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Abstract

Natural experiments have a long tradition in empirical corporate finance. Event study method-

ology is an incumbent approach for measuring the economic impact of an event on shareholder

wealth. Within this context, this dissertation covers two main subject areas. The first part offers

a methodological contribution to fundamental research in the field of corporate bonds. In fixed-

income research, event study methodology lags far behind event studies in the field of equity, and

existing approaches are insufficiently validated. In the first article, we replicate results from the pre-

vious literature and test the methodology for robustness to event-induced variance and illiquidity.

We conclude that existing methods for analysing the impact on bondholder wealth are intractable

and that researchers should carefully consider sample characteristics, liquidity, and the presence

of event-induced variance. The second part of this dissertation is devoted to the application of

event study methodology in equity markets to test existing theoretical frameworks with regard to

political and regulatory risk and uncertainty. The second and third articles focus specifically on

the carbon risk hypothesis and examine whether carbon emissions are priced in by investors. We

show that market reactions to regulatory announcements are driven significantly by greenhouse gas

emissions. The results provide short-term evidence supporting the carbon risk hypothesis. In the

fourth article, we analyse the market impact of populist success in national elections. We show that

the increase in OHLC volatility in the run-up to an election is a robust proxy for the sensitivity of a

stock to the election outcome. On the one hand, this dissertation thus advances research in the field

of corporate bonds, and on the other hand, it contributes to the verification of existing theoretical

models on the influence of regulatory and political risks and uncertainties on shareholder wealth.
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Zusammenfassung

Natürliche Experimente haben in der empirischen Finanzforschung eine lange Tradition. Die

Methodik der Ereignisstudien ist ein bewährter Ansatz zur Messung der wirtschaftlichen Auswirkun-

gen eines Ereignisses auf das Vermögen der Aktionäre. Dahingehend umfasst diese Dissertation zwei

Hauptthemenbereiche. Der erste Teil stellt einen methodischen Beitrag zur Grundlagenforschung im

Bereich der Unternehmensanleihen dar. Die Entwicklung der Ereignisstudienmethodik steht hier

weit hinter dem Stand der Ereignisstudienmethodik im Bereich der Aktien zurück. Bestehende

Methoden sind zudem noch unzureichend validiert. Im ersten Artikel replizieren wir daher ein

Simulationsexperiment aus der bestehenden Literatur und testen diese Ansätze auf ihre Robustheit

gegenüber ereignisinduzierter Varianz und Illiquidität. Wir ziehen den Schluss, dass die bestehen-

den Methoden zur Analyse der Auswirkungen auf das Vermögen von Anleihegläubigern durchaus

emfindlich gegenüber den beiden zuvorgenannten Phänomene sind und dass Forscher die Merk-

male der Stichprobe, die Liquidität und das Auftreten von ereignisinduzierter Varianz sorgfältig

berücksichtigen sollten. Der zweite Teil dieser Dissertation ist der Anwendung der Methodik der

Ereignisstudien auf den Aktienmärkten gewidmet, um bestehende theoretische Rahmenwerke im

Hinblick auf politische und regulatorische Risiken und Unsicherheiten zu testen. Der zweite und

dritte Artikel konzentrieren sich speziell auf die Kohlenstoffrisikohypothese und untersuchen, ob

Kohlenstoffemissionen von den Investoren eingepreist werden. Wir zeigen, dass die Marktreaktionen

auf regulatorische Ankündigungen wesentlich von den Treibhausgasemissionen beeinflusst werden.

Die Ergebnisse liefern Beweise für die Unterstützung der Kohlenstoffrisikohypothese. Im vierten

Artikel analysieren wir die Auswirkungen des populistischen Wahlerfolgs auf die Finanzmärkte.

Wir zeigen, dass der Anstieg der OHLC-Volatilität im Vorfeld einer Wahl ein robuster Indikator

für die Empfindlichkeit einer Aktie gegenüber dem Wahlergebnis ist. Diese Dissertation bringt

somit einerseits die Grundlagenforschung im Bereich der Unternehmensanleihen voran und trägt

andererseits zur Überprüfung bestehender theoretischer Modelle über den Einfluss regulatorischer

und politischer Risiken und Unsicherheiten auf das Vermögen der Aktionäre bei.
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Synopsis

”Like tipsy drinkers, financial markets are seeing the world upside down. Bad economic news is

good news if it means more central bank action to support growth. Good news that means central

banks may withdraw the punchbowl is bad news.”

(Financial Times, 2013)

Financial markets have been mired in a state of uncertainty during the time of writing this

thesis. The prolonged bull market that emerged in the aftermath of the 2008 financial crisis was

abruptly halted with the onset of the COVID-19 pandemic in early 2020. This unprecedented

event triggered a surge in uncertainty, resulting in a sharp decline in asset prices and increased

volatility (see e.g., Baker et al., 2020; Pagano and Zechner, 2022) eventually prompting regulators

and policymakers to intervene through regulatory measures (Baker et al., 2020; Boyarchenko et al.,

2022). In addition, there are several geopolitical crises and tensions such as the trade war between

the U.S. and China, the Russian invasion of Ukraine, the escalating tensions between China and

Taiwan, the banking crisis in the United States, as well as the omnipresent threat of human-induced

climate change (Cook et al., 2013; Haustein et al., 2017) severely affecting volatility in financial

markets (see, e.g., Engle and Campos-Martins, 2023).

From a merely academic perspective, recent years offer a variety of significant events that pro-

vide ideal frameworks for natural experiments. Political decisions and related events continuously

influence companies’ risk and return profile and thus ultimately the valuation of the underlying

assets (Schwert, 1981). The origins and channels are multifaceted and our understanding thereof is

still limited. Asset prices are ultimately the result of buy and sell decisions that reflect the expected

value of the future profitability of the underlying asset.1 It is important to understand that actors

in financial markets behave predictive and forward-looking, i.e., they anticipate probability-based

expected values for the occurrence of certain events and their associated economic impact ex-ante

(Schwert, 1981). Assuming that the efficient market hypothesis (EMH) holds and that ”security

prices at any point in time fully reflect all available information” (Fama, 1970, p. 383), researchers

and practitioners can gain valuable insights into how the market evaluates the effectiveness of,

for example, regulatory changes and policy decisions, inter alia. The market’s estimate of these

impacts should be exceptionally accurate, on average, albeit agnostic in the sense that one can

only extract the aggregate net effect of all information penetrating the market, and it is empirically

impossible to isolate the individual determinants.

The intricate relationship between politics and financial markets and the associated implications

is a topic of considerable academic interest. This thesis contributes to the existing body of literature

in this field. The first part provides a methodological contribution. While methods for event studies

in equity markets are well established, comparable studies analysing the effects on bondholders’

wealth are much less common. The second part is devoted to natural experiments on major political

1There is evidence that profitability is not the only determinant of share prices, e.g., if investors have a
particular preference for certain types of assets and therefore derive non-pecuniary utility from holding them
(see, e.g., Fama and French (2007) and Pástor et al. (2021))
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events, analysing the resulting stock market reactions. In particular, we focus on regulatory carbon

risk and geopolitical risk in the context of elections.

Methodological Challenges

The approach used in this paper is known as the ”Event Study Methodology” (MacKinlay, 1997).

The aim is to examine whether the occurrence of an event has significantly changed investors ex-

pectations about future profitability of a company. This should be reflected in a revaluation, which

ultimately leads to abnormal stock returns, i.e., returns that deviate significantly from the estimates

derived from an empirical asset pricing model, on average. Naturally, event study methodology is

based on the assumption that financial markets are efficient. However, testing the EMH is empir-

ically impossible because one inevitably faces the so-called joint hypothesis problem. Within the

context of the EMH, the joint hypothesis problem refers to the difficulty of testing market efficiency

independently from the respective asset pricing model employed (Fama, 1970, 1991). Every test

for market efficiency is based on the assumption that the applied asset pricing model provides valid

and reliable estimates and vice versa. It follows that if we observe anomalies in the behaviour of

returns, it is ambiguous whether it is driven by a response of investors to new information or the

result of an inadequate asset pricing model (Fama, 1970, 1991).

In contrast to equity-based research, however event study methodology in fixed-income research

are far less established and insufficiently validated. The first part of this dissertation, therefore,

deals with the methodological validation of existing approaches in fixed-income research. Specif-

ically, we draw on the idea of Bessembinder et al. (2008) to incorporate bonds liquidity when

examining the size and power of parametric and non-parametric tests. Furthermore, we follow

Boehmer et al. (1991) and Marks and Musumeci (2017) in assessing the validity of exisiting ap-

proaches under the presence of event-induced variance. To this end, we replicate the empirical

approach of Ederington et al. (2015) and incorporate the liquidity proxy λ, as proposed by Dick-

Nielsen et al. (2012). Our results show that the power of existing approaches is sensitive to reduced

sample sizes and increased noise. Moreover, researchers may account for liquidity, especially if a

sample is tilted towards bonds with higher levels interest rate risk and credit risk.

Regulation and Legislation

Political decisions regarding regulations and legislation can have a profound effect on financial

markets. Governments may implement rules and regulations to ensure stability, protect investors,

and prevent market abuses. Changes in these regulations can impact market participants, their

activities, and overall market dynamics (Schwert, 1981). Currently, one of the most prominent

examples is the impact of (expected) more stringent regulations with regard to the sustainable

transition, especially the regulation of carbon dioxide emissions.

Pástor et al. (2021) propose a two-factor model for investing that incorporates environmental,
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social, and governance (ESG) criteria. In this model, environmentally friendly (green) assets are

characterized by low expected returns in equilibrium due to investors’ preferences for holding them

and their role as a hedge against climate risk. Pástor et al. (2021) assume that investors show an

aversion to unexpected climate deterioration. Accordingly, assets associated with environmentally

harmful practices (so-called brown assets) lose value compared to green assets in the event of

an unforeseen climate deterioration, e.g., due to new government regulations that penalise brown

companies. Thus far, there is some empirical evidence supporting the theoretical model of Pástor et

al. (2021). Krueger et al. (2020) provide survey-based evidence that ”institutional investors believe

climate risks have financial implications for their portfolio firms and that these risks, particularly

regulatory risks, already have begun to materialize.” Stroebel and Wurgler (2021) confirm those

findings, arguing that 861 finance academics, professionals, public sector regulators, and policy

economists identify regulatory risk as the most salient climate risk for businesses and investors

over the next five years. The empirical evidence on the carbon risk hypothesis in particular is,

however, inconsistent. Bolton and Kacperczyk (2021), analyze the pricing of corporate-level CO2

emissions as an empirical risk factor in underlying asset prices. Nevertheless, scholars face difficulty

in isolating carbon risk given the mechanical correlations between a firm’s carbon emissions and

firm fundamentals, especially in vendor-estimated data, and thus the exposure to incumbent risk

factors (Aswani et al., 2024).

The second essay, Mueller et al. (2023b), considers the European Green Deal (EGD) in Decem-

ber 2019 to conduct a quasi-natural experiment. The announcement of the EGD differs from other

green policy announcements. A five-page list of regulatory measures and restrictions was leaked

twelve days before the official announcement so that endogeneity concerns, as well as the effect of

investors’ anticipations, are mitigated. The circumstance that the information was unexpectedly

leaked at a specific point in time makes this event an ideal opportunity to distinguish carbon risk

from traditional factor premiums. Bolton and Kacperczyk (2021) state that ”if a large federal

carbon tax were to be introduced, this would be a systematic shock affecting all companies with

significant emissions.” which should translate in significantly negative wealth effects conditional

on firms’ greenhouse gas emissions if carbon risk has not been priced in adequately a priori. Our

results show that the overall market reaction of the European stock market was indeed negative

and that greenhouse gas emissions and carbon emissions constitute an important determinant of

abnormal returns. However, the results are moderate and induce that carbon risk has already

been priced in, but somewhat underestimated, following the survey-based evidence of Stroebel and

Wurgler (2021). We also find evidence of a noticeable correlation of the carbon premium with

incumbent risk premia, supporting the findings of Aswani et al. (2024). Nevertheless, we insinu-

ate that the findings in our natural experiment are attributable to carbon emissions rather than

firm-fundamentals.

