
Computer Science
Department
Intelligent Autonomous
Systems

Deep Generative Models for
Motion Planning and Control
Normalizing Flows, Energy-Based Models & Diffusion Models in Robotics
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Genehmigte Dissertation von Julen Urain aus Deba, Spain
Tag der Einreichung: 31.10.2023, Tag der Prüfung: 18.12.2023

1. Gutachten: Prof. Jan Peters, Ph.D.
2. Gutachten: Prof. Katerina Fragkiadaki, Ph.D.
Darmstadt, Technische Universität Darmstadt

Deep Generative Models for Motion Planning and Control
Normalizing Flows, Energy-Based Models & Diffusion Models in Robotics

Accepted doctoral thesis by Julen Urain

Date of submission: 31.10.2023
Date of thesis defense: 18.12.2023

Darmstadt, Technische Universität Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-275657
URL: http://tuprints.ulb.tu-darmstadt.de/27565
Jahr der Veröffentlichung auf TUprints: 2024

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/
This work is licensed under a Creative Commons License:
Attribution–ShareAlike 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/

http://tuprints.ulb.tu-darmstadt.de/27565
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Nire aitaren oroimenean

Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftli-
chen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthe-
ma und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 31.10.2023
Julen Urain

v

Abstract

This thesis investigates the problem of robot motion generation, focusing primarily on data-
driven motion generation. Traditionally, robot motion has been dictated by manually
designed models. While effective for structured industrial environments where variability
is minimal (e.g. palletizing robots handling similarly shaped boxes), these models fall
short in more complex environments such as domestic spaces filled with diverse objects
such as cutlery, bottles, and mugs.

Data-driven motion generation, often referred to as Learning from Demonstrations or
Imitation Learning, is emerging as a promising solution for these complex environments.
Using human expert demonstrations, the goal is to teach robots desired behaviors through
the demonstrations. The power of this approach is evident in its transformative impact on
fields such as Computer Vision and Natural Language Processing, where deep generative
models have successfully produced images and text. In Robotics, however, current data-
driven models still struggle to achieve the same breadth of generalization and robustness.

In this context, this thesis is inspired by the successful cases of both image and text gener-
ation. A critical insight underpins our investigation: An important factor of generalization
in both image and text generation lies in the architectures chosen. While image generative
models use architectures such as Convolutional Neural Networks to capture local geometric
features in images, text generative models rely on structures such as Transformers to
infer temporal features. With this in mind, the work presented in this thesis explores the
following question: What are the architectural elements that we should integrate into
our generative models in order to correctly generate robot movements?

In this direction, in this thesis, we propose three different works that explore the integra-
tion of different robotics-relevant properties (stability, geometry, and composability) in
deep generative models.
(1) With ImitationFlows , we study the problem of integrating global stability into motion
policies. We propose a novel architecture that exploits the expressiveness of Normalizing
Flows with the guarantee of learning globally stable behaviors. We show that these models

vii

can be used to represent stable motion behaviors in the robot’s end-effector space (6D
position and orientation); a useful space for many robotic tasks.
(2) With Composable Energy Policies , we study the problem of combining multiple mo-
tion policies to solve multi-objective problems. We explore the connections between
multi-objective motion generation and Energy-Based Models and propose a novel model
for combining energy-based policies represented in arbitrary spaces.
(3) With SE(3)-DiffusionFields , we explore the problem of learning useful cost functions
for Motion Planning. We propose to adapt Diffusion Models to the Lie group SE(3), which
allows us to design Diffusion Models in the robot’s end-effector space. We show that we
can use these models to represent grasp pose distributions and use them as cost functions
in Motion Planning problems.
Each of the proposed methods has been evaluated in both simulated and real-world
experiments to show their performance on real-world robotics problems, and we have
open-sourced the codebase of the methods to encourage the community to build on our
proposed solutions.

Overall, this thesis explores novel ways to apply deep generative models to robotics
problems. We show the benefit of integrating robotics-relevant features such as geometry
and composability with deep generativemodels, thereby benefiting from the expressiveness
of deep generative models while improving generalization thanks to properly chosen
inductive biases.

viii

Zusammenfassung

In dieser Arbeit wird das Problem der Roboterbewegungserzeugung untersucht, wobei der
Schwerpunkt auf der datengesteuerten Bewegungserzeugung liegt. Traditionell wurde
die Roboterbewegung durch von Hand entworfene Modelle bestimmt. Während diese
Modelle für strukturierte industrielle Umgebungen, in denen die Variabilität minimal ist
(z. B. Palettierroboter, die ähnlich geformte Kartons handhaben), effektiv sind, greifen
sie in komplexeren Umgebungen, wie z. B. in häuslichen Räumen, die mit verschiedenen
Objekten wie Besteck, Flaschen und Tassen gefüllt sind, zu kurz.

Die datengesteuerte Bewegungserzeugung, die oft als Lernen aus Demonstrationen oder
Nachahmungslernen bezeichnet wird, stellt eine vielversprechende Lösung für diese kom-
plexen Umgebungen dar. Ziel ist es, Robotern durch Demonstrationen von menschlichen
Experten das gewünschte Verhalten beizubringen. Die Stärke dieses Ansatzes zeigt sich in
seinen transformativen Auswirkungen auf Bereiche wie Computer Vision und natürliche
Sprachverarbeitung, wo tiefe generative Modelle erfolgreich Bilder und Texte erzeugt
haben. In der Robotik haben die derzeitigen datengesteuerten Modelle jedoch immer
noch Probleme, die gleiche Bandbreite an Generalisierung und Robustheit zu erreichen.

In diesem Zusammenhang ist diese Arbeit von den erfolgreichen Fällen der Bild- und
Texterzeugung inspiriert. Eine kritische Einsicht untermauert unsere Untersuchung: Ein
wichtiger Faktor für die Generalisierung sowohl bei der Bild- als auch bei der Texterzeu-
gung sind die gewählten Architekturen. Während bildgenerative Modelle Architekturen
wie Convolutional Neural Networks verwenden, um lokale geometrische Merkmale in
Bildern zu erfassen, verlassen sich textgenerative Modelle auf Strukturen wie Transfor-
mers, um zeitliche Merkmale abzuleiten. Vor diesem Hintergrund geht die Arbeit in dieser
Dissertation der folgenden Frage nach: Welches sind die architektonischen Elemente,
die wir in unsere Modelle integrieren sollten, um Roboterbewegungen korrekt zu
generieren?

In dieser Richtung, in dieser Arbeit schlagen wir drei verschiedene Arbeiten, die die Inte-
gration von verschiedenen Robotik-relevanten Eigenschaften in der generativen Modelle

ix

wie Stabilität, Geometrie und Composability zu erkunden.
(1) Mit ImitationFlows untersuchen wir das Problem der Integration von globaler Sta-
bilität in Bewegungspolitiken. Wir schlagen eine neuartige Architektur vor, die die Ex-
pressivität von Normalizing Flows mit der Garantie des Lernens von global stabilem
Verhalten ausnutzt. Wir zeigen, dass diese Modelle verwendet werden können, um stabiles
Bewegungsverhalten im Endeffektor-Raum des Roboters darzustellen (6D-Position und
-Orientierung); ein nützlicher Raum für mehrere Roboteraufgaben.
(2) Mit Composable Energy Policies untersuchen wir das Problem der Kombination meh-
rerer Bewegungspolitiken zur Lösung multikriterieller Probleme. Wir erforschen die Zu-
sammenhänge zwischen multikriterieller Bewegungsgenerierung und energiebasierten
Modellen und schlagen ein neuartiges Modell zur Kombination von energiebasierten
Strategien in beliebigen Räumen vor.
(3) Mit SE(3)-DiffusionFields untersuchen wir das Problem des Lernens nützlicher Kos-
tenfunktionen für die Bewegungsplanung. Wir schlagen vor, Diffusionsmodelle an die
Lie-Gruppe SE(3) anzupassen, was uns erlaubt, Diffusionsmodelle im Endeffektorraum des
Roboters zu entwerfen. Wir zeigen, dass wir diese Diffusionsmodelle verwenden können,
um Greifposenverteilungen darzustellen und sie in Bewegungsplanungsproblemen als
Kostenfunktion zu nutzen.
Jede der vorgeschlagenen Methoden wurde sowohl in simulierten als auch in realen
Experimenten evaluiert, um ihre Leistung für reale Roboterprobleme zu demonstrieren,
und wir haben die Codebasis der Methoden als Open Source zur Verfügung gestellt, um
die Community zu ermutigen, auf unseren vorgeschlagenen Lösungen aufzubauen.

Insgesamt erforscht diese Arbeit neue Wege, um tiefe generative Modelle für Robotik-
probleme zu nutzen. Wir zeigen den Nutzen der Integration von Robotik-relevanten
Merkmalen wie Geometrie und Kompositionsfähigkeit mit tiefen generativen Modellen.
Dabei profitieren wir von der Ausdruckskraft tiefer generativer Modelle und verbessern
gleichzeitig die Generalisierung dank richtig gewählter induktiver Verzerrungen.

x

Acknowledgment

The past five years have been an incredible journey. The time spent pursuing my Ph.D.
has helped me develop into a better researcher and person. The research presented in
this dissertation is a testament to the invaluable contributions and unwavering support of
countless individuals.

At this point, I would like to express my heartfelt gratitude to each and every one of them:

To my mentor; Jan Peters, for inspiring me to become a great roboticist, for advising me
on how to do good research, for giving me the freedom to follow my own research ideas
and for providing the perfect environment to develop them, and for providing valuable
feedback and guidance for my future career.

To the three wise magi; Davide, Carlo, and Georgia who helped me shape my ideas into
tangible works, taught me how to think through the problems, and provided me with
invaluable feedback to improve the way I research and write.

To the knights of IAS, Puze, Joe, Niklas, Joao, Pascal, Junning, Tuan, An, Kay, Samuele and
many other members of IAS who inspired me with their bright minds and hard work and
made the whole journey fun.

To my external collaborators, Anqi, Bala, Karl, Sasha, and Michelle, who taught me
a lot, showed me new ways of thinking, and guided me through my internship and
collaborations.

To my friends Rafa, Laura, Juancho, Dani, Manu and Barbara, who made the German
winters warmer and the summers brighter.

To my wife Margot, who has been the biggest emotional support on this journey. For
understanding me, for waiting for me, for supporting me, and for every single moment
we shared.

xi

To my family and all my friends in the Basque Country, who have reminded me that there
is a warm place where I can always return to recharge my batteries.

xii

Contents

1 Introduction 1
1.1 Contributions . 4
1.2 Thesis Outline . 6

2 Foundations and Related Work 9
2.1 Foundations on Motion Generation . 9

2.1.1 Time-Correlated Trajectory Generators 11
2.1.2 Motion Policies . 12
2.1.3 Motion Optimization . 14

2.2 Learning Motion Generators from data . 16
2.2.1 Sampling Models . 18
2.2.2 Scalar Fields . 21
2.2.3 Vector Fields . 24

3 Globally Stable Policies with Flow-Based Models 27
3.1 Introduction . 28
3.2 Learning Stable Vector Fields with Normalizing Flows 29

3.2.1 Preliminaries . 30
3.2.2 Modeling Stable Vector Fields with Normalizing Flows 32

3.3 From Euclidean spaces to Lie Groups . 35
3.3.1 Background . 35
3.3.2 Problem Statement . 37
3.3.3 Stable Vector Fields on Lie Groups 37
3.3.4 Bounded Flows as transformation fθ 42

3.4 Experimental Results . 44
3.4.1 Network Evaluation in S2 manifold 45
3.4.2 Evaluation of SE(2) Stable vector fields in a 2D peg-in-a-hole task . 46
3.4.3 Learning a pouring task with SE(3) stable vector fields 47

xiii

3.5 Related Work . 49
3.6 Discussion & Conclusions . 49

4 Composability and Geometry on Energy-Based Policies 51
4.1 Introduction . 52

4.1.1 Overview of APF and RMP . 54
4.2 Composable Energy Policies . 56

4.2.1 Motivation . 56
4.2.2 Problem statement . 56
4.2.3 Composable energy policies method 57
4.2.4 Optimization of composable energy policies 59

4.3 An inference view on policy composition 62
4.3.1 Riemannian Motion Policies as Composable Energy Policies 65

4.4 Composable energy policies for robot reinforcement learning 68
4.5 Experimental evaluation . 70

4.5.1 Visual 2D particle environment . 71
4.5.2 Reaching through clutter environments 73
4.5.3 Learning with structured policies 83

4.6 Related work . 88
4.7 Discussion . 91
4.8 Conclusion and future work . 92

5 Diffusion Models on SE(3) for Motion Planning 95
5.1 Introduction . 96
5.2 Preliminaries . 98
5.3 SE(3)-Diffusion Fields . 99

5.3.1 From Euclidean diffusion to diffusion in SE(3) 99
5.3.2 Architecture & training of Grasp SE(3)-DiffusionFields 101

5.4 Grasp and motion optimization with diffusion models 102
5.5 Experimental Evaluation . 104

5.5.1 Evaluation of 6DoF grasp pose generation 104
5.5.2 Performance on grasp and motion optimization 106
5.5.3 Grasp and motion optimization on real robots 107

5.6 Related Work . 108
5.7 Conclusions . 109

6 Conclusion 111
6.1 Summary of Contributions . 111

xiv

6.2 Open Challenges and Future Work . 112
6.2.1 Out-of-distribution generation . 113
6.2.2 Scaling-up data . 114

A Appendix 117
A.1 ImitationFlows Stability evaluation . 117
A.2 A Control as Inference view for Composable Energy Policies 119

A.2.1 Optimality Guarantees . 121
A.3 Experiments . 123

A.3.1 Reaching through a cluttered environment 123
A.3.2 Learning to hit a puck . 124

A.4 A practical overview of energy policies . 125
A.4.1 Basic local reactive energies . 126
A.4.2 Learning energy policies from data 132
A.4.3 Q-function in optimal control and reinforcement learning 133

B Supplementary Material 135
B.1 Conference Papers . 135
B.2 Journal Articles . 136
B.3 Preprints . 136
B.4 Workshop Papers . 136

C Curriculum Vitae 139

Glossary 143

List of Figures 146

List of Tables 151

Bibliography 153

xv

1. Introduction

”In the robot’s maze, where paths were once concealed,
With data’s dance, the true trajectory’s revealed.”

GPT-4

A perennial challenge in Robotics is: How do we program the precise motion a robot must
follow to accomplish a specific task? This pivotal question gives birth to the concept of Robot
Motion Generation1. At its essence, Robot Motion Generation endeavors to generate
a feasible sequence of actions that enables a robot to navigate the complexities of its
environment and execute tasks with precision and efficiency. Traditional approaches [105,
182, 117, 119, 188] often involve a modular engineering methodology, with each module
designed to address a particular facet of the task. Consider the illustrative example
on Figure 1.1 of an industrial robot, tasked with transferring boxes from one pallet to
another. This seemingly straightforward task unfolds into a myriad of considerations that
the engineer must take into consideration: adherence to joint limits, collision avoidance,
ensuring secure grasping of boxes, and the generation of fluid, uninterrupted trajectories,
to name a few.

Despite the success of automation in our industrial warehouses, this success is conditioned
on a highly structured and limited environment. The boxes the robot manipulates always
have the same shape, the scene remains fixed and the task the robot should solve is always
the same. Now, let us consider the task of tidying up the kitchen on Figure 1.1. The scene
presents a highly unstructured situation in which the objects to interact are highly diverse;
from mugs and bottles to dishes. Additionally, the robot should be able to adapt to possible
changes in the scene due to a person entering the kitchen and we might require different
motion behaviors to interact with different objects. Despite both tasks can be represented
1We use the term Robot Motion Generation to encapsulate all types of algorithms and models that generate
motion for robots, from myopic Motion Control models [105, 182] to Motion Planning algorithms [117,
188].

1

Figure 1.1.: (Left) A robotics box palletizing system. (Right) A cluttered kitchen to tidy up.
Despite both tasks can be represented as a sequentiation of pick-and-place
operations, the second remains unsolved.2

as a series of consecutive pick-and-place operations, while the first is solved daily, the
second remains unsolved. We consider this is due to two major bottlenecks in traditional
approaches:
(I) The high variability in the objects to interact would require the engineer to model
a desirable behavior for each object and if the number of objects is too high, this is an
intractable approach.
(II) Despite different behaviors could be modeled for different objects, some desirable
behaviors might be hard to formalize in code while providing a human demonstration of
the desired behavior is easier and more intuitive.

A promising research direction to tackle this problem is to use data-driven models
rather than engineered models to program robot behaviors. Learning from demon-
strations [208, 14, 6], the paradigm of learning robot behaviors by imitating expert
demonstrations has started to show some impressive results in both locomotion [147]
and autonomous driving [264] moving the robots out of the research labs. Nevertheless,
learning-based methods for robotics manipulation remain confined to the research labs.
Due to the high variability and dimensionality of robotics manipulation (See Figure 1.1),
current approaches have not been able to showcase robust generalization. This state of
affairs might be directly connected to two possible reasons:
(I) We are training our models on too small datasets, unable to capture the whole com-
plexity of the task to be solved.
(II) We are using models that are not properly tailored for robotics data, leading to poor

2A robotics box palletizing system, image from ABB Robotics - Palletizing Cartons. A cluttered kitchen,
image from Justin Lambert/Getty Images.

2

generalization beyond the data regime.

The importance of properly tackling these two problems has been recently shown es-
sential in both Natural Language Processing (NLP) and Computer Vision (CV). Recent
advancements in Deep Generative Models, such as image generation [185, 204, 203,
181] or text generation [101, 20, 267] were achieved by developing models that can
learn the underlying distribution of vast amounts of data and properly generalize beyond
the demonstrations. The success of deep generative models in image and text generation
relies on two critical components. On the one side, highly expressive generative models
(Energy Based Models (EBM) [42], Normalizing Flows (NFlow) [198, 27], Diffusion Mod-
els [227, 80]) leverage the information on massive amounts of data. Equally important,
carefully designed model architectures (U-Net [200], Transformers [248]) encode the
unique geometric or temporal features of the data and improve the generalization of the
generative models beyond the dataset. Convolutional Neural Networks extract local visual
features in images while Transformers find temporal correlations in text sentences or
videos.

This thesis is built inspired by these success cases. What are the lessons that we, as
roboticists, could learn from the success in other areas of AI? How should we build our
Learning from Demonstration models for robot motion generation? As previously stated,
an integral part of proper generalization on deep generative models is the choice of the
model. Thus, our research is focused on searching those models and algorithmic principles
that allow a proper deployment of deep generative models for robotics manipulation.
Which are those inherent computational and mathematical principles that roboticists have
exploited in Classical Robotics? How can we distill these principles in data-driven deep
generative models to enhance generalization? In essence, the research question that drives
this thesis is:

How can one integrate existing knowledge and data-driven generative modeling
methods to learn motion generation models, benefiting from the goods of each field?

In this thesis, we have identified two essential principles for robot motion generation;
geometry of robot skills, and skill composability. The importance of geometry in
modeling robot skills cannot be understated. For example, when modeling a grasping
policy, the task is defined in the robot’s end-effector space, necessitating its modeling on
the Lie group SE(3). If we learn this policy directly in the robot’s configuration space, it
might lead to bad generalization under novel contexts. On the other hand, complex robot
tasks are compositional in nature. A simple task, such as pouring water on some flowers,
requires solving multiple tasks concurrently: avoiding collisions with the environment,

3

considering the robot’s joint limits, and reaching to the flowers to water them. Thus, we
should take it into consideration, instead of learning monolithic policies.

1.1. Contributions

This thesis examines one of the most straightforward strategies for data-driven motion
generation. The abstract procedure consists of two interleaved steps:

1. Given a set of data demonstrations of a desirable behavior, fit a density model/gen-
erative model that covers the underlying distribution of the data.

2. Exploit the learned model to generate robot motion rather as a control policy or
integrated into a motion planning problem.

This high-level strategy has been widely explored in the robot learning literature and it is
popularly known as Learning from Demonstration [209, 193] or Imitation Learning [208,
163]. Depending on the type of algorithm and model that is learned, Learning from
Demonstration problems are classified into different fields. Behavioral Cloning [180,
52] or Motion Primitives [207, 166] propose learning control policies. These policies
are deployed as high-frequency closed-loop controllers and are myopic with respect to
future events. Inverse Optimal Control [96, 50] and Inverse Reinforcement Learning [273,
56] fields instead propose learning cost functions for motion planning. Motion planning
methods are computationally more expensive than the policies leading to slower control
frequencies. In favor, these methods look ahead to the future, finding the motion that
best maximizes future outcomes. Despite being different approaches, all of them can be
described as a special case of the above high-level strategy.

The purpose of this thesis is to explore the state of the art in these fields, bridging explicit
connections with the field of deep generative models and suggesting methods to move the
field forward:

• In Chapter 2, the foundations of data-driven robot motion generation are presented.
We explore the different deep generative models that have been used in fields such
as Behavioral Cloning, Motion Primitives, or Inverse Optimal Control and present
them in a common framework that allows us to understand their relation to deep
generative models. This perspective allows us to find out how novel approaches in
deep generative models such as Diffusion Models could be applied to Robot Motion
Generation problems.

4

Then, in three separate chapters, we explore three possible directions to integrate robotics-
relevant features (Geometry, Composability, and Stability) with deep generative models:

• In Chapter 3, we explore the problem of integrating Stability guarantees into
our policies. Despite some previous works [103, 102, 158] in the field of Motion
Primitives have explored the problem of designing motion generation models that
have stability guarantees; most of these models are limited in expressivity. With
ImitationFlows (iFlows) [242, 239], we introduce a model to represent globally
stable policies with NFlow. This combination allows exploiting the expressivity of
a deep generative model such as NFlow with a robotics-related desirable property,
Stability. Given multiple robot tasks are usually defined in the end-effector space,
we also adapt this policy to the Lie Group SE(3), to represent globally stable policies
in the end-effector space.

• A limitation of policies is that usually are learned to satisfy a single objective. Never-
theless, in robotic tasks, it is common to require motion behaviors that satisfy multiple
objectives jointly (avoid collisions, take in mind joint limits and velocity limits, reach
a target…). In Chapter 4,we study the problem of composing multiple policies to
solvemulti-objective robot tasks. The problem ofmulti-objectivemotion generation
has been explored with methods that range frommotion control approaches (Rieman-
nian Motion Policies (RMP) [191, 127]) to motion planning ones (Model Predictive
Control (MPC) [255, 13, 82]). With Composable Energy Policies (CEP) [240, 241],
we draw connections between EBM [78, 121] and multi-objective motion generation
methods. EBM allow the motion generation in a modular approach, with each EBM
representing the desired behavior for each objective. We explore the benefits and
limitations of composing multiple EBM to generate robot motion and relate it with
RMP and MPC methods.

• Despite learning EBM is the most common approach to learning cost functions in
multi-objective motion optimization problems, they have several problems. The
learned cost functions are usually non-smooth leading to problems when running it-
erative optimization algorithms. In Chapter 5,we dive into the problem of learning
useful cost functions formotion planning. With SE(3)-DiffusionFields (SE(3)-DiF)
[244], we explore the application of Diffusion Models in motion planning problems.
In the context of Inverse Optimal Control (IOC) and Inverse Reinforcement Learning
(IRL), EBM are usually learned to represent cost functions. In this chapter, we
present the limitations of learning EBM and show the benefits of Diffusion Models
as cost functions. To make the Diffusion Models valid to represent cost functions in
the end-effector space (to learn for example grasp pose costs), we adapt the training

5

Chapter 1
Introduction

Chapter 2
Foundations & Related Work

Chapter 3
Globally Stable Policies
with Flow-based models

Chapter 4
Composability & Geometry
on Energy-Based Policies

Chapter 5
Diffusion Models on SE(3)

for Motion Planning

Chapter 6
Conclusions

Figure 1.2.: Structure of the thesis. Chapters 3 to 5 are self-contained and in-
troduce a novel method to exploit deep generative models for Motion
Control and Motion Planning. Chapter 3: ImitationFlows , Chapter 4:
Composable Energy Policies and Chapter 5: SE(3)-DiffusionFields

.

and sampling algorithms of the Diffusion Models to the Lie Group SE(3) and exploit
them in pick-and-place tasks.

1.2. Thesis Outline

This thesis is structured into six separate chapters (See Figure 1.2). We introduce the
foundations and related work in Chapter 2. Then in Chapters 3-5, the main methods are
introduced. The concluding Chapter 6 summarizes the thesis and states the conclusions.

Chapter 1 introduces the topic of this thesis and provides a motivation. Then, highlights
the contributions of this work.

Chapter 2 sets the fundamentals on both motion generation and deep generative models
and reviews the current state of the art in deep generative models for motion control and

6

planning.

Chapter 3 proposes a model to represent globally stable policies using the expressivity
of Normalizing Flows. In the first part, the approach to represent globally stable vector
fields with Normalizing Flows is presented. In the second part, the method is extended to
represent globally stable policies on non-Euclidean manifolds, such as Lie groups.

Chapter 4 builds a connection between EBM and multi-objective motion generation
methods such as RMP [191] and MPC [13]. It is shown that both methods can be framed
as the solution of a composition of multiple EBM from a probabilistic perspective. From
this, we can integrate learned EBM with defined cost functions in a natural way, benefiting
from both worlds.

Chapter 5 proposes using Diffusion Models in motion planning problems. The work
explores the difference between Diffusion Models and Energy-Based Models for planning
and showcases the benefits of a pick-and-place planning problem. Additionally, a novel
deep generative model is introduced to generate SE(3) grasp distributions.

Chapter 6 summarizes the thesis and presents the conclusions. Then, open challenges
in learning deep generative models for motion generation are presented and propose
possible future directions.

7

2. Foundations and Related Work

This chapter is structured into two main sections. The first section offers a comprehensive
overview of the various approaches applied to robot motion generation, framing these
methods from a probabilistic perspective. This framing facilitates a natural connection with
deep generative models. In the second section, we delve into an array of deep generative
models, detailing their diverse training methodologies and providing an overview of their
applications in the field of robotics.

2.1. Foundations on Motion Generation

Given the state of the robot s P Rn of dimension n, a motion generator can be described
as a system or algorithm that produces a sequence of desired states over time τ =
(s1, s2, . . . , sT) P RTˆn where T denotes the temporal horizon. The sequence of states τ
is commonly referred as trajectory. For the trajectory to be considered physically feasible,
there must exist a sequence of actions (a1,a2, . . . ,aT´1) that enables the robot to follow
this path. The generated trajectory is then utilized to define the desired motion from an
initial state s0 to a desired state sT , in accordance with the motion behavior represented
by the trajectory. In robot motion generation, the state s might represent positions x,
velocities ẋ or/and accelerations ẍ and it can relate to robot limbs, joints, end-effectors,
or the whole robot in the case of mobile robots.

The challenge of motion generation lies in the design of trajectory generation models
τ „ ρ(τ) that induce the desirable behavior to accomplish a given task. Due to the
high dimensionality and typically large temporal horizon T of the trajectories, these
trajectory generators are often designed in a structured manner. Instead of creating
models that directly output the entire trajectory τ P RTˆn, it is more common to design
lower-dimensional models. These may include policies π(a|s) that produce an action
given the current state, or cost functions c(¨) : Rn Ñ R that assess the value of a particular

9

Prediction Horizon

Re
ac
tiv

ity

time-correlated traj. generator

motion policies (chapter 3)
composable energy policies (chapter 4)

receding-horizon control
diffusion traj. generator

motion optimization (chapter 5)
sampling-based search

Figure 2.1.: A Comparative Landscape of Motion Generation Algorithms in the Reactivity-
Prediction Horizon Plane

state at a given time. However, there are notable exceptions, such as time-correlated
normal distributions [166, 128] and diffusion-based models [90, 25, 29], which explicitly
model the entire trajectory distribution.

In the Robotics literature, there have been multiple approaches to represent robot motion
generators that range from motion control methods [105, 191, 103] to motion planning
algorithms [119, 188]. In Figure 2.1, we organize different motion generators along two
axes: Prediction Horizon and Reactivity.
Reactivity refers to the capability of a motion generator to adapt to environmental changes.
Motion policies, such as [105, 191] have relatively low computational requirements.
This enables the generation of fast, closed-loop control actions, allowing for the prompt
alteration of the motion to accommodate changes, such as the sudden appearance of
obstacles. In contrast, sampling-based motion planners, such as Rapidly-exploring Random
Trees (RRT) [119], generate motion offline due to their computational demands. As a
result, they execute motions in an open-loop control mode, lacking the ability to react to
changes in the scene.
Prediction Horizon refers to the capability of the motion generator to look ahead. Myopic
motion generators [191, 241] create the desired robot movements without predictive look-
ahead, making decisions based solely on the current state. In contrast, planning algorithms
such as Covariant Hamiltonian Optimization for Motion Planning (CHOMP) [188] or
Stochastic Trajectory Optimization for Motion Planning (STOMP) [97], choose the motion
based on the future implications of the choice. These algorithms generate trajectories by
considering the task’s fulfillment at each time step, thereby incorporating foresight into
the motion generation process.

10

Figure 2.2.: An illustration of the generation procedure for three different motion gen-
eration models. Time-Correlated Trajectory Generators sample the whole
trajectory from a Gaussian distribution, Motion Policies generate trajectories
autoregressively sampling the next state given the current state, and Motion
Optimization algorithms generate the trajectory by solving an optimization
problem over the whole trajectory.

In the following, we present an overview of a set of robot motion generators: Time-
Correlated Trajectory Generators (Section 2.1.1), Motion Policies (Section 2.1.2), and
Motion Optimization methods (Section 2.1.3). We illustrate the different generation
processes for each motion generator in Figure 2.2.

2.1.1. Time-Correlated Trajectory Generators

Time-correlated trajectory generation models [97, 166, 154] are one of the simplest types
of motion generators. These models propose representing the motion generator as a
time-correlated Gaussian distribution

ρ(τ) = N (τ |µτ ,Στ), (2.1)

where µτ = [µs1 ,µs2 , . . . ,µsT] denotes the mean state for each time-step andΣτ denotes
the covariance matrix. This covariance matrix is constructed to establish correlations
between states that are temporally proximate. Owing to the time-correlated covariance,
the generated trajectories exhibit smoothness, a critical attribute for ensuring physical
plausibility.

Different works differ in the way the time-correlated covariance matrix is computed. In
STOMP [97], the covariance is derived from a dynamic system. LetA be a finite difference

11

matrix that relates the position τ , and accelerations τ̈ , τ̈ = Aτ ,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
´2 1 0 . . . 0 0 0
1 ´2 1 0 0 0

...
0 0 0 1 ´2 1
0 0 0 . . . 0 1 ´2
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.2)

Then, the covariance matrix is computed as Σ´1
τ = A⊺A, that encourages the gen-

erated trajectories to have small accelerations. In Probabilistic Movement Primitives
(ProMP) [166], the covariance is derived given a set of smooth basis functions

ρ(τ) =

ż

ω
N (τ |Ψ⊺ω,Στ)N (ω|µω,Σω)dω = N (τ |Ψ⊺µω,Ψ

⊺ΣωΨ+Στ) (2.3)

where Ψ denotes the smooth basis function, ω denotes a set of parameters that are aligned
to different temporal instances and Σω and Στ denote diagonal covariance matrices.

A common application for these types of models is as variational approximation distribution
in motion optimization problems [153, 107, 136]. These models approximate complex
distributions in optimization problems, facilitating a fast trajectory generation. Another
application is in Learning from Demonstration [166, 167, 214]. In [214], time-correlated
trajectory generators were further developed to include a conditioning variable c, repre-
sented as ρ(τ |c). This advancement enables the trajectory generator to adapt to varying
environments, enhancing its applicability and versatility.

An interesting extension of these models is by substituting the normal distribution with
Diffusion Models. In [90, 29, 25, 197, 84, 71, 257], it was shown that Diffusion Models
are expressive enough to learn multi-modal trajectory distributions. Despite this expres-
siveness, a notable drawback is the sampling process. It involves an iterative method,
reminiscent of motion optimization algorithms, which unfortunately results in increased
sampling times.

2.1.2. Motion Policies

Motion policies [104, 191, 52, 242] propose modeling the robot behavior with a state-
conditioned policy π(a|s) where a denotes the action applied at state s. Given known

12

dynamics st+1 = f(st,at), we can formulate autonomous transition dynamics ρπ(st+1|st).
Utilizing these dynamics, trajectories can be generated using an autoregressive model

ρ(τ) = ρ(s1)
T

ź

t=2

ρπ(st|st´1), (2.4)

where ρ(s1) denotes the initial state distribution. The process of trajectory generation
commences with sampling an initial state s1 „ ρ(s1). Subsequently, the trajectory evolves
iteratively by sampling from the autonomous transition dynamics st+1 „ ρπ(st+1|st) at
each step in an autoregressive way.

Motion policies are particularly advantageous for generating reactive motion. Their
efficiency in sample generation, coupled with their conditioning on the current state of
the robot, enables swift and responsive adaptation to abrupt alterations in both the robot’s
state and the surrounding environment.

The literature is vast in motion policies. Most of the motion policies in the literature are
modeled with deterministic [103, 191] or Gaussian [23] models. Nevertheless, some
recent works have explored more complex density models such as Normalizing Flows [252,
141, 15, 242] or EBM [52, 240]. Regarding applications, motion policies have been applied
for reactive navigation [105, 191], Reinforcement Learning (RL) [218, 127, 241] and
Imitation Learning [103, 242, 259].
Different works differ in the policy architecture. Different architectures impose different
inductive biases into the policy. A wide set of works have explored the problem of
integrating stability guarantees [103, 102, 242, 108, 49, 206]. Stability is a strong bias in
the motion policies to avoid diverging motions. Imposing composability is also common in
motion policies in order to satisfy multiple objectives jointly (collision avoidance, reaching
a target …) [105, 240, 259, 191, 233]. Multiple works have explored representing the
motion policies in non-Euclidean spaces [239, 132, 10]. This allows the design of policies
in the robot’s end-effector space (Lie Group SE(3)) [239] or to guarantee safety constraints
by representing the motion in the constraint manifold [131].

In Chapter 3 and Chapter 4, we focus our research on motion policies. In Chapter 3,
we explore stability in motion policies, proposing novel motion policy architectures that
combine stability with deep generative models. In Chapter 4, we explore composability
in motion policies. We study the connections between EBM composable property and
composable motion generation, proposing novel approaches for motion generation.

13

2.1.3. Motion Optimization

Motion optimization algorithms [188, 97, 22, 212, 153, 120] describe the motion genera-
tion problem as a constraint optimization problem

τ ˚ = argmin
τ

J(τ) (2.5)

s.t. γi(τ) ď 0, i = 0, . . . ,m

with J(τ) being the objective function that should beminimized and γi constraint functions
such as joint limits or task-dependant constraints. It is common to represent the objective
function as a composition of multiple cost functions c(τ)

J(τ) =
ÿ

k

ck(τ), (2.6)

with each cost representing a different objective the robot should satisfy. These costs
could represent trajectory smoothness, obstacle avoidance, self-collision avoidance, pose
manipulability, or reaching goal poses to name a few. Additionally, it is common for the
cost functions not to depend on the whole trajectory. For example, collision avoidance is
described with respect to the state c(st), and trajectory smoothness is evaluated given
two adjacent states c(st, st+1).

Motion optimization can be framed from a probabilistic inference perspective [234, 235,
126], providing an intuitive connection to generative models. From this view, motion
optimization is cast as a Maximum a Posteriori (MAP) problem

τ ˚ = argmax
τ

log ρ(τ |J = 0) = argmax
τ

log ρ(J = 0|τ) + log ρ(τ) (2.7)

with ρ(J = 0|τ) being the likelihood of τ being optimal for the objective J and ρ(τ) a
prior distribution over τ . The likelihood function is described in terms of the objective
function ρ(J = 0|τ)9 exp (´J(τ)). Note that from this view, we can represent a cost
function as an EBM, ρ(τ)9 exp(´c(τ)) and also the constraints ρ(τ)9 exp(´γ(τ)).

Finding τ ˚ in Equation (2.7) requires solving a nonlinear optimization problem, that is
commonly solved by iterative optimization algorithms. We classify the algorithms between
gradient-based optimization algorithms [188, 153] and sampling-based optimization [97,
243] algorithms. We present an example of a gradient-based optimization algorithm
(CHOMP [188, 274]) in Algorithm 1 and an example of sampling-based optimization
algorithm (STOMP [97]) in Algorithm 2.

14

Algorithm 1: Gradient-based Motion Optimization example (CHOMP) [188, 274]
Given :τ : Initial trajectory, J objective function,M :trajectory metric
, α: step-size

for i Ð 0 to I ´ 1 do
∇jτ = ∇τJ(τ); // Compute objective gradient on current τ
τ Ð τ ´ αM∇jτ ; // Update trajectory with metric M

return τ ;

Algorithm 2: Sampling-based Motion Optimization example (STOMP) [97]
Given :µτ : Initial trajectory mean, J objective function,M :trajectory metric

for i Ð 0 to I ´ 1 do
τ0, . . . , τn „ N (µτ ,Σ); // Sample n trajectories with mean µτ

jτ0
, . . . , jτn

= J(τ0), . . . , J(τn); // Evaluate the value of each trajectory
ρτ0

, . . . , ρτn
= Softmax(´1/λjτ0

, . . . ,´1/λjτn
); // Compute probabilities

δτ =
řn

i=0 ρτi(τi ´ µτ); // Compute weighted traj. improvement
µτ Ð µτ + αMδτ ; // Update trajectory

return µτ ;

CHOMP (Algorithm 1) applies a classical gradient-descent optimization with a minor
change. In CHOMP, the gradient update is multiplied with a metricM that will induce the
neighboring trajectory waypoints to update with similar gradients that reduce the overall
acceleration of the trajectory. In contrast with gradient-based optimization methods that
require an explicit gradient of the objective function, sampling-based motion optimization
algorithms approximate the gradient with samples. In particular, in STOMP (Algorithm 2),
the gradient is approximated inspired by the path integral method [232]. Despite these
examples, there exists a vast literature in motion optimization, in which the problem is
solved by Cross-Entropy Method [31] or by Optimal Transport [120] to name a few.

Optimization algorithms aim to search the optimal trajectory τ ˚ by minimizing or maxi-
mizing the objective function J(τ). However, there are scenarios where the goal extends
beyond finding a single optimal solution. Instead, the interest might lie in sampling multi-
ple trajectories from a distribution that is informed by the objective function, expressed
as τ „ ρ(τ), where ρ(τ) is proportional to exp(´J(τ)). In such cases, particularly when
dealing with high-dimensional distributions, Markov Chain Monte Carlo (MCMC) methods
become a powerful tool for generating samples [5].

Langevin Monte Carlo methods, in particular, have shown notable success with learned

15

Algorithm 3: Langevin Monte Carlo
Given :τ : Initial trajectory, J objective function, α: step-size

for i Ð 0 to I ´ 1 do
∇jτ = ∇τJ(τ); // Compute objective gradient on current τ
ϵ „ N (0, I); // Sample noise vector of the trajectory lenght
τ Ð τ ´ α∇jτ +

?
2αϵ ; // Update trajectory

return τ ;

objective functions [90, 244, 29]. We present an example of the Langevin Monte Carlo
method in Algorithm 3. This approach resembles gradient-based optimization but incor-
porates an additional noise component ϵ „ N (0, I) in the trajectory update. Beyond
Langevin Monte Carlo, there exists a plethora of algorithms for sampling from unnormal-
ized distributions, including Metropolis-adjusted Langevin Monte-Carlo [201], Annealed
Langevin Dynamics [224], or Hamiltonian Monte Carlo [12] to name some.

