0.15, below which test instances are considered successful. Furthermore,
the number of outliers decreases. The increased success rate for the evaluations with
friction can be explained by the fact that friction removes kinetic energy from the system,
resulting in fewer violations of the state constraints during the dynamic movement of the
robot arm.

74

(a) Number of successful simulations (b) Distance at closest state

(c) Ratio of terminal times (d) NMSE of the system state

Figure 4.11.: Evaluation of the near-optimal feedback policy (FB) using the Coulomb+Vis-
cous frictionmodel. Subfig. 4.11a visualizes the success rate for six different
distances of start states from the nominal start state. Subfigs. 4.11b to
4.11d present the results for the performance criteria (4.15) to (4.17). Sub-
figs. 4.11c and 4.11d show only the values for successul simulations. The
boxes encompass the interquartile range (IQR), the maximal whisker length
is 1.5 IQR, outliers are marked with ◦.

75

(a) Number of successful simulations (b) Distance at closest state

(c) Ratio of terminal times (d) NMSE of the system state

Figure 4.12.: Evaluation of the near-optimal feedback policy (FB) using the Dahl+Viscous
friction model. Subfig. 4.12a visualizes the success rate for six different
distances of start states from the nominal start state. Subfigs. 4.12b
to 4.12d present the results for the performance criteria (4.15) to (4.17).
Subfigs. 4.12c and 4.12d show only the values for successul simulations.
The boxes encompass the interquartile range (IQR), the maximal whisker
length is 1.5 IQR, outliers are marked with ◦.

76

These results indicate that perturbations are not necessarily a hindrance, but some of
them may even be beneficial to reaching the goal. This can be well illustrated by the
example of an airplane that has to reach a destination under the influence of unknown
winds. In this example, tailwinds allow a faster and more fuel-efficient flight than the
precomputed optimal solution. An optimal feedback control policy, as pursued in this
thesis, is able to take advantage of these perturbations: It would not artificially slow
down the airplane to stay on the precomputed trajectory but would continue from the
advantageously perturbed state towards the destination.

It can be concluded that the addition of a friction model to the system dynamics is clearly
noticeable in the error of the resulting trajectory. However, the number of cases in which
the goal state cannot be successfully reached due to the friction term is low. Decent results
regarding terminal time and proximity to the goal state can be achieved even in case
of perturbed system dynamics. The results indicate that a feedback control policy can
provide satisfying results on a real system even if it is trained using a dynamics model
with a small error in the friction model. The problem of modeling errors when learning
the feedback control policy revisited in Section 5.4, in which experiments on a real system
are also conducted.

4.3. Discussion and Conclusion

By applying the changes described in this chapter, the performance of the iterative extremal
field approach outlined in Chapter 3 can be substantially improved. In this chapter, three
new strategies (sensitivity-based, Halton-based and simulation-based) are proposed to
identify start states for new trajectories. These complementing approaches support the
adjoint-based approach from the previous chapter to guide the iterative computation of
new optimal trajectories to ensure adequate state space coverage and provide meaningful
data that is used to train a near-optimal control policy. The evaluation demonstrates that
the four start state generation strategies, particularly the adjoint-based and Halton-based
methods, are valuable strategies for improving the extremal field approach. The results of
a direct comparison with a single start state selection strategy (the adjoint-based method
from Chapter 3) show clear advantages of the approach using several complementing
selection strategies: Most of the trajectories controlled with a control policy trained with
the combined strategy get closer to the goal state and have a lower average cost. This
underlines the importance of a sensible selection of start states for new trajectories and
justifies the effort in this subject. As noted before, finding appropriate parameters for

77

the start state selection strategies is crucial for a good performance. Unfortunately, this
requires a substantial amount of trial and error. It would be desirable to reformulate the
strategies with fewer parameters or find some auto-tuning approach that handles this
work.

Further, a more sophisticated method is used to filter linearly dependent data points that
produce noise in the kernel matrix of the GP. Both improvements, the new complementing
start state selection strategies and the improved filtering of redundant data points, allow the
generation of more meaningful training data, which enables a more precise approximation
of the near-optimal policy.

Moreover, a switch-over in the proximity to the goal state from the learned near-optimal
control to a stabilizing LQR controller has been proposed. It allows the system to reach
the goal state precisely and makes deliberate data collection around the start state, as
done in Chapter 3, unnecessary. However, this negatively impacts optimality, as outlined
in Section 4.2.2, and therefore should only be used in a small ball around the goal state.
Section 5.5 presents the result of a near-optimal feedback controller trained with all four
start state selection methods used on a real system, including a switch-over close to the
goal state.

The presented work demonstrates that it is not necessary to reach the exact goal state
with the learned control. Instead, it suffices to reach a ball around the goal state, from
which control is passed to a traditional PI controller that guides towards and stabilizes
around the goal state. An extension of the switch-over approach that needs to be further
evaluated would be to consider the switch-over during the trajectory optimization: The
condition at the final time can be relaxed since it is no longer necessary to reach the exact
goal state, but it is sufficient to reach the region around it from which the PI controller
can take over.

The evaluation in this chapter considers not only perturbations at the start states but also
abrupt changes in the state or velocity that occur during the execution of the trajectory
and uses system dynamics perturbed by different friction models. The motivation to use
near-optimal feedback control policies is their inherent robustness to perturbations. The
learned controller of the Manutec r3 arm has shown decent performance when subjected
to abrupt changes in the state or velocity during the execution of the control policy
(intermittent disturbances) and perturbed system dynamics using different friction models
(continuous nonlinear disturbances). This indicates that the presented approach may
benefit applications where significant perturbations occur (see, e.g., [34, 190, 83]).

78

This chapter is based on the paper “Start State Selection for Control Policy Learning
from Optimal Trajectories”, published in 2023 IEEE International Conference on
Robotics and Automation (ICRA) [214]. It contains the following major additions: vi-
sualizations of the selection methods in Figure 4.1, 4.2 and 4.3, extended section 4.1.3,
added Table 4.2 a largely extended Section 4.2.1 with experiments considering con-
straint violations and a comparison with LHS sampling, extended evaluation in Section
4.2.2, Section 4.2.3 on the effect of perturbed dynamics and external perturbations.

79

5. Comparison of Approximate Policy
Representations

The iterative extremal field approach presented in the previous chapters relies on some
representation of the learned near-optimal feedback controller that is learned from the
data provided by the optimal control solver. This representation of the feedback control
policy approximation must be sufficiently general to reproduce the often highly nonlinear
features of control policies. Furthermore, it must generalize well enough to deal with the
non-uniform distribution of the data in the input space, which results from the fact that
the training data is sampled from trajectories. At the same time, parameter tuning, i.e.,
training of the approximations using available data, must be efficient, and the evaluation
of the trained feedback control approximation should be fast to allow an application in
real-time. Hence, the approximation of feedback control policies from trajectory data
has specific requirements on the method used, but a systematic comparison of common
approximation approaches that takes these requirements into account has, to the best
of the author’s knowledge, not been carried out so far. In this chapter, GP and NN, two
widely used function approximators, are compared in terms of their suitability for the
approximation of feedback controls. Suitable choices of GP kernels, NN topologies and
other hyperparameters are evaluated and discussed. The evaluation is performed on a
Manutec r3 robot arm in simulation and on a real-world Furuta pendulum.

For reinforcement learning, NNs are mostly used, as they are general function approxi-
mators and can be trained for large data sets. NNs are ubiquitous in data science and
machine learning. They are universal function approximators but are also known to
require substantial amounts of training data and lack the ability to inherently provide
information about prediction uncertainty. GPs [154] are used as function approximators in
many applications as well, in particular if information about the prediction uncertainty is
required. GPs are well suited for small amounts of training data and the standard approach
does not scale well for large amounts of data. This is why a plethora of approximations
exist [108] to make the approach suitable for large amounts of data.

81

Evidently, GPs and NNs have specific strengths and weaknesses. However, methods have
been developed to reduce or even eliminate the most serious shortcomings of these
approaches. Furthermore, the selected hyperparameters and training options significantly
influence the achievable accuracy of the feedback control approximation. The choice of
the approximation method for the feedback controller in Algorithm 1 (cf. Section 3.2)
and appropriate hyperparameters is important and must be considered carefully, as this
affects its suitability for real-time applications and the achievable approximation accuracy
of the overall iterative approach.

Training data sampled from the optimal trajectories depends on the system model used
in the OCP. This implies that the iterative extremal field approach is, to some extent,
susceptible to inevitable model errors. To assess the ability of the approach examined
in this thesis, and in particular the various approximation methods considered here,
to compensate for model errors, the learned controllers are applied to the real-world
pendulum with perturbed dynamics. The Furuta pendulum dynamics are perturbed by
placing weights (in the form of coins) at different positions on the pendulum.

Requirements on Approximation Methods for Feedback Control Policies
The following requirements to specify the suitability of an approach to approximate
feedback control policies are used. They are motivated subsequently.

R1) The approach should be able to generalize to unseen data and provide a high
prediction accuracy, measured by computing the NMSE on a test set not used for
training. The accuracy depends on the amount of training data and its distribution
in space. One cannot expect the approximation accuracy on a small training set
to be the same as for large amounts of training data. Nevertheless, the accuracy
should be reasonably high when the policy is trained on small training sets.

R2) It must be possible to evaluate the learned policy fast enough to allow execution in
real-time. Predictions must take at most 2ms to allow control of the system with
500Hz. This includes the scalability of the approximation approach with respect to
the input and output dimensions and the amount of training data.

R3) The trained approximation needs to provide information about the epistemic predic-
tion uncertainty if required.

R4) The runtime performance of the training routine is of minor importance. Neverthe-
less, efficient training routines are desirable. At best, efficient retraining or online
updates are possible.

82

Accuracy and computational performance are standard requirements for comparing dif-
ferent approximation methods. The accuracy is expected to increase with the amount
of training data. Since experimental data to train a control policy may be expensive to
collect, the accuracy is examined also for small amounts of training data. To allow the
application of the learned feedback controller on dynamic robotic systems, the evaluation
(or prediction) of the control policy is required to be sufficiently fast. While it may be
desirable that control policies can be updated with data collected online (cf. R4)), it is
assumed in this chapter that all training data are collected in advance and the training
is conducted offline, such that online updates are not further considered. The effort to
train control policies should be reasonable. Information about the current model uncer-
tainty, covered by R3), is beneficial in general and can be used in exploration strategies to
guide collection of new data [213]. Iterative approaches to approximate a near-optimal
feedback controller from optimal trajectories, as proposed by [64, 213], have the advan-
tage that further progression can be guided by the data collected so far. In particular,
uncertainty information as required in R3) can be used in exploration strategies to guide
collection of new data [213]. This justifies the emphasis on uncertainty estimation for the
approximation methods.

5.1. Related Work on Approximate Policy Representations

In their work, Ommer et al. [135] include a comparison of sparse online GPs, LWPR and
recursive least squares for approximation of a feedforward controller. Furthermore, they
compare the performance of the approximation methods on a real robot. However, their
main focus is real-time applicability with online updates of the training data, which is of
minor importance in this work. They do not consider uncertainty estimation or different
kernel functions for the GPs. The approximation of inverse dynamics is considered in
Nguyen-Tuong et al. [130]; they compare the performance of their proposed local GP with
various approaches like standard GP or LWPR. In their analysis, they restrict themselves
to Gaussian kernels for the GPs. Vasudevan et al. [194] investigate the suitability of
GPs for modeling large-scale terrain. While the application is different, they also try to
approximate a highly nonlinear nonstationary function over a large input domain and
emphasize the importance of uncertainty estimation. They analyze in detail how to apply
GPs to their problem, propose the use of local models to cope with a large amount of
training data and compare different kernels for GPs. However, there is no comparison
with NNs.

83

Uncertainty can be divided into two categories: aleatoric and epistemic uncertainty [193,
88]. Aleatoric uncertainty (data uncertainty) is introduced by noise in the observations,
caused by the technical limitations of the sensors used. It cannot be reduced by collecting
more data. In contrast, epistemic uncertainty, or model uncertainty, describes the errors
introduced by the modeler’s limited knowledge about the inspected physical system.
Further, this category also contains uncertainty caused by missing or sparse data points,
e.g., in unexplored regions of the state space. Epistemic uncertainty can be reduced by
collecting more data to improve the model knowledge. Various methods exist to capture
model uncertainty in NNs [1, 166]. In Bayesian NNs, a probability distribution over all
parameter weights is used to provide epistemic uncertainty information for the network
output. However, these networks are hard to implement and training is substantially
slower and more difficult than training deterministic networks [97, 62]. An alternative
are deep ensembles to estimate uncertainties as proposed by Lakshminarayanan et al.
[97]. In this approach, a small set of networks with the same topology but different start
values of the weight parameters are trained independently on the same data. For a given
input, the prediction of the ensemble is the mean and variance over the values predicted
by all networks. Another popular approach, that is used in this chapter, is Monte-Carlo
(MC) dropout [62]. Dropout-layers are inserted before the hidden layers to randomly
disable some nodes in them. Dropout is a standard regularization method for training of
NNs, the dropout layers are normally only used during training. According to Kendall and
Gal [88], it is a “practical approach” to get uncertainty information from NNs compared
to Bayesian NNs (parameter weights are distributions) in which it is “difficult to perform
inference”. If the dropout layers are enabled during prediction, the output of the NN
becomes stochastic. Gal and Ghahramani [62] showed that the distribution of the results
of multiple forward passes can be interpreted as variational Bayesian approximation that
captures the epistemic uncertainty of the network [88]. Wu et al. [206] compared
MC dropout with ensemble learning and other uncertainty quantification methods and
conclude that MC dropout has less computational overhead and needs fewer training
episodes. Valdenegro-Toro et al. [193] note that the ensemble method provides slightly
better results than MC dropout, but also comes with a larger computational overhead
since all networks in the ensemble must be trained separately. In contrast to MC sampling,
Lakshminarayanan et al. provide no formal proof that the ensemble-based approach
converges to the Bayesian uncertainty approximation [206].

There are many other important function approximation methods, for example, LWPR
by Vijayakumar and Schaal [198, 197] has been used frequently for robotic applications
[135, 130]. It uses multiple locally linear models to fit nonlinear functions, provides an
uncertainty estimation for predictions, and is suitable for online applications due to its

84

efficient updates on new training data. However, it is known to require extensive tuning.
Tests done for this work have indicated that the achievable accuracy is lower than that of
GPs and NNs. While this may be due to insufficient parameter tuning, other works ([203,
135]) confirm this observation. A systematic comparison of adequately tuned LWPR with
the methods examined in this chapter may provide interesting insights and is subject to
future work.

Another important function approximation method is kriging, which is very popular in the
field of geospatial statistics [35]. Christianson et al. compare Gaussian process regression
and kringing and note that these techniques are conceptially very similar, as they use the
same equations to “form predictions and quantify uncertainty”. However, an important
difference is that GPs automate the parameter tuning by maximizing the likelihood while
kriging requires human intervention.

5.2. Comparative Study Approach

The scope of the study performed here is set out in this chapter. This includes the selection
of approximation methods and the hyperparameters and extensions considered. Further,
the construction of the data sets that are used in the evaluation is described. Finally, the
steps that constitute the analysis are set out.

5.2.1. Selection of Function Approximators

The literature on GPs and NNs contains a huge amount of options for construction and
training, approaches for tuning, and extensions designed for various purposes that cannot
be fully covered in this study. In the following, the design decisions made in this analysis
and the options considered for comparison are briefly justified.

Neural Networks The decision on a network topology (structure in which its neurons
are connected) is essential and must be made problem-specific. The number of existing
network topologies is large, but most of them are designed for specific purposes. For
example, auto-encoders are designed for unsupervised learning and can be used among
others for denoising and dimensionality-reduction [71]. Convolutional neural networks
(CNNs) are “specialized [...] for processing data that has a known, grid-like topology”
[71] and are thus typically applied to image recognition and other computer vision tasks

85

to extract features. Moreover, they can also be applied to time-series data by interpreting
it as a 1D grid. However, this still does not fit the problem considered in this thesis since
the time information is removed from the data sampled from the optimal trajectories and
used to approximate a static map from the system state to the feedback control that is
independent of time. Thus, only fully connected feedforward networks are considered in
the subsequent analysis. For simplicity, all hidden layers have the same number of nodes,
such that the network topology can be described by two numbers: the number of hidden
layers and nodes per layer. The activation functions for the hidden layers are rectified
linear activations (ReLu), which are commonly used and recommended in [71]. The input
is scaled to be between −1 and 1 using the state constraints in the problem formulation.
To get a stochastic model, a dropout layer is added before each hidden layer. The dropout
rate is 5%, which seems to be sufficient for uncertainty estimations. Higher values make
the training very difficult as the progress becomes very erratic.

Gaussian processes The kernel function selected for a GP has a significant influence
on its performance. In [213], the MLP kernel has been identified to provide the best
results when approximating a highly nonlinear feedback control policy. Additionally, the
performance provided by different kernels is evaluated and compared in this chapter. The
kernels used are the MLP, Gibbs and Matérn-3/2 kernel as well as the compound kernels
Sqexp and ARD that are defined in the GPmat toolbox [3]. The definition of these kernel
functions can be found in Appendix A.1. The size of the kernel matrix that needs to be
inverted during training depends cubically on the number of training samples. To be able
to cope with large amounts of training data, several scalable GPs have been developed
[108]. In this chapter, the FITC approximation [167] with 100 inducing variables is used.
The abbreviation FTC follows the notation of the GPmat toolbox and refers to inference
done on the full training set (without any approximation using inducing variables).

5.2.2. The Steps for Evaluation and Comparison

To compare GPs and NNs, their performance is evaluated in two main steps. The focus
of the first step E1 is to evaluate the achievable prediction accuracy depending on the
topology/kernel, other hyperparameters and the number of samples used during training
(see R1)). Step E1 is divided into four sub-steps. The goal of step E1.1 is to find suitable
hyperparameters and training options for large amounts of training data. For NNs, the
systematic tests comprise four to ten hidden layers with 50 to 200 nodes each and 0%
and 5% dropout rate. For GPs, the kernels MLP, Gibbs, Matérn-3/2, Sqexp and ARD are

86

Figure 5.1.: Annotated Quanser Furuta pendulum

considered in step E1.1. The FITC approximation with 100 inducing points is used to deal
with the large number of training samples. The hyperparameters and options that provide
the best results in E1.1 are used in step E1.2 to train feedback control approximations
on training data sets with different numbers of training samples. This allows to assess
the extent to which the amount of training data affects the prediction accuracy. Steps
E1.3 and E1.4 repeat the steps E1.1 and E1.2 for small amounts of training data. E1.3
again determines suitable parameters using approximately 1000 training samples by
systematically varying the parameters and selecting the configuration that produces the
lowest error. In E1.4, the parameters determined in step E1.3 are used to evaluate the
accuracy on a test set with 500 to 5000 training samples. Step E1 considers large and
small training sets separately such that hyperparameters can be found that are specifically
suitable for large or small training sets. The second evaluation step E2 determines the
times to evaluate the learned control policies for some given input. In case of NNs, this
is done for different network topologies. For GPs, this is done for different amounts of
training data.

5.2.3. The Dynamic Models

The Furuta pendulum (see Figure 5.1) is an underactuated system (only the first of two
joints can be controlled directly) with four-dimensional state and one-dimensional control
space. A detailed description of the motion dynamics and the definition of the OCP used

87

Fig. 5.2a is based on Furuta_pendulum.jpg,
(https://commons.wikimedia.org/wiki/File:
Furuta_pendulum.jpg), created by Benjamin
Cazzolato, licensed under CC BY 3.0 (https:
//creativecommons.org/licenses/by/3.0/).

(a) Schematic of the Furuta pendulum. (b) Nominal trajectory of the Furuta pendu-
lum swing-up movement.

Figure 5.2.: Schematic and nominal joint trajectory of the Furuta pendulum.

in this thesis is given in the next subsection. The objective of the OCP is to bring the
pendulum into an upright position, which is a very instable state. The Manutec r3 arm is
an industrial robot with highly nonlinear dynamics [136]. As in the previous chapters, the
first three joints that determine the end-effector position in task space are used. Hence, the
control policy is a mapping from the six-dimensional state to the three-dimensional control
space. See Section 3.3.2 for a complete description of the OCP to generate point-to-point
movements.

