TECHNISCHE
UNIVERSITAT
DARMSTADT

SCALABLE PLANNING IN LARGE MULTI-AGENT
QUEUING SYSTEMS

Dem Fachbereich Elektrotechnik und Informationstechnik der
TECHNISCHEN UNIVERSITAT DARMSTADT

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Dissertation

von

ANAM TAHIR, M.SC.

Referent: Prof. Dr. techn. Heinz K&ppl
Korreferent I:  Prof. Dr.-Ing. Ralf Steinmetz
Korreferent II: ~ Prof. Dr.-Ing. Amr Rizk

Tag der Einreichung: 15. Januar 2024
Tag der miindlichen Priifung: 2024-05-23

D17
Darmstadt 2024



Die Arbeit von Anam Tahir wurde von der Deutschen Forschungsgemeinschaft (DFG)
innerhalb des Sonderforschungsbereiches (SFB) 1053 ,MAKI — Multi-Mechanismen
Adaption fiir das kiinftige Internet” und der LOEWE Initiative (Hesse, Germany) innerhalb
des ,,emergenCITY center — Die resiliente digitale Stadt* gefordert.

Tahir, Anam: Scalable Planning in Large Multi-Agent Queuing Systems
Darmstadt, Technische Universitdt Darmstadt

Jahr der Veroffentlichung der Dissertation auf TUprints: 2024

Tag der miindlichen Priifung: 2024-05-23

(0 @

Veroftentlicht unter CC BY 4.0 International
https://creativecommons.org/licenses/by/4.0/


https://creativecommons.org/licenses/by/4.0/

Dedicated to Saad Javed.






KURZFASSUNG

Diese Dissertation prasentiert Rahmenbedingungen zur Modellierungsmethoden gro3er
Warteschlangensysteme, die integraler Bestandteil unseres tdglichen Lebens sind und
oftmals Verwendung in realen Prozessen und Systemen haben. Die Lastverteilung, ein
wesentlicher Bestandteil von Warteschlangensystemen, umfasst die Verteilung eingehender
Aufgaben auf verfiigbare Ressourcen, um bestimmte Ziele wie die Minimierung von Warte-
zeiten oder das Vermeiden von Aufgabenverlusten zu erreichen. Trotz bestehender statischer
Lastenausgleichsalgorithmen erfordert die wachsende Komplexitidt von Rechensystemen
dynamische Ansitze, wie in dieser Arbeit argumentiert wird.

GroBle Warteschlangensysteme stehen vor Herausforderungen wie partieller Beobachtbarkeit
und Netzwerkverzogerungen, was die Notwendigkeit skalierbarer Strategien betont, die im
Fokus dieser Arbeit stehen.

Die Arbeit beginnt mit einem teilweise beobachtbaren Einzelagentensystem mit einer grof3en
Anzahl von Warteschlangen, das als teilweise beobachtbarer Markov-Entscheidungsprozess
modelliert und anschliefend mithilfe des Monte Carlo Tree Search Algorithmus gelost
wird. Das Warteschlangensystem und der vorgeschlagene Lastenausgleich werden unter
Verwendung verschiedener Verteilungen von Ankunfts- und Bedienzeiten sowie verschie-
dener Belohnungsfunktionen analysiert. Kaggle-Netzwerkverkehrsdaten wurden ebenfalls
verwendet, um die zugrundeliegenden Verteilungen fiir Ankunfts- und Bedienprozesse fiir
reale Systeme zu modellieren, und anschlieend wurde die Leistung der vorgeschlagenen
Strategien darauf analysiert.

Als Nichstes wurde dieses Einzelagentenmodell auf das Multi-Agenten Warteschlangen-
system erweitert, wobei die Herausforderungen der Skalierbarkeit und Nichtstationaritit
durch die Modellierung dieses grolen Warteschlangensystems als ein Mean-Field-Control-
Problem mit beliebigen Synchronisationsverzogerungen bewiltigt wurden. Die Lastaus-
gleichsstrategie fiir den resultierenden Einzelagenten-Markov-Entscheidungsprozess wurde
mithilfe des Proximal Policy Optimization Algorithmus aus dem Bereich des Reinforce-
ment Learning erlernt. Dieser Beitrag betont die Notwendigkeit, eine Strategien fiir den
Fall zu erlernen, wenn eine Synchronisationsverzogerungen weder niedrig sind (sodass
Join-the-Shortest-Queue optimal ist) noch hoch (sodass die zuféllige Zuweisung die beste
Lastausgleichsstrategie ist). Der Beitrag bietet auch theoretische Garantien und weist
empirisch nach, dass die im Mean-Field-System erlernten Strategien in grof3en endlichen
Warteschlangensystemen gut funktionieren.

Der erfolgreiche Rahmen des Mean-Field-Control zur Modellierung eines gro3en War-
teschlangensystems wurde dann weiterentwickelt, um die Lokalitdt der Interaktionen
zwischen Agenten zu beriicksichtigen, anstatt von einem vollstindig verbunden Netzwerk
auszugehen, in dem jeder Agent Zugriff auf jede andere Warteschlange haben kann. Um
diese dezentralen Interaktionen zu modellieren, wurde die kiirzlich entwickelte Sparse
Mean-Field-Theorie verwendet und erweitert, um ein Sparse Mean-Field-Control-Rahmen
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werk zu erhalten. Der Proximal Policy Optimization Algorithmus wurde dann auf den
resultierenden Mean-Field-Control-Markov-Entscheidungsprozess angewendet, um eine
skalierbare und dezentrale Lastausgleichsstrategie zu erlernen. In allen vorgenannten
Beitrdagen haben unsere vorgeschlagenen, gelernten Lastausgleichsstrategien eine gute
Leistung im Vergleich zu bestehenden Arbeiten auf dem neuesten Stand der Technik erzielt,
was zukiinftige Arbeiten in diese Richtung motiviert.



ABSTRACT

This dissertation presents methods for modelling large queuing systems which are integral
to our daily lives, impacting processes and systems significantly. Load balancing, is a vital
component of queuing systems, which involves distributing incoming jobs among available
resources to achieve specific objectives like minimizing waiting times or job drops. Despite
existing static load balancing algorithms, the growing complexity of computational systems
necessitates dynamic approaches, as argued in this thesis. Large queuing systems face
challenges like partial observability and network delays, emphasizing the need for scalable
policies, which is the primary focus of this thesis.

The thesis starts with a partially observable single-agent system with large number of
queues which is modelled as a partially observable Markov decision process and then
solved using Monte Carlo tree search algorithm. The queuing system and the proposed
load balancing is analyzed using various inter-arrival and service time distributions as well
different reward functions. Network traffic data from Kaggle was also used to infer the
underlying distributions for the arrival and service processes for a real system, and then
analyzed the performance of our proposed policy on it.

Next, this single-agent model was extended to the multi-agent queuing system, where the
challenges of scalability and non-stationary were tackled by modelling this large queuing
system as a mean-field control problem with arbitrary synchronization delays. The load
balancing policy for the resulting single-agent Markov decision process was learned using
the proximal policy optimization algorithm from reinforcement learning. This contribution
highlights the need for learning a policy for when the synchronization delays is not too
low, when join-the-shortest-queue is optimal, or not too high, when random allocation
is the best load balancing policy. It also provides theoretical guarantees and empirically
proves that the policy learned in the mean-field system performs well in large finite queuing
systems as well.

The successful framework of mean-field control for modelling a large queuing system
was then further extended to include the locality of interactions between agents, instead
of assuming a fully connected network where every agent can have access to every other
queue. To model these decentralized interactions, the recently developed sparse mean-field
theory was used and extended to obtain a mean-field control framework. The proximal
policy optimization algorithm was then used on the resulting sparse mean-field control
Markov decision process to learn a scalable and decentralized load balancing policy. In
all the above-mentioned contributions, our proposed learned load balancing policies were
able to perform well when compared to the existing state-of-the-art work, thus motivating
future works in this direction.
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INTRODUCTION

1.1 Motivation . . . . . . . . e e e e e e 1

1.2 Contributions and Overview . . . . . . . . . . . e 2

1.1 MOTIVATION

Queuing systems have been an area of active research for decades. They play a crucial role
in various aspects of our day-to-day lives and are essential for the efficient functioning of
many processes and systems. Performance measures of queuing systems such as resource
optimization, traffic flow management, waiting time analysis, congestion control, are some
of the key features which motivate one to look into them from different aspects. In essence,
analyzing queuing systems helps us understand, model, and improve processes across
various domains, leading to more efficient and effective systems that positively impact our
daily lives.

Load balancing is a very important part of any queuing system, where the incoming jobs
(load) needs to be distributed among available queuing resources in a manner that a certain
objective is achieved. Objectives in regard to queuing systems include but are not limited to
minimizing waiting time of incoming jobs, avoiding job beings dropped, not letting queues
be idle, etc. Even though many static state-of-the-art load balancing algorithms exist, such
as join-the-shortest-queue (JSQ), shortest-expected-delay (SED), join-the-idle-queue (JIQ),
we motivate with the work of this thesis that there is a need for dynamic load balancing
algorithms since the computational systems are becoming more and more complex and
scalable.

Partial observability and network delays are inherited by large queuing systems, since it is
not realistic for the load-balancer to instantaneously know the state of all the queues at
every decision epoch (when a job arrives) as is assumed in algorithms such as JSQ and SED.
This further motivates the need to learn scalable policies which take into consideration
these challenges while modelling the queuing system, as we have done in this thesis.

The reinforcement learning (RL) framework is a mixture of machine learning and optimal
control, which is particularly useful to learn policies in systems where the mathematical
model is unknown or infeasible. The RL agent (load-balancer) gathers model information
by interacting with the system online and learns a policy by delicately balancing between
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exploration and exploitation while optimizing some reward function. Due to the success of
RL in various applications, we were also motivated to use it for modelling and solving our
partially observable queuing system having network delays. Learning scalable policies in
multi-agent systems is tricky because of challenges such as non-stationary, computational
complexity, partial observability and credit assignment. Which is why we have used
mean-field approximations, more concisely mean-field control since we have cooperative
agent setting, to model queuing systems with multiple load-balancers and learn scalable
load balancing policies by converting the otherwise hard to solve multi-agent system into a
single-agent system with theoretical performance guarantees.

Our contributions though this thesis and the overview of its structure is given next.

1.2 CONTRIBUTIONS AND OVERVIEW

The main focus of this thesis is to model large queuing systems such that scalable load
balancing solutions can be learned. The main contributions are as follows:

* We have modelled and analyzed large queuing systems, as single-agent and multi-
agent Markov decision processes (MDPs).

* We have considered challenges of partial observability and network delays both in
both single-agent and multi-agent models.

* We have considered the case of localized structures within multi-agent systems, since
they exist more naturally as compared to systems where agents are fully connected.

* We have used the mean-field control to model large multi-agent queuing systems to
learn scalable load balancing policies and provided theoretical guarantees.

The structure of this thesis is given next, with a short description of each chapter.

cHAPTER 2. This is the background chapter which explains the key concepts used
throughout this thesis. We first explain the queuing system model used in all our mentioned
works and then explain the frameworks of RL, MFC and Bayesian inference which have
been used, in one or more of the chapters, to learn load balancing algorithms.

cHAPTER 3. This chapter presents a queuing system with a single load-balancer having
delayed information of the queue states. This leads to partial observability of the system,
which is modelled as a partially observable Markov decision process (POMDP) and then
solved using the MCTS algorithm. Here we look at the performance of policies for different
objectives and various distributions modelling the arrival and service rates. Along with a
detailed analysis of our proposed load balancing policy, we also used trace data provided
by Kaggle to infer the underlying distribution of the arrival and service times of a real
system. This chapter is based on the published work

[1] A. Tahir, B. Alt, A. Rizk, and H. Koeppl, “Load balancing in compute clusters with
delayed feedback”, IEEE Transactions on Computers, 2022.
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cHAPTER 4. In this chapter, we extend the single-agent queuing system from Chapter 2
to having multiple load-balancers. We have considered an arbitrary network delay, which is
needed to ensure synchronization of the load-balancers. In order to obtain scalable learning
policy, we have used mean-field control framework and have theoretically proven that the
learned policy of the limiting system performs well in our finite queuing system as long
as the system size is large enough. This contribution highlights the need for learning a
policy for when the synchronization delays is not too low, when join-the-shortest-queue is
optimal, or not too high, when random allocation is the best load balancing policy. This
work is base on the publication

[2]  A. Tahir, K. Cui, and H. Koeppl, “Learning mean-field control for delayed information
load balancing in large queuing systems”, in Proceedings of the 51st International
Conference on Parallel Processing, 2022, pp. 1-11.

cHAPTER 5. In this chapter, we extend the multi-agent model of Chapter 4 to a more
realistic setup where the agents have only localized interactions and queue accesses. We
then leverage the recent advances in sparse mean-field theory to model this localized
queuing system, while giving theoretical guarantees. We have used different kinds of graph
structure including torus and cube connected cycles to model the queuing system and to
learn load balancing policies. This work is based on the publication currently under peer
review at the Performance Evaluation journal

[3] A. Tahir, K. Cui and H. Koeppl, “Sparse mean field load balancing in large localized
queueing systems”, arXiv preprint arXiv:2312.12973, pp. 1-22, 2023.

CHAPTER 6. This chapter gives a final discussion of our contributions through this
thesis and also provides some interesting future directions.

APPENDICES. The appendices contain two types of topics. Firstly, the existing work
on state-of-the-art MCTS algorithm, from which our work of Chapter 3 is adapted. And
secondly it contains topics which are fundamental to understanding our work but were too
detailed to be put into the background chapter, such as Markov chains, different probability
distributions used in this thesis and explanation of the state-of-the-art RL algorithm used in
Chapters 4 and 5, proximal policy optimization PPO.
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2.2 Reinforcement Learning . . . . . . . .. ... ... ... ... .. ... . 7
2.3 Mean-Field Approximation . . . . . . . . ... ... ... .. ... ... 9
2.4 BayesianInference . . . .. ... ... ... oo 11

In this chapter, we present the concepts which are used in this thesis. We first explain a
queuing system that has been used in all our works, with some modifications, which are
mentioned in the respective chapters. Then we mention reinforcement learning, which
has been used by us to learn optimal load balancing strategies for queuing systems. We
have also covered mean-field approximations, which is an attractive framework for scalable
modeling of large multi-agent systems. Lastly, we mention Bayesian inference, which is
needed in real-world queuing systems due to incomplete or delayed information.

2.1 QUEUING SYSTEMS

The basic structure of the queuing system used throughout this thesis is given in Fig.
2.1, and we begin by explaining its key components. On the left-hand side, we have N
load-balancers, these are the routers that do job allocations such that the incoming load can
be split without overloading any of the available servers. On the right-hand side are the
M servers and queues. The queues are finite with some maximum buffer capacity B and

IRIN B,

I
i

FIGURE 2.1: Queuing system model used in this thesis.
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are shown by the slots, where the dark color indicates how many slots of each queue are
occupied. For example, the queue 2 is full and cannot accept any more jobs. The servers
take the jobs from the queue one at a time to process them. Note that we will use the terms
job and packet interchangeably.

Next, we discuss the processes involved in a queuing system. First is the arrival process
which defines the rate at which the jobs arrive at the load-balancers for allocation and is
characterized by i.i.d inter-arrival times, a(n) = {a(0), a(1), a(2), ...}, between the jobs.
The average arrival rate is then given as A = —%, where A is the average inter-arrival time.
Second, we have the rate at which each server processes the jobs and is characterized by its
service times, v(n) = {v(0),v(1),v(2), ...} and the rate is then given as y = -, where V/
is the average service time. Additionally, we also assume that the servers send information
about their filled queues to the load-balancers, which is indicated by the arrows going back
from the servers. Note that many other variations of queuing systems have been developed
and researched over the years. For instance, each server may not have its own designated
queue, instead the whole system could have one queue. Or the queues could be at the
load-balancer end and not attached to the server. Or each load-balancer could have its own

designated arrival stream, etc. More details can be found in [14-16].

Queuing systems are interesting to model and solve since they often exhibit Markovian
properties. This allows us to use continuous time Markov chain models to analyze queues,
given that the inter-arrival times and service rate are exponentially distributed [15]. For
details on Markov chains and their useful properties, see [17]. In Chapters 4 and 5 we have
used a Markov modulated Poisson process (MMPP) to model the arrival rate. MMPP is
a Poisson process with a variable rate that varies according to a Markov process [18]. It
is a more realistic way of modelling time varying network traffic. The key assumptions
we have for our queuing systems are (i) each job only takes one slot in the queue, (ii) the
queues work in a first-in-first-out manner, (iii) once a job has been processed it leaves the
system and (iv) if a job is dropped it is not resent, (v) each server has its own designated
queue and (vi) no job has priority over the another.

Various state-of-the-art load balancing strategies, which have also been used in the following
chapters, as baselines. These include join-the-shortest-queue (JSQ) [19, 20], shortest-
expected-delay (SED) [21, 22] and their power-of-d variants [23-25]. JSQ, assigning the
incoming job to the queue with the least amount of jobs, demonstrates high efficiency in
reducing job response time in environments where servers are uniform, and service times
adhere to independent and identically distributed exponential patterns. Conversely, SED,
assigning the incoming job to the queue where it will have the least amount of expected
delay, is tailored for heterogeneous servers and performs exceptionally well in situations
characterized by heavy traffic. In their power-of-d algorithms, JSQ and SED is performed
on only d out of total M queues. If d = 1 this can be seen as a random policy and if d = M
then it is the original JSQ or SED algorithm. Power-of-d algorithms need less system
information and have proven to be optimal, especially in homogenous and large systems.
Note that in this context of queuing systems, strategy refers to the decision (action) of
the load-balancer of where to allocate the incoming jobs such that some goal is achieved.
Throughout this thesis, one of our main goals is to devise scalable load balancing policies
(strategies) such that overall jobs dropped in the system are minimized. And to achieve this
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we have used RL to learn out-performing strategies while using different scalable modeling
techniques since we have countable state spaces with Markovian assumptions.

2.2 REINFORCEMENT LEARNING

The key idea behind RL is for an agent (the load-balancer) to learn from interactions in
which action (job allocation) optimizes the goal while exploring a possibly unknown
environment (queuing system) [26]. The most commonly used mathematical framework
for solving sequential RL problems is a Markov decision process (MDP).

2.2.1 Markov Decision Process

An MDP [27] is a discrete-time stochastic control process defined by the tuple (X, U, T, R),
where X is the state space, U is the action space, 7 : & x X x U — [0,1] is the
transition function, R : X x U — R is the reward function. An MDP considers a process
X (t) € X which is controlled by actions U (t) € Y. Throughout this work, we assume time
homogeneous transition function 7 (2, x,u) =P(X(t+ 1) =2" | X(t) = 2, U(t) = u),
where 2/, x € X and v € U and countable spaces. It is assumed for an MDP that the agent
can always observe the state of the environment. and at each discrete timestep ¢ the agent
selects an action, u(t) € U, based on the state, z(¢) € X, the environment is in. This action
comes from the policy, 7 : X x U — [0, 1] and 7(u, z) = P(U(t) = u | X(t) = z), which
is a mapping from a state to the probability of choosing each possible action in that state. On
taking this action the environment gives a reward r(t + 1) = R(X (¢t + 1), U(t + 1)), at the
next timestep, to the agent and transitions to the next state z(¢ + 1) based on the transition
function 7. The agents’ action selection is a crucial balance between exploration of new
actions and exploitation of already taken actions which yielded high rewards. The goal of
an MDP agent is to learn/find an optimal policy, 7*, which maximizes, usually, the expected
discounted sum of rewards, possibly over an infinite horizon, 7* := argmax_E[R | 7],
where R = >"° v"R(X(t),U(t)) is the return over time. y < 1 is the discount factor
indicating the importance of future rewards as compared to the immediate reward. Solutions
to RL problems can be divided into two main approaches, value functions methods and
policy search methods. If the model dynamics are accurately known, then both these
methods fall under the dynamic programming principle (DPP) method from control theory.
DPP is used to find optimal control/policies by breaking down a complex optimization task
into smaller sub-problems [28]. It is based on Bellman’s principle of optimality which
says that as long as the system is time-consistent, its optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decision [29].

VALUE FUNCTION: These methods estimate the value of being in a given state x [26].
And the state-value function is the expected return when an agent starts in state = and
follows the policy 7, given as Q™ (z) = E[R | X(0) = z, 7].
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Hence, the value function is for a specific policy 7 from which actions u are sampled.
Whereas, the optimal policy 7* is the one which has the optimal state-value function,
Q*(z) == max, Q" (z), for all z € X. And the optimal policy for a certain state is given
as m(x) = argmax, [r(z,u) + 7> ..y T (2,2, u)Q(z')]. Q-learning, policy iteration
and value iteration are some methods which can be used to find the optimal policy. For
details, see [26].

In RL problems where the transition dynamics are not available, a state-action value function
is used, Q" (z,u) = E[R | X(0) = 2,U(0) = u, 7], where now the initial action u for
state x is also given, and the policy 7 is followed from the next state. The best policy can
then be chosen, an action u greedily at every state x using: arg max, Q" (x,u). And the
state-value function can be retrieved as: Q™(x) := max, Q™ (z, u). Iterative methods such
as temporal difference learning, dynamic programming and Monte Carlo sampling can be
used to solve for optimal value functions.

POLICY SEARCH: These methods do not use the value function, rather search for an
optimal policy 7* directly. The policy is parameterized by some parameters my which
are then updated such that the expected return, E[R | 6], is maximized [30]. The policy
is stochastic and represented using a probability distribution from which actions can be
sampled directly. Policy gradient and actor-critic methods are common approaches to learn
the optimal policy directly [31, 32].

DEEP RL: Itis a popular approach for learning the policy, by combining RL with artificial
neural networks, allowing for scalable solutions [33]. In deep RL the neural network is
trained to learn the optimal policy and/or the optimal value function. In this thesis, we
have frequently used the state-of-the-art proximal policy optimization PPO algorithm to
find the optimal policy, details of which are given in Appendix C.

MULTI-AGENT MARKOV DECISION PROCESS (MMDP): is the multi-agent extension
of MDP, where in addition to the above stated MDP tuple we consider a set of agents

N ={1,...,n} acting on the environment. Since it is still an MDP, each agent can fully
observe the state of the environment. Now given the state, a joint action of all the agents,
u = [uy,...,uy,l, is considered. Note that throughout this thesis, we assume that the agents

are working in a cooperative manner.

2.2.2  Partially Observable Markov Decision Process

A system where the agent is not able to fully observe the state of the environment can
be modeled as a POMDP [34]. In addition to the MDP tuple defined in Section 2.2.1, this
framework also considers an observation model defined by a time-homogeneous observation
function 2 : Y x X x U — [0, 1], where Y, X', U are the observation space, state space
and action space, respectively and the observation Q(y, z,u) = P(Y(t) =y | X(¢t) =
z,U(t) =u) fory,Y € Y, 2, X € X and u,U € U. Since the state is not observable,
POMDP also considers the agents’ belief, which at any time ¢ is a probability distribution
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over the states given the history of observations and actions, i.e., Vz(t) € X, p(x,t) =
P(X(t) = « | h(t)) where h(t) = {U(0),Y(1),U(1),Y(2),...,U(t)} is the history up
tilltand Y € Y, U € U. And the policy of the agent is then a mapping from its belief to
actions. The agents’ belief can be updated using Bayes rule, explained later in Section 2.4.
The multi-agent extension of the POMDP framework for cooperative agent settings is known
as decentralized partially observable Markov decision process (Dec-POMDP) [35-37]. Deep
RL is also used to learn the optimal policy for partially observable systems, especially when
the system size is large. And in order to consider the entire history, h(¢), recurrent neural
networks are used [38—42].

2.2.2.1 Semi Markov Decision Process

A semi Markov decision process (SMDP) is a discrete-time model similar to an MDP except
that the time interval between decision epochs is random. Note that, for reference, in an
MDP these decision epochs are defined using constant time intervals, e.g.,t = 0,1,2,.. ..
In an SMDP the agent can only take actions at these decision epochs, which occur at
times (7, )nen. The sojourn time is then defined as the time interval S(7,,4+1) = Tpi1 — Tn
between transitions from state z(7,,) at time ¢t = 7, to the next state z(7,,+1) at the next
decision epoch time, ¢ = 7,,1. This sojourn time is a positive random variable and given
the current state z(7,) and the action u(7,) taken in this state, does not depend on the
past states; following the Markov property. The SMDP framework can then be defined
using the MDP tuple where now the transition function is defined jointly for the state and
sojourn time, 7 (2', s, x,u) = P(X(7,11) = 2/, S(Ths1) = s | X(7n) = 2, U(1) = u).
Furthermore, a partially observable semi Markov decision process (POSMDP) is an SMDP
in which the agents cannot observe the state x(7,) of the environment and work with the
received observations y(7,) and their belief over the state, p(7,). Note that after some
transformations and assumptions, the state-of-the-art algorithms for solving MDPs can be
used for SMDPs and POSMDPs, respectively. The key assumption which allows this is that
the agent takes an action, receives an observation and updates its belief only at the decision
epochs, 7,,. For details, see [43—47].