The third essay, Mueller et al. (2023c), reviews a similar research question. The 2022 reform of

the European Emissions Trading System has been announced on Sunday, December 18, 2022. We
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document primarily negative market reactions, especially on the last trading day before the reform

was announced. This can be viewed as a generic, undirected risk premium that investors require to

bear the uncertainty associated with the expected announcement. Following the announcement, we

observe primarily positive market reactions, which are positively related to the corporate-level emis-

sions. Although the event considered in this study is indisputably less exogenous than the leakage of

information regarding the EGD, our results pose important implications for future research. While

prior research has documented mixed results on stock market reactions to green policy announce-

ments (e.g., Ramiah et al. (2013)), we argue that it is imperative to consider investor anticipation

in event studies, especially when it is known that there will be an event, but the outcome remains

unclear a priori. The results of studies that analyze the average stock market response to multiple

policy announcements simultaneously, e.g., Borghesi et al. (2022), should therefore be interpreted

with utmost caution. Both aforementioned essays contribute to the ongoing discussion by providing

short-term, event-induced evidence in support of the (regulatory) carbon risk hypothesis.

Geopolitical Events and Tensions

The U.S., Europe, and other Western democracies are witnessing a shift to the right and a strength-

ening of right-wing populist parties. Political events at the global level, such as elections, geopolit-

ical tensions, trade disputes, or international conflicts, may induce uncertainty and, thus, volatility

in financial markets (Pástor and Veronesi, 2012, 2013). For example, the announcement of new

trade tariffs or the ascend of populism can substantially affect financial markets as investors assess

the potential impact on global trade, supply chains, and economic growth (e.g., Wagner et al.

(2018)).

Prediction and valuation of the associated economic impacts of election outcomes ex-ante is a

challenge for researchers, especially in countries where coalition formation is uncertain after election

results. Theoretical guidance on resulting stock market reactions is provided by Pástor and Veronesi

(2012, 2013). Pástor and Veronesi (2012) propose a theoretical model of how the announcement

of policy decisions and policy changes affect stock prices. Pástor and Veronesi (2013) go even

further focusing on the way stock prices react to political signals about potential future policy

decisions. The authors emphasize on the risk premium, volatility and correlation caused by political

uncertainty. The models predict that equities are more volatile and more strongly correlated when

political uncertainty is greater.

Wagner et al. (2018) offer empirical evidence, analyzing stock market reactions in response to

the election of Donald J. Trump as the 45th President of the United States of America in November

2016. Stock market reactions were significantly related to the expected changes in tax and trade

policies. Hanke et al. (2020) demonstrate the extent of market efficiency by exploiting changes

in betting odds to infer expected changes in asset prices and vice-versa. These results illustrate

how closely asset prices mirror policy developments and thereby serve as a gauge of the adequate

estimation of expected and associated economic impacts.

Chapter 1 12
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The electoral success of far-right parties in Sweden and Italy in September 2022 provides the

foundation for another quasi-natural experiment. The fourth article (Mueller et al., 2023a) exem-

plifies an investment strategy whereby investors are able to select stocks based on outcome-related

sensitivity without the necessity of tedious data acquisition, selection, and modeling. We draw

on the idea of Hanke et al. (2020) and leverage the hypothesis that policy changes and populist

success influence volatility in financial markets (Hartwell, 2022; Pástor and Veronesi, 2013; Stöckl

and Rode, 2021). The empirical approach of Hanke et al. (2020) is extended so that only histor-

ical intraday volatility (open-high-low-close, OHLC) derived from intraday stock prices is used to

classify stocks, eliminating the need for any additional data. We show empirically that investors

can hedge against the risks associated with elections (i.e., political uncertainty and impact risk in

the notation of Pástor and Veronesi (2012)) by simply excluding stocks with the highest increase

in intraday volatility in the run-up to the election.

Structure

The remainder of this thesis is organized as follows. Section 2 presents the first article (Mueller

et al., 2024). Section 3 is devoted to the second article (Mueller et al., 2023b). Section 4 covers the

third article (Mueller et al., 2023c). Section 5 exhibits the fourth article (Mueller et al., 2023a).

Chapter 1 13



Chapter 2

Corporate Bond Market Event Studies:

Event-Induced Variance and Liquidity
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Event Study Methodology

Abstract

This paper addresses the power of event studies in corporate bond markets. While an approach

using standardized abnormal returns is well specified under standard conditions, we identify two

market phenomena negatively impacting the informative value of results. In particular, we show

that test power decreases rapidly in the presence of event-induced variance. Moreover, illiquidity

becomes a material concern when the samples are geared towards above-average maturities and

credit risks. Therefore, we suggest a refinement to the current standard approach and provide

open-source tools to implement event studies.

This chapter is a working paper and has been published on SSRN. The version at the time of

publication is attached in the appendix.

Mueller, L., Riehl, K., Buschulte, S., & Weiss, P. (2024). Corporate bond market event studies:

Event-induced variance and liquidity, SSRN Working Paper No. 4859838. https://doi.org/10.

2139/ssrn.4859838
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16



Carbon Risk

Abstract

On November 29, 2019, twelve days before the official announcement, information was leaked re-

garding the ambitions of the European Green Deal, i.e., the full decarbonization of the European

Union by 2050 and lifting of 2030 emissions targets from 40% to 55%. The leakage should have trig-

gered a Europe-wide systemic shock to financial markets without an accompanying announcement

of supportive measures. Applying event study methodology to a sample of 600 European large

and mid-cap stocks, we find that the overall market reaction was indeed significantly negative,

albeit moderate. Abnormal returns gradually decline with increasing GHG emissions. Conversely,

the official announcement emphasizing financial support and the green growth narrative did not

ignite a positive market reaction. OLS regressions reveal that GHG emissions explain negative

market reactions in response to the leak, whereas environmental performance and commitment are

negatively related to returns obtained over intermediate horizons. We conclude that market partic-

ipants incorporate available GHG emissions information into (short-term) reassessments following

the promulgation of a significant environmental policy change.1

This chapter has been published as:

Mueller, L., Ringel, M., & Schiereck, D. (2023b). Is decarbonization priced in? - evidence on

the carbon risk hypothesis from the European Green Deal leakage shock. International Journal of

Theoretical and Applied Finance. https://doi.org/10.1142/S0219024923500188.

1We thank the participants and discussants of the Academy of Economics and Finance 2023, Liechtenstein
Workshop on Sustainable Finance 2023, Conference on Climate and Energy Finance 2023, and Conference
CSR, the Economy and Financial Markets 2023 for their valuable feedback.
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Regulatory Carbon Risk: Evidence from the

2022 Reform of the EU Emissions Trading

Scheme
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Carbon Risk

Abstract

This paper examines the market reaction of 600 European stocks to the announcement of the

reform of the European Emissions Trading Scheme (ETS). We find significant negative CARs over

the week before the announcement, yet firm-level GHG emissions, environmental performance, and

other firm-specific controls fail to explain these. In contrast, we confirm a positive market response

over the week following the announcement. Firm-level emissions and environmental performance are

both positively associated with post-agreement CARs. What seems counterintuitive at first glance

can be explained by the disparities between both metrics. From an investor’s perspective, better

environmental performance represents lower risk exposure to environment-related risk, regardless

of the absolute level of externalities.

This chapter has been published as:

Mueller, L., Ringel, M., & Schiereck, D. (2023c). Regulatory Carbon Risk: Evidence from the

2022 reform of the EU Emissions Trading Scheme. Zeitschrift für Umweltpolitk und Umweltrecht,

3/2023 1

1https://online.ruw.de/suche/zfu/Regulat-Car-Ris-Evide-fro-the-202-Ref-of-the-EU-Em-
a19a5741d54785d34fbbdd337e149f6e
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right“ - A comparative study
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Sweden and Italy
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Populism

Abstract

We analyze the reactions of national equity markets to the election of far-right populist governments

in Italy and Sweden in September 2022. We apply event study methodology to samples of 285

Swedish and 144 Italian stocks. Share prices of Italian stocks largely aligned in the week before

the vote. Conversely, the Swedish electoral outcome hit markets by surprise. Share prices adjusted

in the days following the vote. We use firm-level increases in intraday volatility before the vote

to estimate sensitivities to electoral outcomes. Dollar-neutral long-minus-short strategies based

on these sensitivities prove explanatory power of historical intraday volatility in Sweden, where

post-event reactions and uncertainty were evident. The model identified those stocks that are most

sensitive to the election outcome.

This chapter has been published as:

Mueller, L., Bartel, M., & Schiereck, D. (2023a). Europe’s gone ’right’ – a comparative study

of stock market reactions to populist success in Sweden and Italy. Finance Research Letters, 55,

Article: 103829. https://doi.org/10.1016/j.frl.2023.103829
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1 Introduction

A common approach to measuring wealth effects in financial markets is to conduct an event

study whereby researchers examine the residuals between realized returns and returns that

are expected in the absence of the event. Naturally, any such approach is subject to the so-

called joint hypothesis problem (Fama, 1970) as it is empirically impossible to test whether

abnormal returns truly reflect market efficiency or are the result of flawed asset pricing models

and biased estimates. Given that asset pricing models for equity markets are well-established

and widely applied, existing research has focused primarily on the impact on shareholder

wealth as a measure of the overall economic impact on firm value. The broad acceptance of

equity pricing models is in stark contrast to corporate bond markets, where researchers do

not commonly apply similar models. Nevertheless, bonds also represent claims on the same

underlying cash flows yet with different payout profiles. Hence, if some events affect both

expected profitability and the financial stability of a firm, bondholder wealth effects may

be adverse to shareholder wealth effects. Therefore, studying bond returns provides more

granular insights into investors’ perceptions of event-induced changes in firm-level risk. If

abnormal returns depend on the maturity of the underlying bond, this may entail additional

information about the time horizon over which investors expect these risks to materialize

economically.

In this paper, we take a comprehensive look at suggested approaches and issues in event

studies using U.S. corporate bond data. While corporate bond markets are historically

among the least transparent markets (Goldstein et al., 2007), data availability and quality

increased dramatically with the introduction of the Trade Reporting and Compliance Engine

(TRACE) system in the early 2010s. This introduction fuelled a growth in empirical studies

on corporate bonds, but event studies are still comparatively scarce. Notably, existing studies

are largely based on early TRACE data, i.e., data up to at most 2011 including the extreme

outcomes of the financial crisis. However, the data availability and quality on corporate

bonds has improved substantially thereafter. Therefore, questions arise about the validity
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of earlier results following these changes. Initially, we establish the baseline power of event

studies for corporate bonds under general conditions. As a first contribution, we conduct

artificial event studies with simulations using 10,000 iterations. Here, we draw from a new

time period starting in 2013 to assess the validity and reliability of the existing approaches

in most recent data. We find that the test power has increased substantially vis-à-vis earlier

samples (e.g., the sample used in Ederington et al., 2015). Moreover, our results suggest

that for non-parametric tests and a shock of 15 basis points (bp), a minimum sample size of

about 100 firm×day observations is required to achieve sufficient test power, ceteris paribus.

However, two common empirical phenomena in corporate bond markets negatively impact

the power of this standard approach.