5.2.4. The Furuta Pendulum Optimal Control Problem

The Furuta pendulum [61] is an underactuated system with four-dimensional state and
one-dimensional control space. The motion dynamics are based on the model described
in [32]. The model presented here corrects some terms in this model and accounts for
systems that are set up with a slight angle. For the angle θ of the arm and the pendulum
angle α, the dynamic model of the Furuta pendulum solves the differential equation

M (θ, α)

(︃
θ̈
α̈

)︃
+ C

(︂
θ, α, θ̇, α̇

)︂
+G (θ, α) g − F

(︂
θ̇, α̇

)︂
+ u = 0 (5.1)

88

https://commons.wikimedia.org/wiki/File:Furuta_pendulum.jpg
https://commons.wikimedia.org/wiki/File:Furuta_pendulum.jpg
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

with mass matrix M ∈ R2×2, coriolis terms C ∈ R2 gravity matrix G ∈ R2×3, vector of
damping forces F ∈ R2 and control terms u = (0 τ)T defined as

M11 = I1yy + I2yy + L2
1m2 + l21m1 + l22m2 +

(︁
I2xx − I2yy

)︁
cos2 (α)− l22m2 cos2 (α)

M12 = M21 = L1l2m2 cos (α)
M22 = I2zz + l22m2

C1 = I2yyα̇θ̇ sin(2α)− I2xxα̇θ̇ sin(2α)− L1α̇
2l2m2 sin(α) + α̇θ̇l22m2 sin(2α)

C2 = −
1

2

(︂
θ̇
2 sin(2α)

(︁
I2yy − I2xx + l22m2

)︁)︂
G11 = −L1m2 sin(θ)− l1m1 sin(θ)− l2m2 sin(α) cos(θ)
G12 = l1m1 cos(θ) + L1m2 cos(θ)− l2m2 sin(α) sin(θ)
G13 = 0

G21 = −l2m2 cos(α) sin(θ) (5.2)
G22 = l2m2 cos(α) cos(θ)
G23 = l2m2 sin(α)
g1 = g∥·∥ sin (gY0) cos (gZ0)
g2 = g∥·∥ sin (gY0) sin (gZ0)
g3 = g∥·∥ cos (gY0)

F1 = d1θ̇

F2 = d2α̇.

The motor model that maps motor voltage a to the torque τ is adapted from [124]:

τ =
km(a− kmθ̇)

Rm
. (5.3)

The objective of the OCP considered in this thesis is to bring the pendulum from x0 =
(0 0 0 0) (hanging) into an upright position xf = (0 π 0 0). To remove symmetry, the goal
state is exactly xf neglecting all rotationally equivalent positions. The functional to be
minimized penalizes long execution times, large control values and deviations from the
goal state of the second joint:

J [u] = cT · tf +

∫︂ tf

0
L(x(t), u(t))dt

L(x, u) = Λ(x1) + cuu
2
0 (5.4)

Λ(x1) = − exp (1− γ cos (x1)) + exp (γ + 1) .

89

Parameter Value Explanation

γ 1.6 Penalty factor in Λ
cT 10.0 Factor on terminal time penalty
cu 3.0 Factor on control penalty

gY0 −1.293 44× 10−4 System angle around y-axis
gZ0 0.0 System angle around z-axis
g∥·∥ 9.81 Length of the gravity vector
I1yy 2.077 19× 10−6 First diagonal entry in the arm’s inertia tensor
I2xx 1.153 53× 10−7 First diagonal entry in the pendulum’s inertia tensor
I2yy 1.603 68× 10−7 Second diagonal entry in the pendulum’s inertia tensor
I2zz 2.704 32× 10−5 Third diagonal entry in the pendulum’s inertia tensor
L1 0.085 Arm length
l1 0.0425 Center of mass on arm
l2 0.0645 Center of mass on pendulum
m1 0.095 Arm mass
m2 0.024 Pendulum mass
km 4.228 57× 10−2 Motor model: Back-emf constant
Rm 8.4 Motor model: Armature resistance
d1 3.446 93× 10−4 Damping in the first joint
d2 9.147 15× 10−6 Damping in the second joint

Table 5.1.: Parameters that determine the Furuta pendulum OCP.

The parameters are cT = 10.0, γ = 1.6 and cu = 3.0. The nonlinear mapping Λ has a
maximum at hanging positions 0 + 2kπ, k ∈ N and attains its minimum at π + 2kπ. This
heavily penalizes values around a hanging position of the pendulum arm, and barely
penalizes values near the goal state. The parameters used in the Equations (5.1) to (5.4)
that determine the OCP are given in Table 5.1. The state and control variables are
constrained by the box constraints xmin ≤ x ≤ xmax and umin ≤ u ≤ umax, the values are
given in Table 5.2.

5.2.5. Construction of the Data

The data used for learning and evaluation of the control policy approximations is generated
from solutions of OCPs. This approach has the advantage that no experiments are required

90

x[0] x[1] x[2] x[3]

xmin −2.0071 −2π −60.0 −60.0
xmax 2.0071 2π 60.0 60.0

(a) State Constraints

u[0]

umin −5.0
umax 5.0

(b) Control Constraints

Table 5.2.: Upper and lower bounds on the state and control variables of the Furuta
pendulum.

and large amounts of training data can be collected using a dynamic model of a system
and a numerical optimal control solver. As basis of the test set for the Furuta pendulum,
5052 solutions of the OCP are computed, starting from start states sampled randomly
from a uniform distribution over [−0.25, 0.25]× [−0.25, 0.25]× [−4, 4]× [−4, 4], which is
a subset of the joint space. Samples for which DIRCOL was unable to provide an optimal
solution have been skipped. The 5052 solutions are divided into a training set and a test set.
From each solution in the training and the test set, state-control pairs are sampled. It has
been ensured that no state value from the training set appears in the test set by filtering
samples that fall below some distance threshold. From the training set, a validation set
is separated; it is again ensured that all state values in the validation set have a positive
distance from all state values in the remaining training set. The full training set consists
of 446 680, the validation set of 78 780, and the test set of 131 000 samples.

For the second test set based on the Manutec r3 robot arm, 2617 solutions are computed;
their start states are sampled uniformly over the full joint space (the state bounds are
given in Table 3.2a). The distribution into training, validation and test set is done as for
the Furuta pendulum problem. The training set consists of 231 400, the validation set of
40 820, and the test set of 67 990 samples.

The training set is characterized by the fact that its samples are not evenly distributed in
space but are located on trajectories. This is also taken into account in the creation of the
training sets with reduced size used in E1.2 to E1.4: They are not just random subsets
of the full training set but are sampled from a random subset of the computed solution
trajectories. The same evaluation and test set is used in all steps E1.1 to E1.4, regardless
of the size of the training set.

91

dropout batch size learn rate learn rate
factor

Fu
ru
ta E1.1/1.2 0% 512 1× 10−3 0.98

5% 512 1× 10−4 0.97

E1.3/1.4 0% 128 1× 10−3 0.98
5% 128 1× 10−3 0.97

M
an

ut
ec

r3 E1.1/1.2 0% 512 1× 10−2 0.99
5% 512 1× 10−4 0.98

E1.3/1.4 0% 128 1× 10−3 0.95
5% 128 1× 10−3 0.95

Table 5.3.: Neural network training hyperparameters

5.3. Performance Evaluation and Comparison

Training of the GPs is done in Matlab using the GPmat scaled conjugate gradient opti-
mization method or the old conjugate gradients routine if the former failed. The neural
networks are trained in Python with keras using RMSprop with mean squared error as
loss function; the learning rate is reduced after each epoch. The validation set is used in
the stopping criterion: The training stops when the NMSE on the validation set has not
improved over 20 consecutive iterations. The hyperparamers for training are summarized
in table 5.3. The initial learn rate and the learn rate schedule are manually tuned to
provide the best results in E1.1 and E1.3 and kept fixed in E1.2 and E1.4. The NMSE
(mean squared error divided by the variance of the approximated control values, see
Equation (4.17)) on the test set is used as a measure of the accuracy.

5.3.1. Accuracy of the Control Approximations

The NMSE of GPs trained with different kernels on the large Furuta pendulum andManutec
r3 dataset are reported in Table 5.4a. The Sqexp kernel performs best for both problems,
closely followed by the ARD and MLP kernels. The Gibbs and Matérn-3/2kernel fail to
approximate the Manutec data set. As a side note, the error for different numbers of
inducing points with FITC differs not much, but a large number increases the computational
burden for training and evaluation significantly. It must be noted that it takes several
hours to train the GPs. Since training takes a long time, step E1.2 is not carried out.

92

ARD Gibbs M-3/2 MLP Sqexp

Furuta pendulum
FTC – – – – –
FITC100 0.065 0.050 0.056 0.074 0.049

Manutec r3 arm
FTC – – – – –
FITC100 0.403 22.62 2.406 0.407 0.399

(a) E1.1: NMSE of GPs for the Furuta pendu-
lum and Manutec arm trained with full
447 k (resp. 231 k) samples.

ARD Gibbs M-3/2 MLP Sqexp

Furuta pendulum
FTC 0.181 0.209 0.209 0.108 0.787
FITC100 0.122 0.100 NaN 0.114 0.118

Manutec r3 arm
FTC 0.953 3.975 3.068 1.219 1.758
FITC100 0.889 17.07 0.909 0.855 0.871

(b) E1.3: NMSE of GPs for the Furuta pendu-
lum and Manutec arm trained with approx-
imately 1000 samples.

Table 5.4.: E1.1 and E1.3: NMSE of GPs for Furuta pendulum and Manutec r3 arm. Result
of the systematic search for suitable kernels.

Furuta pendulum Manutec r3 arm
440 k 270 k 100 k 62 k 24 k 231 k 169 k 100 k 62 k 24 k

0.034 0.035 0.035 0.041 0.055 0.236 0.275 0.331 0.459 1.056

Table 5.5.: E1.2: NMSE of NNs for Furuta pendulum and Manutec r3 arm trained on large
subsets of the training set.

The examination of the GPs continues with the hyperparameter tuning for the small-size
datasets, for which both standard and sparse GPs are considered.

The results using NNs are reported in Tables 5.6a and 5.6b. The error tends to decrease
with increasing number of nodes. In contrast, it can be seen for both systems that the
number of layers barely impacts the error. Adding dropout layers during training notably
reduces the accuracy of the approximation, and training progression becomes more
fluctuating. They are, however, necessary to allow an estimation of the uncertainty as
described in Section 5.1. It is advisable to keep the dropout rate low. Generally, the
accuracy for both systems achieved with NNs in E1.1 is significantly higher than that
obtained using GPs.

Step E1.2 for NNs is done using networks with six layers of 200 nodes for the Furuta
pendulum and ten layers of 200 nodes for the Manutec arm problem, both with 5%
dropout. Incrementally reducing the size of the training set of the NNs leads, as expected,
to increased errors, see Table 5.5, most notably for the more complex Manutec arm
problem. The error on the data set with 24 k samples exceeds the error for the better

93

no dropout 5% dropout
50 100 150 200 50 100 150 200

4 0.010 0.009 0.008 0.008 0.043 0.036 0.036 0.035
6 0.009 0.009 0.009 0.010 0.039 0.034 0.033 0.031
8 0.009 0.011 0.010 0.010 0.044 0.034 0.036 0.032

10 0.012 0.01 0.010 0.010 0.046 0.044 0.039 0.036

(a) E1.1: NMSE of NNs for Furuta pendulum trained with 447k samples.

no dropout 5% dropout
50 100 150 200 50 100 150 200

4 0.114 0.120 0.115 0.121 0.563 0.409 0.332 0.318
6 0.111 0.113 0.112 0.118 0.510 0.315 0.282 0.247
8 0.116 0.118 0.109 0.112 0.494 0.307 0.255 0.241
10 0.115 0.116 0.108 0.102 0.506 0.304 0.256 0.240

(b) E1.1: NMSE of NNs for Manutec r3 arm trained with 231k samples.

no dropout 5% dropout
50 100 150 200 50 100 150 200

4 0.090 0.092 0.079 0.086 0.129 0.109 0.110 0.097
6 0.098 0.081 0.079 0.094 0.111 0.103 0.090 0.098
8 0.091 0.075 0.081 0.096 0.107 0.106 0.099 0.096
10 0.108 0.076 0.074 0.142 0.120 0.097 0.101 0.097

(c) E1.3: NMSE of NNs for Furuta pendulum trained with ∼1000 samples.

no dropout 5% dropout
50 100 150 200 50 100 150 200

4 2.414 2.625 0.901 1.744 1.775 1.384 1.195 1.291
6 1.306 1.229 0.769 2.008 1.632 1.325 1.636 1.113
8 1.794 0.888 0.970 1.613 2.014 1.655 1.647 1.239
10 1.475 1.160 0.803 1.041 4.309 1.691 1.360 1.799

(d) E1.3: NMSE of NNs for Manutec r3 arm trained with ∼1000 samples.

Table 5.6.: E1.1 and E1.3: NMSE of NNs for Furuta pendulum and Manutec r3 arm. Sys-
tematic search for suitable network topology.

94

Furuta pendulum 5 k 4 k 3 k 2 k 1 k 500

Gibbs (FITC100) 0.09 0.06 0.07 0.27 0.07 0.15
MLP 0.05 0.06 0.06 0.09 0.10 0.10
NN (6× 150) 0.05 0.05 0.06 0.09 0.09 0.12

Manutec r3 arm 5 k 4 k 3 k 2 k 1 k 500

MLP (FITC100) 0.69 0.6 0.96 0.64 0.86 0.96
ARD 0.64 0.57 0.94 0.70 0.95 1.60
NN (6× 200) 0.98 0.78 1.23 1.12 1.45 6.95

Table 5.7.: E1.4: NMSE of NNs and GPs determined in E1.3 for Furuta pendulum and
Manutec r3 arm trained on small subsets of the training set.

GP kernels on the full training set. The numbers in Table 5.5 indicate that while for the
Furuta pendulum, 100 k samples are sufficient, the Manutec arm controller needs all 231 k
samples to provide the best performance. Due to the very long training times (several
hours in the worst case), it has been refrained from evaluating step E1.2 for GPs. It can
be noted that using even sparse approximations of the GPs for these amounts of training
data is impractical.

The evaluation of the accuracy on small training sets (∼1000 training samples) for the
Furuta pendulum and the Manutec r3 arm considering GPs and NNs is given in Tables
5.4b and 5.6c to 5.6d. Here, the accuracy achieved with GPs is on par with that of NNs.
Several GPs could not be trained properly in all cases, leading to large outliers in accuracy.
ARD and MLP kernel provide a reliable performance on the two problems. For the NNs on
the small training set, the error tends to decrease with increasing layer size as well as with
increased number of layers. Moreover, the difference between the networks trained with
and without dropout layers is less than on the large dataset. The reason is that training
using only 1000 training samples is difficult and often stops after less than 100 episodes
to avoid overfitting.

The networks used in step E1.4 consist of six layers of 150 nodes for the Furuta pendulum
and six layers of 200 nodes for the Manutec arm problem, both with 5% dropout. As in
step E1.3, the performance of the NNs on the small training set is on par or worse than
that of GPs with suitable kernels. The increase in the error for decreasing sizes of training
sets is more significant for NNs than for GPs. Further, it can be seen that the accuracy of
the GP-based approximations trained on the small-size training sets is only 50 to 100%
higher than of those trained on the full training set.

95

5.3.2. Local Online Gaussian Processes

The optimization of the GPs’ parameters may be relatively time-consuming, which makes
their online training difficult. However, there are several approaches that aim at training
GPs online during data acquisition. For example, there is the influential work of Csató
and Opper [38], which is implemented in the Online Gaussian Processes toolbox1. A
more recent and slightly different approach by Le et al. [99] is a sparse method that
is influenced by online support vector regression approaches. In contrast to the two
previously mentioned global approaches, Nguyen-Tuong et al. [129] propose a local
method that partitions the input space into multiple regions for which local GPs are
trained. Due to the smaller covariance matrix, training and prediction can be performed
much faster for local models that use only a few training samples than GPs that operate
on the full training set.

Wilcox and Yip [201] build upon the work of Nguyen-Tuong et al. and several others and
propose SOLAR-GP2, which is designed to be trained online to adapt to a stream of training
data. These properties perfectly fit R4), preliminary tests on the Furuta and Manutec test
sets have thus been performed during the work for this chapter. However, the accuracy is
notably worse than that of the standard GPs or the global approximations used in this
thesis. The implementation of SOLAR-GP enforces the use of the anisotropic squared
exponential kernel function (see Equation (A.1)) – other kernel functions would require
the rewrite of a significant part of the code. It is reasonable to assume that the use of other
kernels (e.g., MLP, Gibbs or ARD kernels (cf. Appendix A.1), which are more suitable
for the approximation of feedback control policies, see Section 5.3.1), will improve the
accuracy of this method.

The advantages in terms of runtime performance for predictions are limited and depend
on one important parameter: the number of local GP models. To provide a prediction for
some given state, SOLAR-GP has to evaluate all local GP approximations to compute a
weighted sum of these predictions. The weights depend on the distance of the respective
GP data from this state. This limits the number of local models for which the requirement
R2) regarding the prediction time can be met to around 10 to 15 for the Manutec arm.

Due to its inferior accuracy and the limitation on the number of local models to meet the
real-time requirement, SOLAR-GP is not considered in more detail in this chapter. Local
models have been extensively studied and the number of papers on this topic is large (cf.
1https://www.cs.ubbcluj.ro/~csatol/SOGP/code/
2https://github.com/ucsdarclab/SOLAR-GP/tree/master

96

https://www.cs.ubbcluj.ro/~csatol/SOGP/code/
https://github.com/ucsdarclab/SOLAR-GP/tree/master

Figure 5.3.: Prediction times of learned controllers based on GPs and NNs with different
hyperparameters, trained with differently sized training sets.

the review paper by Liu et al. [108]). It may therefore be worth investigating the use of
local models further in future work.

5.3.3. Runtime Performance of the Control Approximations

Prediction performance is evaluated in simulation on a laptopwith Intel i7-6500U processor
with two cores at 2.5GHz and Intel HD Graphics 520; training has been done on a
better machine with a dedicated GPU. When controlling real systems, there is also some
communication delay. The runtime of the approximated controller for the Furuta pendulum
based on a selection of control approximations from Section 5.3.1 is given in Figure 5.3.
During simulation, uncertainty information is not needed. Thus, MC dropout is not used
such that the NN prediction is called only once for each control value. All approximation
methods provide predictions within 1ms. For GPs, the choice of the kernel function has a
relevant impact on performance. The size of the training set has a huge impact on the
runtime for exact GPs; sparse GPs reduce this impact significantly. The prediction times
for NNs are, on average, somewhat higher than for GPs.

97

Figure 5.4.: Furuta pendulum with perturbed dynamics using coins. From left to right:
one, one, and five euro cents as weights attached at different positions to
the pendulum.

5.4. Experiments on the Quanser Furuta Pendulum

The feedback controls for the Furuta pendulum problem computed in Section 5.3 for
various topologies, kernels and sample sizes are applied to the Quanser rotary inverted
pendulum, see Figure 5.1. Pyrado, which is part of the SimuRLacra framework [123], is
used for communication with the hardware and to run the control loop (at 500Hz). The
learned feedback controller brings the hanging pendulum into an upright position close to
the goal state. Then, the control is switched to a PI controller to stabilize the pendulum
around the goal state, as described in Section 5.4 (also cf. [214]). The condition that
triggers the switch to the PI controller is t > 0.3 ∧ |1 + cos(x2)| < 0.1, i.e., when the
pendulum is within 25.8◦ from the upright position and at least 0.3 s have been passed. The
time at which the switch occurs is denoted by tswitch. The Furuta pendulum is controllable
(see Chapter 6 of Åström and Murray [5]) at the final state. The PI gains are designed with
a linear quadratic regulator for the dynamic model linearized around the goal state with an
experimentally tuned cost function. For this problem, the integral part of the PI controller
is omitted (effectively resulting in a simple P controller) since gravity compensation
is not required at the final state. The parameters used are Qx = (2.0 1.0 0.3 0.5) and
Qu = (1). The output from both controllers is clipped to stay within the interval [−5, 5].
All controllers are implemented in C++ (NNs using the TensorFlow C API) and called

98

440k 270k 100k 62k 24k 5k 4k 3k 2k 1k 500

Unperturbed Furuta pendulum
Gibbs 2.07 - - - - 1.12 1.91 2.07 2.08 0.89 2.08
MLP 1.25 - - - - 1.58 1.58 1.25 1.74 2.09 0.67
NN 2.08 1.34 0.91 0.69 0.48 0.89 0.78 1.18 1.63 2.09 0.64

Furuta pendulum with 1 cent (2.3 g) at side
Gibbs 0.86 - - - - 2.07 0.81 2.07 0.82 2.09 2.08
MLP 0.79 - - - - 0.76 0.66 0.77 0.66 2.08 0.69
NN 0.79 0.62 2.07 2.09 2.09 2.08 1.14 2.08 0.41 2.08 2.08

Furuta pendulum with 1 cent (2.3 g) at tip
Gibbs 1.53 - - - - 2.08 1.38 NaN 1.35 2.09 2.09
MLP 0.97 - - - - 0.83 0.87 0.96 0.81 2.09 0.67
NN 1.22 0.91 0.85 2.09 2.09 2.08 0.53 0.64 0.58 2.09 2.09

Furuta pendulum with 5 cents (3.92 g) at tip
Gibbs 0.96 - - - - 2.03 0.74 NaN 2.08 2.06 2.09
MLP 2.08 - - - - 2.08 0.72 2.08 0.91 2.09 0.93
NN 0.97 2.08 2.08 2.09 2.09 2.07 2.09 2.08 2.08 2.09 2.09

Table 5.8.: Experiments on real-world Furuta pendulum depending on the number of
training samples. The numbers give the arm deflection (in rad) required to
stabilize the system and indicate how accurately the trajectory was followed.
The colors visualize the underlying numbers, red indicates that the system
has not reached a stable final state.

via the Python C interface from Pyrado. In the approach presented in this thesis, the
computation of the trajectories that provide the training data is based on a system model,
which may be inaccurate (sim-to-real gap, see [125]). To analyze how well the learned
controllers can be applied to real systems that potentially deviate from the model used for
data generation, the performance of the learned feedback controls is also evaluated on
systems with perturbed dynamics by attaching weights to the pendulum (Figure 5.4). It
is, of course, possible to consider the additional weights in the system model or to use
machine learning to learn the perturbed system dynamics from recorded data. However,
this is not the subject of this evaluation.

