
Towards Learned Metadata

Extraction for Data Lakes

Sven Langenecker

Towards Learned Metadata

Extraction for Data Lakes

Doctoral thesis by

Sven Langenecker, M.Sc.

submitted in fulfillment of the requirements for the

degree of Doktor-Ingenieur (Dr.-Ing.)

Reviewers

Prof. Dr. rer. nat. Carsten Binnig

Prof. Paolo Papotti, Ph.D.

Department of Computer Science

Technical University of Darmstadt

Darmstadt, 2024

Sven Langenecker: Towards Learned Metadata Extraction for Data Lakes

Darmstadt, Technical University of Darmstadt

Year thesis published in TUprints: 2024

URN: urn:nbn:de:tuda-tuprints-274697

URL: https://tuprints.ulb.tu-darmstadt.de/27469

Date of the viva voce: 04.06.2024

Urheberrechtlich geschützt / In copyright

https://rightsstatements.org/page/InC/1.0/

Erklärung laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der

schriftlichen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht

wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertations-

thema und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter

Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, April 23, 2023

Sven Langenecker

v

Abstract

In the landscape of data-driven enterprises, the concept of data lakes serves for storing

and managing massive volumes of diverse data. Unlike traditional data warehousing

methods characterized by rigid structures and predefined schemas, data lakes present

a paradigm shift by embracing a more fluid architecture. Here, data arrives in its raw,

unaltered form, preserving its inherent complexity and richness. The lack of predefined

structures or standardized schemas makes it difficult to identify, find, understand, and

use the relevant data sets contained in these repositories. To address this data discovery

problem and enable an easy navigation, solutions for automatic metadata extraction are

essential. Hence, a variety of Machine Learning (ML) based approaches for automated

extracting of semantic types from table columns have recently been proposed. While

initial results of these learned approaches seem promising, it is still not clear how well

these approaches can generalize to new unseen data in real-world enterprise data lakes.

This dissertation thus focuses on the challenge of making the task of semantic type

extraction of table columns feasible for real-world enterprise data lakes. First, we studied

existing approaches for semantic type extraction of table columns and evaluated how

applicable they are in data lake environments to understand their limitations. Based on

the findings that existing approaches are not usable out-of-the-box and always need to

be adapted to the data lake where they are intended to be used, we advocate a weak

supervision concept to adapt these learned semantic type detection models to the specific

data lake with minimal effort. Thus, as a first contribution of this dissertation, we present

a new data programming framework for semantic labeling based on the idea of weak

supervision. Our new data programming framework comes with pre-designed Labeling

Functions (LFs) to generate new training data that covers the new semantic types and

data characteristics of the unseen data lake to which the learned semantic type extraction

model is supposed to be applied. With the generated training data of our framework,

the model can be re-trained/fine-tuned with minimal effort to achieve an adaption to

the respective data lake and with this eliminate the barrier to apply recently learned

semantic type detection approaches on enterprise data lakes.

Furthermore, because the semantic labeling of numerical data is more challenging than

of textual data, we present as a second contribution our novel training data generation

procedure called Steered-Labeling. Steered-Labeling is integrated as a core component in

our data programming framework and enables to generate high quality training data

for textual and numerical table columns. The basic idea of the new procedure is to

separate the labeling process into two sequential steps. In the first step, the framework

vii

labels the non-numerical columns, that are easier to label. Afterward, in the second step,

the numerical columns are labeled by including the previously generated labels of the

non-numeric columns, which serve as additional information. With this, the LFs achieves

a much higher accuracy for numerical columns. We show by an extensive evaluation that

our data programming framework with the Steered-Labeling procedure can adapt learned

models to unseen data lakes with the automatically generated training data.

During the experiments with our framework, we observed that the re-trained/fine-tuned

end models performed worse on numeric columns than on non-numeric columns, even

though the generated training data of the numerical columns is quite adequate. This

is mainly because the existing models were designed, trained, and tested with datasets

composed mainly of non-numerical data and therefore optimized to handle these data

types. Although we used two data lakes that contain numerical columns in the evaluation

of our Steered-Labeling procedure, these datasets could not be used for the design of a

new model that better supports numerical columns because they are too small for this

purpose. Thus, as a third contribution, we create and provide a new corpus for the task

of semantic type detection of table columns called SportsTables. By scraping tables

from various web pages of different sports domains, our corpus comprises tables that

contain a much higher proportion of numerical columns than those in existing corpora.

Furthermore, they are much larger both in the number of columns and rows. Hence, our

new corpus reflects the characteristics of real-world data lakes and poses new challenges

to semantic type detection models. We show through an evaluation of several recent

semantic type detection models on our corpus, that they only perform robustly on textual

data.

To tackle the shortcomings of the existing models, we finally propose a new semantic

type detection approach called Pythagoras, designed to support numerical along with

non-numerical columns. To achieve this, the main idea of the new model is to use

Graph Neural Networks (GNNs) together with a new graph representation of tables and

their columns. This graph representation includes directed edges to aggregate necessary

context information (e.g. table name, neighboring non-numerical column values) for

predicting the correct semantic type of numerical columns using the GNN message

passing mechanism. Thus, the model learns which contextual information is relevant

for determining the semantic type. With this approach, our model can outperform all

existing semantic type detection models on numerical table columns.

viii

Zusammenfassung

In der Systemlandschaft datengesteuerter Unternehmen dient das Konzept Data Lakes

der Speicherung und Verwaltung großer Mengen unterschiedlicher Daten. Im Gegensatz

zu herkömmlichen Data-Warehousing-Methoden, die durch starre Strukturen und vor-

definierte Schemata gekennzeichnet sind, stellen Data Lakes einen Paradigmenwechsel

dar, indem sie eine dynamischere Architektur aufweisen. Die Daten gelangen hier in

ihrer rohen, unveränderten Form an und bewahren so ihre inhärente Komplexität und

Reichhaltigkeit. Das Fehlen von vordefinierten Strukturen und standardisierten Schema-

ta erschwert die Identifizierung, das Auffinden, das Verständnis und die Nutzung von

relevanten Datensätzen, die in diesen Repositories enthalten sind. Um dieses Problem der

Datenfindung zu lösen und eine einfache Navigation zu ermöglichen, sind Lösungen zur au-

tomatischen Extraktion von Metadaten unerlässlich. Aus diesem Grund wurde inzwischen

eine Vielzahl von ML-basierten Ansätzen zur automatischen Extraktion semantischer

Typen aus Tabellenspalten entworfen. Während erste Ergebnisse dieser gelernten Ansätze

vielversprechend erscheinen, ist allerdings noch nicht klar, inwieweit sich diese Ansätze auf

neue, ungesehene Daten in realen Data Lake Umgebungen generalisieren und anwenden

lassen.

Diese Dissertation konzentriert sich daher auf die Herausforderung, die Aufgabe der

semantischen Extraktion von Tabellenspalten für reale Enterprise Data Lakes realisierbar

zu machen. Zunächst untersuchen wir bestehende Ansätze zur semantischen Extraktion

von Tabellenspalten und bewerteten ihre Anwendbarkeit in Data Lake Umgebungen,

um ihre Limitierungen zu verstehen. Basierend auf der Erkenntnis, dass bestehende

Ansätze nicht out-of-the-box nutzbar sind und immer an den jeweiligen Data Lake

angepasst werden müssen, in dem sie eingesetzt werden sollen, schlagen wir ein weak

supervision Konzept vor, um diese erlernten Modelle zur semantischen Typenerkennung

mit geringem Aufwand an den spezifischen Data Lake anzupassen. Als ersten Beitrag

dieser Dissertation stellen wir daher einen neues Datenprogrammierungs-Framework

zur semantischen Kennzeichnung vor, basierend auf der weak supervision Idee. Unser

neues Datenprogrammierungs-Framework enthält vorgefertigte LFs, mit denen neue

Trainingsdaten generiert werden können, welche die neuen semantischen Typen und Da-

tencharakteristika des ungesehenen Datensees abdecken, auf den das gelernte semantische

Typenextraktionsmodell angewendet werden soll. Mit den generierten Trainingsdaten

unseres Frameworks kann das Modell mit minimalem Aufwand nachtrainiert/feinabge-

stimmt werden, um eine Anpassung an den jeweiligen Data Lake zu erreichen und damit

ix

die Barriere gelernter semantische Typerkennungsansätze auf Enterprise Data Lakes

anzuwenden zu beseitigen.

Da die semantische Kennzeichnung numerischer Daten eine größere Herausforderung

darstellt als die von textuellen Daten, stellen wir als zweiten Beitrag unser neuartiges

Verfahren zur Erzeugung von Trainingsdaten vor, welches die Bezeichnung Steered-

Labeling trägt. Steered-Labeling ist als Kernkomponente in unser Datenprogrammierungs-

Framework integriert und ermöglicht die Generierung hochwertiger Trainingsdaten für

textuelle und numerische Tabellenspalten. Die Grundidee des neuen Verfahrens besteht

darin, den Labelprozess in zwei aufeinander folgende Schritte zu unterteilen. Im ersten

Schritt labelt das System die nicht numerischen Spalten, bei denen die Bestimmung des

semantischen Typens einfacher ist. Anschließend werden im zweiten Schritt die numeri-

schen Spalten unter Einbeziehung der zuvor generierten Labels der nicht-numerischen

Spalten, die als zusätzliche Information dienen, gelabelt. Auf diese Weise erreichen die

LFs eine wesentlich höhere Genauigkeit bei numerischen Spalten. In einer umfangreichen

Evaluierung zeigen wir, dass unser Dataprogrammierungs-Framework die gelernten Mo-

delle an den ungesehenen Data Lake mittels der automatisch generierten Trainingsdaten

anpassen kann.

Bei den Experimenten mit unserem Framework haben wir festgestellt, dass die nachtrai-

nierten/feinabgestimmten Endmodelle bei numerischen Spalten schlechter abschneiden als

bei nicht-numerischen Spalten, obwohl die generierten Trainingsdaten der numerischen

Spalten ausreichend adäquat sind. Dies liegt vor allem daran, dass die vorhandenen

Modelle mit Datensätzen entwickelt, trainiert und getestet wurden, die hauptsächlich aus

nicht-numerischen Daten bestehen, und daher für die Verarbeitung dieser Datentypen op-

timiert sind. Zwar haben wir bei der Evaluierung unseres Steered-Labeling-Verfahrens zwei

Data Lakes verwendet, die numerische Spalten enthalten, doch können diese Datensätze

nicht für den Entwurf eines neuen Modells mit besserer Unterstützung numerischer Spal-

ten verwendet werden, da sie für diesen Zweck zu klein sind. Aus diesem Grund ist unser

dritter Beitrag die Erstellung und Bereitstellung eines neuen Korpus für die Aufgabe der

semantischen Typerkennung von Tabellenspalten mit dem Namen SportsTables. Durch

das Abgreifen von Tabellen von verschiedenen Webseiten aus unterschiedlichen Sportarten

umfasst unser Korpus Tabellen, die einen viel höheren Anteil an numerischen Spalten

enthalten als Tabellen in bestehende Korpora und sowohl in der Anzahl der Spalten als

auch der Zeilen viel größer sind. Daher spiegelt unser neuer Korpus die Eigenschaften

realer Data Lakes besser wider und stellt somit semantische Typenerkennungsmodelle vor

neue Herausforderungen. Wir zeigen anhand einer Evaluierung von mehreren aktuellen

Modellen auf unserem Korpus, dass diese nur bei textuellen Daten robust funktionieren.

x

Um die Unzulänglichkeiten der bestehenden Modelle zu beheben, schlagen wir schließ-

lich einen neuen Ansatz zur semantischen Typerkennung namens Pythagoras vor, der

sowohl numerische als auch nicht-numerische Spalten unterstützt. Um dies zu errei-

chen, besteht die Hauptidee des neuen Modells darin, GNNs zusammen mit einer

neuen graphischen Darstellung von Tabellen und ihren Spalten zu verwenden. Diese

Graphdarstellung enthält gerichtete Kanten, um die notwendigen Kontextinformationen

(z. B. Tabellenname, benachbarte nichtnumerische Spaltenwerte) für die Vorhersage

des korrekten semantischen Typs numerischer Spalten unter Verwendung des GNN-

Nachrichtenübermittlungsmechanismus bereitzustellen. Auf diese Weise lernt das Modell,

welche Kontextinformationen für die Bestimmung des semantischen Typs relevant sind

und unnser Modell kann mit diesem Ansatz alle bestehenden Modelle zur Erkennung

semantischer Typen bei numerischen Tabellenspalten übertreffen.

xi

Publications

The following peer-reviewed publications are part of this cumulative dissertation. Their

content is printed in Part II, Chapters 7 to 12.

[1] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten Binnig.

“Towards Learned Metadata Extraction for Data Lakes.” In: Datenbanksysteme für

Business, Technologie und Web (BTW 2021), 19. Fachtagung des GI-Fachbereichs

„Datenbanken und Informationssysteme" (DBIS), 13.-17. September 2021, Dresden,

Germany, Proceedings. Ed. by Kai-Uwe Sattler, Melanie Herschel, and Wolfgang

Lehner. Vol. P-311. LNI. Gesellschaft für Informatik, Bonn, 2021, pp. 325–336.

doi: 10.18420/BTW2021-17. url: https://doi.org/10.18420/btw2021-17.

[2] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten Binnig.

“SportsTables: A new Corpus for Semantic Type Detection.” In: Datenbanksys-

teme für Business, Technologie und Web (BTW 2023), 20. Fachtagung des GI-

Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 06.-10, März 2023,

Dresden, Germany, Proceedings. Ed. by Birgitta König-Ries, Stefanie Scherzinger,

Wolfgang Lehner, and Gottfried Vossen. Vol. P-331. LNI. Gesellschaft für In-

formatik e.V., 2023, pp. 995–1008. doi: 10.18420/BTW2023-68. url: https:

//doi.org/10.18420/BTW2023-68.

[3] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten Binnig.

“Steered Training Data Generation for Learned Semantic Type Detection.” In:

Proc. ACM Manag. Data 1.2 (2023), 201:1–201:25. doi: 10.1145/3589786. url:

https://doi.org/10.1145/3589786.

[4] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten Binnig.

“SportsTables: A New Corpus for Semantic Type Detection (Extended Version).”

In: Datenbank-Spektrum 23.2 (2023). doi: 10.1007/s13222-023-00457-y. url:

https://doi.org/10.1007/s13222-023-00457-y.

[5] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten Binnig.

“Pythagoras: Semantic Type Detection of Numerical Data Using Graph Neural

Networks (Short Paper).” In: Lernen, Wissen, Daten, Analysen (LWDA) Con-

ference Proceedings, Marburg, Germany, October 9-11, 2023. Ed. by Michael

Leyer and Johannes Wichmann. Vol. 3630. CEUR Workshop Proceedings. CEUR

Workshop Proceedings, 2023, pp. 146–152. url: https://ceur-ws.org/Vol-

3630/LWDA2023-paper13.pdf.

xiii

[6] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten Binnig.

“Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data

Lakes.” In: Proceedings 27th International Conference on Extending Database

Technology, EDBT 2024, Paestum, Italy, March 25 - March 28. Ed. by Letizia

Tanca, Qiong Luo, Giuseppe Polese, Loredana Caruccio, Xavier Oriol, and Do-

natella Firmani. Vol. 27. OpenProceedings.org, 2024, pp. 725–733. doi: 10.48786/

EDBT.2024.62. url: https://doi.org/10.48786/edbt.2024.62.

Due to the nature of the synopsis and for better readability, selected paragraphs

from these publications were transferred verbatim throughout the synopsis without

explicit labeling as suggested in the department regulations “Kumulative Dissertation

und Eigenzitate in Dissertationen” (21.09.2021) §1.

xiv

Acknowledgments

First and foremost, I would like to express my deepest gratitude to Prof. Dr. Carsten

Binnig for his immense support, guidance assistance, and supervision during my doctoral

journey. Even though I was an external Ph.D. student for Him, I never felt like I was

treated that way. His incredible mentorship has not only shaped this dissertation but has

also enriched my growth as a researcher. He was an awesome, inspiring, motivating, and

supportive mentor who helped me develop personally and academically over the years.

Every conversation with him was very inspiring, constructive as well as motivating and

helped me a lot to achieve the goals in my research work. I’m really glad that I’ve had

him as my advisor all these years.

The same can be said for my supervisors Prof. Dr. Christoph Sturm and Prof. Dr.

Christian Schalles at DHBW Mosbach. Their support and mentorship throughout my

path was incredibly valuable. In the weekly meetings, they always brought up useful ideas,

answered many of my questions in different subject areas, or discussed with me various

new approaches, which made a significant contribution to this dissertation. I couldn’t

have imagined a better team to guide me than Carsten, Christoph, and Christian.

I also sincerely thank Prof. Paolo Papotti for his valuable time and effort in reviewing

this dissertation.

I would also like to thank my doctoral student colleagues at the TU Darmstadt. Their

support and especially their feedback on my work were always very constructive and

productive. In hindsight, I have to say that I would have loved to spend more time with

them. However, as I was an external Ph.D. student and did my doctorate alongside my

regular job, this was unfortunately not possible.

I am deeply indebted to my wife Lina, her support and understanding have been the

cornerstone of my academic pursuit. Her patience, encouragement, and sacrifice created

an ideal environment and gave me the time and space I needed to entirely dive into my

research. Thanks to her ability to manage our home and all family-related aspects, I

was able to do my academic work and achieve my goals. On the way to my doctorate, I

couldn’t imagine a more perfect wife. I am also grateful to my two sons, Maik and Emil,

for their understanding and patience during this time. Their love and understanding

were a constant motivation and source of joy during this journey.

I am deeply grateful to my parents, sister, and friends for their constant support and

encouragement during my life. Finally, to all the people who have directly or indirectly

contributed to my academic and personal development, I am very grateful.

xv

Contents

I Synopsis 1

1 Introduction 3

1.1 The Need for Metadata in Data Lakes . 4

1.2 Towards Learned Metadata Extraction . 5

1.3 Limitations of Existing Learned Approaches 9

1.4 Contributions . 10

1.5 Outline . 12

2 Weak Supervision for Learned Semantic Type Extraction 15

2.1 Study of Using Existing Learned Approaches 15

2.1.1 Dataset and Methodology . 16

2.1.2 Results of the Study . 16

2.2 Weak Supervision to Adapt Learned Approaches to New Data Lakes . . . 18

2.2.1 Overview of Our Approach . 18

2.2.2 Label Generation Using Clustering 20

2.3 End-to-End Evaluation . 22

2.4 Key Findings . 23

3 Steered Training Data Generation for Semantic Type Detection 25

3.1 Overview of STEER . 26

3.1.1 The Labeling Framework . 26

3.1.2 Steered-Labeling Procedure . 28

3.2 Labeling Numerical Columns . 29

3.2.1 Labeling by Context-aware Clustering 30

3.2.2 Determining the EMD Threshold 30

3.2.3 Numerical-only Tables . 31

3.3 Labeling Non-Numeric Columns . 31

3.3.1 Generic Labeling Functions . 32

xvii

3.3.2 Domain-Specific Labeling Functions 34

3.3.3 Discussion . 34

3.4 Experimental Evaluation . 35

3.4.1 Datasets . 35

3.4.2 Experimental Design . 37

3.4.3 STEER on Non-Numerical Data 39

3.4.4 STEER on Numerical Data . 43

3.4.5 Ablation Study . 46

3.5 Summary . 52

4 SportsTables: The Missing Labeled Numerical Corpus 55

4.1 The Need for a New Corpus . 56

4.2 Existing Corpora: Dominated by Textual Data 57

4.3 The SportsTables Corpus . 59

4.4 Corpus Characteristics . 61

4.5 Study of Using SportsTables . 64

4.6 Summary . 66

5 Pythagoras: Semantic Type Detection of Numerical Data 67

5.1 Context is Essential for Numerical Data 68

5.2 Background to GNNs . 69

5.3 Overview of Pythagoras . 71

5.3.1 Graph Representation of Tables . 71

5.3.2 Leveraging Contextual Information 72

5.3.3 Model Architecture . 73

5.4 Experimental Evaluation . 76

5.4.1 Data Sets and Baselines . 76

5.4.2 Experimental Design . 77

5.4.3 Exp. 1: Overall Efficiency . 78

5.4.4 Exp. 2: Performance for Individual Types 81

5.4.5 Exp. 3: Ablation Study . 81

5.5 Summary . 84

6 Conclusion and Future Work 85

6.1 Reflection . 85

6.2 Future Research Directions . 88

6.2.1 Out-Of-Distribution Identification & Human in the Loop 88

xviii

6.2.2 Extract Relationships Between Table Columns 89

6.2.3 Metadata Extraction Beyond Tabular Data 90

II Peer-Reviewed Publications 91

7 Towards Learned Metadata Extraction for Data Lakes 93

7.1 Introduction . 95

7.2 Overview of Existing Approaches . 96

7.2.1 Extraction of Semantic Types . 97

7.2.2 Extraction of Relationships . 98

7.3 Study of Using Learned Approaches . 98

7.3.1 Data Sets and Methodology . 98

7.3.2 Results of the Study . 99

7.4 Weak Supervision for Semantic Type Extraction 101

7.4.1 Overview of Our Approach . 101

7.4.2 Label Generation using Clustering 102

7.4.3 Future Directions . 104

7.5 End-to-End Evaluation . 105

7.6 Conclusions . 106

8 SportsTables: A new Corpus for Semantic Type Detection 107

8.1 Introduction . 108

8.2 Existing Corpora with Semantic Data Types 111

8.3 The SportsTables Corpus . 113

8.4 Analysis of the Corpus . 114

8.4.1 Corpus Characteristics . 115

8.4.2 An Initial Study of Using SportsTables 118

8.5 Further Research Challenges . 119

8.6 Conclusion . 121

9 Steered Training Data Generation for Learned Semantic Type Detection 123

9.1 Introduction . 124

9.2 Overview of STEER . 127

9.2.1 The Labeling Framework . 127

9.2.2 Steered-Labeling Procedure . 128

xix

9.3 Labeling Numerical Columns . 129

9.3.1 Labeling by Context-aware Clustering 130

9.3.2 Determining the EMD Threshold 132

9.3.3 Numerical-only Tables . 133

9.4 Labeling Non-Numeric Columns . 133

9.4.1 Generic Labeling Functions . 133

9.4.2 Domain-Specific Labeling Functions 136

9.4.3 Discussion . 136

9.5 Experimental Evaluation . 137

9.5.1 Datasets . 137

9.5.2 Experimental Design . 138

9.5.3 STEER on Non-Numerical Data 141

9.5.4 STEER on Numerical Data . 145

9.5.5 Ablation Study . 149

9.6 Related Work . 153

9.7 Conclusions . 156

10 SportsTables: A new Corpus for Semantic Type Detection (Extended Version)157

10.1 Introduction . 158

10.2 Existing Corpora . 160

10.3 The SportsTables Corpus . 163

10.4 Analysis of the Corpus . 164

10.4.1 Corpus Characteristics . 164

10.4.2 Study of Using SportsTables . 167

10.5 Future Challenges . 170

10.6 Conclusion . 172

10.7 Acknowledgements . 172

11 Pythagoras: Semantic Type Detection of Numerical Data Using Graph

Neural Networks (Short Paper) 175

11.1 Introduction . 177

11.2 Overview of Pythagoras . 178

11.3 Initial Experimental Results . 180

11.4 Acknowledgements . 181

11.5 Appendix . 181

11.5.1 List of Features . 181

xx

12 Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data

Lakes 183

12.1 Introduction . 185

12.2 Overview of Pythagoras . 187

12.2.1 Graph Representation of Tables . 188

12.2.2 Leveraging Contextual Information 189

12.3 Model Architecture . 190

12.3.1 Architecture and Training . 190

12.3.2 Detecting Numerical Types . 192

12.4 Experimental Evaluation . 192

12.4.1 Data Sets and Baselines . 193

12.4.2 Experimental Design . 194

12.4.3 Exp. 1: Overall Efficiency . 195

12.4.4 Exp. 2: Performance for Individual Types 197

12.4.5 Exp. 3: Ablation Study . 199

12.5 Related Work . 200

12.6 Conclusion . 202

12.7 Acknowledgements . 203

xxi

Acronyms

CRF Conditional Random Field

DNN Deep Neural Network

GCN Graph Convolutional Network

GNN Graph Neural Network

LDA Latent Dirichlet Allocation

LF Labeling Function

LLM Large Language Model

LM Language Model

ML Machine Learning

RAG Retrieval Augmented Generation

xxii

Part I

Synopsis

1

1 Introduction

Data lakes are important. Nowadays, data lakes are widely being used in organizations

to manage their data [26, 51]. They allow to accumulate vast amounts of raw data in

its native format, pouring in from various sources with different domains, be it business

operations, IoT devices, social media or customer interactions. Unlike traditional data

warehouses, which require structuring data before storage, data lakes permit the retention

of diverse data types without predefined schemas [24, 89] (see also Figure 1.1). This

reservoir-like architecture of data lakes enables companies to collect and store extensive

datasets from different sources in a very fast way without the overhead of transforming

data before storage [30, 36]. As a result, their inherent scalability facilitates the storage

of huge amounts of information and helps to gain valuable insights through advanced

analytics and machine learning.

Data discovery in data lakes is a problem. However, effective governance and

metadata management are crucial to realizing the full potential of data lakes, ensuring

data quality, security, and accessibility. Considering the mass of raw data stored in data

lakes, the main challenge is to have solutions that allow you to effectively navigate through

the data lake to find relevant and valuable information (known as data discovery problem).

For example, if a data scientist wants to analyze climate change, they need weather data

from different locations over a long period of time. Finding such data efficiently in a

data lake without a lot of manual effort is very hard. To address this data discovery

problem, it is suggested to semantically annotate the stored data in order to make it

easier to identify and locate. As such, in the last years various approaches for automated

semantic type annotation using ML have been proposed. However, these approaches can

not be used out-of-the-box on unseen data lakes and require a time-consuming adaption,

which is a significant barrier to their applicability in enterprise data lakes.

Learned semantic typing to the rescue. In the following, we will first explore how

metadata, particularly semantic type annotations on table columns, can help to solve

the data discovery problem in data lakes. Afterward, we discuss how learned semantic

type detection approaches can be leveraged to address the challenge of automatically

detecting semantic types of data. Furthermore, we describe the fundamental limitations

3

1 Introduction

Figure 1.1: Shows the comparison of a data warehouse approach (upper part) to a
data lake approach (lower part). In a data warehouse, the raw data is first
transformed into a defined relational schema and then stored. The predefined
relational schema and the clear structure of stored data make it easy to
navigate through the data. Instead, in a data lake approach, raw data is
loaded in its native format without any transformations. Due to the lack of
schema and structure in the data, it is more difficult to find relevant data for
a downstream analytic task.

of the recently proposed learned semantic type extraction approaches and introduce the

concrete contributions of this dissertation.

1.1 The Need for Metadata in Data Lakes

Data catalogs are used for data lakes. In contrast to classical data warehouses,

the idea of data lakes is that the data does not need to be organized and cleaned in

advance when it is loaded into the warehouse [24]. Instead, data lakes follow a more

”lazy” approach that allows enterprises to store any available data in its raw form. This

raw data is organized and cleaned once it is needed for a down stream task such as

data mining or building ML models. However, due to the sheer size of data stored in

data lakes, the variety of connected data sources and the absence of a comprehensive

schema, data discovery in data lakes has become an important problem [72, 77, 94]. To

address the data discovery problem and to improve the usability of data lakes, data

catalogs are typically used. The need for such a data catalog is evident by the growing

number of products available from different vendors such as Azure Purview [73], AWS

4

1.2 Towards Learned Metadata Extraction

Figure 1.2: The figure shows the different data lake approaches with and without a data
catalog. The upper approach does not include a data catalog, which makes it
very hard for data scientists to find relevant data (data discovery problem).
Instead, the lower approach utilizes a data catalog that contains semantic
annotations of the stored data. These annotations enable data scientists
to search and identify relevant data sets by using semantic descriptions or
semantic types.

Glue Catalog [4], Google Cloud Data Catalog [33], Alation [3], Collibra [17], Atlan [5]

and Dremio [25].

Data discovery by using semantic annotations. An important function of such

data catalogs is to annotate semantic type information on columns of table-like data

(e.g., CSV files) according to an ontology or another taxonomy used in an enterprise.

As illustrated in Figure 1.2, these annotations will allow users to browse and identify

relevant datasets in data lakes by using semantic descriptions or semantic classes (e.g.,

country, city, temperature etc. defined in an ontology). As an example, for a data lake of

a news magazine, semantic types such as sports.teamname or sport.event are important

information that allows a data journalist to identify which relevant sources she requires

for preparing a news article. Furthermore, by annotating data with semantic types, users

can quickly grasp the nature of the information, its intended use, and its relationships

with other datasets. This understanding is essential for users trying to navigate and

utilize the extensive data stored in data lakes.

1.2 Towards Learned Metadata Extraction

Managing a data catalog manually is hard. Data catalogs storing metadata like

semantic annotations or descriptions help to solve the data discovery problem in data

5

1 Introduction

Figure 1.3: Automatic semantic type annotation using an ML model that can detect
semantic types of data and thus can fill the data catalog automatically.

lakes. However, these semantic types of data must first be extracted in order to fill the

data catalog and establish the assignment of data to semantic types to the data sources

(i.e., per column or per table). Manually creating and upholding such a data catalog

containing semantic annotations is sheer impossible due to the large amount of data and

the prevalent dynamics in data lakes. In addition, making semantic annotations by hand

is a daunting task and can usually only be done by domain experts who are familiar with

the domain from which the data originates.

Learned approaches for automatic semantic annotation. As such, in the last

years various approaches for automated semantic type extraction on table columns have

been proposed. Whereas existing commercial products mainly rely on simple search

based solutions such as regular expressions and dictionary look ups (e.g. [73, 74]), more

recent approaches use ML or more precisely Deep Neural Networks (DNNs)[20, 50, 100,

113]. The basic idea of these approaches is to create an ML model that learns the

mapping of data patterns (i.e., values in table columns) to semantic types. Afterward, the

learned model is subsequently used to extract the semantics of data in the data lake and

automatically fill the data catalog with semantic annotations (see Figure 1.3). This not

only eliminates the effort of manually annotating data sources in data lakes but also often

leads to better annotation accuracies. Furthermore, data can be semantically annotated

very quickly. Thus, the catalog can be continuously updated, even if the data lake is

highly dynamic and new data is added at a very high rate. We will now first describe the

advantages of learned semantic type extraction approaches before we introduce recent

proposed models, their architecture, and the main paradigm and methods they use.

Advantages of learned approaches. ML-based solutions for semantic type extraction

in data lakes offer several advantages over traditional manual semantic annotations and

search-based methods like regular expressions. Firstly, ML-based approaches enable

scalability and adaptability to diverse and evolving datasets without the need for constant

manual intervention. These algorithms can autonomously learn from large volumes of

data, capturing complex patterns and variations that might be challenging for human

6

1.2 Towards Learned Metadata Extraction

annotation or rule-based systems to grasp. Additionally, ML models can enhance accuracy

by iteratively refining their understanding of semantic types through continuous learning

from new data, providing more nuanced and precise annotations compared to static

rule-based approaches. Furthermore, ML-driven semantic type extraction fosters a more

flexible and dynamic data discovery process, enabling a more efficient search experience

within data lakes. This adaptability and precision contribute significantly to enhancing

the usability and effectiveness of data lakes, addressing the data discovery problem by

facilitating more intuitive and comprehensive access to stored information.

Traditional vs. pre-training/fine-tuning paradigm. Existing learned semantic type

detection models of table columns essentially use two different ML learning paradigms.

On the one hand there are classical supervised approaches such as Sherlock or Sato [50,

113] and on the other hand there are models that rely on the pre-training/fine-tuning

paradigm such as Turl or Doduo [20, 100]. Whereas classical supervised models are trained

from scratch using labeled datasets specific to the task at hand, pre-training/fine-tuning

models are first pre-trained with large and diverse datasets often using self-supervised

or semi-supervised methods to learn a general representation of the data (i.e., tables in

this use case). Subsequently, these pre-trained models undergo fine-tuning for the target

task (i.e., semantic type detection) achieved by further training on a task-specific labeled

dataset. This paradigm aims to minimize the required amount of labeled task-specific

training data because the model has already learned how to handle the data in general

during the pre-training phase. For both learning paradigms, used to build a semantic

type detection model, datasets containing tables with semantically annotated columns are

needed. Therefore, in recent research works, various datasets are generated for the task

of semantic type detection, containing many examples of columns labeled with semantic

types [1, 9, 18, 19, 40–42, 45–47, 82, 96]. These existing table corpora primarily exist of

tables extracted from the web, incorporating either only or a very high percentage of

textual (non-numeric) data.

Columnwise vs. tablewise models. All existing solutions for semantic type detection

use these datasets to train, validate and test the models. Thereby, these approaches

can be distinguished into columnwise models and tablewise models. Columnwise models

exclusively leverage values from a single column, omitting the inclusion of contextual

information from the table. Sherlock [50] is such a columnwise model which extracts

multiple features from individual columns such as character distributions, word embed-

dings, text embeddings and column statistics. These features are then processed through

a combination of multi-layer subnetworks and a primary network, which comprises two

fully connected layers. Dosolo [100] is a columnwise model that uses the pre-trained

7

1 Introduction

BERT Language Model (LM) combined with an attached output layer to implement a

semantic type detection model. Given that BERT receives token sequences (i.e. text) as

input, they convert a column into such a sequence. When serializing the columns, the

individual column values are first converted into a string and then concatenated to a

sequence.

Unlike columnwise models, tablewise models process the entire table with its columns

and their values at once. The advantages of this approach lie in its ability to utilize

contextual information from the table and thus enhancing the precision of semantic type

prediction for individual table columns. Building upon Sherlock, Sato is a tablewise

model that incorporates Latent Dirichlet Allocation (LDA) features to capture table

context and integrates a Conditional Random Field (CRF) layer to learn column type

dependencies. With this, Sato’s prediction quality improves over Sherlock. Dosolo and

Doduo are both models from [100]. In contrast to Dosolo, Doduo is a tablewise model

designed to process an entire table as input to the BERT model. To achieve this, all

columns and their values are concatenated one after the other to form one input sequence.

The major difference between the two approaches and their serialization techniques is

that with Dosolo a column type is predicted independently of other data, whereas Doduo

captures the data of neighboring columns to make a semantic type prediction of an

individual column.

Characteristics of all existing models. What all of these existing approaches have

in common is that they are always trained on data with characteristics and semantic

types out of one dataset. Finally, this leads to a specific trained model that is exclusively

intended for use on a single data lake [48]. This can either be the data lake from which

the training data originates or a data lake that contains very similar characteristics and

semantics to the training data. Consequently, the existing models can not be used in

a zero-shot manner out-of-the-box across different data lakes. Another predominant

characteristic of existing approaches is that they mainly focus on the detection of semantic

types of table columns containing textual data. Recent models leverage LMs (e.g., BERT)

[100] or a Large Language Model (LLM) (e.g., GPT) [55] as a foundation to develop

semantic type detection solutions. Since these models are specifically tailored to textual

data, the resulting semantic type detection model for table columns is also specialized

towards textual data. To summarize, the predominant characteristics of existing models

are the following two: (1) data lake specific (i.e., not generalize across different data

lakes), (2) textual data focused.

8

1.3 Limitations of Existing Learned Approaches

1.3 Limitations of Existing Learned Approaches

While existing learned semantic type extraction approaches have shown success and the

results are promising when applied to data with characteristics and semantics that are

covered by the training data used to build the model, they cause a lot of effort when

customizing them to a different data lake with different data characteristics and semantics.

We will next provide some more details on the fundamental limitations of state-of-the-art

approaches.

First, existing semantic type detection approaches are always designed to be used

on a single data lake, for which it has been trained with training data that reflects

the data characteristics and semantics of the respective data lake. If the training data

set does not cover the broad spectrum of data characteristics and semantic types, the

performance of the learned models quickly degrades when applied to a new data lake

[62]. Thus, these models do not generalize to unseen data (i.e., that was not included

in the training set) and must be adapted each time for deployment on a different data

lake. For instance, the DNN approach of [113] is trained and tested with the WebTables

corpus from VizNet [45] comprising a total of about 80K tables (resulting in a total

of about 120K pairs of columns with their associated semantic types) and 78 different

semantic types of table columns. Applying this trained model on another data lake like

the PublicBI Benchmark [31] results that the model is only able to extract semantic

types for about 10% of the columns in the corpus. In addition, for this 10% of columns

that are in principle covered by the training data, the model can not infer the types in

an robust manner, only achieving a support weighted F1-Score of about 0.3, which is

a major drop in comparison to the original reported performance on the test data set

of the VizNet corpus (F1-Score of 0.925). For adapting the trained model to the new

data lake, a re-training of the model is needed with new training data which covers the

characteristics and semantic types of the new data lake. Ideally, labeled data from the

new data lake would be used as training data, as this ensures that the spectrum of data

diversity and semantics is covered. However, this labeled data is not inherently available

and must first be generated at a high cost. This high cost and effort can easily be a

barrier to the use of a learned semantic type extraction approach on the data lake. Even

for pre-trained/fine-tuning approaches, where the assumption is that less new labeled

data is needed to achieve an adaptation, this limitation applies [61].

Secondly, it is necessary to adapt the learned model by re-training every time new

data sources are added to the data lake, which involves new data characteristics and

semantics. Accordingly, the high costs of an adaptation are incurred each time the data

9

1 Introduction

lake is updated or expanded with new data sources. For instance, if a model learned to

extract 78 different semantic types (as it is the case with Sherlock and Sato [50, 113])

and a new data source with an additional semantic type unknown to the learned model is

added to the data lake, the model will become unusable for the new data. The only way

to update the underlying model is to re-train it using new training samples (i.e., pairs of

columns and their semantic types) that reflect the new data from the new data source.

Therefore, new training samples have to be generated, which again causes high costs.

Third, all existing state-of-the-art semantic type extraction approaches focus primarily

on detecting the semantic type of non-numerical (textual) data [58, 60]. Using the models

on columns containing numerical data results in a significant drop in prediction accuracy

compared to using them on textual columns. Thus, as soon as the models are applied

to a data lake with a larger proportion of numerical data, which is often the case in

real-world enterprise data lakes [60], they will fall short and can not be utilized effectively.

The reasons why existing models are not designed for numerical data is mainly because

of the fact that corpora that were used to train and validate these models primarily

contain non-numerical data [1, 9, 18, 19, 40–42, 45–47, 82, 96]. Therefore, the models

were developed to handle mainly this data type.

Overall, existing semantic type extraction models are data lake specific, and must

always be adapted to the respective data lake by re-training. However, the immense cost

of generating new labeled data to re-train the model is unacceptable in many cases and

therefore impractical for being applied in new data lake environments. This aspect makes

existing models especially unusable for enterprise data lakes, as the initial high cost of

adapting the model, together with the cost of updating the model when new data sources

are added, pose a major barrier. Furthermore, the models are textual data focused since

they are trained and tested with corpora that contain mainly non-numeric data and also

leverage LMs like BERT, which are essentially designed for textual data. In enterprise

data lakes, it is crucial to apply a model with high accuracy on numerical data, since this

data type plays a dominant role, often making up a much larger proportion compared

to non-numerical data and providing insights into various business domains, including

finance, manufacturing, healthcare and marketing.

1.4 Contributions

This dissertation addresses the above mentioned limitations of existing semantic type

extraction approaches with contributions that can be summarized as follows:

10

1.4 Contributions

Contribution 1: Weak Supervision for Adapting Semantic Type Detection

We conduct a comprehensive analysis of the task of semantic type extraction of table

columns in real-world data lakes and show that existing approaches do not generalize

and have to be adapted at high effort to individual data lakes. Hence, we propose a new

direction of using weak supervision to generate new labeled training data with minimal

manual effort. These new training data can then be used to adapt and improve the

performance of learned semantic type extraction approaches on new unseen data lakes

through re-training. As an implementation of this new approach, we introduce the first

data programming framework for semantic labeling called STEER in this dissertation.

To generate the new training data, STEER comes with a set of LFs which are used to

label unlabeled table columns with semantic types. By leveraging both a small set of

already labeled columns (e.g. hand-labeled) and rule-based LFs, STEER can generate new

training data with minimal overhead. This enables STEER to adapt learned semantic

type detection models to new, unseen data lakes semi-automatically. As a result, barriers

to the use of these models in different data lake environments are removed.

Contribution 2: Steered-Labeling Process for Numerical Data

As a second contribution of this dissertation, we introduce a novel training data generation

procedure called Steered-Labeling that can generate high-quality training data not only for

non-numerical but also for numerical data columns with minimal overhead. We integrated

the Steered-Labeling procedure as a core component in our STEER labeling framework

mentioned above. The idea of the Steered-Labeling procedure is that we separate the

labeling process into two subsequent steps: STEER first labels the non-numerical columns

that are easier to label. Afterward, STEER then uses these labels to “steer” the labeling

of the numerical columns. To enable a steered labeling, we strictly separate the LFs into

those for labeling non-numerical and numerical columns. As a LF that leverages the

generated labels from the first step of the Steered-Labeling process, we propose a new

LF that uses a context-aware clustering method to label numerical columns with high

accuracy. Our experimental evaluation shows the benefits of the sequential execution

within the Steered-Labeling approach compared to a non-sequential execution.

Contribution 3: Numerical Corpus for Semantic Type Detection

Driven by the observation that existing corpora which have been used for building

semantic type detection models are very limited and contain almost exclusively textual

data, we have created the new corpus SportsTables. To reflect the characteristics of

11

1 Introduction

real-world data lakes, our corpus SportsTables has on average approx. 86% numerical

columns and tables that are much larger in both number of columns and rows, posing

new challenges to existing semantic type detection models which have mainly targeted

non-numerical columns and small tables so far. We show this effect by demonstrating the

results of an extensive study using four different state-of-the-art approaches for semantic

type detection of table columns on our new corpus.

Contribution 4: A New Model Architecture for Numerical Data

As the final contribution of this dissertation, we suggest our new semantic type detection

approach Pythagoras, designed to support numerical along with non-numerical data.

Pythagoras uses a GNN in combination with a novel graph representation of tables to

predict the semantic types for numerical data with high accuracy. Thereby, we use

directed edges in our graph representation to model the information flow within tables.

By using this graph structure, Pythagoras can learn selectively which context information

should be taken into account to establish robust predictions on numerical data. We

compare Pythagoras against five state-of-the-art approaches using two different datasets

and show that our model significantly outperforms the baselines on numerical data.

1.5 Outline

The remaining chapters of this dissertation are structured as follows: Chapter 2 first

show the limitations of applying a semantic type extraction model to a new unseen

data lake based on experimental results. It also explains our new approach of using

weak supervision to eliminate the limitations. Chapter 3 presents our data programming

framework STEER, which allows to semi-automatically adapt learned semantic type

detection models to new unseen data lakes. The chapter additionally shows an extensive

evaluation of STEER on four different data lakes using two separate models that implement

different learning paradigms. Chapter 4 introduces our new semantically labeled corpus

SportsTables, which we built to tackle the shortcomings of existing corpora for the task

of semantic type detection of table columns. A comparison of the statistics regarding the

distribution of column data types and sizes of existing tables in the corpus explains the

main characteristic differences between our corpus and the existing ones. Because existing

semantic type extraction models do not provide accurate performances when used on

numerical data, we present Pythagoras which is a novel model specifically designed to

12

1.5 Outline

robustly handle numerical data columns in Chapter 5. Finally, Chapter 6 concludes this

dissertation with a summary and outlines future work.

13

2 Weak Supervision for Learned

Semantic Type Extraction

Publication. The work on using weak supervision for learned semantic type extraction is published in the

peer-reviewed publication “Towards Learned Metadata Extraction for Data Lakes” in the Datenbanksys-

teme für Business, Technologie und Web (BTW 2021), 19. Fachtagung des GI-Fachbereichs „Datenbanken

und Informationssysteme" (DBIS), 13.-17. September 2021, Dresden, Germany, Proceedings

Contributions of the author. Sven Langenecker is the leading author of the publication [62] mentioned

above. He is responsible for the analysis of using learned semantic type detection approaches on unseen

data lakes and the proposed weak supervision approach. The co-authors Christoph Sturm, Christian

Schalles and Carsten Binnig contributed invaluable feedback. All authors agree with the use of the

publication for this dissertation.

In this chapter, we first present our initial steps in this dissertation, in which we

analyze the quality of state-of-the-art learned approaches for semantic type extraction

on new, previously unseen data lakes. We show the limitations of existing DNN based

approaches for semantic type detection, which is that they are always data lakes specific

and do not generalize to different data lakes. For deploying on a new unseen data lake,

these approaches always require a costly adaption. To tackle this limitation, we suggest

a new direction of using weak supervision to generate a much broader set of labeled

training data for semantic type detection with low manual effort. By re-training the

learned model with the automatically generated new training data, the model is adapted

to the unseen data lake with minimal effort.

2.1 Study of Using Existing Learned Approaches

In the following, we present the results of our study of using learned semantic type

extraction approaches on new real-world data lakes. For our initial study, we selected

Sato [113] as a recent DNN-based approach. As already mentioned, while other approaches

exist, our initial investigations with Sato show the inherent constraints shared by all

15

2 Weak Supervision for Learned Semantic Type Extraction

current models and demonstrate the need towards new solutions for adapting learned

semantic type detection approaches to new data lakes. We will now first describe the

dataset and the methodologies used in our experiments before we present our results.

2.1.1 Dataset and Methodology

Dataset. As a dataset, we use the Public BI Benchmark [31] data corpus in this study.

The data corpus contains real-world data, extracted from the 46 biggest public workbooks

in Tableau Public [101]. In this corpus, there are 206 tables each with 13 to 401 columns.

The main reason for choosing this corpus for our study was that it contains labeled

structured data from different real-world sources across various domains (e.g., geographic,

baseball, health, railway, taxes, social media, real estate). Hence, the benchmark comes

with a high diversity and heterogeneity of data sources that can typically also be found

in data lakes of enterprises today.

Methodology. As mentioned before, the inherent problem of DNN-based approaches

for semantic type extraction is that they rely on a representative training data set. To

put it differently, if the training data set does not cover the variety of cases that are also

seen in the real-world data, the performance of the learned models quickly degrades. As

part of our analysis, we wanted to see to which extent this inherent limitation influences

the overall quality of a learned approach such as Sato. For the study, we thus annotated

the table columns in the Public BI Benchmark manually with the correct semantic types

of Sato. For the annotation, we first preprocessed the data automatically and searched

for string matches between the column headers of the tables in the Public BI Benchmark

and the semantic types supported by Sato. However, this was only useful for a small

fraction of the columns because many headers were meaningless or they did not match

any of the semantic types. To guarantee the correctness of labels every column was

additionally inspected and missing types where added manually.

2.1.2 Results of the Study

As a first question, we analyzed the coverage rate of the 78 semantic types supported

by Sato in the Public BI Benchmark to see to which extent a pre-trained model can

support real-world data if no new training data is used for re-training. For this question,

we analyzed what fraction of columns in the Public BI Benchmark had a type that was

covered by the training data set of Sato. The main result of this analysis was that only

10.6% of the columns are assignable to one of the semantic types. To put it differently,

almost 90% of the columns in the Public BI benchmark have semantic types that cannot

16

2.1 Study of Using Existing Learned Approaches

0

5

10

15

20

P
e
r
c
e
n

ta
g

e
 F

r
e
q

u
e
n

c
y n
a
m

e

c
o
d
e

ty
p
e

d
e
s
c
ri

p
ti

o
n

y
e
a
r

te
a
m

s
ta

te

c
it

y

te
a
m

N
a
m

e

c
o
u
n
tr

y

g
e
n
d
e
r

a
d
d
re

s
s

c
la

s
s

lo
c
a
ti

o
n

c
a
te

g
o
ry

re
g
io

n

d
u
ra

ti
o
n

d
a
y

c
o
u
n
ty

la
n
g
u
a
g
e

ra
n
g
e

o
p
e
ra

to
r

fo
rm

a
t

o
rg

a
n
is

a
ti

o
n

p
o
s
it

io
n

s
e
x

w
e
ig

h
t

o
w

n
e
r

s
ta

tu
s

ra
n
k
in

g

s
e
rv

ic
e

c
o
ll
e
c
ti

o
n

c
o
n
ti

n
e
n
t

Public BI Benchmark
Sato Trainigs-Corpus

Corpus

Figure 2.1: Distribution of semantic types in training data of Sato and the Public BI
Benchmark

be detected by using Sato, as these are semantic types that are not covered by Sato’s

training data.

As a second question, for the columns of the Public BI Benchmark that have types

which are supported by Sato, we then wanted to see how the distribution of the 78

semantic types in the training data used for Sato and the Public BI Benchmark looks

like. The reason is that different distributions of labels in the training and testing data

can have a negative impact on the overall quality of a learned approach. Based on

our annotations, we thus further analyzed the percentage frequency distribution of the

occurring semantic types in the Public BI Benchmark compared to the used data corpus

from Sato (VizNet [45] corpus). As can be seen in Figure 2.1, the frequency for many

semantic types in both data sets (i.e., original training data of Sato and the Public BI

Benchmark), however, is almost identical. Therefore, Sato should in principle be able to

achieve almost the same prediction quality for these columns of the Public BI Benchmark

as for the test data of the VizNet corpus. In the paper of Sato [113] they reported on the

test data of VizNet a macro average F1-Score of 0.735 and a support weighted F1-Score

of 0.925.

As a final question, we thus aimed to analyze the 10.6% of the columns in the Public

BI Benchmark that are in principle covered by the training data of Sato. To conduct this

study, we used the pre-trained Sato model and applied it to only this fraction of the data

of the Public BI Benchmark. For this subset, Sato achieves an F1-Score (macro average

and weighted1) of 0.090 and 0.300 respectively, which is also shown in Table 2.1 in our

1F1-Score macro average: averaging the unweighted mean F1-Score per label
F1-Score weighted average: averaging the support-weighted mean F1-Score per label

17

2 Weak Supervision for Learned Semantic Type Extraction

evaluation in Section 2.3. The original paper [113] reports an F1-Score of 0.735 and 0.925

on the VizNet2 data corpus. This indicates that the data characteristics of the supported

data types of the Public BI Benchmark is different from the data characteristics of the

training data of VizNet and thus Sato can not infer types in a robust manner (even if

they should be supported in principle).