2.2. Learning Motion Generators from data

The primary goal of a generative model is to learn a probability density model ρθ(x),
that accurately captures the underlying probability distribution of the data, denoted as
ρD(x), where x represents the data variable. In Generative Modeling, we operate under
the assumption that the true data distribution ρD(x) is unknown, and that we only have
access to a finite set of samples drawn from this distribution. These samples form a dataset
D : txnuNn=1 where N is the number of samples. The task of learning the generative model
can then be formulated as an optimization problem, where the objective is to minimize the
divergence between the learned distribution ρθ(x) and the true data distribution ρD(x)

θ˚ = argmin
θ

D(ρD(x), ρθ(x)), (2.8)

where D denotes the divergence distance. Note that the choice of the divergence varies
between different generative models. For example, the Jensen-Shannon divergence is
applied when training Generative Adversarial Networks (GAN) [67], while the Kullback-
Leibler (KL) divergence is used for Variational Autoencoders (VAE) [106]. Once this
distribution is captured, the learned model ρθ(x) can generate new samples that look as
if they were drawn from the data distribution.

16

Model Model Type In Robotics Literature
Energy-Based Model Scalar Field [50, 52, 65, 96]
Affordance Model Scalar Field [268, 216, 217, 63]
Diffusion Model Vector Field [244, 90, 29, 133]
Generative Adversarial Network Sampler [161, 124, 270, 150]
Variational Auto-Encoder Sampler [87, 152, 176, 140]
Normalizing Flow Scalar Field/Sampler [242, 187, 114, 260]

Table 2.1.: List of deep generative models applied for Motion Generation in robotics. The
models are classified based on the output they generate. We refer to them
as Scalar Field when the model outputs a scalar value, Vector Field for the
models that output a vector and Sampler for the models explicitly generate
samples.

There exists a widemyriad of deep generative models, from VAE [106] to EBM [121, 78], or
Denoising Diffusion Probabilistic Models (DDPM) [222, 80]. The models differ from each
other based on their training algorithms and the nature of their outputs. While some gen-
erative models explicitly generate samples (GAN, VAE) others require MCMC algorithms
to generate samples (EBM, Noise Conditioned Score Network (NCSN) [224]). While some
output a scalar value representing the energy of the learned density model (EBM), others
output the score of the density model (NCSN, DDPM). In the context of motion generation,
we cluster them based on their application in motion generation problems. We classify
them into three types: Sampling models, Scalar Fields, and Vector Fields. In Table 2.1,
we present a classification of the different generative models based on their application in
motion generation problems and we visualize their differences in Figure 2.3.

Sampling Models are models that allow a fast and direct generation of samples x „ ρθ(x).
These models have been applied as motion policies [242] or as initial sampling distributions
for motion planning problems [87, 161]. GAN, VAE or NFlow are some examples of
generative models that are sampling models.
Scalar Fields are models that output a scalar value assigned to each input. They can
output the log probability log ρ(x) or the unormalized log probability. In the context of
motion generation, they are commonly used as cost functions c(x) [50, 268]. Affordance
models or EBM are Scalar Field type generative models.

17

Figure 2.3.: An illustration of the three types of deep generativemodels: SamplingModels,
Scalar Fields, and Vector Fields. Sampling Models generate the samples
directly, while Scalar Fields and Vector Fields require an additional method
such as MCMC to generate samples.

Vector Fields are models that output a vector representing the score of the learned
distribution ∇x log ρ(x). In the context of motion generation, they are integrated as the
gradient of the cost function ∇xc(x). Gradient-based optimization methods do not use
the cost value, but rather they follow the direction given by the gradient of the cost. Thus,
it makes sense in these situations to represent the gradient field directly rather than the
cost. Generative models such as NCSN, DDPM, or Flow Matching Models fall into this
category.

In the following, we present the algorithms that have been used to train these models
in robotics-related problems. We show the modifications that have been applied in the
literature to adapt the training pipelines of these models to robotics-related problems.

2.2.1. Sampling Models

Sampling Models are the most straightforward approach to generate robot motion. In
contrast with Scalar Fields or Vector Fields that require running a MCMC iterative process
for n steps to generate samples (Algorithm 3), Sampling Models allow a direct generation
of the samples, thus requiring a smaller computational time to obtain the samples. For the
cases of VAE, GAN, and NFlow, the generation is divided into two steps. First, a sample is
generated in a latent space z „ N (0, I). Then, the sample is transformed given a learned
function x = Φθ(z).

In the field of Robotics, these types of models have been used both as policies π(a|s)
learned by Behavioral Cloning [242], as initial sampling distribution for motion planning

18

and optimization problems [161, 87, 107] or simply as generative models [124, 152].
Note that due to the high dimension of the trajectories, these types of models are usually
exploited to generate lower dimensional outputs, such as grasp poses [161, 152], collision-
free states [87] or inverse kinematics solutions [124, 4].

Training Sampling Models

There exist multiple deep generative models that fall in this class: GAN’s generator and
VAE’s decoder are explicit sampling models. These models allow the generation of samples
but don’t allow the evaluation of samples. NFlow are both sampling models and scalar
fields as they allow both the generation of samples and assesing the probability of a
sample.

Normalizing Flows NFlow [198, 165, 27] are powerful because they can learn complex
distributions through a series of invertible transformations, allowing for both efficient
sampling and exact likelihood evaluation. Given a latent normal distribution z „ N (z|0, I)
and a learnable invertible neural network x = Φθ(z), NFlow define the distribution on x

ρθ(x) = N
(︁
Φ´1
θ (x)|0, I

)︁
|detJΦθ

(x)| (2.9)

in terms of the latent distribution N (z|0, I) and the determinant of the Jacobian JΦθ
=

BΦ´1
θ (x)/Bx [198]. Given a dataset x „ ρD(x), NFlow are trained by minimizing the

negative log-likelihood

L(θ) = ´Ex„ρD(x) [log ρθ(x)] (2.10)
= ´Ex„ρD(x)

[︁
logN

(︁
Φ´1
θ (x)|0, I

)︁]︁
´ Ex„ρD(x) [log |detJΦθ

(x)|] ,

that weights the probability between the latent distribution and the determinant of the
Jacobian.

In robotics, NFlow are applied to learn a diverse set of variables. In [242, 206, 187], they
are used to learn globally stable transition dynamics. In [115, 114], NFlow are used to
generate informed states for sampling-based motion planning problems, improving the
required time to find a solution. In [260], NFlow are used to generate grasp poses, while
in [4], they are used to generate inverse kinematic solutions.

19

Generative Adversarial Networks Similar to NFlow, GAN frame the generation by first
sampling from a latent normal distribution z „ N (0, I) and then applying a learnable
mapping x = Φθ(z). Given a dataset x P ρD(x), GAN propose learning the generative
model by a min-max problem between the generator model parameterized by θ and a
discriminator parameterized by ψ

min
θ

max
ψ

Ex„ρD [logDψ(x)] + Ez„N (0,I) [log(1 ´Dψ(Φθ(x)))] . (2.11)

The discriminator aims to distinguish between real data samples and the fake samples
generated by the generator, while the generator aims to produce samples that are indis-
tinguishable from real data to the discriminator.

A common application of GAN in robotics is as prior sampling distribution for planning
problems. In [270], an image of the collision scene is provided and generates images
with collision-free informative states for sampling-based motion planning methods. Works
such as [150] have explored the application of GAN for path planning. In [161], GAN are
combined with optimization algorithms to generate grasp poses in a constrained manifold.
In [124], GAN are applied to learn the solutions of an inverse kinematics problem.

Variational Auto Encoders Generating samples with VAE [106] follows the same pro-
cedure of GAN and NFlow. First, a sample is generated in a simple latent distribution
z „ N (0, I) and then a decoder maps the latent variable to our desired space x = Φθ(z).
The VAE also contains an encoder µz,σz = Enc(x) that generates a mean and standard
deviation for a normal distribution in the latent space. The VAE is trained using a loss
function that has two main parts: a reconstruction loss and KL divergence

L(θ, ψ) = Ez„ρ(z|x) [DKL(ρ(z|x), ρ(z))] + Ez„ρ(z|x)

[︁
||Φ(z) ´ x||22

]︁
(2.12)

where ρ(z|x) = N (z|Enc(x)) denotes a Gaussianwith themeanµz and standard deviation
σz are the output of the encoder. ρ(z) = N (0, I) is a Gaussian around zero. While the
KL divergence term encourages the encoder to generate distributions close to ρ(z), the
reconstruction loss aims to decode a latent sample to look as similar as possible to the
input x.

In robotics, conditional VAE have been applied for different problems. In [87], a VAE is
learned to generate collision-free states. Then, the generative model was exploited in
sampling-based motion planning problems such as RRT [119], to generate informative
samples. In [152], a VAE conditioned on a point cloud is trained to generate grasp poses.
The generated poses are prior samples that are further optimized following the gradient

20

of a classifier to improve the grasp pose quality. A common application is to learn skill
embeddings [176, 140, 186]. Given a dataset, we can first train the decoder of a VAE to
generate samples that resemble the data. Then, the learned model can be integrated into
a RL problem, improving the exploration.

2.2.2. Scalar Fields

We use the term Scalar Fields to describe models that, in contrast to Sampling Models,
output a scalar value assessing the quality of an input sample. Generating samples from
these models, therefore, necessitates additional algorithms, such as rejection sampling
or MCMC methods for high-dimensional variables. An important property of Scalar
Fields in contrast with Sampling models is their composability. Given two scalar fields,
we can combine them, generating samples that aim to maximize the probability of both
distributions.
Learning scalar fields have been widely explored in IOC [96, 50] or IRL [273, 56] fields.
Given a set of trajectory demonstrations τ P D with τ : tst,atu

T
t:0, maximum-entropy IOC

and IRL methods learn the stationary state-action distribution ρθ(s,a). The distribution
is usually represented with implicit generative models, such as EBM. Once the model
is learned, it can be integrated as a cost function in a motion planning problem. In
IRL, the learned model is used as a reward function in a RL problem. Nevertheless, the
problem of learning scalar fields has been also explored in different situations in which
the demonstrations are not trajectories. Affordance models [268, 216] propose learning
discrete scalar fields, inpainting the probability over scene images.

In the following, we present the different algorithms that have been applied to train these
scalar fields.

Training Scalar Fields

For the case in which the space is discrete, Cross-Entropy (CE) loss is the most common
approach [268, 216, 217, 68, 63] to fit density models. For continuous spaces, Contrastive
Divergence (CD)[78] and Noise Contrastive Estimation (NCE) [70] are two of the most
popular training algorithms for EBM and widely exploited in robotics.

21

Cross-Entropy Loss While the most popular application is on classification problems,
a wide set of works [142, 266, 268, 149, 216, 217, 68] have applied CE to train robot
policies as discrete distributions. Given a state s or an observation o, the learned model
outputs n one-hot encoded probabilities Eiθ(o) for every action the robot can take, with i
being the action chosen. Given a set of demonstrations x P D, the CE loss is

L(θ) = ´ExPD[log ρθ(x)] = ´ExPD

[︄
log

exp(Exθ)
ř

yPX exp(Eyθ)

]︄
. (2.13)

with X being the set of all possible actions. The probability for a particular action x P X
is computed via Soft-max.

A wide set of works known as Affordance models apply CE loss to train discrete action
distributions. In these models, the learned energy model Eθ(o) receives as input a visual
context input o (2D image [142, 268], scene voxel [217], pointcloud [149] …). Then,
the model outputs an energy heatmap of the same shape as the visual context. In practice,
each ”pixel” is considered as a possible location the robot could move and the pixel one-hot
map provides the likelihood of each pixel to solve the task. In [142, 266, 268, 216] the
visual context is a 2D image and the output is a one-hot pixel map of the same shape. In
[217], the input is a voxelized scene, and the output is a one-hot voxel map. In [63], a
set of 3D ghost points are sampled as possible actions rather than the voxelized space,
reducing the computational complexity and increasing in accuracy. In [68], the input
is a list of 2D images from different views and the output is a heatmap on each image.
The 3D action is then computed by triangularization. In [62, 149], the action space is
placed directly in the point cloud, selecting the point at which we should interact with
the objects in the scene.

Contrastive Divergence EBM represents a learnable distribution as a Boltzmann distri-
bution

ρθ(x) = exp (´Eθ(x))/Zθ, (2.14)

with Eθ the learnable energy model and Zθ =
ş

τ exp (´Eθ(x))dx the normalization
constant. Given a set of demonstrations D = txiu

k
i=0, the negative log-likelihood is given

by

L(θ) = ´Exi„D [log ρθ(xi)] = Exi„D [Eθ(xi)] + logZθ (2.15)

= Exi„D [Eθ(xi)] + log
ż

τ
exp (´Eθ(x))dx.

22

The computation of the normalization constant Zθ might be intractable when applying
the negative log-likelihood for EBM. The computation of Zθ involves an integral over all
possible trajectories, being computationally infeasible for sufficiently high-dimensional
spaces.

A solution to tackle the computation of the normalization constant Zθ was proposed
in CD [78]. In [78], it is shown that ∇θ logZθ = ´Ex„ρθ(x) [∇θEθ(x)]. Then, we can
numerically approximated by drawing samples from ρθ(x)

L(θ) = Ex„D [Eθ(x)] ´ Ex„ρθ(x) [Eθ(x)] . (2.16)

In Equation (2.16), the energy is pushed down for the trajectories in the dataset (positive
samples) and pushes up the energy for the rest of the trajectories not belonging to the
dataset. On every iteration, we sample a set of points from the current energy model
x „ ρθ(x) (negative samples) where the energy is pushed up. Nevertheless, if the
dimension of x is high, it might be difficult to properly sample x „ ρθ(x).

Maximum entropy IOC and IRL methods apply a similar approach to CD to learn the
stationary state-action distributions. Different methods propose different approaches to
generate negative samples. In [96], rather than sampling from x „ ρθ(x), the negative
samples are generated by adding noise to the dataset trajectories. In [50], a maximum-
entropy motion optimization problem is solved to generate the negative samples, and
an importance sampling weight is added to balance the mismatch between ρθ and the
samples from the optimization problem. In [273], a maximum entropy RL problem is
solved every step to find the policy π(a|s) that best matches the current learned model
Eθ. Then, in [256], the problem in [273] is extended to model Eθ with a neural network.

CD have been also applied for other tasks beyond IOC and IRL. In [65], multiple EBM are
learned to represent different arrangements of the objects in a scene. Given two object
poses, the EBM represents if object A is on the left or right of object B. It can also be used
to represent if multiple objects are generating a shape such as a circle. Then, multiple
EBM can be composed to generate complex arrangements. In [42], CD is applied to learn
a state transition EBM, given a known policy, while in [41], the learned EBM represents
the world dynamics.

Noise-Contrastive Estimation An alternative approach to train EBM is by framing
the problem as a binary classification problem between the training data and a noise
distribution [70, 45]. Given a distribution x „ ρD(x) of data samples with a binary class

23

c = 1 and a noise distribution x „ q(x) with a binary class c = 0, the probability of c
given a trajectory is

ρθ(c = 1|x) =
ρθ(x)

ρθ(x) + q(x)
, ρθ(c = 0|x) = 1 ´ ρθ(c = 1|x) (2.17)

with ρθ « ρD. Then, we frame a binary logistic regression problem

L(θ) = Ex„ρD [log ρθ(c = 1|x)] + Ex„q [log(1 ´ ρθ(c = 1|x))] (2.18)

that implicitly learns the model ρθ(x). The problem on NCE then lies in the choice of the
negative samples distribution q(x).

In robotics, similar approaches to NCE have been applied to learn EBM, both as cost
functions [51, 56] and as policies [53]. In [50], the negative samples distribution q(x) is
iteratively learned by solving a maximum-entropy motion optimization problem. Then, in
[56], a similar approach is extended but learning a policy π(a|s) in a maximum-entropy
RL problem. In [53], InfoNCE is applied to learn a policy in an implicit behavioral cloning
problem.

2.2.3. Vector Fields

During the last years, vector field-based generativemodels such as DDPM [80] or NCSN [224,
225] have shown state-of-the-art results in image generation and have started to be used
in robotics. Rather than learning explicit sampling algorithms such as GAN or VAE, or
rather than learning a scalar field as an EBM, these models propose learning a vector field
v : Rn Ñ Rn. This vector field is related to the score of the data distribution and it is
integrated into MCMC algorithms such as Langevin Monte Carlo (Algorithm 3) to generate
samples. Intuitively, given a dataset x P D, the learned vector field represents a field that
for any point in the space, outputs a vector that points towards the dataset. By following
the vector fields, a randomly generated sample is transported towards high-probability
areas of the data distribution.

In robotics, vector field models have been applied to generate trajectories [90, 29, 25,
71], grasp poses [244], object placements [220], scene arrangements [133] or video
plans [43, 44]. In the context of motion optimization, vector field generative models have
been integrated as cost gradients, defining task constrains [262], grasp costs [244] or
trajectory priors [25].

24

Training Vector Fields

Vector field generative models are commonly trained by score-matching. Given a dataset
ρD(x), we aim to learn a model that matches the score of the data distribution

L(θ) = Ex„ρD(x)

[︁
||∇x log ρθ(x) ´ ∇x log ρD(x)||22

]︁
(2.19)

with log ρθ(x) the learned model’s score. In practise, it is common to directly learn the
score function sθ(x) = ∇x log ρθ(x), as a vector field; yet some works [226, 244] have
explored learning EBM by matching its gradient, ∇xEθ(x) = ∇x log ρθ(x).

Applying score-matching directly is difficult. In Generative Modeling the data distribution
ρD(x) is unknown and we have access only to samples from it. Thus, we don’t have access
to the score of the data distribution ∇x log ρD(x). A possibility to tackle this problem is
by denoising score matching.

Denoising ScoreMatching An approach to approximate the score of the data distribution
x „ ρD(x) is by Denoising Score Matching (DSM) [249, 224]. In DSM, we design a
noisy data distribution by adding a noise kernel over the data distribution ρD̂(x̂) =
ş

x ρ(x̂|x)ρD(x)dx, with ρ(x̂|x) = N (x, σI), a Gaussian kernel. A sample from the
distribution ρD̂(x̂) can be generated by first sampling from the data distribution x „ ρD(x)
and then adding white noise x̂ = x + ϵ, with ϵ „ N (0, σI). Then, in DSM, the score
matching is computed with respect to ρD̂(x̂) with

L(θ) = Ex„ρD(x),x̂„ρ(x̂|x)

[︁
||∇x̂ log ρθ(x̂) ´ ∇x̂ log ρ(x̂|x)||22

]︁
. (2.20)

Note that computing the score-matching for ρD̂(x̂) only requires to compute the score of
the kernel that is trivial to compute.

A limitation of DSM is that it learns a model that matches the noisy distribution ρD̂(x̂).
Then, if we use this model to generate samples, they might be noisy. To tackle this
problem, Diffusion Models propose learning a time-dependant score model that smoothly
transitions from high-entropy simple distributions to the data distribution by smoothly
reducing the noise.

Diffusion Models propose learning a time-conditioned score-based model that informs
about the evolution of distribution ρt(x̂). When t = 0, the model matches an easy-to-
sample distribution as a normal distribution ρ0(x̂) = N (0, I) and at t = T , the distribution

25

matches the data distribution ρT (x̂) = ρD(x̂). By smoothly transitioning from ρ0 to ρT ,
we can transport a sample generated in ρ0 to the data distribution.

Similarly to DSM, we define a kernel that transforms the data distribution. In the case
of Diffusion Models, the kernel is a time-conditioned kernel ρt(x̂) =

ş

x ρt(x̂|x)ρD(x)dx.
Then, the model is learned to match the score of the time-conditioned model

L(θ) =
T

ÿ

t=0

Ex„ρD(x),x̂„ρt(x̂|x)

[︁
||∇x̂ log ρθ(x̂, t) ´ ∇x̂ log ρt(x̂|x)||22

]︁
. (2.21)

Different approaches have proposed different kernels to represent the distribution ρt(x̂).
In NCSN [224], the kernel is ρt(x̂|x) = N (x, σtI), with σt a scalar value that is σ0 = σmax
when time is t = 0 and σT « 0 when time is t = T . This kernel leads to a high-entropy
distribution at the beginning and smoothly reduces the entropy to ρD. In DDPM [80],
the kernel is ρt(x̂|x) = N (

?
1 ´ αtx, αtI), with αt is a scalar that at t = 0, α0 = 1 and at

t = T , αT = 0. This kernel induces the distribution to be ρ0(x̂) = N (0, I) at time t = 0
and data distribution at time t = T .

In robotics, both NCSN and DDPM have been applied to represent trajectories [90, 29,
257, 25], scene arrangements [133], grasp poses [244], objects placing poses [220] or to
generate tactile images [77]. We highlight [244, 220] that adapt NCSN and DDPM to the
Lie group SE(3) to properly represent the grasp and placing poses. Diffusion Models have
been also integrated into motion optimization problems as additional cost functions [244,
269, 25]. Given the Diffusion Model outputs a vector, they have been integrated as the
gradient of the cost function to optimize with gradient-based optimization methods.

26

3. Globally Stable Policies with Flow-Based
Models

In this chapter, we introduce ImitationFlows (iFlows) , a novel deep generative model
that allows learning globally stable, stochastic, nonlinear dynamics, also known as Stable
Vector Fields (SVF). Our approach extends the Normalizing Flows framework to learn
stable Stochastic Differential Equations. Thanks to the architectural properties of the
model, we prove that any solution our model generates is asymptotically stable in terms of
Lyapunov. Our model extends the set of stable dynamical systems that can be represented
by state-of-the-art approaches (limited to mixture of linear models) outperforming the
previous models in terms of representation accuracy.

After presenting iFlows, we show how to extend the model to non-Euclidean manifolds.
Learning robot motions from demonstration requires models able to specify policies for
the full robot pose (6D) when the task is defined in the end-effector space. Despite the
translation movement can be represent in an Euclidean space, representing vector fields for
rotations requires to consider the geometrical properties of the rotation space. Rotations
in 3D are usually represented in the SO(3) group or in the Quaternions manifold. In
this second part, we present a novel vector field model that can guarantee most of the
properties of iFlows i.e., stability, smoothness, and reactivity beyond the Euclidean space.
In the experimental evaluation, we show the performance of our proposed vector field
model to learn stable vector fields for full robot poses as SE(2) and SE(3) in both simulated
and real robotics tasks.

27

3.1. Introduction

Data-driven motion generation methods (Imitation Learning (IL) [209, 1]) bring the
promise of teaching our robots the desired behavior from a set of demonstrations without
further programming of the robot skill. Similarly to the benefits in generalization when
choosing a CNN networks to represent models in computer vision, choosing good models
for motion generators might help in the quality of the robot’s performance, when learning
a policy directly from data. During the last two decades, there has been vast research on
learning policy architectures [207, 88, 103, 166, 23] that guarantee a set of desirable
inductive biases for robotics. Popularized as Movement Primitive (MP), the community
explored a wide set of policy architectures with inductive biases such as Smoothness [166],
Stability [207, 103] or cyclic performance [112, 88].

One of the main difficulties on MP is to guarantee globally stable behaviors: While several
models exist [210, 76, 85]; most of them are not good ensuring stable dynamics out of
the region of the demonstrated trajectories. Global stability in dynamic systems refers
to the system’s ability to return to a steady state or equilibrium, regardless of the
initial conditions or disturbances it experiences (See Figure 3.1). This property is
essential to guarantee safe robot behaviors beyond the demonstrated area. A precursor
approach to tackle this difficulty had been given by the Stable Estimator of Dynamical
Systems (SEDS) algorithm [103]. In this model, the global asymptotically stability is
ensured by a structured mixture of linear dynamics. However, SEDS assumes a quadratic
Lyapunov function. Due to the proposed Lyapunov function, the learned dynamics are
restricted to continuously decreasing distance towards the attractor. In order to overcome
the limitation of SEDS, different approaches were proposed [125, 102, 192, 159, 175,
194, 221, 108]. However, most of the approaches lack expressivity, leading to poorly
representing the demonstrations.

Contribution In this chapter, we present ImitationFlow, a novel model to represent
and learn globally stable nonlinear dynamical systems. Our methodology merges deep
generative models like Normalizing Flows [198, 38, 164] with stable dynamical systems.
Our approach not only is capable of representing a wider class of dynamical systems
w.r.t. previous works in the field, but it can also describe both strike-based and periodic
movements in a single framework, without changing the core learning algorithm.

The rest of the chapter is divided into five sections:

28

Figure 3.1.: Robot pouring trajectories generated bySE(3)-stable vector fields. Each color
represents a trajectory starting from a different initial configuration. Given
the stability properties, all the trajectories end up with the same orientation
and position on the end effector.

Section 2 presents our dynamics model, ImitationFlows. We provide the required back-
ground and describe our method.

Section 3 extends ImitationFlows to Lie Groups. We motivate the need for represent-
ing stable vector fields in Lie Groups and show the required modifications for adapting
ImitationFlows to non-Euclidean manifolds.

Section 4 shows the experimental evaluation. We evaluate the model to a different set of
tasks in different manifolds.

Section 5 describes the state of the art. We present previous works on stable vector fields
and Normalizing Flows on Manifolds.

Section 6 presents the conclusions and provide directions for future work.

3.2. Learning Stable Vector Fields with Normalizing Flows

iFlows are build on top of two pillars: Stochastic Differential Equations and Normalizing
Flows. To properly understand the work, we first provide a background in these two topics.
Then, we present our proposed model and show the different training algorithms to learn
desired behaviors. We present the stability guarantees of our model in Appendix A.1.

29

Figure 3.2.: Evolution of the state distribution under linear dynamics. Given the dynamics
are linear, the state distribution is Gaussian in any instant of time.

3.2.1. Preliminaries

Stochastic Differential Equations Given xt P Rn is the n-dimensional position at time t
for a robot, we assume its motion is generated by a Stochastic Differential Equation (SDE)

dxt = g(xt)dt+ σ(xt)dWt, (3.1)

where g is the drift function, σ is the diffusion function, andWt is the Brownian motion
(also called Wiener process).

For the particular case in which g(x) = Ax is a linear function and σ constant, we can
write the discrete time SDE

xt+1 = (I +A∆t)xt + ϵ (3.2)
ϵ „ N (0,Σ),

with Σ = ∆tσ2I and ∆t ą 0 the discretization time. From a probabilistic view, we can
represent the stochastic dynamics in Equation (3.2) as a transition probability function

ρ(xt+1|xt) = N ((I +A∆t)xt,∆tσ
2I), (3.3)

with µ = (I +A∆t)xt the mean and Σ = ∆tσ2I the covariance matrix.

Let us consider a probability distribution over the initial state, ρ(x0). Then, given the
transition dynamics ρ(xt+1|xt), the probability for the trajectory τ = (x0,x1, . . . ,xT)

ρ(τ) = ρ(x0)
T´1
ź

t=0

ρ(xt+1|xt), (3.4)

30

Figure 3.3.: A diffeomorphism Φ can be thought as a space deformation, depicted with
black lines. Due to this deformation, a density in z, ρz(z) will be reshaped in
x, ρs(x) and is described with Equation (3.7).

is an autoregressivemodel.To generate a trajectory, we can initially sample fromx0 „ ρ(x0)
and iteratively call to the transition dynamics, ρ(xt|xt´1).

An interesting property for our work happens when the initial distribution is a normal
distribution ρ(x0) = N (µ0,Σ0). Given the transition dynamics are linear wrt. the
conditioning state, we can easily observe that the state distribution is a normal distribution
for any instant of time (See Figure 3.2)

ρ(xt) = N (µt,Σt), (3.5)

that can be written in terms of the initial distribution parameters and the transition
dynamics

µt+1 = Aµt (3.6)
Σt+1 = A

⊺ΣtA+Σ.

Normalizing Flows Let us consider a normal distribution in a latent space z P Rn,
ρz(z) = N (µ,Σ) and a diffeomorphic function Φθ : Rn ÝÑ Rn that maps the latent space
z and the base space x P Rn. A diffeomorphic function is a function that is both bijective
z = Φ´1(Φ(z)) and differentiable. Given the function Φ is a diffeomorphism, the density
over the variable x is computed by

pθ(x) = pz(z)

ˇ

ˇ

ˇ

ˇ

det
Bz

Bx

ˇ

ˇ

ˇ

ˇ

= pz(Φ
´1(x))

ˇ

ˇ

ˇ

ˇ

det
BΦ´1(x)

Bx

ˇ

ˇ

ˇ

ˇ

. (3.7)

NFlow are a class of deep generative models that propose representing the diffeomorphic
function Φ with a deep neural network. To be diffeomorphic these functions have to

31

be invertible and thus, they are popularly known as Invertible Neural Networks (INN).
NFlow literature has explored different network architectures to represent diffeomorphic
networks [198, 164, 38, 27]. Given a dataset of demonstrations D = txiu

N
i=0, NFlow learn

the parameters by solving a Maximun Likelihood Estimation (MLE) problem

θ˚ = argmax
θ

Ex„D [log ρθ(x)] (3.8)

= argmax
θ

Ex„D
[︁
log pz(Φ´1(x))

]︁
+ Ex„D

[︃
log

ˇ

ˇ

ˇ

ˇ

det
BΦ´1(x)

Bx

ˇ

ˇ

ˇ

ˇ

]︃
.

3.2.2. Modeling Stable Vector Fields with Normalizing Flows

z0 z1 zT

x0 x1 xTx0 x1 xT

θ

Figure 3.4.: ImitationFlows architecture as a
graphical model. We run linear
stochastic dynamics in the la-
tent space z. The mapping from
xt to zt is an Invertible Neural
Network.

ImitationFlows extend the Normalizing
Flows to represent dynamic systems. The
proposed work is similar intuitively to
Structured Inference Networks for Nonlin-
ear State Space Models [110].

The proposed model’s architecture is pre-
sented in Figure 3.4, and the dynamics are
modelled using Equation (3.9). Our model
is composed of two main components. In
the latent space Z, the transition model
follows linear stable stochastic dynamics.
Then, as emission function, a diffeomor-
phic function Φθ : Rd ÝÑ Rd transforms
the state variable from the latent space Z
to the base space X

dzt = Aztdt+ σdWt

xt = Φθ(zt), (3.9)

where θ are the learnable parameters of the model. Given that the Jacobian ofΦθ, Jθ = dx
dz ,

is easy to compute, we can reframe Equation (3.9) to compute the stochastic dynamic
model for xt

dxt = Jθ(xt)
(︁
AΦ´1

θ (xt)dt+ σdWt

)︁
. (3.10)

32

Algorithm 4: Density Matching for iFlows
Given :D = tτ uN , with τ = (x0,x1, . . . ,xT)

for i Ð 0 to I ´ 1 do
(x0,x1, . . . ,xT) „ D; // Sample trajectory from the dataset
L(θ) = log ρθ(x0) +

řT´1
t=0 log ρθ(xt+1|xt); // Match distribution with model

eq. (3.13) and eq. (3.15)
θ Ð θ + α∇θL(θ) ; // Update model parameters θ

return θ;

Learning with ImitationFlows Given a set of trajectory demonstrations D = tτkuNk=0

where τi = (x0,x1 . . . ,xT), we aim to learn the parameters of a density model to
represent the data distribution. In this work, the distribution of the trajectory is framed as
an autoregressive model

ρθ(τ) = ρθ(x0)
T´1
ź

t=0

ρθ(xt+1|xt), (3.11)

where ρθ(xt+1|xt) denotes the transition dynamics and ρθ(x0) the initial distribution.

Given the model in Figure 3.4, the transition dynamics can be represented in terms of
the latent dynamics and the diffeomorphism. Given z = Φ´1(x) we can substitute the
conditioning variable

ρθ(xt+1|xt) = ρθ(xt+1|zt) = ρθ(xt+1|Φ´1(xt)). (3.12)

Note that this change in the conditioning variable is valid as long as the mapping between
x and z is deterministic. Additionally, given Equation (3.7)

ρθ(xt+1|xt) = ρz(Φ
´1
θ (xt+1)|Φ

´1
θ (xt)) |detJ(xt+1)| , (3.13)

we can represent the transition dynamics in x in terms of the latent transition dynamics
ρz(Φ

´1
θ (xt+1)|Φ

´1
θ (xt)) = ρz(zt+1|zt) and the determinant of the Jacobian of the diffeo-

morphism |detJ(xt+1)|. We consider the latent transition dynamics ρz(zt+1|zt) to be
linear as in Equation (3.3).

Given a set of demonstrations D : tτkuNk=0, we can now frame the problem as MLE problem

33

Algorithm 5: Density Matching in velocity for iFlows
Given :D = tτ uN , with τ = (x0,x1, . . . ,xT)

for i Ð 0 to I ´ 1 do
(x0, ẋ0,x1, ẋ1 . . . ,xT) „ D; // Sample trajectory from the dataset
L(θ) = log ρθ(xT) +

řT´1
t=0 log ρθ(ẋt|xt); // Match distribution with model

eq. (3.16) and eq. (3.15)
θ Ð θ + α∇θL(θ) ; // Update model parameters θ

return θ;

over the model ρθ(τ)

θ˚ = argmax
θ

Eτ„D [log ρθ(τ)]

= Eτ„D

[︄
log ρθ(x0) +

T´1
ÿ

t=0

log ρθ(xt+1|xt)

]︄
(3.14)

that decouples the distribution between the initial distribution ρθ(x0) and the transition
dynamics distribution ρθ(xt+1|xt) (See Algorithm 4). Note that the initial distribution in
x0 can be also represented as a Normalizing Flow

ρθ(x0) = ρz(Φ
´1
θ (x0)) |detJθ(x0)| (3.15)

An interesting alternative to represent the transition dynamics distribution is in terms of
the the stochastic dynamics in Equation (3.10). The stochastic dynamics are Gaussian

ρθ(ẋt|xt) = N (Jθ(xt)AΦ´1
θ (xt),J

⊺
θ (xt)σ

2IJθ(xt)) (3.16)

with mean µ = Jθ(xt)AΦ´1
θ (xt) and variance Σ = J⊺

θ (xt)σ
2IJθ(xt). Then, we can

represent the transition dynamics as the marginalization over the dynamics

ρθ(xt+1|xt) =

ż

ẋt

ρθ(ẋt|xt)q(xt+1|xt, ẋt)dẋt (3.17)

with q(xt+1|xt, ẋt) being the deterministic dynamics integration. Then, the MLE problem
can be represented wrt. x and ẋ

θ˚ = argmax
θ

Eτ„D [log ρθ(τ)]

= Eτ„D

[︄
log ρθ(xT) +

T
ÿ

t=0

log ρθ(ẋt|xt)

]︄
(3.18)

34

with the transition dynamics now represented in terms of the stochastic dynamics. An
interesting difference of this approach is that dynamics model is Gaussian, leading to a
simpler learning algorithm (See Algorithm 5).

3.3. From Euclidean spaces to Lie Groups

Learning Movement Primitives for orientations requires additional insights in the
architecture of the model. There exist multiple representation forms for the orientation,
such as Euler angles, rotation matrices, or quaternions. Euler angles have an intuitive
representation, but the representation is not unique and might get stuck in singularities
(i.e. gimbal lock). These properties make Euler angles undesirable for reactive motion
generation [263]. Instead of Euler angles, rotation matrices and quaternions are pre-
ferred representations for reactive motion generation. Nevertheless, they require special
treatment, given they are not defined in the Euclidean space. Rotation matrices are
represented by the special orthogonal group, SO(3), while quaternions are represented in
the 3-sphere, S3. Thus, in the context of modeling orientation MP, there has been wide
research integrating manifold constraints and MP. In [171, 109, 237], Dynamic Movement
Primitives (DMP) [207] were adapted to learn orientation DMP, by representing DMP for
quaternions [171, 109, 237] or rotation matrices [237]. More recently, orientation MP
have been also considered to adapt Kernelized Movement Primitives (KMP) [85, 86], Task
Parameterized GMM (TP-GMM) [23, 265] and ProMP [166, 202]. Nevertheless, most of
the MP are rather phase dependant or lack stability guarantees.

In the following, we introduce a novel learnable SVF function that can generate stable
motions on Lie Groups. The proposed function generalizes iFlows to arbitrary smooth
manifolds such as Lie Groups. Representing SVF on Lie groups allow us designing robot
motion for end-effector’s position and orientations. To learn these SVF, we propose a
neural network architecture that represents diffeomorphic functions in robotic-relevant Lie
Groups such as SE(2) and SE(3). In the experimental section, we compare the performance
of our proposed model w.r.t. learning the vector fields for Euler angles and learning the
vector fields in the configuration space of the robot.

3.3.1. Background

A n-manifold M is called smooth if it is locally diffeomorphic to an Euclidean space
Rn [122]. For each point x P M, there exist a coordinate chart (U,ψ), were U is an open

35

Figure 3.5.: In our work, we compute the vector field in M by pulling back the vector field
from the latent manifoldN . Given a point x P M, we first map it to the latent
manifold z = Φ(x) with z P N . Then, we compute the vector in the latent
manifold. Given a vector field g : N ÝÑ TN , we compute ż P TΦ(x)N . Finally,
we apply the pullback linear operator to compute ẋ = dΦ˚

x(ż) in the tangent
space of M, ẋ P TxM. As we can observe, the diffeomorphic function Φ will
deform the space and a trajectory (red line) or a vector field in the manifold
N will be deformed in M.

subset in the manifold, U Ď M and ψ : U ÝÑ Û , is a diffeomorphism from the subset U to
a subset in the Euclidean space Û Ď Rn. This chart allows us to represent a section of the
manifold M in a Euclidean space and do calculus.

For any point in the manifold, x P M, we can attach a tangent space, TxM that contains
all the possible vectors that are tangential at x. Intuitively, for any possible curve in M
passing through x, the velocity vector of the curve at x will belong to the tangent space,
v P TxM. Thus, a vector field in the manifold M is a function that maps any point in the
manifold to a vector in the tangent space1, g : M ÝÑ TM. The LogMap is the map that
moves a point in the manifold M to the tangent space, and the ExpMap is the map that
moves a point from the tangent space to the manifold.

A map Φ : M ÝÑ N between smooth manifolds induces a linear map between their
corresponding tangent spaces. For any point x P M, the differential of Φ at x is a linear
map, dΦx : TxM,ÝÑ TΦ(x)N , from the tangent space at x P M to the tangent space at
Φ(x) P N (Figure 3.5). The differential, dΦx, is used to map vectors between tangent
spaces. The pullback operator is the linear operation dΦ˚

x : TΦ(x)N ÝÑ TxM that maps a
vector from TΦ(x)N to TxM.
1The precise term for TM is tangent bundle. The tangent bundle is the disjoint set of all tangent spaces.
The tangent space is defined at a certain point x, TxM. For simplicity, with a slight terminology abuse,
in this work, we use the term tangent space.

36

3.3.2. Problem Statement

We aim to solve the problem of modeling SVF on Lie Groups. In particular, we model
our SVF by diffeomorphisms. Diffeomorphism-based SVF represent the vector field in
the observation space as the deformed vector field of a certain latent space [159, 175,
242, 187]. These models assume there exist a stable vector field in a latent space
g : N ÝÑ TN . Then, given a parameterized diffeomorphic mapping Φ, that maps any
point in observation space M to the latent space N , Φ : M ÝÑ N , we can represent the
dynamics in the observation space

ẋ = dΦ˚
x ˝ g ˝ Φ(x), (3.19)

in terms of the latent dynamics g and the diffeomorphismΦ. dΦ˚
x is the pullback operator

that maps a velocity vector from the latent space to the observation space. Intuitively,
as shown in Figure 3.5, the diffeomorphic function Φ deforms the space changing the
direction of the vector field in the observation space.

Previous diffeomorphism-based SVF are limited to Euclidean spaces, without representing
motion policies in the orientation. Euclidean SVF assumes (i) that Φ : Rn ÝÑ Rn defines a
bijective mapping between Euclidean spaces, (ii) in Euclidean spaces, the tangent space
and the manifold are in the same space, and then, the latent dynamics are g : Rn ÝÑ Rn
and, (iii) given Φ defines a mapping between Euclidean spaces, the pullback operator is
represented by the Jacobian pseudoinverse of Φ, dΦ˚

x = J:

Φ.

In our work, given we are required to model the SVF on Lie Groups, we need to (i) model
a Φ function that is bijective between Lie Groups, (ii) investigate how to model stable
latent dynamics for Lie Groups and (iii) investigate how to model the pullback operator
given the diffeomorphism Φ.

