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Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die Simulation von magnetostatischen Feldpro-
blemen unter ausschließlicher Verwendung gemessener Materialdaten anstelle von Mate-
rialmodellen, die aus den Daten konstruiert wurden. Die Arbeit führt ein datengetriebenes
Framework für Feldprobleme ein und passt dessen Formulierung auf den Fall der Magneto-
statik an. Das datengetriebene Feldproblem wird mithilfe der Euler-Lagrange-Gleichungen
in kontinuierlicher Form hergeleitet und anschließend mit der Finite-Elemente-Methode
gelöst. Ein hybrider Lösungsansatz wird vorgestellt, der es erlaubt Feldprobleme zu lösen,
die sowohl Gebiete umfassen, in denen das Material lediglich durch Daten beschrieben
ist, als auch Gebiete mit bekannter Materialbeziehung. Adaptiv angepasste Gewichtungs-
faktoren werden eingeführt, um die Norm im Materialphasenraum an sich ändernde
Arbeitspunkte anzupassen. Anschließend werden die Eigenschaften des datengetriebenen
Problems sowie die Rechenkomplexität des Lösers diskutiert. Die Ergebnisse werden an-
hand mehrerer numerischer Experimente veranschaulicht, die sowohl akademische als
auch realitätsnahe Probleme umfassen. Darüber hinaus wird ein numerisches Beispiel
diskutiert, welches ausschließlich reale Messdaten verwendet.
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Abstract

This work addresses the simulation of magnetostatic field problems using measured
material data exclusively, rather than using material models constructed from the data.
The work introduces a data-driven computing framework for field problems and adapts its
formulation to the case of magnetostatics. The data-driven field problem is developed in
continuous form utilizing the Euler-Lagrange equations and subsequently solved with the
finite element method. A hybrid solver is introduced to handle magnetostatic problems
that involve domains with known material relations in combination with domains where
solely data are available. Adaptively adjusted weighting factors are introduced to adapt
the norm in the material phase space to changing operating points. The properties of the
data-driven problem and the computational complexity of the solver are discussed. The
findings are illustrated with several numerical experiments covering both academic and
real-world problems, including an example that is solved with real-world measurement
data only.
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1 Introduction

This introductory chapter gives general information about the presented work. Section 1.1
discusses the motivation behind the work’s topic, while Section 1.2 provides an overview
of related works within this topic. The specific contributions of the work in this research
field are highlighted in Section 1.3. The chapter concludes with an outline of the work in
Section 1.4.

1.1 Motivation

The modeling and simulation of electromagnetic field problems using advanced computer-
aided design (CAD) tools are essential and integral to the design process for electrical
devices. Over the past decades, limitations in terms of computational power and memory
availability in computers have been continuously overcome, enabling accurate simulation
of complex problems - a trend that is ongoing uninterruptedly [24].

Computers
and
numerical
methods
constantly
improve

The improvements,
however, are not limited to hardware alone. Numerical methods for solving engineering
problems are also becoming increasingly sophisticated while simultaneously reducing the
computational demand. In the context of this work, we are considering the finite element
(FE) method, which has become the method of choice in many disciplines [81]. However,
in the development and improvement of electrical devices, this is only one part of the
story. To improve and tailor electrical devices to customer specifications, enhanced or
new materials with specific properties are in demand. For instance, magnetic materials,
such as electrical steel, also referred to as silicon steel, are widely used in the cores
of electrical devices such as inductors, motors or transformers. This material has been
constantly improved and further developed over the past 70 years [121]. Thus, novel and
updated descriptions of the material behavior must be found and introduced in the FE
field simulation.

Tailored
materials for
specialized
electrical
devices

In this work, we deal with the problem of solving partial differential equations (PDEs)
arising from boundary value problems (BVPs). The class of BVPs that we are addressing
encompasses a set of equations which can be classified into physical laws and constitutive
equations. The physical laws comprise a compatibility law and an equilibrium law, which
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are of topological nature and are derived from first principles, thus are accepted to be
exactly known [76]. Physical laws

are exactly
known

In the literature, these laws are also referred to as universal laws,
as they are valid in any situation and are independent of the material [111]. On the
other hand, constitutive equations encode the material properties and establish the link
between the field quantities of the BVP. Unlike the physical laws, constitutive equations
are built upon experimental data, giving them an empirical origin and classifying them as
phenomenological models [111].

Constitutive
eqs. are
empirically
known

Moreover, constitutive equations must be continuously
adjusted and enhanced to suit new materials and to account for new experimental data.

To construct constitutive equations from experimental data, assumption must be made
about the true underlying material response, which remains unknown. Therefore, biases,
uncontrolled modeling errors, and epistemic uncertainties are inevitably introduced. The
uncertainties arise among other sources, for instance, from simplification (e.g., dimension
reduction), numerical approximation (e.g., polynomial truncation), and subjectivity (e.g.,
lack of knowledge or model preference) [117]. Moreover, once a modeling assumption
has been made, fitting techniques are utilized to determine the model parameters. This
is, for instance, done with regression algorithms, which can become sophisticated and
cumbersome, especially when accounting for uncertainties related to finite measurement
precision [100, 9] or when high-dimensional constitutive equations are considered [51,
46]. Moreover, the constitutive equation additionally needs to guarantee a certain level
of (physical) compatibility, such as numerical differentiability or monotonicity when
integrated into a field solver [93]. Finally, the aforementioned points are further reinforced
when considering multi-physics constitutive equations.

The material behavior can also be obtained through ab initio techniques, which originate
from solid-state physics [52]. Ab initio techniques, in their most fundamental form,
are based on first principles and consequently do not rely on fitting techniques, nor
on experimental data. Instead, they directly solve the fundamental equation of the
considered problem. However, even though some of the methods are exact in principle,
approximations and assumptions are necessary to keep the computational demand at a
manageable level [113]. In the case of ferromagnetic materials, the Landau-Lifschitz-
Gilbert equation is commonly solved [114]. However, ab initio methods provide only
models on a microscopic scale, limiting the size of the considered domains to reduce
computational costs [108]. This makes them impracticable for engineering tasks where
entire devices are simulated. A potential solution is offered through the utilization
of multi-scale models, where microscopic and macroscopic constitutive equations are
combined. This is particularly interesting when considering multi-physics phenomena
such as magnetostriction, respectively, magneto-elasticity [34, 114]. However, lifting the
microscopic equations to the macroscopic level involves approximations and assumptions,
leading to a similar bottleneck as in the case of directly modeling macroscopic models
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from experimental data.
BVPs involving complicated domains cannot be solved directly. Hence, numerical

approximations must be introduced. The FE method allows to easily discretize the physical
laws. Thereby, errors due to the discretization can be quantified with a priori, respectively
a posteriori estimators [1, 21]. Quality of

solution
linked to
constitutive
eq.

However, as stated in [32], “the quality of the simulation is
linked to the quality of the material description”. The quality of the constitutive equations
refers to how closely the modeled equations match the true material response. This
directly impacts the accuracy of the solution. In this context, George Box’s famous quote
“all models are wrong” [18] serves as a reminder that models are simply approximations
of reality and are inherently limited. Moreover, the accuracy of the constitutive equations
is fixed, unlike the approximation accuracy of the topological equations, which is directly
linked to the numerical scheme and can be improved by refining the spatial and/or time
scales. However, at a certain point, further refinement of the discretization may not
improve the actual solution accuracy, as the overall error may be dominated by the error
of the constitutive equation.

Within the FE method, discrete spaces that conform with the physical laws, are intro-
duced. Nonetheless, on the discrete level, only two of the three equations characterizing
the BVP can be approximated conformally [14]. This gives the engineer the choice which
equations should be fulfilled exactly. Historically seen, solutions were first calculated
with the so-called primal approach or dual approach [94]. In the primal approach, the
compatibility law and the constitutive equation are fulfilled exactly and the approximation
error is shifted to the equilibrium law, whereas in the dual approach the equilibrium
law and constitutive equation are fulfilled exactly and the approximation error is shifted
to the compatibility law. Shifting the

FE approx.
error to
constitutive
eq.

Bearing in mind that the constitutive equation is in any case
victim of uncertainties and errors, it seems to be natural to solve the topological equations
exactly and to shift the approximation error entirely into the constitutive equation. To the
knowledge of the author, this was first proposed in [104] in the field of magnetostatics
and called the “error based energy approach”. In this context, both Maxwell equations for
magnetostatics as well as continuity and boundary conditions are enforced. The minimiza-
tion then takes place in the constitutive equation. The idea was further pursued in [22]
in terms of a mixed FE formulation. A similar approach was proposed in computational
mechanics under the term “error in constitutive relation”, see e.g., [77, 28].

Data-driven
model-free
computing:
avoid
modeling
errors

Nowadays, the availability of data is steadily increasing and for many materials, the
amount of behavioral data is at an unprecedentedly high level. This raises the opportunity
for data-driven modeling and data-driven simulation methods. In this context, the field of
computational mechanics has recently introduced a new approach called “data-driven com-
puting” [69]. This approach presents an alternative and distinct paradigm for integrating
material relations into numerical computations. Instead of relying on phenomenological
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Measurements

Compatibility
and

equilibrium
laws

Constitutive equation

Model assumptions

Conventional boundary
value problem

Data-driven boundary
value problem

E epistemic uncertainty

Figure 1.1: “Ingredients” for the conventional and the data-driven boundary value problem.

models, the data-driven solver embeds the measurement data directly into the solver,
bypassing the material modeling step altogether. This eliminates the associated epistemic
uncertainty and modeling errors. Within this framework, the numerical solver operates
directly on raw material data, without relying on a specific constitutive equation. Hence,
the data-driven method treats the error associated with the constitutive equation even
more stringently than the error based energy approach [104]. Specifically, the solver
aims to minimize the distance between the field states in phase space that adhere to the
exactly known physical laws and the field states in phase space that reflect the material
relation presented solely as a set of measurement data. Obviously, the availability of
measurement data is limited, which means that the data-driven solver is still subject to
epistemic uncertainties resulting from the lack of information. Nonetheless, the data-
driven approach eliminates the introduction of additional uncertainties that may arise
from the constitutive modeling process and provides a solution free from assumptions.
Furthermore, increasing the amount of measurement data naturally reduces the epistemic
uncertainty in the data-driven solution. In contrast, the uncertainty in the conventional
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solution most likely remains at a certain level, as the chosen model assumptions do not
recover the true, hidden constitutive equation. Directly

perform
simulations
with data

Finally, from a practical point of view, the
data-driven solver significantly reduces the workflow for field simulations as the modeling
process is bypassed. This allows the engineer to directly perform simulations for new and
complicated material relations right after the experimental data has been obtained. It
is worth mentioning that the data-driven solver is not limited to experimental data only.
Instead, it can also incorporate (old) simulated data. Figure 1.1 illustrates the differences
in the formulation of the data-driven approach to the conventional approach.

1.2 Related works

In this work and also in the original work [69], the term “data-driven computing” refers
to performing simulation directly with experimental material data. It is therefore a
constitutive and material model-free approach. This demarcates the approach from other
data-driven approaches, which are often associated to the field of data science. In those
cases, experimental data are employed to either identify parameters or enhance the
solution, without the goal to explicitly replace the constitutive equation.

Examples of works closely related to [69], but not explicitly avoiding constitutive
equations, can be found in [58, 57], where manifold learning techniques are used to
identify the material response locally. Global manifold learning was proposed in [67]
based on kernel regression. Furthermore, constitutive equations have been successfully
corrected with experimental data in [59].

The data-driven computing framework has been successfully applied to several fields in
engineering, including linear and nonlinear elasticity [69, 89], finite strain elasticity [97],
dynamics [71], inelasticity [41], fracture mechanics [25], poroelasticity [7], viscoelasticity
in the frequency domain [106], thin composite materials [8], and multiphysics [82]. This
list is not meant to be exhaustive.

A rigorous mathematical analysis has been carried out in [30, 31] and provides the
conditions under which the data-driven solution converges to the conventional solution by
means of the size of the data set. In particular, these works generalize BVPs, treating the
conventional approaches, i.e., when the constitutive equation is considered, as a special
case. It was found that the conventional solution is recovered when the experimental data
set follows locally a graph. The convergence analysis with respect to the mesh size and
the size of the data set has been investigated in [85].

The authors of the seminal paper [69] extended the distance-minimizing framework
also to the very important case of noisy measurement data [70]. There, the distance-
minimization scheme has been modified such that the data are first organized in clusters
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based on the maximum entropy principle. Subsequently, the solver minimizes the free
energy in the phase space. A prior-free data-driven inference approach was presented in
the works [29, 98]. Here, the phase spaces associated with the two fields of the BVP are
equipped with likelihood measures. Subsequently, a likelihood of the system outcome is
obtained by the inference. In particular, this approach allows the incorporation of aleatory
uncertainty. Another heuristic approach that robustly handles outliers was proposed in
[65].

The concept of data-driven computing has been further expanded to the identification of
material response, wherein the data-driven solver is effectively “inverted” to locate states
that represent the mechanical response of elastic materials [78]. A data-driven solver
which incorporates the material response identification approach, has been developed
and has demonstrated notable improvements in accuracy and efficiency [110]. Further
improvements to lower the computational demand of the method have been proposed
in [42], where approximate nearest neighbor algorithms and efficient data structures
have been employed to accelerate the search algorithm. Additional enhancements in
the computational efficiency have been achieved in [43] through tensor voting. A multi-
level method was introduced in [74], where hierarchical data sets are utilized to reduce
the computational demand of the nearest neighbor problem. An approach that handles
materials with regimes featuring a linear and nonlinear response has been proposed in
[118]. The approach switches locally from a conventional solver with a linear constitutive
equation to a data-driven solver if a certain threshold to the nonlinear part is triggered. A
mixed-integer quadratic programming formulation has been suggested in [66] to globally
solve the data-driven problem.

This summary was only a glimpse of the works that have been published since the
original work [69]. The field of data-driven computing is constantly evolving, and there
is still a large potential for further research in this area.

1.3 Contribution

The aim of the present work is a first application of the data-driven computing techniques
in the field of magnetostatic field simulation. The challenges encountered in this area have
led to several contributions to the field of data-driven computing. The main contributions
of this work are:

• The development of a hybrid data-driven solver in which known constitutive equa-
tions and solely measurement data coexist. We proposed three different approaches
to address this problem, which have been published in [36].
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• The derivation of the data-driven problem in a strong, respectively continuous
formulation has been presented in [47]. This formulation offers a fresh perspective
and provides valuable insights into the problem. It is distinct from the data-driven
variational formulation derived in [90].

• The introduction of adaptively adjusted weighting factors within the norm of the
considered phase space has been published in [47]. This approach allows for the
handling of strongly nonlinear material responses and leads to faster convergence
rates, a higher solution accuracy, and less statistical dispersion.

• A case study for a computational demanding three-dimensional model of a DC-
current electromagnet, considering real-world measurement data, has been pre-
sented in [48].

• The implementation, verification and validation of the data-driven computing frame-
work for electromagnetic field problems into the python FE method library Pyrit
[23].