First, we find the power threshold to be sensitive to an increase in noise. On the one

hand, we document that employing weekly returns, calculated as the price change between

the first and the last available trading day of a week, results in lower test power despite

an increase in sample size by 50%. On the other hand, extending the event window and,

therefore, increasing the likelihood of contaminating returns with confounding information

is not the only source of noise. It is well-documented in event studies from equity markets

that certain events also increase residual variance, commonly referred to as event-induced

variance (see, e.g., Boehmer et al., 1991). A key contribution of this article is to assess the

power of the bond event study methodology under the presence of event-induced variance.

For this purpose, instead of imposing a static shock of 15bp on abnormal returns to simulate

events, we draw a random number from a normal distribution with a mean of 15bp and

a standard deviation equal to the factorized standard deviation of the respective bond’s

return (similar to Marks & Musumeci, 2017, for equity markets). We progressively increase

the disturbance factor from zero to three and find that test power decreases rapidly with

increasing event-induced variance. While standardized abnormal returns appear to be the

most robust, the test power drops to about 75% when the variance is doubled.

Second, bonds are traded much less frequently than equities, and illiquidity is a major
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concern of empirical bond research. Bessembinder et al. (2008) acknowledge that liquidity

could be a potential source of misspecification but do not address this issue further. Although

there is evidence that investors favor larger issues (see, e.g., Bao et al., 2011), the issue

volume per se is a fairly crude indicator of corporate bond liquidity. Against this backdrop,

we stratify test power conditional on bonds’ liquidity, credit rating, and maturity. We

employ various liquidity measures and confirm the effect for price-impact and transaction

cost measures, specifically the measure λ, as proposed in Dick-Nielsen et al. (2012). Our

results show that liquidity has a considerable impact on test power, especially when the

samples are geared toward securities with higher credit risk and longer maturities. The

effect, however, is most pronounced for the most illiquid bonds (i.e., the lowest liquidity

quintile). We conclude that researchers may want to consider eliminating the most illiquid

bonds from the sample to reduce noise and improve test power.

Methodologically, our paper is related to the extensive body of literature that examines

the validity of the event study methodology based on simulation experiments. Brown and

Warner (1985) conduct a simulation experiment in equity markets to assess the validity of

asset pricing models and the probability of rejecting the true null hypothesis as well as the

ability to detect abnormal performance. On the topic of variance, Boehmer et al. (1991)

find that even with small increases in variance, the tests reject the true null hypothesis too

often. The authors suggest standardizing abnormal returns to counter this issue. Marks and

Musumeci (2017) show that the approach in Boehmer et al. (1991) is also robust to event-

induced variance. Following the approaches in the equity-based literature, Bessembinder

et al. (2008) conduct an initial simulation to assess the test power of studies of bond events

based on daily and monthly bond returns. Subsequently, Ederington et al. (2015) revisit

the validity and reliability of the bond event study methodology. Inter alia, the study finds

that standardization of abnormal returns, as it has become common practice in equity-based

event studies, significantly increases reliability. This is the starting point for our research.

We evaluate the validity and reliability of the existing approaches for corporate bonds based
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on recent data and apply the methods of Boehmer et al. (1991) and Marks and Musumeci

(2017) to assess their robustness to event-induced variance.

Additionally, we provide an open-source implementation of the presented methodology on

Github, with detailed instructions on how to calculate various event-study-relevant abnormal

return tables. This allows for easy replication of our work and, additionally, for a convenient

utilization of corporate bond event study methodology.
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2 Data and Methodology

2.1 Sampling

Our sampling procedure is aligned with the established literature on empirical corporate

bond research using TRACE data (see, e.g., Dick-Nielsen et al., 2012). We proceed with

the sampling as follows. First, we select all available bonds that are eligible for our anal-

ysis based on cross-sectional data provided in Mergent FISD and issued after 2000. We

include bonds that are senior, unsecured, non-asset-backed, and non-defeased while exclud-

ing securities with secured lease obligations or security pledges. We limit the sample to

the most common bond types: U.S. Corporate Debentures, U.S. Corporate MTN (Medium

Term Note), U.S. Corporate MTN Zero, U.S. Corporate Zero, and U.S. Corporate Bank

Note. We exclude bonds issued by foreign (”yankee”) and Canadian issuers. The remaining

bonds are exclusively USD-denominated with fixed or zero coupon types. Bonds under Rule

144A, private placements, defaulted bonds, and those with given filing dates or settlement

dates are excluded. We further remove putable bonds along with convertible, pay-in-kind,

exchangeable, preferred, and perpetual bonds from the sample. This procedure yields 67,537

bonds, of which 46,355 bonds have trades reported in TRACE. We source and clean this

data as outlined in Dick-Nielsen (2009).1

In addition, we apply several filters to the TRACE data to mitigate the effects of outliers

and reduce potential noise. Specifically, we include only trades with a volume of minimum

$50,000 to exclude retail-sized trades2 and remove any rows containing missing values in yield

to maturity, reported price, or entered volume quantity. Subsequently, we focus on trades

within the price range of $25 to $1,000. We further remove observations where the reported

1 We use the code provided by Scheuch et al. (2023) to filter Mergant FISD data and clean TRACE
data.

2 It has become common practice to exclude trades with a trading volume of less than $100,000 when
working with TRACE data. However, this eliminates a considerable fraction of trades and, consequently,
trading days. Although this certainly benefits computational efficiency, we propose a less restrictive thresh-
old and include trades with a minimum trading volume of $50,000. Results for alternative thresholds are
presented later in the paper.
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price deviates by more than 10% from the daily median. Finally, we keep all observations

with maturities within the range of one year to a maximum of 50 years. We use the rating

time series from Standard and Poor’s, Moody’s, and Fitch. If no rating from Moody’s is

available, we use ratings from Standard and Poor’s if available and Fitch otherwise. We

remove all observations where no rating of any of the three agencies is available. In the

end, the final sample covers 6,777,096 unique bond×day observations from 13,483 individual

bonds and 1,275 individual firms in our sample period from 2013 until 2022.

We also compute quarterly liquidity measures that are regularly used in corporate bond

research, following Dick-Nielsen et al. (2012). In particular, we use the Amihud measure, Roll

measure, firm and bond zero trading days, internal round trip cost (IRC), turnover, and Ami-

hud and IRC risk. Their construction and descriptive statistics are detailed in Appendix A.

We use λ as our main liquidity proxy, which is calculated as the standardized sum of the

Amihud measure (Amihud, 2002), the IRC measure (Feldhütter, 2012) and their respective

standard deviations. Furthermore, we also consider a principal component decomposition of

these individual liquidity measures to verify λ’s appropriateness (see Appendix A).

2.2 Abnormal Returns

We calculate the daily bond price Pn,t for bond n on day t as the trade-weighted average of

the trade prices Pn,ti of all trades ti ∈ Tn,t on that day with the trade volume quantity Nn,ti

denoting the weights, i.e.,

Pn,t =

∑
ti∈Tn,t

Pn,ti × Nn,ti

∑
ti∈Tn,t

Nn,ti

. (1)

We proceed with calculating unadjusted two-days returns Rn,t centered at time t as

Rn,t =
Pn,t+1 − Pn,t−1

Pn,t−1

. (2)

6

Appendix

33



For the sake of simplicity, we use the reported prices as Bessembinder et al. (2008) note

that accrued interest has a negligible influence on the results. Table 1 reports descriptive

statistics of the bond- and firm-level returns. Panel A reports descriptive statistics on raw

returns, while Panel B reports winsorized returns. The additional sample statistics in Table 2

show that the sample’s properties and the characteristics of our bonds are very similar to

those of Ederington et al. (2015).

- TABLES 1 AND 2 HERE -

We calculate three different abnormal returns on the bond level n, following Ederington

et al. (2015): (i) abnormal returns ABRn,t, (ii) standardized abnormal returns SABRn,t,

and (iii) abnormal standardized returns ABSRn,t. Abnormal returns are calculated as the

residual between return Rn,t and benchmark return BMRn,t, as outlined in Equation (3).

The benchmark return for bond n on day t is calculated as an equally-weighted average over

all bond returns on day t that share the same rating and maturity group with bond n on

this day. For forming the benchmark groups, we consider four maturity groups (i.e., zero to

three, more than three to five, more than five to ten, and more than ten years) and six rating

groups (i.e., Aaa and Aa, A, Baa, Ba, B, and below B). We determine benchmark returns

only if the sample of bonds sharing the same rating and maturity on this day is greater than

or equal to five. We compute firm-level abnormal returns ABRf,t as the average over the

respective bond-level abnormal returns available on a given day.

ABRn,t = Rn,t − BMRn,t (3)

The standardized abnormal returns are calculated by dividing the abnormal returns by

their standard deviation, i.e.,

SABRn,t =
ABRn,t

σn,t,ABR

, (4)

where σn,t,ABR represents the standard deviation of (unshocked) abnormal returns over the

period of [t− 55, t− 6] and [t+ 6, t+ 55].
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The abnormal standardized returns ABSRn,t are calculated as the difference of standard-

ized raw returns SRRn,t and standardized benchmark SBMn,t as outlined in Equation (5).

SRRn,t denotes standardized raw returns, meaning Rn,t divided by σn,t,R, where σn,t,R is the

standard deviation of returns Rn,t over the period of [t − 55, t − 6] and [t + 6, t + 55]. The

standardized benchmark SBMn,t is the equally-weighted average of all SRRn,t for all bonds

that share the same rating and maturity group (applying the same group definitions as be-

fore) with bond n on that specific day t. Again, we determine the standardized benchmark

returns SBMn,t only if the sample of bonds sharing the same rating and maturity on this

day is greater than or equal to five.

SRRn,t =
Rn,t

σn,t,R

ABSRn,t = SRRn,t − SBMn,t

(5)

Note, besides ABSRn,t that is based on standard deviations over the period from [t −
55, t−6] and [t+6, t+55], we also calculate ABSR pren,t which considers standard deviations

calculated only over the pre-event period [t − 101, t − 6]. This ensures that we only use

available information and avoid a look-ahead bias. Finally, we consider ABSRn,t, SABRn,t,

and ABSR pren,t which are winsorized at the 1% level.

2.3 Size and Power Tests

We examine three statistical tests for the presence of an event effect: the standard para-

metric t-test (abbreviated t, Student, 1908), the non-parametric Wilcoxon signed-rank test

(abbreviated SR, Wilcoxon, 1947), and the non-parametric sign test (abbreviated S, Conover,

1999). Results are reported at the 1% significance level (two-sided), and we also report some

results additionally at the 5% significance level.

To assess the accuracy of these three tests, we conduct simulations with 10,000 iterations.
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In particular, we select 300 firm×date observations at random per trial. Where possible, we

calculate the abnormal returns for the firms’ traded bonds as outlined above. Based on this

set, we evaluate the two accuracy measures.

Size test: Under the null hypothesis, each of the 300 abnormal returns (residuals) is nor-

mally distributed with a mean μ = 0 and variance σ2. If a statistical test erroneously rejects

the null hypothesis, it is classified as a type 1 error (false positive). Over our 10,000 it-

erations, the fraction of cases in which the tests incorrectly rejected the null hypothesis is

referred to as the “size test”.

Power test: In the second test, we shock the 300 randomly drawn observations by inducing

an event effect. In particular, we induce artificial shocks ξn,t,R to the returns Rn,t, with

ξn,t,R representing a normally distributed variable ξn,t,R ∼ N (μ, σ2
n). These shocks come

in two specifications. First, in the case of static shocks σn = 0 and |μ| = 15bp. Second,

when testing for event-induced variance, we follow Marks and Musumeci (2017) and induce

stochastic shocks, i.e., σn = σn,t,R and |μ| = 15bp, where σn,t,R is the standard deviation of

raw bond returns Rn,t over the period of [t− 55, t− 6] and [t + 6, t + 55]. Cases in which a

test does not correctly detect an event (i.e., the test does not reject the null hypothesis), are

referred to as type 2 errors (false negative). Overall, the fraction of cases in which the tests

correctly rejected the null hypothesis is referred to as the “power test”.
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3 Baseline Results

In this section, we establish baseline results for our core contributions. On the one hand,

we show results for unstandardized abnormal returns. On the other hand, we provide in-

sights into standardized returns based on the general heteroskedasticity of bond returns. In

both parts, we use the simulation procedure described before based on a random set of 300

firm×date observations, which we repeat 10,000 times and average across all experiments.