3.3.3. Stable Vector Fields on Lie Groups

As introduced in Section 3.3.2, modelling diffeomorphism-based SVF on Lie Groups
requires additional insights in the modelling of the three main elements Φ, g and dΦ˚.
In the following, we introduce our proposed models to represent each of these elements
and we add a control block diagram on Figure 3.7 to provide intuition on how to use the
proposed SVF in practice.

37

Diffeomorphic Mapping Φ

We introduce our proposed function to learn diffeomorphisms between Lie Groups, Φ :
M ÝÑ N . Both M and N are manifolds for the same Lie group, with M representing
the Lie group in the observation space and N , the Lie group in the latent space. A
simple example of Φ is given by the rotation function. Given X P M = SO(3) and
Z P N = SO(3), the rotation function Z = Φ(X) = RX, applies a linear diffeomorphic
mapping between M and N .

Nevertheless, representing nonlinear diffeomorphic mappings for Lie groups is challenging.
In our work, we propose to exploit the tangent space to learn these mappings. In contrast
with the manifold, the tangent space is a Euclidean space, making it easier to model
nonlinear diffeomorphic functions.

The topology of the Lie groups and their Lie algebra are not the same. Then, it is impossible
to define a single diffeomorphic function Φ that maps all the points in the group to the
Lie algebra. To make proper use of the Lie algebra and still guarantee the diffeomorphism
for the whole Lie group, we propose to model the diffeomorphism by parts. We visualize
an example of the proposed function in Figure 3.6. The points in the Lie Group are split
into two sets. We consider a coordinate chart UM Ď M that defines a set of almost all the
points in the Lie group. Then, we group all the points not belonging to the set UM in a
different set, x P M a UM. For example, in the example on Figure 3.6, we group all the
points except the antipodal point in UM and put the antipodal point in the set M a UM.
The points in the set UM are mapped to a set in the latent manifold, UN Ď N . The points
in the set M aUM are mapped to the latent space set N aUN . Given that M and N are
represented in the same Lie Group, the sets in the observation space and the latent space
are also the same.

Φ(x) =

#

ExpMap ˝ fθ ˝ LogMap(x) if x P UM

x if x P M a UM.
(3.20)

For any element in the coordinate chart x P UM, we define the map from UM to UN ,
through the tangent space, Φ : ExpMap ˝ fθ ˝ LogMap. The function first maps a point
in the Lie group to the Lie algebra by the LogMap. For any point x P UM, it will map to
a point in a subset of the tangent space, x̂ P ÛM Ď TxHM. We call first cover of the
tangent space to ÛM. The map between UM and ÛM is guaranteed to be diffeomorphic
given the LogMap properties [122]. Then, we apply a Euclidean diffeomorphism fθ
between the first covers of the observation space ÛM and the first covers of the latent
space, ÛN . We introduce our proposed fθ in Section 3.3.4. Finally, we can map the points

38

Figure 3.6.: A visual representation of the Φ function for 1-sphere (S1). The points in
S1 are split into two groups. For the points in UM, the diffeomorphism is
composed by first, mapping the points to the first-cover ÛM by the LogMap,
then applying a bounded Euclidean diffeomorphism between ÛM and ÛN
and mapping the points back to the manifold, by the ExpMap. For the points
not belonging to UM, we simply apply the identity map. If fθ is the identity
map close to the boundaries ´π and π; the map is diffeomorphic for the
whole S1. We add a few markers to represent the space deformation along
the mappings.

ẑ P ÛN back to z P UN Ď N by the ExpMap and represent it in the Lie Group. Given the
three steps are diffeomorphic, we can guarantee that Φ applies a diffeomorphism between
UM and UN . For the points not belonging to the set UM, we apply the identity map. The
identity map is also diffeomorphic.

Even if each part in Equation (3.20) is diffeomorphic in itself, to guarantee the function Φ
is diffeomorphic in the whole Lie group, we require to guarantee the function is continuous
and differentiable in the boundaries between UM and M a UM. To do so, we impose
structurally fθ to become the identity map fθ(x̂) = x̂when approaching to the boundaries
of the set ÛM. Thus,

Φ(x) = ExpMap ˝ fθ ˝ LogMap(x)
= ExpMap ˝ LogMap(x) = x (3.21)

when x is close to the boundaries of UM.

39

Figure 3.7.: Left: Manifold stable vector fields block diagram. Right: Proposed archi-
tecture for our diffeomorphic function fθ. As shown in Equation (3.19), our
manifold SVF is composed of three elements: a diffeomorphismΦ (light blue
box)(for simplicity, we only visualize the part related with the set UM), the
latent dynamics g (yellow box) and, the pullback operator dΦ˚ (red box). The
diffeomorphism Φ is composed of three elements: the LogMap, a bounded
diffeomorphism between first covers fθ (blue) and, the ExpMap. The pull-
back operator dΦ˚ has two elements: the Jacobian inverse, computed for the
diffeomorphism fθ , and the Adjoint operator. Additionally, to control a robot,
we first map the current joint configuration q to x P SE(3) by Forward Kine-
matics. And once ẋ P se(3) is computed, we map it back to the configuration
space by J:

FK. Then, we apply a velocity controller in the configuration space.
The dashed line from the output of fθ and the dynamics input represents a
shortcut we consider in practice as long as the latent ExpMap and LogMap
are computed in the same origin frame.

An intuitive example for 1-sphere (S1) manifold

The 1-sphere manifold is composed by all the points in a circle of radius r, S1 : tx P

R2 ; ||x|| = ru. We visualize this manifold in Figure 3.6. To model a diffeomorphic
transformation between M and N , we propose to split the manifold in two sets: the set
UM considers all the points in the manifold except the point in the south xS = (0, r),
UM = S1

‰xS
. Equally, the set in the latent manifold UN , also consider UN = S1

‰xS
. The

other set MaUM = txSu is composed of the point not belonging to UM. We can observe
that UM is diffeomorphic to the open line segment ÛM = (´π, π). We refer to this set as
first-cover of the tangent space ÛM = ÛN = (´π, π). We can map any point from UM to
ÛM by the LogMap function. Inversely, we can map the points from the open line segment
to the set UM by the ExpMap function. We remark that points in UM are two-dimensional
while points in ÛM are one-dimensional. Once the points are in the ÛM, we model a
bounded diffeomorphic function fθ that maps the points in ÛM to ÛN . We present in
Section 3.3.4 how we model this bounded diffeomorphism fθ. This map can be thought

40

of as a deformation of the line ÛM, stretching or contracting the line. We highlight that
while representing directly a diffeomorphism between the open line segments ÛM and
ÛN is easy, representing it between the groups UM and UN is hard, given that UM and
UN are not Euclidean spaces.

As shown before, to guarantee that Φ is diffeomorphic for the whole manifold S1, we need
to guarantee that fθ becomes the identity map close to the boundaries of ÛM. For the
case of S1, the function fθ should approximate the identity map the closer the points are
to ´π and π. Intuitively, the function fθ represents a space deformation in (´π, π) that
becomes the identity close to the boundaries ´π or π. We illustrate this diffeomorphic
map in Figure 3.6.

Latent Stable Dynamics g

For a given manifold N , the vectors are represented in the tangent space of the manifold,
TN . Thus, a dynamic system in a manifold is a function that for any point in the manifold
outputs a vector in the tangent space, g : N ÝÑ TN . Similarly to the transformation map
Φ, we propose to model the dynamics by parts

ż = g(z) =

#

´LogMapzH (z) if z P UN

0 if z P N a UN
. (3.22)

For any element in UN , we first map the point to the tangent space centered at zH and
then, compute the velocity vector as ż = g(ẑ) = ´ẑ. These dynamics will induce a stable
dynamic system in the manifold UN , with a sink in zH . For any point out of the set UN ,
we set the velocity to zero. This will set an unstable equilibrium point for any point in
N a UN . In practice, given the LogMap in our dynamics Equation (3.22) is the inverse of
the ExpMap in Φ, we can directly compute the dynamics using as input the output of fθ
without moving to N (dashed line in Figure 3.7).

Pullback Operator dΦ˚

The pullback operator unrolls all the steps to the latent space, N , done by the diffeomor-
phism, Φ, back to the observation manifold, M. Additionally, given the velocity vector
is defined on the tangent space, the unrolling steps are done on the tangent space. The
pullback operator for the mapping, fθ, is the Jacobian Jf . The inverse of the Jacobian,
maps the velocity vector from the latent tangent space to the observation tangent space,

41

centered in the origin, J´1
f : TzHN ÝÑ TxHM. Additionally, we apply a second pullback

operator to map the vector from the tangent space in the origin xH to the tangent space
in the current pose x, A : TxHM ÝÑ TxM. This linear map is known as the adjoint map
and it can be understood as a change of reference frame for the velocity vectors. We direct
the reader to [223] to find more information on how to model it. The whole pullback
operator is then, dΦ˚ = A ˝ J´1

f .

3.3.4. Bounded Flows as transformation fθ

In Section 3.3.3, we propose to model the diffeomorphism between two subsets of the
manifolds (UM and UN) through the tangent space. To properly model the diffeomor-
phism, we have introduced a function fθ and defined its required properties. The function
fθ should be a diffeomorphism and should become identity when approximating the
boundaries of the tangent space sets ÛM and ÛN . To represent our function fθ, we build
on top of the research on INN for Normalizing Flows [198, 27].

We propose to model the function fθ by adapting Neural ODEs [27] to our problem.
Neural ODEs propose to model the diffeomorphism between two spaces by the flow of a
parameterized vector field hθ. The flow k(x, t) : Rn+1 ÝÑ Rn, represents the motion of a
point for the time t, given the ODE, dx/dt = hθ(x) ” d(k(x, t))/dt = hθ(k(x, t))

xt1 = k(x, t1) = x+

ż t1

0
hθ(k(x, t))dt. (3.23)

with t1 being a certain time instant and x the position of the particle in the instant t = 0.
The flow function represents the position of a particle x follows given the vector field hθ
at the instant t1. In Neural ODEs, the function fθ is represented by the output of the flow
at time 1

z = fθ(x) = k(x, t = 1) = x+

ż 1

0
hθ(k(x, t))dt. (3.24)

As presented in [146, 27], the function is a diffeomorphism, as long as hθ is a uniformly
Lipschitz continuous vector field (Picard–Lindelöf theorem).

Additionally, to compute the pullback operation, we are required to compute the Jacobian
matrix of fθ, Jf = ∇xk(x, t1). Given the vector field hθ, there exists an ODE representing

42

the time evolution of the Jacobian

Jḟ (x, t) = ∇khθ(k(x, t))Jf (x, t)
J(x, t0) = I. (3.25)

In practice, we can use an arbitrary ODE solver and find the values for J(x, t1) and k(x, t1)
solving Equation (3.24) and Equation (3.25). In our case, to guarantee a high control
frequency rate, we apply the forward Euler method to solve the ODE and then compute
the Jacobian by backward differentiation. It is important to remark that these dynamics
are used to represent the diffeomorphism fθ between two spaces and not to represent
the desired vector fields.

Relevant consideration for our problem is that the function fθ should define a diffeomor-
phism between two bounded sets ÛM and ÛN and the transformation should become
identity close to the boundaries of these sets. Nevertheless, without any additional con-
siderations on hθ, the flow could move a point in ÛM to any point in Rn, with n the
dimension of the Euclidean space in which the set ÛN is. To bound the flow between
the sets, we impose structurally that the vector field hθ vanishes when approaching the
boundaries. If the flow dynamics are zero, then, the input and the output are the same and
we don’t apply space deformation at that point. Given a distance function α(x) : Rn ÝÑ R
that measures how close we are to the boundaries, we define the vector field as

hθ(x) = α(x)ψθ(x), (3.26)

with ψ an arbitrarily chosen uniformly Lipschitz continuous parameterized vector field
and α the scaling function of the dynamics to satisfy the desired constraints, preventing to
move out of the set. α becomes zero close to the boundaries. Then, close to the boundaries,

z = fθ(x) = k(x, t1) « k(x, t0) = x. (3.27)

Thus, the function fθ is guaranteed to approximate the identity in the boundaries.

Given the set ÛM varies between the manifolds, we consider different distance functions
α for each possible manifold. For the case of SO(2), the first covers are ÛM = ÛN =
(´π, π). To impose identity map in the boundaries, the dynamics are weighted with
α(x) = (π ´ |x|)/π. α is a function that moves from 1 to 0 when we approach the ˘π
boundaries.

For the case of S2, the sets are ÛM = ÛN = tx P R2; ||x|| ă πu. This set is diffeomorphic
to the set in UM = UN Ă S2, which considers all the points in the manifold except the

43

Figure 3.8.: Left: Kernel Coupling, Coupling, and Ours(Smooth Piecewise Linear) Layers
compared in terms of Mean Squared Error (MSE), Area and Instability %.
Kernel Coupling and Coupling Layer apply a diffeomorphism between Rn and
Ours between the first covers. Right: Example of LASA trajectory and learned
vector field.

antipodal point. To impose the dynamics to become zero close to the boundaries of the
set, the distance function is α(x) = (||x|| ´ π)/π.

For the case of SO(3), the sets are ÛM = ÛN = tx P R3; ||x|| ă πu. The sets are
diffeomorphic to the SO(3) sets UM = UN = SO(3)‰Rπ Ă SO(3), that consider all
possible rotation matrices except the ones that have a π rotation from the origin. The
dynamics are weighted by the function α(x) = (||x|| ´ π)/π.

For the case of the special Euclidean groups SE(2) and SE(3), the orientation-related
dimensions maintain the same first covers of the special orthogonal groups. For the
position-related dimensions, we bound the first cover to the desired workspace. Given
(p,θ) P se(3), with p the position related variables and θ, orientation related variables. We
consider two scaling functions, one for orientations and one for positions. The orientation
scaling function αori(θ) is computed given the scaling functions above. The scaling
function for the positions αpos(p) can be used to enforce workspace limits and varies
depending on the chosen workspace boundaries. We compute the distance function by
α(p,θ) = αpos(p)αori(θ).

3.4. Experimental Results

We present three experiments to evaluate the performance of our approach. In the first
experiment, we illustrate, in a S2 manifold, the performance of our proposed fθ w.r.t.
functions that do not take into consideration the manifold and treat is as Euclidean. Even

44

if S2 is not a Lie Group, we can apply the proposed approach also on it and serves as a
useful manifold for illustration.

In the second and third experiments, we evaluate the performance of our model in the Lie
Groups SE(2) and SE(3), for a 2D peg-in-a-hole task and a pouring task respectively.

3.4.1. Network Evaluation in S2 manifold

We study the problem of learning stable vector fields in 2-sphere, S2 by behavioral cloning
(Algorithm 5). The objective of this experiment is to evaluate the influence of choosing
different INN as mapping fθ.

Figure 3.9.: Vector fields in the an-
tipodal point of the
Sphere. Our proposed
diffeomorphism guar-
antees a source in the
antipodal, while the un-
bounded INN does not.

For evaluation, we consider three models. The three
models use our proposed architecture in Figure 3.7
and vary in the used diffeomorphism fθ. We con-
sider two models using the INN from previous works
[187, 242] that considers a diffeomorphism in the
whole Euclidean space fθ : Rn ÝÑ Rn and our pro-
posed INN that learns a diffeomorphism in bounded
domains, fθ : ÛM ÝÑ ÛN . We modified the LASA
dataset [103] to S2 manifolds. We consider 22 dif-
ferent shape trajectories and evaluate the models
given three metrics: MSE, Area, and Instability per-
centage. For measuring the instability percentage,
we initialized a set of points in random positions
on S2 and generated a trajectory with the learned
vector fields. Then, we measured how many trajectories reach the target position after a
certain period.

From Figure 3.8, we can observe that the three architectures performed similarly in both
MSE and Area measures and were able to mimic the performance of the demonstrations
properly. This indicates that the proposed algorithm can learn vector fields on smooth
manifolds. Nevertheless, as shown in the Instability % metric, the performance of the
Kernel Coupling Layer [187] and the Coupling Layer [242] decay when initializing the
trajectories in a random position. Given the Kernel Coupling Layer and the Coupling
Layer define a diffeomorphism in the whole Euclidean space, they lack any guarantee
of being bijective between ÛM and ÛN . Thus, these approaches lack guarantees about
the stability of the vector field in ÛM. We can observe the instability of the vector fields

45

by observing the antipodal point of the sphere, where the boundaries of the first cover
ÛM are defined. As shown in Figure 3.9, while our INN can guarantee all the vectors
pointing out of the antipodal (a source in the antipodal point), the kernel coupling layer
and coupling layer are not able to guarantee stability close to the boundaries generating
oscillatory behaviors around the antipodal point.

3.4.2. Evaluation of SE(2) Stable vector fields in a 2D peg-in-a-hole task

Figure 3.10.: Left: Peg-in-a-hole environ-
ment. We show in different col-
ors, generated trajectories from
different initial configurations.
Right: Success rate Vs. Data
percentage. We evaluate the
performance of a set of mod-
els when trained with different
amounts of data.

We consider the environment presented in
Figure 3.10. The robot is a 5-DOF robot
moving in a 2d plane. The goal of the task
is to move the end-effector of the robot into
the hole while avoiding collisions against
the walls. We generated a 1K trajectory
demonstration to train our models by ap-
plying RRT-Connect [111] on the environ-
ment. We compare the performance of our
model w.r.t. three baselines. First, we con-
sider a vector field modeled by a naive fully
connected neural network in the tangent
space of SE(2). Second, we trained a sta-
ble vector field in the configuration space,
Q. Third, similarly to the experiment in
S2, we model a vector field with the archi-
tecture in Figure 3.7, but consider a vanilla
INN as fθ instead of the proposed INN. To
evaluate the performances, we initialize
the robot in a random configuration and

reactively evolve the dynamics. To control the robot, we apply operational space con-
trol [104]. Given the current end-effector pose, x P SE(2), we compute the desired
velocity at the end effector ẋ P R3 and pullback to the configuration space by the Jacobian
pseudoinverse.

We present the results in Figure 3.10. We measure the success of the different methods
to approach the goal without colliding under different amounts of training data. The
vanilla neural network model performed the worst with any amount of trained data. A
vanilla-NN is not limiting the family of possible vector fields, thus it may learn vector

46

Figure 3.11.: Results for the pouring experiment. Right: simulated experiment results.
We compare the stability property of the three models given three possible
types of initial configurations (close to the target, far from the target, and
random configuration). Left: real robot experiments results.

fields with multiple equilibrium points, limit cycles, or even unstable ones. This results in
highly unstable vector fields with poor performance. The results also show the relevance
of choosing a good task space representation. Learning in SE(2) outperforms the con-
figuration space approach. The difference in performance might be related to the vector
field dimensionality, 5 for the configuration space and 3 for SE(2) and also, with the task
itself: as the peg-in-a-hole task is defined in the operational space the SE(2) vector fields
fit better the problem. Finally, we observe the benefit of our proposed INN w.r.t. vanilla
INN approach. Given that the vanilla INN lacks global stability guarantees, the robot gets
stuck in limit cycles and the performance decays.

In conclusion, we have observed that (i) stability guarantees greatly improves the perfor-
mance of the policy for behavioral cloning problems (ii) representing the vector field in a
proper manifold can boost the performance, and (iii) a bounded INN guarantees stability,
while the unbounded one does not, given Φ is not diffeomorphic anymore.

3.4.3. Learning a pouring task with SE(3) stable vector fields

In this experiment, we evaluate the performance of our method on a pouring task (Fig.
1). To properly pour, the robot requires to combine multiple positions and orientation
changes. First, we compare in simulation our method with Euler angle-based vector fields.
We consider two version of our model: One with bounded fθ, introduced in Section 3.3.4
and one with a vanilla unbounded INN as fθ [38]. Then, we evaluate the performance of
our model in a real robot under target modifications and human disturbances.

47

For this experiment, we use a 7 DoF Kuka LWR arm. The provided task demonstrations
consist of 30 kinesthetic teaching trajectories with a wide variety of initial configurations.
We considered different end-effector positions and orientations and trained the three
models by behavioral cloning (Algorithm 5). To control the robot, we apply operational
space control [104] for our proposed model (Figure 3.7) and position control for the Euler
angles vector field. Note that our proposed method adapts to any other type of robot
(prismatic joints, parallel robot) by changing the forward kinematics function. We evaluate
the three models in three scenarios, robot performance with an initial configuration close
to the target, initial configuration far from the target, and random initial configuration.
We consider 10 different initial configuration and measure the robot’s performance. In
the three cases, we measured the stability guarantees of the models (i.e. the guarantee
of arriving at the target pose after a certain time). We present the experiment results
in Figure 3.11. From this figure, we can see that our model with the bounded function
fθ outperformed the other models in the three cases. These results validate our claims
on the requirements of defining a function fθ between the first covers, to guarantee
stability in the whole Lie Group. Euler angle-based vector fields perform quite well for
the case of close initial configuration. Euler Angles are an undesirable representation
for feedback control due to their singularities and non-uniqueness. Nevertheless, we can
assume these types of situations are rare close to the target and can perform relatively
well. Nevertheless, their performance decay considering initial configurations far from
the target. Given the non-uniqueness of the Euler-angles, representing globally stable
vector fields in Euler-angles is not possible. In the case of our model with vanilla INN,
it shows unstable behavior far from the target, while it remains quite stable close to it.
Diffeomorphism-based SVF lack stability guarantees if the function Φ is not bijective. This
lack of bijectiveness is more prone to happen close to the boundaries of the first cover and
Φ remains bijective close to the target, with the guarantee of being stable.

We also evaluate the performance of our model on a real robot, measuring the model’s
performance under target modifications and human disturbances. To adapt to different
target positions, we use the current one xtarget P SE(3) as the origin of the LogMap (
Figure 3.7). This allows us to represent the vector fields relative to the current target
position. We track the target pot by Optitrack motion capture systems. The control signal
is computed in a close-loop at a rate of 100Hz.

For the system evaluation, we predefined 10 different initial configurations covering the
whole workspace. The robot holds a glass with 4 balls and we measured the number of
balls that enter the pot after executing the trajectory. We considered 3 scenarios: normal
execution, physical disturbance, and target modification.

48

Looking at the results in Figure 3.11, it is clear that the robot achieves a very robust
performance. In the normal execution, it pours almost all the balls in the pot, given any
initial configuration. This result shows the generalization properties of our model: the
robot was initialized in a position that does not belong to the demonstration set, but
was able to solve the task. We also tested the system under heavy physical disturbances,
including pushing and holding the robot. In this scenario, the performance decays, but
the robot was able to succeed most of the time. Finally, we observe the vector field was
able to properly adapt to different pot positions. The robot succeeded to put almost all the
balls in the pot except for some target positions that were beyond the workspace limits of
the robot.

3.5. Related Work

Stable Vector Fields SVF models are powerful motion generators in robotics given they
are robust to perturbations and generalize the motion generation beyond the demonstrated
trajectories. After the seminal work by Khansari et al. [103], several works [158, 175,
238, 242, 187] have proposed novel SVF models covering a wider family of solutions. Our
work is particularly close to diffeomorphism based SVF models [158, 175, 242, 187].

Invertible Neural Networks (INN) in Smooth Manifolds INN are a family of neural
networks that guarantee to represent bijective functions. The study of modeling INN for
smooth manifolds has been mainly developed for density estimation. A set of previous
works [199, 146, 61] have proposed INN for specific manifolds, such as Tori or Sphere
manifolds. A more recent work [134] proposes a manifold agnostic approach, on which
Neural ODE [27, 69] are adapted to manifolds. In [48], INN are proposed for Lie Groups.
Similar to our work, they also exploit the Lie algebra to learn expressive diffeomorphisms,
but the proposed model is limited to density estimation.

3.6. Discussion & Conclusions

In this chapter we have introduced a novel Motion Primitive that can learn stable vector
fields exploiting the expresiveness of Normalizing Flows. We also extended the work
to model stable vector fields on Lie Groups. The proposed model allows us to generate
reactive and stable robot motions for the full pose (orientation and position). Through

49

an extensive evaluation phase, we have validated the modeling decisions to guarantee
stability and the importance of representing the vector fields on Lie Groups to properly
solve robot tasks.

We have many directions to improve our model. First, the chosen diffeomorphic function
Φ has some limitations. Our proposed model cannot set the sink in the antipodal points,
given the map in antipodal points is an identity map. In practice, we can set the attractor
in an arbitrary pose by adding a linear transformation that moves the sink. Nevertheless,
we consider that this limitation might influence the performance when modeling complex
motion skills with significant changes in orientation. In the future, we aim to explore
novel functions to represent the diffeomorphism Φ. The experiments we have carried out
focus on the performance evaluation of our proposed stable vector fields. However, these
models are of particular interest combined with additional motion skills, such as obstacle
avoidance or joint limit avoidance vector fields, as done in RMP [191] or CEP [240]. We
will investigate how to combine vector fields in future works.

Another possibility is to use the proposed method as a cost function. Indeed, the architec-
ture encodes in itself a Lyapunov-stable potential function. We can use this function as a
terminal cost function (value function) or as a cost function in trajectory optimization
problems, allowing the integration of additional cost functions. This approach could be
beneficial in long-horizon planning problems [243].

50

4. Composability and Geometry on
Energy-Based Policies

In this chapter, we introduce Composable Energy Policies (CEP) , a novel framework for
multi-objective motion generation. We frame the problem of composing multiple policy
components from a probabilistic view. We consider a set of stochastic policies represented
in arbitrary task spaces, where each policy represents a distribution of the actions to solve
a particular task. Then, we aim to find the action in the configuration space that optimally
satisfies all the policy components. The presented framework allows the fusion of motion
generators from different sources: optimal control, data-driven policies, motion planning,
handcrafted policies. Classically, the problem of multi-objective motion generation is
solved by the composition of a set of deterministic policies, rather than stochastic policies.
However, there are common situations where different policy components have conflicting
behaviors, leading to oscillations or the robot getting stuck in an undesirable state. While
our approach is not directly able to solve the conflicting policies problem, we claim that
modeling each policy as a stochastic policy allows more expressive representations for
each component in contrast with the classical reactive motion generation approaches. In
some tasks, such as reaching a target in a cluttered environment, we show experimentally
that CEP’s additional expressivity allows us to model policies that reduce these conflicting
behaviors.

A field that benefits from these reactive motion generators is the one of robot reinforcement
learning. Integrating these policy architectures with reinforcement learning allows us to
include a set of inductive biases in the learning problem. These inductive biases guide the
reinforcement learning agent towards informative regions or improve collision safety while
exploring. In our work, we show how to integrate our proposed reactive motion generator
as a structured policy for reinforcement learning. Combining the reinforcement learning
agent exploration with the prior-based CEP, we can improve the learning performance
and explore safer.

51

4.1. Introduction

Many robotic tasks deal with finding control actions satisfying multiple objectives. A
seemingly simple task such as watering plants requires satisfying multiple objectives to
perform it properly. The robot should reach the targets (the plants) with the watering
can, avoid pouring water on the floor while approaching, and avoid colliding with and
breaking the plant’s branches by its arms. In contrast with sequential tasks [229, 94, 95],
in which the objectives to be satisfied are concatenated in time, in this work we consider
tasks in which multiple geometric objectives must be satisfied in parallel.

The problem has been faced with a spectrum of solutions that balance between global
optimality and computational complexity. Path planning methods [119, 118, 100] find a
global trajectory from start to goal by a computationally intense Monte-Carlo sampling pro-
cess. Trajectory optimization methods [234, 188, 97, 212, 154] reduce the computational
burden of planning methods by searching the global trajectory given initial trajectory
candidates. These methods reshape the global trajectory to satisfy the objectives. However,
they still require solving an optimization problem over long temporal horizon trajectories.
The computational requirements of these algorithms limit the possibility of exploiting
them for reactive motion generation. Computationally lighter, MPC methods [151, 179,
255, 13] consider the problem of solving a short-horizon trajectory optimization problem
reactively. Rather than assuming the problem of solving the trajectory optimization prob-
lem for the whole trajectory, these methods consider the problem of solving the trajectory
optimization problem in a receding horizon reducing the computational requirements.

Artificial Potential Fields (APF) methods [105, 60] and more recently RMP methods [191,
99, 28, 21, 215, 3] are one of the most popular approaches for reactive motion generation
in manipulators. In contrast with path planning or trajectory optimization methods, these
methods propose to solve a myopic (one-step ahead) control problem. Given the problem is
local, the computational cost is very low and they can be used with high control frequencies.
These methods propose to solve the multi-objective control problem by the composition of
a set of deterministic actions. Each action is computed to satisfy a particular objective.
Then, the optimal composing action is found by solving a least-squares optimization
problem given all the action components. The solution of the optimization problem can
be analytically represented by a weighted sum of the action components. The sum of
the actions defines a trade-off between the components with the weighting term (the
metric) giving the relevance of each component. In these methods, it is common to have
conflicting action components that make the robot get stuck.

52

Figure 4.1.: Visual Representation of modular control for Goto + Obstacle Avoidance. In
the top box, we show Artificial Potential Fields (APF) [105]. In the bottom
box, we show Composable Energy Policies (CEP). In contrast, with the APF
method, which sums deterministic actions (goto, avoid an obstacle), CEP
computes the product of the policy distributions and then finds the maxima
of the composition. The composition will provide a high probability to those
actions that satisfy both components and low to the rest. Robot: blue circle,
obstacle: red circle, and target: green cross. Thick dotted line: performed
trajectory, lightly dotted line: possible future trajectories.1

Similarly to RMP and APF, we consider the problem of solving a one-step-ahead control
problem. Considering a short-horizon problem reduces the variables to optimize and thus,
we can guarantee sufficiently high control frequencies to be reactive for a high dimensional
robot. In contrast with RMP and APF methods that assume deterministic policies to model
the optimal behavior for each objective, we propose combining stochastic policies πk. We
hypothesize that considering arbitrary stochastic policies increases the expressivity on how
to model the policies and we might represent policies that reduce the conflicting solutions
in the composition. To find the composed action, we propose an optimization problem
defined as a maximization over the log of the product of a set of stochastic policies [166,
72]

a˚ = argmax
a

log

(︄
ź

k

πk(a|s)

)︄
, (4.1)

with action a and state s. One can view the product of policies as a probabilistic instance
of a logical conjunction (AND operator) [40, 231] between the action distributions (see
Figure 4.1 for visual representation). The product of policies will set a high probability
to the actions that are likely to sample in all the components and low to the rest. If we
would like to sample an action from the product of policies, we might apply Markov Chain
Monte Carlo (MCMC) sampling process over the product of policies. In contrast, if we aim
to obtain the action that satisfies best the composition, we can compute the maximum

53

likelihood action Equation (4.1).

Beyond local reactive navigation, policy composition has become a relevant approach to
integrate inductive biases in robot RL [218, 174, 93, 127]. These policy architectures
allow the integration of reinforcement learning agents with prior knowledge. Rather
than directly sampling the action commands for the robot, the reinforcement learning
agent explores the parameter space of a structured policy. This structured model allows
exploring safer or biasing the exploration towards informative regions. Nevertheless, prior
methods assume explicit functions [218, 93, 127] to represent the structured policies. In
contrast with previous methods, in our work, we propose to consider the optimization
problem in Equation (4.1) as the structured policy. We show empirically, that considering
an implicit function to represent the structured policy allows us to explore with fewer
collisions with respect to previous structured policies.

Notation As our discussion will involve a set of policies and a set of spaces in which
these policies are represented, we will use superscript (πk) to represent the space in
which the policy is and subscript (πk) to represent the policy index. We represent the
state by (s) and the action by (a). The space (Q) represents the state-action space in
the configuration (sq,aq) P Q with sq and aq being, respectively, the state and action
in the configuration space. (Xk) represents the state-action space in the k task space
(sxk ,axk) P Xk. fxq : Q ÝÑ Xk represents a transformation map from space Q to space Xk.
This map moves the state-action pairs from the configuration space to a task space.

4.1.1. Overview of APF and RMP

In reactive motion generation, we deal with the problem of generating the robot’s motion
online. The developed methods are required to have a low computational cost so that the
robot responds fast to unexpected situations. Additionally, the generated motion should
be able to deal with multiple tasks concurrently and represented in arbitrary spaces, such
as avoiding collisions with multiple robot links, reaching a target with the end-effector, or
avoiding joint limits. In APF and RMP, the optimal action is proposed to be computed
by a weighted sum of the accelerations (RMP) or torques (APF) components solving

1Artificial Potential Fields can be framed as Composable Energy Policies, with each energy component
represented by a quadratic function. For visualization purposes, we choose the classical representation of
the sum of deterministic actions.

54

each particular task. In RMP, each acceleration component is the output of a task space
second-order dynamic system.

Let us assume a set of transformation maps fx0q , . . . ,fxKq , mapping the position, veloc-
ity and acceleration in the configuration space (q, q̇, q̈) P Q, to a set of task spaces
(xk, ẋk, ẍk) P Xk; with fxkq : Q ÝÑ Xk represented by

xk = φ
xk
q (q)

ẋk =
d
dt
φxkq (q) = Jxk(q)q̇

ẍk =
d2

dt2
φxkq (q) = Jxk(q)q̈ + J̇

xk
(q)q̇ « Jxk(q)q̈, (4.2)

with Jxk = Bφxkq (q)/Bq the Jacobian of the forward kinematic function φxkq . The trans-
formation for the acceleration is usually approximated dropping out the curvature term
J̇
xk
(q)q̇. Given the integration steps in control loops (running between 100 Hz and 1

kHz) are small it is a valid approximation [191].

Let us also consider a set of task space second-order dynamics systems ẍk = gxk(xk, ẋk),
with a metric Λxk associated to them. APF and RMP methods deviates in how the metric
Λxk is represented and applied to weight the components. In APF, the metric is conditioned
on the position, while in RMP, the metric is conditioned on both position and velocity.
Given the kinematics model in Equation (4.2), in [191], the dynamics and the metric in
the configuration space Q are represented by

gqk(q, q̇) = J
xk:gxk(φxkq (q),Jxk(q)q̇)

Λq
k = J

xk⊺ΛxkJxk , (4.3)

with Jxk: being the Jacobian pseudoinverse.

Finally, the acceleration in the configuration space is computed by a weighted-sum of all
the dynamics systems represented in the configuration space

q̈ =

(︄
ÿ

j

Λq
j

)︄´1
ÿ

k

Λq
kg

q
k. (4.4)

Instead, APF [105] methods do not compute the metric normalization

τ =
ÿ

k
Λq
kg

q
k. (4.5)

55

The solution in Equation (4.4) is proven to be the optimal action for a least-squares
optimization problem [191]

q̈˚ = argmin
q̈

ÿ

k

1

2

ˇ

ˇ|q̈ ´ gqk
ˇ

ˇ |2Λq
k
. (4.6)

Each dynamic component represents the policy to satisfy a particular objective, while the
metric weights the influence of each component in the composed action.

4.2. Composable Energy Policies

We will first motivate our approach and, subsequently, we introduce the different elements
our policy architecture is composed of.

4.2.1. Motivation

CEP aims to provide a novel framework for multi-objective reactive motion generation.
Our proposed method should be able to compute high frequency (100Hz-1kHz) control
actions to apply in the robot. The computed action should be able to jointly satisfy multiple
objectives. Additionally, we aim to model each component by an arbitrary stochastic policy.

The key idea of our proposed model is that in contrast to APF and RMP methods, we
rather consider arbitrary stochastic policies to model each component. This leads to an
optimisation problem where the cost of each component is no longer a quadratic function
as in Equation (4.6). We expect that, given that we can model each component arbitrarily,
our method will be able to more easily find an action that satisfies all the objectives if the
policies are chosen correctly. We visualize this intuition in Figure 4.1.

4.2.2. Problem statement

Let us consider a set of stochastic policies, πxkk (axk |sxk), where each policy represents the
optimal distribution in the action space to satisfy a particular objective. Each policy is rep-
resented in an arbitrary state-action space Xk. Let us also consider a set of transformation

56

maps fxk
q

sxk = fxk
qs (s

q)

axk = fxk
qa (s

q,aq), (4.7)

that relates the configuration space Q, with the task spaces Xk, in which each policy is
defined. We aim to find the action in the configuration space, aq that better satisfies
all the policies. We frame the multi-objective reactive motion generation problem as an
optimization problem defined by the policies and the task maps

aq˚ = argmax
aq

log
(︃

ź

k
πxk(axk |sxk)

)︃
s.t. (axk , sxk) = fxkq (aq, sq) @k, (4.8)

with fxkq (aq, sq) ” (fxk
qa (s

q,aq),fxk
qs (s

q)) and sq the current state in the configuration
space. We assume sq is given. The optimization in Equation (4.8) represents our proposed
reactive motion generation. Thus, we aim to solve this optimization in low computational
time to guarantee high frequency control commands.

4.2.3. Composable energy policies method

Let us assume a set of independent stochastic policies π1(a|s), . . . , πK(a|s) modeled by a
Gibbs distribution

πi(a|s) =
exp(Ei(a, s))

Zi(s)
, (4.9)

where E : S ˆ A Ñ R is an arbitrarily represented energy function and Z(s) =
ş

a exp(E(a, s))da is the normalization factor. The choice of Gibbs distribution is not
arbitrary. Gibbs distribution allows representing an arbitrary distribution by a suitable
definition of the energy function E [64]. Additionally, computing the product of experts

π(a|s) =
ź

k

πk(a|s)9 exp

(︄
ÿ

k

Ek(a, s)

)︄
, (4.10)

will end up in a weighted sum over the individual energy components in the exponential.
Having the energy components linearly related is computationally beneficial. Given a set of

57

energy components, in practice, we can parallelize the computation of all the components
by multi-processing increasing the control frequency. Even if modeling the policy as a
product of experts might seem an arbitrary choice, we show in Section 4.3 that, given a
set of energy policies π1, . . . , πK , the product of experts represents the distribution of the
optimal behavior to satisfy all the policy components [91].

Energy trees

Inspired by APF [104] and RMP [191], we propose to model the composition of energies
in different task spaces. In the composition proposed in Equation (4.10), each energy
function is considered to be in the same state-action space. However, in most of the
robotics scenarios, we might be interested in composing together energies defined in
different task spaces. Reaching a target while avoiding the obstacles, composes skills
defined in different task spaces. To solve the task, we might require to define an attractor
policy in the end-effector space of the robot and additional obstacle avoidance policies in
different cartesian points in the links of the robot.

Our architecture is composed of two main components. First, we have a set of policies
πxk(axk |sxk), defined in different state-action task spaces (sxk ,axk) P Xk. Second, we
consider a set of deterministic mappings that transform the state-action pairs in the
configuration space (sq,aq) P Q to the state-action task spaces Xk, fxkq : Q ÝÑ Xk.

Consider the optimisation problem from Equation (4.8). For a single policy component.
The problem is written as

aq
˚

= argmax
aq

logπxk(axk |sxk)

s.t. axk = fxkqa (a
q, sq) (4.11)

sxk = fxkqs (s
q). (4.12)

The unconstrained representation of the optimization problem in Equation (4.11) is

aq
˚

= argmax
aq

logπxk(fxkqa (a
q, sq)|fxkqs (s

q)). (4.13)

Moreover, given we are considering Gibbs distributions to represent each policy component,
we can represent the optimization problem by

aq
˚

= argmax
aq

Exk(fxkq (aq, sq)) ´ logZxk(sxk). (4.14)

58

The objective function is represented in terms of the energy function Exk and the log of
the normalization function Zxk . We can follow similar derivation for the multi-objective
problem. The objective function J for the unconstrained problem of Equation (4.8) is
represented as

J (aq) = log
ź

k
πxk(fxkq (aq, sq))

=
ÿ

k
logπxk(fxkq (aq, sq))

=
ÿ

k
Exk(fxkq (aq, sq)) ´ logZxk(sxk).

(4.15)

Additionally, from Equation (4.7), given the normalization term does not depend on the
action aq, we can neglect it from our objective function and optimize over the sum of the
energy functions. In our work, we propose to compute the control action for our robot
by the maximization of Equation (4.15), aq = argmaxaq J (aq). In the general case, this
optimization function lacks an analytical solution and we will use stochastic optimization
methods to optimize it [36].

