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Abstract

The collection of point cloud data has increased drastically in recent years, which poses
challenges for the data management layer. Multi-billion point datasets are commonplace
and users are getting accustomed to real-time data exploration in the Web. To make this
possible, existing point cloud data management approaches rely on optimized data for-
mats which are time- and resource-intensive to generate. This introduces long wait times
before data can be used and frequent data duplication, since these optimized formats are
often domain- or application-specific. As a result, data management is a challenging and
expensive aspect when developing applications that use point cloud data.

We observe that the interaction between applications and the point cloud data man-
agement layer can be modeled as a series of queries similar to those found in traditional
databases. Based on this observation, we evaluate current point cloud data management
using three query metrics: Responsiveness, throughput, and expressiveness. We contribute
to the current state of the art by improving these metrics for both the handling of raw
files without preprocessing, as well as indexed point clouds.

In the domain of unindexed point cloud data, we introduce the concept of ad-hoc
queries, which are queries executed ad-hoc on raw point cloud files. We demonstrate that
ad-hoc queries can improve query responsiveness significantly as they do not require long
wait times for indexing or database imports. Using columnar memory layouts, queries
on datasets of up to a billion points can be answered in interactive or near-interactive
time, with throughputs of more than one hundred million points per second on unin-
dexed data. A demonstration of an adaptive indexing method shows that spending a few
seconds per query on index creation can improve responsiveness by up to an order of
magnitude. Our experiments also confirm the importance of high-throughput systems
when querying point cloud data, as the overhead of data transmission has a significant
effect on the overall query performance.

For situations where indexing is mandatory, we demonstrate improvements to the run-
time performance of existing point cloud indexing tools. We developed a fast indexer
based on task-parallel programming, using Morton indices to efficiently sort and dis-
tribute point batches onto worker threads. This system, called Schwarzwald, outper-
formed existing indexers by up to a factor 9 when it was first published, and still has com-
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petitive performance to current out-of-core capable indexers. Additionally we adapted
our indexing algorithm for distributed processing in a Cloud-environment and demon-
strate that its horizontal scalability allows it to outperform all existing indexers by up to
a factor of 3.

Lastly we demonstrated point cloud indexing in real-time during Light Detection And
Ranging (LiDAR) capturing, based on a similar task-based algorithm but optimized for
progressive indexing. Our real-time indexer is able to keep up with current LiDAR sensors
in a real-world test, with end-to-end latencies as low as 0.1 seconds.

Together, our improvements significantly reduce wait times for working with point
cloud data and increase the overall efficiency of the data access layer.
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Zusammenfassung

Die Größe und Menge von Punktwolken-Datensätzen, welche durch verschiedene Ver-
fahren generiert werden, ist im letzten Jahrzehnt stark gewachsen. Datensätze mit Milli-
arden oder sogar Billionen von Punkten sind keine Seltenheit mehr. Moderne Verfahren
ermöglichen den interaktiven Umgang mit verschiedensten Geodaten. Um die Arbeit mit
Punktwolken im gleichen Maße zu ermöglichen, bedarf es ausgefeilter Datenhaltungs-
Lösungen. Hierbei kommen dabei aktuell zeit- und rechenintensive Verfahren zum Ein-
satz, welche Punktwolkendaten strukturieren und in optimierte Formate bringen. Dabei
kommt es zu langen Wartezeiten in der Aufbereitung und häufig zur Duplikation der Da-
ten, da viele dieser optimierten Formate domänen- oder anwendungsspezifisch sind. In
der Entwicklung von Anwendungen auf Basis von Punktwolken ist daher eine effiziente
Datenhaltung eine der großen Herausforderungen.

Auch wenn Datenbanken nach wie vor eine Nischenlösung in der Datenhaltung von
Punktwolken sind, so lässt sich die Interaktion zwischen Anwendungen und der Daten-
haltung analog zu Datenbank-Abfragen darstellen. Basierend auf dieser Beobachtung las-
sen sich die aktuellen Ansätze zur Punktwolken-Datenhaltung anhand von drei Kriteri-
en bewerten: Die Antwortzeit, der Durchsatz, und die Ausdruckskraft von Punktwolken-
Abfragen. Unser Beitrag zum aktuellen Stand der Forschung sind Verbesserungen dieser
drei Kriterien für zwei gängige Datenhaltungs-Ansätze: Das Arbeiten mit Rohdaten sowie
die Indexierung von Punktwolken.

Im Bereich der Arbeit mit Rohdaten führen wir das Konzept der Ad-hoc Abfragen ein
und zeigen, dass moderne Hardware effizient genug ist, um viele gängige Abfragen in
kurzer Zeit und ohne Vorverarbeitung durchführen zu können. Im Vergleich zu typischen
Indexierungsprozessen oder einem Datenbank-Import können Ad-hoc Abfragen die Ant-
wortzeit deutlich verbessern. Mit Hilfe spaltenbasierter Datenformate ist dabei ein Durch-
satz von über 100 Millionen Punkten pro Sekunde möglich. Weiterhin demonstrieren
wir, dass adaptive Indexierung die Antwortzeiten bestimmter Abfragen um bis zu einer
Größenordnung verringern kann. Eine umfangreiche Evaluation von Ad-hoc Abfragen de-
monstriert deren Machbarkeit und zeigt den Zusammenhang zwischen Datendurchsatz
und Antwortzeit auf.

Im Bereich indexierter Punktwolken verbessernwir die Laufzeit aktueller Indexierungs-
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Algorithmen. Basierend auf dem task-parallel programming Ansatz und Morton Indizes
haben wir Schwarzwald entwickelt, ein System zur schnellen Berechnung eines für die
Visualisierung optimierten Index. Zum Zeitpunkt der Erstveröffentlichung war Schwarz-
wald bis zu 9 mal schneller beim Erstellen eines gleichwertigen Index verglichen mit
bestehenden Lösungen. Die Laufzeit der schnellsten aktuell verfügbaren Out-Of-Core In-
dexer ist vergleichbar zu der von Schwarzwald, wie wir in mehreren Testreihen belegen.
Wir demonstrieren außerdem, dass der zugrundeliegende Algorithmus von Schwarzwald
für die verteilte Verarbeitung in der Cloud adaptiert werden kann, was zu besserer Ska-
lierbarkeit und bis zu dreimal kürzeren Laufzeiten verglichen mit bestehenden Systemen
führt.

Zur weiteren Reduktion von Wartezeiten demonstrieren wir außerdem das erste echt-
zeitfähige Indexierungs-System für Punktwolken, welches eine Indexierung direkt wäh-
rend der Aufnahme am LiDAR Sensor ermöglicht. Die Verwendung unseres Echtzeit-
Indexers reduziert dabei die Wartezeit von der Aufnahme bis zur Nutzung der Daten
um mehrere Größenordnungen in den Bereich unterhalb einer Sekunde.

Unsere Verbesserungen verringern bestehende Wartezeiten in der Vorverarbeitung si-
gnifikant und erhöhen somit die Effizient in der Punktwolken-Datenhaltung.
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1 Introduction

“The world keeps happening, in
accordance with its rules; it’s up to us
to make sense of it and give it value.”

Sean M. Carroll

Trying to understand the world around is is a key part of what it means to be human,
and a driving factor behind the achievements of the human race. We adopted language
to share information about us and the world, developed the written word to persist this
information, and came up with the scientific method to make sense of this information.
While for the longest time in human civilization, information processing was constrained
by the computational power of our brains, the advent of the digital age has given us
never-before seen capabilities to process vast quantities of information and make sense
of it, all aimed at that singular goal to understand the world around us and our place in
it.

When it comes to understanding the physical world, digital representations of reality
are necessary to unleash the potential of our computational engines. An important part
of these digital representations is played by geospatial data: Data that is directly linked
to geographical locations [97]. Examples of geospatial data include satellite imagery,
weather data, maps, DEMs, city models, and point clouds. Using geospatial data, we
can better understand the current state of our world, how it changes, how we humans
impact it and drive that change, and it gives us the means to plan how we want to shape
the world. As visual creatures, our understanding of the world is often tied to what we
can see, as supported by the popular proverb “An image is worth more than a thousand
words”. Hence, many types of geospatial data are visual in nature: Maps are perhaps the
oldest form of visual geospatial data, used by humans for thousands of years to navigate
the globe. More recently, we have begun to create elaborate portrayals of the world in
digital form. Maps have become digital, augmented with contextual information, and
have extended from the two-dimensional plane into three-dimensional space. We have
built services that capture the real world and store it in digital form, enabling anyone
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to (virtually) visit almost any place on earth through its digital representation [69, 54,
14, 91]. Figure 1.1 shows how the fidelity of these modern representations compares to
traditional maps.

(a) Historical map (South Africa) [72] (b) Digital map (Cape Town) [107]

(c) Panoramic image (Cape Town) [117] (d) Interactive 3D city model (Cape Town) dis-
played with CesiumJS [25] using data from
OpenStreetMap [108]

Figure 1.1: Various geospatial data representations of our real world

The world around us is complex. Our digital representations have to be able to capture
a wide variety of properties. We want to be able to capture the tree structure of the
world’s oldest rainforests, the fine structure of cultural heritage sites, the complexity
of mega-cities as well as the variety of agricultural land usage. No one data format can
capture all these aspects in the required level of detail, but when it comes to capturing and
understanding the shape of our world, point clouds are a powerful and widely used digital
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representation. A point cloud is a collection of a large number of points which each carry
information encoded in typically only a handful of attributes, such as the point’s position
in three-dimensional space, its color, or even semantic information such as what type of
entity the point represents. Given enough points, it is possible to approximate real-world
objects with sufficient detail to gain insight into their structure, either algorithmically or
by visualizing the point cloud. Figure 1.2 shows point clouds at several different scales,
from single buildings to whole countries.

(a) Indoor point cloud [19] (b) Street-scale point cloud

(c) City-scale point cloud (d) Country-scale point cloud [1]

Figure 1.2: With point clouds, indoor scenes can be represented just as well as whole
countries. Data for images (b) and (c) courtesy of Deutsche Telekom IT.
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1.1 Point clouds as a tool for understanding the world

In this thesis, we explore the domain of point cloud data from a computer science per-
spective, starting from the bits and structures that make up a point cloud, to the way
we can store, organize, and work with point clouds within software. Understanding and
in particular optimizing the structure of point clouds requires understanding why point
clouds are a useful data representation and how they are used today.

1.1.1 Introduction to point clouds as a data representation

In principle a point cloud has a simple representation, mathematically nothing more than
a list of tuples. In a general-purpose programming language, such as C++, a point cloud
data structure can be expressed in a few lines of code:

struct Point {
float x, y, z; // Position in 3D space
std::byte red, green, blue; // RGB color
std::byte classification; // Object class

};
std::vector<Point> point_cloud;

The term “point” in “point cloud” does not refer to the mathematical concept of a zero-
dimensional object. Instead the points in a point cloud are approximations of the local
surface of the geometry that the point cloud represents. When visualizing a point cloud,
this surface is reconstructed from the points using a technique called splatting [159].
Compared to other geometric representations, such as triangle meshes or parametric sur-
faces, point clouds require no connectivity information and thus are one of the simplest
geometric representations. Conceptually, they sit between triangle meshes as pure sur-
face representations, and voxels as pure volumetric data, which makes them well-suited
for representing various natural structures, for example trees [85, 90]. The downside of
the lack of connectivity information is that a large number of points are required to ac-
curately represent surfaces, which results in point cloud datasets with millions, billions,
or even trillions of points.

These facts illustrate what sets point clouds apart from other types of data in the do-
main of computer graphics and why working with point clouds has its own set of chal-
lenges: Images and voxel data are similar in terms of number of samples, but where
their samples fall on a regular grid, point clouds are often irregularly sampled, making
data layout and access more challenging. This is one of the key contributors to many
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of the performance challenges that this thesis deals with. Triangle meshes on the other
hand contain irregular samples as well, but their connectivity information allows data
reductions that are not trivially possible for point clouds.

The attributes of each point provide a great deal of flexibility for domain-specific data to
be encoded into the point cloud. Physical information, such as reflectance or the number
of returned laser pulses, can be encoded just as easily as semantic information about the
type of object that a point belongs to. As an example, the popular LAS file format defines
over 20 different point attributes [7]. There are many different processes through which
point clouds can be obtained, from photogrammetric methods that compute a point cloud
from one or more images [158], to physical scanners which send out laser pulses and cap-
ture their reflections from surfaces and convert them into three-dimensional points [157,
93], a process called LiDAR.

1.1.2 Point cloud applications

The unique properties of point clouds—they are simple, versatile in physical size and
expressive capabilities, volumetric, and cheap to obtain—make them well-suited as a
data representation for a wide variety of applications: Measuring the precision of small-
scale structures in manufacturing [165], preserving cultural heritage sites [116, 162],
helping self-driving cars understand their surroundings [58] or classifying the structure
of forests [163] are all applications where point clouds have been successfully used.

Depending on the application, point clouds might be used directly (for visual analysis,
automated change detection, or entertainment) or as an intermediate format (city model
creation, Digital Elevation Model (DEM) creation, object classification). For those appli-
cations that use point clouds in their raw form, dealing with the vast number of points
becomes a challenge, especially when interactivity is desired. Applications which use
point clouds only as an intermediate representation are more concerned with the struc-
ture of the point cloud and often employ extensive preprocessing to convert the point
cloud into a more usable format, such as a semantic model, DEM or triangle mesh.

Many use cases deal with large-scale point clouds, from buildings to cities to whole
countries. Here, the number of points and memory size of the point cloud becomes espe-
cially challenging, as datasets become too large to fit into working memory or even onto
the harddrives of consumer-grade computers. Interactive applications have to be able to
quickly filter these large-scale point clouds for relevant information, while preprocess-
ing applications want to minimize their runtime and resource consumption to save time
and money. As the geospatial domain is moving towards Cloud-based processing [77],
minimizing resource consumption becomes an important factor as compute and memory
usage directly translate to cost. Geospatial data is Big Data [84] and thus faces the same
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challenges as other Big Data, in particular due to their large volume. Point clouds are no
exception and the challenges due to the size of point clouds have been recognized in the
scientific community [150, 119, 132]. The software and algorithms that process, ana-
lyze and visualize point clouds have to be able to deal with large quantities of data and
should be scalable to deal with the expected increase in data volume due to improvements
in point cloud capturing capabilities. Beyond just keeping up with the influx of data, it
would be beneficial to decrease the time from capturing the data to it being usable, as this
would allow users to quickly decide what data they are interested in, discarding unneces-
sary data and thus increasing processing speed, reducing resource usage and ultimately
cost.

Figure 1.3: Virtually placing a fiber distribution cabinet in the interactive planning soft-
ware Fibre3D, using spatial information provided by a point cloud. Images
taken from [78]

A use case that covers many of these challenges is the rollout of high-speed fiber net-
works in Germany. To plan fiber network connections for as many as 3 million households
per year, the telecommunications provider Deutsche Telekom AG built a cloud-based plat-
form for digital infrastructure planning. Through this platform, planners can plan and
verify the locations of trenches and distribution cabinets for fiber optics up to individual
homes (a technique called Fiber to the Home (FTTH)). Part of this platform is the web-
based planning and visualization tool Fibre3D, which visualizes 360° panoramic images
as well as point clouds and was developed in conjunction between Deutsche Telekom AG
and the Fraunhofer Institute for Computer Graphics Research IGD. Through the point
clouds, users can perform interactive placement of objects within the panoramic images,
as well as perform accurate spatial measurements, as can be seen in Figure 1.3. To enable
Fibre3D, Deutsche TelekomAG are capturing vast quantities of image and point cloud data
through specialized cars equipped with cameras and LiDAR scanners that drive through
the cities and villages where fiber rollout is planned. At the point of writing, about half

6



a Petabyte of data has been captured, with roughly a third of this size for the point cloud
alone. The resulting point cloud contains about 6.75 trillion points, almost an order of
magnitude more than the current AHN dataset [2], which is frequently used in the scien-
tific community to illustrate challenges related to very large point clouds [150, 96]. For
interactive visualization, large-scale preprocessing is required to make the point clouds
usable, for example by streaming them to a client application running in a web-browser.

The Fibre3D tool and the underlying data processing pipeline are described in a forth-
coming paper [78] and are one example for the challenges one encounters when working
with large-scale point cloud data. Dealing with these challenges requires investigating
and answering the research questions defined in Section 1.3.

1.2 Problem statement

Since point cloud data is generally large and unstructured, point cloud data manage-
ment is challenging. Continuous data acquisition with sophisticated scanners generates
datasets with trillions of points [148] while users are accustomed to consuming digital
content through web-browsers and mobile devices. To serve point cloud data to a wide
variety of applications, time- and resource-intensive preprocessing is used, which creates
optimized data structures [129, 133, 89]. Besides being costly to create, these structures
are domain-specific, so different applications require different types of preprocessing.
Despite considerable research on using Database Management System (DBMSs) for man-
aging point cloud data in a more general way [150, 32, 86], point cloud databases remain
an often ignored solution in favor of file-based data management.

The current state of point cloud data management consists of three competing ap-
proaches, all with their own set of shortcomings:

Raw files Point cloud data is stored in one or more files using common formats such as
LAS. Within a file, points are generally stored unordered with limited structure.
This storage model is the simplest one, as it requires only a file system, but the
lack of structure limits the types of computations that can be achieved without
considerable computational overhead.

Standalone index Point cloud data is stored together with an index, which allows effi-
cient access to subsets of the point cloud. Often, the index is implicit within the
structure of the data, for example the Entwine indexer uses an octree as the in-
dex structure and stores octree nodes as individual files on disk [61]. This is highly
efficient especially for web-based streaming, as accessing a single tree node is equiv-
alent to fetching a single file. The downsides of this data management solution in-
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clude the computational effort of creating the index structure, sometimes resulting
in downright crashes due to excessive memory usage, as well as its domain-specific
nature, typically resulting in a copy of the data that is unusable by other applica-
tions.

Point cloud Database Management System (DBMS) The point cloud data layout is man-
aged by the DBMS, as well as the creation and structure of any required indices. The
query capabilities of the DBMS can support a wide range of applications through
a unified data access layer, making it the most general point cloud data manage-
ment solution. Making a DBMS work well with a large point cloud with billions of
points is still nontrivial: Naively storing all points as individual records blows up
memory usage and index size, while grouping strategies require time-consuming
preprocessing and also decrease the query throughput.

Within this thesis, we improve upon the current state of point cloud data management.
For this, we build on an assumption based on observing the way applications access point
cloud data in practice, namely that every point cloud data access is equivalent to a query. To
find a good data management solution for a point cloud application means understanding
the types of queries that the application issues on the data:

• Visualizations of point clouds boil down to view-frustum and importance/LOD queries:
“The current machine can only render N points per frame at interactive speeds, so
for the current view frustum, find the N most important points”

• Segmentation and mesh reconstruction algorithms often boil down to neighbor-
hood queries: “For each point, find its k nearest neighbors in order to approximate
the local surface at this point”

• Analysis applications often employ queries natively: “Find all points that intersect
the given building footprint and calculate the median height of the points to ap-
proximate the building height”

We thus map the problems of the current point cloud data management solutions
onto three quantifiable properties of queries: Query responsiveness, query throughput,
and query expressiveness. Responsiveness dictates how quickly the application will get a
response to the query1. It not only includes the runtime of the query itself, but for ex-
plorative scenarios also includes any preprocessing time, for example an import into a
1We use responsiveness in favor of its inverse parameter latency. This way all three query properties eval-
uated in this thesis are positive quantities, which makes comparisons easy: The higher the quantity, the
better!
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Figure 1.4: Query parameters for the main point cloud data management approaches
used today.

database or the creation of an index structure. Throughput dictates how much data can
be retrieved in a given time period, and is especially important for visualization appli-
cations, as they require large quantities of points to achieve good visual quality. Expres-
siveness refers to the complexity and variety of the queries and is often vital to enable
analysis applications, which might combine an arbitrary number of point attributes in a
single query. Of the three properties, expressiveness is the hardest to quantify, but in
Chapter 3 we show that it can be related to the other two properties, in particular to
responsiveness.

The current strengths and weaknesses of the three main point cloud data management
approaches based on these three query properties are illustrated visually in Figure 1.4.
Improving query responsiveness, throughput, and expressiveness will benefit point cloud
applications in a variety of ways, such as:

• Performance improvements of preprocessing tools, specifically reduced runtimes,
reduced wait times and decreased cost.

• Enabling processes to run interactively and/or in real-time that previously were
only possible as offline batch processes.

• Reducing or removing wait-time for data imports, thus enabling faster data explo-
ration.
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1.3 Hypothesis and research questions

Based on the problem statement, we state the main research hypothesis of this thesis:

Hypothesis

Using adaptive indexing, parallel programming, as well as columnar memory layouts
improves the query throughput, responsiveness, and expressiveness of existing point
cloud data management approaches.

An in-depth overview of the current state of the art in Chapter 2 will explain why we
chose the three specific approaches adaptive indexing, parallel programming, and colum-
nar memory layouts as promising candidates for improving the current state of point cloud
data management.

To verify this hypothesis, we answer the following research questions:

RQ1 Can ad-hoc queries enable applications to work directly with raw point cloud files
instead of sophisticated index structures?

RQ2 How can the runtime of current point cloud indexing tools be improved?

RQ3 Can point clouds be indexed in real-time during the capturing process with a LiDAR
scanner?

These research questions deal with three related aspects of point cloud data manage-
ment. Research question 1 covers unindexed point cloud data and hence the data man-
agement approach that uses raw files as storage. Improving the capabilities of raw point
cloud files is beneficial to all point cloud applications, as ultimately every data manage-
ment approach has to interact with raw files at some point. Still, indexing is often neces-
sary, so research question 2 will help to understand how point cloud data management
based on indexing can be improved. Research question 3 then asks how data manage-
ment requirements like indexing can be integrated into the capturing process. Capturing
data in an optimized format would again benefit all point cloud applications and enable
fast data exploration.

1.4 Contributions

Each research question is answered in a dedicated chapter of this thesis. These three
content chapters contain several contributions that we made to the current state of the
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Figure 1.5: Our contributions to the state of the art of point cloud data management

art of point cloud data management. Our contributions are summarized in the following
paragraphs, with a visual overview shown in Figure 1.5.

Research question 1 is answered in Chapter 3, where we investigate ad-hoc queries as
a potential way through which applications can issue queries on raw point cloud data
without requiring any indexing. We developed a concept and reference implementation
for an ad-hoc query engine to achieve this goal, together with a theoretical model for the
throughput and latency of ad-hoc queries. We also developed a new file format that uses
a columnar memory layout to speed up queries on raw data compared to existing formats
such as LAS. The feasibility of ad-hoc queries is evaluated in an extensive case-study.

Research question 2 is answered in Chapter 4, where we introduce our novel point
cloud indexing algorithm based on task-parallel programming to index point clouds of
arbitrary size faster than the previous state of the art. We then extended our indexing
algorithm into a distributed point cloud indexing system built specifically for processing
in the Cloud and demonstrate that its horizontal scalability allows it to outperform all
existing point cloud indexing systems.

Research question 3 is answered in Chapter 5, where we developed the first system
capable of indexing point clouds in real-time during LiDAR capture. To enable this we
developed a new stream-based point cloud indexing algorithm that builds a high-quality
Modifiable Nested Octree index in real-time. We evaluated the stream-based indexer using
a real-world sensor system, demonstrating the feasibility of real-time indexing. We were
also able to demonstrate an end-to-end latency of about 0.1 seconds from the time a point
was captured by the scanner to the time it appeared in the query response, giving real-
time indexing a query latency several orders of magnitude lower than any existing point
cloud data management solution.
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1.5 Publications

This thesis is based upon several peer-reviewed publications, including one upcoming
publication which has been reviewed and accepted but is not yet published. We list all
relevant publications and the chapters that they belong to.
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• Bormann, P., Krämer, M., & Würz, H. M. (2022). Working Efficiently with Large
Geodata Files using Ad-hoc Queries. In Proceedings of the 11th International Con-
ference on Data Science, Technology and Applications (pp. 438-445) - DATA [17]

• Bormann, P., Krämer, M., Würz, H. M & Göhringer, P. (2024). Executing ad-hoc
queries on large geospatial data sets without acceleration structures. In Springer
Nature Computer Science Journal [18]

Chapter 4

• Bormann, P., & Krämer, M. (2020). A System for Fast and Scalable Point Cloud In-
dexing Using Task Parallelism. In Smart Tools and Apps for Graphics - Eurographics
Italian Chapter Conference [16]

• Kocon, K., & Bormann, P. (2021). Point cloud indexing using Big Data technolo-
gies. In 2021 IEEE International Conference on Big Data (Big Data) (pp. 109-
119) [76]

Chapter 5

• Bormann, P., Dorra, T., Stahl, B., & Fellner, D. W. (2022). Real-time Indexing of
Point Cloud Data During LiDAR Capture. In Computer Graphics and Visual Com-
puting (CGVC) [19]

Chapter 6

• Krämer, M., & Bormann, P. & Würz, H. M. & Kocon, K. & Frechen, T. & Jonas
Schmid (2024). A Cloud-Based Data Processing and Visualization Pipeline for the
Fibre Roll-Out in Germany. In The Journal of Systems & Software [78]
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2 State of the art

“This is insanity!”
“No, this is scholarship!”

Brandon Sanderson, Words of
Radiance

This chapter covers the current state of the art regarding the three domains point cloud
storage, point cloud indexing, and point cloud visualization. Storage and indexing are
mandatory topics for any data management solution that deals with larger datasets. We
focus on visualization as an application domain due to its importance—many point cloud
applications include some form of visualization—as well as the specific challenges that it
imposes on the data management layer. These three domains make up the foundation for
building an understanding of the current state for point cloud data management. When-
ever applicable, we also point out research from beyond the domain of point cloud data if
we consider it to be important. This overview also serves as an explanation why this the-
sis is built around the three specific approaches adaptive indexing, parallel programming,
and columnar memory layouts for improving point cloud data management.

2.1 Point cloud storage

Point cloud data poses several challenges to the storage layer of many applications due to
the large size of the data. A single point cloud captured by terrestrial or airborne LiDAR
sensors is often comprised of billions of points with a size in the high Gigabytes to low
Terabytes. Table 2.1 gives an overview over several freely available point cloud datasets
with their size characteristics. While hundreds of Gigabytes or even a few Terabytes per
dataset ranges at the low end of what is considered Big Data nowadays, it is still large
enough that handling point clouds on a single desktop computer can become challenging.
Even in a distributed environment such as the Cloud, where compute and storage capabil-
ities often are sufficient, data upload and download operations can become a bottleneck.
In addition to that, cheaper and more powerful acquisition systems lead to increases in
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Dataset Size Number of points Description

Haiyuan Earthquake Rupture [111] 36.1 GiB 7.5 billion Survey of the 1920 Haiyuan Earthquake sur-
face rupture in China. Derived using pho-
togrammetry

Southern San Andreas Fault [23] 90 GiB 8.4 billion Survey of the Southern San Andreas Fault in
California, USA. Derived using photogram-
metry

Wellington, New Zealand 2013-2014 [3] 247.8 GiB 52.4 billion Airborne LiDAR scan of the Wellington re-
gion, New Zealand

AHN3 [1] 2390 GiB 558 billion Airborne LiDAR scan of the Netherlands
(version 3)

AHN4 [2] 6137 GiB 946 billion Airborne LiDAR scan of the Netherlands
(version 4)

3DEP [148] ∼ 300 TiB 54.6 trillion Collective airborne LiDAR scan of the United
States (ongoing)

Table 2.1: Storage characteristics of several freely available point cloud datasets

both quality and quantity and hence the data volume of current and future point cloud
datasets.

The AHN dataset [2] is frequently used to illustrate many of the challenges relating
to point cloud data size. AHN (short for Actueel Hoogtebestand Nederland, roughly trans-
lated as Current Elevation Map of the Netherlands) is a digital elevation map covering all of
the Netherlands based upon airborne LiDAR scans. As part of an ongoing national survey,
this dataset has been updated several times since its initial release. The current version
is AHN4, which consists of almost a trillion points with a total size of approximately 6
TiB (compressed), while the next version AHN5 is already being created. While the main
purpose of the AHN dataset is to have an up-to-date height map, each new version of
the dataset also has better data quality than the previous versions. This manifests as
an increase in spatial resolution based on higher precision of the LiDAR scanners used.
Thus, each new version contains significantly more points than the previous version and
is much larger in terms of data volume.

It is interesting to observe that point clouds differ from other geospatial data primarily
in the storage domain: Where most geospatial data is mainly stored in databases and
accessed through standardized, web-based APIs such as WMS (web map service) and
WFS (web feature service), the main storage and exchange format for point clouds are
raw files. The following subsections will explore the usage of file-based storage for point
cloud data, as well as more recent work into enabling database usage for point clouds.
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Name Type Description Programming
language(s)

License

CloudCompare [51] Desktop application 3D point cloud and mesh processing software C++ GPL
PDAL [29] Library & command line application Library and tools for point cloud Input/Output (I/O) and manipulation C++ BSD
PCL [128] Library 2D/3D image and point cloud processing C++ BSD
Potree [139] Web application 3D point cloud visualization software JavaScript,

C++ (in-
dexer)

BSD

CesiumJS [25] Web application 3D geospatial data visualization software JavaScript Apache 2.0
LAStools [52] Library & command line applications Tools for manipulating LiDAR data C++ GPL 2.1 & com-

mercial license
Point Cloud Utils [160] Library Processing and manipulating 3D meshes and point clouds Python GPL 2.0
QGIS [121] Desktop application Geographic information system C++ GPL 2

Table 2.2: A list of common tools and software libraries for working with point clouds

2.1.1 File-based storage

To understand how point cloud data is stored and accessed, and in particular why file-
based storage is still the method of choice in most applications, we can have a look at
the tool landscape. This includes GUI and command line applications, but also software
libraries. Table 2.2 gives an overview of the most widely used tools and software libraries
for working with point cloud data.

A widely used GUI application is CloudCompare [51]. Initially developed to enable
change detection between two point clouds [50], it now provides a wide range of algo-
rithms for common tasks such as registration, segmentation, computing geometric fea-
tures or removing noise. It also enables users to render point clouds in real-time, making
use of several of the common visualization techniques discussed in Section 2.3. As one
of the standard tools for handling point clouds on desktop computers, it also supports a
variety of different file formats for both point cloud and raster data.

While GUI applications are great for interactivity, processing very large data is often-
times not possible with these tools as their underlying computational model requires all
data to be loaded into working memory first. Command line applications are a better
alternative in these situations, as they often work with large batches of data in a stream-
based manner. A common set of command line applications for dealing with LiDAR data
are the LAStools [52]. Made up of over 40 standalone command line applications, they
provide tools for working with LiDAR data in the standardized LAS file format [7] as
well as a custom compressed file format based on LAS called LAZ [70]. Example usage
scenarios include file format conversion, for example from binary LAS files into ASCII
files, clipping and subsampling point clouds, sorting and indexing a point cloud, creating
DEMs (digital elevation maps) [71], or removing noise from a point cloud.

When it comes to software libraries for working with point cloud data, there are two
types of libraries: Those that enable access to a large variety of point cloud file formats,
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Name Storage Specification available? Year introduced Usage

LAS Binary Yes [7] 2003 LiDAR data
LAZ Binary (compressed with custom

compression algorithm)
Only reference implementation [52] 2011 LiDAR data

OBJ ASCII text No around 1990 General 3D data ex-
change format

PCD ASCII text or binary or compressed
binary

Yes [127] 2010 Exchange format of
the Point Cloud Li-
brary [128]

PLY ASCII text or binary Yes [147] 1994 General 3D meshes
E57 XML and binary Yes [66] 2011 3D imaging data
PTX ASCII test Only unofficial [24] unknown LiDAR data
BPF Binary Yes [101] 2015 (v3) LiDAR data
EPT Binary Yes [62] 2018 Indexed LiDAR data
COPC Binary (compressed) Yes [60] 2021 Indexed LiDAR data
3D Tiles Binary Yes [31] 2019 (Open Geospatial Consortium (OGC) standardized) 3D geospatial data,

including point clouds

Table 2.3: A list of common point cloud file formats

such as PDAL [29], and those that provide processing and analysis algorithms, such as
PCL [128]. PDAL is of particular interest when trying to understand the storage landscape
for point clouds, as it provides dozens of different readers for a wide variety of common
file formats as well as two databases that support point data (PostgreSQL and TileDB).

Cross-referencing these tools, a reasonable overview of the landscape of point cloud
file formats can be gained. The most common file formats and their capabilities are listed
in Table 2.3.