Main Insights. As suspected, our study has shown that a DNN-based model such as

Sato trained on one data set can only cover a fraction of data types of a new dataset.

Moreover, for the overlapping data types, the accuracy is still pretty low due to different

data characteristics of the training data and the new dataset. While the results of

our study are specific to Sato, we believe that our findings are much more general and

translatable to any learned approach that relies on manually curated training data (which

is inherently limited as discussed before). Hence, a new approach is required where one

can easily adapt learning-based models for type extractors to new datasets that covers

types and data characteristics not covered in the available manually labeled training data.

As a solution for this requirement, we next present our new weak supervision approach

in the next section.

2.2 Weak Supervision to Adapt Learned

Approaches to New Data Lakes

The root cause of why DNN-based approaches such as Sato often fail to extract semantic

types on a new dataset is that the training data lacks generality as discussed before. The

main idea of using weak supervision is to generate a broad set of new labeled training data

extracted with only minimal effort from the new data lake where the model should be

deployed. By subsequently re-training the model with the additional generated training

data, the model is adapted to the data lake and can operate robustly on it. In the

following, we discuss our initial ideas for such an approach and present a concept of a LF

which can generate additional training data on a new data lake.

2.2.1 Overview of Our Approach

Figure 2.2 shows an overview of our approach. The main idea is that based on a set of

simple LFs, we generate new (potentially noisy) training data that is then used to re-train

a model such as Sato to increase the coverage of data types and data characteristics of

2https://github.com/mitmedialab/viznet

18

2.2 Weak Supervision to Adapt Learned Approaches to New Data Lakes

Figure 2.2: Overview and step-by-step procedure of our weak supervision approach,
starting from (1) structured unlabeled data stored in a data lake to (2)
semantic type labeling using weak supervision, (3) re-training/testing of Sato
and (4) using re-trained Sato model for predicting semantic types of the data
in the data lake.

the learned model. In other words, we apply the ideas of data programming discussed in

[92] for the domain of semantic type extraction of table columns.

In our approach, we differentiate between two different classes of LFs for generating new

training data: (1) The first class are LFs that can generate labels (i.e., semantic types)

for completely new semantic types in a data lake that are not yet covered by a manually

labeled training data set. LFs of this class can be, for example, regular expressions,

dictionary look-ups, or other techniques such as using alignment with existing ontologies.

This set of label functions can thus help to expand the semantic types covered in a training

data set. (2) Second, as we have seen in our study, another problem of learned approaches

such as Sato is that they often fail to predict semantic types even if in principle the

semantic type is already covered by the training data. The main reason for this case is

that the training data does not cover the wide spectrum of data characteristics that might

appear in a new data set. Hence, as a second class of LFs our new approach supports

functions that can generate new labeled columns that cover more data characteristics

(e.g., new values) for data types that are already available in a training data set. One idea

for a LF of this class is the use of word embeddings [75] to cluster new unlabeled with

already labeled columns and thus generate new labeled columns for existing semantic

types. A more detailed description of such a LF is given below.

19

2 Weak Supervision for Learned Semantic Type Extraction

0.0

0.2

0.4

0.6

0.8

1.0

S
c
o
r
e
s

n
a
m

e

c
o
d
e

ty
p
e

d
e
s
c
ri

p
ti

o
n

y
e
a
r

te
a
m

s
ta

te

c
it

y

te
a
m

N
a
m

e

c
o
u
n
tr

y

g
e
n
d
e
r

a
d
d
re

s
s

c
la

s
s

lo
c
a
ti

o
n

c
a
te

g
o
ry

re
g
io

n

d
u
ra

ti
o
n

d
a
y

c
o
u
n
ty

la
n
g
u
a
g
e

0.0

0.2

0.4

0.6

0.8

1.0

S
c
o
r
e
s

ra
n
g
e

o
p
e
ra

to
r

fo
rm

a
t

o
rg

a
n
is

a
ti

o
n

p
o
s
it

io
n

s
e
x

w
e
ig

h
t

o
w

n
e
r

s
ta

tu
s

ra
n
k
in

g

s
e
rv

ic
e

c
o
ll
e
c
ti

o
n

c
o
n
ti

n
e
n
t

0.0

0.2

0.4

0.6

0.8

1.0

m
ic

ro
 a

v
g

m
a
c
ro

 a
v
g

w
e
ig

h
te

d
 a

v
g

F1-Score
Precision
Recall

Category

Figure 2.3: Performance of clustering semantically similar columns.

2.2.2 Label Generation Using Clustering

To present a basic idea of a LF for generating more labeled training data for an existing

semantic type, we implemented a method based on clustering that we briefly introduced

before. The main idea is that we start with a small training corpus of labeled columns

and by clustering new non-labeled to the labeled columns, we can derive new labeled

training data.

To implement this labeling approach, we first compute column embeddings for labeled

and unlabeled columns based on word embeddings of individual values. We currently use

Google USE3 that was trained on 16 different languages and showed good results as word

embeddings. But in principle, we could also use other word embeddings. Based on the

embeddings of individual values, we compute an embedding for all values of a column

by calculating the average across the embeddings of all values which is the dominant

approach for building representations of multi-words [13, 63, 99].

Once we computed an embedding for all values of a column, we next carry out the

clustering of labeled and unlabeled columns based on these embeddings. For this step,

we use an agglomerative clustering algorithm4. In our prototype, we use this clustering

method to form groups based on the cosine similarity of vectors (i.e., our embeddings)

3https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3
4https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering

20

2.2 Weak Supervision to Adapt Learned Approaches to New Data Lakes

Figure 2.4: Confusion matrix of the clustering method

and a distance threshold (discussed below), rather than to generate a fixed number of

clusters to not generate a fixed number of clusters. Once clustered, we then compute a

semantic type per cluster based on the majority vote of columns with the same label. [69]

represents a system called Raha, which relies on a similar idea for generating training

data but for error detection and not for semantic type extraction.

A key parameter to be set in our clustering approach is the distance threshold which

can vary between 0.0 and 1.0 (i.e., a lower value means that we produce more clusters).

In our experiments, we used a threshold of 0.1 based on a hyper-parameter search on the

already labeled columns. This threshold provided high accuracy on the broad spectrum

of data sets in the Public BI Benchmark. In the next chapter (Chapter 3), in which we

present our comprehensive data programming framework including multiple LFs, we will

give a more detailed description of the implementation of this LF (see Section 3.3.1).

Initial Results. To analyze if the basic idea of clustering is working, we conducted a

small experiment where we measure how well the clustering approach works on the Public

BI Benchmark using our annotations of the 78 Sato types. By clustering, we wanted to

21

2 Weak Supervision for Learned Semantic Type Extraction

see whether columns with the same type would be assigned to the same cluster. As we

see in Figure 2.3, with a few exceptions, the clustering algorithm achieves high precision.

This means that there is a very high probability that all elements in one cluster belong

to the semantic type representing the specific cluster. For many types, we achieve an

F1-Score of 1.0 such as for the semantic types teamName, position, owner, ranking and

collection. However, there are also a few semantic types for which only lower values are

achieved for precision, recall and F1-score (e.g., city, county, service). By looking at the

confusion matrix (see Figure 2.4), we can see why these lower values arise. For example,

the semantic type county was always assigned to a cluster, which represents the semantic

type city. This is explained by the fact that county and city names are very often the

same, making it very difficult to distinguish between them.

Moreover, in a second experiment, we wanted to show the robustness of our clustering

approach to different data characteristics. To demonstrate this we analyzed the entropy

and the jaccard-coefficient for all columns with the same semantic type in the Public BI

Benchmark. The intuition is that columns with a high entropy (i.e., a high degree of

divergence) or pairs of columns which have a low jaccard-coefficient (i.e., where columns

values are not overlapping) are harder to cluster. Overall, our approach assigns column

pairs with the same semantic type to the very same cluster even if they strongly vary in

the entropy or have a low overlap (i.e., a low jaccard-coefficient).

2.3 End-to-End Evaluation

In the section before, we have already shown that the basic idea of weak supervision can

help to generate training data by clustering to improve the robustness w.r.t different data

characteristics. In the following, we report on the initial results of using this approach in

an end-to-end evaluation to show how this can boost the performance of learned semantic

type extraction approaches such as Sato on unseen data lakes.

Setup and Data Preparation. We implemented our approach for automatic labeling

in Python using the Google USE embeddings as mentioned before. Moreover, we used

the source code provided by Sato5 for training and evaluation. However, Sato is designed

to be built and trained from scratch. Hence, we extended Sato with the appropriate

functionality for incremental re-training.

End-to-End Results. To show the end-to-end performance of our approach, we

restricted ourselves to the 10% of the Public BI Benchmark data that is supported by

5https://github.com/megagonlabs/sato/tree/master

22

2.4 Key Findings

Table 2.1: Performance comparison of the models on Public BI Benchmark

Macro average F1 Precision Recall Support-weighted F1

Sherlock (not re-trained) 0.114 0.375 0.309 0.322
Sherlock (re-trained) 0.806 0.879 0.859 0.860
Sato (not re-trained) 0.090 0.322 0.304 0.300
Sato (re-trained) 0.811 0.912 0.894 0.894

Sato and its semantic types. In the experiment, we first generated additional training

data and then re-trained the pre-trained Sato model with our additionally labeled data.

Thereby, to generate the additional training data for the Public BI Benchmark, we used

the clustering approach as discussed before as LF. We split the Public BI Benchmark

into a training and testing set and used the training set as input for LF and the test set

to evaluate the re-trained Sato model. As we see in Table 2.1, after re-training the Sato

model with the synthesized training data of our approach, Sato achieves F1-Scores (macro

average and weighted) of 0.811 and 0.89 respectively. This is a significant improvement

of almost +0.60 compared to the performance of Sato without re-training. In addition

to show that our approach also generalizes to other learned approaches, we furthermore

used Sherlock [50] (without and with re-training). As shown in Table 2.1, this leads

to a similar performance gain. In summary, these results show that our approach is in

principle able to boost the performance of learning-based approaches that have been

pre-trained on only a small training data set not covering all data characteristics found

in a new unlabeled data lake.

2.4 Key Findings

We will now present the key findings of this chapter and discuss the motivation for the

next proposed directions in this dissertation. While there are existing learned approaches

that can be used for extracting semantic types in data lakes, they cannot be directly

used for unseen real-world data lakes since they only support a limited set of semantic

types as we have shown in our study. Furthermore, the trained models do not cover

the broad spectrum of different data characteristics found across data lakes. Therefore,

it is necessary to adapt the learned models to an unseen data lake before using them.

However, this adaptation involves a high amount of effort, as it requires a large set of

new training data that reflects the characteristics and semantics of the unseen data

lake. To tackle this problem, we suggested a new direction of using weak supervision

23

2 Weak Supervision for Learned Semantic Type Extraction

to automatically generate additional labeled data. Subsequently, this new training data

are then used to re-train the existing learned model. Our initial evaluation of using this

weak supervision technique demonstrated that it can be successfully applied to adapt

learned models to new data lakes semi-automatically.

In this chapter, we showed with only one LF (Labeling by Clustering) and an initial

experiment that the weak supervision approach is promising and can be used in principle

for adapting learned models to new unseen data lakes. In order to cover the different

data characteristics and semantics of real-world data lakes, it is necessary to provide a

holistic labeling framework for semantic type labeling that comes with multiple predefined

LFs. Additionally, we see a requirement for additional LF that can handle specifically

numerical data and their underlined semantic types, because numerical data are less

descriptive than textual data. This motivates the further directions proposed in the next

chapter.

24

3 Steered Training Data Generation

for Semantic Type Detection

Publication. The work on steered training data generation for learned semantic type detection is

published in the peer-reviewed publication “Steered Training Data Generation for Learned Semantic

Type Detection” in the Proc. ACM Manag. Data

Contributions of the author. Sven Langenecker is the leading author of the publication [61] mentioned

above. He is responsible for the proposed labeling framework STEER, the included pre-defined LFs for

semantic labeling of table columns, the core component Steered-Labeling, experimental evaluations and

the manuscript. The co-authors Christoph Sturm, Christian Schalles and Carsten Binnig contributed

invaluable feedback. All authors agree with the use of the publication for this dissertation.

In the previous chapter, we observed that a key challenge for deploying semantic type

detection models to new data lakes is the needed adaption to the data characteristics

and semantics of the data contained in the data lake. To address this adaption challenge

with minimal effort, we have shown by an initial experiment with one LF that the weak

supervision approach can be used in principle. This motivates the next direction of this

dissertation - a holistic data programming framework for semantic type detection of table

columns.

Hence, in the following, we will present the first data programming framework for

semantic type detection called STEER. STEER is based on the idea of weak supervision

to generate new labeled training data for a new unseen data lake with numerical and

non-numerical data types. The generated training data of STEER can be used to re-train

an existing learned semantic type detection model to adapt it to the new environment. At

the core, to generate labeled training data (i.e., pairs of columns with data and semantic

types), we propose a new label generation process called Steered-Labeling. The intuition

is that in Steered-Labeling we separate the process into two subsequent steps: STEER

first labels the non-numerical columns that are easier to label. Afterwards, STEER then

uses these labels to “steer” the labeling of the numerical columns. With this, STEER

25

3 Steered Training Data Generation for Semantic Type Detection

is able to not only generate high quality training data of textual columns but also to

semantically label numerical data with a very high precision.

To summarize in this dissertation the contributions of STEER and the integrated

Steered-Labeling procedure, the upcoming sections are structured as follows. First, in

Section 3.1, we give an overview of the STEER framework, its main components and

present the details of our Steered-Labeling process. Afterward, Section 3.2 presents the

details of our implemented LF for numerical data which is integrated into our steered-

labeling approach. Section 3.3 then shows the LFs provided by STEER for labeling

non-numerical columns. Afterward, in Section 3.4 we then show the results of our

extensive experimental evaluation of STEER in different scenarios. In the last Section 3.5,

we give a summary of this chapter and explain the relevance of the next directions in

this dissertation.

3.1 Overview of STEER

STEER implements a novel labeling framework that can generate high quality labeled

data for training semantic type detection models on a new unseen data lake with minimal

overhead. We will now first introduce a general overview of STEER and then focus more

specifically on the mentioned Steered-Labeling core component of the labeling framework.

3.1.1 The Labeling Framework

STEER provides a labeling framework based on the idea of weak supervision that comes

with different classes of LFs for training data generation. The novel aspect of STEER

is that it comes with a new training data generation procedure called Steered-Labeling

that can generate high quality training data not only for non-numeric but also numerical

columns that are currently not supported by any of the existing learned approaches

for semantic type detection. Figure 3.1 shows the overview of all phases in STEER

to generate training data for a semantic type detection model. Overall, the labeling

framework of STEER can be divided into three different phases: (1) Label Function

Construction: STEER already comes with a wide spectrum of LFs for numerical and

non-numerical semantic types. These LFs can be extended by a data engineer to support

specific column values or LFs for highly specific data types. (2) Steered Training Data

Generation: The steered training data generation phase is the core of STEER which uses

the LFs and creates training data for non-numerical and numerical data. The idea of

the steered-labeling procedure is that at first STEER labels the non-numerical columns

26

3.1 Overview of STEER

Figure 3.1: Overview of STEER. The main idea is that STEER provides a labeling
framework that comes with different classes of LFs for training data generation.
These LFs can be extended and need to be instantiated by domain experts
with minimal overhead, for example, by providing some examples of labeled
columns. Afterwards, STEER creates labels (i.e., pairs of columns and
semantic types) that can be used as training data. STEER divides the LFs
into groups of functions for textual data and functions for numerical data and
implements at the core a novel steered-labeling process that first labels textual
columns and afterwards numerical columns so that the LFs for numerical data
can benefit from the labels generated before. The steered-labeling process
generates high-quality training data with minimal overhead on a new unseen
data lake that can then finally be used to re-train or fine-tune an existing
learned metadata extraction model.

that are easier to label. Afterwards, STEER uses these labels to “steer” the labeling

of the numerical columns as shown in Figure 3.1 (bottom). The intuition of steering is

that tables with similar semantic types for textual columns also have similar semantic

types for numerical columns. For example, a table about baseball teams has a column

sports team. If a column sports team is present in a table, then the numerical values of

the table’s numerical columns are more likely to be about height and weight of players

and not about air pressure or other numerical columns. We explain the steered-labeling

procedure in more detail below. (3) Model Adaption: Finally, in the adaption phase an

existing model such as Sato [113] or TURL [20] is adapted to the data lake by re-training

or fine-tuning the model using the previously automatically generated training data.

27

3 Steered Training Data Generation for Semantic Type Detection

3.1.2 Steered-Labeling Procedure

As core contribution of the training data generation in STEER, we introduce a new

steered-labeling method to generate training data for labeling non-numerical (textual)

and numerical columns. However, as we show in our evaluation, labeling numerical

columns with LFs is generally more difficult than textual columns which contain semantic

meaningful values such as names of cities or sports teams. In order to overcome this

inherent problem and provide high precision also for LFs for numerical data, our idea is

that with the Steered-Labeling approach numerical LFs can rely on context data from a

table; i.e. the already labeled textual columns.

To enable a steered labeling, STEER strictly separates the LFs into those for labeling

non-numerical and numerical columns. In a first step, STEER uses the LFs for non-

numerical data to label the subset of columns in the data lake that does not contain

numerical data. Based on these labeled columns, STEER then aims to label the numerical

columns. For this, STEER comes with a LF that is generally applicable for all numerical

types.

The idea of this LF is that (1) a small fraction of numerical columns that represent

the numerical types in the data lake need to be labeled upfront. Afterwards, these

labeled examples are then used to (2) generate labels for other non-labeled numerical

columns by using a clustering-based LF that clusters numerical columns with similar

value distributions. Steering during clustering helps the clustering-based labeling to

group numerical columns from similar tables and thus increase the labeling quality.

For example, if unlabeled numerical columns of a table that also has a column sports

team should be labeled, steering would prefer tables for the cluster-based labeling that

have a sports team column together with other labeled numerical columns. However,

it is important to note, that steering in STEER is optional; i.e., cluster-based labeling

can also be used without steering which is needed when no other table with the same

semantic non-numerical type exists or tables contain only numerical columns.

In our experiments, we show that our novel steered-labeling process leads to huge

benefits compared to a non steered-labeling process where all LFs are executed in parallel.

To the best of our knowledge, the labeling framework of STEER is the first which uses

such a steered-labeling procedure to semantically label non-numerical and numerical

columns.

28

3.2 Labeling Numerical Columns

Algorithm 1 LF EMD: The LF is based on clustering columns in tables which share the
same context using the the earth mover’s distance as similarity metric between numerical
columns.

1: emd_threshold← precalculated threshold
2: Cln, Tln ← set of labeled numerical cols and their table
3: Cun, Tun ← set of unlabeled numerical cols and their table
4: for All cun in Cun do
5: emd_results = []
6: Clt1 ← set of labeled textual cols of table Tun of cun

7: for All cln in Cln do
8: Clt2 ← set of labeled textual cols of table Tln of cln

9: if length(Clt1 ∩ Clt2) > 1 then
10: emd_results.append(earth_mover_dist(cun, cln))
11: end if
12: end for
13: sort(emd_results)
14: if size(emd_results) > 0 then
15: if emd_results[0] < emd_thresholdcul

then
16: assign semantic type of emd_results[0] to cun

17: end if
18: end if
19: end for

3.2 Labeling Numerical Columns

Existing approaches for annotating a type to a numeric column typically compare only the

distributions of the data values from labeled to unlabeled columns using earth mover’s

distance like in [56, 114] or the p-value of statistical hypothesis test like in [80, 91].

However, these naïve approaches are typically more inaccurate for data lakes since usually

numeric columns have a lower entropy than textual columns and thus have a lower

information content which makes it harder to differentiate numerical columns from one

another1. Therefore the information provided by the value distribution of numerical

columns is too limited and leads to many false annotations if it is the only semantic

typing criterion. In order to overcome this inherent problem and boost the precision

of the semantic type detection, our idea is instead to rely on context data from the

table (e.g. information about neighboring columns) which we use to steer the labeling of

numerical columns. In the following, we explain a LF that is based on this idea.

1Generally numeric values can be encoded with much less bits than string values resulting in lower
overall entropy values [98]

29

3 Steered Training Data Generation for Semantic Type Detection

3.2.1 Labeling by Context-aware Clustering

The idea of Steered-Labeling is integrated into a LF of STEER that is based on the idea

of context-aware clustering. In order to use this LF, a data engineer has to provide at

least one table with a labeled column per semantic type t the LF should create labels

for. Afterwards, the LF uses the annotated column that has type t and the table T the

column is part of to create other labeled numerical columns of the same type. Moreover,

the LF assumes that columns with textual semantic data types have already been labeled

as discussed in Section 3.1. LFs for textual columns will be described in detail in the

next section.

The pseudocode of the LF which labels numerical columns is shown in Algorithm 1 and

works as follows: Given a set of manually labeled numerical columns Cln (and the tables

Tln they are part of), and a set of unlabeled numerical columns Cun (and the tables Tun

they are part of), the LF iterates over the unlabeled columns cun to label them in the

respective iteration step (line 4-19). In this iteration step, the LF first retrieves context

information about cun; i.e., we retrieve the semantic types of all non-numerical columns

of table Tun (line 6). In the next step, we iterate over each labeled column cln in Cln.

Afterwards, we then retrieve context information also for cln which is part of table Tln.

In case the two tables — Tun and Tln — share at least one column with the same

semantic type, we compute the earth mover’s distance between cun and cln as a metric

of the similarity of both columns (line 10). As such, we compute the earth mover’s

distance only against labeled numerical columns in tables that share the same context

which improves the accuracy of the labeled training data significantly as we show in

our evaluation in Section 3.4. Each earth mover’s distance measurement to a labeled

numerical column is then stored in a list, which we finally sort in ascending order (line

13); i.e., the most similar labeled column is first.

3.2.2 Determining the EMD Threshold

In the LF EMD as shown in Algorithm 1, the values of the two numerical columns are

not normalized before the earth mover’s distance is computed as a similarity measure. A

normalization of the distribution would lead to a loss of information and to many false

matches between labeled and unlabeled columns. Therefore the earth mover’s distance

between the values of the two numerical columns is not normalized.

As a result, the earth mover’s distance values of a comparison between two columns

varies in a value range between [0, MAX_EMD] where MAX_EMD can be arbitrarily

large. As such, setting a fixed threshold value is not possible. Instead, we set a threshold

30

3.3 Labeling Non-Numeric Columns

individually per unlabeled column cul. The intuition is that we find a threshold that

considers the value distributions of the numerical values in that column.

Moreover, determining the threshold correctly is very important. When setting the

threshold too low, we might not assign any numerical type while when setting the value

too high, we might see a lot of false labels. Hence, to set the threshold we first compute

the distribution of earth mover’s distance values across a representative set of pairs of

unlabeled numerical columns. That way, we can decide what a significant difference

between two earth mover’s distance values is and thus also when two columns are similar;

i.e., the difference of the earth mover’s distance value is not significant.

To calculate the threshold for the earth mover’s distance we use the following equation:

emd_thresholdcul
= 0.4 Quantile_EMD ∗ std_cul

where 0.4 Quantile comes from the the distribution of all earth mover’s distance

measurements between labeled columns and unlabeled columns and std is the standard

deviation of the unlabeled column cul that is supposed to be labeled at the moment.

3.2.3 Numerical-only Tables

As described above the context-ware LF EMD for labeling numerical data relies on

existing textual semantic types of the neighboring table columns. During computing

the semantic similarity between unlabeled and labeled columns as mentioned before,

two different situations can thus occur, where no context information is available. (1)

Table Tun of the unlabeled numerical column cun contains only numerical columns or no

textual columns are annotated. (2) Table Tln of the labeled column cln contains only

numerical columns or no annotated textual columns and therefore no context information

is available. We address these situations as follows. On (1) we measure the earth mover’s

distance against all labeled columns available without considering any context information.

In case of (2) the earth mover’s distance measure is made against the labeled column

due to the missing context information.

3.3 Labeling Non-Numeric Columns

As mentioned in Section 3.1, Steered-Labeling first labels non-numerical columns and

subsequently the numerical columns. For annotating semantic types to non-numerical

columns, our labeling framework comes with a set of four different LFs. We separate

31

3 Steered Training Data Generation for Semantic Type Detection

Figure 3.2: Labeling by Embedding Clustering EmbClus. In a first step, embeddings are
computed for all columns. Afterwards, by clustering new labels are generated
using existing labels from already annotated table columns.

these LFs in STEER into two categories: (1) Generic LFs that work without any manual

adaption of the LF and (2) Domain-Specific LFs which require adaption of the LFs to

the data types of the data lake. These LFs rely on the contribution of domain experts

knowledge by providing some limited number of example values for a domain-specific

data type. In the following, we will explain the different LFs for labeling non-numerical

columns in detail.

3.3.1 Generic Labeling Functions

STEER provides two types of generic LFs that can be used in a domain independent

manner.

Labeling by Embedding Clustering. The first generic LF is the one we already

introduced in Chapter 2 initially. Since we have only presented the general idea, we will

now explain the function in more detail. As it relies on embedding clustering, we call it

EmbClus. Similar to labeling numerical types by clustering, this LF requires that a small

set of columns in a data lake is already annotated with semantic types. This is often the

case since data lakes are constantly growing in size and thus some columns might have a

semantic type. However, one could also use this LF if a domain expert is willing to first

label a small (representative) set of columns in the data lake manually.

The main idea of EmbClus is to use column embeddings to cluster columns with similar

values and thus generate labels for previously unlabeled columns. Figure 3.2 shows the

implemented algorithm and the individual detailed processes. In the first phase, we

compute column embeddings for both labeled and unlabeled table columns based on

32

3.3 Labeling Non-Numeric Columns

word embeddings of individual column values. As word embeddings, we currently use

Google USE2 [111] that was trained on 16 different languages.

In principle we could also use other word embeddings, but multilingual models can

better cover the spectrum of different “custom” semantic types in different enterprise

data lakes. Furthermore, the model is also designed to embed sequences of words (e.g.

sentences) and thus gives us the possibility to embed column values that contain more

than just one word. Based on the embeddings of individual values, we compute an

embedding for all values of a column by calculating the average across the embeddings of

all values which is the dominant approach for building representations of multi-words

also mentioned in other papers [99].

Once we computed an embedding for all columns, we cluster labeled and unlabeled

columns together based on these embeddings. The intention here is that clusters are

formed with columns that have the same semantic type. For this step, we use the

hierarchical agglomerative clustering algorithm3. In STEER, we use this class of clustering

method not to generate a fixed number of clusters, but to form groups based on the

cosine similarity of vectors (i.e. our embeddings) and a distance threshold that we discuss

below.

Once clustered, we then compute a semantic type per cluster based on the majority

vote of the labeled columns in that cluster. In the absence of any labeled column in

a cluster, we assign no semantic type to that cluster. A key parameter to be set in

our clustering algorithm is again the distance threshold, where lower values mean that

we produce more clusters. In our experiments, we used a threshold of 0.01 based on a

hyper-parameter search on the already labeled columns. This distance threshold provided

good results on the broad spectrum of datasets in all four observed fictive data lakes.

Labeling by Column Headers (CH). Another generic LF is the labeling by column

headers (CH). The main idea of labeling by column headers (CH) is to use the original

column headers as information to derive the semantic type of the column. The original

column headers often represent type information but do not directly represent semantic

types (e.g., a unified ontology of the enterprise) of the data lake catalog. For generating

labels with existing column headers, we again use pre-trained language embeddings to

embed column headers as well as the semantic types of the given ontology that should

be used for the catalog.

2https://tfhub.dev/google/universal-sentence-encoder-multilingual/3
3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering

33

3 Steered Training Data Generation for Semantic Type Detection

Based on these embeddings, we match them similar to the work in [47]. As similarity

measure between the column header and each semantic type, we use the cosine similarity

of the vectors. Based on the similarity measure, the LF then assigns the semantic type

as label to the column with the highest cosine similarity. Moreover, the cosine similarity

must have a minimum similarity threshold value. In our experiments, we use a similarity

threshold of 0.9 based on a hyper-parameter search on the already labeled columns. Since

this LF is based on column headers, it can in general be applied to columns with textual

data as well as to columns containing numerical data.

3.3.2 Domain-Specific Labeling Functions

In this section we now present our implemented LFs of the second category. STEER

provides two types of that LF category which can be specialized by the domain expert to

their own data lake.

Labeling by Value-Overlap (VO). The central concept of Labeling by value-overlap

(VO) is to enable a domain expert to provide a list of common values for a semantic type.

To give an example, a domain expert in the field of American football can provide a list of

typical team names (e.g. [atlanta falcons, new england patriots,...]) for the semantic type

american_football.football_team that occur frequently in table columns. The LF uses this

list to check how many values in an unlabeled column exactly match one of the values in

the provided list. Notice that this is an exact string matching, where we first convert

all strings to lower case and than apply the comparison. If the number of matching

values is over a threshold, the LF assigns the corresponding label to that column. In our

experiments we use a threshold of 20%, which is however a hyperparameter that can be

tuned per data lake.

Labeling by Value-Patterns (VP). The LF Labeling by value-patterns (VP) allows

domain experts to specify a list of general patterns via regular expressions (regex) for

a semantic type. As applied in the previous LF, we use the list of regular expressions

to check how large the fraction of column values is for which a pattern matching was

successful. If this fraction is over a predefined threshold, the column gets the according

type. In our prototype we use a threshold of 20%, which generated high quality training

data for all considered datasets.

3.3.3 Discussion

In STEER, each non-numeric column is labeled by each existing non-numeric LF. There-

fore, after processing all LFs, discrepancies can exist, since one column can get several

34

3.4 Experimental Evaluation

Table 3.1: Characteristics of the four data sets used as data lakes.

Dataset #Tables Avg #Cols per Table #Types Ontology

Public BI 160 8.96 33 DBPedia
TURL-Corpus 401,538 1.59 105 Freebase
Public BI Num 170 13.64 52 Custom
SportsDB 78 17.83 18 Custom

different semantic types from different LFs. In this case, STEER combines the labels

from multiple LFs by using a majority vote. We also tried out other strategies such as

using a generative model that is trained on the output of the LFs (which is a strategy

suggested in [92]). However, in all our experiments the majority vote provided superior

performance.

3.4 Experimental Evaluation

In the following, we introduce the four datasets (Public BI & TURL-Corpus & Public BI

Num & SportsDB) and describe the evaluation methodology. Moreover, we use STEER

to re-train two different models for semantic type detection (Sato [113] and TURL [20])

on these data lakes.

3.4.1 Datasets

For evaluating STEER, we use a total of four different real-world data sets with a large

number of different tables as data lakes (see Table 3.1). Overall, we have two data

lakes with only non-numeric semantic types (Public BI and the TURL-corpus) while we

have two data lakes with numeric and non-numeric semantic types (Public BI Num and

SportsDB). We use the data lakes with non-numeric semantic types to generally evaluate

in principle how well our labeling framework can adapt learned models to new data lakes.

Instead, the other two data lakes with numeric semantic types are used to evaluate the

benefits of our Steered-Labeling approach. We later on provide also more details on the

distribution of numeric and non-numeric data types for the two data lakes for which we

annotated numeric types (see Table 3.2).

Public BI [31]. As first data lake, we use the previously introduced (in Section 2.1.1) data

corpus Public BI Benchmark 4, which we have already applied in the initial experiments

4https://github.com/bogdanghita/public_bi_benchmark-master_project

35

3 Steered Training Data Generation for Semantic Type Detection

in Chapter 2. As mentioned before, the original data corpus contains no semantic type

annotations of table columns and we therefore annotated the columns manually with the

correct semantic types. For the annotations, we adopted the same semantic types used in

Sato [113] which is originally trained on the VizNet data set. This allows us to evaluate

a setup with a data lake that uses the same semantic types as a already trained model

but might use different data distributions in the respective columns. As we showed in

the study in Section 2.1, out of Sato´s 78 semantic types, only 33 were present in the

Public BI data corpus. All annotated table columns with one of these 33 semantic types

are non-numeric (i.e., the column values are all non-numeric). We restricted for this

dataset the experiments to these 33 types that are present in the Public BI corpus and

also supported by Sato, to have a dataset that represents a scenario where the semantic

types are in principle supported by the pre-trained model,

TURL-Corpus [20]. As a second data lake we use the dataset from TURL [20].

TURL-Corpus uses the WikiTable corpus [9] as basis. To label each column they refer

to the semantic types defined in the freebase ontology [34] with a total number of 255

different semantic types. What distinguishes this dataset from the Public BI corpus is

that there are no matches with learned semantic types supported by the original Sato

model. This means that we have a scenario with TURL-Corpus where the model has

to be adapted not only to the new data characteristics but also to the new semantic

types. Moreover, columns can have multiple semantic types in the original TURL-Corpus.

To have a dataset that fits to our evaluation methodology (i.e., predict only one type

per column), we manually selected the most specific semantic type out of the given

semantic type set. To give an example, if one column has the labels sports.sports_team

and soccer.football_team, we select the second semantic type as valid label because it is

more specific.

Public BI Num [31]. To construct a data lake that comes with annotated numeric

semantic types, we again used the Public BI Benchmark as a basis. Contrary to Public

BI, we extended the semantic types by 19 additional numerically based types where

the associated columns contain numeric values. Overall, this leads to a data lake with

a significantly higher number of numerical columns and is therefore more comparable

with real-world data lakes. With this data lake we are not only able to evaluate the

performance of existing semantic typing models on a wide set of numerical semantic

types and data, but also to evaluate our Steered-Labeling approach in depth and show its

benefits.

SportsDB. As a fourth data lake we introduce a new corpus named SportsDB, which

also contains a large fraction of numerical columns similar to real-world data lakes. We

36

3.4 Experimental Evaluation

constructed this corpus by extracting tables from different websites that publish statistics

about football in recent years. For example, the corpus contains tables about statistics of

football players in which player name, goals, assists, games etc. are listed. The extraction

resulted in a corpus of 78 tables each containing an average of 3 textual and about 15

numerical columns. For annotating the columns with semantic types, we formed an

ontology containing 18 different semantic terms (3 textual based types and 15 numerical

based types) from the football domain. The assignment of the defined semantic types to

the respective column was done semi-automatically using column headers and checked

manually afterwards. When using this data set, we did not use the LF of STEER, which

labels columns by headers.

3.4.2 Experimental Design

Setup. For the evaluation, the four datasets were split into three parts: labeled, unlabeled

and test. The labeled split represents the set of table columns that we consider to be

already labeled in the data lake. In the individual experimental setups, we apply different

sizes of labeled data to make the results more comparable and show the impact of the

quantity of already manually labeled data. For this, we decided to have 1 to 5 columns

per semantic type already labeled as a starting point in our experiments.

To measure the performance of the different semantic typing models, we used a 20%

split as test data. While creating the split, we first extracted the 20% test data and then

used the remaining 80% to create the labeled and unlabeled set as described above. The

unlabeled data was used as input to our Steered-Labeling framework to generate additional

training data. To obtain statistically reliable results, we ran each experiment with five

different random seeds and report the mean and standard deviation over multiple runs.

Experimental Structure. To demonstrate how well STEER can adapt and improve

existing models to new data lakes, we have divided our evaluation in different use cases.

(1) STEER on Non-Numeric Data. In the first set of experiments, we evaluate STEER

in combination with the existing models Sato and TURL that originally only support

non-numerical semantic types on the Public BI and TURL-Corpus data set. With this

experiment, we also show two scenarios: in the first scenario, we want to show the model

adaption to data lakes which on the one hand contains types already seen by the model

but with different data characteristics (i.e., Sato on Public BI and TURL on the TURL-

Corpus). In the second scenario, we show how well STEER can be used to train a model

on a data lake with new types the model has not seen before (Sato on TURL-Corpus and

TURL on Public BI). Finally, in this set of experiments we demonstrate with this use case

37

3 Steered Training Data Generation for Semantic Type Detection

the model independence of STEER by applying it to two different model architectures

and model paradigms (Sato vs. TURL).

(2) STEER on Numeric Data. We evaluate STEER against data lakes which have a

large proportion of numerical columns and numerically based semantic types (Public BI

Num & SportsDB). Here we show the efficiency of our new Steered-Labeling approach

by comparing a re-trained model with and without training data generated by Steered-

Labeling.

(3) Ablation Study. In an ablation study we discuss and show the efficiency of individual

LFs of our labeling framework and analyze the generated training data.

Baselines. In our experiments, we use several baselines to compare the efficiency of

STEER.

(1) Sato baseline. We use the available learned Sato neural network called Sato baseline

from [113] and applied it to the test data without any fine-tuning by re-training. With

this, we want to see how well the existing model performs in new unseen data lakes with

the same semantic types. Since only the Public BI dataset contains semantic types from

Sato’s learned model, this baseline is only used for this dataset.

(2) Sato retrain. As a second baseline we use Sato retrain. The idea is to use the

set of existing labeled data (before applying our LFs) to re-train the Sato model. This

experiment illustrates the effect of re-training an existing model with a small amount of

manually labeled data. This baseline shows that the small set of existing labeled data

is not sufficient to re-train a learned model and that our labeling framework STEER,

which generates much larger training datasets, can significantly boost the performance.

(3) Turl retrain. As third baseline we use Turl retrain. Same as for Sato retrain, the

manually labeled columns are used to fine-tune the pre-trained TURL model. It shows

that even for the recent trend of pre-train/fine-tune models like TURL, a small existing

set of labeled training data is not enough and the larger training data generated by

STEER can significantly boost the performance.

Our Approach. To show the efficiency of STEER on Sato, we consider the same amount

of manually labeled data to re-train Sato retrain and to fine-tune Turl retrain as a basis

for generating more training data using our approach. Afterwards, we use the generated

training data by our labeling framework to re-train the existing models (Sato and TURL)

with this larger amount of data. The goal of this is to prove how our new approach and

the additional generated training data can boost performance.

In order to report the benefits of STEER when using the model Sato or TURL, we

fine-tune the pre-trained models with the larger amount of data generated by our labeling

framework and name these model STEER on Sato and STEER on Turl. Finally, the

38

3.4 Experimental Evaluation

models are used on the test data split in order to demonstrate the benefits of using our

approach in comparison to Sato retrain and Turl retrain.

3.4.3 STEER on Non-Numerical Data

In the following, we evaluate STEER on the two non-numerical data sets Public BI and

the TURL-corpus.

3.4.3.1 STEER for Unseen Data Lakes

In the first experiment, we compare STEER against the baselines in two scenarios (known

and unknown data types).

Scenario 1: Same Semantic Types. This section reports the overall results of using

STEER in a scenario where the existing model already knows the semantic types of the

new data lake from a previous training. To realize this scenario, Sato is used as model

and the Public BI dataset as data lake.

Figure 3.3a and Figure 3.3b show the results reporting macro and support-weighted

F1-Scores using the defined set-up as described before. First, we see that Sato baseline

achieves only moderate F1-Scores, although the model supports all semantic types in the

data lake. Secondly, as expected, the model Sato retrain, re-trained with the manually

labeled data (but not with the generated training data by STEER), achieves better

scores as Sato baseline. This shows the positive effect of adjusting the model to new data

characteristics by re-training. This effect intensifies with the increasing amount of already

labeled training data per semantic type. With the maximum size of 5 labeled columns per

type, Sato retrain can achieve 0.43/0.57 (macro/support weighted) as average F1-Score.

Compared to Sato retrain, our re-trained model STEER on Sato outperforms the results

by an average of +0.27/+0.24 (macro/weighted) F1-Score for each given size of labeled

data. In total, STEER on Sato achieves an F1-Score of 0.681/0.765 (macro/weighted) and

consequently achieves an improvement of 57.6%/34.2% over Sato retrain and 508%/119%

to Sato baseline. Overall, this evaluation shows that our model STEER on Sato success-

fully optimized the adaption of the Sato model to the data lake Public BI.

Scenario 2: New Semantic Types. The next experiment is designed to show the

results of STEER in a scenario where the learned model does not support the semantic

types existing in the data lake. Thereby the model has to learn completely new types,

which makes it more difficult to adapt the model because generally it will require a larger

amount of training data. To perform the defined scenario, Sato is used as model and

TURL-Corpus is used as data lake which comes with 105 new semantic data types. For

39

3 Steered Training Data Generation for Semantic Type Detection

(a) Public BI (weighted F1) (b) Public BI (macro F1)

Figure 3.3: Results on adapting Sato to the Public BI data lake to evaluate the scenario
where the model is applied to a data lake containing already seen semantic
types by the model. Our model STEER on Sato re-trained with the additional
generated training data using STEER outperforms the baselines in every
set-up.

this, we replaced the last layer of Sato to support 105 instead of the originally 78 types

and initialized it with random weights.

Figure 3.4a and Figure 3.4b shows the results and compare our STEER on Sato model

with the defined baselines. For Sato retrain we can see again that the F1-Scores of

the model continuously improve. However, the gains are more moderate compared to

Public BI. Looking at the results of STEER on Sato, we see a significant performance

improvement in both macro and weighted F1-Scores compared to Sato retrain. We also

see that STEER on Sato is able to constantly increase the model performance when

having more labeled data. In other words, STEER on Sato is capable to efficiently use

the generated additional training data for re-training. Since the dataset is overall more

challenging (e.g., in diversity of values in columns with the same semantic types) and the

model has to learn new semantic types, the F1 values are slightly lower overall than on

Public BI. At labeled data size 5, STEER on Turl achieves best F1-Scores of 0.29/0.38.

Note that the F1-Scores in our paper are lower than in the original paper [20] since they

use multiple correct data types per column (which makes it easier for the model to at

least predict one of them) and a large amount of manually labeled training data (i.e.,

628,254 columns with manually annotated semantic labels) to fine-tune TURL, which we

think is not realistic.

40

3.4 Experimental Evaluation

(a) TURL (weighted F1) (b) TURL (macro F1)

Figure 3.4: Results on adapting Sato to the TURL-Corpus data lake to evaluate the
scenario where the model is applied to a data lake containing completely
new semantic types the model not seen before. STEER on Sato, which
was re-trained with the generated training data of STEER, outperforms the
baseline over all labeled data sizes.

3.4.3.2 Model Independence of STEER

The main goal of the following experiment is to show that STEER also can adapt

and improve models with different architectures and paradigms. For this study, we

additionally use TURL as model that is based on the idea of representation learning and

is thus already pre-trained across a large corpus of tables. For the comparison of our

approach STEER on Turl with the baseline Turl retrain, both non-numerical datasets

(Public BI & TURL-Corpus) are used.

Figure 3.5a and Figure 3.5b show the results of the experiments by plotting the

weighted F1-Scores separately for the two datasets. We also add the results from the

previous experiment with Sato as model to see the differences of the two models on both

data lakes.

As a first aspect of the results, we can see that our model STEER on Turl is significantly

better than the baseline Turl retrain in both datasets and across all labeled data sizes.

Considering Figure 3.5a, STEER can achieve an improvement of +0.13 as average F1-Score

over the labeled data sizes. In the experiments using TURL-Corpus, we achieve an average

improvement of +0.25 F1-Score. This demonstrates that even for pre-trained/fine-tuned

models, STEER can improve the performance with the additional generated training data

during the fine-tuning. That is especially remarkable, as it is assumed that pre-trained

models need fewer training data samples during fine-tuning.

41

3 Steered Training Data Generation for Semantic Type Detection

Table 3.2: Average textual and numerical columns in real world tables, showing the aspect
that such tables have a high proportion of columns containing numerical values.

Corpus Domain #Avg. Textual Cols #Avg. Numerical Cols

Public BI Num Sport 6.4 48.5
Public BI Num Medicare 14.7 13.0
Public BI Num Real Estate 14.2 22.4
Public BI Num Government 34.0 22.0
Public BI Num Geography 24.2 9.0
SportsDB Football 3.0 14.83

Furthermore, despite the fact that the model was pre-trained on the TURL-Corpus,

fine-tuning the model with the additional training data provided by STEER leads to

performance gains. In total, STEER on Turl achieves the best F1-Scores at labeled data

size 5 of 0.47 on Public BI and 0.445 on TURL-Corpus. It is important to note, that we

performed another test on the Public BI corpus with the maximum training data size of

80%, which results in a model that achieves a performance of 0.56 weighted F1-Score.

Compared to the score values of STEER on Turl, the gap to this theoretical maximum

reachable score is remarkable.

An additional interesting detail of the experiment results is the comparison between

Sato and TURL model on both data lakes. Note that when using Public BI, Sato already

knows the semantic types (Scenario 1), while TURL has not seen the data at all. This

fact is exactly vice versa when using TURL-Corpus. The TURL model has already seen

the data during pre-training whereas Sato has not seen the data and has to learn new

types (Scenario 2). When comparing STEER on Sato to STEER on Turl with Public

BI as data lake, we can see in Figure 3.5a that STEER on Sato achieves a much higher

F1-Score than STEER on Turl. Even Sato retrain re-trained with a much smaller amount

of training data is better than STEER on Turl, which mainly shows the advantage of

having a model pre-trained on the data. Consider the results on the TURL-Corpus

demonstrated in Figure 3.5b, we can also see this advantage but this time for TURL; i.e.,

STEER on Turl achieves better results than STEER on Sato.

42

3.4 Experimental Evaluation

(a) Public BI (weighted F1) (b) TURL (weighted F1)

Figure 3.5: Results on adapting TURL model to the Public BI and the TURL-Corpus to
show that even for pre-trained/fine-tuned models, STEER and its generated
training data lead to performance gains. We added the results of Sato from
the previous experiment for comparison.

3.4.4 STEER on Numerical Data

Real-world data lakes often contain a significant amount of numerical columns. This

fact is also shown in Table 3.2 which shows the distribution of numeric and no-numeric

columns in our two corpora where we annotated numeric types. As mentioned above,

extracting semantic types from numeric values is more challenging because of the very

low entropy. In order to generate training data with STEER for numeric columns with

a high quality, we have implemented our Steered-Labeling approach as described in

Section 3.1. The experiments in this section evaluate STEER the two data lakes that

contain numerical columns.

3.4.4.1 Efficiency of Steered-Labeling

In the following experiments we use Public BI Num and SportsDB as data lake and Sato

as existing model. Like before we compare the results with the baseline Sato retrain,

which is the model re-trained with a small amount of training data coming from the data

split and the described different labeled data sizes. To show the benefits of our Steered-

Labeling approach we introduce another baseline STEER on Sato no steer , which is the

5[20] applied TURL model on TURL-Corpus and reported 0.9475 as F1-Score. This was achieved in the
paper by fine-tune the model with 80% training data. Notice that in our set-up we fine-tune TURL
only with about 14.5% training data, leading to the large discrepancies between the two reported
F1-Scores.

43

3 Steered Training Data Generation for Semantic Type Detection

model re-trained with training data generated without the usage of our Steered-Labeling

approach; i.e., we do not label textual and numeric labeling sequentially but we instead

use the textual LFs also for numeric data. By contrast, the model STEER on Sato is

re-trained with training data generated by Steered-Labeling and thus demonstrates the

gains of our new approach.

Figure 3.6 shows the results of the different models Sato retrain, STEER on Sato and

STEER on Sato no steer on the Public BI Num dataset. Due to the use of Steered-

Labeling STEER on Sato outperforms both baselines in macro and weighted F1-Score

on all manually labeled data sizes. Compared with STEER on Sato no steer , the score

values confirm that Steered-Labeling increases the quality of the generated training data

and finally leads to a better end model. At labeled data size 5, STEER on Sato reaches

best scores with 0.496/0.537 F1-Score. Considering the score values of STEER on Sato

on Public BI, which contains the same textual data but not the number of numerical

data, we see a drop of -0.184/-0.228 F1-Score. In addition, the results show an almost

identical performance of the models Sato retrain and STEER on Sato no steer .

On Figure 3.7 we demonstrate the macro and weighted F1-Scores on the SportsDB

corpus. The results show that our model STEER on Sato with Steered-Labeling outscores

the baselines on every labeled data size. At best, STEER on Sato reaches 0.77/0.87

F1-Score resulting in an increase of +0.167/+0.155 in comparison to STEER on Sato no

steer . Overall, these results also show that the Steered-Labeling method has significant

advantages in generating the training data than without Steered-Labeling. One additional

detail to be mentioned in the results is the comparison in the set-up with a labeled data

size 1 (amount of existing labeled data). Here STEER on Sato outperforms Sato retrain

by +0.632/+0.705 F1-Score, demonstrating that STEER can generate a large amount of

good training data with a small amount of already labeled data as a basis.

Discussion. In a more detailed analysis (not included in this paper), we observed that

the numerically semantic types are poorly predicted by STEER on Sato, even though

the generated training data quality is quite adequate (see Figure 3.9c). In the future,

we thus plan to work on model architectures that are more tailored towards detecting

numerical data types.

3.4.4.2 Optimization for Steering

As described in Section 3.1.2, STEER strictly separates the LFs into those for labeling

non-numerical and numerical columns to execute first the non-numerical and then the

numerical LFs. The main idea behind Steered-Labeling is that based on the generated

44

3.4 Experimental Evaluation

(a) Public BI Num (weighted F1) (b) Public BI Num (macro F1)

Figure 3.6: Results on adapting Sato to the Public BI Num data lake using our Steered-
Labeling generated training data. In addition to the comparison of Sato retrain
(baseline trained with initial already labeled data available) we compare also
to a model which was built with generated training data without the usage
of Steered-Labeling.

(a) SportsDB (weighted F1) (b) SportsDB (macro F1)

Figure 3.7: Results on adapting Sato to the SportsDB data lake using training data
generated by Steered-Labeling. In addition to the comparison of Sato retrain
(baseline trained with initial already labeled data available) we compare also
to a model which was built with generated training data without the usage
of Steered-Labeling.

45

3 Steered Training Data Generation for Semantic Type Detection

Labeled Columns per Data Type Reduction of Labeling Runtime

1 25.5%
2 34.5%
3 39.2%
4 44.9%
5 49.6%

Table 3.3: Runtime gains on Public BI Num using context informations from the Steered-
Labeling process for preselecting relevant columns for the LF EMD

labels in step one, the numerical LFs can benefit from this additional information during

the labeling. In the previous experiment, we demonstrated the accuracy gains (reported

by F1-Scores) in the adapted end model by re-trained one model with (STEER on Sato)

and another model (STEER on Sato no steer) without steered generated training data.