2.3 MEAN-FIELD APPROXIMATION

Scalability in multi-agent reinforcement learning (MARL) frameworks is a major problem
due to its combinatorial nature and sampling complexity, such as Dec-POMDPs [48, 49].
This is why mean-field theory has recently become an attractive solution, where the idea is
to let the number of agents go to infinity [50, 51]. The main assumption which allows this
approximation is that the agents are permutation invariant, i.e., they are interchangeable and
indistinguishable and have similar behaviors. This resulting limiting system, represented
by the mean-field distribution, combined with RL has provided tractable control solutions,
see [52] for details. Heterogeneous systems have also been recently considered [53-55].
From the MARL perspective, there exist two main branches: (i) mean-field games (MFG) for
the non-cooperative agents using Nash equilibrium [50, 51, 56] and (ii) mean-field control
MFC for cooperative agents using Pareto optimal strategy [57-60]. Both these mean-field
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approximations are independent of the number of agent /V and the learned solutions in the
limiting systems have shown to provide good approximations in (large) finite systems, both
empirically and analytically [56, 61, 62].

Since throughout this thesis we assume the agents to work collaboratively the MFC
framework has been used in Chapters 4 and 5, and is explained next.

2.3.1 Mean-Field Control

MFC with learning, as compared to MFG is still a relatively uncharted research area, despite
its wide range of applications in ride-sharing systems, software systems, traffic light
controls, systemic risk assessment, central banking, etc [63—68]. In MFC framework, the
agents are permutation invariant, which means they are identical, indistinguishable and
interchangeable. The MFC framework is in principle non-Markovian and time-variant and
in general the DPP method cannot be applied to it directly, see Section 5.4. However, this
can be resolved by using an enlarged joint state-action space, known as [ifting the space,
and by aggregating the underlying dynamics and reward [69].

MATHEMATICAL FORMULATION OF MFC: Similar to an MDP, we first consider a
finite system having N (homogeneous) agents which work in a cooperative manner. At
every timestep t each agent has its own state X;(¢) € X and action U;(t) € U, for
i = {1,..., N}. However, the agent state evolution now depends on the measurable
transition function 7: X x P(X) x UxPU) — P(X) written as T (z,0’,u,u’) =
P(X;(t) = z,0N(t) = o/, U;(t) = u,a™(t) = «') where x € X, 0’ € P(X), u € U,
w' € PU), oN(t) = £ 3N 6x,¢ is the empirical distribution over states and @" (t) :=
* Zfil du,(v) is the empirical distribution over actions. Similarly, each agent receives a
reward based on the reward function R: X x P(X) x U x P(U) — P(R) and is given as
ri(t) = R(X:(t), o™ (t), Us(t),u™ (t)).

For the mean-field control system, we take N — oo and using law of large numbers we
can model the above as MFC. And due to the agents being indistinguishable we need to
consider only a single representative agent and the reward function then depends on the
average reward of each agent. Now, using the N — oo assumption, at every timestep
t the state of the representative agent is given by x € X'. And given the probability
distribution over the states o € P(X), the representative agent takes action u ~ 7(x, o),
where the policy is a mapping from the current state and current state distribution to a
distribution over the actions space, w(t): X x P(X) — P(U) is measurable. The state
of the agent then transitions to the next state x(t + 1) ~ 7 (x,0’,u,u’) and the agent
receives an instantaneous reward r(t). As in Markov decision processes (MDPs), given
initial state x(0) and set of policies 7 = (7 (t))°, the value function can be written as
Q™(x) = E[>_2,7'r(t) | X(0) = z, 7. Note that, different from MDPs, in MFC the
representative agent interacts with other agents only through the empirical distribution of
their states, o', and their actions u’'.



2.4 BAYESIAN INFERENCE

Note that using the MFC framework with lifted state-action space a finite /V-agent system is
represented by a single representative agent, with similar formulation as that of an MDP,
and hence referred to as MFC MDP in this work. For details, see [70, 71].

24 BAYESIAN INFERENCE

Bayesian Inference is a statistical inference method which can be used to update the belief
when a new observation is received. It is based on the Bayes rules, which is given as
follows:

Plz(t) | y(1),..., (@) =

and consists of four components:

* posterior: P(z(t) | y(1),...,y(t)) is the probability distribution representing our
belief over the state z,

o likelihood: P(y(1),...,y(t) | =(t)) is the probability of the observation y(1), . . ., y(t)
given systems’ latent state is x(t),

* prior: P(x(¢)) is the probability distribution of the state x(¢) independent of any
observations.

» marginal: P(y(t)) = >, P(y(1),...,y(t) | #(¢))P(x(t)) is the marginal proba-
bility distribution of the observation. Also referred to as the normalizing constant.

The main task in solving Bayesian models is to compute the expectation over the posterior
distribution:

Elg(x(t)) | y(1) = g(x®)P(x(t) | y(1),..., (1)), (24.1)

TeEX

for a state x(t), measurement y(¢) at timestep ¢ and where g(z(t)): R® — R™ is an
arbitrary function. However, it is often not possible to compute this integral in closed form,
which is where the Monte Carlo (approximation) methods come into play.

2.4.1 Monte Carlo Approximations

These are a general class of numerical methods to calculate normalizing constant such
as given in Eq. 2.4.1 when they do not have closed-form solutions [72], due to lack of
conjugate priors or intractable normalization constants. Another reason for using such
numerical methods is when the state space is too large or depends on a large number of
parameters, making it computationally expensive to calculate. The key idea is to draw i.i.d.
set of samples from a target distribution, ¢(-) and take their average to estimate the exact
posterior distribution.

11
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P(z@)) [y(1), ..., y(t) = %in(t)’ 2'(t) ~ q(z(t)) | y(1),...,y(t))

where in a perfect Monte Carlo approximation z'(¢) are sampled from the posterior
distribution ¢(z(t)) | y(1),...,y(t)) =P(x(t) | y(1),...,y(t) itself.

McMC ALGORITHMS: Ifitis not possible to sample directly from the posterior distri-
bution P(x(¢) | y(1),...,y(t)), Markov Chain Monte Carlo (MCMC) algorithms can be
used instead [73]. These algorithms generate samples using the Markov chain principle,
which is a sequence of dependent random variables that follows the Markov property.
Metropolis-Hasting (MH) and Gibbs sampler are examples of the most commonly used
MCMC algorithms. MH involves obtaining samples from the true distribution through a
random walk within the parameter space, essentially forming a Markov chain. The accep-
tance or rejection of these samples is determined by evaluating an acceptance probability.
Consequently, we generate samples representative of the true posterior distribution, facili-
tating computations such as empirical estimations of the posterior distribution. Whereas,
the Gibbs sampler involves an iterative process that alternates between sampling from the
full conditionals of the joint distribution across model parameters and data. See [72, 74,
75] for details on these two and more.

In this thesis, we have used the Hamiltonian Monte Carlo (HMC) in Chapter 3, which is
more efficient for sampling from higher dimensional complex models [76, 77]. In HMC,
the key idea is to introduce a dynamic auxiliary variable, often referred to as "momentum,"
which is coupled with the original variables of interest. The dynamics of this joint system
are then governed by Hamiltonian mechanics, a concept borrowed from classical physics.
The total energy of the system is the sum of the potential energy (associated with the
target distribution) and the kinetic energy (associated with the momentum). The algorithm
involves simulating trajectories of the joint system using Hamiltonian dynamics. These
trajectories provide an efficient exploration of the parameter space, allowing the sampler to
move rapidly through regions of high probability. The acceptance of proposed samples
is based on a Metropolis-Hastings step that takes into account both the position and
momentum of the system.

Another successful method for Bayesian inference is importance sampling, explained
next.

SEQUENTIAL IMPORTANCE SAMPLING: Given a generic state space model such as:

y(t) ~ P(y(t) | (1)), (2.4.2)

where, z(t) € R™ is the state and y(t) € R™ is the measurement at timestep ¢, sequential
importance resampling (SIS) algorithm can be used to generate importance sampling
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approximations for posterior distribution [78, 79]. This importance distribution is quite
often assumed to have Markovian properties, which is why the entire history of states
z(0)...xz(t — 1) does not need to be used at timestep ¢. SIS is the sequential version of
importance sampling [79].

The SIS algorithm consists of K weighted particles, {(w'(t),z'(t))} fori = 1,..., K,
where x'(t) are sampled from an importance distribution 7(z(t) | y(1),...,y(t)) to
represent the posterior (also known as filtering) distribution. Then at every timestep ¢ the
distribution in Eq. 2.4.1 can be calculated, based on Eq. 2.4.1, as the weighted average of
the K samples:

P(a(t) | y(1),- - y(t)) = Y w'(t)d(a(t) — 2'(1))-

The algorithm has the following steps:

1. Draw K samples from the prior distribution, z°(0) ~ P(z(0)), fori = 1,..., K, and

assign them equal weights, w’(0) = .

2. For each timestept =1,...,7 do:

a) Draw samples from the importance distribution, x'(t) ~ 7w(z(t) | z'(t —
1),y(1),...,y(t)),fori=1,..., K.

b) Update the weights, w'(t) oc w(t—1) f((gfz‘)fzfz)ipff g()l“f(t;(?))) and then normalize
them.

Note that we do not need to consider the whole history of state z, since we assumed the
importance distribution to have Markov properties.

-
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In this chapter, we present a load balancing problem in a single-agent system having many
parallel queues, based on the published work [1]. In recent years, with the growth rate of
single-machine computation speeds stagnating, parallelism has emerged as an effective
strategy for harnessing the computational power of multiple machines. Consequently,
parallelism has become a critical component of compute cluster architectures [80, 81],
primarily because it reduces the computational and storage burden on individual servers
[82]. In addition to the capacity aggregation, another significant challenge in the operation
of parallel servers lies in the optimization of low latency and minimizing data loss. The
pivotal factor in achieving this optimization is the assignment of incoming tasks, referred to
as jobs, to various serving machines, denoted as servers, which may have varying capacities
and finite buffer capacity. This allocation of tasks, also referred to as load balancing, to
servers is orchestrated by a decision-making entity known as the load-balancer. Load
balancing poses a fundamental challenge that underpins the design and operation of
numerous computing and communication systems, including tasks like job routing within
data center clusters, managing multipath communication, handling Big Data processing,
and optimizing queuing systems.

Essentially, the decision-making agent (load-balancer) in these scenarios assigns each
incoming job to one of the servers, which may be of varying capabilities, with the objective
of achieving goals such as load distribution, minimizing average delay, or reducing data
loss. A significant challenge in devising optimal load balancing policies lies in the fact that
the agent only has partial observability of the consequences of its decisions, often relying
on delayed acknowledgments from the served jobs. In this chapter, we introduce a model
that addresses this partial observability (PO) issue, specifically addressing load balancing
decisions in parallel buffered systems when equipped with limited information derived
from delayed acknowledgments.

The multi-agent extension of such a queuing system is studied in Chapter 4.

15
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Related Work

Dynamic load balancing is essential for optimizing the performance of parallel systems,
and it has led to the development of several state-of-the-art algorithms, including JSQ,
SED, and Power-of-d policies [83—85]. JSQ is particularly effective in minimizing job
response time when servers are homogeneous and service times follow independent and
identically exponentially distributed patterns [19, 20]. SED, on the other hand, is designed
for heterogeneous servers and excels in scenarios with heavy traffic [21, 22]. However,
as the number of parallel systems M increases, the assumption that the load-balancer
possesses full knowledge of the system state at every decision time becomes less realistic.
This state may be the queue length or the required cumulative service times for the waiting
jobs at each system. In some systems, such as those involving servers with randomly
varying capacities, having prior knowledge of information like service times is not feasible.
To address this challenge, researchers have explored alternative approaches, including
control theory and emerging machine learning techniques. These methods have found
extensive application in the analysis of stochastic queuing networks, aiming to enhance
their performance as self-adaptive software systems [86, 87].

In practice, the load-balancer may only observe the consequences of its decisions after a
non-deterministic feedback delay, which can result from factors like propagation delay
or delayed job processing. Power-of-d policies offer a solution to this challenge. In this
approach, a subset of servers, specifically a subset of size d < M, is repeatedly selected
at random during each decision point. Consequently, JSQ(d) or SED(d) can be applied to
this dynamically changing server subset of size d [23]. This policy is further enhanced by
incorporating a short-term memory mechanism that retains information about the least filled
servers from the previous decision instance [88, 89]. Consequently, instead of selecting
a completely new set of d servers at random for each incoming job, the decision-making
process combines the newly chosen random subset of servers with knowledge of the least
filled servers obtained from the last decision. The underlying assumption of JSQ, SED, and
Power-of-d policies is that the load-balancer has immediate and complete knowledge of
the system state at each decision point. However, in practical distributed systems, this
assumption often does not hold due to non-deterministic and heterogeneous feedback delays.
These delays can significantly impact performance metrics like job response times and job
drop rates, as only partial information is available to the load-balancer at the decision time.
hence, this delay needs to be taken into consideration when modeling a real-time system.

From a control perspective, MDPs, have been extensively utilized as a modeling framework
for queuing systems, enabling the achievement of optimal control strategies in both static
and dynamic environments [90, 91]. In the context of MDPs, the current feedback, whether
delayed or immediate, is typically assumed to be known to the agent [26]. In the study
[20], the authors employed an MDP formulation in combination with a stochastic ordering
argument to demonstrate that Join-the-shortest-queue (JSQ) maximizes the discounted
number of jobs completed in a homogeneous server setting. Another notable work [92]
focused on the allocation of customers to parallel queues. They modeled this problem
as an MDP with the objective of minimizing the sojourn time for each customer. Their
research resulted in the development of a ’separable rule,” which is a generalization of
JSQ, designed for queues with heterogeneous servers, considering variations in both server
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rates and numbers. It’s important to note that their work assumed that the queue filling
information was readily available to the decision-making agent without any delay. These
studies demonstrate the effectiveness of MDPs as a modeling tool for queuing systems and
highlight their application in optimizing system performance under various conditions,
including homogeneous and heterogeneous server settings. However, they typically assume
full and immediate knowledge of the queue state, which may not hold in practical scenarios
with non-deterministic and delayed feedback.

In [93], the authors consider a scenario where the decision-making agent receives precise
information about queue lengths, albeit with a delay of %k time steps. They model this
system as a Markov control model with what they refer to as perfect state information. To
achieve this, they expand the state space by including the last known state (the exact queue
lengths) and all the actions taken from the last known state up to the point of receiving
the next known state. In their research, they focus on solving the flow control problem
by regulating the arrivals to a single-server queue. Notably, for the case when the delay
parameter k is set to 1, they find that the optimal policy adopts a threshold-based strategy
that depends on the last action taken. A similar approach is presented in [94], where they
address the single-server flow control problem and obtain results that align with those
in [93], particularly when k£ = 1. In this context, the optimal policy for minimizing the
discounted number of jobs in a system consisting of two parallel queues is shown to be
Join-the-shortest-expected-length. In [95], they introduce a decision-making framework
where the agent, at each time step n, possesses knowledge of the exact number of jobs
present in each infinite queue at the preceding time step n — 1. This setup allows for
deterministic decision-making with a one-time slot delay. The state space is augmented
to incorporate the actual queue fillings at time n — 1, the action taken at time n, and
information regarding arrivals at time n. These studies explore various aspects of queuing
and flow control problems, considering different levels of information availability and
incorporating delays in decision-making processes, leading to the development of specific
policies and models tailored to these scenarios.

In this chapter, we consider a scenario where the acknowledgments available to the load-
balancer, detailing the number of jobs processed, are subject to random delays. This
situation characterizes the system as partially observable, introducing significant complexity
akin to a POMDP. While several online and offline algorithms have been developed for
solving POMDP models [96], there has been relatively little work on optimizing queuing
systems using POMDP approaches. Standard solutions for POMDP models that rely on
full-width planning, such as value iteration and policy iteration, tend to perform poorly
when the state space becomes large, which is often the case in queuing systems due
to the challenges associated with dimensionality and history [34, 97]. To address the
scalability and complexity issues inherent in large state-space queuing systems, we employ
the Partially Observable Monte Carlo Planning (POMCP) algorithm, which is an extension
of the state-of-the-art MCTS algorithm to learn a scalable, optimal policy for a POMDP
by constructing online a search tree of histories, h. Each node of the tree now keeps
an estimate of a history, called belief state, using a set of particles. The state is then
sampled from this belief state. The authors show that as long as the belief state is close
to the actual state of the environment, POMCP will be able to learn an optimal policy
for the POMDP. Monte Carlo simulations are used for the tree search and belief state
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FIGURE 3.1: A parallel queuing system with a load-balancer that maps jobs to servers. The load-
balancer observes the inter-arrival times u and the feedback, i.e., the number of acknowledgments,
from each server o;. The load-balancer does not observe the queue states b;, the job service times,
or the delayed feedback s;, i.e., the number of acknowledgments on the way back.

updates. For further details, see [98]. Moreover, our algorithm utilizes a specialized MCTS
implementation designed specifically for simulating parallel queuing systems with finite
buffers. To handle the delayed feedback acknowledgments in the queuing system, we have
developed a sequential importance resampling (SIR) particle filter, which is tailored to
address this unique aspect of our problem. We also apply the MCTS approach to solve
a POSMDP [46], which is a framework needed when the time intervals between decision
epochs are no longer exponential.

3.1 QUEUING SYSTEM MODEL

In this chapter, we consider a system with M parallel servers, where each server has its own
finite buffer first-in-first-out (FIFO) queue. The queue filling of each queue 7 is denoted
by b; € Bi,i =1,..., M, where B; = {0, ...,b;} and b; is the maximum buffer capacity
for the ¢-th queue. The servers are assumed to be heterogeneous and the service times
of consecutive jobs, 1,2, ..., at the i-th server, are denoted as v;(1),v;(2) ...,. The jobs
are homogeneous and arrive at the load-balancer according to a renewal process which is
described by the sequence (a(n)),en, Where the job inter-arrival time a(j) := a(j+1)—a(j)
is drawn i.i.d leading to an average arrival rate A\. The load-balancer maps each incoming
job to exactly one server, and this job is lost if the buffer of the assigned servers’ queue is
already full. If the job is not lost, it is added to the queue of that server. The average service
rate of the i-th server is denoted as y; and the service time for each job is random. Once
processed, the job leaves the system and the corresponding server sends the load-balancer
an acknowledgment. This acknowledgment informs the load-balancer about a slot getting
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free in the queue of this server. At every decision time, the load-balancer uses this feedback
acknowledgment information to calculate the current buffer fillings, b;, of each queue and
make a more informed decision.

A significant challenge in the job routing process arises when the load-balancer has to make
decisions based on delayed acknowledgments from the server. This delay encompasses
three key components:

1. The time jobs spend waiting in the queue to which they were assigned.
2. The time required for job processing.
3. The time it takes for the acknowledgments to propagate back to the load-balancer.

The third component introduces considerable complexity to the decision-making problem
because decisions not only affect the current system state but also have repercussions
on future states due to delayed feedback. It is important to note that the load-balancer
relies solely on these observed acknowledgments to make decisions, rendering the system
state partially observable (PO). In this context, we use the notation o; to represent the
number of acknowledgments from the i-th server that the load-balancer observes within one
inter-arrival time. Additionally, we denote s; as the delayed feedback, which signifies the
number of acknowledgments that are currently en route back to the load-balancer but have
not yet reached. Since the load-balancer operates under partial observability (PO), it does
not have direct access to critical pieces of information, including (i) the queue states b;, (ii)
the job service times v;, or (iii) the delayed feedback s;. The lack of direct observation of
this information complicates the decision-making process, requiring innovative approaches
to address the challenges posed by partial observability and delayed feedback. See Fig. 3.1
for further visualization.

Markov Decision Process with Partial Observability

In order to find the optimal load balancing policy for our system having delayed acknowl-
edgments, we model it as partially observable MDP which is a controlled Markov process
with the exact state of the process being latent, see Section 2.2.2 for details. In this chapter,
we consider countable state X', action U/ and observation ) spaces. Additionally, we
consider discrete decision-making epochs at time points ¢ € Ny, where the clock given by
t is an event clock and not a wall-clock time. Then, if the inter-arrival time, a, between
the decision epochs ¢ and the service times, v, are exponentially distributed, this partially
observable Markov process can be modeled as a POMDP, since the system Markovian.
While, for non-exponential distributed a and/or v it can be modeled as a POSMDP, under
the condition that the decision-making is done only at these decision epochs ¢, [46], since
the underlying process is now semi-Markov. For further details on POSMDP see Section
2.2.2.1.

At every decision epoch ¢, we consider a latent process x, X € X that can be controlled
by actions u € U. Since the state is latent, only observations y, Y € ) are available to
the agent (load-balancer). The state transition function 7 (x/, x,u) := P(X(t + 1) = x' |
X(t) = x,U(t) = u) is the conditional probability of moving from state x under action
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u to a new state X’ at the decision epoch ¢ + 1. The observation function Q(y, x, u) :=
P(Y(t) =y | X(t) = x,U(t) = u) denotes the conditional probability of observing
acknowledgment y under the latent state x and action u. On performing the action u/(t)
the agent receives a reward 7(t) .= R(X(t + 1), X(¢), U(¢)), which it tries to maximize
over time using a policy 7(u,z) = P(U(t) = u | X(t) = x). We consider an infinite
horizon objective, where the optimal policy 7* is found by maximizing the expected total
discounted future reward

= arg maXZEW[ytr(t)], (3.1.1)

4 t=0
with discount factor v < 1.

Since the current state is not directly accessible by the agent, it has to rely on the
action-observation history sequence, h(t) = {U(0),Y(1),U(1),Y(2),...,U(t)}, up to
the current decision epoch ¢, where Y € Y, U € U. The policy is then the conditional
probability of choosing action u under action-observation history h, 7(u, h) .= P(U(t) =
u | h(t)). As the policy is defined as a function of the observation-action history of
the agent, this makes it very challenging since keeping a record of an exponentially
increasing history sequence over time, h, is not feasible. One popular way is to represent
this history in terms of the belief state, p(t) € AlXI, where Al*! is an X dimensional
probability simplex, p(t) = [p1(t), ..., pjx|(t)] " and the components p (t) are the filtering
distribution px (t) = P(X(t) = x | h(t) = h). However, if the state space |X| is huge, this
will be a very high-dimensional vector. In order to break the curse of history and the curse
of dimensionality, a particle filter [99, 100] can be used to represent the belief state p(t) of
the system at time ¢ and is explained next.

FParticle filter

In this chapter, we have used the state-of-the-art SIR particle filter, to represent the belief
state p(t) of the system and update this belief using Monte Carlo simulations based on the
action taken and observations received. A detailed explanation of a standard particle filter
can be found in Section 2.4.1.

SIR improves on the SIS algorithm, explained in Section 2.4.1, by tackling the degeneracy
problem of particles [101]. It does so by resampling K new particles from a discrete
distribution that is defined by the normalized weights. This resampling does not need to be
done at every timestep but only at certain timesteps or according to some method, such as
adaptive resampling [102]. The SIR algorithm is given as:

The algorithm has the following steps:

1. Draw K samples from the prior distribution, x;(0) ~ P(x(0)), fori = 1,..., K,

and assign them equal weights, w;(0) = +.

2. For each timestept = 1,...,7 do:

a) Draw samples from the importance distribution, x;(t) ~ m(x(t) | x;(t —
1),y(1)...y(t),fori=1,... K.
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b) Upda'te the weights, w; (t) o wl(t—l)Pﬁ(yilef’)‘lﬁzg(f‘)(;)(lf)‘(ty_(g) and then normalize
to unity sum.

c) If effective number of particles n. is significantly less than K do resampling,

o A 1
where n, can be calculated as: n, ~ SE w02 [102].

Using this particle filter, the posterior distribution can then be approximated as: P(x(t) |
y(1)...y(t) =~ 3K wi(t)d(x(t) — x,(t)) and how good is this approximation will
depend on the importance distribution chosen.

3.2 LOAD BALANCING WITH DELAYED ACKNOWLEDGMENTS

We now explain how we use the aforementioned Markov decision processes, POMDP and
POSMDP, and the SIR particle filter to model our partially observable queuing system.

Our system consists of a load-balancer and M parallel finite queues, where each queue
has its own servers (cf. Fig. 3.1). The complete state of the system can then be defined as
x € X, using x = [xy,...,Xy| . Here x; is the augmented state of the i-th queue that has
three components x; = [b;, ;, oi]T, where b; € B; denotes the current buffer filling at the
queue i, s; € B; denotes the number of delayed acknowledgments for the jobs executed
by the server ¢ but not observed by the load-balancer in the current epoch, and o; € B;
denotes the number of acknowledgments observed by the load-balancer in the current
epoch. Note that an epoch corresponds here to one inter-arrival time. Hence, the state
space is X C Ny* and an action v € U, with |U| = M corresponds to sending a job to
the u-th server. An observationy € ) is the vector of observed acknowledgments at the
load-balancer, with the observation space being ) C NOM .