1.4 Outline

The remaining of this work is structured as follows. In Chapter 2, the magnetostatic
field problem and the solution strategy are presented for the conventional case, i.e.,
with constitutive equation, and for the data-driven case, i.e., solely using measurement
data. Both formulations are derived in the continuous form. Subsequently, in Chapter 3,
the numerical scheme for the discretization of the magnetostatic problem is introduced.
The hybrid data-driven solver and its various formulations are discussed in Chapter 4,
followed by Chapter 5 where the adaptively adjusted weighting factors are motivated
and introduced. In Chapter 6, the computational complexity of the data-driven solver
is analyzed and main contributors are identified. General properties of the data-driven
formulation are briefly discussed in Chapter 7. Chapter 8 presents numerical results for
the introduced improvements of the method, computed on a two-dimensional quadrupole
magnet and a three-dimensional DC-current electromagnet. The work concludes with
Chapter ??, where our findings are summarized, and an outlook for further research in
the addressed field is given.
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2 Magnetostatic field problems

In the subsequent section, we consider electromagnetic (EM) field problems where the
magnetic energy dominates. Consequently, wave propagation can be neglected. Following
this assumption, the magneto(quasi)-static problem can be described by a reduced set
of Maxwell’s equations. Furthermore, considering only material that is non-conductive
and assuming that temporal changes occur slowly, the magnetostatic approximation of
Maxwell’s equations is appropriate. The remaining equations are the static approximation
of Ampère’s law and Gauss’s law for magnetism, which respectively read

curlH = J, in Ω, (2.1a)
divB = 0, in Ω, (2.1b)
B · n = g, on ΓD, (2.1c)

H× n = f, on ΓN. (2.1d)

Herein, Ω denotes the considered bounded computational domain, H the magnetic field
strength, B the magnetic flux density, n the exterior unit normal, ΓD the Dirichlet boundary
with imposed flux density g, ΓN the Neumann boundary with imposed surface current
density f and J the source current density which has compact support on ΩJ, see Figure 2.1.
Throughout this work, we assume that Ω is a simply connected domain with Lipschitz
continuous boundary ∂Ω. Furthermore, the boundary of the computational domain is
decomposed such that ∂Ω = Γ = ΓD ∪ ΓN, where ΓD ∩ ΓN = ∅. In the context of
magnetostatics, the compatibility law can thus be identified with Gauss’s law (2.1b),
whereas Ampère’s law (2.1a) defines the equilibrium law [95]. However, the problem
cannot be fully resolved until the relation between the magnetic field strength H and the
magnetic flux density B is characterized. In the conventional approach, this is done by
introducing a constitutive equation. The constitutive equation, also referred to as material
law1, establishes the relation betweenH and B. Typically, both fields are connected through
the magnetic permeability tensor µ, respectively, the reluctivity tensor ν = µ−1, in the

1We avoid the term law in this work, as the material relation is only available as a phenomenological model
and not derived from first principle.
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ΩJ

Ω

ΓDΓN

Figure 2.1: Illustration of the computational domain for the magnetostatic problem.

form B = µ(H)H. As discussed in Section 1, Maxwell’s equations are derived from first
principles and thus considered to be exactly known. In contrast, the constitutive equation
for the permeability µ is only empirically known and is subject to uncertainties, model
assumptions, and modeling errors. Although some materials, such as the permeability
of free space, are accepted to be known with a certain degree of accuracy, the lack of
precise and trustworthy material models is particularly evident for novel and complex
materials, such as strongly nonlinear soft-magnetic materials. The data-driven solver
offers an alternative approach by completely bypassing the modeling process, thereby
eliminating the need for a constitutive equation. Additionally, this approach avoids
introducing modeling errors and uncertainties, and reduces the simulation workflow as
there is no need to deduce the underlying (hidden) constitutive equations. Instead, the
simulation can be carried out directly, utilizing the available measurement data.

The remaining of this chapter is dedicated to the data-driven formulation for magneto-
statics. Therefore, we first recall the conventional problem formulation, followed by the
derivation of the data-driven counterpart.
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2.1 Conventional magnetostatic problem formulation

In the conventional approach, the set of equations (2.1) has to be supplemented by the
material constitutive relation

B = µ(x,H)H, (2.2a)
H = ν(x,B)B, (2.2b)

where the permeability and its inverse, the reluctivity, are now spatial and field dependent.
The characteristic property of the material is thus encoded in the permeability tensor.
For materials with a linear response, the constitutive equation is of the form B = µ0µrH,
where µr refers to the relative permeability and µ0 to the permeability of free space,
resulting in aligned fields B and H inside the material. This does not necessarily hold
for the fields inside magnetic materials [37]. In addition to linear materials, we also
consider nonlinear ferromagnetic materials in this work. Hereby, we neglect temperature
dependency and hysteresis, i.e., we consider the initial magnetization curve without
any remanent magnetization. Ferromagnetic materials, such as electrical steel, exhibit a
strongly nonlinear and additionally anisotropic behavior. Thereby, the field quantities B
and H are aligned along the rolling direction and its transversal [109], which are called
the principle axes. Thus, in this principle coordinate system, the permeability tensor µ of
a ferromagnetic material contains only entries on the diagonal [107]. In the case that the
global coordinate system does not coincide with the principle axes, the permeability tensor
can be transformed with rotation operators [91]. Similarly, the global coordinate system
can be locally rotated such that the rotated coordinate system and the principle axes of
the material align. Then, a diagonal tensor can be obtained and the field components of
H and B are decoupled. Throughout this work, we assume that the principle coordinate
system is aligned with the global coordinate system. The permeability tensor then reads

µ(x,H) =

⎡⎣µx(x,Hx) 0 0
0 µy(x,Hy) 0
0 0 µz(x,Hz)

⎤⎦ . (2.3)

The material models µ(H) and ν(B) themselves are constructed along the available mea-
surement data. However, considering the physical background, the models have to fulfill
certain criteria, see e.g., [101]. Significant effort has been spent in the physically correct
modeling of BH-curves over the past decades. Various methods have been proposed,
including monotonic spline interpolation of noise-free data [54], monotonicity-preserving
approximation with smoothing splines [93], closed-form models where the coefficients are
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determined through regression techniques [20, 120, 56], and sophisticated machine learn-
ing algorithms [115, 72]. Stochastic modeling of BH-curves has also been investigated,
for instance in [61, 99]. It should be noted that this list is not exhaustive.

To solve the magnetostatic problem, we introduce the vector potential A, such that
B = curl A. By that, the divergence-free property, also known as solenoidal property, of
the magnetic flux density is guaranteed by construction. Now, starting from (2.1a), we
obtain

curl (ν(x, curl A)curl A)) = J, in Ω, (2.4a)
curl A · n = g, on ΓD, (2.4b)

ν(x, curl A)curl A× n = f, on ΓN. (2.4c)

Note that the solution to (2.4) is not yet unique as an arbitrary gradient field can be added
to A without having an effect on B. To ensure uniqueness, a gauging condition in the
vector potential is necessary, which we will address in a later stage of this work. The set
of equations (2.4) constitutes an elliptic BVP.

2.2 Data-driven magnetostatic problem formulation

Section 2.1 showed that the constitutive equation is an essential ingredient to solve the
BVP. In the following section, we present an alternative approach to (2.4) that does not
rely on constitutive equations and instead works directly with the measurement data. The
method is illustrated in Section 2.2.1 on a one-dimensional problem and is afterwards
generalized for magnetostatic problems in Section 2.2.2.

2.2.1 Introductory example

The following is mainly based on [47]. To illustrate the data-driven framework, we start
with an academic example. Figure 2.2a depicts a C-shaped iron yoke with an air gap. The
magnetic flux Φ is excited by the current I which flows through a coil with Ncoil turns.
We assume that there are no fringe fields at the outside of the iron core and that the
magnetic path has a constant cross-section SFe. As a result, both the magnetic flux Φ and
the magnetic flux density B are constant along the magnetic path. These assumptions
allow us to approximate the magnetic field problem using an equivalent magnetic circuit,
as shown in Figure 2.2a. Additionally, we assume that the magnetic field pairs (Hair,B) in
the air part and (HFe,B) in the iron part are homogeneously distributed. Therefore, on a
circuit level, it holds that B = |B| and H = |H|. The exciting current I gives rise to the
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Φ

NcoilI
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RFe Rair

F=NcoilI

(a)

H

B D
D̂
M

H
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D̂
M

M∩D̂

(b)

Figure 2.2: (a) C-shaped iron yoke, excited by the current flowing through a coil. The
equivalent magnetic circuit is shown below. (b) HB phase space with the
constraint set M containing all states that fulfill the circuit law (black line).
The blue line shows the material model. The conventional solution is found
at the intersection of both lines. The measurement data are shown by the
crosses. The data-driven solution is defined by the state in the measurement
data that is closest to M (red circle).

magnetomotive force F which is given as

F =

∮︂
H · ds = NcoilI = FFe + Fair, (2.5)

where FFe, respectively Fair denote the magnetomotive forces in the iron yoke and in the
air gap. Taking the assumptions into account, Φ = BSFe and hence

Φ =
F

RFe +Rair
=

Fair
Rair

=
FFe
RFe

, (2.6)

with Rair and RFe being the reluctances of the iron yoke and the air gap, respectively.
Furthermore, let ℓFe denote the average length in the iron yoke (see dashed line in
Figure 2.2a) and HFe the unknown magnetic field strength in the iron yoke. Then,
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combining equations (2.5) and (2.6) yields

BSFe = −HFeℓFe
Rair

+
NcoilI

Rair
. (2.7)

Note that (2.7) is known up to the field state (HFe, B). For the sake of completeness, the
reluctance of the air gap is given by

Rair =
ℓair
µ0SFe

, (2.8)

where ℓair refers to the length of the air gap and µ0 to the permeability in vacuum. Let
Z ⊂ R×R denote the space of all possible (HFe, B) pairs. Then, the constraint (2.7) gives
rise to a reduced space M ⊂ Z, where we find all states (HFe, B) that fulfill the circuit
equation (2.7), i.e.,

M =

{︃
(HFe, B) ∈ Z : BSFe = −HFeℓFe

Rair
+
NcoilI

Rair

}︃
. (2.9)

However, the constrained set M contains an infinite number of solutions. To solve (2.7),
additional information on the material in the iron yoke must be provided.

For a conventional solver, a material model for the iron part is necessary, which defines
the material set D̂ as

D̂ = {(HFe, B) ∈ Z : B = µ(HFe)HFe} , (2.10)

where µ : R+
0 → R+. The conventional solution is then found as the intersection of the

constrained set (2.9) and the material set, i.e.,

(HFe, B)⋆ = M∩ D̂. (2.11)

The solution to (2.11) can be obtained by replacing the magnetic flux density B in (2.7)
with the material model given in (2.10). Thereafter, the resulting (nonlinear) equation
can be solved for HFe and subsequently B is computed with the material model. The
measurement set D̂ and the set of states fulfilling the circuit equation M are illustrated
in Figure 2.2b. The intersection of circuit equation (solid black line) and the material
relation (blue line) shows the conventional solution (2.11).

In the data-driven setting, a model representation as in (2.10) is not necessary. Instead,
only discrete measurement data are utilized to solve the electromagnetic problem for
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(HFe, B). The discrete measurement data are collected in the measurement set

D = {(HFe, B)i}Ni=1 , (2.12)

where N denotes the total amount of employed measurement data. Following (2.11),
a solution is sought with the discrete measurement set (2.12). Given that only a finite
amount of measurement data are available, the intersection is most likely empty, thereby
necessitating a relaxation of the formulation. Therefore, we search for a state that fulfills
the constraints given by the circuit equation, i.e., a state ζ ∈ M, while at the same time
the state needs to be closest to a state in the measurement set D. Accordingly, we seek the
state that minimizes the distance between the circuit equation and the given data set, i.e.,

(HFe, B)⋆ = argmin
(HFe,B)∈M

{F ((HFe, B),D)} , (2.13)

whereF ((HFe, B),D) is a distance function in theHB phase space that returns the smallest
distance from a state (HFe, B) to the available measurement data. Figure 2.2b shows
the data-driven solution highlighted by the red circle, where the discrete measurement
data are represented by crosses. The relaxation in (2.13) is the core idea of the data-
driven paradigm and allows to employ discrete measurement data instead of model
representations for the constitutive relation.

2.2.2 Data-driven framework in continuous form

Next, we want to generalize the data-driven formulation to magnetostatic problems.
Building upon the introductory example outlined in Section 2.2.1, we first define the
phase space M that covers the equations for magnetostatics (2.1).

Before we define the setM, we recall some standard function spaces. Let L2(Ω)3 denote
the space of real and square-integrable functions, that is,

L2(Ω)3 =
{︂
u : ∥u∥L2(Ω) <∞

}︂
. (2.14)

where ∥u∥2L2(Ω) = (u,u)Ω with the inner product

(u, v)Ω =

∫︂
Ω
u · vdΩ. (2.15)

Moreover, due to the requirement of Maxwell’s equations for a space with reduced smooth-
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ness properties [44, 86], we introduce the Hilbert spaces

H(grad; Ω) =
{︁
u ∈ L2(Ω) : ∥gradu∥L2(Ω) <∞

}︁
,

H(curl; Ω) =
{︁
u ∈ L2(Ω)3 : ∥curl u∥L2(Ω) <∞

}︁
,

H(div; Ω) =
{︁
u ∈ L2(Ω)3 : ∥divu∥L2(Ω) <∞

}︁
.

(2.16)

For brevity of notation, we introduce the state variable ζ = (H,B). Then, we find states ζ
fulfilling (2.1) in

M = {ζ ∈ H(curl; Ω)× H(div; Ω) :curlH = J, divB = 0,

B · n = g, H× n = f, a.e. in Ω} .
(2.17)

Next, we need to define the measurement set D, where we find functions (H,B) that
are compatible with the measurement data. As already pointed out in Section 1, the
data-driven formulation is a generalization of classical BVPs, “since the local material data
sets, even if they define a curve in phase space, need not be a graph” [30]. In a first step,
the measurement set D can thus be defined by a given material relation. Consequently,
conditions under which the classical solution is recovered can be derived. For the case
of linear elasticity, a detailed analysis has been carried out in [30], which has been
further extended to finite elasticity in [31]. We therefore omit the case of describing
the measurement set D by a given material relation and start our derivation of the
magnetostatic data-driven formulation directly with discrete measurement data.

For electromagnetic problems, it is common to have a heterogeneous material distri-
bution over the domain Ω. For instance, in the case of an inductor, the domain can be
typically decomposed into three parts: an iron part, an air part, and the coil. Hence, each
subdomain requires its own measurement set, which we denote by D̃Ωi , where i refers to
the considered subdomain. Furthermore, the material may exhibit anisotropic behavior,
i.e., the material behaves differently in different directions. The local measurement set
per dimension is thus defined as

D̃Ωi,r =
{︂
(hr, br)1 , (hr, br)2 , . . . , (hr, br)NΩi,r

}︂
, (2.18)

where r ∈ {x, y, z}, (hr, br)j ∈ R × R, j = 1, . . . , NΩi,r and NΩi,r refers to the num-
ber of measurement points in the considered domain and spatial direction. The local
measurement set containing all dimensions is obtained with the Cartesian product

D̃Ωi = D̃Ωi,x × D̃Ωi,y × D̃Ωi,z. (2.19)
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In the same manner, the global measurement set containing the discrete measurement
data is defined by

D̃ =×
i

D̃Ωi . (2.20)

The total amount of employed measurement data is thus N =
∑︁

Ωi

∑︁
r∈{x,y,z}NΩi,r. How-

ever, in order to minimize the distance between states from (2.17) and the measurement
set, a spatial-dependent representation, i.e., an appropriate function space is necessary
[30]. Therefore, we define the global set of material states as

D =
{︂
ζ ∈ L2(Ω)3 × L2(Ω)3 : ζ(x) ∈ D̃Ωi ,∀x ∈ Ωi,∀i, a.e. in Ω

}︂
. (2.21)

Thus, evaluating a function ζ ∈ D at a certain spatial coordinate gives access to the
discrete measurement data in D̃, i.e., ζ(x) ∈ D̃.