However, Steered-Labeling does not only lead to more accurately generated training data

but we can also use the context to reduce the runtime of the overall labeling process in

step 2 as described in Section 3.2. To show these possible runtime gains from steering, we

conducted an experiment in which our LF EMD is executed in two different modes: (1)

without the preselection of contextually similar numerical labeled columns and (2) with

a selection. To be more precise in (1) the LF measures the similarity against all labeled

numerical columns available and in (2) only against those ones which are embedded in

the same context (table with semantic equally neighbored textual columns). Table 3.3

shows the results of these experiments by listing the runtime reduction that could be

achieved per labeled data size. The reduction goes from about 25% (labeled data size

1) to almost 50% (labeled data size 5), demonstrating the higher the number of labeled

data the higher the percentage of runtime reduction.

3.4.5 Ablation Study

In the ablation study, we analyze the quality and quantity of generated training data for

each class of LFs.

3.4.5.1 Efficiency of the LFs

To evaluate the contribution of each LF to the total amount of training data generated,

we analyzed the generated training data per LF separately in an ablation study. The

results per LF are shown in Figure 3.8 while Figure 3.8a shows the quality (weighted

46

3.4 Experimental Evaluation

(a) Quality of generated training data per LF class

(b) Quantity of generated training data per LF class

Figure 3.8: Quality and quantity of generated training data for each class of LFs. (a)
Each LF of STEER (non-numerical as well as numerical) creates high-quality
training data. (b) Moreover, each LF contributes to the amount of generated
training data. However, the number of generated training samples (columns
and their semantic type) varies per data set and LF.

47

3 Steered Training Data Generation for Semantic Type Detection

precision) and Figure 3.8b the quantity (number of labeled columns) for all datasets

separately.

LF EmbClus. For the LF EmbClus we plot the results for the labeled data sizes 1 & 5

showing the aspect that the larger the number of already labeled data, the more new

unlabeled data can be labeled with additional small quality improvement. This is due

to the fact that more labeled data is included in the clustering and thus the labeling

process is extended and improved. At labeled data size of 5, the LF produces 529 (96%

of the total gen. train. data) for Public BI, 4.902 (6.4% of the total gen. train. data)

for Turl-Corpus and 529 (16.5% of the total gen. train. data) for SportsDB. If we look

at the quality of the generated training data, we achieve an average precision of 0.94

for the datasets Public BI & TURL-Corpus and a perfect result of 1.0 for SportsDB.

Notice that for this LF we do not list results for Pubic BI Num, because the same textual

columns are included as in Public BI and therefore the results are the same. In summary,

this demonstrates that this LF generates high quality labeled training data to adapt the

model.

LF CH (column-headers). Focusing now on the LF CH, the quality of the generated

training data for Public BI is overall high. Since the precision is at the score of 1 each

label assigned by the LF to the 197 unlabeled columns is correct. For Turl-Corpus, the

LF produces over 65% of all additional training data generated. The precision is also

high at 0.73. The reason in comparison to the quality on Public BI is that frequently

occurring types are mislabeled. For example, for the semantic types music.album &

music.artist the LF generates over 5.000 new labeled columns with a precision over 0.94,

but for the types music.genre & music.composition just 80 with a precision below 0.2

since column headers are too general. In conclusion, this LF works (almost) perfectly

for the Public BI corpus and the model can benefit from the new training data when

re-training. However, also for the TURL-Corpus, which is more complex, we can generate

a good number of high-quality labels; i.e., only a small amount of training data with low

quality is generated for semantic types (macro score), which may be also improved or

resolved when merging the outcomes of the different LFs.6

LF VO (value-overlap). As described in Section 3.3, for the class of LF VO, a domain

expert can provide a list of common values to a semantic type, which is then used by the

LF to generate the training data. In our current prototype version, we provide such a list

for two selected semantic types for the Public BI data corpus and 11 semantic types for

the Turl-Corpus. As an example, for the Public BI semantic type language, we provide

a list with the values {de, en, fr, es, ...}. In case of the Turl-Corpus semantic type

6Notice that we do not implement LFs of this class for the Public BI Num & SportsDB datasets.

48

3.4 Experimental Evaluation

film.flim_genre, the domain expert defines the common values {crime, horror, romance,

action, ...}. For each selected type, a LF of this class is instantiated and executed on

its own. In order to show the precision and the number of generated training data, we

have averaged the precision values and summed up the number of generated training

data over the individual outcomes per semantic type. For both Public BI types the LFs

generate in total 40 new labeled columns with a precision of 0.79. In addition, we can

see that for the semantic types belonging to the Turl-Corpus, we can achieve an average

precision of 0.66 and generate over 12.000 new labeled columns. To give an insight into

one of the best LFs here, the LF for soccer.football_team can label 7.238 columns with a

precision of 0.98 by providing a short list of the most famous football teams.7

LF VP (value-pattern). Similar to the previously discussed LF, even in this case

the user provides a list of patterns in form of regular expressions that are then used in

the labeling process. In our current implementation, we defined such patterns for two

Public BI types and eight Turl-Corpus types. To give an example, for the semantic type

award.award_category, we define the list of patterns as follows {best*, worst*}. Meaning

that all values starting with best or worst are counted as a pattern match. In case of the

Public BI dataset, the type specific LFs can label 50 unlabeled columns with an overall

precision of 0.66. If we analyze the LFs for Turl-Corpus, we create almost 1.800 new

labeled columns with a slightly higher precision of 0.75. In this class of LF the pattern

definitions are very important. The defined patterns should not be under-generalized (e.g.

resulting in too infrequent matches and therefore the columns related to the semantic

type are not found) and also not be over-generalized (e.g. resulting in too many matches

for columns that actually do not belong to the semantic type) [43].

LF EMD. For the numerical LF EMD we plot the results for the labeled data sizes 1 &

5. The figure shows the precision and the number of generated training data for Public

BI Num and SportsDB, since these are the only datasets that contains numerical columns

and therefore Steered-Labeling with the LF EMD was applied. Looking at the weighted

precision of the generated training data, we can see a constant value of 0.97 on Public BI

Num, whereas on SportsDB there is an increase from 0.86 to 0.95. This improvement

comes from the fact that the LF benefits from a higher amount of existing already labeled

columns because more similarity measurements can be made from unlabeled to labeled

numerical column and thus the precision of matches increases. Overall the precision

values on both datasets demonstrates that the LF EMD extracts training data with a

very high quality. Looking at the number of generated training data we see on Public BI

Num values from 76 to 529 and on SportsDB values from 529 to 727 over the labeled

7Notice that we do not implement LFs of this class for the Public BI Num & SportsDB datasets.

49

3 Steered Training Data Generation for Semantic Type Detection

data sizes 1 to 5. This increase comes for the same reason as just mentioned. The higher

the amount of already labeled data the higher the probability to find a semantic match.

Overall these results demonstrate that the LF EMD can annotate unlabeled numerical

data in a good manner and therefore make a high contribution to the generated training

data that can be used to adapt a model to a data lake containing high numbers of

numerical data.

Summary. The quantity and quality of the generated training data are high for all

used fictive data lakes. Consequently, as we have seen in the experiment before, the new

training data can lead to a significant improvement of a learned metadata annotation

model after re-training.

3.4.5.2 Analyze Generated Training Data

To better understand the gains of STEER, we now analyze the overall generated training

data which was aggregated across the LFs by applying the majority vote. The aggregated

training data represents the generated training data of STEER that we use for re-training

the models. As in the previous section, we focus on two aspects for the analysis: quality

and quantity of the generated training data to show that a significant amount of data is

generated which provides high-quality (i.e. correct) labels.

The results of this analysis for all data sets are shown in Figure 3.9. Since only Public

BI Num and SportsDB are containing labeled numerical data columns, Steered-Labeling

training data generation is only applied to these datasets. To report the quality of the

generated training data, we plot the macro and support weighted precision (i.e., the

fraction for which the LFs assign the correct type). For showing the quantity, we plot the

number of table columns, which receive a label from the labeling framework and thereby

resulting as additional training data in percentage to the total amount of unlabeled

columns available.

Overall, we can see that for the datasets Public BI, Public BI Num and SportsDB the

generated training data achieves very high weighted precision values of more than 0.9.

With SportsDB, we even reach a quality of 0.93/0.96 (macro/weighted). Looking at the

generated training data quality of TURL-Corpus, we see lower but still good precisions

of 0.6/0.75, which also leads to benefits when it is used as additional training data as

shown before (see Figure 3.4). Considering the amount of the generated training data,

we achieve the highest value on SportsDB of up to 80% of the available unlabeled data

while for TURL-Corpus we only label about 15%. It is important to note, however,

that the TURL-Corpus is significantly larger than all other corpora and in absolute

50

3.4 Experimental Evaluation

(a) Public BI (b) Turl

(c) Public BI Num (STEER) (d) SportsDB (STEER)

Figure 3.9: Quality (blue) and quantity (orange) of generated training data. Quality is
reported with macro and weighted precision. Quantity is shown as the number
of additional generated training data in percentage to the total amount of
unlabeled columns available.

51

3 Steered Training Data Generation for Semantic Type Detection

quantity we generate the largest corpus of additional training data with STEER on the

TURL-Corpus.

3.5 Summary

Re-training a learned semantic type detection model in order to adapt it to a new, unseen

data lake imposes a significant overhead. This is due to the necessary generation of

new training data that covers the new semantic types and data characteristics of the

environment in which the model is to be used. Because this overhead is a barrier to

applying these models, we have introduced STEER, our data programming framework

for semantic type labeling of table columns in this chapter. STEER uses the idea of weak

supervision and comes with several integrated LFs to automatically generate new training

data from a data lake to which a learned semantic type detection model is supposed to be

applied. With the generated training data, STEER is able to re-train/fine-tune existing

learned models to new data lakes with minimal overhead. To generate high quality

training data not only for non-numerical but also for numerical table columns, STEER

has integrated our novel training data generation procedure called Steered-Labeling as a

core component. The central idea of Steered-Labeling is the separation of the labeling

process and the execution of the LFs into two sequential steps. In the first step, the non-

numerical columns are labeled with implemented LFs for non-numeric data. Afterward,

STEER then executes the numerical LFs, which uses the previously generated labels

of the non-numeric columns as additional information to label the numerical columns.

With this, the LFs for numerical columns achieves a much higher accuracy. Through

experiments conducted across multiple data lakes using two distinct learned models, we

demonstrated in this chapter that STEER has the capability to adapt learned models

to new, previously unseen data lakes. By comparing training data generated with and

without the Steered-Labeling approach, we also showed the advantages of the two-step

labeling process.

While searching for suitable publicly available data lakes to evaluate our Steered-

Labeling approach, we noticed that there are no adequate data corpora for this purpose.

All existing datasets containing tables with semantically labeled columns consist either

purely of textual data or contain a very minimal proportion of numerical data. For this

reason, we have presented the two datasets Publi BI Num and SportDB, which include

a high fraction of numerical table columns. Publi BI Num was an existing corpus that

we labeled with semantic types to make it usable for the evaluation. For SportsDB, we

52

3.5 Summary

created the corpus from scratch by extracting tables of soccer statistics from various

websites as mentioned before. When using these two data lakes in our experiments, we

noticed that the two adapted end models (Sato & Turl) performed worse on numerical

columns than on non-numerical columns. In our opinion, this is mainly because the

models were designed, trained and tested with datasets consisting only of non-numerical

data. Although with Public BI Num and SportsDB we now have datasets for semantic

type detection that could be used for the design of a new model that better supports

numerical columns, the two datasets are too small for this purpose. This motivates the

further contribution of this dissertation in creating a new corpus for the task of semantic

type detection, which is characterized by a significantly higher proportion of numerical

columns compared to existing corpora, as we will discuss in the next chapter.

53

4 SportsTables: The Missing Labeled

Numerical Corpus

Publication. The work on building a new data corpus that contain a high proportion of tables with

numerical columns is published in the peer-reviewed publications “SportsTables: A new Corpus for

Semantic Type Detection” in the Datenbanksysteme für Business, Technologie und Web (BTW 2023), 20.

Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 06.-10, März 2023,

Dresden, Germany, Proceedings & “SportsTables: A New Corpus for Semantic Type Detection (Extended

Version)” in the Datenbank-Spektrum.

Contributions of the author. Sven Langenecker is the leading author of the publications [59] & [60]

mentioned above. He is responsible for the analysis of the existing corpora for the task of semantic type

detection of table columns, the built corpus SportsTables, the whole implementation of the pipeline to

build the corpus, the experimental evaluation and the manuscript. The co-authors Christoph Sturm,

Christian Schalles and Carsten Binnig contributed invaluable feedback. All authors agree with the use of

the publications for this dissertation.

In the previous chapter, we introduced the SportsDB corpus to evaluate our Steered-

Labeling procedure and show the advantages of this approach when generating new

training data of numerical columns. However, the SportsDB corpus only consists of a

limited number of table columns. To create and test new models, which especially can

better extract the semantic type of numerical columns, a larger data corpus is required

that comprises tables with a very high proportion of columns with numeric values. This

chapter addresses this challenge and presents the creation of a new corpus that builds

upon the previously mentioned SportsDB corpus. To this end, we first explain below why

the creation of our new corpus is important and needed. Afterward, in Section 4.2 we give

a detailed overview of existing corpora which was used to build and validate semantic type

prediction models and discuss their main characteristics and statistics. Section 4.3 then

introduce our new corpus SportsTables and describe in detail how we created the corpus

and labeled the table columns with semantic types. Next, in Section 4.4, we demonstrate

the main characteristics and statistics of our corpus. To show that all existing semantic

type detection models fall short on numerical columns, we show in Section 4.5 results

55

4 SportsTables: The Missing Labeled Numerical Corpus

Figure 4.1: Average percentage of textual and numerical based columns per table in
existing semantically annotated corpora1 (left bars) compared to real-world
data lakes (right bar). This shows the fact that there is a significant shift in
the ratio of textual to numeric columns per table from existing corpora to real
data lakes. Since all existing semantic type detection models were developed
by using the existing corpora, shortcomings in validating the models on
numerical data are present and it has not yet been studied in depth how well
the models can perform on datasets containing a high proportion of numerical
data.

of using our new corpus on different existing models. Section 4.6 summarizes the key

insights of this chapter and explains the motivation for the final contribution in this

dissertation.

4.1 The Need for a New Corpus

To build a semantic type detection model, many recent approaches rely on deep learn-

ing techniques. Consequently, corpora containing large amounts of table data with

assigned semantic types are required for training and validating these models. Notably,

as illustrated in Figure 4.1, almost all existing corpora providing annotated columns

labeled with semantic types have a lack of table columns that contain numerical data.

These datasets predominantly feature tables that incorporate either only or a very high

percentage of textual data. Only GitTables [47] comprises a more balanced ratio of

textual and numerical data. Nevertheless, compared to real enterprise data lakes, there

is a significant discrepancy in the ratio of textual to numerical columns. An inspection

of a large real-world data lake at a company2 has shown that on average approx. 20%

textual data and 80% numerical data are present (see. Figure 4.1 bars on the right).

56

4.2 Existing Corpora: Dominated by Textual Data

Moreover, semantic type detection models [20, 50, 100, 113] that are trained on the

available corpora also mainly target non-numerical data.

Detecting semantic types of numerical columns is generally harder than for textual

columns. For example, for a textual column with the values {Germany, USA, Sweden, ...}

a model can easily identify the semantic type country. Instead, for a numeric column with

e.g. the values {20, 22, 30, 34,...} it is not that straightforward and several possibilities for

a matching semantic type exist such as age, temperature, size, money. The fundamental

reason here is that numerical values can be encoded with much fewer bits than string

values [98], resulting in a lower overall entropy and thus providing less information content

that can be used by a ML model to infer the underlying semantic type. The limitations

of existing corpora used for building and validating semantic type detection models have

revealed several crucial shortcomings. These issues remained unaddressed due to the lack

of an adequate dataset specifically designed for the purpose of detecting the semantic

type of numerical columns. We thus contribute a new corpus containing tables with

numeric and non-numeric semantically annotated columns that reflect the distribution

of real-world data lakes. Before we introduce and describe how we created our new

corpus SportsTables, in the following, we first provide an overview of existing corpora

which was used to build and validate semantic type detection models and describe their

characteristics.

4.2 Existing Corpora: Dominated by Textual Data

In the following, we describe different existing corpora that contain annotated table

columns and therefore can be used to build and validate semantic column type detection

models. We summarized the main statistics for all corpora in Table 4.1.

VizNet [45]. The original VizNet corpus [45] is a collection of data tables from diverse

web sources ([11, 81, 88, 105]) which initially do not contain any semantic label annotation.

The corpus we consider in this paper is a subset of the original VizNet corpus, which was

annotated by a set of mapping rules from column headers to semantic types and then

used to build and validate the Sherlock [50] and Sato[113] prediction models. The corpus

contains in total 78,733 tables and 120,609 columns annotated with 78 unique semantic

1Notice that for GitTables we only considered the tables and columns labeled by terms from DBpedia
using the semantic annotation method as described in the GitTables paper. Therefore our reported
ratios of textual and numerical data differ from those shown in the GitTables paper because they
consider all data, whether annotated or not.

2The analyses were done at the company LÄPPLE AG

57

4 SportsTables: The Missing Labeled Numerical Corpus

Table 4.1: Corpus statistics about the number and sizes of tables. Additionally, we
see the average number of textual and numerical columns per table for each
existing annotated corpora and our new SportsTables corpus. This shows the
absence of numerical data columns per table in most existing corpora and the
dominance of textual data columns per table in all existing corpora. Instead,
our new corpus SportsTables contains on average over 6 times more numerical
columns than textual columns.

Corpus Tables Cols Cols/T able T ext. Cols/T able Num. Cols/T able Rows/T able

VIZNET 78,733 120,609 1.53 1.34 0.19 18.35
TURL 406,706 654,670 1.61 1.61 0 12.79
SemTab2019 13,765 21,682 1.58 1.57 0.01 35.61
SemTab2020 131,253 190,494 1.45 1.45 0.001 9,19
SemTab2021 795 3,072 3.86 2.77 1.09 874.6
GitTables 1.37M 9.3M 6.82 3.62 3.2 184.66
SportsTables 1,187 24,838 20.93 2.83 18.1 246.72

types. Overall, the tables in the corpus contain only 1.53 columns and 18.35 rows on

average. Furthermore, the distribution of the column data types is 87.58% textual and

12.42% numerical and thus leads to the shortcomings as described before.

TURL [20]. The TURL corpus uses the WikiTable corpus [9] as basis. To label each

column they refer to the semantic types defined in the Freebase ontology [34] with a total

number of 255 different semantic types. What distinguishes TURL from other corpora is

that columns can have multiple semantic types assigned. In total, there are 406,706 tables

resulting in 654,670 columns and on average a table consists of 1.61 columns and 12.79

rows. Again, these are rather small dimensions. In addition, the Turl corpus includes

no numerical data at all, which leads to the shortcomings when using the corpora as

mentioned above.

SemTab. SemTab is a yearly challenge with the goal of benchmarking systems that

match tabular data to knowledge graphs since 2019. The challenge includes the tasks

of assigning a semantic type to a column, matching a cell to an entity and assigning

a property to the relationship between columns. Every year, the challenge provides

different datasets to validate the participating systems against each other. In this paper

we observed the provided corpora for the years 2019 [40], 2020 [19, 41], and 2021 [1, 19,

42, 46, 82]. Statistic details of the corpora are shown in Table 4.1. In case more than one

dataset was provided per year, we aggregated the statistics over all datasets included

in the challenge. While SemTab2019 consists of 13,765 tables and 21,682 columns in

total, there are 131,253 tables and 190,494 columns in SemTab2020. In both corpora, the

dimensions of the included tables are rather small (on average 1.58 columns and 35.61

rows in 2019 and 1.45 columns and 9.19 rows in 2020). In SemTab2021, the contained

58

4.3 The SportsTables Corpus

tables are the largest in terms of rows with almost 875 on average. However, the number

of columns (3.86 on average) is only moderate and the corpus in general is the smallest

with a total of 795 tables and 3,072 columns. Numerical data is almost nonexistent in the

first two years (0.63% in 2019 / 0.07% in 2020), increasing to 28.24% numeric columns

per table on average in 2021, which is still not comparable to the number of numeric

data in real world data lakes.

GitTables [47]. GitTables is a large-scale corpus of relational tables created by extracting

CSV files from GitHub repositories. Table columns are labeled with semantic types from

Schema.org [35] and DBpedia [6] using two different automated annotation methods

(syntactically/semantically similarity matching from semantic type to column header).

In this paper, we have focused on the annotations origin from DBpedia and the results

of the semantic annotations method as described in the GitTables paper [47]. This leads

to a corpus containing over 1.37M tables and 9.3M columns in total. Although this is by

far the largest collection of data tables, the dimensions of the tables are on average only

moderate with 6.82 columns and 184.66 rows. Overall, GitTables incorporates the most

numeric data with an almost balanced ratio of 53.08% textual and 46.92% numerical

columns per table.

Discussion. The overview in Table 4.1 and the discussion before shows that most

existing corpora contain no or only a minimal fraction of numerical data types which is

very different from real-world data lakes. An exception is GitTables which has a much

higher ratio of numerical columns. However, as we show in Section 4.4, GitTables still

lacks a good coverage of different numeric semantic types which is one important aspect

that we tackle with our new corpus SportsTables which covers a wide variety of different

numerical semantic types. Moreover, another important (but orthogonal) aspect is that

existing corpora include a large number of tables. However, on average the tables are

very small in terms of the number of columns and the number of rows. Instead, our new

corpus SportsTables contains fewer tables, but on average a significantly higher number

of columns and rows per table to better reflect the characteristics of real-world data lakes.

4.3 The SportsTables Corpus

In the following, we will introduce our new corpus and describe in detail the implemented

construction pipeline to build SportsTables.

Methodology to generate the corpus. Figure 4.2 gives an overview of our imple-

mented pipeline to generate the new corpus. The main idea was to collect data tables

59

4 SportsTables: The Missing Labeled Numerical Corpus

Figure 4.2: Overview of the implemented pipeline to build SportsTables. We use web-
scraping techniques to extract HTML tables from a manually defined web
page collection for each selected sport and convert the tables to CSV files.
With the help of a defined ontology and a manually created dictionary that
maps column headers to semantic types, we annotate each table column with
an appropriate semantic type.

from different sports domains such as soccer, basketball, baseball, etc. since data tables

coming from such kinds of sources are rich in numerical columns. For example, a soccer

player statistic table of a soccer season contains typically 3 textual columns (e.g., player

name, team name, field position) and 18 numerical columns (e.g., goals, games played,

assists). Hence, building a collection of such tables will lead to a corpus that contains

many numerical columns which are in addition semantically interpretable. As a result,

the corpus will enable performance analysis of semantic type prediction models in a much

more rigorous manner regarding numerical data.

Scraping data from the web [23]. A vast amount of data covering information about

player statistics, team statistics, coach statistics or season rankings of different sports

are available on various web pages. Therefore, for collecting the data, we built a data

collection pipeline based on web scraping technology[23]. In the first step, we manually

searched and defined a set of different web pages for each of the selected sports of which

we want to scrape contained data tables (left side of Figure 4.2). We first converted

each HTML table on the web pages to Pandas-Dataframes using Python and then saved

them as CSV files (center of Figure 4.2), since this file format is most known and used to

store raw structured data [76]. During the scrape process, we kept the respective column

headers from the original HTML table and used them as headers in the CSV file.

Annotating columns with semantic types. Due to the low granularity of existing

ontologies (e.g. DBpedia) regarding semantics of a given sport, we manually created an

ontology-like set of valid semantic types for all sports. For example, in DBpedia there

is the type Person.Athlete.BasketballPlayer, but semantic labels in the particular that

60

4.4 Corpus Characteristics

Table 4.2: Statistics about the number of unique semantic types. Showing that our
new corpus has a higher proportion of numerical semantic types than textual
semantic types in contrast to the existing corpora. In addition, there is a large
overlap of semantic types used for textual and numeric columns in the existing
corpora. In comparison, the semantic types in SportsTables are disjoint for
the two column data types.

Corpus #Textual Sem. Types #Numerical Sem. Type #Total Sem. Types

VIZNET 78 44 78
TURL 255 0 255
SemTab2019 360 19 360
SemTab2020 5804 32 5832
SemTab2021 177 93 251
GitTables 2646 2426 2693
SportsTables 56 419 475

would match individual numerical columns such as NumberOfGoals are not defined. Next,

we annotated all table columns with semantic types using a manually created dictionary

that maps column headers to matching semantic types from our created set. Since the

column headings were in many cases identical if the semantic content was the same, this

procedure significantly reduces the manual labeling effort. In addition, to ensure that

the labels are of very high quality in terms of correctness, we manually checked each

assignment based on the content of the columns.

4.4 Corpus Characteristics

In the following. we discuss the statistics of the SportsTables corpus and compare them

to the existing corpora.

Data statistics (Table 4.1). Using the described pipeline for creating SportsTables, a

total of 1,187 tables which comprises 24,838 columns (approx. 86% numeric and 14%

textual) are scraped from the web resulting in 20.93 columns (2.83 textual and 18.1

numerical) per table on average. This ratio of textual to numerical columns, as well as

the total average number of columns in a table, differs significantly from existing corpora.

In Table 4.1 we can also see a comparison of the average number of textual and numerical

columns per table of SportsTables versus that of the existing corpora. Here we can see

that numerical columns only exist in the corpora VizNet with 0.33, SemTab2021 with

1.09, and GitTables with 3.2 columns per table. Compared to GitTables, in SportsTables

there are thus on average over 6 times more numeric columns per table. Moreover, as

61

4 SportsTables: The Missing Labeled Numerical Corpus

(a) Top 20 textual sem. types (b) Top 20 numerical sem. types

Figure 4.3: Semantic type annotation statistics of SportsTables. (a) Shows column
annotation counts of the top 20 textual semantic types. Across all kinds of
sports, player.name and team.name are the most common. (b) Shows column
annotation counts of the top 20 numerical semantic types. A dominant type
here is rank, which describes a column containing the placements of e.g. a
team in a season standings table.

we discuss below, our corpus uses a much richer set of numerical data types that better

reflects the characteristics in real-world data lakes which is very different from GitTables.

For example, when looking at the semantic types that are assigned to numerical columns

in GitTables, more than half (393,925) of the columns are labeled with just a single type

Id.

In terms of the total number of columns, the tables in SportsTables (20.93 columns per

table) are on average about 3 times wider than in GitTables (6.82 columns per table),

which contains the widest tables among the existing corpora. As such, the number of

columns in tables of SportsTables are reflecting better the width when comparing this to

the characteristics of the tables in real-world data lakes which we analyzed. Moreover,

considering the average number of rows per table, it can be seen that the tables in

SportsTables have on average 246.72 rows. In comparison, tables in SportsTables are

larger on average than in many other corpora where tables have typically fewer rows.

62

4.4 Corpus Characteristics

Annotation statistics. Semantic type annotation follows a two step process. First, we

establish a directory with manually defined mappings from column header to semantic

type for each existing header. Second, we label each column with the semantic type

listed in the directory for its header. As a result, 56 textual and 419 numerical semantic

types are present in the corpus. Thereby textual semantic types are those which specify

textual columns and numerical types are those which specify columns containing numeric

values. To compare the annotation statistics, we also counted the number of textual and

numerical semantic types in an analysis of the existing corpora. The results of these

analyses can be seen in Table 4.2. Different from our corpus, the sets of textual and

numerical types are not disjoint in all other corpora (except TURL where no numeric

values are present). This indicates that individual semantic types were assigned to both

textual and numerical columns which is problematic if semantic type detection models

should be trained and tested on these corpora. In particular, GitTables has a very large

overlap and almost all semantic types are used in both column data types. To give an

example, in GitTables the semantic types comment, name and description are assigned

to both column data types. Next, we take a closer look into the semantic types of our

corpus.

Figure 4.3a and Figure 4.3b show the top 20 semantic types (textual and numerical) in

regards to how often they were assigned to a table column. It can be seen that the most

common textual types across all sports are player.name and team.name. These are types

that occur in almost every table. Other types such as country or city are also common,

describing the player’s origin or the team’s hometown, for example. Among numeric

semantic types, rank is by far the most common and is present in almost all tables. The

type describes a column containing the placement of e.g., a team in a ”seasons standing”

table or a player in a ”top scorer” table. All other numeric semantic types show mainly

an equal distribution of the frequency, which is a good precondition for training machine

learning models.

SportsTables vs. GitTables. Since GitTables is the largest corpus with the most

tables, one could argue that a subset of GitTables would result in a new corpus with

similar characteristics as SportsTables. To analyze this, we executed a small experiment

in which we filtered out only tables from GitTables where the number of textual and

numerical columns (min. 3 textual and 18 numerical columns) is at least the same

as it is in SportsTables. The result was a corpus containing a total of 16,909 tables

and 743,432 columns. On average a table has 12.53 textual columns, 31.43 numerical

columns and 17.35 rows. However, looking at the semantic types that are assigned to

numerical columns, more than half (393,925) of the columns are labeled with the type

63

4 SportsTables: The Missing Labeled Numerical Corpus

Figure 4.4: Results using different state-of-the-art semantic type detection models on our
new SportsTables corpus. The overall differences in F1-Scores for predicting
textual and numeric columns indicate that the models can handle textual
data more effectively than numeric data.

Id. In terms of training and validating semantic type detection models, this is rather

an unfavorable type representing no semantically meaning. Moreover, the next 5 most

common numerically based semantic types are parent, max, comment, created and story

editor, constituting a large proportion of the columns. The assignment of these types

to numerical data is slightly less understandable and indicates a lack of quality in the

automatically generated labels for table columns.

4.5 Study of Using SportsTables

In the following, we report on the results of using the state-of-the-art models Sherlock

[50], Sato [113], Dosolo [100] and Doduo [100] on our new corpus. With this, we want to

measure how well the semantic types in our corpus can be inferred by the models with a

special focus on how each performs on textual and numerical columns.

Experiment Setup. For the experiments, we split the SportsTables corpus into training,

validation, and test set. While creating the splits, we first extracted 20% of the data for

the test set and then another 20% of the remaining 80% for the validation split. The

rest of the data was used as the training set. We used the four pre-trained models as

described above and re-trained them with the training data set. During the re-training,

we replaced the last layer of the different models to support the number of semantic types

that occur in SportsTables and then re-trained the entire neural network. In order to

optimize the hyperparameters, we measured the performance of the respective re-trained

models against the validation split. To report the final performance, we applied the

re-trained models to the 20% test data set. For obtaining statistically reliable results, we

64

4.5 Study of Using SportsTables

ran each experiment with five different random seeds and report the mean and standard

deviation over multiple runs.

Results of the study. Figure 4.4 shows the results of the experiments reporting

the support weighted and macro average F1-Scores in individual subplots for all four

models. For each model, we plot the F1-Score across all semantic types (numerical &

non-numerical) to show the total performance, but also the separate average F1-Score

for only textually and numerically based semantic types, respectively. In the following

we want to discuss the main aspects of the results in detail.

Non-numeric vs. numeric: As we can see in the figure, there is a significant performance

difference between predicting textual and numerical semantic types for all models. While

textual columns can be predicted with performances in a very promising range of 0.82-

0.98, the performances for numerical columns are rather moderate ranging from 0.31 to

0.7. On average, the difference in F1-Score between textual and numeric types is 0.35

across all models. These results demonstrate that the models can better handle textual

data and determine its associated semantic types more accurately than numerical data.

Looking at the total performances over all types for each model, we see that they are

rather moderate in the range of 0.38 to 0.74, but these insufficient results are primarily

caused by poor prediction performances on the numerical based types.

Columnwise vs. tablewise: Looking and comparing the results of the columnwise models

Sherlock & Dosolo and the results of the tablewise models Sato & Doduo, we observe

that the tablewise models outperform the columnwise models. The results underline

the known importance of considering not only individual column values for the task

of semantic type detection of table columns but also to involve the table context. In

particular, what we can see from the comparison of Dosolo and Doduo is how important

it is, especially for numerical based columns, to include table context data for semantic

type detection. As described above, numerical values provide less information content

that can be used by a machine learning model to identify the type and therefore Doduo

doubles the performance of Doslo by considering the complete table context. However,

the resulting performance of 0.62 is rather moderate and demonstrates the shortcomings

of the model on numerical semantic types. Comparing Sherlock and Sato also reflects

the advantages of a tablewise semantic column type detection, whereas the performance

improvement on just numerical columns is not as significant as in Dosolo vs. Doduo. We

will discuss the reasons for this in the following.

Sherlock & Sato vs. Dosolo & Doduo on numeric: As described above, Sherlock &

Sato (same feature set) as well as Dosolo & Doduo (same LM model) are models with

an identical foundation. Focusing only on the F1-Scores on the numerical types, one

65

4 SportsTables: The Missing Labeled Numerical Corpus

can see that Sherlock & Sato outperform Dosolo & Doduo. We think that this aspect is

due to the fact that Sherlock & Sato extract features of numerical columns that better

address numerical data (e.g. mean of individual digits occurring in a column), while in

Dosolo & Doduo a LM model is used as the basis to encode the numerical column. LM

models are optimized for text and can therefore not provide a representative encoding to

infer the semantic type of numerical columns. Therefore, Dosolo & Doduo predictions on

numerical columns are inferior to Sherlock & Sato.

4.6 Summary

Existing corpora used for training and validating semantic type extraction models mainly

contain only tables with textual data columns. Moreover, tables in these corpora are

very small regarding the total number of columns and rows. Consequently, it has not

been studied precisely how well state-of-the-art models perform on a dataset that has

on the one hand a very high percentage of numerical columns, as it occurs in real-world

data lakes, and on the other hand contains tables that include more columns and rows.

In this chapter, we thus introduced our new corpus for semantic type detection called

SportsTables which contains tables that have on average approx. 3 textual columns,

18 numerical columns and 250 rows. Using our new corpus, semantic column type

detection models can now be holistically validated against numerical columns. By

conducting experiments with four state-of-the-art models on our new corpus, we showed

that significant differences in the performance of predicting semantic types of textual

data and numerical data exist across all models.

The identified limitations of the existing models on numerical columns motivated the

last contribution in this dissertation – a new semantic type detection approach specifically

designed to support numerical data columns, which we will introduce in the upcoming

chapter.

66

5 Pythagoras: Semantic Type

Detection of Numerical Data

Publication. The work on building a new data corpus that contain a high proportion of tables with

numerical columns is published in the peer-reviewed publications “Pythagoras: Semantic Type Detection

of Numerical Data Using Graph Neural Networks (Short Paper)” in the Lernen, Wissen, Daten, Analysen

(LWDA) Conference Proceedings, Marburg, Germany, October 9-11, 2023 & “Pythagoras: Semantic Type

Detection of Numerical Data in Enterprise Data Lakes” in the Proceedings 27th International Conference

on Extending Database Technology, EDBT 2024, Paestum, Italy, March 25 - March 28.

Contributions of the author. Sven Langenecker is the leading author of the publications [58] & [57]

mentioned above. He is thus responsible for the proposed semantic type detection model Pythagoras,

the graph representation of tables, the architecture of the model, the experimental evaluations and

the manuscript. The co-authors Christoph Sturm, Christian Schalles and Carsten Binnig contributed

invaluable feedback. All authors agree with the use of the publication for this dissertation.

In enterprise data lakes, numerical data plays a dominant role, making up a much larger

proportion compared to non-numerical data [60] since they provide insights into various

business domains, including finance, manufacturing, healthcare and marketing. Numerical

data often contain critical information such as sales figures, production metrics, customer

demographics and financial records. Therefore, it is essential to provide a solution that

can automatically detect the correct semantic type of table columns containing numerical

values, enabling data analysts and data scientists to find required data for downstream

analysis and thus address the dataset discovery problem in data lakes [14, 16, 29, 53,

78]. The study in the previous chapter showed that the existing state-of-the-art semantic

type detection models have shortcomings when applied to columns with numerical values.

They are mainly designed to handle textual data and thereby achieve a very high grade

of accuracy, but if they are used on numerical columns, the prediction accuracy drops.

In this chapter, we thus introduce our new semantic type detection approach called

Pythagoras, which can not only predict the semantic type of non-numerical table columns

with high accuracy but also of numerical columns. To achieve this, the main idea of the

new model architecture is to use a GNN together with a new graph representation of

67

5 Pythagoras: Semantic Type Detection of Numerical Data

NBA Ply Stats

Ply FPos PPG AssPG RebPG

LeBron
James

SF/PF 31.3 7.5 8.2

...

Myles
Turner

PF/C 15.4 2.1 9.8

Textual
Column

Numerical
Column

Content

Column
Names

Table
Name

tablename

Neccessary
Context Information

column headers + values

Semantic Type Detection
Model

basketball.player.assists_per_game

column headers + values

Column to
Predict

Figure 5.1: Figure shows an example of predicting the semantic type of the numerical
table column ’AssPG’. To predict the correct type, it is crucial for the model
to have the possibility to incorporate textual context information such as the
table name and neighboring non-numerical columns.

tables and their columns. In the following, before introducing our new model Pythagoras,

we first discuss the key aspects by detecting the semantic type of numerical table columns.

Subsequently, we present our new graph representation of tables and then introduce the

model architecture of Pythagoras in detail. Afterward, we report on the main results

of our experimental evaluation which includes detailed analyses on individual semantic

types as well as an ablation study.

5.1 Context is Essential for Numerical Data

To predict the semantic type of table columns containing numerical values, it is essential to

have textual (non-numerical) data of the same table as context information as illustrated

in Figure 5.1. Predicting, for example, the semantic type of the column ’AssPG’ by

using only the included values {7.5,...,2.1} is almost impossible while values of columns

with textual types such as ’Ply’ are more indicative for the type. The reason for this

68

5.2 Background to GNNs

is that numerical values have in general a limited information entropy1 and are often

similarly distributed for different semantic content [61]. To address this problem, rich non-

numerical contextual information such as contents of neighboring non-numerical columns

as well as column headers and table names can be leveraged to increase the accuracy to

determine the correct semantic type of the numerical column. In the example of Figure 5.1

the table name ’NBA Ply Stats’ and the information of the textual columns such as

’Ply’ and ’FPos’ can be leveraged as context information. This now allows the model to

recognize that the table is from the basketball domain and allows the model to better

predict the semantic type of column ’AssPG’ as ’basketball.player.assists_per_game’.

As such, for a semantic type detection approach that should be able to handle numerical

data, it is crucial to incorporate the ability to leverage all context information to predict

types for numerical data within the model architecture. Unfortunately, existing model

architectures do not have such a predefined technique where non-numerical contextual

information can be strategically leveraged for predicting numerical columns. Therefore,

in the following, we present our new semantic type detection approach called Pythagoras

which includes a novel architecture that can utilize non-numerical contextual information

to predict types of numerical columns. The main idea of the new model architecture is

to use GNNs together with a new graph representation of tables and their columns. This

graph representation includes directed edges to provide necessary contextual information

(e.g. table name, neighboring non-numerical column values) for predicting the correct

semantic type of numerical columns using the GNN message passing mechanism. Thus,

the model learns which contextual information is relevant for determining the semantic

type. To the best of our knowledge, our semantic type detection model Pythagoras is the

first approach in this direction.

5.2 Background to GNNs

As we use GNNs and a graph representation of tables in our new semantic type detection

model, in this section we give a formal definition of graph data structures and the basics

of the main aspects of GNNs.

The fundamental component of graph-based machine learning with GNNs is the

possibility to use a graph representation of the data as input to the model. Graph

data structure gives the opportunity to represent data with intricate relationships in a

1Generally numerical values can be encoded with much less bits than string values resulting in lower
overall entropy values [98]

69

5 Pythagoras: Semantic Type Detection of Numerical Data

simple way. In graph theory, a graph is a mathematical structure G = {V, E} composed

of two primary elements: a set of nodes V (also called vertices) and a set of edges E

(also known as links or connections). Nodes represent entities or points, while edges

represent relationships or connections between these entities. Graphs can be categorized

into to different types: homogenous graphs and heterogeneous graphs. In a homogeneous

graph, all nodes belong to the same type or category, and all edges represent the same

type of relationship. These graphs are typically used in simpler scenarios where entities

are of the same kind and relationships are uniform. In a heterogeneous graph, nodes

can belong to different types or categories, and edges can represent different types of

relationships. Heterogeneous graphs are particularly useful when modeling complex,

diverse data where entities and relationships vary. For instance, in a recommendation

system, a heterogeneous graph could represent users, movies, and genres, with edges

representing actions like "user watches movie" or "movie belongs to genre." In our use

case, we use a heterogeneous graph data structure for the table representation. With

that, we are able to model the different components of a table such as the table name,

non-numerical columns, and numerical columns while also modeling various relationships

between these components. This allows us to pre-define the necessary information

exchange in advance and provide it to the model.

GNNs are a class of deep learning models designed to process data represented as

graphs. They have gained significant popularity in various fields, such as social network

analysis, recommendation systems, and bioinformatics [68, 95]. GNNs typically consists

of multiple layers, each of which updates node representations by aggregating information

from neighboring connected nodes. One of the fundamental distinctions within GNN

architectures lies in the type of aggregation layers being used. There are various imple-

mentations of such aggregation layers, which perform node updates according to different

algorithms. Among these, one of the most commonly used are Graph Convolutional

Networks (GCNs). GCN operates by computing weighted sums of neighboring node

features, analogical to traditional convolutional layers in image processing. Because

GCN layers are designed for homogeneous graphs, there exist specialized extensions

and variations to work with heterogeneous graphs. Heterogeneous graph convolutional

modules [103] are designed to handle heterogeneous graphs by applying sub-modules

(GCN layers) on different edge types and afterward aggregate them. As we describe in

more detail later in Section 5.3, we use such a module to be able to use our heterogeneous

graph structure and to learn independent weights for the different edge types in the graph,

which determines how strongly weighted information are sent over the edges. Overall, in

our semantic type detection approach, we leverage the described node update mechanism

70

5.3 Overview of Pythagoras

Textual
Column Node

Numerical
Column Node

Tablename
Node

Numerical Column
Feature Node

Directed Edges from
Each Textual Column
Node to all Numerical

Column Nodes

Directed Edges from
Tablename Node to all

Column Nodes

Graph
Representation

NBA Ply Stats

Ply FPos PPG AssPG RebPG

LeBron
James

SF/PF 31.3 7.5 8.2

...

Myles
Turner

PF/C 15.4 2.1 9.8

Textual Column Numerical Column

Content

Column
Names

Table
Name

(a) Graph Representation

Feature Specific
Subnetwork

GNN

In
iti

al
 N

od
e

R
ep

re
se

nt
at

io
ns

BERT

Input Features
(192 Units)

ReLu
(512 Units)

Serializations

Tablename
Node

Textual
Colum Nodes

Numerical
Colum Nodes

Numerical Column
Feature Node

Heterogenous Graph Convolution Module

H
id

de
n

S
ta

te
O

ut
pu

t o
f t

he
 G

N
N

Textual Colum Nodes Numerical Colum Nodes

Final Classification Layer

Convolutional
Layer

Convolutional
Layer

Convolutional
Layer

(b) Model Architecture

Figure 5.2: (a) Shows the conversion of a table into a heterogeneous graph representation.
The key aspect of the graph is that it provides all the necessary contextual
information through its structure (nodes and directed edges), resulting in
improved predictions of the semantic types of numerical columns. (b) Shows
the complete model architecture of the neural network.

by aggregating information from neighboring connected nodes to update the numerical

column node representation with information from a textual column. In this way, context

information from textual columns are embedded into the node representation of the

numerical column, thus leading to better semantically interpretable representations.

5.3 Overview of Pythagoras

In the following, we introduce our new semantic type detection approach Pythagoras. We

begin by explaining our new graph representation of tables and then present the model

architecture of our semantic type detection approach in detail.

5.3.1 Graph Representation of Tables

Figure 5.2a demonstrates how we convert a table and its columns into a graph represen-

tation using an example table. The table contains a table name (tn), two non-numerical

71

5 Pythagoras: Semantic Type Detection of Numerical Data

columns (cnn) and three numerical columns (cn), each with column headers (ch) and

column values (v1, v2, ..., vm). In the figure, we can see how the table is transformed into

a graph G = {V, E} composed of a set of nodes V and a set of edges E including four

different node types Vtn, Vnn, Vn, and Vncf for different artifacts.

The first node type Vtn (green node) represents the tablename. Additionally, the graph

contains a node of type Vnn (orange nodes) for each non-numerical column. This node

type represents the entire column including column values and headers. In the same

manner, for each numerical column, we create a node of type Vn (blue nodes) representing

numerical columns and their contents. Finally, nodes with a node type Vncf (red nodes)

are added for each numerical column to encode specific features of the numerical columns.

We decided to use an additional node type Vncf to encode specific features for numerical

columns since this allows us to first use a pre-trained LM for computing a representation

based on the joint features that are shared between both non-numerical and numerical

columns such as column headers. In addition, we further add the nodes Vncf for the

numerical-only columns, each holding a vector with additional specific features for

numerical columns for which we use a separate encoding strategy with a separate simple

multilayer perceptron network. To be more precise, we additionally encode 192 different

statistical features for encoding a numerical column.

5.3.2 Leveraging Contextual Information

As described before, only using the numerical values for predicting the semantic type

of numerical columns is in general not sufficient, and contextual information is needed.

Due to this aspect, we add directed edges to our table graph representation to predefine

in which way necessary additional context information should be injected through the

message-passing mechanism of GNNs [54] into the numerical column representation (node

Vn) and thus enrich it for better predictions.

More precisely, as shown in Figure 5.2a we construct direct edges from each non-

numerical column node V 1
nn, V 2

nn to all numerical column nodes V 1
n , V 2

n , V 3
n (yellow edges)

to provide the context information from the non-numerical columns to the numerical

columns. Furthermore, we add directed edges in the graph from the table name node Vtn

to all non-numerical Vnn as well as numerical Vn nodes (green edges). This edge handles

not only the contextual information for numerical columns but also for non-numerical

columns. As we will show in our experiments, using the table name as context information

also leads to performance improvements for non-numerical columns. Finally, the graph

72

5.3 Overview of Pythagoras

Learned Edge
Specific Weights

New Vector Representation
After Traversing the GNN

Aggegation Function
of the Messages

Weighted Vector
Message

Figure 5.3: Heterogeneous graph convolutional module of Pythagoras for the nodes Vn.
Information from the nodes Vnn, Vtn and Vncf is passed to node Vn. Each
edge connection (Wnn, Wtn, Wncf , Wn) has its own learned weights, which
determine how strongly weighted the information is sent over the edges.
Finally, all messages (vectors) are combined to form a new representation of
the node by an aggregation function.

has directed edges for integrating the additional statistical features into the encoding of

numerical columns (red edges from Vncf → Vn).

As a consequence when using this graph structure as a basis for our GNN-based model

architecture (cf Section 5.3.3), the vector representations, computed for the numerical

column nodes Vn during training, result in an enhanced information content that is

more suitable for an accurate prediction of the underline semantic type. Interestingly,

leveraging context by modeling edges in a GNN not only improves the prediction of

numerical but also non-numerical types as we show in our evaluation (cf. Section 5.4).

5.3.3 Model Architecture

In Figure 5.2b we can see the model architecture of Pythagoras. In the following, we

explain first the details of the model architecture and then explain how the model can be

used to detect numerical semantic types.

5.3.3.1 Architecture and Training

The model comprises three essential components. These components include (1) a pre-

trained LM to encode all features from non-numerical and numerical columns2, (2) a

2We use BERT but Pythagoras is independent of how to generate the initial embeddings, and there
may exist alternative language models or embedding methods that could potentially yield even better
results in this context.

73

5 Pythagoras: Semantic Type Detection of Numerical Data

specific subnetwork to process the additional features of numerical columns and (3) the

GNN to aggregate all information.

The upper part of the architecture in Figure 5.2b shows how we generate the input of

the BERT model to get the initial representations for each column. Additionally, we use

BERT to encode table names. To serialize the individual columns, we encode the input

sequence for non-numerical as well as for numerical columns, using the column header and

the column values as follows: serialize(ci) ::= [CLS] ch v1 v2 ... vm [SEP]. Additionally,

to generate the initial representation of the node Vtn we thus serialize the table name

as follows: serialize(tc) ::= [CLS] tc [SEP]. For columns and table names, we use the

representation computed by BERT for the CLS token as initial node representation for

the GNN.

To embed the additional extracted features of the numerical column values, the model

contains a feature-specific subnetwork similar to the approach in [50]. As can be seen in

the architecture, the subnetwork consists of a linear layer that maps the 192 provided

features to a vector that matches the shape of the other initial vector representations

(BERT outputs vectors with dimensions of 768). This network is trained end to end with

the GNN while the BERT parameters are frozen.

The initial vector representations generated by the BERT model and the subnetwork

are used as initial internal representation for all nodes Vtn, Vnn, Vn, and Vncf in our

graph data structure which serves as input for our GNN model. As GNN, we use a

heterogeneous graph convolutional module that combines different graph convolutional

layers [54] for each occurring edge type. Since we have 3 different edge types in our graph,

the heterogeneous convolutional module combines 3 independent graph convolutional

layers. The heterogeneous convolution module first performs a separate graph convolution

on each edge type, then sums the message aggregations on each edge type as the final

result for the nodes. Figure 5.3 shows the behavior of this module for a numerical column

node Vn that is connected with other nodes over the different edge types. The module

works in a similar way also for non-numerical columns Vnn leveraging, however, only

information from table name as shown in Figure 5.2a.

The module allows the model to learn separate weights for the different edge types and

thus enables it to embed connected neighboring nodes and their information to different

degrees. For example, the model can learn for Vn nodes that the information of the table

name (provided by Vtn) is less important than the information of adjacent non-numerical

columns (provided by Vnn). By learning distinct weights for each edge, we can effectively

capture the nuances and dependencies in the data, ultimately enhancing the model’s

74

5.3 Overview of Pythagoras

ability to make contextually informed predictions that lead to the overall effectiveness of

our approach, which we will show more in detail in Section 5.4.5.

After traversing the GNN network, we extract the hidden states of the nodes Vnn

(updated representation of non-numerical columns) as well as of Vn (updated represen-

tation of numerical columns). Subsequently, these hidden states are then fed into a

final classification layer to perform the semantic type classification task. In this last

classification layer, the output size is determined by the number of distinct semantic

types present in the corpus.