While there are several data formats that are human-readable, the large data volume of
point clouds makes it more important to have efficient file formats, which is why the most
widely-used file formats store points as binary data as opposed to text. Compression is
an important factor as well to keep the data size manageable. It is interesting to observe
that on the one hand there is a consensus in the research community that data volume is
a challenging aspect of point cloud data [150, 86, 132, 32], but at the same time there
is no standardized file format with first-class support for point cloud compression. The
LAZ format is the only one that implements custom compression algorithms designed
for common point cloud attributes and thus achieves high compression ratios [70]. The
format is widely used in the industry but there exists no official maintained standard, only
the initial publication and a reference implementation as part of the LAStools [52]. More
recently, the 3D Tiles format also added support for point cloud compression through
the Draco library [145], a general-purpose library for 3D graphics compression that also
supports point clouds. At the point of writing, the 3D Tiles format has not been widely
adopted for point cloud data.

Adding compression does help for reducing the amount of storage and network traffic
when working with large point cloud datasets but comes with a runtime cost that some
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applications simply are not able to pay. The LAZ format is sometimes avoided for interac-
tive applications due to its slow decompression speed and lack of random access [142].
We explore some of the implications of this in Chapter 3.

Besides compression support, more recently developed formats, in particular 3D Tiles,
EPT, and COPC, have built-in support for hierarchical data structures and thus are able
to store indexed point clouds. The development of these formats coincides with an in-
crease of web-based and Cloud-based point cloud applications, for which efficient access
to subsets of the point cloud is required.

Summary: The main challenges of file-based point cloud storage

• Size: While many of the large datasets are split up into multiple files, the files them-
selves still might contain more points than most software can handle efficiently. Ex-
pecting the same level of interactivity as working with for example images or video
is not yet possible.

• Compression: To reduce the data size, compression is used. LAZ is the de facto
standard format, which achieves good compression ratios but is significantly slower
to read than uncompressed data. For this reason, some applications do not support
compressed point cloud data.

• Format hell: While most processing applications support the standardized LAS for-
mat, web-based applications tend to require indexed formats and do not work with
raw files. These indexed formats in turn are often not supported by processing
tools, requiring data duplication.

2.1.2 Databases

While databases are commonplace solutions for data storage and access in many appli-
cation domains, they are not widely used for point cloud data. Adaptation of point-based
data types into existing database management systems (DBMS) has been slow, with on-
going discussions whether these systems are even suitable at all for handling point clouds.
While there is a consensus among researchers that the size of many point cloud datasets
requires very efficient data management solutions, there is some debate whether or not
the capabilities of current DBMSs are sufficient for working with large point clouds [150,
110, 32]. This is in contrast to other forms of geospatial data, such as raster or vector
data, which can be handled efficiently by various DBMSs such as PostgreSQL (through the
PostGIS extension [118]) or Oracle Spatial [143].
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A comprehensive survey of the point cloud storage capabilities of various DBMSs was
conducted by VanOosterom et al. in 2015 [150], with additional benchmarking results
being published in 2017 [106]. In their survey, they compared the performance and
usability of three DBMSs with point cloud support—PostgreSQL with the pgPointclouds
extension [115], Oracle Spatial [143], and MonetDB [95]—with file-based approaches
using LAStools [52]. Due to the large variety of different queries as well as the scale
of the datasets that they evaluated, their survey has become a reference for the oppor-
tunities and challenges of DBMSs in the point cloud community. Their findings can be
summarized as follows: For simple queries, or if the query granularity is at point-level,
file-based solutions (in this case using LAStools) outperform the database solutions in
terms of throughput and responsiveness. For more complex queries that go beyond sim-
ple query regions (rectangles, circles), DBMSs become the more usable alternative, but
care must be taken to use an appropriate storage model. Similar findings were reported
by Béjar-Martos et al. [11], though their storage model consisted of storing small LAZ
files within the database.

Finding an appropriate storage model is one of the major challenges for storing point
clouds inside a database. Storage model in this context refers to the memory layout
of the point records inside the database. The simplest storage model is the flat table
model, which refers to storing each point as a single row in a relational database such as
PostgreSQL. This approach is simple, but has problems in terms of data size and scalability.
Not every DBMS supports data types that match the efficient encoding scheme of for
example the LAS file format, so a single point record inside a database might require
significantly more memory than in a file-based solution [153]. This is precisely what
VanOosterom et al. measured in their benchmarks, where a point cloud stored with the
flat table storage model requires 2x to 4x the memory of the file-based solution (see Table
3 in [150]). The other problem of the flat table model is that the index can become very
large since a very large number of rows of comparatively small size have to be indexed.
This is also demonstrated in the same benchmark, where for both the PostgreSQL and
Oracle Spatial databases, the size of the index exceeds the size of the actual point cloud
files.

To deal with these problems, points are often grouped together into spatially adjacent
patches. This is referred to as a blocking or blocked storage model. Both PostgreSQL
(through the pgPointclouds extension) and Oracle Spatial support this storage model and
define custom data types that represent patches of points. This solves both the storage
problem (as these custom data types can use efficient memory representations similar
to the LAS file format) and the index problem (as significantly fewer records have to be
indexed). The downside of the blocked storage model is that single-point granularity
during queries is lost, as all queries only operate on groups of points. If single-point
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granularity is required, this either means that the DBMS has to unpack each patch, which
is computationally expensive, or that the query result might contain points that do not
match the query. This is the main reason why DBMSs are outperformed by file-based
solutions for simple queries.

Even though DBMSs still do not see the same level of usage for managing point cloud
data as they do for other types of geospatial data, there has been considerable progress
in the research community over the last decade. Cura et al. proposed the Point Cloud
Server as a database architecture that covers a wide range of point cloud application use
cases and as such serves as a reasonable baseline for what a modern point cloud DBMS
should be capable of [32]. On the storage-side, the usage of column-oriented databases
has been explored in the context of point clouds, with the observation that a column-
oriented memory layout reduces overhead compared to the flat table memory layout of
traditional relational DBMSs [95, 150]. To deal with the indexing problem, SFCs have
been explored as means to group points by multiple attributes into an efficient memory
layout. Typically, SFCs are combined with Index Organized Tables (IOT) to combine data
and index into a single data structure, which improves the performance of queries and
data extraction [120]. It is worth noting that this approach is also used for some of the
modern point cloud data formats, in particular 3D Tiles and COPC, and is the de facto
standard for point cloud data management for visualization applications [132]. SFCs
have also proven useful for working with higher-dimensional point cloud data [89, 88,
86].

Summary: The main challenges of point cloud databases

• Poor throughput: The blocked storage model keeps the index size manageable, but
since the point data is restructured internally, extracting individual points is costly,
resulting in poor throughput when outputting point data from the database.

• Slow data import: Restructuring the data during the import into the database is
significantly slower than working with raw files. This cost might amortize if the
data stays in the database and is used frequently, but for explorative scenarios these
wait times might be unacceptable.

• Limited support in the tool landscape: Few processing tools and virtually no visual-
ization applications have native support for point cloud databases.

• Lack of first-class LOD support: Most DBMSs have no native support for LOD, with
the recent work by Liu et al. being the notable exception [86].
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2.2 Point cloud indexing

While point cloud data is simple in its structure and available in large quantities, in its
raw form it is rarely used as a default data type. Problems with structuring the data,
as well as applications requiring specific forms of data are two of the main reasons as
discussed by Poux [119]. As a result, point clouds are often processed into what they
call application-specific deliverables. These can be different types of data, such as triangle
meshes, shape descriptors, or semantic models, but often they are optimized file formats
and data layouts, which are of particular interest to us due to the implications for the data
management layer. This section thus explores the current state of the art of file format
and data layout optimizations with a special focus on indexing point clouds.

As we explained in Section 2.1, the large volume of point cloud datasets is a major
challenge for many applications, from storing trillions of points to streaming large quan-
tities of point cloud data over network connections with limited bandwidth, to processing
datasets that do not fit into main memory. Most point cloud applications today are only
possible by using highly optimized data layouts which structure the points in a way that
improves overall I/O throughput and oftentimes enables efficient access to specific parts
of the point cloud by creating an index.

Fixed-width binary file formats such as LAS [7] are an easy way to improve I/O through-
put: The binary memory layout is more efficient in terms of storage, so more points can
be stored using the same amount of memory compared to text-based formats. Addition-
ally, the binary layout will typically match the internal memory layout of point records
in an application more closely than text-based data would, making the parsing process
more efficient. Additional speedup is possible by using columnar data layouts, as we
will demonstrate in Chapter 3. Compression is another strategy that is often employed
to keep the size of point cloud datasets manageable, with specialized compression al-
gorithms such as those of the LAZ file format [70] achieving lossless compression with
ratios of up to 10:1. The downside of compression is a significant increase in complexity
of parsing the point cloud data. In terms of point throughput (the amount of points an
application can process per second), compressed point cloud formats typically perform
worse than uncompressed formats, even though the latter might require up to 10 times
more data to be read.

Ultimately, both more efficient memory layouts as well as compression will only ever
result in constant-time speedups or reductions in data size. This is where indexing comes
into play: With an indexed dataset, areas of interest can be quickly identified, potentially
discarding large parts of the dataset and thus drastically reducing the amount of data that
has to be read and parsed. Algorithmically, an index enables searching in logarithmic
time compared to linear time. With datasets comprised of billions of points, indexing is
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often necessary to enable applications such as interactive visualization, which requires
millisecond response times, or mesh reconstruction, which requires point neighborhood
information.

Indexing is far from a novel technique and has been utilized for decades to enable
databases to work with large and complex datasets. The standard textbook Database
Systems: The Complete Book [49] defines an index over an attribute A as a data structure
that makes it efficient to find tuples with a fixed value for A. The standard data structure
for indices in database systems is the B-tree, a variant of a binary search tree optimized
for efficient I/O access. For an in-depth explanation of B-trees, the interested reader is
referred to the textbook Introduction to Algorithms [30]. In the context of this thesis,
understanding multi-dimensional indices is of bigger importance than delving into the
foundations of B-trees and the likes, so wewill spend the remainder of this section looking
at the specific requirements and techniques for indexing spatial data (which is multi-
dimensional) and point clouds in particular.

2.2.1 Spatial index structures

A key limitation of binary tree variants as an index structure is their inability to work
with multi-dimensional data. A binary tree requires that its values form a total order,
which common data types such as integers, reals (disregarding implementation details
such as NaN), or strings satisfy. Vectors in k-dimensional space (with k > 1) typically
do not form a total order that is immediately usable for indexing spatial data. Consider
these two vectors:

a :

(
1.5
0.5

)
b :

(
0.5
1.5

)
(2.1)

The question “Is a < b or b < a” cannot be answered meaningfully because there is
no unique total order for vectors in k-dimensional space. There are special cases, such
as the lexicographic order for string comparisons, but for most spatial data, lexicographic
ordering makes little sense. A common solution to this problem is to instead treat each
dimension of the vector separately, comparing only the elements of this dimension. This
leads to a natural extension of the binary tree (a tree in one dimension) to k dimensions,
called the k − d tree [12]. Where a binary tree splits a one-dimensional interval into
two disjunct intervals at each level, a k-d tree splits each of the k dimensions successively
using a hyperplane. k-d trees are one of the most widely used data structures for indexing
spatial data and are used extensively in many areas of computer graphics.
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Figure 2.1: A k-d tree, quadtree, and R-tree (left to right)

One of the advantages of k-d trees is the ability to freely choose the position of the
splitting hyperplane, allowing it to adjust to unevenly distributed data, keeping the tree
depth shallow even for highly irregular data. If we instead go in the opposite direction
and always split each dimensions exactly in the middle, we end up with another useful
data structure called a quadtree (in 2 dimensions) or an octree (in 3 dimensions). In a
quadtree, each new level of the tree splits its parent node into four equally-sized quad-
rants (or eight equally-sized octants for the octree). While their regular nature is less
favorable for unevenly distributed data, the symmetry of quadtrees and octrees makes
traversal algorithms simpler than for k-d trees and allows for a range of memory layout
optimizations.

Both the k-d tree and the quad-/octree work by splitting space into smaller cells. The
R-tree [57] is another spatial data structure that takes a different approach and instead
tries to group adjacent elements together using their minimum bounding volume. It is
similar to the B-tree in that it is balanced and optimized for I/O performance. As opposed
to k-d trees and quad-/octrees, the R-tree natively supports elements that have a spatial
extent themselves, for example polygons. The R-tree is a special form of a general class
of spatial data structures that group data based on bounding volumes, called a Bounding
Volume Hierarchy (BVH). Where the R-tree uses an Axis-Aligned Bounding Box (AABB),
other bounding shapes such as oriented bounding boxes (OBBs) or bounding spheres can
be used as well, usually resulting in a tradeoff between the depth of the resulting tree
and the complexity of traversal or intersection tests. Figure 2.1 illustrates some of the
spatial index structures introduced in this section.
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2.2.2 Space-filling curves and their relation to multi-dimensional trees

Returning to the topic of indexing multi-dimensional data, it is still unclear how wemight
define a total order on multidimensional vectors. To answer this question, it is important
to understand what kinds of queries spatial acceleration structures are meant to accel-
erate. For one-dimensional data, a query usually boils down to one or more attribute
comparisons using the typical binary relations “equals”, “less than”, “greater than” and
so on. The query “Give me all movies directed by Christopher Nolan in the 2010s” boils
down to two attribute comparisons: “director EQUALS Christopher Nolan” and “2010
<= year < 2020”. Each attribute comparison can be trivially accelerated by sorting this
attribute (“director” and “year”) using its total order and performing a binary search. A
spatial query might not look so different at first glance: “Give me all restaurants which
are rated with at least 4 stars and at most 100 meters away from my current location”.
Again we have two attribute comparisons: “rating>=4.0” and “locationWITHIN (100m,
current location)”. We can rewrite the second comparison in terms of more familiar bi-
nary relations: “distance(location, current location) <= 100m”. A good spatial index
structure will be one that can speed up queries such as the “distance” query: It enables
fast lookup of records within a given area or close to a given position. Asking ’Give me
all records at most 100 meters away from location X’ is equivalent to asking ’Give me all
records that intersect a circle of radius 100 meters centered around point X’. Since the
point X is variable, we are looking for a total order that preserves neighborhood rela-
tions. Records that were close together in space should be close together within the data
structure after applying the total order. This is where space-filling curves can help.

A space-filling curve is a contiguous function mapping all values of the unit interval
[0, 1] onto all values of a higher-dimensional region [0, 1]n for n > 1. Intuitively speaking,
a space-filling curve is a curve reaching every point in the region [0, 1]n. Inverting this
mapping, we get a function that maps every point in an arbitrary region of n-dimensional
space onto the unit interval. Since the unit interval is well-ordered, space-filling curves
allow us to define a total order for vectors in n-dimensional space. As an added benefit,
space-filling curves typically preserve locality, meaning points with a small distance in
n-dimensional space will result in values close to each other in the unit interval. There
are many known space-filling curves, such as the Peano curve, Hilbert curve, or the Z-order
curve, which are illustrated in Figure 2.3.

The Z-order curve is of particular interest when it comes to creating spatial index struc-
tures. A Z-order curve is a space-filling curve that emerges as the result of sorting points
based on their Morton index [100]. It can be used to efficiently create octrees, k-d trees
and bounding volume hierarchies for arbitrary primitives. There is a particularly intimate
relationship between Morton indices and octrees (or any of its lower/higher dimensional
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r=100m

Figure 2.2: A spatial query illustrated. Map data from OpenStreetMap [108]

counterparts): A Morton index directly identifies a unique node within an octree. Given
an axis-aligned bounding box (AABB) B ⊂ R3 and a point p ∈ B, the Morton indexM(p)
can be calculated in linear time based on the desired number of bits in the Morton index.
The number of bits and the dimensionality of the Morton index directly define a constant
depth for the Morton index, which is equivalent to the depth of the node within an oc-
tree that the Morton index represents. Since Morton indices are numerical values, the
number of bits is usually chosen in accordance to the word-size of the target processor,
which for most modern systems means 64 bits. In R3 with three bits per level this results
in a maximum depth of 21 levels. Depending on the use case, these 21 levels might not
be sufficient and larger integer types might be used (such as the builtin u128 type in
Rust) to get more precision. From a practical standpoint, 21 levels is equal to a spatial
resolution of 1 : 2097152, or millimeter precision with a bounding box that is two kilo-
meters wide. Once the number of bits has been chosen, calculating the Morton indices
for a set of points and then sorting these points by their Morton index puts all points into
the order of a flattened octree in memory. This is a fast way to compute an octree from
a set of points, which can easily be parallelized and even extended to the construction of
k-d trees and bounding volume hierarchies, as was demonstrated by Karras [74]. Besides
computing an octree, sorting points by Morton index can also be used to parallelize gen-
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Figure 2.3: The Peano curve, Hilbert curve, and Z-order curve (from left to right)

eral point cloud processing tasks, as demonstrated by Alis et al. for a k-nearest-neighbor
algorithm [6]. In Chapter 4, we exploit the parallelization potential of Morton indices
for speeding up point cloud indexing.

2.2.3 Point cloud index structures

Besides the general-purpose work on spatial index structures, there has been consider-
able research to develop efficient index structures that can deal with challenges specific
to point clouds. Besides data volume, which is a common challenge in many areas of
computer graphics or even computer science in general, the two major challenges are
good support for LOD, and indexing higher-dimensional point clouds, that is taking into
account secondary attributes in addition to the point position.

Most point cloud index structures have been developed with visualization in mind. The
most widely used data structures nowadays are variations of either k-d trees or octrees,
though historically the early systems for visualizing point clouds used different data struc-
tures, such as the BVH variant used by the QSplat [126] system, generally considered to
be the first system for rendering large point clouds natively. Early research quickly iden-
tified the importance of subsampling the point cloud to quickly select appropriate levels
of detail, which lead to index structures such as Sequential Point Trees [33] or Layered
Point Clouds [53]. The Instant Points system [161] extended the Layered Point Clouds
structure and introduced nested octrees, which to this day are the foundation for many
visualization-optimized point cloud index structures. In a nested octree, points are stored
in both internal and leaf cells, where cells closer to the root store coarser subsamples of
the point cloud. These subsamples define the different levels of detail, which can be se-
lected adaptively during rendering, typically by considering a maximum allowed error
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in screen-space. A small change in the inner structure of the nested octree—replacing
inner octrees with a grid—lead to the Modifiable Nested Octree structure [129] which has
become a de facto standard for many point cloud visualization applications. Since point
clouds often have variable densities, especially when combining datasets from different
acquisition techniques, nested index structures are preferable as they can adapt to these
density variations [104].

Figure 2.4: The effect of different subsampling methods illustrated visually (from left to
right: Poisson-disc, grid-center, random, high-quality Poisson-disc). Images
taken from [138]

Subsampling A crucial part of building a good point cloud index suitable for visualiza-
tion is the subsampling process. Through subsampling, irregular sampling densities that
are a natural part of the capturing process can be converted into multiple sets of evenly
sampled point clouds, which results in good visual quality when using splatting. Addi-
tionally, subsampling enables LOD, which is essential for rendering large point clouds
that do not fit into working or Graphics Processing Unit (GPU) memory. The sampling
process itself typically works by considering all points that fall into the bounding volume
of a node in the index structure (for example a cubic octant in an octree, or a cuboid
in a k-d tree) and selecting a subset of these points that match some criterion. The se-
lected points are inserted into the node of the index structure, while leftover points are
distributed to the child nodes, where the process repeats. Schütz [133] explored several
different subsampling strategies—the criteria by which points are selected—such as ran-
dom sampling, grid-based sampling or Poisson-disk sampling. In general, these sampling
strategies correspond to different types of noise, which explains their visual character-
istics: Random sampling corresponds to white noise and has an irregular look, whereas
Poisson-disk sampling corresponds to blue noise and gives a smoother, more even look,
even with a low number of samples. Blue noise has long since been favored for various
sampling-related tasks in computer graphics, such as generating antialiased images [99].
Grid-based sampling methods are more akin to a low-pass filter, as they generally only
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allow at most one point per grid cell and hence impose a natural limit on the maximum
frequency. Grid-based sampling typically exhibits a more regular look than both white
and blue noise sampling, which, while visually less pleasing, is often simpler to compute.
Figure 2.4 illustrates the visual characteristics of several common subsampling methods.
Besides I/O, the sampling process is the main contributor to the computational complex-
ity of point cloud indexing tools, a point that we explore in Chapter 4 and Chapter 5.

Continuous LOD Index structures such as theModifiable Nested Octree implement a dis-
crete form of LOD: Each node within the tree corresponds to a fixed level-of-detail, real-
ized through a maximum sampling density which shrinks with each deeper level of the
tree. During visualization, nodes are selected based on this discrete LOD and the full node
is typically loaded and displayed. This leads to characteristic artifacts at the boundaries
between two discrete levels-of-detail. Recently, the usage of continuous levels-of-detail
(cLOD) has been studied by both VanOosterom [149] and Schütz [137]. Extending the
discrete levels-of-detail into the real-number domain allows a more fine-grained LOD se-
lection and hence significantly better visual quality. In practice, cLOD is often achieved by
first computing an index structure with discrete LOD and then computing the continuous
LOD afterwards or even at runtime during rendering.

Other point cloud index structures Besides octrees, there are also other point cloud
index structures, both for visualizations and for general-purpose tasks. k-d trees have
been used in a variety of point cloud visualization applications [55, 125, 123, 37]. These
k-d tree implementations often make use of LOD in a similar manner to the Modifiable
Nested Octree structure, by storing subsampled point data in interior nodes. Since k-d
trees require sorting for determining the split position for a node, constructing them out-
of-core is more complicated than constructing an octree out-of-core. The advantage of k-d
trees is that they are generally more balanced than octrees, especially with irregular data
distributions as one often finds in terrestrial LiDAR data.

Using space-filling curves, B-trees can also become a viable point cloud index structure.
The HistSFC structure by Liu et al. [89] is one example of a recently developed index
structure that utilizes B+-trees (a variant of the B-tree where data is stored only in the
leaf nodes) instead of octrees or k-d trees. It is aimed at indexing higher-dimensional
point cloud data, taking into account additional attributes on top of positions in 3D space,
and has been demonstrated to work well with up to eight indexing dimensions [87].
It is also one of the few works that consider general-purpose queries on point clouds,
beyond visualizations. The Point Cloud Server as proposed by Cura et al. [32] is one of
the other notable contributions in this field. From a practical point of view, besides the
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best effort of many researchers, it seems that there is still a divide between point cloud
index structures usable for state of the art visualizations, and index structures usable
for general-purpose queries. In particular, there is no demonstration as of today for a
system that achieves state of the art visualizations of point clouds similar to for example
the Potree system [133] but using a general-purpose point cloud index or a point cloud
stored in a DBMS.

2.2.4 Adaptive indexing and in-situ queries

An interesting approach to indexing complex or dynamic data is that of adaptive indexing.
Where in a traditional DBMS, an index is built over a full table with known attributes
upfront, adaptive indexing methods build an index dynamically based on the queries. A
widely studied approach for adaptive indexing is database cracking [68, 67]. The main
idea of database cracking is that during a query, when a region of interest in a table is
identified, the records in this part of the table are physically reordered so that the records
satisfying the query are stored next to each other in memory. For a comprehensive survey
of various database cracking approaches we refer to Schuhknecht at al. [131]

The advantages of adaptive indexing techniques over regular indexing are potential
improvements in performance (as only the data that is queried is actually indexed, as op-
posed to all data) and increased flexibility (as the attributes to be indexed can be derived
from the queries). As both the volume and the variety of data increase, performance
and flexibility become key challenges for modern database systems. Performance is often
achieved by adapting the data to optimized formats dictated by the inner workings of
the database engine, which comes at the cost of flexibility [73]. Additionally, importing
data into a database—thus converting it into the optimized internal format—often results
in significant initialization overhead. This is problematic for explorative scenarios where
users want to understand large or complex datasets and quickly identify areas of interest,
which requires high query responsiveness. Waiting for minutes, hours, or even days for a
data import, only to find out that 99% of the data are uninteresting is frustrating and a
waste of compute resources. Thus, the field of in-situ data exploration has gained interest
in recent years [4, 13, 105, 73, 39]. In-situ refers to working with the raw data as-is, for
example large CSV or JSON files. Systems that enable in-situ data exploration will work
natively with these raw data formats and execute queries on the raw files instead of an
optimized copy of the data in some internal format. While adaptive indexing methods
such as database cracking solve some of the problems of in-situ data exploration, namely
getting rid of the initialization cost, they still require some form of data import into an
internal format. The NoDB system [4] was one of the first attempts at combining adaptive
indexing with in-situ queries on raw files. Since then, both adaptive indexing and in-situ
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queries have seen significant developments. Trying to paint a full picture of this rather
large area of research is beyond of the scope of this work, and unfortunately to the best
of our knowledge, there exists no recent overview study of the current state of the art of
both adaptive indexing and in-situ queries. Instead, we will briefly describe what we con-
sider to be the most important developments that our contributions to in-situ processing
of point clouds are based on (as explained in Chapter 3).
Progressive indexing as introduced by Holanda et al. [64] deals with the challenge of

keeping query response times low. Since in-situ systems work on raw files, they do not
have the luxury of highly optimized internal data formats, which often results in worse
query response times than regular DBMSs. On top of that comes the additional overhead
of creating parts of the index during query execution. Progressive indexing introduces
a dynamic budget for queries that they can spend on index creation. By adjusting this
budget based on incoming queries, interactive query response times are possible.
Spatial database cracking is an approach for applying adaptive indexing to spatial (i.e.

multi-dimensional) data [63, 83] by adaptively generating common spatial index struc-
tures such as k-d trees or quadtrees. Dealing with spatial locality requires different al-
gorithms compared to indexing one-dimensional data and techniques such as database
cracking do not trivially generalize to higher dimensions.
Visual exploration is an important strategy for exploring and understanding complex

data. Its usage has also been explored in the context of in-situ systems, though primarily
for two-dimensional exploration through various graphs and plots [13, 94]. What sets
visual exploration apart from other exploration techniques are the specific queries that
are required, in particular selecting the data corresponding to the current view region. In
the 2D case, this corresponds to a two-dimensional range query (such as the render query
in [13]), but moving into three dimensions or artificially reducing the data with LOD
techniques will yield more complex queries not typically found in other explorative data
scenarios. Efficiently handling LOD is one of the main challenges when working with
point cloud data and none of the existing in-situ data exploration approaches support
LOD.

Summary: The main challenges of point cloud indexing

• Slow processing: Indexing takes a long time and is computationally expensive due
to the subsampling process. The resulting query latency makes these approaches
ill-suited for explorative scenarios, where preprocessing time becomes part of the
query latency.

• Specialization: The most popular index structures are application-specific, causing
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either a lock-in to a specific system, or requiring costly reprocessing and data dupli-
cation when migrating systems. This is rarely due to fundamental incompatibilities
and more often a technical limitation as cross-system compatibility is simply not a
focus of application developers.

• Visual quality and LOD support: Most visualization systems require high-quality in-
dices to achieve good visual quality. General-purpose indices are often not sufficient
because they lack the necessary subsampling to achieve good LOD support.

2.3 Point cloud visualization

Visualizing point clouds has been an active field of study over the past two decades. A
real-time visualization of a point cloud can be used for entertainment purposes as well
as explorative analysis. “Let’s have a look at the data” is often one of the first things that
users say when getting access to a new dataset, point clouds being no exception there.

One of the earliest point cloud rendering systems was QSplat [126]. Assuming that
the point cloud is evenly sampled, splats are small primitives (for example quads or ellip-
soids) that approximate the local surface of a point cloud that give the illusion of a closed
surface. To deal with the challenge of data volume, the Layered point clouds approach was
introduced [53], the first system to support multi-resolution point clouds. Layered point
clouds are the predecessor of the Modifiable Nested Octree index structure introduced in
Section 2.2.3 and their novelty was the support for LOD in point cloud rendering. Based
on the required amount of precision, nodes of different resolutions can be rendered at
the same time, allowing for significantly larger datasets to be rendered interactively.

Tree-based acceleration structures also allowed the simplification of the splat rendering
process. Where in the earlier works such as QSplat, splat rendering required per-point
normals, rendering screen-aligned quads with a size based on the resolution of the cor-
responding node in the acceleration structure became a viable alternative [55]. Today,
most systems that visualize point clouds do so by rendering screen-aligned quads, typ-
ically manipulated in the fragment shader to give more visually pleasing results. An
example for this is the paraboloid rendering proposed by Schütz [133], though three-
dimensional splats have been proposed as well [130]. Visual quality is further enhanced
by the subsampling process during the creation of the acceleration structure, as explained
in Section 2.2.3. Postprocessing algorithms in screen-space, such as screen-space ambi-
ent occlusion (SSAO) [10] or eye-dome lighting (EDL) [20], are also frequently used to
improve the image quality of point cloud renderings.

Virtual reality (VR) systems face additional challenges compared to desktop-based ren-
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dering solutions, in particular higher frame-rates and larger point budgets due to an in-
creased field-of-view [37]. On top of that, LOD-based artifacts become more noticeable,
such as points suddenly appearing during the transition between different levels-of-detail.
Techniques such as continuous LOD can help mitigate these artifacts [137].

Beyond improvements in visual quality, there have been several approaches that utilize
computer shaders for the visualization of point clouds, which improve the interactivity
of point cloud rendering. Progressive rendering of unindexed datasets [142] is one ap-
proach that reprojects the pixels of the previous frame into the current frame and fills
holes using random points selected from a shuffled vertex buffer created by a compute
shader. Other approaches forego rendering using the traditional GPU hardware pipeline
altogether and render point clouds exclusively using compute shaders [135, 136], which
can result in higher frame rates.

Summary: The main challenges of point cloud visualization

• Visible subset selection: LOD artifacts are still a challenging problem, and while
cLOD has been proposed and implemented in some systems, its usage still requires
substantial preprocessing or is limited to datasets that fit into GPU memory.

• Handling out-of-core and remote data: For data that fits into GPU memory, progres-
sive rendering is a viable solution with good interactivity and response time, but no
similar solution exists that supports out-of-core data or data that is streamed from
a remote server.

• Specialization: The fastest visualization frameworks require highly specialized data
formats andmemory layouts to achieve the necessary throughput. Compressed data
formats are oftentimes ignored because the overhead of decompressing the data is
too large for the desired level of interactivity.

2.4 Implications for point cloud data management as a whole

We saw that there are a wide variety of requirements that applications pose to the point
cloud data management layer. From scalability in terms of the amount of data that can
be stored, to the runtime of indexing processes, point cloud data volume is far from be-
ing a solved problem. Applications want to query point data by an increasing number
of attributes, requiring flexible data management that can deal with queries on arbitrary
attributes. This in turn has implications for the indexing process, which today is still an
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either/or decision: If high fidelity visualizations are required, use one data representa-
tion with built-in LOD support, otherwise use a DBMS. Neither approach serves both the
visualization and the analysis domain. We saw that in the wider database community,
adaptive indexing is a promising approach for dealing with large data quantities and
highly variable query patterns, so its application to point cloud data seems promising to
us. For structuring the data quickly and efficiently, parallelization also plays an impor-
tant role and we believe that it is mandatory for a good point cloud data management
solution to make efficient use of the available hardware through parallelization. In the
end, point cloud data management is largely driven by performance concerns. Here we
believe that columnar memory layouts have large untapped potential for performance
improvements. There has been limited research on their application for point cloud data
management, but they have been successfully applied in the video game industry as a
performance optimization technique [98, 122], so we are interested in verifying if this is
a technique that transfers well to the point cloud domain.
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3 Ad-hoc queries: An approach for efficient
point cloud data management without
preprocessing

“Most sapients confuse working hard
with being miserable.”

Becky Chambers, A Closed and
Common Orbit

In this chapter, we develop strategies for working with unindexed point cloud data by
executing queries on raw files in common formats such as LAS. We call such queries ad-hoc
queries and show that commodity hardware is capable of answering many common point
cloud queries in a manner of seconds for datasets of up to a billion points without requir-
ing any preprocessing. The work in this chapter is based on our publication “Working
with large, unindexed geospatial data” [17] as well as its extended journal version “Exe-
cuting ad-hoc queries on large geospatial data sets without acceleration structures” [18]
and answers the following research question:

RQ1 Can ad-hoc queries enable applications to work directly with raw point cloud files
instead of sophisticated index structures?