To perform the distance-minimization in the data-driven formulation, a suitable norm in
the phase space must be defined. Therefore, for u, v ∈ L2(Ω)3, we introduce the weighted
inner product

(u, v)Ω,X̃ =

∫︂
Ω

1

2
X̃u · vdΩ, (2.22)

with corresponding norm
∥u∥2L2

X̃
(Ω) = (u,u)Ω,X̃ . (2.23)

Herein, X̃ refers to the so-called weighting factor, which we will discuss in greater detail
in the following. The norm in the HB phase space is then defined by

∥ζ∥2L2
µ̃,ν̃(Ω) = ∥(H,B)∥2L2

µ̃,ν̃(Ω) := ∥H∥2L2
µ̃(Ω) + ∥B∥2L2

ν̃(Ω) , (2.24)

where µ̃ and ν̃ are weighting factors. The tensorial and space-dependent weighting factors
are of computational nature only [69], however, they share units with the permeability
and the reluctivity, respectively, which explains the notation. Their choice can improve
the convergence rate of the data-driven solver as we will see later. For completeness, it
should be noted that other metrics, e.g., the Mahalanobis distance, can be employed as
well [6]. Utilizing the norm (2.24), the distance function minimizing the distance of a
state ζ to the entire measurement set D can be written as

F (ζ,D) = inf
ζ×∈D

{︃⃦⃦
ζ − ζ×

⃦⃦2
L2
µ̃,ν̃(Ω)

}︃
, with ζ ∈ L2(Ω)3 × L2(Ω)3. (2.25)

Note that since the weighting factors share the same unit as the permeability, respectively
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the reluctivity, the distance function returns the minimum magnetic energy mismatch
between a state and the available measurement data. This implies that the data-driven
solver seeks the state that minimizes the energy difference between states that conform
with the equations for magnetostatics to states that describe the material response. Now,
the data-driven minimization problem reads

minimize F (ζ,D) , (2.26a)

subject to

⎧⎪⎪⎨⎪⎪⎩
curlH = J, in Ω,
divB = 0, in Ω,
B · n = g, on ΓD,
H× n = f, on ΓN.

(2.26b)

The data-driven problem formulation is thus a constrained double-minimization problem
and can be rewritten as

ζ⋆ ∈ argmin
ζ∈M

{︃
inf

ζ×∈D

⃦⃦
ζ − ζ×

⃦⃦2
L2
µ̃,ν̃(Ω)

}︃
, (2.27)

if the desired solution ζ⋆ should conform with the equations for magnetostatics, while
being closest to the available measurement states. Note that once the data-driven problem
has been discretized, it is straightforward to interchange the two sets in (2.27), i.e., to
solve for a state that is in the set of measurement states, while being closest to states
fulfilling the equations for magnetostatics [41]. However, in the continuous formulation,
the interchanged double-minimization problem is not well-defined for arbitrary sets D.
For the rest of this work, we consider the first case.

The existence and properties of the solution to (2.27) has been extensively discussed in
[30, 31]. To solve the problem numerically, the double minimization problem (2.27) is
formulated as a fixed-point iteration [69, 110]. In the following, we want to derive the
fixed-point iteration in a continuous manner, which will later be solved numerically with
the FE method. We begin by selecting a starting point, e.g., ζ× ∈ D, and subsequently,
we split the double minimization problem into two separate minimization problems.

1. Projection on magnetostatic state: The idea is to start with a randomly chosen
state ζ× ∈ D. Subsequently, we search for a state ζ◦ ∈ M that is closest to ζ×,
which we denote by the closest point projection

ζ◦ = PM
(︁
ζ×

)︁
. (2.28)

Here, we assumed that (2.28) has a unique solution. Note that this is an additional
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Figure 2.3: Illustration of the fixed-point iteration.

assumption, since M is generally not a subspace.

2. Projection on measurement state: Given a state ζ◦ ∈ M, that is, a state compatible
with the equations for magnetostatics, we search for a state in the measurement set
that is closest to ζ◦. Again, we introduce the closest point projection

ζ× = PD(ζ
◦). (2.29)

Again, we assumed that (2.29) has a unique solution.

Therefore, for each data-driven iteration, two minimization problems, i.e., equation (2.28)
and (2.29), must be solved. The iterative scheme can thus be defined as

ζ◦i+1 = (PM ◦ PD) (ζ
◦
i ) , (2.30)

which follows the typical form of a fixed-point iteration. The scheme is visually illustrated
in Figure 2.3. Note that it is also possible to directly solve the double-minimization
problem using mixed-integer programming [66], once the problem has been discretized.
The fixed-point iteration is carried out until ζ◦i remains unchanged in two consecutive
iteration steps. Another criterion that can be used to assess convergence is derived from
the energy mismatch between the measurement state and the state compatible with the
equations for magnetostatics. The energy mismatch then reads

∆em,i = ∥ζ◦i − ζ×i ∥L2
µ̃,ν̃(Ω), with ζ◦i ∈ M, ζ×i ∈ D. (2.31)
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For a given amount of measurement data N , the data-driven solver reaches a certain
energy mismatch (2.31). This energy mismatch is of course reduced if more measurement
data at the desired states in the HB phase space are available. Consequently, if the
energy mismatch does not significantly change between two consecutive iteration steps,
convergence is reached. Introducing the user-defined constant δ∆em , the data-driven
solver stops once |∆em,i −∆em,i−1| < δ∆em . In the following, we derive the two projection
operators and provide further details on the problem structure.

Projection on magnetostatic state

Given a state ζ× ∈ D, i.e., a state from the measurement set, a new state ζ◦ ∈ M which
is compatible with the equations for magnetostatics and closest to the measurement state
ζ× is found by solving

ζ◦ ∈ argmin
ζ∈M

⃦⃦
ζ − ζ×

⃦⃦2
L2
µ̃,ν̃(Ω)

. (2.32)

Note that the minimization problem (2.32) is a constrained minimization problem as ζ
belongs to the states that fulfill the equations for magnetostatics. To fulfill Gauss’s law
(2.1b), we employ the magnetic vector potential formulation, i.e., B = curl A. Once again,
the gauging conditions for the vector potential Awill be postponed to the upcoming section.
Additionally, the boundary conditions (BCs) (2.1c), respectively (2.1d), are disregarded
and will be incorporated at a later stage. Thus, the minimization is carried out on

min
(H,A)

L = min
(H,A)

{︃⃦⃦
H−H×⃦⃦2

L2
µ̃(Ω)

+
⃦⃦
curl A− B×⃦⃦2

L2
ν̃(Ω)

}︃
,

subject to : curlH = J,
(H,A) ∈ H(curl; Ω)× H(curl; Ω).

(2.33)

Thus, the goal is now to find functions H and A which make the functional L stationary
while satisfying Ampère’s law. This can be achieved by applying the Euler-Lagrange
equations [105, 73]. However, (2.33) is subject to Ampère’s law, which represents a non-
integral constraint. Therefore, a Lagrange multiplier function η(x) is needed to enforce
Ampère’s law in the functional (2.33) [79], which yields the augmented Lagrangian

L(x, curl A,H, curlH) =
⃦⃦
H(x)−H×(x)

⃦⃦2
L2
µ̃(Ω)

+
⃦⃦
curl A(x)− B×(x)

⃦⃦2
L2
ν̃(Ω)

+ (η(x), J(x)− curlH(x))Ω ,

=

∫︂
Ω
[E (x, curl A,H) + η(x) · C (x, curlH)] dΩ,

(2.34)
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with
E(x, curl A,H) =

1

2
µ̃(H(x)−H×(x)) · (H(x)−H×(x))

+
1

2
ν̃(curl A(x)− B×(x)) · (curl A(x)− B×(x))

C(x, curlH) = J(x)− curlH(x).

(2.35)

The Lagrange multiplier function η can be understood as a pseudo potential [103]. The
Euler-Lagrange equation then reads

∂L
∂y

−Dx

{︃
∂L
∂Dxy

}︃
= 0, (2.36)

respectively,
∂E
∂y

−Dx

{︃
∂E
∂Dxy

}︃
+ η(x)

∂C
∂y

−Dx

{︃
η(x)

∂C
∂Dxy

}︃
= 0, (2.37)

where Dx denotes a first-order differential operator and y refers to the unknown function
that renders L stationary. Applying the Euler-Lagrange equations on (2.34), yields

∂

∂A
: −curl

{︃
∂E

∂curl A

}︃
= 0,

⇐⇒ curl (ν̃curl A) = curl (ν̃B×), (2.38a)
∂

∂H
:

∂E
∂H

− curl
{︃
η(x)

∂C
∂curlH

}︃
= 0,

⇐⇒ µ̃H− curlη = µ̃H×, (2.38b)

where the magnetic field strength H in (2.38b) can be further eliminated by applying
the curl operator on (2.38b) and inserting curlH = J, which yields the two curl-curl
equations

curl (ν̃curl A) = curl (ν̃B×), in Ω, (2.39a)
curl (ν̃curlη) = J− curlH×, in Ω, (2.39b)

the solution of which minimizes the Lagrangian functional (2.34). The Lagrange multiplier
η is a vector potential representation for the magnetic field strength H and, following
(2.38b), provides an update term for the unknown magnetic field strength. Together with
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the definition of the magnetic vector potential A, the field quantities can be retrieved with

B = curl A, (2.40a)
H = H× + ν̃curlη. (2.40b)

Note that a gauge for the Lagrange multiplier η, similar to the vector potential A, is
necessary to provide a well-posed problem. Additionally, be aware that the stationary
solution is still subject to the BCs. Thereby, the Dirichlet BC acts on the normal component
of the magnetic field density B, respectively on the tangential component of the vector
potential A and constrains therefore (2.39a). Contrarily, the Neumann BC is formulated
with respect to the tangential component of the magnetic field strength H and thus
constrains (2.39b).

A different treatment for solving the Lagrangian is found in [90]. Instead of applying
Euler-Lagrange equations, the stationary points of the Lagrangian (2.34) can also be found
by employing the Gâteaux derivative. Additionally, the BCs are added as an additional
constraint to the Lagrangian. Then, one directly obtains the weak form to determine the
unknown field quantities.

There exist numerous spatial discretization schemes which may be employed to dis-
cretize and solve (2.39). Those are for example the finite integration technique (FIT) [27],
the boundary element method (BEM) [80, 83] and, most prominently, the FE method
[16, 38]. Throughout this work, we will employ the latter one. Irrespective of the em-
ployed method, the solution of the system of equations (2.39) yields a new state ζ ∈ M
that complies with the equations for magnetostatics and simultaneously minimizes the
weighted distance to the measurement state ζ×.

Projection on measurement state

Given a state ζ◦ ∈ M, a new state ζ× ∈ D which is covered by the available measurement
set and is closest to ζ◦ is found by solving

ζ× ∈ argmin
ζ∈D

∥ζ◦ − ζ∥2L2
µ̃,ν̃(Ω) . (2.41)

The minimization towards the measurement states (2.41) is without any further constraint.
However, to solve the minimization problem (2.41), the function space defined by the
measurement data inD needs to be constructed, whichwould be computationally infeasible
[85]. As we will later see, a finite-dimensional subspace of admissible functions for H and
B is necessary.
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3 Data-driven magnetostatic finite element
solver

In order to solve the two data-driven curl-curl equations (2.39) with the FE method, it is
necessary to derive their weak forms. Subsequently, the FE formulations of the weak forms
are presented by restricting the solution space to a finite-dimensional subspace of the
original space. Afterwards, the algebraic equivalent systems of equations that correspond
to the FE formulations are introduced.

3.1 Weak formulation

First, we multiply the curl-curl equations with test functions A′ ∈ VA and η′ ∈ Vη,
respectively, where VA and Vη are to be determined. Integration over the computational
domain Ω results in

(curl (ν̃curl A),A′)Ω = (curl (ν̃B×),A′)Ω, (3.1a)
(curl (ν̃curlη),η′)Ω = (J− curlH×,η′)Ω. (3.1b)

Applying Green’s formula [16] yields

(ν̃curl A, curl A′)Ω = (ν̃B×, curl A′)Ω + (ν̃curl A× n,A′)Γ − (ν̃B× × n,A′)Γ, (3.2a)
(ν̃curlη, curlη′)Ω = (J,η′)Ω − (H×, curlη′)Ω + (ν̃curlη × n,η′)Γ + (H× × n,η′)Γ.

(3.2b)

The boundary terms in (3.2) are divided into a Dirichlet part ΓD and a Neumann part ΓN,
as illustrated in Figure 2.1. The Dirichlet BC (2.1c) is an additional constraint to (3.2a)
and will later be strongly enforced in the considered function space VA. As the Neumann
BC (2.1d) is related to (3.2b), the remaining boundary terms in (3.2a) vanish. Utilizing
(2.40b) and the Neumann BC (2.1d), one obtains H× n = (H× + ν̃curlη)× n = f, and
further

(ν̃curlη, curlη′)Ω = (J,η′)Ω − (H×, curlη′)Ω + (f,η′)ΓN . (3.3)

22



On the Dirichlet boundaries ΓD in (3.2b), we strongly enforce η × n = 0 in the function
space Vη, as the Dirichlet BC (2.1c) is associated to the magnetic vector potential A.

For brevity of notation, we also define the function spaces with vanishing trace, respec-
tively with u = 0, on the boundary ΓD as

H0(grad; Ω) = {u ∈ H(grad; Ω) : u = 0 on ΓD} ,
H0(curl; Ω) = {u ∈ H(curl; Ω) : u× n = 0 on ΓD} .