5.3.3.2 Detecting Numerical Types

To highlight the advantage of using our graph representation of tables together with

a GNN for semantic type detection of numerical data types, let us take a look at the

following example. Considering the node V 1
n in Figure 5.2a which stands for the numerical

column ’PPG’ (point per game statistic of a basket player) of the table, the column

contains values in the range of about 15-32 and the semantic type could be ambiguous

in a data lake about sports event and could represent values of different types (e.g.,

basketball.player.points_per_game, football.player.yards_per_game or temperature).

However, after iterating over a GNN layer, the values of the two non-numerical columns

V 1
nn, V 2

nn are embedded because of the designed yellow edges. These provide basketball

player names (Lebron James, ..., Myles Turner) as well as basketball field positions

(SF/PF, ..., PF/C) as context information. According to this additional data, it is

clear that the semantic type temperature is not very likely for this column. Because

of the fact, that tables about player statistics in basketball as well as in football are

structured very similarly and contain both columns with player’s names and field positions,

it is not yet clear whether the semantic type is basketball.player.points_per_game or

football.player.yards_per_game for example.

Besides the previous context data of the non-numerical columns, information about the

table name is also injected via the green edges during a GNN layer pass. This information

contains the text ’NBA Ply Stats’ (’NBA’ is the name of the basketball league) and it

is now unambiguous determinable that basketball.player.points_per_game must be the

valid semantic type. The other passed information from the additional statistical feature

nodes Vncf also provides an improvement for distinguishing ambiguities, since the value

range of numerical columns with different semantic types can be the same but the value

distribution can be different. These different characteristics are covered by the extracted

statistical features of numerical columns.

75

5 Pythagoras: Semantic Type Detection of Numerical Data

Table 5.1: Characteristics of the datasets in our experiments.

Dataset #Tables Non-Num. Num. #sem.
Cols./Table Cols./Table Types

SportsTables 1,187 2.83 18.1 462
GitTables Numeric 6,577 2.08 8.95 219

5.4 Experimental Evaluation

In the following, we first introduce the two datasets SportsTables and GitTables before

we describe our experimental setup and evaluation methodology. Afterward, we discuss

the main results of our experiments.

5.4.1 Data Sets and Baselines

For evaluating Pythagoras, we use two different real-world data lakes with a large number

of semantically annotated tables. When selecting the datasets, the goal was to choose a

corpora that contain tables with a high proportion of numerical columns. This allows us

in particular to explore and compare the existing models with Pythagoras on numerical

data. As shown in Table 5.1, we use two corpora SportsTables [60] and GitTables Numeric

which is based on [47]. Both corpora contain a high number of numerical columns per

table and represents a numerical to non-numerical ratio commonly found in enterprise

data lakes [61].

Dataset. SportsTables [60]. As the first data corpus in our experiments, we use our

generated SportsTables corpus, which we introduced in the previous Chapter 4. As

already mentioned, the corpus contains real-world data tables collected from various

sports domains such as soccer, basketball, baseball and football using web scraping

techniques. Such data tables are especially rich in numerical columns as many different

sport-specific statistical measurements are reported. As can be seen in Table 5.1, the

tables in the corpus contain 2.83 textual and 18.1 numerical columns on average. The

corpus includes a very high number of 462 unique semantic types. Thereby semantic

types are very fine granular, which is a major challenge for semantic type detection

models. For example, there are types such as ’basketball.player.assists_per_game’ or

’soccer.player.assists_per_game’.

GitTables Numeric [47]. The original GitTables data set is a corpus of tables created by

extracting CSV files from GitHub repositories. Table columns are labeled with semantic

types from Schema.org [35] and DBpedia [6] using two different automated annotation

76

5.4 Experimental Evaluation

methods. In our experiments, we have focused on the annotations origin from DBpedia

and the results of the semantic annotation method. For our experiments, we constructed

a derived corpus called GitTables Numeric. For this corpus, we filtered out tables with a

high proportion of numerical columns. To achieve this, we only included tables where

at least 80% of all table columns are numerical. In order to have enough samples of

each semantic type to train, validate and test the models, we also filtered out columns

that have a semantic type occurring less than 10 times in total. Based on these filter

criteria, we ended up with a corpus that contains 6,577 tables with 2.08 textual and 8.95

numerical columns per table on average (see Table 5.1) and a total of 219 semantic types.

Baselines. In our evaluation, we compare our model Pythagoras against five state-of-the-

art semantic type detection models. As baselines we considered Sherlock [50], Sato [113],

Dosolo [100] and Doduo [100]. Despite that Sato and Doduo also incorporate context

information to predict the semantic type of a column, they do not specifically address

numerical-based columns and do not offer a predefined approach for injecting contextual

information into the prediction of numerical columns. All models were trained on the

same data as Pythagoras.

Given the recent advancements in LLMs like GPT-3.5 [10, 84], which have been

extensively trained on vast amounts of data, one might wonder if such models cannot

predict the semantic type for non-numerical as well as for numerical columns with high

accuracy through a straightforward finetuning. Finetuning an LLM to a specific task has

already shown success [52, 66, 86, 102]. In light of these considerations, we additionally

explore the capabilities of recent LLMs in our study by adding a fine-tuned GPT-3.5

model. We opted for fine-tuning as opposed to prompt designs due to its potential to

yield higher performances and to train on a larger number of examples. To build this

baseline model we fine-tuned the gpt-3.5-turbo model, following the instructions in [2]

using the same training data we used for Pythagoras.

5.4.2 Experimental Design

Setup. To run the experiments, we split each dataset into three parts: training, validation

and test set. We divided the datasets into 60% training, 20% validation and 20% testing

splits. Since in both datasets, the gold labels were assigned in an automatic manner by

using the individual column headers, we did not include the headers in the serializations

of the columns, which is different from what is described in Section 5.3. When running the

experiments, we trained each model using the training split and conducted hyperparameter

tuning on the validation set.

77

5 Pythagoras: Semantic Type Detection of Numerical Data

Table 5.2: Experimental results on the SportsTables corpus.

Model support weighted F1-Score macro F1-Score
numerical non-numerical overall numerical non-numerical overall

Sherlock [50] 0.609 0.856 0.641 0.555 0.767 0.57
Sato [113] 0.703 0.961 0.736 0.650 0.903 0.668

Dosolo [100] 0.313 0.822 0.379 0.245 0.782 0.285
Doduo [100] 0.623 0.98 0.67 0.567 0.933 0.594
GPT-33 [10] 0.446 0.872 0.501 0.404 0.760 0.423
Pythagoras 0.829 0.996 0.851 0.790 0.97 0.803

In addition, we used the performance results on the validation split during training to

apply an early stopping mechanism. To measure the final performance of each model,

we loaded the checkpoint of the model with the highest F1-Score on the validation set

and then applied it to the test data. We ran each experiment with five different random

seeds and reported the mean across multiple runs to obtain statistically reliable results.

As evaluation metrics, we used support-weighted F1-Score, weighted by the number of

columns per semantic type and the macro average F1-Score as used in previous studies

[20, 50, 100, 113].

Pythagoras implementation. We implemented our model Pythagoras using Python

together with the modules PyTorch [85], DGL [106] and the Transformers library [107].

As described in Section 5.3, our neural network consists of three main components. A

pre-trained LM to generate initial vector representations, a subnetwork for the numerical-

based feature set, and a GNN that allows to exchange context information.

As pre-trained LM, we used the vanilla BERT [22] (bert-base-uncased) model to be

comparable to [100] which comes with 12 encoder layers. We used tokenizer and pre-

trained model of the Transformers library from Hugging Face [28]. During the training

process, we froze the 12 layers of BERT, preventing their weights from being updated.

The graph data structure and the GNN were implemented with the DGL library. To

update the weights of the GNN during training, we applied an Adam optimizer with an

initial learning rate of 10−5 and a linear decay scheduler with no warm-up. Since our

purpose is to realize a multi-class prediction task (one semantic type label per column),

we used the cross entropy loss as a loss function.

5.4.3 Exp. 1: Overall Efficiency

3fine-tuned

78

5.4 Experimental Evaluation

Results on SportsTables. Table 5.2 shows the experimental results on SportsTables.

For each model, we list the F1-Scores overall data types to show the total performance,

but also the separate average F1-Scores for only numerical and non-numerical data types,

respectively. As the first main result, we can see in the table that our model Pythagoras

outperforms all existing state-of-the-art models in all reported aspects. Looking only at

the results on the numerical columns, we can see that our model achieves an improvement

of +17.92% support weighted F1-Score and +21.53% macro F1-Score. These results verify

that our designed mechanism of providing context information to predict the semantic

type of numerical data is more suitable than the methods in the existing models Sato

and Doduo.

In Sato, contextual information is provided by a table topic vector, which is formed

by an accumulation of all values in the table. Since tables in the SportsTables dataset

contain a large proportion of columns with numerical values (on average 18.1 are numerical

columns and 2.83 are non-numerical, see Table 5.1), this table topic vector does not have

the necessary effect. In addition, Satos linear-chain CRF also does not lead to significant

improvements, since the tables in SportsTables are not always structured in the same

way (column orders vary between tables). This aspect can be seen by the comparison of

Sato to Sherlock, which is the same model without a table topic vector and a linear-chain

CRF module. The improvements from Sherlock to Sato are not significant.

Doduo also achieves only moderate performance values with 0.623/0.564 (support

weighted/macro) F1-Score. On one hand, this is due to the fact that only very few

individual column values can be included in the token sequence, since the BERT model is

limited to 512 elements and the tables have on average 20.93 columns. On the other hand,

the BERT model learns the structure of the tables which, as with Sato, has negative

effects with non-identical cross-table structures. Furthermore, it is still unclear how deep

the understanding of numbers is in LMs like BERT, since they are essentially pre-trained

on textual data. Unlike the existing models, our model is independent of the column

order of the tables due to the graph structure. If columns are arranged differently between

tables, this has no negative effect.

When we examine the results on textual data, we generally observe that all models

perform well. In particular, the models Sato, Doduo, as well as our model Pythagoras

achieve high accuracy. Interestingly, also for non-numerical columns our model is slightly

better than existing models with 0.996/0.970 F1-Scores. This improvement is due to

the design aspect that our model uses the contextual information of the table name also

for the non-numerical column representations (Vnn → Vn edges). Moreover, our results

79

5 Pythagoras: Semantic Type Detection of Numerical Data

Table 5.3: Experimental results on the GitTables corpus.

Model support weighted F1-Score macro F1-Score
numerical non-numerical overall numerical non-numerical overall

Sherlock [50] 0.725 0.989 0.775 0.411 0.491 0.707
Sato [113] 0.733 0.991 0.781 0.443 0.707 0.491

Dosolo [100] 0.518 0.986 0.606 0.245 0.694 0.343
Doduo [100] 0.761 0.992 0.804 0.409 0.749 0.489
GPT-34 [10] 0.531 0.938 0.610 0.143 0.277 0.211
Pythagoras 0.813 0.990 0.846 0.476 0.893 0.544

demonstrate the aspect that on numerical data, the prediction of the semantic type is in

general harder than the prediction of non-numerical data.

In summary, the results on the SportsTables dataset demonstrate that our model

architecture, in conjunction with the graph representation of tables, leads to significantly

improved performance in predicting semantic types for numerical-based columns.

Results on GitTables. Table 5.3 shows the experimental results on GitTables using the

same metrics as before on SportsTables. The results show that Pythagoras outperforms

all other models in predicting the semantic types. Considering the performance on

numerical columns, it becomes evident that our model surpasses the performance of the

best existing model, Doduo, by a remarkable improvement of +6.83%/16.38% F1-Score.

This gain in performance highlights the effectiveness of our model in handling numerical

data, setting a new benchmark in this domain by outperforming all state-of-the-art

approaches. Different from the results on the SportsTables corpus, among the baselines,

Doduo and Sato perform nearly equally. This is mainly due to the aspect that the

GitTables corpus contains tables with fewer columns on average, and therefore Doduo can

use more column values in its token sequence and with that build a better representation

using the BERT model.

Looking at the performance on non-numerical data columns, we can see that all models

achieve mostly the same support weighted F1-Scores (about 0.990). However, considering

the macro F1-Scores our model Pythagoras reaches by far the best value with 0.893.

This is an improvement to the second-best model Doduo by +19.23%, showing again the

benefit of providing the table name as contextual information for predicting the semantic

type of non-numerical columns. In summary, the results on GitTables show that our

model Pythagoras sets new state-of-the-art performances for predicting the semantic type

of numerical table columns.

4fine-tuned

80

5.4 Experimental Evaluation

5.4.4 Exp. 2: Performance for Individual Types

Figure 5.4 shows a more detailed analysis of the performances between Pythagoras and

Sato on numerical columns in SportsTables. We chose Sato as comparison model because

it was the best baseline model on numerical columns in this dataset. On the left side,

the pie chart shows for how many semantic types of numerical columns which model

performed better regarding the F1-Score. Out of a total of 384 numerical semantic

types, Pythagoras was able to achieve substantially better performances than Sato on

202 of them. For 80 types, the two models achieve equal F1-Scores and for 74, Sato is

better than Pythagoras. This demonstrates that our model is not only more accurate for

individual numerical semantic types but also for a very large proportion of them.

To show how large the F1-Score differences between the two models across the numerical

types are, boxplots of the differences for the cases Pythagoras>Sato and vice versa are

shown on the right of Figure 5.4. In the case where our model achieves higher F1-Scores,

we can see that the median value of the distances is 0.2. The 0.75 quantile is 0.4 and

there are also a few types where our model is better than Sato by more than 0.9. In

addition, the distribution is shifted upwards towards the larger distance values. In the

case where Sato is better, the median is about 0.1 and the 0.75 quantil is 0.2. The

distribution is also shifted upwards, but not as much as in the other case. In conclusion,

these results show that there are many types for which Pythagoras performs much better

than Sato and Sato can only achieve very low F1-Scores and the differences to our model

are significant. In the other case, for the majority of types in which Sato performs better,

our model Pythagoras achieves only slightly lower scores.

Overall, this suggests that our model architecture and the method we designed for

providing context information are better suited for detecting the semantic type of

numerical data.

5.4.5 Exp. 3: Ablation Study

Different graph variants. To verify the different design aspects of our approach, we

tested variants of Pythagoras. At first, we tested modifications of our graph representation

of tables. In particular, we wanted to investigate which contextual information has which

effect on the prediction of the semantic type. Table 5.4 shows the results of this ablation

study by displaying support weighted and macro average F1-Scores on numerical columns.

The first row reports the results of using our regular model and graph while the next rows

presents the results when various nodes and edges are removed in the graph representation.

Here w/o Vtn means that in the graph the node representing the table name has been

81

5 Pythagoras: Semantic Type Detection of Numerical Data

Pythagoras > Sato

202

Sato > Pythagoras

74
Equal

80

Pythagoras > Sato Sato > Pythagoras
0.0

0.2

0.4

0.6

0.8

1.0

 F
1

Sc
or

e

0.2000

0.0998

Figure 5.4: The left chart shows the number of numerical types for which Pythagoras
performs better than Sato and vice versa. In the right chart we see box plots
for the F1-Score differences between the two models on the different numerical
semantic types where Pythagoras was better than Sato and vice versa.

Table 5.4: Ablation study results on only numerical columns of the SportsTables dataset.
We tested different graph structures that provide different types of contextual
information (upper part). The lower part shows results when including the
column header ch as additional information in the serialization of a column.

Variant support weighted macro
avg F1-Score avg F1-Score

Pythagoras 0.829 0.790
w/o Vtn 0.812 0.759
w/o Vnn 0.785 0.733
w/o Vncf 0.813 0.765
w/o Vtn, Vnn 0.724 0.693
w/o Vtn, Vnn, Vncf 0.324 0.252

w/ original ch 0.991 0.950
w/ synthesized ch 0.972 0.926

82

5.4 Experimental Evaluation

removed and thus also the provision of this context information for the prediction of

the semantic type of the columns. Note, that the other nodes Vnn and Vncf are still

present in the graph and still provide contextual information to the numerical columns

representations. Equally, w/o Vnn means that the edges of non-numerical to numerical

columns have been removed and thus the flow of information from the non-numerical

columns no longer occurs during a GNN layer pass. However, in this variant, the other

nodes are present.

The first finding that can be seen in the results is that when we remove the nodes Vnn,

we see the highest performance drop. The F1-Score decreases in this case -0,044/-0,057

in comparison to the regular model. Thus, we can conclude that the most important

contextual information for a correct prediction of the semantic type of numerical-based

columns are the values of the non-numerical columns from the same table. The second

most important context is the table name (Vtn) and the least important are the statistical

features of the numerical values in the columns (Vncf). Without the table name as

context, the model performance decreases a bit more than without the statistical features.

To see how good the performance is when making a semantic type prediction only using

the numerical values of the columns (Vn and Vncf), we have also considered a variant

in which Vtn (table name) and Vnn (non-numerical columns) nodes are not present.

With this variant, the F1-Score drops very sharply and the model only achieves values

of 0.724/0.693. This result again shows the immense importance of textual context

information in predicting the semantic type of numerical data. In addition, we have

tested a variant in which only the Vn nodes are present (w/o Vtn, Vnn, Vncf). As expected,

we just get similar performances to the Dosolo model, since in this constellation both

model structures are very similar.

Different column serializations. As mentioned before, in the experiments of Sec-

tion 5.4.2, we did not include the original column headers ch in the serialization of a

column because they were previously used to semi automatically assign the true semantic

types (gold labels) to the columns. However, to show the impact column headers can

have on the performance of numerical column predictions, we created synthetic column

headers and used them in an experiment. We created the synthesized column headers

using GPT by giving us a list of 10 possible abbreviations for the respective column

headers. For example, for the header ”Player Age” GPT provided the list [”PA”, ”PlAge”,

”PAG”, ”PLAG”, ”PlrAge”, ”PlyAg”, ”PLA”, ”PrAge”, ”PlyrA”, ”PlayA”]. Afterward,

for each column, we randomly selected an abbreviation from the list and used it as the

column header. The lower part of Table 5.4 shows the results of this experiment. We can

see that the inclusion of column headers has an additional positive effect on predicting

83

5 Pythagoras: Semantic Type Detection of Numerical Data

the semantic types of numerical data, achieving F1-Scores of 0.972/0.926 (close to the

performance when using the original highly indicative column headers).

5.5 Summary

Numerical columns often make up a large proportion of the data stored in data lakes

and in many cases contain critical information. Therefore, it is even more important

to have a model that can detect the underlying semantics of these data types robustly.

While recent papers propose approaches for extracting semantic types, unfortunately,

they have been designed primarily on non-numerical data and therefore do not provide

accurate performances when used on numerical data columns. To tackle the shortcomings

of the existing models, we introduced in this chapter our new semantic type detection

approach called Pythagoras, which is specifically designed to robustly handle numerical

table columns. The graph representation of tables and GNN architecture of Pythagoras

establish an intrinsic mechanism that provides all necessary context information to

determine the correct semantic type of numerical columns. By conducting experiments on

two different data lakes, we compared Pythagoras against five existing models and showed

that our model outperforms all other models on numerical columns. In comparison to

the best existing model, we reported F1-Score increases of around +22%, which sets new

benchmarks.

84

6 Conclusion and Future Work

This thesis contains several contributions to enable semantic type extraction of table

columns stored in data lakes. Thereby, the dissertation particularly focuses on enabling

an adaption of existing learned models to the respective data lake with minimal effort and

also on providing new approaches for the more difficult semantic labeling of numerical

data. In the following, we will first reflect on these contributions and afterward point out

possible directions for future research.

6.1 Reflection

This dissertation tackles the data discovery problem in data lakes by using automatic

semantic type extraction of table columns. Although approaches for the task of semantic

type extraction of table columns have already been developed, they essentially have two

limitations when applied to a real-world data lake: (i) They do not generalize across

different data lakes, instead they are trained specifically for one data lake. As a result,

costly adaptation to the individual data lake is necessary. (ii) Existing approaches are

mainly designed to handle the semantic type extraction of textual data and fall short when

applied to numerical data. In real-worl data lakes, however, a large proportion of the data

is often numerical and contain critical information, which make an accurate extraction

of the semantics of this data type essential. To tackle the mentioned limitation, this

dissertation introduced four main contributions (see Section 1.4) structured as follows.

First, in Chapter 2, we showed an evaluation of the quality of state-of-the-art semantic

type extraction models on new unseen real-world data lakes. The experimental results

demonstrated that existing learned models do not generalize to unseen data lakes and

always require a costly adaption to the individual data characteristics and semantics

that occur in the data lake where the model should be applied. The results additionally

pointed out that this aspect also appears to semantic types that the learned model already

knows (i.e., learned by seeing the semantic types in the training data of the model), since

the same semantic types of table columns can have different data patterns in different

85

6 Conclusion and Future Work

data lakes. In order to eliminate the problem of the necessary costly adaption of the

model to the respective data lake, we suggested a new direction of using weak supervision

to generate new labeled training. This method of weak supervision effortlessly generated

new training data directly from the corresponding data lake, enabling the use of this

newly labeled data for re-training the existing model and thereby adapting it to the

same data lake. An initial experiment in Chapter 2 using one LF to label table columns

indicated the general effectiveness and potential of this approach.

Hence, in the following Chapter 3, we proposed the first labeling framework based on

the idea of weak supervision to generate new labeled training data for a new unseen data

lake. Using the generated training data by the labeling framework to re-train a learned

semantic type extraction model can not only lead to a performance improvement in case

we re-train the model on a data lake with types the model has already seen, but also in

case we train the model on a data lake with unseen types from scratch. To label table

columns and thus generate new training data, we introduced a set of pre-defined LFs,

that are embedded in our labeling framework. This included a set of generic LFs, which

are domain-independent and can be used on any data lake out of the box. Contrary to

this, we implemented another set of more domain-specific LF. These LFs rely on the

contribution of domain-experts’ knowledge and be used to generate new training data

for completely unknown semantic labels for which there are no samples at all. Because

numerical columns are generally more difficult to label with semantic types, we have

also proposed our new label generation procedure called Steered-Labeling in this chapter.

Steered-Labeling is integrated as a core component in our labeling framework, which is

why we subsequently named the complete labeling framework STEER. The intuition is

that in Steered-Labeling we separate the process into two subsequent steps: STEER first

labels the non-numerical columns that are easier to label. Afterward, STEER then uses

these labels to “steer” the labeling of the numerical columns. With this, STEER is able to

not only generate high quality training data of textual columns but also to semantically

label numerical data with very high precisions. At the end of this chapter, we provided an

extensive evaluation of STEER on four different data lakes with different characteristics.

These data lakes vary in semantic types and cover a wide spectrum of numerical and

non-numerical data types. Furthermore, we also showed that our approach can be used

across models that implement different learning approaches. Overall, each scenario in

our experiments demonstrated that STEER can generate training data that allows a

learned model to provide high performance in the data lake where it is to be deployed.

To illustrate the benefits of our Steered-Labeling method, we made a comparison between

86

6.1 Reflection

training data generated with and without the steered-labeling procedure. The results

showed that with Steered-Labeling numerical columns can be labeled more accurately.

Nevertheless, in a more detailed analysis, we observed that the semantic types of

the numerical columns are poorly predicted by the existing semantic type detection

models (e.g., Sherlock [50], Sato [113], Doduo [100], Turl [20]). In Chapter 4, we delved

into this aspect and uncovered a key reason for the limitations in existing models when

predicting the semantic type of numerical columns. This limitation arises from the fact

that the corpora utilized for designing, constructing and training these models mainly

consist of textual data and contain almost no numerical data. Therefore, the models

are primarily not designed to process numerical data. We analyzed all existing corpora

for the task of semantic type detection of table columns and indicated as a result that

essentially the following shortcomings are present: (i) tables incorporate either only or a

very high percentage of textual data columns, (ii) tables are very small on average and

often contain only very few numbers of columns (in most cases even less than 2 columns

on average) or only very few number of rows. Compared to real enterprise data lakes,

these characteristics pose a substantial disparity, where many numerical columns and

large tables with many columns and rows exist. Hence, we presented our new corpus

for semantic type detection called SportsTables in this chapter. SportsTables is the first

corpus with annotated table columns, which contains a significantly larger proportion

of numerical data than textual data. In total, the tables in our corpus have on average

about 3 textual and 18 numerical columns. Moreover, the tables in our new corpus are

much larger in both the number of columns and the number of rows than in existing

corpora which better reflects the characteristics of real-world tables.

In Chapter 5 we introduced the last contribution of this dissertation - our new semantic

type detection approach Pythagoras, specifically designed to support numerical along

with non-numerical columns. Pythagoras can not only predict the semantic type of

non-numerical table columns with high accuracy but also of numerical table columns.

To achieve this, the main idea of the new model architecture is to use a GNN together

with a new graph representation of tables and their columns. In the chapter, we first

introduced our new graph representation of tables, where we use directed edges to model

the information flow within tables. Using this graph representation, STEER can learn

selectively which context information should be taken into account to establish robust

predictions on numerical data. Afterward, we introduced our new GNN-based neural

network architecture that is able to use our new graph data structure as input and predict

the semantic type of table columns. Finally, in this chapter, we showed the effectiveness of

the graph representation and the model architecture of Pythagoras by comparing against

87

6 Conclusion and Future Work

five existing state-of-the-art semantic type detection models on two different data lakes

that mimic the data distribution of enterprise data lakes and contain tables with non-

numerical and numerical columns. The results of this experiment demonstrated that our

new model outperforms all baselines on numerical data significantly. To summarize, this

thesis contributes important steps towards making automatic semantic type extraction

of table columns stored in data lakes feasible and thus made a meaningful progress in

solving the data discovery problem in data lakes.

6.2 Future Research Directions

Although the contributions of this dissertation enhanced the deployment of semantic

type extraction of table columns stored in enterprise data lakes, there are many more

challenges and interesting research directions to address the broader challenge of data

discovery in data lakes.

6.2.1 Out-Of-Distribution Identification & Human in the Loop

In this dissertation, we presented our labeling framework STEER, which is used for an

automatic adaptation of a semantic type extraction model to a new data lake containing

new unseen data characteristics and semantics. However, thinking about a running

environment of a data lake, where new data sources with new data characteristics and

semantics are added ad-hoc, the possible resulting adaptation of the model must be

triggered manually with the use of STEER. Hence, it would be beneficial if the semantic

type extraction approach itself could recognize when an adaptation is required. For

example, through the ability of the approach to recognize unknown data patterns or

semantic types of data columns in the data lake and, in this case, not to label them

semantically but to flag this occurrence as out-of-distribution. Such a procedure can also

be enhanced by adding a human in the loop to achieve continuous adaptation of the

model. Thereby, the semantic type extraction approach would involve the human in the

loop whenever it cannot detect the semantic type of a column and needs new input to

adapt what it has learned. Developing a solution based on this concept will be exciting

for future work. One existing research that goes in this direction is AdaTyper [49] which

can be further evaluated and improved to build such an approach.

Another interesting future research would be to investigate how well Retrieval Aug-

mented Generation (RAG) techniques [64] can be used to facilitate the adaptation of

semantic type detection models to unseen data. RAG is currently considered a state-of-

88

6.2 Future Research Directions

the-art approach to provide LLM models with up-to-date information to answer questions

for which the answer is not available in the training data of the LLM. Thus, it is not

necessary to constantly re-train the model to provide it with new information or to adapt

it to different data. Through the retrieval step in RAG, all relevant information from

external sources are provided to the model as context information during the prediction.

In this way, the model can use the latest information to make a prediction without

re-training. How the RAG technique can be used for the task of semantic type extraction

of table columns would be an interesting question for future work.

6.2.2 Extract Relationships Between Table Columns

Semantic types of table columns are not the only interesting metadata of tabular data

that are helpful for an easier navigation in the data lake. Relationships between columns

can also be crucial meta information for data discovery (or other data management tasks

like data cleaning, data quality control, etc.) in data lakes. For example, semantic column

relation types such as ”is_livin_in” can connect two columns with the semantic types

”person.name” and ”city” with each other and thus provide relevant meta information

helping to better understand the semantics of the table entries. Therefore, in a holistic

metadata management system for data lakes, it will be important to have components

that can automatically extract both (column types and column relation types) metadata

information from tables. Approaches for this task already exist in the research field. For

example, TURL [20] used its pre-trained transformer-based model for tables and fine-

tuned it to the task of column relation extraction. Furthermore, Doduo [100] presented

a unified model for predicting column semantic types as well as column relation types

since both types are interdependent and unified approaches can be therefore beneficial.

Although the presented results of these existing approaches for relation extraction are

promising, they have the same limitations as the approaches for columns semantic

extraction as presented in Section 1.3. In particular, it is unclear how the existing

approaches perform on numerical table columns. Both approaches of [20, 100] were

mainly evaluated on textual data, which is, as with the column semantic type extraction,

much easier than on numerical data. For this reason, it is important to evaluate in future

research work how well the existing approaches for semantic relation extraction work

on numerical data. To investigate this and do experiments, we first see the need to

provide a suitable corpus. To the best of our knowledge, there is currently no corpus

for this task that contains a sufficient number of numerical columns. One possibility to

provide such a corpus would be to expand our SportsTables corpus with annotations of

89

6 Conclusion and Future Work

semantic relations between the table columns. If the findings of this investigation reveal

a necessity for a new model specifically tailored for numerical columns, one potential

avenue of future work could be to utilize our Pythagoras model for this purpose. In our

graph representation of tables, the relationships between textual and numerical columns

are already represented by edges and it would only be necessary to extend this approach

to include all relationships between the table columns. Subsequently, the same GNN

model could be used to implement an edge classification (instead of the current node

classification) to predict the semantic type of the relation between columns.

6.2.3 Metadata Extraction Beyond Tabular Data

While this dissertation has made significant contributions for automatic semantic type

extraction of tabular data (table columns) within data lakes, there is still a need to extend

the same capability to other data modalities. Data lakes not only contain structured data

such as tables but also other data modalities like text, images, audio, video, time series and

various other forms of data. To comprehensively overcome the challenge of data discovery,

it will be also necessary to enable automatic metadata extraction for these data modalities

in data lakes. Such solutions would significantly enhance the holistic understanding and

will lead to an effective utilization of these vast reservoirs of information. Generating

automatic semantic annotations of images or semantic segmentation of images are well-

known tasks and there exists a lot of research work in this field, such as [39, 65, 97,

108]. However, the central research question is how to integrate these existing models for

semantic annotation of images into the metadata management of data lakes. Especially in

the case of having a separate model for each modality, there will be a need to standardize

the semantic types or labels across models. This is not only necessary initially but

permanently over the entire lifetime of the data lake where new data is constantly being

added or updated. Thus, another possible avenue for future work might be to implement

a unified model for metadata extraction across all modalities, resulting in a single holistic

model. A promising way to build such a multimodal model for metadata extraction could

be the use of LLMs. Modern LLMs such as GPT4 [83], Luminous [32] and Gemini [87]

are already designed to process and understand diverse data types, exhibit capabilities

to handle multimodal inputs effectively [109]. By leveraging the inherent ability of LLMs

to understand text, images and possibly other modalities, a unified framework for the

automatic extraction of metadata in different data formats within data lakes could be

created.

90

Part II

Peer-Reviewed Publications

91

7 Towards Learned Metadata

Extraction for Data Lakes

Abstract

An important task for enabling the efficient exploration of available data in a data lake is to

annotate semantic type information to the available data sources. In order to reduce the manual

overhead of annotation, learned approaches for automatic metadata extraction on structured

data sources have been proposed recently. While initial results of these learned approaches seem

promising, it is still not clear how well these approaches can generalize to new unseen data in

real-world data lakes. In this paper, we aim to tackle this question and as a first contribution

show the result of a study when applying Sato — a recent approach based on deep learning —

to a real-world data set. In our study we show that Sato without re-training is only able to

extract semantic data types for about 10% of the columns of the real-world data set. These

results show the general limitation of deep learning approaches which often provide near-perfect

performance on available training and testing data but fail in real settings since training data and

real data often strongly vary. Hence, as a second contribution we propose a new direction of using

weak supervision and present results of an initial prototype we built to generate labeled training

data with low manual efforts to improve the performance of learned semantic type extraction

approaches on new unseen data sets.

Bibliographic Information

The content of this chapter was previously published in the peer-reviewed work Sven Langenecker,

Christoph Sturm, Christian Schalles, and Carsten Binnig. “Towards Learned Metadata Extraction

for Data Lakes.” In: Datenbanksysteme für Business, Technologie und Web (BTW 2021),

19. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 13.-17.

September 2021, Dresden, Germany, Proceedings. Ed. by Kai-Uwe Sattler, Melanie Herschel, and

Wolfgang Lehner. Vol. P-311. LNI. Gesellschaft für Informatik, Bonn, 2021, pp. 325–336. doi:

10.18420/BTW2021-17. url: https://doi.org/10.18420/btw2021-17. The contributions of

the author of this dissertation are summarized in Chapter 2.

93

7 Towards Learned Metadata Extraction for Data Lakes

This paper is published under the Creative Commons Attribution 4.0 International (CC-BY

4.0) license. ©2021 Sven Langenecker, Christoph Sturm, Chrisitan Schalles, and Carsten Binnig.

It was published in the Datenbanksysteme für Business, Technologie und Web (BTW 2021),

19. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 13.-17.

September 2021, Dresden, Germany, Proceedings and reformatted for use in this dissertation.

94

7.1 Introduction

7.1 Introduction

Motivation:. Data lakes are today widely being used to manage the vast amounts of

heterogeneous data sources in enterprises. Different from classical data warehouses, the

idea of data lakes is that data does not need to be organized and cleaned upfront when

data is loaded into the warehouse [24]. Instead, data lakes follow a more “lazy” approach

that allows enterprises to store any available data in its raw form. This raw data is

organized and cleaned once it is needed for a down stream task such as data mining or

building machine learning models. However, due to the sheer size of data in data lakes

and the absence (or incompleteness) of a comprehensive schema, data discovery in a data

lake has become an important problem [72, 77, 94].

One way to address the data discovery problem, is to build data catalogs that allow

users to browse the available data sources [78]. However, building such a data catalog

manually would again pose high effort since metadata needs to be annotated on data

sources. An important task for cataloging structured (table-like) data in a data lake

(e.g.,, originating from CSV files) is to derive semantic type information for the different

columns of a data set. The reason is that this information is often missing in many

data sources or the column labels available in data sources are not really helpful for

data discovery since they use technical names or have been annotated from users with a

different background.

In order to tackle the problem of extracting semantic data types from structured data

sources in data lakes, recently learned approaches for metadata extraction have been

proposed [13, 50, 113]. The main idea of these learned approaches is that they use a

deep learning model for semantic type detection where the models are trained on massive

table corpora with already annotated columns. While initial results of these learned

approaches seem promising, it is still not clear how well these approaches can deal with

the variety of data in real data lakes.

Contributions:. In this paper, we aim to tackle this question and report on our

initial results of analyzing the quality of the state-of-the-art learned approaches for

metadata extraction on real-world data. Moreover, we also show initial results of a

new direction of tackling the open problems of the learned approaches that we discov-

ered in our analyses. In the following, we discuss the two main contributions of this paper.

95

7 Towards Learned Metadata Extraction for Data Lakes

As a first contribution, we show the result of a study when applying Sato [113] - a

recent approach based on deep learning to extract semantic types - to a real-world data

set. A inherent problem of deep learning-based approaches for semantic type extraction

is that they rely on a representative training data set; i.e., a set of columns with labeled

semantic types. Otherwise, if the training data set does not cover the broad spectrum of

data characteristics and types, the performance of the learned models quickly degrades

when applied to a new data set. In fact, we show that Sato without re-training was only

able to extract semantic data types for about 10% of the columns on the data sets used

in our study.

As a second contribution, we thus suggest to take a new direction for learned metadata

extraction to tackle the shortcomings of the existing deep learning approaches. As

mentioned before, the root cause of why existing approaches often fail to extract semantic

types is that the training data of the learned approaches is too narrow and thus the

performance on new data sets is often poor. Hence, in this paper we propose a new

direction of using weak supervision to generate a much broader set of labeled training

data for semantic type detection on the new data set. Our initial results show that

our approach can significantly boost the performance of deep learning-based approaches

such as Sato when re-training these approaches on the additional synthesized training data.

Outline:. In Section 7.2, we first provide an overview of approaches for metadata

extraction from structured data in data lakes. Afterwards, we discuss the results of our

study of using Sato as a recent learned approach on a real-world data set in Section 7.3.

Moreover, we then discuss our new approach based on weak supervision in Section 7.4.

Finally, we present the initial results of using our current prototype in Section 7.5 before

we conclude in Section 7.6.

7.2 Overview of Existing Approaches

In the following, we give a short overview of selected existing approaches for metadata

extraction. We first discuss approaches for semantic type extraction before we briefly

summarize recent approaches for the extraction of relationships.

96

7.2 Overview of Existing Approaches

7.2.1 Extraction of Semantic Types

Approaches that automatically extract types from metadata of data sources are al-

ready well established in industry. Prominent examples are Azure Data Catalog [8],

AWS Glue [7] and GOODS [38]. In addition, many other research efforts exist for devel-

oping generic metadata models and special algorithms for metadata extraction (e.g., [90]).

All these approaches rely on the fact that basic metadata information is already

annotated in the data source (e.g.,, as a header row in a CSV file) such as column and

table names. However, header rows exist only in few cases and even when they do, the

attribute names are not always useful as a semantic type. In this case, existing systems

opt for manual metadata annotation.

Considering the huge amount of heterogeneous, independent, quickly changing data

sources of real-world data lakes these approaches reach their limit. Therefore, some

systems aim to detect semantic types from the columns content instead of relying on

already existing labels in the sources. For this purpose, there exist two main research

directions for automatic semantic type detection: search-based approaches and learning-

based approaches.

Search-based Approaches:. The main idea of search-based approaches is to use

external information to annotate semantic information to data sets. One approach in

this direction is AUTOTYPE [110] which searches for existing custom extraction code to

handle more specific (domain dependent) semantic data types. By helping developers to

find and extract existing type detection code the supported semantic types of AUTO-

TYPE can be extended semi-automatically.

Learning-based Approaches:. In contrast to search-based approaches, learning-based

approaches aim to build a machine learning model that can derive semantic types of

columns from example data and not from extraction code. An early approach in this class

is [67] which uses machine learning techniques to annotate web tables and their columns

with types. While this approach relies on graphical models for extracting semantic labels

for columns, more recent approaches such as [50, 113] are based on a deep neural network.

Sato [113] which is the successor of Sherlock [50] thus requires training data with

labeled semantic types. While Sherlock only uses the individual column values as features

97

7 Towards Learned Metadata Extraction for Data Lakes

for predicting the semantic type, Sato also uses context signals from other columns in

the table to predict the semantic type of a given column.

7.2.2 Extraction of Relationships

While extraction of semantic types is one important direction for metadata extraction,

there also exist other approaches that are able to derive relationships between datasets

(e.g.,, an author writes a book) from data automatically. One prominent example for

such an approach is AURUM [12]. While AURUM represents an overall system for

building, maintaining and querying an enterprise knowledge graph for available data

sources, SEMPROP [13] is the subsystem of AURUM, which automatically derives links

(i.e., relationships) between the data sources using word embeddings.

As mentioned before, different from this work and similar to Sato in this paper we

focus on the extraction of semantic types for structured data sets. Hence, in the following

sections we will limit the analysis of learned approaches to this direction. However,

extending our approach towards relationship extraction is an interesting avenue of future

work.

7.3 Study of Using Learned Approaches

In the following, we present the results of our study of using learned semantic type

extraction approaches on real-world data. For our study, we selected Sato [113] as a

recent approach based on deep learning.

7.3.1 Data Sets and Methodology

Data Sets:. As a data set in this study, we use the Public BI Benchmark1 data corpus.

The data corpus contains real-world data, extracted from the 46 biggest public workbooks

in Tableau Public2. In this corpus there are 206 tables each with 13 to 401 columns. The

main reason for choosing this corpus for our study was that it contains labeled structured

data from different real-world sources across various domains (e.g., geographic, baseball,

health, railway, taxes, social media, real estate). Hence, the benchmark comes with a

high diversity and heterogeneity of data sources that can typically also be found in data

1https://github.com/bogdanghita/public_bi_benchmark-master_project
2https://public.tableau.com

98

7.3 Study of Using Learned Approaches

0

5

10

15

20

P
e
r
c
e
n

ta
g

e
 F

r
e
q

u
e
n

c
y n
a
m

e

c
o
d
e

ty
p
e

d
e
s
c
ri

p
ti

o
n

y
e
a
r

te
a
m

s
ta

te

c
it

y

te
a
m

N
a
m

e

c
o
u
n
tr

y

g
e
n
d
e
r

a
d
d
re

s
s

c
la

s
s

lo
c
a
ti

o
n

c
a
te

g
o
ry

re
g
io

n

d
u
ra

ti
o
n

d
a
y

c
o
u
n
ty

la
n
g
u
a
g
e

ra
n
g
e

o
p
e
ra

to
r

fo
rm

a
t

o
rg

a
n
is

a
ti

o
n

p
o
s
it

io
n

s
e
x

w
e
ig

h
t

o
w

n
e
r

s
ta

tu
s

ra
n
k
in

g

s
e
rv

ic
e

c
o
ll
e
c
ti

o
n

c
o
n
ti

n
e
n
t

Public BI Benchmark
Sato Trainigs-Corpus

Corpus

Figure 7.1: Distribution of semantic types in training data of Sato and the Public BI
Benchmark

lakes of enterprises today.

Methodology:. As mentioned before, the inherent problem of deep learning-based

approaches for semantic type extraction is that they rely on a representative training

data set. To put it differently, if the training data set does not cover the variety of

cases that are also seen in the real-world data, the performance of the learned models

quickly degrades. As part of our analysis, we wanted to see to which extent this inherent

limitation influences the overall quality of a learned approach such as Sato.

For the study, we thus annotated the data in the Public BI Benchmark manually with

the correct semantic types of Sato. For the annotation, we first preprocessed the data

automatically and searched for string matches between the column headers of the tables

in the Public BI Benchmark and the semantic types supported by Sato. To guarantee the

correctness of labels every column was additionally inspected and missing types where

added manually.

7.3.2 Results of the Study

As a first question, we analyzed the coverage rate of the 78 semantic types supported

by Sato in the Public BI Benchmark to see to which extend a pre-trained model can

support real-world data if no new training data is used for re-training. For this question,

we analyzed what fraction of columns in the Public BI Benchmark had a type that was

covered by the training data set of Sato. The main result of this analysis was that only

10.6% of the columns are assignable to one of the semantic types.

99

7 Towards Learned Metadata Extraction for Data Lakes

As a second question, for the columns of the Public BI Benchmark that have types

which are supported by Sato, we then wanted to see how the distribution of the 78

semantic types in the training data used for Sato and the Public BI Benchmark look

like. The reason is that different distribution of labels in the training and testing data

can have a negative impact on the overall quality of a learned approach. As can be seen

in Figure 7.1, the frequency for many semantic types in both data sets (i.e., original

training data of Sato and the Public BI Benchmark), however, is almost identical.

As a final question, we thus aimed to analyze the 10.6% of the columns in the Public BI

Benchmark that are in principle covered by the training data of Sato. For this, we used

the pre-trained Sato model and applied it to only this fraction of the data of the Public BI

Benchmark. For this subset, Sato achieves an F1 score (macro average and weighted3) of

0.090 and 0.300 respectively, which is also shown in Table 7.1 in our evaluation in Section

7.5. The original paper [113] reports an F1 score of 0.735 and 0.925 on the VizNet4 data

corpus. This indicates that the data characteristics of the supported data types of the

Public BI Benchmark is different from the data characteristics of the training data of

VizNet and thus Sato can not infer types in a robust manner (even if they should be

supported in principle).

Main Insights:. As suspected, our study has shown that a deep model such as Sato

trained on one data set can only cover a fraction of data types of a new data set. Moreover,

for the overlapping data types, the accuracy is still pretty low due to different data

characteristics of the training data and the new data set. While the results of our study

are specific to Sato, we believe that our findings are much more general and translatable

to any learned approach that relies on manually curated training data (which is inherently

limited as discussed before). Hence, a new approach is required where one can easily

adapt learning-based models for type extractors to new data sets that covers types and

data characteristics not covered in the available manually labeled training data. As a

solution for this requirement, we next present our new weak supervision approach in the

next section.

3F1 score macro average: averaging the unweighted mean F1 score per label
F1 score weighted average: averaging the support-weighted mean F1 score per label

4https://github.com/mitmedialab/viznet

100

7.4 Weak Supervision for Semantic Type Extraction

Figure 7.2: Concept and step-by-step procedure of our weak supervision approach

7.4 Weak Supervision for Semantic Type

Extraction

The root cause of why deep learning-based approaches such as Sato often fail to extract

semantic types on a new data set is that the training data lacks generality as discussed

before. The main idea of using weak supervision is to generate a broad set of labeled

training data with only minimal manual effort and thus increase the robustness when

applying a learned approach such as Sato to a new data set. In the following, we discuss

our initial ideas for such an approach and present the first results of our prototype to

showcase its potential.

7.4.1 Overview of Our Approach

Figure 7.2 shows an overview of our approach. The main idea is that based on a set

of simple labeling functions, we generate new (potentially noisy) training data that is

then used to re-train a model such as Sato to increase the coverage of data types and

data characteristics of the learned model. In other words, we apply the ideas of data

programming discussed in [92] for the domain of semantic type extraction.

For generating new training data in our approach, we differentiate between two different

classes of labeling functions: (1) The first class are labeling functions that can generate

labels (i.e., semantic types) for completely new semantic types in a data lake that are

not yet covered by a manually labeled training data set. Labeling functions of this class

can be, for example, regular expressions, dictionary lookups, or other techniques such

101

7 Towards Learned Metadata Extraction for Data Lakes

0.0

0.2

0.4

0.6

0.8

1.0

S
c
o
r
e
s

n
a
m

e

c
o
d
e

ty
p
e

d
e
s
c
ri

p
ti

o
n

y
e
a
r

te
a
m

s
ta

te

c
it

y

te
a
m

N
a
m

e

c
o
u
n
tr

y

g
e
n
d
e
r

a
d
d
re

s
s

c
la

s
s

lo
c
a
ti

o
n

c
a
te

g
o
ry

re
g
io

n

d
u
ra

ti
o
n

d
a
y

c
o
u
n
ty

la
n
g
u
a
g
e

0.0

0.2

0.4

0.6

0.8

1.0

S
c
o
r
e
s

ra
n
g
e

o
p
e
ra

to
r

fo
rm

a
t

o
rg

a
n
is

a
ti

o
n

p
o
s
it

io
n

s
e
x

w
e
ig

h
t

o
w

n
e
r

s
ta

tu
s

ra
n
k
in

g

s
e
rv

ic
e

c
o
ll
e
c
ti

o
n

c
o
n
ti

n
e
n
t

0.0

0.2

0.4

0.6

0.8

1.0

m
ic

ro
 a

v
g

m
a
c
ro

 a
v
g

w
e
ig

h
te

d
 a

v
g

F1-Score
Precision
Recall

Category

Figure 7.3: Performance of clustering semantically similar columns

as using alignment with existing ontologies. (2) Second, as we have seen in our study,

another problem of learned approaches such as Sato is that they often fail to predict

semantic types even if in principle the semantic type is already covered by the training

data. The main reason for this case is that the training data does not cover the wide

spectrum of data characteristics that might appear in a new data set. Hence, as a second

class of labeling functions we support functions that can generate new labeled columns

that cover more data characteristics (e.g., new values) for data types that are already

available in a training data set. One idea for a labeling function of this class is the use of

word embeddings [75] to cluster new unlabeled with already labeled columns and thus

generate new labeled columns for existing semantic types. A more detailed description of

such a labeling function is given below.

7.4.2 Label Generation using Clustering

For generating more labeled training data for an existing semantic type, we implemented

a method based on clustering in our prototype system that we briefly introduced before.

As mentioned, the main idea is that we can start with a small training corpus of labeled

columns and by clustering new non-labeled to the labeled columns, we can derive new

labeled training data.

To implement this labeling approach, we first compute column embeddings for labeled

and unlabeled columns based on word embeddings of individual values. As word em-

102

7.4 Weak Supervision for Semantic Type Extraction

beddings, we currently use Google USE5 that was trained on 16 different languages and

showed good results. But in principle we could also use other word embeddings. Based on

the embeddings of individual values, we compute an embedding for all values of a column

by calculating the average across the embeddings of all values which is the dominant

approach for building representations of multi-words also mentioned in other papers [99].

This approach is reasonable also for us, since string-typed column values in the Public

BI Benchmark are only composed of single values. In general, in the case the column

values themselves consist of a sequence of words, we could also consider word embedding

combining techniques as represented in [63] or [13].

Once we computed an embedding for all values of a column, we next carry out the

clustering of labeled and unlabeled columns based on these embeddings. For this step,

we use a agglomerative clustering algorithm6. In our prototype, we use this clustering

method to not generate a fixed number of clusters, but to form groups based on the cosine

similarity of vectors (i.e., our embeddings) and a distance threshold that we discuss below.

Once clustered, we than compute a semantic type per cluster based on the majority vote

of columns with the same label. [69] represents a system called Raha, which relies on

a similar idea for generating training data but for error detection and not for semantic

type extraction.

A key parameter to be set in our clustering approach is the distance threshold which

can vary between 0.0 and 1.0 (i.e., a lower value means that we produce more clusters).

In our experiments, we used a threshold of 0.1 based on a hyper-parameter search on the

already labeled columns. This threshold provided high accuracy on the broad spectrum

of data sets in the Public BI Benchmark.

Initial Results:. To analyze if the basic idea of clustering is working, we conducted a

small experiment where we measure how well the clustering approach works on the Public

BI Benchmark using our annotations of the 78 Sato types. By clustering, we wanted to

see whether columns with the same type would be assigned to the same cluster. As we

see in Figure 7.3, with a few exceptions, the clustering algorithm achieves high precision.

This means that there is a very high probability that all elements in one cluster belong

to the semantic type representing the specific cluster. For many types, we achieve an

5https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3
6https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering

103

7 Towards Learned Metadata Extraction for Data Lakes

Figure 7.4: Confusion matrix of the clustering method

F1 score of 1.0 such as for the semantic types teamName, position, owner, ranking and

collection.

Moreover, in a second experiment, we wanted to show the robustness of our clustering

approach to different data characteristics. For showing this, we analyzed the entropy

and the jaccard-coefficient for all columns with the same semantic type in the Public BI

Benchmark. The intuition is that columns with a high entropy (i.e., a high degree of

divergence) or pairs of columns which have a low jaccard-coefficient (i.e., where columns

values are not overlapping) are harder to cluster. Overall, our approach assigns column

pairs with the same semantic type to the very same cluster even if they strongly vary in

the entropy or have a low overlap (i.e., a low jaccard-coefficient). Unfortunately, due to

space limitations we could not add further details about this experiment to the paper.