Framing the robot control in terms of an implicit function has several interesting properties
in contrast with the explicit counterpart [104, 191]. The first is that we are not constrained
in the policy function. In CEP we can assume an arbitrary stochastic policy to represent
each component, whereas explicit models assume deterministic policies. As we show in
Section 4.3, RMP components can be thought as normal distributions from CEP lenses. This
policy model freedom provides the practitioner with a much wider range of opportunities
to design policies or learn them with arbitrary energy based models [242, 52]. An implicit
representation has additional relevant properties with respect to APF and RMP methods.
To compute the desired acceleration in the configuration space; explicit methods require
to invert the transformation map ẍ « Jq̈, to move the desired acceleration from the task
space to the configuration space. If the robot’s configuration is close to a singularity, a
small velocity in task space will result in a big velocity in joint space. In contrast, in
CEP, given we are considering the implicit representation, we do not require to invert the
transformation map as the energy is directly evaluated in the task space.

4.2.4. Optimization of composable energy policies

In the following, we introduce the algorithm we use to solve our optimization problem. In
our problem, the optimal action is obtained by a maximization over the logarithm of the

59

product of a set of expert policies Equation (4.8). From the derivation in Equation (4.15),
if each policy is defined by a Gibbs distribution, the optimization function is

aq˚ = argmax
aq

ÿ

k
Exk(fxkq (aq, sq)), (4.16)

with Exk being a set of given energy functions defined in arbitrary task spaces X k and
fxkq being the transformation map that transforms a state-action pair in the configuration
space (sq,aq) P Q to the different task spaces X k.

We aim to solve the optimization in Equation (4.16) in high control frequencies (100Hz-
1kHz) to run it as a reactive motion generator. Additionally, the energy function might be
non-differentiable. We propose to solve the optimization problem in Equation (4.16) by
cross-entropy methods [17]. The proposed method is presented in Algorithm 6.

We initialize our algorithm transforming the state in the configuration space, sq to the
different task spaces sxk . As shown in Equation (4.7), the task space states do not
depend on the action and we directly compute them given the configuration state. In
terms of computational efficiency, it is relevant to compute the task space state out of
the optimization loop as it might be computationally demanding (usually, we compute
the forward kinematics in this stage). Then, we initialize the cross-entropy optimization
for the configuration space action. We define a proposed sampling distribution q(aq) =
N (aq|µ,σ2I). Then, for I optimization steps, we first sample a set of N action candidates
in the configuration space aq0:N . To evaluate the samples, we first transform the samples
to the set of K task spaces axk0:K . In practise, we consider an affine map between aq and
axk .Thus, we can apply tensor multiplication and transform all the samples aq0:N to all
the task spaces accelerations in a single step. Finally, the energies are computed on each
energy component and the contributions summed.

In our problem, we consider two approaches to update the sampling distribution q(aq).
As proposed in [17], the mean and variance are updated by first selecting theM particles
with the highest energy value. Then, the optimal mean and variance are computed by

µ˚ =
1

M

M
ÿ

m=0

aqm

σ˚2 =
1

M

M
ÿ

m=0

(aqm ´ µ˚)2. (4.17)

60

Algorithm 6: Composable Energy Policies
Given :N : Number of samples;
sq: Current state in configuration space;
K: Number of energy components;
(fx1q , Ex1), . . . , (fxKq , ExK)): Task maps and energies;
I: Optimization steps;
(µ0,Σ0): Initial sampling distribution mean and variance;
(a˚, e˚): Initial optimal action and energy;

for k Ð 1 to K do
sxk = fxkqs (s

q); Map configuration state to task states

for i Ð 1 to I do
aq0:N „ N (µi,Σi); Sample N action candidates

for k Ð 1 to K do
axkn = fxkq (sq,aq0:N); Map actions to task spaces

exk0:N = Exk(sxk ,axk0:N); Evaluate energy

eq0:N =
řK
k=1 e

xk
0:N ; Sum all energies

µi+1 Ð Updateµ(µi,a
q
0:N , e

q
0:N); With Equation (4.17) or Equation (4.18)

Σi+1 Ð UpdateΣ(Σi,a
q
0:N , e

q
0:N); With Equation (4.17) or Equation (4.18)

a˚
i , e

˚
i Ð argaq maxe(eq0:N); pick optimal action

if e˚ ă e˚
i then

a˚ Ð a˚
i ;

e˚ Ð e˚
i ;

return a˚;

61

Alternatively, we also considered a soft update version. We represent the update by a
reward weighted regression [177]

µ˚ =
1

řN
k=0 ωk

N
ÿ

n=0

ωna
q
n

σ˚2 =
1

řN
k=0 ωk

N
ÿ

n=0

ωn(a
q
n ´ µ˚)2, (4.18)

with ωn = β exp(´βeqn). eqn is the total energy for the n action sample and β ą 0 is a
temperature parameter that scales the energies for the weighted mean and variance in
Equation (4.18).

Rather by cross-entropy [17] or by reward weighted regression [177], the mean and
standard deviation for the next optimization step µi+1 is computed by smoothing the
solution between the optimal one µ˚ and the previous one µi

µi+1 = αµi + (1 ´ α)µ˚

σi+1 = ασi + (1 ´ α)σ˚. (4.19)

Smoothing is often crucial to prevent premature shrinking of the sampling distribution [17].

It is common in model predictive control algorithms [160] to assume that consecutive
optimal control problems are similar to each other. This allows initializing the optimization
with the previously computed optimal solution. In our work, we assume our optimization
problem is myopic (we only optimize for a single look ahead step) and the energy functions
might be non-continuous. Thus, we lack any guarantee of the consecutive optimal control
problems to be similar to each other. In conclusion, we always initialize our optimization
problem with zero mean and a sufficiently wide standard deviation.

4.3. An inference view on policy composition

In this section, we derive from an inference view the proposed optimization problem in
Equation (4.1). We additionally highlight the connections between RMP and CEP and
prove that RMP methods can be considered a particular case of CEP.

Let us assume we aim to find the action distribution that satisfies in the optimal way a set
of stochastic policies πk(a|s). Similarly to control-as-inference [195, 126] approaches,

62

we introduce an additional variable oπk . This variable is a binary random variable, where
oπk = 1 denotes how likely state-action pair is optimal for the policy πk and oπk = 0
denotes how unlikely. We choose to model the distribution over the ”likelihood variable”
oπk by

p(oπk = 1|s,a)9πk(a|s)9 exp(Ek(s,a)). (4.20)

From Equation (4.20), we can observe that for those cases in which the distribution is
conditioned on the optimal state-action pairs for a particular policy πk, the probability for
oπk = 1 is going to be high. While if the action is not an action with a high likelihood for
πk(¨|s), the optimality probability p(oπk = 1|s,a) will be low.

s a

o0 o1 o2

Figure 4.2.: Graphical model for Composable Energy Policies. ok is an auxiliary variable
that represents the optimality of s0 and a0 for a particular policy.

Let us consider we aim to be optimal for a set of policies πk. We can represent the Bayes net
relating the optimality variables and the state and action as in Figure 4.2. The likelihood
for the graphical model in Figure 4.2 can be computed as the product of the terms

p(s,a, o0:2) = q(a)p(s)
2

ź

k=0

p(ok|s,a). (4.21)

with p(s) and q(a) the prior distributions for the state and the action consecutively.

Following the Bayes net, we can represent the posterior distribution over the action space
when conditioned to oπk = 1 and s = s0 by

p(a|s = s0, o0:K = 1)9q(a)
K

ź

k=0

p(oπk = 1|s0,a)

9q(a)
K

ź

k=0

πk(a|s)9q(a) exp

(︄
K
ÿ

k=0

Ek(a, s)

)︄
. (4.22)

63

Considering the prior distribution over the action space to be uniform, q(a) = 1/A,
we observe that the posterior distribution given all the optimality variables are 1 is the
product of policies. By taking the maximum a posteriori estimate, a˚ = argmaxa p(a|s =
s0, o0:K = 1), we compute the action that optimizes over the composition of all optimal
distributions. The optimization problem is the one of Equation (4.1).

In our work, we additionally consider a hard constraint that relates the state-action pairs
in the configuration space with the state-action pairs in the task space Equation (4.8).
We integrate the constraints between the configuration space and the task space by
a deterministic node in the graphical model (Figure 4.3). The deterministic node in
the transformation will induce a delta distribution relating the state action pairs in the
configuration space and in the task spaces

p(sxk ,axk |sq,aq) = δ((sxk ,axk) ´ fxkq (sq,aq)). (4.23)

sq

aq

fx1
q

sx1

ax1

fx2
q

sx2

ax2

ox2
ox1

Figure 4.3.: Graphical model for Composable Energy Policies with task space policies.
oxk is an auxiliary variable that represents the optimality of sxk and axk for a
particular policy in that task space.

The likelihood function for the graphical model is represented by the product of the terms

p(sq,aq, sx0:2 ,ax0:2 , ox0:2) =

p(sq)q(aq)
2

ź

k=0

p(sxk ,axk |sq,aq)p(oxk |sxk ,axk). (4.24)

Given that we aim to compute the posterior for aq and assuming sq and ox0:2 are given,
we marginalize the joint distribution with respect to the rest of the variables

p(sq,aq, ox0:2) =
ż

sx0:2

ż

ax0:2

p(sq,aq, sx0:2 ,ax0:2 , ox0:2)dsx0:2dax0:2 . (4.25)

64

The relation between the configuration state-action pairs and the task space action pairs
is given by Equation (4.23). Given the relation is defined by a delta distribution, the
marginal distribution can be represented by a simple substitution of variables

p(sq,aq, ox0:2) = q(aq)p(sq)
2

ź

k=0

p(oxk |sq,aq), (4.26)

with p(ok|sq,aq)9 exp(Ek(fxkq (sq,aq))). Now, we can follow a similar derivation to Equa-
tion (4.22) and compute the posterior distribution for the configuration space action
aq.

4.3.1. Riemannian Motion Policies as Composable Energy Policies

The control-as-inference literature [8, 234, 126] have widely studied the connections
between the cost functions and the distributions related to them. From this viewpoint,
RMP objective Equation (4.6) can be framed as a particular case of Equation (4.8) where
each policy component is represented by a normal distribution. In the following, we derive
the Riemannian motion policies from an inference perspective and show its relation with
CEP.

Suppose each policy π is modelled by a normal distribution, where the mean, gxk , is the
desired optimal action in the task space Xk, and the precision matrix, Λxk , is the metric
on the task space

π(axk |sxk) = N (gxk(sxk),Λxk(sxk)). (4.27)

We consider the action is defined by the acceleration, axk = ẍk and the state by the
position and velocity sxk = (xk, ẋk).

In RMP methods the action in the task space Xk and in the configuration space Q are
approximately related by the pseudo-inverse Jacobian of the forward kinematics, q̈ «

Jx
:

k ẍk. Given the map is linear, the policy distribution in the task space Equation (4.27)
remains a normal distribution in the configuration space

π(aq|sq) = N (Jx
:

kgxk ,Jx
⊺
kΛxkJxk), (4.28)

with the mean gq = Jx
:

kgxk and the precision matrixΛq = Jx
⊺
kΛxkJxk . In CEP, we assume

the posterior distribution to maximize is modeled by the product of each policy Equa-
tion (4.22). For the particular case in which every policy is represented by Equation (4.28),

65

the product of the policies remains a Gaussian, p(a|s = s0, o0:K = 1) = N (µ,Λ) with

µ = (
ÿ

j

Λq
j)

´1
ÿ

k

Λq
kg

q
k

Λ =
ÿ

k

Λq
k. (4.29)

As we observe, the mean of the product of Gaussians is just a weighted-sum of the mean
of each independent component and the precision matrix is the sum of each component.
In CEP, the action is computed by a maximum a posteriori estimate over the posterior
distribution p(a|s = s0, o0:K = 1). For the particular case in which the posterior is the
normal distribution in Equation (4.29), the maximum a posteriori is the mean of the
Gaussian

q̈˚ = (
ÿ

j

Λq
j)

´1
ÿ

k

Λq
kg

q
k. (4.30)

As expected, the solution is the one from the RMP Equation (4.4). As shown in [240], a
similar derivation can be follow to represent APF as special cases of CEP.

In conclusion, we can derive the RMP solution as a special case of Equation (4.8). To
do so, we assume each policy component is represented by a normal distribution with
the mean equal to the desired acceleration and the precision matrix equal to the metric.
We hypothesize that in some tasks, representing all the policy components by a normal
distribution might not be expressive enough to solve the task properly. Normal distributions
assume that (1) there is a unique optimal action (the mean) to solve the task and (2) the
quality of the actions is related to the Mahalanobis distance to the optima. While tasks like
reaching a target might satisfy (1) and (2); tasks like obstacle avoidance might require
richer representations to properly solve the task. Rather than limiting the policies to
normal distributions, we consider arbitrary shape distributions to represent each objective.
In the experimental section, we show empirically that for some tasks, modeling the policy
with non-normal distributions might lead to better cooperation with the other components.

The scope of this work is to study the relations and performances of one-step control
horizon controllers. Nevertheless, given the clear relations of CEP with control-as-inference
in longer horizon problems, we study these relations in the Appendix A.2.

66

Ta
sk

de
fin

iti
on

In
pu

ts
pa

ce
(x
,ẋ
,ẍ

)
tr
an

sf
or
m
at
io
n
(f

)
ad

va
nt
ag

e
fu
nc

tio
n
(A

)
re
w
ar
d
fu
nc

tio
n
(r
)

re
ac
h
ta
rg
et

po
si
tio

n
Ca

rt
es
ia
n
Ta

sk
Sp

ac
e

(R
3
,R

3
,R

3
)

x
=
x

ẋ
=
ẋ

ẍ
=
ẍ

A
(ẍ

|x
,ẋ

)
=

´
||
ẍ

´
ẍ
g
(x
,ẋ

)|
|2 Λ

ẍ

ẍ
g
(x
,ẋ

)
=

2

∆
t2
(x

g
´
x

´
∆
tẋ

)

Λ
ẍ
=

∆
t4 4
Λ

r(
x
)
=

´
||
x

´
x
g
||
2 Λ

re
ac
h
ta
rg
et

or
ie
nt
at
io
n

O
rie

nt
at
io
n
Ta

sk
Sp

ac
e

(S
O
(3
),
R
3
,R

3
)

θ
=

Lo
gM

ap
R

g
(R

)

ω
1
=
R

´
1

g
ω

ω̇
1
=
R

´
1

g
ω̇

A
(ω̇

1 |θ
,ω

1)
=

´
||
ω̇

1
´
ω̇
g
(θ
,ω

1)
||
2 Λ

ω̇
1

ω̇
g
(θ
,ω

1)
=

2

∆
t2
(θ

´
∆
tω

1)

Λ
ω

1 ̇
=

∆
t4 4
Λ

r(
θ
)
=

´
||
θ

||
2 Λ

av
oi
d
ob

st
ac
le
s

Ca
rt
es
ia
n
Ta

sk
Sp

ac
e

(R
3
,R

3
,R

3
)

d
o
=

||
x

´
x
o
||

v̂
o
=

(x
´
x
o
)/
d
o

ẋ
p
=
ẋ

¨
v̂
o

ẍ
p
=
ẍ

¨
v̂
o

A
(ẍ
p
|ẋ
p
,d
o
)
=

#

0
if

ẍ
p

ą
α
ẍ
p
(ẋ
p
,d
o
)

´
8

if
ẍ
p

ď
α
ẍ
p
(ẋ
p
,d
o
)

α
ẍ
p
(ẋ
p
,d
o
)
=

2

∆
t2
(α

´
d
o

´
ẋ
p
∆
t)

r(
d
o
)
=

#

0
if

d
o

ą
α

´
8

ot
he

rw
is
e

av
oi
d
jo
in
tl
im

its
Co

nfi
gu

ra
tio

n
Sp

ac
e

(R
7
,R

7
,R

7
)

q
=
q

q̇
=
q̇

q̈
=
q̈

A
(q̈

|q̇
,q

)
=

0

#

0
if

q̈
ą
q̈

an
d

q̈
ă
q̈

´
8

ot
he

rw
is
e

q̈
(q̇
,q

)
=

2

∆
t2
(q

´
q

´
q̇
∆
t)

q̈
(q̇
,q

)
=

2

∆
t2
(q

´
q

´
q̇
∆
t)
.

r(
q
)
=

#

0
if

q
ą
q
an

d
q

ă
q̄

´
8

ot
he

rw
is
e

jo
in
tv

el
oc

ity
co
nt
ro
l

Co
nfi

gu
ra
tio

n
Sp

ac
e

(R
7
,R

7
,R

7
)

q
=
q

q̇
=
q̇

q̈
=
q̈

A
(q̈

|q
,q̇

)
=

´
||
q̈

´
q̈
g
(q̇
)|

|2 Λ
q̈

q̈
g
(q̇
)
=
q̇
/∆

t

Λ
q̈
=

∆
t2
Λ

r(
q̇
)
=

´
||
q̇

||
2 Λ
.

Ta
bl
e
4.
1.
:R

es
um

e
of

th
e
pr

op
os

ed
ba

si
c
lo
ca

lr
ea

ct
iv
e
en

er
gi
es

.T
o
co

m
pu

te
a
pa

rt
ic
ul
ar

en
er
gy

,fi
rs
tt

he
in
pu

tp
os

iti
on
x
,v

el
oc

ity
ẋ

an
d
ac

ce
le
ra
tio

n
ẍ

ar
e
tra

ns
fo

rm
ed

to
a
la
te
nt

sp
ac

e
by

th
e
m
ap

s
in

th
e
th
ird

co
lu
m
n.

Th
en

,t
he

ad
va

nt
ag

e
is

co
m
pu

te
d
in

th
e
la
te
nt

sp
ac

e.
Th

e
ad

va
nt
ag

e
fu

nc
tio

n
re
pr

es
en

ts
th
e
en

er
gy

fu
nc

tio
n
of

ou
rp

ol
ic
y.

La
st

co
lu
m
n
sh

ow
s
th
e
re
w
ar
d
th
at

ea
ch

po
lic

y
is

tr
yi
ng

to
m
ax

im
iz
e.

67

4.4. Composable energy policies for robot reinforcement learning

In Reinforcement Learning, we deal with the problem of finding the policy π that maximizes
the accumulated reward, R

max
π

Epπ(s,a)[R(s,a)]. (4.31)

with ρπ(s,a) being the stationary state action distribution, given some transition dynamics,
p(s1|s,a) and initial state distribution p(s0). Applying reinforcement learning in real robot
environments usually consider high dimensional state-action spaces and sparse rewards.
Thus, finding a good policy might require many iterations in the environment before a
desirable policy is found.

A common approach to reduce the sample complexity is by integrating as many priors
as possible in the problem. Properly chosen priors might accelerate the learning process,
biasing the exploration towards meaningful states. Additionally, with the proper priors,
we could increase the safety guarantees in the exploration process.

There are multiple ways to integrate priors in a reinforcement learning problem. A common
option is to do reward shaping. Adding additional reward signals to the problem, we can
guide the learning process to informative states. Another common option is assuming a
set of expert demonstrations are given, we can pretrain our policy to match the expert
demonstrations. This approach is known as behavioral cloning. In our work, we explore
the option of using structured policies.

A structured policy can be represented as follows:

ψ „ πRL(ψ|s)

a = πstruct(s;ψ). (4.32)

A structured policy allows modifying the action space in which the RL agent learns the
policy. Rather than directly sampling an action a from the RL agent; we sample a set of
parameters ψ. Then, these parameters are input in a low-level structured policy πstruct
and the action is computed. Through the action space transformation, structured policies
allow a faster and safer learning process.

There are several type of structured policies. In residual policy learning [93, 218], after
sampling an action from the RL agent, an expert policy πE action is summed to bias the
exploration towards meaningful regions, πstruct(s,ψ) = πE(s) +ψ. The RL agent learns
the residual actions around the expert policy. In [34] the parameters ψ select a DMP and

68

sets some parameters of the DMP, such as the target. Then, the DMP is executed for a
certain period, before sampling new parameters from πRL.

In our work, we propose to model the low-level structured policy by the maximization
over a composition of policies

πstruct(s,ψ) = argmax
a

log

(︄
K

ź

k=0

πk(a|s;ψ)

)︄
. (4.33)

In contrast with previous works that define an explicit model to represent the structured
policy, we propose to model the structured policy by a maximization over an implicit
function. In our approach, we first sample a set of parameters from the RL agent. Then,
these parameters condition some of the policies on the objective function. Finally, we
solve the optimization problem in Equation (4.33) to obtain the action to apply in the
system. Considering an implicit function to represent the low-level policy has multiple
benefits. An important one is related to safe exploration. Given we are solving a search
problem, we can guarantee the robot is not choosing an action that would move the robot
to a collision. We could also set some prior policies that encourage smooth behaviors
and we could avoid high trembling while exploring. In conclusion, the robot explores the
parameter space of an objective function. Then, given we have set some prior knowledge
in this objective function, we can solve an optimization problem and apply the optimal
action satisfying the objective.

There are multiple choices to parameterize the objective function. We show an example
of how the energy policies and the RL action can be combined.

A simple option is to parameterize a reaching policy. We choose the target reaching policy
proposed in Appendix A.4. We can both parameterize the target position xg or the metric
Λ

A(ẍ|x, ẋ) = ´||ẍ´ ẍg(x, ẋ)||
2
Λẍ

ẍg(x, ẋ) =
2

∆t2
(ψxg ´ x´ ∆tẋ)

Λẍ =
∆t4

4
ψΛ.

Parameterizing xg allows the reinforcement learning policy to set the desired target
location given the current state s, while parameterizing Λ allows the reinforcement
learning agent to weight the influence of this component. It is important to remark, that
for those cases in which Λ is big, the influence of this component in the composition

69

increases and then, the influence of the reinforcement learning action. WhenΛ is small the
contribution of this component decays and the inductive biases will define the movement.

Nevertheless, we remark, that we are not limited to reaching policies. We could parame-
terize any energy policy presented in Appendix A.4, probabilistic motion primitives [166]
or handcrafted policies.

In our experiments we combine parameterized policies with fixed prior policies

π(a|s,ψ) =
ź

k
πkprior(a|s)

ź

j
πj(a|s,ψ). (4.34)

Integrating a parameterized reaching target policy with a fixed obstacle avoidance policy,
allows the robot to explore with the guarantee of exploring safely. We also consider
combining attractor policies to a certain target and parameterized policies. Combining
both, the reinforcement learning agent explores while the attractor policy guides the robot
to informative regions. The performance is similar to a residual policy, in which the RL
agent learns in the residuals of the guiding policy.

4.5. Experimental evaluation

The experimental evaluation is split into three parts. In the first part (Section 4.5.1),
we evaluate qualitatively the performance of CEP in a 2D navigation environment. The
experiment is performed to provide a visual intuition on how CEP represents its policy.

In the second part (Section 4.5.2), we investigate the performance of CEP for local reactive
navigation in cluttered environments. The experiments are performed in a 7 dof Kuka-
LWR robot. In a set of simulated environments (Section 4.5.2), we evaluate how the
energy composition performs by observing the success rate and the collisions in a set of
obstacle avoidance environments. Additionally, we perform ablation studies to find the
optimal parameters and also to find the maximum control frequencies. Then, in a real
robot environment (Section 4.5.2), we investigate the performance of CEP to solve a pick
and place task in a cluttered environment. We measure the performance under human
disturbances, picking position changes and placing position changes.

In the third part (Section 4.5.3), we investigate the benefit of integrating CEP as a
structured policy for robot reinforcement learning. We first evaluate the performance of
CEP as a structured policy while learning how to hit a puck and place it in a target position
(Section 4.5.3). We want to observe if using CEP as prior boosts the learning performance

70

Figure 4.4.: A visual representation of the next state distribution p(s1) running a set of
designed policies. We visualize the distribution for different states in a 2D
navigation task. In the top: next state distribution after applying a reaching
target policy. In the middle: next state distribution after applying an obstacle
avoidance policy. In the bottom: next state distribution after applying the
composition of a reaching target and an obstacle avoidance policy.

of an RL agent. Additionally, we want to evaluate if adding an obstacle avoidance prior
reduces the number of collisions in the training. The experiments are performed for three
MDP’s that vary in the reward function.

4.5.1. Visual 2D particle environment

In the first experimental section, we aim to provide a visual understanding of the proposed
policy composition. We investigate the composition of a set of energy policies proposed
in Appendix A.4 for a 2D navigation problem. We consider the toy environment in
Figure 4.5 (a). We want to reach the target (cross) with the robot (blue circle) avoiding
the walls (blue rectangles). To properly compute the obstacle avoidance, we represent
the collision bodies for the walls and the robot with a set of spheres (Figure 4.5 (b)).

We model the composable energy policy with two component: a target reaching energy
policy and a set of obstacle avoidance energy policies (one per each obstacle sphere in the

71

wall). We model both energy policies with the proposed energy policies in Appendix A.4.
The attractor energy is a quadratic function. For obstacle avoidance, we consider N
energy policies. Each energy function is a binary function that penalizes the actions
that move the robot below a certain distance threshold with respect to the obstacles.

Figure 4.5.: 2D navigation task. (a) Environ-
ment. The robot is represented
by a blue circle, the walls by
the rectangles and the target by
the cross. (b) spherical obsta-
cle bodies for the robot and the
walls.

We visualize the probability density func-
tions for each policy component and for the
composition of them in Figure 4.4. Visual-
izing directly the distribution in the acceler-
ation space is not informative. To provide
an intuitive visualization, we plot the prob-
ability density function for the next state
p(s1), given the robot is sampling an action
from a certain energy policy π

p(s1) = Eπ(a|s)[f(s,a)], (4.35)

with f being the linear dynamics in Equa-
tion (A.28). Given these policies have been
designed as the maximum entropy policies maximizing the next state reward, the next
state distribution is naturally, p(s1)9 exp(r(s1)).

We observe that the reaching target policy defines a normal distribution with the mean
in an interpolation between the target position and the current position. The most
likely action is the one that moves the robot to the mean position. The sharpness of the
distribution is defined by the metric defined in Appendix A.4. For the case of the obstacle
avoidance policy, the next state distribution is a uniform distribution that sets the mass on
a polytope defined by the shortest distances to the obstacles. This distribution will put
zero mass to any action that moves the robot out of the polytope. For any action keeping
the robot inside the polytope, the distribution remains constant.

The product of the two policies is a complex distribution that weights the influence of both.
The obtained distribution is an attractor normal distribution truncated by the collision
avoidance policy. We remark that rather than computing the maxima if we apply MCMC to
sample from this distribution, the robot will never choose an action that collides against the
obstacles and will sample actions that move towards the target with a higher probability.

72

Figure 4.6.: Simulated Environments for the reaching through clutter environments ex-
periment. From left to right: 1 obstacle, 3 obstacles, Cross, Double Cross,
Cage I and Cage II.

Methods 1 Obstacle 3 Obstacles Cross Double Cross Cage I Cage II
Success Collide Success Collide Success Collide Success Collide Success Collide Success Collide

Riemannian Motion Policies [191] 100/100 0/100 99/100 0/100 93/100 0/100 87/100 0/100 29/100 0/100 5/100 0/100
Artificial Potential Fields [105, 104] 100/100 0/100 98/100 0/100 91/100 0/100 46/100 0/100 2/100 0/100 0/100 0/100

Composable Energy Policies 100/100 0/100 98/100 0/100 94/100 0/100 88/100 0/100 70/100 0/100 15/100 0/100

Table 4.2.: Results for 3D GoTo + Obstacle Avoidance Task. First three rows are the
results from [240]. We perform the same experiment with the robot hand
included in row 4.

4.5.2. Reaching through clutter environments

In the following experimental section, we investigate the performance of CEP for local
navigation with a robot manipulator. The experimental section is divided between a
simulated experimental section and a real robot experiment. The simulated experiments
have been performed to answer the following questions:

Q1: Does energy policy composition increase the probability of reaching the target in a
cluttered environment with respect to deterministic composition methods?

Q2: In CEP, the best action is found by stochastic optimization algorithms. How many
particles do we need for a 7 dof robot? How many optimization steps?

In the real robot platform, we investigate the performance of CEP under disturbances.
The main question we aim to answer is:

Q3: Is CEP able to reactively adapt to unmodelled disturbances, such as human physical
interaction, changes in the placing position, or changes in the picking position?

73

Methods 1 Obstacle 3 Obstacles Cross Double Cross Cage I Cage II
Success Collide Success Collide Success Collide Success Collide Success Collide Success Collide

Riemannian Motion Policies [191] 100/100 0/100 89/100 0/100 71/100 0/100 63/100 0/100 11/100 0/100 0/100 0/100
Artificial Potential Fields [105, 104] 100/100 0/100 90/100 0/100 68/100 0/100 21/100 0/100 0/100 0/100 0/100 0/100

Composable Energy Policies 100/100 0/100 95/100 0/100 84/100 0/100 72/100 0/100 30/100 0/100 5/100 0/100

Table 4.3.: Results for 6D GoTo + Obstacle Avoidance Task. First three rows are the
results from [240]. We perform the same experiment with the robot hand
included in row 4.

Simulated reaching environments

In the following, we present the simulated experiment to reach a certain target avoiding
the obstacles. We perform the experiments with a 7 dof Kuka-LWR robot in 6 environments.
The environments have been designed to be increasing in difficulty. The first environment
has a single obstacle body, while the last one has 62 obstacle bodies. We visualize the
considered environments in Figure 4.6. The robot is initialized in a randomized joint
configuration and the motion is generated by a set of local motion generators, without
additional global path planning algorithms. The episode ends when the robot reaches
the target, collides against any obstacle or a certain time is pass. In our experiment, the
robot is initialized in 100 randomly chosen initial configurations. We consider a control
frequency of 250Hz for this experiment and the episode length is 30 seconds.

Policy setup For this experiment, we consider three possible multi-objective reactive
motion generators: RMP [191], APF [105, 104] and CEP. The three methods consider
a set of policy components modeled in a set of task spaces. We compute the kinematics
transformations in Equation (4.2) with pinocchio [24]. All the policies are local basic
policies and there are no long-horizon planning components. The considered policy
components are:

• A target reaching policy in the end-effector space;

• P ˆO obstacle avoidance policies in a set of cartesian task spaces;

• Joint limits avoidance policy in the configuration space;

• Joint velocity limit policy in the configuration space.

We consider just position reaching policy for the 3D experiment and a full-pose reaching
policy for the 6D experiment. For the obstacle avoidance policies, we model a collision
body for the manipulator (Figure 4.8). The collision body is composed of 35 spheres with

74

Figure 4.7.: Controller’s computation time for the six simulated environments in Figure 4.6.
Measured for RMP, APF and CEP.

different radii. We remark that for the most complex environment, we have 62 collision
spheres, thus, we have in total 35 ˆ 62 = 2170 obstacle avoidance policies. Nevertheless,
all of them are computed in batch using tensor multiplication.

Comparative evaluation We initialize the experimental analysis evaluating the success
rate and collisions in the 6 environments. We summarize the obtained results for the 3D
go-to problem in Table 4.2. The easy environments are easily solved by all the methods.
We observe a success rate of almost 100% for the first three environments in all the cases.
This result shows that simple scenarios can be easily solved with local reactive controllers
and it is not required to solve a global trajectory planning problem. In complex scenarios,
CEP performs better than the baselines. We can obtain a 70% success rate in the first cage
environment and 15% in the second cage. We hypothesize that this could be related to
how the obstacle avoidance policies are modeled. In the chosen baselines, the obstacle
avoidance policies apply a repulsive force in a certain robot’s link to avoid the obstacles. In
highly cluttered environments, where the robot needs to move through narrow passages,
these repulsive forces will push the robot far from the obstacles. Then, the robot is not
able to get close to the narrow passage and it gets stuck in the entrance. In contrast, in
our method, the obstacle avoidance policy defines a uniform distribution for the set of
valid actions. This policy is more conservative. Rather than pushing the robot away from
the obstacles, our policy penalizes, with very low probability, any action that moves a
certain robot link close to the obstacles. Thus, in front of a narrow passage, the obstacle
avoidance policy will only inform about those actions that are not valid but will not apply
any repulsive force. We suggest that in the most complex environments, integrating the
output of a trajectory optimization method could improve the robot’s performance.

75

Figure 4.8.: Collision body
for the robot
manipulator.
The collision
body is com-
posed of
35 spheres
with different
radius.

The performance worsens for the 6D go-to problem (Ta-
ble 4.3). The orientation sets an important constraint in
the possible final configurations and reduces the set of tra-
jectories that solves the problem. CEP is able to perform
relatively better than the baselines but it got less than 50%
success rate in both cage environments, suggesting that in
complex scenarios an additional global path planner should
be integrated with CEP. It is important to remark, that both
the deterministic baselines and our approach were able to
properly impose the obstacle avoidance objective. We did
not record any single collision in all the trials.

An important consideration for using CEP as reactive motion
generators is its computational time. We compare the compu-
tation time for CEP with respect to RMP and APF. To properly
compare them, we have considered the same amount of poli-
cies on the three cases and we used the same kinematics
model. All the methods run in a AMD Ryzen 9 3900 CPU. For
CEP, we considered 50 particles and a single optimization
step. We show the computational time in Figure 4.7. CEP is

remarkably slower than RMP and APF. While previous methods consider an analytical
solution for the optimal action, CEP requires solving an optimization problem. To do so,
we require to evaluate a set of action particles and update a surrogate distribution Equa-
tion (4.17). In our implementation, RMP and APF computes the solution in 0.0015s in
average, while CEP computes the solution in around 0.002s. Even if it is slower, we run
CEP to 500Hz which is enough for reactive motion generation. Additionally, we remark
that our implementations are not optimized and are running in an interpreted language.
Thus, we expect faster computation times if the code is optimized and written in a com-
piled language. An additional point is related to the different computation times for the
different environments. Our method requires an average computation time of 0.0016s
for the first environment and 0.002s for the last one. The difference in computation is
based on the number of collision spheres. In our work, collision avoidance is evaluated
by computing the projected acceleration of a set of obstacle spheres in the robot with
respect to a set of obstacles in the environment. The robot is composed of 35 obstacle
spheres, while the environment varies from 1 to 62. To be computationally efficient, we
apply tensor multiplication and compute the projected accelerations in parallel. Given
N possible acceleration candidates in the configuration space, the number of projected
accelerations are N ˆ O ˆ 35, where O is the number of obstacles in the environment.

76

Table 4.4.: CEP computation time for CPU and GPU. We consider the average computa-
tion time for 1-5 optimization steps.

Table 4.5.: CEP computation time for CPU and GPU. We show the variation of the mean
computation time for the six environments

Given the number of collision spheres in the environment varies, the size of the tensor
computing the projected accelerations also changes and thus, the required time for the
tensor multiplication.

Conclusion 1We have observed that the energy model flexibility provided by CEP improves
the success rate with respect to previous methods. By choosing an appropriate energy
policy, we can improve the cooperation between all the components and solve all the
tasks jointly in a more successful way. Nevertheless, CEP requires solving an optimization
problem by stochastic optimizationmethods, while previousmethods consider an analytical
solution. The stochastic optimization might reduce the computational efficiency of CEP
and it will require more time to find a solution with respect to the analytic methods.

77

Table 4.6.: CEP succes rate for reaching a target while avoiding obstacles. Left: Mean
success rate for 1-5 optimization steps. Right: Mean success rate for the six
environments.

Ablation study CEP finds the optimal action by stochastic optimization. For I optimiza-
tion steps, we sample N possible actions from the sampling distribution, we evaluate the
objective function for each sample, and update the sampling distributions (Algorithm 6).
The number of particles and the number of optimization steps will directly influence the
performance of the robot. Also, the required computation time will vary depending on the
number of samples and optimization steps. In the following experiment, we investigate
the number of optimization steps and particles required for the reaching tasks represented
in Figure 4.6. Even if the obtained solutions are specific for the chosen experiments, this
ablation study is a relevant tool to estimate the required optimization parameters for
similar experiments.

The experiments are performed in a AMD Ryzen 3900 CPU and a Nvidia GeForce RTX 2800
GPU. We consider both to investigate which hardware is more convenient for our problem.
We present the obtained computational performance in Table 4.4 and Table 4.5. With
few samples (ă 500) the CPU is faster computationally than the GPU. Nevertheless, when
the number of particles augment, the GPU outperformed the optimization time of the
CPU. We can also observe that the required computation time linearly grows with the
number of optimization steps in both CPU and GPU cases. From Table 4.5, we can observe
that the computation effort remains constant for all the environments as long as the
number of particles is small. Nevertheless, for a high amount of particles the computation
frequency decays from the first environment to the sixth environment. For example, using
a GPU with 5000 particles, we have an average computation time of 0.0064s (156Hz)
for the first environment and 0.013s (77Hz) for the sixth environment. This change in
the computation is directly connected with our obstacle avoidance energy. As previously
introduced, we compute a tensor of N ˆ O ˆ 35 for the obstacle avoidance. For the

78

simplest scenario, we have 1 obstacles sphere and for the most complex scenario, we have
62 spheres. For the case of N = 5000, in the simplest environment, we deal with a tensor
of length 1.7e5, while in the most complex environment, we require to compute a tensor
of length 1.e7.

In the Table 4.6, we introduce the results for an ablation study on the success rate. We
investigate the required amount of particles and optimization steps to reach the targets
without colliding. For the experiment, we execute CEP 100 times on each environment.
We perform the same experiment for a different number of particles and a different number
of optimization steps. The robot is initialized in a random configuration and reactively
navigates to reach the target. We show the mean success rate for all the environments
in Table 4.6 (a) and the mean success rate for different number of optimization steps
in Table 4.6 (b). For very few particles (B = 2) the robot performs poorly achieving a
mean success rate of 0.54. Nevertheless, we can observe that it can solve properly the
easiest environments and it has a success rate of 0.008 for the most complex one. We can
also observe that for the cases in which few particles are used (5 ´ 20), the success rate
improves if we use consider more optimization steps. After 50 particles, the success rate
arrives in a plateau and an additional number of particles does not increase the success
rate. We observe that while increasing optimization steps might have a direct impact
with few particles (ă 30) when considering a high amount of particles (ą 30) a single
optimization step is enough for solving the task at the maximum affordable success rate.
We can also observe a clear pattern in the environments. While the simplest environments
are solved with an almost 1. success rate, the performance decays up to a 0.4 success rate
in the most complex environment. Due to the increase of obstacles, the robot gets stuck in
local minima more often in complex environments with respect to simple ones. In these
situations, a learned policy or a path planning algorithm could help the CEP, providing
global guidance, while CEP solves the local reactive problem.

We remark that the variability in the success rate might be directly influenced by the
stochasticity in the initial configuration. There are no predefined initial configurations,
but rather the robot is initialized in arbitrary configurations.

Conclusion 2 From the Table 4.4 and Table 4.5, we conclude that for our experiments, if
less than 500 particles are enough to solve the problem, we will choose the CPU while for
more demanding tasks a GPU should be considered. From Table 4.6, we conclude that for
the chosen experiments, 50 particles and one optimization step are enough to solve the
tasks and we do not see further improvements when increasing the number of particles
or the optimization steps. As we can observe, the computation times for 50 particles
are sufficiently small to have control frequencies around 500Hz. Nevertheless, we can

79

Figure 4.9.: A visual representation of the pick and place task in a real robot environment.
The robot is initialized in the left side. It should reach to the other side through
the holes to pick the object. Then, move back to the left side to place the
object.

observe how the computation requirements grow the more complex the environment is.
We can estimate that for environments that are even more cluttered than ours, we might
benefit from learning Signed Distance Functions (SDF) [168] to reduce the computational
requirements in the obstacle avoidance policy.

Pick-and-Place in cluttered environment

In the following experiment, we evaluate the performance of CEP in a real robot scenario.
We consider the problem of picking and place in a cluttered environment. To pick the object,
the robot is required to navigate its hand through a narrow hole, grasp the object and
navigate out of the narrow hole to leave the object in a plate. We remark there is no global
path planning or trajectory optimization and the robot reactively computes the desired
accelerations with a local controller. We present a visualization of the task in Figure 4.9. We
have modeled the obstacle wall by 67 obstacle spheres (Figure 4.11). With this experiment,
we aim to investigate the performance of CEP in complex environments as real-world
human-robot interaction environments. We additionally evaluate the performance of RMP
as baseline.

