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Abstract: Categorization of seen objects is often determined by the shape of objects. 

However, shape is not exclusive to the visual modality: the haptic system also is expert at 

identifying shapes. Hence an important question for understanding shape processing is 

whether humans store separate modality-dependent shape representations or whether 

information is integrated into one multi-sensory representation. To answer this question, we 

created a metric space of computer-generated, novel objects varying in shape. These objects 

were then printed using a 3D printer to generate tangible stimuli. In a categorization 

experiment, participants first explored the objects visually and haptically. We found that both 

modalities led to highly similar categorization behavior. Next, participants were trained either 

visually or haptically on shape categories within the metric space. As expected, visual 

training increased visual performance and haptic training increased haptic performance. 

Importantly, however, we found that visual training also improved haptic performance and 

vice versa. Two additional experiments showed that the location of the categorical boundary 

in the metric space also transferred across modalities, as did heightened discriminability of 

objects adjacent to the boundary. This observed transfer of metric category knowledge across 

modalities indicates that visual and haptic shape information is integrated into a shared multi-

sensory representation. 
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1. Introduction 

Humans learn about the world by interacting with it, and much of this interaction is mitigated 

through the sense of touch of our hands. Starting with active exploration of objects in infants, 

up to the precise manipulation skills required by surgeons, the haptic modality allows us to 

gather information about an object’s shape, texture, softness, weight, temperature, and other 

material properties. Many of these fundamental object properties, such as temperature and 

weight, are not or only indirectly accessible to the other modalities, e.g. vision, highlighting 

the importance of interacting with the world through haptics for developing perceptual and 

precision skills. In contrast, other object properties, such as shape and texture are readily 

accessible to both the visual and haptic modality. Of these two properties, shape has been 

found to play a crucial role in object identification and categorization for the visual (e.g., 

Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976) and haptic (e.g., Klatzky, Lederman, 

Metzger, 1985) modalities. Since shape can be perceived visually and haptically the question 

arises whether shape representations integrate sensory input from both modalities, or whether 

the human brain stores two separate, modality-dependent shape representations. 

The idea of common representations is supported by cross-modal priming observed between 

vision and haptics (Bushnell & Baxt, 1999; Reales & Ballesteros, 1999). Similarly, several 

recent studies investigating perceptual spaces of complex, parametrically-defined objects 

(Cooke, Jäkel, Wallraven, & Bülthoff, 2007; Gaissert, Wallraven, & Bülthoff, 2010) and 

natural objects (Gaissert & Wallraven, 2011) revealed high similarity between the visual and 

haptic perceptual spaces, suggesting similar processing of shape. If one multisensory 

representation is formed, however, one might expect cross-modal shape comparisons to be 

equivalent in performance to uni-modal shape comparisons. In this context, Norman et al. 

(Norman, Norman, Clayton, Lianekhammy, & Zielke, 2004) reported high accuracy but also 



significant performance differences between cross-modal and uni-modal shape comparisons 

concluding functionally overlapping but distinguishable representations. Likewise, several 

studies suggest that haptic performance might be limited by shape complexity (Phillips, 

Egan, & Perry, 2009; Dopjans, Wallraven, & Bülthoff, 2009). Lacey et al. (Lacey, Campbell, 

& Sathian, 2007) reviewed further previous studies and suggested that evidence from both 

behavioral and imaging studies were consistent with shared shape representations that enable 

efficient cross-modal transfer of object information.  

In other words, there is ample evidence that shape identities are shared at least to some extent 

between the modalities and that shape metrics are at least similar across vision and haptics. 

However, this leaves open the question whether the metric representations of the separate 

modalities are merely similar, but independent, or if the modalities share a shape 

representation. To address this question, we trained participants on a specific metric shape 

categorization task using only one modality, either vision or haptics, and tested for transfer 

effects to the other modality. If the shape metrics are shared, the trained categorization 

knowledge should transfer also to the other modality. However, if vision and haptics do not 

share the same metric shape space the untrained modality should remain largely unaffected.  

In this study we additionally investigated two aspects of categorization learning. First, we 

investigated categorization performance itself, before and after training, for both the haptic 

and visual modalities. Second, we looked for “categorical perception”, a feature of category 

learning in which stimuli straddling the categorical boundary are easier to discriminate than 

stimuli within each category (Pastore, 1987; Harnad 1987).  