7.4.3 Future Directions

As mentioned before, in this paper we showed only a very first prototype where we

apply the idea of weak supervision for synthesizing labeled training data for semantic

type extraction. In our first prototype, we only covered the labeling approach based on

104

7.5 End-to-End Evaluation

Macro average F1 Precision Recall Support-weighted F1

SHERLOCK (not re-trained) 0.114 0.375 0.309 0.322

SHERLOCK (re-trained) 0.806 0.879 0.859 0.860

SATO (not re-trained) 0.090 0.322 0.304 0.300

SATO (re-trained) 0.811 0.912 0.894 0.894

Table 7.1: Performance comparison of the models on Public BI Benchmark

clustering as discussed before. Hence, the main avenue of future work is to extend this

prototype and add a much broader set of labeling functions.

Furthermore, another direction is to study alternatives for the training data generation

process. Currently, we directly use the potentially noisy training data generated by the

labeling functions for re-training. Another possible direction as shown in [92], would be

to first train a generative model that can learn how to generalize from the additional

training data and thus mitigate the negative effects such as noisy data to a certain extent.

Finally, in the current state, we only consider semantic types whose data values are

strings or types that provide a semantic meaning when converted to a string (such as

weights and dates). The semantic type detection of numeric types such as temperature

require additional labeling functions and therefore represent future research.

7.5 End-to-End Evaluation

In the section before, we have already shown that the basic idea of weak supervision can

help to generate training data by clustering to improve the robustness w.r.t different data

characteristics. In the following, we report on the initial results of using this approach in

an end-to-end evaluation to show how this can boost the performance of learned type

extraction approaches such as Sato.

Setup and Data Preparation:. We implemented our approach for automatic labeling

in Python using the Google USE embeddings as mentioned before. Moreover, for training

and evaluation, we used the source code provided by Sato7. However, Sato is designed

to be built and trained from scratch. Hence, we extended Sato with the appropriate

functionality for incremental re-training.

7https://github.com/megagonlabs/sato/tree/master

105

7 Towards Learned Metadata Extraction for Data Lakes

End-to-End Results:. For showing the end-to-end performance of our approach, we

restricted ourselves to the 10% of the Public BI Benchmark data that is supported by

Sato and its semantic types. For this, we first generated additional training data and then

re-trained the pre-trained Sato model with our additionally labeled data. For generating

additional training data, we used the clustering approach discussed before for the Public

BI Benchmark. For this purpose, we split the Public BI Benchmark into a training and

testing set.

As we see in Table 7.1, after re-training the Sato model with the synthesized training

data of our approach, Sato achieves F1 scores (macro average and weighted) of 0.811

and 0.89 respectively. This is a significant improvement of almost +0.60 compared to

the performance of Sato without re-training. In addition to show that our approach

also generalizes to other learned approaches, we furthermore used Sherlock [50] (without

and with re-training). As shown in Table 7.1, this leads to a similar performance gain.

In summary, these results show that our approach is in principle able to boost the

performance of learning-based approaches that have been pre-trained on only a small

training data set not covering all data characteristics found in a new unlabeled data set.

7.6 Conclusions

Detecting semantic types for columns of data sets stored in data lakes results in an

enormous benefit building a data catalog to address the data discovery problem. While

recent papers have shown initial results for learned approaches that can be used for

extracting semantic types, they cannot support many real-world data sets since they only

support a limited set of semantic data types as we have shown in our study. To tackle

this problem, we suggested a new direction of using weak supervision for generating

additional labeled training data and use this for re-training the existing learned model.

An initial evaluation of our new direction using our current prototype shows that this

approach can lead to huge performance gains.

106

8 SportsTables: A new Corpus for

Semantic Type Detection

Abstract

Table corpora such as VizNet or TURL which contain annotated semantic types per column are

important to build machine learning models for the task of automatic semantic type detection.

However, there is a huge discrepancy between corpora that are used for training and testing since

real-world data lakes contain a huge fraction of numerical data which are not present in existing

corpora. Hence, in this paper, we introduce a new corpus that contains a much higher proportion

of numerical columns than existing corpora. To reflect the distribution in real-world data lakes,

our corpus SportsTables has on average approx. 86% numerical columns, posing new challenges

to existing semantic type detection models which have mainly targeted non-numerical columns

so far. To demonstrate this effect, we show the results of a first study using a state-of-the-art

approach for semantic type detection on our new corpus and demonstrate significant performance

differences in predicting semantic types for textual and numerical data.

Bibliographic Information

The content of this chapter was previously published in the peer-reviewed work Sven Langenecker,

Christoph Sturm, Christian Schalles, and Carsten Binnig. “SportsTables: A new Corpus for

Semantic Type Detection.” In: Datenbanksysteme für Business, Technologie und Web (BTW

2023), 20. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 06.-

10, März 2023, Dresden, Germany, Proceedings. Ed. by Birgitta König-Ries, Stefanie Scherzinger,

Wolfgang Lehner, and Gottfried Vossen. Vol. P-331. LNI. Gesellschaft für Informatik e.V., 2023,

pp. 995–1008. doi: 10.18420/BTW2023-68. url: https://doi.org/10.18420/BTW2023-68.

The contributions of the author of this dissertation are summarized in Chapter 4.

This paper is published under the Creative Commons Attribution 4.0 International (CC-BY

4.0) license. ©2023 Sven Langenecker, Christoph Sturm, Chrisitan Schalles, and Carsten Binnig.

It was published in the Datenbanksysteme für Business, Technologie und Web (BTW 2023),

20. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 06.-10,

März 2023, Dresden, Germany, Proceedings and reformatted for use in this dissertation.

107

8 SportsTables: A new Corpus for Semantic Type Detection

8.1 Introduction

Semantic type detection is important for data lakes. Semantic type detection of

table columns is an important task to exploit the large and constantly changing data

collections residing in data lakes. However, manually annotating tables in data lakes

comes at a high cost. Hence, in the past many approaches have been developed that

automatically derive semantic types from table data [20, 50, 100, 113]. Many of the

recent approaches use deep learning techniques to build semantic type detection models.

As such, corpora containing large amounts of table data with assigned semantic types

are required for training and validating. Existing annotated table corpora (e.g., VizNet,

TURL) primarily contain tables extracted from the web and therefore limit the capability

to represent enterprise data lakes.

Existing corpora and models fall short on real-world data lakes. However, as

we can see in Figure 8.1, almost all existing corpora that provide annotated columns

labeled with semantic types have a lack of table columns that contain numerical data,

and tables in these datasets incorporate either only or a very high percentage of textual

data. Only GitTables [47] contains a more balanced ratio of textual and numerical data.

Nevertheless, compared to real enterprise data lakes, there is a significant discrepancy in

the ratio of textual to numerical data. An inspection of a large real-world data lake at

a company1 has shown that on average approx. 20% textual data and 80% numerical

data are present (see. Figure 8.1 bars on the right). Moreover, semantic type detection

models [20, 50, 100, 113] that are trained on the available corpora also mainly target

non-numerical data.

Semantic type detection for numerical data is challenging. Detecting semantic

types of numerical columns is generally harder than for textual columns. For example,

for a textual column with the values {Germany, USA, Sweden, ...} a model can easily

identify the semantic type country. Instead, for a numeric column with e.g., the values

{20,22,30,34,...} it is not that straightforward and several possibilities for a matching

semantic type exist such as age, temperature, size, money. The fundamental reason here

is that numerical values can be encoded with much fewer bits than string values [98],

resulting in a lower overall entropy and thus providing less information content that can

be used by a machine learning model to infer the underlying semantic type. Due to the

existing corpora providing annotated columns that have been used to create and validate

1The analyses were done at the company LÄPPLE AG

108

8.1 Introduction

Figure 8.1: Average percentage of textual and numerical based columns per table in
existing semantically annotated corpora2 (left bars) compared to real-world
data lakes (right bar). This shows the fact that there is a significant shift in
the ratio of textual to numeric columns per table from existing corpora to real
data lakes. Since all existing semantic type detection models were developed
by using the existing corpora, shortcomings in validating the models on
numerical data are present and it has not yet been studied in depth how well
the models can perform on datasets containing a high proportion of numerical
data.

semantic type detection models, we see several essential shortcomings that could not be

addressed until now because of the absence of a sufficient dataset for this purpose.

Contributions. In this paper, we thus contribute a new corpus containing tables with

semantically annotated columns with numeric and non-numeric columns that reflect the

distribution of real-world data lakes. We will make the corpus available which should

stimulate research directions such as working on new model architectures that can reliably

annotate types to numeric and non-numerical columns. In the following, we discuss the

main contribution of this paper.

As a first contribution, we present and provide our new corpus SportsTables3. To the

best of our knowledge, SportsTables is the first corpus with annotated table columns,

which contains a significantly larger proportion of numerical data than textual data. In

2Notice that for GitTables we only considered the tables and columns labeled by terms from DBpedia
using the semantic annotation method as described in the GitTables paper. Therefore our reported
ratios of textual and numerical data differ from those shown in the GitTables paper because they
consider all data, whether annotated or not.

3Available on https://github.com/DHBWMosbachWI/SportsTables.git

109

8 SportsTables: A new Corpus for Semantic Type Detection

total, the tables in our corpus have on average about 3 textual and 18 numerical columns.

Moreover, the tables in our new corpus are much larger in both the number of columns

and the number of rows than in existing corpora which better reflects the characteristics

of real-world tables.

As a second contribution that comes together with the corpus, we specify an ontology

with semantic types for the sports baseball, basketball, football, hockey, and soccer. This

ontology provides fine granular semantic types for all kinds of sports we considered to

build SportsTables and allows us to semantically describe each occurring table column,

which is not possible with the current ontologies (e.g., DBpedia) at this level of detail.

Using a manually created dictionary, we assign a semantic type to each existing column

in SportsTables.

As a third contribution, we present our initial results of using our new corpus on Sato

[113], a state-of-the-art semantic type detection model. Overall, we can see that when

trained on our new corpora, Sato can improve the performance on numerical data types.

However, one shortcoming that our analysis shows is that current model architectures

are not targeting numerical columns. To be more precise, our analysis demonstrates that

textual data columns are mostly correctly semantically interpreted with Sato (F1-Score of

1.0), but on numerical data columns, the model only achieves an F1-Score of about 0.55.

This large difference indicates that new model architectures that take the characteristics

of numerical columns into account are needed which is a direction that could be stimulated

by the availability of our corpus.

Outline. In Section 2, we first provide an overview of existing corpora which was used

to build and validate semantic type prediction models and discuss their characteristics

and statistics. Afterward, in Section 3, we then introduce our new corpus SportsTables

and describe in detail how we created the corpus and labeled the table columns with

semantic types. Section 4 first demonstrates the main characteristics of our corpus before

we then show the initial results of using our new corpus on Sato. Next, further research

challenges are discussed in Section 5 before Section 6 concludes the paper.

110

8.2 Existing Corpora with Semantic Data Types

Corpus #Table #Total Columns Avg. #Columns per Table Avg. #Rows per Table

VIZNET 78,733 120,609 1.53 18.35
TURL 406,706 654,670 1.61 12.79
SemTab2019 13,765 21,682 1.58 35.61
SemTab2020 131,253 190,494 1.45 9,19
SemTab2021 795 3,072 3.86 874.6
GitTables 1.37M 9.3M 6.82 184.66
SportsTables 1,187 24,838 20.93 246.72

Table 8.1: Corpus statistics about the number and sizes of tables.

8.2 Existing Corpora with Semantic Data Types

In the following, we describe different existing corpora that contain annotated table

columns and therefore can be used to build and validate semantic column type detection

models. We summarized the main statistics for all corpora in Table 8.1.

VizNet [45]. The original VizNet corpus [45] is a collection of data tables from diverse

web sources ([11, 81, 88, 105]) which initially do not contain any semantic label annotation.

The corpus we consider in this paper is a subset of the original VizNet corpus, which was

annotated by a set of mapping rules from column headers to semantic types and then

used to build and validate the Sherlock [50] and Sato[113] prediction model. The corpus

contains in total 78,733 tables and 120,609 columns annotated with 78 unique semantic

types. Overall, the tables in the corpus contain only 1.53 columns and 18.35 rows on

average. Furthermore, the distribution of the column data types is 87.58% textual and

12.42% numerical and thus leads to the shortcomings as described before.

TURL [20]. The TURL corpus uses the WikiTable corpus [9] as basis. To label each

column they refer to the semantic types defined in the Freebase ontology [34] with a total

number of 255 different semantic types. What distinguishes TURL from other corpora

is that columns can have multiple semantic types assigned. In total, there are 406,706

tables resulting in 654,670 columns, and on average a table consists of 1.61 columns

and 12.79 rows. Again, these are rather small dimensions. In addition, the Turl corpus

includes no numerical data at all, which leads to the shortcomings mentioned above when

using the corpora.

SemTab. SemTab is a yearly challenge with the goal of benchmarking systems that

match tabular data to knowledge graphs since 2019. The Challenge includes the tasks

of assigning a semantic type to a column, matching a cell to an entity, and assigning a

111

8 SportsTables: A new Corpus for Semantic Type Detection

property to the relationship between columns. Every year, the challenge provides different

datasets to validate the participating systems against each other. In this paper we ob-

served the provided corpora for the years 2019 [40], 2020 [19, 41], and 2021 [1, 19, 42, 46,

82]. Statistic details of the corpora are shown in Table 8.1. In case more than one dataset

was provided per year, we aggregated the statistics over all datasets included in the chal-

lenge. While SemTab2019 consists of 13,765 tables and 21,682 columns in total, there are

131,253 tables and 190,494 columns in SemTab2020. In both corpora, the dimensions of

the included tables are rather small (on average 1.58 columns and 35.61 rows in 2019 and

1.45 columns and 9.19 rows in 2020). In SemTab2021, the contained tables are the largest

in terms of rows with almost 875 on average. However, the number of columns (3.86 on av-

erage) is only moderate and the corpus in general is the smallest with a total of 795 tables

and 3,072 columns. Numerical data is almost nonexistent in the first two years (0.63% in

2019 / 0.07% in 2020), increasing to 28.24% numeric columns per table on average in

2021, which is still not comparable to the number of numeric data in real world data lakes.

GitTables [47]. GitTables is a large-scale corpus of relational tables created by extract-

ing CSV files from GitHub repositories. Table columns are labeled with semantic types

from Schema.org [35] and DBpedia [6] using two different automated annotation methods

(syntactically/semantically similarity matching from semantic type to column header).

In this paper, we have focused on the annotations origin from DBpedia and the results

of the semantic annotations method as described in the GitTables paper [47]. This leads

to a corpus containing over 1.37M tables and 9.3M columns in total. Although this is by

far the largest collection of data tables, the dimensions of the tables are on average only

moderate with 6.82 columns and 184,66 rows. Overall, GitTables incorporates the most

numeric data with an almost balanced ratio of 53.08% textual and 46.92% numerical

columns per table.

Discussion. The overview in Table 8.1 and the discussion before shows that most

existing corpora contain no or only a minimal fraction of numerical data types which is

very different from real-world data lakes. An exception is GitTables which has a much

higher ratio of numerical columns. However, as we show in Section 8.4, GitTables still

lacks a good coverage of different numeric semantic types which is one important aspect

that we tackle with our new corpus SportsTables which covers a wide variety of different

numerical semantic types. Moreover, another important (but orthogonal) aspect is that

existing corpora include a large number of tables. However, on average the tables are

very small in terms of the number of columns and the number of rows. Instead, our new

112

8.3 The SportsTables Corpus

Figure 8.2: Overview of the implemented pipeline to build SportsTables. We use web-
scraping techniques to extract HTML tables from a manually defined web
page collection for each selected sport and convert the tables to CSV files.
With the help of a defined ontology and a manually created dictionary that
maps column headers to semantic types, we annotate each table column with
an appropriate semantic type.

corpus SportsTables contains fewer tables, but on average a significantly higher number

of columns and rows per table to better reflect the characteristics of real-world data lakes.

8.3 The SportsTables Corpus

In the following, we will introduce our new corpus and describe in detail the implemented

construction pipeline to build SportsTables.

Methodology to generate corpus. Figure 8.2 gives an overview of our implemented

pipeline to generate the new corpus. The main idea was to collect data tables from

different sports domains such as soccer, basketball, baseball, etc. since data tables coming

from such kinds of sources are rich in numerical columns. For example, a soccer player

statistic table of a soccer season contains typically 3 textual columns (e.g.,, player name,

team name, field position) and 18 numerical columns (e.g.,, goals, games played, assists).

Hence, building a collection of such tables will lead to a corpus that contains many

numerical columns which are in addition semantically interpretable. As a result, the

corpus will enable to analyze the performance of semantic type prediction models in a

much more rigorous manner regarding numerical data.

Scraping data from the web [23].A vast amount of data covering information about

player statistics, team statistics, coach statistics, or season rankings of different sports

are available on various web pages. Therefore, for collecting the data, we built a data

113

8 SportsTables: A new Corpus for Semantic Type Detection

Sports #Table #Total Cols #T ext.Cols/T able #Num.Cols/T able #Rows/T able

Baseball 174 3,829 3.97 18.03 76.34
Basketball 180 3,801 1.78 19.34 152.5
Football 303 6,764 2.45 19.88 354.79
Hockey 257 5,347 2.1 18.7 247.15
Soccer 273 5,097 3.9 14.77 297.11

Total 1,187 24,838 2.83 18.1 246.72

Table 8.2: Corpus statistics about the number and size of included tables. Statistics
are shown broken down by individual sports taken into account and in total.
Across all sports, the average number of numeric columns is much higher than
textual columns.

collection pipeline based on web scraping technology[23]. In the first step, we manually

searched and defined a set of different web pages for each of the selected sports of which

we want to scrape contained data tables (left side of Figure 8.2). We first converted

each HTML table on the web pages to Pandas-Dataframes using Python and then saved

them as CSV files (center of Figure 8.2), since this file format is most known and used to

store raw structured data [76]. During the scrape process, we kept the respective column

headers from the original HTML table and used them as headers in the CSV file.

Annotating columns with semantic types. Due to the low granularity of existing

ontologies (e.g., DBpedia) regarding semantics of a given sport, we manually created an

ontology-like set of valid semantic types for all sports. For example, in DBpedia there

is the type Person.Athlete.BasketballPlayer, but semantic labels in the particular that

would match individual numerical columns such as NumberOfGoals are not defined. Next,

we annotated all table columns with semantic types using a manually created dictionary

that maps column headers to matching semantic types from our created set. Since the

column headings were in many cases identical if the semantic content was the same, this

procedure significantly reduces the manual labeling effort. In addition, to ensure that

the labels are of very high quality in terms of correctness, we manually checked each

assignment based on the content of the columns.

8.4 Analysis of the Corpus

This section describes the characteristics of SportsTables in detail and then demonstrates

the significant impact of these characteristics on semantic type prediction frameworks in

a small study where we apply the corpus to an existing type detection model.

114

8.4 Analysis of the Corpus

8.4.1 Corpus Characteristics

In the following. we discuss the statistics of the SportsTables corpus and compare them

to the existing corpora.

Data statistics (Table 8.1&Table 8.2). Using the described pipeline for creating

SportsTables, a total of 1,187 tables which comprises 24,838 columns (approx. 86%

numeric and 14% textual) are scraped from the web resulting in 20.93 columns (2.83

textual and 18.1 numerical) per table on average. This ratio of textual to numerical

columns, as well as the total average number of columns in a table, differs significantly

from existing corpora. To provide details about the contribution of different sports areas

contained in SportsTables, Table 8.2 shows the main statistics by the individual areas of

sports.

Figure 8.3 shows a comparison of the average number of textual and numerical columns

per table of SportsTables versus that of the existing corpora. Here we can see that

numerical columns only exist in the corpora VizNet with 0.33, SemTab2021 with 1.09,

and GitTables with 3.2 columns per Table. Compared to GitTables, in SportsTables

there are thus on average over 6 times more numeric columns per table. Moreover, as

we discuss below, our corpus uses a much richer set of numerical data types that better

reflects the characteristics in real-world data lakes which is very different from GitTables.

For example, when looking at the semantic types that are assigned to numerical columns

in GitTables, more than half (393,925) of the columns are labeled with just a single type Id.

In terms of the total number of columns, the tables in SportsTables (20.93 columns per

table) are on average about 3 times wider than in GitTables (6.82 columns per table),

which contains the widest tables among the existing corpora. As such, the number of

columns in tables of SportsTables are reflecting better the width when comparing this to

the characteristics of the tables in the real-world data lakes which we analyzed. Moreover,

considering the average number of rows per table, it can be seen that the tables in

SportsTables have on average 246.72 rows. In comparison, tables in SportsTables are

larger on overage than in many other corpora where tables have typically fewer rows.

Annotation statistics. Semantic type annotation follows a two step process. First, we

establish a directory with manually defined mappings from column header to semantic

type for each existing header. Second, we label each column with the semantic type

115

8 SportsTables: A new Corpus for Semantic Type Detection

Figure 8.3: Average number of textual and numerical columns per table for each existing
annotated corpora and our new SportsTables corpus. This shows the absence
of numerical data columns per table in most existing corpora and the domi-
nance of textual data columns per table in all existing corpora. Instead, our
new corpus SportsTables contains on average over 6 times more numerical
columns than textual columns.

Figure 8.4: Corpus statistics about the number of unique semantic types included. Show-
ing that our new corpus has a higher proportion of numerical semantic types
than textual semantic types in contrast to the existing corpora. In addition,
there is a large overlap of semantic types used for textual and numeric columns
in the existing corpora. In comparison, the semantic types in SportsTables
are disjoint for the two column data types.

listed in the directory for its header. As a result, 56 textual and 419 numerical semantic

types are present in the corpus. Thereby textual semantic types are those which specify

textual columns and numerical types are those which specify columns containing numeric

values. To compare the annotation statistics, we also counted the number of textual and

numerical semantic types in an analysis of the existing corpora. The results of these

analyses can be seen in Figure 8.4. Different from our corpus, the sets of textual and

numerical types are not disjoint in all other corpora (except TURL where no numeric

values are present). This indicates that individual semantic types were assigned to both

textual and numerical columns which is problematic if semantic type detection models

should be trained and tested on these corpora. In particular, GitTables has a very large

116

8.4 Analysis of the Corpus

(a) Top 20 textual sem. types (b) Top 20 numerical sem. types

Figure 8.5: Semantic type annotation statistics of SportsTables. (a) Shows column
annotation counts of the top 20 textual semantic types. Across all kinds of
sports, player.name and team.name are the most common. (b) Shows column
annotation counts of the top 20 numerical semantic types. A dominant type
here is rank, which describes a column containing the placements of e.g., a
team in a season standings table.

overlap and almost all semantic types are used in both column data types. To give an

example, in GitTables the semantic types comment, name and description are assigned to

both column data types. Next, we take a closer look into the semantic types of our corpus.

Figure 8.5a and Figure 8.5b shows the top 20 semantic types (textual and numerical) in

regards to how often they were assigned to a table column. It can be seen that the most

common textual types across all sports are player.name and team.name. These are types

that occur in almost every table. Other types such as country or city are also common,

describing, for example, the player’s origin or the team’s hometown. Among numeric

semantic types, rank is by far the most common and is present in almost all tables. The

type describes a column containing the placement of e.g.,, a team in a ”seasons standing”

table or a player in a ”top scorer” table. All other numeric semantic types show mainly

an equal distribution of the frequency, which is a good precondition for training machine

learning models. In order to show not only the frequency of the top 20 semantic types,

Figure 8.6 plots all semantic types (separated in textual and numerical) by the frequency

of occurrences. Here we see that 19 textual and 66 numerical semantic types occur only

once in the entire corpus. For the training and testing of prediction models, we would

117

8 SportsTables: A new Corpus for Semantic Type Detection

suggest not considering these types due to the low occurrences.

SportsTables vs. GitTables. Since GitTables is the largest corpus with the most

tables, one could argue that a subset of GitTables would result in a new corpus with

similar characteristics as SportsTables. To analyze this, we executed a small experiment

in which we filtered out only tables from GitTables where the number of textual and

numerical columns (min. 3 textual and 18 numerical columns) is at least the same

as it is in SportsTables. The result was a corpus containing a total of 16,909 tables

and 743,432 columns. On average a table has 12.53 textual columns, 31.43 numerical

columns, and 17.35 rows. However, looking at the semantic types that are assigned to

numerical columns, more than half (393,925) of the columns are labeled with the type

Id. In terms of training and validating semantic type detection models, this is rather

an unfavorable type representing no semantically meaning. Moreover, the next 5 most

common numerically based semantic types are parent, max, comment, created and story

editor, constituting a large proportion of the columns. The assignment of these types

to numerical data is slightly less understandable and indicates a lack of quality in the

automatically generated labels for table columns.

8.4.2 An Initial Study of Using SportsTables

In the following, we report on the initial results of using Sato, a recent semantic type

detection model, on our new corpus. With this, we want to measure how well the semantic

types in our corpus can be inferred by the model with a special focus on how it performs

on textual and numerical columns.

Experiment setup. For the first experiments, we only considered the soccer data from

SportsTables. Thereby, we split the corpus into different sizes of train and test sets (5/95,

10/90, 15/85, 20/80), to show the results of scenarios where the model has less and more

training data available. We use the pre-trained Sato model, which was trained on the

VizNet corpus, and re-trained it with the different training set sizes. During re-training,

we replaced the last layer of Sato to support the number of semantic types that occur in

SportsTables and then re-trained the entire neural network. To measure the performance,

we applied the re-trained model to the corresponding test data set.

Results of study. Figure 8.7 shows the results of the experiments reporting F1-Scores

using the defined different sizes of train and test splits as described before. We plot macro

118

8.5 Further Research Challenges

Figure 8.6: Shows how often semantic
types occur in SportsTables us-
ing buckets of varying widths,
which represents the frequency
of occurrences. For example, 19
textual and 66 numerical types
occur only once in the entire
corpus.

Figure 8.7: Initial results using the Sato
model on our new SportsTables
corpus with different train/test
split sizes. The differences in
F1-Scores for predicting textual
and numeric columns indicate
that the model can handle tex-
tual data more effectively than
numeric data.

and weighted average F1-Score across all semantic types to show the total performance,

but also separate average F1-Score for only textually and numerically based semantic

types, respectively. As we can see in the figure, while Sato can detect numerical types,

there is a significant performance difference between predicting textual and numerical

semantic types for all setups. At the data split 20/80, all textual columns can be

predicted correctly by the model, whereas for numerical columns only an F1-Score of

0.56 is achieved. On average, the difference in F1-Score between textual and numeric

types is 0.41 across all setups. These results indicate that the model is more able to

handle textual data and determine the associated semantic type more accurately than

for numeric data. Across all semantic types, the weighted F1-Score increase from 0.73 to

0.82 while the macro F1-Score range from 0.53 to 0.63, which are rather moderate score

values for semantic type prediction models.

8.5 Further Research Challenges

Detecting semantic types in real-world data lakes comes with many more challenges that

need to be addressed. In particular, based on our findings of the analysis using Sato in

Section 8.4, we think that new model architectures are needed for detecting numerical

119

8 SportsTables: A new Corpus for Semantic Type Detection

data types which have very different characteristics from non-numerical data. In the

following, we list some of the challenges we think are important to be addressed. We

hope that our corpus enables research on those challenges.

Embedding numerical data: Most state-of-the-art models apply language models like

BERT [22] to encode literals to infer the semantic type of a table column. Since such

approaches are optimized for textual data, the performance on numerical data of such

models is not entirely analyzable with the existing corpora.

Leveraging numerical context: To improve the semantic type prediction of a table

column, recent approaches like Sato [113], TURL [20] and Doduo [100] incorporate also

context information like the table-topic or values from neighboring columns of the same

table. Given that tables in existing corpora contain almost entirely textual columns,

the contexts (e.g., values from neighboring columns) used are rich in information and

therefore also lead to performance improvements. However, it is unclear how effective this

approach is in case the tables contain many numerical columns and only a few textual

columns since the context information provided is reduced due to the lower entropy of

numeric values as described before.

Supporting wide tables: Existing datasets for semantic type detection consist of tables

with small numbers of columns and rows. In nearly all corpora, the existing tables contain

on average less than two columns and less than 40 rows (see Table 8.1). Therefore, at the

current state, it has not been analyzed how state-of-the-art models can handle such large

tables. To give an example of why large tables could be a problem for recent models, we

will briefly discuss Doduo[100]. Doduo uses pre-trained language models (e.g.,, BERT)

and hence they have to convert the entire table into token sequences with a fixed tensor

length of 512 elements so that the table and its entries can be meaningfully processed

by the language model. To accomplish this, Doduo serializes the complete table and its

entries as follows: for each table that has n columns T = (ci)
n
i=1, where each column has

Nm column values ci = (vj
i)m

j=1, they let serialize(T) ::= [CLS]v1
1...[CLS]vn

1 ...vn
m[SEP],

where the special token [CLS] marks the beginning of a new table column and [SEP]

the end of a token sequence. With this methodology of serialization and the fixed given

tensor length, increasing the number of table columns means that decreasing number of

values of each column can be included for serialization. For example, a table with 512

columns would allow only one value per column to be considered and this would most

120

8.6 Conclusion

likely result in an insufficient semantic representation of the column based on that one

value.

8.6 Conclusion

Existing corpora for training and validating semantic type detection models mainly

contain tables with only or a very high proportion of textual data columns and no or just

a limited number of numerical data columns. Therefore, it has not been studied precisely

how well state-of-the-art models perform on a dataset with a very high percentage of

numerical columns as it occurs in real-world data lakes. Moreover, tables in existing

corpora are very small regarding the total number of columns and rows. To tackle these

shortcomings, we built a new corpus called SportsTables which contains tables that have

on average approx. 3 textual columns, 18 numerical columns, and 250 rows. With our

new corpus, semantic type detection models for table columns can now be holistically

validated against numerical data. We show initial results by using Sato – a state-of-the-

art model – on our new corpus and report significant differences in the performance of

predicting semantic types of textual data and numerical data. The corpus is available on

https://github.com/DHBWMosbachWI/SportsTables.git. Finally, we think that the

corpus is just a first step to stimulate more research on new model architectures that can

better deal with numerical and non-numerical data types.

121

9 Steered Training Data Generation

for Learned Semantic Type

Detection

Abstract

In this paper, we introduce STEER to adapt learned semantic type extraction approaches to a

new, unseen data lake. STEER provides a data programming framework for semantic labeling

which is used to generate new labeled training data with minimal overhead. At its core, STEER

comes with a novel training data generation procedure called Steered-Labeling that can generate

high quality training data not only for non-numeric but also for numerical columns. With this

generated training data STEER is able to fine-tune existing learned semantic type extraction

models. We evaluate our approach on four different data lakes and show that we can significantly

improve the performance of two different types of learned models across all data lakes.

Bibliographic Information

The content of this chapter was previously published in the peer-reviewed work Sven Langenecker,

Christoph Sturm, Christian Schalles, and Carsten Binnig. “Steered Training Data Generation for

Learned Semantic Type Detection.” In: Proc. ACM Manag. Data 1.2 (2023), 201:1–201:25. doi:

10.1145/3589786. url: https://doi.org/10.1145/3589786. The contributions of the author

of this dissertation are summarized in Chapter 3.

©2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. This is the

author’s version of the work. It is posted here for personal use. Not for redistribution. The

definitive version of the record was published in the SIGMOD ’23: International Conference

on Management of Data, Seattle, WA, USA, June 18 - 23, 2023.

123

9 Steered Training Data Generation for Learned Semantic Type Detection

Figure 9.1: Performance of a learned metadata extraction model (SATO) on seen and
unseen data lakes. The model provides high performance on the data lake
(left) where it is trained for. However, using it on a new data lake with the
same types but different data characteristics (middle/red) or on a data lake
that includes different data types (right/red) is inferior. Hence, we introduce
STEER, a framework to adapt learned semantic type extraction models to
new, unseen data lakes with minimal effort and boost the performance (green).

9.1 Introduction

Data lakes are important. Data lakes are today widely being used in organizations

to manage their data. Different from classical approaches such as data warehouses,

data does not need to be organized and cleaned upfront when data is loaded into the

warehouse [24]. Instead, data lakes follow a more “lazy” approach that allows enterprises

to store any available data in its raw form without transforming and cleaning it in first

place. This raw data is organized and cleaned once it is needed for a downstream task

such as data mining or building machine learning models. However, for efficiently locat-

ing potential relevant data sources in a data lake, approaches for data discovery are needed.

Data discovery in data lakes is a problem. To address the data discovery problem

and to improve the usability of data lakes, data catalogs are typically used. The need for

such data catalogs is evident by the growing number of products available from different

vendors such as Azure Purview [73], AWS Glue Catalog [4], Google Cloud Data Catalog

[33], Alation [3], Collibra [17] and Dremio [25]. An important function of such data

catalogs is to annotate semantic type information on columns of table-like data (e.g.,

CSV files) according to an ontology used in an enterprise. For example, for a data lake

of a news magazine, semantic types such as sports team or sport event are important

124

9.1 Introduction

information that allows a data journalist to identify which relevant sources she requires

for preparing a news article. However, manually annotating data sources in a data lake

with semantic types is a daunting task.

Learned semantic typing to the rescue. As such, in the last years various approaches

for automated semantic type annotation have been proposed. Whereas existing commer-

cial products mainly rely on simple search based solutions such as regular-expressions and

dictionary look ups (e.g. [73, 74]), more recent approaches use machine learning [20, 50,

100, 113]. While initial results of these learned approaches are promising, unfortunately

as we can see in Figure 9.1, a learned approach that was trained for data in one data lake

cannot be used out-of-the-box for new unseen data sources in a different data lake [62]

even if both data sources cover the same semantic types. This aspect is shown in detail

in our short vision paper [62], by demonstrating the performance drop when using the

learned model SATO [113] on the unseen data lake Public BI with the same semantic types.

The need to adopt the learned approaches. The reasons are that the data charac-

teristics in the new (unseen) data lake might be completely different or even worse new

semantic types occur that the model has not seen during training. Hence, the performance

of a learned model might be completely different on the new unseen data lake. In this

paper, we therefore propose STEER1 which implements data programming for semantic

labeling to adapt existing learned models for extracting semantics to unseen data lakes

with minimal cost. As shown in Figure 9.1, STEER can thus not only significantly boost

the performance of models on new unseen data lakes with the same types using SATO

[113] on Public-BI as shown in Figure 9.1 (center) but also helps us to re-train a model

to detect types on a data lake that comes with unseen semantic types as shown by the

TURL-Corpus in Figure 9.1 (right).

Steered training data generation. In this paper we thus present the first label-

ing framework called STEER based on the idea of weak supervision to generate new

labeled training data for a new unseen data lake with numerical and non-numerical

data types. The generated training data of STEER can be used to re-train an existing

learned semantic type detection model. As we show in Figure 9.1 (green bars) using the

training data generated by STEER to re-train Sato can not only lead to a performance

improvement in case we re-train Sato on a data lake with types the model has already

seen (Figure 9.1, middle) but also to train the model on a data lake with unseen types

1https://github.com/DHBWMosbachWI/STEER.git

125

9 Steered Training Data Generation for Learned Semantic Type Detection

Figure 9.2: Overview of STEER. The main idea is that STEER provides a labeling frame-
work that comes with different classes of labeling functions (LFs) for training
data generation. These LFs can be extended and need to be instantiated
by domain experts with minimal overhead, for example, by providing some
examples of labeled columns. Afterwards, STEER creates labels (i.e., pairs
of columns and semantic types) that can be used as training data. STEER
divides the LFs into groups of functions for textual data and functions for
numerical data and implements at the core a novel steered-labeling process
that first labels textual columns and afterwards numerical columns so that
the LFs for numerical data can benefit from the labels generated before. The
steered-labeling process generates high-quality training data with minimal
overhead on a new unseen data lake that can then finally be used to re-train
or fine-tune an existing learned metadata extraction model.

from scratch (Figure 9.1, right).

Contributions of the paper. To be more precise, the main contributions of this

paper are: (1) At the core, to generate labeled training data (i.e., pairs of columns with

data and semantic types), we propose a new label generation process called Steered-

Labeling. The intuition is that in Steered-Labeling we separate the process into two

subsequent steps: STEER first labels the non-numerical columns that are easier to

label. Afterwards, STEER then uses these labels to “steer” the labeling of the numerical

columns. With this, STEER is able to not only generate high quality training data of

textual columns but also to semantically label numerical data with a very high preci-

sion. (2) For labeling textual and non-textual columns, STEER comes with a set of

pre-defined labeling functions (LFs). The base set of pre-defined labeling functions are

the so-called generic labeling functions. These LFs are domain-independent and can be

126

9.2 Overview of STEER

used on any data set. Contrary to this, STEER can also be extended by some more

domain-specific LFs. These LFs rely on the contribution of domain experts’ knowledge

to implement such functions. However, implementing such domain-specific LFs requires

only minimal effort. We discuss some classes of such domain-specific LFs later in the

paper. (3) Finally, as a last contribution we provide an extensive evaluation of STEER

on four different data lakes with different characteristics that in total contain more

than 643, 500 columns. These data lakes vary in the semantic types and cover a wide

spectrum of numerical and non-numerical data types. Moreover, in our evaluation we

also show that our approach can be used across models that implement different learning

approaches. In particular, we use SATO [113] which relies on a classical supervised

training approach and TURL [20] that uses the pre-training/fine-tuning paradigm. The

results of these experiments demonstrate that STEER works for both model architectures.

Overall, each scenario shows that STEER can generate training data that allows a

learned model to provide high performance. Thereby we not only highlight the perfor-

mance of the re-trained end model, but also the quality and quantity of the generated

training data by STEER.

Outline. In Section 9.2 we first give an overview of STEER, its main components

and present the details of our Steered-Labeling. Afterwards, Section 9.3 presents the

details of our implemented LF for numerical data which is integrated into our steered-

labeling approach. Section 9.4 then shows the LFs provided by STEER for labeling

non-numeric columns. Afterwards, in Section 9.5 we then show the results of our extensive

experimental evaluation of STEER in different scenarios. At the end, we discuss related

work in Section 9.6 and Section 9.7 concludes the paper.

9.2 Overview of STEER

STEER implements a novel labeling framework that can generate high quality labeled

data for training semantic type detection models on a new unseen data lake with minimal

overhead.

9.2.1 The Labeling Framework

At the core, STEER provides a labeling framework based on the idea of weak supervi-

sion that comes with different classes of LFs for training data generation. The novel

127

9 Steered Training Data Generation for Learned Semantic Type Detection

aspect of STEER is that it comes with a new training data generation procedure called

Steered-Labeling that can generate high quality training data not only for non-numeric

but also numerical columns that are currently not supported by any of the existing

learned approaches for semantic type detection. Figure 9.2 shows the overview of all

phases in STEER to generate training data for a semantic type detection model.

Overall, the labeling framework of STEER can be divided into three different phases:

(1) Label Function Construction: STEER already comes with a wide spectrum of labeling

functions for numerical and non-numerical semantic types used by STEER. These labeling

functions can be extended by a data engineer to support specific column values or labeling

functions for highly specific data types. (2) Steered Training Data Generation: The

steered training data generation phase is the core of STEER which uses the LFs and

creates training data for non-numerical and numerical data. The idea of the steered-

labeling procedure is that at first STEER labels the non-numerical columns that are

easier to label. Afterwards, STEER uses these labels to “steer” the labeling of the

numerical columns as shown in Figure 9.2 (bottom). The intuition of steering is that

tables with similar semantic types for textual columns, also have similar semantic types

for numerical columns. For example, a table about baseball teams has a column sports

team. If a column sports team is present in a table, then the numerical values of the

table’s numerical columns are more likely to be about height and weight of players and

not about air pressure or other numerical columns. We explain the steered-labeling

procedure in more detail below. (3) Model Adaption: Finally, in the adaption phase

an existing model such as SATO [113] or TURL [20] is adapted to the data lake by

re-training or fine-tuning the model using the previously automatically generated training

data.

9.2.2 Steered-Labeling Procedure

As core contribution of the training data generation in STEER, we introduce a new

steered-labeling method to generate training data for labeling non-numerical (textual)

and numerical columns. However, as we show in our evaluation, labeling numerical

columns with LFs is generally more difficult than textual columns which contain semantic

meaningful values such as names of cities or sports teams. In order to overcome this

inherent problem and provide high precision also for LFs for numerical data, our idea is

that with the Steered-Labeling approach numerical LFs can rely on context data from a

128

9.3 Labeling Numerical Columns

table; i.e. the already labeled textual columns.

To enable a steered labeling, STEER strictly separates the LFs into those for labeling

non-numerical and numerical columns. In a first step, STEER uses the LFs for non-

numerical data to label the subset of columns in the data lake that does not contain

numerical data. Based on these labeled columns, STEER then aims to label the numerical

columns. For this, STEER comes with a labeling function that is generally applicable for

all numerical types.

The idea of this labeling function is that (1) a small fraction of numerical columns that

represent the numerical types in the data lake need to be labeled upfront. Afterwards,

these labeled examples are then used to (2) generate labels for other non-labeled numerical

columns by using a clustering-based labeling function that clusters numerical columns

with similar value distributions. Steering during clustering helps the clustering-based

labeling to group numerical columns from similar tables and thus increase the labeling

quality.

For example, if unlabeled numerical columns of a table that also has a column sports

team should be labeled, steering would prefer tables for the cluster-based labeling that

have a sports team column together with other labeled numerical columns. However,

it is important to note, that steering in STEER is optional; i.e., cluster-based labeling

can also be used without steering which is needed when no other table with the same

semantic non-numerical type exists or tables contain only numerical columns.

In our experiments, we show that our novel steered-labeling process leads to huge

benefits compared to a non steered-labeling process where all LFs are executed in parallel.

To the best of our knowledge, the labeling framework of STEER is the first which uses

such a steered-labeling procedure to semantically label non-numerical and numerical

columns.

9.3 Labeling Numerical Columns

Existing approaches for annotating a type to a numeric column typically compare only the

distributions of the data values from labeled to unlabeled columns using earth mover’s

distance like in [56, 114] or the p-value of statistical hypothesis test like in [80, 91].

129

9 Steered Training Data Generation for Learned Semantic Type Detection

Algorithm 2 LF EMD: The labeling function is based on clustering columns in tables
which share the same context using the the earth mover’s distance as similarity metric
between numerical columns.

1: emd_threshold← precalculated threshold
2: Cln, Tln ← set of labeled numerical cols and their table
3: Cun, Tun ← set of unlabeled numerical cols and their table
4: for All cun in Cun do
5: emd_results = []
6: Clt1 ← set of labeled textual cols of table Tun of cun

7: for All cln in Cln do
8: Clt2 ← set of labeled textual cols of table Tln of cln

9: if length(Clt1 ∩ Clt2) > 1 then
10: emd_results.append(earth_mover_dist(cun, cln))
11: end if
12: end for
13: sort(emd_results)
14: if size(emd_results) > 0 then
15: if emd_results[0] < emd_thresholdcul

then
16: assign semantic type of emd_results[0] to cun

17: end if
18: end if
19: end for

However, these naïve approaches are typically more inaccurate for data lakes since usually

numeric columns have a lower entropy than textual columns and thus have a lower

information content which makes it harder to differentiate numerical columns from one

another2. Therefore the information provided by the value distribution of numerical

columns is too limited and leads to many false annotations if it is the only semantic

typing criterion. In order to overcome this inherent problem and boost the precision of

the semantic type detection our idea is instead to rely on context data from the table (e.g.

information about neighboring columns) which we use to steer the labeling of numerical

columns. In the following, we explain a labeling function that is based on this idea.

9.3.1 Labeling by Context-aware Clustering

The idea of Steered-Labeling is integrated into a labeling function (LF) of STEER that is

based on the idea of context-aware clustering. In order to use this labeling function, a

data engineer has to provide at least one table with a labeled column per semantic type

2Generally numeric values can be encoded with much less bits than string values resulting in lower
overall entropy values [98]

130

9.3 Labeling Numerical Columns

t the LF should create labels for. Afterwards, the labeling function uses the annotated

column that has type t and the table T the column is part of to create other labeled

numerical columns of the same type. Moreover, the labeling function assumes that

columns with textual semantic data types have already been labeled as discussed in

Section 9.2. Labeling functions for textual columns will be described in detail in the next

section.

The pseudocode of the labeling function which labels numerical columns is shown in

Algorithm 2 and works as follows: Given a set of manually labeled numerical columns

Cln (and the tables Tln they are part of), and a set of unlabeled numerical columns Cun

(and the tables Tun they are part of), the labeling function iterates over the unlabeled

columns cun to label them in the respective iteration step (line 4-19). In this iteration

step, the labeling function first retrieves context information about cun; i.e., we retrieve

the semantic types of all non-numerical columns of table Tun (line 6). In the next step,

we iterate over each labeled column cln in Cln. Afterwards, we then retrieve context

information also for cln which is part of table Tln.

In case the two tables — Tun and Tln — share at least one column with the same

semantic type, we compute the earth mover’s distance between cun and cln as a metric

of the similarity of both columns (line 10). As such, we compute the earth mover’s

distance only against labeled numerical columns in tables that share the same context

which improves the accuracy of the labeled training data significantly as we show in

our evaluation in Section 9.5. Each earth mover’s distance measurement to a labeled

numerical column is then stored in a list, which we finally sort in ascending order (line

13); i.e., the most similar labeled column is first.

Once we iterated over all already labeled columns Cln, we assign the one which is

most similar to the unlabeled column cun (line 16). However, we only assign a numeric

data type if the earth mover’s distance value is below a precalculated threshold. The

threshold specifies the minimal measure of similarity that must be given to assign the

same semantic type to the unlabeled column. In the following, we now describe how to

set this threshold automatically for each unlabeled column cul.

131

9 Steered Training Data Generation for Learned Semantic Type Detection

9.3.2 Determining the EMD Threshold

In the LF EMD as shown in Algorithm 2, the values of the two numerical columns are

not normalized before the earth mover’s distance is computed as a similarity measure. A

normalization of the distribution would lead to a loss of information and to many false

matches between labeled and unlabeled columns. Therefore the earth mover’s distance

between the values of the two numerical columns is not normalized.

As a result, the earth mover’s distance values of a comparison between two columns

varies in a value range between [0, MAX_EMD] where MAX_EMD can be arbitrarily

large. As such, setting a fixed threshold value is not possible. Instead, we set a threshold

individually per unlabeled column cul. The intuition is that we find a threshold that

considers the value distributions of the numerical values in that column.

Moreover, determining the threshold correctly is very important. When setting the

threshold too low, we might not assign any numerical type while when setting the value

too high, we might see a lot of false labels. Hence, to set the threshold we first compute

the distribution of earth mover’s distance values across a representative set of pairs of

unlabeled numerical columns. That way, we can decide what a significant difference

between two earth mover’s distance values is and thus also when two columns are similar;

i.e., the difference of the earth mover’s distance value is not significant.

To calculate the threshold for the earth mover’s distance we use the following equation:

emd_thresholdcul
= 0.4 Quantile_EMD ∗ std_cul

where 0.4 Quantile comes from the the distribution of all earth mover’s distance

measurements between labeled columns and unlabeled columns and std is the standard

deviation of the unlabeled column cul that is supposed to be labeled at the moment.

The standard deviation of the unlabeled column gives an indication about the normal

range of values within this column and the underlying semantic type. Therefore, the earth

mover’s distance may be in similar dimensions when compared against a column with

the same semantic type. The quantile of all earth mover’s distance of labeled columns to

unlabeled columns represents which distance is significant. The defined quantile of 0.4

was determined by a hyper-parameter search in our evaluation and is robust not only

across all numerical data types but also across all data lakes we used in our experiments.

132

9.4 Labeling Non-Numeric Columns

9.3.3 Numerical-only Tables

As described above the context-ware LF EMD for labeling numerical data relies on

existing textual semantic types of the neighboring table columns. During computing

the semantic similarity between unlabeled and labeled columns as mentioned before,

two different situations can thus occur, where no context information is available. (1)

Table Tun of the unlabeled numerical column cun contains only numerical columns or no

textual columns are annotated. (2) Table Tln of the labeled column cln contains only

numerical columns or no annotated textual columns and therefore no context information

is available. We address these situations as follows. On (1) we measure the earth mover’s

distance against all labeled columns available without considering any context information.

In case of (2) the earth mover’s distance measure is made against the labeled column

due to the missing context information.

9.4 Labeling Non-Numeric Columns

In our Steered-Labeling framework as discussed in Section 9.2, we show that we first label

non-numerical columns. For this, our labeling framework provides a set of four different

types of LFs for annotating semantic types to non-numerical table-columns. As discussed

before, we separate the LFs in STEER between LFs which are (1) Generic Labeling

Functions that work without any manual adaption of the LF and (2) Domain-Specific

LFs which require adaption of the LFs to the data types of the data lake. These LFs rely

on the contribution of domain experts knowledge by providing some limited number of

example values for a domain-specific data type. Moreover, our framework is in principle

extensible and a data engineer can add own LFs with algorithms that can detect semantic

types of table-columns. In the following, we explain in detail the different LFs for labeling

non-numerical columns.

9.4.1 Generic Labeling Functions

STEER provides two types of generic labeling functions that can be used in a domain

independent manner.

Labeling by Embedding Clustering. The first generic labeling function is one that

relies on embedding clustering EmbClus. Similar to labeling numerical types by cluster-

ing, this labeling function requires that a small set of columns in a data lake is already

133

9 Steered Training Data Generation for Learned Semantic Type Detection

Figure 9.3: Labeling by Embedding Clustering EmbClus. In a first step, embeddings are
computed for all columns. Afterwards, by clustering new labels are generated
using existing labels from already annotated table columns.

annotated with semantic types. This is often the case since data lakes are constantly

growing in size and thus some columns might have a semantic type. However, one could

also use this LF if a domain expert is willing to first label a small (representative) set of

columns in the data lake manually.

The main idea of EmbClus is to use column embeddings to cluster columns with similar

values and thus generate labels for previously unlabeled columns. Figure 9.3 shows the

implemented algorithm and the individual detailed processes. In the first phase, we

compute column embeddings for both labeled and unlabeled table columns based on

word embeddings of individual column values. As word embeddings, we currently use

Google USE3 [111] that was trained on 16 different languages.