This chapter starts with the motivation for working with raw point cloud files in Sec-
tion 3.1. In Section 3.2, we gather a set of representative query types from various point
cloud applications. Section 3.3 introduces our concept of ad-hoc queries on raw point
cloud files, as well as our reference architecture for a system for executing such queries.
In this section we also show potential improvements for increasing the response time and
throughput of ad-hoc queries. These improvements include two new file formats that use
a columnar memory layout for increased performance, as well as an adaptive indexing
algorithm that can be executed while processing an ad-hoc query. We evaluate our ad-
hoc query system and the new file formats in Section 3.4. Section 3.5 contains a critical
discussion of the results and answers research question 1.
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3.1 Motivation: Benefits of working with unindexed point cloud
data

In chapter 2, we saw that raw files are the predominant point cloud data organization
medium: Large datasets are often provided as raw files on a remote server for download
(such as [109] and [2]), tools such as LAStools [52] were developed specifically for work-
ing with raw point cloud files, and many point cloud libraries contain parsing code for
raw files. They are ubiquitous, but not as expressive as data stored in a database, or as
optimized for throughput as the point cloud index structures used by visualization appli-
cations. Importing a point cloud into a database or generating a visualization-optimized
index is time- and resource-intensive and typically results in a duplicate of the dataset.
If neither the data nor the use case is expected to change, this approach works well, as
the cost of the initial data restructuring is amortized over the utilization period of the
data. Once the data changes more frequently, or the use case (and hence the data access
pattern) is not known upfront, neither databases nor custom index structures are flexible
enough. Explorative and interactive data analysis are examples that exhibit these char-
acteristics, and novel adaptive indexing techniques are actively researched to deal with
these challenges [64, 67, 4, 73].

While adaptive indexing has been successfully applied to regular databases and the
data stored therein, point clouds have special characteristics that make the application of
adaptive indexing more challenging. Adaptive indexing for spatial data is still an ongo-
ing research topic and no existing technique takes LOD into account, which is a must for
large point clouds. At the same time, adaptive indexing would bring substantial benefits
for the way we work with point cloud data: File-based query systems such as NoDB [4] or
RAW [73] could increase the query expressiveness when working with raw point cloud
files while maintaining decent interactivity. Progressive indexing [64] would reduce the
preprocessing time in those cases where an index is required to achieve the desired level
of interactivity. Together, these techniques would pave the way for true interactive explo-
ration of point cloud data and would save cost by only processing the data that is actually
required.

Nonetheless, we do not believe that adaptive indexing will fully replace traditional
index creation. Instead, the two approaches could supplement each other: Quickly iden-
tifying interesting or relevant data by using file-based query systems and adaptive index-
ing, followed by a traditional indexing approach to generate optimal data structures on
the selected subset of the data.

The main challenges for working with unindexed point clouds are the size of the data
and the complexity of the queries. Even simple queries might require a full scan of poten-
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tially billions of points. For interactive visualizations, users might expect query response
times of a second or less, for general-purpose queries runtimes of more than a few sec-
onds might be unacceptable. Note that these are numbers based on subjective experi-
ence as well as general-purpose research such as the widely-cited response time limits by
Nielsen [102]. We discuss the challenges with obtaining more specific numbers in Sec-
tion 3.3.1. Based on these numbers, a simple back-of-the-envelope calculation illustrates
the challenge: A billion points in LAS point format 0 take at least 20GB of memory. At
the time of writing, a high-class SSD such as the Samsung 990 Pro, which is connected
through PCIe 4.0, achieves a peak read speed of about 7.5GB per second. Simply loading
the whole file into memory takes about three seconds, and this is before any computations
have been applied to actually answer the query. At the same time, if we were to achieve
data throughputs of about this magnitude, we might expect a general-purpose query on a
one-billion points dataset to have a response time of less than ten seconds. Based on our
initial estimates, this would be fast enough for general-purpose applications, but too slow
for interactive visualizations, though one might argue that the latter depends on the user
and the perceived interactivity (the time until something becomes visible, rather than the
full query time). Sticking with these estimates, answering the question which queries, if
any, have similar or better response times when applied to unindexed point cloud data
will help answer research question 1 and be an indicator for how viable raw, unindexed
files are as a point cloud data management solution.

3.2 Queries

In order to apply adaptive indexing approaches to point cloud data, we have to under-
stand the types of queries posed by typical point cloud applications. These queries dictate
the data access patterns and hence the structure of optimized point cloud data layouts,
such as the visualization-optimized indices introduced in Section 2.2.3. While we can-
not hope to cover all possible queries that any point cloud application might use, there
are many specific types of queries stated explicitly in the literature around point cloud
database systems [150, 106, 32, 89, 87, 86, 39]. Table 3.1 gives an overview over the
most common types of queries found in the literature.

Notably, most queries are spatial queries and operate on the point positions. In practice,
spatial queries are often combined with queries on secondary attributes, for example to
identify buildings within a given area or vegetation along a road. Computationally more
complex are queries on higher-level attributes such as geometric features or importance
values (the more general term for LOD), as these values have to be calculated from the
lower-level attributes present in the data and typically require neighborhood information.
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Description Example Required attribute(s)

Bounding volume Select all points within a bounding box Position
Shape intersection Select all points along a road defined

through a polygon
Position

Distance Select all points at most N meters away from
a given point

Position

k-nearest neighbors Select the k-nearest neighbors for point X Position
Object class Select all points that are classified as build-

ings
Classification

Return numbers For all points that have multiple returns, se-
lect the first return

Return number and number of returns

LOD Select all points with LOD level X Importance
Density Select the average point density for the given

area
Position

View frustum Select all points intersecting the given view
frustum AND with the given LOD level

Position and importance

View frustum (cLOD) Select all 4D points (X,Y,Z,Importance) in-
tersecting the given cLOD view frustum [86]

Position and importance

Geometric features Select all points with planarity greater than
X

Covariance matrix

Table 3.1: Types of queries that a point cloud application might use

Per-point neighborhood information (typically in the form of the k-nearest neighbors
of the point) can itself be calculated through a query. As a result, higher-level queries
are typically nested queries. Looking at the potential number of point record accesses
by these queries, we see that the simpler queries have linear complexity, whereas more
sophisticated queries have quadratic complexity. This is the reason why (spatial) indices
are typically used, as they reduce the complexity of nested queries from quadratic to
log-linear.

For ad-hoc queries, anything beyond linear complexity regarding the number of point
record accesses will probably be out of reach for larger datasets, which is why we exclude
such queries from our analysis. This is a limiting factor which we discuss in Section 3.5.

In terms of data access patterns, we see that many queries benefit from spatial locality
in the data. As an example, if a point matches a bounding volume query, a spatially
adjacent point is likely to also match. While we want to work with data in-situ for our
ad-hoc query system, meaning using data on the local machinewith as little preprocessing
as possible, there are properties of certain types of point clouds that result in locality that
an ad-hoc query might exploit. As Cura et al. point out, the nature of LiDAR scanners
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result in implicit locality between consecutive point records [32].
Lastly, we want to point out that even the more complex queries rarely use more than

two or three attributes at the same time. This fact has been noted by El-Mahgary et
al., who propose splitting up larger point cloud files into smaller files containing only
points with a specific attribute value [39]. In principle, this approach already constitutes
a rough index and requires data restructuring, which we want to prevent within our
ad-hoc query system. Instead, we will investigate how column-oriented memory layouts
could achieve similar effects. Grouping point attributes into contiguous memory regions
is similar to grouping points into files by attribute. While the popularity of the LAS file
format for LiDAR data is undisputed, we believe it is important to investigate how ap-
plications might benefit from file formats with alternative memory layouts and whether
there are incentives to support such formats. There is currently one point cloud format
(3D Tiles) which natively stores data in a columnar memory layout, however it has poor
support for a larger number of point attributes, as they are commonly found in LAS. For
this reason, we do not think it is a suitable format for storing LiDAR data.

3.3 Methodology

We want to evaluate the query throughput and responsiveness for the queries introduced
in Section 3.2 when executed ad-hoc on raw, unindexed files. These ad-hoc queries in
principle work with any file format and could be integrated into any point cloud applica-
tion as a data management solution. Therefore it is important to identify those types of
queries for which throughput and responsiveness are sufficient for their respective appli-
cations.

From the back-of-the-envelope calculations in Section 3.1, it is clear that ad-hoc queries
will require substantial computational resources. For this reason, we focus on single-user
scenarios, as can be found in the scientific community where individuals often perform
interactive exploration of data.

We assume a data processing model where an ad-hoc query engine acts as a data
provider and filter between raw point cloud files and a higher-level application (see Fig-
ure 3.1). This processing model has the advantage of being non-intrusive, requiring little
to no changes to the applications while being able to work with the raw files as is. From
an engineering perspective, we believe that this is a more versatile approach than the typ-
ical standalone, black-box systems that are often developed both in the industry but also
within the scientific community. As an example, the two web-visualization frameworks
Potree [133] and CesiumJS [25] both require metadata files describing the structure of
the indexed point cloud, thus implicitly assuming that the data has been indexed before.
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This is also what makes the adoption of point cloud databases for visualization applica-
tions difficult, as the internal index structure is typically not propagated to clients of the
database. The cLOD query described by Liu et al. [88] is an example that shows that
point cloud visualizations using index-agnostic queries are at least theoretically possible.
An open question that is not investigated by them is how to deal with redundancies be-
tween queries for adjacent camera positions. Visualization applications using tree-based
accelerators solve this problem by querying for visible tree nodes on the client using
the aforementioned metadata. To emulate such queries, we can use bounding-volume
queries as well as on-the-fly LOD calculation, both of which are supported by our ad-hoc
query engine.

10010110 XYZ RGB XYZ RGB ...

SELECT xyz, rgb 
FROM points
WHERE Intersects(xyz, ViewFrustum)

Figure 3.1: Point cloud data management using an ad-hoc query engine (middle) that
connects applications (right) to raw point cloud files (left). Raw data is read
and processed by the query engine and sent to the application in a structured
form.

Beyond simply executing ad-hoc queries and measuring their throughput and respon-
siveness, we would like to gain a deeper understanding about which parameters of the
point cloud data have the biggest influence on query throughput and responsiveness.
Research question 1 deals with the possibility for using ad-hoc queries to extend the use-
fulness of raw point cloud files as a data management solution, which requires under-
standing these influences. To this end, we will answer more in-depth questions, namely:

• Which factors influence the query throughput and responsiveness of ad-hoc queries?

• Are columnar memory layouts preferable for ad-hoc queries?

• Does adaptive indexing improve the responsiveness of ad-hoc queries?
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To answer these questions, we perform a case study where we execute a broad range
of queries on common point cloud datasets varying in size and number of attributes. For
each dataset, we compare the ad-hoc query approach on different point cloud file formats,
both uncompressed and compressed, with queries executed using a DBMS.

We first develop a theoretical model for ad-hoc query throughput and responsiveness
in Section 3.3.1, which can be used to estimate limits for throughput and response times
on commodity hardware. These limits then guide the design of an ad-hoc query engine,
explained in Section 3.3.2. We develop several optimizations when facing I/O-bound
queries (Section 3.3.3) and compute-bound queries (Section 3.3.4), such as two new file
formats using columnar memory layout. Section 3.3.5 introduces the software library
pasture that we developed specifically for the implementation of high-performance point
cloud applications and which was used for implementing the ad-hoc query engine using
the aforementioned optimizations. Lastly, we discuss applications of adaptive indexing
strategies which can be used to improve ad-hoc queries on compressed point cloud data
(Section 3.3.6).

3.3.1 Measuring the performance of ad-hoc queries

To perform adequate measurements, we must first define the terms query throughput
and query responsiveness more rigorously. The definition is especially important for point
cloud data since the size of a query response will typically be quite large, easily going
into the millions. As a result, the time to transfer the data from the query engine to the
target application becomes relevant. Additionally we will define the two terms I/O-bound
and compute-bound, as we use them a lot to refer to certain kinds of queries. Lastly we
develop a theoretical model for the limitations of ad-hoc queries.

Query throughput Throughput can either be the number of points processed during a
given time interval, or the number of points that are outputted during a given time in-
terval. For ad-hoc queries, we define throughput as the number of points processed during
a given time interval, as the alternative interpretation is not independent of the number
of matching points, causing queries with few matches to have lower throughput, which
is counterintuitive. Nonetheless, the time it takes for outputting the data from the ad-
hoc query engine to the actual application is important, and we include this fact into
the design of the ad-hoc query engine described in Section 3.3.2. When we talk about
processing a point in the ad-hoc query engine, this refers to the time from reading the
point from the raw file until the point is outputted to the target application. Effectively,
this includes I/O time into the throughput, which is important for point clouds, where a
single datum is small and millions of matches per query are to be expected.
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Query responsiveness Responsiveness is typically defined as the time from issuing the
query by the application to receiving the query response in the application. A more fine-
grained approach to responsiveness is to instead measure the time from issuing the query
until the Nth percentile of the query response has been received. For stream-based and in-
teractive applications, it is often more important how quickly any data from the response
is received than how long it takes for all data to be received. Visualizations are a prime
example, where there are typically diminishing returns in visual quality when rendering
more primitives beyond a certain threshold, which is the reason why LOD is often used.

Another important consideration is whether or not preprocessing time should be in-
cluded in the responsiveness of a query. This depends on the use case and the expected
rate of data acquisition. Since we see ad-hoc queries as a tool for explorative data anal-
ysis, we follow the definition of data-to-query time by Alagiannis et al. [4] and include
preprocessing time as part of the responsiveness.

The terms I/O-bound and compute-bound We use the term I/O-bound to describe a
situation in which the reading or writing of the data from an external storage medium
(harddrive or network) is a bottleneck, mainly because the system could process more
data than it can read from or write to the external storage. The opposite situation is called
compute-bound, which is an umbrella term for situations where the available computa-
tional resources (CPU or GPU cycles) are the bottleneck. There is a third term, memory-
bound, which refers to situations where the speed or sometimes capacity of workingmem-
ory is the bottleneck. When we talk about compute-bound queries, this includes the term
memory-bound. We discuss implications of this in Section 3.5.

Theoretical limits To understand the theoretical limits of ad-hoc query performance
on point clouds, we use a simple mathematical model that describes query throughput
and responsiveness in terms of known parameters, such as the number of points in a
dataset, disk I/O throughput, and the complexity of the query. In the following formulas,
we use lower-case letters to denote time quantities and upper-case letters for throughput
quantities.

Assuming a basic model of an ad-hoc query system that consists of the steps reading
point data from disk, matching point data against query, and writing matching points to
target application, an estimate for the runtime t(Q) for a query Q in this system can be
given as follows:

t(Q) = tread(Q) + tmatch(Q) + twrite(Q) (3.1)

From there, we can calculate the throughput T (Q), which is the number of points
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evaluated by the query (#points) divided by the query runtime:

T (Q) =
#points
t(Q)

=
#points

tread(Q) + tmatch(Q) + twrite(Q)
(3.2)

The throughputs for reading, matching, and writing can be expressed in terms of their
individual runtimes:

Tread(Q) =
#points
tread(Q)

Tmatch(Q) =
#points
tmatch(Q)

Twrite(Q) =
#points

MatchRatio ∗ twrite(Q)

(3.3)

While the read and match stages will process the full range of points, the write stage
only writes matching points, so we have to introduce a factor MatchRatio to get the cor-
rect throughput value. Combining Equation (3.2) and Equation (3.3), we get an equation
that relates the overall query throughput to the individual throughputs:

T (Q) = (Tread(Q)−1 + Tmatch(Q)−1 + (MatchRatio ∗ Twrite(Q))−1)−1 (3.4)

In practice the three steps reading, matching, and writing can be parallelized using
pipelined processing, which gives a simpler formula for the overall query throughput:

T (Q) = min{Tread(Q), Tmatch(Q),MatchRatio ∗ Twrite(Q)} (3.5)

Since MatchRatio will always be between zero and one, a more conservative upper
bound for the throughput can be stated as:

T (Q) = min{Tread(Q), Tmatch(Q), Twrite(Q)} (3.6)

Note that this formula is independent of the actual query result and thus matches our
initial definition for query throughput.

The input throughput Tread(Q) can be expressed as follows:

Tread(Q) = (Tin(Q)−1 + Tdecode(Q)−1)−1

Tin(Q) =
DiskReadSpeed
BytesPerPoint(Q)

(3.7)
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Tdecode(Q) refers to the number of points that can be decoded from the input data
into an in-memory format that can be used for answering the query. It depends on the
type of query as the query might not require all attributes of the point record, so only
a subset of the data might have to be read and decoded. In contrast to Equation (3.6),
Equation (3.7) assumes that disk I/O and decoding happen sequentially instead of in
parallel, which reflects the way that point cloud parsing code is usually written.

The output throughput Twrite(Q) can be stated in a similar way:

Twrite(Q) = (Tout(Q)−1 + Tencode(Q)−1)−1

Tout(Q) =
WriteSpeed

BytesPerPoint(Q)

(3.8)

Tencode(Q) refers to the number of points per second that can be encoded into the for-
mat that the target application expects. We use the more generalWriteSpeed as opposed
to DiskWriteSpeed, since point data might be written to either a file on disk, piped into
another application, or written to a socket, depending on the target application.

From these formulas, we see that there are several contributing factors for the query
throughput:

• The I/O throughput of the machine, which not only includes how fast point data
can be read from disk, but also how fast it can be written to the target application.
Consequently, using high-throughput I/O devices and system calls (such as mmap)
should improve query throughput.

• The (average) size of a single point record within the input file format. The smaller
the point records, the more points can be read during a given time period. This
favors compressed file formats, as they are expected to require fewer bytes per
point as uncompressed formats.

• The similarity of the binary layout of the point records within the input file format to
the binary layout of point records in working memory. This favors fixed-width, un-
compressed formats, as their decoding overhead is smaller than that of compressed
files. Intuitively, if the point record within the file has the same binary layout as
the composite type used in the code (for example a C struct), decoding the point
data is equal to a static type cast of the memory, which is typically a no-op.

• The similarity of the binary layout of point records in working memory to the re-
quested layout of the target application. The more closely these layouts match, the
less encoding work is required for writing the matching points to the output. This
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has interesting implications for the internal memory layout for points in the ad-hoc
query engine, as the target application ideally dictates in which layout the points
are read from the input files. This explains why Tencode(Q) is dependent on the
query Q.

Using these formulas, the experimental verification will not only result in empirical
values of T (Q) for various queries, but is expected to give insights into internal parameters
such as Tencode(Q) and Tdecode(Q). Using these parameters, we are able to quantify the
effect that compressed data formats have on query throughput.

For query responsiveness, finding a reasonable formula is harder as the responsiveness
depends heavily on the distribution of the points with regard to the queried attributes.
To illustrate this, assume that a query Q matches 1% of the points of a given dataset. If
all of these points happen to be located at the start of the point cloud file(s), a sequential
scan will yield the full query response after scanning only the first one percent of the
data. Conversely, in the worst case the matching points will be stored at the end of the
file(s) and the query will yield a response only after scanning the full dataset. Even more
interesting is the case where one part of the matching points is located at the start of the
files, and the other part at the end of the file. This is why the Nth-percentile responsiveness
rN (Q) can give more interesting insights. The 50th-percentile responsiveness r50(Q) is
equivalent to the average case responsiveness if we assume an even distribution of the
matching points over the whole dataset. Under this assumption, query responsiveness
becomes a function of the query throughput:

r50(Q) =
#(points)
2T (Q)

+
tpre

#(queries)
(3.9)

#(points) is equal to the number of points in the dataset, so we assume that 50 percent
of the matching points of the query have been found after half of the dataset has been
scanned. As we explained in the definition of query responsiveness, we also include
any preprocessing time tpre, weighted by the number of queries #(queries). This way,
preprocessing time amortizes the more queries are issued on the data.

These formulas can also be applied to understand queries on indexed data, as the
following two examples illustrate:

Example 1 is the Potree application and how it queries the point data for the current
view frustum, using the file format described in [138]: Based on the structure of the
Modifiable Nested Octree, which is loaded as a list of existing octree nodes, the viewer
performs view-frustum culling on the client, which results in a number of visible nodes.
For each node, a “query” is issued to a file server, which simply corresponds to loading
the range of memory corresponding to that node. Looking at the formula for the query
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throughput, we see that Tmatch(Q) is infinite, as no matching has to take place. As a con-
sequence, no data decoding has to take place, so Tdecode(Q) also becomes infinite. Lastly,
as Potree performs file format decoding on the client, the file server has to perform no
encoding, so Tencode(Q) also is infinite. Infinite terms can be ignored in a min statement,
so the resulting throughput is:

T (Q) = min{DiskReadSpeed

BytesPerPoint
,

WriteSpeed

BytesPerPoint
}

As Potree is a web-based point cloud viewer, WriteSpeed will be the network through-
put from the file server to the client, so the query throughput while rendering points with
Potree is bound by either disk or network I/O.

For example 2, consider a query for all points within a target polygon using a point
cloud DBMS, similar to the queries used in the benchmark by VanOosterom et al. [150].
These queries run in two stages: First, a rough query using the index identifies potentially
matching ranges of points, then a fine query matches each point against the query. Since
the rough query reduces #(points)—the number of points that the fine query has to
match—the query response time improves compared to a sequential scan, even if the
query throughput is similar to a sequential scan.

Throughput and responsiveness numbers in the literature If we look at numbers for
query throughput and responsiveness in literature, specifically work on point cloud databases
and visualization, we find a wide variety of numbers that are difficult to relate to one
another. This has multiple reasons: Experiments are conducted using different hard-
ware, different datasets and different queries. There is no agreed-upon set of queries and
datasets for a standardized benchmark. The work by VanOosterom et al. [150] was a
step in that direction, though they—as many other researchers—were more interested in
the scalability of their solution than establishing a standardized benchmark. So while we
cannot hope to achieve a direct comparison, the numbers should still give an estimate on
what is considered to be acceptable in terms of throughput and responsiveness.

VanOosterom et al. report 100th-percentile query response times of about one second
for small- and medium-sized bounding volume queries, a few tens of seconds for larger
polygons, and anywhere from one minute to one hour for municipality-sized shapes for a
dataset containing over 600 billion points using a high-performance server rack. They do
not state throughput numbers, and without knowing the number of points from the rough
query stage, we cannot reconstruct these numbers. Cura et al. report only throughputs
for various data export scenarios, which range between approximately 0.1 to 1 million
points per second [32], and they state their dissatisfaction with these numbers. Liu et
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al. report response times for various queries, in particular perspective view queries with
a response time between 0.8 to 1.4 seconds for selecting about 150.000 points from a
dataset of two billion points[87], but no throughput numbers are given.

These numbers give little insight into more user-centric questions, such as “What are
acceptable response times for point cloud queries?” and more specifically “How does
point throughput affect the query runtime?”. Regarding the seminal works on point cloud
rendering, there is seldom any mention of the performance of the view frustum queries
at all [53, 133, 55, 137]. Instead, common metrics are frame times and total number
of points rendered per frame, as well as qualitative demonstrations of the visualizations
using image comparisons. A notable exception is the work on progressive point cloud
rendering by Schütz et al. [142], which states how many frames it takes their system to
converge to the highest-quality representation of the point cloud (less than a second in
most cases for datasets up to a billion points, plus up to half a minute for loading the
data from disk). Their work also illustrates the impact that point throughput has on the
overall system performance, with up to an order of magnitude difference between data
stored in LAS format versus data stored in a GPU-optimized columnar data format.

In conclusion, we are left with a somewhat unsatisfying landscape of performance
measurements that are hard to relate to each other. Based on the available data, the
state of the art in point cloud querying seem to be response times in the low seconds
for up to a few million matching points, with relative independence of the actual size of
the dataset. For the largest datasets, being able to issue any queries at all seems to be a
success in and of itself. In addition, achieving high point throughput is a desirable but
challenging goal for visualization applications.

3.3.2 Design of an ad-hoc query engine

In this section, we explain the design of a prototypical ad-hoc query engine, a software
component that sits between applications and raw point cloud files. It acts similar to a
typical DBMS, but operates on raw files instead of an optimized internal memory layout.
The goal of designing and implementing such a system is the evaluation of the queries
stated in Section 3.2 that are at least theoretically feasible based on raw, unindexed data.
As stated previously, this excludes queries with anything higher than linear complexity
in terms of the queried points.

The design of this ad-hoc query engine is driven by several insights and constraints:

1. Minimize data-to-query time by operating directly on raw point cloud files on the
local file system, while allowing progressive index creation when necessary
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2. Support common point cloud file formats and take their binary layout into consid-
eration when executing the queries

3. Output point data in a flexible but realistic manner that includes the overhead of
point data I/O

4. Support a wide range of possible queries based on the common query types intro-
duced in Section 3.2

Based on these factors, our ad-hoc query engine is comprised of three main layers:
An Input Layer for loading point data from raw files, a Query Layer responsible for ex-
ecuting the queries, and an Output Layer for sending matching point data to the target
application.

The purpose of the input layer is to access the raw files in an efficient manner and
load only relevant data into main memory. Since one of the assumptions that we made
is that the point cloud data resides on local storage, we can use optimizations such as
memory-mapped I/O. The input layer is also responsible for informing the query layer
about the memory layout and structure of the raw files. The most important information
is whether or not random access reads are supported and if data is stored in interleaved
or columnar memory layout. In its current implementation, the input layer supports the
file formats LAS and LAZ, as well as two custom file formats similar to LAS /LAZ, which
are explained in Section 3.3.3 and Section 3.3.4.

The query layer is responsible for executing the actual queries based on the data pro-
vided by the input layer. Our prototypical implementation includes a rudimentary query
language which supports the following set of query types and combinators:

• Basic binary operators (==, !=, <, <=, >, >=)

• Optimized range-queries, such as bounding-box queries for positions

• Intersections with 2D polygons

• Discrete LOD-queries based on grid-center sampling

For most queries, query execution boils down to applying a predicate function to each
point and filtering the input range of points for all those that match the predicate. Some
of the optimizations introduced in Section 3.3.3 require the query layer to know the
exact memory layout of the input data, so there is a tight coupling between these two
layers. While unfavorable from a software architecture perspective, it does improve the
performance as the results in Section 3.4 show.
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Lastly, the output layer is responsible for outputting the matching points to the applica-
tion that is using the ad-hoc query engine. To correctly include data output overhead into
our measurements, the output layer by default writes all matching points to the standard
output stream. We support the following output modes for matching points:

• Raw data: Outputs the raw binary data of the point as it was read by the input
layer. For a LAS file for example, this returns the raw LAS point record

• Custom layout: Outputs the point data in a custom memory layout defined by the
application. This way, applications can filter only for the point attributes they care
about, reducing the amount of data traffic

We implemented the ad-hoc query engine as a standalone command line application
using the Rust programming language. The source code is available under an open-source
license on GitHub [43].

3.3.3 Optimizations for I/O-bound queries

All queries whose runtime complexity is linear are expected to benefit from better I/O
performance, as each point has to be read and inspected during the query. There are two
ways to improve I/O performance: By reading data faster, or by reading less data. The
speed by which the ad-hoc query engine can read point data is bound by the two factors
disk read speed and decoding speed as seen in Equation (3.7). If the query is bound by I/O
performance, decoding speed is not the limiting factor by definition. Hence, once the
limit of the disk read speed is reached, further improvements in I/O performance require
reading less data instead. This can be achieved by either compressing the data, so that
the same number of points require fewer bytes, or by ignoring parts of the point data that
are irrelevant for the current query.

Compressed file formats such as LAZ effectively turn I/O bound applications into compute-
bound applications, as they are known for their poor decompression performance [106,
81]. Additionally, they do not support true random access to the point data, which pre-
vents optimizations such as skipping unneeded point attributes. For that reason, we eval-
uate potential alternatives to the LAZ file format in Section 3.3.4.

Fixed-width binary formats on the other hand, such as LAS, are well-suited for opti-
mizations that skip unimportant data. As an example, a pure bounding-box query only
needs the position attribute of the point, which takes 12 bytes in uncompressed LAS.
All other attributes could be skipped during reading in the input layer. Since LAS uses
an interleaved memory layout—storing all attributes for a given point contiguously in
memory—the number of bytes that will be skipped between two consecutive points will
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be small, typically less than a cache line. On top of that, when using memory-mapped
I/O, data is loaded into main memory page-wise. Even if a large portion of the data of a
single point is irrelevant, the interleaved memory layout still causes this data to be loaded
into main memory.
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Figure 3.2: Interleaved and columnar memory layouts explained using the LAS file for-
mat as an example (top). When loading the point data during a query that
does not require all attributes, the interleaved memory layout wastes bytes
(bottom).

A better memory layout for skipping unnecessary data is the columnar layout, which
stores the data for each attribute together in memory. Running ad-hoc queries on data
in a columnar layout allows for effective skipping of large portions of the file for many
queries. On top of that, the data comes in a more cache-friendly way, as there are no
waste-bytes between consecutive points, as shown in Figure 3.2. The downside is that
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accessing multiple attributes for the same point requires larger jumps in memory. We
investigate the effect of this for more complex queries in Section 3.4.

The 3D Tiles format uses this memory layout, but it is not widely used as a point cloud
storage format. We thus propose a variation of the LAS file format with columnar instead
of interleaved memory layout. We call this artificial file format LAST, an abbreviation of
LAS Transposed, indicating the fact that thememory of a LAST file is simply the transposed
memory of the point records of an LAS file. Figure 3.3 illustrates the memory layout of
the LAST file format.
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Figure 3.3: The memory layout of the LAST format compared to the LAS format. With
LAST, all attributes of the same type (such as positions, represented as XYZ)
are stored contiguously in memory.

Another optimization that we use for skipping data is based on metadata available for
certain point cloud file formats. The LAS file format and all its derivatives contains the
bounding box of the point cloud. Since point cloud datasets are often stored in multiple
files—often in the form of disjoint tiles—this gives a rough positional index virtually for
free. The ad-hoc query engine uses the bounding box information to discard irrelevant
files during spatial queries which drastically speeds up positional queries on multi-file
datasets.

3.3.4 Optimizations for compute-bound queries

For compute-bound queries, we are looking at optimizations that reduce the number of
operations to perform for matching a single point against the query. We propose some
optimizations for uncompressed data first, then explain our reasoning for dealing with
compressed data.
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Uncompressed point cloud formats

For uncompressed data, running the query on points in the exact memory layout of their
file format prevents additional copy operations and data transformations. Together with
memory-mapped I/O, this allows the query layer to operate on the raw memory buffer
of the file. Instead of working with the memory layout of the source file(s), most appli-
cations will first read the point data into an internal memory layout. Depending on the
difference between these two memory layouts, this operation can introduce significant
overhead, which is undesirable for ad-hoc queries. This is the main reason why com-
pressed point cloud data is typically one to two orders of magnitude slower to read than
uncompressed point cloud data, as the compressed memory layout is very different from
the uncompressed memory layout.

For uncompressed LAS data, it is easy for the query layer to take the native memory
layout of the LAS point records into account. For most point attributes, this only requires
the size and offset of the attribute and the size of the point record (often referred to as
the stride). As an example, suppose the query layer executes a query for points matching
a specific object class. The object class is represented by the classification attribute in the
LAS file format using a single unsigned byte. If the input file uses LAS point record format
2, a single point record has a size of 26 bytes, with the classification value being located
at byte offset 15 within a point record. The query layer thus reads single bytes with a
stride of 26 bytes, starting at offset 15 from the beginning of the point records in the
memory mapped file, as illustrated in Figure 3.4.

in
te

n.
fla

gs
cl

as
s

X R GY Z sc
an

us
er

so
ur

ce
ID B

in
te

n.
fla

gs
cl

as
s

X R GY Z sc
an

us
er

so
ur

ce
ID B

0 4 8 12 16 20 24 28 32 36 40 44 48 52

attribute offset (15 bytes)

stride (26 bytes) == size of point

Figure 3.4: A query on the classification attribute can operate on the raw memory of a
LAS file by reading every Nth byte, starting at an initial offset of K bytes (N=26
and K=15 for LAS point format 2)

There are certain types of attributes which require additional steps, since LAS supports
so-called scaled attributes. The position attribute (made up of three individual attributes
X, Y, and Z) is one of these scaled attributes. In LAS, positions are stored as 32-bit signed
integers in local space, with 64-bit offset and scale values in the file header, which have
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to be applied to the local positions to get the actual world-space positions.
Certain queries can be optimized so that these local-to-world-space calculations are

not necessary. Shape intersections are an example for this optimization: Instead of trans-
forming each point from local space to world space and intersecting it with a bounding
box, we can instead transform the bounding box into local space one time and then
compare it with the unscaled positions in local space. This is possible since this trans-
formation uses only translation and scaling and thus is shape-preserving. We implement
this optimization for both bounding box and polygon intersections in the ad-hoc query
engine.

Compressed point cloud formats

The optimizations for skipping data during reading are not possible when using com-
pressed point cloud formats such as LAZ, which do not provide true random access to
individual points. LAZ is a chunk-based format and provides constant-time seeking to
individual chunks, but within each chunk, points have to be decompressed sequentially.
The underlying encoder is based on entropy and difference coding, which gives good
compression ratios but is computationally expensive. As a point cloud storage format,
LAZ has become a de facto standard for LiDAR data, but its poor decompression speed
and lack of true random access are reasons why LAZ might be fully unsuitable to highly
interactive applications. As an example, the progressive rendering system by Schütz et al.
was only evaluated with uncompressed LAS files since LAZ was deemed too slow [142].
Since many datasets are stored using LAZ this might limit the usability of ad-hoc queries
in practice.