To control the robot, we use a CEP with a similar architecture to the simulated experiments:

80

Figure 4.10.: Left: Number of successful picks and places. Right: boxplot showing
the execution time to solve the pick and place tasks. We evaluate the
performance for (i) fix targets and no disturbances, (ii) under human physical
disturbances and, (iii) under target modifications.

• A target reaching policy in the end-effector space

• P ˆO obstacle avoidance policies in a set of cartesian task spaces

• Joint limits avoidance policy in the configuration space

• Joint velocity limit policy in the configuration space

The robot is controlled with 50 particles and a single optimization step.

To investigate the performance of CEP in the pick and place task, we measure the success
rate and the execution time for picking and placing under 3 conditions. First, we assume
there is a fixed target to pick and place and no human perturbing the robot. Second, the
human applies physical perturbations to the robot and changes its position, and third,
we track the human hand and dish to leave the object. Then, the picking and placing
targets are changed online. We run the pick and place routine 30 times for every case.
We present the results in Figure 4.10.

On average, the robot is able to solve the pick and placing task under the three conditions
with more than 75% success rate. We can observe that the robot is performing slightly
better when no human perturbations or target modifications happened. The failure
cases are related to the robot getting stuck in an unrecoverable state. For some initial
configurations, the robot might enter wrongly in the not correct hole. Given CEP is myopic,
it lacks any notion on how to escape from the hole and it gets stuck. When the human
interacts with the robot it might move the robot to an unrecoverable state more often and
then, the robot is not able to recover and gets stuck. In the target modification case, we
reactively change the picking position and the placing position. During the picking, we
find the robot used to get stuck if the picking point is too far from the holes. Once the

81

robot moves its arm inside the hole, the maneuverability decays. This might result in the
robot getting in some configurations in which it does not know how to get out of the hole.

Figure 4.11.: A visual representation
of the sphere-based
collision body for the
real robot experiments
wall. The collision
body is composed of
67 spheres with differ-
ent radius.

On average, the performance is better for placing
than for picking. In particular, when the placing
target is modified, there is only the target reaching
component having a big influence on the robot’s mo-
tion. Nevertheless, when picking, the robot needs
to trade-off between the obstacle avoidance com-
ponent and the picking target reaching component.
Due to this, the performance is better in the plac-
ing. We observe that CEP outperformed RMP in
all situations. Similarly to simulated experiments,
we consider that our proposed collision avoidance
energy policy allows a better integration with the
attractor policy in contrast with the repulsive colli-
sion avoidance policy from RMP. We consider that
there are two easy fixes to improve the performance
of the robot in the situations it gets stuck. First, we
can easily combine longer horizon planning meth-
ods with CEP, to escape local minima. Additionally,
we can learn specific energy policies that guide the
robot through narrow passages. These energy poli-
cies will lead the robot’s behavior when the robot is

in a difficult passage, but won’t influence the performance of the robot when is far from
the narrow passages.

We can also observe the increase in execution time under human perturbances and target
modifications for both picking and placing tasks. Due to the stochasticity, the human injects
in the robot’s motion, it requires additional time to solve the task. In the case of human
perturbances, the injected noise is by physically stopping and moving the robot around.
Additionally, the robot might be set in an uncomfortable configuration and it requires
additional time to recover and solve the task. In the case of the target modifications, the
additional execution time is usually due to the human lack of steadiness and sensor errors.
The robot tries to grasp the object once a certain distance threshold to the object is passed.
Given the sensor disturbances and the human’s lack of steadiness, the robot might require
additional time to reduce the threshold distance and pick the object. We can observe,
that the execution times are bigger for the picking case rather than the placing task. Due
to the lack of maneuverability in the picking task, the robot usually requires way more

82

time to solve the task. Nevertheless, one is far from the obstacles, the robot’s possible
movements increases and it can solve the task faster.

Conclusion 3 We evaluated the validity of CEP as a reactive motion generator in a
real system. We have observed that the robot is able to reactively adapt to unmodelled
perturbances such as human physical disturbances or online target modifications and
still solve the pick and place task while moving through a narrow hole. Nevertheless,
we observe the locality of CEP in some configurations. The robot might get stuck in
a local optimum trying to enter through the hole. Due to this, we suggest integrating
learning components or path planning components to be able to consider longer horizon
information and resolve the local minima easier.

4.5.3. Learning with structured policies

In this experimental section, we evaluate the performance of CEP as structured policy in a
reinforcement learning problem. We perform the experiments to answer the following
questions

Q1: Can we improve the learning performance of the reinforcement learning problem by
integrating guiding priors through CEP?

Q2: Can we reduce the number of collisions while learning by integrating obstacle
avoidance priors through CEP?

Learning how to hit a puck

We consider the problem of learning how to hit a puck and putting it in a certain target
position (Figure 4.12). We consider this task a good experiment to investigate the benefits
of integrating priors for learning. A desirable policy should learn to hit the puck without
colliding against the table. Nevertheless, given that the puck is close to the table, it is
hard to find a policy that weights properly both objectives. We investigate the benefit of
CEP as a structured policy to deal with such situations. Additionally, if we consider the
whole workspace of the robot, there are very few regions in the state-action space that
make the robot move the puck. Most of the possible state-action pairs won’t influence the
position of the puck. Thus a prior guiding the robot to the puck might be very helpful to
explore in more informative regions.

83

Figure 4.12.: A block diagram of a reinforcement learning problemwith a structured policy.
The RL agent πRL and the structured policy πstruct might run to different
control frequencies. Given the current state s, the RL policy samples a
parameter vector ψ. This parameter vector is input in the structured policy
and the control action is computed a.

We use a 7 dof LBR-IIWA robot. A visual representation of the task can be found at
Figure 4.12. The reinforcement learning agent πRL receives as input the state s. The state
s P R18 is represented by the end-effector’s cartesian position xee, puck’s position xpuck,
their relative position rp-ee = xee ´ xpuck, the puck’s velocity vpuck, the end effector’s
velocity vee and the target position xtarget. The output of the reinforcement learning agent
is the parameter ψ. For our experiment, the output ψ P R3 represents the desired task
space cartesian velocity in the end-effector. The robot is always initialized with the same
joint configuration and each episode last 300 steps (it lasts 300 steps for the reinforcement
learning agent, but 3000 steps for the structured policy πstruct).

Policy Setup The structured policy receives the reinforcement learning agent’s output,
ψ, and the state s and computes the desired configuration space acceleration as action
a = q̈.

We consider two baselines as structured policies: direct operational space control [104] and
residual operational space control [218, 93]. The structured policy for direct operational
space control is modelled by

πstruct(s,ψ) = J
:K(ψ ´ q̇), (4.36)

with J: the Jacobian pseudoinverse of the forward kinematics to the end-effector, q̇ the
current robot joint configuration andK a damping gain. The controller defines a velocity

84

error correction in the task space. Then, the desired task space acceleration is map to
the configuration space by the Jacobian pseudoinverse. The residual operational space
controller is modelled by

πstruct(s,ψ) = J
:K(q̇˚ ´ q̇)

q˚̇ = ψ + πg(s), (4.37)

with πg(s) the guiding policy. Residual task space control applies a similar approach to
direct operational space control. Nevertheless, the desired task space velocity is defined
by the linear sum of ψ and πg(s). πg(s) is a guiding policy. In our experiments, we model
πg(s) as a CEP with an obstacle avoidance energy to the table and a puck attractor energy.
Thus, the desired velocity is represented as the linear sum of the reinforcement learning
action and the CEP action.

We compare these baselines with respect to using CEP as the structured policy (Section 4.4).
Our model policy is modelled by

πstruct(s,ψ) = argmax
q̈

log
(︃

ź

k
πk(q̈|s,ψ)

)︃
. (4.38)

In contrast with the residual policy, which linearly combines the output of the reinforcement
learning agent and the CEP, in our case, we input the action of the reinforcement learning
agent ψ as an additional parameter to condition the energy policies. Then, the optimal
action is computed between the conditioned energy policies and the priors. The CEP is
built by three energy policy components:

• A target (puck position) reaching energy in the end-effector;

• An obstacle avoidance energy in the end-effector (to avoid collisions against the
table);

• ψ parameterized velocity tracking energy in the end-effector.

The chosen residual policy combines the output of the reinforcement learning agent ψ
and the output of a defined CEP, πg linearly. In contrast, the CEP policy takes as input
parameter the reinforcement learning agent’s output ψ and solves the maximization
problem combining a ψ parameterized policy and two defined policies.

Both baselines have been widely applied as structured policies in reinforcement learn-
ing [89, 93, 123, 211, 58]. We choose an operational space control baseline to investigate
the benefit of the target reaching bias terms in the CEP. Given both CEP and residual

85

policy uses an attractor to the target, we aim to investigate if it provides an additional
benefit with respect to not considering an attractor bias in the policy. We choose residual
control to investigate the benefit of the obstacle avoidance prior in CEP. Even if both
consider an obstacle avoidance prior, the prior and the reinforcement learning action are
integrated differently. We aim to investigate the benefits and perks of imposing obstacle
avoidance in our method concerning the residual control method.

Problem Setup To properly investigate the benefit of CEP, we extend the previous work
in [240] with two additional MDPs. The three MDPs consider the same transition dynamics
model, but they differ in the reward function. The three rewards contain a reward signal
that defines the task to solve (move the puck to the target). The three of them differ in the
inductive biases we additionally integrate into the reward function. We aim to study the
influence of reward shaping with respect to the influence of structured policies to improve
the learning performance.

The first reward is composed of the distance between the end-effector and the puck and
distance between the puck and the target:

r1 = ´dee-puck ´ dpuck-target.

The distance between the end-effector and the puck is an inductive bias that helps the
agent to find a policy that hits the puck. A similar inductive bias is integrated into the
residual and CEP policies with the attractor policy.

The second reward function additionally considers a negative terminal cost if the robot
hits the table, rT = ´100.

r2 = ´dee-puck ´ dpuck-target + rT (sT).

The negative terminal cost is an inductive bias that pushes the robot to avoid the table. If
the robot collides against the table, we stop the episode and add the terminal cost.

Finally, the last reward function (the one in [240]), considers only the reward distance
between the puck and the target

r3 = ´dpuck-target + rT (sT).

Eliminating the attractor to the puck, the direct operational space controller lacks any
source of bias to approximate to the puck. We aim to study if the attractor inductive
bias might have any influence on our learning performance. We claim that CEP can

86

be used with any arbitrary reinforcement learning algorithm. To investigate its perfor-
mance, we have conducted the experiments with several deep reinforcement learning
algorithms (PPO [213], SAC [74], DDPG [130], TD3 [57]) implemented in Mushroom-
RL [32].

Comparative evaluation We investigate the learning performance of the three structured
policies in terms of the accumulated reward and accumulated collisions against the table
per epoch. We present the obtained results in Figure 4.13.

We start evaluating the results for the first reward (Figure 4.13 top row). Observing the
discounted reward, we can see that the three controllers can achieve a similar perfor-
mance (direct operational space control is slightly worse). While CEP and residual policies
initial return is close to the prior, the direct operational space control starts with a worse
policy. Nevertheless, given that we have added a distance reward to the puck, the direct
controller is able to get close to CEP and residual in a few episodes. The performance is
pretty different if we observe the collisions. The collision avoidance prior allows CEP to
explore without a single collision. In contrast, residual and direct controllers collide quite
often while exploring. The residual controller has the obstacle avoidance prior encoded in
the guiding policy. Nevertheless, we can observe that the prior is not strong enough and
the robot collides quite often. In the third column, we present the performance of CEP for
different deep reinforcement learning algorithms. As we can observe, the agent is able to
solve the problem with any learning algorithm.

In the second experiment, we additionally add a terminal cost if the robot collides with
the table. We present the results in Figure 4.13 middle row. We can observe that while
CEP maintains a similar learning curve than in the first problem, the learning curve for
residual learning and direct control slows down. In the current MDP, the robot not only
needs to find a policy to hit the puck but also, avoid collisions against the table. We
hypothesize that given CEP is able to impose the table collision properly, it will not explore
in state-space regions that lead to a collision. Therefore, the learning agent is completely
focused on the problem of hitting the puck. On the contrary, direct and residual learning
policies are constantly hitting against the table. Due to this, the reinforcement learning
agent requires to learn a policy that both avoids collisions and also hits the puck. This
hypothesis match with the collisions plot. Both direct and residual policies have multiple
collisions in the first episodes. Nevertheless, during the learning, they find policies that are
able to avoid them. In the case of CEP, the obstacle avoidance prior is sufficiently strong to
have an obstacle-free learning process. Similar to the first problem, all the reinforcement
learning algorithms can solve the problem with similar performances.

87

Finally, in the third experiment, we eliminate from the reward function the prior that
guides the robot close to the puck. In our previous experiments, the guiding prior is
included in both the reward signal and the structured policies. We aim to investigate
the learning performance when we impose the guiding attractor only in the structured
policies. The obtained results are presented in Figure 4.13 bottom row. The performance
of our method remains good even if the inductive bias is eliminated from the reward.
The inductive bias in the policy is enough to find a good behavior to hit the puck. We
can observe that also residual policy learning is performing well, similarly to the second
environment. Nevertheless, the direct controller is not able to solve the problem and the
performance decays from previous experiments. The reward function is highly sparse (the
robot receives information only if it hits the puck) and the direct control lacks any guiding
inductive bias to be close to the puck. In conclusion, a lack of guided exploration makes
the controller not find proper behavior.

Conclusion 4 In this experiment we investigate the influence of integrating inductive
biases in a robot reinforcement learning problem. We include two inductive biases: a
collision-avoidance bias to encourage the robot not to collide against the table and an
attractor bias that encourages the robot to get close to the puck. We investigate the
differences between integrating the inductive biases directly in the reward or integrating
them in the policy. Additionally, we investigate the differences linearly sum inductive
biases (residual controller) or through an optimization problem (composable energy
policies). A relevant conclusion is that in contrast with other structured policies, only
CEP is able to guarantee a learning without a single collision. the collision avoidance bias
in the residual controller does not impose sufficient constraints. On the other hand, the
collision avoidance bias in the reward function requires the robot to collide against the
table to receive the reward signal to learn not to collide. Thus, we conclude that the CEP
approach is a relevant approach to guarantee safer exploration. In contrast, we observe
that the attractor bias is properly integrated with the residual approach and also through
the reward function. While CEP is able to also integrate this inductive bias, we do not see
any major benefit in our approach with respect to others.

4.6. Related work

In the main part of this article, we focus on modeling reactive motion generators. Neverthe-
less, reactive motion generators have been widely explored for both robot local navigation
and robot reinforcement learning. In this section, we want to briefly summarize the
existing work on both topics.

88

Multi-objective reactivemotion generation The problem of reactively generating motion
for local robot navigation satisfies three conditions: (i) there are multiple objectives that
must be jointly satisfied, (ii) usually, these objectives are defined in arbitrary task spaces
and (iii) we should be able to compute the solution fast enough to have high control
frequencies and be reactive. Two of the earliest solutions to this problem are proposed
in [105, 104]. In [105], artificial potential fields method is proposed. This method
provides a solution for combining multiple obstacle avoidance objectives as a combination
of repulsive potential fields. In [104], the idea of operational space control is defined.
Operational space control provides a method for mapping the desired policies defined in
the task space to the configuration space in which the robot is controlled.

Inspired by these early efforts, in [191], Riemannian motion policies are introduced. In
this work, the problem of properly combining policies defined in different task spaces is
addressed. Riemannian motion policies focus on the concept of the metric to properly
weight the contribution of each policy in the final action. Later works [28, 127] improve
the riemannian motion policies in terms of computational efficiency. There has been a set
of alternative works, dealing with different problems in Riemannian motion policies. In
[215] pullback bundle dynamical systems are proposed. The work proposes a method
to combine multiple policies defined in non-Euclidean spaces. Geometric Fabrics [190,
189, 258] propose to model the policy composition in terms of Finsler geometries. As
shown in their work, modelling the problem in terms of Finsler geometries, they can easily
guarantee stable behaviors in contrast to Riemannian motion policies.

All of the above methods assume the composition of a set of myopic controllers. In a
different direction, some researchers have tried to study the composition of policies that
are optimised to solve a longer horizon control problem. In [233], linearly-solvable
Markov Decision Processes (LMDP) is presented. As shown in the work, a weighted sum
of individually optimal policies was proven to be the optimal control problem solution
for a reward function defined as weighted-sum of individual rewards and differing only
in the terminal reward. In a similar vein [72, 231] proposes suming a set of optimal Q
function. Additionally, in [72] the distance between the optimal Q function and the sum
of Q functions is investigated.

Finally, a set of works propose solving the multi-objective reactive motion generation
problem by numerical optimization. Dynamic Window Approach (DWA) [55, 246] solves
the reactive motion generation for a 2D planar robot in a two steps optimization algorithm.
First, the search space of possible actions is reduced given a set of constraints. Then, given
an objective function, the optimal action is selected. Model predictive control (MPC)
methods [59, 47, 37] consider a non-myopic trajectory optimization problem to find

89

reactively the optimal action satisfying multiple objectives. To reduce the computational
requirements, MPC methods initialize the optimization problem with the previously
computer solution. These methods usually assume simplified kinematics and dynamics
models and quadratic cost functions to be computationally efficient and be reactive.

Our work lays in a middle-ground. We consider a myopic (one-step ahead) optimization
problem to find the optimal action similarly to artificial potential fields and Riemannian
motion policies. Nevertheless, we do not assume there exist an analytic expression for our
solution and rather we solve a numerical optimization problem in every control step as in
model predictive control.

Structured policies in robot reinforcement learning Integrating inductive biases into the
reinforcement learning problem has been shown to be effective in improving the learning
performance of the reinforcement learning agents. These inductive biases are usually
integrated into the problem through the reward function (reward shaping) or through the
policy (structured policy). Structured policies modify the action space of the reinforcement
learning agent. Rather than sampling actions that directly influence the robot such as
torques, the reinforcement learning agent samples actions in a parameter space. These
parameters are later inputted into the structured policy and the robot control signal is
computed.

Structured policies have a long history in robot reinforcement learning. Operational
space controllers [177, 123] transform the action space from the configuration space to
the task space. It is shown that the robot is able to learn better policies if the reward
function is also defined in the task space. A big set of works have considered applying
reinforcement learning in the parameter space of movement primitives such as DMP or
handcrafted primitives [155, 35, 176, 9, 34]. Considering a DMP as structured policy
guarantees inductive biases such as stability or smoothness in the robot’s behavior. Residual
Policy Learning approaches [218, 93], model the structured policy by a linear sum of the
reinforcement learning action and the output of a guiding policy. Assuming the guiding
policy is properly modeled for the task, the reinforcement learning agent is expected to
learn the residuals of the guiding policy and improve the performance of the guiding
policy.

A different approach is proposed in [127]. Instead of splitting the policy between the
reinforcement learning agent and the structured policy, they propose to model the rein-
forcement learning policy directly as a RMP. The action to apply in the robot is directly

90

sampled from the agent, but the agent model is a parameterized RMP. They claim that
both the policy leaves and the task maps can be parameterized and learned.

In contrast with previous works that assume an explicit structured policy; in our work, we
propose to model the structured policy via an optimization function. The reinforcement
learning agent samples a set of actions that parameterize the energy policies. Then, we
apply an optimization problem to find the optimal action. As shown in the experiments, this
optimization problem can easily impose hard constraints (through uniform distributions)
and guarantee safer learning.

4.7. Discussion

CEP can be viewed as a generalization on RMP where the cost functions are not limited
to be quadratic. This generalization provides additional flexibility to model the policy
components and find better alternatives to represent the policy components. From a
different perspective, CEP can be viewed as a particular case of MPC, in which the control
horizon is fixed to a single step. Fixing the control horizon to a single step allows us to
reduce the optimization variables and find control actions for a high-dimensional robot and
a set of cost functions with a low computational budget. We show empirically, that with a
proper choice of energies, one-step ahead optimization can still solve complex cluttered
environments without the computational requirements of optimizing over longer horizons
as in MPC. Nevertheless, it is important to remark that our approach is myopic and thus,
we will never have guarantees of satisfying all the objectives in the long run. To have
the guarantees of solving a long-horizon problem, we might instead rely on long-horizon
planning methods. Additionally, we embrace a probabilistic interpretation of the multi-
objective reactive motion generation problem. Framing the problem in a probabilistic view
allow us to build connections between the literature in Bayesian inference [91, 195] or in
energy based composition [78, 40] and the literature in reactive motion generation [104,
191]. We consider that this probabilistic interpretation is beneficial to integrate learning
components in the reactive motion generation problem. From this view, we can built policy
component as maximum likelihood distributions for a given dataset or maximum-entropy
policies for a given reward.

Introduced in Section 4.3, RMP can be viewed as the solution of a myopic control as
inference problem in which each component is modelled by a normal distribution. A
normal distribution assumes that the action distribution is unimodal. There exist an optimal
action (the mean) to satisfy a particular objective and the quality of the rest of the actions

91

is measured given a Mahalanobis distance to the optimal one. While framing the problem
in terms of normally distributed policy components have some benefits (there exist a close
form solution for the optima); the expressivity might be limited for other components. We
have shown experimentally, that uniformly distributed policies might be more benefitial
to represent obstacle avoidance policies. Nevertheless, a drawback of considering non-
quadratic policies is that we lack an analytical solution of our optimization problem and
we require to use stochastic optimization algorithms to find the optimal action. Through a
set of ablation studies, we have evaluated the computational requirements of our method
and find out that with the current hardware, we can achieve control frequencies up to
500Hz with a non optimized code. We expect that with a highly optimized code and with
more powerful hardware, we could achieve 1kHz control frequencies.

In our work, we have additionally evaluate the performance of CEP as a structured policy.
In reinforcement learning, high dimensional state-action spaces with sparse rewards might
require an excessive amount of samples to find a proper behavior. Additionally, the robot
might have undesirable collisions while exploring. A common approach to deal with
this problem is by exploring in the parameter space of a low-level controller. Through
this abstraction we can impose all the desired inductive bias in the low-level controller
and explore in manifold generated by the inductive biases. In contrast with most of the
structured policies in the literature, in CEP, the structured policy is represented by an
optimization problem over a set of parameterized implicit functions. The reinforcement
learning agent samples a set of parameters that conditions the objective function to
optimize. Through this abstration we can combine inductive bias costs and reinforcement
learning conditioned costs and solve an optimization problem that aims to satisfy all the
objectives. Through this approach, imposing collision avoidance constraints or guiding
bias is simple as we only require to agregate an additional energy function to the objective.
It also provides a modular learning as the reinforcement learning conditioned policy can
be completely independent from the inductive bias policies.

4.8. Conclusion and future work

We have introduced a probabilistic approach for multi-objective reactive motion genera-
tion. We have shown theoretically the relations between CEP and RMP and observe that
the increase in flexibility when modelling the policies could improve the composability
performance with respect to RMP or APF methods. CEP is a general framework that allows
the composition of multiple sources policies defined in arbitrary task spaces.

92

When integrated as a structured policy for reinforcement learning, we have shown that
CEP provides a novel learning structure. The reinforcement learning agent samples a set
of parameters that are integrated as conditioning elements of an objective function and
the optimal action is computed by solving this low level optimization problem. This bi-
level optimization problem allows the integration of safety constraints through uniformly
distributed inductive biases or guiding inductive biases without changing the policy model,
but simply including additional components to the objective function. We have shown
experimentally that the implicit structured approach provides higher safety guarantees
with respect to explicit structured policies.

Amissing element in the current work is observing the performance of CEPwith data-driven
policy components. All the components we have considered are analitically computed
policies or reinforcement learning based learned policies. We consider as future work,
exploring the composition of multiple policies learned by imitation learning. Combining
CEP architecture with imitation learning allows the composition of multiple demonstrations
given in different task spaces. This would open the possibility of composing expert
demonstrations from multiple sources and in different state-action spaces in a single policy.
We expect this approach to increase the generalization and modularity properties in robot
learning.

93

Figure 4.13.: Obtained results for the hitting a puck experiment. Column 1 and 2 present
a comparison between different structured policies. Column 3 presents a
comparison between different reinforcement learning algorithms.

94

5. Diffusion Models on SE(3) for Motion
Planning

In this chapter, we introduce SE(3)-DiffusionFields , a novel model that represents diffu-
sion models in the Lie group SE(3). The Lie group SE(3) is an important manifold for
robotics, as it is the space in which we can represent 6D positions and orientations. In
our work, we use our proposed model to learn a diffusion model to generate 6DoF grasp
poses for arbitrary objects. As shown in the experimental section, our proposed model
outperforms state-of-the-art generative models for grasp pose generation.

Due to the inherent implicit nature of the diffusion models, we can integrate diffusion
models into optimization problems as cost gradients. Additionally, given the model is
trained with denoising score matching, we have the guarantee that we have informative
gradient in the whole space, being an useful signal for iterative optimization algorithms.
In this work, we explore the problem of using diffusion models as cost or cost gradients
into multi-objective optimization problems. We show that we can integrate the proposed
grasp pose diffusion model as an additional objective into a motion planning problem,
giving rise to a novel framework for joint grasp and motion optimization without needing
to decouple grasp selection from trajectory generation. As shown in the experimental
section, solving the problem of grasp and motion planning in a single optimization problem
reduces the required number of samples to find a valid solution.

95

Figure 5.1.: Pick and place task in which the robot has to pick a mug and move it to the
target pose (in the shelves) without colliding. We exploit diffusion models for
jointly optimizing both grasp and motion and show the successful trajectory
from left to right.

5.1. Introduction

Autonomous robot manipulation tasks usually involve complex actions requiring a set
of sequential or recurring subtasks to be achieved while satisfying certain constraints,
thus, casting robot manipulation into a multi-objective motion optimization problem [188,
97, 212]. Let us consider the pick-and-place task in Figure 5.1, for which the motion
optimization should consider the possible set of grasping and placing poses, the trajectories’
smoothness, collision avoidance with the environment, and the robot’s joint limits. While
some objectives are easy to model (e.g., joint limits, smoothness), others (e.g., collision
avoidance, grasp pose selection) are more expensive to model and are therefore commonly
approximated by learning-based approaches [184, 162, 152, 242, 219].

Data-driven models are usually integrated into motion optimization either as sampling
functions (explicit generators) [152, 107], or cost functions (scalar fields) [243, 184].
When facing multi-objective optimization scenarios, the explicit generators do not allow
a direct composition with other objectives, requiring two or even more separate phases
during optimization [156]. Looking back at the example of Figure 5.1, a common practice
is to learn a grasp generator as an explicit model, sample top-k grasps, and then find
the trajectory that, initialized by a grasp candidate, solves the task with a minimum cost.
Given the grasp sampling is decoupled from the trajectory planning, it might happen
the sampled grasps to be unfeasible for the problem, leading to an unsolvable trajectory
optimization problem. On the other hand, learned scalar fields represent task-specific
costs that can be combined with other learned or heuristic cost functions to form a single
objective function for a joint optimization process. However, these cost functions are often
learned through cross-entropy optimization [152, 137] or contrastive divergence [50, 243],
creating hard discriminative regions in the learned model that lead to large plateaus in the

96

learned field with zero or noisy slope regions [7, 148], thereby making them unsuitable for
pure gradient-based optimization. Thus, it is a common strategy to rely on task-specific
samplers that first generate samples close to low-cost regions before optimizing [152,
137].

In this work, we propose learning smooth data-driven cost functions, drawing inspiration
from state-of-the-art diffusion generative models [227, 138, 83, 16, 66]. By smoothness, we
refer to the cost function exposing informative gradients in the entire space. We propose
learning these smooth cost functions in the SE(3) robot’s workspace, thus defining task-
specific SE(3) cost functions. In particular, in this work, we show how to learn diffusion
models for 6DoF grasping, leveraging open-source vastly annotated 6DoF grasp pose
datasets like Acronym [46]. SE(3) diffusion models allow moving initially random samples
to low-cost regions (regions of good grasping poses on objects) by evolving a gradient-
based inverse diffusion process [226] (cf. Figure 5.2). SE(3) diffusion models come with
two benefits. First, we get smooth cost functions in SE(3) that can be directly used in
motion optimization. Second, they better cover and represent multimodal distributions,
like in a 6DoF grasp generation scenario, leading to better and more sample efficient
performance of the subsequent robot planning.

Consequently, we propose a joint grasp and motion optimization framework using the
learned 6DoF grasp diffusion model as cost function and combining it with other differen-
tiable costs (trajectory smoothness, collision avoidance, etc.). All costs combined (learned
and hand-designed) form a single, smooth objective function that optimizing it enables
the generation of good robot trajectories for complex robot manipulation tasks. This
work shows how our framework enables facing grasp generation and classical trajectory
optimization as a joint gradient-based optimization loop.

Our contributions are threefold: (1) we show how to learn smooth cost functions in
SE(3) as diffusion models. While score-based generative modeling has been previously
introduced for arbitrary Riemannian manifolds [16], we focus on the particular require-
ments for the Lie group SE(3). (2) we use the SE(3) diffusion models to learn 6DoF
grasp pose distributions as cost functions. Our experiments show that our learned
models generate more diverse and successful grasp poses w.r.t. state-of-the-art grasp
generative models. Once the model is trained, (3) we introduce a gradient-based op-
timization framework for jointly resolving grasp and motion generation, in which
we integrate our learned 6DoF grasp diffusion model with additional task-related cost
terms. To properly integrate diffusion models in the motion optimization problem, we
rewrite the optimization as an inverse diffusion process, similarly to [90]. In contrast with
previous methods that decouple the grasp pose selection and the motion planning, our

97

framework resolves the grasp and motion planning problem by iteratively improving the
trajectory to jointly minimize the learned object-grasp cost term and the task-related costs.
We remark that this joint optimization is only possible thanks to the smoothness of our
learned diffusion model and using instead a grasp classifier, trained with cross-entropy
loss, as cost won’t resolve the problem due to its lack of smoothness. Our quantitative
and qualitative results in simulation and the real-world robotic manipulation experiments
suggest that our proposed method for learning costs as SE(3) diffusion models enables ef-
ficiently finding good grasp and motion solutions against baseline approaches and resolves
complex pick-and-place tasks as in Figure 5.1.

5.2. Preliminaries

Diffusion Models. Unlike common deep generative models (VAE, generative adversarial
networks (GAN)) that explicitly generate a sample from a noise signal, diffusion models
learn to generate samples by iteratively moving noisy random samples towards a learned
distribution [224, 227]. A common approach to train diffusion models is by DSM [249,
205]. To apply DSM [224, 225], we first perturb the data distribution ρD(x) with Gaussian
noise on L noise scales N (0, σkI) with σ1 ă σ2 ă ¨ ¨ ¨ ă σL, to obtain a noise perturbed
distribution qσk(x̂) =

ż

x
N (x̂|x, σkI)ρD(x)dx. To sample from the perturbed distribution,

qσk(x̂) we first sample from the data distribution x „ ρD(x) and then add white noise
x̂ = x+ ϵ with ϵ „ N (0, σkI). Next, we estimate the score function of each noise perturbed
distribution ∇x log qσk(x) by training a noise-conditioned vector field sθ(x, k), by score
matching sθ(x, k) « ∇x log qσk(x) for all k = 1, . . . , L. The training objective of DSM [205]
is

Ldsm =
1

L

L
ÿ

k=0

Ex,x̂
[︁⃦⃦
sθ(x̂, k) ´ ∇x̂ logN (x̂|x, σ2kI)

⃦⃦]︁
, (5.1)

with x „ ρD(x) and x̂ „ N (x, σkI) To generate samples from the trained model, we apply
Annealed Langevin MCMC [157]. We first draw an initial set of samples from a distribution
xL „ ρL(x) and then, simulate an inverse Langevin diffusion process for L steps, from
k = L to k = 1

xk´1 = xk +
α2
k

2
sθ(xk, k) + αkϵ , ϵ „ N (0, I), (5.2)

with αk ą 0 a step dependent coefficient. Overall, DSM Equation (5.1) learns models that
output vectors pointing towards the samples of the training dataset ρD(x) [226].

98

SE(3) Lie group. The SE(3) Lie group is prevalent in robotics. A pointH =
[︁
R t
0 1

]︁
P SE(3)

represents the full pose (position and orientation) of an object or robot link withR P SO(3)
the rotation matrix and t P R3 the 3D position. A Lie group encompasses the concepts of
group and smooth manifold in a unique body. Lie groups are smooth manifolds whose
elements have to fulfil certain constraints. Moving along the constrained manifold is
achieved by selecting any velocity withing the space tangent to the manifold atH (i.e., the
so-called tangent space). The tangent space at the identity is called Lie algebra and noted
se(3). The Lie algebra has a non-trivial structure, but is isomorphic to the vector space R6 in
which we can apply linear algebra. As in [223], we work in the vector space R6 instead of
the Lie algebra se(3). We can move the elements between the Lie group and the vector space
with the logarithmic and exponential maps, Logmap : SE(3) ÝÑ R6 and Expmap : R6 ÝÑ SE(3)
respectively [223]. A Gaussian distribution on Lie groups can be defined as

q(H|Hµ,Σ)9 exp
(︂

´0.5
⃦⃦
Logmap(H´1

µ H)
⃦⃦2
Σ´1

)︂
, (5.3)

with Hµ P SE(3) the mean and Σ P R6ˆ6 the covariance matrix [30]. This special form is
required as the distance between two Lie group elements is not represented in Euclidean
space. Following the notation of [223], given a function f : SE(3) ÝÑ R, the derivative w.r.t.
a SE(3) element, Df(H)/DH P R6 is a vector of dimension 6. We refer the reader to [223]
and the Appendix in project site for an extended presentation of the SE(3) Lie group.

5.3. SE(3)-Diffusion Fields

In this section, we show how to adapt diffusion models to the Lie group SE(3) [223], as it is
a crucial space for robot manipulation. The SE(3) space is not Euclidean, hence, multiple
design choices need to be considered for adapting Euclidean diffusion models. In the
following, we first explain the required modifications (Section 5.3.1). Then, we propose
a neural network architecture for learning SE(3) diffusion models that represent 6DoF
grasp pose distributions and show how we train it (Section 5.3.2). Finally, we show how
to integrate the learned diffusion models into a grasp and motion optimization problem
and show how to optimize it jointly considering the grasp and the motion (Section 5.4).

5.3.1. From Euclidean diffusion to diffusion in SE(3)

A diffusion model in SE(3) is a vector field that outputs a vector v P R6 for an arbitrary
query point H P SE(3), i.e., v = sθ(H, k) with a scalar conditioning variable k determining

99

https://sites.google.com/view/se3dif

Figure 5.2.: Generating high quality SE(3) grasp poses by iteratively refining random
initial samples (k=L) with an inverse Langevin diffusion process over SE(3)
elements (Equation (5.6)).

the current noise scale [224].
Denoising Score Matching in SE(3). Similar to the Euclidean space version (cf. Sec-
tion 5.2), DSM is applied in two phases. We first generate a perturbed data point in SE(3),
i.e., sample from the Gaussian on Lie groups Equation (5.3), Ĥ „ q(Ĥ|H, σkI) with mean
H P ρD(H) and standard deviation σk for noise scale k. Practically, we sample from this
distribution using a white noise vector ϵ P R6,

Ĥ =HExpmap(ϵ) , ϵ „ N (0, σ2kI). (5.4)

Following the idea of DSM, the model is trained to match the score of the perturbed
training data distribution. Thus, DSM in SE(3) requires computing the derivatives of the
perturbed distribution w.r.t. a Lie group element. Hence, the new DSM loss function on
Lie groups equates to

Ldsm =
1

L

L
ÿ

k=0

EH,Ĥ

[︄⃦⃦⃦⃦
⃦sθ(Ĥ, k) ´

D log q(Ĥ|H, σkI)

DĤ

⃦⃦⃦⃦
⃦
]︄
, (5.5)

with H „ ρD(H) and Ĥ „ q(Ĥ|H, σkI). Note that, as introduced in Section 5.2, the
derivatives w.r.t. a SE(3) element Ĥ outputs a vector on R6. In practice, we compute this
derivative by automatic differentiation using Theseus [178] library along with PyTorch.
Sampling with LangevinMCMC in SE(3). Evolving the inverse Langevin diffusion process
for SE(3) elements (cf. Figure 5.2 for visualization) requires adapting the previously
presented Euclidean Langevin MCMC approach Equation (5.2). In particular, we have to
ensure staying on the SE(3) manifold throughout the inverse diffusion process. Thus, we
adapt the inverse diffusion in SE(3) as

Hk´1 = Expmap
(︃
α2
k

2
sθ(Hk, k) + αkϵ

)︃
Hk, (5.6)

with ϵ P R6 sampled from ϵ „ N (0, I) and the step dependent coefficient αk ą 0. By
iteratively applying Equation (5.6), we move a set of randomly sampled SE(3) poses to

100

Figure 5.3.: SE(3)-DiF’s architecture for learning 6D grasp pose distributions. We train
the model to jointly learn the objects’ sdf and to minimize the denoising loss.
Given grasp poseHPSE(3)we transform it to a set of 3D points xwPRNˆ3 (I).
Next, we transform the points into the object’s local frame, using the object’s
poseHo

w. Given the resulting points xo and the object’s shape code z we
apply the feature encoder Fθ (II) to obtain a object and grasp-related features
(sdf, ψ)P RNˆ(ψ+1). Finally, (III) we flatten the features and compute the
energy e through the decoderDθ. We provide a point-cloud-based implemen-
tation in our code repository: https://github.com/TheCamusean/grasp_diffu-
sion

.
the data distribution ρD(H) (See Figure 5.2).
From the score function to energy model. While most of the works in learning diffusion
models learn a vector field representing the score sθ, in our work, we learn a scalar field
that represents the energy of the distributionEθ. In contrast with learning a score function,
learning an EBM allow us evaluating the quality of the generated samples and compose it
with other cost functions for multi-objective motion optimization. To learn an EBM with
denoising score matching, we model our score function sθ(H, k) = ´DEθ(H, k)/DH,
as the derivative of the EBM Eθ.

5.3.2. Architecture & training of Grasp SE(3)-DiffusionFields

Even though we can represent any data-driven cost in SE(3) with SE(3)-DiF, in this work,
we focus on cost functions that capture 6DoF grasp pose distributions conditioned on
the object we aim to grasp. In this work, we assume to have access to the object pose, a
reasonable assumption thanks to the impressive results in 6DoF object pose estimation and
segmentation [253]. We defer studying the perception aspect of encoding point clouds
into object pose and shape as in [152, 92] for a future work. We illustrate the architecture
for our grasp SE(3)-DiF model in Figure 5.3 and the training pipeline in Algorithm 7. The

101

https://github.com/TheCamusean/grasp_diffusion
https://github.com/TheCamusean/grasp_diffusion

proposed model maps an object (represented by its id and pose) and a 6DoF grasp pose
H P SE(3) to an energy e P R, that measures the grasp quality for the particular object.

We train the model to jointly match the Signed Distance Field (SDF) of the object we aim to
grasp and predict the grasp energy level by the DSM loss Equation (5.5). Learning jointly
the SDF of the object and the grasp pose improves the quality of the grasp generation
[92, 219]. During the training, we assume the object’s id m and pose Ho

wP SE(3) are
available, and we retrieve a learnable object shape code zm given the index m as in [168].
For training the SDF loss, we apply a supervised learning pipeline. Given a dataset of 3D
points xw P R3 and sdf P R for a particular object m, Dm

sdf : (xw, sdf), we first map the points
to the object’s reference frame xo =Ho

wxw and then predict the SDF given the feature
encoder Fθ (See Algorithm 7).