(3.4)

All numerical examples considered in this work feature only homogeneous Neumann
and Dirichlet BCs, i.e., the Neumann parts in (3.3) are naturally fulfilled. The Dirichlet
BCs are enforced in the chosen trial and test function spaces. Consequently, it holds
that V = VA = Vη = H0(curl; Ω) and {A′,η′} ∈ V , which allows us to test both weak
formulations with w ∈ V . Introducing the bilinear form

a(u,w) = (ν̃curl u, curlw)Ω, (3.5)

with u ∈ V and the right-hand side (RHS) functionals

l×A(w) = (ν̃B×, curlw)Ω, (3.6a)
l×η (w) = (J,w)Ω − (H×, curlw)Ω, (3.6b)

the weak formulation reads: Find A,η ∈ V , such that

a(A,w) = l×A(w), ∀w ∈ V, (3.7a)
a(η,w) = l×η (w), ∀w ∈ V. (3.7b)

Again, the problem (3.7) is not uniquely defined since both vector fields are only defined
up to a gradient field. That is, their function space has a large kernel comprising the
gradients of functions from H(grad; Ω). Accordingly, the coercivity constraint on the
bilinear forms is violated, i.e., a(u,u) ≱ ∥u∥22 + ∥curl u∥22. This can be directly deduced
if, for instance, u = gradΦ, then a(u,u) = 0, but ∥u∥22 = ∥gradΦ∥22. To establish
uniqueness, several approaches are available. To name but a few, those are for instance
co-tree gauging [39, 33], which can be employed once (3.7) is available in its discrete
counterpart. Furthermore, in [64, 102] it has been shown that non-gauged vector potential
formulation in combination with a compatible RHS, i.e., div J = 0, can be solved with
iterative solvers. Throughout this work, we consider the Coulomb gauge [60, 45] which
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requires A to fulfill
divA = 0, in Ω,

A× n = 0, on ΓD.
(3.8)

The gauging can be directly incorporated into the considered function space. A function
u ∈ L2(Ω)3 satisfying

(u, gradΨ)Ω = 0, ∀Ψ ∈ H0(grad; Ω), (3.9)

is said to be weakly divergence-free in Ω. Then, (3.7) remains as it is, but the function
space changes to W = {v ∈ H0(curl; Ω) : (v, gradΨ)Ω = 0, ∀Ψ ∈ H0(grad; Ω)}. To
explicitly implement the divergence-free constraint, we introduce the Lagrange multipliers
λA, respectively λη, which leads to the mixed formulation, respectively to the saddle
point problem. Considering (3.9), the mixed formulation reads: Find A,η ∈ V and
λA, λη ∈ H0(grad; Ω), such that

a(A,w) + b(gradλA,w) = l×A(w), ∀w ∈ V, (3.10a)
b(A, gradΨ) = 0, ∀Ψ ∈ H0(grad; Ω), (3.10b)

a(η,w) + b(gradλη,w) = l×η (w), ∀w ∈ V, (3.10c)
b(η, gradΨ) = 0, ∀Ψ ∈ H0(grad; Ω), (3.10d)

where the bilinear form b(·, ·) for u, v ∈ L2(Ω)3 is given by

b(u, v) = (u, v)Ω . (3.11)

3.1.1 Cartesian translational symmetry

To reduce the complexity of the considered BVP, it is customary to exploit symmetry
conditions. In particular we want to mention translational symmetry which allows us
to reduce a 3D problem into a 2D problem. Consider for example a dipole magnet,
which is used in particle accelerators to bend the beam on a desired circular trajectory.
Those magnets are typically very long. Therefore, in a preliminary design state, a 2D
analysis might be sufficiently accurate. Furthermore, one is typically first interested in
the field quality inside the magnet, that is, fringe fields at the front and at the back of
the magnet can be neglected. Assuming translational symmetry for the excitation in
the z-direction, implies A(x, y, z) = Az(x, y) ez, where ez denotes the unit vector in z-
direction. Then, the curl operator reduces to curl A = curl (0, 0, Az) = (∂yAz,−∂xAz, 0).
In R2, let grad⊥ = (−∂y, ∂x) denote the perpendicular gradient operator. Then the weak
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formulation reads: Find Az ∈ V2D = {v ∈ H(grad; Ω) : v = 0 on ΓD}, such that

a2D(Az, w) = l×2D,A(w), ∀w ∈ V2D, (3.12)

with
a2D(Az, w) = (ν̃grad⊥Az, grad⊥w)Ω,

l×2D,A(w) = −(ν̃B×, grad⊥w)Ω.
(3.13)

In this case, no additional gauging is necessary as Az ∈ V2D ⊂ H(grad; Ω). The 2D
approximation for the weak form associated with the Lagrange multiplier ηz is derived in
a similar fashion.

3.2 Finite element formulation

In order to solve the weak forms (3.10), respectively (3.12), a finite-dimensional function
space needs to be introduced. However, topological properties of the vector calculus need
to be preserved on the discrete level, e.g., the identities curl grad = 0, div curl = 0.
Those properties are typically illustrated in the de Rahm complex

H(grad; Ω) grad−−−→ H(curl; Ω) curl−−→ H(div; Ω) div−−→ L2(Ω), (3.14)

and have to be preserved in the discrete counterpart. We consider a partitioning of the
domain Ω, denoted as Th, where h refers to the maximum mesh size of the elements
in Th. Given Th, we define the finite-dimensional subspaces of (3.14) as Hh(grad; Ω),
Hh(curl; Ω), Hh(div; Ω) and L2

h(Ω), respectively. A sequence of finite-dimensional function
spaces complying with the de Rahm complex (3.14) was introduced by Whitney, also
referred to as Whitney forms [87, 15]. Alternatively, spline based shape functions can
be employed, which are used in the context of isogeometric analysis (IGA) [55]. In
this work, we employ the Whitney forms, which we briefly want to recall for the case
of a tetrahedral triangulation Th. In the following, Pq(T ) and Pq(T )3 denotes the scalar,
respectively vectorial, space of polynomials of maximum degree q on a domain T . The
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Figure 3.1: Tonti diagrams for the magnetostatic problem. The diagrams are read as
follows: The operators next to the vertical lines link the variables topologically.
The primal (right) and dual (left) quantities are linked through the horizontal line
along the constitutive equations (phenomenological equations). The colored
lines show the active equations, i.e., the equations corresponding to the
chosen ansatz. Equations that are exactly fulfilled are depicted with solid lines,
while those that are only weakly fulfilled or introduce approximation errors are
represented by dashed lines. (a) Conventional approach with magnetic vector
potential formulation . (b) Mixed-field (including the data-driven) approach.
(Note that under the chosen Coulomb gauge implementation, divB = 0 is only
weakly satisfied in this work.)

discrete counterparts of (3.14), respectively (2.16) are then

Hh(grad; Ω) = {u ∈ H(grad; Ω) : u ∈ Pq(Ti), ∀Ti ∈ Th} , (3.15a)
Hh(curl; Ω) =

{︁
u ∈ H(curl; Ω) : u ∈ Pq−1(Ti)

3 + Sq(Ti), ∀Ti ∈ Th
}︁
, (3.15b)

Hh(div; Ω) =
{︁
u ∈ H(div; Ω) : u ∈ Pq−1(Ti)

3 + xPq−1(Ti), ∀Ti ∈ Th
}︁
, (3.15c)

L2
h(Ω) =

{︁
u ∈ L2(Ω) : u ∈ Pq−1(Ti), ∀Ti ∈ Th

}︁
, (3.15d)

L2
h(Ω)

3 =
{︁
u ∈ L2(Ω)3 : u ∈ Pq−1(Ti)

3, ∀Ti ∈ Th
}︁
, (3.15e)
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where Sq(Ti) = {s ∈ Pq(Ti)3 : s(x) · x = 0 ∀x ∈ Ti}, see [68, 87, 86].
Ampère’s and Gauss’s laws give rise to two sequences characterized by (3.14). A typical

way to visualize the topological properties is the so-called Tonti diagram, see Figure 3.1.
The diagram is read as follows: The operators next to the vertical lines link the variables
in a topological manner and are therefore called topological equations. Note that they
are already the discrete version of (3.14). In the case of simply connected domains, i.e.,
domains without holes, the sets of the discrete sequence coincides with the ones in (3.14),
see [5]. The primal (right) and dual (left) quantities are linked through the horizontal line
along the constitutive equations, which belong to the so-called phenomenological equations
[38]. The colored lines show the active equations, i.e., the equations corresponding to the
chosen ansatz. Equations that are exactly fulfilled are depicted with solid lines, whereas
equations that are only weakly satisfied or introduce approximation errors are represented
by dashed lines.

In the traditional setting, the magnetostatic problem is typically solved with one of
the two following approaches. In the first one, we solve for the magnetic field strength
Hh ∈ Hh(curl; Ω). This is achieved by either solving directly for Hh, which leads to the
H− A [14, 40] formulation or by introducing the scalar potential −gradϕ = H [84, 13].
In any case, Ampère’s law (2.1a) and the constitutive equation are exactly fulfilled by
construction. However, Gauss’s law (2.1b) is violated as the solenoidal property is not
fulfilled at the element interfaces [17]. As the tangential properties of the magnetic
field strength are exactly fulfilled, this approach is called H-conform. In the B-conform
approaches, we solve for B ∈ Hh(div; Ω). Again, this can be done directly, leading to the
B− Φ approach, or via the vector potential B = curl A. Then, Gauss’s law (2.1b) and the
constitutive equation are fulfilled by construction. Yet, as in the H-conform approach,
this comes at the price of introducing an error, this time however in Ampère’s law (2.1a),
which is only weakly satisfied. Note that when the mesh is refined, the quantity that lost
the topological property will be recovered at the limit [16]. Figure 3.1a shows the Tonti
diagram for magnetostatics when the problem is solved with the magnetic vector potential
formulation. The dashed line indicates that Ampère’s law is violated in this formulation.

A different approach is addressed with mixed-field solvers. Here, the variational formu-
lation is formulated with respect to the magnetic field strength H and the magnetic flux
density B. The approach dates back to Rikabi et al. [104], who proposed a formulation
that minimizes the error in the constitutive equation, while simultaneously fulfilling the
topological equations (2.1a) and (2.1b) through constraints. The constraints can either
be solved through the introduction of potentials for H and B or directly by expressing the
fields in their natural function spaces [22, 3, 96, 2], that is, Hh ∈ Hh(curl; Ω), known as
edge-elements and Bh ∈ Hh(div; Ω), known as face-elements. Irrespectively of introducing
potentials to fulfill the topological equations or expressing the fields in their natural
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function spaces, the solution that is obtained with the mixed-field solver exactly fulfills
Ampère’s and Gauss’s law, while shifting the error entirely into the constitutive equation.
A detailed overview regarding the different mixed-field solver approaches can be found in
[103].

The proposed data-driven solver belongs to the class of mixed-field solvers. However, it
treats the material relationship even more stringently by relying exclusively on measured
data, rather than on an empirical material model. By that, the error is entirely shifted into
the measured data, and the accuracy of the simulation is directly related to the quality and
quantity of the measurement data. Note that in the presented approach, we introduced a
vector potential to fulfill Gauss’s law. A data-driven solver that solves directly for H and B
is also possible and aligns well with the premise of the data-driven framework that treats
field equations as exactly known. Figure 3.1b shows the Tonti diagram for magnetostatics
when the problem is solved with a mixed-field solver, respectively the data-driven solver.
The dashed line indicates that the approximation error is shifted into the constitutive
relation.

3.2.1 Spatial and space discretization

The computational domain Ω is discretized into non-overlapping triangles (2D), respec-
tively tetrahedra (3D). For a polyhedral domain Ω, it holds that

⋃︁
i T̄ i = Ω̄, where Ti

refers to the corresponding element, depending on the spatial dimension.

• 2D: In the 2D case, we solve for the scalar potentials Az and ηz. Therefore, continu-
ous Lagrange elements are considered, which are defined on the triangular element
domain Ti with a finite-dimensional function space Hh(grad; Ω). Throughout this
work, we consider linear Lagrange elements, that is, Hh(grad; Ω) is the span of
first-order polynomials, also known as hat functions. The degrees of freedom (DoFs)
are thus found on the vertices of the triangles Ti.

• 3D: In the 3D case, we solve for the vector potentials A and η. Consequently, Nédélec
elements, also referred to as edge elements, are employed. The FE is then defined on
a tetrahedra Ti, with function space Hh(curl; Ω). Throughout this work, we consider
first kind, first order Nédélec basis functions. The DoFs then live on the edges of the
tetrahedra.

For a detailed and rigorous definition of the finite element, the interested reader is referred
to [26, 21]. Given the choice of the FE, the finite-dimensional subspace Dh is determined
by

Dh = {ζh ∈ L2
h(Ω)

3 × L2
h(Ω)

3 : ζh(x) ∈ D̃Ωi , ∀x ∈ Ωi, ∀i, a.e. in Ω} ⊂ D. (3.16)
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As we will see later, the data-driven algorithm demands for the field solution at the
quadrature points of the FE assembly procedure. Therefore, we briefly want to derive a
connection between the DoFs of the considered FE and the quadrature points. To keep
things simple, we consider two scalar functions uh, vh ∈ Vh ⊂ Hh(grad; Ω). Following
loosely [90], the L2-projection reads

(uh − vh, wh)Ω = 0 ∀wh ∈ Vh. (3.17)

Note that since uh and vh belong to the same function space, with (3.17) both functions
are identical in the L2-sense. Let uh(x) =

∑︁N
i=1 φiΦi(x), then

N∑︂
i=1

φi(Φi, wh)Ω = (vh, wh)Ω ∀wh ∈ Vh. (3.18)

Let Vh = span{ψj}Nj=1, then

N∑︂
i=1

φi(Φi, ψj)Ω = (vh, ψj)Ω j = 1, . . . , N. (3.19)

Computing the RHS (3.19) with numerical quadrature, we obtain

(vh, ψj)Ω =

Nelements∑︂
k=1

P∑︂
p=1

wp,kvh(xp,k)ψj(xp,k), j = 1, . . . , N, (3.20)

where wp denote the weights of the quadrature scheme. Furthermore, we assume that the
quadrature scheme has a degree of precision equal or higher 2q, where q is the polynomial
degree of uh, respectively vh. Combining (3.19) with (3.20) yields

N∑︂
i=1

φi(Φi, ψj)Ω =

Nelements∑︂
k=1

P∑︂
p=1

wp,kuh(xp,k)ψj(xp,k), j = 1, . . . , N. (3.21)

The last equation establishes a connection between the DoFs of a function in a finite-
dimensional function space and the function values at the quadrature points. In turn, this
means that given the basis functions of the employed function space Vh and the function
values at the quadrature points, a function uh ∈ Vh can be reconstructed. This equivalence
allows us to solve (2.41) at the quadrature points instead of actually constructing the
functions (Hh,Bh) ∈ Dh. The number of necessary quadrature points depends on the
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employed quadrature scheme in combination with the considered element. For triangles
and tetrahedra, there exists a vast literature on different schemes with different degrees
of precision [119, 92, 62]. For all numerical examples considered in this work, first
order trial and test functions have been employed. Therefore, employing for example the
centroid rule, i.e., one quadrature point in the center of the element, polynomials up to a
degree of 1 are integrated exactly, which is sufficient in our case. Note that by confining
the FEs to linear elements, we effectively employ constant polynomials in Dh.

3.2.2 Revisiting the data-driven problem

Now that the discrete spaces have been defined, we can revisit the two data-driven
minimization problems, namely, (3.10), (3.12), and (2.41).