3.1 Abnormal Bond Returns

The point of departure for bond event studies is based on abnormal returns. As defined in

Equation (3), abnormal returns adjust returns by subtracting the respective benchmark’s

returns. The benchmark matches the bond’s two main risk factors: Credit and interest

rate risk. We use this simulation to establish a baseline against which other specifications

can be assessed to gain insights into the tests’ size and power. Therefore, we also include

financial firms and use a trade-volume cut-off of $50,000, below which a trade is excluded.

Table 3 presents the first benchmark. Results obtained employing alternative thresholds are

provided as robustness checks in Section 4.

- TABLE 3 HERE -

We start with assessing the type 1 error rate (i.e., the size test) of the three statistical

tests. A test is well specified based on the significance level of 1% (5%) if the non-event null-

rejection rate is below 0.5% (2.5%) in each tail. Based on a simulation of 10,000 trials, the

true null hypothesis must not be rejected more than 100 (500) times. The results presented

in Panel A of Table 3 suggest that the three tests (i.e., t-test, signed-rank test, and sign test)

are well specified in terms of size. In most cases, the non-event null-rejection rates are below

the respective significance level. The only exception is the signed-rank test, which tends to

provide false evidence of an event. In particular, the type 1 error rate reaches the critical

level of 0.5% in the upper tail (positive events, 1% significance level) and 2.52% at the lower

10

Appendix

37



tail (negative events, 5% significance level). On the other hand, our findings provide a more

favorable result for the signed-rank test, as the size test values are much closer to the critical

threshold than results of Ederington et al. (2015), who documented a type 1 error rate of

3.12% for negative events.

Table 3’s Panel B shows the results of the power tests. As described before, we induce

artificial shocks of 15bp to simulate an event and check whether the tests correctly reject the

null hypothesis. The test power for positive events (+15bp) and negative events (-15bp) is

evaluated separately. The power of the t-test to correctly detect positive events at 54.43%

(at the 5% significance level) is insufficient, although it is considerably higher compared to

the results of Ederington et al. (2015) (20.62%). Put differently, the null hypothesis of the

t-test is only rejected in 5,443 out of 10,000 simulations based on 300 events. The power

for identifying negative events is comparably low at 52.97%. Naturally, the results based on

the 1% significance level are considerably lower at approximately 30%. The non-parametric

tests, on the other hand, perform substantially better in our sample. Even without further

adjustments, these tests exhibit sufficient power in detecting events. Moreover, we document

negligible differences in power between tests for positive and negative events. The power of

both the signed-rank and the sign test rises well above 95% at the 5% significance level,

whereas Ederington et al. (2015) report much lower power ranging from approximately 50%

to 70%.

In line with Marks and Musumeci (2017), we examine whether winsorization substantially

impacts our results. As shown in Panel B of Table 1, controlling for outliers considerably

reduces the excess kurtosis and skewness. We document an increase in the test power of the

t-test to approximately 40% (1% significance level) while the test size still remains within

the required threshold. Naturally, neither the size nor the power of the non-parametric tests

are affected by winsorization.
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3.2 Standardized Abnormal Bond Returns

This section addresses the issue of heteroskedasticity of bond returns. Bonds are primarily

subject to credit and interest rate risk. Prior literature (see, e.g., Bessembinder et al., 2008)

has shown that the variance of bond returns increases with higher levels of credit and interest

rate. Therefore, we present the standard deviation of the ABR conditional on credit and

interest rate risk in Table 4.

- TABLE 4 HERE -

Higher credit and interest rate risk result in larger standard deviations, which confirms

the presence of heteroskedasticity. The only exception is the class of non-investment grade

bonds, although this is likely to be driven by the limited sample size (as reported in Panel B

below). To encounter the issue of heteroskedasticity, Ederington et al. (2015) propose stan-

dardizing abnormal returns as it is common practice in equity-based event study methodol-

ogy. Consequently, we establish a second baseline for standardized returns to contrast the

already reasonable test power we find, especially when applying the non-parametric tests.

- TABLE 5 HERE -

Table 5 Panel A shows the return characteristics of the two main standardized abnormal

return measures. The level of kurtosis obtained with ABSR and SABR demonstrates that

standardization reduces the sample’s heteroskedasticity beyond the effect of winsorization.

The size tests performed in Panel B show that for standardized ABR, all three tests are also

reasonably well specified. However, we also find that the tests exceed the thresholds in some

cases, especially considering positive events and the signed-rank test. This is consistent with

earlier results without standardization. The power tests in Panel C show that standardiza-

tion of ABR substantially increases test power. This increase in power is robust across the

three different ways of standardization, i.e., ABSR, SABR, and ABSR-Pre. However, based

on these findings, we recommend using ABSR or SABR over ABSR-Pre. Standardization

provides the greatest improvement in the power of the t-test, but non-parametric tests con-

tinue to be more powerful at power levels of 94% and above. Finally, Panel D illustrates
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that the improvement in explanatory power through standardization is more pronounced for

moderate shocks of 10bp than for larger shocks of 25bp. We conclude that standardization

of ABR is imperative in bond event studies, especially regarding events with potentially

moderate effects.

In Table 6, we depict the test power of bivariate-sorted ABSR conditional on the level of

credit and interest rate risk. The categories with higher credit quality bonds (basically all

investment grade bonds) and maturity up to ten years exhibit superior test power of nearly

100% for all groups. While the test power remains close to 100% for AAA to A rated bonds

with maturities over ten years, it drops to 91.36% for BAA rated bonds and to 69.26% and

68.52% for BA and B rated bonds, respectively. Test power for non-investment grade bonds

is relatively low across all maturity buckets. However, the sample sizes of these groups, as

denoted in Panel B, are limited and, thus, inevitably also contribute to the reduction in test

power.

- TABLE 6 HERE -

4 Sampling and Sample Size

In this section, we investigate whether the more restrictive sample selection drives the doc-

umented increase in test power. In addition, we examine the effects of sample size on test

size and power. In the last section, we provide results based on weekly returns. We limit

ourselves to verbatim explanations to avoid excessive repetition of similar results and show

tabulated results in Appendix B.

4.1 Alternative Sampling

There are two essential sampling decisions where researchers take different routes in bond

event studies. On the one hand, the decision to exclude retail-sized trades differs. On the

other hand, researchers sometimes exclude financial firms from the sample. We investigate
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the impact of those choices on test size and power.

In some cases, event studies do not exclude potentially noisy retail-sized trades from their

main sample (prominently, e.g., Ederington et al., 2015). In contrast, we exclude trades with

less than $50,000 in volume from our main sample, and other studies exclude trades below

$100,000. Any filter like this results in a lower number of available firm×day observations,

potentially reducing test power due to the decrease in sample size. However, lower levels of

noise should theoretically increase test power, ceteris paribus. We find that incorporating

retail-sized trades decreases the size of the signed-rank test to 0.57. As expected, the test

power (at the 1% significance level) of the t-test decreases marginally by 1− 31.78%
34.12%

= 6.86%

(1 − 29.27%
32.16%

= 9.00% for negative events). However, counter-intuitively, the power of non-

parametric tests even increases. These results suggest that excluding retail-sized trades

does not significantly improve the power of the test. Secondly, the effect of an increased

sample size appears to outweigh the benefits of (potential) noise reduction. Nevertheless,

the results show that excluding retail-sized trades does not drive the higher test power vis-

à-vis Ederington et al. (2015). These implications are further substantiated when turning to

the results for the sample based on trades with a volume above $100,000. As expected, the

signed-rank test’s size improves slightly, eventually dropping below the statistical threshold

of 0.5%. There is, however, no considerable gain in power regarding the t-test, and, in line

with the trend previously identified, the power of the non-parametric tests decreases slightly.

It is also common practice to exclude financial companies from empirical analyses. Fi-

nancial companies carry exposure to systemic risk and are subject to a complex regulatory

environment (Fama & French, 1992). In addition, financial companies and the financial

market often affect each other, and results could be distorted by effects of financial mar-

ket change, e.g., interest rate factors, instead of clearly showing the response to a specific

event (Foerster & Sapp, 2005). Hence, we assess the impact of restricting the sample to

non-financial firms. We exclude all stocks with a first-digit SIC code of 6, i.e., finance, real-

estate, and insurance firms. Excluding bonds issued by financial institutions reduces the
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sample size, eventually causing a marginally lower test power.3

Overall, the decision as to whether financial companies or retail-sized are included or

excluded has no material impact on the results. If researchers run the risk of reducing the

sample size excessively (e.g., due to the potential exclusion of illiquid assets, as shown later in

section 6), we advocate the inclusion of retail-sized trades based on our findings as opposed

to the established convention of removing trades below $100,000.

4.2 Sample Size

The results of the previous section indicate that test power is relatively sensitive to changes

in sample size. We conduct another series of simulations to answer the question of what

the minimum sample size should be and how sensitive the results are to a reduction in

sample size. Specifically, we run the simulations as specified before, but adjust the number

of random draws from 100 to 1,500 bond×day for each set of 10,000 rounds. Naturally, we

see a steady increase in the effective sample size from approximately 25 to 400 actual returns.

In particular, with 300 random draws, the average number of calculable abnormal returns is

approximately 80, resulting in a coverage ratio of 26.67%. The ratio remains comparable for

25 out of 100 and 400 out of 1,500 draws. The result of this analysis is a graph of test size

and test power as a function of sample size for each of the three considered tests, which we

present in Figure 1.

- FIGURE 1 HERE -

The results of the size tests, shown in Panel A of Figure 1, are largely robust in showing

no dependence on the sample size and, thereby, corroborate the tabulated results. Again, the

signed-rank test shows a tendency towards type 1 errors, especially for negative events. On

the other hand, the test power strongly depends on the sample size, as illustrated in Panel B

of Figure 1. While the test power of the two non-parametric tests increases exponentially

with sample size and eventually saturates in a range between 100 and 150 observations,

3 The average number of abnormal returns computable from a random draw of 300 bond×day observa-
tions decreases slightly from 80.32 to 79.40.
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the test power of the t-test increases much more slowly. In fact, the t-test’s power remains

well below a sufficient level, even at a sample size of 400. The graphs also illustrate that

an average sample size of 80, on which the results of this paper are based, approaches the

minimum sample size required for bond event studies based on the estimated impact of 15bp.

Overall, our results suggest that for non-parametric tests, a minimum sample size of about

100 firm×day observations is required to achieve sufficient test power, ceteris paribus.

4.3 Alternative Event Window Length

The length of the event window varies from study to study, and there is no uniform, general-

ized approach. While rather uncommon in equity studies, some fixed-income studies propose

to use weekly returns to increase the sample of included firms. However, this comes at the

cost of incorporating potentially confounding information, thereby increasing the noise level.

Hence, we tackle this issue empirically and compute our results for returns calculated on a

weekly basis. The calculation of returns is analogous to Equation (2) except that we calcu-

late weekly returns between the first and last day of a week on which a bond was traded.

An additional requirement is the existence of at least one trading day in between, such that

we calculate at least the two-day returns as shown in Equation (2). We deliberately choose

the maximum return period possible to demonstrate the impact of larger levels of natural

noise on the test size and power. Arguably, in an actual event study, choosing the minimum

return period could be advisable to reduce the likelihood of including potentially confound-

ing information. However, as some information may be leaked or anticipated a priori, it is

often necessary to expand the return period. To illustrate the effects of noise and to obtain

conservative results, we use the former approach. We show the results of the size and power

tests on weekly returns in Table 7.