When during operation the state constraint for the first joint is violated, the execution
is stopped immediately. The state constraints are considered during the creation of the
training data for the feedback controllers, but the PI controller is completely agnostic of
this limitation and will violate the constraints if required to compensate for deviations from

99

(a) Successful execution of the unperturbed
Quanser Furuta pendulum. The learned con-
trol policy is represented by a GP with MLP
kernel and trained with 3000 data points.

(b) Unsuccessful execution of the unperturbed
Quanser Furuta pendulum. The learned con-
trol policy is represented by a GP with Gibbs
kernel and trained with 3000 data points.

Figure 5.5.: Results of the execution of two different learned policies on the Quanser
Furuta pendulum. The dashed lines show the optimal trajectory, the full lines
give the values measured on the real system. The switch to the PI controller
at 0.86 s and 0.82 s is marked by the vertical line.

the goal state. Trajectories that directly approach the goal state and are already close to it
when the switch is performed (the condition considers only the second joint’s state) will
cause only small balancing movements of the PI controller. In contrast, large deviations
from the goal state or a disadvantageous state at tswitch lead to strong deflections of the
arm caused by the PI control to balance the pendulum, which makes a failure of the
execution because of constraint violation likely. The extent of the arm deflection that the
PI controller needs to balance the system is used as an indicator of how well the learned
control performs. Larger values are worse because these trajectories get closer to the joint
constraint (cf. Table 5.2) of the arm.

The results from the experiments on the real system with and without perturbations (see
Figure 5.4) are given in Table 5.8. The reported values represent the maximum arm
deflection caused by the PI controller when combined with different learned feedback
control policies. For illustrative purposes, Figure 5.5 presents the results of a successful
and a failed execution for two different control policies. The joint constraint of the
mechanical system is 120◦ (or 2.094 rad), whereas the optimal control problem formulated

100

in this thesis employs a slightly stricter constraint of 115◦ (2.007 rad). Consequently, arm
deflections above 2.007 are considered as failed executions and marked in red, but the
values in the table range up to the mechanical constraint of 2.094. The NaNs denote
cases where execution has failed before the switch to the PI controller was performed.
Apparently, the MLP kernel performs better than the Gibbs kernel on the real system. In
the unperturbed cases, the NN controller outperforms the GP-based control. In general,
however, it seems that GPs are more capable of handling deviations from the model used
for training. With a suitable kernel (MLP in this case), GPs perform on par with the NNs on
the real system with perturbed dynamics, although their accuracy on the test set examined
in Section 5.3.1 is lower.

5.5. Training Data using the Complementing Start State Selection
Methods

In Chapter 4, the proposed start state selection methods are evaluated only in simulation.
In this section, a brief evaluation of the iterative extremal field approach using all four
complementing start state selection methods presented in Chapter 4 on the (unperturbed)
real Quanser Furuta pendulum is performed. The parameters used for the start state
selection methods are as follows: adjoint-based: [bl, bu] = [0.15, 0.25] , ν = 1.2; sensitivity-
based: µsens = 0.15; simulation-based: µsim = 0.2, dmax

sim = 0.15; Halton-based: µH = 0.2.
Based on the findings in this chapter, an MLP kernel is used on the full training data
(FTC). The parameters of the PI controller and the switch condition are the same as for the
experiments in the previous section. Fifteen iterations, resulting in 1362 data points from
15 trajectories, suffice for a successful swing-up. The result is given in Figure 5.6, which
shows the joint trajectories and control values of the simulation (full) and the optimal
reference trajectory (dashed). As can be seen, the Furuta pendulum can be stabilized in
an upright position. The vertical line marks the time tswitch = 0.86 s at which the switch to
the PI controller is performed. The result supports the claim that a sophisticated selection
of start states for trajectories allows the effective use of few data.

5.6. Discussion and Conclusion

In this chapter, GPs and NNs are systematically analyzed and compared with respect to
specific requirements to determine their suitability for approximating feedback control

101

Figure 5.6.: Result of an experiment on the Furuta pendulum using training data from the
extremal field approach with complementing start state selection strategies.
The dashed lines show the optimal trajectory, the full lines give the simulation
result. The switch to the PI controller at 0.86 s is marked by the vertical line.

policies on a test set and a real-world system. Feedforward networks of different depths and
sizes and GPs with different kernel functions are examined to identify the hyperparameters
for each approximation method that are best suited to the task. For evaluation, the full
nonlinear dynamic models of an industrial Manutec r3 robot arm [136] and the Furuta
pendulum [61] are used. The systematic comparison of NNs and GPs is performed with
a focus on the requirements of feedback control policy approximations resulting from
optimal control problems for robotic systems with highly nonlinear system dynamics. To
the best of the author’s knowledge, a systematic comparison focusing on the suitability of
feedback control policy approximation has not been done before.

For NNs, the results indicate that the number of nodes per layer has a stronger influence
on the error than the number of layers: A high number of layers does not seem to be
necessary to obtain a high accuracy. However, the selection of the network topology is
most likely problem specific. For the two systems considered, 150 to 200 are sufficient,
but the results for the Manutec r3 robot arm suggest that more nodes per layer may
be necessary for more complex systems. The use of dropout layers notably decreases

102

performance but is required (if MC dropout is used) to provide uncertainty information.
For GPs, the selection of kernels is important and must be done problem specific and
depending on whether exact or sparse GPs are used. The sparse GP approximation FITC
barely affects accuracy for suitable kernel functions and sufficient amounts of training
data. However, using more than a few thousand samples to train a GP gives little benefit
as training becomes cumbersome and does not justify the moderate increase in accuracy.
NNs have a lower error than the GPs on large training sets. However, the runtime of NNs
for predictions is somewhat higher than for small and efficiently trained GPs, especially
when a sparse approximation like FITC is used.

The most accurate feedback control approximations are used as controllers on the real-
world Furuta pendulum. In these experiments, the NN is more reliable on the system
with unperturbed dynamics. However, the success rate of the NNs drops rapidly if the
system dynamics are perturbed. Both GPs used in the experiments outperform the NNs
for all perturbed dynamics. The NNs seem to be more susceptible to the sim-to-real gap
than GPs. The results presented in this chapter clearly indicate that the GPs can better
generalize to perturbed dynamics, at least if an appropriate kernel is used. This result
is independent of the amount of training data used to train the feedback control policy.
Overall, it is demonstrated that the learned feedback control policy can also handle systems
with perturbed dynamics if an appropriate approximation method is used. This shows
that control policies trained with data from a set of optimal trajectories can compensate
for deviations from the model used to generate the data.

103

6. Identification of Solution Clusters

In Chapter 5, a Quanser Furuta pendulum is used in simulation and on real hardware for
evaluation. Considering the underlying OCP (see Section 5.2.4), the following observation
can be made: For different start states in close proximity to the nominal start state,
DIRCOL provides several different locally optimal solutions with approximately the same
cost. This happens even though the rotational symmetry of the problem is not considered
by accepting only the pendulum arm position α = 0 as final state. An example of two
different trajectories representing a locally optimal swing-up of the Furuta pendulum
is shown in Figure 6.1. The running cost is 32.7 for the first trajectory and 35.0 for the
second, so the difference between the trajectory costs is about 10%.

Merkt et al. [117] call this “multimodality”. They note that “multimodality can greatly
impact the quality of prediction obtained using function approximation as regressors
smooth across the boundaries between clusters or modalities.” In this chapter, it is
examined if a decrease in accuracy of the feedback control policy approximation provided
by GPs occurs for the Furuta pendulum problem considered in this thesis. One way to
deal with multimodality is to cluster the optimal trajectories computed by DIRCOL and
use only trajectories from one cluster to provide the training data.

In this chapter, a novel distance measure for robotic trajectory data is presented, based
on a semantic compression step. It transforms the raw trajectory data into a sequence
of features (which are characteristic points in the graph) that can be used in an existing
sub-sequence based distance metric. This measure is used in a hierarchical clustering
algorithm to identify trajectories with similarly shaped graphs. The advantage of this
approach is that relevant feature classes can be chosen depending on the application or
the considered problem.

The idea behind the novel trajectory distance measure is that the exact path of a trajectory
is less relevant for clustering. Much more important is the sequence of some meaningful
features (like extrema, jumps, roots etc.) and their salience in the trajectory. Thus, the
focus is not on measuring small differences between very similar trajectories as this is,

105

(a) Example trajectory 1 with running cost 32.7 (b) Example trajectory 2 with running cost 35.0

Figure 6.1.: Example of two different locally optimal solutions of the Furuta pendulum
swing-up problem with approximately the same cost.

for example, done when the error between a reference and some executed trajectory
is measured. Instead, a measure is developed that captures differences in the general
characteristic shape of trajectories, with the goal in mind to use this measure to cluster a
set of trajectories into groups of similar paths.

At the end of the chapter, control policies are trained with data from trajectories of a single
and of multiple clusters. The performance of these feedback control policies controlling
the real-world Furuta pendulum is compared to find out if the extremal field approach on
the considered OCP is affected by multimodality.

6.1. Related Work on Trajectory Clustering

Trajectories and trajectory clustering are ubiquitous in various research fields like geo-
graphics and traffic (airport data [133]), biology (tracking of animals [13]), or animation
and computer graphics (motion capturing [209]). In the field of robotics, trajectories play
a central role for path and motion planning (e.g., [179], [117]). Clustering of trajectories
is an important tool for analysis, recognition and prediction of motions and has been used
in humanoid robotics, e.g., to estimate the gait phase [146], to learn motion primitives
from observations [95], to analyze posture data [12], or in the field of human-robot

106

interactions to build a database structure for human motions that allows the robot to
respond faster [207], to recognize hand gestures as input commands [111], [132], [100]
or to recognize and predict human or robotic actions and movements [208], [110], [179].

Gaussian Mixture Models have been used by Lee [100], Piperakis et al. [146] or Luo et
al. [110] for clustering trajectories. However, this approach requires estimating multiple
Gaussian distributions, which can be computationally costly, and the result is sensitive to
initial points. Research has been done to cluster trajectory data using NNs, e.g., using auto-
encoders as in [208, 133, 146] or specialized structures like self-organizing incremental
NNs [132]. NNs can provide good performance on large-scale datasets [133]. However,
they require large amounts of training data to generalize well and provide limited or no
insight into how the clustering is done.

In Yao et al. [208], an auto-encoder is trained to extract a representation of fixed length
from a trajectory, which is used in a classic clustering algorithm. The input of the auto-
encoder is based on the changes of speed and rotation in sliding windows. This exhibits
some similarities with the feature-based approach regarding the use of a feature sequence.
However, the approach presented in this chapter does not rely on learning. Olive et al.
[133] train an auto-encoder and use the low-dimensional information from its latent
space for a second clustering step.

Widely used clustering algorithms are hierarchical clustering (Basoeki et al. [12], Kulić et
al. [95]), k-means (Maharani et al. [111]) or density-based clustering. See, for example,
the review of Bian et al. [24] for an overiew. The vast majority of clustering algorithms
require a distance function to measure the distance or similarity of two trajectories. The
construction of centroids needed for the k-means algorithm is not intuitive in the context
of trajectory clustering. An advantage of hierarchical over density-based clustering is
the better interpretability of the results, as hierarchies of clusters can be represented in
dendrograms. For these reasons, hierarchical clustering is used in this chapter.

A large part of trajectory distance measures can be divided into those based on Lp-norms
(well-known are, e.g., DTW and related, or the Fréchet distance) and those based on an
edit distance (like edit distance with real penalty, longest common sub-sequence) [177].
Their properties have been studied extensively [181, 192]. These distance measures are
typically applied to some condensed representation of the trajectories that are computed,
for example, using principal component analysis as in [146], multiple correspondence
analysis [12] or hidden Markov models (HMM) [132, 95]. These reductions all are not
intuitive to interpret, and HMMs additionally require training.

107

In the context of social sciences, distance measures are often used to compare sequences of
categorical elements, which are “an ordered list of successive elements chosen from a finite
alphabet” [176]. Distance measures for semantic sequences are reviewed in [176]. The
work in this chapter is built upon the work of Elzinga et al. [54], who present a measure
called SVRspell, which is adopted to work for trajectory clustering. SVRspell is based on
the number of matching sub-sequences in strings, which correspond to feature sequences
of trajectories. The extraction of features from raw trajectories is related to Schmid et al.
[162], who proposed a trajectory compression method for geographical movement data
that uses semantic information to transform raw trajectory data. A review of this topic
has been presented by Parent et al. [137]. However, there are several differences between
the trajectory representations that reflect the specific requirements of the application
considered here. In particular, there is no underlying map; consequently, the raw trajectory
cannot be reconstructed from feature-based representation, in contrast to [162].

6.2. Description of the Feature-Based Trajectory Distance
Measure

In motion planning for robotic systems, there are state and control trajectories to describe
the state of the system in combination with the control values required to generate the
motion. In this chapter, the combination of a state trajectory s and a control trajectory c
synchronized in time is called motion plan:

T = {s : [0, tf]→ Rs ⊂ Rn, c : [0, tf]→ Rc ⊂ Rm} , (6.1)

where tf > 0 is the trajectory’s terminal time. Trajectories with tf = 1 are called time-
normalized.

Trajectories are typically represented as sequences of data points associated with time
stamps. They can be extracted from image data, the output of a motion capture system or
internal sensors that provide data for trajectories at discrete time steps. This data format
can be interpreted as linear splines. Trajectory data may also originate from numerical
optimal control solvers like DIRCOL that is used in this thesis. The state and control
trajectories provided by DIRCOL are represented as cubic and linear splines. To generalize
from the trajectory representation, trajectories are in this chapter represented as mappings
(as in (6.1)). The presented approach is still applicable to trajectories consisting of discrete
sequences, resulting from observations, as these can be interpreted as continuous linear
spline functions.

108

DIRCOL
Motion
Plans

Step 1:
Compression to

Feature-Sequences

Step 2:
Distance Metric

Based on SVRspell

Step 3:
Agglomerative Hier-
archical Clustering

Solution
Clusters

Figure 6.2.: The three major steps of the trajectory clustering approach.

Further, in this chapter it is assumed that there are box-constraints on the trajectories’
codomains that are induced, for example, by joint limits or control bounds. This means
that the joint space can be represented as

Rs :=

n∏︂
i=1

[ls,i, us,i] (6.2)

for some lower and upper bounds ls, us ∈ Rn. The control space Rc is defined analogously.
Nevertheless, the presented approach is applicable with small changes to problems without
bounds. These changes are briefly described below when necessary.

In this chapter, an approach to cluster motion plans generated by the optimal control
solver DIRCOL is presented. The trajectory clustering can be roughly divided into three
major steps (see Figure 6.2). In the first step, each trajectory is compressed to a sequence
of high-level features augmented with additional information about timing and salience.
In the second step, the sequence-based representation of the trajectories computed in step
one to measure distances among them is used. The distances from the second step form a
distance matrix used in the third step as input for standard agglomerative hierarchical
clustering (see [126]) to identify similar trajectories in an examined set. The distance
measure for trajectories and motion plans, consisting of step one and two, is the main
contribution of this chapter and will be described in detail in the following subsections.

6.2.1. Step 1: Construction of Sequence-Based Representation

This subsection describes the extraction of features from time-dependent raw trajectory
data. Following the definition of a multidimensional sequence in [60], a feature sequence is
defined as a sequence of elements e1, . . . , eq where each element ei is a triplet of attributes
ei =

(︁
ecati , etime

i , evali

)︁
. In this triplet, ecati denotes the kind of feature this element represents

(feature class), etime
i gives the time stamp of this feature in the normalized trajectory and

evali ≥ 0 provides information about the importance of the feature in the sequence. Several

109

examples of such attributes will be given later on. For a given trajectory, m+ n sequences
are computed, one for each dimension in the state and control (cf. Equation (6.1)).

The selection of relevant features is a crucial part of the application of this method and
requires careful design. It depends on the one hand on the features that occur in at least
some trajectories of the examined set and on the other hand on the relevance of these
features for the problem or application underlying the trajectories. In this work, maxima
(∧) and minima (∨), active box constraints (upper bound Lu, lower bound Ll) and for
one problem roots (0) are used as feature classes. These are the dominant characteristics
that are apparent in the trajectories’ graphs resulting from the problems considered in this
thesis. Examples of other features are jumps, steep inclines or roots/signs of derivatives.
Since these do not occur in the examined trajectories they are not considered in the
following. The selection of relevant characteristics for the distance measure is highly
problem specific.

The state trajectories are represented as cubic splines, the control trajectory as linear
splines. This is DIRCOL’s output format, typical for collocation-based optimal control
solvers. For different representations (e.g., quintic splines), it may be necessary to adapt
the feature extraction approach. Trajectory data from sensors or images is typically a
sequence of (potentially multidimensional) time-stamped values. This can be interpreted
as linear splines, such that the presented approach can be used without further adaptation.

To extract features from a trajectory, a proceeding is required for each feature class to
find the times etime

i at which the feature ecati occurs. Furthermore, a value evali needs to be
assigned to each feature representing its salience in the trajectory shape. The following
describes the approach to get these features from linear and cubic splines.

Extrema

In linear splines, maxima and minima can only occur at knots (times at which the poly-
nomial changes). To find the extrema, the splines are thus searched for sign changes
between slopes of consecutive intervals:

ui − ui−1

ti − ti−1
· u

i+1 − ui

ti+1 − ti
< 0 (6.3)

for values ui and time ti at node i. For cubic splines, each polynomial siat̄
3+ sibt̄

2+ sict̄+ sid
(where t̄ is the normalized time) is searched for extrema by checking if its derivative, a

110

quadratic function, has roots inside the interval on which the spline is defined:

t̄1,2 =
−sib
3sia
±

√︄
−sib − 3siasci

9 (sia)
2 ∈ [0, 1] . (6.4)

In ecati , it is distinguished between maximum (∧) and minimum (∨). To assign a value eval

to all maxima and minima, a concept called (topographic) prominence [109] as defined in
[92] is used. Topographic prominence has been developed to value the significance of
mountain summits; see Figure 6.3 for an illustrative example. In this work, the algorithmic
definition of topographic prominence for functions with one-dimensional domain as given
in [185] is used:

To measure the prominence of a peak:
1. Place a marker on the peak.
2. Extend a horizontal line from the peak to the left and right until the line

does one of the following:
• Crosses the signal because there is a higher peak
• Reaches the left or right end of the signal

3. Find the minimum of the signal in each of the two intervals defined in
Step 2. This point is either a valley or one of the signal endpoints.

4. The higher of the two interval minima specifies the reference level. The
height of the peak above this level is its prominence.

This definition is slightly adapted: the computed prominence is normalized by dividing
it by us − ls (or uc − lc). At this point, the assumption of bounded codomains is used.
For unbounded co-domains, one could still normalize the prominence using the inverse
tangent or any other mapping [0,∞)→ [0, 1). Since prominence is defined for maxima
only, the prominence of a minimum of a function f at tm is defined as the prominence
of the maximum of the function (−f) at tm. Finally, all extrema with a prominence
lower than a certain threshold are discarded to avoid long feature sequences with many
irrelevant features.

Active box constraints

To find the active box constraint feature in linear splines c, it is again sufficient to consider
only knots at times ti and check if the condition

uc − c(ti) < ε ∨ c(ti)− lc < ε (6.5)

111

Figure 6.3.: Example illustrating topographic prominence

Fig. 6.3 is based on ProminenceDiagram.jpg, “Diagram of mountain range showing peaks and cols [...]”
(https://commons.wikimedia.org/wiki/Category:Topographic_prominence#/media/File:
ProminenceDiagram.jpg),
created by SGBailey, licensed under CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/).
Own work based on original version by SGBailey. ©2024. Figure 6.3 is openly licensed under CC BY-SA 3.0.

is fulfilled, with a small threshold ε > 0. For cubic splines, it is reasonable to check the
condition (6.5) at knots and extrema and proceed as for linear splines. This simplification
for cubic splines has shown to be effective in practice. Depending on whether the upper
or lower bound is active, different attributes (Lu, Ll) are used in ecati . Further, one could
distinguish between a single touch point and the two points start and end of a constrained
arc. In this work,a single feature is used for both cases and the time etime

i of an arc is set
to the center point between the start and end of the active constraint (see Figure 6.4a
for an example). To get salience values evali , active box constraints are treated as extrema
(which they actually are) and compute the prominence value at these points.