As previously introduced in Equation (5.5), to apply the DSM loss, we compute the energy
e P R over the grasp poses Ĥ. These grasp poses have been previously obtained by perturb-
ing grasp poses from the dataset H P ρD(H) with a noise level k Equation (5.4). In our
problem, we consider ρD(H) to be a distribution of successful grasp poses for a particular
object, and learn the energy to approximate the log-probability of this distribution under
noise. We compute the energy e given a grasp pose Ĥ in three steps. (I) We transform the
grasp pose to a fixed set of N 3D-points around the gripper xgPRNˆ3 in the world frame
xw=Hxg. We thereby express the grasp pose through a set of 3D points’ positions, similar
to [219]. Then, we move the points to the object’s local frame, xom=Hom

w xw. (II) We apply
the feature encoding network Fθ which is also conditioned on zm and k to inform about
the object shape and noise level, respectively. The encoding network outputs both the
SDF predictions for the query points, sdfPRNˆ1, and a set of additional features ψPRNˆψ.
Thus, the feature encoder’s output is of size Nˆ(1 + ψ). (III) We flatten the features and
pass them through the decoder Dθ to obtain the scalar energy value e. Given the energy,
we compute the DSM loss Equation (5.5). During training, we jointly learn the objects’
latent codes zm, and the parameters θ of the feature encoder Fθ and decoder Dθ.

5.4. Grasp and motion optimization with diffusion models

Given a trajectory τ : tqtu
T
t=1, consisting of T waypoints, with qt P Rdq the robot’s joint

positions at time instant t; in motion optimization, we aim to find the minimum cost
trajectory τ ˚ = argminτ J (τ) = argminτ

ř

j ωjcj(τ), where the objective function J is a
weighted sum of costs cj, with weights ωj ą 0. Herein, we integrate the learned SE(3)-DiF
for grasp generation as one cost term of the objective function. It is, thus, combined with
other heuristic costs, e.g., collision avoidance or trajectory smoothness. Optimizing over

102

Algorithm 7: Grasp SE(3)-DiF Training
Given : θ0: initial params for z, Fθ, Dθ;
Datasets: Do : tm,Ho

wu, object ids and poses, Dm
sdf : tx, sdfu, 3D positions x and sdf for object

m, Dm
g : tHu succesful grasp poses for object m;

for s Ð 0 to S ´ 1 do
k, σk Ð [0, . . . , L]; // sample noise scale
m,Ho

w P Do; // sample objects ids and poses
z = shape codes(m); // get shape codes
SDF train
x, sdf P Dm

sdf ; // get 3D points and sdf for obj. m

sdf̂ , _ = Fθ(H
o
wx,z, k); // get predicted sdf

Lsdf = Lmse(sdf̂ , sdf); // compute sdf error
Grasp diffusion train
H „ Dm

g ; // Sample success grasp poses for obj. m

ϵ „ N (0, σkI); // sample white noise on k scale

Ĥ =HExpmap(ϵ); // perturb grasp pose eq. (5.4)

xo
n = Ĥxn; // Transform to N 3d points (see Figure 5.3)

sdf̂n,ψn = Fθ(x
o
n,zb, k); // get features

Ψ = Flatten(sdf̂n,ψn); // Flatten the features
e = Dθ(Ψ); // compute energy

Ldsm = Ldsm(e, Ĥ,H, σk); // Compute dsm loss eq. (5.5)
Parameter update
L = Ldsm + Lsdf; // Sum losses
θs+1 = θs ´ α∇θL; // Update parameters

return θ˚;

the whole set of costs enables obtaining optimal trajectories jointly taking into account
grasping, as well as motion-related objectives. This differs from classic grasp and motion
planning approaches in which the grasp pose sampling and trajectory planning are treated
separately [113], by first sampling the grasp pose, and, then, searching for a trajectory that
satisfies the selected grasp. In classic approaches, given the grasp sampling is decoupled
from the trajectory planning, it might happen the sampled grasps to be unfeasible for
the problem, leading to an unsolvable trajectory planning problem. We hypothesize that
jointly optimizing over both the grasp pose and the trajectory allows us to be more sample
efficient w.r.t. decoupled approaches.

Given that the learned function is in SE(3) while the optimization is w.r.t. the robot’s
joint space, we redefine the cost as c(qt, k) = Eθ(φee(qt), k), with the forward kinematics
φee : Rdq ÝÑ SE(3) mapping from robot configuration to the robot’s end-effectors task space.
To obtain minimum cost trajectories, we frame the motion generation problem as an inverse
diffusion process. Using a planning-as-inference view [18, 126, 240, 90], we define

103

a desired target distribution as q(τ |k)9 exp(´J (τ , k)). This allows us to set an inverse
Langevin diffusion process that evolves a set of random initial particles drawn from a
distribution τL „ pL(τ) towards the target distribution q(τ |k)

τk´1 = τk + 0.5 α2
k∇τk log q(τ |k) + αkϵ , ϵ „ N (0, I), (5.7)

with step dependent coefficient αk ą 0, noise level moving from k = L to k = 1, and one
particle corresponding to an entire trajectory. If we evolve the particles by this inverse
diffusion process for sufficient steps, the particles at k = 1, τ1 can be considered as particles
sampled from q(τ |k = 1). To obtain the optimal trajectory, we evaluate the samples on
J (τ , 1) and pick the one with the lowest cost.

5.5. Experimental Evaluation

The experimental section is divided in three parts. First, we evaluate our trained model
for 6DoF grasp pose generation (Section 5.5.1). We train a SE(3)-DiF as a 6DoF grasp
pose generative model using the Acronym dataset [46]. This simulation-based dataset
contains successful 6DoF grasp poses for a variety of objects from ShapeNet [26]. We
focus on the collection of successful grasp poses for 90 different mugs (approximately
90K 6DoF grasp poses). We provide a model trained in a larger dataset and conditioned
on point cloud in the project page. We obtain the mugs’ meshes from ShapeNet, and
train the model as described in Algorithm 7. We generate a set of grasp poses from the
learned models and evaluate on successful grasping and diversity. Second, we evaluate
the quality of our trained model when used as an additional cost term for grasp and
motion optimization (Section 5.5.2). We compare the performance of solving a grasp and
motion optimization problem jointly (using the learned model as cost function), w.r.t. the
state-of-the-art approaches that decouple the grasp selection and motion planning, or
heuristically combine them. Finally, we validate the performance of our method in a set
of real robot experiments (Section 5.5.3).

5.5.1. Evaluation of 6DoF grasp pose generation

We evaluate grasp poses generated from our trained grasp SE(3)-DiF model in terms of the
success rate, and the EMD between the generated grasps and the training data distribution.
We consider 90 different mugs and evaluate 200 generated grasps per mug. We evaluate
the grasp success on Nvidia Isaac Gym [144]. The EMD measures the divergence between

104

Figure 5.4.: 6D grasp pose generation experiment. Left: Success rate evaluation. Right:
Earth Mover Distance (EMD) evaluation metrics (lower is better).

two empirical probability distributions [230], providing a metric on how similar the
generated samples are to the training dataset. To eliminate any other influence, we only
consider the gripper and assume that we can set it to any arbitrary pose. We generate 6DoF
grasp poses from SE(3)-DiF by an inverse diffusion process, following Equation (5.6).
We compare against three baselines. First, based on [152, 228], we consider generating
grasp poses by first sampling from a decoder of a trained VAE and subsequently running
MCMC over a trained classifier for pose refinement (VAE+Refine). Second, we consider
sampling from the VAE (without any further refinement). Third, we consider running
MCMC over the classifier starting from random initial pose [170]. In this experiment, we
assume the object’s pose and id/shape to be known, and purely focus on evaluating the
models’ generative capabilities. For ensuring a fair comparison, all the baselines consider
a shape code zm to encode the object information as presented in Figure 5.3. We add a
pointcloud-conditioned experiment in the Appendix.
We present the results in Figure 5.4. In terms of success rate, SE(3)-DiF outperforms
VAE+Refine slightly (especially yielding lower variance), and VAE or classifier on their own
significantly. The VAE alone generates noisy grasp poses that are often in collision with the
mug. In the case of classifier only, the success rate is low. We hypothesize that this might
be related with the classifier’s gradient, as specifically in regions far from good samples,
the field has a large plateau with close to zero slopes [7]. This leads to not being able to
improve the initial samples. Considering grasp diversity, i.e., EMD metric (lower is better),
SE(3)-DiF outperforms all baselines significantly. A reason for the difference, might be
that VAE+Refine overfits to specific overrepresented modes of the data distribution. In
contrast, SE(3)-DiF’s samples capture the data distribution more properly. We, therefore,
conclude that SE(3)-DiF is indeed generating high-quality and diverse grasp poses. We
add an extended presentation of the experiment in the Appendix in our project site.

105

https://sites.google.com/view/se3dif

Figure 5.5.: Evaluation Pick in occlusion. We measure the success rate of 4 different
methods based on different number of initializations.

5.5.2. Performance on grasp and motion optimization

Figure 5.6.: Simulated and real robot environ-
ments for picking amidst clutter.

We evaluate the performance of our
learned grasp SE(3)-DiF as a cost term into
multi-objective grasp and motion optimiza-
tion problems. We consider the task of
picking amidst clutter (see Figure 5.6) and
measure the success rate on solving it. The
success is measured based on the robot be-
ing able to grasp the object at the end of the
execution. In the Appendix in our project
site, we provide additional details on the
chosen cost functions for the task. As in-
troduced in Section 5.4, we generate the trajectories by integrating our learned grasp
SE(3)-DiF as an additional cost function to the motion optimization objective function.
Then, given a set of initial trajectory samples, obtained from a Gaussian distribution with
a block diagonal matrix as in [97], we apply gradient descent methods Equation (5.7) to
iteratively improve the trajectories on the objective function. We evaluate the success rate
of the trajectory optimization given a different number of initial samples. As gradient-
based trajectory optimization methods are inherently local optimization methods, multiple
initializations might lead to better results. We consider three baselines (see Figure 5.5).
Decoupl.: we adopt the common routing to solve grasp and motion optimization problems
in a decoupled way [183, 142, 156]. We first sample a set of 6DoF grasp poses from a
generative model and then plan a trajectory that satisfies the selected grasp pose with
CHOMP [188]. Second, we consider the OMG-Planner [250], that applies an online

106

https://sites.google.com/view/se3dif
https://sites.google.com/view/se3dif

grasp selection and planning approach. Finally, joint (class.): we consider applying a
joint optimization as in our approach, but using a 6DoF grasp classifier as cost function
rather than a grasp SE(3)-DiF.
The results in Figure 5.5 present a clear benefit from the joint optimization w.r.t. the
decoupled approach and the OMG-Planner. In particular, our proposed joint optimization
only requires 25 particles to match the success rate of the decoupled approach with 800
particles. The reason for this significant gap in efficiency is that the decoupled approach
generates SE(3) grasp poses that are not feasible given the environment constraints, such
as clutter or joint limits. However, when optimizing jointly, we can find trajectories that
satisfy all the costs by iteratively improving entire trajectories w.r.t. all objectives. We
also observe the importance of using grasp SE(3)-DiF as cost term instead of a grasp
classifier. The classifier model lacks proper gradient information to inform how to move
the trajectories to grasp the object due to its lack of smoothness in the whole space. Thus,
the motion optimization problem is unable to find solutions.

5.5.3. Grasp and motion optimization on real robots

We conducted a thorough real-world evaluation of our joint grasp and motion optimization
framework driven by our 6DoF grasp diffusionmodel, using it as an additional cost function,
similarly to our simulated robot manipulation tasks. Figure 5.1 depicts a sequence of
a real-world pick-mug and place-on-shelf scenario. Overall, the experiments aim at
assessing the method’s capabilities in realistic conditions that include, i) non-perfect state
information, as the mugs pose is retrieved from an external system (Optitrack) which
induces small calibration errors, ii) variations in the mug’s shape, as we use a mug that
is slightly different from the one we specify for SE(3)-DiF, and iii) real-world trajectory
execution. For optimization, we initialize 800 particles (trajectories), and only execute
the one with lowest cost.
In the simplest testing scenario, where the robot has to pick up a mug from various poses
in a scene without any clutter, we achieve 100% (20 successes / 20 trials) pickup-success.
We also find that our method transfers well to the more difficult scenarios of picking
up mugs that are initially placed upside down with 90% (18/20) success, picking in
occluded scenes with 95% (19/20) success, and having to pick and place the mug in a
desired pose inside the shelf of Figure 5.1 with 100% (20/20) success. Our real-world
results underline the effectiveness of our joint optimization approach. Videos of the
experiments also showcase that our method still comes up with very versatile solutions1.
1Videos in https://sites.google.com/view/se3dif

107

https://sites.google.com/view/se3dif

Note that we attribute the increased real-world performance w.r.t. the simulated one to the
simpler designed experimental scene, i.e., in simulation we considered flying obstacles that
were not realizable in the real scene (Figure 5.6). Nevertheless, our results confirm that
our proposed approach is highly performant in real settings, without suffering sim2real
discrepancies.

Limitations In our experiments, we focused on evaluating our diffusion model’s per-
formance in grasp generation, besides full trajectory optimization, assuming full object
state knowledge, without relying on complex perception systems. Potential sim2real
gaps w.r.t. the real environment could potentially arise from imperfect perception, and
hand-designed cost terms that may not capture well the relevant task description in more
complex scenarios. Moreover, a limitation comes with increasing number of cost terms, as
it becomes more difficult to weight them.

5.6. Related Work

Diffusion models in Robotics Diffusion models have appeared in robotics in various
tasks, from text-conditioned scene rearrangement [98, 133], decision-making [90, 2, 29,
25, 251, 257] and controllable traffic generation[271]. We additionally highlight earlier
works like [169], where a diffusion process is integrated into a motion planning problem.
6D grasp generation. 6D grasp pose generation is solved with a myriad of methods
from classifiers to explicit samplers. [135, 170, 129] sample candidate grasps and score
them with learned classifiers. [261] predicts grasping outcomes using a geometry-aware
representation. Contrary to methods classifying grasps, generative models can be trained
to generate grasp poses from data [152] but might require additional sample refinement.
While the generator in [228] considers possible collisions in the scene, [75] proposes
to learn a grasp distribution over the object’s manifold. [92] uses scene representation
learning to learn grasp qualities and explicitly predict 3D rotations. Recently, [254]
proposed learning a 6 DoF SDF to represent grasp pose generation as a smooth cost
function and optimize on top of it.
Integrated grasp and motion planning. Due to the interdependence of the selected
grasp pose with the robot motion, multiple efforts have tried to integrate both variables
into a single planning problem [39, 11, 245, 250, 58]. In [39, 11], goal sets representing
grasp poses are integrated as constraints in a motion optimization problem. In [245, 54],
Rapidly-exploring Random Trees [119] is combined with a TCP attractor to bias the tree
towards good grasps.

108

5.7. Conclusions

We proposed SE(3)-DiffusionFields (SE(3)-DiF) for learning task-space, data-driven cost
functions to enable robotic motion generation through joint gradient-based optimization
over a set of combined cost functions. At the core of SE(3)-DiFs is a diffusion model
that provides informative gradients across the entire space and enables data generation
through an inverse Langevin dynamics diffusion process. Besides having demonstrated
that SE(3)-DiF generates diverse and high-quality 6DoF grasp poses, we also drew a
connection between motion generation and inverse diffusion. Thus, we presented a joint
gradient-based grasp and motion optimization framework, which outperforms traditional
decoupled optimization approaches. Our extensive experimental evaluations reveal the
superior performance of the proposed method w.r.t. efficiency, adaptiveness, and success
rates. In the future, we want to explore diffusion models for reactive motion control and
the composition of multiple diffusion models to solve complex manipulation tasks in which
multiple hard-to-model objectives might arise.

109

6. Conclusion

This thesis investigates the problem of learning deep generative models for robot motion
generation. The main theme of this thesis is that the use of deep generative models in
robotics requires the consideration of the inherent properties of the robotic systems in
the design of the models. A careful choice of the model will boost the performance and
generalization of the learned model. In this regard, we have proposed novel models to
integrate stability in flow-based policies, studied the composable and geometric properties
of EBM to represent multi-objective modular policies, and introduced novel algorithms to
learn Diffusion Models in SE(3) and show their application for both grasps pose generation
and motion planning.

6.1. Summary of Contributions

The contributions of this thesis are four, each presented in a separate chapter from Chapter
2 to Chapter 5.
In Chapter 2, we explore the links between deep generative models and robot motion
generation. Although deep generative models have been used for behavioral cloning,
learning motion primitives, or learning cost functions and rewards in inverse reinforcement
learning/optimal control, the relationship between different generative models and motion
generation methods has not been explicit. In this chapter, we aimed to provide an overview
of the different methods that have used deep generative models to learn robot motion and
to relate different types of models to different types of tasks. For example, if we want to
learn a high-frequency control policy, we might want to learn a generative model such as
a NFlow or a GAN, if we want to represent a cost function, we should learn a EBM, while
if we want to learn the gradient of costs, we might be interested in learning a DDPM. We
expect that this work will help the research community in selecting training algorithms
and models when faced with different motion generation problems.

111

Then in three separate chapters, we presented three distinct methods that explore different
robotics-relevant architectural properties in deep generative models.
In Chapter 3, we explored the problem of learning globally stable motion policies. We
introduced ImitationFlows , a model that extends NFlow to represent globally stable
dynamical systems, and showed that this model can be applied in robotics as a reactive
motion policy. Previous work in the field of motion primitives had explored the problem
of representing globally stable policies [103, 192, 158, 175]. However, most previous
work has considered simple models, which limits their expressiveness. We have shown,
through an experimental evaluation, the benefit of increasing expressivity to represent
more complex dynamic systems. In addition, we extended ImitationFlows to the Lie group
SE(3). This extension allowed us to represent stable policies in the end-effector space.
We found this particularly useful and saw a clear benefit in generation, as many robotic
tasks are inherently represented in this space rather than the configuration space.
In Chapter 4, we studied the problem of representing multi-objective motion policies.
We introduced Composable Energy Policies , a novel way to generate robot motion by
composing a set of EBM. Previous approaches [191, 28, 21] proposed to represent each
motion generation module with deterministic models. This could limit policy composition
when different modules generate conflicting motion behaviors. In our work, we extended
modular motion generation approaches to energy-based policies. We showed that this
probabilistic view improves the composition of multiple policies and provides a framework
for integrating learned generative models for multi-objective motion generation.
In Chapter 5, we addressed the problem of learning cost functions for motion planning. We
proposed SE(3)-DiffusionFields , a novel approach to represent cost functions as Diffusion
Models. In our work, we showed how to extend Diffusion Models to the Lie group SE(3),
which allows learning Diffusion Models in a robotics-relevant space. This allows the
representation of distributions on end-effector grasp poses. We then showed that Diffusion
Models can be used as cost functions in motion planning problems, allowing the integration
of data-driven models with well-established robot motion planning algorithms. Finally, we
demonstrated the benefits of integrating these learned models into robot pick-and-place
tasks.

6.2. Open Challenges and Future Work

During the time in which this Ph.D. has been pursued (2019-2023), the field of Deep
Generative Models has exploded.
Large Language Models (LLM) have emerged as powerful text generation models [20,

112

236] and have found many applications in a wide variety of situations. In the field of
Robotics, LLMs have been used for learning text-conditioned policies [216, 217, 68].
Given a text command and an observation of the scene, the robot outputs a distribution of
desirable actions to satisfy the text command. Also, inspired by LLMs, several works in
robotics have started to explore learning a foundation model that can solve multiple robot
tasks fed with massive amounts of demonstrations [19, 143, 196].
Recent advances in Diffusion Models [227, 80, 81] allow high-dimensional density
models to be learned and high-quality samples to be generated. These models have been
particularly successful in text-based image generation [204, 269], but similar models have
begun to be integrated into robotics problems [244, 90, 29, 133, 220]. We have recently
observed the application of Diffusion Models to learn policies that can solve more than 60
different household tasks, and it is expected that the number of behaviors will grow over
time.

Following these trends, the foreseeable future for deep generative models in robot motion
generation is to learn a foundational model of robot motion behaviors. The model
should have a number of features:

1. Multi-Skill Model. A foundational behaviormodel should generate desirablemotions
for a wide set of tasks. The robot should be able to generate motions to open bottles,
clean a table, or open doors to name a few possible desirable tasks.

2. Generalizable Behaviors. If the behavior of opening doors is learned, the model
should be able to represent this behavior for arbitrary doors, with arbitrary handles
and in arbitrary environments.

3. Language Conditioned Models. The model should be conditioned in natural
language to allow easy interaction between the user and the robot. In addition, the
robot should understand different language commands as long as the robot is able
to perform the desired skill.

What are the open challenges to reach this future?

6.2.1. Out-of-distribution generation

An important factor for generalization is for the robot to generate desirable movements
beyond the demonstrated region. Even if we can increase the data, how can we guarantee
that the robot will adapt its behavior to different object arrangements or novel tools?

113

Alongwith this thesis, we have explored the possibility of integrating architectural elements
into our motion generators to induce desirable behaviors beyond the demonstrations. We
have studied the representation of motion behaviors in the Lie group SE(3), in order to
represent the motion in the space corresponding to the tasks to be solved, as opposed to
the configuration space. We have studied stability to induce safe behaviors beyond the
demonstrations, and we have studied composability as a way to modularise the motion
generation problem into small individual components that can be plugged together to
solve complex tasks.

In the future, we will continue to explore architectural elements to improve the general-
ization capabilities of the motion generators. Several directions are relevant

Goal-conditioned skill primitives Following the intuition of our work, we strongly believe
that complex robot motion should be built as a composition of multiple skill modules. We
believe that complex robot behaviors can be generated by concatenating skill primitives.
These skill primitives should be simple enough to be reusable in multiple tasks, yet complex
enough to provide a useful abstraction for longer horizon tasks. In the future, we aim
to explore useful skill representations. What should be the goal conditioning for the
skill primitives? In what space should we represent the goal? Should it be geometric or
semantic?

Motion-scene reference frame Most robot tasks require interaction with elements in the
scene. Opening a door requires defining the robot’s motion with respect to the door, and
screwing requires defining the motion with respect to both the screw and the screwdriver.
We believe that an important element for generalization is the correct choice of the motion
reference frame. By representing the door opening behavior in the door reference frame
and the screwing motion in the screw reference frame, we can easily adapt the robot’s
behavior to new positions and orientations. In the future, we want to explore how these
reference frames can be extracted from visual data. Can we model our motion generators
to adapt naturally by extracting the reference frame of motion from scene observations?

6.2.2. Scaling-up data

Another challenge is data. The success of deep generative models in both text and
image generation depends largely on the amount of data available. If we want to have

114

a foundational model of movement behaviors, we need to increase the amount of data
available.

One possible direction is through teleoperation. Providing demonstrations of desired
behaviors directly in the robot allows easy deployment of the learned behaviors since the
demonstrations are directly embodied. However, scaling the teleoperation data would
require a farm of robot teachers to generate desired behaviors in the robot.

A possible alternative direction is human videos. The Internet is full of videos of humans
performing various activities. We can find demonstrations of humans doing all sorts of
activities and interacting with all sorts of tools and objects. Can we use the data in these
videos to train our robots?

Adapting Motion Data to Robot Policies One of the limitations of the video data is the
difference in embodiment. While the demonstrations are performed by a human, we
aim to implement the demonstrations in a robot. Also, the recorded data only considers
kinematic information (positions and velocities), while for proper interaction with the
scene, the robot is expected to apply forces and torques to the different tools and objects
in the scene.

In the future, we want to explore how to bridge this gap. We will explore the combination
of deep generative models with reinforcement learning to tackle this problem in a similar
way to [79, 173, 172]. Similar to SE(3)-DiffusionFields, we aim to learn Diffusion Models
as reward functions and use them in reinforcement learning to find physically plausible
policies that maximize the probability of our learned generative model.

115

A. Appendix

A.1. ImitationFlows Stability evaluation

In the following, we prove the asymptotic stability in probability of the learned system,
under the assumption of a stable latent dynamic.

Lyapunov Stability Lyapunov stability studies the stability guarantees of a dynamical
system. To do so, we evaluate if a Lyapunov potential candidate V (x) : Rn Ñ R and its
time derivative V̇ (x) satisfies a set of conditions. For the case of stochastic dynamics, the
conditions are evaluated over the expected value E

[︂
V̇ (x)

]︂
[145].

Given the stochastic dynamics in Equation (3.1), the time derivative of the Lyapunov
function, V (x, t), is expressed by the following differential equation

dV (x) = LV (x)dt+ Vx(x)σ(x)dWt

LV (x) = Vxg(x) +
1

2
Tr(σ⊺(x))Vxxσ(x), (A.1)

with Vx = BV (x)/Bx and Vxx = B2V (x)/Bx2.
The expected value of V̇ is

E
[︂
V̇ (x)

]︂
= LV (x). (A.2)

Given a strictly increasing functions µ1, µ2, µ3 such that

µ1(|x|) ď V (x) ď µ2(|x|), (A.3a)
LV (x) ď ´µ3(|x|)@x P Rd. (A.3b)

Then, the trivial solution for the SDE is stochastically asymptotically stable [145].

117

Lemma 1 For any diffeomorphic transformation xt = Φ(zt), if the dynamics of z(t) are
stochastically asymptotically stable, then the dynamics of xt are also stochastically asymptoti-
cally stable.

We follow a derivation similar to the one proposed in [159] for Lyapunov stability analysis
in Ordinary Differential Equation (ODE). Let U(¨) be a Lyapunov function for the latent
dynamics z. We define the following Lyapunov candidate for the base space x dynamics:

V (x) = U(Φ´1(x)).

From this definition it follows that

U(z) = V (Φ(z)). (A.4)

From the equality in Equation (A.4) and by the fact that U is a valid Lyapunov candidate
we get that the condition in Equation (A.3a) is also satisfied.

To satisfy the condition in Equation (A.3b), we compute the Lyapunov function LV
Equation (A.1). Considering Equation (A.1) and Equation (3.10)

LV (x) = VxJ(x)AΦ´1(x) +
1

2
Tr(σ⊺J⊺(x)VxxJ(x)σ). (A.5)

Moreover, we can rewrite Vx and Vxx in terms of Uz and Uzz.

Vx(x) =
B

Bx
V (x) =

B

Bz
U(z)

Bz

Bx
= Uz(z)J

´1(x), (A.6)

where Uz(¨) : Rd ÝÑ R1ˆd.For the case of Vxx

Vxx(x) =
B2

Bx2
V (s) =

B

Bx⊺

(︂
B

Bx
V (x)

)︂
=

=
B

Bx⊺

(︂
Uz(z)J

´1(x)
)︂

=
Bz⊺

Bx⊺

B

Bz⊺

(︂
Uz(z)J

´1(x)
)︂

= J´⊺(x)Uzz(z)J
´1(x). (A.7)

Introducing Equation (A.6) and Equation (A.7) in Equation (A.5)

LV (x) = UzAz +
1

2
Tr(σ⊺Uzzσ) = LU(z). (A.8)

By hypothesis LU(z) satisfies the condition in Equation (A.3b), therefore the condition is
also satisfied by LV (x).

118

A.2. A Control as Inference view for Composable Energy Policies

In the following section, we want to highlight the connections between composable energy
policies and control as inference to evaluate the optimality guarantees of composing
energies in a multi-objective optimal control problem.

Figure A.1.: Graphical model for the Optimal Control problem. st denoted the state, at
denotes the action and ot is an additional variable representing the optimality
of the state and action for a given reward.

s0 s1 s2 s3 s4

a0 a1 a2 a3o0 o1 o2 o3

ps
1

sa ps
1

sa ps
1

sa ps
1

sa

We frame optimal control as a Bayesian inference problem [195, 126] over the sequence of
actions a0:T . The optimal control problem is visualized as a graphical model in Figure A.1.
The problem is formulated introducing an auxiliary variable o0:T that represents the
optimality of st and at under a certain reward function, p(ot|st,at)9 exp(r(st,at)). Given
a certain prior distribution q(a|s0) and given s0 is known, the inference problem is

p(AT0 |s0, O
T
0) =

p(OT0 |AT0 , s0)q(A
T
0 |s0)

p(OT0 |s0)
(A.9)

with

p(OT0 |AT0 , s0) =

ż

s1:T

p(OT0 |ST0 , A
T
0)p(S

T
1 |AT0 , s0)dS

T
1 (A.10)

where AT0 : ta0, . . . ,aT u, OT0 : to0, . . . , oT u and ST0 : ts0, . . . , sT u. The are two main
directions to solve the posterior in Equation (A.9). First, methods that frame the problem
as an Hidden Markov Model (HMM) and solve it in an Expectation-Maximization approach.
Second, methods that compute the posterior in the trajectory level AT0 . The first, are
computationally demanding as they require several forward and backwardmessage passing
to compute the posterior. The second, needs to solve the problem in the trajectory level
and thus the dimension of the variables grows linearly with the trajectory length, T .

119

In our work, we consider solving a one-step-ahead optimal control problem. Rather than
solving an optimization problem for a sequence of actions AT0 , we solve the problem for a
single step a0.

We can reframe the control as inference problem as a one-step ahead control problem

p(a0|s0, O
T
0) =

p(OT0 |a0, s0)q(a0|s0)

p(OT0 |s0)
(A.11)

with

p(OT0 |a0, s0) =
ż

S1:T

ż

A1:T

p(OT0 |ST0 , A
T
0)p(S

T
1 |a0, s0)π(A

T
1 |ST1)dS

T
1 dA

T
1 . (A.12)

In contrast with the trajectory optimization problem that finds the posterior for the whole
trajectory AT0 , in one-step-ahead control as inference problem, we aim to find the posterior
for only the instant next control action, a0. Computing the posterior only for a0 requires
the likelihood to be defined as the marginal of not only the state trajectory ST1 , but also
the action trajectory AT1 . The graphical model for one-step-ahead control as inference is
presented in Figure A.2. In one-step ahead control as inference, we introduce an additional

Figure A.2.: Graphical model for one-step ahead optimal control problem. In this ap-
proach, the actions AT1 are dependant on ST1 given a policy π.

s0 s1 s2 s3 s4

a0 a1 a2 a3o0 o1 o2 o3

ps
1

sa ps
1

sa ps
1

sa ps
1

sa

πa
s πa

s πa
s

distribution π that provides us the probability of AT1 given ST1 . This additional policy π is
interpreted as the policy the agent will apply in the future. In this context, we are looking
for the action the maximizes the cumulative reward in the long horizon trajectory running
the policy π. Equation (A.12) can be rewritten as the expectation over p(OT0 |ST0 , A

T
0)

EST
0 ,A

T
0 „pπ(ST

0 ,A
T
0 |s0,a0)

[︁
p(OT0 |ST0 , A

T
0)
]︁

9

EST
0 ,A

T
0 „pπ(ST

0 ,A
T
0 |s0,a0)

[︄
exp(

T
ÿ

t=0

r(st,at))

]︄
=

exp(Qπr (s0,a0)) (A.13)

120

From what follows, the likelihood for our inference problem is proportional to the exp(Q)
defined over a certain policy π. Given a π, the posterior for our inference problem is given
by

p(a0|s0, O
T
0)9 exp(Qπr (s0,a0))q(a0|s0). (A.14)

The provided Q function depends on π and then, the quality of our reactive motion
generator to solve a long horizon optimal control problem directly depends on the quality
of π. In the optimal case, for Q˚, the one-step ahead control problem follows the optimal
trajectory, even if the optimization is done locally. Nevertheless, in CEP we aim to study
the obtained policy in a multi-objective framework. Given we have a set of Q functions,
each being optimal for a particular reward; is the sum of the Q functions still optimal for
the sum of the rewards?

A.2.1. Optimality Guarantees

In CEP, we propose to model the Q function as the sum of a set of optimal Q˚
k functions.

Instead, we are aware that QΣ = 1
K

řK
k=0Q

˚
k is not the optimal function Q˚ for the sum of

the rewards r = 1
K

řK
k=1 rk. The closer QΣ is from the optimal Q˚, the closer the product

of experts policy would be from the optimal policy. In this section, we study, given a certain
reward r = 1

2(r1 + r2), how much the sum of the individual components QΣ diverge from
the optimal Q˚. In [126] is shown, that the optimal Q function for the control as inference
problem can be computed by recursively solving the soft-value iteration [272]

Q(s,a) = r(s,a) + Ep(s1|s,a)

[︁
V (s1)

]︁
V (s) = log

(︃
ż

A
exp(Q(a, s))da

)︃
. (A.15)

We assume a finite horizon control as inference problem and evaluate how much QΣ

diverges from Q˚ when increasing the control horizon

For t = T , the optimal Q function for the sum of the rewards is

Q˚T =
1

2
(r1 + r2). (A.16)

The individual optimal Q functions for each reward are

Q˚T
1 = r1 , Q

˚T
2 = r2. (A.17)

121

Then, the sum of the Q components is given by

QTΣ =
1

2
(Q˚T

1 +Q˚T
2). (A.18)

If we compute the distance between the optimal Q˚T and the sum of Q’s, QTΣ

∆QT = Q˚T ´QTΣ = 0. (A.19)

From Equation (A.18), for T = 1, the sum of the optimal components QΣ is equal to the
optimal Q.

For longer temporal horizons, the optimal Q is computed by recursively solving the soft
Bellman update backward in time. For computing t = T ´ 1,

Q˚T´1(s,a) = r(s,a) + Ep(s1|s,a)

[︁
V ˚T (s1)

]︁
V ˚T (s) = log

ż

A
exp(Q˚T (a, s)). (A.20)

we do a soft Bellman update. The difference between Q˚T´1 and QT´1
Σ

∆QT´1 = Q˚T´1 ´QT´1
Σ = E[V ˚T ´ V T

Σ]

(A.21)

with

V T
Σ =

1

2
(V ˚T

1 + V ˚T
2). (A.22)

The distance in the value function can be represented as

V ˚T ´ V T
Σ = log

ş

A exp(Q˚T)
ş

A(exp(Q
˚T
1)

ş

A exp(Q˚T
2))

1
2

= log
ş

A exp(12Q
˚T
1) exp(12Q

˚T
2)

(
ş

A exp(Q˚T
1)

ş

A exp(Q˚T
2))

1
2

. (A.23)

Then,

122

Q˚T´1 = QT´1
Σ +∆QT´1

= QT´1
Σ +

Ep(s1|s,a)

[︄
log

ş

A exp(12Q
˚T
1) exp(12Q

˚T
2)

(
ş

A exp(Q˚T
1)

ş

A exp(Q˚T
2))

1
2

]︄
(A.24)

From Equation (A.21) and Equation (A.23), we can obtain the recurrence relation for the
distance error

∆Qt´1 =

Ep(s1|s,a)

[︄
log

ş

A exp(12Q
˚t
1) exp(12Q

˚t
2) exp(∆Qt)

(
ş

A exp(Q˚t
1)

ş

A exp(Q˚t
2))

1
2

]︄
. (A.25)

From Equation (A.23), we can see that if Q˚
1 = Q˚

2 , then ∆Q = 0 and the more they differ,
the bigger the distance error to the optima Q˚. From the obtained results, we can obtain
some conclusions.

Similar theoretical studies have been already developed [72, 247, 233]. In Optimal
Control, composable optimality guarantees were proven for linear dynamics, by the LMDP
approach. In [233, 33], a weighted policy sum was proven to be optimal for the sum of
the rewards, as long as the rewards differ only in the terminal reward. In [72, 231], the
optimality of the composition is studied in a maximum entropy reinforcement learning
problem.

A.3. Experiments

We present additional details for the experiments in Chapter 4.

A.3.1. Reaching through a cluttered environment

The modular components (reach target, obstacle avoidance and joint limits avoidance) for
both baselines APF and RMP were modeled based on [105] and [28] respectively. The CEP
without hand was modelled with the energy policy components introduced in [240] and

123

Energy Modules Parameters
Reach Target Kp = 20. Kv = 30. α = 10.

Obstacle Avoidance γ = 0.2 α = 4. β = 0.1
Joint Limits avoidance γ = 0.3 α = 4. β = 0.1

Table A.1.: Component parameters for Composable Energy Policies in reaching through
cluttered environment [240].

with the parameters In this work, we have extended the experiments with an additional
evaluation with the robot hand. We considered the energy policies in Appendix A.4
to model the energy policies. We considered a target reaching policy, a set of obstacle
avoidance policies, joint limits avoidance policy and a joint velocity limits policy. We
show in Table A.2 the parameters we consider for the experiments. The reaching target

Energy Modules Parameters
Reach target Λ = I , α = 0.05

Obstacle avoidance α = robstacle + rbody + 0.01
Joint velocity limits Λ = 0.1I

Table A.2.: Component parameters for Composable Energy Policies in reaching through
cluttered environment with hand. robstacle and rbody represent respectively, the
radius of the collision spheres in the obstacle and the robot body.

policy is parameterized by the metric Λ that frames the relevance of this component
and α that defines the maximum Euclidean distance of the truncated target position.
The obstacle avoidance energy policy is parameterized by the desired minimum distance
between the surfaces of the body sphere and the obstacle sphere. The joint velocity
limits is parameterized by the metric defining the importance of this component. As we
can observe, in contrast with [242], in the current approach, we have (i) less tuning
parameters for each energy component and (ii) there is an intuition in the meaning of
each parameter.

A.3.2. Learning to hit a puck

In the reinforcement learning experiment, we consider the same hyperparameters for
CEP, residual operational space control and direct operational space control. Additionally,
we keep the same hyperparameters for the three reward functions. We consider the
reinforcement learning algorithms implemented in Mushroom-RL [32]. In the following,
we introduce a table with the hyperparameters for PPO, SAC, DDPG and TD3.

124

Hyperparameters
policy net 18-128-128-3

policy batch 64
policy learn rate 3e-4
critic learn rate 3e-4

critic net 18-128-128-1
critic batch 256

critic learn rate 3e-4
n_steps_per_fit 600
discount factor .99

eps_ppo 0.1

Table A.3.: PPO hyperparameters for hitting the puck

Hyperparameters
policy net mean 18-128-128-3
policy net sigma 18-128-128-3
policy batch 64

policy learn rate 3e-4
critic learn rate 3e-4

critic net 18-128-128-1
critic batch 256

critic learn rate 3e-4
n_steps_per_fit 1
discount factor .99
target entropy -6

warmup transitions 10000
max replay size 200000

Table A.4.: SAC hyperparameters for hitting the puck

A.4. A practical overview of energy policies

While the CEP framework can be used for arbitrary agents; in our work, we focus on the
problem of generating motion for robot manipulators. The robot state in the configuration
space sq is represented by the robot’s position q, velocity q̇ and environment information
c (obstacles position, obstacles shape, target pose). The action in the configuration space
aq is the robot’s joint acceleration q̈.

The energy policies are defined in a set of task spaces. We model the map from the

125

Hyperparameters
policy net 18-128-128-3

policy batch 64
policy learn rate 3e-4
critic learn rate 3e-4

critic net 18-128-128-1
critic batch 256

critic learn rate 3e-4
n_steps_per_fit 1
discount factor .99

warmup transitions 10000
max replay size 200000

Table A.5.: DDPG and TD3 hyperparameters for hitting the puck

configuration space to the different task spaces fxkq by the robot’s kinematics

xk = φxkq (q)

ẋk = J
k(q)q̇ (A.26)

ẍk = J
k(q)q̈ + J̇

k
(q)q̇ « Jk(q)q̈,

with φxkq the forward kinematics to a given k task space and Jk(q) = Bxk/Bq, the Jacobian
for the given forward kinematics.

In CEP, we provide a framework to compose policies from different motion generation
paradigms such as optimal control, imitation learning, movement primitives, reinforcement
learning, or handcrafted policies. In this section, we introduce a practical overview of the
different sources from which a policy component could be computed. In Appendix A.4.1
we introduce a set of analytically computed energy policies to represent a set of basic local
behaviors. Then, in Appendix A.4.2, we introduce a set of possible methods to learn energy
policies from data. Finally, in Appendix A.4.3, we briefly introduced a set of methods to
obtain energy policies from optimal control or reinforcement learning.