3.2.1 Dynamical System Model

The probabilistic graphical model for our delayed queuing model is depicted in Fig. 3.2.

As mentioned earlier, in case of the POMDP model, the time between decision epochs ¢ in
Fig. 3.2 is exponentially distributed, while for POSMDP it can be non-exponential. As we
are using Monte Carlo simulations to solve the PO system, the transition probabilities do
not have to be defined explicitly. Therefore, we define the transition function indirectly as a
generative process, which is explained later.

The load-balancer (our decision-making agent) makes an allocation decision at each job
arrival, where the inter-arrival times of jobs a(j) are i.i.d, with j € Ny and the decision
epochs are denoted by ¢ € Nj. In order to characterize the stochastic dynamics, we first
determine the random behavior of the number of jobs k; that leave the i-th queue during an
inter-arrival time. Naturally, k; is constrained by how filled is queue 7 at that time, given by
bi. So, k; = min(k;, b;), where k; is the number of jobs that can be served in a decision
epoch, which is determined by the inter-arrival time and the service time of the -th server.
Then the generative model for the queuing dynamics can be defined as:

b’ = min(max(b — k,0) + e,, b), (3.2.2)
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: FIGURE 3.2: Probabilistic graphical model of

= = = the partially observable queuing system with
- delayed acknowledgments. Shown are three
time slices, where gray nodes depict observed
quantities and diamond-shaped nodes denote
deterministic functions.

where b denotes the M size vector of the queuing system at some arrival time point, b’ is
the M size vector of the queuing system at the next epoch, k is the non-truncated vector
of number of jobs that can be served at each queue and e, is a M size vector of all zeros,
except the u-th position is set to one to indicate a mapping of the incoming job to the u-th
server. We use b as the vector of maximum buffer sizes for all queues, and min(-, -) and
max(-, -) denote the element-wise minimum and maximum operation.

As the load-balancer only observes the job acknowledgments, we use an augmented state
space, X, using the following stochastic update equation:

b’ min(max(b — k,0) + e,, b)
x =|s| = min(b, k) +s — 1 , (3.2.3)
o’ 1

where 1 is the vector containing the number of jobs which are observed by the load-balancer
for each queue at the current epoch, s is the number of unacknowledged jobs from the
previous epoch which is updated by removing the observed jobs 1 and adding the newly
generated acknowledgments of the served jobs given by min(b, k). 1is calculated using
the delay model given next.

3.2.2 Delay model

We assume that the number of jobs that can be served in one inter-arrival time is distributed
as k; ~ f(k;) and we choose a delay model, where

Here, min(b;, k;) is the number of jobs leaving the i-th queue at the current epoch, s; is the
number of jobs from the i-th queue for which no acknowledgments have been previously
observed by the load-balancer, p; is the probability that an acknowledgment is received by
the load-balancer in the current epoch and L; is the distribution from which /; is sampled
for Eq. (3.2.3).
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We have chosen the binomial distribution because it generally captures the fact that only
a subset of the sent, min(b;, k;) + s;, acknowledgments are successfully observed at the
load-balancer in the current epoch. At the cost of simplifying the usually correlated delays
of jobs, this model helps to obtain tractable results. For example, p; = 0.6 would mean
that out of all the acknowledgments sent by queue 7, only 60% are expected to be received
by the load-balancer in that epoch while 40% are expected to be delayed to future epochs.
Similarly, p; = 1 would then represent the case of no delay. Note that any other distribution
describing the delay model can be used here and numerically evaluated. The number of
acknowledgments from all servers that are not observed in this epoch are accounted for in
the next epoch in s’. The previously introduced observations z for the load-balancer are
essentially the received acknowledgments, i.e., y = o’ = 1. Since only the vector o’ of the
state s’ (Eq. (3.2.3)) is observed by the load-balancer, a partial observability is established.
We note that one limitation of this model is due to the delay independence assumption that
lies below the used Binomial distribution.

3.2.3 Job acknowledgment Distribution

Next, we discuss how to quantify the distribution of the number of jobs k; that can be
served at the i-th queue in one inter-arrival time. The marginal probability

f6) = [ 00 | @)fa)da, (325)
0
can be computed by noting [103]

flki|a) =P (V) <a) =P (V! <a), (3.2.6)

with @f = ngzl v" for the i-th queue. For the POMDP model, with exponentially
distributed inter-arrival times a ~ Exp (\), with rate parameter ), and exponential service
times for all servers v; ~ Exp (1;), with rate parameter ;, the distribution f(k;) can be
calculated in closed form. Since the service process corresponds to a Poisson process, we
find the conditional distribution f(k; | a) as k; | a ~ Pois (u;a). Carrying out the integral,
in Eq. (3.2.5), we find the number of jobs that can be served in one inter-arrival time
follow a Geometric distribution k; ~ Geom (-2~ ), with #—i/\ denoting success probability,

i+
[103].

For the POSMDP model with general inter-arrival and service time distributions, closed
form expressions for the marginal probability above are often not available, since this
would require closed form expressions for a k-fold convolution of the probability density
function (pdf) of the service times. Note that some corresponding general expressions
exist as Laplace transforms, where the difficulty is passed down to calculating the inverse
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transform. Therefore, in such cases we will resort to a sampling based scheme for the
marginal distribution f(k;), i.e.,

A~ fla)
vt~ f(v), m=1,2 ...

3 3.2.7
lCi:{jENO:ZUQ”SA} G:27)

m=1

ki = maX(ICZ-) .

In this numerical solution, we draw a random inter-arrival time a and count the number k;
of service times that fit in this inter-arrival interval. Note that the number of jobs k;(¢) at
a decision epoch ¢ is not necessarily independent of the number of jobs k;(¢ 4 1) in the
next interval. The impact of this effect can be well demonstrated when the service time
distribution is, e.g., heavy tailed. Also note that the exact modeling of this behavior would,
in general, require an extended state space incorporating this memory effect. Therefore,
the sampling scheme can be seen as an approximation to the exact system behavior.

3.2.4 Inferring Arrivals and System Parameters

For the load-balancer to be deployed in an unknown environment, we may require an
estimate of the inter-arrival and/or service rate densities. For this purpose, we will resort to
a Bayesian estimation approach to infer the densities f(a) and f(v;). We select a likelihood
model f(D | 0) for the data generation process and a prior f(6), with model parameters
©. We assume we have access to data D = {d(1),d(2),...,d(n)}, where d(j) is the
inter-arrival time between the j-th and j + 1-st job arrival event that is observed by the
load-balancer or the service times for each server. For inference-based load balancing,
we use the inferred distribution of the inter-arrival times as in the posterior predictive
f(d | D)= [f(O|D)f(d | 0)db, of a new data point d*, which is then used in the
sampling simulator, see Eq. (3.2.7). The same can be done with the data for the service
times. We will now describe some models of different complexities for data generation.
Since, most models do not admit a closed form solution, we resort to a Monte Carlo
sampling approach to sample from the posterior predictive [73, 74], see also Section
24.1.

EXPONENTIAL INTER-ARRIVAL TIMES: Here, we briefly show the calculation for the
posterior distribution and posterior predictive distribution for renewal job arrivals with
exponentially distributed inter-arrival times. For the likelihood model, we assume

D;|m~Exp(m), j=1,...,n

where m is the rate parameter of the exponential distribution. We use a conjugate Gamma
prior M ~ Gam («v, ). Hence, the posterior distribution is

M|D~Gam(ao+n,ﬁo+2dj)

j=1
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And the posterior predictive distribution is found as

D* | D ~Par(ag+n,fo+ Yy _dy),

j=1

where Par (a, ) denotes the Pareto distribution.

GAMMA DISTRIBUTED INTER-ARRIVAL TIMES: In case of a gamma likelihood of the
form
Dj|a,f~Gan(a,8), j=1,...,n

we use independent Gamma priors for the shape and the rate, with A ~ Gam («y, 5p) and
B ~ Gam (a4, ;). Finally, we sample from the posterior predictive using Hamiltonian
Monte Carlo (HMC) [76], which can be implemented using a probabilistic programming
language, e.g. using PyMC3 [104].

SERVICE TIMES DISTRIBUTED AS AN INFINITE GAMMA MIXTURE!: Here, we present
a framework to non-parametrically infer the posterior distribution. We use an approximate

Dirichlet process mixture model, which can be regarded as an infinite mixture model [105].

We use a gamma distribution for the observation model
o(d | 0;) oc di e, (3.2.8)

with mixture parameters e} and e? . For the base measure Gy, i.e., the prior distribution
of the mixture parameters, we use Gy = Fyp1 X Fpe, with E} ~ Gam (1,1) and E? ~
Gam (1,1).

The truncated stick-breaking approximation is then given by
M ~ Gam (1,1), E?|m~Beta(l,m), i=1,...,c—1

1

Wi=p [[(-E), i=1..c-1

j=i—1

c—1
We=1-> W, ©;~Gq
j=1

DY | wy, .. we, 0y, ..., 0, ~ Zwlgﬁ(d 16,), j=1,...,m,
i=1
which corresponds to a mixture of Gamma pdfs. Here too, samples from the posterior

predictive can be efficiently generated using HMC. For the truncation point, the number of
components c in the formula above can be assessed using

c=[2—E[M]log(e)] = [2 — log(e)], (3.2.9)

where € is an upper bound on the total variation distance between the exact and truncated
approximation. For example, we can choose ¢ = 107!, which corresponds to ¢ = 30
components.

A detailed explanation of the above-mentioned distributions is given in Appendix A.1.
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3.2.5 Reward Function Design

A main difference of our approach to explicitly defining a load balancing algorithm is that
we provide the algorithm designer with the flexibility to set different optimization objectives
for the load-balancer and correspondingly obtain the optimal policy by solving the POMDP
or the POSMDP. This is carried out through the design of the reward function R as defined
in Sections 2.2 and 3.1. The optimal policy 7* maximizes the expected discounted reward
as T = argmax, y o, E-[y'r(t)] where r(t) = R(X(t+1) = x', X(t) = x,U(t) = u),
with v < 1 and x’, x are defined by Eq. 3.2.3. In the following, we discuss several reward
functions R in the context of mapping incoming jobs to the parallel finite queues, see
Fig. 3.1.

Minimize queue lengths

A reward function which aims to minimize the overall number of jobs waiting in the system.
This objective can be formalized as

R, x,u)=—=> b (3.2.10)

as it takes the sum of all queue fillings. Similarly, a polynomial or an exponential reward
function, such as

R(x',x,u) ZX (3.2.11)

For a fixed overall number of jobs in the system and X > 1, this objective tends to balance
queue lengths, e.g., if total jobs in the system are 10 and M = 2 then an allocation of [5, 5]
jobs will have much higher reward than [9, 1] allocation. Using the variance amongst the
current queue fillings also balances the load on queues. The reward function is then given

as:
R(x',x,u) = Var(b;, ..., by) (3.2.12)

Note, however, that balancing queue lengths does not necessarily lead to lower delays if the
servers are heterogeneous. Hence, proportional allocation provides more reward when
jobs are mapped to the faster server as
b,
R(x',x,u) - (3.2.13)
=1 Hi

Minimize loss events

To prevent job losses, we can also formulate a reward function that penalizes actions that
lead to fully filled queues, i.e.,

R, x,u) == 15 (3.2.14)
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The indicator function evaluates to one only when the corresponding queue is full.

Minimize idle events

One might also require that the parallel system remains work-conserving, i.e., no server is
idling, as this essentially wastes capacity. Hence, in the simplest case we can formulate a
reward function of the form

R(X,x,u) == Ty (3.2.15)

Note that some of the reward functions above can be combined, e.g., in a weighted form
such as the following.

M
R(x',x,u) = — [Z b; + /{Ilbi:bi] , (3.2.16)
=1

where, b; is the buffer state of the i-th queue at timestep ¢ after taking action v and the
constant weight x > 0 is used to scale the impact of the events of job drops to the impact
of the buffer filling on the reward.

3.3 PARTIAL OBSERVABILITY LOAD-BALANCER: A MONTE CARLO APPROACH FOR
DELAYED ACKNOWLEDGMENTS

In this section, we outline our approach to solve the partially observable system for the
job routing problem in parallel queuing systems with delayed acknowledgments. Our
solution is an alternate technique to Dynamic Programming and is based on a combination
of the MCTS algorithm [98] and SIR particle filter. A detailed explanation of how the MCTS
algorithm works is given in Appendix B.1, whereas the SIR filter was explained previously
in Section 3.1.

The reason for choosing an MCTS algorithm is that load balancing problems, like the one
presented in this chapter, can span to very large state spaces. In these scenarios, solution

methods based on dynamic programming [28] often break due to the curse of dimensionality.

MCTS solves this problem by using a sampling based heuristic approach to construct a
search tree to represent different states of the system, the possible actions in those states
and the expected value of taking each action. In recent years, these techniques have been
shown to yield exceptional results in solving very large decision-making problems [106,
107].

One main contribution of this chapter lies in the design of a simulator, G, which incorporates
the properties of the queuing model discussed above, into the algorithm. The simulator G,
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provides the next state x(¢ + 1), the observation y(¢ + 1) and the reward (¢ + 1), when
given the current state x(¢) of the system and the taken action u(t) as input,

x(t+1),y(t+1),rt+1) | x(t),u(t) ~ G(x,u). (3.3.17)

This simulator G, is used in the MCTS algorithm to rollout simulations of different possible
trajectories in the search tree. Each trajectory is a path in the search tree starting from
the current belief state of the system and expanding (using G) to a certain depth. While
traversing through the search tree, the trajectories (actions) are chosen using the upper
confidence bounds for trees (UCT), which is an improvement over the greedy-action
selection [108]. In UCT the upper confidence bounds guide the selection of the next action
by trading off between exploiting the actions with the highest expected reward up till now
and exploring the actions with unknown rewards.

At every decision epoch POL starts with a certain belief on the state of the system, p(t), see
Section 3.1 for a formal definition, which is represented with particles and also used as the
root of the search tree. Starting from the root, i.e., the current belief, the search tree uses
UCT to simulate the system for a given depth, after which the action u with has the highest
expected reward is chosen. The trajectories for all other actions are then pruned from the
search tree since they are no longer possible. This is done to avoid letting the tree grow
infinitely large.

Once the action u is taken and the job is allocated to a certain queue, the load-balancer
receives real observations, y = 1, from the system. These observations are the randomly
delayed acknowledgments from the servers. The load-balancer then uses the received
observations as an input to the SIR particle filter, in order to update its belief of the state
the system is in now. The weights given to each particle (state), w(s;) = P(y;|x;), while
resampling in the SIR particle filter were designed to incorporate our queuing system and its
delay model, Eq. (3.2.4), where the new samples x; are drawn from the simulator G. After
applying the SIR filter, we will have the new set of particles representing the current belief
state of the system, p(t). These particles are then used to sample the states for simulating
the search tree and finding the optimal action at the next epoch. Note that for POL receiving
observations, action selection and belief update all happen at each decision epoch, which is
why it is possible to model the system as a POSMDP [46] as well. Note that it is shown in
Theorem 1 of [98] for a POMDP and in Theorem 2 of [109] for a POSMDP, that the MCTS
converges to an optimal policy.

To summarize, at every job arrival, POL simulates the tree from the root. The root contains
the current set of belief particles. POL then acts on the real environment using the action
which maximizes the expected value at the root. On taking the action, POL gets a real
observation. This observation is the acknowledgment that is subject to delays. Using this
observation and a SIR particle filter, POL updates its set of particles (belief state) of the
system for the next arrival. The pseudo-code of the working of our proposed POL is given
in Algorithm 3.3 and the code is also provided as open source' for reproducibility. In
Algorithm 3.3, () is the real world representation of the queuing network, 7}, is the number
of Monte Carlo simulations done, 7, is the number of jobs arriving in each Monte Carlo
simulation, R, collects the reward for each epoch, K, and W, are the set of particles and
their corresponding weights, respectively.

1 https://github.com/AnamTahir7/Partially-Observable-Load-Balancer
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3.3 PARTIAL OBSERVABILITY LOAD-BALANCER

input N A o, Gy, p(0), R, x(0), 5,01 - by Ty T, Q
output : Ry, average reward for each time step 7

Initialize R,, — 0

fort=0,1,...,7,, do

Initialize tree ¥(0), R., @

fort=0,1,...,7. do

¥ (t 4 1) = SimulateTree(¥ (t), G)

u(t + 1) — arg max, R(x(t), u(t))
yt+1),x(t+1),r(t+1)=Q(u(t+1))

R.— R.Ur(t+1)

p(t + 1) = UpdateBeliefandTree(¥ (t + 1),y (¢t + 1), u(t + 1),G)

end
R, — R,, + R,

end

R,
Ravg = 7
return R,

Function UpdateBeliefandTree (W,y,u,G):
Initialize K, = {}, W, = {}
repeat
x ~ ¥(root),
xy', " ~ G(x,u),
w, = Bin (x|y’, u)
K, —» K, Ux' W, - W, Uw,
until Timeout()
Resample particles K, according to weights 1V,
Update root and prune tree ¥
return ¥

Function SimulateTree (W¥(t),G):
See the pseudo-code in [98] and Appendix B.2
return W (¢ + 1)

FIGURE 3.3: Pseudo-code for working of POL.
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3.4 EVALUATION: SIMULATIONS AND REAL-WORLD EXPERIMENT

In the following, we show numerical evaluation results for the proposed Partial Observability
Load-Balancer (POL), under randomly delayed acknowledgments. Recall that if the
acknowledgment is not observed in the current inter-arrival time, it is not accumulated
into the future observations. In order to evaluate the impact of delayed observations,
we consider in our simulations a probability of p; = 0.6 Vi in Eq. (3.2.4), if not stated
otherwise. This means that an acknowledgment is delayed until the next epochs, with
probability: 1 — p; = 0.4. We set the buffer size, b;, for all queues to 10 jobs. This value
for b; was chosen arbitrarily, and any other value can be used. For the UCT part of the
B.2 algorithm, we used the exploration constant ¢ = Rp;gn — Riow, Where Rpy;gn(Riow)
is the highest(lowest) reward that can be achieved. And the depth of the tree was set to
10. Further, if not explicitly given, we use the combined reward function given in Eq.
(3.2.16) with x = 100, since we aim to avoid job drops in the system. We consider the
system depicted in Fig. 3.1 for both cases of heterogeneous and homogeneous servers. In
particular, we show numerical results comparing POL to different variants of load balancing
strategies (with and without full system information) with respect to:

* the log complementary cumulative distribution function (CCDF) of the empirical
job response time (measured from the time a job enters the queue until it completes
service and leaves, lower is better). This is done only for the jobs which are not
dropped,

* the empirical distribution of the job drop rate (measured over all simulation runs
where for each run we track the number of jobs dropped out of all jobs received per
run, lower is better),

* and the cumulative reward (higher is better).

The evaluation box plots are based on 7}, = 100 independent runs of 7, = 5 - 10? jobs
with whiskers at [0.5, 0.95] percentiles. The plotted results are an average of these 100
Monte Carlo simulations. For every independent run, a new set of inter-arrival and service
times are sampled based on the chosen distributions. These sampled times are then used by
all load balancing policies in that run in order to do variance reduction, according to the
Common Random Numbers (CRN) technique [110].

The chosen inter-arrival and service time distributions are mentioned with the figures, with
unit of measurement req/sec. The offered load ratio (1 := A/ >, ;) is used to describe
the ratio between arrival rate and the combined service rate. The higher the value of 7, the
higher the job load is on the system, for details on this see Section 2.1. We first mention
the different type of load-balancers we have compared to our proposed POL.

3.4.1 Overview of compared Load-Balancers

The compared load-balancers can be divided into the following two categories:
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Full information (FI) strategies

These strategies have access to the exact buffer length of queues at the time of each job
arrival, and also know the arrival rate and the service rates of the servers.

* JSQ-FI: Join-the-Shortest-Queue assigns the incoming job to the server with the
smallest buffer filling.

* DJSQ-FI: Join the shortest out of d randomly selected queues. If not stated otherwise,
d = 2 has been used for our experiments.

* SED-FI: Shortest-Expected-Delay assigns the incoming job to the server with the
minimum fraction of the current buffer filling divided by the average service rate.

Limited information (LI) strategies

These strategies, similar to POL, only have access to the randomly delayed acknowledg-
ments.

* JMO: Join-the-Most-Observations maps an incoming job to the server that has
generated the most observations, i.e., received acknowledgments, in the last inter-
arrival epoch. This might lead to servers becoming and remaining idle (stale).

* JMO-E (with Exploration): with probability 0.2 randomly chooses an idle server
and with probability 0.8 performs JMO.

For all strategies, ties are broken randomly.

3.4.2 Numerical Results

We first consider a system with M = 2 heterogeneous servers with exponentially distributed
service times with rates 11 = 4 and pu, = 2. The inter-arrival times are also exponentially
distributed with rate A = 5. Fig. 3.4 shows the numerical comparison of POL with
other load-balancers. Observe that, even though POL does not have access to the exact
state of parallel systems and also the acknowledgments from the different systems are
randomly delayed, it still achieves comparable results to full information strategies, while
it outperforms the other limited information strategies. This is because in the other limited
information strategies, the initially chosen queues play a key role. Since the queue to
which more jobs are sent, will also give back more observations (acknowledgments), and
JMO and JMO-E will keep sending to those queues, resulting in job drops. The overlap
in response time indicates the similarity of the policies of the strategies, especially for
high offered load when most of the finite queues will be full. The heatmap in, Fig. 3.4(d),
represents the policy of POL at each buffer filling state. It can be seen that higher priority
is given to the faster server, 11, having buffer filling b;. The light (dark) regions in the
heatmap corresponds to the state where jobs are allocated to server 1 (2). This heatmap
shows that for every possible state of the two queues s = {by, by}, even with limited and
delayed information, POL is able to allocate more jobs to the queue with lower filling or
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FIGURE 3.4: M = 2 heterogeneous servers with exponential service rates p1 = 4, pg = 2. Job
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CCDF

(b)
] - POS
™ JMO
1 ' JMO-
1071 4 LN E
1 SED-
! = FI
] JSQ-
o FI
10 DJSQ-
FI
10_3 T T T T
0 2 4 6 8
Response time [s]
(d)
- u 2.0
- [ ] |
:,g 0 - rEn 1.8
~ - NEEE
po- EEEEE B o
= e - ]
o - FEEEEEn 14
£ ™= FEEEEEEE
Go-ffiEEEEEEEE |
~-ANEEEEEEEEn
- HEEENEEEEEE
012345678910

Queue Filling 1 (by)

1.0(2.0) denotes the allocation to queue 1(2), respectively.

10



3.4 EVALUATION

~~
[

)O 100 Limited ! Full POL
: Informatio i Information IMO
% | JMO-
E - i E
& 0.075 iii ! S o
%0050 : v
5 0. 1 JSQ-
2 ° i
= 0.025 ! E e
1
0000t o ] s . | .
POL JMO JMO- SED- JSQ- DJSQ- 0 50 100 150

EoormH Response time [s]

FIGURE 3.5: M = 50 heterogeneous servers with job inter-arrival times and service times
described by an exponential distribution, with the offered load (n ~ 1). POL outperforms the
other algorithms with limited information, JMO and JMO-E, in terms of both (a) job drops and
(b) response time. And has comparable performance to the full information strategies, SED-FI,
DJSQ-FI and JSQ-FL
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FIGURE 3.6: M = 50 heterogeneous servers with gamma arrivals and Pareto service times, with
offered load (1 ~ 1). The effect of the heavy tailed Pareto distribution can be seen in the response
plot (b). In terms of job drops, POL outperforms limited information (LI) strategies as well as FI
strategy, DJISQ-FI.

faster servers, similar to JSQ and SED. Hence, it is able to perform almost as good as the FI
strategies.

Fig. 3.5 shows the performance of POL for M/ = 50 heterogeneous servers. The service and
arrivals rates of this setup are kept that the offered load is (7 ~ 1). This experiment shows
that our load-balancer POL is scalable to perform well for large number of queues. Next, we
remain with the case of M = 50 heterogeneous servers, however with inter-arrival times
that are gamma distributed while the service times follow a heavy tailed Pareto distribution,
with the offered load (n ~ 1).