Roots

Considering roots can be helpful for motions where symmetry is relevant. The roots (ecati

indicated by 0) are identified by finding the roots of all (linear or cubic) polynomials that

112

https://commons.wikimedia.org/wiki/Category:Topographic_prominence#/media/File:ProminenceDiagram.jpg
https://commons.wikimedia.org/wiki/Category:Topographic_prominence#/media/File:ProminenceDiagram.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

(a) Example: Two events “start/end of con-
strained arc” (‘{’ and ‘}’) are merged into
a single event “constrained arc” (B) in the
center of the constraint.

(b) Example: Two trajectories with each
two features in different temporal dis-
tances, which is penalized by Equation
(6.9).

Figure 6.4.: Two examples to illustrate aspects of the construction of the sequence-
based trajectory representation.

are part of the trajectory. The value of each root at etime
i is computed using the slope m:

evali =
2

π
|arctan (m)| (6.6)

m =
d
dt

s(t)

⃓⃓⃓⃓
t=etime

i

.

Equation 6.6 assigns salience values close to one to roots that intersect the x-axis with
large slope and values close to zero for roots with flat angles. For all roots at knots of
linear splines, the subderivative m = 1

2(m
+ +m−) is used, where m− and m+ denote the

left and right limit, as they are not differentiable at these points. An example of a feature
sequence for a one-dimensional trajectory, including time and salience values, is given in
Figure 6.5.

In the selection of root as a feature for comparing trajectories, it must be considered that
roots are not translation invariant and are thus not suitable for every problem. However, it
can provide some benefit for trajectories that describe motions relative to some important
reference points. Furthermore, it can be easily extended to similar feature classes: For
some problems (e.g., foot position in task space, cf. 6.2.1), it may be necessary to consider

113

(a) Trajectory graph with features indicated by symbols: ▶ for minima, ◀ for maxima, +
for roots and B for active constraints. The time is normalized to the interval [0, 1].

i 1 2 3 4 5 6 7 8

etime
i 0.06 0.14 0.29 0.50 0.61 0.69 0.75 0.89
ecati Ll 0 Lu 0 Ll 0 ∧ 0
evali 0.22 0.99 1.00 0.97 0.74 1.00 0.31 0.97

(b) Feature sequence for the above trajectory graph. Feature labels:
∧: maximum, ∨: minimum, 0: root, Lu/Ll: upper/lower box
constraint active.

Figure 6.5.: Example illustrating the representation of a trajectory graph using a feature
sequence.

not y(t) = 0 but more generally y(t) = const. Another simple extension of the root feature
is to consider roots of higher derivatives.

Variability in the Feature-Class Design

The three presented feature classes are meant to be examples from a wealth of possibilities;
feature-based distance measures are not restricted to those three feature classes. Examples
for other features that may be considered are turning points, roots of the first or second
derivative, jumps or discontinuities. Feature-classes can also be designed to require that
multiple features occur at the same time in different dimensions of the trajectory.

The presented distance measure is not only applicable for trajectories in the joint space
but also for trajectories in the task space. Moreover, it is also possible to combine joint and
task space trajectories of the same motion in the same way as state and control trajectories

114

are used together (see Equation (6.8)) to use features from both spaces. Task space
trajectories can be computed from joint space trajectories either as a preprocessing step or
on the fly by the feature-class. This offers a large variety of new feature-classes for several
use cases in (humanoid) robotics. Feature-classes can be created that consider other
derived trajectory information, for example, the end-effector position relative to some
object, the center of mass, the center of pressure, swing-velocities of feet, the altitude of
the feet, the head orientation or the view direction.

The flexibility and adaptability provided by the ability to define custom feature-classes is
considered as important advantage of this method. Nevertheless, defining feature-classes
that are appropriate for a specific problem can be elaborate, finding those that perform
well may require some trial and error. The defined classes need to work on trajectory
features that appear sufficiently frequent in the trajectories to be clustered and are suitable
to distinguish between the different clusters. The implementation of new feature-classes
requires a definition of how a features is detected in the trajectories and how its importance
in the trajectory (salience value) is rated. The latter must be balanced among all the
feature-classes used.

6.2.2. Step 2: Distance Metric for Feature Sequences

For two motion plans T1 and T2, the feature sequences are constructed as described in
Section 6.2.1. For these sequences, a distance needs to be computed to compare T1 and
T2. This is done using the measure based on the string kernel method described in [52,
54], which allows the incorporation of the features etime and eval. This measure is a metric,
which means in particular that the triangular inequality holds, which “ensures coherence
between computed dissimilarities” [176].

In the following, Elzinga’s distance measure SVRspell [52, 54] is briefly summarized.
Consider a finite alphabet Σ and the set Σ∗ of all possible strings (character sequences)
that can be built from Σ. Enumeration of the elements in Σ∗ gives an infinite-dimensional
vector space S where each entry corresponds to one string. For two strings s1, s2 ∈ Σ∗

the two corresponding vectors rs1, rs2 ∈ S list the number of respective sub-sequences
that can be found in the strings. A short example is given in Table 6.1.

To get the distance between s1 and s2, Elzinga et al. compute the Euclidean distance
between rs1 and rs2. This can be formulated using only inner products, which can be

115

Σ = {a, b}, Σ∗ = {a, b, aa, ab, ba, bb, aaa, . . . }

s = abb, rs =
(︁
1 2 0 2 0 1 0 . . .

)︁
Table 6.1.: Example of a string s and its vector rs denoting how often all sub-sequences

occur. In this example, the sub-sequences in s are a, b, ab, bb, abb.

computed even if the vectors are infinite-dimensional using kernels:

d(s1, s2) =

√︄∑︂
i∈N

(rs1,i − rs2,i)
2 =

√︂
rTs1rs1 + rTs2rs2 − 2rTs1rs2. (6.7)

In [54], several extensions of SVRspell are described, some of them are used in this work.
In the following, it is explained how this measure and its extensions are used to allow the
application on the representation of motion plans from 6.2.1.

The alphabet in [54] corresponds to the set of trajectory feature classes, a string to the
feature sequence, and a character to a feature ecati . The distance between motion plans can
be computed by applying (6.7) to each dimension of the feature sequence representation
of the state and control trajectories. The resulting n+m distance values di are combined
into a single distance measure by taking the root of the sum of squared distances:

dfinal =
(︂∑︂n+m

i=1
di

)︂− 1
2
. (6.8)

The following extensions of [54] are used to include etime and eval in the distance measure.

Soft-Matching
Elzinga et al. describe how to add a concept named soft-matching to the string kernel,
which allows quantification of similarity between distinct characters of the alphabet. As
an example, consider the alphabet {a, b, c} and the soft-matching given by the similarity
0.7 between a, b and 0.0 between both a, c and b, c. Then, the distance between words ab
and aa is smaller than between the words ac and aa.

Soft-matching has been used to take the similarity of extrema and box constraints into
account. The parameter p that gives the similarity between ∧ and Lu or ∨ and Ll is
between 0 and 1. A section of the soft-matching matrix for the extremum and box
constraint features is given in Figure 6.6. When selecting the parameter p, care must be
taken to ensure that the resulting soft-matching matrix is positive definite.

116

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∧ 1 0 p 0 . . .

∨ 0 1 0 p . . .

Lu p 0 1 0 . . .

Ll 0 p 0 1 . . .

. I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∧⏟⏞⏞⏟ ∨⏟⏞⏞⏟ Lu⏟⏞⏞⏟ Ll⏟⏞⏞⏟ . . .⏟⏞⏞⏟{︂{︂{︂{︂{︂
Figure 6.6.: The soft-matching matrix in the SVRspell algorithm for extremum and box

constraint features, depending on the parameter p.

Gap Penalty
The Trail-algorithm in [54] allows the introduction of a penalty term to decrease the
influence of sub-sequences with large gaps. Gaps are differences between indices where a
character of a sub-sequence occurs in a string. For example, the sub-sequence abc of the
string abac has gaps 1 and 2 between ab and bc, respectively. This gap penalty can be an
arbitrary data-dependent function, which allows to incorporate the normalized trajectory
times to penalize differences in the time spans between two features in their trajectories,
as exemplified in Figure 6.4b. To measure distances between feature sequences in the
feature-based distance measure, the following gap weighting function is used:

g(i1, j1, i2, j2) = 1−
⃓⃓⃓(︂
etime
T1,i2 − etime

T1,i1

)︂
−
(︂
etime
T2,j2 − etime

T2,j1

)︂⃓⃓⃓
. (6.9)

The inputs i1 and i2 are indices of two features in the trajectory T1 and j1, j2 are indices
for T2. In the kernel, each entry of rs of a feature sequence is weighted by a product of
the gap weights computed by g in the respective sub-sequence (slightly simplified). How
to handle the case where a sub-sequence occurs more than once in a string is described
more detailed in [54].

Run-Lengths
Finally, it is necessary to add the information provided by the salience eval into the distance
measure. In [54], Elzinga et al. propose an adaptation of their method to cover so-
called run-length encodings of strings where repeated characters are encoded as numbers
(e.g., aaabccccb as a3b1c4b1). This can also be used for “any quantifiable property of the

117

characters”, which is the salience eval in the presented distance measure. Accordingly,
each sub-sequence of a string is weighted by the sum of such a run-length. However,
products of the weights are more appropriate for this application. They ensures that the
importance of sub-sequences containing features with very little salience is reduced as a
whole. This extension requires a single line change in the existing algorithm: In the notion
of [54], it suffices to modify line 5 of Elzinga’s Grid-algorithm to assign m1

ij ← txityj .

To conclude, SVRspell modified with three presented extensions (two of them already
proposed in [54], one implemented for this work) provides a distance metric to compare
feature sequences that represent motion plans. It allows incorporation of the additional
information provided by temporal relation etime and salience eval of the features.

6.2.3. Step 3: Application of Hierarchical Clustering

The distance measure described in the previous section enables the construction of a
distance matrix for a given set of motion plans, for which the distance between each pair
in this set needs to be computed. This distance matrix is required by the agglomerative
hierarchical clustering algorithm that constructs the set into subsets of similar motion plans.
The merging of clusters is done using single-linkage. The number of resulting clusters
is either predefined or results from a cutoff value. Both values must be tuned, which is
facilitated by considering dendrograms that visualize the hierarchy of the clustering and
the distances between the trajectories. The distance measure described in 6.2.1 and 6.2.2
is by no means restricted to agglomerate hierarchical clustering but can be used in every
clustering approach that is based on pairwise distances.

6.3. Evaluation

The feature-based distance measure of motion plans based on SVRspell is compared
with DTW on the raw pairs of state and control trajectories. DTW is based on dynamic
programming and aligns the time scales of two different sequences or trajectories. See
Figure 6.7 for an exemplary comparison of Euclidean and dynamic time warping matching
of two sequences. DTW has first been applied for speech recognition by Sakoe and
Chiba [158, 128]. It has been selected because it is, according to Su et al., “one of the
most widely used distance measures” [177]. Computations are performed in Matlab
R2020a on a laptop with an Intel i7-6500U processor with two cores at 2.5GHz. The
DTW implementation of the Matlab Signal Processing Toolbox (compiled code) and the

118

Figure 6.7.: Visual comparison of Euclidean matching and dynamic time warping match-
ing of two time series.

Fig. 6.7 is based on Euclidean_vs_DTW.jpeg, “Difference in matching between Euclidean and Dynamic Time Warping”
(https://commons.wikimedia.org/wiki/Category:Dynamic_time_warping#/media/File:
Euclidean_vs_DTW.jpg),
created by XantaCross, licensed under CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/).
©2024. Figure 6.7 is openly licensed under CC BY-SA 3.0.

agglomerative hierarchical clustering from the Matlab Statistics and Machine Learning
Toolbox is used. The SVRspell algorithm is implemented in C++ and used in Matlab via a
MEX file. The feature extraction proposed in this chapter is written in Matlab code. The
sets of trajectories that are used in this evaluation are, if not stated otherwise, provided
by the OCP solver DIRCOL [173].

6.3.1. Clustering of Furuta Pendulum Motion Plans

The underlying physical system of the motion plans in this subsection is the Furuta
pendulum [61]. The motion plans are solutions of the OCP described in Section 5.2.4
for different start states, computed with the numerical solver DIRCOL. The problem
formulation contains no explicit information about trajectory clusters or distance measures.
The differences in the motion plans originate from the differences in the start states; the
motion plans can be clustered into visually different solutions (see Figures 6.8a to 6.8c,
Figures 6.9a to 6.9d or Figures 6.10a to 6.10e). By changing the parameterization of
the dynamic model, three different test sets Furuta 1 to 3 of 160 motion plans each have
been created that are clustered separately. The 160 trajectories are manually clustered
for each test set, these clusters are used as ground truth. Trajectories with visually similar

119

https://commons.wikimedia.org/wiki/Category:Dynamic_time_warping#/media/File:Euclidean_vs_DTW.jpg
https://commons.wikimedia.org/wiki/Category:Dynamic_time_warping#/media/File:Euclidean_vs_DTW.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

graphs are grouped into one cluster. The ground truth clustering has been done before
developing the feature-based clustering approach.

For this problem, the root feature is used for the state trajectories as the roots of the second
joint indicate the number of swing-up motions. A qualitative evaluation is performed by
comparing the dendrograms and clusters resulting from DTW and the presented method.
Each motion plan in the test set is listed on the x-axis of the dendrogram, the distances
between clusters are on the y-axis. The trajectory plots show the distinct clusters of the
motion plans, which contain state (consisting of two joint positions and two velocities)
and control trajectories. The qualitative evaluation is supported by comparing the number
of correctly clustered motion plans as quantitative evaluation. The separation into clusters
depends on the cutoff value chosen. Lower cutoff values lead to fragmentation into more
clusters. Misclassifications with high distance to the other elements make a lower cutoff
value necessary to separate the clusters. The results for both methods are given for the
separation into the most favorable number of clusters to allow a fair comparison. The
number of clusters into which the trajectories are separated is reported as number in
brackets next to the distance measure name. If more than one cutoff value provides
equally favorable results, both confusion matrices are reported.

The first test set Furuta 1 has three different clusters containing 44, 115 and 1 trajectories.
Clustering based on both DTW and the feature-based distance measure identifies all
clusters correctly (see Table 6.2a). The dendrograms and trajectory plots in Figure 6.8
illustrate the subdivision into three clusters.

The second test set Furuta 2 has four different ground truth clusters with 90, 38, 1 and
31 trajectories. The feature-based approach identifies the four clusters apart from two
elements (Table 6.2b). DTW separates three single trajectories from the ground truth
clusters and thus needs a lower cutoff value, leading to seven clusters. Supporting
the quantitative result, the dendrogram for the feature-based approach (Figure 6.9e)
is structured more clearly: The four clusters are separated and the more fine-grained
splitting happens only at a lower cutoff level. The two misclassified trajectories are clearly
visible in the trajectory plots 6.9b and 6.9d.

The third test set Furuta 3 consists of four trajectory clusters with sizes 30, 30, 99 and 1.
On this test set, the clustering computed with DTW equals the ground truth clustering, the
feature-based distance measure assigns the single trajectory cluster to the largest cluster.
The results for the third test set are illustrated in Figure 6.10, the quantitative results can
be found in Table 6.2c.

120

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3

(d) Result with Feature-based (e) Result with DTW

Figure 6.8.: Clustering result of the Furuta 1 test set. Subfigs. 6.8a to 6.8c give the
clustering result of both distance measures (which equal the ground truth in
this case). The two dendrograms illustrate the hierarchical structure of the
clusters resulting from the different distance measures. The ground truth is
given as colored bar on the x-axis.

121

GT Feature-based (3) DTW (3 clusters)
C1 C2 C3 C1 C2 C3

C1 1 1
C2 44 44
C3 115 115

(a) Confusion matrices for Furuta 1 test set

GT Feature-based (4) DTW (7 clusters)
C1 C2 C3 C4 C1 C2 C3 C4 ...

C1 90 88 2
C2 37 1 37 1
C3 1 1
C4 1 30 31

(b) Confusion matrices for Furuta 2 test set

GT Feature-based (3) DTW (4 clusters)
C1 C2 C3 C1 C2 C3 C4

C1 30 30
C2 30 30
C3 99 99
C4 1 1

(c) Confusion matrices for Furuta 3 test set

Table 6.2.: The clusterings of the Furuta test sets as confusion matrices using the
feature-based approach and DTW. The rows give the ground truth clusters, the
columns the respective cluster assignments resulting from the two distance
measures. The number of clusters is given as number behind the method
name. Additional clusters are summarized in “...”. The number of correctly
classified motion plans is given on the diagonals.

122

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

(e) Result with Feature-based (f) Result with DTW

Figure 6.9.: Clustering result of the Furuta 2 test set. Subfigs. 6.9a to 6.9d give the clus-
tering result of the feature-based distance measure. The two dendrograms
illustrate the hierarchical structure of the clusters resulting from the different
distance measures. The ground truth is given as colored bar on the x-axis.

123

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3

(d) Ground truth cluster 3 (e) Ground truth cluster 4

124

(f) Result with Feature-based (g) Result with DTW

Figure 6.10.: Result of the clustering of the test set Furuta 3. Subfigs. 6.10a to 6.10c
give the three clusters created using the feature-based distance measure.
Cluster 1 and 2 are identical with the ground truth. Subfigs. 6.10d and
6.10e give the ground truth clusters for cluster 3 and 4. The plots show the
progression of the state (position and velocity of two joints) and control
trajectories. The two dendrograms illustrate the hierarchical structure of
the clusters resulting from the different distance measures. The ground
truth is given as colored bar on the x-axis.

6.3.2. Clustering of Manutec r3 Arm Motion Plans

In this subsection, the more complex Manutec r3 robot arm model is considered, which
has three actuated joints, such that a motion plan consists of a six-dimensional state and
a three-dimensional control trajectory. The motion plans that describe optimal point-to-
point movements from different start states to the same goal state (cf. Section 3.3.2) are
computed as before using the numerical solver DIRCOL. The test set based on the Manutec
r3 arm consists of 30 motion plans that are clustered manually into 9 different movements.
There are three larger clusters of ten, six and five motions, respectively (given in Figures
6.12a to 6.12c). The other clusters contain one or two trajectories and are neglected in
this evaluation.

A property of motion plans resulting from this problem is a low-amplitude zig-zag behavior
in one dimension of the control trajectory (see Figure 6.11). This validates the use of a
prominence filter (a salience threshold of 0.02 is sufficient) for the extrema to remove the

125

GT Feature-based DTW
C1 C2 C3 . . . C1 C2 C3 . . .

C1 10 10
C2 6 6
C3 3 2 4 1
. . . 3 . . . 1 . . .

Table 6.3.: The results of the clustering as confusion matrix for the Manutec robot arm
test set comparing the feature-based distance measure and DTW. The rows
give the three largest ground truth clusters and the columns the respective
cluster assignments resulting from the two distance measures. The number
of correctly classified motion plans is given on the diagonals. Only the three
largest clusters are considered, all others are summarized in the last row and
column.

many maxima and minima. The prominence filter is thus important to reduce the length
of the feature sequence. Moreover, it can compensate for some noise in the input data.
The feature class root provides no useful information for trajectories of this test set and is
thus not used for the state or control trajectories.

Table 6.3 shows that the number of correctly clustered motion plans in the three largest
clusters is the same for the feature-based approach and DTW. Using the presented ap-
proach, the large cluster 1 is identified correctly, but cluster 3 is incomplete and the
algorithm adds some additional motion plans to the second cluster. In contrast, DTW is
unable to distinguish between the first and the third cluster (three of four motion plans

Figure 6.11.: Example: Enlarged view of a motion plan showing the zig-zag path of one
dimension of the control trajectory around zero.

126

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3

(d) Result with Feature-based (e) Result with DTW

Figure 6.12.: Clustering result of the Manutec test set. Subfigs. 6.12a to 6.12c give
the three largest ground truth clusters. They show the state and control
trajectories for three joints over time. The two dendrograms illustrate the
hierarchical structure of the clusters resulting from the different distance
measures. The ground truth for the three largest clusters is given by the
colors on the x-axis.

127

from the third cluster are incorrectly assigned to the first cluster). The second cluster
includes one additional motion plan. Comparing the dendrograms (Figure 6.12), the
diagram for DTW seems to be more clearly structured. The first cluster is presented
contiguously, but a very low cutoff value is needed to separate it from other elements. In
the dendrogram for the presented approach, this cluster is also clearly recognizable: It is
separated from other motion plans, even for a very high cutoff value. Cluster 1 stands out
visually from the other motion plans, it is clearly identified by the feature-based approach,
whereas DTW has major problems with this cluster, as can be seen in the dendrogram.

To summarize, both methods have some difficulties with the selected data set, which is
reflected in the dendrograms. In several cases, the motion plans have similar progres-
sions in single trajectories, which makes clustering challenging even for human experts.
Interestingly, the two approaches identify different clusters well.