In principle we could also use other word embeddings, but multilingual models can

better cover the spectrum of different “custom” semantic types in different enterprise

data lakes. Furthermore, the model is also designed to embed sequences of words (e.g.

sentences) and thus gives us the possibility to embed column values that contain more

than just one word. Based on the embeddings of individual values, we compute an

embedding for all values of a column by calculating the average across the embeddings of

all values which is the dominant approach for building representations of multi-words

also mentioned in other papers [99].

3https://tfhub.dev/google/universal-sentence-encoder-multilingual/3

134

9.4 Labeling Non-Numeric Columns

Once we computed an embedding for all columns, we cluster labeled and unlabeled

columns together based on these embeddings. The intention here is that clusters are

formed with columns that have the same semantic type. For this step, we use the hierar-

chical agglomerative clustering algorithm4. In STEER, we use this class of clustering

method to not generate a fixed number of clusters, but to form groups based on the

cosine similarity of vectors (i.e. our embeddings) and a distance threshold that we discuss

below.

Once clustered, we then compute a semantic type per cluster based on the majority

vote of the labeled columns in that cluster. In the absence of any labeled column in

a cluster, we assign no semantic type to that cluster. A key parameter to be set in

our clustering algorithm is again the distance threshold, where lower values mean that

we produce more clusters. In our experiments, we used a threshold of 0.01 based on a

hyper-parameter search on the already labeled columns. This distance threshold pro-

vided good results on the broad spectrum of datasets in all four observed fictive data lakes.

Labeling by Column Headers (CH). Another generic labeling function is the labeling

by column headers (CH). The main idea of labeling by column headers (CH) is to use the

original column headers as information to derive the semantic type of the column. The

original column headers often represent type information but do not directly represent

semantic types (e.g., a unified ontology of the enterprise) of the data lake catalog. For

generating labels with existing column headers, we again use pre-trained language em-

beddings to embed column headers as well as the semantic types of the given ontology

that should be used for the catalog.

Based on these embeddings, we match them similar to the work in [47]. As similarity

measure between the column header and each semantic type, we use the cosine similarity

of the vectors. Based on the similarity measure, the LF then assigns the semantic type

as label to the column with the highest cosine similarity. Moreover, the cosine similarity

must have a minimum similarity threshold value. In our experiments we use a similarity

threshold of 0.9 based on a hyper-parameter search on the already labeled columns. Since

this LF is based on column headers, it can in general be applied to columns with textual

data as well as to columns containing numerical data.

4https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering

135

9 Steered Training Data Generation for Learned Semantic Type Detection

9.4.2 Domain-Specific Labeling Functions

In this section we now present our implemented LFs of the second category. STEER

provides two types of that LF category which can be specialized by the domain expert to

their own data lake.

Labeling by Value-Overlap (VO). The central concept of Labeling by value-overlap

(VO) is to enable a domain expert to provide a list of common values for a semantic type.

To give an example, a domain expert in the field of American football can provide a list of

typical team names (e.g. [atlanta falcons, new england patriots,...]) for the semantic type

american_football.football_team that occur frequently in table columns. The LF uses this

list to check how many values in an unlabeled column exactly match one of the values in

the provided list. Notice that this is an exact string matching, where we first convert

all strings to lower case and than apply the comparison. If the number of matching

values is over a threshold, the LF assigns the corresponding label to that column. In our

experiments we use a threshold of 20%, which is however a hyperparameter that can be

tuned per data lake.

Labeling by Value-Patterns (VP). The LF Labeling by value-patterns (VP) allows

domain experts to specify a list of general patterns via regular expressions (regex) for

a semantic type. As applied in the previous LF, we use the list of regular expressions

to check how large the fraction of column values is for which a pattern matching was

successful. If this fraction is over a predefined threshold, the column gets the according

type. In our prototype we use a threshold of 20%, which generated high quality training

data for all considered datasets.

9.4.3 Discussion

In STEER, each non-numeric column is labeled by each existing non-numeric LF. There-

fore, after processing all LFs, discrepancies can exist, since one column can get several

different semantic types from different LFs. In this case, STEER combines the labels

from multiple LFs by using a majority vote. We also tried out other strategies such as

using a generative model that is trained on the output of the labeling functions (which is

a strategy suggested in [92]). However, in all our experiments the majority vote provided

superior performance.

136

9.5 Experimental Evaluation

9.5 Experimental Evaluation

In the following, we introduce the four datasets (Public BI & TURL-Corpus & Public BI

Num & SportsDB) and describe the evaluation methodology. Moreover, we use STEER

to re-train two different models for semantic type detection (SATO [113] and TURL [20])

on these data lakes.

9.5.1 Datasets

For evaluating STEER, we use a total of four different real-world data sets with a large

number of different tables as data lakes (see Table 9.1). Overall, we have two data

lakes with only non-numeric semantic types (Public BI and the TURL-corpus) while

we have two data lakes with numeric and non-numeric semantic types (Public BI Num

and SportsDB). We use the data lakes with non-numeric semantic types to compare

against baselines (e.g., a pre-trained SATO or TURL model) that initially do not support

numeric data types. We later on provide more details on the distribution of numeric and

non-numeric data types for the two data lakes for which we annotated numeric types

(see Table 9.2).

Public BI [31]. As first data lake we use the Public BI Benchmark5 data corpus. The

data corpus contains real-world data, extracted from the 47 biggest public workbooks in

Tableau Public6. As no semantic types are available for the Public BI, we annotated the

columns manually with the correct semantic types. For the annotation with semantic

types, we adopted the same semantic types used in SATO [113] which is originally trained

on the VizNet data set. This allows us to evaluate a setup with a data lake that uses the

same semantic types as a already trained model but might use different data distributions

in the respective columns. Overall, out of SATO´s 78 semantic types, only 33 were

present in the Public BI data corpus. All of these data types are non-numeric. For this

dataset, we thus restricted the experiments to these 33 types that are present in the

Public BI data set and also supported by SATO to have a data corpus which represents

a scenario where the semantic types are in principle supported by the pre-trained model.

TURL-Corpus [20]. As a second data lake we use the dataset from TURL [20]. TURL-

Corpus uses the WikiTable corpus [9] as basis. To label each column they refer to the

semantic types defined in the freebase ontology [34] with a total number of 255 different

5https://github.com/bogdanghita/public_bi_benchmark-master_project
6https://public.tableau.com

137

9 Steered Training Data Generation for Learned Semantic Type Detection

semantic types. What distinguishes this dataset from the Public BI corpus is that there

are no matches with learned semantic types supported by the original SATO model. This

means that we have a scenario with TURL-Corpus where the model has to be adapted not

only to the new data characteristics but also to the new semantic types. Moreover, in the

original TURL-Corpus columns can have multiple semantic types. To have a dataset that

fits to our evaluation methodology (i.e., predict only one type per column), we manually

selected the most specific semantic type out of the given semantic type set. To give an

example, if one column has the labels sports.sports_team and soccer.football_team, we

select the second semantic type as valid label because it is more specific.

Public BI Num [31]. To construct a data lake that comes with annotated numeric

semantic types, we again used the Public BI Benchmark as a basis. Contrary to Public

BI, we extended the semantic types by 19 additional numerically based types where

the associated columns contain numeric values. Overall, this leads to a data lake with

a significantly higher number of numerical columns and is therefore more comparable

with real-world data lakes. With this data lake we are not only able to evaluate the

performance of existing semantic typing models on a wide set of numerical semantic types

and data, but also to evaluate our Steered-Labeling approach in depth and show its benefits.

SportsDB. As a fourth data lake we introduce a new corpus named SportsDB, which

also contains a large fraction of numerical columns similar to real-world data lakes. We

constructed this corpus by extracting tables from different websites that publish statistics

about football in recent years. For example, the corpus contains tables about statistics

of football players in which player name, goals, assists, games, etc. are listed. The

extraction resulted in a corpus of 78 tables each containing an average of 3 textual

columns and about 15 numerical columns. For annotating the columns with semantic

types, we formed an ontology containing 18 different semantic terms (3 textual based

types and 15 numerical based types) from the football domain. The assignment of the

defined semantic types to the respective column was done semi-automatically using

column headers and checked manually afterwards. When using this data set, we did not

use the LF of STEER, which labels columns by headers.

9.5.2 Experimental Design

Setup. For the evaluation, the four datasets were split into three parts: labeled, unla-

beled and test. The labeled split represents the set of table columns that we consider

138

9.5 Experimental Evaluation

Table 9.1: Characteristics of the four data sets used as data lakes.

Dataset #Tables Avg #Cols per Table #Types Ontology

Public BI 160 8.96 33 DBPedia
TURL-Corpus 401,538 1.59 105 Freebase
Public BI Num 170 13.64 52 Custom
SportsDB 78 17.83 18 Custom

to be already labeled in the data lake. In the individual experimental setups, we apply

different sizes of labeled data to make the results more comparable and show the impact

of the quantity of already manually labeled data. For this, we decided to have 1 to 5

columns per semantic type already labeled as a starting point in our experiments.

To measure the performance of the different semantic typing models, we used a 20%

split as test data. While creating the split, we first extracted the 20% test data and then

used the remaining 80% to create the labeled and unlabeled set as described above. The

unlabeled data was used as input to our Steered-Labeling framework to generate addi-

tional training data. To obtain statistically reliable results, we ran each experiment with

five different random seeds and report the mean and standard deviation over multiple runs.

Experimental Structure. To demonstrate how well STEER can adapt and improve

existing models to new data lakes, we have divided our evaluation in different use cases.

(1) STEER on Non-Numeric Data. In the first set of experiments, we evaluate STEER

in combination with the existing models SATO and TURL that originally only support

non-numerical semantic types on the Public BI and TURL-Corpus data set. With this

experiment, we also show two scenarios: in the first scenario, we want to show the

model adaption to data lakes which on the one hand contains types already seen by

the model but with different data characteristics (i.e., SATO on Public BI and TURL

on the TURL-Corpus). In the second scenario, we show how well STEER can be used

to train a model on a data lake with new types the model has not seen before (SATO

on TURL-Corpus and TURL on Public BI). Finally, in this set of experiments we

demonstrate with this use case the model independence of STEER by applying it to two

different model architectures and model paradigms (SATO vs. TURL).

139

9 Steered Training Data Generation for Learned Semantic Type Detection

(2) STEER on Numeric Data. We evaluate STEER against data lakes which have a

large proportion of numerical columns and numerically based semantic types (Public BI

Num & SportsDB). Here we show the efficiency of our new Steered-Labeling approach

by comparing a re-trained model with and without training data generated by Steered-

Labeling.

(3) Ablation Study. In an ablation study we discuss and show the efficiency of individual

LFs of our labeling framework and analyze the generated training data.

Baselines. In our experiments, we use several baselines to compare the efficiency of

STEER.

(1) Sato baseline. We use the available learned SATO neural network called Sato

baseline from [113] and applied it to the test data without any fine-tuning by re-training.

With this, we want to see how well the existing model performs in new unseen data lakes

with the same semantic types, similar to what we showed in Figure 9.1. Since only the

Public BI dataset contains semantic types from SATO’s learned model, this baseline is

only used for this dataset.

(2) Sato retrain. As a second baseline we use Sato retrain. The idea is to use the set

of existing labeled data (before applying our LFs) to re-train the SATO model. This

experiment illustrates, the effect of re-training an existing model with a small amount of

manually labeled data. This baseline shows that the small set of existing labeled data

is not sufficient to re-train a learned model and that our labeling framework STEER,

which generates much larger training datasets, can significantly boost the performance.

(3) Turl retrain. As third baseline we use Turl retrain. Same as for Sato retrain, the

manually labeled columns are used to fine-tune the pre-trained TURL model. It shows

that even for the recent trend of pre-train/fine-tune models like TURL, a small existing

set of labeled training data is not enough and the larger training data generated by

STEER can significantly boost the performance.

Our Approach. To show the efficiency of STEER on SATO, we consider the same

amount of manually labeled data to re-train Sato retrain and to fine-tune Turl retrain as

a basis for generating more training data using our approach. Afterwards, we use the

generated training data by our labeling framework to re-train the existing models (SATO

and TURL) with this larger amount of data. The goal of this is to prove how our new

approach and the additional generated training data can boost performance.

140

9.5 Experimental Evaluation

In order to report the benefits of STEER when using the model SATO or TURL, we

fine-tune the pre-trained models with the larger amount of data generated by our labeling

framework and name these model STEER on Sato and STEER on Turl. Finally, the

models are used on the test data split in order to demonstrate the benefits of using our

approach in comparison to Sato retrain and Turl retrain.

9.5.3 STEER on Non-Numerical Data

In the following, we evaluate STEER on the two non-numerical data sets Public BI and

the TURL-corpus.

9.5.3.1 STEER for Unseen Data Lakes

In the first experiment, we compare STEER against the baselines in two scenarios (known

and unknown data types).

Scenario 1: Same Semantic Types. This section reports the overall results of using

STEER in a scenario where the existing model already knows the semantic types of the

new data lake from a previous training. To realize this scenario, SATO is used as model

and the Public BI dataset as data lake.

Figure 9.4a and Figure 9.4b show the results reporting macro and support-weighted

F1-Scores using the defined set-up as described before. First, we see that Sato baseline

achieves only moderate F1-Scores, although the model supports all semantic types in the

data lake. Secondly, as expected, the model Sato retrain, re-trained with the manually

labeled data (but not with the generated training data by STEER), achieves better

scores as Sato baseline. This shows the positive effect of adjusting the model to new data

characteristics by re-training. This effect intensifies with the increasing amount of already

labeled training data per semantic type. With the maximum size of 5 labeled columns per

type, Sato retrain can achieve 0.43/0.57 (macro/support weighted) as average F1-Score.

Compared to Sato retrain, our re-trained model STEER on Sato outperforms the results

by an average of +0.27/+0.24 (macro/weighted) F1-Score for each given size of labeled

data. In total, STEER on Sato achieves an F1-Score of 0.681/0.765 (macro/weighted) and

consequently achieves an improvement of 57.6%/34.2% over Sato retrain and 508%/119%

to Sato baseline. Overall, this evaluation shows that our model STEER on Sato success-

141

9 Steered Training Data Generation for Learned Semantic Type Detection

(a) Public BI (weighted F1) (b) Public BI (macro F1)

Figure 9.4: Results on adapting SATO to the Public BI data lake to evaluate the scenario
where the model is applied to a data lake containing already seen semantic
types by the model. Our model STEER on Sato re-trained with the additional
generated training data using STEER outperforms the baselines in every
set-up.

fully optimized the adaption of the SATO model to the data lake Public BI.

Scenario 2: New Semantic Types. The next experiment is designed to show the

results of STEER in a scenario where the learned model does not support the semantic

types existing in the data lake. Thereby the model has to learn completely new types,

which makes it more difficult to adapt the model because generally it will require a larger

amount of training data. To perform the defined scenario, SATO is used as model and

TURL-Corpus is used as data lake which comes with 105 new semantic data types. For

this, we replaced the last layer of SATO to support 105 instead of the originally 78 types

and initialized it with random weights.

Figure 9.5a and Figure 9.5b shows the results and compare our STEER on Sato model

with the defined baselines. For Sato retrain we can see again that the F1-Scores of

the model continuously improve. However, the gains are more moderate compared to

Public BI. Looking at the results of STEER on Sato, we see a significant performance

improvement in both macro and weighted F1-Scores compared to Sato retrain. We also

see that STEER on Sato is able to constantly increase the model performance when

having more labeled data. In other words, STEER on Sato is capable to efficiently use

the generated additional training data for re-training. Since the dataset is overall more

challenging (e.g., in diversity of values in columns with the same semantic types) and the

142

9.5 Experimental Evaluation

(a) TURL (weighted F1) (b) TURL (macro F1)

Figure 9.5: Results on adapting SATO to the TURL-Corpus data lake to evaluate the
scenario where the model is applied to a data lake containing completely
new semantic types the model not seen before. STEER on Sato, which
was re-trained with the generated training data of STEER, outperforms the
baseline over all labeled data sizes.

model has to learn new semantic types, the F1 values are slightly lower overall than on

Public BI. At labeled data size 5, STEER on Turl achieves best F1-Scores of 0.29/0.38.

Note that the F1-scores in our paper are lower than in the original paper [20] since they

use multiple correct data types per column (which makes it easier for the model to at

least predict one of them) and they use a large amount of manually labeled training

data (i.e., 628,254 columns with manually annotated semantic labels) to fine-tune TURL,

which we think is not realistic.

9.5.3.2 Model Independence of STEER

The main goal of the following experiment is to show that STEER also can adapt and

improve models with different architectures and paradigms. For this study, we addition-

ally use TURL as model that is based on the idea of representation learning and is thus

already pre-trained across a large corpus of tables. For the comparison of our approach

STEER on Turl with the baseline Turl retrain, both non-numerical datasets (Public BI

& TURL-Corpus) are used.

Figure 9.6a and Figure 9.6b show the results of the experiments by plotting the

weighted F1-Scores separately for the two datasets. We also add the results from the

previous experiment with SATO as model to see the differences of the two models on

143

9 Steered Training Data Generation for Learned Semantic Type Detection

both data lakes.

As a first aspect of the results, we can see that our model STEER on Turl is sig-

nificantly better than the baseline Turl retrain in both datasets and across all labeled

data sizes. Considering Figure 9.6a, STEER can achieve an improvement of +0.13 as

average F1-Score over the labeled data sizes. In the experiments using TURL-Corpus,

we achieve an average improvement of +0.25 F1-Score. This demonstrates that even

for pre-trained/fine-tuned models, STEER can improve the performance with the addi-

tional generated training data during the fine-tuning. That is especially remarkable, as

it is assumed that pre-trained models need fewer training data samples during fine-tuning.

Furthermore, despite the fact that the model was pre-trained on the TURL-Corpus,

fine-tuning the model with the additional training data provided by STEER leads to

performance gains. In total, STEER on Turl achieves the best F1-Scores at labeled data

size 5 of 0.47 on Public BI and 0.447 on TURL-Corpus. It is important to note, that we

performed another test on the Public BI corpus with the maximum training data size of

80%, which results in a model that achieves a performance of 0.56 weighted F1-Score.

Compared to the score values of STEER on Turl, the gap to this theoretical maximum

reachable score is remarkable.

An additional interesting detail of the experiment results is the comparison between

SATO and TURL model on both data lakes. Note that when using Public BI, SATO

already knows the semantic types (Scenario 1), while TURL has not seen the data at

all. This fact is exactly vice versa when using TURL-Corpus. The TURL model has

already seen the data during pre-training whereas SATO has not seen the data and has

to learn new types (Scenario 2). When comparing STEER on Sato to STEER on Turl

with Public BI as data lake, we can see in Figure 9.6a that STEER on Sato achieves a

much higher F1-Score than STEER on Turl. Even Sato retrain retrained with a much

smaller amount of training data is better than STEER on Turl, which mainly shows

the advantage of having a model pre-trained on the data. Consider the results on the

TURL-Corpus demonstrated in Figure 9.6b, we can also see this advantage but this time

for TURL; i.e., STEER on Turl achieves better results than STEER on Sato.

7[20] applied TURL model on TURL-Corpus and reported 0.9475 as F1-Score. This was achieved in the
paper by fine-tune the model with 80% training data. Notice that in our set-up we fine-tune TURL
only with about 14.5% training data, leading to the large discrepancies between the two reported
F1-Scores.

144

9.5 Experimental Evaluation

(a) Public BI (weighted F1) (b) TURL (weighted F1)

Figure 9.6: Results on adapting TURL model to the Public BI and the TURL-Corpus to
show that even for pre-trained/fine-tuned models, STEER and its generated
training data lead to performance gains. We added the results of SATO from
the previous experiment for comparison.

9.5.4 STEER on Numerical Data

Real-world data lakes often contain a significant amount of numerical columns. This

fact is also shown in Table 9.2 which shows the distribution of numeric and no-numeric

columns in our two corpora where we annotated numeric types. As mentioned above,

extracting semantic types from numeric values is more challenging because of the very

low entropy. In order to generate training data with STEER for numeric columns with

a high quality, we have implemented our Steered-Labeling approach as described in

Section 9.2. The experiments in this section evaluate STEER the two data lakes that

contain numerical columns.

9.5.4.1 Efficiency of Steered-Labeling

In the following experiments we use Public BI Num and SportsDB as data lake and

SATO as existing model. Like before we compare the results with the baseline Sato

retrain, which is the model re-trained with a small amount of training data coming from

the data split and the described different labeled data sizes. To show the benefits of

our Steered-Labeling approach we introduce another baseline STEER on Sato no steer ,

which is the model re-trained with training data generated without the usage of our

Steered-Labeling approach; i.e., we do not label textual and numeric labeling sequentially

but we instead use the textual LFs also for numeric data. By contrast, the model

145

9 Steered Training Data Generation for Learned Semantic Type Detection

Table 9.2: Average textual and numerical columns in real world tables, showing the aspect
that such tables have a high proportion of columns containing numerical values.

Corpus Domain #Avg. Textual Cols #Avg. Numerical Cols

Public BI Num Sport 6.4 48.5
Public BI Num Medicare 14.7 13.0
Public BI Num Real Estate 14.2 22.4
Public BI Num Government 34.0 22.0
Public BI Num Geography 24.2 9.0
SportsDB Football 3.0 14.83

STEER on Sato is retrained with training data generated by Steered-Labeling and thus

demonstrates the gains of our new approach.

Figure 9.7 shows the results of the different models Sato retrain, STEER on Sato and

STEER on Sato no steer on the Public BI Num dataset. Due to the use of Steered-

Labeling STEER on Sato outperforms both baselines in macro and weighted F1-Score

on all manually labeled data sizes. Compared with STEER on Sato no steer , the score

values confirm that Steered-Labeling increases the quality of the generated training data

and finally leads to a better end model. At labeled data size 5, STEER on Sato reaches

best scores with 0.496/0.537 F1-Score. Considering the score values of STEER on Sato

on Public BI, which contains the same textual data but not the number of numerical

data, we see a drop of -0.184/-0.228 F1-Score. In addition, the results show an almost

identical performance of the models Sato retrain and STEER on Sato no steer .

On Figure 9.8 we demonstrate the macro and weighted F1-Scores on the SportsDB

corpus. The results show that our model STEER on Sato with Steered-Labeling outscores

the baselines on every labeled data size. At best, STEER on Sato reaches 0.77/0.87

F1-Score resulting in an increase of +0.167/+0.155 in comparison to STEER on Sato no

steer . Overall, these results also show that the Steered-Labeling method has significant

advantages in generating the training data than without Steered-Labeling. One additional

detail to be mentioned in the results is the comparison in the set-up with a labeled data

size 1 (amount of existing labeled data). Here STEER on Sato outperforms Sato retrain

by +0.632/+0.705 F1-Score, demonstrating that STEER can generate a large amount of

good training data with a small amount of already labeled data as a basis.

146

9.5 Experimental Evaluation

(a) Public BI Num (weighted F1) (b) Public BI Num (macro F1)

Figure 9.7: Results on adapting SATO to the Public BI Num data lake using our Steered-
Labeling generated training data. In addition to the comparison of Sato retrain
(baseline trained with initial already labeled data available) we compare also
to a model which was built with generated training data without the usage
of Steered-Labeling.

(a) SportsDB (weighted F1) (b) SportsDB (macro F1)

Figure 9.8: Results on adapting SATO to the SportsDB data lake using training data
generated by Steered-Labeling. In addition to the comparison of Sato retrain
(baseline trained with initial already labeled data available) we compare also
to a model which was built with generated training data without the usage
of Steered-Labeling.

147

9 Steered Training Data Generation for Learned Semantic Type Detection

Table 9.3: Runtime gains on Public BI Num using context informations from the Steered-
Labeling process for preselecting relevant columns for the LF EMD

Labeled Columns per Data Type Reduction of Labeling Runtime

1 25.5%
2 34.5%
3 39.2%
4 44.9%
5 49.6%

Discussion. In a more detailed analysis (not included in this paper), we observed that

the numerically semantic types are poorly predicted by STEER on Sato, even though

the generated training data quality is quite adequate (see Figure 9.10c). In the future,

we thus plan to work on model architectures that are more tailored towards detecting

numerical data types.

9.5.4.2 Optimization for Steering

As described in Section 9.2.2, STEER strictly separates the LFs into those for labeling

non-numerical and numerical columns to execute first the non-numerical and then the

numerical LFs. The main idea behind Steered-Labeling is that based on the generated

labels in step one, the numerical LFs can benefit from this additional information during

the labeling. In the previous experiment, we demonstrated the accuracy gains (reported

by F1-Scores) in the adapted end model by re-trained one model with (STEER on Sato)

and another model (STEER on Sato no steer) without steered generated training data.

However, Steered-Labeling does not only lead to more accurately generated training data

but we can also use the context to reduce the runtime of the overall labeling process in

step 2 as described in Section 9.3. To show these possible runtime gains from steering, we

conducted an experiment in which our LF EMD is executed in two different modes: (1)

without the preselection of contextually similar numerical labeled columns and (2) with

a selection. To be more precise in (1) the LF measures the similarity against all labeled

numerical columns available and in (2) only against those ones which are embedded in

the same context (table with semantic equally neighbored textual columns). Table 9.3

shows the results of these experiments by listing the runtime reduction that could be

achieved per labeled data size. The reduction goes from about 25% (labeled data size

1) to almost 50% (labeled data size 5), demonstrating the higher the number of labeled

data the higher the percentage of runtime reduction.

148

9.5 Experimental Evaluation

(a) Quality of generated training data per LF class

(b) Quantity of generated training data per LF class

Figure 9.9: Quality and quantity of generated training data for each class of LFs. (a)
Each LF of STEER (non-numerical as well as numerical) creates high-quality
training data. (b) Moreover, each LF contributes to the amount of generated
training data. However, the number of generated training samples (columns
and their semantic type) varies per data set and LF.

9.5.5 Ablation Study

In the ablation study, we analyze the quality and quantity of generated training data for

each class of LFs.

9.5.5.1 Efficiency of the LFs

To evaluate the contribution of each LF to the total amount of training data generated,

we analyzed the generated training data per LF separately in an ablation study. The

results per LF are shown in Figure 9.9 while Figure 9.9a shows the quality (weighted preci-

149

9 Steered Training Data Generation for Learned Semantic Type Detection

sion) and Figure 9.9b the quantity (number of labeled columns) for all datasets separately.

LF EmbClus. For the LF EmbClus we plot the results for the labeled data sizes 1 & 5

showing the aspect that the larger the number of already labeled data, the more new

unlabeled data can be labeled with additional small quality improvement. This is due

to the fact that more labeled data is included in the clustering and thus the labeling

process is extended and improved. At labeled data size of 5, the LF produces 529 (96%

of the total gen. train. data) for Public BI, 4.902 (6.4% of the total gen. train. data) for

Turl-Corpus and 529 (16.5% of the total gen. train. data) for SportsDB. If we look at

the quality of the generated training data, we achieve an average precision of 0.94 for the

datasets Public BI & TURL-Corpus and a perfect result of 1.0 for SportsDB. Notice that

for this LF we do not list results for Pubic BI Num, because the same textual columns

are included as in Public BI and therefore the results are the same. In summary, this

demonstrates that this LF generates high quality labeled training data to adapt the model.

LF CH (column-headers). Focusing now on the LF CH, the quality of the generated

training data for Public BI is overall high. Since the precision is at the score of 1 each

label assigned by the LF to the 197 unlabeled columns is correct. For Turl-Corpus, the

LF produces over 65% of all additional training data generated. The precision is also

high at 0.73. The reason in comparison to the quality on Public BI is that frequently

occurring types are mislabeled. For example, for the semantic types music.album &

music.artist the LF generates over 5.000 new labeled columns with a precision over 0.94,

but for the types music.genre & music.composition just 80 with a precision below 0.2

since column headers are too general. In conclusion, this LF works (almost) perfectly

for the Public BI corpus and the model can benefit from the new training data when

re-training. However, also for the TURL-Corpus, which is more complex, we can generate

a good number of high-quality labels; i.e., only a small amount of training data with low

quality is generated for semantic types (macro score), which may be also improved or

resolved when merging the outcomes of the different LFs.8

LF VO (value-overlap). As described in Section 9.4, for the class of LF VO, a domain

expert can provide a list of common values to a semantic type, which is then used by the

LF to generate the training data. In our current prototype version, we provide such a list

for two selected semantic types for the Public BI data corpus and 11 semantic types for

the Turl-Corpus. As an example, for the Public BI semantic type language, we provide

8Notice that we do not implement LFs of this class for the Public BI Num & SportsDB datasets.

150

9.5 Experimental Evaluation

a list with the values {de, en, fr, es, ...}. In case of the Turl-Corpus semantic type

film.flim_genre, the domain expert defines the common values {crime, horror, romance,

action, ...}. For each selected type, a LF of this class is instantiated and executed on

its own. In order to show the precision and the number of generated training data, we

have averaged the precision values and summed up the number of generated training

data over the individual outcomes per semantic type. For both Public BI types the LFs

generate in total 40 new labeled columns with a precision of 0.79. In addition, we can

see that for the semantic types belonging to the Turl-Corpus, we can achieve an average

precision of 0.66 and generate over 12.000 new labeled columns. To give an insight into

one of the best LFs here, the LF for soccer.football_team can label 7.238 columns with a

precision of 0.98 by providing a short list of the most famous football teams.9

LF VP (value-pattern). Similar to the previously discussed LF, even in this case

the user provides a list of patterns in form of regular expressions that are then used in

the labeling process. In our current implementation, we defined such patterns for two

Public BI types and eight Turl-Corpus types. To give an example, for the semantic type

award.award_category, we define the list of patterns as follows {best*, worst*}. Meaning

that all values starting with best or worst are counted as a pattern match. In case of the

Public BI dataset, the type specific LFs can label 50 unlabeled columns with an overall

precision of 0.66. If we analyze the LFs for Turl-Corpus, we create almost 1.800 new

labeled columns with a slightly higher precision of 0.75. In this class of LF the pattern

definitions are very important. The defined patterns should not be under-generalized (e.g.

resulting in too infrequent matches and therefore the columns related to the semantic

type are not found) and also not be over-generalized (e.g. resulting in too many matches

for columns that actually do not belong to the semantic type) [43].

LF EMD. For the numerical LF EMD we plot the results for the labeled data sizes 1 &

5. The figure shows the precision and the number of generated training data for Public

BI Num and SportsDB, since these are the only datasets that contains numerical columns

and therefore Steered-Labeling with the LF EMD was applied. Looking at the weighted

precision of the generated training data, we can see a constant value of 0.97 on Public BI

Num, whereas on SportsDB there is an increase from 0.86 to 0.95. This improvement

comes from the fact that the LF benefits from a higher amount of existing already labeled

columns because more similarity measurements can be made from unlabeled to labeled

numerical column and thus the precision of matches increases. Overall the precision

9Notice that we do not implement LFs of this class for the Public BI Num & SportsDB datasets.

151

9 Steered Training Data Generation for Learned Semantic Type Detection

values on both datasets demonstrates that the LF EMD extracts training data with a

very high quality. Looking at the number of generated training data we see on Public BI

Num values from 76 to 529 and on SportsDB values from 529 to 727 over the labeled

data sizes 1 to 5. This increase comes for the same reason as just mentioned. The higher

the amount of already labeled data the higher the probability to find a semantic match.

Overall these results demonstrate that the LF EMD can annotate unlabeled numerical

data in a good manner and therefore make a high contribution to the generated training

data that can be used to adapt a model to a data lake containing high numbers of

numerical data.

Summary. The quantity and quality of the generated training data are high for all

used fictive data lakes. Consequently, as we have seen in the experiment before, the new

training data can lead to a significant improvement of a learned metadata annotation

model after re-training.

9.5.5.2 Analyze Generated Training Data

To better understand the gains of STEER, we now analyze the overall generated training

data which was aggregated across the LFs by applying the majority vote. The aggregated

training data represents the generated training data of STEER that we use for re-training

the models. As in the previous section, we focus on two aspects for the analysis: quality

and quantity of the generated training data to show that a significant amount of data is

generated which provides high-quality (i.e. correct) labels.

The results of this analysis for all data sets are shown in Figure 9.10. Since only Public

BI Num and SportsDB are containing labeled numerical data columns, Steered-Labeling

training data generation is only applied to these datasets. To report the quality of the

generated training data, we plot the macro and support weighted precision (i.e., the

fraction for which the LFs assign the correct type). For showing the quantity, we plot the

number of table columns, which receive a label from the labeling framework and thereby

resulting as additional training data in percentage to the total amount of unlabeled

columns available.

Overall, we can see that for the datasets Public BI, Public BI Num and SportsDB the

generated training data achieves very high weighted precision values of more than 0.9.

With SportsDB, we even reach a quality of 0.93/0.96 (macro/weighted). Looking at the

152

9.6 Related Work

generated training data quality of TURL-Corpus, we see lower but still good precisions

of 0.6/0.75, which also leads to benefits when it is used as additional training data as

shown before (see Figure 9.5). Considering the amount of the generated training data,

we achieve the highest value on SportsDB of up to 80% of the available unlabeled data

while for TURL-Corpus we only label about 15%. It is important to note, however,

that the TURL-Corpus is significantly larger than all other corpora and in absolute

quantity we generate the largest corpus of additional training data with STEER on the

TURL-Corpus.

9.6 Related Work

Data Programming. Our work is related to data programming which also uses label-

ing functions for training data generation. Existing approaches for data programming

can be split into two directions. Weak Supervision Approaches (e.g. [27], [92], [93])

establish and use user-defined LFs that implement individual heuristics to assign labels

to an entity. Typically several LFs are combined to produce the final result. Assisted

Data Programming Approaches (e.g. [71], [79]) help the user to define labeling rules

or functions by interactively guide them through the creation process (see [21] for a

comparison of the different approaches). Some can even automatically define LFs as in

WITAN [21] or Snuba [104]. However, all data programming approaches with a focus on

labeling records in general, missing the possibility to adapt them to the special labeling

problem of table columns. As such, to the best of our knowledge there exists no data

programming approach that supports a multi stage labeling process, as introduced by

STEER for high quality LFs on numerical semantic types except some early proposals

[48] that are in an initial (vision) status (i.e., neither code and results are published).

Semantic Type Detection. Several approaches exist for semantic type detection.

Traditional approaches rely on the metadata provided by the data sources (e.g. [37],

[73], [4]). These approaches fail if column metadata information is missing or if the

information is of poor quality as it is often the case in data lakes.

Search-based Approaches. Search based solutions overcome these shortcomings as they use

the content of the column as information source. They often rely on regular-expressions

and dictionary lookup (e.g. [73, 74]). Auto-Tag [43] provides advanced techniques to

develop and adopt the search rules using a combination of automatic labeling for standard

153

9 Steered Training Data Generation for Learned Semantic Type Detection

(a) Public BI (b) Turl

(c) Public BI Num (STEER) (d) SportsDB (STEER)

Figure 9.10: Quality (blue) and quantity (orange) of generated training data. Quality
is reported with macro and weighted precision. Quantity is shown as the
number of additional generated training data in percentage to the total
amount of unlabeled columns available.

154

9.6 Related Work

types (e.g. IP-Address, Zip Code), and labeling by example approach for custom types

(Customer ID, Part ID). These approaches are especially good in adapting to new datasets

but often fail to provide a generic solution for the problem.

Machine Learning Approaches. Machine learning (ML) based approaches focus on the

content of the columns but may take given metadata into account. Semantic Typer [91]

uses TF-IDF and value distribution comparisons to capture column characteristics and

map them to a semantic label. DCoM [70] is based on NLP techniques, treating the

content of the columns as text to train a model for semantic type prediction. Doduo [100]

extends this concept, by serializing the table and column content that is used afterwards

as input for a general pre-trained language model. For the finetuning step a output

layer is attached to the language model and the whole model is fine-tuned for semantic

type prediction with labeled table columns. Turl [20] follows the pre-training/fine-tuning

paradigm and relies on a multi-label setting. Pre-training uses unlabeled tables and both

Masked Language Model and Masked Entity Recovery to learn embedding representations

of these tables. For semantic type labeling, a labeled training set is needed to learn the

semantic type to embedding representation mapping. Other pre-trained models such as

TUTA [107], TABERT [112] and TAPAS[44] have developed alternative table encoders

that perceive the structural and positional information but were not adapted to semantic

type prediction. Sherlock [50] and its successor SATO [113] generate several features

from the individual column values to train a deep neural network for semantic type

detection. SATO also uses context information, notably the semantic type of the other

columns of a table, to enhance the prediction performance. All ML approaches need

labeled training data to create their model, that might not be available on a data lake.

After model creation the amount of supported semantic data types is fixed, which limits

their extensibility and causes problems (covariate-shift, label-shift, out-of-distribution

data) when applied to new data as categorized by [48].

First approaches trying to overcome the lack of generality of ML approaches are ColNet

[15] and SigmaTyper [48]. ColNet uses deep neural networks in combination with a

given knowledge base (KB). The KB is used to generate labeled sample data to train the

model. The semantic type prediction is done by an ensemble method that combines the

prediction of the model and the vote of the KB. SigmaTyper suggests a data programming

by demonstration approach, inferring labeling functions that adopt the ML model to a

domain specific setting. ColNet is only evaluated on a small dataset and SigmaTyper has

not published any evaluation results, preventing a final assessment of these approaches.

155

9 Steered Training Data Generation for Learned Semantic Type Detection

9.7 Conclusions

Detecting semantic types for columns of datasets stored in data lakes results in an

enormous benefit building a data catalog to address the data discovery problem. While

recent papers have shown initial results for learned approaches that can be used for

extracting semantic types, they require high overhead for training data generation to

adapt them to new data lakes which come with new semantic data types and do not cover

the wide spectrum of different data characteristics. To tackle this problem, we suggested

our new solution STEER and the underlying Steered-Labeling for generating new labeled

training data and use this for re-training the existing model. Evaluations of STEER on

four different datasets show that our approach leads to huge performance gains.

156

10 SportsTables: A new Corpus for

Semantic Type Detection

(Extended Version)

Abstract

Table corpora such as VizNet or TURL which contain annotated semantic types per column are

important to build machine learning models for the task of automatic semantic type detection.

However, there is a huge discrepancy between corpora and real-world data lakes since they contain

a huge fraction of numerical data which are not present in existing corpora. Hence, in this paper,

we introduce a new corpus that contains a much higher proportion of numerical columns than

existing corpora. To reflect the distribution in real-world data lakes, our corpus SportsTables

has on average approx. 86% numerical columns, posing new challenges to existing semantic type

detection models which have mainly targeted non-numerical columns so far. To demonstrate this

effect, we show in this extended version paper of [59] the results of an extensive study using four

different state-of-the-art approaches for semantic type detection on our new corpus. Overall, the

results demonstrate significant performance differences in predicting semantic types for textual

and numerical data.

Bibliographic Information

The content of this chapter was previously published in the peer-reviewed work Sven Langenecker,

Christoph Sturm, Christian Schalles, and Carsten Binnig. “SportsTables: A New Corpus for

Semantic Type Detection (Extended Version).” In: Datenbank-Spektrum 23.2 (2023). doi:

10.1007/s13222-023-00457-y. url: https://doi.org/10.1007/s13222-023-00457-y. The

contributions of the author of this dissertation are summarized in Chapter 4.

This paper is published under the Creative Commons Attribution 4.0 International (CC-BY

4.0) license. ©2023 Sven Langenecker, Christoph Sturm, Chrisitan Schalles, and Carsten Binnig.

It was published in the Datenbank-Spektrum 2023 Volume 23.2 and reformatted for use in this

dissertation.

157

10 SportsTables: A new Corpus for Semantic Type Detection (Extended Version)

Figure 10.1: Average percentage of textual and numerical based columns per table in
existing semantically annotated corpora1 (left bars) compared to real-world
data lakes (right bar). This shows the fact that there is a significant shift in
the ratio of textual to numeric columns per table from existing corpora to real
data lakes. Since all existing semantic type detection models were developed
by using the existing corpora, shortcomings in validating the models on
numerical data are present and it has not yet been studied in depth how
well the models can perform on datasets containing a high proportion of
numerical data.

10.1 Introduction

Semantic type detection is important for data lakes. Semantic type detection of

table columns is an important task to exploit the large and constantly changing data

collections residing in data lakes. However, manually annotating tables in data lakes

comes at a high cost. Hence, in the past a lot of approaches have been developed that

automatically derive semantic types from table data [20, 50, 100, 113]. Many of the

recent approaches use deep learning techniques to build semantic type detection models.

As such, corpora containing large amounts of table data with assigned semantic types

are required for training and validating. Existing annotated table corpora (e.g. VizNet,

TURL) primarily contain tables extracted from the web and therefore limit the capability

to represent enterprise data lakes.

Existing corpora and models fall short on real-world data lakes. However, as

we can see in Figure 10.1, almost all existing corpora that provide annotated columns

labeled with semantic types have a lack of table columns that contain numerical data,

and tables in these datasets incorporate either only for a very high percentage of textual

data. Only GitTables[47] contains a more balanced ratio of textual and numerical data.

Nevertheless, compared to real enterprise data lakes, there is a significant discrepancy in

the ratio of textual to numerical data. An inspection of a large real-world data lake at

a company2 has shown that on average approx. 20% textual data and 80% numerical

158

10.1 Introduction

data are present (see. Figure 10.1 bars on the right). Moreover, semantic type detection

models [20, 50, 100, 113] that are trained on the available corpora also mainly target

non-numerical data.

Semantic type detection for numerical data is challenging. Detecting semantic

types of numerical columns is generally harder than for textual columns. For example,

for a textual column with the values {Germany, USA, Sweden, ...} a model can easily

identify the semantic type country. Instead, for a numeric column with e.g. the values

{20,22,30,34,...} it is not that straightforward and several possibilities for a matching

semantic type exist such as age, temperature, size, money. The fundamental reason here

is that numerical values can be encoded with much fewer bits than string values [98],

resulting in a lower overall entropy and thus providing less information content that can

be used by a machine learning model to infer the underlying semantic type. Due to the

existing corpora providing annotated columns that have been used to create and validate

semantic type detection models, we see several essential shortcomings that could not be

addressed until now because of the absence of a sufficient dataset for this purpose.

Contributions. In this paper, we thus contribute a new corpus containing tables with

semantically annotated columns with numeric and non-numeric columns that reflect the

distribution of real-world data lakes. We will make the corpus available which should

stimulate research directions such as working on new model architectures that can reliably

annotate types to numeric and non-numerical columns. In the following, we discuss the

main contribution of this paper.

As a first contribution, we present and provide our new corpus SportsTables3. To the

best of our knowledge, SportsTables is the first corpus with annotated table columns,

which contains a significantly larger proportion of numerical data than textual data. In

total, the tables in our corpus have on average about 3 textual and 18 numerical columns.

Moreover, the tables in our new corpus are much larger in both the number of columns

and the number of rows than in existing corpora which better reflects the characteristics

1Notice that for GitTables we only considered the tables and columns labeled by terms from DBpedia
using the semantic annotation method as described in the GitTables paper. Therefore our reported
ratios of textual and numerical data differ from those shown in the GitTables paper because they
consider all data, whether annotated or not.

2The analyses were done at the company LÄPPLE AG
3Available on https://github.com/DHBWMosbachWI/SportsTables.git

159

10 SportsTables: A new Corpus for Semantic Type Detection (Extended Version)

of real-world tables.

As a second contribution that comes together with the corpus, we specify an ontology

with semantic types for the sports baseball, basketball, football, hockey, and soccer. This

ontology provides fine granular semantic types for all kinds of sports we considered to

build SportsTables and allows us to semantically describe each occurring table column,

which is not possible with the current ontologies (e.g. DBpedia) at this level of detail.

Using a manually created dictionary, we assign a semantic type to each existing column

in SportsTables.

As an extension of [59] and as a third contribution, we present in this paper results of

extensive experimental analyses using our new corpus on four different state-of-the-art

semantic type detection models. Overall, we can see that when trained on our new

corpora, the models can improve the performance on numerical data types. However,

one shortcoming that our analysis shows is that the current model architectures are

not targeting numerical columns. To be more precise, our analysis demonstrates that

textual data columns are mostly correctly semantically interpreted with the models (best

F1-Score 0.98), but on numerical data columns, the models only achieve F1-Scores in the

range of 0.31-0.7. This large difference indicates that new model architectures that take

the characteristics of numerical columns into account are needed which is a direction

that could be stimulated by the availability of our corpus.

Outline. In Section 2, we first provide an overview of existing corpora which was used to

build and validate semantic type prediction models and discuss their characteristics and

statistics. Afterward, in Section 3, we then introduce our new corpus SportsTables and

describe in detail how we created the corpus and labeled the table columns with semantic

types. Section 4 first demonstrates the main characteristics of our corpus before we then

show the results of using our new corpus on the different semantic type detection models.

Next, further research challenges are discussed in Section 5 before Section 6 concludes

the paper.

10.2 Existing Corpora

In the following, we describe different existing corpora that contain annotated table

columns and therefore can be used to build and validate semantic column type detection

160

10.2 Existing Corpora

Table 10.1: Corpus statistics about the number and sizes of tables. Additionally, we
see the average number of textual and numerical columns per table for each
existing annotated corpora and our new SportsTables corpus. This shows
the absence of numerical data columns per table in most existing corpora
and the dominance of textual data columns per table in all existing corpora.
Instead, our new corpus SportsTables contains on average over 6 times more
numerical columns than textual columns.

Corpus Tables Cols Cols/T able T ext. Cols/T able Num. Cols/T able Rows/T able

VIZNET 78,733 120,609 1.53 1.34 0.19 18.35
TURL 406,706 654,670 1.61 1.61 0 12.79
SemTab2019 13,765 21,682 1.58 1.57 0.01 35.61
SemTab2020 131,253 190,494 1.45 1.45 0.001 9,19
SemTab2021 795 3,072 3.86 2.77 1.09 874.6
GitTables 1.37M 9.3M 6.82 3.62 3.2 184.66
SportsTables 1,187 24,838 20.93 2.83 18.1 246.72

models. We summarized the main statistics for all corpora in Table 10.1.

VizNet [45]. The original VizNet corpus [45] is a collection of data tables from diverse

web sources ([11, 81, 88, 105]) which initially do not contain any semantic label annotation.

The corpus we consider in this paper is a subset of the original VizNet corpus, which was

annotated by a set of mapping rules from column headers to semantic types and then

used to build and validate the Sherlock [50] and Sato[113] prediction models. The corpus

contains in total 78,733 tables and 120,609 columns annotated with 78 unique semantic

types. Overall, the tables in the corpus contain only 1.53 columns and 18.35 rows on

average. Furthermore, the distribution of the column data types is 87.58% textual and

12.42% numerical and thus leads to the shortcomings as described before.

TURL [20]. The TURL corpus uses the WikiTable corpus [9] as basis. To label each

column they refer to the semantic types defined in the Freebase ontology [34] with a total

number of 255 different semantic types. What distinguishes TURL from other corpora

is that columns can have multiple semantic types assigned. In total, there are 406,706

tables resulting in 654,670 columns, and on average a table consists of 1.61 columns

and 12.79 rows. Again, these are rather small dimensions. In addition, the Turl corpus

includes no numerical data at all, which leads to the shortcomings mentioned above when

using the corpora.

SemTab. SemTab is a yearly challenge with the goal of benchmarking systems that

match tabular data to knowledge graphs since 2019. The Challenge includes the tasks

161

10 SportsTables: A new Corpus for Semantic Type Detection (Extended Version)

of assigning a semantic type to a column, matching a cell to an entity, and assigning

a property to the relationship between columns. Every year, the challenge provides

different datasets to validate the participating systems against each other. In this paper

we observed the provided corpora for the years 2019 [40], 2020 [19, 41], and 2021 [1, 19,

42, 46, 82]. Statistic details of the corpora are shown in Table 10.1. In case more than

one dataset was provided per year, we aggregated the statistics over all datasets included

in the challenge. While SemTab2019 consists of 13,765 tables and 21,682 columns in

total, there are 131,253 tables and 190,494 columns in SemTab2020. In both corpora, the

dimensions of the included tables are rather small (on average 1.58 columns and 35.61

rows in 2019 and 1.45 columns and 9.19 rows in 2020). In SemTab2021, the contained

tables are the largest in terms of rows with almost 875 on average. However, the number

of columns (3.86 on average) is only moderate and the corpus in general is the smallest

with a total of 795 tables and 3,072 columns. Numerical data is almost nonexistent in the

first two years (0.63% in 2019 / 0.07% in 2020), increasing to 28.24% numeric columns

per table on average in 2021, which is still not comparable to the number of numeric

data in real world data lakes.

GitTables [47]. GitTables is a large-scale corpus of relational tables created by extract-

ing CSV files from GitHub repositories. Table columns are labeled with semantic types

from Schema.org [35] and DBpedia [6] using two different automated annotation methods

(syntactically/semantically similarity matching from semantic type to column header).

In this paper, we have focused on the annotations origin from DBpedia and the results

of the semantic annotations method as described in the GitTables paper [47]. This leads

to a corpus containing over 1.37M tables and 9.3M columns in total. Although this is by

far the largest collection of data tables, the dimensions of the tables are on average only

moderate with 6.82 columns and 184.66 rows. Overall, GitTables incorporates the most

numeric data with an almost balanced ratio of 53.08% textual and 46.92% numerical

columns per table.

Discussion. The overview in Table 10.1 and the discussion before shows that most

existing corpora contain no or only a minimal fraction of numerical data types which is

very different from real-world data lakes. An exception is GitTables which has a much

higher ratio of numerical columns. However, as we show in Section 10.4, GitTables still

lacks a good coverage of different numeric semantic types which is one important aspect

that we tackle with our new corpus SportsTables which covers a wide variety of different

numerical semantic types. Moreover, another important (but orthogonal) aspect is that

162

10.3 The SportsTables Corpus

Figure 10.2: Overview of the implemented pipeline to build SportsTables. We use web-
scraping techniques to extract HTML tables from a manually defined web
page collection for each selected sport and convert the tables to CSV files.
With the help of a defined ontology and a manually created dictionary that
maps column headers to semantic types, we annotate each table column
with an appropriate semantic type.

existing corpora include a large number of tables. However, on average the tables are

very small in terms of the number of columns and the number of rows. Instead, our new

corpus SportsTables contains fewer tables, but on average a significantly higher number

of columns and rows per table to better reflect the characteristics of real-world data lakes.