Fig. 3.6 shows that here too, POL is able to outperform both the LI strategies and the FI
strategies, DJISQ-FI. The other two FI strategies have better performance because they
always have timely and exact information of the queues, which is unrealistic. Note that as we
consider heavy-tailed distributions in this example, the prediction of job acknowledgments
by POL suffers, because of reasons discussed at the end of subsection 3.2.3.
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FIGURE 3.7: M = 10
homogeneous servers from
which 5 were chosen at ran-
dom to see their sample run
for 50 time steps. The de-
lay p for the acknowledg-
ments from each of the server
was also allocated randomly,
ranging from 0.1 to 1.0. In
each subplot is given the
queue number and its de-
lay, p. The solid red line
trajectory is the true sam-
ple path for each queue (not
known to POL), while the
shaded region around it is the
belief probability that POL
has for each state at each
time step. Exponentially dis-
tributed inter-arrival and ser-
vice times were used, with
the offered load n ~ 1. POL,
with the help of SIR particle
filter, is able to track the real
state of the system, as long
as the delay is not too high,
which is why it is able to per-
form as good as FI strategies.
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FIGURE 3.8: Visualization of belief state, based on the particles, of M = 10 queues after 1000
epochs. The x-axis gives the delay probability of each queue, ranging from p = 0.1 (worse delay)
to p = 1.0 (no delay). The solid red line trajectory is the true state of each queue (not known to
POL), while the shaded region around it is the belief probability that POL has for each queues’ state
after 1000 time steps. It can be seen that as the acknowledgments become less delayed (going from
p = 0.1 to p = 1.0)), the belief of POL gets closer to the true state of the queue. Exponentially
distributed inter-arrival and service times were used, with the offered load, n ~ 1.

3.4.3 Sensitivity Analysis

Next, we discuss the impact of the limited observations on POL under different acknowledg-
ment delays, p;. Recall, that POL is not able to observe the buffer fillings, but rather receives
the randomly delayed acknowledgments of the served jobs. These delayed acknowledgments
are used by the SIR filter of POL to keep its belief of the state of the environment updated.

Fig. 3.7 depicts sample runs showing the actual evolution of the job queue states (red solid
line) and the belief (in shaded region) that POL has on each queue state at each time step,
under different acknowledgment delays. Observe that increasing delays (i.e., lower p;)
increases the uncertainty in belief of each state.

However, POL is still able to track the system state for different delays for each server,
which shows the efficiency of the SIR particle filter and also justifies the performance of
POL to be as good as FI strategies. Having different delays in acknowledgments from each
server reflects a distributed system, where network conditions may be different for each
server and may lead to different delays in acknowledgments from different servers. Fig.
3.8 visualizes the belief of POL on the state of each queue after 1000 epochs, for different
delays in acknowledgments in each queue.

In Fig. 3.9 we analyze the performance of POL under varying offered loads ranging from
1n = 0.2 ton = 1.2. It can be seen that POL has almost no job losses up to a load of n = 1.
Note the qualitative change of the response time distribution as the offered load reaches
7 = 1 and beyond. For lower offered load, the response time distribution resembles an
exponentially tailed distribution which changes with 7 = 1 and beyond. In Fig. 3.10 we
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FIGURE 3.9: Varying offered load for a setup as in Fig. 3.5. As long as the offered load is 7 < 1,
POL has no job losses. For loads, 7 > 1 we observe a load dependent exponential tail of the response
time distribution.
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FIGURE 3.10: For the setup from Fig. 3.9 with an offered load n = 1.2: POL shows a comparable
performance to full information (FI) strategies, while outperforming other limited information (LI)
ones.

show the performance comparison of different LI and FI strategies for the high offered
load case of 7 = 1.2. This is done to show that even though POL has high job drops and
response times, it outperforms the LI strategies and has comparable performance to the FI
strategy, especially DJSQ-FI.

For the sake of completeness, Fig. 3.11 compares the performance of POL using different
reward functions from subsection 3.2.5, while keeping all the other parameters the same.

Time Analysis of POL: POL consists of two main components: (i) Tree simulator for action
evaluation and (ii) SIR particle filter for belief update. Both steps need to be done at every
decision epoch, i.e. on every job arrival. Since we assume no queue at the load-balancer,
POL needs to allocate the incoming job to one of the queues, before the next arrival. Note
that MCTS is a very successful online algorithm. Hence, POL first takes a portion of the time
between arrivals to simulate the tree and take a decision for the current arrival. Then takes
that action on the real environment and based on the received delayed acknowledgment
performs the belief update using the SIR particle filter, until the next job arrives. As can be
seen from the simulation results, POL is scalable in terms of the number of servers and is
able to handle high offered loads, ). Note that the code used to run POL here in the system
simulation is the same that would be used in a deployment scenario. Next, we investigate
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FIGURE 3.12: Homogeneous servers with exponentially distributed inter-arrival and service times.
The number of servers is increased in intervals of 20 servers, while keeping the offered load always
n = 0.99. With a higher number of servers, less time is available for POL to simulate the tree and
do belief update, resulting in a slight deterioration in the performance.

the impact on the inter-arrival time between jobs on the load-balancer performance, as the
inter-arrival time needs to be sufficient for POL to perform the above two steps at every job
arrival.

In Fig. 3.12, the number of homogeneous servers M was increased from 10 to 90, while
keeping the offered load fixed, i.e., n = 0.99. The average service rate p; of the servers
is kept fixed in all experiments, i.e. the increase in M results in an increase in the sum
of service rates, » . /;. Hence, to keep the offered load fixed with scale the job arrival
rate accordingly. Firstly, this experiment demonstrates the scalability of POL in terms of
number of servers. Although the state space of the system increases with the number of
servers, hence, queues, POL manages to deal well with the increased state space. In POL
we use MCTS adapted from POMCP [98], so instead of considering the entire state space
we have a fixed set of particles to represent the state based on our belief of the state, thus
tapering the curse of dimensionality and space complexity. As the inter-arrival time is the
decision epoch, we observe that the time given to POL to simulate the tree and do the belief
update reduces, the effect of which can be seen as the slight decrease in performance as M
increases. It can be seen in Fig. 3.13, that for M = 90, lowering the load again, i.e. giving
POL more time to decide, improves the performance of the system. This shows the trade-off
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FIGURE 3.13: Performance of POL for M = 90 homogeneous servers for different loads.
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between the load balancing performance, e.g. in terms of the response time and drop rate
vs. the load, which directly impacts the time provided to POL to make a decision.

We believe this to be the current limitation of POL, however step (i) can be further optimized
using MCTS parallelization [111]. Note that the computational resources used also have
a strong impact on the performance of POL. Here, we use a dedicated machine with an
Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz for all our experiments.

In the next section, we discuss the scenario when some system parameters are not known
and need to be inferred from the available data.

3.4.4 Experiments with trace data

For the results of this section, we make use of Labeled Network Traffic Flow data, provided
by Kaggle in 2019 [112]. We used the frameworks given in Section 3.2.4 to infer the
underlying distributions of the inter-arrival and service times provided in this data set.
The inferred distribution based on data of the inter-arrival times of the chosen source is
given in Fig. 3.14, it can be seen to follow an exponential distribution with high arrival
rate. We then selected M = 20 heterogeneous servers from the available data such that
they all followed the Gamma Mixture distribution. Gamma Mixture was selected to show
the performance of POL with yet another type of service time distribution. The empirical
distribution as a histogram as well as the posterior mean estimate for some of these selected
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servers is given in Fig. 3.15. The hyperparameters used are: ¢ = 3, €., ¢? = 1, m = 1. POL

1771

makes use of the samples generated using the posterior predictions.

We assume that the servers have a finite buffer of size B = 10 (arbitrarily chosen) and a
delay in acknowledgments of p = 0.6. Fig. 3.16 shows that even with limited information,
POL has the lowest average job drops. However, due to the limited information available
to POL and the reward function it is using, its average response time is as high as the full
information strategy DJSQ-FI. POL is able to allocate more jobs to the servers (due to fewer
drops), which can come at a cost of higher response time for some jobs, which will be
allocated to the slower servers. Note that the reward function we used, (3.2.16), focuses on
avoiding job drops and not on minimizing the response time.

3.5 SUMMARY

In this chapter, we analyzed online algorithms for mapping incoming jobs to parallel and
heterogeneous processing systems under partial observability constraints. This partial
observability is rooted in the assumption that the entity controlling this mapping, denoted
load-balancer, takes decisions only based on randomly delayed feedback of the parallel
systems. Unlike classical models that assume full knowledge of the parallel systems,
e.g., knowing the queue lengths (JSQ) or additionally the job service times, SED this
model is particularly suited for large distributed processing systems that only provide an
acknowledgment-based feedback.

In addition to presenting a partially observable (semi-)Markov decision process model
that captures the load balancing decisions in this parallel queuing system under delayed
acknowledgments, we provide a Partial Observable Load-Balancer (POL) - to find near-
optimal solutions online. A particular strength of POL is that it allows to define the objectives
of the system and lets it find the appropriate load balancing policy instead of manually
defining a fixed one. It can also be used for any kind of inter-arrival and service time
distributions and is scalable to a large number of queues. We numerically show that the
POL load balancing policies obtained under partial observability are comparable to fixed
policies such as JSQ, JSQ(d), and SED which have full information. This is the case even
though POL receives less, and in addition randomly delayed, informative feedback.
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In this chapter, we extend the queuing system presented in Chapter 3 to having multiple
decision-making agents (referred to as load-balancers), based on the published work [2].
This is a more realistic system since in a network you will have multiple decision makers
trying to use the same limited resources. Hence, the multi-agent load balancing system
considered in this chapter is crucial to effectively utilize distributed systems such as those
present in data centers and cloud services. Our discrete-time system model now also
incorporates an arbitrary synchronization delay under which the queue state information
is synchronously broadcasted and updated at all load-balancers. This delay includes the
network delay and can be assumed to be the maximum time till all the agents have received
their acknowledgments, where each acknowledgment contains the desired queue state
information. In order to obtain a tractable solution, we model this system as a mean-field
control problem and apply policy gradient reinforcement learning algorithms to find an
optimal load balancing solution. We also provide theoretical performance guarantees
for our methodology in large systems, as well as a comparison to the state-of-the-art
power-of-d variant of the join-the-shortest-queue (JSQ) and other policies in the presence
of synchronization delays.

A natural extension to this model is to consider a localized queuing system and is presented
in Chapter 5.
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Related Work

Load balancing in large queuing systems has yielded many successful distributed algorithms
such as Join-the-Shortest-Queue (JSQ), Shortest-Expected-Delay (SED) [20, 22, 85] and
many others, see also [84] for a recent review. However, JSQ and SED have been designed
for asynchronous systems with a central load-balancer (agent) assigning jobs (packets)
to parallel servers (queues) under the assumption that the load-balancer can obtain
instantaneous, accurate and synchronized information of the queue lengths at all times.
In practice, both instant information and centralized decision-making are not realistic,
especially if the number of queues M > 1 is large. In this chapter, we consider a
multi-agent system of /V load-balancers and M servers (queues) with N > M > 1 and
communication delay.

To remedy this scalability issue, the power-of-d versions JSQ(d) and SED(d) of JSQ and
SED [113] let the load-balancer sample only d < M out of M servers randomly and then
allocate the job to the sampled server with the shortest expected processing time. However,
JSQ(d) and SED(d) nonetheless assume instant and accurate information of the state of
those d servers, which remains unrealistic due to both the distributed nature of the system
and computational overheads introducing latency. The problem is only exacerbated in
a multi-agent scenario where all agents access simultaneously. Hence, to model a more
realistic system, it is of importance to take communication delays At into account. In [114],
it was shown that JSQ fails when At > 0 mainly due to a phenomenon known as ‘herd
behavior’: Multiple agents assigning jobs at the same time would consider the same subset
of servers with few jobs, and thus all agents will end up assigning to the same servers.
This eventually leads to higher response times and, in the case of finite queues, job drops.
Though JSQ(d) ameliorates this issue somewhat since it is highly unlikely for small d and
large M that many agents will randomly choose the same servers, the technique nonetheless
remains suboptimal under delayed information. Indeed, as At — oo, a completely random
allocation to one of the servers becomes optimal [113]. However, when the delay At lies
between 0 and oo, the optimal policy must lie in-between, which will be the main focus of
this chapter.

In order to scale to a great number of load-balancers and servers, we will apply mean-field
theory, analogous to fluid limits M/ — oo, that is used to tractably model and assess
systems with many queues. Fluid limits were used to study the performance of scheduling
algorithms like JSQ and JSQ(d) in terms of sojourn time and average queue length [113,
115, 116]. However, models including delayed information still remain an open problem
[117], in particular in the presence of many agents. One work with similar system model
and synchronization delays is given in [118], though they instead consider finitely many
servers with infinite buffer sizes where the multiple agents use their local, asynchronous
estimates of queue lengths to perform scheduling. This idea of using local agent memory
has also been proposed in [119, 120], however only for a single -agent.

More generally, the same tractability issue for large systems has led to the increasing popu-
larity of general (competitive) mean-field games (MFG) [50, 51, 56] and their cooperative
counterpart of mean-field control (MFC) [8, 57—60], wherein a system with large numbers
of interchangeable and indistinguishable agents is converted into a system where one
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FIGURE 4.1: Our system model consists of [V load-balancers and M parallel servers. Jobs arriving
in a certain time interval At are assigned to the agent, which consequently assigns them to one of
a few sampled servers based on some policy. Arrows from each agent indicate the d = 2 servers
randomly sampled by each agent at the current epoch.

representative agent is interacting with the distribution (mean-field) of other agents. Here,
there has been a recent focus on learning-based solution algorithms for MFGs [121-124]
and MFC [53, 70, 125]. We will similarly apply the enlarged state-action space technique for
MFC (see e.g. [70]), its associated dynamic programming principle as well as reinforcement
learning in order to find optimal load balancing policies for an otherwise intractably large
system. While RL [26], so-far has found great success e.g. in games [126, 127], robotics
[128] or communication and queuing networks [124, 129], in the case of multiple agents,
there still remain many challenges in MARL such as intractability for large numbers of
agents [48]. RL itself has long since been used in numerous works — though not in the
context of mean-field control — to find an optimal load balancing policy. For examples, see
[20, 92, 130, 131] and references therein. The combination with mean-field control allows
for a tractable solution of very large load balancing systems and shall be the subject of our
studies. We will similarly formulate a synchronous system model with delay by assuming
N > M — oo, which will allow us to apply reinforcement learning to the otherwise
difficult to solve optimal load balancing problem. Although our model shares similarities
in concept to MFC, it does not immediately fit into the framework of conventional MFC,
as we not only derive the discrete-time mean-field model starting from an underlying
continuous-time dynamic, but at the same time take a double limit of infinitely many queues
and agents. While, existing MFC frameworks typically focus only on the limit of infinitely
many agents without external dynamics of non-agent-bound (queue) states.

4.1 QUEUING SYSTEM MODEL WITH SYNCHRONIZATION DELAY

We consider N load-balancers and M servers, where each server has its own queue with
limited buffer capacity. An overview of the considered load balancing system is given
in Fig. 4.1. Jobs arrive randomly according to a Markov modulated Poisson process —
modeling e.g. changing load factors throughout a day — with rate A(¢)M and are divided
uniformly among the load-balancers, which will allocate the jobs to servers for processing.
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FIGURE 4.2: Probabilistic graphical model of our multi-agent multi-server scheduling system using
plate notation, where diamonds and circles represent deterministic and stochastic nodes respectively
[132]. Conditional on the random variables at time ¢, each agent’s states as well as each queue’s
states at time ¢ 4 1 are i.i.d. random variables.

In accordance with the power-of-d technique, agents shall randomly select d out of M
queues and — according to some policy to be optimized — send their jobs to a selection of
these d queues, where d < M. On the queuing side of our system model, we have M
parallel and homogeneous servers in the system with service rates p. The queues are finite
with a maximum buffer capacity B and the jobs in the queues are served in a first-in-first-out
(FIFO) manner. Each server sends back its queue filling status, which is then used by the
load-balancers to make their decision for the next incoming jobs. The number of jobs that
are currently in each queue together makes up the state of the environment. Our goal is to
minimize overall job drops under decentralized decision-making by each agent, e.g. like in
edge computing scenarios.

We will assume that our system operates synchronously and broadcasts updates of sampled
queue states to dispatchers only once every fixed time interval. Thus, in the following we will
model our system at discrete decision epochs {0, At,2 - At, ...} for some synchronization
delay At > 0, after each of which the load-balancers will sample d new queues and keep
this selection of d queues for the entire duration of that decision epoch. Not only will
this allow us to incorporate communication delays, but it will also lead to significantly
less sampling of server states by the agents, as each agent is only required to sample d
servers in every decision epoch. Another advantage of this approach is that the resulting
discretized Markov decision process will allow us to apply powerful and well-established
reinforcement learning algorithms, which to this date have been extensively developed for
discrete-time models.



4.2 FINITE-AGENT FINITE-QUEUE MODEL

4.2 FINITE-AGENT FINITE-QUEUE MODEL

Formally, the N-agent M -queue system could be considered a multi-agent Markov Decision
Process (MMDP) for N, M € N, i.e. the cooperative and fully observable case, definition
given in Section 2.2.1. See e.g. [37] for a review of possible multi-agent problem
formulations. In principle, one could even consider competitive or partially observed cases.
However, the resulting limiting mean-field systems will be significantly more complex.
Instead, we will in the following consider a decentralized control setting where agents, due
to the symmetry of our model, shall act depending on the current distribution of queue
states.

Define Z := {0,..., B} as the finite queue state space, i.e. each server can contain at most
B jobs in its queue. The agent state space shall be denoted as X' := {1,..., M}%, ie. a
selection of d random queues. Although we could disallow repeated queue selections, it will
make no difference in sufficiently large systems and add unnecessary notational complexity.
Finally, each agent can choose as an action its choice of one of d randomly sampled accessible
queues, i.e. the action space is defined as the d possible queue choices U = {1,...,d}.
At any decision epoch ¢ = 0, 1, ..., the states and actions of agents ¢ = 1,..., N, are
random variables denoted by =" (t) = (J}ZJ-YI’M(t), . ,xfi}M(t)) e Xandu M (t) e U,
and similarly the state of each queue j = 1,..., M is denoted by zjv M (t) € Z with

2""(0) ~ v(0) € P(Z) from some initial distribution v(0). Additionally, \™™ (t) > 0 -
the arrival rate parameter — will be modulated as an independent discrete-time Markov

chain (DTMC) with state space A, i.e.

MM 1) ~ TN M (1)) 4.2.1)
for some arbitrary transition kernel 7, see [15, 17] for details on DTMC.

Due to the symmetry of the problem, for sufficiently many agents, the information about
each specific queue’s state becomes irrelevant to the problem. Thus, we assume some
common, shared policy of the form 7;: P(Z) x 2% x A — P(U) for all agents, acting on
the current P(Z)-valued random empirical queue state distribution

M
1
HYM () = > 0w (4.2.2)
j=1

with Dirac measure d, the sampled queue states, and the current arrival rate. In practice, we
may also drop dependence on the current arrival rate and empirical distribution, or estimate
e.g. the empirical queue state distribution by sampling a subset of random queues, though
both will complicate the theoretical analysis of the limiting MFC problem, as it would not
be possible to formulate the limiting system as a standard, fully-observed Markov decision
process. For details on MFC see Section 2.3.1.

The dynamics for each agent 7 are thus given by

M) ~ @4, Unif ({1,..., M}), (4.2.3)

)

WM () ~ <t, BV (1), (N0, 2 1)), AN’M(t)) : 4.2.4)

1 9
Tid
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i.e. at each decision epoch, the agents decide to which of their d randomly sampled,
accessible queues they decide to send their jobs to. For simplicity of exposition, this choice
of destination is deterministic, though in our experiments we shall allow randomization
for each packet. As a result, starting with zN M(0) ~ v(0) € P(Z) for each queue j and

some initial queue state distribution /(0), for any queue j, the next queue state Z]N ’M(t +1)
is obtained from the previous state z]N ’M(t) by simulating a Z-valued continuous-time

Markov chain (CTMC) for At time units, beginning with zJN ’M(t) and decrementing or
incrementing by 1 at departure rate ;¢ > 0 and arrival rate

d
1
N,M
M) = MAYM () NE > 1 oMM (0= LM ()= (4.2.5)

=1 k=1

respectively, ignoring jumps above B or below 0. Any arrivals beyond B are counted in
the average number of dropped packets

DNM( Z DY Mt (4.2.6)

per queue j during each decision epoch ¢, which will constitute our objective through the
discounted infinite-horizon objective

JNM ()

_ Z 7(LL)DNM(@] 4.2.7)

to be maximized with discount factor v € (0, 1). See [15, 17] for details on CTMCs.
Note that we can rewrite (4.2.5) as
d
AT () = MANM (1) - > gLy GNM(t) (dz, du) (4.2.8)
k=1

with the P(X x U)-valued empirical agent state-action distribution

GNM( Z 8N (g N g (4.2.9)

The dynamical dependencies can be summarized in a probabilistic graphical model as
shown in Fig. 4.2. Intuitively speaking, when N > M > 1, this empirical distribution
becomes deterministic, and we need not track each queue state, but only their distribution.
Similarly, only the overall distribution of all agent choices will matter, leading to the
prospective limiting mean-field model derived in the sequel.

43 LIMITING SYSTEM MODEL

We now present the limiting system for the above-mentioned finite multi-agent queuing
model. This is done in two steps, first we take the limit on the number of agents and then
for the resulting model we assume infinite number of queues.



4.3 LIMITING SYSTEM MODEL

FIGURE 4.3: Probabilistic graphical model of our multi-server scheduling system in the limit of
infinitely many agents, using plate notation as in Fig. 4.2. Compared to Fig. 4.2, the states and
actions of the infinitely many agents are replaced by their deterministic distribution and conditional
law, respectively.

4.3.1 Infinite-agent finite-queue model

In the infinite-agent limit where N — oo, we obtain a limiting control problem with
random external states (queue states). Consider the evolution of the P(Z)-valued empirical
queue state distribution

M
1
HM (1) = - > 8ty (4.3.10)
j=1

as N — oo. Conditional on the queue states and arrival rate, (2 (t), uM(t));=1,_n are

i i

i.i.d. Therefore, it will be sufficient to consider only the statistics of a representative agent.

By the law of large numbers, we obtain the deterministic agent state distribution

G(t) = ¢, Unif ({1,...,M}) € P(X) (4.3.11)

of agents by (4.2.3). The P(X x U)-valued agent state-action distribution
GM(t) .= GM(t,5(t), h(t)) (4.3.12)
thus depends on A(t) == w(t, HM(¢),-, \™ (1)), where we define

GM(t,5,h) (v, u) = &(x)h(u | (22 (1), ..., 220 (1))). (4.3.13)

) YT
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We observe that this state-action distribution is sufficient for characterizing system behavior:

Conditional on fixed A (¢) and {zM(t), ..., 234 (¢)}, the arrival rate in (4.2.5) becomes,
d
A () = MAM(HE | > ﬂzlhfk(t):jﬂulwf(t):k] (4.3.14)
k=1
d
= MM (1) D TaymiLumk GM(t)(dz, du) (4.3.15)
XU 1

by the law of large numbers, similar to (4.2.8). In other words, the empirical agent
state-action distribution G (t) is replaced by the limiting distribution G (t). See
Fig. 4.3 for the corresponding probabilistic graphical model.

4.3.2 Infinite-agent infinite-queue model

Finally, we derive the mean-field model in the limitas M — oo, i.e. formally N > M > 1.
The random queue states are now replaced by the queue state distribution denoted by
v(t) € P(Z). Therefore, each agent state x;(t) € X is now also replaced by the anonymous
queue state z;(t) € Z< instead of the actual queue index. The queue state distribution
deterministically induces the agent state distribution

o(t) = ®¢_v(t) € P(Z% (4.3.16)

by assigning the d-dimensional product measure o(t,z) = I1¢_,v(t, %) for any z =
(Z1,...,24) € Z% For any decision rule h(t) = 7(t,v(t), -, A(t)), this agent state
distribution induces a state-action distribution

G(t) = o(t) @ h(t) € P(2¢ x U). (4.3.17)

Now consider the random amount of arriving packets P ~ Pois (M \(¢)At) in a time slot
At. Since N > M implies N > P, the probability of any single-agent receiving more
than one packet is negligible. This implies that almost all packets’ destination queues will
be i.i.d. random variables. As a result, since packets arrive with rate M \(¢) and i.i.d.
destinations, for any z € Z, packets will equivalently arrive with rate M \,(t) in queues
with state z € Z by Poisson thinning [133], where

N() = A() / 1., G(1)(dz, du). (4.3.18)
ZdxU

By symmetry, these packets arrive uniformly at random in any arbitrary specific fixed

queue in state z. For any specific queue with state z, the probability of assigning such a

packet to that queue is therefore m which results in an equivalent queue packet arrival
rate of

MN (t (¢

(o) MO X

=M ) (4.3.19)

The informal derivation until now will be motivated more rigorously in Section 4.5 and
numerically in Section 4.7.
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FIGURE 4.4: Probabilistic graphical model of our scheduling system in the limit of infinitely many
agents and infinitely many servers. Note how this model can be considered a Markov decision
process with states v(t), A(t) and actions h(t). Compared to Fig. 4.3, the states of the infinitely
many servers are replaced by their distribution. Additionally, the states of agents are now given by
the anonymous state of accessible queues.