6.3.3. Clustering of a Real-world Human Motion Dataset

To evaluate the performance of the presented method on real-world data, trajectories from
the human locomotion dataset created by Reznick et al. [155] are clustered. They recorded
data from ten participants walking, running, stair climbing and sitting down/standing up
at various speeds and inclinations. The recorded data is post-processed (filtered and gaps
in the data filled). In this chapter, the normalized dataset is used where the strides in the
recorded trajectories are separated and the time is normalized to the interval [0, 1] and
interpolated to 150 data points (for details, see [155]). In this evaluation, the provided
joint angle trajectories for the ankle, knee, hip, pelvis and foot progression are used; and
from each of them only the x-component, which is the most expressive and thus provides
the best results. Consequently, the state trajectories to be clustered have five dimensions.
There is no control signal information, the joint limits are not known and roots have no
meaning, such that only the state trajectory with maxima and minima as features is used.
Extrema with prominence lower than 0.2 are removed from the feature sequence.

A cluster consists of the first stride of all ten participants in a single motion task. The
distinctness of the different motions in the data set varies, such that the difficulty of
the clustering task varies with the selection of motions. For example, both clustering
methods fail to reliably differentiating between joint trajectories for walking with different
inclinations; but this task is also difficult for humans. In the test set Human Motion 1,
the following motion types, which are relatively easy to differentiate, are to be clustered:
(1) running at 1.8m/s, (2) descending a 35◦ stair, (3) walking 10◦ downhill at 0.8m/s

128

GT Feature-based (8) DTW (13 clusters) DTW (4 clusters)
C1 C2 C3 C4 ... C1 C2 C3 C4 ... C1 C2 C3 C4

C1 10 8 2 0 10
C2 9 1 6 4 10
C3 9 1 9 1 10
C4 8 2 7 3 1 9

(a) Confusion matrices for dataset Human Motion 1

GT Feature-bd. (13) Feature-bd. (10) DTW (13) DTW (8)
C1 C2 C3 C4 ... C1 C2 C3 C4 ... C1 C2 C3 C4 ... C1 C2 C3 C4 ...

C1 8 2 9 1 7 2 1 10
C2 10 10 8 2 1 8 1
C3 1 4 5 5 1 1 3 8 2 9 1
C4 8 2 8 2 4 6 7 3

(b) Confusion matrices for dataset Human Motion 2

Table 6.4.: The clusterings of the Human motion dataset [155] as confusion matrices
using the feature-based approach and DTW. The rows give the ground truth
clusters, the columns the respective cluster assignments resulting from the
two distancemeasures. The number of clusters is given as number behind the
method name; two separations into clusters are given if it is unclear which one
is best. Additional clusters are summarized in “...”. The number of correctly
classified motion plans is given on the diagonals.

and (4) sitting down on a chair. The results of the clustering using DTW and the feature-
based approach are presented in Figures 6.13e to 6.13f. By and large, all four clusters
can be identified in the dendrograms. The feature-based approach has a problem to
distinguish between the clusters (2) and (3), DTW to differentiate between (1) and (3).
Both approaches report high distance values for some trajectories of a motion type and
thus separate them from the others, resulting in more than four clusters. As before, the
separation into the most favorable number of clusters for the feature-based approach and
for DTW are reported in Table 6.4a, and additionally two alternative separations into 13
and 4 clusters that are equally well. It can be seen that the four ground truth motions are
identified with much higher cutoff values using the feature-based approach, and also the
number of misclassifications is substantially lower.

129

(a) Ground truth cluster (1) (b) Ground truth cluster (2)

(c) Ground truth cluster (3) (d) Ground truth cluster (4)

(e) Human Motion 1: Result with Feature-based (f) Human Motion 1: Result with DTW

Figure 6.13.: Clustering result of the Human Motion 1 test set using different distance
measures. Subfigs. 6.13a to 6.13d give the four ground truth clusters. They
show the x-component of the joint angles over time. The two dendrograms
illustrate the hierarchical structure of the clusters resulting from the different
distance measures. The ground truth is given as colored bar on the x-axis.

130

(a) Ground truth cluster (1) (b) Ground truth cluster (2)

(c) Ground truth cluster (3) (d) Ground truth cluster (4)

(e) Human Motion 2: Result with Feature-based (f) Human Motion 2: Result with DTW

Figure 6.14.: Clustering result of the Human Motion 2 test set using different distance
measures. Subfigs. 6.14a to 6.14d give the four ground truth clusters. They
show the x-component of the joint angles over time. The two dendrograms
illustrate the hierarchical structure of the clusters resulting from the different
distance measures. The ground truth is given as colored bar on the x-axis.

131

Figure 6.15.: Computation time for a single distance computation between two trajecto-
ries on the test sets considered here. The computation time of the feature-
based approach is splitted into the precomputation step and the SVRspell
distance computation.

The motion types of Human Motion 2 are more difficult to differentiate: (1) running at
1.8m/s, (2) ascending a 20◦ stair, (3) walking at 0.8m/s and (4) sitting down on a chair.
The results are presented in Figures 6.14e to 6.14f. Here, the ground truth clusters are
more difficult to distinguish in both dendrograms. The feature-based approach needs a
separation into 13 clusters to distinguish four larger clusters, DTW also needs 13 clusters
to distinguish between cluster (1) and (3). The results for different numbers of clusters
are given in Table 6.4b. The performance of both approaches is comparable on this more
difficult test set; both reveal difficulties in differentiating between cluster (1) and cluster
(3) in particular.

132

6.3.4. Evaluation of Efforts and Runtime

The runtime analysis of the feature-based distance computation can be divided into the
feature extraction step and the SVRspell-based distance computation. The feature extrac-
tion is a preprocessing step that must be done only once for all trajectories, independent
of the number of distance measurements required for the clustering. Its runtime depends
on the number of feature classes and the algorithms employed to identify the features of
a trajectory. The complexity of the distance computation (based on the SVRspell algo-
rithm) is cubic [54] in the number of features. The number of features is typically much
smaller than the number of time steps, on which the complexity of DTW depends (O(NM)
with N , M the trajectories’ number of time steps). The runtime of the SVRspell-based
distance computation is important, as the number of calls to the distance computation
is quadratic or even cubic in the number of trajectories for many clustering approaches
and in particular for the classical agglomerative hierarchical clustering algorithm [127].
Figure 6.15 shows the time to extract the feature sequence (orange) as well as the times
to compute the distance between two trajectories using DTW (blue) and feature-based
approach (red). It must be noted that for this evaluation, the DTW and SVRspell imple-
mentations run as compiled code while the feature extraction is implemented in plain
Matlab. Thus, improved performance can be expected if the code for the preprocessing
step is transferred to a compiled language. The distance measure based on the feature
sequence representation thus has potential advantages regarding computation time.

6.4. Experiments on the Effect of Mixed Clusters on Learned
Control Policies

It remains to be evaluated how mixing several clusters affects the approximated feedback
control. A subset of a large set of solution trajectories from different start states that solve
the Furuta pendulum problem (see Section 5.2.4) is subdivided into two solution clusters.
Both clusters consist of 36 optimal trajectories, the distribution of start states in the joint
space is approximately the same. Apart from these two sets of trajectories Cluster 1 and
Cluster 2, a third trajectory set Cluster Mix is constructed by combining 18 trajectories
from each. The graphs of the three trajectory sets are presented in Figure 6.16.

Taking 130 samples from each trajectory, the training data for the feedback control ap-
proximation consists of 4680 samples for each set. Multiple GPs with different kernels are
trained, all using FITC with 100 inducing points. The resulting feedback control policy

133

(a) Trajectories from solution cluster 1 (b) Trajectories from solution cluster 2

(c) Trajectories from both solution clusters

Figure 6.16.: The three sets of 36 trajectories, two from a single solution cluster and one
combining trajectories from both clusters.

approximations are combined with a stabilizing PI controller (with the same parameters
and switch conditions as in Section 5.4) and used on a real-world Furuta pendulum. Apart
from evaluating if the pendulum can be balanced, the maximum arm deflection required
by the PI controller to stabilize the system around the goal state, as introduced in Section
5.4, is again used as a non-binary performance criterion. The arm deflection values for
the different controllers are reported in Table 6.5. It is noticeable that the error rate of the
control trained with the data of the second cluster is significantly higher than that of the
control trained with the data from the first cluster. The feedback controllers trained with
the first cluster all successfully reach the goal state, but using data from the second cluster,
only the GP controller with Gibbs kernel succeeds. As already observed, the training of

134

ARD Gibbs Matérn-3/2 MLP Sqexp

Cluster 1 0.6105 0.9296 1.3131 0.4295 0.6903
Cluster 2 NaN 0.6075 2.0739 2.0862 NaN
Mixed 2.0893 1.8070 NaN 1.6858 2.0862

Table 6.5.: Result for execution on real-world Furuta pendulum using different GP kernels
on pure and mixed cluster data.

Figure 6.17.: Maximum arm deflections for repeated execution on the real-world Furuta
pendulum using the Gibbs kernel on pure and mixed cluster data.

GPs fails in some cases, and some kernels are more susceptible to failure than others.
Nevertheless, it is noteworthy that almost all kernels fail for the second cluster. One
possible explanation is that the second solution cluster is more difficult to approximate
than the first, since it contains an additional swing-up. The Gibbs kernel GP provides the
most interesting results, as this controller successfully balances the pendulum for all three
clusters. For the pure clusters Cluster 1 and Cluster 2, the learned controllers provide very
good results, as the lash required by the PI controller to balance the system is very small,
with 0.93 for the first and 0.61 for the second cluster. However, learning a controller on a
combination of trajectories from both clusters leads to severely degraded results: The PI
controller generates a deflection of the pendulum arm of 1.81 rad to balance the system
and almost violates the state constraint.

The experiment is repeated four times using the Gibbs kernel controller trained on cluster

135

1, cluster 2, and the mixed cluster to validate this result. Due to minor variations in
the initial state, every execution is slightly different, even for the same controller. The
results are presented in Figure 6.17. The data indicates that the very small arm deflection
value for the controller trained on cluster 2, as reported in Table 6.5, is in fact an outlier
and is typically larger than for the controller trained on cluster 1. However, all arm
deflections required to stabilize the mixed cluster controller are notably larger than those
for the pure cluster controllers. This shows clearly that mixing trajectories from different
clusters to train a single feedback controller reduces the achievable performance. It is
therefore desirable to differentiate between the different clusters provided by DIRCOL in
the iterative extremal field approach and to carefully select, which trajectories are used in
the iterative learning procedure.

6.5. Discussion and Conclusion

The number of features has the largest impact on the runtime complexity of the new
distance measure, which effectively decouples the computation of the distance from the
time length of a trajectory. This is an advantage if long trajectories can be reduced to a
small number of features. The number of features per trajectory depends on the trajectory
itself, the feature classes used and the parameterization (thresholds). It may be necessary
to preprocess trajectories representing observation data to remove outliers and noise. A
suitable salience threshold, as used in this chapter, is often sufficient to keep the feature
sequence representations sufficiently small. A maximum length of the feature sequence can
be enforced by sorting all features in a trajectory by its salience value and keeping only the
features with the highest values. The dimensionality of the trajectories’ co-domains affects
the runtime of the distance measure only linearly, since the distances of the trajectories’
dimensions are summed up (see Equation (6.8)).

An advantage of the feature-based distance measure is the flexibility in the selection
of arbitrary many and arbitrary complex feature classes, which allows adaptation to
specific problems and use cases. The parameters of the presented method are feature class
dependent; typical parameters are, for example, salience thresholds. It must be noted
that the distance measure needs a sufficient number of distinct features in the trajectory
graph to show its potential.

In this chapter, a new approach is developed to compute the distance between trajectories
representing motion plans that can be used for clustering. It is based on a method
presented by Elzinga et al. [52] for measuring the distances between strings. To make this

136

method applicable, an approach is presented to compress raw trajectories into sequences
of user-defined high-level semantic features, such as extrema or roots, that characterize
the general shape of the graph. These features are complemented with information
about their temporal position and their salience in the trajectory. Elzinga’s sub-sequence-
based distance metric [54] is adopted to work with this feature sequence representation of
trajectories augmented with time and salience information. The resulting distance measure
for trajectories is used in agglomerative hierarchical clustering to identify trajectories with
similarly shaped graphs.

The presented distance measure can be applied to all sorts of trajectories, independent of
the application. In the field of human-robot interactions, further potential of the presented
distance measure lies in the construction of hierarchical motion databases (as done, e.g.,
in [207, 95]), since the compressed feature-based representation of motions is memory
efficient and allows fast comparisons.

Since the agglomerative hierarchical clustering approach needs to compute all pairwise
distances of a set of trajectories, the size of trajectory sets that can be clustered is limited,
since the required computational effort increases quadratically. For larger sets of trajecto-
ries, alternatives to agglomerative hierarchical clustering must be considered that do not
require the computation of distances between all trajectory pairs.

Further work is needed to optimize the distance measure for online use of streamed
trajectories. This would require reusing computations of Elzinga’s distance measure
when new elements are successively added to one of the feature sequences. The feature
extraction must be performed on each update, which is possible with the current code.
Further work is also needed to enable the distance measure to split a long recorded motion
sequence into subsequences of already clustered motions.

Clustering using the novel feature-based distance measure has been compared with
clustering based on the often used DTW algorithm [158, 128, 195]. The data on which
the clustering is evaluated encompasses optimal trajectories provided by DIRCOL and
real-world human locomotion data. The sets of motion plans generated by the optimal
control solver describe movements of two robotic systems: the Furuta pendulum and the
Manutec robot arm. Further, the real-world data test sets consist of joint motion data
of humans performing different locomotion tasks that has been generated by Reznick
et al. [155]. The results show a reliable performance that is at least on a par with the
proven DTW, in some cases it even outperforms this commonly used distance measure.
An advantage of the presented method is flexibility in the choice of feature classes, which
allows adaptation on specific problems and use cases.

137

In the iterative extremal field approach, the data from several different optimal trajectories
are used to train the near-optimal feedback controller. For some problems, such as the
Furuta pendulum swing-up task described in Section 5.2.4, multiple locally optimal
solutions with approximately the same cost but different characteristics exist. Trajectories
from different start states with similar characteristic shapes are said to be in the same
cluster. Experiments on the real-world Quanser Furuta pendulum have shown that using
trajectories from different solution clusters to train the same feedback control policy can
lead to a noticeable degradation in its performance. To avoid this, clustering can be used
to reject locally optimal trajectories from all but one solution cluster.

The code implemented for this chapter (apart from Section 6.4) and the data used for
evaluation are available on Github1.

This chapter is based on the paper “Clustering of Motion Trajectories by a Distance Mea-
sure Based on Semantic Features”, published in 2023 IEEE International Conference
on Humanoid Robots (Humanoids) [212]. It contains the following major additions:
illustrative Figures 6.2, 6.3, 6.6, 6.7 and 6.11, extended Section 6.2.1, illustrations of
the clusters in Figures 6.8 to 6.10 and 6.12 to 6.14, additional Section 6.4.

1https://github.com/cztuda/semantic-feature-clustering

138

https://github.com/cztuda/semantic-feature-clustering

7. Conclusion

The optimal control of robotic systems offers significant performance advantages. Optimal
feedback control policies for robotic systems allow to optimally solve a specific task not
only on a precomputed trajectory from the current system state but in a whole region,
which is necessary to deal with external perturbations or modeling errors. Unfortunately,
the approximation of near-optimal feedback control policies for general high-dimensional,
nonlinear robotic systems is hard. The extremal field approach pursued in this thesis allows
to leverage information provided by numerical optimal control solvers. Data from a set of
optimal trajectories is combined to learn a near-optimal approximation of the feedback
control. The application of this approach to modern robotic systems is challenging, e.g.,
due to their high-dimensionality and nonlinearity of their dynamics. Iteratively adding
training data from new optimal trajectories helps to restrict the coverage of the joint space
to the part that is relevant for a specific task, as information from the current control
approximation and previously computed trajectories can be used.

7.1. Contribution

In this thesis, several contributions to the field of near-optimal feedback control approxi-
mation for nonlinear dynamic robotic systems using the extremal field approach are made.
They are reviewed in the following paragraphs.

Start State Selection Strategies
To reduce the effect of the curse of dimensionality, the extremal field approach needs to
restrict the optimal trajectories that provide the training data to a subset of the joint space
that is large enough such that the state of the robot system does not leave this subset in
case of perturbations or modeling errors and, at the same time, small enough to be well
covered by training data.

139

The presented approach selects the start states for the computation of optimal trajectories
that provide the training data not all at once but iteratively. This has the advantage
that in each iteration, information from the current feedback control approximation and
previously computed trajectories can be used to focus on regions where training data is
missing to ensure a well-balanced coverage of the relevant state space.

In this work, three novel start state selection methods are introduced to ensure that critical
regions of the state space are well covered. They are based on the adjoint variable provided
by the numerical optimal control solver based on direct collocation, on an approximation
of the normed partial sensitivity and on an increase in the error along the trajectory when
simulated with the current policy approximation.

The adjoint variable approach has been compared to the naive sampling approach that
is used in many works, e.g., in [217, 120]. It has been demonstrated on the Manutec
r3 robot arm that the policy trained using the adjoint-based start state selection method
produces trajectories that get closer to the goal state in shorter time, and thus with a
lower cost value.

The proposed selection methods are not intended to be used separately but combined to
complement each other, together with random sampling around the nominal start state.
The combination of the four different start state selection methods brings a substantial
improvement of the results compared to those achieved with only the adjoint-based
strategy. It has been demonstrated on the Manutec r3 robot arm, that, compared with
local LHS sampling as used in [64], the combination of the four methods produce feedback
control policy approximations with an overall higher success rate and shorter minimum
distance to the goal state. This illustrates the advantage of a mixed selection strategy to
cover the joint space with optimal trajectories.

The motivation to use near-optimal feedback control policies is their higher robustness to
perturbations compared to open-loop control. The learned controller of the Manutec r3
arm shows decent performance when subjected to abrupt changes in the state or velocity
during the execution of the control policy (intermittent disturbances) and perturbed
system dynamics using different friction models (continuous nonlinear disturbances). This
makes the presented approach applicable to problems where moderate perturbations can
be expected.

To improve the convergence of the system state to the goal state, it has been proposed to
pass control to a traditional PI controller that is tuned with an LQR approach to stabilize
the system around the goal state. This removes the need for a large amount of training
data around the goal, since the learned control policy only has to get the system state

140

close to the goal state. Compared to the trajectory sampling around the goal state, the
switch-over to the LQR controller significantly improves the final distance to the goal state.
Using only a small number of short trajectories to keep the amount of training data small,
a convergence to the goal state can not be achieved with the standard approach. However,
the switch-over approach is able to stabilize the system at the goal state while using the
same number of training samples. However, while the cost values of these trajectories are
only slightly increased, the time to reach the goal state is significantly longer than before.

To analyze how the learned feedback control policy behaves in the presence of external
perturbations or model inaccuracies, several simulations have been performed in Matlab
using state-of-the-art numerical solvers for ordinary differential equations.

Approximation Methods
Different methods for function approximation in the extremal field approach have been
considered in this work. Several requirements on the approximation method to evaluate
their suitability to model near-optimal feedback control policies have been formulated.
Two widely used approximation methods, GPs and NNs, have been analyzed and compared
based on these requirements on the Furuta pendulum and the Manutec r3 robot arm. This
work contributes insights into the usability of two extensions to improve the suitability of
NNs and GPs, into adequate hyperparameter selection, and into the achievable prediction
accuracy and performance.

Monte-Carlo dropout can be used to get uncertainty estimates for the predictions of NNs.
This has a low computational overhead, but complicates the training and decreases the
prediction accuracy of the feedback control approximation. Global approximations using
sparse GPs, which allow their use on large datasets, seem to have only a small impact on
the accuracy.

For GPs, it turned out that MLP, Gibbs and Sqexp kernels are particularly suitable to
approximate the highly nonlinear feedback control policy. Regarding fully connected
feedforward NNs, the performed evaluations shows that a few (4 to 10) layers are sufficient
to get a satisfactory accuracy. The number of nodes per layers seems to have a slightly
larger impact on accuracy than the number of layers. The evaluation results indicate that
it is not necessary to use more than a few hundred nodes per layer.

When large amounts of training data are available, NNs clearly outperform GPs, their
accuracy is comparable on very small datasets with only a few thousand samples. Re-
garding prediction time, the use of NNs provides no advantage compared to GPs: Exact

141

GPs for small and sparse GPs approximations for large amounts of training data provide
predictions faster than the tested NNs of different sizes.

In experiments on a real-world Furuta pendulum, NNs showed a slightly better perfor-
mance than GPs with carefully selected kernel functions. However, when the system
dynamics were substantially perturbed by weights on the pendulum arm, the GPs per-
formed similar to the NNs or even outperformed them. This indicates that GPs can
generalize better to unseen data than NNs, such that the use of GPs is favorable if large
disturbances are expected.