To evaluate the usability of ad-hoc queries with compressed point cloud files, we devel-
oped an alternative file format based on the LAST file format, using the LZ4 compression
algorithm which is optimized for decompression speed [92]. We call this format LAZER
(short for LAZ for Efficient Reading) and compare it against LAZ. LAZER stores points in
a series of blocks, similar to LAZ, where each block stores point attributes in columnar
memory layout identical to the LAST format, but compressed using LZ4 using one com-
pression context per attribute. At the beginning of each block, a block header stores the
offsets to the start of the compressed attributes within that block, which is necessary
for decoding the data. We deliberately designed LAZER to be a simple format similar in
structure to LAZ, as this enables us to determine the effect that decompression speed has
on the responsiveness and throughput of ad-hoc queries. Figure 3.5 illustrates the LAZER
format visually.
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Figure 3.5: The memory layout of the LAZER format compared to the previously intro-
duced LAST format.

3.3.5 pasture - A software library for working with point cloud data

Two of the main aspects of ad-hoc query performance are the effect of the memory layout
of the point data (interleaved or columnar) and the number and type of point attributes
that are loaded, parsed, and processed during a query. To aid in the development of
the ad-hoc query engine and supporting tools, such as readers and writers for the LAST
and LAZER formats, we developed a software library called pasture using the Rust pro-
gramming language. In this section, we briefly describe the main design decisions for
pasture and how it helped us to write the necessary code for the experiments described
in Section 3.4. The source code of pasture is available under the Apache 2.0 license on
GitHub [15].

We chose the Rust programming language not only for the development of pasture
but for all experiments described in this chapter due to three reasons: First, Rust is a
systems programming language with performance comparable to C and C++, and we
expected that ad-hoc queries on point cloud data would require this level of performance
and control. Second, the tooling landscape in Rust enables fast prototyping (for a sys-
tems programming language) and makes performance evaluations simple. There are
several powerful benchmarking, profiling, and tracing tools such as criterion [48], Flame
Graphs [56], and tracy [144] that either have native support within the Rust ecosystem or
are easy to integrate. Lastly, we expected the memory safety and concurrency features of
the language to simplify the development process compared to our own personal experi-
ence with C++ development in the past. While these matters are subjective—discussions
about “Which programming language is the best for XYZ?” are often fought with near-
religious zeal—the Rust programming language did become quite popular in recent years
and has been recognized for its potential to develop scientific software [114].

The main inspiration for the design of pasture was PDAL [29], a widely used C++
library for working with point cloud data. Compared to PDAL, which supports a wide
range of point attributes and readers/writers, pasture has a more flexible memory model
for the storage of the point data. Where data in PDAL is always stored in interleaved
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format, pasture supports several types of buffers, depending on the ownership of the
memory and the layout of the memory. This makes it possible to write generic code
with precise requirements for memory layouts (using the InterleavedBuffer and
ColumnarBuffer traits), or code that works with buffers in any memory layout (using
the BorrowedBuffer trait). A special buffer type is the ExternalMemoryBuffer<T>,
which is an interleaved buffer that does not own its memory. Using this buffer type in
conjunction with a memory-mapped file enables viewing the contents of a LAS file with
virtually zero parsing overhead.

Internally, point data is stored as raw bytes with a piece ofmetadata called PointLayout,
which describes which attributes the point data has and which primitive datatype rep-
resents the values of this attribute. This is similar to how PDAL handles point data,
with added type safety through the usage of procedural macros, which allow safe transi-
tions from static types to dynamically typed point buffers by generating the appropriate
PointLayout for a Rust struct at compile-time. This is something that is not possible
with PDAL.

The following listing shows a simple implementation of an ad-hoc query on a raw point
cloud file using pasture:

Listing 3.1: Loading and querying an LAS file using pasture
// Import s r e da c t e d f o r b r e v i t y

l e t mut l a s _ reade r = LASReader : : from_path ( ” po intc loud . l a s ” ) ? ;
l e t po in t s = la s_ reade r . read ::< VectorBuf fer >(

la s_ reade r . remain ing_points ( ) ) ? ;

const CLASS_BUILDING : u8 = 6;
for ( index , _ ) in po in t s

. v i ew_a t t r i bu t e ::<u8>(&CLASSIFICATION)

. i n t o _ i t e r ()

. enumerate ()

. f i l t e r (|( _ , c )| *c == CLASS_BUILDING)
{

s td : : io : : s tdout ( ) . w r i t e _ a l l ( po in t s . g e t _po in t _ r e f ( index ) ) ? ;
}
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3.3.6 Adaptive indexing strategies for compressed point cloud data

The main challenges when querying compressed point cloud file formats such as LAZ are
the overhead of decompressing the data and the lack of constant-time random access.
While faster compression algorithms might solve the first problem (as proposed in Sec-
tion 3.3.4), without constant-time random access any query will have to decode all point
data. One possible solution to this problem is the creation of a rough index structure that
indexes the compressed blocks, allowing a query to filter for matching blocks within for
example an LAZ file. This index should be lightweight, fast to create, and should preserve
the original files to keep I/O operations to a minimum.

The NoDB system by Alagiannis et al. [4] fits these requirements and can be adopted
to point cloud data in a straightforward way. In the original work, the authors used what
they call an Adaptive Positional Map which refers to the position of attributes in a raw
CSV file. CSV files are similar to point clouds, as both essentially are lists of tuples, but
with some key differences that make it necessary to alter the way the adaptive positional
map is applied for point cloud data. CSV files by themselves do not have constant-time
random access to individual attributes within a row (or even to individual rows) since
they are not fixed-width formats. If the position to a specific attribute is known however,
constant-time random access is possible, as the attribute value can be read and parsed
from that position. Compressed point cloud formats such as LAZ are different, since the
decompression algorithm stores a context which is continuously updated, so the value
of the Nth point depends on all previous points. As a consequence, even knowing the
position of the Nth point within the compressed block, all previous points still would
have to be decompressed in order to access the Nth point. As a result, the adaptive
positional map in its initial form would not speed up the querying process. Instead, we
propose to use an adaptive positional map that points to the start of compressed LAZ
blocks and contains metadata information about the whole block. This metadata will be
attribute-dependent and forms a simple index through which the query engine can decide
if a given LAZ block contains matching points. Just as in the NoDB system, this positional
map can be constructed on the fly during queries for all of the attributes required by the
queries, thus making it adaptive as well. We call this structure an Adaptive Block Index in
our system to distinguish it from the adaptive positional map in the NoDB system.

There are some similarities between the Adaptive Block Index and the file-pruning
strategy using bounding box information in the LAS headers introduced in Section 3.3.3.
In fact, the LAS headers form a block index over the position attribute where the blocks
are whole files. This index is not adaptive since the LAS headers are already present in
the files and do not change during query execution. We use the bounding boxes from the
LAS headers of each file to initialize the Adaptive Block Index for the position attribute
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Figure 3.6: The Adaptive Block Index for a single LAZ file and three attributes. For the po-
sitions, a fully refined index exists that stores the AABB of each compressed
LAZ block. For the classifications, the index is not yet fully refined and stores
a single histogram for all blocks. For the GPS time attribute, no index has yet
been created.

upon first loading of a dataset.
We implemented the Adaptive Block Index for several attributes defined by the LAS

standard using three different data structures depending on the type of attribute. For
positions, we use axis-aligned bounding boxes, for discrete values (for example the clas-
sification values or return number) we use a histogram. Using a histogram, we can prior-
itize matching blocks by the expected number of matches. While this does not affect the
100th-percentile responsiveness of the query, it does improve the Nth-percentile respon-
siveness for all N < 100 and consequently decreases the time until first results arrive.
Figure 3.6 illustrates the Adaptive Block Index for a single LAZ file.

Refining the adaptive index happens during runtime based on the blocks that were
queried. Each block that is to be refined is split into a number of smaller blocks by
splitting the range of points into disjunct ranges and creating a block for each of these
ranges. This process terminates when a block is as small as a single compressed block in a
LAZ or LAZER file, which defaults to 50000 points. When splitting a block, we ensure that
the boundaries of the point ranges of the blocks match the boundaries of the compressed
blocks. This prevents blocks that would require costly seeking within a compressed block.
We evaluate the Adaptive Block Index using multiple consecutive queries in Section 3.4.3.
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3.4 Experiments

To evaluate the ad-hoc query engine, we conducted a series of experiments based on
freely available point cloud data:

E1 I/O performance: Evaluates the read throughput of several common point cloud file
formats and the custom formats described in Section 3.3.

E2 Ad-hoc queries (no index): Evaluates the ad-hoc query engine on a wide range of
queries and measures query throughput and responsiveness. Uses raw files only
and no index.

E3 Ad-hoc queries (adaptive index): Evaluates the adaptive indexing approach described
in Section 3.3.6 on compressed point cloud data.

The specific datasets that we used are shown in Table 3.2, with detailed information
about the number of points, number of files, and size in each of the file formats LAS and
LAZ, as well as the custom formats LAST and LAZER. For the CA13-S dataset we used a
subset of the full CA13 dataset as our test machines did not have enough disk space to
store the full dataset in its uncompressed form. The implications of this are discussed in
Section 3.5.

Dataset (shorthand)
Size

Points Files Notes
LAS LAST LAZ LAZER

District of Columbia 2018 (DoC) [156] 25.23GiB 25.23GiB 3.4GiB 11.04GiB 876M 328
CA13 subset (CA13-S) [112] 45.27GiB 45.27GiB 6.82GiB 24.66GiB 1.43B 234 Subset consisting of

the first 10% of all
files in lexicographic
order

AHN4 subset (AHN4-S) [2] 38.01GiB 38.01GiB 8.86GiB 22.54GiB 1.2B 1 Single tile C_25GN1
(city center of Amster-
dam)

Table 3.2: Datasets used in the experiments for the ad-hoc query engine

The experiments were run on the following two systems: A 2019 MacBook Pro with a
2.6 GHz 6-Core Intel Core i7 processor, 32 GB 2667 MHz DDR4 RAM, a AMD Radeon Pro
5300M 4 GB dedicated GPU and 1 TB SSD running macOS 12.5.1 (labeled MacBook),
and a desktop computer with a 3.2 GHz 6-Core Intel Core i7-8700 processor, 32 GB 2667
MHz DDR4 RAM, an nVidia GeForce GTX 1080 Ti and 500 GB SSD (Model WDC WDS
500G2B0B) running Ubuntu 22.04 (labeled Desktop). We benchmarked the SSDs on the

56



two test systems to achieve average read throughput values of 530MiB/s for the Desktop
system—measured with the hdparm tool—and 2700MiB/s for the MacBook system—
measured with the “Blackmagic Disk Speed Test” tool.

3.4.1 Experiment 1 - I/O performance

We tested the performance of reading point data into memory for each of the four formats
LAS, LAZ, LAST, LAZER. The pasture library implements readers for LAS and LAZ and we
wrote two custom readers for LAST and LAZER. For the common formats LAS and LAZ
we also compared the performance to PDAL and las-rs [8], the Rust port of libLAS. We
used the Rust port instead of libLAS so that the surrounding benchmarking code could
be written in an identical way.

This experiment provides multiple insights: First and foremost, it establishes a baseline
for the I/O performance of the target systems and each point cloud file format that we
can compare to theoretical limits calculated from Equation (3.6). Secondly, it acts as a
benchmark of the LAZER format, which we estimated to be significantly faster to read
and parse than the LAZ file format. Lastly, it evaluates the performance of the pasture
library.

The experiment takes a single point cloud file in each of the aforementioned file for-
mats and reads all points within the file into an in-memory buffer. For las-rs and pas-
ture, we wrote a small Rust executable that opens the file and reads all points into ei-
ther a Vec<Point> using the default point type of las-rs, or one of VectorBuffer
and HashMapBuffer for pasture, depending on the memory layout of the file format.
For PDAL, we used the command line tool with the pipeline mode and measured its
execution time using an output stage of type writers.null, which discards all read
points. We also tested both pasture and las-rs in two configurations, once with a Rust
BufReader<File>—which uses the default read system call—and once with memory-
mapped I/O. To analyze the effect that the disk page cache has on I/O performance, we
ran each experiment twice, one time with explicitly purging the cache and one time with-
out.

We ran this experiment with a single point cloud file from the DoC dataset (1321.las)
containing 3.9 million points. The resulting runtimes are shown in Table 3.3. For the
LAST and LAZER formats, we only record results for pasture as the other tools do not
support these custom formats. Looking at the data, a few things are noteworthy:

• Reading LAZ is between 3 to 4 times slower for both pasture and las-rs than reading
uncompressed LAS. For PDAL, the difference is less significant, with LAZ being 1.5
to 2 times slower to read than LAS. Since the memory throughput is more than an
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order of magnitude less for LAZ, this confirms that reading LAZ is compute-bound.

• Contrary to our initial assumption, using memory-mapped I/O does not give a no-
ticeable performance benefit. In particular, there are large differences between the
performance of mmap on Linux and macOS. mmap is as fast or slightly faster than
using read on Linux, but up to 2 times slower on macOS for uncached files.

• PDAL benefits the most from disk page caching, with LAS parsing being about twice
as fast if the file is cached. This effect also occurs when reading LAZ with PDAL
which is surprising, as a primarily compute-bound problem should not benefit this
much from an increase in I/O speed. Since the tests with PDAL run it as a standalone
executable, whereas the other tests runmultiple benchmarks within one executable,
these values might be distorted by the overhead of launching the PDAL process.

• The LAZER file format is up to 5 times faster to read than LAZ. It is even slightly
faster than reading uncompressed LAS, which is explained by the way that pasture
implements point layout conversions: For all file formats, data is first read into an
internal buffer in a point layout that exactly matches the binary layout of the point
records in the file. This buffer is then converted into the desired memory layout,
which for LAS-like formats means converting local-space positions into world space
for example. This conversion process is more cache-efficient for data in columnar
memory layout. This is also the reason why LAST is almost twice as fast to read as
LAS.

• On the Desktop system, which has a slower SSD, the uncompressed file formats
achieve anywhere from a third to close to half of the theoretical maximum disk
read throughput. This does not scale to the faster SSD on the MacBook system,
where only about 10 percent of the maximum disk read throughput are achieved.
Together with the estimated values for Tdecode, which show that the Desktop system
has more compute power than the MacBook system, this is evidence that reading
even uncompressed file formats is compute-bound.
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Format Tool
Throughput [MiB/s] Tread [MPts/s]

Tdecode [MPts/s] Disk load factor
No cache Cached No cache Cached

MacBook

LAS

pasture (file) 238.092 ± 15.430 243.814 ± 16.480 8.322 ± 0.539 8.522 ± 0.576 9.127 8.8%
pasture (mmap) 148.834 ± 1.977 224.919 ± 3.192 5.202 ± 0.069 7.861 ± 0.112 5.506 5.5%
las-rs (file) 137.390 ± 2.595 145.595 ± 2.279 4.802 ± 0.091 5.089 ± 0.080 5.059 5.1%
las-rs (mmap) 97.618 ± 4.778 166.142 ± 1.354 3.412 ± 0.167 5.807 ± 0.047 3.540 3.6%
PDAL 49.625 ± 1.076 107.298 ± 11.65 1.735 ± 0.038 3.750 ± 0.407 1.767 1.8%

LAZ

pasture (file) 8.697 ± 0.178 8.879 ± 0.119 1.908 ± 0.039 1.948 ± 0.026 1.947 0.3%
pasture (mmap) 8.192 ± 0.082 8.906 ± 0.111 1.797 ± 0.018 1.954 ± 0.024 1.832 0.3%
las-rs (file) 7.597 ± 0.085 7.709 ± 0.059 1.666 ± 0.019 1.691 ± 0.013 1.696 0.3%
las-fs (mmap) 7.133 ± 0.081 7.689 ± 0.085 1.565 ± 0.018 1.687 ± 0.019 1.591 0.3%
PDAL 4.698 ± 0.279 7.650 ± 0.159 1.030 ± 0.061 1.678 ± 0.035 1.042 0.2%

LAST
pasture (file) 369.010 ± 31.430 413.166 ± 44.41 12.898 ± 1.099 14.441 ± 1.552 14.93 13.7%
pasture (mmap) 187.353 ± 5.541 350.058 ± 7.580 6.548 ± 0.194 12.235 ± 0.265 7.037 6.9%

LAZER
pasture (file) 118.163 ± 6.700 133.497 ± 16.50 9.325 ± 0.529 10.535 ± 1.302 10.34 4.4%
pasture (mmap) 84.561 ± 5.263 125.959 ± 13.68 6.673 ± 0.415 9.940 ± 1.080 7.181 3.1%

Desktop

LAS

pasture (file) 172.263 ± 3.088 239.098 ± 26.690 6.021 ± 0.108 8.357 ± 0.933 8.920 32.5%
pasture (mmap) 175.942 ± 0.322 252.436 ± 7.444 6.150 ± 0.011 8.823 ± 0.260 9.205 33.2%
las-rs (file) 189.650 ± 1.453 199.499 ± 0.673 6.629 ± 0.051 6.973 ± 0.024 10.32 35.8%
las-rs (mmap) 227.821 ± 1.097 242.706 ± 0.705 7.963 ± 0.038 8.483 ± 0.025 13.96 43.0%
PDAL 103.011 ± 2.455 130.271 ± 7.312 3.600 ± 0.086 4.553 ± 0.256 4.469 19.4%

LAZ

pasture (file) 9.150 ± 0.084 9.290 ± 0.115 2.007 ± 0.018 2.038 ± 0.025 2.251 1.7%
pasture (mmap) 9.126 ± 0.155 9.333 ± 0.098 2.002 ± 0.034 2.047 ± 0.021 2.244 1.7%
las-rs (file) 8.778 ± 0.045 8.935 ± 0.029 1.925 ± 0.010 1.960 ± 0.006 2.149 1.7%
las-fs (mmap) 8.806 ± 0.023 8.937 ± 0.036 1.932 ± 0.005 1.960 ± 0.008 2.157 1.7%
PDAL 7.129 ± 0.185 7.943 ± 0.122 1.564 ± 0.041 1.742 ± 0.027 1.708 1.3%

LAST
pasture (file) 221.876 ± 13.410 371.439 ± 68.850 7.755 ± 0.469 12.983 ± 2.407 13.33 41.9%
pasture (mmap) 241.148 ± 3.725 446.821 ± 3.644 8.429 ± 0.130 15.617 ± 0.127 15.46 45.5%

LAZER
pasture (file) 108.338 ± 7.384 129.893 ± 0.941 8.549 ± 0.583 10.250 ± 0.074 15.876 20.4%
pasture (mmap) 106.765 ± 0.766 129.810 ± 0.211 8.425 ± 0.060 10.244 ± 0.017 15.453 20.1%

Table 3.3: Throughput values when reading a single point cloud file with 3.9 million
points using various tools and file formats. Tdecoding values are estimated
from Equation (3.7) using the peak disk read speed (2700MiB/s for the Mac-
Book system, 530MiB/s for the Desktop system).

One of the assumptions that we made in Section 3.3.1 was that the binary layout of the
point cloud file format, compared to the binary layout of the in-memory format, plays a
significant role in how quickly point data can be read. The observations from the first
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experiment support this assumption, which is why we conducted a second experiment
to illustrate the overhead of binary layout conversions. In this experiment, we read data
in the LAS and LAST file formats into multiple different memory layouts. For most tools,
when reading LAS files, the default memory layout will contain positions in world-space
using double-precision floating-point numbers, and might unpack the packed bit flag at-
tributes, such as return number and number of returns. We compare this to a memory
layout that reads all attributes exactly as they are stored in the LAS point records (po-
sitions as 32-bit integer coordinates in local space and packed bit flags), as well as two
memory layouts that read only the positions or only the classifications. Table 3.4 shows
the results of this experiment. The following observations can be made:

• The differences between the Desktop and MacBook systems are much larger in this
experiment. This indicates that a closer match between the binary layouts of the
file and in-memory format decreases the compute overhead and makes the parsing
process mostly I/O bound. Both systems achieve over 80% disk read utilization for
the native point layout and the LAS file format, but since the SSD of the MacBook
system has a much higher read throughput than the one of the Desktop system, the
point read throughput for the MacBook system is ten times as high as reading in
the default memory layout, whereas for the Desktop system it is only twice as high.

• Using the default memory layout, reading LAST is slower than reading LAS because
each attribute in the LAST file is read into a separate memory buffer, whereas a
whole LAS file can be read using a single read call into one consecutive buffer.

• Reading individual attributes is much faster using the LAST format compared to
the LAS format, which confirms the assumption that columnar memory layouts are
better suited to accessing specific point attributes. This allows reading over half
a billion classification values per second on the MacBook system even with an un-
cached file, and multiple billions of values on both systems if the file is cached.

3.4.2 Experiment 2 - Ad-hoc queries (no index)

To evaluate query performance using the ad-hoc query engine, we executed a series of
queries on the three datasets DoC, CA13-S and AHN4-S. The queries are described in
Table 3.5. The queries are inspired by those found in the literature (as discussed in Sec-
tion 3.2) and consist of spatial queries with bounding boxes and polygons, queries on
secondary attributes, as well as discrete LOD queries, all listed in Table 3.5. We com-
pared the performance of our ad-hoc query engine to that of an existing database solu-
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Format Attributes
Throughput [MiB/s] Tread [MPts/s]

Tdecode [MPts/s] Disk load factor
No cache Cached No cache Cached

MacBook

LAS

All (default) 250.810 ± 13.10 251.617 ± 13.22 8.766 ± 0.46 8.794 ± 0.46 9.664 9.3%
All (native) 2316.742 ± 52.22 3750.762 ± 145.81 80.975 ± 1.83 131.097 ± 5.10 570.401 85.8%
Local positions 1417.458 ± 50.16 1717.828 ± 37.62 49.543 ± 1.75 60.041 ± 1.32 62.712 52.5%
Classifications 1425.647 ± 48.99 1782.741 ± 38.73 49.829 ± 1.71 62.310 ± 1.35 50.722 52.8%

LAST

All (default) 371.156 ± 28.81 403.484 ± 39.24 12.973 ± 1.01 14.103 ± 1.37 15.040 13.7%
All (native) 1418.031 ± 82.24 1905.393 ± 95.38 49.564 ± 2.88 66.598 ± 3.33 104.388 52.5%
Local positions 1807.343 ± 213.50 3666.920 ± 219.67 157.928 ± 18.65 320.420 ± 19.19 477.681 66.9%
Classifications 492.147 ± 171.30 4153.255 ± 919.11 516.053 ± 179.60 4355.003 ± 963.7 631.085 18.2%

Desktop

LAS

All (default) 178.081 ± 4.39 254.331 ± 30.50 6.224 ± 0.15 8.889 ± 1.07 9.374 33.6%
All (native) 432.821 ± 4.32 1889.978 ± 6.31 15.128 ± 0.15 66.058 ± 0.22 82.500 81.7%
Local positions 393.298 ± 0.31 1301.060 ± 10.70 13.747 ± 0.01 45.475 ± 0.37 19.549 74.2%
Classifications 388.234 ± 0.99 1258.451 ± 2.05 13.570 ± 0.04 43.985 ± 0.07 13.909 73.3%

LAST

All (default) 228.982 ± 14.34 403.992 ± 80.68 8.003 ± 0.50 14.120 ± 2.82 14.091 43.2%
All (native) 435.700 ± 4.67 2303.033 ± 45.31 15.229 ± 0.16 80.497 ± 1.58 85.591 82.2%
Local positions 484.567 ± 2.87 6233.315 ± 42.59 42.342 ± 0.25 544.675 ± 3.72 493.944 91.4%
Classifications 248.654 ± 13.71 12093.154 ± 2915.27 260.733 ± 14.37 12680.591 ± 3056.89 491.170 46.9%

Table 3.4: Memory and point throughput when reading a single point cloud file with 3.9
million points using the given set of attributes in the LAS and LAST file for-
mats. All reading done using the read systems call instead of mmap. The All
(native) memory layout corresponds to LAS point record format 6.

tion (PostGIS with the pgPointclouds extension), which supports all query types except
discrete LOD queries.

Data preparation

For data preparation, we converted each of the datasets from its original file format (LAS
for DoC, LAZ for CA13-S and AHN4-S) into all four file formats LAS, LAZ, LAST, and
LAZER. We did not include the conversion time into the final query runtime as we do
not consider this conversion to be part of the typical query process. Since we want to
evaluate the effect of different point cloud file formats on query performance, having
data available in all four formats is mandatory, in practice point cloud data will be stored
in one specific format during data capturing and postprocessing.

For the PostGIS database, we employed PDAL [29] to insert the point cloud data into
the database and recorded the time for this import in Table 3.6. For data exploration,
this data import time is an important part of the overall data-to-query time [4] and has
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Query name
Number of matches

Description
DoC CA13-S AHN4-S

AABB small 4.21M 9.01M 6.25M Points within a small bounding box
AABB large 225.32M 329.32M 347.72M Points within a large bounding box
AABB full 876.18M 1.43B 1.2B Points within a bounding box as large as the

dataset
AABB none 0 0 0 Points within a bounding box that does not

intersect the dataset
Rect small 4.21M 4.20M 10.55M Points within a small 2D rectangle
Polygon small 5.27M 15.31M 21.78M Points within a small 2D polygon
Rect large 230.03M 433.18M 218.49M Points within a large 2D rectangle
Polygon large 224.55M 269.85M 186.62M Points within a large 2D polygon
Polygon with holes 3.06M 52.66M 11.34M Points within a 2D polygon that has holes
Buildings 121.14M 930.49k 295.31M Points classified as buildings
Buildings in small polygon 1.79M 15.58k 7.66M Points classified as buildings within a small

2D polygon
Vegetation 175.98M 361.85M 0 Points classified as vegetation
First returns 741.77M 1.25B 989.35M Points that are first returns
Canopies estimate 120.72M 160.13M 163.25M Estimate canopy points through first returns

from points with multiple returns
LOD0 3.44k 9.63k 19.67k Discrete LOD 0
LOD3 170.87k 246.38k 1.1M Discrete LOD 3

Table 3.5: All queries used in the ad-hoc queries experiment

Dataset Upload time [hh:mm:ss]
Desktop MacBook

DoC 5:55:07 2:45:23
CA13-S N/A 3:54:46
AHN4-S N/A 4:29:34

Table 3.6: Time for uploading the point cloud datasets into the PostGIS database. N/A
values indicate a crash due to insufficient workingmemory during uploadwith
PDAL.
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to be taken into account when evaluating the query responsiveness.
During uploading the data, we encountered problems with the amount of working

memory that PDAL requires, which exceeded the available resources on the Desktop sys-
tem. The MacBook system had more swap space so we performed the data import there
and manually loaded a database dump of the relevant tables onto the Desktop system. We
believe that imports of larger datasets would not have worked on the MacBook system as
well due to poor scalability of PDAL.

For the query polygons listed in Table 3.5, we created a single vector layer per dataset
using the QGIS software and stored it as a shapefile. Our ad-hoc query engine loads these
shapefiles and converts them into INTERSECTS queries. We also upload the shapes to
PostGIS into a separate table which is referenced by the queries. The shapes are depicted
in Figure 3.7.

Query results

The resulting runtimes for the queries are shown in Table 3.7 (DoC), Table 3.8 (AHN4-S)
and Table 3.9 (CA13-S). There are several important observations that can be made from
the data regarding the following points:

• The effect of compression on query responsiveness and throughput

• The effect of columnar memory layouts on query responsiveness and throughput

• Differences between single-file and multi-file datasets

• The overhead of discrete LOD calculation during a query

• The performance of the database solution in comparison to the ad-hoc query engine

• Differences between the Desktop and MacBook systems

We discuss each of these observations in turn in the following paragraphs.

Queries on compressed vs. uncompressed data Queries on compressed data are gen-
erally significantly slower than on uncompressed data. Comparing the existing formats
LAS and LAZ, LAZ is on average 4 to 6 times worse than LAS, both for responsiveness
and throughput. With query throughputs of 5 to 10 million points per second, queries
that have to inspect a large number of points (such as for buildings or first returns) take
multiple minutes to complete. Our custom LAZER format has better performance, both
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(a) Query shapes for the DoC dataset (b) Query shapes for the AHN4-S dataset

(c) Query shapes for the CA13-S dataset

Figure 3.7: The query shapes for Experiment 2
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Query
Runtime [s] Throughput [MPts/s]

LAS LAST LAZ LAZER PostGIS LAS LAST LAZ LAZER PostGIS

Desktop

AABB (full) 31.341 70.612 79.663 73.764 1870.249 27.956 12.408 10.999 11.878 0.468
AABB (large) 9.603 17.656 37.020 19.180 504.126 28.219 15.348 7.320 14.128 N/A
AABB (none) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 N/A
AABB (small) 0.470 0.422 2.206 0.506 9.054 27.893 31.014 5.936 25.867 N/A
Buildings 26.789 9.672 120.263 16.549 243.709 32.707 90.586 7.286 52.944 3.595
Buildings in small polygon 0.565 0.297 3.965 0.509 9.232 29.670 56.376 4.226 32.898 N/A
Canopies estimate 27.935 9.834 157.924 20.901 859.552 31.365 89.097 5.548 41.920 1.019
First returns 31.970 52.448 119.312 58.405 1315.611 27.407 16.706 7.344 15.002 0.666
LOD0 29.061 14.330 112.918 20.454 N/A 30.150 61.143 7.759 42.837 N/A
LOD3 28.896 14.382 111.932 20.443 N/A 30.322 60.922 7.828 42.859 N/A
Polygon holes 0.646 0.807 3.008 0.761 8.108 31.047 24.859 6.672 26.373 N/A
Polygon large 9.248 18.640 28.929 18.672 486.584 28.263 14.022 9.035 13.998 N/A
Polygon small 0.609 0.813 2.654 0.814 12.433 27.518 20.617 6.313 20.593 N/A
Rect large 9.528 18.433 29.307 19.383 500.381 28.441 14.701 9.246 13.980 N/A
Rect small 0.474 0.651 2.170 0.548 8.885 27.613 20.106 6.036 23.881 N/A
Vegetation 27.349 10.335 120.648 17.105 433.574 32.037 84.777 7.262 51.225 2.021

MacBook

AABB (full) 43.387 96.095 95.205 98.177 3787.025 20.194 9.118 9.203 8.925 0.231
AABB (large) 13.433 23.613 41.427 25.853 933.980 20.172 11.476 6.541 10.481 N/A
AABB (none) 0.000 0.000 0.000 0.005 0.003 0.000 0.000 0.000 0.000 N/A
AABB (small) 0.653 0.491 2.502 0.817 17.066 20.050 26.665 5.234 16.033 N/A
Buildings 36.624 14.697 139.150 22.006 559.242 23.924 59.618 6.297 39.816 1.567
Buildings in small polygon 0.883 0.477 4.832 0.831 14.532 18.985 35.107 3.468 20.160 N/A
Canopies estimate 42.310 14.598 186.793 25.549 1306.469 20.709 60.020 4.691 34.294 0.671
First returns 46.809 72.200 157.799 79.522 3416.167 18.718 12.136 5.553 11.018 0.256
LOD0 39.285 21.658 136.787 24.380 N/A 22.303 40.456 6.405 35.939 N/A
LOD3 39.761 21.523 139.900 26.389 N/A 22.037 40.709 6.263 33.203 N/A
Polygon holes 0.923 0.766 3.675 1.014 14.438 21.743 26.187 5.461 19.801 N/A
Polygon large 13.594 24.511 154.746 26.038 947.055 19.226 10.663 1.689 10.038 N/A
Polygon small 0.857 1.091 2.983 1.080 24.028 19.554 15.364 5.617 15.519 N/A
Rect large 12.973 24.349 34.018 25.579 1022.159 20.887 11.129 7.966 10.594 N/A
Rect small 0.669 0.713 3.827 0.902 21.240 19.570 18.358 3.422 14.521 N/A
Vegetation 38.111 14.891 139.938 20.794 949.123 22.990 58.840 6.261 42.136 0.923

Table 3.7: Results of the queries on the DoC dataset for both our ad-hoc query engine
(using 4 file formats) and PostGIS
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Query
Runtime [s] Throughput [MPts/s]