- TABLE 7 HERE -

While most return characteristics remain comparable, the total number of observations

decreases when transitioning to weekly returns. However, despite that, the average sample
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size per draw increases by approximately 50% to 120. As our earlier results show, this should

theoretically lead to an increase in test power. However, Panel C of Table 7 indicates that

the three tests in our analysis exhibit considerably lower test power based on weekly returns.

Furthermore, as shown in Panel D of Table 7, the reduction in test power is more pronounced

for events with a moderate magnitude. In conclusion, it should be carefully balanced whether

potential advantages, e.g., the inclusion of a larger number of companies in the sample and

extending the event period, outweigh the potential downside, i.e., incorporating confounding

information resulting in a higher level of noise. This is particularly concerning in the scenario

of event-induced variance, which we explore in Section 5.

5 Event-induced Variance

Overall, our previous results provide evidence that the existing methodology of event studies

in corporate bond markets is reliable under standard conditions. However, our findings also

indicate that these results are generally susceptible to increases in noise and variance. Hence,

in this section, we address an issue prevalent in equity-based event studies but which has

yet to be addressed in bond-based event studies. In fact, several events are known to cause

an increase in the variance of stock returns (see, e.g., Brown et al., 1988) and Marks and

Musumeci (2017) tested equity-based event studies for event-induced variance. Following

the equity-based literature, we thus extend the existing methodology for bond-event studies

by testing whether the methodology is also robust to event-induced variance.

We repeat the simulations as specified above to investigate event-induced variance in

bond-event studies with the necessary adjustments. Instead of adding a static shock of

±15bp, we follow Marks and Musumeci (2017) by adding a random number ξ drawn from a

normal distribution with a mean of ±15bp and a standard deviation equal to the standard

deviation of the returns used to calculate the ABSR, i.e., ξn,t ∼ N (μ, σ2
n,t). For the size test,

we add a number drawn from a similar distribution in terms of standard deviation, albeit
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with a mean of zero, i.e., ξn,t ∼ N (0, σ2
n,t). We choose the induced variance (i.e., σ2

n,t) based

on the available data instead of forcing an arbitrary number. Otherwise, we use the same

procedure using 300 bond×day draws for 10,000 trials with two-day returns.

- TABLE 8 HERE -

Panel B of Table 8 shows that all three tests are comparably well specified in terms of

size. However, the power of the applied tests decreases with the introduction of event-induced

variance. For example, the test power of the t-test is diminished from approximately 90%

to 57% for ABSR and 68% for SABR. This reduction in test power comes despite the added

standardization. Albeit still significantly reduced, the test power of the signed-rank test

based on SABR stands out among the tests at around 75% for both positive and negative

shocks. Turning to alternative magnitudes, as shown in Panel D of Table 8, we find that the

ABSR-based test remains well specified for shocks with a magnitude of 25bp on average.

Following these findings, we illustrate a series of power curves to assess the sensitivity of

the applied tests to event-induced variance. Figure 2 plots the test power conditional on the

level of event-induced variance. Specifically, we run the experiments as above, but the level

of event-induced variance is increased incrementally by a factor γ. The induced shock ξ is

thus a number drawn from a normal distribution ξn,t ∼ N (μ, σ2), where σ2 = γ × σ2
n,t.

- FIGURE 2 HERE -

Figure 2 shows that the test power decreases with an increase in event-induced variance.

A dramatic reduction in test power can be recognized consistently over all panels, even

with small increases in variance. The vertical lines indicate γ=0.5 and γ=1. Interestingly,

SABR appear superior to the other approaches, especially under the signed-rank test, in

line with the results presented in Table 8. We conclude from this analysis of event-induced

variance that although the test power of ABSR and SABR differs only slightly under standard

conditions, the experiment suggests the use of SABR when an event is expected to cause a

substantial increase in variance.
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6 The Role of Liquidity

It is a stylized fact that liquidity in corporate bond markets is substantially lower than in eq-

uity markets. Consequently, there is a wealth of empirical research on the impact of liquidity

on bond prices and returns (see, e.g., Goldstein & Namin, 2023, for an overview). Neverthe-

less, the effect of liquidity on test size and power in event studies has yet to be thoroughly

addressed.4 However, given its importance, we investigate liquidity’s role explicitly.

In the analysis of liquidity’s effects, we focus on λ (Dick-Nielsen et al., 2012) as the main

liquidity measure .5 λ is calculated as the standardized sum of the Amihud measure (Amihud,

2002), the internal round trip cost (IRC) measure (Feldhütter, 2012)) and their respective

standard deviations. In addition, we provide details on the construction in Appendix A.

- TABLES 9 AND 10 HERE -

To understand the liquidity’s impact on returns, we first stratify the standard deviation

and sample size of abnormal bond returns by our primary liquidity proxy λ and both credit

rating (see Table 10) and time to maturity (see Table 9), respectively. We find clear patterns

between liquidity and the two other risk dimensions. Specifically, bonds with a remaining

time to maturity of one to three years are much more liquid than bonds with a maturity of

more than ten years, as indicated by the return variability and the number of observations

per portfolio. This pattern also applies to portfolios sorted by credit rating and liquidity.

Independent of the other dimensions, the standard deviation itself increases monotonically

with decreasing liquidity, which is robust across all maturity ranges and rating categories.

Overall, we clearly see that liquidity has a sizeable impact on the heteroskedasticity of bond

returns, comparable to credit and interest rate risk.

- TABLES 11 AND 12 HERE -

Next, given the impact on heteroskedasticity, we investigate the impact of liquidity on

4 In fact, Bessembinder et al. (2008) report that they formed alternative benchmark portfolios using
issuance size as a proxy for liquidity risk but conclude that it does not improve test statistics. However,
issuance size is only a crude liquidity proxy.

5 Alternatively, we use the Roll measure and arrive at the same conclusions.
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inference from event studies using the same simulation protocol as before. However, we

specifically focus on the most powerful test from our previous analyses, i.e., we use ABSRs

with the signed-rank test. Indeed, Tables 11 and 12 show that liquidity substantially impacts

test power. In general, the test power decreases with lower liquidity, as well as with longer

maturities and higher credit risk. In particular, the impact of liquidity is most pronounced

for bonds with higher levels of interest rate and credit risk. For the most extreme portfolios,

the test power reaches levels that are considered insufficient, e.g., 56.06% for the most illiquid

bonds with a remaining maturity of more than ten years. Regarding the credit risk dimension,

the results are also remarkable. For example, the test power for BA-rated bonds falls to 73%

in the lowest liquidity quantile.6

One salient finding in this exercise is the implicit correlation between the liquidity of

corporate bonds and credit risk, which is already well-established in the existing literature

(see, e.g., Helwege et al., 2014). After stratifying by credit risk, sorting by liquidity does

not substantially change the number of observations in each portfolio. This is in stark con-

trast to the bi-variate sorting by maturity and liquidity. However, although the sample sizes

in the former cases remain relatively stable (or even increase), the test power is consider-

ably lower for portfolios with low liquidity. This points to a non-linear moderating effect

between liquidity spreads and credit spreads in line with the theoretical predictions in Eric-

sson and Renault (2006). Finally, these results imply that corporate bond liquidity should

be considered in corporate bond event studies, especially when samples are geared towards

above-average maturities and higher levels of credit risk.

6 We arrive at virtually identical results if we use the Roll measure as a proxy for liquidity, which appears
intuitive given a correlation of 0.619 between both measures (see Table A-2 in Appendix A). For example,
the test power for the least liquid bonds in the five to ten year maturity range falls to 83.47% and for
bonds with maturities over ten years to 64.09%. When stratified by credit rating and liquidity, the results
are similar. The test power for the least liquid falls to 81.70% and 69.73% for BAA- and BA-rated bonds,
respectively. We do not observe such distinct patterns when using turnover as a proxy for liquidity. The
results are tabulated in Appendix B.
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7 Conclusion

In this paper, we examine the validity and reliability of event study methodology in corporate

bond markets. We find that the empirical approach using standardized abnormal returns

jointly with non-parametric tests (popularized by Ederington et al., 2015) is well-specified.

Standardizing ABR and using non-parametric tests are superior to the use of raw ABR and

parametric tests in terms of test size and power. However, a sufficient sample size is crucial to

obtain reliable results. Based on artificial shocks of 15bp, the non-parametric tests converge

to a reasonable power level at a sample size of about 100, all else equal.

In addition, we assess the validity of the methodology to a common problem in event

studies, i.e., event-induced variance. We document that test power diminishes rapidly with

increasing variance. Moreover, similar conclusions arise when evaluating the test power based

on weekly returns. We find that constructing weekly returns (i.e., returns based on the first

and last available trading day of the week) leads to an increase in noise, which reduces the

test power substantially.

Finally, illiquidity is a prominent issue in corporate bond markets. Thus, we evaluate

the sensitivity of test power to bond liquidity. We show that liquidity effects are particularly

pronounced for lower-rated bonds and bonds with longer maturities. From this, we conclude

that researchers need to assess the characteristics of their sample carefully. Statistical in-

ference is challenging due to severe power issues in samples with longer maturity bonds or

higher credit risk. Therefore, excluding the most illiquid assets can reveal if higher noise

levels drive the lack of a finding.
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Figures

Figure 1: Test size and power conditional on sample size. This figure displays the results
of 16 simulations (10,000 repetitions each) based on ABR with increasing sample size from 100
random firm×day draws until 1,500 draws. For the power tests, we induce static, positive shocks
(i.e., ξn,t,R) with |μ| = 15bp and σ = 0. With 100 (1,500) firm×day observations drawn at random,
the average sample yields 25 (400) available returns. Panel A reports the results of the size tests,
and Panel B reports the results of the power tests. We present the results of the standard parametric
t-test (t), the non-parametric Wilcoxon signed-rank test (SR), and the non-parametric sign test
(S).
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Figure 2: Test power conditional on event-induced variance. This figure shows the results
of 60 simulations (10,000 repetitions of 300 firm×day random draws each). We incrementally
increase the standard deviation (i.e, σ) of the positive shock (i.e., ξn,t,R) with |μ| = 15bp. Formally,
σ is calculated as γ × σn,t,R, where σn,t,R is the standard deviation of raw bond yields (i.e., Rn,t

during the periods [t − 55, t − 6] and [t + 6, t + 55]) and γ ranges from zero to three. Panel A
shows results for ABSR, Panel B for SABR, Panel C for ABR, and Panel D for ABSR-Pre. We
present the results of the standard parametric t-test (t), the non-parametric Wilcoxon signed-rank
test (SR), and the non-parametric sign test (S).
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Table 2: Descriptive statistics of the bond sample. This table presents descriptive statistics
on the corporate bonds used throughout this paper. Panel A shows additional bond characteristics
(i.e., the maturity, the rating, the liquidity measure λ, the offering amount (in millions), and the
coupon). Panel B shows the distribution of the sample bonds based on credit rating and maturity.

Panel A: Sample Statistics

Mean Median SD

Maturity (in years) 9.61 6.18 8.87
Rating 14.38 15.00 3.14
λ (Liquidity) 0.14 -0.77 2.99
Offering Amount (×106) 709 500 673
Coupon 3.45 2.60 3.78

Panel B: Share per Rating and Maturity

Rating Share Maturity Share

AAA to AA 7.42% 1-3 years 19.93%
A 30.38% 3-5 years 21.48%
BAA 41.81% 5-10 years 37.45%
BA 12.41% > 10 years 21.14%
B 6.59%
Below B 1.39%
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Table 3: Size and power tests using unstandardized abnormal returns. This table
presents the size and power tests using firm-level abnormal returns (ABR) at a significance level
(SL) of 1% and 5% (two-sided), respectively. The tests include the parametric t-test (t), the non-
parametric signed-rank test (SR), and the sign test (S). For each test, we show rejection rates
(in percent) from 10,000 simulations of 300 firm×day draws. Panel A presents the size tests. In
Panel B, we show the power tests for artificial positive and negative 15bp shocks.