1. Regarding the minimization problem towards the equations for magnetostatics, the
FE formulation is achieved by replacing the function spaces utilized in (3.10) with
their discrete counterparts. The FE formulation then reads: Find Ah,ηh ∈ Vh ⊂ V
and λA,h, λη.h ∈ Hh,0(grad; Ω) ⊂ H0(grad; Ω), such that

a(Ah,wh) + b(gradλA,h,wh) = l×A(wh), ∀wh ∈ Vh, (3.22a)
b(Ah, gradΨh) = 0, ∀Ψh ∈ Hh,0(grad; Ω), (3.22b)

a(ηh,wh) + b(gradλη,h,wh) = l×η (wh), ∀wh ∈ Vh, (3.22c)
b(ηh, gradΨh) = 0, ∀Ψh ∈ Hh,0(grad; Ω). (3.22d)

The field state (H◦
h,B◦

h) ∈ Mh, with Mh to be determined, is then obtained through

B◦
h = curl Ah,

H◦
h = H×

h + ν̃curlηh.
(3.23)

The finite-dimensional subspace Mh comprising the states that fulfill (3.22) is thus
determined by

Mh = {ζh ∈ Hh(curl; Ω)× Hh(div; Ω) : (3.22) and (3.23)} ⊂ M. (3.24)
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2. Given ζ◦h ∈ Mh, the minimization towards the measurement data now reads

ζ×h = argmin
ζh∈Dh

∥ζ◦h − ζh∥2L2
µ̃,ν̃(Ω) , (3.25a)

= argmin
ζh∈Dh

∫︂
Ω

1

2
µ̃(H◦

h −Hh) · (H◦
h −Hh)dΩ

+

∫︂
Ω

1

2
ν̃(B◦

h − Bh) · (B◦
h − Bh)dΩ,

(3.25b)

= argmin
ζh∈Dh

Nelements∑︂
i

∫︂
Ti

1

2
µ̃(H◦

h −Hh) · (H◦
h −Hh)dTi

+

∫︂
Ti

1

2
ν̃(B◦

h − Bh) · (B◦
h − Bh)dTi.

(3.25c)

The last equation shows that the minimization is carried out for each element indi-
vidually. Furthermore, since only decoupled fields are considered, each dimension
can be minimized separately, thus further simplifying the minimization problem.
Taking this into account and considering a single element Ti located in the domain
Ωj , we find(︂
H×

h,r,i, B
×
h,r,i

)︂
= argmin

(Hh,r,Bh,r)∈Dh,r

∫︂
Ti

[︃
1

2
µ̃r(H

◦
h,r −Hh,r)

2 +
1

2
ν̃r(B

◦
h,r −Bh,r)

2

]︃
dTi,

(3.26)
with Dh,r = {ζh ∈ Dh : (Hh · er,Bh · er)}, where er denotes the unit vector and
r ∈ {x, y, z}. With the established connection between DoFs and quadrature nodes,
we can solve (3.26) effectively on the quadrature nodes, that is(︂

H×
h,r,i, B

×
h,r,i

)︂
= argmin

(Hh,r,Bh,r)∈Dh,r

wp,i
1

2
ν̃r(xp,i)

(︁
H◦

h,r(xp,i)−Hh,r(xp,i)
)︁2

+wp,i
1

2
µ̃r(xp,i)

(︁
B◦

h,r(xp,i)−Bh,r(xp,i)
)︁2
,

(3.27)

wherewp,i denotes the quadrature weight and xp,i the quadrature node of element Ti.
Now, considering the definition of the set Dh, particularly (Hh,r, Bh,r)(Ωj) ∈ D̃Ωj ,r,
the minimization problem can be carried out on a discrete level with respect to the
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data sets D̃Ωj ,r, that is,

(h×r,i, b
×
r,i) = argmin

(h,b)∈D̃Ωj ,r

wp,i
1

2
ν̃r(xp,i)

(︁
H◦

h,r(xp,i)− h
)︁2
+wp,i

1

2
µ̃r(xp,i)

(︁
B◦

h,r(xp,i)− b
)︁2
.

(3.28)
After solving (3.28) for every element and in each dimension, the global mea-
surement state at the quadrature points is collected in the vector (h×,b×) ∈
R3Nelements × R3Nelements and, if necessary, can be projected onto the appropriate func-
tion space, that is, L2

h(Ω)
3 × L2

h(Ω)
3. Note also that the discrete solution at the

quadrature points lies in the global measurement set containing the discrete data
(2.20), i.e., (h×,b×) ∈ D̃. The minimization problem (3.28) is essentially a nearest
neighbor problem. There are several strategies to solve such problems efficiently.
Considering large measurement data sets and/or a fine triangulation of Ω, the
computationally most expensive approach is the brute force approach, where for
each element, the distance to the entire data set needs to be calculated. On the
plus side, this approach is straightforward to implement. Binary search trees like
KD-trees [11] are a viable alternative to the brute force approach. There, the data
are organized in a hierarchical manner, which allows for partitioning the data into
smaller subspaces. KD-trees are computationally efficient in low dimensions, but
their performance deteriorates as the dimension increases. Other approaches are for
example locality-sensitive hashing [50] and metric trees [112], to name but a few.

3.2.3 System of equations

The weak formulations (3.22), respectively their 2D approximations, are equivalent to
systems of linear equations. Let (ϕj)

Nedges
j=1 ⊂ Vh, respectively (ψj)

Nvertices
j=1 ⊂ V2D,h, denote

the set of shape functions, then
2D

Az,h =

Nvertices∑︂
j=1

ajψj(x), (3.29a)

ηz,h =

Nvertices∑︂
j=1

ηjψj(x), (3.29b)

3D

Ah =

Nedges∑︂
j=1

ajϕj(x), (3.29c)

ηh =

Nedges∑︂
j=1

ηjϕj(x), (3.29d)

where Nedges and Nvertices denotes the number of edges and vertices respectively. Further-
more, aj and ηj refer to the DoFs. Following the Ritz-Galerkin approach, the test and trial
functions are chosen to be identical, which leads to the linear systems

32



2D

Kν̃az = l×A, (3.30a)
Kν̃ηz = l×η , (3.30b)

3D[︃
Kν̃ B⊤

B 0

]︃ [︃
a
λA

]︃
=

[︃
l×A
0

]︃
, (3.30c)[︃

Kν̃ B⊤

B 0

]︃ [︃
η
λη

]︃
=

[︃
l×η
0

]︃
, (3.30d)

with
2D

Kν̃,ij = (ν̃grad⊥ψj , grad⊥ψi)Ω, (3.31a)
lA,i = −(ν̃B×, grad⊥ψi)Ω, (3.31b)
lη,i = (J, ψi)Ω + (H×, grad⊥ψi)Ω,

(3.31c)

3D

Kν̃,ij = (ν̃curlϕj , curlϕi)Ω, (3.31d)
Bij = (ϕj , grad θi)Ω, (3.31e)
lA,i = (ν̃B×, curlϕi)Ω, (3.31f)
lη,i = (J,ϕi)Ω − (H×, curlϕi)Ω, (3.31g)

where (θi)Nvertices
i=1 ⊂ Hh,0(grad; Ω) are nodal shape functions and λA,h =

∑︁Nvertices
j=1 λA,jθj(x),

respectively λη,h =
∑︁Nvertices

j=1 λη,jθj(x). For further details on the properties of the saddle
point problem and appropriate algorithms for its solution, we refer to [12] and the
references therein.

3.2.4 Practical considerations

The L2-projection from one function space onto another results on a discrete level in a
system of equation that requires solving. This projection is necessary for H×

h and B×
h , once

per data-driven iteration. However, to circumvent the need for projection, both field states,
i.e., (h◦,b◦) and (h×,b×) are retained at the quadrature points. In turn, that means that
the update equations are evaluated solely at the quadrature nodes, i.e.,

b◦ =
[︂
(curl Ah(x1))⊤, . . . , (curl Ah(xNelements))

⊤
]︂⊤
, (3.32a)

h◦ = h× +
[︂
(ν̃(x1)curlηh(x1))⊤, . . . , (ν̃(xNelements)curlηh(xNelements))

⊤
]︂⊤
, (3.32b)

with b◦,h◦ ∈ R3Nelements . Once the data-driven solver has converged, the fields can be
projected onto their natural function spaces.

3.2.5 Algorithm

The data-driven algorithm can be compactly presented in the Algorithm 1.
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Algorithm 1 Iterative scheme for the data-driven FE field solver for magnetostatic problems.
The algorithm employs a global weighting factor.

initialize (h×,b×) randomly on measurement data
while (h◦,b◦)i ̸= (h◦,b◦)i−1 and |∆em,i −∆em,i−1| > δ∆em do

Solve
Kν~a = l×A
Kν~η = l×η

Update
b◦ =

[︁
(curl Ah(x1))⊤, . . . , (curl Ah(xNelements))

⊤]︁⊤
h◦ = h× +

[︁
(ν̃(x1)curlηh(x1))⊤, . . . , (ν̃(xNelements)curlηh(xNelements))

⊤]︁⊤
Find (h×,b×) in D̃ adjacent to (h◦,b◦) with (3.28).
Compute energy mismatch |∆em,i| with (2.31).

end while
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4 Hybrid data-driven simulation

Electromagnetic problems often involve heterogeneous domains with materials of different
properties. For instance, an already simplified model of an inductor typically comprises
three distinct domains, namely, a domain filled with air, a domain where the wiring
is arranged, and the iron part. The material relations in the air and coil domains are
often assumed to be well-known and only a negligible error is attributed to the modeling
assumptions. However, the iron yoke is often made out of electrical steel, which exhibits a
strongly nonlinear material response. Therefore, following the famous quote of George
Box, “Essentially, all models are wrong, but some are useful”, the hybrid solver incorporates
prescribed material relations alongside to data-defined material relations. The hybrid
solver is not limited to simple materials like vacuum. Nonlinear material relations that
have been painstakingly established and have been found reliable and trustworthy over the
years can be integrated in addition. However, throughout this work, if not explicitly stated
differently, solely data are employed in the nonlinear regions instead of constructing a
material model therefrom.

In the following, three distinct approaches are proposed, which utilize the known
material relation in the domain where the material is known in combination with the
proposed data-driven solver that exclusively employs measurement data. These ideas
closely follow the own publication [36], but instead of utilizing the discrete linear systems
to derive the data-driven problem, we derive the data-driven problem in the continuous
form by utilizing the Euler-Lagrange equations as discussed in Section 2.2.2. For simplicity,
we consider only linear known material relations, i.e., in the form B = µH, where µ is a
tensor with known, linear permeability. Furthermore, the domain is split into separate
parts, such that Ω = Ωdd ∪ Ωex, where Ωdd refers to the purely data-driven region, that is,
only measurement data are employed, and Ωex to the region where the material relation
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is exactly known. Therefore, we define the indicator functions

1Ωex(x) =
{︃

1, x ∈ Ωex
0, otherwise , (4.1a)

1Ωdd(x) =
{︃

1, x ∈ Ωdd
0, otherwise . (4.1b)

4.1 Exact material relation minimized by the nearest neighbor
algorithm

In the first approach, the known material relation corresponds to an infinite number of
synthetic measurement points in the HB phase space. Following this line of thought,
the minimization with respect to the (infinite) measurement data is still performed
in the context of the nearest neighbor problem. Consequently, the Lagrangian (2.33)
remains unchanged. However, the weighting factors µ̃ and ν̃ in (2.39) within the domain
characterized by the known material relation are assigned to their exact counterparts µ
and ν. The minimization problem is then carried out with the known material relation,
that is,

(H×
h ,B

×
h ) = argmin

(Hh,Bh)∈{(H,B)∈
L2
h(Ω)3×L2

h(Ω)3:
B=µ(H)H}

∥H◦
h −Hh∥2L2

µ(Ωex)
+ ∥B◦

h − Bh∥2L2
ν(Ωex)

, (4.2)

which can be resolved independently for each dimension due to our assumption of de-
coupled fields. In the subsequent discussion, we consider the case of a linear material,
i.e., B = µH. As shown in Section 3.2.2, the minimization problem can be solved at the
quadrature points, which results in

min
b

{︃
1

2
(h◦ − νb)⊤µ(h◦ − νb) +

1

2
(b◦ − b)⊤ν(b◦ − b)

}︃
. (4.3)

where ν = µ−1 are diagonal matrices containing the permeability and reluctivity values
at the quadrature points, respectively. Taking the derivative with respect to b yields

h◦ + νb◦ − 2νb !
= 0. (4.4)
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Further solving for b and incorporating the known material relations, the optimal states
at the quadrature points are determined as

b× =
b◦ + µh◦

2
, (4.5a)

h× = νb×. (4.5b)

If a material with a nonlinear BH-characteristic is considered, the optimal states can
be derived analytically or, in case no closed-form solution is found, equation (4.2) is
solved numerically with standard optimization tools. Once the new state (h×,b×) is
determined, the weighting factors in the corresponding elements need to be updated
with the permeability and reluctivity of the current operating point within the nonlinear
BH-curve.

4.2 Exact material relation minimized in the distance function

Instead of minimizing the field states in the domains with known material relation with
(3.28), the minimization can be included in the FE solver. We consider the known material
representation B = µH, with corresponding distance function

∥B− µH∥2L2
ν(Ωex)

. (4.6)

The Lagrangian thus reads

L(x,H, curlH, curl A) = ∥H−H×∥2L2
µ̃(Ωdd)

+ ∥curl A− B×∥2L2
ν̃(Ωdd)

+ (η, J− curlH)Ωdd

+ ∥curl A− µH∥2L2
ν(Ωex)

+ (η, J− curlH)Ωex ,

(4.7)

which after applying Euler-Lagrange equations (2.37) yields the stationary solution

1Ωddcurl (ν̃curl A) + 1Ωexcurl (νcurl A) = 1Ωddcurl (ν̃B
×) + 1ΩexcurlH, (4.8a)

1Ωdd(H+ ν̃curlη) + 1Ωex(H+ νcurl (η − A)) = 1ΩddH
×. (4.8b)
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Applying the curl operator (4.8b), imposing the constraint J = curlH, and after a bit of
calculus we arrive at

1Ωddcurl (ν̃curl A) + 1Ωexcurl (νcurlη) = 1Ωddcurl (ν̃B
×), (4.9a)

1Ωexcurl (νcurl A)− 1Ωexcurl (νcurlη)− 1Ωddcurl (ν̃curlη) = J− 1ΩddcurlH
×. (4.9b)

A detailed derivation can be found in the appendix 9.1.1. The update terms for a new
state (H,B) are given by

B = curl A, x ∈ Ω, (4.10a)
H = H× − ν̃curlη, x ∈ Ωdd, (4.10b)
H = νcurl (A− η), x ∈ Ωex. (4.10c)

The corresponding FE formulation reads: Find Ah,ηh ∈Wh ⊂W , such that

(ν̃curl Ah, curlwh)Ωdd + (νcurlηh, curlwh)Ωex = (ν̃B×
h , curlwh)Ωdd , (4.11a)

(νcurl Ah, curlwh)Ωex − (νcurlηh, curlwh)Ωex

−(ν̃curlηh, curlwh)Ωdd = (J,wh)Ω − (H×
h , curlwh)Ωdd ,

(4.11b)

for all wh ∈Wh, where we incorporated the gauge into the function spaceWh to shorten
the notation. The nearest neighbor problem is confined to the region Ωdd, as the states
allocated in Ωex are already minimized in the FE solver. It is worth noting that energy
minimization in Ωex is similar to the idea proposed by Rikabi et al. [104], see also [22].
Therein, (4.6) is minimized over the entire domain, enforcing Ampère’s and Gauss’s laws
as constraints. As in [22], the approximation error inherent to the FE method is still
shifted to the material equation and Maxwell’s laws are exactly fulfilled.