4.4 EXACT DISCRETIZATION OF THE LIMITING SYSTEM

The final step is to formulate a discrete-time optimal control problem from the delayed,
synchronous system that allows for the application of standard optimal control techniques
such as reinforcement learning. To discretize the mean-field system exactly at times
{0, At,2 - At, ...}, we generate the master equations for the evolution of a single queue’s
state over time between each of the discretization time points. The procedure is done
analogously for the pre-limit systems. Consider a queue in state z € Z at the beginning of
a decision epoch t. Then, for any h(t), we define a Z-valued CTMC y through y(0) = =
and formulate its Kolmogorov forward equations

P’ = Q°P*, P*(0)=e. (4.4.20)

for the vector of queue state transition probabilities P*(7) € [0, 1]% at times 7 € [0, At]
with

Pi(r)=Py(r) =2, V/eZ (4.4.21)

and the transposed transition rate matrix Q* := Q(v(t), z) € RZ*Z where Q(v, ) is
defined by

Q. 2)isr = Aty 1,2) = ——\(®) / 1. (9L v ® h(t))(dZ,du)  (4.4.22)
ZdxU

v.(1)

in accordance with (4.3.16) - (4.3.19), Q(v, 2)i—1;, = p, fori =1,..., B, Q(v,2);; =
—>.; Q(v,2);; fori = 0,..., B, and zero otherwise. Here, e, denotes the z-unit vector.

Therefore, from the fraction v, (¢) of queues in state z € Z at time ¢, we will deterministically
have the resulting fraction

V.. = v,(t)P3(AL) (4.4.23)
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of queues with state z € Z in resulting state 2’ € Z at the end of the decision epoch At. In
total, we therefore have

va(t+1) =) v.o=Y w(t)Pi(At), Vi€ Z (4.4.24)

z€EZ z€EZ

Computing the expected packet drops D, (t) per queue with state z € Z is done analogously
by

D.(t) = X\.(v,t)P5, D.(0)=0 (4.4.25)
resulting in a total average packet loss of

D(t) =Y v.(t)D.(At). (4.4.26)

zEZ

For exact computation of the terms in (4.4.24) - (4.4.26), observe that we have the linear
matrix differential equation

i TR -

v~

Q-=Q(v(t),2)

where we define the extended rate matrices Q(v(t), z) analogously to Q(v(%), z), and thus
obtain exact discretization by

gl ]

where Exp () denotes the matrix exponential.

4.4.1 Upper-level decision process

We can now obtain a MDP, see Section 2.2.1, with state space P(Z) x A and action space
H = {h: Z¢4 — P(U)}, since we have states (\(t),v(t)) and actions h(t) following
dynamics

(At + 1), 0(t + 1)) ~ PAA) @ b1, 000000 (4.4.29)
h(t) = 7(t, v(t), (1)) (4.4.30)

where the transition function 7, deterministically maps to v(t 4 1) according to (4.4.24),
and the actions are given by a deterministic "upper-level” policy @ = {7(t)}+>0, Where
7(t): P(Z) x A — H. See also Fig. 4.4 for a visualization of the Markov property through
a probabilistic graphical model. Here, the randomness of the system stems from the random
packet arrival rate \(¢). Finally, by (4.4.26), the objective becomes

J(7) =E

_ Z »YtD(t)] i (4.4.31)
t=0
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FIGURE 4.5: A schematic overview of the application of the upper-level mean-field control policy
to the finite-agent finite-server system. The upper-level policy 7 returns a lower-level policy 7 for a
given distribution of server states H(¢) and current arrival rate A(¢). The lower-level policy is
then applied separately to each agent state x;(¢) to obtain an action u;(t).

The application of 7 to the N-agent, M-queue case is visualized in Fig. 4.5, i.e. each of the
agents i = 1,..., N first computes the decision rule h(t) = 7(t, HM(t), A\(t)) according
to the upper-level policy, and then samples its action w;(t) ~ h(t, x;(t)).

For the obtained MDPs, since the expected cost function and the dynamics are continuous in
the states and actions of the MFC MDP, it is known that the typical dynamic programming
principle (i.e. Bellman equation) holds, and an optimal stationary deterministic policy will
exist.

Proposition 1 ([134], Theorem 4.2.3). There exists a stationary deterministic optimal
policy 7 that maximizes J (7).

To find such a deterministic policy, an exact, closed-form solution is difficult due to the

complexity of the associated transition model and continuous state and action spaces.

Instead, we shall in the following employ well-established reinforcement learning techniques
by exploring over stochastic policies 7(t): P(Z) x A — P(H), with the random decision
rules h(t) ~ 7(t,v(t), A(t)) as actions of the MFC MDP, to find the desired optimal
stationary deterministic policy.

4.5 THEORETICAL ANALYSIS

Although our formulated mean-field model is intuitively a good approximation of the finite
system, in this section we shall make this connection rigorous. Note that our model does not
immediately fit into standard MFC frameworks introduced in [53, 70], since we perform a
double limit argument and continuous-to-discrete-time modeling. To verify the mean-field
model, we shall show that performance in the finite system becomes arbitrarily close to
the performance in the MFC system as long as the system is sufficiently large. For the
following theoretical analysis, we shall consider the sequence of arrival rates (A1, Ao, . . .)
given a-priori by conditioning on them, i.e. non-random AV (¢) = A\M (t) = \(¢).
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Theorem 1. The performance of the N, M system converges to the performance of the
mean-field system under any stationary deterministic policy 7 as the system size becomes
sufficiently large, i.e. for any € > 0 there exists N', M'(N") € N such that,

|J(7) = JVM(7)| < e
forall N > N',M > M'(N").
Proof. We will analyze
|J(7) = JVM(7)| < |J(7) — M (7 — JVM(7)

<> (B [D() - DM<t>} [+ [E[DY(®) — D™ ®]))

where DY (t) denotes the random loss of packets in the infinite-agent finite-queue system.

For the first term, consider M — oo and observe that

Bl -k | / (B0 @u.980- [5]) v,

E[DY(#)] =E |+ Z (Exp (@%a)- [e 0 t)})B+1]
H

o[ o a5, o]

with the rate matrices Q7 of the infinite-agent finite-queue system, where the last equality
follows since the rates in the M -queue case for each queue j are indeed given by

d
MM () = M > Tamjnu=r G () (dz, du)

Xxuk 1

AZZZM e kMd htu | Mo Maay

k=1 zeX ueld

—Azzzﬂxk =jru= kMd Tt u] 2 (1), 2y (1)

k=1 zeX ueld

d
DY Y Y S byl 20, 0)

k=1 zpe{l,..M} x_,e{l,.,M}e-1 ueld

Y Y Y Y

k=1 zpe{l,..M} z_pe{l,...M}d—1 ueld

Z Z :H-xk—j/\u kMd 1 (t u | (Zk7Z k)) zM(t) %

ZLEZ 7 kGZd 1
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Z 6{1.‘.M}dlﬂ/\z 2} (t)=% -
Yy Y = e I GLA N CUEY)

k=1 ZzpeZ z_,czd-1 ucld N ~~ -
[Tier HM (t.25)

_AZZZI%Z ,\ukHH (t,z)h(t,u | 2)

k=1 zezd ueld itk
—/\ZZL_Z HHMtzl (t,ul 2)
zeZd uel i#u
Hd JHM (8, %) )
= A 1. L h(t
Z Z Zu=2}’ HM(t 2 (t)) (t,ulz)
zeZd ueld

A fzdxu ﬂzu:z}/f(t) (®k:1HM( ) @ h(t))(dz, du)
HM(t, 2 (t))
= A(t, HY (1), 2" (1))

’ J

where the indices —k denote all dimensions (indices) other than k.

Therefore, as long as HM (¢) 4 v(t) (convergence in distribution), we find E [ D(t) — DM (t)] —

0 by the continuous mapping theorem. In particular, this holds true if H™ (¢) LN v(t),ie.
forany > 0 as M — oo,

P (||HY (t) — v(t)|| > 6) — 0.

We show this by induction: At ¢ = 0 the statement holds by the law of large numbers. Now
assume that the statement holds for ¢, then for ¢ + 1 we first show that for any €, § > 0 there
exists M’, ¢’ > 0 such that for all M > M’ we have

P(|HY(t+1) —v(t+1)|| >0 | |[HY () —v(t)]| <) <e
Note that
P(||HY (t+1) —w(t+1)|| > 6 | [[HM () —v(t)|| < )
< ZIP’ HY(t+1,2) —v(t+1,2) >0 | |[HY () - v(t)|| < 0)

zZEZ

<>P (}HM(t+ 1,z) —E[HY(t+1,2) | HY(1)]| > g ‘ |HY (8) — v(t)]| < 5’)

z2€Z

+) P <]E [HY(t+1,2) | HY (1)) —v(t+1,2)] > g ' [HY (8) — v(t)|| < 5’)

z2EZ

and we shall bound the former term as follows: Define

A f = 2 (t+1) —E[f(z (¢ + 1) | f(z"(1))]

and let f: Z — R, then we have

p (|]HIM(t FLH-E[EY(+1.0) | BY0] > ’ (1) — v(t)]| < 5/)
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72
2

|HY (8) — v(t)|| < 5’)
4o l ’
= < > Az]-M(t+1>|z£”<t)f>> [EY () = v(@)]| <o
7j=1

4
:WZERAJM(HIWM ‘HHM - H<af]

M
E ]M(t-i-l |Z]\/I
1

as M — oo by conditional independence of (2 (¢t +1),...,2M (¢t + 1) given 2M(t) =

(2M(t),..., 2z} (t)), the Chebyshev inequality and tower property In particular, this holds
for f, = IL{Z}, z € Z. Therefore,

>p (\HM(t +1,2) —E[HM(t+1,2) | HY(t)]] > g |HM () — v(t)]| < 5’> -0

z2EZ

as M — oo. For the latter term, note that analogously

E[HY(t+1,f) |HY ()] —v(t+1, f)]

<D SR Y (EY(E2) — vt 2))

z2€EZ Z'eZ

(B0 @020 5])
+ 16 X vlea)- (B (@0, )80 - |

Z2EZ Z'eZ

— Exp (Qu(t), 2) A1) - M )

and by boundedness (A, .)(t) < dA(t)) and continuity in H (¢), v(¢), forany ¢ > 0 there ex-
ists ' > Osuch that ||HM (t) — v(t)|| < &' implies |E [HM (¢ + 1, f) | HM(¢)] —v(t + 1, f)| <
. As aresult, by the law of total probability

P (||HY (t + 1) —v(t +1)|| > 6)

=P(|HYE+1) —vt+1)||>0]||H" () H<5’ P (||HM (¢) H|l <d)
+IP>(HHMt+1)—ut+1H>5\HHM —v(t)|| > &) P (||[HY(t —V(t)H>5’)
<P(|[HY(E+1) —vt+1)| >4 | |[[HY (@) —v t)H < &) +P(||[HY ) —v@)] > &)

—0

since we can choose M’, " according to the former analysis and the induction assumption

completing the induction step. It then follows at all times ¢ by the continuous mapping
theorem that

E [D(t) — DM(t)] — 0.
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For the second term, fix M and let N — oo. We find that

E [DM ()] = %ZE <Exp (QYAL) - {e g( )DBJ 7

e N M (t)
0
B+1
~N,M ~M . .
where Q" and Qj" are continuous functions of

d
>\N M % Z Z ]112 K ( ui(t):ka
k=1
d

E [DVM(1)] ZE (Exp (QVMAL) -

and as N — oo, by the conditional law of large numbers [135, Theorem 3.5]
N,M M
AT () = A ()

a.s. conditional on zN M)y = z)!(t) = z for any z € Z. Therefore, again by the

continuous mapping theorem, forallj =1,..., M as.

J

E [Exp (Q;V’MAt) ‘ My = z} — E [Exp (ijAt) | sz(t) =z].

At the same time, 2™ (
v

i> M () at all times t as N — oo via induction: For ¢t = 0
trivially £(2VM (1)) = =

t)
(0) = L(2M(t)). Fort + 1

IPENM(E+1) =2) = P(M(t+1) = 2)|

< Z ‘IP’(zN’M(t) =) —P(M(t) = z’)‘ PENM(E 1) =2 | VM) = 2)

ZeZ

+ Z P(M
Z'eZ
APENME 1) =2 | V() =) = PEM(E 1) =2 | 2 (1) = 2]
where the former tends to zero by induction assumption, while for the latter we have

IPNM(E+1) =2 | 2VM(t) =2) = PEM({t+1) =2 | 2M(t) = 2)|

_ ﬁE (20 @ a0 []) |0 - ]
B ﬁ]E (Exp (QYAL)- [GSQDZ 2M(t) = z’] -0

as N — oo again as QjVM — Q;‘/[ conditionally a.s. for each j.
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By Slutzky’s theorem (on the conditional probability spaces given z]N Mty = 2)1(t) = 2),
we have
e N M
E (Exp (QNMAL‘) " (t)]> ZJN’M(t) =z
B+1 i
—E <Exp QY At) - {eZJM(t)}> 2(t) =2
0 B+1

for any z € Z, such that,

E

(EXp QM At) -

_ZE

zEZ

e N ]W(t) ]
0
B+14

e NILI(t)_>
0
4/ B+1
— ZE

(Exp (QYAL) - [ezf%)D
zZEZ 0 B+1

orcran ),

which shows that E [DN-(¢)] — E [D(t)] at all times ¢.

Now note that the terms D(t), DY (t), DV-*(t) are uniformly bounded by the maximum
expected average number of lost packets by dropping all packets, given by the expectation
of the Poisson-distributed number of arriving packets A(¢) - At. Therefore, for any ¢ > 0
we can choose 7" such that

(Exp QY MAt)

=E

Y @ ([E[D() = DY @)]] + [E [DY(t) — DY M(1)]]) <

t=T

w| ™

Consequently choose M sufficiently large such that

E [D(t) — DM (1)]| < SiT vte{0,1,....,T -1}
and similarly choose N sufficiently large to obtain

|E [DM(t) — DMM(¢ H< vt € {0,1,...,T —1}

3T’

according to the prequel, such that |J(7) — J¥M(7)| <e. O

Therefore, our mean-field model is well-motivated for sufficiently large systems, as we will
also verify numerically.
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4.6 SYSTEM MODEL EXTENSIONS

For the sake of completeness, we also represent two extensions to this model, one for
heterogeneous servers and the other of infinite capacity queues.

4.6.1 Heterogeneous servers

Consider again M servers in the system, each server with its own queue. Each server j is
defined by its serving rate ,uj-V’M € 2 sampled i.i.d. from some initial distribution, where
for example 2 = {w, 2w}, i.e. here we consider the example where some servers work
at double the rate, 2w, compared to other servers with rate w. The speed assigned to the
servers at the beginning shall not change. To reconcile with our approach, we replace the
(queue) state of a server ZJN M () by both its queue state and its speed (zjv My, ujv’M). Let
H™ (¢) now be the empirical state distribution over both server rates and fillings

nu']

HYM (1) = Z O, N1 () N (4.6.32)

Accordingly, the policy shall now depend on the joint distribution of queue states and
speeds, i.e.

ma() (0™ 0, g™ (0)), 2 (1), XYM (1)
= 0 (Y0, (G0 O 00 (G 0,050 XM 0) (4633

forall2 =1,..., N. The rate of the server affects the departure from that queue, since a
higher rate will have relatively faster departures and vice versa. This will also affect the
optimal policy, since in order to avoid job drops, allocating more jobs to faster queues will
result in less downtime. The arrival rates shall remain unaffected.

The rest of the derivation proceeds analogously to the homogeneous case. As a result,
the limiting mean-field state distribution shall also contain not only the buffer filling but
also the speed of the server, v(t) € P(Z x ). This will be represented by a vector of
length |Q2|(B + 1), since there are |(2| types of servers available. The speed of the servers
is assumed to remain fixed, such that it does not evolve. However, the buffer filling will
now evolve according to

vt +1) = v, (PF(AL), V2 € ZVueQ (4.6.34)

zEZ

where P ., 1s the probability of a queue in state z to change to state 2" when the serving
rate of the server is i1 € (). The expected packet drops per queue with state z € Z are
calculated via

D*(t) = A u(t)P5",  D*(1) =0 (4.6.35)
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resulting in a per-queue average packet loss of

D(t) =YY v..(t)D*"(At) (4.6.36)

HeEQ z€2Z

where A, ,(t) is the arrival rate to queues with filling z and speed p € €2, which is given
analogously to (4.3.19). The objective function for this model stays the same as given in
(4.4.31), since we still have finite capacity queues, and we want to reduce packet drops.
The exact discretization is performed as for the homogeneous system.

4.6.2 Infinite buffer capacity

For infinite capacity queues, i.e., B = oo, our queue state distribution is defined as
v(t) € P(Z), where Z = {0,1,2,...} € Ny is now infinite. Therefore, the reward
function must change, since there will be no more job drops.

The majority of the formulation remains the same as given in Section 4.3.2. The exact
discretization from Section 4.4 also stays the same, except that we now deal with infinite
dimensions. This model can also be easily extended to the heterogeneous server model, as
done in Section 4.6.1. Most importantly, the objective is changed, since there are no packet
drops anymore.

For the objective, we shall instead penalize based on average waiting time of arriving
jobs,

J(7) =E

_ Z th(t)] , (4.6.37)
t=0

where the average waiting time of all arriving jobs per queue shall be denoted by W;. The
average waiting time of a job arriving in a queue with 2 € Z current jobs is simply given
by (z + 1)/u for the servicing rate p. As a result, analogously to D(t), the expected total
waiting times of all arriving jobs in a queue with z € Z fillings during decision epoch ¢
can be computed through

e =3 2 p W) =0 (4.6.38)

ZeZ K

with the average over all queues given by

W(t) = v.(t)- W3 (At). (4.6.39)

z

For the infinite capacity queue case, the linear matrix differential equation from Section
4.4 now becomes

{WP‘:Z@} - M [WPZ)Z@} (4.6.40)
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TABLE 4.1: System parameters used in the experiments.

Symbol Name Value
At Time step size 1-10
I Service rate 1
(A, A1) Arrival rates (0.9,0.6)
N Number of agents 1000 — 1000000
M Number of queues 100 — 1000
d Number of accessible queues 2
n Monte Carlo simulations 100
B Queue buffer size 5
v(0) Queue starting state distribution [1,0,0,...]
D Drop penalty per job 1
T Training episode length 500
T, Evaluation episode length 50 — 500

TABLE 4.2: Hyperparameter configuration for PPO.

Symbol Name Value
¥ Discount factor 0.99
ARL GAE lambda 1
K KL coefficient 0.2
€ Clip parameter 0.3
Iy Learning rate 0.00005

By Training batch size 4000
B, SGD Mini batch size 128
Ty Number of epochs 30

with B = [%, . %, .. .| and thus we obtain exact discretization by

[Vl;i((iii?)} = Exp (Q'At) - [eo] : (4.6.41)

To obtain numerical tractability, since we cannot represent infinite-dimensional vectors
numerically, we propose to cut off both simulation and parametrization of H at some high
Bhax € N, 1.e. any queue with fillings going beyond B,,.. are treated as having B,y
fillings. This approach remains well-founded as long as the serving rates p of the servers
are greater than the maximum arrival rate [136], and that can be achieved by assigning all
packets to a subset of queues with z fillings, since in that case the likelihood of achieving
queue fillings larger than B, tends to zero as By,.x — oo. Concretely, this holds true as
long as

p>d-M(t) VzeZ, (4.6.42)

since the arrival rate \,(t) is trivially bounded by d - ().
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FIGURE 4.6: Training curve for the MF policy for At = 5 and 7, = 500 timesteps — i.e. the
expected negative number of packet drops per episode during training — together with a comparison
to the MF-JSQ(2) and MF-RND policies. The horizontal lines indicate the estimated expected returns
for each policy. The red dotted line indicates the final achieved return of the learned MF policy in
the mean-field MDP.

47 EVALUATION

In this section, we will begin by giving details on the experimental setup. Afterward, we
will demonstrate numerical results of applying reinforcement learning to the MFC MDP
problem.

We have M homogeneous queues with exponential service rate ;. and N load-balancers
(agents) with Markov modulated arrival rate . Beginning with Ay ~ Unif ({\,, \;}), at
each decision epoch the arrival rate switches between high, \;, and low, );, levels, using
the transition law

PA(t+1) = M | A1) = \) = 0.2, (4.7.43)
P(A(t+1) = Xy | A(t) = A) = 0.5. (4.7.44)

In general, the experiments could be conducted with more levels of arrival rates and with
different modulation rates estimated from a real system, though in this chapter we will use
two arbitrarily chosen values to show the theoretical applicability of our methodology. The
values for the system parameters in all of our experiments are given in Table 4.1.

In order to assess the performance of our MF policy, we compare it to the following
policies:

¢ Join-the-shortest-out-of-d-queues (JSQ(d)): The agents, at every decision epoch,
select d out of M queues and jobs are allocated to the shortest one.
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* Random (RND): The agents, at every decision epoch, select d queues randomly out
of M and allocate the jobs to a random queue out of these d queues, which will be

equivalent to a completely random selection out of M queues for sufficiently large
N> M.

In this chapter, we have used d = 2, since in [113] it has been shown that while moving
from d = 1 to d = 2 shows an exponential increase in performance of JSQ(d), an additional
increase to d = 3 does not add much in terms of achieved performance.

In order to obtain our MF policy by solving the optimal control problem, we apply proximal
policy optimization PPO, see Section C for details on it, using the RLIib implementation
[137], a well-known and robust policy gradient reinforcement learning algorithm. The
learning algorithm hyperparameters used in our experiments can be found in Table 4.2. A
detailed description of what these parameters do is given in Appendix C.

input :System parameters from Table 4.1, Markovian upper-level policy
T = (7(t))e=0

output :Number of dropped packets, D

Initialize A(0) ~ Unif({\n, Ai}).

forj=1,...,M do
| Initialize queue states z;(0) ~ v(0).
end
fort=20,1,...,7, do
Compute empirical distribution HY (t) = - Z;‘il 02,0)
Sample decision rule h(t) ~ 7(HM(t), A(t))
fori=1,...,Ndo
Sample agent state x;(t) ~ ®@¢_, Unif({1,..., M})
Compute anonymous state z;(t) = (2z, (1) (t), - - - Ze; a(6) (1))
Sample agent action u;(t) ~ h(t)(Z;(t))
end
forj=1,...,M do
Simulate the CTMC y; with jump rates \;(t), a and y;(0) = z;(t) for At time
units
Count number of dropped packets, D
Set queue state z;(t + 1) = y;(At)

end
Sample A(t + 1) ~ Py(A(t+ 1) | A(2))

end
return D

FIGURE 4.7: Application of MFC policy in finite system.

For the policy architecture, we use a standard feedforward neural network with two hidden
layers of 256 nodes, outputting the parameters of a | Z¢||U/|-dimensional diagonal Gaussian
distribution. The input of the policy network consists of the fractions of queues in each
state, v/(t) as well as the current arrival rate A(¢). To allow the | Z¢||i/| real-valued network
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output values a; ; to parametrize elements in H, we squash the values to [0, 1] using the
tanh function, i.e.

a; ’ 4.7.45
a sJ 2 + 2 ( )
and then normalize each row to obtain
Gy
j=1 di,j
for some arbitrary ordering of states and actions {Zzy, ..., Zjz¢ } = Z0 {ug, .} =

u.

In Fig. 4.6, we observe the learning curve of the applied reinforcement learning algorithm
for At = 5 and find that the simple parameterization of the lower-level policies is indeed
successful and leads to stable learning. For the demonstrated experiment, we trained in
parallel (offline) on 20 cores of a commodity server CPU for approximately 35 hours, after
which the optimal policy can be applied in practice, to finite systems. Here, MF-JSQ(2) and
MF-RND refer to the corresponding JSQ and RND policies in the mean-field model, i.e. each
applies a fixed h(t) regardless of the current queue state distribution v(¢). In the case of
MF-JSQ given by

(4.7.47)

1
N else

h(u | 2) = {O if u € argmin,, z,/

where N, is the number of actions u that minimize the chosen queue’s state z,,. In the
case of MF-RND, we similarly choose

h(u|z) = ur V(z,u) € Z49xU (4.7.48)

As expected, indicated by the horizontal lines, the JSQ(2) and random (RND) assignment
policies in the mean-field case are both suboptimal for the chosen delay time of At = 5,
and our reinforcement learning approach is capable of finding better load balancing
policies after approximately 5 million simulated decision epochs. Though we have tried
Dirichlet-parameterized upper-level policies to directly output simplex-valued actions in
order to eliminate the need for manual normalization, we found that performance was
significantly worse, hence motivating our approach.