Panel A: Size Tests

t SR S

SL 0.5 99.5 0.5 99.5 0.5 99.5
Size 0.19 0.25 0.47 0.50 0.43 0.33

SL 2.5 97.5 2.5 97.5 2.5 97.5
Size 1.86 2.22 2.52 2.39 1.89 1.91

Panel B: Power Tests - 15bp Shocks

SL t SR S

Positive shock 0.5 34.96 85.5 90.26
Negative shock 99.5 32.16 83.68 89.31

Positive shock 2.5 54.43 95.24 97.33
Negative shock 97.5 52.97 94.59 97.02
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Table 4: Abnormal returns’ standard deviations stratified by rating and maturity.
This table presents the standard deviations of bond-level abnormal returns (ABR) over six rating
and four maturity cut-offs. Panel A states the standard deviation in percent. Panel B reports the
corresponding number of observations.

Panel A: Standard Deviation

1-3 years 3-5 years 5-10 years > 10 years

AAA to AA 0.2094 0.2894 0.4149 0.6998
A 0.2186 0.3104 0.4379 0.7807
BAA 0.3937 0.4957 0.6589 1.0350
BA 0.7011 0.8791 0.9188 1.3149
B 1.7895 1.4452 1.3421 1.9983
Below B 2.5697 2.4344 2.2795 1.9799

Panel B: Number of Observations

1-3 years 3-5 years 5-10 years > 10 years

AAA to AA 53,944 47,866 68,481 55,894
A 242,491 206,695 268,560 209,840
BAA 230,547 246,898 466,972 332,057
BA 52,701 87,841 200,493 37,242
B 19,965 51,496 119,653 5,037
Below B 3,930 12,691 17,559 102
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Table 5: Size and power tests of standardized abnormal returns. This table presents
size and power tests of firm-level abnormal standardized returns (ABSR), standardized abnormal
returns (SABR), unstandardized abnormal returns (ABR, raw), and ABSR with pre-event period
[t − 101, t − 6] standard deviation (ABSR-Pre). The tests include the parametric t-test (t), the
non-parametric signed-rank test (SR), and the sign test (S). For each test, we show rejection rates
(in percent) from 10,000 simulations of 300 firm×day draws. Panel A shows descriptive statistics
of returns in percent. Panel B presents the test size using a two-sided significance level (SL) of 1%.
Panel C shows the power tests for artificial positive and negative 15bp shocks. Panel D repeats the
power tests for alternative shocks of 10bp and 25bp.

Panel A: Return Characteristics

Mean Median SD Skew Kurt N

ABSR 0.0003 -0.0036 0.8093 0.0478 2.5283 2,860,243
SABR -0.0021 -0.0064 1.0682 0.0432 1.9244 2,862,094

Panel B: Size Tests

t SR S
SL (%) 0.5 99.5 0.5 99.5 0.5 99.5

ABSR 0.40 0.51 0.41 0.54 0.37 0.30
SABR 0.41 0.51 0.55 0.62 0.56 0.36
ABR (raw) 0.19 0.25 0.47 0.50 0.43 0.33
ABSR-Pre 0.42 0.65 0.39 0.69 0.26 0.43

Panel C: Power Tests - 15bp Shocks

Negative Positive
t SR S t SR S

ABSR 89.97 96.97 94.77 91.97 97.70 95.38
SABR 91.07 96.93 93.99 92.23 97.35 93.94
ABR (raw) 32.16 83.68 89.31 34.96 85.50 90.26
ABSR-Pre 75.74 89.69 85.67 78.51 91.30 87.13

Panel D: Power Tests - 10bp and 25bp Shocks

Negative Positive
t SR S t SR S

10bp - raw 12.37 46.44 56.18 14.18 49.96 56.41
10bp - stand. 55.00 75.56 71.24 58.87 77.45 71.50
25bp - raw 71.27 99.53 99.81 73.31 99.65 99.88
25bp - stand. 99.91 99.98 99.91 99.96 99.98 99.91
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Table 6: Test power stratified by bond rating and maturity for a 15bp shock. This
table reports the test power of the signed-rank test at the 1% significance level based on bond-level
abnormal standardized bond returns. We group bonds by six rating and four maturity cut-offs.
The test power in Panel A is the average test power across positive and negative 15bp shocks (i.e.,
we show rejection rates (in percent) from 10,000 simulations of 300 firm×day draws). Panel B
reports the corresponding number of observations.

Panel A: Power Test - 15bp Shocks

1-3 years 3-5 years 5-10 years > 10 years

AAA to AA 100.00 100.00 100.00 99.29
A 100.00 100.00 100.00 98.04
BAA 100.00 100.00 100.00 91.36
BA 100.00 100.00 99.39 69.26
B 99.57 99.70 97.72 68.52
Below B 64.28 78.89 77.65 22.91

Panel B: Number of Observations

1-3 years 3-5 years 5-10 years > 10 years

AAA to AA 50,582 46,140 65,972 53,335
A 225,423 197,073 255,026 196,448
BAA 210,776 232,166 439,092 309,991
BA 49,503 84,092 192,095 35,476
B 18,382 48,745 113,723 4,721
Below B 3,340 11,558 16,496 88
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Table 7: Size and power tests based on weekly returns. This table presents size and power
tests of firm-level abnormal standardized returns (ABSR), standardized abnormal returns (SABR),
unstandardized abnormal returns (ABR, raw), and ABSR with pre-event period [t − 101, t − 6]
standard deviation (ABSR-Pre). The tests include the parametric t-test (t), the non-parametric
signed-rank test (SR), and the sign test (S). For each test, we show rejection rates (in percent)
from 10,000 simulations of 300 firm×day draws. Panel A shows descriptive statistics of returns in
percent. Panel B presents the test size using a two-sided significance level (SL) of 1%. Panel C
shows the power tests for artificial positive and negative 15bp shocks. Panel D repeats the power
tests for alternative shocks of 10bp and 25bp.

Panel A: Return Characteristics

Mean Median SD Skew Kurt N

ABSR 0.0008 -0.0074 0.8628 0.0765 2.5927 510,428
SABR -0.0111 -0.0161 1.2424 0.0429 1.6431 511,680

Panel B: Size Tests

t SR S
SL (%) 0.5 99.5 0.5 99.5 0.5 99.5

ABSR 0.25 0.34 0.49 0.36 0.35 0.34
SABR 0.52 0.21 0.66 0.26 0.45 0.17
ABR (raw) 0.24 0.29 0.45 0.44 0.42 0.38
ABSR-Pre 0.32 0.54 0.41 0.55 0.42 0.39

Panel C: Power Tests - 15bp Shocks

Negative Positive
t SR S t SR S

ABSR 75.42 87.53 82.17 77.31 87.97 80.49
SABR 81.91 89.38 80.49 78.22 86.37 75.85
ABR (raw) 20.51 71.93 82.21 23.04 75.69 82.62
ABSR-Pre 73.35 87.79 82.26 76.75 90.18 84.16

Panel D: Power Tests - 10bp and 25bp Shocks

Negative Positive
t SR S t SR S

10bp - raw 7.17 34.13 44.19 9.1 38.24 45.63
10bp - stand. 38.64 55.42 49.94 40.8 55.25 46.81
25bp - raw 55.65 98.63 99.61 57.18 99.07 99.55
25bp - stand. 98.98 99.67 98.89 99.15 99.68 98.7
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Table 8: Size and power tests with event-induced noise. This table presents size and power
tests of firm-level abnormal standardized returns (ABSR), standardized abnormal returns (SABR),
unstandardized abnormal returns (ABR, raw), and ABSR with pre-event period [t − 101, t − 6]
standard deviation (ABSR-Pre). The tests include the parametric t-test (t), the non-parametric
signed-rank test (SR), and the sign test (S). For each test, we show rejection rates (in percent)
from 10,000 simulations of 300 firm×day draws, where we introduce event-induced variance equal
to the standard deviation used to scale ABSR. Panel A shows descriptive statistics of returns in
percent. Panel B presents the test size using a two-sided significance level (SL) of 1%. Panel C
shows the power tests for artificial positive and negative 15bp shocks. Panel D repeats the power
tests for alternative shocks of 10bp and 25bp.

Panel A: Return Characteristics

Mean Median SD Skew Kurt N

ABSR 0.0003 -0.0036 0.8093 0.4780 2.5283 2,860,243
SABR -0.0021 -0.0064 1.0682 0.0432 1.9244 2,862,094

Panel B: Size Tests

t SR S
SL (%) 0.5 99.5 0.5 99.5 0.5 99.5

ABSR 0.50 0.47 0.51 0.49 0.32 0.39
SABR 0.54 0.50 0.44 0.59 0.38 0.46
ABR (raw) 0.30 0.34 0.56 0.50 0.41 0.37
ABSR-Pre 0.36 0.43 0.33 0.48 0.24 0.36

Panel C: Power Tests - 15bp Shocks

Negative Positive
t SR S t SR S

ABSR 56.77 64.12 54.11 57.23 64.78 54.81
SABR 67.53 74.94 64.91 67.97 75.61 64.87
ABR (raw) 11.11 29.84 32.69 10.78 30.97 33.39
ABSR-Pre 39.26 46.18 37.10 42.41 50.00 40.70

Panel D: Power Tests - 10bp and 25bp Shocks

Negative Positive
t SR S t SR S

10bp - raw 4.08 11.73 12.63 4.24 12.22 12.63
10bp - stand. 22.80 28.23 22.74 24.77 30.32 23.75
25bp - raw 33.98 73.85 77.73 35.81 75.61 79.76
25bp - stand. 95.80 97.11 92.46 95.96 97.15 92.37
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Table 9: Abnormal returns’ standard deviations stratified by liquidity and maturity.
This table presents the standard deviations of bond-level abnormal returns (ABR) over five liquidity
and four maturity cut-offs. Panel A states the standard deviation in percent. Panel B reports the
corresponding number of observations.

Panel A: Standard Deviation

1-3 years 3-5 years 5-10 years > 10 years

High 0.2032 0.3107 0.4003 0.6914
2 0.2906 0.3914 0.4952 0.6458
3 0.3858 0.5150 0.5922 0.7153
4 0.6195 0.7060 0.7924 0.9001
Low 1.7031 1.3337 1.2205 1.5439

Panel B: Number of Observations

1-3 years 3-5 years 5-10 years > 10 years

High 240,883 147,370 190,021 52,603
2 148,469 146,278 219,339 116,953
3 115,543 130,976 229,788 154,567
4 84,838 147,245 240,439 158,218
Low 33,095 114,294 312,038 171,428
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Table 10: Abnormal returns’ standard deviations stratified by liquidity and rating.
This table presents the standard deviations of bond-level abnormal returns (ABR) over five liquidity
and six rating cut-offs. Panel A states the standard deviation in percent. Panel B reports the
corresponding number of observations.

Panel A: Standard Deviation

AAA to AA A BAA BA B Below B

High 0.2305 0.2762 0.3582 0.4857 0.5995 0.8059
2 0.3222 0.3724 0.4562 0.5449 0.7248 1.1035
3 0.4137 0.4495 0.5703 0.6853 0.8757 1.5025
4 0.5301 0.5531 0.7597 0.9323 1.2279 1.7292
Low 0.6644 0.7788 1.2184 1.3047 2.1980 3.2007

Panel B: Number of Observations

AAA to AA A BAA BA B Below B

High 43,443 224,474 278,847 56,073 23,700 4,340
2 46,048 207,127 247,757 86,274 38,403 5,430
3 51,391 197,900 249,010 89,655 38,352 4,566
4 48,445 176,798 260,970 96,556 40,909 7,062
Low 34,713 107,378 293,044 117,854 62,998 14,868
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Table 11: Test power stratified by liquidity and maturity for a 15bp shock. This
table reports the test power of the signed-rank test at the 1% significance level based on bond-
level abnormal standardized bond returns. We group bonds by five liquidity and four maturity
cut-offs. The test power in Panel A is based on positive 15bp shocks (i.e., we show rejection rates
(in percent) from 10,000 simulations of 300 firm×day draws). Panel B reports the corresponding
number of observations.