Trajectory Distance Measure
For some problems, such as the Furuta pendulum swing-up task considered in this thesis,
the optimal control solver provides multiple locally optimal solutions with approximately
the same cost but different characteristics. Experiments on the Quanser Furuta pendulum
have demonstrated that combining training data from different solution clusters to train
a GP that represents a feedback control approximation has a negative impact on its
performance on real systems. These results are consistent with the findings of Merkt et
al. [117]. This insight motivates the proposal of a novel distance measure for trajectory
clustering that creates a compressed representation of the trajectories to be clustered and
uses a string kernel method by Elzinga [52] to compute the distances. The goal is to
create an intuitively interpretable rule-based method (in contrast to black-box approaches
based on NNs), where the focus is on salient characteristic features in the trajectory graphs
instead of pointwise Euclidean distances between trajectories. Another advantage of the
feature-based approach is that the feature-classes that determine the distance measure can
be task-specifically designed. The feature-based distance measure has been compared with
the widely used DTW approach on optimal trajectories computed with direct collocation
for the Furuta pendulum and the Manutec r3 robot arm and on human locomotion data
recorded using motion capturing by Reznick et al. [155]. Overall, the proposed distance
measure provides slightly better clustering results than the widely used DTW approach.
For some problems, the proposed distance measure is expected to show strong advantages
in runtime, as the trajectory distance computation is decoupled from the trajectories’ time
length. The use of the distance measure for trajectory clustering is not restricted to the
optimal trajectories used in the extremal field approach.

142

7.2. Directions for Further Work

The extremal field approach offers a way to utilize information from numerical optimal
control solvers together with sophisticated state-of-the-art learning approaches and com-
bine the advantages from both fields to approximate a near-optimal feedback control
policy. Nevertheless, there also remain several challenges that need to be addressed in
further work to improve the applicability of this approach. Two of them will be outlined
in the following.

The training data for the extremal field approach is provided by optimal control solvers
that compute the trajectories based on a detailed nonlinear physical dynamics model
of the robot and its environment. Consequently, modeling errors and inaccuracies are
thus present in every data point that is used to learn the control policy. Reinforcement
learning approaches reduce model errors by repeated corrections during the various
rollouts on the real system. In the extremal field approach, each correction of the dynamic
model requires the recomputation or correction of all optimal trajectories computed so
far. This is sufficient for nearest-neighbor approximations of the feedback control policy
(e.g., Atkeson and colleagues [10]). However, if these optimal trajectories are used to
train a parametric or non-parametric model of the feedback controller (as in this work,
where a GP or a NN is trained), this training needs to be redone as every sample in the
training set changes. Some existing approaches use parameterization of the dynamic
model to explicitly learn different dynamics (e.g., Schierman et al. [161]), which obviously
increases the dimensionality of the problem and with that the amount of the required
training data. It may also be beneficial to adapt from the work done in the context of
sim-to-real [125, 216] for reinforcement learning approaches, or to consider stochastic
system dynamics as done in some RL approaches [144, 93, 102] and also for NMPC [118,
98]. In conclusion, the efficient handling of modeling errors in the extremal field approach
is still an interesting field of research.

Another open field of research is the derivation of estimates or even guarantees on the
suboptimality of the computed feedback control policy and its region of stability. This
aspect is important to increase the reliability of the extremal field approach and enable
its use in safety-critical applications. Such guarantees are difficult to formulate since the
extremal field approach as presented in this thesis encompasses the numerical computation
of locally optimal trajectories and the training of a control policy approximation. Numerical
trajectory optimization methods may produce locally optimal results that are globally
suboptimal. For GPs or NNs, whose performance depends on the available training data
and the optimization routine used for training, it is notoriously difficult to specify error

143

bounds. Khadke and Geyer [89] estimate suboptimality in their approach but cannot
provide guarantees for some task-relevant part of the joint space.

In summary, the extremal field approach offers many advantages when used to approxi-
mate feedback control policies, and the results obtained so far look promising. This is
reflected in the interest of the robotics community as well as, for example, the aerospace
community in these methods. However, considering the open research questions outlined
above, it is clear that there is still a long way to go to achieve efficient and reliable feedback
control policies that enable complex tasks to be performed near-optimally by sophisticated
robotic systems. This thesis is a step in that direction.

144

A. Appendix

A.1. The Gaussian Process Kernel Functions

The kernel functions used in this thesis are defined as implemented in the GPmat toolbox
[3]. They can also be found in [154], but sometimes the notation is slightly different.
For example, the compound kernel of GPmat is denoted by kernel sum in Rasmussen and
Williams [154]. The scalar learnable, kernel-specific parameters are σ, σSE, σB, σL, σN,
σw, σb and σℓ. The learnable length-scale matrices are ΣSE and ΣL. The symbol 1 denotes
a matrix where all entries are ones, and Ĩ is a diagonal matrix where the i-th diagonal
element is one if xi = x′i and else zero.

The (anisotropic) squared exponential (SE) kernel function is defined as

k(x, x′) = σSE · exp
(︃
−1

2
· (x− x′)TΣSE(x− x′)

)︃
, (A.1)

the MLP kernel function is defined as

k(x, x′) =
2σ

π
sin−1

⎛⎝ σwx
Tx′ + σb√︂

(σwxTx+ σb + 1)
(︁
σwx′

Tx′ + σb + 1
)︁
⎞⎠ (A.2)

and the Matérn-3/2 kernel function as

k(x, x′) = σ ·

(︄
1 +

√
3 (x− x′)

σℓ

)︄
exp

(︄
−
√
3 (x− x′)

σℓ

)︄
. (A.3)

The Gibbs kernel function for n-dimensional input vectors is given by

k(x, x′) = σ ·
(︃

2ℓ(x)ℓ(x′)

ℓ(x)2 + ℓ(x′)2

)︃n
2

exp
(︃
−(x− x′)2

ℓ(x)2 + ℓ(x′)2

)︃
(A.4)

145

with ℓ(x) := exp (kMLP(x, x)).

The two compound kernels are the ARD kernel function, defined as

k(x, x′) = σSE · exp
(︂
−σw

2
· (x− x′)TΣSE(x− x′)

)︂
⏞ ⏟⏟ ⏞

anisotropic squared exponential

+σB · 1⏞ ⏟⏟ ⏞
bias

+σL · xTΣLx
′⏞ ⏟⏟ ⏞

linear

+ σN · Ĩ⏞ ⏟⏟ ⏞
Gaussian noise

(A.5)
and the Sqexp kernel function, given by

k(x, x′) = σSE · exp
(︂
−σw

2
· (x− x′)T (x− x′)

)︂
⏞ ⏟⏟ ⏞

squared exponential

+σB · 1⏞ ⏟⏟ ⏞
bias

+ σN · Ĩ⏞ ⏟⏟ ⏞
Gaussian noise

(A.6)

146

A.2. Selection of Numerical Trajectory Optimization Software

Name Ref. Method Lang. License Comment

PSOPT [16] direct local and orthog.
collocation

C++ LGPL solves using either pseudospec-
tral or local approximations

Bocop [27] direct local collocation C++ EPL provides a user interface for ef-
ficient use

Horizon [157] direct collocation andmul-
tiple shooting

Python LGPL focus on robotic problems (e.g.,
parse URDF files)

DIRCOL [174] direct local collocation Fortran custom for education and non-profit re-
search purposes thesis

GPOPS II [140] direct orthog. collocation Matlab comm. commercial successor of the
once freely available GPOPS

CGPOPS [2] direct orthog. collocation C++ comm. claimed to be faster than
GPOPS II

Altro [80] modified iLQR with aug-
mented Lagrangian

Julia MIT Lic. the only DDP-based method in
this list

ICLOCS 2 [57] direct local and orthog.
collocation and multiple
shooting

Matlab MIT Lic. wide range of methods and
solvers in one framework

ACADOS [196] direct multiple shooting C 2-C BSD successor of ACADO, focus is
on real-time capabilities and
model predictive control

DIDO [156] direct orthog. collocation Matlab comm. optimal control toolbox
OTIS [138] direct orthog. collocation Fortran restricted restricted to users within the

United States who are working
for the Government

SOCS [23] direct transcription ? comm. developed at Boeing, seems to
be no longer available

OptimTraj [87] direct local and orthog.
collocation and multiple
shooting

Matlab MIT Lic. developed by Matthew Kelly
while working on his PhD

SNCTRL [68] direct local collocation Fortran MIT Lic. SNOPT interface to solve OCPs,
no path constraints

Table A.1.: Selection of optimal control solver software, with focus on directmethods. For
a more extensive “Survey of Numerical Methods for Solving Optimal Control
Problems”, see Putkaradze and Vakhtang [149]

147

Bibliography

[1] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mo-
hammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra
Acharya, Vladimir Makarenkov, and Saeid Nahavandi. “A review of uncertainty
quantification in deep learning: Techniques, applications and challenges”. In:
Information Fusion 76 (2021), pp. 243–297.

[2] Yunus M. Agamawi and Anil V. Rao. “CGPOPS: A C++ Software for Solving
Multiple-Phase Optimal Control Problems Using Adaptive Gaussian Quadrature
Collocation and Sparse Nonlinear Programming”. In: ACM Transactions on Mathe-
matical Software 46.3 (2020), pp. 1–38.

[3] Neil Lawrence et al. MATLAB GPmat Toolbox. University of Sheffield. 2015. url:
https://github.com/SheffieldML/GPmat.

[4] Brian Armstrong-Hélouvry, Pierre E. Dupont, and Carlos C. De Wit. “A survey of
models, analysis tools and compensation methods for the control of machines
with friction”. In: Automatica 30.7 (1994), pp. 1083–1138.

[5] Karl Johan Åström and Richard M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008.

[6] Christopher G. Atkeson. “Nonparametric Model-Based Reinforcement Learning”.
In: Advances in Neural Information Processing Systems. MIT Press, 1997, pp. 1008–
1014.

[7] Christopher G. Atkeson. “Using Local Trajectory Optimizers To Speed Up Global
Optimization In Dynamic Programming”. In: Advances in Neural Information
Processing Systems. Morgan Kaufmann Publishers, 1993, pp. 663–670.

[8] Christopher G. Atkeson and Chenggang Liu. “Trajectory-Based Dynamic Program-
ming”. In: Modeling, Simulation and Optimization of Bipedal Walking. Ed. by K.
Mombaur and K. Berns. Springer, 2013, pp. 1–15.

149

https://github.com/SheffieldML/GPmat

[9] Christopher G. Atkeson and Jun Morimoto. “Nonparametric Representation of
Policies and Value Functions: A Trajectory-Based Approach”. In: Advances in Neural
Information Processing Systems. MIT Press, 2002, pp. 1643–1650.

[10] Christopher G. Atkeson and Benjamin J. Stephens. “Random Sampling of States in
Dynamic Programming”. In: IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 38.4 (2008), pp. 924–929.

[11] Adrien Baranes and Pierre-Yves Oudeyer. “Active learning of inverse models with
intrinsically motivated goal exploration in robots”. In: Robotics and Autonomous
Systems 61.1 (2013), pp. 49–73.

[12] Fransiska Basoeki, Fabio Dalla Libera, Emanuele Menegatti, Enrico Pagello, and
Hiroshi Ishiguro. “Clustering of Humanoid Robot Motions Executed in Response to
Touch”. In: Intelligent Autonomous Systems 13: Proceedings of the 13th International
Conference IAS-13. Springer, 2016, pp. 1063–1076.

[13] Guillaume Bastille-Rousseau and GeorgeWittemyer. “Characterizing the landscape
of movement to identify critical wildlife habitat and corridors”. In: Conservation
Biology 35.1 (2021), pp. 346–359.

[14] Randal W. Beard, George N. Saridis, and John T. Wen. “Galerkin approximations of
the generalized Hamilton-Jacobi-Bellman equation”. In: Automatica 33.12 (1997),
pp. 2159–2177.

[15] Alex Beaudin and Hsiu-Chin Lin. Learning Agile Paths from Optimal Control. 2022.
arXiv: 2212.00184 [cs.RO].

[16] Victor M. Becerra. “Solving complex optimal control problems at no cost with
PSOPT”. In: 2010 IEEE International Symposium on Computer-Aided Control System
Design. IEEE, 2010, pp. 1391–1396.

[17] Scott C. Beeler, Hien T. Tran, and Harvey T. Banks. “Feedback Control Methodolo-
gies for Nonlinear Systems”. In: Journal of Optimization Theory and Applications
107 (2000), pp. 1–33.

[18] Richard E. Bellman. Dynamic Programming. Reprinted by Dover Publications, Inc.,
Mineola, New York (2003). Princeton University Press, 1957.

[19] Kristin P. Bennett and Emilio Parrado-Hernández. “The Interplay of Optimization
and Machine Learning Research”. In: Journal of Machine Learning Research 7.46
(2006), pp. 1265–1281.

150

https://arxiv.org/abs/2212.00184

[20] David A. Benson, Geoffrey T. Huntington, Tom P. Thorvaldsen, and Anil V. Rao.
“Direct Trajectory Optimization and Costate Estimation via an Orthogonal Col-
location Method”. In: Journal of Guidance, Control, and Dynamics 29.6 (2006),
pp. 1435–1440.

[21] John T. Betts. “A Survey of Numerical Methods for Trajectory Optimization”. In:
Journal of Guidance, Control, and Dynamics 21.2 (1998), pp. 193–207.

[22] John T. Betts. Practical Methods for Optimal Control Using Nonlinear Programming,
Third Edition. SIAM, 2020.

[23] John T. Betts and William P. Huffman. “Mesh refinement in direct transcription
methods for optimal control”. In: Optimal Control Applications and Methods 19.1
(1998), pp. 1–21.

[24] Jiang Bian, Dayong Tian, Yuanyan Tang, and Dacheng Tao. “Trajectory Data Clas-
sification: A Review”. In: ACM Transactions on Intelligent Systems and Technology
(TIST) 10.4 (2019), pp. 1–34.

[25] Francesco Biral, Enrico Bertolazzi, and Paolo Bosetti. “Notes on Numerical Methods
for Solving Optimal Control Problems”. In: IEEJ Journal of Industry Applications
5.2 (2016), pp. 154–166.

[26] Basilio Bona and Marina Indri. “Friction Compensation in Robotics: an Overview”.
In: Proceedings of the 44th IEEE Conference on Decision and Control. IEEE, 2005,
pp. 4360–4367.

[27] Frédéric J. Bonnans, Pierre Martinon, Daphne Giorgi, Vincent Grélard, Benjamin
Heymann, Stephan Maindrault, and Olivier Tissot. Bocop – A collection of examples.
Tech. rep. INRIA, 2019.

[28] John V. Breakwell and Ho Yu-Chi. “On the conjugate point condition for the
control problem”. In: International Journal of Engineering Science 2.6 (1965),
pp. 565–579.

[29] Michael H. Breitner. “Robust Optimal Onboard Reentry Guidance of a Space
Shuttle: Dynamic Game Approach and Guidance Synthesis via Neural Networks”.
In: Journal of Optimization Theory and Applications 107.3 (2000), pp. 481–503.

[30] Arthur E. Bryson Jr. and Yu-Chi Ho. Applied Optimal Control: Optimization, Esti-
mation and Control. CRC Press, 1975. 496 pp.

[31] Christof Büskens and Helmut Maurer. “Real-Time Control of an Industrial Robot us-
ing Nonlinear Programming Methods”. In: IFAC Proceedings Volumes 30.3 (1997),
pp. 203–208.

151

[32] Benjamin S. Cazzolato and Zebb Prime. “On the Dynamics of the Furuta Pendu-
lum”. In: Journal of Control Science and Engineering 2011.1 (2011).

[33] Christian M. Chilan and Bruce A. Conway. “Optimal Nonlinear Control using
Hamilton–Jacobi–Bellman Viscosity Solutions on Unstructured Grids”. In: Journal
of Guidance, Control, and Dynamics 43.1 (2020), pp. 30–38.

[34] Christian M. Chilan, Bruce A. Conway, Brendan J. Bialy, and Sharon Stockbridge.
“Optimal nonlinear feedback with feedforward control of high speed aerospace
vehicles using a spatial statistical approach”. In: AAS/AIAA Astrodynamics Specialist
Conference, 2018. Univelt Inc., 2018, pp. 997–1016.

[35] Ryan B. Christianson, RyanM. Pollyea, and Robert B. Gramacy. “Traditional kriging
versus modern Gaussian processes for large-scale mining data”. In: Statistical
Analysis and Data Mining: The ASA Data Science Journal 16.5 (2023), pp. 488–
506.

[36] Bruce A. Conway. “A Survey of Methods Available for the Numerical Optimiza-
tion of Continuous Dynamic Systems”. In: Journal of Optimization Theory and
Applications 152 (2012), pp. 271–306.

[37] Bruce A. Conway. “Evolutionary and Heuristic Methods Applied to Problems in
Optimal Control”. In: Variational Analysis and Aerospace Engineering: Mathematical
Challenges for the Aerospace of the Future. Ed. by A. Frediani, B. Mohammadi,
O. Pironneau, and V. Cipolla. Springer, 2016, pp. 117–143.

[38] Lehel Csató and Manfred Opper. “Sparse On-Line Gaussian Processes”. In: Neural
Computation 14.3 (2002), pp. 641–668.

[39] Bruno da Silva, Gianluca Baldassarre, George Konidaris, and Andrew G. Barto.
“Learning parameterized motor skills on a humanoid robot”. In: 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2014, pp. 5239–
5244.

[40] Bruno Da Silva, George Konidaris, and Andrew G. Barto. “Active Learning of
Parameterized Skills”. In: Proceedings of the 31st International Conference on
Machine Learning. PMLR, 2014, pp. 1737–1745.

[41] Phil R. Dahl. A Solid Friction Model. Technical Report. El Segundo, CA: The
Aerospace Corporation, 1968.

[42] George J. Davis and Max D. Morris. “Six factors which affect the condition num-
ber of matrices associated with kriging”. In: Mathematical Geology 29.5 (1997),
pp. 669–683.

152

[43] Marc P. Deisenroth, Jan Peters, and Carl E. Rasmussen. “Approximate dynamic
programming with Gaussian processes”. In: 2008 American Control Conference.
IEEE, 2008, pp. 4480–4485.

[44] Marc P. Deisenroth, Carl E. Rasmussen, and Jan Peters. “Gaussian process dynamic
programming”. In: Neurocomputing 72.7 (2009), pp. 1508–1524.

[45] Moritz Diehl, Hans G. Bock, and Johannes P. Schlöder. “A Real-Time Iteration
Scheme for Nonlinear Optimization in Optimal Feedback Control”. In: SIAM
Journal on Control and Optimization 43.5 (2005), pp. 1714–1736.

[46] Moritz Diehl, Hans G. Bock, Johannes P. Schlöder, Rolf Findeisen, Zoltan Nagy, and
Frank Allgöwer. “Real-time optimization and nonlinear model predictive control
of processes governed by differential-algebraic equations”. In: Journal of Process
Control 12.4 (2002), pp. 577–585.

[47] Moritz Diehl, Rolf Findeisen, and Frank Allgöwer. “A Stabilizing Real-Time Imple-
mentation of Nonlinear Model Predictive Control”. In: Real-Time PDE-Constrained
Optimization. Ed. by L. Biegler, D. Keyes, O. Ghattas, B. van Bloemen Waanders,
and M. Heinkenschloss. SIAM, 2007, pp. 25–52.

[48] Moritz Diehl, Rolf Findeisen, Frank Allgöwer, Hans G. Bock, and Johannes P.
Schlöder. “Nominal stability of real-time iteration scheme for nonlinear model
predictive control”. In: IEE Proceedings – Control Theory and Applications 152.3
(2005), pp. 296–308.

[49] Kenji Doya. “Reinforcement Learning in Continuous Time and Space”. In: Neural
Computation 12.1 (2000), pp. 219–245.

[50] Pierre E. Dupont. “Frictionmodeling in dynamic robot simulation”. In: Proceedings.,
IEEE International Conference on Robotics and Automation. IEEE, 1990, pp. 1370–
1376.

[51] Nick J. Edwards and C. J. Goh. “Direct training method for a continuous-time
nonlinear optimal feedback controller”. In: Journal of Optimization Theory and
Applications 84.3 (1995), pp. 509–528.

[52] Cees H. Elzinga. “Sequence Similarity: A Nonaligning Technique”. In: Sociological
Methods & Research 32.1 (2003), pp. 3–29.

[53] Cees H. Elzinga and Matthias Studer. “Spell Sequences, State Proximities, and
Distance Metrics”. In: Sociological Methods & Research 44.1 (2015), pp. 3–47.

[54] Cees H. Elzinga and Hui Wang. “Versatile string kernels”. In: Theoretical Computer
Science 495 (2013), pp. 50–65.

153

[55] Fariba Fahroo and Isaac M. Ross. “Direct Trajectory Optimization by a Chebyshev
Pseudospectral Method”. In: Journal of Guidance, Control, and Dynamics 25.1
(2002), pp. 160–166.