LAS LAST LAZ LAZER PostGIS LAS LAST LAZ LAZER PostGIS

Desktop

AABB (full) 76.171 103.066 113.197 101.808 2427.955 15.759 11.646 10.604 11.790 0.494
AABB (large) 64.643 44.609 181.923 41.270 940.807 18.569 26.908 6.598 29.085 N/A
AABB (none) 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 N/A
AABB (small) 60.888 40.580 177.088 27.328 46.823 19.714 29.580 6.778 43.924 N/A
Buildings 63.188 42.743 181.272 27.828 479.874 18.996 28.083 6.622 43.135 2.501
Buildings in small polygon 66.575 43.583 260.247 36.711 30.550 18.030 27.541 4.612 32.697 N/A
Canopies estimate 67.081 45.567 260.498 35.698 1022.489 17.894 26.343 4.608 33.625 1.174
First returns 80.624 76.056 190.959 77.062 1551.304 14.888 15.782 6.286 15.576 0.774
LOD0 64.269 40.438 186.891 30.385 N/A 18.677 29.683 6.423 39.505 N/A
LOD3 68.484 42.732 186.115 30.767 N/A 17.527 28.090 6.449 39.014 N/A
Polygon holes 59.649 41.009 179.627 27.964 31.212 20.124 29.270 6.682 42.925 N/A
Polygon large 66.274 52.599 193.274 35.281 373.298 18.112 22.821 6.211 34.023 N/A
Polygon small 61.152 44.364 179.720 27.617 42.317 19.629 27.057 6.679 43.464 N/A
Rect large 62.820 47.285 192.003 36.944 433.243 19.108 25.385 6.252 32.491 N/A
Rect small 60.828 39.480 180.158 27.571 20.347 19.734 30.404 6.663 43.536 N/A
Vegetation 64.193 43.668 177.649 26.376 6.709 18.699 27.488 6.757 45.509 178.908

MacBook

AABB (full) 64.208 76.635 156.081 84.749 4978.637 18.695 15.663 7.691 14.164 0.241
AABB (large) 40.085 27.287 226.540 39.683 1893.588 29.945 43.989 5.299 30.249 N/A
AABB (none) 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000 N/A
AABB (small) 14.293 4.324 215.965 14.105 90.947 83.982 277.615 5.558 85.100 N/A
Buildings 71.943 31.175 223.808 41.271 1323.129 16.685 38.504 5.363 29.085 0.907
Buildings in small polygon 23.939 6.439 316.118 19.844 54.545 50.142 186.422 3.797 60.491 N/A
Canopies estimate 77.519 26.932 319.734 48.094 1535.545 15.485 44.569 3.754 24.958 0.782
First returns 84.782 66.403 247.755 76.571 4389.366 14.158 18.077 4.845 15.676 0.273
LOD0 75.273 26.796 226.157 46.759 N/A 15.947 44.796 5.308 25.671 N/A
LOD3 76.847 27.426 226.503 48.035 N/A 15.620 43.767 5.299 24.989 N/A
Polygon holes 14.791 3.941 219.579 14.598 51.966 81.152 304.542 5.467 82.227 N/A
Polygon large 24.455 16.000 223.982 24.466 802.454 49.083 75.024 5.359 49.062 N/A
Polygon small 15.465 5.357 217.051 14.854 95.486 77.616 224.091 5.530 80.807 N/A
Rect large 27.311 17.382 223.969 26.679 910.757 43.951 69.056 5.359 44.992 N/A
Rect small 14.662 4.564 220.108 12.194 45.278 81.868 263.017 5.453 98.438 N/A
Vegetation 10.657 0.408 214.573 9.637 30.152 112.636 2944.845 5.594 124.558 39.810

Table 3.8: Results of the queries on theAHN4-S dataset for both our ad-hoc query engine
(using 4 file formats) and PostGIS
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Query
Runtime [s] Throughput [MPts/s]

LAS LAST LAZ LAZER PostGIS LAS LAST LAZ LAZER PostGIS

Desktop

AABB (full) 73.200 81.463 134.123 77.880 2869.008 19.529 17.548 10.658 18.355 0.498
AABB (large) 15.845 18.334 125.654 18.308 675.901 22.517 19.460 10.974 19.487 N/A
AABB (none) 0.000 0.000 0.005 0.000 0.001 0.000 0.000 0.000 0.000 N/A
AABB (small) 0.970 0.637 0.746 0.778 19.503 26.143 39.821 12.226 32.613 N/A
Buildings 66.530 6.361 116.013 13.778 11.111 21.487 224.726 12.322 103.753 128.652
Buildings in small polygon 1.294 0.783 10.896 0.738 0.886 53.264 87.957 6.323 93.324 N/A
Canopies estimate 81.241 63.618 303.999 31.336 1604.268 17.596 22.470 4.702 45.619 0.891
First returns 82.335 76.969 222.834 72.626 2344.680 17.362 18.572 6.415 19.683 0.610
LOD0 82.551 72.264 213.770 30.635 N/A 17.317 19.782 6.687 46.662 N/A
LOD3 78.254 73.403 212.691 31.644 N/A 18.267 19.475 6.721 45.174 N/A
Polygon holes 7.083 5.412 25.678 4.833 124.046 26.025 34.064 7.179 38.141 N/A
Polygon large 21.217 21.478 40.005 16.039 540.183 14.984 14.803 7.947 19.822 N/A
Polygon small 2.491 1.420 9.294 1.582 30.348 27.655 48.513 7.413 43.545 N/A
Rect large 20.767 24.070 51.990 24.452 880.286 22.947 19.798 9.166 19.489 N/A
Rect small 4.041 2.785 14.769 3.241 89.348 25.990 37.710 7.111 32.403 N/A
Vegetation 74.273 64.538 211.142 36.566 698.968 19.246 22.150 6.770 39.093 2.045

MacBook

AABB (full) 62.952 80.796 124.807 82.048 6176.889 22.708 17.693 11.454 17.423 0.194
AABB (large) 15.619 19.096 36.793 19.648 1436.911 22.842 18.683 9.697 18.159 N/A
AABB (none) 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 N/A
AABB (small) 1.319 0.691 4.656 0.868 43.488 19.228 36.705 5.447 29.218 N/A
Buildings 20.348 3.601 132.394 11.954 64.874 70.251 397.007 10.797 119.579 18.503
Buildings in small polygon 1.739 0.513 12.208 1.050 1.799 39.618 134.374 5.644 65.601 N/A
Canopies estimate 80.801 26.772 348.048 35.916 2040.786 17.692 53.395 4.107 39.801 0.588
First returns 87.057 73.871 280.368 78.250 5421.134 16.420 19.351 5.099 18.268 0.221
LOD0 76.064 30.051 244.066 40.033 N/A 18.793 47.569 5.857 35.708 N/A
LOD3 76.164 30.360 245.345 40.462 N/A 18.769 47.086 5.826 35.330 N/A
Polygon holes 8.326 4.536 30.305 5.771 271.420 22.142 40.645 6.083 31.945 N/A
Polygon large 16.304 16.207 44.411 17.174 1218.651 19.500 19.617 7.159 18.512 N/A
Polygon small 2.845 1.479 10.201 2.000 72.654 24.218 46.570 6.754 34.454 N/A
Rect large 22.562 25.348 53.347 25.830 1897.197 21.122 18.800 8.933 18.449 N/A
Rect small 4.638 3.067 16.406 3.684 189.937 22.643 34.243 6.401 28.505 N/A
Vegetation 77.221 34.753 246.419 40.143 1619.259 18.512 41.134 5.801 35.610 0.741

Table 3.9: Results of the queries on the CA13-S dataset for both our ad-hoc query engine
(using 4 file formats) and PostGIS
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for queries with fewer matches as well as queries on secondary attributes such as clas-
sifications and return numbers. The advantage of LAZER over LAZ also comes from the
columnar memory layout of the former file format, as discussed in the next paragraph.
Overall using a faster and simpler compression scheme does increase the performance of
ad-hoc queries significantly, at the cost of worse compression ratios.

Queries on columnar vs. interleaved data Columnar memory layouts achieve better
results for queries that either have fewer matches or operate on few or small point at-
tributes. The combination of these two factors, as seen for example with the “Buildings”
queries on the DoC dataset, causes response times and throughputs to be up to three
times faster and higher using the columnar LAST format compared to regular LAS. In
these cases, even compressed LAZER outperforms uncompressed LAS, as only a fraction
of the data has to be loaded during query execution when using a columnar memory
layout. When outputting a large amount of points, columnar formats become slower
than interleaved formats in our implementation. This is not a principle limitation but
comes from the implementation of our point output routine, which always writes data to
the standard output stream in interleaved memory layout. The performance overhead of
memory transpose operations is a limitation of columnar formats, as many applications
require point data in interleaved memory layout.

Single-file datasets vs. multi-file datasets There are large differences between the ad-
hoc query runtimes for single-file and multi-file datasets. As discussed in Section 3.3.3,
the LAS file format includes bounding-box information in the file header. Data delivery for
large point clouds typically includes a form of spatial tiling, so that all files in the dataset
have little to no overlap. This enables sub-second response times for spatial queries if
their bounding region is sufficiently small, as shown by the results for the DoC and CA13-S
datasets. Without this information, there is little difference in runtime between querying
a small bounding region and querying all points within the dataset. For the single-file
dataset AHN4-S, all queries have similar runtimes as they all amount to a full scan. Ad-hoc
queries thus benefit immensely from datasets that are already pre-tiled. It is important
to point out the difference between this tiling process and the computationally more
expensive index creation discussed in Chapter 4. It is sufficient to perform rough tiling
to get speedups of one to two orders of magnitude with ad-hoc queries.

Discrete LOD calculation Selecting representative subsets of a point cloud using LOD
is especially important for visualization applications, hence we evaluated on-the-fly dis-
crete LOD generation in the context of ad-hoc queries. The resulting runtimes are similar
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to those of the “AABB full” query and thus are far from interactive speeds for all tested
datasets. Nonetheless it is interesting to observe that the computational overhead com-
pared to non-LOD queries over all points is small, on average less than 25%. Our ad-hoc
query engine uses a grid-center sampling approach for discrete LOD calculation, which
is used in more sophisticated point cloud indexing tools such as Entwine [61] as well.
To decide whether or not ad-hoc queries are suitable for querying data with LOD, the
point throughput numbers serve as a guideline. For the DoC dataset, between 40 and 60
million points per second can be queried using LOD.

Ad-hoc queries vs. a database solution The results for the query runtimes using the
PostGIS DBMS with the pgPointclouds extension illustrate a problem that has been noted
by Cura et al. [32]: Point cloud databases have poor data export performance. The results
in Table 3.7 and the related tables show that PostGIS is one to two orders of magnitude
slower than using ad-hoc queries. These numbers exclude the initial data upload time
(see Table 3.6). Together, the data-to-query time when using PostGIS is several orders of
magnitude worse than when working with our ad-hoc query engine.

Differences between the Desktop and MacBook systems Lastly we want to point out
interesting differences between the Desktop and MacBook systems. As we observed in
experiment 1, the usage of memory-mapped I/O is not a silver bullet and there are differ-
ences in the implementation on the operating-system level that cause memory-mapped
I/O to be slower on macOS than on Linux. The results of this experiment show that
disk I/O is less important than memory speed and compute resources, as the Desktop
system often outperforms the MacBook system, although the latter has a faster SSD.
Implementation-wise there are also caveats, as memory-mapped I/O makes paralleliza-
tion easier as it requires no explicit synchronization. This becomes especially important
for the single-file dataset AHN4-S: Our implementation, which parallelizes over blocks of
1 million points, performs many concurrent read and seek operations within the same
file. The typical types for file-based I/O within the Rust standard library are not syn-
chronized, and adding a synchronization primitive prevents all parallelization. For this
reason, we are using memory-mapped I/O also on the MacBook system.

3.4.3 Experiment 3 - Ad-hoc queries (adaptive index)

In this experiment we evaluate the usage of adaptive indexing together with ad-hoc
queries. The previous two experiments showed that ad-hoc queries on compressed files,
as well as on large, single-file datasets exhibit poor performance. To evaluate whether
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adaptive indexing can help in these situations, we ran a series of queries on the AHN4-S
dataset using the adaptive indexing strategy described in Section 3.3.6. This approach
builds a simple block-based index that stores one acceleration structure per consecutive
range of points and value type, and adaptively refines the index by splitting blocks with
larger point ranges into smaller ones. We tested two different strategies for adaptive
indexing:

1. Refine all: All blocks visited by the query that can be refined are refined into up to
four smaller blocks.

2. Time budget: Refine blocks for a given maximum time. The blocks to refine are
selected using a heuristic based on the peak I/O throughput values from experiment
1. This is similar to the progressive indexing budget introduced by Holanda et
al. [64].

To see the effect of adaptive indexing, all queries were executed eight times and the
total runtime for querying and refinement, as well as the Nth-percentile query respon-
siveness was recorded. We tested three queries from experiment 2 (AABB small, AABB
large, and Buildings), as well as a query that starts with the bounding box of the AABB
large query and interpolates to the bounding box of the AABB small query.

The runtimes for this experiment are shown in Figure 3.8. These results show that
small spatial queries benefit most from adaptive indexing, with the cost of adaptive in-
dexing amortized after at most three queries for all file formats. Due to their slower
parsing speed, compressed file formats require more time for index refinement, which
is especially prominent for the LAZ format and the time-budget refinement strategies.
Where other formats have a fully refined index after at most four iterations, the index is
still not fully refined after the full eight iterations using LAZ. Nonetheless there is a no-
ticeable improvement in query responsiveness as can be seen for example in the results
for the AABB small query. Here the index refinement takes less than 10 percent of the
total query runtime and consistently decreases the runtime of the next query by about
the same percentage.

Our block-based index operates without sorting the points and thus exploits locality
inherent to the points within the file(s). There is often decent spatial locality in point
cloud datasets due to theway points are recorded and postprocessed, but this locality does
not extend to other point attributes. For the Buildings query, only a fraction of the blocks in
the refined index do not contain any points classified as buildings, hence the improvement
in query runtime is marginal. Even in those cases though there is an improvement of the
Nth-percentile query responsiveness, especially for low values of N, as can be seen in
Figure 3.9. For discrete values like point classifications, our implementation prioritizes
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Figure 3.8: Runtimes of 8 consecutive queries using four adaptive indexing strategies
(left to right within each chart: No indexing, Refine all, Time budget 10s, Time
budget 5s) and four file formats. Red bars show the query runtime, orange
bars stacked on top show the time spent for indexing.
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blocks with a high number of matches, which improves the time until first query results
are obtained, even though the total query runtime remains nearly constant.

Figure 3.9: Nth-percentile query responsiveness rN (Q) for the Buildings query on the
AHN4-S dataset in the LAZER format with an adaptive indexing time budget
of 10 seconds. Colored lines show the different iterations of the repeated
query.

3.5 Discussion

In this section we discuss the results from the experiments with regard to the initial
research question 1. Beyond that, we point out remaining challenges and limitations of
our proposed ad-hoc queries approach.

3.5.1 Implications for research question 1

We set out to answer the following research question regarding file-based point cloud
data management:

RQ1 Can ad-hoc queries enable applications to work directly with raw point cloud files
instead of sophisticated index structures?

We now summarize the results of this chapter, including the experimental data shown
in Section 3.4, through which we are able to answer this question.

72



We evaluated two different point cloudmemory layouts (interleaved and columnar) and
demonstrated their performance characteristics both in isolated I/O benchmarks (Sec-
tion 3.4.1) as well for various queries (Section 3.4.2). We found significant differences
in I/O and query performance between the interleaved and columnar memory layouts,
both for compressed and uncompressed data. For raw read performance, the interleaved
memory layout is preferable, as it requires the fewest number of read and seek opera-
tions within a file. In situations where only one or few specific point cloud attributes
are of interest to answer a query, the columnar memory layout becomes more efficient
as it allows selective reading of specific point cloud attributes. For LiDAR data, there
are several interesting point attributes that are stored in a single byte, such as the point
classification, number of returns, or the return number. Queries that operate on these
attributes benefit the most from columnar memory layouts, as the amount of data that
has to be read and parsed is typically more than an order of magnitude less than with
point cloud data in the interleaved memory layout. Using our new LAST file format, this
enables query throughputs of 100 million points per second and more for many queries
on consumer-grade hardware.

Besides read throughput, the overhead for decoding point cloud data from the native
binary layout of a file format into an in-memory representation also plays a significant role
in the overall query throughput and responsiveness. Here, columnar memory layouts are
more cache-efficient when it comes to attribute conversions, such as the local-to-world-
space conversion typically applied when reading data in the LAS format. If possible, it
pays off to work with point cloud data in a binary layout that closely matches the file
layout, as the results of experiment 1 showed. Our ad-hoc query engine is developed
with memory layout awareness in its various layers, but we ultimately output data in
interleaved memory layout as this is what most applications work with. This columnar-
to-interleaved conversion in the output layer introduces a non-trivial runtime overhead. If
the target application that uses ad-hoc queries can work with columnar point cloud data,
there is potential for large performance improvements. Our conclusion is that writing
software that is agnostic to the point cloud memory layout results in unnecessary loss
of performance. The pasture library that we developed helps with writing code that is
aware of the point cloud memory layout, but even with this library writing such memory-
layout-aware code adds significant complexity to the codebase as basically all important
code paths have to deal with both interleaved and columnar memory layouts.

The effects of compression are interesting as well. In almost all experiments the LAZ
format is close to an order of magnitude slower than the uncompressed formats. Faster
compression schemes can help, as we demonstrated with our custom LAZER format, at
the expense of the compression ratio. Perhaps the biggest advantage of LAZER over LAZ is
selective decompression of attributes, as it allows the same kind of efficient data loading
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that LAST has over LAS. It is worth noting that the latest version of laszip also supports
selective attribute (de)compression, however only for the newer point record formats
6 and higher introduced with version 1.4 of the LAS standard, which most of our test
datasets do not use.

Given all these data, the question remains whether ad-hoc queries are a viable data
management solution for point clouds. Comparing our results to the existing point cloud
DBMS pgPointcloud showed that the latter has very poor query responsiveness and through-
put. This is due to a deficit in the implementation of pgPointcloud which outputs all point
attributes as double-precision floating-point numbers, thus significantly increasing the
amount of memory that has to be written compared to our ad-hoc query engine. Notwith-
standing these implementation deficits, there also is significant overhead for preparing
and inserting the data into the database. For our experiments, these preprocessing steps
took several hours per dataset, several orders of magnitude higher than the query respon-
siveness of all ad-hoc queries that we tested, even for slowest compressed data format LAZ.
In terms of pure data-to-query time, ad-hoc queries do have a clear advantage over point
clouds DBMSs in their current form.

We also demonstrated the potential that adaptive indexing methods have for improving
query performance and bridging the gap between ad-hoc queries on unindexed data and
fully indexed data. Our indexing method was optimized for fast indexing, at the expense
of the quality of the index. Depending on the time that users are willing to spend on
indexing, more sophisticated methods can be used that restructure the data, either in-
place or by creating copies of it. Hence, we believe that future point cloud DBMSs should
focus on supporting existing point cloud file formats (or variations thereof like LAST and
LAZER) as a first-class storage medium. Our experiments demonstrate that it is possible
to answer many types of common point cloud queries in reasonable time on these raw
files, while still allowing the usage of indexing wherever necessary.

We conclude that ad-hoc queries can allow applications to work with raw point cloud
files, making them a viable point cloud data management solution, so long as their limita-
tions are well understood and care is taken in the implementation of tools that work with
the raw files. Without a more efficient alternative to the LAZ format, uncompressed file
formats are most certainly required to achieve decent query responsiveness and through-
put. With further research in the area of adaptive indexing, the gap between file-based
solutions and DBMSs can probably be bridged, which would make the two approaches
complimentary instead of mutually exclusive, as it is today.
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3.5.2 Limitations, challenges, and future work

There are obvious limitations with ad-hoc queries in their current state. First and fore-
most, data size is still a limiting factor, as our proposal for an ad-hoc query engine assumes
that data resides on fast, local storage (preferably an SSD). There are many existing point
cloud datasets whose size exceeds the current SSD capacity of commodity hardware, es-
pecially when using uncompressed or lightly compressed formats. We were unable to
evaluate both the CA13 and AHN4 datasets in their full size due to this limitation. Even
if storage size would not be a limiting factor, many ad-hoc queries would not be feasible
due to the expected runtime with these large datasets. While many of the queries that
we tested on the three datasets finished in a minute or less, this already stretches the def-
inition of “interactive response time” and is certainly still too slow for highly interactive
applications such as visualizations, with the notable exception of small, spatial queries.
Using the formulas from Section 3.3.1 and the resulting query runtimes from experiment
2, we can estimate that a query for discrete LOD level 0 on the full AHN4 dataset in its
default LAZ format would take about 2 days. Even in the faster LAZER format, where
we achieve throughputs of close to 40 million points per second for LOD0 queries on the
Desktop system, such a query would still take more than 6 hours. LOD queries belong to
a category of queries that do not benefit from locality in the data while requiring a full
scan of the data. As pointed out in the beginning of this chapter, constant-time speedups
can only go so far and the largest point cloud datasets are still out of reach for ad-hoc
queries on commodity hardware.

Beyond these limitations, we see some challenges that we expect can be overcome with
more research and development effort. First, in the field of compressed point cloud for-
mats, we believe there is room for significant improvements over the current de facto
standard format LAZ. We do not see our custom format LAZER as a real replacement, as
its compression ratio is not competitive to that of LAZ, but fast compression algorithms
such as LZ4might still play a role for future compressed point cloud formats. Second, we
believe that columnar data formats will become more commonplace for point cloud ap-
plications. Already the research community acknowledges the benefits of these formats,
both in the database world [150] as well as for highly interactive applications such as
real-time rendering [142, 138]. Lastly, there is need for improvements of the tools that
currently exist for dealing with file-based point cloud data. While developing our ad-hoc
query engine and running the experiments, we frequently ran into problems with existing
tools that simply were not able to handle large point cloud datasets on our test machines
because they ran out of memory (PDAL while uploading data to pgPointcloud) or took
hours for file format conversions (LAStools when converting from/to LAZ). We ended up
using our own ad-hoc query engine for aiding in its own development, for example to in-
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spect datasets using LOD or extracting portions into LAS files. We acknowledge that our
own tool does not have the same amount of features as for example PDAL or LAStools, and
we merely want to point out the potential for performance and efficiency improvements
in existing tools.

3.6 Conclusion

In this chapter, we introduced the concept of ad-hoc queries on point cloud data as a po-
tential means for using raw files as a point cloud data management solution. First, an
analysis of point cloud queries found in the literature was conducted through which the
most common query types could be identified. We then described the design and imple-
mentation of a prototypical ad-hoc query engine, which is able to answer a wide variety of
common queries using raw, unindexed point cloud files. Two custom file formats called
LAST and LAZER were introduced, which are closely related to the common formats LAS
and LAZ. These new formats use a columnar memory layout for data storage and a fast
compression scheme (LZ4) in the case of LAZER. All four formats were evaluated in terms
of their I/O performance through which key performance characteristics of interleaved
and columnar memory layouts were identified. We then evaluated the same four formats
using our ad-hoc query engine on several different queries, both spatial and on secondary
attributes, and compared the responsiveness and throughput of these queries to an ex-
isting DBMS (the pgPointcloud extension for PostGIS). Lastly, we evaluated an adaptive
indexing algorithm that builds a simple block-based index during querying and showed
the impact that adaptive indexing has on the responsiveness of repeated queries.

Our results indicated that columnar memory layouts are a good alternative to the more
common interleaved memory layouts, as they can speed up both I/O itself as well as many
types of queries. Taking into account the required preprocessing time for using a point
cloud DBMS, ad-hoc queries exhibit significantly lower query-to-insight time. Depending
on the file format and type of query, our ad-hoc query engine can query more than 100
million unindexed points per second. We also demonstrated shortcomings of compressed
file formats and how columnar memory layouts and faster compression algorithms can
help circumvent them. Lastly, we pointed out limitations of ad-hoc queries, such as a
maximum data size that can reasonably be handled, as well as query response times that
are still too slow for highly interactive applications.
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4 Improving the performance of
batch-based point cloud indexing

“It is easy to make things hard, but
hard to make them easy.”

Rutger Bregman, Humankind: A
Hopeful History

In this chapter, we improve upon the current state of the art for batch-based point cloud
indexing. Current indexing tools work by batch-processing the whole point cloud in a
single long-running process, and we demonstrate how such a process can be optimized
to run faster even when scaling up to terabyte-sized datasets. The work in this chapter
is based on our publications “A System for Fast and Scalable Point Cloud Indexing Using
Task Parallelism” [16] and “Point cloud indexing using Big Data technologies” [76] and
answers the following research question:

RQ2 How can the runtime of current point cloud indexing tools be improved?

This chapter starts with a discussion regarding the motivation for batch-based point
cloud indexing in Section 4.1, including an overview of the current state of the art and
limitations, as well as the theoretical background for scalable point cloud indexing (Sec-
tion 4.2). We then introduce our Schwarzwald system, a batch-based point cloud indexing
system based on task-parallel programming, in Section 4.3. We then extend the core algo-
rithmic concept of Schwarzwald to a distributed, Cloud-based point cloud indexing system
in Section 4.4, discussing potential benefits and challenges compared to indexing on a
single machine. We evaluate both approaches in a series of experiments in Section 4.5
which compare their performance, scalability, and quality to that of state of the art tools.
The results and their implications for research question 2 are discussed in Section 4.6.
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4.1 Motivation: Handling very large point clouds interactively

Where in the previous chapter we explored situations in which point cloud data can be
used in its raw, unindexed form, we now look at the state of the art for handling very
large point cloud datasets. When we talk about a point cloud being “very large”, what is
typically meant is a dataset that does not fit into memory on a client device, for example
a desktop computer, laptop, or smartphone. One billion points currently are a reasonable
threshold for what is possible to handle in-core, i.e. within working memory or GPU
memory, as both our own work [17] as well as that of other researchers [142] point out.
Even then, the limitations of systems that deal with point clouds that sit right at this
threshold are considerable, as we have shown in the previous chapter.

As soon as the size of the data, the number of concurrent users, or the query complexity
increases beyond a certain point, working with point clouds requires indexing. Significant
advancements in the domain of point cloud visualization have led to the emergence of
specialized index structures such as Nested Octrees [129] which are used in interactive,
Web-based visualization applications [133] that make point clouds accessible to a wide
audience. Creating these index structures is a resource-intensive process, taking many
hours or even days [96], for reasons which we will explore in-depth in this chapter. The
amount of data itself is challenging, since a lot of data copying has to take place to reorder
the point cloud into a Nested Octree. On top of that, most of the time the data does not
fit into working memory, requiring out-of-core algorithms that cache intermediate results
to disk. Lastly, the sampling process for LOD creation is often computationally expensive.

Point clouds are a form of Big Data and improvements to capturing devices and meth-
ods have caused an exponential increase in the amount of collected data [113]. To keep
point cloud indexing feasible while data volume grows, better scalability is required, both
vertically onto multiple cores of a single machine, as well as horizontally onto multiple
machines. This requires improvements to the input and output layers of point cloud in-
dexers, as well as truly scalable algorithms for the actual indexing process, with point
sampling for LOD creation at its core.

We introduce two systems that improve upon the state of the art of point cloud indexing
by allowing faster indexing as well as indexing of larger datasets. We build on the concept
of Morton indices to distribute the workload of point cloud indexing evenly onto multiple
compute-units (either CPUs or VMs in the Cloud). First, we demonstrate a single-process
system called Schwarzwald, which is able to index point clouds with tens of billions of
points. At the time of the initial publication, it outperformed the existing systems by up
to 9 times while maintaining similar visual quality. Since then, further improvements
have been made to existing systems, in particular version 2.0 of PotreeConverter [138],
with significant improvements in performance. We show that Schwarzwald is often able
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to hold up with the current state of the art of out-of-core point cloud indexing in terms
of runtime, while showing better scalability due to it using less working memory. We
then extend the idea of indexing using Morton indices to a distributed algorithm using
the Map-Reduce paradigm [34]. Combined with a distributed database, this algorithm
achieves even better scalability, outperforming all existing systems by up to a factor of 3
while running natively in Cloud environments.

4.2 Morton indices and scalable point cloud processing

Creating a spatial index for a point cloud requires grouping spatially adjacent points
together into cells, typically nodes in a tree-based data structure. Disregarding the nec-
essary sampling process to create LOD layers, at the core this is a sorting problem that
tries to preserve locality. As we explained in Section 2.2.2, space-filling curves can be
used to efficiently generate various tree-based acceleration structures, in particular by
using Morton indices. Various massively-parallel and GPU-based algorithms have been
devised for the construction of bounding volume hierarchies, k-d trees, and octrees [82,
74, 40] or for scheduling point cloud processing tasks onto distributed systems [6].

While Morton indices are widely used in the computer science community, there are
some caveats when computing them, specifically due to the handling on floating-point
values. We briefly state a formal definition for a Morton index in R3 and illustrate how
we calculate it in our implementations.

Given a bounding box B ⊂ R3, subdivide it into a regular grid of k3 cells. Let ci =
(xi, yi, zi)

T be the index of cell i, with x, y, z ∈ [0; k− 1]. The Morton index mi for cell ci
is an integer number obtained by interleaving the bits of xi, yi and zi. In R3, there are
six possible orders for interleaving the bits from most significant to least significant bit
(XY Z, XZY , Y XZ, Y ZX, ZXY , and ZY X), in our implementation we use the order
XY Z. The bit-interleaving process is illustrated visually in Figure 4.1.

Cell index: 15, 9, 4)

In binary: (

(

1111, 1001, 0100)

Morton index: 110 101 100 110
© 2020 The Author(s)
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Figure 4.1: A 3D Morton index is calculated from X (red), Y (green) and Z (blue) coordi-
nates through interleaving of the bit representations of the coordinates. Im-
age source: [16]
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In order to compute a Morton index for a point p ∈ R3 in a point cloud, we have to
subdivide the bounding box of the point cloud into a regular grid and then find the grid
cell that contains p. While the definition of the Morton index allows for non-cubic grid
cells, we are interested in calculating octrees which are cubic, hence we first calculate
the cubic bounding box of the point cloud and use it as a reference for Morton index
calculation. Working with a cubic bounding box makes it easier to achieve uniform sam-
pling of points over all three spatial dimensions. We then have to choose an appropriate
value for the subdivision factor k, which is a tradeoff between precision and the num-
ber of bits required to store the Morton index. The value k = 21 is reasonable for our
implementations, as it allows a Morton index to be stored efficiently within a single 64-
bit integer value with only one unused bit. From the subdivision factor, one can derive
certain thresholds, such as the maximum depth of the octree (21 levels) and the mini-
mum side length of any octree node, the latter being equal to 2−k = 1

2097152 times the
side length of the cubic bounding box. This defines the maximum ratio between point
density and size of the dataset that can be represented. As an example, a dataset with
a cubic bounding box of 20 km side length can be processed if the smallest nodes are no
smaller than about 1cm, a limit that was sufficient for all datasets that we encountered
during our tests. In principle, it would be possible to use 128-bit Morton indices, yielding
k = 42 and hence about millimeter precision for earth-sized point clouds. In practice,
commodity hardware typically does not support 128-bit arithmetic natively yet, resulting
in decreased performance since it has to be emulated using multiple 64-bit operations,
as well as increased memory usage.

To find the cell cp for a point p, we first translate p into the local reference frame
of the cubic bounding box B, whose origin is the minimum vertex of B. This yields a
point pB ∈ [0; lB]

3, where lB equals the side length of B. Multiplying pB by 2k

lB
yields

a point pnorm ∈ [0; 2k]3. The coordinates for the indices of cp are then computed as
xp = min(bpnormxc, 2k − 1) and correspondingly for yp and zp.

4.3 Schwarzwald - A fast point cloud indexing system based on
task parallelism

At the time of the original publication in which we introduced the Schwarzwald sys-
tem [16], the two fastest available systems for creating a visualization-optimized point
cloud index (the Modifiable Nested Octree index) were the 1.7 version of PotreeConverter,
as well as Entwine. Our goal was to implement a system with better scalability and run-
time performance than the existing tools, while maintaining similar visual quality. We
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will cover the main design decisions for our indexing algorithm and the Schwarzwald
reference implementation in this section and then compare it to existing systems in Sec-
tion 4.5.

4.3.1 Design of the Schwarzwald system

The main design goals for the Schwarzwald system were:

• Design goal 1 - Scalability: Index creation duration should scale inversely propor-
tional to the number of CPU cores, scalability should be linear

• Design goal 2 - Efficiency: It should make better usage of existing hardware re-
sources than the fastest indexing tool (at the time) Entwine, which also scales with
the number of available CPU cores

• Design goal 3 - No size limit: There should be no limit on the number of points in
the point cloud that can be indexed. In particular, the system has to be fully out-of-
core, being able to process point clouds that are larger than the available amount
of working memory

• Design goal 4 - Sampling: Support both grid-based and blue noise sampling

These design goals are achieved through a series of observations and implementation
decisions:

• The indexing process can be modeled as a recursive task graph where each task pro-
cesses one node. This task graph can then be scheduled onto an arbitrary number
of CPU cores and thus achieves design goal 1 (scalability).