2. General Method 

2.1. Stimuli 

To generate tangible objects on a metric scale, computer-graphics modeling was combined 

with rapid 3D-prototyping. Two prototype objects A and B were generated using the software 

Autodesk 3ds Max (Autodesk, Canada) by taking a sphere of 7 cm diameter and modifying 

its shape using two orthogonally positioned “wave modifiers”, resulting in smoothly 

deformed, undulated objects. Two sets of parameters for the wave modifiers were chosen as 

to provide two distinct, but not too dissimilar prototype objects. To obtain the metric scale, 

the two objects were linearly morphed into each other in 15 intermediate steps. Objects were 

then printed using a 3D printer (ZPrinter 650, ZCorporation, Germany) and were mounted on 

little stands for easier haptic exploration. The final stimulus set consisted of 17 different 

shapes (see Figure 1a) equal in weight and volume. Since the experiments consisted of 

training and testing conditions, we split the stimulus set into a training set and a test set to 

ensure that participants did not simply learn single objects but attended to shape features that 

would generalize. 

2.2. Experiment Setup 

For the visual experiments, participants were seated in front of a sliding door (see Figure 1b) 

for the setup), which could be opened and closed automatically. The experimenter placed one 

object in one of six possible orientations (0°, 60°, 120°, 180°, 240°, and 300°) behind the 

door. Upon a signal given by the experimental computer, the door opened and participants 

were able to visually explore the objects for exactly two seconds before the door closed 

again. 

In the haptic experiments, the same setup was used. The objects were placed in one of six 

possible orientations into the stand behind the sliding door. For all haptic trials, however, the 



door remained closed and participants were only able to touch the objects using their 

dominant hand by reaching around the door. Participants were allowed to freely explore the 

objects for four seconds. A tone signaled the start of the exploration time and a second tone 

signaled the end. The experimenter took care that participants did not exceed the exploration 

time.  

 

a)  

 

b)  

Figure 1. a) Stimuli. The figure shows stimulus A and B and the 15 intermediate morph-steps (The x-axis 

displays the amount of B-features in percent). The stimulus set was divided into a training set and a test set. In 

Experiment 1, participants were trained on the categorical boundary at 50% (dark gray), in Experiment 2, 

participants were trained with a categorical boundary at 25% (light gray). b) Setup. View of the setup from the 

participant’s side. A computer-controlled sliding door (shown open here as in the visual conditions in the 

experiments) was used to hide or reveal the objects. In the haptic conditions, the door was closed and 

participants reached around the door to touch the objects.  



3. Experiment 1: Categorization Experiment 

3.1. Method 

The experiment consisted of a pre-training test (testing visual and haptic performance 

separately), a unimodal training phase (training for one modality only), and a post-training 

test (testing again visual and haptic performance separately). Both pre- and post-training test 

phases used the seven objects of the test set, whereas the training phase used the eight objects 

of the training set. Since the whole experiment took about four hours, it was split into two 

sessions that took place on two consecutive days. 

In the pre-training test, participants had to categorize the objects of the test set visually and 

haptically in separate trials. To avoid order effects, half of the participants started exploring 

the objects visually while the other half started exploring the objects haptically. The test 

started by introducing the participants to object A and B in the chosen modality, and 

participants were informed that these two stimuli represented the prototypes of category A 

and B, respectively. For this, object A was presented in orientation 0°, 60°, 120°, 180°, 240°, 

and 300°. Then object B was presented in the same orientations. Next, the seven objects of 

the test set were presented in randomized order and in one of six random orientations (the 

randomization ensured that every orientation of every object occurred at least once in all 

blocks). Participants were asked to indicate whether the object belonged to category A or to 

category B. No feedback was provided. The testing was repeated ten times in total, resulting 

in 70 trials. After half of the test trials A and B were presented again from all six orientations 

as a reminder. 