[56] Ahmad Fakharian, Mohammad-Taghi Hamidi-Beheshti, and Ali Davari. “Solving
the Hamilton–Jacobi–Bellman equation using Adomian decomposition method”.
In: International Journal of Computer Mathematics 87.12 (2010), pp. 2769–2785.

[57] Paola Falugi, Eric Kerrigan, and Eugene Van Wyk. Imperial College London Optimal
Control Software User Guide (ICLOCS). Imperial College London. London, England,
UK, 2010.

[58] Timm Faulwasser, Tobias Weber, Pablo Zometa, and Rolf Findeisen. “Implementa-
tion of Nonlinear Model Predictive Path-Following Control for an Industrial Robot”.
In: IEEE Transactions on Control Systems Technology 25.4 (2016), pp. 1505–1511.

[59] Rolf Findeisen and Frank Allgöwer. “An introduction to Nonlinear Model Predictive
Control”. In: 21st Benelux meeting on systems and control. Technische Universiteit
Eindhoven, 2002, pp. 119–141.

[60] Andre S. Furtado, Despina Kopanaki, Luis O. Alvares, and Vania Bogorny. “Multi-
dimensional Similarity Measuring for Semantic Trajectories”. In: Transactions in
GIS 20.2 (2016), pp. 280–298.

[61] Katsuhisa Furuta, Masaki Yamakita, and S. Kobayashi. “Swing-up Control of
Inverted Pendulum Using Pseudo-State Feedback”. In: Proceedings of the Institution
of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 206.4
(1992), pp. 263–269.

[62] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approximation: Rep-
resenting Model Uncertainty in Deep Learning”. In: Proceedings of The 33rd
International Conference on Machine Learning. PMLR, 2016, pp. 1050–1059.

[63] Pradipto Ghosh and Bruce A. Conway. “Near-optimal feedback guidance for aeroas-
sisted orbital transfer via spatial statistical prediction”. In: 24th AAS/AIAA Space
Flight Mechanics Meeting, 2014. Univelt Inc., 2014, pp. 2621–2640.

[64] Pradipto Ghosh and Bruce A. Conway. “Near-Optimal Feedback Strategies Synthe-
sized Using a Spatial Statistical Approach”. In: Journal of Guidance, Control, and
Dynamics 36.4 (2013), pp. 905–919.

[65] Pradipto Ghosh and Bruce A. Conway. “Spatial statistical point prediction guidance
for heating-rate-limited aeroassisted orbital transfer”. In: Acta Astronautica 111
(2015), pp. 257–269.

154

[66] Philip E. Gill, Walter Murray, and Michael A. Saunders. “SNOPT: An SQP Algorithm
for Large-Scale Constrained Optimization”. In: SIAM Review 47.1 (2005), pp. 99–
131.

[67] Philip E. Gill, Walter Murray, and Michael A. Saunders. User’s Guide for SNOPT
5.3: A FORTRAN Package for Large-Scale Nonlinear Programming. 1997, p. 71.

[68] Philip E. Gill and Elizabeth Wong. User’s Guide for SNCTRL. University of California.
San Diego, CA, USA: Department of Mathematics, 2015.

[69] Torkel Glad. “Modeling of Dynamic Systems from First Principles”. In: Encyclopedia
of Systems and Control. Ed. by J. Baillieul and T. Samad. Springer, 2021, pp. 1286–
1291.

[70] C. J. Goh and Kok L. Teo. “MISER: a FORTRAN program for solving optimal control
problems”. In: Advances in Engineering Software (1978) 10.2 (1988), pp. 90–99.

[71] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

[72] Ruben Grandia, Farbod Farshidian, Alexey Dosovitskiy, René Ranftl, and Marco
Hutter. “Frequency-Aware Model Predictive Control”. In: IEEE Robotics and Au-
tomation Letters 4.2 (2019), pp. 1517–1524.

[73] Ruben Grandia, Farbod Farshidian, René Ranftl, and Marco Hutter. “Feedback
MPC for Torque-Controlled Legged Robots”. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 4730–4737.

[74] Sébastien Gros, Mario Zanon, Rien Quirynen, Alberto Bemporad, and Moritz Diehl.
“From linear to nonlinear MPC: bridging the gap via the real-time iteration”. In:
International Journal of Control 93.1 (2020), pp. 62–80.

[75] John H. Halton. “On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals”. In: Numerische Mathematik 2.1 (1960),
pp. 84–90.

[76] Michael Hardt. “Multibody dynamical algorithms, numerical optimal control, with
detailed studies in the control of jet engine compressors and biped walking”.
PhD thesis. San Diego: University of California, 1999.

[77] Heiko Hoffmann, Peter Pastor, Dae-Hyung Park, and Stefan Schaal. “Biologically-
inspired dynamical systems for movement generation: Automatic real-time goal
adaptation and obstacle avoidance”. In: 2009 IEEE international Conference on
Robotics and Automation. IEEE, 2009, pp. 2587–2592.

155

[78] Matanya B. Horowitz. “Efficient Methods for Stochastic Optimal Control”. PhD
thesis. Pasadena, California: California Institute of Technology, 2014.

[79] Taylor A. Howell, Chunjiang Fu, and Zachary Manchester. “Direct Policy Opti-
mization Using Deterministic Sampling and Collocation”. In: IEEE Robotics and
Automation Letters 6.3 (2021), pp. 5324–5331.

[80] Taylor A. Howell, Brian E. Jackson, and Zachary Manchester. “ALTRO: A Fast
Solver for Constrained Trajectory Optimization”. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 7674–7679.

[81] David H. Jacobson and David Q. Mayne. Differential Dynamic Programming. Ed.
by R. Bellman. Modern Analytic and Computational Methods in Science and
Mathematics 24. Elsevier, 1970.

[82] Hossein Jafari, Saber Ghasempour, and Dumitru Baleanu. “On comparison be-
tween iterative methods for solving nonlinear optimal control problems”. In:
Journal of Vibration and Control 22.9 (2016), pp. 2281–2287.

[83] Matthew R. Jardin and Arthur E. Bryson Jr. “Methods for Computing Minimum-
Time Paths in Strong Winds”. In: Journal of Guidance, Control, and Dynamics 35.1
(2012), pp. 165–171.

[84] Matthew R. Jardin and Arthur E. Bryson Jr. “Neighboring Optimal Aircraft Guid-
ance in Winds”. In: Journal of Guidance, Control, and Dynamics 24.4 (2001),
pp. 710–715.

[85] Eugenia Kalnay. Atmospheric modeling, data assimilation and predictability. Cam-
bridge University Press, 2003.

[86] Henry J. Kelley. “Guidance theory and extremal fields”. In: IRE Transactions on
Automatic Control 7.5 (1962), pp. 75–82.

[87] Matthew Kelly. “An Introduction to Trajectory Optimization: How to Do Your Own
Direct Collocation”. In: SIAM Review 59.4 (2017), pp. 849–904.

[88] Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?” In: Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2017, pp. 5574–5584.

[89] Ashwin Khadke and Hartmut Geyer. “Policy Decomposition: Approximate Optimal
Control with Suboptimality Estimates”. In: 2020 IEEE-RAS 20th International
Conference on Humanoid Robots (Humanoids). IEEE, 2021, pp. 185–192.

156

[90] Ashwin Khadke and Hartmut Geyer. “Sparsity Inducing System Representations
for Policy Decompositions”. In: 2022 IEEE 61st Conference on Decision and Control
(CDC). IEEE, 2022, pp. 6824–6829.

[91] Beomjoon Kim, Albert Kim, Hongkai Dai, Leslie Kaelbling, and Tomas Lozano-
Perez. “Generalizing Over Uncertain Dynamics for Online Trajectory Generation”.
In: Robotics Research. Ed. by A. Bicchi and W. Burgard. Vol. 2. Springer, 2018,
pp. 39–55.

[92] Andrew Kirmse and Jonathan de Ferranti. “Calculating the prominence and iso-
lation of every mountain in the world”. In: Progress in Physical Geography 41.6
(2017), pp. 788–802.

[93] Jens Kober, James A. Bagnell, and Jan Peters. “Reinforcement learning in robotics:
A survey”. In: The International Journal of Robotics Research 32.11 (2013), pp. 1238–
1274.

[94] Dimitris Kouzoupis, Gianluca Frison, Andrea Zanelli, and Moritz Diehl. “Recent
Advances in Quadratic Programming Algorithms for Nonlinear Model Predictive
Control”. In: Vietnam Journal of Mathematics 46.4 (2018), pp. 863–882.

[95] Dana Kulić, Christian Ott, Dongheui Lee, Junichi Ishikawa, and Yoshihiko Naka-
mura. “Incremental learning of full body motion primitives and their sequencing
through human motion observation”. In: The International Journal of Robotics
Research 31.3 (2012), pp. 330–345.

[96] Malte Kuss and Carl E. Rasmussen. “Gaussian Processes in Reinforcement Learn-
ing”. In: Advances in Neural Information Processing Systems. MIT Press, 2003,
pp. 751–758.

[97] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and
Scalable Predictive Uncertainty Estimation using Deep Ensembles”. In: Advances
in Neural Information Processing Systems. Curran Associates, Inc., 2017, pp. 6402–
6413.

[98] Daniel Landgraf, Andreas Völz, Felix Berkel, Kevin Schmidt, Thomas Specker,
and Knut Graichen. “Probabilistic prediction methods for nonlinear systems with
application to stochastic model predictive control”. In: Annual Reviews in Control
56 (2023), p. 100905.

[99] Trung Le, Khanh Nguyen, Vu Nguyen, Tu Dinh Nguyen, and Dinh Phung. “GoGP:
Fast Online Regression with Gaussian Processes”. In: 2017 IEEE International
Conference on Data Mining (ICDM). IEEE, 2017, pp. 257–266.

157

[100] Seong-Whan Lee. “Automatic gesture recognition for intelligent human-robot
interaction”. In: 7th International Conference on Automatic Face and Gesture Recog-
nition (FGR06). IEEE, 2006, pp. 645–650.

[101] Teguh S. Lembono, Antonio Paolillo, Emmanuel Pignat, and Sylvain Calinon.
“Memory of Motion for Warm-Starting Trajectory Optimization”. In: IEEE Robotics
and Automation Letters 5.2 (2020), pp. 2594–2601.

[102] Sergey Levine and Vladlen Koltun. “Guided Policy Search”. In: Proceedings of the
30th International Conference on Machine Learning. PMLR, 2013, pp. 1–9.

[103] Sergey Levine and Vladlen Koltun. “Learning Complex Neural Network Policies
with Trajectory Optimization”. In: Proceedings of the 31st International Conference
on Machine Learning. PMLR, 2014, pp. 829–837.

[104] Frank L. Lewis, Draguna Vrabie, and Vassilis L. Syrmos. Optimal control. John
Wiley & Sons, 2012.

[105] Weiwei Li and Emanuel Todorov. “Iterative linear quadratic regulator design for
nonlinear biological movement systems”. In: First International Conference on
Informatics in Control, Automation and Robotics. SciTePress, 2004, pp. 222–229.

[106] Chenggang Liu and Christopher G. Atkeson. “Standing balance control using
a trajectory library”. In: 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2009, pp. 3031–3036.

[107] Chenggang Liu, Christopher G. Atkeson, and Jianbo Su. “Biped walking control
using a trajectory library”. In: Robotica 31.2 (2013), pp. 311–322.

[108] Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. “When Gaussian Process
Meets Big Data: A Review of Scalable GPs”. In: IEEE Transactions on Neural
Networks and Learning Systems 31.11 (2020), pp. 4405–4423.

[109] Marcos Llobera. “Building Past Landscape Perception With GIS: Understand-
ing Topographic Prominence”. In: Journal of Archaeological Science 28.9 (2001),
pp. 1005–1014.

[110] Ruikun Luo, Rafi Hayne, and Dmitry Berenson. “Unsupervised early prediction
of human reaching for human–robot collaboration in shared workspaces”. In:
Autonomous Robots 42.3 (2018), pp. 631–648.

[111] Devira A. Maharani, Hanif Fakhrurroja, Riyanto Machbub, and Carmadi Machbub.
“Hand gesture recognition using K-means clustering and support vector machine”.
In: 2018 IEEE Symposium on Computer Applications & Industrial Electronics (IS-
CAIE). IEEE, 2018, pp. 1–6.

158

[112] Zachary Manchester and Scott Kuindersma. “Robust direct trajectory optimization
using approximate invariant funnels”. In: Autonomous Robots 43 (2019), pp. 375–
387.

[113] Nicolas Mansard, Andrea DelPrete, Mathieu Geisert, Steve Tonneau, and Olivier
Stasse. “Using a Memory of Motion to Efficiently Warm-Start a Nonlinear Predictive
Controller”. In: 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 2986–2993.

[114] André L. Marchildon and David W. Zingg. “A Non-intrusive Solution to the Ill-
Conditioning Problem of the Gradient-Enhanced Gaussian Covariance Matrix for
Gaussian Processes”. In: Journal of Scientific Computing 95.3 (2023), p. 65.

[115] Didier Marin and Olivier Sigaud. “Reaching optimally over the workspace: A
machine learning approach”. In: 2012 4th IEEE RAS EMBS International Conference
on Biomedical Robotics and Biomechatronics (BioRob). IEEE, 2012, pp. 1128–1133.

[116] David Mayne. “A Second-order Gradient Method for Determining Optimal Trajec-
tories of Non-linear Discrete-time Systems”. In: International Journal of Control
3.1 (1966), pp. 85–95.

[117] Wolfgang X. Merkt, Vladimir Ivan, Traiko Dinev, Ioannis Havoutis, and Sethu
Vijayakumar. “Memory Clustering Using Persistent Homology for Multimodality-
and Discontinuity-Sensitive Learning of Optimal Control Warm-Starts”. In: IEEE
Transactions on Robotics 37.5 (2021), pp. 1649–1660.

[118] Ali Mesbah, Stefan Streif, Rolf Findeisen, and Richard D. Braatz. “Stochastic non-
linear model predictive control with probabilistic constraints”. In: 2014 American
Control Conference. IEEE, 2014, pp. 2413–2419.

[119] Katja Mombaur, Jean-Paul Laumond, and Anh Truong. “An Inverse Optimal Control
Approach to Human Motion Modeling”. In: Robotics Research. Springer Tracts in
Advanced Robotics. Springer, 2011, pp. 451–468.

[120] Igor Mordatch and Emo Todorov. “Combining the benefits of function approxima-
tion and trajectory optimization”. In: Robotics: Science and Systems. 2014.

[121] Jun Morimoto and Christopher G. Atkeson. “Minimax Differential Dynamic Pro-
gramming: An Application to Robust Biped Walking”. In: Advances in Neural
Information Processing Systems. MIT Press, 2002, pp. 1563–1570.

[122] David D. Morrison, James D. Riley, and John F. Zancanaro. “Multiple shooting
method for two-point boundary value problems”. In: Communications of the ACM
5.12 (1962), pp. 613–614.

159

[123] Fabio Muratore. SimuRLacra - A Framework for Reinforcement Learning from Ran-
domized Simulations. https://github.com/famura/SimuRLacra. 2020.

[124] Fabio Muratore, Christian Eilers, Michael Gienger, and Jan Peters. “Data-Efficient
Domain Randomization With Bayesian Optimization”. In: IEEE Robotics and Au-
tomation Letters 6.2 (2021), pp. 911–918.

[125] Fabio Muratore, Fabio Ramos, Greg Turk, Wenhao Yu, Michael Gienger, and Jan
Peters. “Robot Learning From Randomized Simulations: A Review”. In: Frontiers
in Robotics and AI 9 (2022).

[126] Fionn Murtagh and Pedro Contreras. “Algorithms for hierarchical clustering: an
overview”. In: WIREs Data Mining and Knowledge Discovery 2.1 (2012), pp. 86–97.

[127] Fionn Murtagh and Pedro Contreras. “Algorithms for hierarchical clustering: an
overview, II”. In: WIREs Data Mining and Knowledge Discovery 7.6 (2017), e1219.

[128] Cory Myers, Lawrence R. Rabiner, and Andrew E. Rosenberg. “Performance trade-
offs in dynamic time warping algorithms for isolated word recognition”. In: IEEE
Transactions on Acoustics, Speech, and Signal Processing 28.6 (1980), pp. 623–635.

[129] Duy Nguyen-Tuong, Jan Peters, and Matthias Seeger. “Local Gaussian Process Re-
gression for Real Time Online Model Learning”. In: Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2008, pp. 1193–1200.

[130] Duy Nguyen-Tuong, Matthias Seeger, and Jan Peters. “Model Learning with Local
Gaussian Process Regression”. In: Advanced Robotics 23.15 (2009), pp. 2015–
2034.

[131] Hassan S. Nik, Sohrab Effati, andMohammad Shirazian. “An approximate-analytical
solution for the Hamilton–Jacobi–Bellman equation via homotopy perturbation
method”. In: Applied Mathematical Modelling 36.11 (2012), pp. 5614–5623.

[132] Shogo Okada, Yoichi Kobayashi, Satoshi Ishibashi, and Toyoaki Nishida. “Incre-
mental learning of gestures for human–robot interaction”. In: AI & society 25
(2010), pp. 155–168.

[133] Xavier Olive, Luis Basora, Benoit Viry, and Richard Alligier. “Deep Trajectory
Clustering with Autoencoders”. In: ICRAT 2020, 9th International Conference for
Research in Air Transportation. 2020.

[134] Henrik Olsson, Karl J. Åström, Carlos C. De Wit, Magnus Gäfvert, and Pablo
Lischinsky. “Friction Models and Friction Compensation”. In: European Journal of
Control 4.3 (1998), pp. 176–195.

160

https://github.com/famura/SimuRLacra

[135] Nicolai Ommer, Alexander Stumpf, and Oskar von Stryk. “Real-time Online Adap-
tive Feedforward Velocity Control for Unmanned Ground Vehicles”. In: Robot
World Cup. Springer, 2017, pp. 3–16.

[136] Martin Otter and Stefan Türk. The DFVLR Models 1 and 2 of the Manutec r3
Robot. Tech. rep. DFVLR-Mitt. 88-13, Institut für Dynamik und der Flugsysteme,
Oberpfaffenhofen, Germany, 1988.

[137] Christine Parent, Stefano Spaccapietra, Chiara Renso, Gennady Andrienko, Na-
talia Andrienko, Vania Bogorny, Maria L. Damiani, Aris Gkoulalas-Divanis, Jose
Macedo, Nikos Pelekis, Yannis Theodoridis, and Zhixian Yan. “Semantic trajec-
tories modeling and analysis”. In: ACM Computing Surveys (CSUR) 45.4 (2013),
pp. 1–32.

[138] Stephen Paris, John Riehl, and Waldy Sjauw. “Enhanced Procedures for Direct
Trajectory Optimization Using Nonlinear Programming and Implicit Integration”.
In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit. AIAA, 2006.

[139] Chandeok Park and Panagiotis Tsiotras. “Sub-optimal feedback control using a
successive wavelet-Galerkin algorithm”. In: Proceedings of the 2003 American
Control Conference. IEEE, 2003, pp. 1926–1931.

[140] Michael A. Patterson and Anil V. Rao. “GPOPS-II: A MATLAB Software for Solving
Multiple-Phase Optimal Control Problems Using Hp-Adaptive Gaussian Quadrature
Collocation Methods and Sparse Nonlinear Programming”. In: ACM Transactions
on Mathematical Software 41.1 (2014), pp. 1–37.

[141] Ettore Pennestrı̀, Valerio Rossi, Pietro Salvini, and Pier P. Valentini. “Review and
comparison of dry friction force models”. In: Nonlinear Dynamics 83 (2016),
pp. 1785–1801.

[142] Hans J. Pesch. “Numerical computation of neighboring optimum feedback control
schemes in real-time”. In: Applied Mathematics and Optimization 5.1 (1979),
pp. 231–252.

[143] Hans J. Pesch, Ingrid Gabler, S. Miesbach, and Michael H. Breitner. “Synthesis of
Optimal Strategies for Differential Games by Neural Networks”. In: New Trends in
Dynamic Games and Applications. Birkhäuser Boston, 1995, pp. 111–141.

[144] Jan Peters and Stefan Schaal. “Policy Gradient Methods for Robotics”. In: 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006,
pp. 2219–2225.

[145] Tomasz Piatkowski. “Dahl and LuGre dynamic friction models—The analysis of
selected properties”. In: Mechanism and Machine Theory 73 (2014), pp. 91–100.

161

[146] Stylianos Piperakis, Stavros Timotheatos, and Panos Trahanias. “Unsupervised Gait
Phase Estimation for Humanoid Robot Walking”. In: 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp. 270–276.

[147] Athanasios S Polydoros and Lazaros Nalpantidis. “Survey of Model-Based Rein-
forcement Learning: Applications on Robotics”. In: Journal of Intelligent & Robotic
Systems 86.2 (2017), pp. 153–173.

[148] Mauro Pontani and Bruce A. Conway. “Particle Swarm Optimization Applied to
Space Trajectories”. In: Journal of Guidance, Control, and Dynamics 33.5 (2010),
pp. 1429–1441.