PERFORMANCE COMPARISON ON FINITE SYSTEMS: We will now compare the

performance of the evaluated load balancing algorithms on systems of finite size. For

simulation of the finite-agent and finite-queue system, we simulate the continuous-time

Markov processes exactly by sampling exponential waiting times for all events according

to the Gillespie algorithm [138]. For an easy comparison between different At, we set the
500

episode lengths 7, for evaluation to the integer nearest to ;. Pseudo-code for simulating

and applying our MF policy in the finite system is given in Algorithm 4.7 !.

1 https://github.com/AnamTahir7/mfc_large_queueing_systems.git


https://github.com/AnamTahir7/mfc_large_queueing_systems.git
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FIGURE 4.8: Comparison of the estimated expected packet drops (lower is better) of MF policies
over the number of queues M in the finite system for different values of At, together with 95%
confidence intervals depicted as shaded regions and error bars. Here, we use total running times
of approximately 500 time units, and N = M? to fulfill N >> M. The red dotted line indicates
the equivalent achieved return of the learned MF policy in the mean-field control MDP, i.e. the
limiting model as N >> M — oo. It can be observed that as the system size N = M? increases,
the performance under the MF policy (green) becomes increasingly close to the mean-field system

M configuration

M configuration

performance (red), validating the accuracy of our mean-field formulation.
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FIGURE 4.9: Comparison of the estimated expected packet drops of MF, JSQ(2), RND policies
together with 95% confidence intervals for different configurations of M and N = M?2. We keep
the total running time of each setting approximately equal to 500 time units to compare the effect of
At. It can be observed that as At rises, the achievable performance by choosing emptier queues
degrades.

In Fig. 4.8, we show that the performance of the final learned MF policies over a wide
range of delays At and system sizes (N, M). It can be seen that the overall achievable
performance of our MF policy increases up to the performance achieved in the MFC MDP
(red dotted line) as the system size (N, M) becomes sufficiently large (N > M > 1).
Hence, our findings empirically validate the fact that our mean-field approximations are
indeed accurate for sufficiently large system sizes.

The returns for the policies at each At, for the case where all experiments are run for
approximately equal overall time instead of an equal number of decision epochs, are
given in Fig. 4.9. Here, we have trained a separate MF policy for each of the At and,
compared to JSQ(2) and RND. It can be seen that — as expected due to fewer updates — the
overall achievable performance in the system worsens as the synchronization delay At
of the system increases. It can be seen that MF achieves better performance than JSQ(2)
starting from At > 2, while it outperforms RND in all cases. This stems from the fact that
reinforcement learning only finds approximately optimal solutions. Nonetheless, at an
intermediate level of synchronization delay beginning with At = 3, our learning-based
methodology appears to be able to find a better policy than the optimal policies for At — 0
(JSQ(2)) and At — oo (RND). Even for small At = 1, our MF policy has comparable
performance to the optimal JSQ(2) policy, as long as N, M are sufficiently large. As At
keeps increasing, MF and RND are therefore expected to perform equally good in sufficiently
large systems as long as we indeed have N > M.
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FIGURE 4.10: Comparison of the estimated expected packet drops of MF, JSQ(2), RND policies

together with 95% confidence intervals for the same setting as in Fig. 4.9, equal total running time,

for the case when M = 1000, N = % and N = M. As At increases, the performance of our MF
policy performs better than the other policies, even when NV % M.

Finally, we perform experiments for N % M, i.e. we violate the formal approximation
assumption used to obtain our mean-field system. Even though the assumptions made in our
approximation are violated, our policy nonetheless obtains good comparative performance.
As shown in Fig. 4.10, we find that the qualitative performance differences remain the
same for around 1000 agents and queues. It can also be observed that the random policy no
longer obtains approximately equal performance over At, which is caused by the fact that
the queues are increasingly sampled unequally often by an agent, and resampling resolves
the resulting increased focus on a subset of queues.

4.8 SUMMARY

In this chapter, we have proposed a mean-field-control-style formulation, with enlarged
state-action space, for large-scale distributed queuing systems with synchronization delays.
We have achieved this by formulating the finite- Nagent finite- M queue system and then
considering N — co, M — oo.

Firstly, we provide theoretical performance guarantees which show that the performance in
the N, M system becomes arbitrarily close to the performance in the MFC system as long
as N, M are large enough. Then, assuming a synchronous system with exact discretization
of the underlying processes, we end up with an exactly discretized discrete-time Markov
decision process on which we have applied reinforcement learning algorithm, PPO. As
a result, we find that our learned solution can outperform the delay-free-optimal JSQ(d)
policy as well as the infinite-delay-optimal random policy in the regime of intermediate
delays At, even if N 3 M as long as the system size NV, M is sufficiently large.
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This chapter extends the work of Chapter 4 to consider localized queuing systems. As
mentioned in the previous chapter, scalable load balancing algorithms are of great interest
in cloud networks and data centers, necessitating the use of tractable techniques to compute
optimal load balancing policies for good performance. However, most existing scalable
techniques, especially asymptotically scaling methods based on mean-field theory, have
not been able to model large queuing networks with strong locality. Meanwhile, general
multi-agent reinforcement learning techniques can be hard to scale and usually lack a
theoretical foundation. In this chapter, we address this challenge by leveraging recent
advances in sparse mean-field theory to learn a near-optimal load balancing policy in
sparsely connected queuing networks in a tractable manner, which may be preferable
to global approaches in terms of communication overhead. This work is based on the
currently under peer review publication [3]. Importantly, we obtain a general load balancing
framework for a large class of sparse bounded-degree topologies. By formulating a novel
mean-field control problem in the context of graphs with bounded degree, we reduce
the otherwise difficult multi-agent problem to a single-agent problem. Theoretically, the
approach is justified by approximation guarantees. Empirically, the proposed methodology
performs well on several realistic and scalable network topologies. Moreover, we compare
it with a number of well-known load balancing heuristics and with existing scalable
multi-agent reinforcement learning methods. Overall, we obtain a tractable approach for
load balancing in highly localized networks.
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Related work

The aforementioned decentralized queuing systems with underlying graph structure can be
modeled as various variants of multi-agent (partially-observable) MDP [48, 96]. The goal is
typically to learn an optimal load balancing policy, which has been done by using numerous
available MARL approaches, mainly building upon MMDP [139-141] and decentralized
partially observable MDPs (Dec-POMDP) [35, 36]. However, these methods are usually either
not highly scalable or are difficult to analyze [118]. This has resulted in recent popularity
of mean-field theory for modeling multi-agent systems, via a single representative agent
interacting with the mean-field (distribution) of all agents [12, 142]. Within mean-field
theory, one differentiates between mean-field games (MFG) for agents in a competitive
setting [50] and mean-field control (MFC) for cooperation [59]. This chapter focuses on the
latter for reducing the overall jobs dropped in the system.

Note that mean-field limits have also been used to study load balancing algorithms, such as
JSQ and the power-of-d variants (where the load-balancer only obtains the state information
of d < M out of the total available queues) [113], in terms of sojourn time and average
queue lengths [20, 115, 116]. The asymptotic analysis of load balancing policies for
systems with different underlying random dense graphs has already been studied to show
that as long as the degree d(M ) scales with the number of servers, the topology does not
affect the performance of the [143], while here we consider the sparse case. Graphons
are also used to describe the limit of dense graph sequences [144] and have been studied
with respect to both MFG and MFC [145-147]. However, for sparse graphs, the limiting
graphon is not meaningful, making it unsuitable for networks whose degree does not scale
with system size, see also [144, 148, 149]. MFGs for relatively sparse networks have been
studied using Lp-graphs [150], but they too cannot be extended to bounded degrees. We
believe that bounded-degree graph modeling is necessary to truly represent and analyze
large fixed-degree distributed systems to avoid the need for increasingly global interactions
and thus difficulties in scaling.

In models where the graph degree is fixed and small, for different topologies such as the
ring and torus, the power-of-two policy was studied using pair approximation to analyze its
steady state and to show that choosing between the shorter of two local neighboring queues
improves the performance drastically over purely random job allocations [151]. In contrast,
in this chapter, we will also look at a similar model, where the degree d does not scale with
the number of agents, and find that one can improve beyond existing power-of-d policies.
In order to find scalable load balancing policies, we apply relatively new results from
sparse mean-field approximations, see [142] and references therein. Recently, mean-field
analysis of the load balancing policies was done using the coupling approach but mainly
for spatial graphs and only for power-of-d algorithms, see [152]. They consider tasks and
servers which may be non-exchangeable on random bipartite geometric graphs and random
regular bipartite graphs. To the best of our knowledge, MFC on sparse (bounded degree)
graphs has neither been analyzed theoretically in its general form, nor has it been applied
to queuing systems.

Additionally, algorithms such as JSQ, SED and their power-of-d variant are based on the
unrealistic assumption of instantaneous knowledge of the queue states, which is not true
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in practice, especially in large systems. We remove this assumption by introducing a
synchronization (communication) delay At into our system model. Though in non-local
systems it has already been proven that for At = 0, JSQ is the optimal load balancing
policy, it is also known that as the delay increases, JSQ fails due to the phenomenon of
"herd behavior" [113], i.e. allocating all packets simultaneously to momentarily empty
queues. It has also been shown that as At — oo, RND allocation is the optimal policy
[113]. While for the in-between range of synchronization delays in non-sparse queuing
systems, a scalable policy has been learned before using mean-field approximations [2], it
only considered fully connected graphs with sampling d neighbors, and not the sometimes
more realistic scenario of local, sparsely connected queuing networks. For other works in
this direction, we refer to [117, 118, 143] and references therein.

5.1 QUEUING SYSTEM MODEL

We consider a system with a set of A = {1,..., N} load-balancers/agents and M =
{1,..., M} servers, where each server has its own queue with finite buffer capacity, B, see
also Fig. 5.1 for an overview. The queues work in a first-in-first-out (FIFO) manner, and
servers take the jobs one at a time from their queue, processing them at an exponential rate
1. Once a job has been processed, it leaves the system forever. Somewhat to the successful
power-of-d policies [113], we assume that each load-balancer accesses only a limited
number (e.g. d out of the M) of available queues and can only allocate its arriving jobs to
these d accessible queues, with d < M and fixed. We assume M = N and associate each
server (queue) with one agent, though it is possible to extend the model to varying or even
random numbers of queues per agent.

Jobs arrive to the system according to a Markov modulated Poisson process, with total rate
A(t)M, and then are divided uniformly amongst all agents, which is also equivalent to
independent Poisson processes at each agent given the shared arrival rate \(¢) by Poisson
thinning [133]. The agent takes the allocation action based on a learned or predetermined,
memory-less policy ¢, which considers the current queue state information of its d accessible
queues. This information is periodically sent by servers to neighboring agents, such that
agents only obtain information on d queues, reducing the amount of messages to be sent. If

the job allocation is done to an already full queue, it is dropped and results in a penalty.

Similarly, jobs depart from a queue at a rate i The goal of the agent is to minimize the
overall number of jobs dropped.

5.1.1 Locality and Scalability

Note that in contrast to many other analyzed settings, in this chapter the d out of M
available queues are not sampled randomly for each package, but instead fixed for each
agent according to some predefined topology (see also Section 5.5.1). In other words,
we assume a strong concept of locality where agents have access only to a very limited
subset of queues, implying also a strong sense of partial observability in the system. The
value for d therefore depends on the type of graph topology being considered. Note
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FIGURE 5.1: System model for N = M = 4. Jobs arriving in a certain synchronization time
At are allocated to all agents using Poisson thinning. Each agent can allocate its incoming jobs
to its own queue or the other queue it has access to, indicated by the connecting edges between
agents (1, 3) and agents (2,4). These connections will be defined by the chosen graph topology,
see Section 5.5.1.

that an agent always has access to its own queue, as we associate each of the M queues
with an agent. Accordingly, our queuing model contains an associated static underlying
undirected graph G = (N, &), where £ C N x N is the set of edges between vertices
(agents) N := {1,..., N} based on the d queue accessible by the agent. An agent i
will have an edge (7, j) € £ to another agent j whenever they have access to the queues
associated to that agent, and vice versa. Therefore, an agent can have a maximum of
d edges (neighbors) to other agents. We will denote the set of neighbors of agent ¢ as

N, ={jeN]|(ij) €&}

The motivation to use a graph structure with bounded degree arises from the fact that the
corresponding model allows us to find more tractable local solutions for large systems. We
need large systems that are regular in some sense, otherwise the system is too heterogeneous
to find a tractable and sufficiently regular solution. Therefore, we look at systems where
the regularity can be expressed graphically. The regularity condition already includes basic
regular graphs such as grids and torus, but also allows many other random graphs such
as the configuration model, see also Section 5.5.1. Here, we then apply RL and MFC to
find otherwise hard-to-compute near-optimal queuing strategies in this highly local setting.
The simplicity of the queuing strategy — instantaneously assigning a packet to one of the
neighboring queues based on periodic and local information — not only allows for fast
execution and high scalability, since information does not need to be exchanged for each
incoming packet, but also allows for easy addition of more nodes to scale the system to
arbitrary sizes.

In the following, we will obtain tractable solutions by first formulating the finite queuing
system, then formulating its’ limiting mean-field equivalent as the system grows, and lastly
applying (partially-observed) RL and MFC, see Fig. 5.2 for a generic example.



5.1 QUEUING SYSTEM MODEL

FIGURE 5.2: An example queuing system on a generic sparse, regular graph topology (2D torus).

The circular nodes are the servers, and each server has its own finite buffer queue. From left to
right, the size of the underlying graph is increasing in a regular manner.

5.1.2  Finite Queuing System

To begin, consider the following system. Each agent ¢ is associated with a local state,
xr; € X =1{0,1,..., B} and local action u; € U;. The state =; will be the current queue
filling of the d queues from M accessible to the agent 7, and the set of actions U; will be
the set of these d accessible queues. Hence, we have a finite set of action and state space.
The global state of the system is given by x = (z1,...,zy) € X, Similarly, the global
action is defined as u = (uy,...,uy) €UN =U; x -+ X Uy.

5.1.2.1 Synchronous system

We want the agents to work in a synchronized manner, e.g. to model communication
delays, and also for the servers to send their queue state information to the respective
agents once every fixed time interval. To achieve this, we model our system at discrete
decision epochs {0, At, 2At, 3At, ...}, where At > 0 is the synchronization delay, the
time passing between each decision epoch. The interval At may be understood as a type
of synchronization or update delay, assuming that it takes At amount of time to obtain
updated local information from the servers and update the queuing strategy (e.g. routing
table). Note that we may easily adjust At to approximate continuous time. Using this delay,
we can later model our system as a MFC-based RL problem and learn the optimal policy
using state-of-the-art RL-based algorithms [26].

5.1.2.2  Localized policies

For the moment, let each agent be associated with a localized policy Cf * parameterized
by 6; which defines a distribution of the local action u; conditioned on the states of its
neighborhood x, (¢). The size of the neighborhood depends on d and the type of graph
used. Given the global state x(t), each agent takes an action u;(¢) which is independently
drawn from ¢ (- | z,(t)). In other words, agents do not coordinate with each other, and
decide independently where to send arriving packets. The parameters § = (6;,...,0y)
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parameterize the tuple of localized policies Cf", with the joint policy as its product
¢P(u | x) =TI, % (u; | zn,), as agents act independently.

Note: We do not include the actions of other agents, because all agents may take an
action at the same time, so we will not have this information and each agent will act
independently.

5.1.2.3  Symmetrization

For simplicity of learning, we further assume that any agent may choose to either send
to their own queue, or offload uniformly randomly to any of their neighbors, i.e. we
consider the actions U; = U = {0, 1} for all agents i, of either sending to its own queue
(0), or randomly sending to a neighbor (1), see Fig. 5.3 for an example visualization. This
assumption symmetrizes the model and allows tractable, regular solutions with theoretical
guarantees.

Indeed, to some extent such symmetrization is necessary to obtain a mean-field limit,
as otherwise behavior depends on the ordering of neighbors. Consider a simple one-
dimensional line graph where nodes are connected in a straight path. If we use a model that
is not symmetric, e.g. if all agents send all their packets to the first of their two neighbors
under some ordering of their neighbors, then we obtain different behavior depending on this
ordering, i.e. which neighbor is considered the first and which is the second. Cutting the
graph into sets of three, we could define the center node of each set to be the first neighbor
for the other nodes, leading to a packet arrival rate of 2A(¢) at the center node. On the other
hand, if we define first neighbors such that there are no overlapping first neighbors between
any agents, then any node will have a packet arrival rate of at most \(¢). This shows that a
certain symmetrization is natural to obtain a scaling limit.

At most, we could consider a solution that anonymizes but still differentiates between
neighbors whenever one is fuller than the other, which may be important especially if
e.g. queue serving rates are heterogeneous, and can be analogously handled theoretically.
However, in our experiments we found that such an assumption complicates training of a
RL policy due to the significant addition of action space complexity. Therefore, trading
off between policy expressiveness and RL training stability, we use the aforementioned
symmetrization.

5.1.2.4 Dynamical system model

The state of the agent is the state of its associated queue, and is affected by the actions
of itself and neighboring agents. Therefore, at every epoch, ¢ € N, given the current
global state x(¢) and action u(t), the next local state z;(t + 1) of the agent i can be
calculated independently only using the neighbors’ states x, (t) = (x;(t)), e, and actions

uy; (t) = (u(t))jen; ie.

N

P(x(t+1) | x(t),u(t) = [[P(xi(t + 1) | 2n,(t), uy, (1)) (5.1.1)

i=1
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FIGURE 5.3: Visualization of how agents implement their policy. For instance, agent ¢ = 2 has
neighbors j € {1,3}. If its action is uy = 0, it will allocate all its arriving jobs to its own queue
J = 2 (green arrow). In contrast, if us = 1 then, the arriving jobs are allocated randomly to one of
its neighbor j (red arrows).

where each P(x;(t + 1) | zn,(t), un,(t)) can be computed by the Kolmogorov equation for
continuous-time Markov chains, given that the rate of an arrival at a queue is given by the
sum of arrival rates assigned by the agents, A;(t) = A(t)(1 — u; + >_;cp, ‘;\‘,ﬁ) and the
package departure rate is fixed to the serving rate p > 0.

Each agent is associated with a local stage reward r;(x;, u;) and according global stage
reward r(x,u) = + Zf\il ri(z;,u;). The reward is given in terms of a penalty for job
drops due to each action u;. The objective is then to find the localized policy tuple 6 such
that the global reward is maximized, starting from initial state distribution x;(0) ~ «/(0).

5.2 SPARSE GRAPH MEAN-FIELD QUEUING SYSTEM

In this section, we will consider the limits of large graphs and the behavior in such systems,
by using mean-field theory from [142]. In order to obtain a limiting mean-field system,
we assume a shared policy (; = ( for all agents 7. This assumption is natural, as it often
gives state-of-the-art performance in various RL benchmarks [153—155] and also allows
immediate application to arbitrary sizes of the finite system, as all schedulers can use the
same policy. Furthermore, it will allow scaling up the system at any time by simply adding
more schedulers and queues, without retraining a policy.

In contrast to typical mean-field games [50] and mean-field control [59], we cannot reduce
the entire system exactly to a single representative agent and its probability law. This is
because in a sparse setting, the neighborhood state distribution of any agent remains an
empirical distribution of finitely many neighbors and hence cannot follow a law of large
numbers into a deterministic mean-field distribution. Therefore, the neighborhood and
its state distribution remain stochastic, and it is necessary to model the probability law of
entire neighborhoods. The modeling of such graphical neighborhoods is formalized in the
following.
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5.2.1 Topological structure

To make sense of the limiting topology of our system formally, we introduce technical
details, letting finite systems be given by sequences of (potentially random) finite graphs
and initial states (G,,, X,,) converging in probability in the local weak sense to some limiting
random graph (G, x). Here, we assume that graphs are of bounded degree, i.e. there exists
a finite degree d such that all nodes have at most d neighbors. In other words, we define a
sequence of systems of increasing size according to a certain topology, which formalizes
the scalable architectural choice of a network structure, such as a ring topology or torus.

To define what one understands as convergence in the local weak sense, define first the
space of marked rooted graphs G,, the elements of which essentially constitute a snapshot
of the entire system at any point in time. Such a marked rooted graph consists of a tuple
(G,9,x) € G,, where G = (N, &) is a graph, & € N is a particular node of G (the
so-called root node), and x,, € XV defines states ("marks") for each node in G, i.e. the
current queue filling of queues associated to any agent (node). Denote by By (G, &, z) the
marked rooted subgraph of vertices in the k-hop neighborhood of the root node &. The
space G, is metrized such that sequences (G, &,,x,) — (G, d,x) € G, whenever for any
k € N, there exists n’ such that for all n > n' there exists a mark-preserving isomorphism
¢: B(Gn, Dn,Xn) — Br(G,9,x), i.e. with z,; = x4 for all nodes i € G, (local
convergence).

We will abbreviate elements (G, 9., Xy), (G, D,x) € G, as (G, X,), (G, x), and their
node sets as (G,,, G whenever it is clear from the context. Then, finally, convergence in
the local weak sense is formally defined by lim,, ﬁ > ica, [(Ci(Gr)) = E[f(G)]
in probability for every continuous and bounded f: G, — R, where C;(G,,) denotes the
connected component of 7 in G,,. In other words, wherever we randomly look in the
graph, there will be little difference between the distribution of the random local system
state (including its topology), and of the limiting G. This holds true e.g. initially if we
initialize all queues as empty or i.i.d., and consider various somewhat regular topologies,
see Section 5.5.1. More details also in [142].

5.2.2 Localized system model

As discussed in the prequel, consider sequences of possibly random rooted marked graphs
(i.e. finite graphs and initial states) (G, x,) — (G, x) with |G,,| agentsi = {1,..., |G|},
converging in the local weak sense to the potentially infinite-sized system (G, x). For a
moment, consider a decentralized, stochastic control policy (: Z x T — [0, 1] such that an
agent i € G chooses to offload to a random neighbor (action 1) with probability ¢ (¢, x;(t)),
depending on its own queue state x;(¢) only. We can then consider the probability law
L(G, x) of the limiting system (G, x) as the state of a single-agent MDP, similar to the
MFC MDP formalism in standard MFC [71]. At least formally, we do so by identifying the
choice of ((t) at any time ¢ € N as an action, and letting the state of the MFC MDP be given
by the law of the time-variant system (G(t), x(t)) resulting from the application of ((t)
when starting at some initial law.




5.3 THEORETICAL GUARANTEES

Deferring for a moment (until Section 5.4) (i) the question of how to simulate, represent
or compute the probability law of a possibly infinite-sized rooted marked graph, and
(i1) the detailed partial information structure (i.e. observation inputs) of the following
policy, we consider a hierarchical upper-level MFC policy 7 that, for any current MFC MDP
state, assigns to all agents at once such a policy ((t) = 7(L(G(t),x(t))) at time ¢. To
reiterate, the decentralized control policy () at any time ¢ now becomes the action of the
MFC MDP, where the dynamics are formally given by the usually infinite-dimensional states
L(G(t),x(t)), i.e. the probabilities of the limiting rooted marked graph (G(t), x(t)) being
in a particular state after applying a sequence of policies (¢(0),...,{(t — 1)). The cost
function J%* (1) for any such upper-level policy 7 is then given by the number of expected
packet drops per agent D(t) in the limiting system,

ivtD(t)] :

JO¥ (1) = -E

Using analogous definitions for the finite system based on the topologies and initial states
(G, z,), we can apply the upper-level MFC policy 7 to each agent and use the resulting
number of average packet drops D™ (¢) at time t. Using our newly introduced graphical
formulation, we thus write the cost function .J(#) in the finite system (G, z,,) as

thDN(t)] :

JEm#(0) = —E

5.3 THEORETICAL GUARANTEES

One can now show that the performance of the finite system is approximately guaranteed
by the performance in the limiting mean-field system. Informally, this means that for any
two policies, if the performance of one policy is better in the mean-field system, it will also
be better in large finite systems.

Theorem 2. Consider a sequence of finite graphs and initial states (G, x,) converging in
probability in the local weak sense to some limiting (G, x). For any policy w, as n — oo,
we have convergence of the expected packet drop objective

JOnXn (1) — J9 ().