• Processing does not have to be exclusively top-down or bottom-up. This aids in
achieving design goal 1 by preventing poor parallelization when processing the
first few levels of the tree, where most points will fall into the same node.

• Sorting points by Morton indices enables fast identification of independent points.
This makes the indexing algorithm very efficient and also allows for better scalabil-
ity, serving both design goals 1 and 2 (scalability and efficiency).

• We process point clouds in batches and store the results of each batch immediately
to disk. This is the same approach that both the legacy-version of PotreeConverter
and Entwine use, and achieves design goal 3 (no size limit).
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• Sorting points by Morton index effectively puts the points onto a grid structure,
hence making grid-based sampling possible with little additional effort. Blue noise
sampling is possible without disturbing the sorted point order by using a stable
partitioning algorithm with the hash-grid-based Poisson-disk implementation of
PotreeConverter. This achieves design goal 4 (sampling).

The next sections cover these observations and their implications in more detail.

4.3.2 Modeling the indexing process as a recursive task graph

Task-parallel programming is a common method to speed up processing by using con-
currency. The idea is to split an algorithm into separate execution blocks called tasks
and model their dependencies as a graph, which can then be scheduled onto a parallel
or distributed system. There are many systems and tools for realizing task-parallel pro-
gramming, for a general overview Thoman et al. provide a good taxonomy [146]. For
our implementation we chose the cpp-taskflow library [65] since it is lightweight and has
good performance characteristics.

By modeling the point cloud indexing process as a task graph, we can utilize the task-
parallel programming pattern to distribute the indexingwork onto all available CPU cores.
The actual amount of achievable parallelism depends on the structure of the task graph
and on the maximum number of independent tasks at any point during processing. As is
often the case with parallel programming, reducing data dependencies between tasks is
crucial to achieve a high degree of parallelism. The way we process the points therefore
plays an important role in meeting this goal.

The two main sets of data in our system are the points as well as the nodes of the
acceleration structure. Therefore, there are two ways of indexing the point cloud: either
iterate over all points, checking each point against all nodes until a matching node is
found (Figure 4.2a), or iterate over all nodes, selecting all matching points for the current
node from the set of all points (Figure 4.2b). Since each node can contain multiple points,
but each point only belongs to a single node, parallelizing over the points would require
extensive synchronization as two points in different tasks might fall into the same octree
node. Instead, we chose to create one task per octree node and check all possible points
for their affiliation to this node.

Since we create a nested octree index, the resulting data structure will contain points
in both leaf nodes and interior nodes. We have to decide where the points in the interior
nodes will be sourced from. If we start with a regular octree without LOD support, all
points from the input point cloud will be distributed to leaf nodes. An interior node
then has to store a subsampled version of the points in its up to eight child nodes (up
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Figure 4.2: Indexing a point cloud can be performedby either finding amatching node for
each individual point (a) or by finding all matching points for each individual
node (b). Image source: [16]

to eight since some nodes might be empty). The points in the interior node can either
be selected by copying points from the child nodes into the interior node, or by moving
them from the child nodes to the interior node. Both approaches have their respective
advantages and disadvantages: Copying is simpler because it does not affect the memory
layout of the child nodes, but it does duplicate points and hence increases the overall
size of the indexed point cloud. During rendering, when both interior and leaf nodes
are rendered at the same time, these duplicate points do not contribute to the rendered
image. Moving some points from child nodes to their parent node during sampling fixes
this problem, as each additional node that is rendered only contains unique points. It
does however introduce a data dependency between the parent node and its child nodes.
To keep the computations efficient, moving points requires that we first sample the points
for the parent node and then distribute the leftover points to the child nodes to repeat the
sampling process there. As a consequence, sibling nodes in the octree can be processed
independently, but nodes in a parent-child relationship have to be processed with the
parent node first and then the child nodes. In addition, the full structure of the task

83



R

1

R.0 R.1 R.8...

...

...
...

R.0.0 R.0.1 R.0.8... R.8.0 R.8.1 R.8.8...

...

lpar.0.0 ...lpar.0.1 lpar.0.8 lpar.8.0 ...lpar.8.1 lpar.8.8

...

lpar+1.0.0 ...lpar+1.0.1 lpar+1.0.8 lpar+1.8.0 ...lpar+1.8.1 lpar+1.8.8

Top-down processing

2 Bottom-up processing

Select points that fit into
the nodes in level lpar

Reconstruct nodes

Reconstruct nodes

Reconstruct nodes

Select points that fit into
the nodes in level lpar+1

Figure 4.3: The hybrid top-down, bottom-up approach first skips all levels from the root
to level lpar. It then inserts points into lpar , lpar+1, etc. At the end, it recon-
structs the levels above lpar.

graph for a single batch cannot be known in advance. Each node has to first be processed
before it is clear how many—if any—points remain to be sorted into the children of this
node. This is a direct consequence of the online nature of the sampling algorithm, as well
as its dependence on the order in which points are processed.

Putting this structure into effect yields a recursive task graph, where processing starts
at the root node of the tree, followed by up to eight independent tasks for each of the
children of the root node. Each of these children are in turn followed by up to eight
independent tasks. This process continues until each point is assigned to a node. This
way, the deeper the processing progresses into the octree, the more independent tasks
are present in the task graph and the higher the degree of achievable parallelism is (see
also the lower half of Figure 4.3).

4.3.3 Hybrid top-down, bottom-up processing

The task graph introduced in the previous section models a full top-down processing
scheme. Top-down processing always starts at the root node and progresses down into
the tree. It is used in both Entwine and PotreeConverter v1.7, where each point is first
checked against the root node, then passed on to the appropriate child node if it does
not fit into the root node, and so on. In contrast, bottom-up processing starts at the leaf
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nodes of the tree and moves up towards the root node and reconstructs the upper nodes
from the lower nodes. Examples for bottom-up processing are PotreeConverter v2.0, as
well as the multi-way k-d tree by Goswami et al. [55].

Both approaches have benefits and drawbacks: Top-down processing touches each
node only once, whereas bottom-up processing may access a single node multiple times,
which results in more I/O load. However, with top-down processing, every point has to
be checked against the root node. Since there is a very high probability that the point
will be rejected, this results in a high number of checks that cannot easily be parallelized.
Bottom-up processing, on the other hand, immediately starts at the leaf nodes of the tree
and enables trivial parallelization over all leaf nodes.

Our system uses a hybrid approach that starts at some level lpar in the octree where
the number of non-empty nodes (i.e. nodes whose bounding boxes contain some of the
points of the current batch) is at least as big as the desired level of parallelism. This
guarantees that all threads are immediately saturated with indexing tasks. Since every
node has, on average, more than one non-empty child node, the number of available tasks
for scheduling remains constantly higher than the number of available threads. As the
workload of each of these tasks may vary drastically, having a large number of tasks to
schedule helps counteracting these variations. This hybrid approach skips all octree levels
above lpar. The nodes are reconstructed from those at level lpar in a final postprocessing
step after all batches have been processed. The whole process is depicted in Figure 4.3.

Determining the right value for lpar is done by analyzing the first batch of points, count-
ing the number of nodes that contain more than k points at each level. lpar is defined to
be the first level where there are at least as many nodes containing k or more points as
there are logical cores on the current machine. k is chosen to be large enough that there
is substantial work involved in sampling from k points, but not so large that the probabil-
ity of finding enough nodes with at least k points in a single batch becomes too small. In
our implementation, we chose k = 100′000 and also defined level 6 to be the maximum
allowed value for lpar to prevent skipping too many nodes in certain edge cases.

4.3.4 Quickly identifying independent points using Morton indices

The remaining problems are how to determine the number of non-empty nodes at a
given level in the octree and how to quickly gather all points that are contained within
the bounding box of a specific node. Both can be achieved by sorting all points in a batch
by their three-dimensional Morton index. This way, all points that belong to any specific
node in the octree are stored sequentially in memory. Since no point belongs to more
than one node, this results in a series of disjunct memory regions that can be processed
independently without having to shuffle memory whenever a new point processing task
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Figure 4.4: Overview of the process of sampling points for each node (illustrated in
2D and with full top-down processing for brevity). On the left, example
points and the resulting Z-order curve are shown. On the right, a step-by-
step overview illustrates how points are sampled at each node, with selected
points in blue and remaining points in orange. Image source: [16]

is scheduled. The split positions that indicate where the range for one node ends and the
range for the next node begins can be identified in logarithmic time using binary search.
Using Morton indices to group points has the additional advantage that no octree data
structure has to be kept in memory, the octree structure is implicit within the order of the
points.

Figure 4.4 depicts the indexing process. The diagram uses full top-down processing for
brevity. The resulting task graph is illustrated in Figure 4.5 and contains the following
steps:

1. Morton index calculation and sorting, trivially parallelized using the fork-join pat-
tern

2. Merging the sorted ranges of step 1 into one range for each node at level lpar

3. Processing each non-empty node at level lpar
3.1 Processing a single node, which is comprised of the following steps:
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(a) Loading points from disk that were selected for this node in previous
batches

(b) Merging new points in this batch with previous points
(c) Applying the samplingmethod to each point to select all points that belong

to the current node
(d) Storing selected points on disk
(e) Splitting remaining points into up to eight disjunct ranges containing all

points that fall into the bounding boxes of each of the child nodes
(f) Processing each of the child nodes as a new task, starting again from step

3.1

Step (d) writes the points for each node into a separate file. The structure of such a
file defines how applications can use the resulting index structure. Our system is able
to write files in both the expected file format of Potree as well as the standardized 3D
Tiles file format. While it seems trivial to support various output file formats, there are
some caveats which are explained in Section 4.3.6 due to the fact that our system uses
the same file format for caching intermediate results of each batch as well as for the final
point cloud index.

4.3.5 Sampling methods

White noise Blue noise Grid-based

PotreeConverter v1.7 No Yes (Poisson-disk) No
PotreeConverter v2.0 Yes Yes (Poisson-disk) No
Entwine No No Yes
Schwarzwald No Yes (Poisson-disk and jittered) Yes (grid-first and grid-center)

Table 4.1: Supported sampling methods for several point cloud indexing tools

Our system supports a variety of sampling methods for selecting representative point
subsets for each node, illustrated in Table 4.1 alongside a comparison with the available
sampling methods in other point cloud indexing tools. We implemented two grid-based
sampling methods and two blue noise sampling methods in our tool. The first grid-based
sampling method is named grid-first sampling and selects the first point that falls into a
grid cell, while the secondmethod is named grid-center sampling and inspects all potential
points within a grid cell to select the one closest to the center of the grid cell. Since the
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Figure 4.5: The task graph for the indexing process in our system. The recursive nature
of processing can be seen with task 3.1, which processes a single node and
calls itself recursively. Image source: [16]

points are sorted by Morton index in our system, no additional data structure is required
to locate all points within a cell.

For blue noise sampling, the first method we implemented is the Poisson-disk sampling
method of PotreeConverter v1.7, which iterates over all potential points for a node and
selects a point only if its distance to all previously selected points is not less than the
allowed minimum distance. We use the same hash-grid implementation as PotreeCon-
verter v1.7 to speed up distance checks. It is worth noting that we chose the hash-grid
based Poisson-disk variant over the improved Poisson-disk sampling used by PotreeCon-
verter v2.0, even though the latter gives better visual results. The reasoning behind this
decision was that the improved Poisson-disk sampling method requires sorting points by
their distance to the center of the current node, whereas the hash-grid variant works with
points in any order. Implementing this sorting in our system would defeat the purpose
of our algorithm, which is based on sorting points by Morton index. Points would have
to be sorted first by Morton index, then by distance to center prior to sampling, then
again by Morton index immediately after sampling. Preliminary tests showed that this
excessive sorting roughly doubles the runtime of our tool. We discuss the implications of
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this finding in Section 4.5.
Our second blue noise sampling method, called jittered sampling, is based on the Corre-

lated Multi-Jittered Sampling approach by Kensler [75]. For this approach, we subdivide
the node into a regular grid and define one target point for each grid cell. In each grid
cell, we select the closest point to a specific target point within the cell. In contrast to
grid-center sampling, where the target point is the center point of each grid cell, jittered
sampling uses a unique target point for each grid cell based on permutations of the canoni-
cal grid as shown by Kensler. To maintain the blue noise property, we restrict the shuffling
to balanced permutations as suggested by Roberts [124]. We provide a small number of
different permutations that are selected based on the level of the current node to generate
the cell target positions. Since the permutations are cyclic, point spacing between points
in adjacent nodes is implicitly maintained, which improves the visual quality without
significantly increasing the computational cost compared to grid-center sampling.

4.3.6 Implementation details

The design goal for efficiency and scalability is met not only by algorithmic decisions,
but also by a series of code optimizations. While most of them are not necessary for the
algorithm itself to function correctly (supporting lossy file formats being the exception),
we still believe these engineering feats to be of interest to other implementers of point
cloud processing software, so we explain the most important implementation details in
this section.

Internal point representation

The data layout of point data in memory during processing can have an impact on the
performance, as we already established in Chapter 3. Of the many attributes that formats
such as LAS define, during the indexing process the computationally expensive steps, such
as Morton index calculation or sampling, only require the positions of points and no other
attributes. We thus chose a columnar memory layout for the internal point buffer that
Schwarzwald uses. Storing all positions in a contiguous memory region exhibits good
cache locality, thus increasing performance. The only other tool that we found that uses
a similar memory layout is the most recent version 2.0 of PotreeConverter, while all other
tools use an interleaved memory layout.
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Parallel file reading

A sometimes overlooked factor for the performance of point cloud indexing systems is the
read and write performance or various point cloud data formats. The task graph shown
in Figure 4.5 is able to saturate potentially dozens of threads with indexing tasks, but
only if enough points can be read from the input files during the same time. The file
format evaluation of Section 3.4.1 showed that reading compressed LAZ can be up to
an order of magnitude slower than reading uncompressed LAS due to the computational
overhead of decompressing the data. To prevent the indexing tasks from starving for
points, we thus parallelize the point cloud loading from disk using a second task graph
consisting of multiple read tasks that concurrently decode the read point data and fill
the internal point buffer. Both the indexing task graph and the reading task graph are
executed concurrently. We choose appropriate fork factors for both task graphs so that
the sum total of the fork factors does not exceed the total number of available threads.
While it is common to have more threads than logical cores for I/O heavy work, the
main bottleneck in our case is not I/O per se, but instead the computational overhead
of compressing/decompressing the data. Choosing the actual fork factors for reading
and indexing is either done through a fixed allocation of available threads at program
startup, or using an adaptive strategy that calculates reading and indexing throughput
factors for each batch and adjusts the fork factors accordingly. Similar to Entwine, parallel
file reading is implemented with file-level granularity. The maximum fork factor for the
reading task graph is thus limited by the number of files. This can have detrimental effects
on the runtime performance, which is discussed in Section 4.5.

Supporting lossy file formats

During indexing, we write the selected points at each node to disk in the desired output
file format (Potree-format or 3D Tiles). These files serve as a way for caching data during
processing, while at the same time being the final output data once processing is finished.
Using the same file format for caching and output data is efficient as no postprocessing
step is required to convert intermediate results into the final data format.

However, depending on the output file format, some additional work may be necessary.
If during a batch a node is being processed for which data exists on disk, our system loads
these points from disk and calculates the Morton indices for these points again. When
using lossless file formats such as 3D Tiles the Morton indices are recomputed exactly.
Since we use a stable partitioning function during sampling, all selected points for each
node are still sorted by Morton index when being stored to disk, and thus remain sorted
after retrieval. For lossy file formats such as LAS, which quantizes floating point values

90



as 32-bit integers, there might be rounding errors, resulting in slight differences between
the recalculated and original Morton indices. This can break the sorting of the points.
The only way to fix this is by sorting the points again after reading from disk. As a
consequence, the indexing process is slightly slower when outputting points in the LAS
file format as compared to the 3D Tiles format.

4.4 Scalable point cloud indexing in a Cloud environment

In this section we discuss how to bring point cloud indexing into a Cloud-environment
to achieve horizontal scalability. Building on the core ideas of Schwarzwald, we develop
a distributed point cloud indexing system that supports scalable processing and storage
within the Cloud.

4.4.1 Adapting Schwarzwald for the Cloud

The task-based processing model of Schwarzwald maps well onto compute-resources of
a single machine, but it assumes uniform memory access to the point data for all tasks.
This does not translate well onto distributed systems, so we had to adjust our algorithm in
order to scale beyond a single machine. We still use Morton indices as a core structure for
distributing point workloads, but the increased overhead of distributing data ontoworkers
in the Cloud requires a different approach. We used the distributed computing framework
Apache Spark [164] to achieve horizontal scalability and mapped the indexing process to
the Map-Reduce paradigm [34]. The adapted algorithm is explained in Section 4.4.3.

We also wanted to achieve good scalability for the storage layer, while allowing simple
access to the indexed data, so we decided against storing indexed nodes as files in the lo-
cal file system. We considered options such asHadoop Distributed File System (HDFS) [42]
but ultimately decided on using a distributed database (Apache Cassandra [41]), which
has multiple advantages. First, both regular and distributed file systems do not scale
well when storing a very large number of small files [35]. Second, we get increased
flexibility over how we want to query the data. Lastly, Apache Cassandra works decen-
tralized, eliminating a single point of failure. Evaluations of different point cloud DBMSs
also indicate that Apache Cassandra has the best performance for storing LiDAR data in
a database [11].

Going beyond pure indexing performance, a Cloud-based point cloud indexing system
should also be able to deal with changes in the data, in particular expansions of the data.
Point cloud acquisition is often an ongoing process which continuously produces results,
either from the same location at different times [154] or a large area scanned step by step,
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such as the AHN dataset from the Netherlands [2]. Expansion is possible with regular
octrees [155], but the LOD requirement of the Modifiable Nested Octree data structure
prevents this, so we extended the Modifiable Nested Octree structure to be more suitable
to data updates.

4.4.2 Adjustments to the Modifiable Nested Octree data structure

We extended theModifiable Nested Octree structure into the Hybrid MNO Grid by combin-
ing it with a hash-based grid, which is depicted in Figure 4.6. It combines the advantages
of a hash-based grid with that of the Modifiable Nested Octree: The grid allows adding
new areas with little overhead, while each grid cell contains a full Modifiable Nested Oc-
tree that supports high-quality LOD. The size of the grid cells can be used to control the
depth of the octrees as well as a granularity for progressive index construction. Adding
new data only requires recreating an existing Modifiable Nested Octree if the data falls
into an existing cell.

Hash-based grid

MNO

© 2021 IEEE

Figure 4.6: The Hybrid MNO Grid, a combination of the Modifiable Nested Octree data
structure and a hash-based grid. Image source: [76]

Storage-wise, we store all points for a single Modifiable Nested Octree node as a Binary
Large Object (BLOB) in the Apache Cassandra database. This is the blocked storage model
discussed by VanOosterom et al. [150], which drastically reduces the number of database
entries. To identify nodes within the database, we use a combination of the Grid ID and
Node ID of a node. The Grid ID represents the location of the grid cell of the Modifiable
Nested Octree of the current node within the hash-grid. The Node ID represents the posi-
tion of the node within the Modifiable Nested Octree, including its LOD (see Figure 4.7).
We use 64-bit Morton indices to represent both IDs, which are combined into a single

92



128-bit ID that acts as the primary key for database entries.
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Figure 4.7: The Node ID of the Hybrid MNO Grid, a 64-bit Morton index that includes LOD
information in the 16 least significant bits. Image source: [76]

4.4.3 A Map-Reduce algorithm for point cloud indexing

We designed a Cloud-first point cloud indexing algorithm based on the Map-Reduce
paradigm. To achieve good scalability and performance, the algorithm has to meet the
following two conditions:

• A high fan factor for the Map-phase, ideally independent of the actual data distri-
bution

• A low number of shuffle operations, as redistributing data across the nodes within
a cluster is expensive

We chose a top-down processing scheme, as bottom-up processing would require too
many shuffle operations. Instead of the hybrid top-down/bottom-up processing, we
achieve good parallelism by first dividing the point cloud into small, disjoint sub-areas
called spacing cells. The size of these areas is defined by the spacing factor, which defines
the minimum distance between points in the root node of an Modifiable Nested Octree,
identical to the Schwarzwald system. In the Map-phase, points within a spacing cell are
sampled and assigned to their respective octree levels. In the Reduce-phase, individual
spacing cells are merged into the final Modifiable Nested Octree nodes. The two phases
are illustrated in Figure 4.8 and Figure 4.9.

In total, this algorithm requires two shuffle operations: First to group the points into
spacing cells, which happens during parsing of the input data based upon the Morton
index of each point, and second to group sampled spacing cells into theModifiable Nested
Octree nodes. For parsing points, we use the Spark IQmulus Library [21] to read points
in parallel on each worker node. Morton index calculation works the same way as with
the Schwarzwald system. For point sampling, we implemented the following sampling
strategies:
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Figure 4.8: The Map-phase of the distributed point cloud indexing algorithm. Points are
grouped into spacing cells, which are sampled into the individual LOD levels
in the octree. Image source: [76]

• Random: Selects a random number of points per node

• Grid-first: Divides the spacing cell into virtual cells using a grid and selects the first
point to fall into each grid cell

• Grid-center: Divides the spacing cell into virtual cells using a grid and selects the
point closest to the center of each grid cell

We did not implement a blue-noise sampling method because sampling happens within
each spacing-cell and not within each octree node, as in Schwarzwald or PotreeConverter.
Combining multiple spacing-cells into a single node thus would not preserve the blue-
noise characteristic at the edges between the spacing-cells.

The resulting processing pipeline is illustrated in Figure 4.10.

4.5 Evaluation

Within this section we show the results of a series of experiments that evaluate the run-
time performance and quality of our Schwarzwald system as well as its Cloud-optimized
variation, compared to the current state of the art in point cloud indexing. We first discuss
the landscape of existing point cloud indexing tools in Section 4.5.1. Then, we evaluate
the Schwarzwald system in a series of experiments on a single machine in Section 4.5.2,
as well its Cloud-optimized variant in a Cloud environment to demonstrate horizontal
scalability. To distinguish our implementations, we refer to the single-machine imple-
mentation introduced in Section 4.3 as Schwarzwald (Desktop), and the Cloud-optimized
implementation introduced in Section 4.4 as Schwarzwald (Cloud).

The reference implementations for both the single-process variant of Schwarzwald and
the Cloud-optimized variant are both available under an open-source license onGitHub [46,
45].
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Figure 4.9: The Reduce-phase of the distributed point cloud indexing algorithm. Multiple
spacing cells are combined into the final Modifiable Nested Octree nodes.
Virtual grid within a spacing cell shown using dotted lines. Image source:
[76]

4.5.1 Existing point cloud indexing systems

As the Modifiable Nested Octree structure has become the de facto standard point cloud
indexing structure for point cloud visualization applications, there are several tools that
generate an Modifiable Nested Octree from a raw point cloud. PotreeConverter is one pop-
ular tool, developed in conjunction with the Potree [139] web framework for point cloud
visualization. There are multiple versions of PotreeConverter: The legacy-version (1.7),
which uses a form of Poisson-disk sampling but almost no parallelism, and the more re-
cent version 2.0, which uses a multi-stage algorithm designed for good parallelization, as
well as a novel implementation of Poisson-disk sampling based on point sorting [138].
Entwine [61] is another system for point cloud indexing that uses grid-based sampling
instead of Poisson-disk sampling. In addition to Entwine and PotreeConverter, which are
available as open-source systems, there are also commercial products for point cloud in-
dexing, most notably Cesium Ion [26] as well as Arena4D [151]. Since both Arena4D and
Cesium Ion are paid-only software, we excluded them from the experiments and focused
on the open-source tools PotreeConverter and Entwine. Table 4.2 gives an overview over
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Figure 4.10: The processing pipeline for the distributed point cloud indexing algorithm.
Image source: [76]

the existing tools and their capabilities, together with the systems introduced by us.

Tool Formats (input) Formats (output) Platforms License

PotreeConverter v1.7 LAS, LAZ, PTX, PLY LAZ, custom binary format Windows, Linux, MacOS, Docker BSD-2
PotreeConverter v2.0 LAS, LAZ LAS with optional Brotli [5] compression Windows, Linux BSD-2
Entwine All formats supported by PDAL [29] LAZ, 3D Tiles (postprocessing), binary for-

mat with optional Zstandard [27] compres-
sion

Windows, Linux, macOS, Docker LGPL2

Arena4D LAS, LAZ, E57, PTS, PTX, ASCII Proprietary format VPC Windows Paid
Cesium Ion LAS, LAZ 3D Tiles Web service Paid

Schwarzwald (Desktop) LAS, LAZ LAS, LAZ, 3D Tiles, binary format with op-
tional zlib [36] compression

Linux, Docker Apache License 2.0

Schwarzwald (Cloud) LAS Apache Cassandra Database Linux, Docker Apache License 2.0

Table 4.2: Feature comparison of common point cloud indexing tools
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4.5.2 Single-process indexing

To evaluate the performance and scalability of single-process point cloud indexing tools,
we conducted two experiments using the datasets described in Table 4.3 and the tools
PotreeConverter v1.7, PotreeConverter v2.0, Entwine (version 2.1) as well as our own
Schwarzwald (Desktop) tool. In Experiment 1.1 we analyze the runtime performance,
quality of the resulting octree, and the visual quality of the indices generated by each
tool. In Experiment 1.2 we analyze the scalability of Schwarzwald compared to the other
tools. We excluded PotreeConverter v1.7 from this experiment as it uses a fixed number
of two threads. For Experiment 1.1, we used a virtual machine in an OpenStack cloud
with 8 virtual CPUs, 16 GB RAM, and a 3 TB volume residing on an HDD. For Experiment
1.2, we used a virtual machine in Amazon AWS, using the m5a.16xlarge flavor, which
has 64 virtual CPUs, 256 GB RAM and block storage of type General Purpose SSD. All
tools were run using Docker.

Dataset (shorthand) Size Points Files

District of Columbia (DoC) [156] 24GiB (LAS) 854M 320
High Resolution Topography of House Range Fault, Utah (Utah) [22] 15GiB (LAZ) 2B 16
PG&E Diablo Canyon Power Plant (CA13) [112] 85GiB (LAZ) 17.7B 2337
Wellington, New Zealand 2013 (Wellington) [3] 248GiB (LAZ) 52.5B 9405

Table 4.3: Datasets used for the single-process indexing experiments

Experiment 1.1 - Indexing performance

In this experiment, we evaluate the runtime and quality of the existing point cloud in-
dexing tools and compare then to our Schwarzwald tool. To investigate the effect that
different sampling strategies have on the runtime and visual quality, we ran Schwarzwald
three times to generate indices using its Poisson-disk, grid-center, and jittered sampling
strategies. We ran Schwarzwald and PotreeConverter v1.7 with -d 111 and Entwine with
--span 64 as the spacing parameters. The parameter -d 111 for Schwarzwald and
PotreeConverter v1.7 determines the maximum number of points on the diagonal of the
root bounding box and is a close approximation to --span 64, the latter dictating the
maximum number of points on a single axis. A similar spacing parameter is not available
anymore with the PotreeConverter v2.0, so all runs with this version were conducted with
the default parameters. Inspecting the code shows that PotreeConverter v2.0 uses a spac-
ing parameter of 128 points per axis, which is equivalent to calling Schwarzwald with -d
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222. As a result, PotreeConverter v2.0 generates nodes that are significantly more dense
than those of all other tools. All tools generated their data as LAZ files in a structure
readable by the Potree renderer, with the exception of PotreeConverter v2.0, which does
not support writing LAZ files and instead writes uncompressed LAS files.

Dataset PotreeConverter v1.7 PotreeConverter v2.0 Entwine Schwarzwald (Desktop)

Poisson-disk Grid-center Jittered

Wellington 70h 39m (10h 38m) N/A 8h 26m 7h 27m 7h 28m
CA13 21h 16m 3h 15m 9h 29m 4h 21m 4h 8m 3h 57m
Utah 1h 47m 16m 56s 52m 17s 17m 26s 17m 23s 18m 12s
DoC 45m 43s 7m 36s 13m 35s 6m 25s 5m 26s 5m 39s

Table 4.4: Runtime comparison for indexing the test datasets of the single-process ex-
perimentwith all tested tools. (Results forWellington dataset withPotreeCon-
verter v2.0 are from a run that crashed at 100% progress)

The measurements for the runtimes of all tools are displayed in Table 4.4. The re-
sults show that Schwarzwald consistently outperforms both Entwine and PotreeConverter
v1.7, while yielding similar performance to PotreeConverter v2.0. The performance is
heavily dependent on the dataset, with Schwarzwald running about 1.2 times faster on
the DoC dataset and about 1.25 times faster on the Wellington dataset, but running
about 1.33 times slower on the CA13 dataset. For the Utah dataset, the runtimes of
Schwarzwald compared to PotreeConverter v2.0 are about equal, with PotreeConverter v2.0
being slightly faster (factor 1.03). On the largest dataset with 52.5 billion points, both
Entwine and PotreeConverter v2.0 terminated early due to insufficient memory. PotreeCon-
verter v2.0 reported 100% completing before the crash, so we still included the runtime
in the analysis. The resulting dataset however was incomplete for both Entwine and
PotreeConverter v2.0. Compared to these two systems, Schwarzwald does not keep any
state in memory between multiple batches, so as long as each batch fits into memory,
Schwarzwald will be able to process point clouds of arbitrary size. It is also worth noting
the difference in performance between the Poisson-disk sampling strategy and the other
sampling strategies for Schwarzwald. The impact of the sampling strategy depends on
the dataset, ranging from almost no difference in runtime for the Utah dataset, to about
15% performance overhead for the Wellington dataset.

In addition to the runtimes, we also analyzed the size and node counts of the resulting
octrees, which can be seen in Table 4.6 and Table 4.5. The lowest number of nodes is
produced by the Entwine system by a large margin. This is because Entwine combines
multiple related nodes if they all contain only a few points. Schwarzwald and PotreeCon-
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Dataset PotreeConverter v1.7 PotreeConverter v2.0 Entwine Schwarzwald (Desktop)

Poisson-disk Grid-center Jittered

Wellington 10.85M N/A N/A 13.28M 13.66M 15.48M
CA13 3.1M 8.3M 1.78M 7.65M 7.58M 8.8M
Utah 630k 408k 257k 485k 560k 695k
DoC 144k 235k 87k 186k 200k 239k

Table 4.5: Resulting number of octree nodes after indexing with all tested tools in the
single-process experiment

Dataset PotreeConverter v1.7 PotreeConverter v2.0 Entwine Schwarzwald (Desktop)

Poisson-disk Grid-center Jittered

Wellington 314 GiB (1715 GiB) N/A 317 GiB 322 GiB 320 GiB
CA13 100 GiB 578 GiB 123 GiB 226 GiB 227 GiB 223 GiB
Utah 15 GiB 50 GiB 16 GiB 11 GiB 11 GiB 11.4 GiB
DoC 4.1 GiB 23 GiB 4.5 GiB 7.6 GiB 7.8 GiB 5.6 GiB

Table 4.6: Data sizes of the resulting datasets after indexing with all tested tools in the
single-process experiment. (Results for Wellington dataset with PotreeCon-
verter v2.0 are from a run that crashed at 100% progress)

verter v2.0 produce similar node counts, with slightly less nodes for our system for all
but the Utah dataset. In terms of data size, PotreeConverter v1.7 creates the smallest
datasets, which is expected because this version of PotreeConverter did not yet support all
available attributes of the LAS file format. Schwarzwald, PotreeConverter v2.0 and Entwine
do support all common LAS attributes. Here, Entwine creates the smallest datasets be-
cause it produces fewer nodes in general and avoids nodes that contain only a few points.
For the compressed LAZ format, larger point counts in a single file enable higher gains
from compression, which explains the results from Entwine. As mentioned in Section 4.5,
PotreeConverter v2.0 does not support LAZ compression, resulting in significantly larger
datasets.

Lastly, we performed a visual comparison of the resulting indexed point clouds, which
can be seen in Table 4.7. All tested systems generate the same kind of acceleration struc-
ture, but the visual results are different. Using the grid-center sampling method, the
results of Schwarzwald are indistinguishable from those of Entwine. Both suffer from
certain visual artifacts due to the regular nature of the grid sampling pattern. Our new
jittered samplingmethod gets rid of some of these artifacts and looks similar to the results
of Poisson-disk sampling in many regions. Jittered sampling is still a grid-based sampling
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Table 4.7: Visual comparison of the resulting point cloud octrees for the DoC, Utah, CA13
and Wellington datasets (from left to right). The Wellington dataset conver-
sion did not finish successfully with PotreeConverter v2.0 and Entwine and is
thus not included in this figure.
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method and as such exhibits some artifacts that a true blue-noise sampling method does
not share. With the Poisson-disk samplingmethod, both Schwarzwald as well as PotreeCon-
verter v1.7 have certain visible artifacts, in particular an increase of samples close to the
edges of the nodes, which leads to visible lines where two nodes touch. Schwarzwald uses
the same implementation of Poisson-disk sampling as PotreeConverter v1.7, so the result-
ing artifacts are similar, although slightly more prominent with Schwarzwald due to the
spatial sorting of points, which affects the way samples are chosen. PotreeConverter v2.0
addresses this problem by using a different implementation for Poisson-disk sampling and
displays no line artifacts.
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Experiment 1.2 - Scalability

To compare the scalability of the existing tools with our Schwarzwald tool, we ran the
tools on the same dataset using different numbers of threads and recorded their runtimes.
The resulting data is displayed in Figure 4.11.