4.3 Exact material relation minimized in the Lagrange multiplier

Since the material relation in the domain Ωex is known, we can directly enforce the exact
material relation in the Lagrange multiplier. The Lagrangian thus reads

L(x,H, curlH, curl A) = ∥H−H×∥2L2
µ̃(Ωdd)

+ ∥curl A− B×∥2L2
ν̃(Ωdd)

+ (η, J− curlH)Ωdd + (η, J− curl (νcurl A))Ωex .
(4.12)
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Applying the Euler-Lagrange equations (2.37) yields

1Ωddcurl (ν̃curl A) + 1Ωexcurl (νcurlη) = 1Ωddcurl (ν̃B
×), (4.13a)

1Ωexcurl (νcurl A)− 1Ωddcurl (ν̃curlη) = J− 1ΩddcurlH
×, (4.13b)

with the update terms

B = curl A, x ∈ Ω, (4.14a)
H = H× − ν̃curlη, x ∈ Ωdd, (4.14b)
H = νcurl A, x ∈ Ωex. (4.14c)

A detailed derivation can be found in the appendix 9.1.2. The corresponding FE formula-
tion reads: Find Ah,ηh ∈Wh ⊂W , such that

(ν̃curl Ah, curlwh)Ωdd + (νcurlηh, curlwh)Ωex = (ν̃B×
h , curlwh)Ωdd , (4.15a)

(νcurl Ah, curlwh)Ωex − (ν̃curlηh, curlwh)Ωdd = (J,wh)Ω − (H×
h , curlwh)Ωdd , (4.15b)

for all wh ∈Wh. In contrast to the second approach 4.2, (4.15) exactly fulfills Ampère’s
and Gauss’s law in the data-driven region Ωdd, however not in Ωex, where Ampère’s law is
violated. Instead, the material relation Bh = µHh is fulfilled exactly.

4.4 Summary

We proposed three different approaches to integrate prescribed material relations into the
data-driven solver. Two approaches modify the BVP, which leads to mixed-formulations
in the FE method. Consequently, their implementation is more involved, and the matrices
have a more complex structure than in the approach that minimizes using the nearest
neighbor algorithm, see Section 4.1. However, the two approaches reduce the number of
nearest neighbor queries in the nearest neighbor problem. Contrarily, the approach that
minimizes using the nearest neighbor algorithm offers a simple way to handle nonlinear
known material relations, compared to the more involved derivation of the other two
approaches. A comparison in terms of accuracy and performance of the introduced
methods will be provided at a later stage of this work.
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5 Adaptive weighting factors

If not explicitly stated otherwise, the following is based on the work of the author, as
presented in [47]. So far, the choice of the weighting factors ˜︁ν in the context of data-
driven solvers has not been addressed. In a conventional magnetostatic formulation, the
permeability has to follow certain physical constraints. For example, it is well-known that
the relation between B and H in a ferromagnetic material is monotonically increasing
with a slope of at least µ0. Contrarily, the weighting factor ˜︁ν within the data-driven solver
does not necessarily represent the physical behavior of the material and is instead of
computational nature [69]. Nonetheless, certain constraints on the weighting factors are
necessary to achieve a well-posed problem in the FE method. Considering the weak form
(3.10), it is clearly visible that the weighting factors need to be bounded from below and
above. Furthermore, for the weak forms (3.10) to remain coercive, a stricter criteria is
necessary, i.e., ∃νmin > 0, such that

νmin ≤ ν̃r ≤ ν0, (5.1a)

with r = {x, y, z}. Even when considering (5.1), the exact choice of the weighting
factors remains an open question. Indeed, in the special case of linear elasticity, it has
been shown that the data-driven solver asymptotically recovers the conventional solution,
independently of the chosen norm (2.24) [30]. Yet, numerical tests have indicated that
properly chosen weighting factors can significantly boost the convergence speed, improve
the accuracy, and reduce statistical dispersion coming from the randomly chosen initial
values [47]. This becomes significantly relevant in three different scenarios. First, when
considering sparse data sets. Second, when examining unbalanced data sets, by which we
mean data sets with areas that are densely populated and other areas that are sparse or
devoid of data. Last, when utilizing materials that exhibit a strongly nonlinear response.

For the rest of this section, we consider a one-dimensional problem. The extension
to two or three dimensions is straightforward as we consider only anisotropic materials
without mutual interaction between the axes. To properly calculate the distance between
two states in the HB phase space, the phase space needs to be weighted. This is done
by the weighting factors, which effectively stretch and squeeze the axes. The most basic
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Figure 5.1: (a) Nonlinear BH-curve and estimated chord reluctivity ν+c and differential
reluctivity ν+d , respectively at an operating point (H+, B+). (b) Distance min-
imization of a single state (h◦, b◦) (black circle) to the measurement data
(purple crosses). The minimization is carried out with three different weight-
ing factors µ̃.

choice for the weighting factors would be µ̃ = ν̃ = 1. However, even when considering a
highly permeable material, the values of H and B differ by orders of magnitude, as do
the differences in H −H× and B −B×. In such cases, the minimization process tends
to prioritize either the discrepancy in H or in B. Additionally, the ratio between H and
B strongly depends on the utilized material, which immediately demands for a spatially
dependent weighting factor. Finally, considering materials with a nonlinear response, the
current operating point in the HB phase space has a large influence on the ratio between
H and B, see Figure 5.1a. This is of particular interest, since we consider soft magnetic
materials in the numerical examples. The BH-curves of those ferromagnetic materials
feature a steep linear part, followed by a sharp transition into saturation. In summary, a
spatially and field dependent weighting factor is necessary, i.e., µ̃ = µ̃(x, (H,B)), that is
adaptively adjusted during the data-driven procedure. Adaptively updated local weighting
factors were first proposed in [47] in the area of electromagnetic field simulation and
then adapted to elasticity [88].

Subsequently, we illustrate why adaptively updated local weighting factors improve the
convergence speed and additionally enhance the accuracy, especially if sparse data sets are
employed. We consider a single state (h◦, b◦) = (Hh(xp), Bh(xp)) with (Hh, Bh) ∈ Mh,
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and where xp denotes the quadrature point in the considered element. The state is
depicted in Figure 5.1b together with its corresponding discrete measurement data. In
the next step, we want to find the state (h×, b×), that minimizes the distance to the
measurement data, that is

(h×, b×) = argmin
(h,b)∈D̃Ω

1

2
µ̃(h◦ − h)2⏞ ⏟⏟ ⏞

∆h

+
1

2
ν̃(b◦ − b)2⏞ ⏟⏟ ⏞

∆b

. (5.2)

Let us consider two distinct cases. First, we employ µ̃ = µ0, which implies that the
difference in the magnetic flux densities is the main contributing factor in (5.2). This can
also be observed in Figure 5.1b. Second, the weighting factor is chosen to be µ̃ = 1000µ0
and, consequently, the minimization is only performed in the magnetic field strength H.
Now, assume that the optimal solution is approximately in the middle between the two
recently found points. Employing one of the introduced weighting factors and keeping
it fixed throughout the data-driven iterations means that in one of the two directions,
only minor corrections are carried out in each iteration, which means the data-driven
solver needs to iterate through the entire data set to finally reach the optimal point. This
leads to a significant increase of iterations when the data sets become larger. However,
by choosing the weighting factor adaptively, such that both minimization parts are well
balanced, the number of data-driven iterations is substantially reduced.

The second improvement when employing adaptively chosen weighting factors is related
to sparse or unevenly distributed data sets. Let us consider a global, constant weighting
factor and a sparse measurement data set. Furthermore, the data-driven algorithm has
converged. An illustration of the scenario is given in Figure 5.2a which shows the HB
phase space in the x-direction. Herein, the purple crosses show the measurement data and
the black dots the states conforming with the magnetostatic problem, that are obtained
after convergence of the algorithm with a global weighting factor. We consider a single
element and a state (h×i , b

×
i ) in iteration i that minimizes the distance to a state (h◦i , b

◦
i ),

but is distant from that state. In the next projection step, a new state (h◦i+1, b
◦
i+1) which

conforms with the equations for magnetostatics is found. However, we can then observe
that the updated state is again distant from the measurement set and further iterations
do not lead to an improvement. In those cases, the measurement data set Dh fails to
provide a state that sufficiently conforms to the governing equations. Consequently, the
global weighting factor in the system matrices (3.31) projects the updated field solution
onto a fictitious material dictated by the global weighting factor. This can be observed
in Figure 5.2a, where a global weighting factor was employed that suits the steep linear
part of the BH-curve. Consequently, a large number of magnetostatic states are projected
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Figure 5.2: Measurement data (purple crosses) and states that are compatible with the
equations formagnetostatics (black dots) in theHB phase space. The results
have been obtained forN = 100measurement data points, after convergence
of the algorithm. (a) Global weighting factor. (b) Local, adaptively adjusted
weighting factors.

in the thought extension of the steep linear part of the BH-curve. As there is only one
global weighting factor, this is very likely to occur if a nonlinear material is considered as
the operating points are spread entirely over the BH-curve. Again, employing the local
adaptively updated weighting factor, a significant improvement in accuracy is achieved,
as the fictitious material suits now the current operating point of the elements, see
Figure 5.2b.

Before we illustrate the strategy to specify the weighting factor, we recall the two possible
linearizations used to solve the nonlinear magnetostatic problem, that is, the successive-
substitution method, also known as the fixed-point method, and the Newton method,
respectively [53]. The reluctivity is then linearized at an operating point (H+, B+) such
that

H −H+ = ν+c (B −B+), (5.3a)
H −H+ = ν+d (B −B+), (5.3b)
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where ν+c and ν+d are the chord and differential reluctivity [35], respectively, defined as

ν+c =
H+

B+
, (5.4a)

ν+d =
dH+

dB+
. (5.4b)

One of the presented linearizations is then carried out for each element of the triangu-
lation of Ω. Consequently, after each iteration the system matrix needs to reassembled.
Figure 5.1a illustrates the chord and the differential reluctivity.

In the data-driven setting however, the problem formulation (3.10) is linear and thus
does not inherently incorporate the treatment of nonlinear material responses. However,
the data-driven iteration is a replacement thereof. Consequently, certain choices of µ̃,
respectively ν̃, increase the convergence rate of the data-driven solver. Numerical tests
have shown that using the differential reluctivity, that is, the tangent on the current
operating point, achieves the largest gain in performance and accuracy. By that, the
method mimics the conventional Newton approach to solve nonlinear PDEs. Therefore, we
omit further details on the chord reluctivity and focus only on the differential reluctivity.

In the following, we want to estimate the differential reluctivity by only employing the
discrete measurement data points available in our measurement set D̃. Subsequently, the
differential reluctivity is then adaptively chosen within the data-driven solver to update the
weighting factors locally. Since we consider only measurement data that is not polluted
by noise and other errors, we can sort the data such that

(Hn, Bn) < (Hn+1, Bn+1), n = 1, . . . , N − 1, (5.5)

which is understood element-wise, i.e.,Hn < Hn+1 andBn < Bn+1. Utilizing the centered
differences scheme yields

νd(Bn) =
dH
dB

≈ Hn+1 −Hn−1

Bn+1 −Bn−1
, n = 2, . . . , N − 1. (5.6)

To obtain an approximation on the differential reluctivity at n = 1 and n = N , forward
and backward differences can be respectively employed,

νd(B1) ≈
H2 −H1

B2 −B1
, (5.7)

νd(BN ) ≈ HN −HN−1

BN −BN−1
. (5.8)
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In case of noisy measurement data, a clustering of the measurement data is performed
beforehand [47]. Then, the centers of the clusters are employed to calculate an approxi-
mation on the differential reluctivity.

Remark: We motivated the use of adaptive weighting factors by mimicking the conven-
tional Newton method and observations on the distance minimizing. A more quantitative
interpretation of the possible mismatch in (5.2) is found in [88].

5.1 Global weighting factors

If a global weighting factor is employed, we need to obtain a factor that is best balanced
over the entire data set. Assuming that the available data are equidistantly distributed
and the range of the data set suits the problem, a global weighting factor can be obtained
by averaging over the discrete reluctivity, that is,

ν̃ =
1

N

N∑︂
n=1

ν(Bn), (5.9)

where ν(·) refers to either the chord or the differential reluctivity. However, if the data
set contains clusters or if the range is largely beyond the scope of the problem, this
estimation is likely to be biased. Then, other statistical location parameter can be used,
for instance, the median. If some prior knowledge is available, for example, the problem
is designed such that the field solution (H,B) in most parts of the domain operates in the
steep linear region of the BH-curve, a rough estimate, e.g., µ = 1000µ0, can be employed
as a global weighting factor. In summary, choosing a global weighting factor is a critical
and challenging task, as it has to suit the entire range of the used measurement points.
This issue is addressed by using local adaptively adjusted weighting factors.

5.2 Local weighting factors

Since we have no prior knowledge on the operating point of each element, the weighting
factors need to be assigned adaptively during the data-driven iteration. At the beginning
of the algorithm, the factors are initialized as in the case of a global weighting factor,
see Section 5.1. A few iterations with a globally averaged weighting factor are necessary,
since the states (h×,b×) are randomly initialized in Dh. A too early local adaptivity could
estimate factors that are not optimal. After a few (≈ 4) iterations, the global weighting
factor is substituted by local ones. The local weighting factors are updated with respect
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to the current operating point within the material data set. Now, every time a new state
(H×

h ,B
×
h ) ∈ Dh is obtained, the weighting factors are updated such that

ν̃r(x) =
Nelements∑︂
e=1

νd,r(b
×
e )1e(x), (5.10)

1e(x) =
{︃

1, x ∈ Te
0, else , (5.11)

where Te refers to the e-th element of the triangulation of Ω, b×e = B×
h,r(xe), xe denotes

the quadrature point in element e and r ∈ {x, y, z}. The newly assigned weighting factor
ν̃ and its inverse µ̃ are now employed for one iteration in the weak forms (3.22) and in
the distance function (3.28). Consequently, the linear system matrices in (3.31) need to
be reassembled. The presented approach seems similar to the way material constants are
assigned within a standard Newton solver. Still, the material is not explicitly modeled,
and the data-driven solver does not attribute a physical representation to the weighting
factors. The data-driven Algorithm 1 is adapted accordingly, as shown in Algorithm 2.

5.3 Summary

We discussed the influence of the weighting factors µ̃, ν̃ on the performance and accuracy
of the data-driven algorithm. A local adaptively adjusted weighting factor was proposed,
which is chosen to be the tangent on the current operating point in the HB data phase
space. Therefore, each element in the triangulation of Ω obtains its own weighting factor
and, as a consequence, the stiffness matrices of the FE method need to be reassembled in
each data-driven iteration.
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Algorithm 2 Iterative scheme for the data-driven FE magnetostatic field solver. The gray
part shows the extension according to the local weighting factors.

initialize (h×,b×) randomly on measurement data
estimate ˜︁ν with measurement data
while (h◦,b◦)i ̸= (h◦,b◦)i−1 and |∆em,i −∆em,i−1| > δ∆em do

Solve
Kν~a = l×A
Kν~η = l×η

Update
b◦ =

[︁
(curl Ah(x1))⊤, . . . , (curl Ah(xNelements))

⊤]︁⊤
h◦ = h× +

[︁
(ν̃(x1)curlηh(x1))⊤, . . . , (ν̃(xNelements)curlηh(xNelements))

⊤]︁⊤
Find (h×,b×) in Dh adjacent to (h◦,b◦) with (3.28).
Compute energy mismatch |∆em,i| with (2.31).

if i > 4 then
assign local weighting factor ν̃ to elements (5.10)
reassemble stiffness matrix Kν̃ (3.31)
update distance function with ν̃ (3.28)

end if

end while

only for local weighting
factor assignment
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6 Computational complexity

The computational complexity of the data-driven solver is dictated by two main factors.
For each data-driven iteration, two linear systems need to be solved, followed by the
evaluation of the nearest neighbor problem. Depending on the number of DoFs, the
amount of measurement data, and the dimension of the phase space, the dominating costs
are related to either solving the linear systems or finding the nearest neighbors.