Panel A: Power Test - 15bp Shocks

1-3 years 3-5 years 5-10 years > 10 years

High 100.00 100.00 100.00 73.69
2 100.00 100.00 99.96 92.40
3 100.00 100.00 99.88 90.63
4 100.00 100.00 99.43 83.54
Low 100.00 98.78 93.76 56.06

Panel B: Number of Observations

1-3 years 3-5 years 5-10 years > 10 years

High 235,539 153,166 199,605 54,641
2 152,539 150,718 226,129 116,520
3 122,888 136,508 233,988 150,889
4 95,494 149,134 244,082 152,793
Low 48,169 117,939 308,043 164,496
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Table 12: Test power stratified by liquidity and rating for a 15bp shock. This table
reports the test power of the signed-rank test at the 1% significance level based on bond-level
abnormal standardized bond returns. We group bonds by five liquidity and six rating cut-offs. The
test power in Panel A is based on positive 15bp shocks (i.e., we show rejection rates (in percent)
from 10,000 simulations of 300 firm×day draws). Panel B reports the corresponding number of
observations.

Panel A: Power Test - 15bp Shocks

AAA to AA A BAA BA B Below B

High 100.00 100.00 100.00 99.84 98.18 99.78
2 100.00 100.00 100.00 99.69 97.64 81.18
3 100.00 100.00 100.00 96.45 87.11 12.79
4 100.00 100.00 99.95 89.18 63.30 22.65
Low 99.97 100.00 93.25 73.00 42.12 12.70

Panel B: Number of Observations

AAA to AA A BAA BA B Below B

High 44,307 224,463 281,098 61,881 26,133 5,069
2 46,923 210,276 254,065 88,795 40,038 5,809
3 51,893 200,621 254,356 91,550 40,754 5,099
4 49,396 180,731 264,759 97,954 41,297 7,366
Low 35,616 115,133 293,836 118,016 62,138 13,908
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Appendix

A Liquidity Measures

In this section, we outline the calculation of the individual corporate bond liquidity measures

drawing on the procedure of Dick-Nielsen et al. (2012). We also provide some descriptive

statistics on the derived liquidity measures as presented in the original article. Again, we

follow the structure of the original paper to maintain comparability. We also reproduce

the descriptive statistics, the correlation matrix and the principal component analysis as

presented in the original paper.

The first measure of (ill-)liquidity we consider is the Amihud measure (Amihud, 2002),

which is defined as the price impact of a trade per unit traded. Formally, the Amihud

measure is derived by calculating the daily average of the absolute returns rj divided by the

trading volume Qj of the consecutive transactions of a given bond per day:

Amihudt =
1

Nt

Nt∑
j=1

|rj|
Qj

=
1

Nt

Nt∑
j=1

|Pj−Pj−1

Pj−1
|

Qj

(A-1)

Conceptually, it is necessary for a bond to trade at least twice per day to calculate

the Amihud measure. We derive quarterly measures by taking the median of all daily

observations in a quarter.

The bid-ask spread refers to the difference between the highest price a buyer is willing to

pay (bid price) and the lowest price a seller is willing to accept (ask price) for a particular

financial instrument. For bid-ask spreads, we employ two distinct proxies: the Roll measure

(Roll, 1984) and Imputed Roundtrip Trades (IRC) as defined by Feldhütter (2012). Roll

(1984) finds that, given certain assumptions, the percentage bid-ask spread is equal to two

times the square root of minus the covariance between successive returns:

Rollτ = 2
√

−cov(Ri, Ri−1) (A-2)
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Where τ is the period for which the measure is calculated. If the covariance is negative,

the observation is discarded. The underlying rationale is that the bond price bounces between

the bid and ask prices, and that higher percentage bid-ask spreads lead to higher negative

covariance between successive yields (Dick-Nielsen et al., 2012). We define a monthly roll

measure if a bond trades at least ten times in this month. We then define a quarterly rolling

measure by taking the mean of the daily measures within the quarter.

Feldhütter (2012) presents an alternative method for assessing transaction costs, which he

terms ”Imputed Roundtrip Trades” (IRT). In corporate bond markets, it is not uncommon

to observe a bond being traded multiple times in quick succession after a prolonged period

of inactivity. This typically occurs when a dealer facilitates a transaction between a buyer

and a seller and collects the bid-ask spread as compensation. When a match is found, two

trades take place - one between the seller and the dealer and another between the buyer

and the dealer. In some cases, if the matching involves a second dealer, there may also be

a transaction between the two dealers. When two or three trades of the same bond with

identical trade sizes occur on the same day, and there are no other trades with the same

size, we consider these transactions as part of an Imputed Roundtrip Trade. For an IRT,

the Imputed Roundtrip Cost (IRC) is defined as follows:

IRC =
Pmax − Pmin

Pmax

(A-3)

where Pmax represents the highest price within the IRT, and Pmin is the lowest price within

the IRT. To estimate daily roundtrip costs, the average of roundtrip costs for different trade

sizes on that day is calculated. Quarterly IRC measures are the average of all daily estimates

per bond and quarter.

Friewald et al. (2012) differentiate between trading activity measures and liquidity mea-

sures. Three volume-based activity measures that are considered are quarterly turnover of

bonds as well as bond and firm zero trading days. The former is calculated as the cumulative

trading volume of a bond per quarter divided by its issue size, both measured in $. The latter
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is calculated as the number of actual trading days per bond or firm and quarter relative to

total the number of trading days per quarter.

Dick-Nielsen et al. (2012) argue that investors are likely to consider not only the absolute

level of bond liquidity, but also the possible future level and consequently the variability

of the liquidity. Similar reasoning applies to returns of corporate bonds, as risk premia

may depend on both level and risk of a bond’s liquidity. Hence, we follow Dick-Nielsen

et al. (2012) and also include the quarterly average standard deviations of the daily Amihud

measure and the assumed round-trip costs.

In the initial paper, the authors conduct linear correlation analysis and principal compo-

nent analysis of all liquidity proxies to see if most of the relevant information in the liquidity

proxies can be captured by a few factors. Based on their results, they then construct a factor

that loads equally on all four variables, i.e., Amihud, IRC, and their standard deviations,

which they call λ. In Table A-1, we exhibit the results of the same analysis based on our

sample. The results are virtually identical to the results presented in the original study. The

cumulative explained variance of the first three components is 39.8%, 58.1%, and 71.2%,

respectively. Dick-Nielsen et al. (2012) report very similar values of 39%, 59%, and 72%,

respectively. The loadings of the first component also paint a very similar picture as in

Dick-Nielsen et al. (2012). The first component is dominated by Amihud, IRC, and Roll,

whereas the second component is driven by volume-based measures such as Bond Zero and

Turnover.

Based on these findings we proceed with calculating our primary liquidity variable λ,

formally denoted as:

λit =
4∑

j=1

L̃j
it (A-4)

We provide descriptive statistics of all liquidity proxies in Table A-2. The results are vir-

tually identical to Dick-Nielsen et al. (2012). Percentiles of the liquidity variables (Panel A)

as well as their correlation (Panel B) are comparable in magnitude for the recent period of
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2013 to 2022. Furthermore, we plot the liquidity variables’ time series in Figure 3.
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Table A-1: PCA of liquidity measures. This table provides the results of a Principal
Component Analysis (PCA) of the derived liquidity measures similar to Dick-Nielsen et al.
(2012). The first principal component correlates with the Amihud, IRC, and Roll (price
impact) measures, whereas the second component represents a volume-based measure, i.e.,
turnover.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Amihud 0.431 -0.133 0.146 0.052 -0.338 0.800 -0.022 0.132
Roll 0.409 -0.297 -0.002 -0.495 0.060 -0.250 -0.647 0.121
Firm Zero -0.025 -0.292 -0.840 0.171 -0.416 -0.068 -0.025 -0.009
Bond Zero -0.143 -0.657 -0.115 -0.121 0.593 0.229 0.301 0.161
TO 0.089 0.560 -0.470 -0.530 0.280 0.292 0.113 -0.030
IRC 0.460 -0.005 -0.115 0.407 0.395 0.019 -0.112 -0.664
Amihud Risk 0.448 -0.144 0.106 -0.333 -0.261 -0.324 0.669 -0.190
IRC Risk 0.454 0.209 -0.116 0.389 0.234 -0.224 0.129 0.682
CEV (%) 39.8 58.1 71.2 79.8 87.8 93.3 97.3 100.0
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Figure 3: Time series of liquidity variables. This chart shows the time series of
liquidity variables across our sample from January 2013 to December 2022 following Dick-
Nielsen et al. (2012). Liquidity variables are calculated quarterly for each bond as explained
in Appendix A. The cross-sectional mean is plotted for each liquidity variable in each quarter.
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B Alternative Sampling

In this section, we present the results as outlined in Table 5 based on alternative samples.

In Table B-1, we do not apply any restrictions on trade size, i.e., we also include retail-size

trades. For Table B-2, we set the threshold for identifying retail-sized trades to $100,000 as

it is common practice in empirical bond research. The results shown in Table B-3 are based

on a subsample of exclusively non-financial companies, that is, excluding companies with

a first-digit SIC code of 6. Finally, Table B-4 presents the results based on the 2004 time

series. It should be noted that the sparse data in the earlier part of the sample translates

into an average sample size of 47.74, which is much smaller compared to the later part of

the sample, resulting in a much lower test power.

Eventually, Table B-5 to Table B-8 exhibit the test power conditional on bond liquidity

as displayed in Table 11 and Table 12, but for alternative liquidity proxies, i.e., Roll and

turnover.

47

Appendix

74



Table B-1: Size and power tests including retail-sized trades. This table presents size and
power tests of firm-level abnormal standardized returns (ABSR), standardized abnormal returns
(SABR), unstandardized abnormal returns (ABR, raw), and ABSR with pre-event period [t −
101, t − 6] standard deviation (ABSR-Pre). The tests include the parametric t-test (t), the non-
parametric signed-rank test (SR), and the sign test (S). For each test, we show rejection rates (in
percent) from 10,000 simulations of 300 firm×day draws. Panel A shows descriptive statistics of
returns in percent. Panel B presents the test size using a two-sided significance level (SL) of 1%.
Panel C shows the power tests for artificial positive and negative 15bp shocks. Panel D repeats the
power tests for alternative shocks of 10bp and 25bp.