A.4.1. Basic local reactive energies

In a previous work [240], we proposed handcrafted models to represent the local reactive
energies. Handcrafted policies might lead to difficult parameter tuning when using them
and lack an intuition of the objective they are trying to maximize. In this work, we propose
to represent the energies as value functions maximizing a particular reward r : S ÝÑ R. In
multiple problems, defining the behavior of the robot to solve a particular tasks with a

126

reward function might be more intuitive and easier than defining it directly as a policy.
If the task is easier to define in the state space rather than the action space, a reward
function provides us with a natural form to describe the desired behavior. For example, in
the case of collision avoidance, it is easier to represent the desired behavior in terms of the
robot’s position rather than with respect to the robot’s acceleration. Modeling the energy
of the policies in terms of the value function has been widely studied in the maximum
entropy reinforcement learning community [272, 73]. Under some assumptions, the
value functions can be computed analytically. This approach allows the practitioner to
understand the objective the policy is trying to maximize and provides additional intuition
to tune the parameters.

The energies are represented by the optimal advantage function A for a one-step control
horizon problem

A(a|s) = r(s) + Eρ(s1|s,a)

[︁
V (s1)

]︁
´ V (s), (A.27)

with V (s) = r(s) and ρ(s1|s,a) the transition dynamics. We can observe, that for the
particular case of one-step control horizon with state dependant rewards, the advantage
function is simply the expected value function given the transition dynamics.

Defining the state s = (x, ẋ) by the position and the velocity and the action a = ẍ by the
acceleration, we model the transition dynamics with the explicit Euler discretization of a
linear dynamic system

xt+1 = xt + ẋt∆t+
1

2
∆t2ẍt

ẋt+1 = ẋt +∆tẍt, (A.28)

with ∆t being the step size. In the following we show that for some particular reward
function, we can analytically derive the optimal advantage function that we exploit as the
energy of our policy.

Target position Consider the problem of reaching a certain target position. The reward
function to solve the problem can be modelled by the negative Mahalanobis distance to
the target position xg

r(x) = ´||x´ xg||2Λ. (A.29)

127

The advantage function for the one-step ahead optimal control problem with state depen-
dant reward is represented by

A(a|s) = Eρ(s1|s,a)[r(s
1)]. (A.30)

Given the dynamics in Equation (A.28) are deterministic, the optimal advantage function
can be computed analytically, by applying a change of variables in the reward Equa-
tion (A.29)

A(ẍ|x, ẋ) = ´||ẍ´ ẍg(x, ẋ)||
2
Λẍ , (A.31)

with

ẍg(x, ẋ) =
2

∆t2
(xg ´ x´ ∆tẋ)

Λẍ =
∆t4

4
Λ. (A.32)

The maximum acceleration of the advantage function is the one that moves a point in ∆t
to the xg. In our work we want to control the robot in fast control rates (ă 0.01s). When
the robot is far from the target, reaching the target in that small ∆t will require the robot
to achieve very high accelerations. To avoid it, we model the new target position x̂g by

x̂g = x+
max(||xg ´ x||, α)

||xg ´ x||
(xg ´ x). (A.33)

The following equation projects the target position xg to a ball centered in x and with a
radius α. This way, the maximum Euclidean distance between the desired target and the
current position is limited to α.

Target orientation We can apply a similar approach for reaching the desired orientation.
In our work, we consider the orientation is represented in a Lie groupR P SO(3). Modeling
a distance metric as the reward function is hard in the Lie Group given it is not a Euclidean
space [223]. To properly model the reward function, we first map the rotation to the Lie
algebra so(3) centered in the target orientation Rg P SO(3) (We transform the rotation
matrix to the axis-angle representation)

θ = LogMapRg
(R), (A.34)

with LogMap being the logarithmic map that moves a point in the Lie Group to the Lie
algebra. The Lie algebra is an Euclidean space in which we can apply calculus. Given the

128

Lie algebra is centered at the target Rg, the desired target position in the Lie algebra is
θg = 0; the origin. Thus, we can model the reward in so(3) by

r(θ) = ´||θ||2Λ. (A.35)

The reward function will maximize when θ = 0 and quadratically reduces with respect to
the Euclidean distance in the Lie algebra.

To compute the optimal advantage function, we first transform the rotation velocity and
accelerations from the world frame (We compute the world frame velocity and acceleration
in Equation (4.2)) to the target orientation frame Rg

ω1 = R´1
g ω

ω̇1 = R´1
g ω̇. (A.36)

This map is known as the adjoint operation in the Lie Group theory [223]. The linear
dynamics in the Lie algebra are

θk+1 = θk + ω
1
k∆t+

1

2
∆t2ω̇1

k

ω1
k+1 = ω

1
k +∆tω̇1

k. (A.37)

Once everything is represented in the Lie algebra centered at Rg, we can similarly to
Equation (A.31) compute the advantage function

A(ω̇1|θ,ω1) = ´||ω̇1 ´ ω̇g(θ,ω
1)||2

Λω̇1 , (A.38)

with

ω̇g(θ,ω
1) =

2

∆t2
(θ ´ ∆tω1)

Λω1̇
=

∆t4

4
Λ. (A.39)

Similarly to Equation (A.31), the acceleration maximizing the advantage is the one that
sets the rotation toRg in ∆t. To bound the acceleration in the rotation we can also bound
the target as in Equation (A.33).

129

Obstacle avoidance We represent obstacle avoidance energy in the unidimensional space
represented by the vector between a cartesian robot position x in a certain task space and
the cartesian obstacle position xo. We compute this energy for every combination of a
set of task space points P and a set of obstacles O. The total obstacle avoidance energy
components are P ˆO.

We first compute the distance to the obstacles and the vector pointing to the obstacle

do = ||x´ xo||

v̂o = (x´ xo)/do, (A.40)

with do being the distance and v̂o the vector pointing to the obstacle.

We define the obstacle avoidance reward function by

r(do) =

#

0 if do ą α

´8 if do ď α
, (A.41)

with α being a parameter that represents the minimum allowed distance to the obstacle.
The proposed reward function allows the robot to be in any position except those that
approximate to the obstacle to a distance below α.

To represent the advantage function, we first compute the velocity and acceleration
projected in the vector v̂o

ẋp = ẋ ¨ v̂o

ẍp = ẍ ¨ v̂o. (A.42)

Given the dynamics in Equation (A.28), the dynamics in the projected space are

dok+1 = dok + ẋpk∆t+
1

2
∆t2ẍpk

ẋpk+1 = ẋpk +∆tẍpk. (A.43)

Then, we represent the advantage function in the uni-dimensional space represented by
the vector between the current task space point and the obstacle

A(ẍp|ẋp, do) =

#

0 if ẍp ą αẍp(ẋp, do)

´8 if ẍp ď αẍp(ẋp, do)
, (A.44)

130

with

αẍp(ẋp, do) =
2

∆t2
(α ´ do ´ ẋp∆t). (A.45)

Using the advantage function in Equation (A.44) as the energy of a policy represents a
uniformly distributed policy

π(ẍp|ẋp, do) = U(αẍp(ẋp, do),8)9 exp(A(ẍp|ẋp, do)). (A.46)

Joint limits avoidance Similarly to the collision avoidance energy, we apply a binary
reward to bound the joint limits. We define by q and q̄ the minimum and maximum joints.
We represent the reward by

r(q) =

#

0 if q ą q and q ă q̄

´8 otherwise
. (A.47)

Given the reward in Equation (A.47), the advantage function is

A(q̈|q̇, q) =

#

0 if q̈ ą q̈ and q̈ ă q̈

´8 otherwise
, (A.48)

with

q̈(q̇, q) =
2

∆t2
(q ´ q ´ q̇∆t)

q̈(q̇, q) =
2

∆t2
(q̄ ´ q ´ q̇∆t). (A.49)

Joint velocity control Due to the myopic behavior of CEP, if the robot moves too fast,
it might not be able to adapt fast enough to avoid collisions. Thus, we are interested in
constraining the velocity the robot can achieve. We define a reward for the configuration
space velocity

r(q̇) = ´||q̇||2Λ. (A.50)

Given the reward in Equation (A.50), the advantage function is

A(q̈|q, q̇) = ´||q̈ ´ q̈g(q̇)||
2
Λq̈ , (A.51)

131

with

q̈g(q̇) = q̇/∆t

Λq̈ = ∆t2Λ. (A.52)

All these control energies are purely local. As we have shown, the proposed energies try
to maximize a one-step-ahead control horizon reward. While they perform well for local
navigation with obstacles, some tasks require a longer horizon look ahead to properly
solve the task. In these situations, our myopic policies might fail. Nevertheless, these
”smarter” policies could be obtained from data, given some expert demonstrations are
provided or by applying long horizon optimal control or reinforcement learning and fitting
a value function that solves a long horizon problem. Then, we could integrate these
policies as an additional component of our CEP.

A.4.2. Learning energy policies from data

A common approach to learn policies from data is by behavioural cloning. Given a set of
state-action pairs demonstrations D : tsi,aiui=0:N , the policy is learned by a conditioned
maximum likelihood estimation

θ˚ = argmax
θ

Es,a„D [logπ(a|s;θ)] . (A.53)

While the most common case assumes a conditioned Gaussian distribution as a policy
model π, several works consider more expressive policy models. In [242], a normalizing
flow is used to model the policy distribution, while in [52] an EBM is proposed to model
the policy and trained by contrastive divergence [78].

Alternatively, we can build complex energy policies from simply learned distributions

Mixture-of-Expert energies A possible option to represent multi-modal policy distri-
butions is to build a mixture of energies policies. Given a set of already given energies
E0, . . . , Ek, we can compute the mixture of energies

EM (a, s) = log
ÿ

k

wk(s) exp(Ek(a, s)), (A.54)

with wk the weighting term. For the particular case in which the energy E is quadratic,
the energy policy in Equation (A.54) is the energy of a Gaussian mixture model.

132

Negated energy policy A more conservative approach to defining policies is by negative
energies. Given a certain policy distribution, wemight want our algorithm not to follow that
policy without properly specifying what should be the desired path to follow. Given that the
policy is modeled by energies of a Boltzman distribution π(a|s)9 exp(E(a, s)), the negated
policy is straightforwardly computed by negating the energy, πnot(a|s)9 exp(´E(a, s)).
This policy will inform about the action the robot should not do, rather than what to do.

A.4.3. Q-function in optimal control and reinforcement learning

The previously proposed advantage functions only solve a one-step-ahead control problem.
Nevertheless, for several problems, we require to solve a longer horizon optimization.
CEP enables integration of longer horizon value functions as energy components. We
can integrate value functions learned by reinforcement learning [74] or optimal con-
trol [139].Alternatively, we could compute the distribution for an optimal trajectory
distribution by particles as in Stein Variational MPC [116] and exploit this multi-modal
distribution as a guiding policy. These learned models can be afterward integrated with
additional energy policies to deal with specific parts that were not covered in the RL or
optimal control problem.

133

B. Supplementary Material

B.1. Conference Papers

1. Hansel, K., Urain, J., Peters, J., & Chalvatzaki, G. (2023). Hierarchical policy
blending as inference for reactive robot control. IEEE International Conference on
Robotics and Automation (ICRA)

2. Urain, J., Funk, N., Peters, J., & Chalvatzaki, G. (2023). SE(3)-DiffusionFields:
Learning smooth cost functions for joint grasp and motion optimization through
diffusion. IEEE International Conference on Robotics and Automation (ICRA)

3. Urain, J., Le, A. T., Lambert, A., Chalvatzaki, G., Boots, B., & Peters, J. (2022).
Learning implicit priors for motion optimization. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)

4. Urain, J., Li, A., Liu, P., D’Eramo, C., & Peters, J. (2021). Composable Energy Policies
for Reactive Motion Generation and Reinforcement Learning. Robotics: Science &
Systems (R:SS)

5. Urain, J., Ginesi, M., Tateo, D., & Peters, J. (2020). Imitationflow: Learning deep
stable stochastic dynamic systems by normalizing flows. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)

6. Urain, J., & Peters, J. (2019). Generalized multiple correlation coefficient as a
similarity measurement between trajectories. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)

135

B.2. Journal Articles

1. Urain, J., Li, A., Liu, P., D’Eramo, C., & Peters, J. (2023). Composable energy policies
for reactive motion generation and reinforcement learning. The International Journal
of Robotics Research (IJRR)

2. Urain, J., Tateo, D., & Peters, J. (2022). Learning stable vector fields on Lie groups.
IEEE Robotics and Automation Letters (RA-L)

3. Funk, N., Schaff, C., Madan, R., Yoneda, T., Urain, J., Watson, J., ... & Peters, J.
(2021). Benchmarking structured policies and policy optimization for real-world
dexterous object manipulation. IEEE Robotics and Automation Letters (RA-L)

4. Iriondo, A., Lazkano, E., Susperregi, L., Urain, J., Fernandez, A., & Molina, J. (2019).
Pick and place operations in logistics using a mobile manipulator controlled with
deep reinforcement learning. Applied Sciences

5. Lanini, J., Razavi, H., Urain, J., & Ijspeert, A. (2018). Human intention detection as
a multiclass classification problem: Application in physical human–robot interaction
while walking. IEEE Robotics and Automation Letters (RA-L)

B.3. Preprints

1. Urain, J., Chalvatzaki, G., & Peters, J. (2023) Deep Generative Models for Motion
Planning and Control: Tutorial & Survey

2. Bauer, S., Widmaier, F., Wüthrich, M., Funk, N., Urain, J., Peters, J., ... & Schölkopf,
B. (2021). A robot cluster for reproducible research in dexterous manipulation.
arXiv preprint arXiv:2109.10957.

B.4. Workshop Papers

1. Urain, J., Funk N., Peters J., & Chalvatzaki G. (2023). Learning Diffusion Models in
SE(3) for 6DoF Grasp Pose Generation. Geometric Representations: The Roles of
Screw Theory, Lie algebra, & Geometric Algebra in ICRA

136

2. Carvalho, J., Baierl, M., Urain, J., & Peters, J. (2022). Conditioned Score-Based
Models for Learning Collision-Free Trajectory Generation. Workshop on Score-Based
Methods in NeurIPS

3. Bauer, S., Wüthrich, M., Widmaier, F., Buchholz, A., Stark, S., Goyal, A., ... &
Schölkopf, B. (2022). Real robot challenge: A robotics competition in the cloud. In
NeurIPS 2021 Competitions and Demonstrations Track

4. Urain J., Ren, T., Tateo, D., & Peters, J. (2021). Structured Policy Representation:
Imposing Stability in arbitrarily conditioned dynamic systems. Robot Learning
Workshop in NeurIPS.

137

C. Curriculum Vitae

Julen Urain. Robotics & Machine Learning Research Scientist
My research interests are in the interplay of generative modeling, geometry, optimization,
robotics, planning & control.

Education

2019-2024 PhD. in Computer Science. Advisor: Jan Peters. Technische Universität
Darmstadt - TUDA

2017 M.Sc. Thesis. Advisor: Auke Ijspeert. École Polytechnique Fédérale de
Lausanne ‐ EPFL. GPA – 5.5/6

2015-2017 M.Sc. in Automatic Control and Robotics. Universitat Politècnica de
Catalunya - UPC. GPA – 8.71/10 , Top 3%

2011-2015 B.Sc. in Electronical Engineering. Advisor: Josu Jugo. Universidad
del Pais Vasco - UPV. GPA – 7.3/10

Research and Work Experience

2022-2023 Research Intern. NVIDIA, Robotics Lab. Research in Robot Learning
2019-2023 Scientific Researcher Staff. IAS - TU Darmstadt. Research in Robot

Learning, Generative Models, Geometry, Optimization, Deep Learning
2017-2018 Robotics Researcher. IK4 Research Alliance - Tekniker. Applied

Research in Robot Learning.
2017 Research Intern. Volkswagen DataLab. In connection with the Deep

Learning and Robotics Challenge.

139

Honors and Awards

2023 Best paper award in Geometric Representations Workshop at ICRA
2023. Award earned for the work on SE(3)-Diffusion Models for 6DoF
Grasp Generative Models

2023 R:SS Pioneers. Selected as a 30 member strong-cohort of top early
robotics researchers (%22 acceptance)

2020 Dexterous Manipulation Real Robot Challenge. 3rd place in the Max
Planck Institute (MPI) Real Robot Dexterous Manipulation Challenge

2017 Deep Learning and Robotic Challenge. 1st place of the jury in the
VW:DataLab Deep Learning and Robotic Challenge

2017 MSc. Graduated top of class. Top 3% in the MSc. in Automatic Control
and Robotics at UPC

2015 Hilbert-Bernays Fellowship. in relation with Hilbert-Bernays Summer
School on Logic and Computation

Funded Projects

2023 Smart Assistant for Image-guided Needle Insertion. Hessian.AI

• Role: Project and Technical Leader for TU Darmstadt. PI: Jan
Peters

2019-2022 Safe and effective human robot cooperation towards a better
competiveness on current automation lack manufacturing pro-
cesses(SHAREWORK). EU Project - HORIZON 2020

• Role: Project and Technical Leader for TU Darmstadt. PI: Jan
Peters

2018-2019 Flexible, safe and dependable robotic part handling in industrial
environments (PICK-PLACE). EU Project - HORIZON 2020

• Role: Research Scientist for Tekniker. PI: Iñaki Maurtua

140

Invited Talks

2023 An introduction to Energy Based Models and Diffusion Models.
International Workshop of Intelligent Autonomous Learning
Systems 2023

2023 Robot Motion Generative Models. Dyson Robot Learning Lab
2023 Robot Motion Generative Models. The Robot Learning Lab at

Imperial College

Teaching Experience

2020-2022 Robot Learning. TU Darmstadt. Teaching Assistant
2020-2021 Robotics Integrated Projects. TU Darmstadt. Teaching Assistant

Professional Service and Volunteering

Reviewing

Conferences
International Conference on Intelligent Robots (IROS), Conference on Robot Learning
(CORL), International Conference on Robotics and Automation (ICRA), Artificial intelli-
gence and Statitistics Conference (AISTATS)

Journals
Robotics and Automation Letters (RA-L), The International Journal of Robotics Research
(IJRR)

Other

MOOC on Robot Learning
Design and prepare a MOOC on Robot Learning for the KI-campus platform

141

Open-Source Software and Datasets

SE(3) DiffusionFields for Grasp and Motion Planning

• Diffusion Models in SE(3) for training 6DoF Grasp Generative Models.

• https://github.com/robotgradient/grasp_diffusion

Stable Vector Fields on Lie Groups

• A method to learn data-driven globally stable dynamics in in Lie Groups to represent
task-space robot policies.

• https://github.com/robotgradient/LieFlows

Mentoring and Supervision

2022 Mark Baierl. Score-Based Generative Models as Trajectory Pri-
ors for Motion Planning. Master Thesis

2022 Jascha Hellwig. Residual Reinforcement Learning with Stable
Priors. Master Thesis

2021 Yifei Wang. Bimanual Control and Learning with Composable
Energy Policies. Master Thesis

2021 Jiawei Huang. Multi-Objective Reactive Motion Planning in
Mobile Manipulators. Master Thesis

2021 Hanyu Sun. Can we improve time-series classification with
Inverse Reinforcement Learning?. Master Thesis

2021 Lanmiao Liu. Detection and Prediction of Human Gestures by
Probabilistic Modelling. Master Thesis

2020 Zhenhui Zhou. Approximated Policy Search in Black-Box Optimiza-
tion. Master Thesis

142

https://github.com/robotgradient/grasp_diffusion
https://github.com/robotgradient/LieFlows

Glossary

APF Artificial Potential Fields. 52–56, 58, 59, 66, 74–76, 92, 123, 149

CD Contrastive Divergence. 21, 23

CE Cross-Entropy. 21, 22

CEP Composable Energy Policies. 5, 50, 56, 59, 62, 65, 66, 70, 73–83, 85–88, 91–93,
121, 123–126, 131–133, 149, 151

CHOMP Covariant Hamiltonian Optimization for Motion Planning. 10, 14, 15

CV Computer Vision. 3

DDPM Denoising Diffusion Probabilistic Models. 17, 18, 24, 26, 111

DMP Dynamic Movement Primitives. 35, 68, 69, 90

DSM Denoising Score Matching. 25, 26, 98, 100, 102

DWA Dynamic Window Approach. 89

EBM Energy Based Models. 3, 5, 7, 13, 14, 17, 21–25, 101, 111, 112

EMD Earth Mover Distance. 104, 105, 150

GAN Generative Adversarial Networks. 16–20, 24, 111

HMM Hidden Markov Model. 119

iFlows ImitationFlows. 5, 29, 33–35

143

IL Imitation Learning. 28

INN Invertible Neural Networks. 32, 42, 45–49, 148

IOC Inverse Optimal Control. 5, 21, 23

IRL Inverse Reinforcement Learning. 5, 21, 23

KMP Kernelized Movement Primitives. 35

LLM Large Language Models. 112, 113

LMDP linearly-solvable Markov Decision Processes. 89, 123

MAP Maximum a Posteriori. 14

MCMC Markov Chain Monte Carlo. 15, 17, 18, 21, 24, 98, 100, 105, 146

MLE Maximun Likelihood Estimation. 32–34

MP Movement Primitive. 28, 35

MPC Model Predictive Control. 5, 7, 52, 91

MSE Mean Squared Error. 44, 45, 148

NCE Noise Contrastive Estimation. 21, 24

NCSN Noise Conditioned Score Network. 17, 18, 24, 26

NFlow Normalizing Flows. 3, 5, 17–20, 31, 32, 111, 112

NLP Natural Language Processing. 3

ODE Ordinary Differential Equation. 118

ProMP Probabilistic Movement Primitives. 12, 35

RL Reinforcement Learning. 13, 21, 23, 24, 54, 68, 69, 71

RMP Riemannian Motion Policies. 5, 7, 50, 52–56, 58, 59, 62, 65, 66, 74–76, 80, 82,
90–92, 123, 149

144

RRT Rapidly-exploring Random Trees. 10, 20

SDE Stochastic Differential Equation. 30, 117

SDF Signed Distance Field. 102

SE(3)-DiF SE(3)-DiffusionFields. 5, 101–107, 150

SEDS Stable Estimator of Dynamical Systems. 28

STOMP Stochastic Trajectory Optimization for Motion Planning. 10, 11, 14

SVF Stable Vector Fields. 27, 35, 37, 40, 48, 49, 148

TP-GMM Task Parameterized GMM. 35

VAE Variational Autoencoders. 16–21, 24, 98, 105

145

List of Figures

1.1 (Left) A robotics box palletizing system. (Right) A cluttered kitchen to tidy
up. Despite both tasks can be represented as a sequentiation of pick-and-
place operations, the second remains unsolved.1 2

1.2 Structure of the thesis. Chapters 3 to 5 are self-contained and introduce a
novel method to exploit deep generative models for Motion Control and Mo-
tion Planning. Chapter 3: ImitationFlows , Chapter 4: Composable Energy Policies
and Chapter 5: SE(3)-DiffusionFields . 6

2.1 A Comparative Landscape ofMotion Generation Algorithms in the Reactivity-
Prediction Horizon Plane . 10

2.2 An illustration of the generation procedure for three different motion gen-
eration models. Time-Correlated Trajectory Generators sample the whole
trajectory from a Gaussian distribution, Motion Policies generate trajec-
tories autoregressively sampling the next state given the current state,
and Motion Optimization algorithms generate the trajectory by solving an
optimization problem over the whole trajectory. 11

2.3 An illustration of the three types of deep generative models: Sampling
Models, Scalar Fields, and Vector Fields. Sampling Models generate the
samples directly, while Scalar Fields and Vector Fields require an additional
method such as MCMC to generate samples. 18

3.1 Robot pouring trajectories generated by SE(3)-stable vector fields. Each
color represents a trajectory starting from a different initial configuration.
Given the stability properties, all the trajectories end up with the same
orientation and position on the end effector. 29

3.2 Evolution of the state distribution under linear dynamics. Given the dy-
namics are linear, the state distribution is Gaussian in any instant of time. 30

146

3.3 A diffeomorphism Φ can be thought as a space deformation, depicted with
black lines. Due to this deformation, a density in z, ρz(z) will be reshaped
in x, ρs(x) and is described with Equation (3.7). 31

3.4 ImitationFlows architecture as a graphical model. We run linear stochastic
dynamics in the latent space z. The mapping from xt to zt is an Invertible
Neural Network. 32

3.5 In our work, we compute the vector field in M by pulling back the vector
field from the latent manifold N . Given a point x P M, we first map it to
the latent manifold z = Φ(x) with z P N . Then, we compute the vector
in the latent manifold. Given a vector field g : N ÝÑ TN , we compute
ż P TΦ(x)N . Finally, we apply the pullback linear operator to compute
ẋ = dΦ˚

x(ż) in the tangent space of M, ẋ P TxM. As we can observe, the
diffeomorphic function Φ will deform the space and a trajectory (red line)
or a vector field in the manifold N will be deformed in M. 36

3.6 A visual representation of the Φ function for 1-sphere (S1). The points in
S1 are split into two groups. For the points in UM, the diffeomorphism is
composed by first, mapping the points to the first-cover ÛM by the LogMap,
then applying a bounded Euclidean diffeomorphism between ÛM and ÛN
and mapping the points back to the manifold, by the ExpMap. For the
points not belonging to UM, we simply apply the identity map. If fθ is the
identity map close to the boundaries ´π and π; the map is diffeomorphic
for the whole S1. We add a few markers to represent the space deformation
along the mappings. 39

147

3.7 Left: Manifold stable vector fields block diagram. Right: Proposed archi-
tecture for our diffeomorphic function fθ. As shown in Equation (3.19),
our manifold SVF is composed of three elements: a diffeomorphism Φ
(light blue box)(for simplicity, we only visualize the part related with the
set UM), the latent dynamics g (yellow box) and, the pullback operator
dΦ˚ (red box). The diffeomorphism Φ is composed of three elements: the
LogMap, a bounded diffeomorphism between first covers fθ (blue) and,
the ExpMap. The pullback operator dΦ˚ has two elements: the Jacobian
inverse, computed for the diffeomorphism fθ, and the Adjoint operator.
Additionally, to control a robot, we first map the current joint configuration
q to x P SE(3) by Forward Kinematics. And once ẋ P se(3) is computed,
we map it back to the configuration space by J:

FK. Then, we apply a velocity
controller in the configuration space. The dashed line from the output of
fθ and the dynamics input represents a shortcut we consider in practice as
long as the latent ExpMap and LogMap are computed in the same origin
frame. 40

3.8 Left: Kernel Coupling, Coupling, and Ours(Smooth Piecewise Linear) Lay-
ers compared in terms of MSE, Area and Instability %. Kernel Coupling
and Coupling Layer apply a diffeomorphism between Rn and Ours between
the first covers. Right: Example of LASA trajectory and learned vector field. 44

3.9 Vector fields in the antipodal point of the Sphere. Our proposed diffeo-
morphism guarantees a source in the antipodal, while the unbounded INN
does not. 45

3.10 Left: Peg-in-a-hole environment. We show in different colors, generated
trajectories from different initial configurations. Right: Success rate Vs.
Data percentage. We evaluate the performance of a set of models when
trained with different amounts of data. 46

3.11 Results for the pouring experiment. Right: simulated experiment results.
We compare the stability property of the three models given three possible
types of initial configurations (close to the target, far from the target, and
random configuration). Left: real robot experiments results. 47

4.1 . 53
4.2 Graphical model for Composable Energy Policies. ok is an auxiliary variable

that represents the optimality of s0 and a0 for a particular policy. 63
4.3 Graphical model for Composable Energy Policies with task space policies.

oxk is an auxiliary variable that represents the optimality of sxk and axk
for a particular policy in that task space. 64

148

4.4 A visual representation of the next state distribution p(s1) running a set
of designed policies. We visualize the distribution for different states in
a 2D navigation task. In the top: next state distribution after applying a
reaching target policy. In the middle: next state distribution after applying
an obstacle avoidance policy. In the bottom: next state distribution after
applying the composition of a reaching target and an obstacle avoidance
policy. 71

4.5 2D navigation task. (a) Environment. The robot is represented by a blue
circle, the walls by the rectangles and the target by the cross. (b) spherical
obstacle bodies for the robot and the walls. 72

4.6 Simulated Environments for the reaching through clutter environments
experiment. From left to right: 1 obstacle, 3 obstacles, Cross, Double Cross,
Cage I and Cage II. 73

4.7 Controller’s computation time for the six simulated environments in Fig-
ure 4.6. Measured for RMP, APF and CEP. 75

4.8 Collision body for the robot manipulator. The collision body is composed
of 35 spheres with different radius. 76

4.9 A visual representation of the pick and place task in a real robot environ-
ment. The robot is initialized in the left side. It should reach to the other
side through the holes to pick the object. Then, move back to the left side
to place the object. 80

4.10 Left: Number of successful picks and places. Right: boxplot showing
the execution time to solve the pick and place tasks. We evaluate the
performance for (i) fix targets and no disturbances, (ii) under human
physical disturbances and, (iii) under target modifications. 81

4.11 A visual representation of the sphere-based collision body for the real robot
experiments wall. The collision body is composed of 67 spheres with
different radius. 82

4.12 A block diagram of a reinforcement learning problem with a structured
policy. The RL agent πRL and the structured policy πstruct might run to
different control frequencies. Given the current state s, the RL policy
samples a parameter vector ψ. This parameter vector is input in the
structured policy and the control action is computed a. 84

4.13 Obtained results for the hitting a puck experiment. Column 1 and 2 present
a comparison between different structured policies. Column 3 presents a
comparison between different reinforcement learning algorithms. 94

149

5.1 Pick and place task in which the robot has to pick a mug and move it to the
target pose (in the shelves) without colliding. We exploit diffusion models
for jointly optimizing both grasp and motion and show the successful
trajectory from left to right. 96

5.2 Generating high quality SE(3) grasp poses by iteratively refining random
initial samples (k=L) with an inverse Langevin diffusion process over SE(3)
elements (Equation (5.6)). 100

5.3 SE(3)-DiF’s architecture for learning 6D grasp pose distributions. We train
the model to jointly learn the objects’ sdf and to minimize the denoising loss.
Given grasp poseHPSE(3) we transform it to a set of 3D points xwPRNˆ3

(I). Next, we transform the points into the object’s local frame, using the
object’s poseHo

w. Given the resulting points xo and the object’s shape code
z we apply the feature encoder Fθ (II) to obtain a object and grasp-related
features (sdf, ψ)P RNˆ(ψ+1). Finally, (III) we flatten the features and
compute the energy e through the decoder Dθ. We provide a point-cloud-
based implementation in our code repository: https://github.com/TheCa-
musean/grasp_diffusion . 101

5.4 6D grasp pose generation experiment. Left: Success rate evaluation. Right:
EMD evaluation metrics (lower is better). 105

5.5 Evaluation Pick in occlusion. We measure the success rate of 4 different
methods based on different number of initializations. 106

5.6 Simulated and real robot environments for picking amidst clutter. 106

A.1 Graphical model for the Optimal Control problem. st denoted the state,
at denotes the action and ot is an additional variable representing the
optimality of the state and action for a given reward. 119

A.2 Graphical model for one-step ahead optimal control problem. In this ap-
proach, the actions AT1 are dependant on ST1 given a policy π. 120

150

https://github.com/TheCamusean/grasp_diffusion
https://github.com/TheCamusean/grasp_diffusion

List of Tables

2.1 List of deep generative models applied for Motion Generation in robotics.
The models are classified based on the output they generate. We refer to
them as Scalar Field when the model outputs a scalar value, Vector Field
for the models that output a vector and Sampler for the models explicitly
generate samples. 17

4.1 Resume of the proposed basic local reactive energies. To compute a par-
ticular energy, first the input position x, velocity ẋ and acceleration ẍ
are transformed to a latent space by the maps in the third column. Then,
the advantage is computed in the latent space. The advantage function
represents the energy function of our policy. Last column shows the reward
that each policy is trying to maximize. 67

4.2 Results for 3D GoTo + Obstacle Avoidance Task. First three rows are the
results from [240]. We perform the same experiment with the robot hand
included in row 4. 73

4.3 Results for 6D GoTo + Obstacle Avoidance Task. First three rows are the
results from [240]. We perform the same experiment with the robot hand
included in row 4. 74

4.4 CEP computation time for CPU and GPU. We consider the average compu-
tation time for 1-5 optimization steps. 77

4.5 CEP computation time for CPU and GPU. We show the variation of the
mean computation time for the six environments 77

4.6 CEP succes rate for reaching a target while avoiding obstacles. Left: Mean
success rate for 1-5 optimization steps. Right: Mean success rate for the
six environments. 78

A.1 Component parameters for Composable Energy Policies in reaching through
cluttered environment [240]. 124

151

A.2 Component parameters for Composable Energy Policies in reaching through
cluttered environment with hand. robstacle and rbody represent respectively,
the radius of the collision spheres in the obstacle and the robot body. . . . 124

A.3 PPO hyperparameters for hitting the puck 125
A.4 SAC hyperparameters for hitting the puck 125
A.5 DDPG and TD3 hyperparameters for hitting the puck 126

152

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse reinforce-
ment learning”. In: International Conference on Machine learning. 2004.

[2] Anurag Ajay et al. “Is Conditional Generative Modeling all you need for Decision
Making?” In: International Conference on Learning Representations. 2022.

[3] Elie Aljalbout et al. “Learning vision-based reactive policies for obstacle avoidance”.
In: Conference on Robot Learning. 2021.

[4] Barrett Ames, Jeremy Morgan, and George Konidaris. “Ikflow: Generating diverse
inverse kinematics solutions”. In: IEEE Robotics and Automation Letters (2022).

[5] Christophe Andrieu and Johannes Thoms. “A tutorial on adaptive MCMC”. In:
Statistics and computing (2008).

[6] Brenna D Argall et al. “A survey of robot learning from demonstration”. In: Robotics
and autonomous systems 57.5 (2009), pp. 469–483.

[7] Martin Arjovsky and Leon Bottou. “Towards Principled Methods for Training
Generative Adversarial Networks”. In: International Conference on Learning Repre-
sentations. 2016.

[8] Hagai Attias. “Planning by probabilistic inference”. In: International Workshop on
Artificial Intelligence and Statistics. PMLR. 2003, pp. 9–16.

[9] Shikhar Bahl et al. “Neural dynamic policies for end-to-end sensorimotor learning”.
In: Advances in Neural Information Processing Systems (2020).

[10] Hadi Beik-Mohammadi et al. “Reactive motion generation on learned riemannian
manifolds”. In: Proceedings of Robotics: Science and Systems (R:SS) (2022).

[11] Dmitry Berenson, Siddhartha Srinivasa, and James Kuffner. “Task space regions:
A framework for pose-constrained manipulation planning”. In: The International
Journal of Robotics Research 30.12 (2011), pp. 1435–1460.

153

[12] Michael Betancourt. “A conceptual introduction to Hamiltonian Monte Carlo”. In:
arXiv preprint arXiv:1701.02434 (2017).

[13] Mohak Bhardwaj et al. “STORM: An integrated framework for fast joint-space
model-predictive control for reactive manipulation”. In: Conference on Robot Learn-
ing. 2022.

[14] Aude Billard et al. Survey: Robot programming by demonstration. Tech. rep. Springrer,
2008.

[15] Damian Boborzi et al. “Learning normalizing flow policies based on highway
demonstrations”. In: 2021 IEEE International Intelligent Transportation Systems
Conference (ITSC). IEEE. 2021, pp. 22–29.

[16] Valentin De Bortoli et al. “Riemannian Score-Based Generative Modelling”. In:
Advances in Neural Information Processing Systems. 2022.

[17] Zdravko I Botev et al. “The cross-entropy method for optimization”. In: Handbook
of statistics. Vol. 31. Elsevier, 2013, pp. 35–59.

[18] Matthew Botvinick and Marc Toussaint. “Planning as inference”. In: Trends in
cognitive sciences (2012).

[19] Anthony Brohan et al. “RT-1: Robotics transformer for real-world control at scale”.
In: arXiv preprint arXiv:2212.06817 (2022).

[20] Tom Brown et al. “Language models are few-shot learners”. In: Advances in Neural
Information Processing Systems (2020).

[21] Andrew Bylard, Riccardo Bonalli, and Marco Pavone. “Composable geometric
motion policies using multi-task pullback bundle dynamical systems”. In: 2021
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021,
pp. 7464–7470.

[22] Arunkumar Byravan et al. “Space-time functional gradient optimization for motion
planning”. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2014, pp. 6499–6506.

[23] Sylvain Calinon. “A tutorial on task-parameterized movement learning and re-
trieval”. In: Intelligent service robotics 9.1 (2016), pp. 1–29.

[24] Justin Carpentier et al. “The Pinocchio C++ library: A fast and flexible imple-
mentation of rigid body dynamics algorithms and their analytical derivatives”. In:
2019 IEEE/SICE International Symposium on System Integration (SII). IEEE. 2019,
pp. 614–619.

154

[25] Joao Carvalho et al. “Motion Planning Diffusion: Learning and Planning of Robot
Motions with Diffusion Models”. In: arXiv preprint arXiv:2308.01557 (2023).

[26] Angel X Chang et al. “Shapenet: An information-rich 3D model repository”. In:
arXiv preprint arXiv:1512.03012 (2015).

[27] Ricky TQ Chen et al. “Neural ordinary differential equations”. In: Advances in
Neural Information Processing Systems. 2018.

[28] Ching-An Cheng et al. “RMPflow: A computational graph for automatic motion
policy generation”. In: International Workshop on the Algorithmic Foundations of
Robotics. 2018.

[29] Cheng Chi et al. “Diffusion policy: Visuomotor policy learning via action diffusion”.
In: Proceedings of Robotics: Science and Systems (R:SS) (2023).

[30] Gregory Chirikjian and Marin Kobilarov. “Gaussian approximation of non-linear
measurement models on Lie groups”. In: IEEE Conference on Decision and Control.
2014.

[31] Kurtland Chua et al. “Deep reinforcement learning in a handful of trials using
probabilistic dynamics models”. In: Advances in Neural Information Processing
Systems (2018).

[32] Carlo D’Eramo et al. “MushroomRL: Simplifying Reinforcement Learning Re-
search”. In: Journal of Machine Learning Research 22.131 (2021), pp. 1–5.

[33] Marco Da Silva, Frédo Durand, and Jovan Popović. “Linear Bellman combination
for control of character animation”. In: ACM SIGGRAPH (2009).

[34] Murtaza Dalal, Deepak Pathak, and Russ R Salakhutdinov. “Accelerating Robotic
Reinforcement Learning via Parameterized Action Primitives”. In: Advances in
Neural Information Processing Systems (2021).

[35] Christian Daniel et al. “Hierarchical relative entropy policy search”. In: Journal of
Machine Learning Research 17 (2016), pp. 1–50.

[36] Pieter-Tjerk De Boer et al. “A tutorial on the cross-entropy method”. In: Annals of
operations research 134.1 (2005), pp. 19–67.

[37] Jan Dentler et al. “A real-time model predictive position control with collision
avoidance for commercial low-cost quadrotors”. In: 2016 IEEE conference on control
applications (CCA). IEEE. 2016, pp. 519–525.

[38] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using
Real NVP”. In: International Conference in Learning Representations. 2017.

155

[39] Anca D Dragan, Geoffrey J Gordon, and Siddhartha S Srinivasa. “Learning from
experience inmanipulation planning: Setting the right goals”. In: Robotics Research:
The 15th International Symposium ISRR. Springer. 2017, pp. 309–326.

[40] Yilun Du, Shuang Li, and Igor Mordatch. “Compositional Visual Generation and
Inference with Energy BasedModels”. In: Advances in Neural Information Processing
Systems. 2020.

[41] Yilun Du, Toru Lin, and Igor Mordatch. “Model-Based Planning with Energy-Based
Models”. In: Conference on Robot Learning. 2020.

[42] Yilun Du and Igor Mordatch. “Implicit generation and modeling with Energy
Based Models”. In: Advances in Neural Information Processing Systems (2019).

[43] Yilun Du et al. “Learning universal policies via text-guided video generation”. In:
arXiv preprint arXiv:2302.00111 (2023).

[44] Yilun Du et al. “Video Language Planning”. In: arXiv preprint arXiv:2310.10625
(2023).

[45] Chris Dyer. “Notes on noise contrastive estimation and negative sampling”. In:
arXiv preprint arXiv:1410.8251 (2014).

[46] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. “Acronym: A large-scale
grasp dataset based on simulation”. In: 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2021, pp. 6222–6227.