10.3 The SportsTables Corpus

In the following, we will introduce our new corpus and describe in detail the implemented

construction pipeline to build SportsTables.

Methodology to generate the corpus. Figure 10.2 gives an overview of our imple-

mented pipeline to generate the new corpus. The main idea was to collect data tables

from different sports domains such as soccer, basketball, baseball, etc. since data tables

coming from such kinds of sources are rich in numerical columns. For example, a soccer

player statistic table of a soccer season contains typically 3 textual columns (e.g., player

name, team name, field position) and 18 numerical columns (e.g., goals, games played,

assists). Hence, building a collection of such tables will lead to a corpus that contains

many numerical columns which are in addition semantically interpretable. As a result,

the corpus will enable performance analysis of semantic type prediction models in a much

more rigorous manner regarding numerical data.

163

10 SportsTables: A new Corpus for Semantic Type Detection (Extended Version)

Scraping data from the web [23].A vast amount of data covering information about

player statistics, team statistics, coach statistics, or season rankings of different sports

are available on various web pages. Therefore, for collecting the data, we built a data

collection pipeline based on web scraping technology[23]. In the first step, we manually

searched and defined a set of different web pages for each of the selected sports of which

we want to scrape contained data tables (left side of Figure 10.2). We first converted

each HTML table on the web pages to Pandas-Dataframes using Python and then saved

them as CSV files (center of Figure 10.2), since this file format is most known and used

to store raw structured data [76]. During the scrape process, we kept the respective

column headers from the original HTML table and used them as headers in the CSV file.

Annotating columns with semantic types. Due to the low granularity of existing

ontologies (e.g. DBpedia) regarding semantics of a given sport, we manually created an

ontology-like set of valid semantic types for all sports. For example, in DBpedia there

is the type Person.Athlete.BasketballPlayer, but semantic labels in the particular that

would match individual numerical columns such as NumberOfGoals are not defined. Next,

we annotated all table columns with semantic types using a manually created dictionary

that maps column headers to matching semantic types from our created set. Since the

column headings were in many cases identical if the semantic content was the same, this

procedure significantly reduces the manual labeling effort. In addition, to ensure that

the labels are of very high quality in terms of correctness, we manually checked each

assignment based on the content of the columns.

10.4 Analysis of the Corpus

This section describes the characteristics of SportsTables in detail and then demonstrates

the significant impact of these characteristics on semantic type prediction frameworks in

a study where we apply the corpus to several state-of-the-art semantic type detection

models.

10.4.1 Corpus Characteristics

In the following. we discuss the statistics of the SportsTables corpus and compare them

to the existing corpora.

164

10.4 Analysis of the Corpus

Table 10.2: Statistics about the number of unique semantic types. Showing that our
new corpus has a higher proportion of numerical semantic types than textual
semantic types in contrast to the existing corpora. In addition, there is a
large overlap of semantic types used for textual and numeric columns in
the existing corpora. In comparison, the semantic types in SportsTables are
disjoint for the two column data types.

Corpus #Textual Sem. Types #Numerical Sem. Type #Total Sem. Types

VIZNET 78 44 78
TURL 255 0 255
SemTab2019 360 19 360
SemTab2020 5804 32 5832
SemTab2021 177 93 251
GitTables 2646 2426 2693
SportsTables 56 419 475

Data statistics (Table 10.1). Using the described pipeline for creating SportsTables,

a total of 1,187 tables which comprises 24,838 columns (approx. 86% numeric and 14%

textual) are scraped from the web resulting in 20.93 columns (2.83 textual and 18.1

numerical) per table on average. This ratio of textual to numerical columns, as well as

the total average number of columns in a table, differs significantly from existing corpora.

In Table 10.1 we can also see a comparison of the average number of textual and numer-

ical columns per table of SportsTables versus that of the existing corpora. Here we can

see that numerical columns only exist in the corpora VizNet with 0.33, SemTab2021 with

1.09, and GitTables with 3.2 columns per Table. Compared to GitTables, in SportsTables

there are thus on average over 6 times more numeric columns per table. Moreover, as

we discuss below, our corpus uses a much richer set of numerical data types that better

reflects the characteristics in real-world data lakes which is very different from GitTables.

For example, when looking at the semantic types that are assigned to numerical columns

in GitTables, more than half (393,925) of the columns are labeled with just a single type Id.

In terms of the total number of columns, the tables in SportsTables (20.93 columns per

table) are on average about 3 times wider than in GitTables (6.82 columns per table),

which contains the widest tables among the existing corpora. As such, the number of

columns in tables of SportsTables are reflecting better the width when comparing this to

the characteristics of the tables in real-world data lakes which we analyzed. Moreover,

considering the average number of rows per table, it can be seen that the tables in

SportsTables have on average 246.72 rows. In comparison, tables in SportsTables are

165

10 SportsTables: A new Corpus for Semantic Type Detection (Extended Version)

(a) Top 20 textual sem. types (b) Top 20 numerical sem. types

Figure 10.3: Semantic type annotation statistics of SportsTables. (a) Shows column
annotation counts of the top 20 textual semantic types. Across all kinds of
sports, player.name and team.name are the most common. (b) Shows column
annotation counts of the top 20 numerical semantic types. A dominant type
here is rank, which describes a column containing the placements of e.g. a
team in a season standings table.

larger on average than in many other corpora where tables have typically fewer rows.

Annotation statistics. Semantic type annotation follows a two step process. First, we

establish a directory with manually defined mappings from column header to semantic

type for each existing header. Second, we label each column with the semantic type

listed in the directory for its header. As a result, 56 textual and 419 numerical semantic

types are present in the corpus. Thereby textual semantic types are those which specify

textual columns and numerical types are those which specify columns containing numeric

values. To compare the annotation statistics, we also counted the number of textual and

numerical semantic types in an analysis of the existing corpora. The results of these

analyses can be seen in Table 10.2. Different from our corpus, the sets of textual and

numerical types are not disjoint in all other corpora (except TURL where no numeric

values are present). This indicates that individual semantic types were assigned to both

textual and numerical columns which is problematic if semantic type detection models

should be trained and tested on these corpora. In particular, GitTables has a very large

overlap and almost all semantic types are used in both column data types. To give an

166

10.4 Analysis of the Corpus

example, in GitTables the semantic types comment, name and description are assigned to

both column data types. Next, we take a closer look into the semantic types of our corpus.

Figure 10.3a and Figure 10.3b show the top 20 semantic types (textual and numerical)

in regards to how often they were assigned to a table column. It can be seen that the most

common textual types across all sports are player.name and team.name. These are types

that occur in almost every table. Other types such as country or city are also common,

describing, for example, the player’s origin or the team’s hometown. Among numeric

semantic types, rank is by far the most common and is present in almost all tables. The

type describes a column containing the placement of e.g., a team in a ”seasons standing”

table or a player in a ”top scorer” table. All other numeric semantic types show mainly

an equal distribution of the frequency, which is a good precondition for training machine

learning models.

SportsTables vs. GitTables. Since GitTables is the largest corpus with the most

tables, one could argue that a subset of GitTables would result in a new corpus with

similar characteristics as SportsTables. To analyze this, we executed a small experiment

in which we filtered out only tables from GitTables where the number of textual and

numerical columns (min. 3 textual and 18 numerical columns) is at least the same

as it is in SportsTables. The result was a corpus containing a total of 16,909 tables

and 743,432 columns. On average a table has 12.53 textual columns, 31.43 numerical

columns, and 17.35 rows. However, looking at the semantic types that are assigned to

numerical columns, more than half (393,925) of the columns are labeled with the type

Id. In terms of training and validating semantic type detection models, this is rather

an unfavorable type representing no semantically meaning. Moreover, the next 5 most

common numerically based semantic types are parent, max, comment, created and story

editor, constituting a large proportion of the columns. The assignment of these types

to numerical data is slightly less understandable and indicates a lack of quality in the

automatically generated labels for table columns.

10.4.2 Study of Using SportsTables

In the following, we report on the results of using four different state-of-the-art semantic

type detection models on our new corpus. With this, we want to measure how well the

semantic types in our corpus can be inferred by the models with a special focus on how

167

10 SportsTables: A new Corpus for Semantic Type Detection (Extended Version)

each performs on textual and numerical columns.

Models. As state-of-the-art models, we used Sherlock [50], Sato [113], Dosolo [100]

and Doduo [100] in our experiments, which all use deep learning techniques to build the

model. In the following, we describe the fundamental functionalities of each model to

explain the differences between them.

Sherlock: Sherlock utilizes multiple feature sets, such as character distributions, word

embeddings, paragraph embeddings, and column statistics (e.g., mean of numerical

values), in its single-column prediction model. Each columnwise feature set, except for

the column statistics, is processed by a multi-layer feature specific subnetwork to generate

compact dense vectors. The resulting outputs from the subnetworks, along with the

column statistics features, are then inputted into the primary network, which comprises

two fully connected layers.

Sato: Building upon Sherlock, Sato is a multi-column prediction model that incorpo-

rates LDA features to capture table context and integrates a CRF layer to account for

column type dependency in its predictions. With this, Sato’s prediction quality improves

over Sherlock on the VizNet data corpus.

Dosolo & Doduo: Dosolo & Doduo are both models from [100] and use pre-trained

language models (LM) (e.g. BERT) combined with an attached output layer to im-

plement a model for the semantic type classification task. Given that LMs receive

token sequences (i.e.text) as input, it is essential to convert a table into a token se-

quence so that the LM can process it. What distinguishes Dosolo and Doduo is the

way in which a table is serialized into a token sequence. Dosolo implements a column-

wise serialization where each column C and its values v1, ...vm of a table is separately

serialized as follows: serialize(C) ::= [CLS]v1, ...vm[SEP]. In contrast, Doduo is a

tablewise model designed to process an entire table as input. To accomplish this, Do-

duo serializes the complete table and its entries as follows: for each table that has n

columns T = (ci)
n
i=1, where each column has Nm column values ci = (vj

i)m
j=1, they let

serialize(T) ::= [CLS]v1
1...[CLS]vn

1 ...vn
m[SEP]. In both sequences, the special token

[CLS] marks the beginning of a new table column and [SEP] the end of a token sequence.

The major difference between the two approaches and their serialization techniques is

that with Dosolo a column type is predicted independently of other data in the table (e.g.

neighboring column values), whereas Doduo model captures the table context to make a

168

10.4 Analysis of the Corpus

prediction of a column type. In summary, we can conclude that Sherlock and Dosolo are

single-column (columnwise) prediction models that only take into account the individual

column values for the prediction. In contrast, Sato and Doduo are multi-column (or

tablewise) prediction models, which consider table contexts for predicting the semantic

type of an individual column.

Experiment setup. For the experiments, we split the SportsTables corpus into training,

validation, and test set. While creating the splits, we first extracted 20% of the data for

the test set and then another 20% of the remaining 80% for the validation split. The

rest of the data was used as the training set. We used the four pre-trained models as

described above and re-trained them with the training data set. During the re-training,

we replaced the last layer of the different models to support the number of semantic types

that occur in SportsTables and then re-trained the entire neural network. In order to

optimize the hyperparameters, we measured the performance of the respective re-trained

models against the validation split. To report the final performance, we applied the

re-trained models to the 20% test data set. For obtaining statistically reliable results, we

ran each experiment with five different random seeds and report the mean and standard

deviation over multiple runs.

Results of study. Figure 10.4 shows the results of the experiments reporting the support

weighted and macro average F1-Scores in individual subplots for all four models. For

each model, we plot the F1-Score across all semantic types (numerical & non-numerical)

to show the total performance, but also the separate average F1-Score for only textually

and numerically based semantic types, respectively. In the following we want to discuss

the main aspects of the results in detail.

Non-numeric vs. numeric: As we can see in the figure, there is a significant per-

formance difference between predicting textual and numerical semantic types for all

models. While textual columns can be predicted with performances in a very promising

range of 0.82-0.98, the performances for numerical columns are rather moderate ranging

from 0.31 to 0.7. On average, the difference in F1-Score between textual and numeric

types is 0.35 across all models. These results demonstrate that the models can better

handle textual data and determine its associated semantic types more accurately than

numerical data. Looking at the total performances over all types for each model, we

see that they are rather moderate in the range of 0.38 to 0.74, but these insufficient

169

10 SportsTables: A new Corpus for Semantic Type Detection (Extended Version)

results are primarily caused by poor prediction performances on the numerical based types.

Columnwise vs. tablewise: Looking and comparing the results of the columnwise models

Sherlock & Dosolo and the results of the tablewise models Sato & Doduo, we observe

that the tablewise models outperform the columnwise models. The results underline

the known importance of considering not only individual column values for the task

of semantic type detection of table columns but also to involve the table context. In

particular, what we can see from the comparison of Dosolo and Doduo is how important

it is, especially for numerical based columns, to include table context data for semantic

type detection. As described above, numerical values provide less information content

that can be used by a machine learning model to identify the type and therefore Doduo

doubles the performance of Doslo by considering the complete table context. However,

the resulting performance of 0.62 is rather moderate and demonstrates the shortcomings

of the model on numerical semantic types. Comparing Sherlock and Sato also reflects

the advantages of a tablewise semantic column type detection, whereas the performance

improvement on just numerical columns is not as significant as in Dosolo vs. Doduo. We

will discuss the reasons for this in the following.

Sherlock & Sato vs. Dosolo & Doduo on numeric: As described above, Sherlock &

Sato (same feature set) as well as Dosolo & Doduo (same LM model) are models with

an identical foundation. Focusing only on the F1-Scores on the numerical types, one

can see that Sherlock & Sato outperform Dosolo & Doduo. We think that this aspect is

due to the fact that Sherlock & Sato extract features of numerical columns that better

address numerical data (e.g. mean of individual digits occurring in a column), while in

Dosolo & Doduo a LM model is used as the basis to encode the numerical column. LM

models are optimized for text and can therefore not provide a representative encoding to

infer the semantic type of numerical columns. Therefore, Dosolo & Doduo predictions on

numerical columns are inferior to Sherlock & Sato.

10.5 Future Challenges

Detecting semantic types in real-world data lakes comes with many challenges that need

to be addressed. In particular, based on our findings of the analysis using the different

models in Section 10.4, we think that new model architectures are needed for detecting

numerical data types which have different characteristics from non-numerical data. In

170

10.5 Future Challenges

Figure 10.4: Results using different state-of-the-art semantic type detection models on our
new SportsTables corpus. The overall differences in F1-Scores for predicting
textual and numeric columns indicate that the models can handle textual
data more effectively than numeric data.

the following, we list some of the challenges we think are important to be addressed. We

hope that our corpus enables research on those challenges.

Embedding numerical data: Most state-of-the-art models like Dosolo&Doduo apply

LMs like BERT [22] to encode literals to infer the semantic type of a table column. Since

such approaches are optimized for textual data, using them on numerical data is not

sufficient, as our experimental results show. Therefore, we need improved embeddings

for numerical data, which can now be studied with SportsTables.

Leveraging numerical context: To improve the semantic type prediction of a table

column, recent approaches like Sato [113], TURL [20] and Doduo [100] incorporate also

context information like the table-topic or values from neighboring columns of the same

table as described above. Given that tables in existing corpora contain almost entirely

textual columns, the contexts (e.g. values from neighboring columns) used are rich in

information and therefore also lead to performance improvements. However, it is unclear

how effective this approach is in case the tables contain many numerical columns and only

a few textual columns since the context information provided is reduced due to the lower

entropy of numeric values as described before. Our first results using SportsTables show

that in principle adding context information leads to an improvement on non-numeric

and numeric types. However, we believe that specifically for the prediction of the nu-

merical types the leverage of contextual informations needs to be researched in more depth.

Supporting wide tables: Existing datasets for semantic type detection consist of tables

with small numbers of columns and rows. In nearly all corpora, the existing tables contain

171

10 SportsTables: A new Corpus for Semantic Type Detection (Extended Version)

on average less than two columns and less than 40 rows (see Table 10.1). Therefore,

at the current state, it has not been analyzed how state-of-the-art models can handle

such large tables. To give an example of why large tables could be a problem for recent

models, we will briefly discuss this aspect on the Doduo model. As described above,

Doduo uses pre-trained LMs (e.g., BERT) and hence serializes the entire table into token

sequences with a fixed tensor length of 512 elements, which is given by the LM model.

With this methodology of serialization and the fixed given tensor length, increasing the

number of table columns means that decreasing number of values of each column can be

included for serialization. For example, a table with 512 columns would allow only one

value per column to be considered and this would most likely result in an insufficient

semantic representation of the column based on that one value.

10.6 Conclusion

Existing corpora for training and validating semantic type detection models mainly

contain tables with either only or a very high proportion of textual data columns and

either no or just a limited number of numerical data columns. Therefore, it has not been

studied precisely how well state-of-the-art models perform on a dataset with a very high

percentage of numerical columns as it occurs in real-world data lakes. Moreover, tables

in existing corpora are very small regarding the total number of columns and rows. To

tackle these shortcomings, we built a new corpus called SportsTables which contains

tables that have on average approx. 3 textual columns, 18 numerical columns, and 250

rows. With our new corpus, semantic type detection models for table columns can now

be holistically validated against numerical data. We show results by using the different

state-of-the-art semantic type detection approaches Sherlock, Sato, Dosolo, and Doduo

on our new corpus and report significant differences in the performance of predicting

semantic types of textual data and numerical data on all models. Finally, we think that

the corpus is just a first step to stimulate more research on new model architectures that

can better deal with numerical and non-numerical data types. The corpus is available on

https://github.com/DHBWMosbachWI/SportsTables.git.

10.7 Acknowledgements

We thank the reviewers for their feedback. This research is funded by the BMBF projects

AICoM and KompAKI (grant numbers 02P20A064 and 02L19C150) by the state of Hesse

172

10.7 Acknowledgements

as part of the NHR Program, as well as the HMWK cluster project 3AI (The Third Wave

of AI). Finally, we want to thank DHBW Mosbach, hessian.AI, TU Darmstadt as well as

DFKI Darmstadt for their support.

173

11 Pythagoras: Semantic Type

Detection of Numerical Data

Using Graph Neural Networks

(Short Paper)

Abstract

Detecting semantic types of table columns is a crucial task to enable dataset discovery in data lakes.

However, prior semantic type detection approaches have primarily focused on non-numeric data

despite the fact that numeric data play an essential role in many enterprise data lakes. Therefore,

typically, existing models are rather inadequate when applied to data lakes that contain a high

proportion of numerical data. In this paper, we introduce Pythagoras, our new learned semantic

type detection approach specially designed to support numerical data along with non-numerical

data. Pythagoras uses a graph neural network based on a new graph representation of tables to

predict the semantic types for numerical data with high accuracy. In our initial experiments, we

thus achieve F1-Scores of 0.829 (support-weighted) and 0.790 (macro), respectively, exceeding the

state-of-the-art performance significantly.

Bibliographic Information

The content of this chapter was previously published in the peer-reviewed work Sven Langenecker,

Christoph Sturm, Christian Schalles, and Carsten Binnig. “Pythagoras: Semantic Type Detection

of Numerical Data Using Graph Neural Networks (Short Paper).” In: Lernen, Wissen, Daten,

Analysen (LWDA) Conference Proceedings, Marburg, Germany, October 9-11, 2023. Ed. by

Michael Leyer and Johannes Wichmann. Vol. 3630. CEUR Workshop Proceedings. CEUR

Workshop Proceedings, 2023, pp. 146–152. url: https://ceur-ws.org/Vol-3630/LWDA2023-

paper13.pdf. The contributions of the author of this dissertation are summarized in Chapter 5.

175

11 Pythagoras: Semantic Type Detection of Numerical Data Using Graph Neural

Networks (Short Paper)

This paper is published under the Creative Commons Attribution 4.0 International (CC-BY

4.0) license. ©2023 Sven Langenecker, Christoph Sturm, Chrisitan Schalles, and Carsten Binnig.

It was published in the Lernen, Wissen, Daten, Analysen (LWDA) Conference Proceedings,

Marburg, Germany, October 9-11, 2023 and reformatted for use in this dissertation.

176

11.1 Introduction

11.1 Introduction

Dataset discovery of numerical data is important in enterprise data lakes.

Enterprise data lakes serve as invaluable repositories of diverse data types, enabling

organizations to store and manage vast amounts of information [24]. In these data lakes,

numerical data plays a dominant role, making up a much larger proportion compared to

non-numerical data [59] and providing insights into various business domains, including

finance, manufacturing, healthcare, and marketing. Such data often contain critical infor-

mation such as sales figures, production metrics, customer demographics, and financial

records. Therefore, it is essential to automatically detect the correct semantic type of

table columns with numerical data enabling data scientists to find required data for

downstream analysis and thus address the dataset discovery problem in data lakes [29,

53, 78].

Existing approaches are mainly designed for non-numerical data. In order to

provide the task of semantic type detection, many solutions using deep learning techniques

have been proposed in the past [20, 50, 61, 100, 113]. Unfortunately, all these existing

approaches have primarily focused on detecting the semantic type of non-numerical data

table columns, leaving a critical need for innovative approaches that effectively handle

the detection of semantic types for numerical table columns [59].

Towards a new learned semantic type detection model for numerical data.

In this paper, we introduce our new vision of a semantic type detection model called

Pythagoras, which can not only predict the semantic type of non-numerical table columns

with high accuracy but also of numerical table columns. To achieve this, the main idea of

the new model architecture is to use graph neural networks (GNNs) together with a novel

graph representation of tables and their columns. This graph representation includes

directed edges to provide necessary context information (e.g. neighboring non-numerical

columns) for predicting the semantic type of numerical columns using GNNs message

passing mechanism. The graph representation and the new model architecture are the

main contributions of this paper. Moreover, as a second contribution, we show initial

highly promising results comparing Pythagoras against five existing state-of-the-art

models on the SportsTables corpus [59]. The results of this experiment demonstrate that

we outperform all existing semantic type detection models on numerical data.

177

11 Pythagoras: Semantic Type Detection of Numerical Data Using Graph Neural

Networks (Short Paper)

Basketball Player Statistics

Player
Name

Field
Position

Points per
Game

Assists per
Game

Rebounds
per Game

LeBron
James SF/PF 31.3 7.5 8.2

Myles
Turner PF/C 15.4 2.1 9.8

Textual
Column

Numerical
Column

Content

Column
Names

Table
Name

Basketball
Player

Statistics

Player
Name

Field
Position

Points per
Game

Assists per
Game

Rebounds
per Game

Textual
Column Node

Numerical
Column Node

Numerical
Column
Features

Numerical
Column
Features

Numerical
Column
Features

Tablename
Node

Numerical Values
Statistic NodeDirected Edges from Each

Textual Column Node to all
Numerical Column Nodes

Directed Edges from
Tablename Node to all

Column Nodes

Graph
Representation

(a) Graph Representation

Feature Specific
Subnetwork

GNN

In
iti

al
 N

od
e

R
ep

re
se

nt
at

io
ns

BERT

Input Features
(192 Units)

ReLu
(512 Units)

Serializations

Tablename
Node

Textual
Colum Nodes

Numerical
Colum Nodes

Numerical Values
Statistic Node

Graph Convolution Layer

ReLU

Graph Convolution Layer

H
id

de
n

S
ta

te
O

ut
pu

t o
f t

he
 G

N
N

Textual Colum Nodes Numerical Colum Nodes

Final Classification Layer

Tablename
[CLS] tablename [SEP]

Columns
[CLS] Val 1 ... Val n [SEP]

(b) Model architecture

Figure 11.1: (a) Shows the conversion of a table into a graph representation. The
key aspect of the graph is that it provides all the necessary contextual
information through its structure (nodes and directed edges), resulting in
improved predictions of the semantic types of numerical columns. (b) Shows
the complete model architecture of the neuronal network.

11.2 Overview of Pythagoras

In the following, we will introduce our new semantic type detection model Pythagoras

and discuss the main design aspects that will lead to better predictions on numerical

table columns.

Figure 11.1a demonstrates how we convert a table and its columns into a graph rep-

resentation using an example. We can see that the table is transformed into a graph

containing four different node types. The green node represents the table name. The

orange and blue nodes are responsible for the representation of the textual and numerical

columns. In addition, there is another node in the graph for each numerical column,

which contains 192 selected statistical features (see Table 11.2 in the Appendix) of the

numerical column values (red node). Because detecting semantic types of numerical

columns is generally harder than for textual columns, using only the numerical column

values to specify the type is too limited [61]. Hence, we designed the graph structure

with directed edges to inject necessary context information into the numerical column

178

11.2 Overview of Pythagoras

representation and thus enrich it for better predictions. Looking at a Numerical Column

Node we can see that three directed edge types go towards the node. With that, the node

will embed information from its connected neighbors into its own representation during a

GNN layer iteration based on the message passing paradigm [54]. Specifically, the green

edge provides information about the table name, the yellow edges convey information

from each textual column within the table and the red edge facilitates the transmission

of the additional statistical features. As a consequence, the GNN layers transforms the

representation of the Numerical Column Nodes, leading to enhanced information content

for accurate semantic type prediction. For instance, when faced with a numerical column

with values in the range of 60-100, where the semantic type could be ambiguous (e.g.,

basketball.player.weight or humidity), the embedding of information from a neighboring

textual column containing basketball player names allows for a more precise identification

of the semantic type as basketball.player.weight.

In Figure 11.1b we can see the whole model architecture of Pythagoras which encodes

the table structure as a graph. The upper part of the architecture illustrates how

we generate the initial embedding vector representations of the nodes in the graph.

For encoding table names as well as cell values (textual and numerical), we use the

pre-trained transformer-based language model BERT1[22]. In addition, to embed the

features of the Numerical Values Statistic Nodes, we train a feature specific subnetwork

similar to the approach in [50]. This subnetwork embeds the extracted features from the

numerical column to an output of fixed length using one hidden layer with a rectifier

linear unit (ReLu) activation function. For each numerical column, we extract 192

features2, including for example mean and median of all values, as well as statistical

metrics regarding the occurrence of individual digits. The initial node representations,

along with the discussed graph structure, serve as the input for the GNN model. As

GNN, we use a graph convolutional neural network [54]. After traversing the GNN layers,

we extract the hidden states of Textual as well as Numerical Column Nodes from the last

convolutional layer. These hidden states are then passed as inputs to a final classification

layer to perform the semantic type classification task.

1Note that Pythagoras is independent of how to generate these initial embeddings, and there may exist
alternative language models or embedding methods that could potentially yield even better results in
this context.

2The complete feature list can be found in Table 11.2 in the Appendix

179

11 Pythagoras: Semantic Type Detection of Numerical Data Using Graph Neural

Networks (Short Paper)

Table 11.1: Experimental results of our new semantic type detection model Pythagoras
in comparison to several state-of-the-art models on SportsTables corpus.

Model support weighted F1-Score macro F1-Score
numeric non-numeric overall numeric non-numeric overall

Sherlock[50] 0.609 0.856 0.641 0.555 0.767 0.57
Sato[113] 0.703 0.961 0.736 0.650 0.903 0.668

Dosolo[100] 0.313 0.822 0.379 0.245 0.782 0.285
Doduo[100] 0.623 0.98 0.67 0.567 0.933 0.594

GPT-3 (fine-tuned)[10] 0.446 0.872 0.501 0.404 0.760 0.423
Pythagoras 0.829 0.996 0.851 0.790 0.97 0.803

11.3 Initial Experimental Results

In this section, we present initial experimental results applying Pythagoras on the Sport-

sTables corpus. We compare the performance of our approach against five state-of-the-art

models.

Baseline models. As state-of-the-art models we consider Sherlock [50], Sato [113],

Dosolo [100], Doduo [100] and GPT-3 [10, 84]. While Sherlock and Dosolo are models

that utilize only the values of a single column for the prediction, Sato and Doduo are

successors of them that adopt a context-based approach similar to our model. Despite

their similarities to our model, Sato and Doduo do not specifically address the prediction

of semantic types for numerical-based columns and do not offer a well-defined approach

for injecting contextual information into the prediction process. Furthermore, to have

another benchmark, we developed in our experiments a fine-tuned GPT-3 model for the

task of semantic type detection. We chose fine-tuning over prompt designs for higher

model quality and the capacity to train on a larger number of examples3.

Experiment setup. In our experiments, we use the SportsTables dataset, due to its

high proportion of numerical-based columns. To perform the experiments, we split the

corpus into 60/20/20 for train, validation, and test set. After training the models, the

checkpoint with the best accuracy on the validation set is used for evaluation on the test

set. We report end results as an average of five runs with different random seeds using

the evaluation metrics support-weighted and macro F1-Score as in previous studies [20,

50, 100, 113]. To implement Pythagoras we used Python together with PyTorch [85],

3For fine-tuning the GPT-3 model, we use OpenAIs API described in https://platform.openai.com/

docs/guides/fine-tuning (visited on 09/04/2023)

180

11.4 Acknowledgements

DGL [106] and the Transformers library [107].

Results of study. The experimental results are shown in Table 11.1. For each model, we

list the F1-Scores overall data types to show the total performance, but also the separate

average F1-Scores for only numerical and non-numerical data types, respectively. The

results show that our model Pythagoras outperforms all existing models in detecting the

semantic type of numerical columns. To the best performing existing model Sato with

F1-Scores of 0.703/0.650 (support-weighted/macro F1-Score) we can achieve an improve-

ment of +0.126/+0.140. Furthermore, a notable observation across all existing models is

the substantial performance discrepancy between the prediction on non-numerical and

numerical columns. On non-numerical data, the accuracy of the models is generally high,

whereas their performance on numerical data tends to be poorer. In contrast, our model

exhibits a different behavior, as we are able to achieve a more balanced accuracy for both

numerical and non-numerical data. In summary, the results demonstrate that our model,

in conjunction with the graph representation of tables, leads to a significantly improved

performance.

The road ahead. To establish the generalizability of our approach, additional experi-

ments on diverse datasets are crucial. These experiments will validate the effectiveness

of our approach across different data domains and assess its robustness. Furthermore,

conducting an ablation study is essential to examine the impact of various design choices

in our architecture.

11.4 Acknowledgements

This research and development project was funded by DHBW Mosbach. We also want to

thank the NHR Program, the BMBF project KompAKI (grant number 02L19C150), the

HMWK cluster project 3AI, hessian.AI, and DFKI Darmstadt for their support.

11.5 Appendix

11.5.1 List of Features

181

11 Pythagoras: Semantic Type Detection of Numerical Data Using Graph Neural

Networks (Short Paper)

Table 11.2: Extracted features of a numerical column to build the representation of the
Numerical Values Statistic Node. Except for the last feature listed, all features
are also included in the model of [50].

Feature #

Character-level distribution (any, all, mean, variance, min, max, median, sum,
kurtosis, skewness of the digits 0-9 and the symbols comma, point, plus, minus,
blank)

150

Number of values 1
Column entropy 1
Fraction of values with unique content 1
Fraction of values with numerical characters 1
Fraction of values with alphabetical characters 1
Mean and std. of the number of numerical characters in cell-values 2
Mean and std. of the number of alphabetical characters in cell-values 2
Mean and std. of the number special characters in cell-values 2
Mean and std. of the number of words in values 2
Percentage, count, only/has-Boolean of the None values 4
Stats, sum, min, max, median, mode, kurtosis, skewness, any/all-Boolean of
length of values

10

Column values statistics (min, max, mean, median, 8*quantile, mode, skewness,
kurtosis of all column values)

15

Total 192

182

12 Pythagoras: Semantic Type

Detection of Numerical Data in

Enterprise Data Lakes

Abstract

Detecting semantic types of table columns is a crucial task to enable dataset discovery in data

lakes. However, prior semantic type detection approaches have primarily focused on non-numerical

data despite the fact that numerical data play an essential role in many real-world enterprise

data lakes. Therefore, existing models are typically rather inadequate when applied to data lakes

that contain a high proportion of numerical data. In this paper, we introduce Pythagoras, our

new learned semantic type detection approach specially designed to support numerical along with

non-numerical data. Pythagoras uses a GNN in combination with a novel graph representation of

tables to predict the semantic types for numerical data with high accuracy. In our experiments,

we compare Pythagoras against five state-of-the-art approaches using two different datasets and

show that our model significantly outperforms these baselines on numerical data. In comparison

to the best existing approach, we achieve F1-Score increases of around +22%, which sets new

benchmarks.

Bibliographic Information

The content of this chapter was previously published in the peer-reviewed work Sven Langenecker,

Christoph Sturm, Christian Schalles, and Carsten Binnig. “Pythagoras: Semantic Type Detection

of Numerical Data in Enterprise Data Lakes.” In: Proceedings 27th International Conference

on Extending Database Technology, EDBT 2024, Paestum, Italy, March 25 - March 28. Ed. by

Letizia Tanca, Qiong Luo, Giuseppe Polese, Loredana Caruccio, Xavier Oriol, and Donatella

Firmani. Vol. 27. OpenProceedings.org, 2024, pp. 725–733. doi: 10.48786/EDBT.2024.62. url:

https://doi.org/10.48786/edbt.2024.62. The contributions of the author of this dissertation

are summarized in Chapter 5.

183

12 Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data Lakes

This paper is published under the Creative Commons Attribution 4.0 International (CC-

BY-NC-ND 4.0) license. ©2023 Sven Langenecker, Christoph Sturm, Chrisitan Schalles, and

Carsten Binnig. It was published in the Proceedings 27th International Conference on Extending

Database Technology, EDBT 2024, Paestum, Italy, March 25 - March 28 and reformatted for

use in this dissertation.

184

12.1 Introduction

NBA Ply Stats

Ply FPos PPG AssPG RebPG

LeBron
James

SF/PF 31.3 7.5 8.2

...

Myles
Turner

PF/C 15.4 2.1 9.8

Textual
Column

Numerical
Column

Content

Column
Names

Table
Name

tablename

Neccessary
Context Information

column headers + values

Semantic Type Detection
Model

basketball.player.assists_per_game

column headers + values

Column to
Predict

Figure 12.1: Figure shows an example of predicting the semantic type of the numerical
table column ’AssPG’. To predict the correct type, it is crucial for the model
to have the possibility to incorporate textual context information such as
the table name and neighboring non-numerical columns.

12.1 Introduction

Enterprise data lakes contain numerical data.. Enterprise data lakes serve as

invaluable repositories of diverse data types, enabling organizations to store and manage

vast amounts of information [24, 72]. In enterprise data lakes, numerical data plays a

dominant role, making up a much larger proportion compared to non-numerical data

[59] since they provide insights into various business domains, including finance, manu-

facturing, healthcare, and marketing. Numerical data often contain critical information

such as sales figures, production metrics, customer demographics, and financial records.

Therefore, it is essential to provide a solution that can automatically detect the correct

semantic type of table columns containing numerical values, enabling data analysts and

data scientists to find required data for downstream analysis and thus address the dataset

discovery problem in data lakes [14, 16, 29, 53, 78].

Semantic typing targets non-numerical data. In order to enable the discovery

of data in data lakes and in particular to provide a solution for the associated task

185

12 Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data Lakes

of semantic type detection, many solutions using deep learning techniques have been

proposed in the past [20, 50, 61, 100, 113]. Unfortunately, all these existing approaches

have primarily focused on detecting the semantic type of non-numerical columns, and

with that leaving a critical need for innovative approaches that effectively detect semantic

types of numerical columns [59]. The reasons why existing models fall short on numerical

data is mainly because of the fact that corpora that were used to train and validate these

models primarily contain non-numerical data. Therefore, the models were developed to

handle mainly non-numerical data.

Numerical data is much harder. To predict the semantic type of table columns

containing numerical values, it is essential to have textual (non-numerical) data of the

same table as context information as illustrated in Figure 12.1. Predicting, for example,

the semantic type of the column ’AssPG’ by using only the included values {7.5,...,2.1}

is almost impossible while values of columns with textual types such as ’Ply’ are more

indicative for the type. The reason for this is that numerical values have in general a

limited information entropy1 and are often similarly distributed for different semantic

content [61].

Context is essential for numerical data. To address this problem, rich non-numerical

contextual information, such as the contents of neighboring non-numerical columns,

column headers, and table names can be leveraged to increase accuracy in determining

the correct semantic type of the numerical column. In the example of Figure 12.1 the

table name ’NBA Ply Stats’ and the values of the textual columns (’Ply’ and ’FPos’)

can be leveraged as context information. This enables the model to recognize that the

table belongs to the basketball domain, thereby enhancing its ability to predict the

semantic type of the ’AssPG’ column as ’basketball.player.assists_per_game’. As such,

for a semantic type detection approach designed to handle numerical data, it is crucial

to incorporate the capability to leverage all contextual information within the model

architecture. Unfortunately, existing model architectures do not have such a predefined

technique where non-numerical contextual information can be strategically leveraged for

predicting numerical columns.

Semantic type detection for numerical data. In this paper, we thus introduce our

approach based on a novel model architecture for semantic typing called Pythagoras,

which can not only predict the semantic type of non-numerical table columns with high

accuracy but also of numerical table columns. To achieve this, the main idea of the

new model architecture is to use graph neural networks (GNNs) together with a new

1Generally numerical values can be encoded with much less bits than string values resulting in lower
overall entropy values [98]

186

12.2 Overview of Pythagoras

graph representation of tables and their columns. This graph representation includes

directed edges to provide necessary contextual information (e.g. table name, neighboring

non-numerical column values) for predicting the correct semantic type of numerical

columns using the GNN message passing mechanism. Thus, the model learns which

contextual information is relevant for determining the semantic type. To the best of our

knowledge, our semantic type detection model Pythagoras is the first approach in this

direction.

Contributions of the paper. The main contributions of this paper are: (1) First, we

propose a new graph representation of tables. In this graph data structure, we use directed

edges to model the information flow within tables. Using this graph representation,

Pythagoras can learn selectively which context information should be taken into account

to establish robust predictions on numerical data. (2) As a second contribution, we

propose a new GNN-based neural network architecture that is able to use our new graph

data structure as input and predict the semantic type of table columns. This architecture

consists of three main components, (a) a pre-trained language model which encodes call

values of tables, (b) a subnetwork to encode an additional specific feature set of the

numerical values, (c) and a GNN with a heterogeneous graph convolutional module for

aggregating all information and embedding context in the type prediction of columns.

(3) Finally, as a third contribution, we show the effectiveness of the graph representation

and the model architecture of Pythagoras by comparing against five existing state-of-

the-art semantic type detection models on two different data lakes that mimic the data

distribution of enterprise data lakes and contain tables with non-numerical and numerical

columns. The results of this experiment demonstrate that our new model outperforms

all baselines on numerical data significantly. To support the integration of our approach

into existing applications and to enable further research, we open sourced all our code,

data and trained model: https://github.com/DHBWMosbachWI/pythagoras.git.

Outline of the paper. In Section 12.2 we first introduce Pythagoras and our new

graph representation of tables. Section 12.3 details the model architecture. Results and

analyses of our experiments are presented in Section 12.4, followed by a discussion of

related work in Section 12.5. Section 12.6 concludes the paper.

12.2 Overview of Pythagoras

In the following, we introduce our new semantic type detection approach Pythagoras.

187

12 Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data Lakes

Textual
Column Node

Numerical
Column Node

Tablename
Node

Numerical Column
Feature Node

Directed Edges from
Each Textual Column
Node to all Numerical

Column Nodes

Directed Edges from
Tablename Node to all

Column Nodes

Graph
Representation

NBA Ply Stats

Ply FPos PPG AssPG RebPG

LeBron
James

SF/PF 31.3 7.5 8.2

...

Myles
Turner

PF/C 15.4 2.1 9.8

Textual Column Numerical Column

Content

Column
Names

Table
Name

(a) Graph Representation

Feature Specific
Subnetwork

GNN

In
iti

al
 N

od
e

R
ep

re
se

nt
at

io
ns

BERT

Input Features
(192 Units)

ReLu
(512 Units)

Serializations

Tablename
Node

Textual
Colum Nodes

Numerical
Colum Nodes

Numerical Column
Feature Node

Heterogenous Graph Convolution Module

H
id

de
n

S
ta

te
O

ut
pu

t o
f t

he
 G

N
N

Textual Colum Nodes Numerical Colum Nodes

Final Classification Layer

Convolutional
Layer

Convolutional
Layer

Convolutional
Layer

(b) Model Architecture

Figure 12.2: (a) Shows the conversion of a table into a heterogeneous graph representation.
The key aspect of the graph is that it provides all the necessary contextual
information through its structure (nodes and directed edges), resulting in
improved predictions of the semantic types of numerical columns. (b) Shows
the complete model architecture of the neural network.

12.2.1 Graph Representation of Tables

Figure 12.2a demonstrates how we convert a table and its columns into a graph repre-

sentation using an example table in Figure 12.2a The table contains a table name (tn),

two non-numerical columns (cnn), and three numerical columns (cn), each with column

headers (ch) and column values (v1, v2, ..., vm). In the figure, we can see how the table is

transformed into a graph G = {V, E} composed of a set of nodes V and a set of edges E

including four different node types Vtn, Vnn, Vn, and Vncf for different artifacts.

The first node type Vtn (green) represents the tablename. Additionally, the graph

contains a node of type Vnn (orange) for each non-numerical column. This node type

represents the entire column including column values and headers. In the same manner,

for each numerical column, we create a node of type Vn (blue) representing numerical

columns and their contents. Finally, nodes with a node type Vncf (red) are added for

each numerical column to encode specific features of the numerical columns.

We decided to use an additional node type Vncf to encode specific features for numerical

columns since this allows us to first use a pre-trained language model (LM) for computing

188

12.3 Model Architecture

a representation based on the joint features that are shared between both non-numerical

and numerical columns such as column headers . In addition, we further add the nodes

Vncf for the numerical-only columns, each holding a vector with additional specific features

for numerical columns for which we use a separate encoding strategy with a separate

simple multilayer perceptron (MLP) network. To be more precise, we additionally encode

192 different statistical features for encoding a numerical column. We publish the full list

of features in an extended technical report of this paper2.

12.2.2 Leveraging Contextual Information

As described before, only using the numerical values for predicting the semantic type

of numerical columns is in general not sufficient, and contextual information is needed.

Due to this aspect, we add directed edges to our table graph representation to predefine

in which way necessary additional context information should be injected through the

message-passing mechanism of GNNs [54] into the numerical column representation (node

Vn) and thus enrich it for better predictions.

More precisely, as shown in Figure 12.2a we construct direct edges from each non-

numerical column node V 1
nn, V 2

nn to all numerical column nodes V 1
n , V 2

n , V 3
n (yellow edges)

to provide the context information from the non-numerical columns to the numerical

columns. Furthermore, we add directed edges in the graph from the table name node Vtn

to all non-numerical Vnn as well as numerical Vn nodes (green edges). This edge handles

not only the contextual information for numerical columns but also for non-numerical

columns. As we will show in our experiments, using the table name as context information

also leads to performance improvements for non-numerical columns. Finally, the graph

has directed edges for integrating the additional statistical features into the encoding of

numerical columns (red edges from Vncf → Vn).

As a consequence when using this graph structure as basis for our GNN-based model

architecture (cf Section 12.3), the vector representation computed for the numerical

column nodes Vn during training result in an enhanced information content that is

more suitable for an accurate prediction of the underline semantic type. Interestingly,

leveraging context by modeling edges in a GNN not only improves the prediction of

numerical but also non-numerical types as we show in our evaluation (cf. Section 12.4).

189

12 Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data Lakes

Learned Edge
Specific Weights

New Vector Representation
After Traversing the GNN

Aggegation Function
of the Messages

Weighted Vector
Message

Figure 12.3: Heterogeneous graph convolutional module of Pythagoras for the nodes Vn.
Information from the nodes Vnn, Vtn and Vncf is passed to node Vn. Each
edge connection (Wnn, Wtn, Wncf , Wn) has its own learned weights, which
determine how strongly weighted the information is sent over the edges.
Finally, all messages (vectors) are combined to form a new representation of
the node by an aggregation function.

12.3 Model Architecture

In Figure 12.2b we can see the model architecture of Pythagoras. In the following, we

explain first the details of the model architecture and then explain how the model can be

used to detect numerical semantic types.

12.3.1 Architecture and Training

The model comprises three essential components. These components include (1) a pre-

trained LM to encode all features from non-numerical and numerical columns 3, (2) a

specific subnetwork to process the additional features of numerical columns and (3) the

GNN to aggregate all information.

The upper part of the architecture in Figure 12.2b shows how we generate the input of

the BERT model to get the initial representations for each column. Additionally, we use

BERT to encode table names. To serialize the individual columns, we encode the input

2This technical report can be found at: https://github.com/DHBWMosbachWI/pythagoras.git
3We use BERT but Pythagoras is independent of how to generate the initial embeddings, and there

may exist alternative language models or embedding methods that could potentially yield even better
results in this context.

190

12.3 Model Architecture

sequence for non-numerical as well as for numerical columns, using the column header and

the column values as follows: serialize(ci) ::= [CLS] ch v1 v2 ... vm [SEP]. Additionally,

to generate the initial representation of the node Vtn we thus serialize the table name

as follows: serialize(tc) ::= [CLS] tc [SEP]. For columns and table names, we use the

representation computed by BERT for the CLS token as initial node representation for

the GNN.

To embed the additional extracted features of the numerical column values, the model

contains a feature-specific subnetwork similar to the approach in [50]. As can be seen in

the architecture, the subnetwork consists of a linear layer that maps the 192 provided

features to a vector that matches the shape of the other initial vector representations

(BERT outputs vectors with dimensions of 768). This network is trained end to end with

the GNN while the BERT parameters are frozen.

The initial vector representations generated by the BERT model and the subnetwork

are used as initial internal representation for all nodes Vtn, Vnn, Vn, and Vncf in our

graph data structure which serves as input for our GNN model. As GNN, we use a

heterogeneous graph convolutional module that combines different graph convolutional

layers [54] for each occurring edge type. Since we have 3 different edge types in our graph,

the heterogeneous convolutional module combines 3 independent graph convolutional

layers. The heterogeneous convolution module first performs a separate graph convolution

on each edge type, then sums the message aggregations on each edge type as the final

result for the nodes. Figure 12.3 shows the behavior of this module for a numerical

column node Vn that is connected with other nodes over the different edge types. The

module works in a similar way also for non-numerical columns Vnn leveraging, however,

only information from table name as shown in Figure 12.2a.

The module allows the model to learn separate weights for the different edge types and

thus enables it to embed connected neighboring nodes and their information to different

degrees. For example, the model can learn for Vn nodes that the information of the table

name (provided by Vtn) is less important than the information of adjacent non-numerical

columns (provided by Vnn). By learning distinct weights for each edge, we can effectively

capture the nuances and dependencies in the data, ultimately enhancing the model’s

ability to make contextually informed predictions that lead to the overall effectiveness of

our approach, which we will show more in detail in Section 12.4.5.

After traversing the GNN, we extract the hidden states of the nodes Vnn (representing

updated non-numerical columns) as well as of Vn (representing updated numerical

columns). Subsequently, these hidden states are then fed into a final classification layer to

191

12 Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data Lakes

perform the semantic type classification task. In this last classification layer, the output

size is determined by the number of distinct semantic types present in the corpus.

12.3.2 Detecting Numerical Types

To highlight the advantage of using our graph representation of tables together with a

GNN for semantic type detection of numerical data types, let us take a look at the following

example. Considering the node V 1
n in Figure 12.2a which stands for the numerical column

’PPG’ (points per game statistic of a basket player) of the table. The column contains

values in the range of about 15-32, and its semantic type could be ambiguous. The

correct type might be basketball.player.points_per_game, football.player.yards_per_game

or temperature).

However, after iterating over a GNN layer, the values of the two non-numerical columns

V 1
nn, V 2

nn are embedded because of the designed yellow edges. These provide basketball

player names (Lebron James, ..., Myles Turner) as well as basketball field positions

(SF/PF, ..., PF/C) as context information. According to this additional data, it is

clear that the semantic type temperature is not very likely for this column. Because

of the fact, that tables about player statistics in basketball as well as in football are

structured very similarly and contain both columns with player’s names and field positions,

it is not yet clear whether the semantic type is basketball.player.points_per_game or

football.player.yards_per_game for example.

Besides the previous context data of the non-numerical columns, information about the

table name is also injected via the green edges during a GNN layer pass. This information

contains the text ’NBA Ply Stats’ (’NBA’ is the name of the basketball league) and it

is now unambiguous determinable that basketball.player.points_per_game must be the

valid semantic type. The other passed information from the additional statistical feature

nodes Vncf also provides an improvement for distinguishing ambiguities, since the value

range of numerical columns with different semantic types can be the same but the value

distribution can be different. These different characteristics are covered by the extracted

statistical features of numerical columns.

12.4 Experimental Evaluation

In the following, we first introduce the two datasets SportsTables and GitTables before

we describe our experimental setup and evaluation methodology. Afterward, we discuss

the main results of our experiments.

192

12.4 Experimental Evaluation

12.4.1 Data Sets and Baselines

Datasets. For evaluating Pythagoras, we use two different real-world data lakes with a

large number of semantically annotated tables. When selecting the datasets, the goal

was to choose a corpora that contain tables with a high proportion of numerical columns.

This allows us in particular to explore and compare the existing models with Pythagoras

on numerical data. As shown in Table 12.1, we use two corpora SportsTables [59] and

GitTables Numeric which is based on [47]. Both corpora contain a high number of

numerical columns per table and represents a numerical to non-numeric ratio commonly

found in enterprise data lakes [61].

Table 12.1: Characteristics of the datasets in our experiments.

Dataset #Tables Non-Num. Num. #sem.
Cols./Table Cols./Table Types

SportsTables 1,187 2.83 18.1 462
GitTables Numeric 6,577 2.08 8.95 219

SportsTables [59]. As the first data corpus in our experiments, we use SportsTables.

The corpus contains real-world data tables collected from various sports domains such

as soccer, basketball, baseball, and football using web scraping techniques. Such data

tables are especially rich in numerical columns as many different sport-specific statistical

measurements are reported. As can be seen in Table 12.1, the tables in the corpus contain

2.83 textual and 18.1 numerical columns on average. The corpus includes a very high

number of 462 unique semantic types. Thereby semantic types are very fine granular,

which is a major challenge for semantic type detection models. For example, there are

types such as ’basketball.player.assists_per_game’ or ’soccer.player.assists_per_game’.