Next, participants had to complete the training. Ten participants were trained visually; ten 

other participants were trained haptically. During this phase, the training set was used to 

ensure that participants attended to category features and did not simply learn the objects 

themselves.  Similarly to the previous pre-training blocks, the prototypes for each category 



(objects A and B) were presented from all six orientations, then the morphed objects were 

presented randomized by order and orientation. Again, participants had to indicate if the 

presented object belonged to category A or B. This time feedback was provided in such a 

way that all objects with less than 50% B features were assigned to category A and all objects 

with more than 50% B features were assigned to category B. The training ended when 

participants reached the performance criterion for which at least 7 out of 8 objects needed to 

be categorized correctly, over three consecutive runs with a run consisting of the presentation 

of the 8 objects of the training set. On the next day, participants repeated another training in 

the same fashion. After reaching the performance criterion again, participants went on to the 

post-training test, in which categorization performance was then tested for both the trained 

and the untrained modalities. Testing after training was identical to that before training. 

3.2. Results 

In order to test the statistical significance of the results, the ratings of each participant before 

and after training were analyzed by fitting psychometric functions to the data. A cumulative 

Gaussian was fitted to these data points using the psignifit toolbox for Matlab, which 

implements the maximum-likelihood method (Wichmann & Hill, 2001). The fitted 

psychometric function yields estimates of the PSE (point of subjective equivalence as 

indicated by 50% “B” ratings) and JND (just noticeable difference, calculated as the morph-

difference that would bring performance from the PSE to 75%). Perfect performance would 

yield a step-like function in which all objects with less than 50% B-features would be 

identified as category A and all objects with more than 50% B-features would be identified as 

category B. The object at morph-level of 50% would be arbitrarily assigned to either A or B 

and hence become the PSE. In other words, the PSE represents the category boundary, 

whereas the JND represents its sharpness (large JND: fuzzy category boundary, small JND: 

sharp category boundary). 



The PSE and JND data were compared for pre- and post-training conditions using Wilcoxon 

sign-rank tests for paired data, and Mann-Whitney-U tests for comparing unpaired data 

across training conditions. The data for one representative participant is shown in Figure 2, 

and group data for JNDs and PSEs is shown in Figure 3a,b. 

 

 

Figure 2. Experiment 1. Psychometric function fits for a representative participant who was trained in the haptic 

modality. The upper row shows categorization results for the haptic modality, the lower row for the visual 



modality. Values for the PSE, JND, and the goodness-of-fit are given for each sub-figure. Note that 

performance (as indicated by the steepness of the curve, or decreased JND-values) increases for both modalities. 

 

 

 

 

a)  

 

b)  

 

Figure 3. Experiment 1. Group results for a) JND-values and b) PSE-values separated for the two groups. Note 

that the JND improves for both groups regardless of whether haptic or visual training is performed. PSE-values 

do not change through training – the trained categorization boundary of 50% is indicated with a bold line. 



Figures use boxplots with line showing median, the shaded area covering the inter-quartile range (IQR) from the 

25%- to the 75%-quartile, and whiskers extending 1.5 times the IQR from the median. 

 

As the single-participant data shows (Figure 2), the psychometric curve before training is 

very shallow, corresponding to a poor separation of the two categories. This is true for both 

the visual and the haptic modalities (JNDs are both around 25%). After training, both 

psychometric curves become steeper, indicating good discriminability of the categories (both 

JNDs around 6-9%). Note, that this result means that training is equally effective for both 

modalities, despite the fact that this participant was only trained in the haptic modality. Also 

note that the PSE for all four conditions stays at roughly the same level around 50% (see 

discussion below). 

Next, we analyzed the group data for JND-values. As shown in Figure 3a, visual training 

increased visual performance significantly (W=47.000, Z=-2.797, p=0.025) and haptic 

training increased haptic performance significantly (W=55.000, Z=-3.628, p=0.001). More 

importantly, however, cross-modal transfer was also significant in that visual training 

increased haptic performance significantly (W=52.000, Z=-2.797, p=0.005) and that haptic 

training significantly increased visual performance (W=55.000, Z=-3.780, p=0.002). In 

addition, the post-training JNDs tested for cross-modal transfer were not significantly 

different in both training modalities (all p>0.225), showing that trained category knowledge 

can transfer equally well across modalities.  

Similar tests on the PSEs for pre- and post-training tests failed to yield any significant 

differences (all p>0.275, see Figure 3b) – PSEs on average were around 55 both before and 

after training showing that learning of the category boundary was stable. Note that a shift in 

PSE would also not be expected as the untrained category boundary would most likely also 

occur somewhere in the middle of the metric scale (see Experiment 2 below). 