Proof of Theorem 2. We apply the framework of [142], which does not include actions or
rewards, by including actions and rewards via separate time steps. Specifically, each time step
is split in three, and we define the agent state space X = ZU(Z xXU)U(Z xU X [0, Dyax])
for each of the agents, indicating at any third decision epoch ¢ = 0, 3, 6, . . . the state of its
queue. After each such epoch, the agent states will contain the state of its queue together
with its choice of action at times t = 1,4, .. ., and lastly also the number of packet drops at
times t = 2,5, . ... Here, D, is the maximum expected number of packet drops and is
given by the (d + 1) times the maximum per-scheduler arrival rate Apax = Ap-
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We formally rewrite the system defined earlier, using the symbol x for the state of the
rewritten system instead of z. As a result, each agent ¢ is endowed with a random local
X-valued state variable X*(t) at each time ¢. For the dynamics, we let S”(X') denote
the space of unordered terminating sequences (up to some maximum degree) with the
discrete topology as in [142], and define in the following a system dynamics function
F: X x SY(X) x £ — X returning a new state for any current local state X (t), any
current SY(X)-valued neighborhood queue fillings X ﬁx(zﬁ) and i.i.d. sampled =-valued
noise &;(¢t + 1). More precisely, we use

X7 (e +1) = FIXT (1), X5 (8), &t + 1)]
(X5 (1), ExGe(t+1)), if X5 (t) e 2,
= (Xffx(t)asz’x(t)afz',xff(t),xff(t),ng(t)(t +1)) if X7(t) € 2 xU,
& xor xGr(tH1), if XE(t) € Z x U % [0, Dy,
where we define = and the random noise variable £ as a contingency over all transitions,

through a finite tuple of random variables &; consisting of components for (i) randomly
sampling the next action (¢; ,).cz according to 7, (ii) computing the expected lost packets

(&i01,02,8) (21,22)€ 2xu1,8e 50 (x)» and (iii) sampling the next queue state (&; 2 3)zez s (x)-

For the first step, fixing any 7, we let

&, ~ Bern (m),/3/(2)),

for all z € Z, to sample action from 7. Deferring for a moment the second step, for the
new state in the third step, we use the Kolmogorov forward equation for the queue state
during the epoch for any initial (z, 3):

P(2,8) = Exp Q(z, §) - e, € A

with unit vector e,,, which results from Poisson thinning, as the equivalent arrival
rate at a queue of an agent currently in state « with neighborhood S will be given by

1 . . :
A <1 —Z9+ w> Thus, we have the transition rate matrix Q(z, 3) with

Qi,i—l = )\ <1 — T9 + M)’ Qi—l,i = U for: = 1, .. ,B, and where Qm‘ =

— Zj Q(A, 2);; fori =0,..., B, and zero otherwise. Therefore, the next queue filling is
sampled as

iz p ~ Cat (P(x,)).

Lastly, for the second step we consider the non-random conditional expectation of packet
losses during any epoch:

Si,m,mﬁ = [EXp Q(xv 5) ' e:m]B—i—l

under the executed actions (allocations), analogously to the new state, by adding another row
to the transition matrix Q(z, 3), giving Q(z, 3) where Qp15 = A (1 — 2o + w»
i.e. counting all the expected packet arrivals whenever the queue is already full (B).



5.3 THEORETICAL GUARANTEES

We use the same definitions for finite systems (G,,, z,,). We can verify [142, Assumption
Al, since I’ is continuous e.g. by discreteness of the relevant spaces, and all &; are sampled
independently and identically over agents and times. By [142, Theorem 3.6], the empirical
distribution 32 = ﬁ 2 ic, OxGnan yy converges in probability in P(X') to its

mean-field limit £(X$*), and in particular
Bén2n () — L(XS"(t)) in distribution in P(X) (5.3.2)

at any time ¢, where P(-) denotes the space of probability measures equipped with the
topology of weak convergence. Hence, the above describes the original objective by

Z 7' Dy (t)

=>_ VAR [ (8% (1)

JCnen () =

= > PR [P (X (1)) = T ()

since we split any time step into three by the prequel, the continuous mapping the-
orem, and dominated convergence, where we use the continuous function r*(5) =
[ X31se 2x1x[0,Dman] (), where 3 = P(X), to sum up the expected packet drops in the
system, since the integrand is continuous and bounded (under the sum topology for the
union in X, and the product topology for products in X). [

As aresult, we have obtained a limiting mean-field system for large systems, which may be
more tractable for finding improved load balancing schemes. In particular, if we have a
number of policies between which to choose, then the policy performing best in the MFC
system will also perform best in sufficiently large systems. Here, the set of MFC policies
can include well-known algorithms such as JSQ, which is known to be optimal in many
special cases.

Corollary 1. Consider a finite set {m,..., Tk} of MFC policies with MFC objective
values J9*(m1), ..., J¢*(rk). Let 7; be the policy with maximal MFC objective value
JEX(m;) > max; JO*(mr;). Then, there exists ' such that for all n > n', we also have
optimality in the finite system

JGnXn (m;) > mjax JGnXn (7).

Proof of Corollary 1. Define the optimality gap:

AJ = J% (1)) — max JE(1;).
j#

Then, by Theorem 2, there exists n such that:

max | JEn (m;) — J9% ()| < %
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Therefore,

JGnozn (m;) — mjax JGn2n (75)

mln(JG"’z" (m;) — JGnzn (7))
= min(J% () — JOH () + JOR(m) — () + JOH(m,) — T ()

> min( S5 () = JO%(m)) + min(J () — JO(w,) + min(JO ;) — S (1)

j#i
AJ AJ
> —— +AJ — —
- 2 + 2
=0
which is the desired conclusion. L]

These proofs use the theoretical framework of [142] for general dynamical systems.

In our experiments, we will also allow for randomized assignments per packet to further
improve performance empirically, such that all packets arriving at a particular scheduler
during the entirety of any epoch are independently randomly either allocated to the local
queue or a random neighbor, i.e. formally we replace offloading choices &/ = {0, 1} by
probabilities for offloading each packet independently, &/ = [0, 1].

The MFC MDP formulation and theoretical guarantees give us the opportunity to use MFC
together with single-agent control, such as RL in order to find good scalable solutions while
circumventing hard exact analysis and improving over powerful techniques such as JSQ in
large queuing systems. All that remains is to solve the limiting MDP.

5.4 LEARNING OPTIMAL LOAD BALANCING POLICY FOR THE LIMITING SYSTEM

Building upon the preceding MFC formulation, all that remains to find optimal load
balancing in large sparse graphs, is to solve the MFC problem. Due to its complexity,
the limiting MFC problem will be solved by considering it as a variant of an MDP, i.e. a
standard formulation for single-agent centralized RL, which will also allow a model-free
design methodology. More precisely, we will consider partially-observed MDP (POMDP)
variant of the problem, since at any time ¢, we cannot evaluate the potentially infinite
system L(G(t),x(t)) exactly to obtain action ((t) = m(L(G(t),x(t))). Instead, we will
use the empirical distribution 3%~ (¢) as an observation that is only correlated with the
state of the entire system, but of significantly lower dimensionality (|.X'|-dimensional vector,
instead of X'|¢! plus additional topological information). This also means that we need not
consider the limiting system of potentially infinite size, or include the information of root
nodes when considering network topologies in the following, which is intuitive as there is
no notion of global root in local queuing systems.

Here, the centralized RL controller could have estimated or exact global information on the
statistics of the queue states of all nodes, or alternatively we can understand the approach
as an optimal open-loop solution for any given known starting state, since the limiting MFC



5.4 LEARNING OPTIMAL LOAD BALANCING POLICY

dynamics on [GnXn (t) are deterministic, and therefore the centralized RL controller can be
used to compute an optimal deterministic sequence of control, which can then be applied
locally.

input :Hyperparameters and system parameters from Table 5.1 and Table 5.2.
output :Policy ¢

Initialize finite system, i.e. rates A\(0) ~ Unif({\,, \;}) and queue states
X, = 0 € Z% on topology G,,.

Initialize PPO policy 77, critic V¥.

for pPPO iterationn = 0,1, ... do
Initialize batch buffer B = )
while |B| < B, do
fort=20,1,...,7, do
Observe empirical state distribution 3% (t).
Sample decision rule ((t) ~ 7 (3% (t)).
for:=1,...,Ndo

Observe agent state z;(t).

Sample action w;(t) ~ ((t,z;(t)) (allocation rule).
end
Execute allocation rules (u;(t)); for At time units.
Resample arrival rates A(t + 1) ~ P(A(t + 1) | A(2)).
Count number of dropped packets per agent D(t).
Observe new distribution 3%*n(¢).
Save (state-action-reward-state) transition

B = BU{(B%*(t),¢(t), —D(t), %> (t + 1))}

end

end
Compute GAE advantages Aon B.
for epochi=1,...,T, do
Sample mini-batch b with |b| = B,, from B.
Update policy parameter 6 using PPO loss gradient VL, on b.
Update critic parameter ¢ using Lo loss gradient V,,L,;, on b.
end

end

return 7?

FIGURE 5.4: Learning MFC policies in finite systems.

In our experiments we also allow to simply insert the empirical distribution of the locally
observed neighbor queue states at each node (a simple estimate of the true empirical
distribution), i.e. by changing lines 8-13 in Algorithm 5.4 to instead sample decision rules
for each agent according to the local empirical state distribution, which is verified to be
successful. Thus, our approach leans into the centralized training decentralized execution
(CTDE) scheme [48] and learns a centralized policy, which can then be executed in a
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decentralized manner among all schedulers. As desired, our approach is applicable to
localized queuing systems.

5.4.1 Training on a finite queuing system

Note that the considered observation 3%~ (t) and any other variables such as the number
of dropped packets at the root node can indeed be computed without evaluating an infinite
system until any finite time ¢, since at any time ¢, at most any node less than ¢ steps
away from the root node may have had an effect on the root node state. Therefore, the
computation of root node marginals can be performed exactly until any finite time ¢, even
if the limiting system consists of an infinitely large graph GG. However, the cost of such an
approach would still be exponential in the number of time steps, as a k-hop neighborhood
would typically include exponentially many nodes, except for very simple graphs with
degree 2.

We therefore consider alternatives: For one, we could apply a sequential Monte Carlo
approach to the problem by simulating M instances of a system from times 0 to some
terminal time 7" that consists of all nodes less than 7" away from the root node. However,
this means that we would have to simulate many finite systems in parallel. Instead, using the
fact that the empirical distribution of agent states 3% (¢) in the finite system converges
to £L(X5"(t)) as seen in Theorem 2, it should be sufficient to evaluate £(X5 " (t)) via the
empirical distribution of a sufficiently large system.

Thus, we simulate only a single instance of a large system with many nodes by using it for
the limiting MFC, which is equivalent to learning directly on a large finite system. In other
words, our approach learns load balancing strategies on a finite system by using the MFC
formalism for tractability of state and action representations, with theoretical guarantees.

5.4.2 Implementation

In order to solve the POMDP, we apply the established proximal policy optimization (PPO)
RL method [153, 156] with and without recurrent policies, as commonly and successfully
used in POMDP problems [157]. PPO is a policy gradient method with a clipping term
in the loss function, such that the policy does not take gradient steps that are too large
while learning [153, 156]. For our experiments, we have worked with the stable and
easy-to-use RLIib 1.10 implementation [137] of PPO. The overall training code is given in
Algorithm 5.4, which also shows how to analogously apply a trained MFC policy to a finite
system. We use diagonal Gaussian neural network policies with tanh-activations and two
256-node hidden layers, parameterizing MFC MDP actions ¢ () by values in [0, 1] for each
entry ((¢,u | =), normalized by dividing by the sums ) ((t,u | z).
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FIGURE 5.5: Small scale illustration of all the topologies used in this chapter. (a) shows a 1-D
cyclic graph for N = M = 5. (b) shows one surface of the cube-connected cycle graph of order
o. =3 and N = M = 24, adapted from Fig. 2 of [158]. (¢) is the 2-D torus grid graph of o, = 3
rows and columns, having N = M = 9. (d) shows a configuration model of sequence D = {2, 3}
for N = M = 9. And (e) is the Bethe lattice with depth o, = 2, degree d = 3and N = M = 10.

5.5 EVALUATION

In this section, we first give an explanation of the different types of graph topologies we
have used to verify our aforementioned theoretical analysis. We also give a description
of the different load balancing algorithms we have chosen to compare against, as well as
discuss hyperparameters used for training and evaluation.

5.5.1 Topologies

A brief description of the practical topologies of interest, most of which fulfill the
convergence in the local weak sense defined earlier, is given here. For each of the following
mentioned topologies, the agents are numbered from 1 to V.

First, we consider the simple 1-D cyclic (CYC-1D) graph, which has extensively been
used in the study of queuing networks and is highly local [159, 160]. Each agent ¢ has
access to d = 2 other queues/servers, {i — 1,7 + 1}, while the edge nodes, 1 and N, form a
connection, as highlighted in Fig. 5.5.
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Next, we define the cube-connected cycle (CCC) graph. This undirected cubic graph has
been considered as a network topology for parallel computing architectures [158, 161]. It
is characterized by the cycle order, o. which is the degree d of each node and defines the
total number of nodes N = 0.2°¢ in the graph, as shown in Fig. 5.5.

We also apply the torus (TORUS) grid graph that has been repeatedly used to represent
distributed systems for parallel computing [162, 163], as a higher-dimensional extension
of the CYC-1D graph. We here consider a 2-D torus, which is a rectangular lattice
having o, rows and columns. Every node connects to its d = 4 nearest neighbors, and the
corresponding edge nodes are also connected. The total nodes in a 2-D torus are N = o7,
see Fig. 5.5.

Another highly general topology is the configuration model (CM). This sophisticated
generalized random graph is one of the most important theoretical models in the study of
large networks [164, 165]. In contrast to the prior highly local topologies, the CM can
capture realistic degree distributions under little clustering. Here every agent is assigned a
certain degree, making the graph heterogeneous as compared to every agent having the
same degree as in previously mentioned graphs. The degree sequence we have used is in
the set D = {2, 3} with equal likelihood, as shown in Fig. 5.5.

And lastly, for an ablation study on graphical convergence assumptions, we use the Bethe
(BETHE) lattice. This cycle-free regular tree graph is used for analysis of many statistical
physics, mathematics related models and potential games [166, 167]. It is characterized
by a pre-defined lattice depth o,, with all nodes in the lattice having the same fixed
number of neighbors, d. The number of nodes at a depth o away from the root node
are given by: d(d — 1)(»~1) and the total nodes in the Bethe lattice are calculated as:
N=1+Y2 d(d—1)°"Y. Weuse d = 3 for our experiments, as in Fig. 5.5. Note that
it has already been formally shown in [142, Sections 3.6 and 7.3] that for a sequence of
increasing regular trees, the empirical measure does not converge to the same limit law
as the root particle, even in the weak sense. This is because even as N — oo, a large
proportion of the nodes are leaves, which greatly influences the behavior of the empirical
measure, as particles at different heights behave differently, and the root particle is the
only particle at height zero. We have also verified this mismatch using our experiments in
Section 5.5.4, though we nevertheless obtain improved performance in certain regimes.

5.5.2 Load Balancing Algorithms

We now explain first the mean-field solver that we have designed, based on our mathematical
modeling from Section 5.1, namely the MF-Random solver. Then we mention all the
existing state-of-the-art finite-agent solvers which we have used for performance comparison.
The different kinds of load balancing policies that we have verified on the above-mentioned
topologies are given in the following:

* MF-Random (MF-R): The agent is only aware of the state of its own queue. The
upper-level learned policy is a vector that gives the probability of sending jobs to
their own queue or to a random other accessible queue.
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TABLE 5.1: System parameters used in the experiments.

Symbol Name Value
At Synchronization delay [ms] 1-10
I Service rate [1/ms] 1
Ay A1) Arrival rates [1/ms] (0.9,0.6)
N Number of agents 4 — 6000
M Number of queues 4 — 6000
d Number of accessible queues 3—-6
1 Monte Carlo simulations 100
B Queue buffer size 5
Zn Queue (agent) starting state 0c ZCn
v(0) Queue starting state distribution  [1,0,0, .. ]
D Drop penalty per job 1
T Training episode length 50
Gn,G Graph topologies Section 5.5.1

* MARL-PS (NA-PS-RND): The policy is trained, using PPO with parameter sharing
[154], as it often gives state-of-the-art performance in various RL benchmarks [153,
155], on a smaller number of agents. The learned policy can be used for any arbitrary
number of agents. It generates a continuous policy which gives the probability of
either sending to your queue or randomly to one of the neighbors’ queues while only
observing the state of your own queue, similar to MF-R.

* Join-the-shortest-queue (JSQ): A discrete policy that sends jobs to the shortest out of
all accessible queues.

* Random (RND): A policy where the probability of sending the job to any accessible
queues is equally likely.

* Send-to-own-queue (OWN): A discrete policy where the agent only sends jobs to its
own queue.

* scalable-actor-critic (SAC) [140]: This method learns a discrete policy of sending to
any one of the d accessible queues. Each agent learns an individual policy while
using as an observation the agent’s own queue state and also the queue states of all
its neighbors. However, a trained policy cannot be used for an arbitrary number of
agents since the policy of an agent is influenced by its neighbors states as well, which
is not assumed to be the same for every agent.

Note that the action from the above-mentioned load balancing policies is obtained at the
beginning of each At and then used for that entire At timestep. Also note that for all the
algorithms, the value for the number of accessible queues d is dependent on the type of
graph topology being used, and we refer to Section 5.5.1 for more details on this. In the next
section, we discuss all the required parameters and chosen values for our experiments.
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TABLE 5.2: Hyperparameter configuration for PPO.

Symbol Name Value
y Discount factor 0.99
ARL GAE lambda 1
Ke KL coeflicient 0.2
Kt KL target 0.01
€ Clip parameter 0.3
I, Learning rate 0.00005
By Training batch size 4000 — 24000
B,, SGD Mini batch size 128 — 4000
I, Number of SGD iterations 5—8
Ty Number of epochs 50

5.5.3 Training

For all our experiments, we consider that each agent is associated with only one queue,
so N = M. The servers work at an exponential rate of ;. At every decision epoch we
simulate a Markov modulated arrival rate A(¢), with A(0) ~ Unif({\, A;}) with transition
law for switching between rates,

(5.5.3)

Note that these values were chosen to depict the switching of the system between high and
low traffic regimes. In principle, any reasonable values can be considered. The rest of
the system parameters are given in Table 5.1. We use the well-established policy gradient
based RL algorithm, proximal policy optimization (PPO) as discussed in Section 5.4 with
hyperparameters in Table 5.2. A detailed description of what these parameters do is given
in Appendix C. We have used a localized reward function which penalizes the drops in
each queue.

Lastly, the number of agents N and degrees d in different graph topologies are fixed during
training of the MF-R policies as:

* 1-D cyclic (CYC-1D): N = M =101,d = 2,

* Cube-connected cycle (CCC): o, = 5, N = 125,d = 3,
e 2-D Torus grid (TORUS): 0; = 11, N = 111, d = 4,

* Configuration model (CM): N = 101, d € {2, 3},

e Bethe lattice (BETHE): o, =5, N =94, d = 3.

Once trained on these parameters, the learned policy can be evaluated on varying graph
sizes without the need of retraining, as done in our experiments.
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FIGURE 5.6: JSQ converges as At increases, validating our simulator.
5.5.4 Experiment Results

We now present the performance comparison of the load balancing policies of Section 5.5.2
on graph topologies from Section 5.5.1. For the exact simulation of associated continuous-
time Markov chains y, we sample exponential waiting times of all events using the Gillespie
algorithm [138]. For training, we use the same simulation horizon for each episode
consisting of 7" = 50 discrete decision epochs, and for comparability the performance is
evaluated in terms of the average number of packets dropped per 50 time units and queue.
However, note that simulating the same time span with different At does provide slightly
different results, due to the switching between high and low traffic regimes after each At
epoch. Each evaluation was repeated for 100 simulated episodes, and error bars in all
figures depict the 95% confidence interval.

Simulator analysis

Firstly, we performed a small experiment in order to ensure that our simulator works as
expected. Performance of the JSQ algorithm was evaluated for the TORUS graph with
o, = 100, N = 100 and d = 4 for the JSQ algorithm. It can be seen in Fig. 5.6 that on
increasing At there comes a point when the performance of JSQ starts to converge, which
is the expected behavior for finite systems.

We also tried different sizes of the neural network while keeping all other parameters and
environment. The training was performed for the CCC graph with o, = 5 and At = 5.
The tested network sizes are shown in the legend of Fig. 5.7, where the first value is
the size of the layer (128, 256) and the second value is the number of layers (2, 3) used.
The performance was quite similar for all of them, and we used the default network size
[256 — 2] for all our experiments.
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FIGURE 5.7: Performance evaluation on a fixed environment while changing only the neural
network parameters.

Comparison to SAC

To begin, while training for SAC, we observed that on increasing the number of agents,
the convergence to a locally optimal policy takes longer (using one core of Intel Xeon
Gold 6130), making it not too feasible for the larger setups we consider in this chapter.
See Fig. 5.8(a) for time taken to learn a SAC policy on a 1-D cyclic topology with At = 3,
N = M, and same computational resources for all training setups of V. Our implementation
of SAC was adapted from [168]. Furthermore, Fig. 5.8(b) shows the performance of the
learned SAC policy as compared to other algorithms. Although performance did improve as
the number of agents rises, indicating the scalability of SAC to many agents, the performance
of SAC remained suboptimal. Due to these limitations, we did not investigate the SAC
algorithm further in our experiments.

(a)6 Time Analysis for SAC Policy  (b) At =3.0
Q -
2 N
5 sl I
=4 - MF-R &=z
- £ [FE-se Fg
) g [+-T-: RND | ol
E 24 E 15Q r"‘“f'—'uiuui—-.—.%
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FIGURE 5.8: (a): SAC training time to convergence increases with the number of agents, making it
difficult to train and use for larger setups. (b): SAC performs worse than our proposed MF-R policy
for a number of agents between 5 and 101.
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FIGURE 5.9: Performance comparison of the learned MF-R policy to NA-PS-RND, JSQ, RND and
OWN algorithms, on a 1-D cyclic graph, over a range of synchronization delays is shown, with 95%
confidence intervals depicted by error bars. The degree of each agent is d = 2 and the number of
agents (queues) used to make the graph are N € {9, 21,91, 901, 3501, 5001}. It can be seen that
for the in-between range of At our MF-R policy is the optimal one.

Finite system performance

The second result of interest is the performance analysis on the 1-D cyclic graph over
a range of At for the learned MF-R policy as compared to the NA-PS-RND, JSQ, RND and
OWN algorithms, see Fig. 5.9. The number of agents (queues) used to generate the graph
are N € {9,21,91,901, 3501, 5001}, with every agent always having the fixed degree
d = 2. For this graph, we also trained an NA-PS-RND policy on a sufficiently small size
with N = M = 5 to obtain convergence even with batch and minibatch sizes of 50000 and
8000. We used PPO with parameter sharing so that the learned policy could be evaluated
on any graph size.

It can be seen that JSQ is the best strategy at At = 1, while the performance of MF-R is
very close to JSQ. And as expected, the performance of JSQ deteriorates with increasing
synchronization delay At¢. For an intermediate range of At € {3, 5, 7}, neither JSQ nor
RND are the optimal load balancing policies. Here, our learned MF-R policy performs best
and approaches the optimal RND performance as At increases to 10. As discussed earlier,
it has already been proven in certain scenarios that as At — oo, RND is the optimal load
balancing policy [113]. The learned NA-PS-RND policy has a similar trend to our MF-R
policy, but is unable to outperform it even for small systems. For the CYC-1D, CCC, and
TORUS graphs with homogeneous degrees, the performance of OWN in the limit — sending
only to its own queue — is equivalent to RND, since for homogeneous degrees, sending to
your own queue results in the same packet arrival rate at each queue as randomly sending
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FIGURE 5.10: Performance of the MF-R policy for increasingly large CYC-1D graphs. The red
horizontal line indicates the evaluated episode return of the learned MF-R policy during training on
N = 101, (MF-MFC). Shaded regions depict the 95% confidence intervals. As the system size
increases, the performance of the learned policy (black) increasingly converges to the mean-field
system performance (red), validating the accuracy of our mean-field formulation and choice of N
for training.

to any queue in your neighborhood. In Fig. 5.10, it can also be seen that as the size of the
graph increases, the performance of the policy converges and approaches the learned MF-R
policy, confirming our theoretical mean-field analysis. The convergence also confirms that
the IV chosen for training was large enough to represent the mean-field system.

Performance in large systems

In Fig. 5.11 each subfigure shows results for a different topology. We show the performance
over a range of At € {1,2,...,10} for large sparse networks. Fig. 5.11(a) is a compact
representation of Fig. 5.9 over all At and N = 5001. Fig. 5.11(b) is for the CCC graph
with d = 3 and N = 4608. Fig. 5.11(c) shows the performance for the TORUS graph with
d=4,0, =70and N = 4900, while Fig. 5.11(d) is for the CM graph for N = 5001 with
uniformly distributed degrees in the set d € {2, 3}. Our learned MF-R policy is compared
to JSQ, RND and OWN algorithms. The following observations can be made for all the
subfigures: (i) For small At = 1 JSQ performs better than all the algorithms which is
theoretically guaranteed, however performance of MF-R is very close to it; (ii) For in between
range of At = {2,3,...,7} MF-R has the best performance in terms of packets dropped;
(1i1) Except in the CM graph (where the varying degrees lead to differing packet arrival rates
between OWN and RND), we find that OWN and RND again have equivalent performance
by regularity of the graph, as discussed in previously; (iv) For higher At € {8,9,10} our
MF-R policy performance coincides with the RND policy, where the RND policy has been
theoretically proven to be optimal as the synchronization delay At — oo [113]. Hence, we
find that our MF-R policy performs consistently well in various topologies.