Solving a linear system amounts to a complexity of O(N3
edges) if a standard direct solver

is used. This complexity is analogous to the one of a standard Newton solver, where the
majority of the computational cost is also attributed to solving a linear system in each
iteration. However, considering for instance approach 1 from Section 4.1, two linear
systems of the same size as those in the Newton solver have to be solved in the data-driven
case.

As the data and/or the dimension increases, the nearest neighbor problem becomes the
dominating factor in computational efficiency. However, the computational costs of the
nearest neighbor problem are linked to the chosen method. If a brute-force computation is
carried out, finding all nearest points has a complexity O(NelementsN). Hence, brute-force
computation is effective only for small data sets. However, there is no training time as all
computation is done on demand. Using a KD-tree, the average complexity for finding the
nearest points is O(Nelements logN). The training of the KD-tree strongly depends on the
considered algorithm. However, irrespective of the choice, if many queries are expected,
i.e., Nelements is large, the costs for training are negligible.

There are several strategies to further decrease the computational costs. Without any
claim to completeness, these are for instance:

• If a global weighting factors is employed, LU-factorization can be used, reducing
the costs for solving the system to O(N2

edges), where the cost for the factorization is
O(N3

edges) to be spent only once. Then, the data-driven solver scales (asymptotically)
better than the Newton solver. However, if the weighting factors are adaptively
altered, the system matrices have to be reassembled, which negates the benefit of
the LU-factorization.

• Adaptively chosen weighting factors drastically reduce the number of data-driven

48



iterations, see [47]. However, this approach is not straightforward to apply if non-
diagonal weighting factors ν̃ are employed. Furthermore, as the distance metric
changes in each iteration, sophisticated nearest neighbor approaches such as binary
search trees become unattractive, as a new training sequence would be necessary
after each data-driven iteration.

• The computational cost of the nearest neighbor problem increases significantly
if dimension and/or data density increases. A multi-level based approach was
presented in [74] to tackle that issue. Here, multi-level is thought in the data sense,
i.e., a hierarchical sequence of data sets of increasing cardinality is employed with
D̃0 ⊂ D̃1 ⊂ . . . D̃N , where D̃0 denotes the coarsest level. The coarse data sets are
extended by data of a finer set that lies within a predefined sphere with respect to
the solution converged with the coarse set. This approach is of particular interest
when one is in the big data regime for high dimensional problems.

• Investigations on the efficiency of the nearest neighbor problem have been the
focus in [42]. Therein, efficient data-structures have been employed together
with approximate nearest neighbor algorithms, which significantly reduced the
computational demand of the nearest neighbor problem.

In summary, we may conclude that the data-driven solver remains more costly than
the conventional one. However, the exact costs are strongly problem dependent and are
related to the amount of available data and used mesh size. Furthermore, on the side of
the conventional solver, the costs for finding an appropriate model is an additional burden
that does not exist in the data-driven framework.
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7 Properties of the data-driven minimization
problem

In this section, we discuss the properties of the data-driven optimization problem and
the influence of the randomly chosen initial states on the data-driven solution. Both
aspects will be analyzed on a practical level. For a rigorous mathematical analysis, we
refer the reader to [30, 31]. However, we would like to summarize some key findings
from these studies. In the case of linear elasticity, it has been shown that the conventional
solution is recovered when the measurement data set is locally a graph, i.e., following
H(B). That means that if the constitutive equation is sampled with increasing fidelity,
the data-driven solution converges to the conventional solution that uses this constitutive
equation. In turn, if real measurement data (excluding noise and measurement errors)
is considered, the data-driven solver converges asymptotically to the underlying hidden
material response. The influence of the weighting factors and the initially chosen states
has further been discussed and analyzed in [69, 66, 90, 97, 10, 75].

First, we investigate the entire minimization problem, i.e., without splitting the double
minimization problem into two distinct minimization problems and performing a fixed-
point iteration. Therefore, we revisit the introductory example in Section 2.2.1. To
illustrate the behavior of the distance function of the minimization problem, we employ
(2.7) which allows us to directly incorporate the circuit constraint into the minimization
problem. The minimization problem is thus given by

min
H

F (H, D̃) = min
H

min
(H×,B×)∈D̃

µ̃
(︁
H −H×)︁2 + ν̃

(︃
− ℓFe
RairSFe

H +
Ncoil I
RairSFe

−B×
)︃2

.

(7.1)
The normalized variant of the distance function (7.1) is shown in Figure 7.1a over the
magnetic field strength H for different weighting factors µ̃. For the computation of the
distance function, 20 data points have been employed. We can clearly observe that the
choice of the weighting factors has a large impact on the characteristics of the minimization
problem. In this case, choosing µ̃ too small, results in a highly non-convex minimization
problem. The function smooths out as a larger constant is considered, or if directly the
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Figure 7.1: Normalized distance function over magnetic field strengthH . (a) For N = 20
and varying weighting factor µ̃. (b) For µ̃ = 100µ0 and increasing amount of
measurement data.

adaptively chosen weighting factors introduced in Section 5 are employed. However, even
when considering a sub-optimal choice for the weighting factor, e.g., µ̃ = 100µ0, the
distance function becomes manageable as more measurements are taken into account,
which is in line with the theoretical findings in [30]. The distance function for µ̃ = 100µ0
for increasing cardinality of the measurement data sets is depicted in Figure 7.1b. In
conclusion, minimizing the distance function remains a non-convex optimization problem
due to the finite number of data points.

Let us now return to the fixed-point iteration. Figure 7.2a shows the fixed-point iteration
for N = 20 data points and a weighting factor µ̃ = 400µ0 (black nodes and gray arrows),
respectively for µ̃ = (ν+d )

−1 (blue nodes, blue arrows). Both simulations have been carried
out until ζ×i = ζ×i+1, i.e., the nearest neighbor problem selects the same measurement
state in two consecutive iterations. The figure illustrates the issue of the non-convex
optimization problem. Considering a sub-optimal choice µ̃ = 400µ0 and the sparse data
set, the solver stagnates at a local minimum, distant from the optimal solution. Therefore,
the initial starting point (h×, b×) has a large influence on the accuracy of the solution.
Contrarily, if an adaptively chosen weighting factor is considered, the solver converges
with a few iterations in a close neighborhood of the optimal solution. As the amount of
measurement data employed increases, the accuracy of the solver improves, bringing the
solution closer to the optimal one, see Figure 7.2b for N = 100. However, even when not
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Figure 7.2: Fixed-point minimization in theHB phase space of the circuit problem from
Section 2.2.1. The crosses show the available measurement data, the black
line shows the states compatible with the circuit equation. The minimization
has been carried out for µ̃ = 400µ0 (gray arrows, black nodes) and µ̃ = (ν+d )−1

(blue arrows, blue nodes) until the solver reached convergence. (a) ForN = 20
data points. (b) For N = 100 data points.

obtaining the optimal solution, numerical tests have shown that the data-driven solver
provides a suitable approximation of the solution. We will strengthen this statement later
when discussing the numerical results.

A different approach that does not rely on the fixed-point iteration was proposed in [66].
There, the optimization problem is solved globally through mixed-integer programming.
However, this approach is unfeasible if large data sets are employed.
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8 Numerical examples

Our goal is now to validate the proposed data-driven model-free FE solver. A typical
approach is to compute a solution with a different solver that is accepted to produce viable
results, which can then be employed as a reference. In our case, this is a conventional
FE solver which either uses successive-substitution or the Newton method to solve the
nonlinear PDE. The employed material relation in the reference solution is then the
starting point for the data-driven solver. To show the convergence of the data-driven
solver, we generate synthetic measurement data utilizing the material relation used in
the conventional solver. Since the limited data set is only an approximation of the true
material relation, the data-driven solution is expected to converge towards the reference
solution as the accuracy of the approximation improves. This is achieved by generating sets
of increasing cardinality, wherein the data points are evenly distributed in either H or B.
Furthermore, to focus on the error which is attributed to the finite amount of measurement
data, both solutions, the data-driven and the conventional one, are computed on the same
mesh. To measure the error in the field solution, we introduce the error norm

ϵem =
∥ζ◦h − ζh,ref∥L2

µref,νref
(Ω)

∥ζh,ref∥L2
µref,νref

(Ω)
, (8.1)

where ζ◦h ∈ Mh, ζh,ref is the reference solution and µref,νref are the permeability and
reluctivity, respectively, of the reference solution. In case of a nonlinear material relation,
µref and νref are evaluated at the resulting operating point within theBH-curve. Moreover,
the error in the parts with known material relation (here only the air parts) is monitored
with the relative error in the energy, that is,

ϵair =

⃓⃓
(Hh,Bh)Ωair − (Hh,ref,Bh,ref)Ωair

⃓⃓
(Hh,ref,Bh,ref)Ωair

. (8.2)

To quantify the uncertainty in the solution due to the randomly chosen starting values
(h×,b×) ∈ D̃, we also compute the median, also known as the 50th percentile Q2[ϵem],
the 25th percentile (first quartile Q1[ϵem]), and the 75th percentile (third quartile Q3[ϵem])
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[49, 63]. Here, ϵem is a vector containing the energy mismatch forM simulation runs with
randomly chosen initial values. Other statistical location parameters such as the mean can
also be computed. However, the numerical results exhibit a heavily skewed probability
density function (PDF), which is the reason why the percentiles Q1[ϵem], Q2[ϵem], and
Q3[ϵem] are more reasonable metrics compared to mean and variance. If not stated
differently,M = 100 simulations with randomly chosen initial values are carried out. Note
that if the hybrid approaches are under investigation, they share the same measurement
set and additionally the same random initializations. Furthermore, all numerical results
have been obtained with a stopping criterion of δ∆em = 10−10. For the sake of brevity, we
will call the hybrid approaches in the order of their introduction, that is,

• approach 1: Exact material relation minimized by the nearest neighbor algorithm,
see Section 4.1;

• approach 2: Exact material relation minimized in the distance function, see Sec-
tion 4.2;

• approach 3: Exact material relation minimized in the Lagrange multiplier, see
Section 4.3.

8.1 Quadrupole

For our numerical investigations, we consider the model of a quadrupole magnet. To-
gether with dipole magnets which bend the beam and sextupoles magnets which correct
chromaticity, quadrupole magnets are one of the key parts in synchrotron accelerators,
as the large hadron collider (LHC) at CERN [116]. Quadrupole magnets are utilized to
focus the beam, such that particle beam trajectories are kept close to the design orbit.
Quadrupole magnets provide a so-called gradient field, that is, the magnetic field strength
increases linearly with respect to the distance of the magnet’s center. Focusing only on the
field in transversal direction, we neglect the fringe fields of the magnet at the front and at
the back and consequently consider a two-dimensional model of reduced computational
complexity. The 2D cross-section of the quadrupole is illustrated in Figure 8.1a and
consists of three different domains. These are the vacuum part in white, the iron yoke
in gray, and the excitation coils in purple. Assuming that the permeability of the yoke
is sufficiently high, the magnetic flux is forced to stay in the yoke and fringe fields can
be neglected. Then, a homogeneous Dirichlet BC is satisfactory on the outer domain
of the quadrupole. Furthermore, exploiting the rotational symmetry of the model, it is
sufficient to consider only one eighth of the quadrupole’s geometry, shown in Figures 8.1a
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(a)

Bn|ΓD = 0

Ht|ΓN = 0

(b)

Figure 8.1: (a) 2D cross-section of a quadrupole magnet. The gray area shows the iron
yoke, the purple area the coils, and the white area is vacuum. The marked area
refers to the considered computational domain. (b) Illustration of a possible
triangulation of the computational domain. Homogeneous Dirichlet (dashed
boundary) and Neumann (solid boundary) BCs are considered.

(marked area) and 8.1b. The iron yoke is typically made out of soft magnetic materials,
e.g., ARMCO® [19, 4]. Those materials exhibit a small hysteresis and are therefore
frequently used in inductors, electrical machines, and other devices to reduce losses. This
benefit comes at the cost of a strongly nonlinear magnetization curve, which is likely to
be challenging for numerical solvers.

The validation strategy of the data-driven algorithm is now as follows. First, data
convergence is shown when considering a linear material in the iron yoke. In the follow
up, the algorithm’s ability to handle strongly nonlinear materials is investigated. In both
scenarios, the introduced hybrid approaches, see Section 4, are compared. Subsequently,
an investigation is carried out on the local adaptively adjusted weighting factors. In all
considered cases, the permeability in the vacuum part and the coil are considered to
be exactly known with µ = µ0. These two domains are thus handled in accordance to
the chosen approaches introduced in Section 4. Moreover, we note that a convergence
study with respect to the mesh size is omitted in this work, since numerical tests and
theoretical considerations have already concluded that no notable difference in the data-
driven solution is to be expected [69]. We can also confirm that conclusion, based on own
numerical tests with the quadrupole magnet model.
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8.1.1 Hybrid solver - nonlinear known material

We revisit the hybrid solver once more. However, for the following numerical experiments,
we assume that the magnetization in the y-direction in the iron yoke is known. The linear
response in the y-direction in the last numerical examples shall now be an approximation
to the true nonlinear response. The linear approximation as well as the nonlinear model
are shown in Figure 8.2a. The nonlinear BH-curve follows the Brauer model (??) with
parameters k1 = 4mH−1, k2 = 1.8T−2, and k3 = 1000mH−1. The minimization to the
exact nonlinear material relation is now performed with the nearest neighbor algorithm,
see Section 4.1. Thus, instead of updating the measurement states at the quadrature
points with (4.5), minimization (4.2) is carried out at each quadrature point. Afterwards,
the local weighting factors are updated with the known reluctivity.

For the simulation, adaptively adjusted weighting factors are employed, which allows
us to compute a reliable result with a single starting value for the fixed-point iteration. To
better assess the error contributions, we compute the energy mismatch error in the iron
yoke separately for the x- and the y-direction with

ϵ2em,ΩFe,r =

∥H◦
h,r −Hh,r,ref∥2L2

µr,ref
(ΩFe)

+ ∥B◦
h,r −Bh,r,ref∥2L2

νr,ref
(ΩFe)

∥Hh,r,ref∥2L2
µr,ref

(ΩFe)
+ ∥Bh,r,ref∥2L2

νr,ref
(ΩFe)

, (8.3)

where r = {x, y} and ΩFe refers to the domain of the iron yoke. The global energy
mismatch error ϵem, as well as the energy mismatch error in ΩFe for the x- and the y-
direction are shown in Figure 8.2b over the amount of employed measurement data.
We observe that all errors converge linearly with respect to the number of data points.
Furthermore, the errors in x-, respectively y-direction, show only a minor difference,
although the material relation in the y-direction is known. The dominating error is
thus attributed to the finite measurement data that is employed in the x-direction. The
number of data-driven iterations remains on the same level as in the example in Section ??.
However, if a strongly nonlinear material is utilized in the y-direction, e.g., the same
relation as in the x-direction, the number of data-driven iterations increases noticeably. For
instance, in the considered case,≈ 21 iterations are necessary for convergence forN = 104.
Conversely, if the material features a strongly nonlinear response, ≈ 103 iterations are
necessary for the same size of data set.