In summary, the analysis of the individual data clearly demonstrates that participants were 

able to benefit from within-modal training, and that the acquired knowledge about the metric 

visual or haptic category structure can easily transfer to the other modality. 

4. Experiment 2: Shifting the Categorical Boundary 

As a next step, one needs to verify that the observed training effects actually resulted from 

the training phase (supervised learning) and were not due to the repeated exposure to the 

stimuli in the testing phase (unsupervised learning). In order to confirm this training effect, 

the same experiment was repeated, but this time participants were trained on a categorical 

boundary shifted to the left compared to the previous experiment. This experiment also tests 

the degree of malleability of the category boundary – if the set of objects that were chosen 

afforded a “natural” category boundary at morph levels of 50%, perhaps it would be harder to 

train participants with another categorical boundary.  

4.1. Method 

The procedure was the same as for Experiment 1 with the following changes: the feedback 

during the training phase was adjusted such that all objects with less than 25% B features 

were labeled as category A and all objects with more than 25% B features were labeled as 

category B. This shift in categorical boundary resulted in fewer A objects and more B 

objects. As the experiment was already very time consuming, we decided not to increase the 

amount of trials with more objects for A, opting for imbalanced categories. Another group of 

twenty participants took part in this experiment; again ten participants were trained visually, 

another ten participants were trained haptically. 

 



 

Figure 4. Experiment 2. Group results for PSE-values. Note, that for training of the 25% category boundary, the 

PSE- values shift from around 50% (the “naïve boundary”) to significantly lower values. The 25% category 

boundary is shown in bold in the figure. Figures use boxplots with line showing median, the shaded area 

covering the inter-quartile range (IQR) from the 25%- to the 75%-quartile, and whiskers extending 1.5 times the 

IQR from the median. 

 

4.2. Results 

As before, ratings of every single participant before and after training were analyzed by 

fitting a cumulative Gaussian to the participants’ data and retrieving individual JNDs and 

PSEs, which were compared using Wilcoxon sign rank tests. The data for PSEs is shown in 

Figure 4. 

As in the previous experiment, training of participants resulted in significant decreases of the 

individual JNDs for both within- and across-modality testing (all p<0.005) confirming the 

effectiveness of the training, as well as the cross-modal transfer of category knowledge. For 

this experiment, however, the main interest lay in evaluating the effect of shifting the 

categorical boundary and hence in comparing the pre- and post-training PSEs (see Figure 4). 

As should be expected, both categorical boundaries were shifted in the within-modal 

conditions (visual: W=53.000, Z=-2.948, p=0.006; haptic: W=55.000, Z=-3.250, p=0.002). 

Most importantly, haptic training affected visual performance significantly (W=54.000, Z=-



3.099, p=0.004), as did visual training for haptic performance (W=55.000, Z=-3.553, 

p=0.002). Again, the two shifted PSEs after training did not differ significantly for the two 

groups (all p>0.325). Note that the shifted PSE after training did not quite reach the target of 

25% (the average was around 38% for all modalities). This effect is most likely due to the 

smaller number of exemplars for category A participants were exposed to in the training runs. 

Overall, these results demonstrate a clear influence of the training phase on performance in 

being able to shift the categorical boundary and hence show that the training was effective. In 

addition, not only does sensitivity transfer across modalities, but also knowledge about the 

location of the categorical boundary. 

5. Experiment 3: Discrimination Experiment 

5.1. Method 

Categorical perception effects are indicated by the fact that object pairs straddling the 

category boundary are easier to discriminate than object pairs located within the same 

category (Bornstein, 1987). The standard procedure for testing this effect is to run a same-

different discrimination experiment on pairs of equidistant stimuli and to use the results to 

calculate d’ – a measure of sensitivity taking into account hits and false alarms.  

!



Figure 5. Experiment 3. Stimuli. The five object pairs used in the discrimination experiment. For object pair 1 

stimulus 25 was shown twice in a “same” trial while object 13 and 38 were shown in a “different” trial. Object 

pair 3 straddles the physical categorical boundary located at 50% B features. 

 

In order to limit the total experimental time for the haptic experiments, five object pairs were 

selected from the full object set. As an example, for object pair one, the “same” condition 

was morph-step 25 versus morph-step 25, while for “different” it was morph-step 13 versus 

morph-step 38, since 13 and 38 are the neighboring objects in the test set (see Figure 5 for the 

remaining pairs). 