Panel A: Return Characteristics

Mean Median SD Skew Kurt N

ABSR -0.0008 -0.0037 0.8563 0.0151 1.8889 5,138,467
SABR -0.0056 -0.0085 1.0511 0.0265 1.4911 5,141,945

Panel B: Size Tests

t SR S
SL (%) 0.5 99.5 0.5 99.5 0.5 99.5

ABSR 0.24 0.55 0.32 0.44 0.34 0.26
SABR 0.28 0.53 0.42 0.47 0.49 0.30
ABR (raw) 0.19 0.26 0.35 0.57 0.39 0.31
ABSR-Pre 0.25 0.58 0.33 0.60 0.20 0.43

Panel C: Power Tests - 15bp Shocks

Negative Positive
t SR S t SR S

ABSR 94.05 98.88 98.27 95.31 99.33 98.59
SABR 96.02 99.05 98.22 96.20 99.27 98.02
ABR (raw) 29.27 87.74 94.66 31.78 88.85 94.87
ABSR-Pre 84.47 95.03 93.94 89.28 97.30 95.96

Panel D: Power Tests - 10bp and 25bp Shocks

Negative Positive
t SR S t SR S

10bp - raw 10.90 51.94 66.10 12.59 54.09 65.46
10bp - stand. 60.59 82.36 81.55 65.03 84.41 82.76
25bp - raw 69.13 99.84 99.97 71.39 99.91 100.00
25bp - stand. 100.00 100.00 100.00 99.99 100.00 100.00
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Table B-2: Size and power tests excluding trades below $100,000. This table presents
size and power tests of firm-level abnormal standardized returns (ABSR), standardized abnormal
returns (SABR), unstandardized abnormal returns (ABR, raw), and ABSR with pre-event period
[t − 101, t − 6] standard deviation (ABSR-Pre). The tests include the parametric t-test (t), the
non-parametric signed-rank test (SR), and the sign test (S). For each test, we show rejection rates
(in percent) from 10,000 simulations of 300 firm×day draws. Panel A shows descriptive statistics
of returns in percent. Panel B presents the test size using a two-sided significance level (SL) of 1%.
Panel C shows the power tests for artificial positive and negative 15bp shocks. Panel D repeats the
power tests for alternative shocks of 10bp and 25bp.

Panel A: Return Characteristics

Mean Median SD Skew Kurt N

ABSR 0.0000 -0.0031 0.7908 0.0370 2.6550 2,116,300
SABR -0.0006 -0.0052 1.0761 0.0467 2.0869 2,118,803

Panel B: Size Tests

t SR S
SL (%) 0.5 99.5 0.5 99.5 0.5 99.5

ABSR 0.30 0.46 0.39 0.51 0.30 0.34
SABR 0.36 0.50 0.45 0.47 0.31 0.38
ABR (raw) 0.23 0.42 0.35 0.46 0.35 0.38
ABSR-Pre 0.27 0.36 0.42 0.59 0.35 0.42

Panel C: Power Tests - 15bp Shocks

Negative Positive
t SR S t SR S

ABSR 85.38 94.11 89.92 86.78 94.68 90.23
SABR 84.92 93.70 88.75 86.07 94.22 89.32
ABR (raw) 32.31 78.07 84.78 34.22 81.03 86.17
ABSR-Pre 65.90 81.51 75.00 69.80 85.14 78.46

Panel D: Power Tests - 10bp and 25bp Shocks

Negative Positive
t SR S t SR S

10bp - raw 12.41 42.18 48.76 14.07 45.01 50.63
10bp - stand. 48.40 67.17 60.97 51.74 68.88 61.22
25bp - raw 70.70 99.11 99.64 70.85 99.23 99.61
25bp - stand. 99.77 99.98 99.63 99.86 99.96 99.78
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Table B-3: Size and power tests without financial companies. This table presents size and
power tests of firm-level abnormal standardized returns (ABSR), standardized abnormal returns
(SABR), unstandardized abnormal returns (ABR, raw), and ABSR with pre-event period [t −
101, t − 6] standard deviation (ABSR-Pre). The tests include the parametric t-test (t), the non-
parametric signed-rank test (SR), and the sign test (S). For each test, we show rejection rates (in
percent) from 10,000 simulations of 300 firm×day draws. Panel A shows descriptive statistics of
returns in percent. Panel B presents the test size using a two-sided significance level (SL) of 1%.
Panel C shows the power tests for artificial positive and negative 15bp shocks. Panel D repeats the
power tests for alternative shocks of 10bp and 25bp.

Panel A: Return Characteristics

Mean Median SD Skew Kurt N

ABSR 0.0004 -0.0032 0.7986 0.0490 2.4339 2,057,489
SABR -0.0010 -0.0060 1.0658 0.0486 1.8251 2,059,299

Panel B: Size Tests

t SR S
SL (%) 0.5 99.5 0.5 99.5 0.5 99.5

ABSR 0.40 0.51 0.52 0.53 0.41 0.49
SABR 0.45 0.45 0.49 0.44 0.50 0.43
ABR (raw) 0.26 0.29 0.45 0.52 0.47 0.37
ABSR-Pre 0.27 0.43 0.35 0.52 0.32 0.42

Panel C: Power Tests - 15bp Shocks

Negative Positive
t SR S t SR S

ABSR 85.96 95.15 92.26 86.85 95.24 91.83
SABR 86.17 94.64 90.01 86.87 94.69 89.72
ABR (raw) 28.83 77.38 83.46 29.14 78.01 83.90
ABSR-Pre 68.62 84.53 79.24 71.15 86.27 80.73

Panel D: Power Tests - 10bp and 25bp Shocks

Negative Positive
t SR S t SR S

10bp - raw 11.10 40.27 47.34 11.67 40.97 45.91
10bp - stand. 48.44 67.95 61.90 49.55 67.85 61.10
25bp - raw 66.96 99.02 99.55 66.90 99.25 99.64
25bp - stand. 99.87 99.97 99.85 99.91 99.98 99.78
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Table B-4: Size and power tests from 2004 to 2022. This table presents size and power
tests of firm-level abnormal standardized returns (ABSR), standardized abnormal returns (SABR),
unstandardized abnormal returns (ABR, raw), and ABSR with pre-event period [t − 101, t − 6]
standard deviation (ABSR-Pre). The tests include the parametric t-test (t), the non-parametric
signed-rank test (SR), and the sign test (S). For each test, we show rejection rates (in percent)
from 10,000 simulations of 300 firm×day draws. Panel A shows descriptive statistics of returns in
percent. Panel B presents the test size using a two-sided significance level (SL) of 1%. Panel C
shows the power tests for artificial positive and negative 15bp shocks. Panel D repeats the power
tests for alternative shocks of 10bp and 25bp.

Panel A: Return Characteristics

Mean Median SD Skew Kurt N

ABSR 0.0005 -0.0022 0.8225 0.0191 2.1295 4,348,794
SABR -0.0033 -0.0057 1.0726 0.0191 1.7107 4,354,046

Panel B: Size Tests

t SR S
SL (%) 0.5 99.5 0.5 99.5 0.5 99.5

ABSR 0.43 0.47 0.51 0.56 0.31 0.32
SABR 0.60 0.42 0.52 0.50 0.38 0.27
ABR (raw) 0.22 0.32 0.45 0.53 0.35 0.43
ABSR-Pre 0.29 0.48 0.37 0.56 0.21 0.34

Panel C: Power Tests - 15bp Shocks

Negative Positive
t SR S t SR S

ABSR 62.68 75.97 66.69 65.02 77.50 67.93
SABR 63.60 75.58 64.79 63.99 75.63 64.25
ABR (raw) 17.58 49.84 56.74 19.34 52.00 57.70
ABSR-Pre 45.77 60.70 51.60 49.47 64.29 54.63

Panel D: Power Tests - 10bp and 25bp Shocks

Negative Positive
t SR S t SR S

10bp - raw 6.60 22.44 26.19 7.35 23.97 26.81
10bp - stand. 29.24 42.51 35.58 31.70 44.08 36.41
25bp - raw 48.81 88.07 91.35 51.31 89.69 92.35
25bp - stand. 96.04 97.90 94.13 96.48 98.15 94.69
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Table B-5: Test power stratified by liquidity (Roll measure) and maturity for a 15bp
shock. This table reports the test power of the signed-rank test at the 1% significance level based
on bond-level abnormal standardized returns. We group bonds by five liquidity and four maturity
cut-offs. The test power in Panel A is based on positive 15bp shocks (i.e., we show rejection rates
(in percent) from 10,000 simulations of 300 firm×day draws). Panel B reports the corresponding
number of observations.

Panel A: Power Test - 15bp Shocks

1-3 years 3-5 years 5-10 years > 10 years

High 100.00 100.00 100.00 36.37
2 100.00 100.00 99.97 92.93
3 100.00 100.00 99.91 93.92
4 100.00 99.99 99.53 87.72
Low 100.00 78.50 83.47 64.09

Panel B: Number of Observations

1-3 years 3-5 years 5-10 years > 10 years

High 281,698 163,440 176,533 29,355
2 172,274 164,459 229,758 86,404
3 108,522 157,601 249,769 135,208
4 61,149 139,485 281,793 166,208
High 37,218 88,610 286,949 231,846
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Table B-6: Test power stratified by liquidity (Roll-measure) and rating for a 15bp
shock. This table reports the test power of the signed-rank test at the 1% significance level based
on bond-level abnormal standardized returns. We group bonds by five liquidity and six rating
cut-offs. The test power in Panel A is based on positive 15bp shocks (i.e., we show rejection rates
(in percent) from 10,000 simulations of 300 firm×day draws). Panel B reports the corresponding
number of observations.

Panel A: Power Test - 15bp Shocks

AAA to AA A BAA BA B Below B

High 100.00 100.00 100.00 99.27 80.66 99.84
2 100.00 100.00 100.00 99.75 97.23 80.06
3 100.00 100.00 99.99 99.16 95.91 35.32
4 99.99 100.00 99.71 93.64 75.15 29.90
Low 98.18 98.19 81.70 69.73 43.58 10.41

Panel B: Number of Observations

AAA to AA A BAA BA B Below B

High 56,943 256,968 273,757 43,124 15,879 4,355
2 53,546 217,190 258,801 84,300 33,887 5,171
3 45,294 192,796 258,936 98,459 48,822 6,793
4 43,775 171,048 265,671 111,198 48,193 8,750
Low 30,358 106,744 308,721 123,055 63,694 12,051
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Table B-7: Test power stratified by liquidity (turnover) and maturity for a 15bp
shock. This table reports the test power of the signed-rank test at the 1% significance level based
on bond-level abnormal standardized returns. We group bonds by five liquidity and four maturity
cut-offs. The test power in Panel A is based on positive 15bp shocks (i.e., we show rejection rates
(in percent) from 10,000 simulations of 300 firm×day draws). Panel B reports the corresponding
number of observations.

Panel A: Power Test - 15bp Shocks

1-3 years 3-5 years 5-10 years > 10 years

HIgh 100.00 100.00 99.97 84.17
1 100.00 100.00 99.87 82.33
2 100.00 100.00 99.73 78.32
3 100.00 100.00 99.38 78.21
Low 100.00 99.99 98.87 78.93

Panel B: Number of Observations

1-3 years 3-5 years 5-10 years > 10 years

High 166,460 165,969 188,040 132,153
1 154,920 150,362 218,659 128,218
2 135,702 140,995 248,887 126,806
3 118,953 138,450 271,586 122,931
Low 86,245 119,973 302,089 143,833
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Table B-8: Test power stratified by liquidity (turnover) and rating for a 15bp shock.
This table reports the test power of the signed-rank test at the 1% significance level based on bond-
level abnormal standardized returns. We group bonds by five liquidity and six rating cut-offs. The
test power in Panel A is based on positive 15bp shocks (i.e., we show rejection rates (in percent)
from 10,000 simulations of 300 firm×day draws). Panel B reports the corresponding number of
observations.

Panel A: Power Test - 15bp Shocks

AAA to AA A BAA BA B Below B

High 100.00 100.00 100.00 45.13 4.06 0.18
1 100.00 100.00 100.00 92.77 74.12 7.11
2 100.00 100.00 100.00 97.19 91.72 23.15
3 100.00 100.00 99.99 98.89 89.07 26.16
Low 100.00 100.00 99.95 97.53 85.27 89.65

Panel B: Number of Observations

AAA to AA A BAA BA B Below B

High 71,029 269,843 261,926 35,550 12,176 2,098
1 59,056 220,328 273,596 67,029 28,591 3,559
2 46,519 178,203 278,990 97,570 45,641 5,467
3 33,841 154,077 270,859 127,323 57,836 7,984
Low 19,821 125,900 287,772 133,805 66,669 18,173
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