(a) DoC (b) Utah

Figure 4.11: Runtime in relation to number of threads for Entwine, PotreeConverter v2.0
and Schwarzwald. Tested on the DoC dataset (left) and the Utah dataset
(right).

Since PotreeConverter v2.0 has no explicit parameter to set the maximum number of
threads, we limited its CPU usage through the docker run parameter --cpuset-
cpus. Entwine also never uses less than 4 threads, so the runtimes for 2 threads and 4
threads are equal. We chose the two datasets DoC and Utah because they are sufficiently
different to illustrate the effects of file format and number of files on the runtime perfor-
mance. For processing performance and scalability, the DoC dataset is more favorable, as
it contains a large number of small, uncompressed files. Uncompressed files are signifi-
cantly faster to read, and the large number of files enables reading many files in parallel.
In contrast, the Utah dataset consists of a small number (16) of compressed files, with
extensive variation in the file size (from 57 MiB to 2.8 GiB).

All tested systems in this experiment benefit from using more threads, but to different
degrees and depending on the dataset. In almost all cases, the scalability up to 8 threads
including is about linear, where doubling the number of threads cuts the runtime in half.
For Schwarzwald, the jump from two to four threads sometimes results in more than a 2x
speedup, which is a result of the adaptive scheduling that Schwarzwald uses. With two
threads, one thread is scheduled for reading points, leaving only one thread for indexing,

102



even if reading is substantially faster than indexing. Increasing the thread count to four,
three threads can be used for indexing, which explains why the speedup is greater than
2x.

Going beyond eight threads, the scaling becomes less than linear for all tested tools.
Both PotreeConverter v2.0 and Entwine benefit from going up to 64 threads, although
the difference in runtime between 32 threads and 64 threads is marginal in most cases
(a speedup of 1.06x-1.25x for PotreeConverter v2.0 and 1.04x-1.1x for Entwine). Our
tool scales well up to 32 threads, with only a marginal speedup for 64 threads and the
Utah dataset. With the DoC dataset, the runtime of Schwarzwald is about equal for 32
and 64 threads. A reason for this is the synchronization between the different threads:
Since Schwarzwald uses a task-based parallelism approach, the synchronization overhead
depends on the number of concurrent tasks and the difference in runtime of each task.
For very large thread counts, a single batch of points is often not big enough to yield a
large enough quantity of independent tasks, so that some threads will remain idle while
others still work on tasks. Increasing the number of points in a single batch can help here,
at the expense of increased memory usage.

Lastly, it can be seen that PotreeConverter v2.0 does benefit substantially from running
on an SSD in certain cases. While Schwarzwald runs between 1.15x to 1.75x faster than
PotreeConverter v2.0 for theDoC dataset (32 and 64 threads respectively), PotreeConverter
v2.0 outperforms Schwarzwald by 1.28x to 1.6x for the Utah dataset.

4.5.3 Cloud-based indexing

To evaluate the Cloud-optimized indexing algorithm that we described in Section 4.4,
we conducted another set of experiments in an OpenStack Cloud-environment. We used
one MasterNode and multiple WorkerNodes for the Apache Spark cluster. Each node has 8
CPU cores, 32GB RAM, HDD storage and runs Ubuntu 18.04. The nodes for the Apache
Cassandra database are located on the worker nodes of the Apache Spark cluster. We
used three different cluster configurations with different numbers of worker nodes: A
small configuration (4 worker nodes, 32 cores, 128 GB RAM), amedium configuration (8
worker nodes, 64 cores, 256 GB RAM), and a large configuration (16 worker nodes, 128
cores, 512 GB RAM). We used slightly different datasets than for the single-process ex-
periments, in particular subsets with well-known sizes so that we can evaluate scalability
in terms of data size. The datasets we used are described in Table 4.8.
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Dataset Size (LAS format) Points Files

CA13-S 0.1GiB 3M 1
CA13-M 1GiB 30M 1
CA13-L 5GiB 163M 1
AHN3-S 10GiB 370M 1
AHN3-M 20GiB 757.5M 1
AHN3-L 40GiB 1.48B 2
AHN3-XL 342GiB 13.13B 25
AHN3-XXL 2187GiB 81.9B 168

Table 4.8: Datasets used for the Cloud-based indexing experiments

Experiment 2.1 - Indexing performance

We evaluated the indexing performance on the small cluster for all datasets up to 40GB
in size using the three different sampling strategies Random, Grid-first and Grid-center.
To confirm our assumption that bottom-up processing would not scale well, we also in-
cluded an implementation of bottom-up indexing using the Map-Reduce pattern, which
is strongly based on the processing model of PotreeConverter v2.0. The resulting runtimes
are shown in Figure 4.12 and confirm the assumption regarding bottom-up processing,
which takes about twice as long as all other sampling methods that use top-down pro-
cessing. The difference between the random and grid-based sampling methods is small,
with random sampling being slightly faster. Compared to the results reported by Schütz
et al. [138] for PotreeConverter v2.0, the difference in runtime between the different
sampling strategies is significantly smaller in our tool, which indicates that the sampling
process itself is not the main performance bottleneck in our tool.

We also compared our Cloud-optimized implementation to PotreeConverter v2.0, En-
twine, and the single-process variant of Schwarzwald by indexing all test datasets on the
large cluster. The resulting runtimes are shown in Table 4.9. Our Cloud-optimized imple-
mentation outperforms all other tools by about a factor of 3 on the largest datasets and
a factor of 2 for medium-sized datasets. In addition, even the single-process implemen-
tation of Schwarzwald consistently outperforms PotreeConverter v2.0 in this experiment.
This is evidence for the larger number of I/O operations that PotreeConverter v2.0 per-
forms in contrast to Schwarzwald, causing the former tool to become I/O bound when

104



Figure 4.12: Comparison of the sampling strategies of Schwarzwald (Cloud) with a
bottom-up implementation

using HDDs.
We also found amistake in our initial publication fromwhich these numbers came [76].

The runtime for Schwarzwald (Desktop) for the largest dataset AHN3-XXL is twice as large
as with the other tools, even though for all other datasets Schwarzwald (Desktop) had
similar or lower runtimes. Upon investigating we found that this is due to the large
number of files written which can cause the filesystem (ext4 in our case) to run out of
inodes. Our tool does not crash but produces invalid results and a large number of error
messages. We fixed this by enabling the large_dir feature of the ext4 filesystem,
resulting in a much lower runtime as shown in parentheses in Table 4.9.

Dataset Schwarzwald (Cloud) Schwarzwald (Desktop) Entwine PotreeConverter v2.0

CA13-S 14s 3s 13s 5s
CA13-M 21s 15s 1m 13s 19s
CA13-L 45s 1m 14s 5m 59s 1m 45s
AHN3-S 1m 18s 2m 21s 12m 11s 3m 23s
AHN3-M 2m 34s 4m 50s 25m 18s 7m 44s
AHN3-L 5m 8s 8m 47s 33m 27s 17m 32s
AHN3-XL 1h 19m 7s 2h 48m 13s 3h 53m 55s 3h 25m 45s
AHN3-XXL 9h 53m 4s 53h 10m 59s (22h 54m 17s) 28h 3m 21s 29h 51m 36s

Table 4.9: Runtime comparison of Schwarzwald (Cloud) with other indexing tools

105



Experiment 2.2 - Scalability

At the onset of this chapter, we postulated that scalability is an important property for
point cloud indexing tools, which was the main motivation behind the Cloud-optimized
indexer implementation. To demonstrate scalability in terms of the number of available
CPU cores as well as the data size, we indexed the datasets up to 40GB on all three
cluster configurations. Table 4.10 shows the runtimes of this experiment and Figure 4.13
plots the runtime in terms of data size and number of cores. It can be seen that our
system exhibits linear scalability with the number of CPU cores, but only above a certain
size threshold, with no measurable scalability for the smallest (0.1GB) dataset and a
scalability factor of about 1.5 for the 5GB dataset. For the largest datasets, we get a
scalability factor of about 1.72. The difference to the theoretical optimum of 2 comes
from the overhead of data distribution to the worker nodes as well as general fluctuations
in performance that are expected when working in a Cloud environment.

Dataset 32 cores 64 cores 128 cores

CA13-S 14s 14s 14s
CA13-M 29s 24s 21s
CA13-L 1m 41s 60s 45s
AHN3-S 3m 45s 2m 7s 1m 18s
AHN3-M 7m 28s 4m 25s 2m 34s
AHN3-L 14m 29s 8m 29s 5m 8s

Table 4.10: Runtime of Schwarzwald (Cloud) for different datasets with different num-
bers of CPU cores

Experiment 2.3 - Successive indexing

Lastly, we evaluate the performance of successive indexing with Schwarzwald (Cloud).
For this, we took a subset of files from the AHN3 dataset and first index them in a single
step, and then in multiple consecutive steps using different numbers of files that either
are adjacent to each other or disjoint. A comparison of the runtimes of combined vs.
successive indexing is shown in Figure 4.14 and shows that there is only a marginal
overhead when indexing data successively compared to indexing all data at once. For
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Figure 4.13: Scalability of Schwarzwald (Cloud) in relation to the number of CPU cores
and the size of the dataset

non-adjacent regions, there is no significant runtime difference, and for adjacent regions
the overhead is about 5%.

4.6 Discussion

In this section we discuss the results from the experiments with regard to research ques-
tion 2. We also point out limitations and remaining challenges.

4.6.1 Implications for research question 2

We set out to answer the following research question regarding batch-based point cloud
indexing:

RQ2 How can the runtime of current point cloud indexing tools be improved?

Using the experimental data shown in Section 4.5 we can now answer this question.
We developed a new algorithm for creating theModifiable Nested Octree index structure

using task-based parallel programming. The evaluation of Schwarzwald, our reference
implementation for this algorithm, shows a significant decrease in runtime compared
to several existing point cloud indexing tools. While our data does not give a detailed
breakdown into I/O and compute effort, we can make some educated guesses where
the bottlenecks of the existing tools (Entwine and PotreeConverter v1.7) lie, and whether
parallelization does have a positive impact. The comparison with PotreeConverter v1.7 is
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Figure 4.14: Comparison of runtime performance of Schwarzwald (Cloud) for combined
indexing of multiple files vs. successive indexing. Numbers in parentheses
indicate file counts for first and second run.

especially interesting, as Schwarzwald uses the same library (libLAS) for point I/O. The
significant performance improvement of Schwarzwald over PotreeConverter v1.7 indicates
that the majority of the indexing runtime is due to compute-intensive work and not due to
I/O, as PotreeConverter v1.7 only uses two concurrent threads regardless of the number
of available CPU cores. For Entwine, which does scale to all available CPU cores, the
performance difference is harder to trace. A potential reason could be that Entwine uses
PDAL for point I/O, which—as wemeasured in Section 3.4.1—is slower than libLAS. More
likely though this is due to differences in the implementation of the indexing algorithm
since the performance differences between Entwine and Schwarzwald are independent of
the actual data format, whereas the throughput difference between PDAL and other tools
as measured in Section 3.4.1 was dependent on the file format.

Regarding the computational complexity of indexing, we see clearer results in Sec-
tion 4.5.2 with the evaluation of different sampling strategies in Schwarzwald. Poisson-
disk sampling is measurably slower for the DoC and Wellington datasets, with marginal
differences for the CA13 dataset and no difference for the Utah dataset. While there
is some dependence on the distribution of points in the dataset, overall the choice of
sampling strategy has a measurable but small effect on the runtime of point cloud in-
dexing tools. Specifically, a blue-noise sampling method such as Poisson-disk sampling is
computationally more expensive due to adjacency checks between points compared to
grid-based sampling methods, which have a constant number of distance checks. Similar
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findings can be seen in the initial publication for PotreeConverter v2.0 [138], where a
random sampling strategy is significantly faster than blue-noise sampling, though their
blue-noise sampling implementation is using sorting which increases the computational
complexity and hence the measurable effects.

Lastly we want to point out that the distinction between I/O and compute performance
does not capture all the nuances of performance in systems programming, the domain in
which applications such as the point cloud indexing tools discussed in this chapter fall. We
use the term “compute” somewhat loosely to refer to anything going on inside the CPU,
compared to fetching data from or writing data to I/O devices such as the harddrive.
It has long since been known that memory access is a major bottleneck in most data-
intensive applications—the so-called “Von Neumann Bottleneck” described as early as
the 1970s [9]—and it is challenging to write code that saturates the ALU (arithmetic
logic unit) and/or FPU (floating-point unit) of a processor. Hijma et al. list dozens of
publications related to optimizing techniques for memory access on the GPU, showing
the importance of memory access patterns in compute-intensive applications [59]. Both
our own Schwarzwald tool as well as PotreeConverter v2.0 use columnar memory layouts
for storing point data in working memory for precisely this reason.

Based on these insights, research question 2 can be answered directly. With Schwarzwald
we demonstrated a heavily parallelized point cloud indexing system which outperformed
many existing systems and has similar performance to the more recent PotreeConverter
v2.0, which also makes heavy use of parallelization. Additionally, we demonstrated that
horizontal scalability can speed up point cloud indexing even further beyond anything
that is possible on a single machine.

4.6.2 Limitations, challenges, and future work

While we demonstrated competitive performance results for our tools, there are several
limitations which have to be addressed. First, both Schwarzwald as well as our Cloud-
optimized algorithm do not achieve the same level of sampling quality as the improved
blue-noise sampling of PotreeConverter v2.0. The Cloud-optimized algorithm is limited to
grid-based sampling methods due to the way data is processed in parallel. Schwarzwald
does process whole nodes and hence can implement Poisson-disk sampling, but is based
heavily on keeping points sorted by their Morton index. The improved blue-noise sam-
pling method used in PotreeConverter v2.0 sorts points by their distance to the center of
the node, which is impossible with the algorithm used in Schwarzwald without severely
degrading performance.

Another challenge is the output format for the generated point cloud index. Schwarzwald
works in batches and hence might process the same node multiple times. For this reason,
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each node is written into an individual file. This results in a very large number of files,
which is challenging to handle for the file system. It also makes copying data, especially
over network, a lot slower. PotreeConverter v2.0 uses preprocessing that allows it to write
each node only once and hence write all node data into a single file. Ultimately this is a
tradeoff, as the processing scheme of PotreeConverter v2.0 requires more working mem-
ory than the batch-based processing scheme of Schwarzwald. We address this limitation
by using a distributed database for the Cloud-optimized implementation.

Lastly, point cloud indexing is still a time-consuming process. Even with the optimiza-
tions that we introduced in this chapter, indexing multi-billion point datasets still takes
several hours. Especially in a Cloud-environment this directly translates to cost, so further
reductions in runtime due to more efficient processing are still sought after.

4.7 Conclusion

In this chapter, we introduced two systems for point cloud indexing which are optimized
for parallel and distributed processing. We set out to investigate why point cloud indexing
is a time-consuming process and whether parallel processing can be employed to speed
this process up. To this end, we developed the Schwarzwald system, which uses Morton
indices for distributing points onto tasks executed in a parallel processing environment.
Since point cloud indexing typically creates tree-based structures, we introduced a hy-
brid top-down/bottom-up processing scheme that prevents the lack of parallel processing
within the first few levels of the tree. Schwarzwald supports the most widely-used sam-
pling methods found in other tools, in particular grid-based and blue-noise sampling. We
evaluated Schwarzwald by comparing it to other existing point cloud indexing tools. At
the time of its release, Schwarzwald was faster by up to a factor of 9, and it still per-
forms competitively against the current state of the art, with similar performance, lower
memory usage, but slightly worse visual quality.

Based on the core ideas of Schwarzwald, we then developed a massively parallel point
cloud indexing algorithm meant for running in a distributed Cloud-environment. We
implemented this algorithm in a reference system, using a distributed database for data
storage. We demonstrated that this distributed system shows excellent scalability and
outperforms all other indexing systems, including Schwarzwald, by up to a factor of 3
within the tested Cloud-environment. It also works with multi-terabyte datasets that
would be challenging or even impossible to process on a single machine.

Based on the data we gathered we were able to answer the research question stated
at the beginning of the chapter, as well as point out shortcomings and potential improve-
ments that are expected to further improve the area of point cloud indexing.
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5 Real-time point cloud indexing

“Progress isn’t made by early risers. It’s
made by lazy men trying to find easier
ways to do something.”

Robert Heinlein

In this chapter, we investigate how point clouds can be indexed in real-time during the
capturing process with a LiDAR scanner. We build on our findings of the previous chap-
ter and show how task-based parallel programming can not only speed up batch-based
indexing but enable real-time indexing as well. We analyze the necessary requirements
for a real-time point cloud indexing system and introduce our reference implementation
which generates the same Modifiable Nested Octree structure as the batch-based indexing
tools. We demonstrate this reference implementation on a real-world sensor system us-
ing a Velodyne VLP-16 LiDAR sensor and show that all data produced by the scanner is
indexed in real-time.

The work in this chapter is based on our publication “Real-time indexing of point cloud
data during LiDAR capture” [19] and answers the following research question:

RQ3 Can point clouds be indexed in real-time during the capturing process with a LiDAR
scanner?

We first discuss the motivation and challenges for real-time indexing in Section 5.1.
Then we introduce a stream-based point cloud indexing algorithm in Section 5.2, which
is based on task-parallel programming and provides various task priority functions to
prioritize either high point throughput or low latency until a point is inserted into the
index. We evaluate a reference implementation of this indexing algorithm in Section 5.3
and critically discuss the results and limitations in Section 5.4.
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5.1 Motivation: Accessing point cloud data in real-time during
capturing

In Chapter 3 we discussed reasons for improving the data-to-insight time when working
with point cloud data, for example a need for explorative data analysis as can be seen
in both practical (e.g. emergency response) and theoretical/research scenarios. On top
of that, there are secondary concerns such as removing data duplication and decreasing
cost due to expensive preprocessing. Ad-hoc queries are one step in this direction, but
we also saw their limitations, which is why in Chapter 4 we explored how to speed up
the point cloud indexing process. In both situations (ad-hoc queries and batch-based in-
dexing) we worked with existing point cloud datasets, which already underwent a series
of preprocessing steps by the data providers, including registration, georeferencing, and
potentially spatial tiling. The last step in particular already constitutes a form of rough
indexing—which we exploited to our advantage for ad-hoc query processing—so it is nat-
ural to ask: Can we perform point cloud indexing earlier in the data acquisition process,
maybe even directly during LiDAR capturing?

If such an early indexing would be possible, this would enable a series of improvements
over the traditional pipeline and even allow novel use cases to improve quality control and
reduce cost. First and foremost, indexing point clouds during capturing would result in
a change to the way point cloud data is delivered: Instead of delivering large unindexed
or roughly spatially grouped files, a high-quality index structure would become the main
delivery medium, which would allow more flexible data delivery while also getting rid
of the typical data duplication that point cloud indexing introduces. The 3DEP [148]
dataset is a prime example for this situation: The original LiDAR data is stored in a
publicly available (requester-pays) Amazon S3 bucket, while the preferred data delivery
medium is a second bucket containing indexed point clouds generated with Entwine. The
raw data bucket contains over 300TB of data, with at least 300TB more for the indexed
data1. Given the current pricing scheme by Amazon2, storage costs for the duplicated
data due to indexing can be estimated at about $75,000 per year.

Early indexing would also have benefits for quality control, as problems with the data
could be identified sooner. Faulty data deliveries can significantly increase cost depending
on how long it takes to identify the faults. For the Fibre3D application introduced in
Section 1.1.2 we encountered this exact situation, where problems with a specific point
cloud delivery where encountered by end users, which led to a long search for the root
cause involving several parties. The earlier such mistakes become apparent, the easier

1Precise numbers not publicly available
2See https://aws.amazon.com/s3/pricing/
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they will be to fix. If we could index the point clouds directly during capturing, we
could provide real-time visualizations of the data as it is being captured, regardless of
the number of points, which would allow operators to perform visual quality control in
real-time.

While the list of potential advantages that real-time point cloud indexing would bring is
long, so is the list of challenges. The main challenge is that indexing requires a localized
point cloud, and not all systems support real-time localization. For our evaluation, we
worked with a mobile LiDAR system that supports real-time localization through Simul-
taneous Localization And Mapping (SLAM), but higher-precision terrestrial and airborne
LiDAR systems often are limited to localization as a post-process. We discuss potential im-
plications of this in Section 5.3. Assuming real-time localized points are available, there
are three additional challenges that currently prevent real-time point cloud indexing:

• Dealing with unknown bounds of the final point cloud

• Continuously updating an existing index with new points while supporting LOD

• Keeping up with the point output rate of the LiDAR sensor

The first problem can be solved with hybrid data structures, such as the Hybrid MNO
Grid that we developed in Section 4.4. The second problem would be solvable with some
of the algorithms discussed in Chapter 4, in particular all those which process the point
cloud in incremental batches, which includes Schwarzwald and the legacy version of
PotreeConverter, but these do not support an extensible index structure. Entwine does
support indexing in multiple steps, which can be used to emulate real-time indexing
by repeatedly adding to the existing index, but we show in Section 5.3 that this is not
sufficient for true real-time indexing. Lastly, the throughput rates of Schwarzwald and
PotreeConverter 2.0 would be enough to keep up with current LiDAR scanners, which
range anywhere from a few hundred thousand [152] to close to three million [38] mea-
surements per second. However neither Schwarzwald nor PotreeConverter support the
necessary extensible index structure. Version 2 of PotreeConverter also requires the full
point cloud for its mandatory preprocessing, so its underlying algorithm is unsuited for
stream-based indexing. We thus develop a novel stream-based point cloud indexing al-
gorithm, which we describe in the following section.
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5.2 Stream-based indexing

In this section, we introduce our novel stream-based point cloud indexing algorithmwhich
is able to perform point cloud indexing in real-time during LiDAR capturing, given that the
capturing system is capable of real-time localization. Batch-based point cloud indexers
already have substantial requirements, in particular support for LOD and being capable
of out-of-core processing. To enable real-time indexing, the additional requirements listed
in Section 5.1 apply, of which especially the last one (keeping up with the point output
rate of the LiDAR sensor) is important. Without fulfilling this requirement, incoming
points will accumulate over time and eventually cause the system to run out of memory.
Additionally, we want support for real-time query updates, which allows our stream-
based indexing algorithm to provide real-time updates of the data to clients as it is being
captured, for example in a live-viewer. All requirements and the techniques we use to
fulfill them are listed in Table 5.1. In the following subsections, we give an in-depth
overview over the design and reference implementation for the stream-based indexing
algorithm.

Requirement Mandatory? Solved by

Unknown point cloud bounds Yes Hybrid, extensible index structure
Incremental processing Yes Stream processing using task-parallel programming
Minimum point throughput Yes Parallelization and task-priority functions
Interactive query updates No Custom point cloud server implementation

Table 5.1: Requirements for our stream-based indexing algorithm, showing which ones
are mandatory for real-time indexing, and which technique(s) we use to fulfill
these requirements

5.2.1 Index structure

Our stream-based indexer uses theModifiable Nested Octree structure to store points with
various levels-of-detail. To deal with an unknown extent of the point cloud, we use a
grid of fixed-sized root nodes similar to the Hybrid MNO Grid introduced in Chapter 4,
though we are not using Morton indices for identifying points. Even though we showed in
Chapter 4 that Morton indices are useful to speed up point cloud indexing, in our stream-
based indexer each node keeps track of its own inbox of points, and nodes are potentially
processed out of order. As a result we require less in-memory partitioning as for example
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Figure 5.1: Multi-root Modifiable Nested Octree structure. Image source: [19]

Schwarzwald, which makes Morton indices less useful. The multi-root Modifiable nested
octree (MNO) structure is illustrated in Figure 5.1. For data storage, we store each node
on disk in its own file in either LAS or LAZ format. Just as with Schwarzwald, we cannot
store all nodes within a single file as PotreeConverter version 2 does, since we do not know
in advance how much space to reserve for each node. For processing, we use grid-center
sampling because it is faster than blue-noise sampling and store the points of each node
using a hash map that maps grid cells to the contained point.

5.2.2 Indexing process

To enable stream-based indexing, our indexer uses an in-memory point buffer for each
node that collects incoming points for this node. We call this buffer the inbox for the node.
This way we can insert multiple points in one step, having to load and store the updated
node only once, rather than for each incoming point separately. Indexing then works
using top-down processing, with new points starting at the root node of their respective
octree and descending down into the tree until they fit into a node based on the sampling
strategy. Similar to Schwarzwald indexing happens task-based where each task processes
one node. The whole indexing process repeatedly performs the following steps:
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• Choose a node with a non-empty inbox and take the points, leaving the inbox empty

• If the node already exists, load the current points for this node from disk

• Try inserting points into the node by using grid-center sampling

• Store the modified node to disk

• Split the rejected points into up to eight groups depending on the child-node they
fall into

• Add each group to the inbox of the corresponding node

The tasks are trivially parallelized by dispatching them onto multiple worker threads,
which reduces the synchronization overhead since only node inboxes have to be synchro-
nized.

For selecting the next node to process in step 1, we propose several task priority func-
tions which assign a priority value to each node. We always choose the node with the
highest priority for processing. Our proposed priority functions are:

NrPoints Always select the node with the highest number of points in its inbox. This
prioritizes processing many points together and thus reduces the number of I/O
operations for swapping nodes between memory and disk. A node will only get
processed once enough incoming points have been collected in its inbox.

TaskAge Always select the node whose inbox has been non-empty for the longest time.
While the NrPoints priority function makes no guarantee for how long it takes until
a node is processed, the TaskAge priority function guarantees that all nodes are
processed in a timely manner. It ensures a relatively steady flow of points down the
tree for all parts of the data structure.

NrPointsTaskAge A combination of both previous priority functions, which tries to find
a compromise between the number of points that are processed together and the
time until a node is processed. The following Equation (5.1) shows how priority
values are calculated by combining the previous two priority functions:

Priority = NrPoints× 2TaskAge (5.1)

The additional factor 2TaskAge prevents nodes from taking arbitrary long until they
are processed, which is especially helpful for small nodes or nodes where the LiDAR
sensor has moved away from and thus will never receive new points. Through
this factor, nodes that have not been processed for a long time are continuously
increasing in their priority.
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TreeLevel Always select the node with the highest level within the tree, i.e. the node
that is deepest within the tree. This causes all points of a root node being fully
inserted into the index before the next root node can be selected again.

The whole stream-based indexing process is depicted in Figure 5.2.

Figure 5.2: Overview of the stream-based indexing algorithm, starting at the LiDAR scan-
ner and ending at the indexed points on disk. Image source: [19]

5.2.3 Optimizations

To reduce the number of I/O operations, we added an additional caching layer by access-
ing all nodes via a global Least-Recently-Used (LRU) cache.

During indexing, loading and storing of frequently accessed nodes is less expensive,
because they can be accessed from the cache rather than disk. As long as the sensor does
not move, points will mostly fall into the same set of nodes. If the cache is large enough
to fully cover this set, the disk only needs to be accessed for nodes entering or leaving
this set as the sensor moves. The cache is shared between the indexing process and
query execution. This allows the point data of updated nodes to be made available to the
query without requiring an extra round trip to disk. For each node, the cache can store
the point data either as LAS encoded binary data, or in its decoded form, or both. The
point data is lazily (de)serialized into the representation that is required when accessing
it. This avoids unnecessary (de)serialization operations which is especially important if
compression is enabled, which makes LAZ encoding and decoding expensive.

Small insertion operations with only a handful of points do not contribute much to the
overall indexing progress, but the average cost for loading and storing the point data is
the same as for any other insertion operation. We implemented an optional optimization
that tries to avoid such insertion operations:
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In addition to the sampled points, each node can store up to n points that have been
rejected in the grid-center sampling step. We call these bogus points. When enabled, we
add the rejected points to the node’s bogus points after the grid-center sampling step. If
this list contains less than n points, we store the node as is. Only if the number of bogus
points exceeds the threshold n, we empty the bogus points list and let the points further
descend down the tree.

In leaf nodes, bogus points help to avoid excessive tree heights. Here, they are equiv-
alent to how the first version of PotreeConverter only expands a leaf node into eight child
nodes if a sufficient number of points is exceeded. Another advantage of bogus points
is that, when used together with the NrPoints priority function, they help counteract its
problems with slowly growing inboxes in the higher tree levels.

Figure 5.3: Visual artifact due to bogus points which are part of a node without being
correctly sampled. Image source: [19]

The disadvantage of bogus points is that they lead to visual artifacts, as can be seen
in Figure 5.3. Since the bogus points lead to a local increase of the point density, these
artifacts are only visible when rendering with a relatively small point size compared to
the average point distance in the selected LOD. Therefore, we deem this not to be an
issue in most practical visualization applications. Alternatively, excluding bogus points
from the query result hides these irregularities. However, from a correctness perspective
this means that some of the captured points will never be visible in query results, as if
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they were not part of the point cloud. Considering this, the threshold n has to be picked
carefully, acting as a trade-off between render quality and indexing performance.

5.2.4 Implementation

Point Source LiDAR Server
Captured points

Viewer

Points

Queries

Viewer

Viewer

Figure 5.4: Software components in the reference system. Image source: [19]

To demonstrate the feasibility of our stream-based indexing algorithm, we implemented
a reference system consisting of three network-connected components, as shown in Fig-
ure 5.4.

The core of the system is the LiDAR Server, a central server that is responsible for in-
dexing and storing the point data it receives from the point source. Multiple clients can
connect to the LiDAR Server and query for points. The LiDAR Server executes and serves
these queries and also keeps clients updated whenever new points arrive that match the
query. This is what enables live-viewing during real-time indexing.

The Point Source is a small application that connects the physical capturing device to
the LiDAR Server component. It receives point and trajectory data from the capturing
device and sends it to the LiDAR server in its expected format. Separating the LiDAR
Server from the Point Source makes the whole setup more extensible, as new capturing
devices or a component that plays back known data for testing purposes can be easily
added to the whole system.

The Viewer visualizes a live view of the point cloud data as it is being captured and sup-
ports basic viewer functionality including LOD queries. An unlimited number of querying
clients and at most one point source are allowed to connect to the server in the current
implementation.

The source code for all components is available under an open-source license on GitHub [44].

5.3 Evaluation

In this section we perform an evaluation of our stream-based indexing algorithm using
two different test-scenarios: A synthetic test that analyzes the limits for point throughput
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and scalability (Section 5.3.1), and a real-world test on an actual sensor system where
our software was run live during data acquisition (Section 5.3.2).

Dataset Size Points Capture duration

Indoor 1 216MB 6.39M 1m 31s
Indoor 2 404MB 11.94M 2m 32s
Outdoor 1 2.7GB 89.8M 5m 23s

Table 5.2: Datasets used for the evaluation of the stream-based indexing algorithm

Name Storage CPU cores Memory

Virtual Server HDD 16 64GiB
Laptop SSD (NVMe) 8 16GiB
Nvidia Jetson SDD (USB-C) 8 32GiB

Table 5.3: Test systems used for the evaluation of the real-time indexing system

Table 5.2 gives an overview of the datasets that were used for the evaluation. The
Indoor 1 and Indoor 2 datasets were generated during the real-world test, the Outdoor 1
dataset was generated upfront with the same sensor system and used for the synthetic
test. We used different test systems for the evaluation, which are listed in Table 5.3. For
the synthetic test, we used both the Virtual Server and Laptop systems, for the real-world
test our indexer ran on the Nvidia Jetson system that was integrated into the capturing
setup.

The capturing setup itself is shown in Figure 5.5. It consists of a Velodyne VLP-16 hi-res
LiDAR system combined with a 360-degree RGB-camera ring. Additionally, a further Intel
RealSense stereo camera is integrated. The positioning system contains a Global Navi-
gation Satellite System (GNSS) receiver combined with an Inertial Measurement Unit
(IMU). Furthermore, the prediction of the position is supported by a visual odometry
algorithm. The localization of the point cloud happens in real-time using a SLAM algo-
rithm based on RTAB-Map [80]. The communication of the individual sensors as well
as the referencing of the data runs via the Robot Operating System (ROS) on an Nvidia
Jetson Xavier as embedded GPU to provide a fast data processing pipeline. The individ-
ual sensor data streams are each provided with a time stamp, which is made available
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Figure 5.5: The capturing setup used for the evaluation. Image source: [19]

by the GNSS module. The scanner is synchronized via the National Marine Electronics
Association (NMEA) protocol and a Pulse Per Second (PPS) signal. For the indexing of
the data, only the data of the Velodyne VLP16 hi-res without color information was used.
The scanner produces up to 300,000 points per second with a vertical field of view of ±
10° and has a range of 100 m.