As for the categorization experiments, this experiment also consisted of three parts: a pre-

training test and a learning phase on the first day, and a learning phase and the post-training 

test on the second day. Again ten participants were trained visually only, ten other 

participants were trained haptically only; for both groups pre-training test and post-training 

test were conducted visually and haptically (half of the participants started visually, while the 

other half started haptically). 

During the pre-training phase each object pair was presented eight times. Since there were 

five “same” pairs and five “different” pairs, this resulted in (5+5)*8=80 pairs. The eighty 

object pairs were presented in random order and random orientation. First, one object was 

presented and explored by the participant visually or haptically. After exploration, the object 

was replaced by the second object of the pair (either the same or a different object) and 

participants had to respond “same” or different”. For the first object, one of the six possible 

orientations was randomly selected (taking care to ensure that different orientations occurred 

equally often across trials). The second object was then presented in the same orientation as 

the first object. No feedback was provided. 

After the test phase, participants had to complete the training, which was performed in 

exactly the same manner as in the categorization experiment as we also wanted to train the 



categorization boundary. The training was again split into two sessions on two consecutive 

days – for both days the training criterion had to be reached. After the second training block 

finished, participants completed the post-training test, which was performed in exactly the 

same manner as the pre-training test of the discrimination experiment. Since this experiment 

was longer than the previous ones, we inserted additional breaks so as to prevent fatigue. 

5.2. Results 

Categorical perception effects are characterized by a higher discriminability of inter-stimulus 

differences for stimuli straddling the categorical boundary. Standard procedure to test for this 

effect is to calculate d’, which is the difference in z-scores between hit rate (correctly 

identified “same” pairs) and the false-alarm rate (“different” pairs identified as “same”). If 

categorical perception occurs, the d’-values should exhibit a peak for object pair 3 (see Figure 

4a). 

Participants’ responses were converted to d’ for the pre- and post-training data for each of the 

five different object pairs and subtracted to yield d’-differences. The average d’-differences 

for the two within-modality conditions were ΔdVisual/Visual’=0.751 and ΔdHaptic/Haptic’=0.610 

both significantly larger than zero, showing that learning took place during training (both 

p<0.001 in Wilcoxon-sign-rank tests). Importantly, the average d’-differences for the across-

modality conditions were ΔdVisual/Haptic’=0.595 and ΔdHaptic/Visual’=0.515 (both p<0.001), which 

confirms that information about training was transferred across modalities. Although these 

d’-differences seem to indicate a trend for a smaller gain in the across-modality conditions, 

this trend did not approach significance in a post-hoc Friedman test conducted across all four 

conditions (χ2(3, N=10)=5.16, p=0.160). Hence, overall training effects were similar for all 

four conditions. 

In the following analysis, we were interested in comparing the data for the two within-

modality conditions and the two across-modality conditions. This was done to check whether 



we would find categorical perception for training within one modality, but also whether there 

would be evidence for transfer of increased sensitivity at the category boundary across 

modalities. For this, we ran Wilcoxon-sign-rank tests for the center-pair stimuli (“Object Pair 

3” in Figures 5 and 6) compared to the other four pairs – all tests were Bonferroni-corrected 

for multiple comparisons within each condition. Except for one test (for the Haptic/Visual 

condition comparing Object Pair 3 with Object Pair 1 – see Figure 6d, W=48.000, Z=-3.780, 

p=0.019 at alpha-level of 0.0125), all other tests were significant (all p<0.010) across all four 

conditions. Taken together, we therefore demonstrated clear peaks in discriminability in both 

within- and across-modality conditions for the central object pair. Hence, we find evidence 

that in addition to transfer of training across modalities, the heightened discriminability of 

objects around the categorical boundary also seems to transfer well. 

 

a)  b)  

c)  d)  
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Figure 6. Experiment 3. Results in d’-differences before and after training for within-modal conditions (a & c) 

and across-modal conditions. Enhanced sensitivity (that is, a visible peak) for the center object pair as predicted 

by categorical perception is visible in all four conditions. Data show means +/-1SEM. 