[149] Vakhtang Putkaradze and Stuart Rogers. “Constraint Control of Nonholonomic
Mechanical Systems”. In: Journal of Nonlinear Science 28.1 (2018), pp. 193–234.

[150] Quanser. QUBE Product Page. 2023. url: https://www.quanser.com/
products/qube-servo-2/ (visited on 12/26/2023).

[151] Jeffrey F. Queißer, René F. Reinhart, and Jochen J. Steil. “Incremental boot-
strapping of parameterized motor skills”. In: 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids). IEEE, 2016, pp. 223–229.

[152] Jeffrey F. Queißer and Jochen J. Steil. “Bootstrapping of Parameterized Skills
Through Hybrid Optimization in Task and Policy Spaces”. In: Frontiers in Robotics
and AI 5 (2018).

[153] Joaquin Quiñonero-Candela and Carl E. Rasmussen. “A Unifying View of Sparse
Approximate Gaussian Process Regression”. In: Journal of Machine Learning Re-
search 6 (2005), pp. 1939–1959.

[154] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[155] Emma Reznick, Kyle R. Embry, Ross Neuman, Edgar Bolívar-Nieto, Nicholas P. Fey,
and Robert D. Gregg. “Lower-limb kinematics and kinetics during continuously
varying human locomotion”. In: Scientific Data 8.1 (2021), p. 282.

[156] Isaac M. Ross. Enhancements to the DIDO Optimal Control Toolbox. 2020. arXiv:
2004.13112.

[157] Francesco Ruscelli, Arturo Laurenzi, Nikos G. Tsagarakis, and Enrico Mingo Hoff-
man. “Horizon: A Trajectory Optimization Framework for Robotic Systems”. In:
Frontiers in Robotics and AI 9 (2022).

162

https://www.quanser.com/products/qube-servo-2/
https://www.quanser.com/products/qube-servo-2/
https://arxiv.org/abs/2004.13112

[158] Hiroaki Sakoe and S. Chiba. “Dynamic programming algorithm optimization for
spoken word recognition”. In: IEEE Transactions on Acoustics, Speech, and Signal
Processing 26.1 (1978), pp. 43–49.

[159] Stefan Schaal. “Learning from Demonstration”. In: Advances in Neural Information
Processing Systems. MIT Press, 1997, pp. 1040–1046.

[160] Stefan Schaal and Christopher G. Atkeson. “Learning Control in Robotics”. In:
IEEE Robotics & Automation Magazine 17.2 (2010), pp. 20–29.

[161] John D. Schierman, David G. Ward, Jason R. Hull, Neha Gandhi, Michael Op-
penheimer, and David B. Doman. “Integrated Adaptive Guidance and Control for
Re-Entry Vehicles with Flight Test Results”. In: Journal of Guidance, Control, and
Dynamics 27.6 (2004), pp. 975–988.

[162] Falko Schmid, Kai-Florian Richter, and Patrick Laube. “Semantic Trajectory Com-
pression”. In: Advances in Spatial and Temporal Databases. 2009, pp. 411–416.

[163] Bruno Siciliano and Oussama Khatib, eds. Springer Handbook of Robotics. 2nd ed.
Springer Handbooks. Springer, 2016.

[164] Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. “Reinforcement learning
in robotic applications: a comprehensive survey”. In: Artificial Intelligence Review
55.2 (2022), pp. 945–990.

[165] Sandeep K. Singh and John L. Junkins. “Stochastic learning and extremal-field
map based autonomous guidance of low-thrust spacecraft”. In: Scientific Reports
12.1 (2022), p. 17774.

[166] Nicki Skafte, Martin Jørgensen, and Søren Hauberg. “Reliable training and estima-
tion of variance networks”. In: Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2019, pp. 6326–6336.

[167] Edward Snelson and Zoubin Ghahramani. “Sparse Gaussian Processes using
Pseudo-inputs”. In: Advances in Neural Information Processing Systems. MIT Press,
2005, pp. 1257–1264.

[168] Yunlong Song and Davide Scaramuzza. “Learning High-Level Policies for Model
Predictive Control”. In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 7629–7636.

[169] Yunlong Song and Davide Scaramuzza. “Policy Search for Model Predictive Control
With Application to Agile Drone Flight”. In: IEEE Transactions on Robotics 38.4
(2022), pp. 2114–2130.

163

[170] Jason L. Speyer and David H. Jacobson. Primer on Optimal Control Theory. SIAM,
2010.

[171] Maximilian Stelzer and Oskar von Stryk. “Efficient forward dynamics simulation
and optimization of human body dynamics”. In: ZAMM - Journal of Applied Math-
ematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
86.10 (2006), pp. 828–840.

[172] Martin Stolle and Christopher G. Atkeson. “Policies based on trajectory libraries”.
In: Proceedings 2006 IEEE International Conference on Robotics and Automation,
2006. ICRA 2006. IEEE, 2006, pp. 3344–3349.

[173] Oskar von Stryk. “Numerical Solution of Optimal Control Problems by Direct
Collocation”. In: Optimal Control: Calculus of Variations, Optimal Control Theory
and Numerical Methods. Ed. by R. Bulirsch, A. Miele, J. Stoer, and K. Well. Vol. 111.
ISNM International Series of Numerical Mathematics. Birkhäuser Basel, 1993,
pp. 129–143.

[174] Oskar von Stryk and Roland Bulirsch. “Direct and indirect methods for trajectory
optimization”. In: Annals of Operations Research 37.1 (1992), pp. 357–373.

[175] Oskar von Stryk and Maximilian Schlemmer. “Optimal Control of the Industrial
Robot Manutec r3”. In: Computational Optimal Control. Birkhäuser Basel, 1994,
pp. 367–382.

[176] Matthias Studer and Gilbert Ritschard. “What Matters in Differences Between
Life Trajectories: A Comparative Review of Sequence Dissimilarity Measures”. In:
Journal of the Royal Statistical Society Series A: Statistics in Society 179.2 (2015),
pp. 481–511.

[177] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. “A survey
of trajectory distance measures and performance evaluation”. In: The VLDB Journal
29.1 (2020), pp. 3–32.

[178] Linfeng Su, Jinbo Wang, and Hongbo Chen. “A Real-Time and Optimal Hypersonic
Entry Guidance Method Using Inverse Reinforcement Learning”. In: Aerospace
10.11 (2023), p. 948.

[179] Cynthia Sung, Dan Feldman, and Daniela Rus. “Trajectory clustering for motion
prediction”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2012, pp. 1547–1552.

[180] Richard S. Sutton, Andrew G. Barto, and Ronald J. Williams. “Reinforcement
learning is direct adaptive optimal control”. In: IEEE Control Systems Magazine
12.2 (1992), pp. 19–22.

164

[181] Yaguang Tao, Alan Both, Rodrigo I. Silveira, Kevin Buchin, Stef Sijben, Ross S.
Purves, Patrick Laube, Dongliang Peng, Kevin Toohey, and Matt Duckham. “A
comparative analysis of trajectory similarity measures”. In: GIScience & Remote
Sensing 58.5 (2021), pp. 643–669.

[182] Yuval Tassa, Tom Erez, andWilliam Smart. “Receding horizon differential dynamic
programming”. In: Advances in neural information processing systems. Curran
Associates, Inc., 2007, pp. 1465–1472.

[183] Yuval Tassa, Tom Erez, and Emanuel Todorov. “Synthesis and stabilization of
complex behaviors through online trajectory optimization”. In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, 2012, pp. 4906–
4913.

[184] Russ Tedrake, Ian R. Manchester, Mark Tobenkin, and JohnW. Roberts. “LQR-trees:
Feedback Motion Planning via Sums-of-Squares Verification”. In: The International
Journal of Robotics Research 29.8 (2010), pp. 1038–1052.

[185] Inc. TheMathWorks. Topographic Prominence. 2023. url: https://de.mathworks.
com/help/signal/ug/prominence.html (visited on 01/05/2024).

[186] Michalis Titsias. “Variational Learning of Inducing Variables in Sparse Gaussian
Processes”. In: Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics. PMLR, 2009, pp. 567–574.

[187] Emanuel Todorov. “Efficient computation of optimal actions”. In: Proceedings of
the National Academy of Sciences 106.28 (2009), pp. 11478–11483.

[188] Emanuel Todorov and Weiwei Li. “A generalized iterative LQG method for locally-
optimal feedback control of constrained nonlinear stochastic systems”. In: Pro-
ceedings of the 2005, American Control Conference. IEEE, 2005, pp. 300–306.

[189] Emanuel Todorov and Yuval Tassa. “Iterative local dynamic programming”. In:
2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning. IEEE, 2009, pp. 90–95.

[190] Panagiotis Tsiotras and Ricardo Sanz Diaz. “Real-Time Near-Optimal Feedback
Control of Aggressive Vehicle Maneuvers”. In: Optimization and Optimal Control
in Automotive Systems systems. Ed. by H. Waschl, I. Kolmanovsky, M. Steinbuch,
and L. del Re. Springer, 2014, pp. 109–129.

[191] Srinivas R. Vadali and Rajnish Sharma. “Optimal Finite-Time Feedback Controllers
for Nonlinear Systems with Terminal Constraints”. In: Journal of Guidance, Control,
and Dynamics 29.4 (2006), pp. 921–928.

165

https://de.mathworks.com/help/signal/ug/prominence.html
https://de.mathworks.com/help/signal/ug/prominence.html

[192] Marica Vagni, Noemi Giordano, Gabriella Balestra, and Samanta Rosati. “Com-
parison of different similarity measures in hierarchical clustering”. In: 2021 IEEE
International Symposium on Medical Measurements and Applications (MeMeA).
2021, pp. 1–6.

[193] Matias Valdenegro-Toro and Daniel S. Mori. “A Deeper Look into Aleatoric and
Epistemic Uncertainty Disentanglement”. In: 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2022, pp. 1508–
1516.

[194] Shrihari Vasudevan, Fabio Ramos, Eric Nettleton, and Hugh Durrant-Whyte. “Gaus-
sian process modeling of large-scale terrain”. In: Journal of Field Robotics 26.10
(2009), pp. 812–840.

[195] Neil Vaughan and Bogdan Gabrys. “Comparing and Combining Time Series Tra-
jectories Using Dynamic Time Warping”. In: Procedia Computer Science 96 (2016),
pp. 465–474.

[196] Robin Verschueren, Gianluca Frison, Dimitris Kouzoupis, Jonathan Frey, Niels
van Duijkeren, Andrea Zanelli, Branimir Novoselnik, Thivaharan Albin, Rien
Quirynen, and Moritz Diehl. “acados – a modular open-source framework for fast
embedded optimal control”. In: Mathematical Programming Computation 14.1
(2022), pp. 147–183.

[197] Sethu Vijayakumar, Aaron D’Souza, and Stefan Schaal. “Incremental Online Learn-
ing in High Dimensions”. In: Neural Computation 17.12 (2005), pp. 2602–2634.

[198] Sethu Vijayakumar and Stefan Schaal. “Locally Weighted Projection Regression:
Incremental Real Time Learning in High Dimensional Space”. In: Proceedings of
the Seventeenth International Conference on Machine Learning. Morgan Kaufmann
Publishers, 2000, pp. 1079–1086.

[199] Andreas Wächter and Lorenz T. Biegler. “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming”. In:
Mathematical Programming 106.1 (2006), pp. 25–57.

[200] Zhixun Wen, Haiqing Pei, Hai Liu, and Zhufeng Yue. “A Sequential Kriging re-
liability analysis method with characteristics of adaptive sampling regions and
parallelizability”. In: Reliability Engineering & System Safety 153 (2016), pp. 170–
179.

[201] Brian Wilcox and Michael C. Yip. “SOLAR-GP: Sparse Online Locally Adaptive
Regression Using Gaussian Processes for Bayesian Robot Model Learning and
Control”. In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 2832–2839.

166

[202] Christopher K. I. Williams. “Computation with Infinite Neural Networks”. In:
Neural Computation 10.5 (1998), pp. 1203–1216.

[203] Sheran Wiratunga. “Training Gaussian Process Regression Models Using Opti-
mized Trajectories”. Master Thesis. University of Waterloo, 2014.

[204] Sebastian Wolf, Giorgio Grioli, Oliver Eiberger, Werner Friedl, Markus Grebenstein,
Hannes Höppner, Etienne Burdet, Darwin G. Caldwell, Raffaella Carloni, Manuel G.
Catalano, Dirk Lefeber, Stefano Stramigioli, Nikos Tsagarakis, Michaël Van Damme,
Ronald Van Ham, Bram Vanderborght, Ludo C. Visser, Antonio Bicchi, and Alin
Albu-Schäffer. “Variable Stiffness Actuators: Review on Design and Components”.
In: IEEE/ASME Transactions on Mechatronics 21.5 (2016), pp. 2418–2430.

[205] Waldemar Wroblewski. “Implementation of a model predictive control algorithm
for a 6DOF Manipulator – simulation results”. In: Proceedings of the Fourth Inter-
national Workshop on Robot Motion and Control (IEEE Cat. No. 04EX891). IEEE,
2004, pp. 209–212.

[206] Xinyang Wu, Mohamed El-Shamouty, Christof Nitsche, and Marco F. Huber.
“Uncertainty-Guided Active Reinforcement Learning with Bayesian Neural Net-
works”. In: 2023 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2023, pp. 5751–5757.

[207] Katsu Yamane, Marcel Revfi, and Tamim Asfour. “Synthesizing object receiving
motions of humanoid robots with human motion database”. In: 2013 IEEE Inter-
national Conference on Robotics and Automation. IEEE, 2013, pp. 1629–1636.

[208] Di Yao, Chao Zhang, Zhihua Zhu, Jianhui Huang, and Jingping Bi. “Trajectory clus-
tering via deep representation learning”. In: 2017 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2017, pp. 3880–3887.

[209] Gwonjin Yi and Junghoon Jee. “Search Space Reduction In Motion Matching by
Trajectory Clustering”. In: SIGGRAPH Asia 2019 Posters. ACM, 2019.

[210] Andrea Zanelli, Greg Horn, Gianluca Frison, and Moritz Diehl. “Nonlinear Model
Predictive Control of a Human-sized Quadrotor”. In: 2018 European Control
Conference (ECC). IEEE, 2018, pp. 1542–1547.

[211] Christoph Zelch, Jan Peters, and Oskar von Stryk. “Approximate Policy Represen-
tation: A Comparison of GPs vs Deep Neural Networks”. Submitted. 2024.

[212] Christoph Zelch, Jan Peters, and Oskar von Stryk. “Clustering of Motion Trajecto-
ries by a Distance Measure Based on Semantic Features”. In: 2023 IEEE-RAS 22nd
International Conference on Humanoid Robots (Humanoids). IEEE, 2023, pp. 1–8.

167

[213] Christoph Zelch, Jan Peters, and Oskar von Stryk. “Learning Control Policies from
Optimal Trajectories”. In: 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 2529–2535.

[214] Christoph Zelch, Jan Peters, and Oskar von Stryk. “Start State Selection for Control
Policy Learning from Optimal Trajectories”. In: 2023 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2023, pp. 3247–3253.

[215] Jie Zhao,Moritz Diehl, Richard Longman, Hans G. Bock, and Johannes P. Schloeder.
“Nonlinear Model Predictive Control of Robots Using Real-time Optimization”. In:
AIAA/AAS Astrodynamics Specialist Conference and Exhibit. AIAA, 2004.

[216] Wenshuai Zhao, Jorge P. Queralta, and Tomi Westerlund. “Sim-to-Real Transfer in
Deep Reinforcement Learning for Robotics: a Survey”. In: 2020 IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE, 2020, pp. 737–744.

[217] Mingyuan Zhong, Mikala Johnson, Yuval Tassa, Tom Erez, and Emanuel Todorov.
“Value function approximation and model predictive control”. In: 2013 IEEE Sym-
posium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL).
IEEE, 2013, pp. 100–107.

168

Own Publications

Christoph Zelch, Jan Peters, and Oskar von Stryk. “Clustering of Motion Trajectories by a
Distance Measure Based on Semantic Features”. In: 2023 IEEE-RAS 22nd International
Conference on Humanoid Robots (Humanoids). IEEE, 2023, pp. 1–8.
Christoph Zelch, Jan Peters, and Oskar von Stryk. “Learning Control Policies from Optimal
Trajectories”. In: 2020 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 2529–2535.
Christoph Zelch, Jan Peters, and Oskar von Stryk. “Start State Selection for Control Policy
Learning from Optimal Trajectories”. In: 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2023, pp. 3247–3253.

169

Use of Tools Based on Artificial Intelligence

The AI-based online translation service DeepL1 has been used for writing this thesis to
translate single words, phrases, or full sentences, to find synonyms, and to check phrases
and sentences for grammatical correctness.

The DeepL Write assistant2 and Grammarly3 have been utilized to identify spelling and
grammatical errors in the text and enhance formulations.

The AI Photo Enhancer4 has been used to enhance Figures 5.1, 5.4 and 3.6a, i.e., to
increase the resolution, reduce the image noise, improve the color and saturation and
sharpen the images.

1https://www.deepl.com/translator
2https://www.deepl.com/write
3https://app.grammarly.com/
4https://www.artguru.ai/photo-enhancer/

171

https://www.deepl.com/translator
https://www.deepl.com/write
https://app.grammarly.com/
https://www.artguru.ai/photo-enhancer/

Wissenschaftlicher Werdegang

2011 Allgemeine Hochschulreife

2011 – 2017 Studium der Mathematik an der Technischen Universität Darmstadt

2017 Erlangung des akademischen Grades Master of Science (M.Sc.) der
Mathematik

2017 – 2024 Wissenschaftlicher Mitarbeiter und Doktorand am Fachbereich Infor-
matik der Technischen Universität Darmstadt

2024 Disputation zur Erlangung des akademischen Grades eines Doktor-
Ingenieurs

173

Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftli-
chen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthe-
ma und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 7. Februar 2024
C. Zelch

175

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Contribution
	Outline

	Optimal Control and Optimal Feedback Control
	Problem Statement
	Numerical Methods for Trajectory Optimization
	The Hamilton-Jacobi-Bellman Equation and LQR
	Optimal Feedback Control

	Overview of Related Approaches to the Optimal Feedback Control Problem
	Approaches based on the Hamilton-Jacobi-Bellman Equation
	Power Series Approaches
	Compensation of Local Disturbances
	Differential Dynamic Programming and Related Approaches
	Approaches based on Reinforcement Learning
	Model Predictive Control

	Synthesis of Extremal Field: An Iterative Approach
	Related Work on the Iterative Extremal Field Approach
	Successive Optimal Trajectory Generation and Approximation of a Near-Optimal Policy
	Computation of Optimal Trajectories
	Discretization of Trajectories for Training Data Extraction
	Selection of Start States for New Optimal Trajectories
	Learning Near-Optimal Feedback Control Policies from Optimal Trajectories
	Additional Samples around the Goal State

	Evaluation
	Feedback Control of the Weakly Actuated Pendulum
	Feedback Control of the Manutec R3 Robot Arm
	Comparison with Naive Random Sampling

	Discussion and Conclusion

	Complementing Start State Selection Methods and Explicit Goal State Handling
	Extensions for the Iterative Extremal Field Approach
	Complementing Strategies for Start State Selection
	Filtering of the Training Data
	PI Control near the Goal State

	Evaluation
	Performance of the Start State Selection Strategies
	Evaluation of the PI Control near the Goal State
	Perturbed Dynamics and Exogenous Perturbations

	Discussion and Conclusion

	Comparison of Approximate Policy Representations
	Related Work on Approximate Policy Representations
	Comparative Study Approach
	Selection of Function Approximators
	The Steps for Evaluation and Comparison
	The Dynamic Models
	The Furuta Pendulum Optimal Control Problem
	Construction of the Data

	Performance Evaluation and Comparison
	Accuracy of the Control Approximations
	Local Online Gaussian Processes
	Runtime Performance of the Control Approximations

	Experiments on the Quanser Furuta Pendulum
	Training Data using the Complementing Start State Selection Methods
	Discussion and Conclusion

	Identification of Solution Clusters
	Related Work on Trajectory Clustering
	Description of the Feature-Based Trajectory Distance Measure
	Step 1: Construction of Sequence-Based Representation
	Step 2: Distance Metric for Feature Sequences
	Step 3: Application of Hierarchical Clustering

	Evaluation
	Clustering of Furuta Pendulum Motion Plans
	Clustering of Manutec r3 Arm Motion Plans
	Clustering of a Real-world Human Motion Dataset
	Evaluation of Efforts and Runtime

	Experiments on the Effect of Mixed Clusters on Learned Control Policies
	Discussion and Conclusion

	Conclusion
	Contribution
	Directions for Further Work

	Appendix
	The Gaussian Process Kernel Functions
	Selection of Numerical Trajectory Optimization Software

	Bibliography
	Own Publications
	Use of AI tools
	Wissenschaftlicher Werdegang
	Erklärung laut Promotionsordnung