5.3.1 Synthetic test

For the synthetic test, we measured the performance of the stream-based indexer in isola-
tion, without the surrounding LiDAR Server and without potential overhead for transmit-
ting point data over a network connection. For testing, we used the Outdoor 1 dataset,
which was repeatedly replayed to the indexer to get reproducible results.

First we measured the insertion rate by monitoring the overall number of points in all
inboxes. In regular intervals, we added enough new points from the dataset to fill the
inboxes to a fixed number of points. New points are added as fast as previously added
points are indexed. From the time for indexing the whole dataset, the point insertion
rate is calculated.

Figure 5.6a shows the insertion rate for the different priority functions. The TaskAge
function achieves the highest insert rate on both test systems, but the NrPointsTaskAge
function also achieves similar results. The slowest function is the NrPoints priority func-
tion due to the issues we already described in Section 5.2.2.

Next we measured the insertion rate in relation to the number of worker threads. Fig-
ure 5.6b shows that both tested systems scale well but to different degrees. The Laptop
system scales linearly up until 4 threads are used, with more threads scalability becomes
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(a) Point insertion rate measured for different
priority functions. Image source: [19]
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Figure 5.6: Measurements for the synthetic test
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logarithmic instead. The Virtual Server system however exhibits linear scalability for up
to 16 threads.

We also analyzed the effect that the LRU cache and the number of allowed bogus points
have on the point insertion rate, with the results shown in Figure 5.6c and Figure 5.6d.
For the cache size, allowing as few as 32 nodes to be cached (lowest measured value)
already more than doubles the point insertion rate, with linear scalability for up to 1024
cached nodes. For the number of bogus points, the situation is similar: Small numbers
of allowed bogus points (200) lead to a significant improvement in performance, with
diminishing returns for higher numbers of bogus points.
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Figure 5.7: Point latency measured for different insertion rates and priority functions.
Image source: [19]

For the second part of the synthetic test, we measured the latency for point insertion
to determine how long it takes for a point to be indexed from the time it was passed
to the indexer. To measure the latency value, the test data is replayed and indexed at
a fixed point rate and a query is executed concurrently. For each point, we record the
timestamp when it was passed to the indexer, and the timestamp when it was first seen
in the query result. The difference between the two timestamps is the point latency,
which we aggregated to the median as well as 10th and 90th percentiles. The results
of this measurement for different priority functions are shown in Figure 5.7. Latencies
are stable with values around 0.1s, but contrary to our initial assumption, the different
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task priority functions have little effect on the point latency. The single spike for the
TreeLevel priority function is most likely due to fluctuating performance on the Virtual
Server system that the test ran on, which was hosted in a Cloud environment. In general,
the point latency values are fast enough to give users a real-time impression in the viewer.

Lastly, we compared our real-time indexer to Entwine. As stated in Section 5.1, Entwine
does not truly support real-time indexing. Instead, we use a feature that allows adding
new points to an existing index by running the Entwine batch-process with new input data
on a directory containing an existing index. To emulate real-time indexing, we split the
Outdoor 1 dataset into multiple files, where each file contains all points recorded during
a given time interval from the start of the recording. We used 1 second, 2 seconds,
4 seconds, and 8 seconds as the target intervals, and then executed Entwine once for
each file of the split dataset and recorded the runtime. Figure 5.8 shows the cumulative
runtimes for each of the split datasets, together with the threshold at which indexing
happens in real-time. Entwine is not able to index points with a high enough throughput
to stay within this threshold, however it can be seen that larger time increments and
hence larger batches of points increase the indexing throughput.

Figure 5.8: Cumulative runtimes of emulated real-time indexing using Entwine, together
with a threshold value for real-time indexing.

5.3.2 Real-world test on the sensor system

To demonstrate our system in a real-world scenario, we ran our LiDAR Server on the
Nvidia Jetson system which is part of the sensor system, while driving the sensor system
through two different indoor scenes. Figure 5.9 shows an overview of one of the datasets
generated during this test scenario.
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Figure 5.9: An overview of the Indoor 2 dataset generated during the real-world test. Im-
age source: [19]

Both test runs used the following parameters:

1. Worker threads: 6

2. Priority function: NrPoints

3. LRU cache size: 500 nodes

4. Maximum LOD: 10

5. Output format: LAS

6. Bogus points: 0

During the test runs, we recorded the number of non-empty inboxes, as well as the
number of points in the inboxes. Figure 5.10 shows the results of the two runs, which
indicate that the indexer is able to keep up with the incoming points from the sensor.
This is the case since the number of non-empty inboxes (“Nr Tasks”) as well as the point
counts stay mostly constant over the runtime of the experiments. Only at the beginning
and the end of the test runs do we see a spike, since the scanner system was not moving
here, which caused large numbers of points to be captured at similar coordinates. In
both cases, the indexer was able to quickly catch up once the system started moving.
A detailed view into one of the test runs, as shown in Figure 5.10c, illustrates that the
indexer completely processes all points of the current batch before the next batch arrives
from the sensor.
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Figure 5.10: Capturing performance during the two real-world test cases. Gray areas
indicate the time for which the LiDAR sensor was active. Image source: [19]
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5.4 Discussion

In this section we discuss the results from the experiments with regard to the initial
research question 3. Beyond that, we point out remaining challenges and limitations of
real-time indexing.

5.4.1 Implications for research question 3

In this chapter we set out to answer the following research question:

RQ3 Can point clouds be indexed in real-time during the capturing process with a LiDAR
scanner?

We now summarize the results of this chapter and then answer research question 3.
We introduced a stream-based point cloud indexing algorithm that progressively builds a
Modifiable Nested Octree index in real-time during LiDAR capture. Similar to the Schwarzwald
system introduced in the previous chapter, we build on task-based parallel programming,
with the difference that for real-time indexing, nodes are processed based on a priority
queue instead of a fixed scheduling algorithm based on Morton indices. We introduced
several task priority functions and evaluated their effect on overall indexing throughput
as well as latency. We evaluated our implementation in both a synthetic test scenario
as well as a real-world test based on a sensor setup using the popular Velodyne VLP-16
LiDAR sensor. Based on the evaluation we demonstrate that our stream-based indexer
can index up to 1.8 million points per second in real-time on the test hardware.

Beyond high throughputs, we also demonstrated substantial improvements to query
responsiveness: The latency measurements shown in Figure 5.7 show a responsiveness
of about 0.1 seconds on average, which is fast enough for real-time visualizations. Con-
sidering the throughput limits of ad-hoc queries or the preprocessing time for batch-based
indexing, a data-to-insight time of 0.1 seconds is several orders of magnitude faster than
any of the other approaches presented in this thesis, both our own as well as in the liter-
ature.

With our stream-based indexer we have therefore demonstrated that it is possible to in-
dex LiDAR data in real-time and we established thresholds for the maximum capture rate
of a scanner that still supports real-time processing. Research question 3 can therefore
be answered affirmatively.
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5.4.2 Limitations, challenges, and future work

While these numbers are a big improvement over the current state of the art when it
comes to point cloud query responsiveness, there are several factors that limit the usabil-
ity of real-time point cloud indexing as of today. These factors are:

Real-time localization The biggest hurdle for establishing real-time indexing during Li-
DAR capture is the dependence on a sensor system that outputs localized points in
real-time. Autonomous systems often support this, as localization is mandatory for
the autonomous agent. Examples for this are self-driving cars [79] or robotics [47],
which are typically not the systems that capture large-scale point clouds which re-
quire sophisticated indexing. For mobile mapping systems such as Terrestrial Laser
Scanning (TLS) and Airborn Laser Scanning (ALS) systems, localization happens
through sensor fusion of GNSS and IMU data, potentially with correction factors
that are applied in a postprocess [103]. Sticking with real-time capable localization
would result in lower quality point clouds, as the positions are less accurate than
those obtained from high-quality trajectories during postprocessing. In principle a
multi-stage process might be conceivable, in which real-time indexing is performed
based on the rough point positions and a postprocess then adjusts the index with
the high-quality positions. With regular octrees, this seems reasonable, as the ex-
pected positional shift is probably small for most points, causing few points to move
from one octree node to another. The nested octree structures that are common-
place for point cloud indexing seem unsuitable for changes in the point cloud due to
their reliance on sampling the point cloud at various resolutions. Sampling thus dis-
tributes points vertically within the nested octree, so changes in the point cloud can
cause points to move not only between different nodes on one level of the nested
octree, but also between different levels of the octree. This in turn can cause a
ripple-effect, where one point moving out of a node at one level can cause another
point to replace it, which in turn leaves a new spot for yet another point to replace
it, and so on. While the MNO structure does support adding and deleting points,
which is sufficient to move points around, the overhead of locating and deleting the
moved points might be larger than simply rebuilding the whole index. On top of
that, moving points requires unique point IDs for all points, which is not something
that is typically stored for points obtained from LiDAR. It is doable, for example by
using the Extra Bytes feature of the LAS format, but increases the size of the point
cloud.

Dependence on point distribution Like all point cloud indexing algorithms that build
nested octree structures, there is a certain dependence on the point distribution.
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If many points fall into the same small volume of space, they will end up deep
within the tree and either exceed the maximum tree depth, cause the tree to de-
generate, or simply prevent any node-based parallelization. This is challenging for
a mobile scanner systemwhenever the scanner is running but the system is not mov-
ing, as points at similar locations accumulate over time. There are workarounds for
this, such as disabling the scanner after a certain time of standing still, or limiting
the precision of point positions so that multiple points that are very close together
are combined into a single point. If all else fails, incoming points could always be
cached to disk and processed once the indexer becomes idle to prevent memory
overflows.

Quality of the resulting index For performance, our indexer uses grid-based sampling,
which has worse visual quality than for example blue-noise sampling as it is sup-
ported by Schwarzwald and PotreeConverter. Additionally, our stream-based indexer
cannot write all nodes into a single file, as PotreeConverter version 2 does, since
it is not known how much space to reserve for each node upfront. In contrast
to Schwarzwald, for which this was a limitation due to the chosen algorithm, for
real-time indexing this is fundamentally impossible as any node might receive new
points at any time. The only way to guarantee that nodes are truly finished is to
include sensor system trajectories, if they are known upfront. An example would be
terrestrial LiDAR scanning of a city with a known route. Combined with the max-
imum scanner range, it would be possible to calculate in real-time which octree
nodes will never receive new points.

Maximum throughput Our test results indicate maximum point insertion rates of about
1.8 million points per second, which is enough for the sensor system that we tested
with, which produces at most 300.000 points per second. More powerful sensor
systems do exist which can exceed the maximum throughput. Based on the scala-
bility values shown in Figure 5.6b, it is debatable whether adding more CPU cores
would bring the necessary performance improvement to manage the most power-
ful LiDAR scanners. Tests with faster hardware would be required to confirm this.
There exist GPU-based point cloud indexing algorithms [141] which have substan-
tially higher throughput, but they are currently limited to in-core processing and
further research is needed to integrate GPU-acceleration into stream-based point
cloud indexing.

While the real-time localization requirement currently seems to be a fundamental
blocker for the application of real-time indexing, many of the other limitations are en-
gineering problems which should be solvable with further research and development.
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Similar to ad-hoc queries, we believe that real-time indexing is a technique that can com-
pliment other point cloud data management solutions, instead of completely replacing
them. We discuss the implications of this for point cloud data management as a whole in
Chapter 6.

5.5 Conclusion

In this chapter, we introduced a stream-based point cloud indexing system, which is the
first system that is able to index point clouds in real-time during capturing with a LiDAR
scanner. The stream-based indexer is based on task-parallel programming, similar to the
Schwarzwald system introduced in the previous chapter, but was developed specifically
to work in real-time without knowing the full point cloud upfront. We proposed several
different task priority functions through which the indexer selects which points are to be
processed next. The resulting index is based on a multi-root MNO structure which can
deal with arbitrarily large point cloud bounds. We evaluated a reference implementation
of the stream-based indexer, both in terms of theoretical capabilities such as point inser-
tion rates and point latency, as well as in a real-world test on a physical sensor setup.
Based on the test hardware, we achieve point insertion rates of up to 1.8 million points
per second, which is sufficient for many but not all LiDAR scanners currently available
on the market. Additionally we demonstrated query latencies as low as 0.1 seconds from
the time a point is captured by the scanner to the time it appears in a query response.
This makes real-time indexing by far the most responsive point cloud data management
approach available today.

We also pointed out several limitations of our real-time indexing system, such as its
dependence on real-time point cloud localization, which we solve by using SLAM. Since
many terrestrial and airborne LiDAR systems perform localization as a postprocess, we
discussed potential solutions and further research opportunities for making real-time
point cloud indexing more usable.

All things considered, we were able to answer the research question stated at the be-
ginning of the chapter and demonstrate a significant improvement in point cloud query
responsiveness through real-time indexing.
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6 Conclusion

“Expectations were like fine pottery.
The harder you held them, the more
likely they were to crack.”

Brandon Sanderson, The Way of Kings
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Figure 6.1: Our contributions to the state of the art of point cloud data management

In this chapter, we summarize the work presented in this thesis and critically discuss the
results from Chapters 3 to 5. First, we discuss the implications for the research questions
and the main research hypothesis in Section 6.1. We then give an outlook on research
perspectives in Section 6.2. Lastly in Section 6.3 we discuss the potential impacts of our
work on the state of the art of point cloud data management using the Fibre3D project as
a showcase for practical applications.
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6.1 Implications for the research hypothesis

With this thesis, we set out to confirm or reject the following research hypothesis:

Hypothesis

Using adaptive indexing, parallel programming, as well as columnar memory layouts
improves the query throughput, responsiveness, and expressiveness of existing point
cloud data management approaches.

To this end, we presented improvements to various fields related to point cloud stor-
age and indexing, shown schematically in Figure 6.1. With these results we are able to
answer the research questions stated in Section 1.3. We now explain our answers to each
research question in detail, followed by an explanation what this means for the research
hypothesis.

RQ1: Can ad-hoc queries enable applications to work directly with raw point cloud files
instead of sophisticated index structures? The results shown in Chapter 3 show that
raw point cloud files do have more potential as a data management solution than it was
previously assumed. Our proposed ad-hoc queries improves data-to-insight time com-
pared to traditional batch-based indexing, while also outperforming existing point cloud
DBMSs in terms of data throughput and oftentimes even response times. Moving from
interleaved to columnar memory layouts significantly improves query responsiveness for
single-attribute queries, as demonstrated by our proposed LAST file format. Preliminary
results with adaptive indexing indicate that this is a promising technique to mitigate some
of the shortcomings of ad-hoc queries for larger datasets, as adaptive indexing increases
query responsiveness. The major downsides of ad-hoc queries are that they are compu-
tationally expensive and have hard limits regarding data size, query complexity, and the
number of concurrent users.

Summary: Our work introduces ad-hoc queries, which extend the power of raw files
as a point cloud data management solution beyond what was previously considered
feasible, while also quantifying their limits. When working within these limits, we
show that ad-hoc queries are a viable technique for interactive exploration of point
cloud data, in the same way that systems like NoDB [4] are for textual data.

RQ2: How can the runtime of current point cloud indexing tools be improved? In
Chapter 4 we introduced a new algorithm for batch-based point cloud indexing based
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on partitioning points using Morton indices. Point cloud indexing is a resource-intensive
process due to the calculation of LOD, but it was unclear what the main reason for this is
and to which extent I/O and compute performance play a role. We demonstrated that the
choice of sampling function does have an impact on the indexing performance, but this
impact depends on the choice of the indexing algorithm itself. Our novel Schwarzwald
system performswell on SSDs as well as on slower HDDs, with relatively consistent perfor-
mance regardless of the choice of sampling function. In contrast, the existing PotreeCon-
verter 2.0 system is more dependent on I/O performance, with significantly slower run-
times on HDDs than on SSDs. Both Schwarzwald and PotreeConverter 2.0 achieve high
degrees of parallelism through intelligent data partitioning, which shows that parallel
programming done right does speed up the point cloud indexing processing significantly.
Beyond that, we also demonstrated the benefit of horizontal scalability for point cloud
indexing, through our Cloud-optimized indexer, which outperforms all other indexing
tools by up to a factor of 3 in our tests. It uses a similar partitioning scheme than the
Desktop version of Schwarzwald and hence confirms the effectiveness of this approach for
improving the runtime of point cloud indexers.

Summary: Both systems that we developed improved the runtime of point cloud
indexing compared to the previous state of the art. This indicates that parallel
processing using partitioning based on Morton indices is an effective way to speed
up point cloud indexing.

RQ3: Can point clouds be indexed in real-time during the capturing process with a
LiDAR scanner? When we talk about query responsiveness, we always include prepro-
cessing times and hence use responsiveness as a synonym to data-to-insight time. In
Chapter 5 we demonstrated an approach that is able to index point cloud data in real-
time during capturing with a LiDAR scanner, thus getting rid of all preprocessing. Our
reference system, which uses stream-based processing, allowed simultaneous indexing
and querying with an average query responsiveness of 0.1 seconds. We confirmed these
numbers in a series of synthetic tests as well as tests on a real-world sensor system. We
thus achieve a query responsiveness that is about two orders of magnitude faster than for
ad-hoc queries, and three to five orders of magnitude faster than when using batch-based
indexing. From a theoretical point of view, this is close to the limit for query responsive-
ness of zero seconds, disregarding network latency which in practice can be significant.
Achieving these responsiveness values is only possible for systems that have real-time lo-
calization capabilities, which is a limiting factor. The quality of the resulting point cloud
is also lower when using real-time localization compared to localization through postpro-
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cessing based on high-precision trajectories collected from various sensors.

Summary: As the first system of its kind, we demonstrated both the feasibility of
real-time point cloud indexing as well as the substantial improvement for data-to-
insight time that this indexing approach enables.

Confirming the research hypothesis The research hypothesis of this thesis stated that
each of the three approaches adaptive indexing, parallel programming, and columnarmem-
ory layouts can be used to improve the throughput, responsiveness, and expressiveness
of queries on point cloud data. We now show why this hypothesis holds.

Regarding adaptive indexing, we showed that it can improve the responsiveness of
ad-hoc queries with some restrictions concerning the query type. Overall we also demon-
strated that ad-hoc queries allow a wide range of queries to be answered on raw files, thus
increasing the expressiveness of raw files as a point cloud data management solution. A
different approach that can be labeled as adaptive indexing was shown in Chapter 5 with
our stream-based progressive indexer that is capable of indexing point clouds in real-time.
Here we demonstrated significant improvements to the query responsiveness compared
to traditional batch-based indexing.

Concerning the usage of parallel programming, all software systems that we developed
as part of this thesis use some form of parallelization. We specifically demonstrated the
positive impact of parallel programming on query responsiveness in Chapters 4 and 5.
Task-based parallel programming as well as the distributed Map-Reduce paradigm al-
lowed us to develop point cloud indexing systems with significantly reduced runtimes
compared to the state of the art. For ad-hoc queries, parallel processing also plays a sig-
nificant role in increasing throughput and responsiveness.

Lastly we evaluated the usage of columnar memory layouts for point cloud storage.
Here we showed significant effects for improving both query responsiveness and through-
put when working with raw data. Additionally the in-memory storage format for our
Schwarzwald indexer also uses a columnar memory layout which contributes to the de-
crease in runtime.

Since we demonstrated positive effects on query throughput, responsiveness, and ex-
pressiveness for each of the three approaches we thus conclude that the research hypoth-
esis holds.

134



6.2 Research perspectives

While we demonstrated several improvements to various point cloud data management
approaches in this thesis, new questions arose that we believe are worth pursuing in the
future.

Combining horizontal and vertical scalability of point cloud indexing Our work on
faster batch-based indexing was focused mainly on out-of-core processing. GPU-based
point cloud indexing has recently become an active area of research [141, 134], demon-
strating significant performance improvements due to the large parallelization of GPUs.
These approaches are currently limited to in-core processing but have excellent vertical
scalability. Adding out-of-core capabilities would make these approaches usable for large-
scale point clouds, which take days to index with the fastest current indexers. Another
area of research is the unification of horizontal and vertical scalability through the devel-
opment of an indexer that can adapt to the available resources, using GPU-acceleration
if available while scaling onto multiple VMs in the Cloud.

True progressive indexing We demonstrated a proof-of-concept for adaptive indexing
based on incoming queries in Section 3.3.6. Further research is needed to make true
progressive indexing possible, which adapts not only to the incoming queries but also
uses available resources intelligently and generates a high-quality index structure with
LOD support. Progressive indexing during rendering using the GPU has recently been
demonstrated [134], but as all GPU-based indexing methods it is currently restricted to
in-core processing and not capable of indexing other attributes besides positions. While
GPU-based indexers are fast, all current approaches lack the adaptive component that
makes it possible to index only those subsections of the data that are actively queried.

Improve real-time indexing In Chapter 5 we introduced the novel concept of real-time
point cloud indexing. Our proof-of-concept system could be improved in various ways, for
example by supporting adjustments to the generated index with more accurately located
points computed in a postprocess after capturing. As discussed, this would currently
required a full rebuild of the index. GPU-support for the indexer would also be beneficial
to keep up with scanners with higher measurement rates. Lastly some engineering effort
is required to integrate our solution with more sophisticated mobile-mapping systems.

A unified data access layer A central problem of current point cloud data management
solutions is the way they provide access to the data. The PDAL library and our own pas-
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ture library are attempts to provide building blocks for unified point cloud data manage-
ment for applications, but both are specific tools instead of general solutions. Point cloud
databases are a potential solution, either through existing systems like those studied in
the literature [150, 32] or concepts like the ad-hoc queries we introduced, but neither are
currently suited for high-quality point cloud visualization. Web-based applications such
as Potree and CesiumJS depend on specific metadata for client-side frustum culling which
a point cloud DBMS typically does not provide. Highly interactive renderers like those
studied by Schütz et al. require optimized data formats accessed directly through the file
system and thus lack generality [142, 135]. We believe that the flexibility that accessing
point clouds through a structured query language offers is the most promising approach
for unified point cloud data access, but it will require research, engineering and standard-
ization effort. In terms of research, better support for LOD and higher query throughput
are challenges for the existing point cloud DBMSs. Adding support for query-based data
access to web-based renderers requires engineering effort, which can be justified if for
example the OGC proposes a standardized point cloud access Application Programming
Interface (API), similar to those for raster data and vector features (Web Map Service
(WMS) and Web Feature Service (WFS)).

Improvements to existing file formats We are currently seeing the development of new
point cloud file formats aimed at web- and Cloud-based processing and access [31, 60].
We believe that taking into account our findings regarding columnar memory layouts
could help speed up data access. A remaining challenge is the overhead of compression
for point cloud file formats. LAZ is widely used as a storage format due to its excellent
compression ratios, but the poor decoding performance makes it unsuitable for many
interactive applications. A faster compression scheme with similar compression ratios to
LAZ could help bridge this gap.

6.3 Demonstrating the impact of our work with the Fibre3D
project

In Chapter 1 we introduced Fibre3D, a system developed by us and used by Deutsche
Telekom AG to facilitate planning of fiber network connections. Fibre3D uses point
cloud data to enable interactive placement of objects with centimeter precision within
a panoramic image, and has been used for the planning of fiber networks in over 1000
areas throughout Germany [78]. To enable this, data is continuously captured using cars
equipped with terrestrial LiDAR scanners and spherical imaging systems. As of late 2023,
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about 166 TiB of point cloud data have been captured, with a total of about 6.75 trillion
points. The size of the point clouds used by Fibre3D makes this project an ideal candi-
date to demonstrate the potential impact of the techniques introduced in this thesis. Some
techniques, such as our task-parallel indexing algorithm implemented in the Schwarzwald
system, were developed specifically for this project and have seen usage in a production
environment. For the other techniques, we will discuss potential improvements as well
as identify research gaps that currently prevent their application.

We identified the following challenges during the development and operation of Fi-
bre3D:

Cost Minimizing the cost for data preprocessing and storage

Migrations Migrating between different platforms, for example different rendering en-
gines

Debugging Identifying and fixing problems with data deliveries as well as rendering
algorithms

Challenge Technique Potential benefit Limitations

Cost Task-based parallel pro-
gramming (Section 4.3)

Decreases runtime of point cloud
indexing and hence cost for com-
pute infrastructure

Large number of files is challenging
for storage and copying

Real-time indexing (Chap-
ter 5)

Prevent most preprocessing in the
Cloud

Integration into existing Mobile
Mapping System (MMS)s required

Adaptive indexing (Sec-
tion 3.3.6)

Index only data that is requested by
users

Our tested approach does not sup-
port LOD
Other approaches [142, 134]
currently are limited to in-core
datasets

Migration (distributed) point cloud
database (Section 4.4)

Provides unified data access
through a common query language

Missing protocol for unified point
cloud data access
Web-based renderers do not sup-
port point cloud databases

Debugging Ad-hoc queries (Chapter 3) Interactive exploration of data sim-
plifies debugging

Only feasible with datasets up to
about one billion points

Table 6.1: Potential impact that the various techniques introduced in this thesis could
have for three main challenges encountered during the development and op-
eration of the Fibre3D project.

Table 6.1 briefly summarizes the potential impacts of the techniques introduced in this
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thesis for these three challenges. We discuss these impacts in detail in the following
sections.

6.3.1 Reducing cost through more efficient indexing

From an operational perspective, cost is one of the primary factors that businesses aim to
minimize. For data-intensive applications such as Fibre3D, the computational resources
required for preprocessing and providing the data to end users can be substantial. Spe-
cific factors that influence the cost for compute infrastructure are the runtime of process-
ing tools, which in the Cloud translate to Virtual Machine (VM) uptimes, the required
capabilities of these VMs, and the amount of required storage. The Schwarzwald system
introduced in Section 4.3 was developed specifically to reduce the runtime of the point
cloud indexing process in the context of Fibre3D. Based on the runtime improvements
over the existing indexers as shown in Section 4.5.2, Schwarzwald has about 2.4 times
higher throughput than Entwine and 6.5 times higher throughput than version 1.7 of
PotreeConverter. Since all tools run on a single machine, total VM runtimes for point
cloud indexing are between 58% (Entwine) to 85% (PotreeConverter v1.7) lower. Ta-
ble 6.2 shows an estimate for the runtime for indexing all 6.5T points in the Fibre3D
dataset.

Tool Average point throughput [MPts/s] Estimated runtime
Based on values from Section 4.5.2

PotreeConverter v1.7 0.27 289 days
Entwine 0.74 106 days
Schwarzwald 1.75 45 days
PotreeConverter v2 1.79 44 days

Table 6.2: Estimated runtime for indexing all 6.75 trillion points in the Fibre3D dataset

Since Cloud providers typically bill VM uptime instead of CPU time, making efficient
usage of the hardware resources of a single VM is an effective way to reduce the cost of the
compute infrastructure. It is worth noting that the same does not apply to algorithms that
employ horizontal scalability, such as the Cloud-based indexer introduced in Section 4.4.
While it did achieve a speedup of about 3x over the single-process variant of Schwarzwald
in our experiments, it did so by running on four VMs instead of a single one, resulting in
an overall increase in cost of 33%.
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To reduce cost for preprocessing in the Cloud even more, real-time indexing as in-
troduced in Chapter 5 could be used. If all data is indexed using on-premise hardware
integrated into the MMS, it completely removes the need for processing in the Cloud,
while also resulting in a dataset that is structured in a way that makes it immediately
usable by client applications. The only cost would be due to uploading the data from
the on-premise hardware into the Cloud-environment, which is negligible compared to
the cost for indexing itself. Due to the limitations of real-time indexing, additional en-
gineering effort is needed to integrate this indexing scheme within existing capturing
systems.

Another problem of preprocessing approaches is that they process data thatmight never
be used at all. For Fibre3D it is not unreasonable to assume that the vast majority of the
point cloud is never requested by any user due to the usage of the application. It is
mainly used for verifying locations for fiber distribution cabinets. For FTTH, there will
be one distribution cabinet every few hundred meters and planners will position these
cabinets within a radius of a few tens of meters around predefined positions. So there
is a small sphere around these positions for which users require high-precision data, but
large regions that have a low chance of ever being requested by users. Adaptive indexing
methods could help reduce cost further by only indexing the areas of the point cloud that
are actually requested by users.

6.3.2 Dealing with technology and platform migrations through a unified
point cloud access layer

A frequent reality of the lifecycle of any software are migrations, be it versions of libraries,
changes in used technologies, or platform migrations. We encountered a similar situa-
tion with Fibre3D, where the initial version which was built on top of CesiumJS. Once the
software was used daily by many users, performance problems became apparent, both
due to the point cloud rendering support of CesiumJS as well as due to the large number
of individual files that the indexed point cloud in the 3D Tiles format was made up of.
We hence chose to migrate to Potree, which does not support the 3D Tiles file format.
This resulted in a costly migration process in which all point cloud data had to be con-
verted from the 3D Tiles format into a format supported by Potree. This could have been
prevented with a unified data access layer through which the client applications such as
CesiumJS or Potree access the data. The ad-hoc queries approach introduced in Chapter 3
is one possible approach for unified point cloud data access, though in the context of Fi-
bre3D a point cloud database as studied by ourselves [76] and others [150, 32] would be
the more scalable approach. We were unable to use such a system, as neither CesiumJS
nor Potree support query-based point cloud access. We believe this to be an interesting
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perspective for future research and engineering efforts, as a unified point cloud data ac-
cess layer would prevent the dependence of point cloud applications on specialized data
formats that are not interoperable. The search for a standardized, universal point cloud
data access API is also an ongoing effort of the OGC [28].

6.3.3 Faster debugging by using ad-hoc queries for interactive data
exploration

The development of Fibre3D required substantial development resources. A challenging
aspect is the development and testing of the rendering code. Test datasets have to be
generated, as the actual data is too large to be usable for tests on developer machines.
Currently, the data resides as large archives on an object storage within the Cloud, which
have to be manually downloaded and decompressed before relevant subsections of the
data can be extracted. A unified data access API as provided by ad-hoc querieswould help
developers to quickly select relevant subsets of the data and perform tests without prior
indexing. Alternatively, storing the data inside a distributed database would achieve the
same result, while giving end users concurrent access to the data.

We also noticed that being able to quickly query datasets during development can help
speed up debugging, as there are many situations where quickly looking at the data is
more efficient than trying to write an automated test. An example for this is the align-
ment between the point cloud and the panoramic images in the Fibre3D client. Rendering
a subset of the point cloud on top of the panoramic image quickly shows whether the two
datasets are correctly aligned, but writing an automated test for this is challenging. Since
the common web-based point cloud renderers Potree and CesiumJS both require special-
ized tiled data formats, preprocessing the raw point cloud data is a must even if only
for a quick manual test. If these tools could instead use ad-hoc queries, no preprocessing
would be required and these manual tests could be done using just the raw data. During
testing the performance limitations of ad-hoc queries are also less relevant: Waiting ten
seconds until a view frustum query with LOD has finished is still orders of magnitude
faster than indexing the whole point cloud.

Quality assurance is another aspect that is challenging. While this is often a contrac-
tual obligation of data providers, it is still desirable to detect problems with the data as
early as possible. We encountered situations where faulty data was processed and up-
loaded to the production environment, where it was noticed by the end users. Ideally, an
automated process would detect such problems as early as possible, but real-time index-
ing and monitoring during capturing could help to detect problems manually. Adaptive
indexing would also help to mitigate costs in such a situation as it prevents running a
costly indexing process for a large but faulty dataset in the first place.
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6.4 Closing remarks

In this thesis we explored the domain of point cloud data management. We developed al-
gorithms and tools that improve the way that existing data management solutions deliver
data to applications. Query responsiveness is the main factor that our work focused on as
it is crucial that applications get fast access to point cloud datasets, even if their size goes
into the billions of points. New parallelized indexing algorithms developed by us, both
for batch-processing but also for real-time processing, improve query responsiveness by
reducing the amount of preprocessing. Data layout optimizations, in particular columnar
memory layouts, play an important role in increasing the query throughput, which ulti-
mately also affects responsiveness. Adaptive indexing is a novel and promising approach
for creating the necessary index structures for managing large data, complex queries and
multiple concurrent users. In situations where we do not deal with these extremes, we
showed that ad-hoc queries can be a viable alternative for working with raw files, which
still are one of the primary point cloud data management solutions.

While we still have some way to go until a unified point cloud data management solu-
tion becomes feasible, our work brings the main approaches raw files, standalone indices,
and databases closer together so that future research will certainly be able to bridge that
gap.
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