 

6. Discussion 

In the present study, we investigated how metric shape information can transfer across 

modalities. For this, we trained participants on shape categories either visually or haptically 

and analyzed how this training affected visual and haptic performance in two categorization 

tasks and in a discrimination task. In Experiment 1, the categorization task showed a strong 

transfer of learning across the senses with visual learning increasing haptic performance and 

vice versa. This effect was verified in Experiment 2 with a categorization task in which 

participants were trained on a shifted categorical boundary. Here we found that training of 

one modality affected the percept of the other modality by shifting the categorical boundary 

within the untrained modality. Finally, we performed a discrimination task in Experiment 3. 

Following categorical perception theory (Pastore, 1987; Harnad, 1987) the formation of a 

categorical boundary should increase the discriminability for object pairs straddling the 

categorical boundary. This effect was found for within-modality training and across-modality 

training. Since typical experiments with unfamiliar objects require a large amount of training 

to obtain categorical perception effects (see Kitania, Roberson, & Hanley, 2010 for an 

example with unfamiliar face recognition), this experiment used a larger number of test-trials 

to obtain more reliable estimates of discriminability. We found evidence for an increased 

sensitivity at the boundary for all four conditions (regardless of training or testing modality) 

with a still relatively modest number of trials. In sum all three experiments therefore revealed 

robust and clear transfer of category learning from vision to touch and vice versa. 



Note that in our experimental design, participants were exposed to the full metric space in the 

training phase. The training effects we observed for the JNDs may therefore be simply due to 

mere exposure to the full space rather than to the category training itself. In a pilot 

experiment using only visual training and testing, in which the training phase did not include 

feedback, however, JNDs were not significantly altered (N=16 participants split between a 

mere-exposure condition and a feedback-condition). This shows that mere exposure cannot 

explain the training effect on JNDs observed in our experiments. 

Previous studies on information transfer between vision and haptics had so far demonstrated 

that metric shape spaces are similar between vision and haptics (e.g., Cooke et al., 2007, 

Gaissert et al., 2010) and that information necessary for recognition of individual objects can 

be shared (e.g., Dopjans et al., 2009, Reales & Ballesteros, 1999, Norman et al., 2004). Here, 

we show that general category knowledge about complex shape changes is readily shared 

across modalities after only little training. A recent study by Yildirim and Jacobs (2013) also 

demonstrated that category knowledge can transfer across the senses. In their study, a set of 

40 computer-generated objects (“Fribbles”) split into 4 categories was investigated in a cross-

modal categorization task. After 7 training blocks in one modality, participants were able to 

transfer categorization results to the other modality with either full or partial transfer (the 

latter in case of short visual presentation). Our results go further in that they demonstrate that 

changes to the metric space in one modality readily transfer to the other modality. That is, 

whereas the study by Yildirim and Jacobs (2013) showed transfer for families of arbitrarily-

defined objects, here we show that people are able to transfer information not only about 

category membership, but also about the detailed structure of the category across modalities. 

We were able to do this as we used a parametrically-defined shape space for training and 

testing. Our results show that - for the shape spaces used here - this cross-modal transfer is 

also symmetric such that information about categories and categorical boundaries is 



transferred fully between vision and haptics. As Experiment 2 demonstrated, categorical 

boundaries were easily shifted by training at a different location, whereas Experiment 3 

provided evidence for heightened discriminability at the boundary locations as required for 

categorical perception. Hence, our results add to those of Yildirim and Jacobs (2013) by 

highlighting an even closer integration of shape processing in vision and haptics, showing 

that despite considerable differences in exploration strategy, visual and haptic exploration of 

novel shape categories gives rise to similarly structured category knowledge. The 

experiments reported here shed light on the properties of multisensory representational space 

in the context of shape processing. It has been suggested that mental representations in 

general (Shepard, 1987) and object representations in particular (Edelman and Shahbazi, 

2012) consist of a structured space in which inter-object similarity determines distances 

between objects. To avoid confusion between objects, the perceptual system creates category 

boundaries between these objects and, in addition, for highly similar objects and categories 

heightens the distinctiveness of exemplars in each category through categorical perception 

(Harnad (1987) - see also the study by Newell and Bülthoff (2002) for morphed familiar 

objects in the visual domain). Our results hence can be interpreted in favor of a joint, visuo-

haptic representational space encoding fine-grained shape knowledge (see also Gaissert et al., 

2010, Lacey, Campbell, & Sathian, 2007).  Future research will need to determine the degree 

to which transfer of category knowledge may be limited by object complexity and/or number 

of categories.  
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