[47] Tom Erez et al. “An integrated system for real-time model predictive control of
humanoid robots”. In: 2013 13th IEEE-RAS International conference on humanoid
robots (Humanoids). IEEE. 2013, pp. 292–299.

[48] L. Falorsi et al. “Reparameterizing distributions on Lie groups”. In: International
Conference on Artificial Intelligence and Statistics (AISTATS) (2019).

[49] Fletcher Fan et al. “Learning stable Koopman embeddings”. In: 2022 American
Control Conference (ACC). IEEE. 2022, pp. 2742–2747.

[50] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided Cost Learning: Deep
inverse optimal control via policy optimization”. In: International Conference on
Machine Learning. 2016.

[51] Chelsea Finn et al. “A connection between generative adversarial networks,
inverse reinforcement learning, and energy-based models”. In: arXiv preprint
arXiv:1611.03852 (2016).

[52] Pete Florence et al. “Implicit behavioral cloning”. In: Conference on Robot Learning.
2022.

156

[53] Pete Florence et al. “Implicit behavioral cloning”. In: Conference on Robot Learning.
2022.

[54] Joan Fontanals et al. “Integrated grasp and motion planning using independent
contact regions”. In: 2014 IEEE-RAS International Conference on Humanoid Robots.
IEEE. 2014, pp. 887–893.

[55] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. “The dynamic window ap-
proach to collision avoidance”. In: IEEE Robotics & Automation Magazine 4.1
(1997), pp. 23–33.

[56] Justin Fu, Katie Luo, and Sergey Levine. “Learning Robust Rewards with Adverse-
rial Inverse Reinforcement Learning”. In: International Conference on Learning
Representations. 2018.

[57] Scott Fujimoto, Herke Hoof, and David Meger. “Addressing function approximation
error in actor-critic methods”. In: International Conference on Machine Learning.
2018.

[58] Niklas Funk et al. “Benchmarking structured policies and policy optimization
for real-world dexterous object manipulation”. In: IEEE Robotics and Automation
Letters 7.1 (2021), pp. 478–485.

[59] Carlos E Garcia, David M Prett, and Manfred Morari. “Model Predictive Control:
Theory and practice—A survey”. In: Automatica 25.3 (1989), pp. 335–348.

[60] Shuzhi Sam Ge and Yun J Cui. “Dynamic motion planning for mobile robots using
potential field method”. In: Autonomous robots 13.3 (2002), pp. 207–222.

[61] Mevlana C Gemici, Danilo Rezende, and Shakir Mohamed. “Normalizing flows on
Riemannian manifolds”. In: arXiv preprint arXiv:1611.02304 (2016).

[62] Yiran Geng et al. “RLAfford: End-to-End Affordance Learning for Robotic Manipu-
lation”. In: 2023 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2023, pp. 5880–5886.

[63] Theophile Gervet et al. “Act3D: Infinite resolution action detection transformer
for robotic manipulation”. In: arXiv preprint arXiv:2306.17817 (2023).

[64] Josiah Willard Gibbs. Elementary principles in statistical mechanics: developed with
especial reference to the rational foundations of thermodynamics. C. Scribner’s sons,
1902.

[65] Nikolaos Gkanatsios et al. “Energy-based Models are Zero-Shot Planners for
Compositional Scene Rearrangement”. In: RSS 2023 Workshop on Learning for
Task and Motion Planning. 2023.

157

[66] Dwaraknath Gnaneshwar et al. “Score-based generative models for molecule
generation”. In: arXiv preprint arXiv:2203.04698 (2022).

[67] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in Neural Infor-
mation Processing Systems. 2014.

[68] Ankit Goyal et al. “RVT: Robotic View Transformer for 3D Object Manipulation”.
In: arXiv preprint arXiv:2306.14896 (2023).

[69] Will Grathwohl et al. “FFJORD: Free-Form Continuous Dynamics for Scalable
Reversible Generative Models”. In: International Conference on Learning Represen-
tations. 2019. url: https://openreview.net/forum?id=rJxgknCcK7.

[70] Michael Gutmann and Aapo Hyvärinen. “Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models”. In: Proceedings of the
thirteenth international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings. 2010, pp. 297–304.

[71] Huy Ha, Pete Florence, and Shuran Song. “Scaling Up and Distilling Down:
Language-Guided Robot Skill Acquisition”. In: Conference on Robot Learning. 2023.

[72] Tuomas Haarnoja et al. “Composable deep reinforcement learning for robotic
manipulation”. In: IEEE International Conference on Robotics and Automation. IEEE.
2018, pp. 6244–6251.

[73] Tuomas Haarnoja et al. “Reinforcement learning with deep Energy-Based Policies”.
In: International Conference on Machine Learning. 2017.

[74] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor”. In: International Conference on
Machine Learning. 2018.

[75] Janik Hager et al. “GraspME-Grasp Manifold Estimator”. In: 2021 30th IEEE
International Conference on Robot & Human Interactive Communication (RO-MAN).
IEEE. 2021, pp. 626–632.

[76] Micha Hersch et al. “Dynamical system modulation for robot learning via kines-
thetic demonstrations”. In: IEEE Transactions on Robotics 24.6 (2008), pp. 1463–
1467.

[77] Carolina Higuera, Byron Boots, and Mustafa Mukadam. “Learning to Read Braille:
Bridging the Tactile Reality Gapwith DiffusionModels”. In: arXiv preprint arXiv:2304.01182
(2023).

[78] Geoffrey E Hinton. “Training products of experts by minimizing contrastive diver-
gence”. In: Neural computation 14.8 (2002), pp. 1771–1800.

158

https://openreview.net/forum?id=rJxgknCcK7

[79] Jonathan Ho and Stefano Ermon. “Generative Adversarial Imitation Learning”. In:
Advances in Neural Information Processing Systems. 2016.

[80] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic
models”. In: Advances in Neural Information Processing Systems (2020).

[81] Jonathan Ho and Tim Salimans. “Classifier-Free Diffusion Guidance”. In: NeurIPS
2021 Workshop on Deep Generative Models and Downstream Applications. 2021.

[82] Taylor Howell et al. “Predictive sampling: Real-time behaviour synthesis with
mujoco”. In: arXiv preprint arXiv:2212.00541 (2022).

[83] Chin-Wei Huang et al. “Riemannian diffusion models”. In: Advances in Neural
Information Processing Systems (2022).

[84] Siyuan Huang et al. “Diffusion-based generation, optimization, and planning in
3d scenes”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2023, pp. 16750–16761.

[85] Yanlong Huang et al. “Kernelized Movement Primitives”. In: The International
Journal of Robotics Research 38.7 (2019), pp. 833–852.

[86] Yanlong Huang et al. “Toward orientation learning and adaptation in cartesian
space”. In: IEEE Transactions on Robotics (2020).

[87] Brian Ichter, James Harrison, and Marco Pavone. “Learning sampling distributions
for robot motion planning”. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2018, pp. 7087–7094.

[88] Auke Jan Ijspeert. “Central pattern generators for locomotion control in animals
and robots: a review”. In: Neural networks 4 (2008).

[89] Ander Iriondo et al. “Pick and place operations in logistics using a mobile ma-
nipulator controlled with deep reinforcement learning”. In: Applied Sciences 9.2
(2019), p. 348.

[90] Michael Janner et al. “Planning with Diffusion for Flexible Behavior Synthesis”.
In: International Conference on Machine Learning. 2022.

[91] Edwin T Jaynes. “Information theory and statistical mechanics”. In: Physical review
106.4 (1957), p. 620.

[92] Zhenyu Jiang et al. “Synergies between affordance and geometry: 6-dof grasp
detection via implicit representations”. In: Proceedings of Robotics: Science and
Systems (R:SS) (2021).

[93] Tobias Johannink et al. “Residual reinforcement learning for robot control”. In:
International Conference on Robotics and Automation. IEEE. 2019, pp. 6023–6029.

159

[94] Leslie Pack Kaelbling and Tomás Lozano-Pérez. “Hierarchical task and motion
planning in the now”. In: IEEE International Conference on Robotics and Automation.
IEEE. 2011, pp. 1470–1477.

[95] Leslie Pack Kaelbling and Tomás Lozano-Pérez. “Integrated task and motion
planning in belief space”. In: The International Journal of Robotics Research 32.9-
10 (2013), pp. 1194–1227.

[96] Mrinal Kalakrishnan et al. “Learning objective functions for manipulation”. In:
2013 IEEE International Conference on Robotics and Automation. IEEE. 2013,
pp. 1331–1336.

[97] Mrinal Kalakrishnan et al. “STOMP: Stochastic trajectory optimization for motion
planning”. In: IEEE international conference on robotics and automation. IEEE.
2011, pp. 4569–4574.

[98] Ivan Kapelyukh, Vitalis Vosylius, and Edward Johns. “Dall-e-bot: Introducing
web-scale diffusion models to robotics”. In: IEEE Robotics and Automation Letters
(2023).

[99] Daniel Kappler et al. “Real-time perception meets reactive motion generation”. In:
IEEE Robotics and Automation Letters 3.3 (2018), pp. 1864–1871.

[100] Lydia E Kavraki et al. “Probabilistic roadmaps for path planning in high-dimensional
configuration spaces”. In: IEEE transactions on Robotics and Automation 12.4
(1996), pp. 566–580.

[101] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding”. In:
Proceedings of NAACL-HLT. 2019.

[102] S Mohammad Khansari-Zadeh and Aude Billard. “Learning control Lyapunov
function to ensure stability of dynamical system-based robot reaching motions”.
In: Robotics and Autonomous Systems (2014).

[103] S Mohammad Khansari-Zadeh and Aude Billard. “Learning stable nonlinear dy-
namical systems with gaussian mixture models”. In: IEEE Transactions on Robotics
27.5 (2011), pp. 943–957.

[104] Oussama Khatib. “A unified approach for motion and force control of robot ma-
nipulators: The operational space formulation”. In: IEEE Journal on Robotics and
Automation 3.1 (1987), pp. 43–53.

[105] Oussama Khatib. “Real-time obstacle avoidance for manipulators and mobile
robots”. In: Autonomous robot vehicles. Springer, 1986, pp. 396–404.

160

[106] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:
Conference on Learning Representations, ICLR 2014. Ed. by Yoshua Bengio and
Yann LeCun. 2014.

[107] Dorothea Koert et al. “Demonstration based trajectory optimization for generaliz-
able robot motions”. In: 2016 IEEE-RAS 16th International Conference on Humanoid
Robots (Humanoids). IEEE. 2016, pp. 515–522.

[108] J Zico Kolter and Gaurav Manek. “Learning stable deep dynamics models”. In:
Advances in Neural Information Processing Systems. 2019.

[109] Leonidas Koutras and Zoe Doulgeri. “A correct formulation for the orientation dy-
namic movement primitives for robot control in the cartesian space”. In: Conference
on Robot Learning. 2020.

[110] Rahul G Krishnan, Uri Shalit, and David Sontag. “Structured inference networks
for nonlinear state space models”. In: AAAI conference on artificial intelligence.
2017.

[111] James J Kuffner and Steven M LaValle. “RRT-connect: An efficient approach to
single-query path planning”. In: IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2000.

[112] Thibaut Kulak, Joao Silvério, and Sylvain Calinon. “Fourier movement primi-
tives: an approach for learning rhythmic robot skills from demonstrations”. In:
Proceedings of Robotics: Science and Systems (R:SS). 2020.

[113] Fabien Lagriffoul et al. “Efficiently combining task and motion planning using
geometric constraints”. In: The International Journal of Robotics Research 33.14
(2014), pp. 1726–1747.

[114] Tin Lai and Fabio Ramos. “Plannerflows: Learning motion samplers with normalis-
ing flows”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2021.

[115] Tin Lai et al. “Parallelised diffeomorphic sampling-based motion planning”. In:
Conference on Robot Learning. 2022.

[116] Alexander Lambert et al. “Stein Variational Model Predictive Control”. In: Confer-
ence on Robot Learning. 2021.

[117] Jean-Claude Latombe. Robot motion planning. Kluwer Academic Publishers, Boston,
1991.

[118] Steven M LaValle. Planning Algorithms. Cambridge, U.K.: Cambridge University
Press, 2006.

161

[119] Steven M LaValle et al. “Rapidly-exploring Random Trees: A new tool for path
planning”. In: (1998).

[120] A.T. Le et al. “Accelerating Motion Planning via Optimal Transport”. In: Advances
in Neural Information Processing Systems. 2023.

[121] Yann LeCun et al. “A tutorial on energy-based learning”. In: Predicting structured
data 1.0 (2006).

[122] John M. Lee. “Introduction to Smooth Manifolds”. In: Springer-Verlag. 2006.
[123] Michelle A Lee et al. “Making sense of vision and touch: Self-supervised learn-

ing of multimodal representations for contact-rich tasks”. In: 2019 International
Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 8943–8950.

[124] Teguh Santoso Lembono et al. “Generative adversarial network to learn valid
distributions of robot configurations for inverse kinematics and constrained motion
planning”. In: CoRR, abs/2011.05717 (2020).

[125] Andre Lemme et al. “Neurally Imprinted Stable Vector Fields”. In: European
Symposium on Artificial Neural Networks. 2013.

[126] Sergey Levine. “Reinforcement learning and control as probabilistic inference:
Tutorial and review”. In: arXiv preprint arXiv:1805.00909 (2018).

[127] Anqi Li et al. “RMP2: A Structured Composable Policy Class for Robot Learning”.
In: Robotics Science and Systems (R:SS) (2021).

[128] Ge Li et al. “ProDMP: A Unified Perspective on Dynamic and Probabilistic Move-
ment Primitives”. In: IEEE Robotics and Automation Letters (2023).

[129] Hongzhuo Liang et al. “PointnetGPD: Detecting grasp configurations from point
sets”. In: International Conference on Robotics and Automation. 2019.

[130] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”.
In: arXiv preprint arXiv:1509.02971 (2015).

[131] Puze Liu et al. “Regularized Deep Signed Distance Fields for Reactive Motion
Generation”. In: IEEE International Conference on Intelligent Robots and Systems
(2022).

[132] Puze Liu et al. “Robot reinforcement learning on the constraint manifold”. In:
Conference on Robot Learning. 2022.

[133] Weiyu Liu et al. “StructDiffusion: Object-centric diffusion for semantic rearrange-
ment of novel objects”. In: Proceedings of Robotics: Science and Systems (R:SS)
(2023).

162

[134] Aaron Lou et al. “Neural manifold ordinary differential equations”. In: Advances
in Neural Information Processing Systems (2020).

[135] Xibai Lou, Yang Yang, and Changhyun Choi. “Collision-aware target-driven ob-
ject grasping in constrained environments”. In: IEEE International Conference on
Robotics and Automation. 2021.

[136] Tobias Löw et al. “PROMPT: Probabilistic Motion Primitives based Trajectory
Planning.” In: Proceedings of Robotics: Science and Systems (R:SS). 2021.

[137] Qingkai Lu et al. “Planning multi-fingered grasps as probabilistic inference in a
learned deep network”. In: Robotics Research. Springer, 2020, pp. 455–472.

[138] Calvin Luo. “Understanding diffusion models: A unified perspective”. In: arXiv
preprint arXiv:2208.11970 (2022).

[139] Michael Lutter et al. “Value Iteration in Continuous Actions, States and Time”. In:
International Conference on Machine Learning. 2021.

[140] Corey Lynch et al. “Learning latent plans from play”. In: Conference on robot
learning. 2020.

[141] Xiaobai Ma, Jayesh K Gupta, and Mykel J Kochenderfer. “Normalizing flow policies
for multi-agent systems”. In: International Conference on Decision and Game Theory
for Security. Springer. 2020, pp. 277–296.

[142] Jeffrey Mahler et al. “Dex-net 2.0: Deep learning to plan robust grasps with
synthetic point clouds and analytic grasp metrics”. In: Proceedings of Robotics:
Science and Systems (R:SS) (2017).

[143] Arjun Majumdar et al. “Where are we in the search for an Artificial Visual Cortex
for Embodied Intelligence?” In:Workshop on Reincarnating Reinforcement Learning
at ICLR. 2023.

[144] Viktor Makoviychuk et al. “Isaac Gym: High Performance GPU Based Physics
Simulation For Robot Learning”. In: Advances in Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2). 2021.

[145] Xuerong Mao. Stochastic differential equations and applications. Elsevier, 2007.
[146] Emile Mathieu and Maximilian Nickel. “Riemannian continuous normalizing

flows”. In: Advances in Neural Information Processing Systems (2020).
[147] Takahiro Miki et al. “Learning robust perceptive locomotion for quadrupedal

robots in the wild”. In: Science Robotics 7.62 (2022), eabk2822.
[148] Takeru Miyato et al. “Spectral Normalization for Generative Adversarial Networks”.

In: International Conference on Learning Representations. 2018.

163

[149] Kaichun Mo et al. “Where2act: From pixels to actions for articulated 3D objects”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021,
pp. 6813–6823.

[150] Mehdi Mohammadi, Ala Al-Fuqaha, and Jun-Seok Oh. “Path planning in support
of smart mobility applications using generative adversarial networks”. In: IEEE
International Conference on Internet of Things. 2018.

[151] Manfred Morari and Jay H Lee. “Model predictive control: past, present and
future”. In: Computers & Chemical Engineering 23.4-5 (1999), pp. 667–682.

[152] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. “6-dof graspnet: Variational
grasp generation for object manipulation”. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. 2019, pp. 2901–2910.

[153] Mustafa Mukadam, Xinyan Yan, and Byron Boots. “Gaussian process motion
planning”. In: 2016 IEEE international conference on robotics and automation
(ICRA). IEEE. 2016, pp. 9–15.

[154] Mustafa Mukadam et al. “Continuous-time Gaussian process motion planning via
probabilistic inference”. In: The International Journal of Robotics Research 37.11
(2018), pp. 1319–1340.

[155] Katharina Mülling et al. “Learning to select and generalize striking movements in
robot table tennis”. In: The International Journal of Robotics Research 32.3 (2013),
pp. 263–279.

[156] Adithyavairavan Murali et al. “6-dof grasping for target-driven object manipulation
in clutter”. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2020, pp. 6232–6238.

[157] Radford M Neal et al. “MCMC using Hamiltonian dynamics”. In: Handbook of
markov chain monte carlo 2.11 (2011), p. 2.

[158] Klaus Neumann, Andre Lemme, and Jochen J Steil. “Neural learning of stable
dynamical systems based on data-driven Lyapunov candidates”. In: 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE. 2013, pp. 1216–
1222.

[159] Klaus Neumann and Jochen J Steil. “Learning robot motions with stable dynami-
cal systems under diffeomorphic transformations”. In: Robotics and Autonomous
Systems 70 (2015), pp. 1–15.

[160] Toshiyuki Ohtsuka. “A continuation/GMRES method for fast computation of
nonlinear receding horizon control”. In: Automatica 40.4 (2004), pp. 563–574.

164

[161] Joaquim Ortiz-Haro et al. “Structured deep generative models for sampling on
constraint manifolds in sequential manipulation”. In: Conference on Robot Learning.
2022.

[162] Takayuki Osa. “Motion planning by learning the solution manifold in trajectory
optimization”. In: The International Journal of Robotics Research (2022).

[163] Takayuki Osa et al. “An algorithmic perspective on imitation learning”. In: Foun-
dations and Trends® in Robotics 7.1-2 (2018), pp. 1–179.

[164] George Papamakarios, Theo Pavlakou, and Iain Murray. “Masked Autoregressive
Flow for density estimation”. In: Advances in Neural Information Processing Systems.
2017.

[165] George Papamakarios et al. “Normalizing flows for probabilistic modeling and
inference”. In: arXiv preprint arXiv:1912.02762 (2019).

[166] Alexandros Paraschos et al. “Probabilistic Movement Primitives”. In: Advances in
Neural Information Processing Systems. 2013.

[167] Alexandros Paraschos et al. “Using probabilistic movement primitives in robotics”.
In: Autonomous Robots 42.3 (2018), pp. 529–551.

[168] Jeong Joon Park et al. “DeepSDF: Learning continuous signed distance functions
for shape representation”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2019, pp. 165–174.

[169] Wooram Park et al. “Diffusion-based motion planning for a nonholonomic flexible
needle model”. In: Proceedings of the 2005 IEEE International Conference on Robotics
and Automation. IEEE. 2005, pp. 4600–4605.

[170] Andreas ten Pas et al. “Grasp pose detection in point clouds”. In: The International
Journal of Robotics Research 36.13-14 (2017), pp. 1455–1473.

[171] P. Pastor et al. “Online movement adaptation based on previous sensor experi-
ences”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2011.

[172] Xue Bin Peng et al. “AMP: Adversarial motion priors for stylized physics-based
character control”. In: ACM Transactions on Graphics (ToG) (2021).

[173] Xue Bin Peng et al. “Deepmimic: Example-guided deep reinforcement learning
of physics-based character skills”. In: ACM Transactions On Graphics (TOG) 37.4
(2018), pp. 1–14.

165

[174] Xue Bin Peng et al. “MCP: Learning Composable Hierarchical Control with Multi-
plicative Compositional Policies”. In: Advances in Neural Information Processing
Systems (2019).

[175] Nicolas Perrin and Philipp Schlehuber-Caissier. “Fast diffeomorphic matching to
learn globally asymptotically stable nonlinear dynamical systems”. In: Systems &
Control Letters 96 (2016), pp. 51–59.

[176] Karl Pertsch, Youngwoon Lee, and Joseph Lim. “Accelerating Reinforcement Learn-
ing with Learned Skill Priors”. In: Conference on Robot Learning. 2021.

[177] Jan Peters and Stefan Schaal. “Reinforcement learning by reward-weighted re-
gression for operational space control”. In: International Conference on Machine
Learning. 2007.

[178] Luis Pineda et al. “Theseus: A library for differentiable nonlinear optimization”.
In: Advances in Neural Information Processing Systems (2022).

[179] Ph Poignet and Maxime Gautier. “Nonlinear model predictive control of a robot ma-
nipulator”. In: 6th International workshop on advanced motion control. Proceedings
(Cat. No. 00TH8494). IEEE. 2000, pp. 401–406.

[180] Dean A Pomerleau. “Alvinn: An autonomous land vehicle in a neural network”.
In: Advances in Neural Information Processing Systems (1988).

[181] Ben Poole et al. “DreamFusion: Text-to-3D using 2D Diffusion”. In: International
Conference on Learning Representations. 2022.

[182] Sean Quinlan and Oussama Khatib. “Elastic bands: Connecting path planning
and control”. In: [1993] Proceedings IEEE International Conference on Robotics and
Automation. IEEE. 1993, pp. 802–807.

[183] Krisnawan Rahardja and Akio Kosaka. “Vision-based bin-picking: Recognition and
localization of multiple complex objects using simple visual cues”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems. 1996.

[184] Daniel Rakita, Bilge Mutlu, and Michael Gleicher. “RelaxedIK: Real-time Synthesis
of Accurate and Feasible Robot Arm Motion.” In: Proceedings of Robotics: Science
and Systems (R:SS). 2018.

[185] Aditya Ramesh et al. “Hierarchical text-conditional image generation with clip
latents”. In: arXiv preprint arXiv:2204.06125 (2022).

[186] Krishan Rana et al. “Residual skill policies: Learning an adaptable skill-based
action space for reinforcement learning for robotics”. In: Conference on Robot
Learning. 2023.

166

[187] Muhammad Asif Rana et al. “Euclideanizing flows: Diffeomorphic reduction for
learning stable dynamical systems”. In: Learning for Dynamics and Control. PMLR.
2020, pp. 630–639.

[188] Nathan Ratliff et al. “CHOMP: Gradient optimization techniques for efficient mo-
tion planning”. In: 2009 IEEE International Conference on Robotics and Automation.
IEEE. 2009, pp. 489–494.

[189] Nathan D Ratliff et al. “Generalized nonlinear and finsler geometry for robotics”.
In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2021, pp. 10206–10212.

[190] Nathan D Ratliff et al. “Optimization fabrics”. In: arXiv preprint arXiv:2008.02399
(2020).

[191] Nathan DRatliff et al. “Riemannianmotion policies”. In: arXiv preprint arXiv:1801.02854
(2018).

[192] Harish Ravichandar and Ashwin Dani. “Learning contracting nonlinear dynam-
ics from human demonstration for robot motion planning”. In: ASME, Dynamic
Systems and Control Conference. 2015.

[193] Harish Ravichandar et al. “Recent advances in robot learning from demonstration”.
In: Annual review of control, robotics, and autonomous systems (2020).

[194] Harish Chaandar Ravichandar, Iman Salehi, and Ashwin P Dani. “Learning Partially
Contracting Dynamical Systems from Demonstrations.” In: Conference on Robot
Learning. 2017.

[195] Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. “On stochastic optimal
control and reinforcement learning by approximate inference”. In: Proceedings of
Robotics: Science and Systems (R:SS) (2012).

[196] Scott Reed et al. “A Generalist Agent”. In: Transactions on Machine Learning
Research (2022).

[197] Moritz Reuss et al. “Goal-conditioned imitation learning using score-based diffu-
sion policies”. In: arXiv preprint arXiv:2304.02532 (2023).

[198] Danilo Rezende and Shakir Mohamed. “Variational inference with normalizing
flows”. In: International Conference on Machine Learning. 2015.

[199] Danilo Jimenez Rezende et al. “Normalizing flows on Tori and Spheres”. In:
International Conference on Machine Learning. 2020.

167

[200] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In: Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Mu-
nich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer. 2015, pp. 234–
241.

[201] Peter J Rossky, Jimmie D Doll, and Harold L Friedman. “Brownian dynamics as
smart Monte Carlo simulation”. In: The Journal of Chemical Physics 69.10 (1978),
pp. 4628–4633.

[202] Leonel Rozo and Vedant Dave. “Orientation Probabilistic Movement Primitives on
Riemannian Manifolds”. In: Conference on Robot Learning. 2022.

[203] Nataniel Ruiz et al. “Dreambooth: Fine tuning text-to-image diffusion models
for subject-driven generation”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2023.

[204] Chitwan Saharia et al. “Photorealistic text-to-image diffusion models with deep
language understanding”. In: Advances in Neural Information Processing Systems
(2022).

[205] Saeed Saremi et al. “Deep energy estimator networks”. In: arXiv preprint arXiv:1805.08306
(2018).

[206] Matteo Saveriano, Fares J Abu-Dakka, and Ville Kyrki. “Learning stable robotic
skills on Riemannian manifolds”. In: Robotics and Autonomous Systems 169 (2023),
p. 104510.

[207] Stefan Schaal. “Dynamic movement primitives-a framework for motor control in
humans and humanoid robotics”. In: Adaptive motion of animals and machines.
Springer, 2006, pp. 261–280.

[208] Stefan Schaal. “Is imitation learning the route to humanoid robots?” In: Trends in
cognitive sciences 3.6 (1999), pp. 233–242.

[209] Stefan Schaal. “Learning from demonstration”. In: Advances in Neural Information
Processing Systems. 1997.

[210] Stefan Schaal, Christopher G Atkeson, and Sethu Vijayakumar. “Scalable tech-
niques from nonparametric statistics for real time robot learning”. In: Applied
Intelligence 17.1 (2002), pp. 49–60.

[211] Charles Schaff and Matthew R Walter. “Residual Policy Learning for Shared Au-
tonomy”. In: Proceedings of Robotics: Science and Systems (R:SS). 2020.

168

[212] John Schulman et al. “Motion planning with sequential convex optimization and
convex collision checking”. In: The International Journal of Robotics Research 33.9
(2014), pp. 1251–1270.

[213] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[214] Muhammet Yunus Seker et al. “Conditional Neural Movement Primitives.” In:
Proceedings of Robotics: Science and Systems (R:SS). 2019.

[215] Seiji Shaw, Ben Abbatematteo, and George Konidaris. “RMPs for safe impedance
control in contact-rich manipulation”. In: International Conference on Robotics and
Automation (ICRA). IEEE. 2022.

[216] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. “CLIPort: What and where path-
ways for robotic manipulation”. In: Conference on Robot Learning. 2022.

[217] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. “Perceiver-actor: A multi-task
transformer for robotic manipulation”. In: Conference on Robot Learning. 2023.

[218] Tom Silver et al. “Residual policy learning”. In: arXiv preprint arXiv:1812.06298
(2018).

[219] Anthony Simeonov et al. “Neural descriptor fields: SE(3)-equivariant object repre-
sentations for manipulation”. In: International Conference on Robotics and Automa-
tion. IEEE. 2022.

[220] Anthony Simeonov et al. “Shelving, Stacking, Hanging: Relational Pose Diffusion
for Multi-modal Rearrangement”. In: Conference on Robot Learning. 2023.

[221] Vikas Sindhwani, Stephen Tu, and Mohi Khansari. “Learning contracting vector
fields for stable imitation learning”. In: arXiv preprint arXiv:1804.04878 (2018).

[222] Jascha Sohl-Dickstein et al. “Deep unsupervised learning using nonequilibrium
thermodynamics”. In: International Conference on Machine Learning. 2015.

[223] Joan Sola, Jeremie Deray, and Dinesh Atchuthan. “A micro Lie theory for state
estimation in robotics”. In: arXiv preprint arXiv:1812.01537 (2018).

[224] Yang Song and Stefano Ermon. “Generative modeling by estimating gradients
of the data distribution”. In: Advances in Neural Information Processing Systems
(2019).

[225] Yang Song and Stefano Ermon. “Improved techniques for training score-based
generative models”. In: Advances in Neural Information Processing Systems (2020).

[226] Yang Song and Diederik P Kingma. “How to train your Energy-Based Models”. In:
arXiv preprint arXiv:2101.03288 (2021).

169

[227] Yang Song et al. “Score-based generative modeling through stochastic differential
equations”. In: arXiv preprint arXiv:2011.13456 (2020).

[228] Martin Sundermeyer et al. “Contact-graspnet: Efficient 6-dof grasp generation in
cluttered scenes”. In: 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2021, pp. 13438–13444.

[229] Richard S Sutton, Doina Precup, and Satinder Singh. “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning”. In:
Artificial intelligence 112.1-2 (1999), pp. 181–211.

[230] Akinori Tanaka. “Discriminator optimal transport”. In: Advances in Neural Infor-
mation Processing Systems (2019).

[231] Geraud Nangue Tasse, Steven James, and Benjamin Rosman. “A Boolean Task
Algebra for Reinforcement Learning”. In: Advances in Neural Information Processing
Systems (2020).

[232] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. “Reinforcement learning
of motor skills in high dimensions: A path integral approach”. In: 2010 IEEE
International Conference on Robotics and Automation. IEEE. 2010, pp. 2397–2403.

[233] Emanuel Todorov. “Compositionality of optimal control laws”. In: Advances in
Neural Information Processing Systems (2009).

[234] Marc Toussaint. “Robot trajectory optimization using approximate inference”. In:
International Conference on Machine Learning. 2009.

[235] Marc Toussaint and Christian Goerick. “A Bayesian view on motor control and
planning”. In: From Motor Learning to Interaction Learning in Robots. Springer,
2010, pp. 227–252.

[236] Hugo Touvron et al. “Llama 2: Open foundation and fine-tuned chat models”. In:
arXiv preprint arXiv:2307.09288 (2023).

[237] Aleš Ude et al. “Orientation in Cartesian space dynamic movement primitives”.
In: 2014 IEEE International Conference on Robotics and Automation (ICRA). 2014.
doi: 10.1109/ICRA.2014.6907291.

[238] Jonas Umlauft and Sandra Hirche. “Learning stable stochastic nonlinear dynamical
systems”. In: International Conference on Machine Learning. 2017.

[239] Julen Urain, Davide Tateo, and Jan Peters. “Learning stable vector fields on Lie
groups”. In: Robotics and Automation Letters (RA-L). 2022.

170

https://doi.org/10.1109/ICRA.2014.6907291

[240] Julen Urain et al. “Composable Energy Policies for Reactive Motion Generation
and Reinforcement Learning”. In: Proceedings of Robotics: Science and Systems
(R:SS). 2021.

[241] Julen Urain et al. “Composable energy policies for reactive motion generation and
reinforcement learning”. In: The International Journal of Robotics Research (IJRR)
(2023).

[242] Julen Urain et al. “ImitationFlows: Learning Deep Stable Stochastic Dynamic Sys-
tems by Normalizing Flows”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2020.

[243] Julen Urain et al. “Learning Implicit Priors for Motion Optimization”. In: 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2022,
pp. 7672–7679. doi: 10.1109/IROS47612.2022.9981264.

[244] Julen Urain et al. “SE(3)-DiffusionFields: Learning cost functions for joint grasp
and motion optimization through diffusion”. In: IEEE International Conference on
Robotics and Automation (ICRA) (2023).

[245] Nikolaus Vahrenkamp et al. “Integrated grasp and motion planning”. In: 2010 IEEE
International Conference on Robotics and Automation. IEEE. 2010, pp. 2883–2888.

[246] Jur Van Den Berg et al. “Reciprocal n-body collision avoidance”. In: Robotics
research. Springer, 2011, pp. 3–19.

[247] Benjamin Van Niekerk et al. “Composing value functions in reinforcement learn-
ing”. In: International Conference on Machine Learning. 2019.

[248] Ashish Vaswani et al. “Attention is all you need”. In: Advances in Neural Information
Processing Systems (2017).

[249] Pascal Vincent. “A connection between score matching and denoising autoen-
coders”. In: Neural computation 23.7 (2011), pp. 1661–1674.

[250] Lirui Wang, Yu Xiang, and Dieter Fox. “Manipulation trajectory optimization with
online grasp synthesis and selection”. In: Proceedings of Robotics: Science and
Systems (R:SS) (2019).

[251] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. “Diffusion Policies as
an Expressive Policy Class for Offline Reinforcement Learning”. In: International
Conference on Learning Representations. 2022.

[252] Patrick Nadeem Ward, Ariella Smofsky, and Avishek Joey Bose. “Improving ex-
ploration in soft-actor-critic with normalizing flows policies”. In: arXiv preprint
arXiv:1906.02771 (2019).

171

https://doi.org/10.1109/IROS47612.2022.9981264

[253] Bowen Wen et al. “SE(3)-Tracknet: Data-driven 6D pose tracking by calibrating
image residuals in synthetic domains”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2022, pp. 10367–10373.

[254] Thomas Weng et al. “Neural grasp distance fields for robot manipulation”. In:
2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2023, pp. 1814–1821.

[255] Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. “Model predic-
tive path integral control: From theory to parallel computation”. In: Journal of
Guidance, Control, and Dynamics 40.2 (2017), pp. 344–357.

[256] Markus Wulfmeier, Dominic Zeng Wang, and Ingmar Posner. “Maximum entropy
deep inverse reinforcement learning.” In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2016.

[257] Zhou Xian et al. “Unifying Diffusion Models with Action Detection Transformers
for Multi-task Robotic Manipulation”. In: Conference on Robot Learning. 2023.

[258] Mandy Xie et al. “Geometric Fabrics for the Acceleration-based Design of Robotic
Motion”. In: arXiv preprint arXiv:2010.14750 (2020).

[259] Yiheng Xie et al. “Neural fields in visual computing and beyond”. In: Computer
Graphics Forum. Vol. 41. 2. Wiley Online Library. 2022, pp. 641–676.

[260] Mengyuan Yan et al. “Learning probabilistic multi-modal actor models for vision-
based robotic grasping”. In: International Conference on Robotics and Automation
(ICRA). 2019.

[261] Xinchen Yan et al. “Learning 6-dof grasping interaction via deep geometry-aware
3D representations”. In: 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2018, pp. 3766–3773.

[262] Zhutian Yang et al. “Compositional Diffusion-Based Continuous Constraint Solvers”.
In: Conference on Robot Learning (2023).

[263] J.S. Yuan. “Closed-loop manipulator control using quaternion feedback”. In: IEEE
Journal on Robotics and Automation (1988). doi: 10.1109/56.809.

[264] Ekim Yurtsever et al. “A survey of autonomous driving: Common practices and
emerging technologies”. In: IEEE access 8 (2020), pp. 58443–58469.

[265] Martijn JA Zeestraten et al. “An approach for imitation learning on Riemannian
manifolds”. In: IEEE Robotics and Automation Letters (RA-L) (2017).

172

https://doi.org/10.1109/56.809

[266] Andy Zeng et al. “Robotic pick-and-place of novel objects in clutter with multi-
affordance grasping and cross-domain image matching”. In: The International
Journal of Robotics Research (2022).

[267] Andy Zeng et al. “Socratic Models: Composing Zero-Shot Multimodal Reasoning
with Language”. In: International Conference on Learning Representations. 2022.

[268] Andy Zeng et al. “Transporter networks: Rearranging the visual world for robotic
manipulation”. In: Conference on Robot Learning. 2021.

[269] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. “Adding conditional control to
text-to-image diffusion models”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2023.

[270] Tianyi Zhang, JiankunWang, andMax Q-HMeng. “Generative adversarial network
based heuristics for sampling-based path planning”. In: IEEE/CAA Journal of
Automatica Sinica (2021).

[271] Ziyuan Zhong et al. “Guided conditional diffusion for controllable traffic simula-
tion”. In: International Conference on Robotics and Automation (ICRA). 2023.

[272] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. “Modeling interaction via
the principle of maximum causal entropy”. In: International Conference on Machine
Learning. 2010.

[273] Brian D Ziebart et al. “Maximum Entropy Inverse Reinforcement Learning.” In:
AAAI. 2008.

[274] Matt Zucker et al. “CHOMP: Covariant hamiltonian optimization for motion plan-
ning”. In: The International journal of robotics research 32.9-10 (2013), pp. 1164–
1193.

173

	Introduction
	Contributions
	Thesis Outline

	Foundations and Related Work
	Foundations on Motion Generation
	Time-Correlated Trajectory Generators
	Motion Policies
	Motion Optimization

	Learning Motion Generators from data
	Sampling Models
	Scalar Fields
	Vector Fields

	Globally Stable Policies with Flow-Based Models
	Introduction
	Learning Stable Vector Fields with Normalizing Flows
	Preliminaries
	Modeling Stable Vector Fields with Normalizing Flows

	From Euclidean spaces to Lie Groups
	Background
	Problem Statement
	Stable Vector Fields on Lie Groups
	Bounded Flows as transformation f

	Experimental Results
	Network Evaluation in S2 manifold
	Evaluation of SE(2) Stable vector fields in a 2D peg-in-a-hole task
	Learning a pouring task with SE(3) stable vector fields

	Related Work
	Discussion & Conclusions

	Composability and Geometry on Energy-Based Policies
	Introduction
	Overview of APF and RMP

	Composable Energy Policies
	Motivation
	Problem statement
	Composable energy policies method
	Optimization of composable energy policies

	An inference view on policy composition
	Riemannian Motion Policies as Composable Energy Policies

	Composable energy policies for robot reinforcement learning
	Experimental evaluation
	Visual 2D particle environment
	Reaching through clutter environments
	Learning with structured policies

	Related work
	Discussion
	Conclusion and future work

	Diffusion Models on SE(3) for Motion Planning
	Introduction
	Preliminaries
	SE(3)-Diffusion Fields
	From Euclidean diffusion to diffusion in SE(3)
	Architecture & training of Grasp SE(3)-DiffusionFields

	Grasp and motion optimization with diffusion models
	Experimental Evaluation
	Evaluation of 6DoF grasp pose generation
	Performance on grasp and motion optimization
	Grasp and motion optimization on real robots

	Related Work
	Conclusions

	Conclusion
	Summary of Contributions
	Open Challenges and Future Work
	Out-of-distribution generation
	Scaling-up data

	Appendix
	ImitationFlows Stability evaluation
	A Control as Inference view for Composable Energy Policies
	Optimality Guarantees

	Experiments
	Reaching through a cluttered environment
	Learning to hit a puck

	A practical overview of energy policies
	Basic local reactive energies
	Learning energy policies from data
	Q-function in optimal control and reinforcement learning

	Supplementary Material
	Conference Papers
	Journal Articles
	Preprints
	Workshop Papers

	Curriculum Vitae
	Glossary
	List of Figures
	List of Tables
	Bibliography