Ablation on topological assumptions

As mentioned in Section 5.5.1, the theoretical analysis and work in [142] does not apply
to the BETHE topology, and the effect is further supported by our experimental results.
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FIGURE 5.11: Performance over At € {1,2,...,10} for large sparse graphs with underlying
topologies of CYC-1D in (a), CCC in (b), TORUS in (c) and CM in (d). The number of nodes
used to generate the graphs is given at the top of each subfigure. It can be seen that for smaller
synchronization delays, JSQ is the optimal policy, while for higher delays RND is the optimal one as
expected from prior literature [113]. For the in-between range of delays, our MF-R policy performs
the best and approaches the optimal performance of RND as the At increases. OWN and RND have
equivalent performance in CYC, CCC and TORUS, since fixed degrees imply the same packet
arrival rate when always sending to your own queue, or always sending randomly to any neighbor.
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FIGURE 5.13: (a): The training for TORUS with and without RNN policies converges almost to
the same return. (b): Evaluation of the learned policy using different observations. MF-R uses only
own queue state, MF-N additionally uses neighbor queue states, and MF-G uses state of all queues
in the system.

Fig. 5.12 shows the performance comparison for Bethe lattice graphs of the learned MF-R
policy with JSQ, RND, and OWN algorithms over different A¢. We show the result only for a
large BETHE network, with o, = 11, d = 3 and N = 6142. OWN outperforms RND more
significantly than in CM, since disproportionately many packets arrive at nodes connected
to leaf nodes. It can be seen that the system behaves as expected when At is small, with
JSQ quickly outperformed by MF-R, while MF-R eventually performs worse than OWN as
At increases. This behavior is due to the fact that in structures such as regular trees, the
central node as the root node is not sufficient to represent the performance of all nodes,
especially the many leaf nodes that behave differently even in the limit. Because of this
loss of regularity, theoretical guarantees fail when scaling large Bethe or similar topologies,
as explained in Section 5.5.1. Nevertheless, we see that the learned policy can outperform
existing solutions in certain regimes, e.g., at At = 3.

RNNs and decentralized execution

We additionally trained our MF-R policy with recurrent neural networks in PPO, as is typical
for partially-observed problems [157], MF-RNN. In Fig. 5.13(a), we see that their effect
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FIGURE 5.14: Performance comparison for increased buffer capacity of each queue to 20. The
system utilization was increased to ensure occurrence of packet drops in a limited amount of time.

is negligible and can even be negative. Finally, we used partially observed decentralized
alternatives to the empirical distribution as input to the learned MF-R policy in the evaluation,
see Fig. 5.13(b). In MF-N we use the distribution of neighbors’ queue states, in MF-G we
use the empirical distribution of all queues in the system, and in MF-R only the agent’s own
queue state information is used as a one-hot vector. Similar performances indicate that the
learned policy can be executed locally without using global information.

Increased buffer size

For completeness and to illustrate generality, we also performed an experiment in which
the buffer size for each queue was increased from 5 to 20. To achieve faster convergence to
a learned policy, we increased the arrival rate to the service rate of 1. We also increased the
time steps from 50 to 200 so that the queues can be sufficiently filled, and the policy can be
learned over the increased state space. Fig. 5.14 shows that our learned policy outperforms
the other algorithms at At = 5 for TORUS graph. However, this increased the training
time.

Heterogeneous servers

We also conducted experiments where we considered the servers to be heterogeneous,
with randomly assigned speed of fast (rate 2) or slow (rate 1). The workload was the
same; modulating between [0.9, 0.6]. Fig. 5.15 shows that our algorithm has comparable
performance to RND and OWN while outperforming JSQ. We also compared with SED, the
state-of-the-art load balancing algorithm for heterogeneous servers [22], which performs
better since it makes decisions based on both the neighbors’ queue state information and
the server speeds. We believe our model is not an ideal fit for this setting and further work
needs to be done in this direction.
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FIGURE 5.15: Performance comparison of MF-R when the servers are considered to be heteroge-
neous. Additional comparison was done with the Shortest-expected-delay algorithm [22], which is
the state-of-the-art when the servers are heterogeneous.

5.6 SUMMARY

In this chapter, we considered a large and highly local queuing system and learned an
efficient load balancing algorithm for it. In order to learn a scalable as well as localized
load balancing policy, we have used the sparse mean-field approximations, while also
providing theoretical guarantees. After modeling our multi-agent queuing system as a
sparse MFC MDP, we have used the state-of-the-art RL algorithm PPO to learn the policy.
For the multi-agent system to be synchronous, we have also considered the synchronization
delay, as in the previous chapter. We have used different kinds of regular graph topologies
for evaluation of our proposed solution and then compared to well-known baselines such
as JSQ, RND, etc. Our approach outperforms the well-known baselines and can scale to
queuing systems of arbitrary size with arbitrary synchronization delays.



CONCLUSIONS AND OUTLOOK

In this thesis, we have looked into different into two main challenges of queuing networks,
namely network delays and scalable load balancing policies. The main components of our
queuing system are first-in-first-out (FIFO) queues, servers which process the jobs waiting
in queues and load-balancers. The task of the load-balancer is to allocate the arriving
jobs to available queue resources, given the queue information it has available at that time.
While, the allocation rule is dependent on the load balancing policy the load-balancer uses,
which translates the state of the queues into a decision of which queue to send the jobs to at
this time.

We started by looking at a system with a large number of queues and a single load-balancer
in Chapter 3. Due to the first challenge, the updated queue state information is received
by the load-balancer with a delay, leading to partial observability. We address this by
modelling the system ad a partially observable Markov decision process (POMDP) and
then solving it using the state-of-the-art Monte Carlo tree search (MCTS) algorithm, under
different underlying inter-arrival and service time distributions and real network data
provided by Kaggle.

In Chapter 4 we extended this model to also have a large number of load-balancers (agents).
In order to still have a synchronous system, we consider an arbitrary network delay such that
all agents can receive the queue state information. Learning scalable policies in multi-agent
systems is tricky because of challenges such as non-stationary, computational complexity,
partial observability and credit assignment. To cater these, we have used the mean-field
control approach to convert the multi-agent multi-queue system into a single-agent Markov
decision process (MDP), which is then solved using the state-of-the-art proximal policy
optimization (PPO) algorithm. We have also provided theoretical guarantees to show that
the policy learned i n the limiting single-agent system performs well in the finite multi-agent
multi-queue system as long as the system size is large.

A natural extension to the work of Chapter 4 was then to consider locality of interaction
between load-balancers, which can be represented by an underlying sparse but regular
graph structure. Here we have used the recently published sparse mean-field theory to
convert the multi-agent multi-queue system having sparse neighbors and queue accesses
into a sparse single-agent mean-field control MDP with theoretical performance guarantees.
Different types of network topologies, including torus and cube connected cycles, were
considered, and it was shown that the learned load balancing policy can be used on queuing
systems of arbitrary size with arbitrary synchronization delays.

This work can have many interesting future directions. One would be to consider a system
with heterogeneous jobs types, such that a job could take more than one slot in the queue or
could have priority over other jobs. This would change the learned policy since every action
will not have the same effect on the queue state, rather it would now also depend on the job
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type. Another direction would be to not allocate every queue its own designated server,
rather one server could have access to multiple queues. This combined with heterogeneous
servers and/or non FIFO queues would make the system much more complex, especially in
the limiting case. Another direction would be to consider non-exponential inter-arrival
service times also in Chapter 4 and 5 and derive a mean-field model for them.
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APPENDIX A: PROBABILITY THEORY

A.l Probability Distributions . . . . . . . ... .. L oo 97

Here we first give definitions related to probability theory and then give an explanation
of the probability distributions used throughout this thesis. For more details see [15, 136,
169].

PROBABILITY SPACE is defined by the tuple (2, F,P), where ) is the sample space,
F is the o-algebra and P: F — [0, 1] is the probability measure.

RANDOM VARIABLE (RV) is a function which assigns values to each outcome of an
experiment, X : 2 — X for some space X. If these values are countable, the RV X is
discrete, else it is a continuous RV.

A.l PROBABILITY DISTRIBUTIONS
A.1.1  Exponential Distribution

An exponential distribution is defined by rate parameter A > 0 and its PDF is given by

XM x>0,
Exp(z | A) = {0 =0 (A.1.1)

with support x € [0, 00). The expected value and variance of a continuous random variable

X ~ Exp () which is exponentially distributed are £[X] =  and Var[X] = ;.

A.1.2  Poisson Distribution

A discrete RV has a Poisson distribution, X ~ Pois (), with rate parameter A > 0 if its
probability mass function (pmf) is given as :
A=A

Pois (k | A) = P(X = k) = = (A.1.2)
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where £ is the number of occurrences. A Poisson Distribution tells the probability that
k number of events occur in a fixed interval if the events occur with a constant rate and
are independent of the time since last event. The mean and variance of X is given as
E[X] = Var[X] = \.

A.1.3  Binomial Distribution

The binomial distribution is defined by two parameters: (i) number of trials n € N and (ii)
the success probability of each trial p € [0, 1]. It tells the probability of having k successes
in a sequence of n independent trials, with success probability of p and the trials only have
2 possible outcomes. A discrete RV follows the binomial distribution, X ~ Bin (n, p) if
its pmf is given as:

Bm(mn,p):{(k)p( p)"*, for 1.2,....m

) (A.1.3)
0, otherwise

where k is the number of successes and (Z) = ] is the binomial coefficient. The

n!
F(n—F)
expected value and variance of X are given as F[X]| = np and Var[X] = np(1 — p).

A.1.4  Bernoulli Distribution

It is a special case of the Binomial distribution, defined by probability parameter p, where
the Bernoulli distributed RV X takes value 1 with probability p and value 0 with probability
1 — p. The pmf of X ~ Bern (p) over k possible outcomes is given as:

ifk=1
Bern (k | p) = {]19’ lfz 0 (A.1.4)
—-p, 1 = U.

The expected value and variance of X are given as E[X| = p and Var[X| = p(1 — p).

A.1.5 Categorical Distribution

It is the generalization of the Bernoulli distribution when the categorical RV X *) can
have one of the %k possible outcomes with each outcome or category having a separately
specified probability, p;,. The categorical RV X (k) having set k as sample space has pmf
defined as:

Cat(z=1i|p)=p (A.1.5)
with support z € {z() | i = 1,... n}, probability vector p = [py,...,pn] and p; the

probability of seeing element 4, > . p; = 1. The expected value and variance of X (k) are
given as E[X®] = p; and Var[X®] = p.(1 — py).



A.l PROBABILITY DISTRIBUTIONS

A.1.6  Geometric Distribution

It gives the probability of the number of failures before a success occurs in a Bernoulli trial
having success probability p. A discrete RV X ~ Geom (p) for k =1,2,3,4,... hasa
geometric distribution if its pmf is given as:

Geom (k | p) = (1 —p)*'p. (A.1.6)

The expected value and variance of X are given as E[X]| = 119 and Var[X] = %.

A.1.7  Uniform Distribution

If all possible outcomes for a RV X are equally likely then it is represented using a uniform
distribution with parameters a,b > 0 with b > «a and support [a, b]. Depending on the
values of X, uniform distribution can be both discrete and continuous. For continuous RV
X ~ Unif (a, b) the pdf is given as:

Unif (z | b,a) = {8—% ;ftgefwfsf b (A.1.7)
And the expected value and variance of X are given as E[X] = £ and Var[X] = (bI; E
A.1.8 Gamma Distribution
A continuous RV X is Gamma distributed if its pdf is given as:
Gam (z | a,b) = ﬁxa_le_m, (A.1.8)

INEY!

where a € R.( and 5 € R are the shape and rate parameters, respectively, defining the
gamma distribution with support z € R . The expected value and variance of a gamma

distributed RV X are given as E[X] = § and Var[X] = .

A.1.9 Pareto Distribution

It is a heavy-tailed distribution defined by parameters scale x,, > 0 and shape (tail
parameter) o > (. A continuous random variable X following Pareto distribution has the
following pdf:

S >,
Par (m | b, a) — {xa+ , T ~2X (A.1.9)

0, T < Tyy-
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The expected value and variance of a Pareto distributed RV X are given as:

<1
E[X] = {ZO a=5 (A.1.10)
a—_’_wll, a>1,
00, a € (1,2],
Var[X] = (A.1.11)
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B.]l MONTE CARLO TREE SEARCH

MCTS is a heuristic search and planning framework for finding optimal decisions by
sampling a given model [170]. The key idea is to do a tree search that keeps a balance
between exploration and exploitation, which simply means that it exploits the best found
actions up till now while also continuing to explore the action space for alternate better
actions. It rests on two fundamental concepts, (i) the true value of an action may be
approximated using random simulation, and (ii) that these values may be used efficiently
to adjust the policy towards a best-first strategy. In an MCTS the nodes of the tree are the
states, =, while the tree edges represent the possible actions, u, from that state. And each
node contains:

* Total count for the state: N (x)
* Action value: V' (z, u)
* A count for each action in that state: N (x,u)

An MCTS can be used to solve an MDP and its basic working consists of the following four
steps:

 Selection: choosing the action to take at the current node. This is the most delicate
part of the algorithm and has many sophisticated methods available. The one we
have used in Chapter 3 is called as upper confidence on trees (UCT) algorithm and is
explained in Section B.1.1.

* Expansion: Once a leaf node is reached and no more selection is possible, the tree is
expanded by one node either in breadth or height.

» Simulation: from the selected child node, simulate the tree until a pre-decided depth
to evaluate its value.

» Backpropagation: update the entire tree till the root by backpropagating. N (z) and
N(z,u) are incremented by one for that state.
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Selection Expansion—— Simulation— Backpropagation

4&

FIGURE B.1: Visualization of one iteration of the MCTS algorithm.

For a visualization of the algorithm, see Fig. B.1. MCTS is an attractive framework because
it is a-heuristic (does not need domain-specific knowledge), asymmetric (tree growth is
quickly skewed towards more promising actions) and an anytime (back-propagation ensures
all values are always up-to-date, so learning can be stopped to use the current best estimate)
algorithm.

However, it also has some drawbacks. Firstly, it is memory intensive but this can be
resolved by pruning the tree after some timesteps. Secondly, depending on the complexity
of the problem it may need a large number of iterations to find a good solution, however
different kinds of parallelizations can be used to speed this up [111, 171].

B.1.1 Upper confidence bound on trees

The UCT algorithm [108] consider each node (state) of the tree as a multi-armed bandit
problem [172] and then chooses the next action based on the following:

V(z,u) = V(z,u)+c %

where c is the exploration constant. The actions is then selected as u = arg max,, f/(x, u).
Note that if ¢ = 0 then UCT becomes a purely greedy algorithm always choosing the best
action. This enables a balance between the number of explored actions and the best action
at the moment.

B.2 POMCP

The POMCP framework is an extension of the state-of-the-art MCTS algorithm to learn a
scalable, optimal policy for a POMDP by constructing online a search tree of histories, h.
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And each node, 7', now keeps an estimates of a history instead of state. The state is then
sampled from the belief state, B(h), which is represented using a set of particles. They
show that as long as the belief state is close to the actual state of the environment, POMCP
will be able to learn an optimal policy for the POMDP. Monte Carlo simulations are used
for the tree search and belief state updates.

The POMCEP algorithm used in Chapter 3 is given here as Algorithm B.2. For further
details see [98].

Function SEARCH (h):
repeat
if h = empty then
| z~T
else
| x~ B(h)
end
Simulate(x, h, 0)
until Timeout()
return arg max, V (hb)

Function ROLLOUT (x, h,depth):
if y9ePth < ¢ then
| return O
end
u ~ 7Troll0ut(h7 )
(a',0,7) ~ G(a, u)
return 7 + v - ROLLOUT (', huo, depth + 1)

Function SimulateTree (x,h,depth):
if y9ePth < ¢ then
| return O
end
if h & T then
for v € U do
| T(hu) + (Nipit(hu), Vipit(hu), @)
end
return ROLLOUT (x, h, depth)
end
u < arg max, V (hb) + ¢ 101%[(]2!()})1)

(', 0,1) ~ G(x,u)

R+ r+ - SimulateTree(z’, huo, depth + 1)
(h) <= B(h) U {s}

(h) < N(h)+1

(hu) < N(hu) +1

(

V(hu) = V(hu) + S0

B
N
N

return R

FIGURE B.2: Pseudo-code for working of POMCP.







APPENDIX C:PROXIMAL POLICY OPTIMIZATION

c.l PPOExplained . ... ... ... .. ... .. ... .. .. 105
c.2 Hyperparameters of PPO . . . . . . . .. ... ... oL 106
c.3 Parameter Sharing . . . . . . . .. ... L 107

c.l PPO EXPLAINED

PPO is a state-of-the-art RL algorithm that is easy to implement, stable, easy to tune and
sample efficient. It has had huge success in tasks such as robotic arm control, Atari games
and Dota 2 [153, 156]. It is a policy gradient (PG) method which learns to use online data
(on-the-go) which the agent generates by interacting with the environment.

PG methods directly optimize the parameter # which parameterizes the policy, my(u | ),
where u € U is the action and z € X is the state, such that expected total reward is
maximized. An estimator of the policy gradient is computed and used in the stochastic
gradient algorithm, which can be of the form: § = E[V6 log my(u(t) | z(t))A(t)], where
me(u(t) | x(t)) is the stochastic policy represented by a neural network that takes as
input the environment’s observed states, x(t), and outputs actions to take, u(¢). and
A(t) is an estimate of the relative value of taking this action u(t) in state z(t), so
Aty = (2, v()r(t) +t) + V(x(t)), where the first term is the discounted sum
of rewards the agent received during each timestep ¢ in the current episode and the
second term is the value function which gives an estimate of the discounted sum of
rewards from this state onwards, using neural networks. The neural network of the
value function is updated using the experience agent collects from the environment. So
advantage estimate, A(t), tells you how much better/worse was the action selected then the
expected reward based on past experiences. Then, the loss function of the PG method is:
L"S(0) = Ellog mo(u(t) | z(t))A(t)]. Note that A(£) can be both positive (negative) when
the chosen action yields return better (worse) than the expected return. If A(t) > 0 then
the gradient is positive and the probability of choosing action u(t) in state x(¢) increases in
future and vice versa. However, in order to have a stable training process, the change in
policy or parameter updates should not have too much deviation after one step.

In order to avoid too high or low jumps in the policy update, PPO uses a chpFed surrogate
t

objective. Consider the ratio between old and new policies, r(t, 0) = Tr;r‘) ng() |$|m Ok meaning
old
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r(t,0,4) = 1 and r(t,0) > 1 if the probability of u(t) in x(¢) is higher in policy 7, than
it was in policy 7g,,,, otherwise it is in [0, 1]. The proposed surrogate loss function to
maximize in PPO is given as:

LY (9) = E[min(r(t, 0)A(t), clip(r(t,0),1 — €, 1 + €)A(t))] (C.1.1)

where ¢ is a tunable hyperparameter that says how far the new policy can deviate from
the old policy. The expectation is computed over batches of trajectories and is taken over
the minimum of two terms. The first term inside the minimum, 7(¢, §)A(¢), is the default
policy gradient objective, which pushes the policy towards actions which yield higher
positive advantage over the baseline [173]. While the second term is the clipped version of
the first one where clipping ensures that the ratio () ranges between 1 + ¢, where usually
¢ = 0.2. The loss L“F(0) is then the minimum of the original and the clipped values.

This clipping restricts the policy updates, making PPO stable.

With neural networks it is efficient to share parameters between policy and value neural
networks, hence the loss function needs to keep a balance between the two. The final
objective function of PPO is then given as:

L(0) = E[LYP(0) + kL () + ¢2S[m) (x(2))] (C.12)

where cy,k, are tunable coefficients, S is the entropy bonus or regularizer that ensures
sufficient exploration during training and LY¥(0) = (Vg(x(t)) — V*#")? is the squared-
error loss which is the expected amount of rewards from this state onwards. For details,
see [156].

C.2 HYPERPARAMETERS OF PPO

One of the main advantages of PPO is that its hyperparameters are easy to tune and
understand. Here we give a list of these hyperparameters, their description and common
range of values.

* Number of epochs, Tj: steps up to which the trajectories are carried out before
performing optimization, like stochastic gradient descent (SGD) or Adam, on the
collected experience. Typical range 32 — 5000.

* SGD Mini batch size, B,,: sample size to take from the collected experience to
perform optimization on. Typical range 4 — 4096.

e Number of SGD iterations, [,,: total optimization iterations to perform on the
sampled minibatch. Typical range: 3 — 30.

* Clip parameter, €: range up to which the policy can deviate while still improving the
objective function. Typical range 0.1 — 0.3.

» KL target, x;: how much KL divergence is acceptable between new and old policy
after an update. Typical range: 0.01 — 0.05.

* KL coefficient, k.: initial coefficient for KL divergence.



Cc.3 PARAMETER SHARING

* Discount factor, v: determines how much influence should future rewards have.

* GAE Parameter, ARy : to adjust the bias-variance trade-off in combination with ~ in
the generalized advantage estimator. Typical range: 0 — 1.

* Learning rate, [,: learning rate for policy and value function optimizers. Can be
varying over time or fixed throughout.

Cc.3 PARAMETER SHARING

For homogeneous agents, it is more efficient if their policies are trained using parameter
sharing (PS) [174, 175]. In PS, the agents share the parameters of a single policy while
using the data collected from the experience of all agents simultaneously. However, each
agent can still act differently based on their own current state, but they sample this action
from the single policy being trained. Once the centralized policy is learned, it can then be
used by each agent in a decentralized manner, falling under the centralized learning and
decentralized execution regime [48].
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NOTATION

SYMBOL DESCRIPTION

N The set of natural numbers.

N.;,, N; The set of natural numbers with elements greater/ greater or equal to .

R The set of real numbers.

Ry, Ry The set of real numbers with elements greater/ greater or equal to ¢.

AN The n-dimensional probability simplex; i.e.,
A"={xeR": > x;=1Az; >0,Vje{l,...,n}}.

I The indicator function.

e, A Unit vector with all zeros except at the z-th position.

Oy Dirac measure defined for a given z € X.

| X | Cardinality of set X.

f(x) A function f of a variable x.

J[f] A functional J of a function f.

V.(-)or 5-(-)  The gradient w.r.t. to .

% ) The functional derivative w.r.t. to the function f.

P() A probability measure.

P() A probability density function or probability mass function

E[] The expectation operator.

Gam (- | o, 3) Probability density function of the gamma distribution with shape
parameter « and rate parameter [3.

Cat (- | p) Probability mass function of the categorical distribution with probabil-
ity vector p

Exp (- | A) Probability density function of the exponential distribution with rate
parameter \

Unif (- | a,b)  Probability density function of the uniform distribution with lower
bound a and upper bound b.

Bern (- | p) Probability mass function of the Bernoulli distribution with parameter
.

N(|pX) Probability density function of the (multivariate) normal or Gaussian
distribution with mean parameter g and variance/covariance matrix
3.

Bin (- | N,p)  Probability mass function of the binomial distribution with number of
trials NV and success probability p

Mult (- | N,p) Probability mass function of the multinomial distribution with number
of trials N and probability vector p

Dir (- | @) Probability density function of the Dirichlet distribution with concen-

tration parameter vector o
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SYMBOL DESCRIPTION

Pois (- | A) Probability mass function of the Poisson distribution with rate parame-
ter A\

Beta (- | o, 3) Probability density function of the beta distribution with shape parame-
ters «, 3.

Par (- | a,5)  Probability density function of the Pareto distribution with scale 5 and
shape .




ACRONYMS

poL partial observability load-balancer

rosmpp partially observable semi Markov
decision process

smpop semi Markov decision process

rompr partially observable Markov deci-
sion process

mpp Markov decision process

mmpp multi-agent Markov decision process

mpps Markov decision processes

mcts Monte Carlo tree search

sir sequential importance resampling

uvct upper confidence bounds for trees

s1s sequential importance resampling

rL reinforcement learning

marL multi-agent reinforcement learning

mrc mpp Mmean-field control Markov deci-
sion process

mrc mean-field control

mrG mean-field games

Mr mean-field

JsqQ join-the-shortest-queue

s1Q join-the-idle-queue

sep shortest-expected-delay

ppo proximal policy optimization

rRND random

own Send-to-own-queue

mr-r MF-Random

~Na-pPs-RND MARL-PS

sac scalable-actor-critic

pec-pompr decentralized partially observ-
able Markov decision process

mcmc Markov Chain Monte Carlo

ppp dynamic programming principle
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