Summary

We may conclude that with the approach proposed in Section 4.1, nonlinear known
material responses can be easily handled in the data-driven solver. However, for strongly
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Figure 8.2: (a) Nonlinear BH-curve in the y-direction and its linear approximation
(dashed). (b) Convergence of the energy mismatch errors over the amount of
employed data pointsN . The spatially dependent errors ϵem,ΩFe,x, respectively
ϵem,ΩFe,y show the energy mismatch error in the iron yoke.

nonlinear materials, the number of necessary data-driven iterations increases significantly.
Furthermore, the overall costs of the data-driven solver increase since a minimization
problem needs to be solved for each quadrature point, most likely with numerical methods.

8.2 DC-current electromagnet with real measurement data

With the next example, we want to address two major questions regarding the proposed
data-driven solver. First, we want to analyze how the data-driven solvers scales with
computationally demanding problems. Second, we will investigate the solution accuracy
using real-world measurement data, which directly raises the question of whether and how
a reference solution can be employed. These tasks will be carried out on a computationally
demanding 3D DC-current electromagnet. This section closely follows [48]. The full 3D
model of the electromagnet is depicted in Figure 8.3a, showing the iron-region in gray, the
coil-region in purple, and the air-region in blue. The inductor is composed of an E-shaped
iron yoke part ΩFe,E , with a wire winding arranged inside. The coil region is denoted by
Ωcoil. The magnetic circuit is closed by an I-shaped yoke part ΩFe,I, but only up to an air
gap of length ℓair, which defines the domain Ωair. Further details about the geometrical
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Figure 8.3: (a) Full model of the DC-current electromagnet with iron- (gray), coil- (purple)
and air-region (blue) (b) 2D cross-section of the one-quarter of the electro-
magnet.

dimensions can be found in Table 8.1 and in Figure 8.3b. Additionally, the inductor is
surrounded by a sphere filled with air, which is represented by the domain Ωsphere. The
sphere’s radius is given by rs = 0.28m.

By exploiting the electromagnet’s symmetry, only one quarter of its geometry needs to be

Table 8.1: Geometrical dimensions of the in-
ductor model.

quantity value in mm

ℓE 30
ℓC 90
ℓI 30
ℓair 3.3
wE 30
wC 30
wFe 90
tC 30
tFe 55

Table 8.2: Material properties and excita-
tion.

quantity value units

k1 10 mH−1

k2 1.8 T−2

k3 100 mH−1

I 50 A
Ncoil 66 –
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simulated, which reduces the computational costs significantly. As a result, homogeneous
Dirichlet BCs are applied to the symmetry-related boundaries. The 2D cross-section of the
quarter is shown in Figure 8.3b. Themagnetostatic problem is expressed through the vector
potential A. Consequently, magnetic wall boundary conditions (i.e., homogeneous Dirichlet
BCs) are applied to the sphere boundary. Since the radius of the sphere is approximately
an order of magnitude larger than the inductor model, any introduced approximation
error is negligible. After discretization, the domain contains 193311 tetrahedral elements,
leading to 263627 DoFs, which can be decomposed into 230375 edges accounting for the
DoFs for the vector potentials and 33252 accounting for the DoFs for the weak Coulomb
gauge. Note that two systems of this size have to be solved in each data-driven iteration.

8.2.1 Artificial measurement data

The DC-electromagnet’s iron part is considered to be isotropic and nonlinear. To model the
nonlinearity of the iron part, we employ the already introduced Brauer model (??), yet for
each dimension separately. The model parameters, the excitation, and the number of turns
of the coil is found in Table 8.2. Drawing from the conclusion of Section 8.1, approach 1
handles the domainsΩcoil andΩair. Furthermore, adaptively adjusted weighting factors are
employed, which allows us to simulate the problem for a single initial value. After creating
measurement sets of increasing cardinality, the simulation is carried out to validate the
data-driven solver for this three-dimensional problem.

The data convergence of the energy mismatch error ϵem and the relative error in the
air gap ϵair are depicted in Figure 8.4a. The results unequivocally demonstrate that the
data-driven solution converges towards the conventional solution as more measurement
data are employed. As in the 2D case, a linear convergence rate for ϵem is achieved when
adaptive weighting factors are utilized. The relative error in the air gap ϵair converges
quadratically with respect to the number of data points. The convergence of the errors
with respect to the necessary data-driven iterations is shown in Figure 8.4b. Again, as
in the 2D case, only a moderate number of iterations is necessary until convergence is
reached.

To assess the local accuracy of the data-driven solver, we examine the field solution
for the magnetic flux density computed by the data-driven algorithm on a sequence of
progressively larger data sets. The magnitude of the magnetic flux density Bh in the XY
cross-section of the DC-electromagnet is depicted in Figure 8.5. From bottom to top, the
amount of measurement data increases from N = 10 to N = 100. The top plot shows the
field computed with the conventional solver and serves as a reference. On a qualitative
level, we clearly observe that the data-driven solution becomes more accurate if the amount
of measurement data is increased. For N = 10 a rather coarse solution is produced by
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Figure 8.4: DC-electromagnet: The results have been computed with adaptively chosen
weighting factors. (a) Energy mismatch error ϵem and relative error of the
energy in the air gap ϵair over the number of employed measurement points.
(b) Energy mismatch error ϵem over the number of data-driven iterations.

the data-driven solver, which is expected for such sparse measurement data. However,
already for N = 100 data points, the difference between the data-driven solution and the
reference solution is almost indistinguishable. We want to emphasize that the results do
not show any local phenomena of the data-driven solver as sufficient measurement data
are available. Figure 8.6 displays the magnitude of the difference between the magnetic
flux densities. Again, the plot does not show any specific localized field error. Taking both
field plots into account, for N = 10, the field solution is not adequately resolved, and
the absolute field error is beyond standard engineering tolerances. However, depending
on the requirements, the solution computed with N ≥ 50 might already be sufficient for
several problems in engineering or for a first understanding of the problem.

8.2.2 Real world measurement data

The strength of the data-driven solver lies in cases where no to little information about
the material response is known. The only available information is given by discrete
measurement data. Therefore, the subsequent simulation employs only a fixed amount of
real-world measurement data. The iron yoke is therefore considered to be made from a
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Figure 8.5: DC-electromagnet: Magnitude of the magnetic flux density B at the air gap.
From top to bottom: reference solution and data-driven solutions computed
with N ∈ {10, 50, 100}.

low-cost steel, called S355. The employed measurement data was gratefully supplied by
[4]. In order to assess the performance of the data-driven solver, it is necessary to establish
a conventional solver, i.e., a constitutive equation that suits the available data needs to be
found. In general, if real world measurement data are considered, we usually have to take
into account that the measurements are polluted by noise. With respect to the modeling
problem, that means that standard interpolation techniques are most likely to fail. Even
when regression techniques are considered, special care is necessary such that physical
properties and numerical demands are satisfied. Contrarily, the distance-minimizing
data-driven framework is highly sensitive to outliers in the measurement data set. Possible
treatment of noisy data has been introduced in [70, 65]. However, since the available
data are sparse (28 measurements) and the noise present in the data is negligible, we
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Figure 8.7: DC-electromagnet: Magnitude of the difference in the magnetic flux densities
B between the reference solution and data-driven solutions computed with
N ∈ {10, 50, 100}.

omit the introduction of the noisy data-driven solver. Instead we employ the standard
distance-minimizing data-driven solver. Furthermore, the excitation current is set to
I = 40A such that the entire bandwidth of the available measurement data is employed.

We present two different material models which can be employed in the conventional
solver. Those are the already introduced Brauer model (??) and an improved Brauer
model [56]. The extended Brauer model improves the standard Brauer model in the
Rayleigh region, as well as in the region of saturation. This is achieved by constructing a
compound function for the three different areas, while enforcing differentiability at the
connections. The two models as well as the available measurement data are depicted
in Figure 8.8a. One clearly observes that the original Brauer model fails to model the
Rayleigh part completely. Moreover, the steep linear part also shows a large difference
to the measurement data, whereas the approximation is good in the saturation part. In
contrast, the extended Brauer model captures the Rayleigh part and provides a better
fit in the steep linear part. Judging from the plot, both approaches provide a similarly

62



101 102 103 104

0

1

2

H in Am−1

B
in

T

Brauer
ext. Brauer
data

(a)

0 1,000 2,000 3,000

0

0.5

1

1.5
data-driven
ext. Brauer
data

|Hx| in Am−1

|B
x
|i
n
T

(b)

Figure 8.8: DC-electromagnet: (a) Measurement data (purple crosses) of the S355 sam-
ple, Brauer model (dashed blue line) and extended Brauer model (solid black
line). (b) Solution of the data-driven solver (blue dots) and the conventional
solver (black dots) at the quadrature points that are compatible with magne-
tostatics. The measurement data are depicted by the purple crosses.

good approximation of the saturation part. In summary, both models show approximation
errors, which can be attributed to the sparse data set and the considered model choice.
Unlike conventional solvers, which require a modeling procedure, the data-driven solvers
bypasses this step and can be used directly.

Since we started directly from measurement data, no reference solution is available. As
a first step, we analyze both methods qualitatively. Figure 8.8b shows exemplarily the
magnitude of the magnetic field strength and magnetic flux density in the x-direction
at the quadrature points. The available measurement data are shown by purple crosses,
the solution obtained with the conventional solver utilizing the extended Brauer model
by blue dots, and the data-driven solution by black dots. At first glance, we observe
that the data-driven solution clusters around the sparse measurement data. This can
be expected as only 28 measurement points are available. Nevertheless, the clusters
are around the available measurement data in all regions of the BH-curve. While the
conventional solution exhibits a good agreement in the steep linear part, it is comparatively
less accurate in the Rayleigh region and in the transition region between the linear and
saturation regions. We conclude that both methods suffer from the sparse data set, albeit
differently.
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A quantitative comparison is carried out by computing the energy mismatch from the
two solutions to the available measurement data, i.e., we compute

ϵ2em,data = ∥Hh −H×
h ∥

2
L2
µext.Brauer (ΩFe)

+ ∥Bh − B×
h ∥

2
L2
νext.Brauer (ΩFe)

, (8.4)

where the permeability and reluctivity are obtained from the extended Brauer model
and (H×

h ,B
×
h ) are the measurement states that minimize (3.25a) for the given solutions.

The energy mismatch (8.4) for the data-driven solution is ϵem,data = 2.9 · 10−4Ws, while
the corresponding error for the conventional solution is ϵem,data = 3.9 · 10−4Ws. The
results indicate that both approaches exhibit comparable accuracy. The magnetic energy
in the air gap amounts for 0.8755Ws for the data-driven solver and for 0.8685Ws for the
conventional solver using the extended Brauer model.

Summary

Given the very sparse measurement data, the data-driven and the conventional solver
deliver acceptable solutions. However, the conventional solver strongly benefits from the
effort and research that has already been spent to find an appropriate model relation for
the given material. Contrarily, the data-driven solver disregards the model and yields
an assumption-free solution. Given these results, it is reasonable to conclude that the
data-driven solver may be the superior approach in scenarios where complex materials
are utilized and there is limited modeling information available.
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9 Appendix

9.1 Hybrid solver - Euler-Lagrange

9.1.1 Stationary solution to the Lagrangian of Section 4.2

The Euler-Lagrange equation in the domain with data-driven material Ωdd reads

∂

∂A
: −curl

{︁
ν̃curl A− ν̃B×}︁ = 0 in Ωdd, (9.1a)

⇐⇒ curl (ν̃curl A) = curl
(︁
ν̃B×)︁ in Ωdd, (9.1b)

∂

∂H
: µ̃H− µ̃H× + curlη = 0 in Ωdd, (9.1c)

⇐⇒ H+ ν̃curlη = H× in Ωdd. (9.1d)

In the domains with known material relation, the stationary solution is given by

∂

∂A
: −curl {νcurl A− µνH} = 0 in Ωex, (9.2a)

⇐⇒ curl (νcurl A)− curlH = 0 in Ωex, (9.2b)
∂

∂H
: −µνcurl A+ µνµH+ curlη = 0 in Ωex, (9.2c)

⇐⇒ H+ νcurl (η − A) = 0 in Ωex. (9.2d)

Applying the curl operator on (9.1d) and (9.2d) yields

curlH+ curl (ν̃curlη) = curlH× in Ωdd, (9.3a)
curl (νcurl A)− curlH = curl (νcurlη) in Ωex. (9.3b)

Further inserting (9.3b) in (9.2b) leads to

curl (νcurlη) = 0 in Ωex, (9.4)
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in the domain with exactly known material relation. To obtain the solution in the entire
domain, we combine (9.4) with (9.1b), which yields

1Ωddcurl (ν̃curl A) + 1Ωexcurl (νcurlη) = 1Ωddcurl
(︁
ν̃B×)︁ (9.5)

Further combining (9.3a) with (9.3b) and utilizing Ampère’s law J = curlH to replace
the unknown field H we obtain

1ΩddJ+ 1ΩexJ+ 1Ωddcurl (ν̃curlη) + 1Ωexcurl (νcurlη)− 1Ωexcurl (νcurl A) = 1ΩddH
×

⇐⇒ 1Ωexcurl (νcurl A)− 1Ωexcurl (νcurlη)− 1Ωddcurl (ν̃curlη) = J− 1ΩddH
×

(9.6)

9.1.2 Stationary solution to the Lagrangian of Section 4.3

The Euler-Lagrange equation in the domain with data-driven material Ωdd reads

∂

∂A
: −curl

{︁
ν̃curl A− ν̃B×}︁ = 0 in Ωdd, (9.7a)

⇐⇒ curl (ν̃curl A) = curl
(︁
ν̃B×)︁ in Ωdd, (9.7b)

∂

∂H
: µ̃H− µ̃H× + curlη = 0 in Ωdd, (9.7c)

⇐⇒ H+ ν̃curlη = H× in Ωdd. (9.7d)

In the domains with known material relation, the stationary solution is given by

∂

∂A
: −curl (νcurlη) = 0 in Ωex, (9.8a)

∂

∂H
: curlη = 0 in Ωex, (9.8b)

where we employed the Euler-Lagrange equation

∂L
∂A

− curl
{︃

∂L
∂curl A

}︃
+ curl curl

{︃
∂L

∂curl curl A

}︃
= 0, (9.9)
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see, for instance, [105]. Combining (9.7b) with (9.8a) and additionally employing the
constraint J = curl (νcurl A) for x ∈ Ωex together with (9.7d) we obtain

1Ωddcurl (ν̃curl A) + 1Ωexcurl (νcurlν) = 1Ωddcurl
(︁
ν̃B×)︁ , (9.10a)

1Ωexcurl (νcurl A)− 1Ωddcurl (ν̃curlη) = J− 1ΩddcurlH
×. (9.10b)
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