GitTables Numeric [47]. The original GitTables data set is a corpus of tables created by

extracting CSV files from GitHub repositories. Table columns are labeled with semantic

types from Schema.org [35] and DBpedia [6] using two different automated annotation

methods. In our experiments, we have focused on the annotations origin from DBpedia

and the results of the semantic annotation method. For our experiments, we constructed

a derived corpus called GitTables Numeric by specifically selecting tables that have a high

proportion of numerical columns with the purpose to mimic real-world enterprise data

lakes. To achieve this, we only included tables where at least 80% of all table columns

are numerical. In order to have enough samples of each semantic type to train, validate,

and test the models, we also filtered out columns that have a semantic type occurring

less than 10 times in total. Based on these filter criteria, we ended up with a corpus that

193

12 Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data Lakes

Table 12.2: Experimental results on the SportsTables corpus.

Model support weighted F1-Score macro F1-Score
numerical non-numerical overall numerical non-numerical overall

Sherlock [50] 0.609 0.856 0.641 0.555 0.767 0.57
Sato [113] 0.703 0.961 0.736 0.650 0.903 0.668

Dosolo [100] 0.313 0.822 0.379 0.245 0.782 0.285
Doduo [100] 0.623 0.98 0.67 0.567 0.933 0.594
GPT-34[10] 0.446 0.872 0.501 0.404 0.760 0.423

Pythagoras 0.829 0.996 0.851 0.790 0.97 0.803

contains 6,577 tables with 2.08 textual and 8.95 numerical columns per table on average

(see Table 12.1) and a total of 219 semantic types.

Baselines. In our evaluation, we compare our model Pythagoras against five state-of-the-

art semantic type detection models. As baselines we considered Sherlock [50], Sato [113],

Dosolo [100], and Doduo [100]. Despite that Sato and Doduo also incorporate context

information to predict the semantic type of a column, they do not specifically address

numerical-based columns and do not offer a predefined approach for injecting contextual

information into the prediction of numerical columns. All models were trained on the

same data as Pythagoras.

Given the recent advancements in large language models (LLMs) like GPT-3.5 [10,

84], which have been extensively trained on vast amounts of data, one might wonder if

such models cannot predict the semantic type for non-numerical as well as for numerical

columns with high accuracy through a straightforward finetuning. Finetuning an LLM to

a specific task has already shown success [52, 66, 86, 102]. In light of these considerations,

we additionally explore the capabilities of recent LLMs in our study by adding a fine-

tuned GPT-3.5 model. We opted for fine-tuning as opposed to prompt designs due to its

potential to yield higher performances and to train on a larger number of examples. To

build this baseline model we fine-tuned the gpt-3.5-turbo model, following the instructions

in [2] using the same training data we used for Pythagoras.

12.4.2 Experimental Design

Setup. To run the experiments, we split each dataset into three parts: training,

validation, and test set. We divided the datasets into 60% training, 20% validation, and

20% testing splits. Since in both datasets, the gold labels were assigned in an automatic

manner by using the individual column headers, we did not include the headers in the

4fine-tuned

194

12.4 Experimental Evaluation

serializations of the columns, which is different from what is described in Section 12.2.

When running the experiments, we trained each model using the training split and

conducted hyperparameter tuning on the validation set.

In addition, we used the performance results on the validation split during training to

apply an early stopping mechanism. To measure the final performance of each model,

we loaded the checkpoint of the model with the highest F1-Score on the validation set

and then applied it to the test data. We ran each experiment with five different random

seeds and reported the mean across multiple runs to obtain statistically reliable results.

As evaluation metrics, we used support-weighted F1-Score, weighted by the number of

columns per semantic type and the macro average F1-Score as used in previous studies

[20, 50, 100, 113].

Pythagoras implementation. We implemented our model Pythagoras using Python

together with the modules PyTorch [85], DGL [106] and the Transformers library [107].

As described in Section 12.2, our neural network consists of three main components. A

pre-trained LM to generate initial vector representations, a subnetwork for the numerical-

based feature set, and a GNN that allows to exchange context information.

As pre-trained LM, we used the vanilla BERT [22] (bert-base-uncased) model to be

comparable to [100] which comes with 12 encoder layers. We used tokenizer and pre-

trained model of the Transformers library from Hugging Face [28]. During the training

process, we froze the 12 layers of BERT, preventing their weights from being updated.

The graph data structure and the GNN were implemented with the DGL library. To

update the weights of the GNN during training, we applied an Adam optimizer with an

initial learning rate of 10−5 and a linear decay scheduler with no warm-up. Since our

purpose is to realize a multi-class prediction task (one semantic type label per column),

we used the cross entropy loss as a loss function.

12.4.3 Exp. 1: Overall Efficiency

Results on SportsTables. Table 12.2 shows the experimental results on SportsTables.

For each model, we list the F1-Scores overall data types to show the total performance,

but also the separate average F1-Scores for only numerical and non-numerical data types,

respectively. As the first main result, we can see in the table that our model Pythagoras

outperforms all existing state-of-the-art models in all reported aspects. Looking only at

the results on the numerical columns, we can see that our model achieves an improvement

of +17.92% support weighted F1-Score and +21.53% macro F1-Score. These results verify

5fine-tuned

195

12 Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data Lakes

Table 12.3: Experimental results on the GitTables corpus.

Model support weighted F1-Score macro F1-Score
numerical non-numerical overall numerical non-numerical overall

Sherlock [50] 0.725 0.989 0.775 0.411 0.491 0.707
Sato [113] 0.733 0.991 0.781 0.443 0.707 0.491

Dosolo [100] 0.518 0.986 0.606 0.245 0.694 0.343
Doduo [100] 0.761 0.992 0.804 0.409 0.749 0.489
GPT-35[10] 0.531 0.938 0.610 0.143 0.277 0.211

Pythagoras 0.813 0.990 0.846 0.476 0.893 0.544

that our designed mechanism of providing context information to predict the semantic

type of numerical data is more suitable than the methods in the existing models Sato

and Doduo.

In Sato, contextual information is provided by a table topic vector, which is formed by a

accumulation of all values in the table. Since tables in the SportsTables dataset contains

a large proportion of columns with numerical values (on average 18.1 are numerical

column and 2.83 are non-numerical, see Table 12.1), this table topic vector does not have

the necessary effect. In addition, Satos linear-chain conditional random field (CRF) also

does not lead to significant improvements, since the tables in SportsTables are not always

structured in the same way (column orders vary between tables). This aspect can be

seen by the comparison of Sato to Sherlock, which is the same model without a table

topic vector and a linear-chain CRF module. The improvements from Sherlock to Sato

are not significant.

Doduo also achieves only moderate performance values with 0.623/0.564 (support

weighted/macro) F1-Score. On one hand, this is due to the fact that only very few

individual column values can be included in the token sequence, since the BERT model is

limited to 512 elements and the tables have on average 20.93 columns. On the other hand,

the BERT model learns the structure of the tables which, as with Sato, has negative

effects with non-identical cross-table structures. Furthermore, it is still unclear how deep

the understanding of numbers is in LMs like BERT, since they are essentially pre-trained

on textual data. Unlike the existing models, our model is independent of the column

order of the tables due to the graph structure. If columns are arranged differently between

tables, this has no negative effect.

When we examine the results on textual data, we generally observe that all models

perform well. In particular, the models Sato, Doduo, as well as our model Pythagoras

achieve high accuracy. Interestingly, also for non-numerical columns our model is slightly

196

12.4 Experimental Evaluation

better than existing models with 0.996/0.970 F1-Scores. This improvement is due to

the design aspect that our model uses the contextual information of the table name also

for the non-numerical column representations (Vnn → Vn edges). Moreover, our results

demonstrate the aspect that on numerical data, the prediction of the semantic type is in

general harder than the prediction of non-numerical data.

In summary, the results on the SportsTables dataset demonstrate that our model

architecture, in conjunction with the graph representation of tables, leads to significantly

improved performance in predicting semantic types for numerical-based columns.

Results on GitTables. Table 12.3 shows the experimental results on GitTables using the

same metrics as before on SportsTables. The results show that Pythagoras outperforms

all other models in predicting the semantic types. Considering the performance on

numerical columns, it becomes evident that our model surpasses the performance of the

best existing model, Doduo, by a remarkable improvement of +6.83%/16.38% F1-Score.

This gain in performance highlights the effectiveness of our model in handling numerical

data, setting a new benchmark in this domain by outperforming all state-of-the-art

approaches. Different from the results on the SportsTables corpus, among the baselines,

Doduo and Sato perform nearly equally. This is mainly due to the aspect that the

GitTables corpus contains tables with fewer columns on average, and therefore Doduo can

use more column values in its token sequence and with that build a better representation

using the BERT model.

Looking at the performance on non-numerical data columns, we can see that all models

achieve mostly the same support weighted F1-Scores (about 0.990). However, considering

the macro F1-Scores our model Pythagoras reaches by far the best value with 0.893.

This is an improvement to the second-best model Doduo by +19.23%, showing again the

benefit of providing the table name as contextual information for predicting the semantic

type of non-numerical columns. In summary, the results on GitTables show that our

model Pythagoras sets new state-of-the-art performances for predicting the semantic type

of numerical table columns.

12.4.4 Exp. 2: Performance for Individual Types

Figure 12.4 shows a more detailed analysis of the performances between Pythagoras

and Sato on numerical columns in SportsTables. We chose Sato as comparison model

because it was the best baseline model on numerical columns in this dataset. On the

left side, the pie chart shows for how many semantic types of numerical columns which

model performed better regarding the F1-Score. Out of a total of 384 numerical semantic

197

12 Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data Lakes

Pythagoras > Sato

202

Sato > Pythagoras

74
Equal

80

Pythagoras > Sato Sato > Pythagoras
0.0

0.2

0.4

0.6

0.8

1.0

 F
1

Sc
or

e

0.2000

0.0998

Figure 12.4: The left chart shows the number of numerical types for which Pythagoras
performs better than Sato and vice versa. In the right chart we see box
plots for the F1-Score differences between the two models on the different
numerical semantic types where Pythagoras was better than Sato and vice
versa.

types, Pythagoras was able to achieve substantially better performances than Sato on

202 of them. For 80 types, the two models achieve equal F1-Scores and for 74, Sato is

better than Pythagoras. This demonstrates that our model is not only more accurate for

individual numerical semantic types but also for a very large proportion of them.

To show how large the F1-Score differences between the two models across the numerical

types are, boxplots of the differences for the cases Pythagoras>Sato and vice versa are

shown on the right of Figure 12.4. In the case where our model achieves higher F1-Scores,

we can see that the median value of the distances is 0.2. The 0.75 quantile is 0.4 and

there are also a few types where our model is better than Sato by more than 0.9. In

addition, the distribution is shifted upwards towards the larger distance values. In the

case where Sato is better, the median is about 0.1 and the 0.75 quantil is 0.2. The

distribution is also shifted upwards, but not as much as in the other case. In conclusion,

these results show that there are many types for which Pythagoras performs much better

than Sato and Sato can only achieve very low F1-Scores, and the differences to our model

are significant. In the other case, for the majority of types in which Sato performs better,

our model Pythagoras achieves only slightly lower scores.

Overall, this suggests that our model architecture and the method we designed for

providing context information are better suited for detecting the semantic type of

numerical data.

198

12.4 Experimental Evaluation

Table 12.4: Ablation study results on only numerical columns of the SportsTables dataset.
We tested different graph structures that provide different types of contextual
information (upper part). The lower part shows results when including the
column header ch as additional information in the serialization of a column.

Variant support weighted macro
avg F1-Score avg F1-Score

Pythagoras 0.829 0.790
w/o Vtn 0.812 0.759
w/o Vnn 0.785 0.733
w/o Vncf 0.813 0.765
w/o Vtn, Vnn 0.724 0.693
w/o Vtn, Vnn, Vncf 0.324 0.252

w/ original ch 0.991 0.950
w/ synthesized ch 0.972 0.926

12.4.5 Exp. 3: Ablation Study

Different graph variants. To verify the different design aspects of our approach, we

tested variants of Pythagoras. At first, we tested modifications of our graph representation

of tables. In particular, we wanted to investigate which contextual information has which

effect on the prediction of the semantic type. Table 12.4 shows the results of this ablation

study by displaying support weighted and macro average F1-Scores on numerical columns.

The first row reports the results of using our regular model and graph while the next rows

presents the results when various nodes and edges are removed in the graph representation.

Here w/o Vtn means that in the graph the node representing the table name has been

removed and thus also the provision of this context information for the prediction of

the semantic type of the columns. Note, that the other nodes Vnn and Vncf are still

present in the graph and still provide contextual information to the numerical columns

representations. Equally, w/o Vnn means that the edges of non-numerical to numerical

columns have been removed and thus the flow of information from the non-numerical

columns no longer occurs during a GNN layer pass. However, in this variant, the other

nodes are present.

The first finding that can be seen in the results is that when we remove the nodes Vnn,

we see the highest performance drop. The F1-Score decreases in this case -0,044/-0,057

in comparison to the regular model. Thus, we can conclude that the most important

contextual information for a correct prediction of the semantic type of numerical-based

columns are the values of the non-numerical columns from the same table. The second

199

12 Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data Lakes

most important context is the table name (Vtn) and the least important are the statistical

features of the numerical values in the columns (Vncf). Without the table name as

context, the model performance decreases a bit more than without the statistical features.

To see how good the performance is when making a semantic type prediction only using

the numerical values of the columns (Vn and Vncf), we have also considered a variant

in which Vtn (table name) and Vnn (non-numerical columns) nodes are not present.

With this variant, the F1-Score drops very sharply and the model only achieves values

of 0.724/0.693. This result again shows the immense importance of textual context

information in predicting the semantic type of numerical data. In addition, we have

tested a variant in which only the Vn nodes are present (w/o Vtn, Vnn, Vncf). As expected,

we just get similar performances to the Dosolo model, since in this constellation both

model structures are very similar.

Different column serializations. As mentioned before, in the experiments of Sec-

tion 12.4.2, we did not include the original column headers ch in the serialization of a

column because they were previously used to semi automatically assign the true semantic

types (gold labels) to the columns. However, to show the impact column headers can

have on the performance of numerical column predictions, we created synthetic column

headers and used them in an experiment. We created the synthesized column headers

using GPT by giving us a list of 10 possible abbreviations for the respective column

headers. For example, for the header ”Player Age” GPT provided the list [”PA”, ”PlAge”,

”PAG”, ”PLAG”, ”PlrAge”, ”PlyAg”, ”PLA”, ”PrAge”, ”PlyrA”, ”PlayA”]. Afterward,

for each column, we randomly selected an abbreviation from the list and used it as the

column header. The lower part of Table 12.4 shows the results of this experiment. We can

see that the inclusion of column headers has an additional positive effect on predicting

the semantic types of numerical data, achieving F1-Scores of 0.972/0.926 (close to the

performance when using the original highly indicative column headers).

12.5 Related Work

In the following, we will present an overview of existing approaches and discuss the main

shortcomings when applied to numerical data.

Columnwise Models. Columnwise models exclusively leverage values from a single

column, omitting the inclusion of contextual information from the table. Sherlock [50]

is columnwise model which extracts multiple features, such as character distributions,

word embeddings, text embeddings, and column statistics from individual columns.

200

12.5 Related Work

These features are then processed through a combination of multi-layer subnetworks

and a primary network, which comprises two fully connected layers. Dosolo [100] is a

columnwise model that uses the pre-trained BERT model combined with an attached

output layer to implement a semantic type detection model. Given that BERT receives

token sequences (i.e. text) as input, they convert a column into such a sequence. When

serializing the columns, the individual column values are first converted into a string and

then concatenated to a sequence.

Tablewise Models. Tablewise models leverage the entire table as input. The advantages

of this approach lie in its ability to utilize contextual information from the table, enhancing

the precision of semantic type prediction for individual table columns. Building upon

Sherlock, Sato is a tablewise model that incorporates Latent Dirichlet Allocation (LDA)

features to capture table context and integrates a CRF layer to learn column type

dependency. With this, Sato’s prediction quality improves over Sherlock. Dosolo &

Doduo are both models from [100]. In contrast to Dosolo, Doduo is a tablewise model

designed to process an entire table as input to the BERT model. To do this all columns

and their values are concatenated one after the other to form an input sequence. The

major difference between the two approaches and their serialization techniques is that

with Dosolo a column type is predicted independently of other data, whereas Doduo

captures the data of neighboring columns to make a prediction of a column semantic

type.

Discussion on Existing Approaches. Recent research papers [20, 100, 113] have

shown that columnwise models are limited since they can not use context information

when predicting the semantic types of columns. As the need for contextual information

is even more important for numerical columns, columnwise models are unsuitable for its

detection.

As such, Sato [113] and Doduo [100] incorporate also context information like the

table-topic or values from neighboring columns as described above. However, these models

are mainly designed to handle non-numerical data since used corpora contain almost

entirely textual data. If tables contain many numerical and only a few textual columns

the context information provided is reduced and the methodologies implemented in Sato

and Doduo will not provide the necessary context information to work on numerical data.

For example, the table-topic vector of Sato provides no benefit, since numerical values are

dominant in the table. With Doduo, the serialization of the table also contains essentially

numerical data and this leads to the same effect. However, we show that a controlled and

predefined embedding of context information, as we implemented it in Pythagoras, leads

to a significant improvement on numerical columns. Another shortcoming of Doduo is the

201

12 Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data Lakes

limited amount (512 Elements) of column values that can be included when serializing

the table. With this, increasing the number of table columns means a decreasing the

number of values of each column in the input.

For wide tables, this results in an insufficient column representation and also to only

a few values that serve as context information. This is a problem for the prediction

on numerical columns, where context information is needed. In our experiments, we

demonstrated that our new model Pythagoras can handle wide tables containing many

numerical columns in a better way. Furthermore, Sato and Doduo have the disadvantage

that they essentially learn the order of the columns in the table. This creates a major

dependency that tables must have the same column arrangement to ensure the model

works adequately. In our opinion, table structures are not always the same, especially in

data lakes. For example, Sato’s pairwise potentials are learned only for adjacent columns.

Whenever there is a different order of the columns, which causes direct neighbors are

changed, the learned potentials are no longer useful. Doduo is also sensitive to the column

order in a table because the underline BERT model is sensitive to the order in the input

sequence. However, our model Pythagoras is completely independent of the column order

due to the used graph representation of tables together with the GNN architecture.

12.6 Conclusion

The task of semantic type detection of table columns stored in data lakes is crucial to

address the dataset discovery problem. Due to the fact that a large proportion of data in

enterprise data lakes are numerical [61] and often contains critical information, it is even

more important to provide a solution that can detect the underline semantics for these

data types robustly. While recent papers propose approaches for extracting semantic

types, unfortunately, they have been designed primarily on non-numerical data and

therefore do not provide accurate performances when used on numerical data columns.

To tackle this problem, we suggested in this paper our new semantic type detection

approach Pythagoras, specifically designed to robustly handle numerical columns. Our

graph representation of tables and GNN architecture establish an intrinsic mechanism

that provides all necessary context information to determine the correct semantic type of

numerical columns. Experimental results comparing Pythagoras against five state-of-the-

art models on two different datasets containing mainly numerical table columns show

that our approach sets new benchmarks for predicting the semantic type of numerical

data.

202

12.7 Acknowledgements

12.7 Acknowledgements

This work was partially funded by the German Federal Ministry of Education and

Research (BMBF) within the “The Future of Value Creation – Research on Production,

Services and Work” program (funding number 02L19C150) and by the state of Hesse as

part of the NHR program. We also thank hessian.AI, 3AI, DFKI, and DHBW for their

support.

203

Bibliography

[1] Nora Abdelmageed, Sirko Schindler, and Birgitta König-Ries. fusion-jena/BiodivTab.

Version v0.1_2021. Zenodo, Oct. 2021. doi: 10.5281/zenodo.5584180. url:

https://doi.org/10.5281/zenodo.5584180.

[2] Open AI. Fine-tuning. Open AI. Mar. 2023. url: https://platform.openai.

com/docs/guides/fine-tuning.

[3] Alation Data Catalog. https://www.alation.com/. Accessed: 2022-10-15. 2022.

[4] AWS Glue Data Catalog. https://docs.aws.amazon.com/glue/latest/dg/

what-is-glue.html. Accessed: 2022-10-15. 2022.

[5] Atlan Data Discovery Catalog. https://atlan.com/data-discovery-catalog/

?ref=/data-discovery-catalog/. Accessed: 2024-01-02. 2024.

[6] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. “DBpedia: A Nucleus for a Web of Open Data.” In: The Semantic

Web. Ed. by Karl Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-

Il Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro

Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2007, pp. 722–735. isbn: 978-3-540-76298-0.

[7] Amazon AWS. AWS Glue Concepts - AWS Glue. https://docs.aws.amazon.

com/glue/latest/dg/components- key- concepts.html. 2020. (Visited on

03/24/2020).

[8] Mircosoft Azure. Common Data Model and Azure Data Lake Storage Gen2 -

Common Data Model | Microsoft Docs. 2020. url: https://docs.microsoft.

com/en-us/common-data-model/data-lake (visited on 03/23/2020).

[9] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. TabEL:

Entity Linking in Web Tables. Cham, 2015.

205

Bibliography

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. “Language Models Are Few-Shot Learners.” In:

Proceedings of the 34th International Conference on Neural Information Processing

Systems. NIPS’20. Vancouver, BC, Canada: Curran Associates Inc., 2020. isbn:

9781713829546.

[11] Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.

WebTables: Exploring the Power of Tables on the Web. 2008. doi: 10.14778/

1453856.1453916. url: https://doi.org/10.14778/1453856.1453916.

[12] R. Castro Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and M. Stone-

braker. “Aurum: A Data Discovery System.” In: 2018 IEEE 34th International

Conference on Data Engineering (ICDE). 2018, pp. 1001–1012. doi: 10.1109/

ICDE.2018.00094.

[13] R. Castro Fernandez, E. Mansour, A. A. Qahtan, A. Elmagarmid, I. Ilyas, S.

Madden, M. Ouzzani, M. Stonebraker, and N. Tang. “Seeping Semantics: Linking

Datasets Using Word Embeddings for Data Discovery.” In: ICDE ’18. 2018,

pp. 989–1000.

[14] Adriane Chapman, Elena Simperl, Laura Koesten, George Konstantinidis, Luis-

Daniel Ibáñez, Emilia Kacprzak, and Paul Groth. “Dataset Search: A Survey.”

In: The VLDB Journal 29.1 (Aug. 2019), pp. 251–272. issn: 1066-8888. doi:

10.1007/s00778-019-00564-x. url: https://doi.org/10.1007/s00778-019-

00564-x.

[15] Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles Sutton. “Col-

Net: Embedding the Semantics of Web Tables for Column Type Prediction.” In:

AAAI’19. AAAI’19/IAAI’19/EAAI’19. Honolulu, Hawaii, USA: AAAI Press, 2019,

pp. 29–36. isbn: 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.330129. url:

https://doi.org/10.1609/aaai.v33i01.330129.

[16] Christina Christodoulakis, Eric B. Munson, Moshe Gabel, Angela Demke Brown,

and Renée J. Miller. “Pytheas: Pattern-Based Table Discovery in CSV Files.” In:

206

Bibliography

Proc. VLDB Endow. 13.12 (July 2020), pp. 2075–2089. issn: 2150-8097. doi: 10.

14778/3407790.3407810. url: https://doi.org/10.14778/3407790.3407810.

[17] Collibra Data Catalog. https://www.collibra.com/us/en/products/data-

catalog. Accessed: 2022-10-15. 2022.

[18] Vincenzo Cutrona, Federico Bianchi, Ernesto Jiménez-Ruiz, and Matteo Palmonari.

Tough Tables: Carefully Evaluating Entity Linking for Tabular Data. Version 1.0.

Zenodo, Nov. 2020. doi: 10.5281/zenodo.4246370. url: https://doi.org/10.

5281/zenodo.4246370.

[19] Vincenzo Cutrona, Federico Bianchi, Ernesto Jiménez-Ruiz, and Matteo Palmonari.

Tough Tables: Carefully Evaluating Entity Linking for Tabular Data. Version 1.0.

Zenodo, Nov. 2020. doi: 10.5281/zenodo.4246370. url: https://doi.org/10.

5281/zenodo.4246370.

[20] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. “TURL: Table

Understanding through Representation Learning.” In: VLDB. Vol. 14. 3. VLDB

Endowment, 2021, pp. 307–319. doi: 10.14778/3430915.3430921. eprint: 2006.

14806v2. url: https://github.com/sunlab-osu/TURL.

[21] Benjamin Denham, Edmund M-K. Lai, Roopak Sinha, and M. Asif Naeem. “Witan:

Unsupervised Labelling Function Generation for Assisted Data Programming.” In:

VLDB. Vol. 15. VLDB Endowment, July 2022, pp. 2334–2347. doi: 10.14778/

3551793.3551797. url: https://doi.org/10.14778/3551793.3551797.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.”

In: Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational

Linguistics, June 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423. url: https:

//aclanthology.org/N19-1423.

[23] Rabiyatou Diouf, Edouard Ngor Sarr, Ousmane Sall, Babiga Birregah, Mamadou

Bousso, and Sény Ndiaye Mbaye. Web Scraping: State-of-the-Art and Areas of

Application. 2019. doi: 10.1109/BigData47090.2019.9005594.

[24] James Dixon. Data Lakes Revisited. https://jamesdixon.wordpress.com/

2014/09/25/data-lakes-revisited/. 2014. (Visited on 02/17/2020).

[25] Dremio. https://www.dremio.com/. Accessed: 2022-10-15. 2022.

207

Bibliography

[26] Dremio. State of the Data Lakehouse. 2024. url: https://hello.dremio.com/wp-

state-of-the-data-lakehouse-reg.html (visited on 04/22/2024).

[27] Sara Evensen, Chang Ge, Dongjin Choi, and Çagatay Demiralp. “Data Pro-

gramming by Demonstration: A Framework for Interactively Learning Labeling

Functions.” In: CoRR abs/2009.01444 (2020). arXiv: 2009.01444. url: https:

//arxiv.org/abs/2009.01444.

[28] Hugging Face. bert-base-uncased. Hugging Face. Mar. 2023. url: https://huggi

ngface.co/bert-base-uncased.

[29] Grace Fan, Jin Wang, Yuliang Li, and Renée J. Miller. “Table Discovery in

Data Lakes: State-of-the-Art and Future Directions.” In: Companion of the 2023

International Conference on Management of Data. SIGMOD ’23. Seattle, WA,

USA: Association for Computing Machinery, 2023, pp. 69–75. isbn: 9781450395076.

doi: 10.1145/3555041.3589409. url: https://doi.org/10.1145/3555041.

3589409.

[30] Huang Fang. “Managing data lakes in big data era: What’s a data lake and why has

it became popular in data management ecosystem.” In: 2015 IEEE International

Conference on Cyber Technology in Automation, Control, and Intelligent Systems

(CYBER). 2015, pp. 820–824. doi: 10.1109/CYBER.2015.7288049.

[31] Bogdan Ghita. Public BI benchmark. https://github.com/cwida/public_bi_

benchmark/tree/master. 2019.

[32] Aleph Alpha GmbH. Luminous. 2023. url: https://app.aleph-alpha.com/

(visited on 12/19/2023).

[33] Google Cloud Data Catalog. https://cloud.google.com/data-catalog/docs/

concepts/overview. Accessed: 2022-10-15. 2022.

[34] Freebase Data Dumps. https://developers.google.com/freebase. Accessed:

2022-10-15. 2022.

[35] R. V. Guha, Dan Brickley, and Steve Macbeth. “Schema.Org: Evolution of Struc-

tured Data on the Web.” In: Commun. ACM 59.2 (Jan. 2016), pp. 44–51. issn:

0001-0782. doi: 10.1145/2844544. url: https://doi.org/10.1145/2844544.

[36] Rihan Hai, Christos Koutras, Christoph Quix, and Matthias Jarke. “Data Lakes: A

Survey of Functions and Systems.” In: IEEE Transactions on Knowledge and Data

Engineering 35.12 (2023), pp. 12571–12590. doi: 10.1109/TKDE.2023.3270101.

208

Bibliography

[37] A. Halevy, Flip Korn, Natasha Noy, Christopher Olston, Neoklis Polyzotis, S. Roy,

and Steven Euijong Whang. “Managing Google’s data lake: an overview of the

Goods system.” In: IEEE Data Eng. Bull. 39 (2016), pp. 5–14.

[38] Alon Halevy, Flip Korn, Natalya F. Noy, Christopher Olston, Neoklis Polyzotis,

Sudip Roy, and Steven Euijong Whang. “Goods: Organizing Google’s Datasets.”

In: SIGMOD ’16. ACM, 2016, pp. 795–806. isbn: 9781450335317. doi: 10.1145/

2882903.2903730. url: https://doi.org/10.1145/2882903.2903730.

[39] Shijie Hao, Yuan Zhou, and Yanrong Guo. “A Brief Survey on Semantic Segmenta-

tion with Deep Learning.” In: Neurocomputing 406 (2020), pp. 302–321. issn: 0925-

2312. doi: https://doi.org/10.1016/j.neucom.2019.11.118. url: https:

//www.sciencedirect.com/science/article/pii/S0925231220305476.

[40] Oktie Hassanzadeh, Vasilis Efthymiou, Jiaoyan Chen, Ernesto Jiménez-Ruiz, and

Kavitha Srinivas. SemTab 2019: Semantic Web Challenge on Tabular Data to

Knowledge Graph Matching Data Sets. Version 2019. Zenodo, Oct. 2019. doi:

10.5281/zenodo.3518539. url: https://doi.org/10.5281/zenodo.3518539.

[41] Oktie Hassanzadeh, Vasilis Efthymiou, Jiaoyan Chen, Ernesto Jiménez-Ruiz, and

Kavitha Srinivas. SemTab 2020: Semantic Web Challenge on Tabular Data to

Knowledge Graph Matching Data Sets. Version 2020. Zenodo, Nov. 2020. doi:

10.5281/zenodo.4282879. url: https://doi.org/10.5281/zenodo.4282879.

[42] Oktie Hassanzadeh, Vasilis Efthymiou, Jiaoyan Chen, Ernesto Jiménez-Ruiz, and

Kavitha Srinivas. SemTab 2021: Semantic Web Challenge on Tabular Data to

Knowledge Graph Matching Data Sets. Version 2021 (Hard Tables). Zenodo, Nov.

2021. doi: 10.5281/zenodo.6154708. url: https://doi.org/10.5281/zenodo.

6154708.

[43] Yeye He, Jie Song, Yue Wang, Surajit Chaudhuri, Vishal Anil, Blake Lassiter,

Yaron Goland, and Gaurav Malhotra. “Auto-Tag: Tagging-Data-By-Example in

Data Lakes.” In: CoRR abs/2112.06049 (2021). arXiv: 2112.06049. url: https:

//arxiv.org/abs/2112.06049.

[44] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno, and

Julian Eisenschlos. “TaPas: Weakly Supervised Table Parsing via Pre-training.” In:

ACL 2020. Online: ACL, July 2020, pp. 4320–4333. doi: 10.18653/v1/2020.acl-

main.398. url: https://aclanthology.org/2020.acl-main.398.

209

Bibliography

[45] Kevin Hu, Snehalkumar ’Neil’ S. Gaikwad, Madelon Hulsebos, Michiel A. Bakker,

Emanuel Zgraggen, César Hidalgo, Tim Kraska, Guoliang Li, Arvind Satyanarayan,

and Çağatay Demiralp. VizNet: Towards A Large-Scale Visualization Learning and

Benchmarking Repository. Glasgow, Scotland Uk, 2019. doi: 10.1145/3290605.

3300892. url: https://doi.org/10.1145/3290605.3300892.

[46] Madelon Hulsebos, Cagatay Demiralp, and Paul Demiralp. GitTables benchmark -

column type detection. Zenodo, Nov. 2021. doi: 10.5281/zenodo.5706316. url:

https://doi.org/10.5281/zenodo.5706316.

[47] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. “GitTables: A Large-Scale

Corpus of Relational Tables.” In: CoRR abs/2106.07258 (2021). arXiv: 2106.07258.

url: https://arxiv.org/abs/2106.07258.

[48] Madelon Hulsebos, Sneha Gathani, James Gale, Isil Dillig, Paul Groth, and

Çağatay Demiralp. Making Table Understanding Work in Practice. 2021. arXiv:

2109.05173 [cs.DB].

[49] Madelon Hulsebos, Paul Groth, and Çağatay Demiralp. “AdaTyper: Adaptive

Semantic Column Type Detection.” In: (2023). arXiv: 2311.13806. url: http:

//arxiv.org/abs/2311.13806.

[50] Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind Satya-

narayan, Tim Kraska, Çagatay Demiralp, and César Hidalgo. “Sherlock: A Deep

Learning Approach to Semantic Data Type Detection.” In: SIGKDD. KDD ’19.

Anchorage, AK, USA: ACM, 2019, pp. 1500–1508. isbn: 9781450362016. doi: 10.

1145/3292500.3330993. url: https://doi.org/10.1145/3292500.3330993.

[51] GMI Global Market Insights. Data Lake Market Report. 2023. url: https://

www.gminsights.com/industry- analysis/data- lake- market (visited on

04/22/2024).

[52] Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. “How Can We

Know What Language Models Know?” In: Transactions of the Association for

Computational Linguistics 8 (2020). Ed. by Mark Johnson, Brian Roark, and

Ani Nenkova, pp. 423–438. doi: 10.1162/tacl_a_00324. url: https://aclanth

ology.org/2020.tacl-1.28.

[53] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatterbauer,

Renée J. Miller, and Mirek Riedewald. “SANTOS: Relationship-Based Semantic

Table Union Search.” In: Proc. ACM Manag. Data 1.1 (May 2023). doi: 10.1145/

3588689. url: https://doi.org/10.1145/3588689.

210

Bibliography

[54] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph

Convolutional Networks.” In: 5th International Conference on Learning Repre-

sentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings. OpenReview.net, 2017. url: https://openreview.net/forum?id=

SJU4ayYgl.

[55] Keti Korini and Christian Bizer. “Column type annotation using ChatGPT.”

Englisch. In: Joint proceedings of workshops at the 49th International Conference on

Very Large Data Bases (VLDB 2023), Vancouver, Canada, August 28 - September

1, 2023, VLDBW 2023. Ed. by Rajesh Bordawekar, Cinzia Cappiello, and Vasilis

Efthymiou. Vol. 3462. CEUR Workshop Proceedings. Aachen, Germany: RWTH

Aachen, Sept. 2023, pp. 1–12. url: https://madoc.bib.uni-mannheim.de/

65132/.

[56] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry

Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsi-

fodimos. “Valentine: Evaluating Matching Techniques for Dataset Discovery.” In:

ICDE. IEEE, 2021, pp. 468–479.

[57] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten Binnig.

“Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data

Lakes.” In: Proceedings 27th International Conference on Extending Database

Technology, EDBT 2024, Paestum, Italy, March 25 - March 28. Ed. by Letizia

Tanca, Qiong Luo, Giuseppe Polese, Loredana Caruccio, Xavier Oriol, and Do-

natella Firmani. Vol. 27. OpenProceedings.org, 2024, pp. 725–733. doi: 10.48786/

EDBT.2024.62. url: https://doi.org/10.48786/edbt.2024.62.

[58] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten Binnig.

“Pythagoras: Semantic Type Detection of Numerical Data Using Graph Neural

Networks (Short Paper).” In: Lernen, Wissen, Daten, Analysen (LWDA) Con-

ference Proceedings, Marburg, Germany, October 9-11, 2023. Ed. by Michael

Leyer and Johannes Wichmann. Vol. 3630. CEUR Workshop Proceedings. CEUR

Workshop Proceedings, 2023, pp. 146–152. url: https://ceur-ws.org/Vol-

3630/LWDA2023-paper13.pdf.

[59] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten Binnig.

“SportsTables: A new Corpus for Semantic Type Detection.” In: Datenbanksys-

teme für Business, Technologie und Web (BTW 2023), 20. Fachtagung des GI-

Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 06.-10, März 2023,

Dresden, Germany, Proceedings. Ed. by Birgitta König-Ries, Stefanie Scherzinger,

211

Bibliography

Wolfgang Lehner, and Gottfried Vossen. Vol. P-331. LNI. Gesellschaft für In-

formatik e.V., 2023, pp. 995–1008. doi: 10.18420/BTW2023-68. url: https:

//doi.org/10.18420/BTW2023-68.

[60] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten Binnig.

“SportsTables: A New Corpus for Semantic Type Detection (Extended Version).”

In: Datenbank-Spektrum 23.2 (2023). doi: 10.1007/s13222-023-00457-y. url:

https://doi.org/10.1007/s13222-023-00457-y.

[61] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten Binnig.

“Steered Training Data Generation for Learned Semantic Type Detection.” In:

Proc. ACM Manag. Data 1.2 (2023), 201:1–201:25. doi: 10.1145/3589786. url:

https://doi.org/10.1145/3589786.

[62] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten Binnig.

“Towards Learned Metadata Extraction for Data Lakes.” In: Datenbanksysteme für

Business, Technologie und Web (BTW 2021), 19. Fachtagung des GI-Fachbereichs

„Datenbanken und Informationssysteme" (DBIS), 13.-17. September 2021, Dresden,

Germany, Proceedings. Ed. by Kai-Uwe Sattler, Melanie Herschel, and Wolfgang

Lehner. Vol. P-311. LNI. Gesellschaft für Informatik, Bonn, 2021, pp. 325–336.

doi: 10.18420/BTW2021-17. url: https://doi.org/10.18420/btw2021-17.

[63] Quoc Le and Tomas Mikolov. “Distributed Representations of Sentences and

Documents.” In: ICML. 2014.

[64] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,

Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Se-

bastian Riedel, and Douwe Kiela. “Retrieval-Augmented Generation for Knowledge-

Intensive NLP Tasks.” In: Advances in Neural Information Processing Systems. Ed.

by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Cur-

ran Associates, Inc., 2020, pp. 9459–9474. url: https://proceedings.neurips.

cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-

Paper.pdf.

[65] Xirong Li, Shuai Liao, Weiyu Lan, Xiaoyong Du, and Gang Yang. “Zero-Shot

Image Tagging by Hierarchical Semantic Embedding.” In: Proceedings of the

38th International ACM SIGIR Conference on Research and Development in

Information Retrieval. SIGIR ’15. Santiago, Chile: Association for Computing

Machinery, 2015, pp. 879–882. isbn: 9781450336215. doi: 10.1145/2766462.

2767773. url: https://doi.org/10.1145/2766462.2767773.

212

Bibliography

[66] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.

“Deep Entity Matching with Pre-Trained Language Models.” In: Proc. VLDB

Endow. 14.1 (Sept. 2020), pp. 50–60. issn: 2150-8097. doi: 10.14778/3421424.

3421431. url: https://doi.org/10.14778/3421424.3421431.

[67] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. “Annotating and

Searching Web Tables Using Entities, Types and Relationships.” In: Proc. VLDB

Endow. 3.1–2 (Sept. 2010), pp. 1338–1347. issn: 2150-8097. doi: 10.14778/

1920841.1921005. url: https://doi.org/10.14778/1920841.1921005.

[68] Yujia Liu, Kang Zeng, Haiyang Wang, Xin Song, and Bin Zhou. “Content Matters:

A GNN-Based Model Combined with Text Semantics for Social Network Cascade

Prediction.” In: Advances in Knowledge Discovery and Data Mining. Ed. by Kamal

Karlapalem, Hong Cheng, Naren Ramakrishnan, R. K. Agrawal, P. Krishna Reddy,

Jaideep Srivastava, and Tanmoy Chakraborty. Cham: Springer International

Publishing, 2021, pp. 728–740. isbn: 978-3-030-75762-5.

[69] Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Madden,

Mourad Ouzzani, Michael Stonebraker, and Nan Tang. “Raha: A Configuration-

Free Error Detection System.” In: SIGMOD ’19. ACM, 2019.

[70] Subhadip Maji, Swapna Sourav Rout, and Sudeep Choudhary. “DCoM: A Deep

Column Mapper for Semantic Data Type Detection.” In: CoRR abs/2106.12871

(2021). arXiv: 2106.12871. url: https://arxiv.org/abs/2106.12871.

[71] Neil Mallinar, Abhishek Shah, Tin Kam Ho, Rajendra Ugrani, and Ayush Gupta.

“Iterative Data Programming for Expanding Text Classification Corpora.” In:

AAAI’20. AAAI Press, 2020, pp. 13332–13337. url: https://ojs.aaai.org/

index.php/AAAI/article/view/7045.

[72] Christian Mathis. “Data Lakes.” In: Datenbank-Spektrum 17.3 (Nov. 2017), pp. 289–

293. issn: 1618-2162. doi: 10.1007/s13222-017-0272-7.

[73] Azure Purview: 100+ standard data-types for auto- tagging. https://docs.mi

crosoft.com/en-us/azure/purview/supported-classifications. Accessed:

2022-10-15. 2022.

[74] Microsoft Power BI, Interactive Data Visualization BI. https://powerbi.micro

soft.com. Accessed: 2022-10-15. 2022.

[75] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.

“Distributed Representations of Words and Phrases and Their Compositionality.”

In: NIPS’13. 2013, pp. 3111–3119.

213

Bibliography

[76] Johann Mitlöhner, Sebastian Neumaier, Jürgen Umbrich, and Axel Polleres.

“Characteristics of Open Data CSV Files.” English. In: International Confer-

ence on Open and Big Data (OBD). Ed. by IEEE. IEEE, 2016, pp. 72–79. doi:

10.1109/OBD.2016.18.

[77] Fatemeh Nargesian, Ken Q. Pu, Erkang Zhu, Bahar Ghadiri Bashardoost, and

Renée J. Miller. “Organizing Data Lakes for Navigation.” In: SIGMOD ’20. ACM,

2020, pp. 1939–1950. isbn: 9781450367356. doi: 10.1145/3318464.3380605. url:

https://doi.org/10.1145/3318464.3380605.

[78] Fatemeh Nargesian, Erkang Zhu, Renée J Miller, Ken Q Pu UOIT, and Patricia

C Arocena. “Data Lake Management: Challenges and Opportunities.” In: Proc.

VLDB Endow. 12.12 (2019), pp. 1986–1989. doi: 10.14778/3352063.3352116.

url: https://doi.org/10.14778/3352063.3352116.

[79] Mona Nashaat, Aindrila Ghosh, James Miller, and Shaikh Quader. “Asterisk:

Generating Large Training Datasets with Automatic Active Supervision.” In:

ACM/IMS Trans. Data Sci. 1.2 (May 2020). issn: 2691-1922. doi: 10.1145/

3385188. url: https://doi.org/10.1145/3385188.

[80] Sebastian Neumaier, Jürgen Umbrich, Josiane Xavier Parreira, and Axel Polleres.

“Multi-level Semantic Labelling of Numerical Values.” In: The Semantic Web –

ISWC 2016. Cham, 2016, pp. 428–445. doi: 10.1007/978-3-319-46523-4. url:

http://5stardata.info/.

[81] Sebastian Neumaier, Jürgen Umbrich, and Axel Polleres. “Automated Quality

Assessment of Metadata across Open Data Portals.” In: J. Data and Information

Quality 8.1 (Oct. 2016). issn: 1936-1955. doi: 10.1145/2964909. url: https:

//doi.org/10.1145/2964909.

[82] Daniela Oliveira and Catia Pesquita. SemTab 2021 BioTable Dataset. Version 1.0.0.

Zenodo, Oct. 2021. doi: 10.5281/zenodo.5606585. url: https://doi.org/10.

5281/zenodo.5606585.

[83] OpenAI. GPT-4 Technical Report. Tech. rep. 2023, pp. 1–100. arXiv: 2303.08774.

url: http://arxiv.org/abs/2303.08774.

[84] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John

Schulman, Jacob Hilton, Fraser Kelton, Luke E. Miller, Maddie Simens, Amanda

Askell, Peter Welinder, Paul Francis Christiano, Jan Leike, and Ryan J. Lowe.

214

Bibliography

“Training language models to follow instructions with human feedback.” In: ArXiv

abs/2203.02155 (2022).

[85] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library.” In: NeurIPS. Ed. by Hanna M. Wallach, Hugo Larochelle, Alina

Beygelzimer, Florence d’Alché Buc, Emily B. Fox, and Roman Garnett. 2019,

pp. 8024–8035. url: http://dblp.uni-trier.de/db/conf/nips/nips2019.

html#PaszkeGMLBCKLGA19.

[86] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton

Bakhtin, Yuxiang Wu, and Alexander H. Miller. “Language Models as Knowledge

Bases?” In: Proceedings of the 2019 Conference on Empirical Methods in Natu-

ral Language Processing and the 9th International Joint Conference on Natural

Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7,

2019. Ed. by Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan. Association

for Computational Linguistics, 2019, pp. 2463–2473. doi: 10.18653/V1/D19-1250.

url: https://doi.org/10.18653/v1/D19-1250.

[87] Sundar Pichai and Demis Hassabis. Introducing Gemini: our largest and most

capable AI model. 2023. url: https://blog.google/technology/ai/google-

gemini-ai/#sundar-note (visited on 12/20/2023).

[88] Plotly. Plotly. https://chart-studio.plotly.com/feed/. 2018. (Visited on 12/14/2022).

[89] Christoph Quix and Rihan Hai. “Data Lake.” In: Encyclopedia of Big Data

Technologies. Ed. by Sherif Sakr and Albert Zomaya. Cham: Springer International

Publishing, 2018, pp. 1–8. isbn: 978-3-319-63962-8. doi: 10.1007/978-3-319-

63962-8_7-1. url: https://doi.org/10.1007/978-3-319-63962-8_7-1.

[90] Christoph Quix, Rihan Hai, and Ivan Vatov. “Metadata Extraction and Man-

agement in Data Lakes With GEMMS.” In: Complex Syst. Informatics Model.

Q. 9 (2016), pp. 67–83. issn: 2255-9922. doi: 10.7250/csimq.2016-9.04. url:

https://doi.org/10.7250/csimq.2016-9.04.

[91] S. K. Ramnandan, Amol Mittal, Craig A. Knoblock, and Pedro Szekely. “Assign-

ing Semantic Labels to Data Sources.” In: Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

215

Bibliography

Bioinformatics) 9088 (2015), pp. 403–417. issn: 16113349. doi: 10.1007/978-3-

319-18818-8.

[92] Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and

Christopher Ré. “Snorkel: Rapid Training Data Creation with Weak Supervision.”

In: Proc. VLDB Endow. 11.3 (Nov. 2017), pp. 269–282. issn: 2150-8097. doi: 10.

14778/3157794.3157797. url: https://doi.org/10.14778/3157794.3157797.

[93] Alexander Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher Ré.

“Data Programming: Creating Large Training Sets, Quickly.” In: NIPS. Barcelona,

Spain: Curran Associates Inc., 2016, pp. 3574–3582. isbn: 9781510838819.

[94] Franck Ravat and Yan Zhao. “Metadata Management for Data Lakes.” In: New

Trends in Databases and Information Systems. Springer, 2019, pp. 37–44. doi: 10.

1007/978-3-030-30278-8_5. url: http://oatao.univ-toulouse.fr/25044.

[95] Manon Réau, Nicolas Renaud, Li C Xue, and Alexandre M J J Bonvin. “DeepRank-

GNN: a graph neural network framework to learn patterns in protein–protein

interfaces.” In: Bioinformatics 39.1 (Nov. 2022), btac759. issn: 1367-4811. doi:

10 . 1093 / bioinformatics / btac759. eprint: https : / / academic . oup . com /

bioinformatics/article-pdf/39/1/btac759/48448994/btac759.pdf. url:

https://doi.org/10.1093/bioinformatics/btac759.

[96] “Results of SemTab 2021.” In: (2021). doi: 10.5281/zenodo.6211551. url:

https://doi.org/10.5281/zenodo.6211551.

[97] Shivam Sawarn and Gerard Deepak. “MASSTagger: Metadata Aware Semantic

Strategy for Automatic Image Tagging.” In: Digital Technologies and Applica-

tions. Ed. by Saad Motahhir and Badre Bossoufi. Cham: Springer International

Publishing, 2022, pp. 429–438. isbn: 978-3-031-01942-5.

[98] Claude Elwood Shannon. “A Mathematical Theory of Communication.” In: The

Bell System Technical Journal 27 (1948), pp. 379–423. url: http://plan9.bell-

labs.com/cm/ms/what/shannonday/shannon1948.pdf (visited on 04/22/2003).

[99] Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. “Se-

mantic compositionality through recursive matrix-vector spaces.” In: Proceedings

of the 2012 joint conference on empirical methods in natural language process-

ing and computational natural language learning. Association for Computational

Linguistics. 2012, pp. 1201–1211.

216

Bibliography

[100] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çağatay Demiralp, Chen

Chen, and Wang-Chiew Tan. “Annotating Columns with Pre-Trained Language

Models.” In: SIGMOD. New York, NY, USA: ACM, 2022, pp. 1493–1503. isbn:

9781450392495.

[101] A SALESFORCE COMPANY TABLEAU SOFTWARE LLC. Tableau Public.

https://public.tableau.com. 2023.

[102] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Sam

Madden, and Mourad Ouzzani. “RPT: Relational Pre-Trained Transformer is

Almost All You Need towards Democratizing Data Preparation.” In: Proc. VLDB

Endow. 14.8 (Apr. 2021), pp. 1254–1261. issn: 2150-8097. doi: 10.14778/3457390.

3457391. url: https://doi.org/10.14778/3457390.3457391.

[103] DGL Team. HeteroGraphConv. DGL Team. Oct. 2023. url: https://docs.dgl.

ai/generated/dgl.nn.pytorch.HeteroGraphConv.html.

[104] Paroma Varma and Christopher Ré. “Snuba: Automating Weak Supervision to

Label Training Data.” In: VLDB. Vol. 12. 3. VLDB Endowment, Nov. 2018,

pp. 223–236. doi: 10.14778/3291264.3291268. url: https://doi.org/10.

14778/3291264.3291268.

[105] Fernanda B. Viegas, Martin Wattenberg, Frank van Ham, Jesse Kriss, and Matt

McKeon. “ManyEyes: A Site for Visualization at Internet Scale.” In: IEEE Trans-

actions on Visualization and Computer Graphics 13.6 (Nov. 2007), pp. 1121–1128.

issn: 1077-2626. doi: 10.1109/TVCG.2007.70577. url: https://doi.org/10.

1109/TVCG.2007.70577.

[106] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,

Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang

Li, and Zheng Zhang. “Deep Graph Library: A Graph-Centric, Highly-Performant

Package for Graph Neural Networks.” In: arXiv preprint arXiv:1909.01315 (2019).

[107] Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei Zhang.

“TUTA: Tree-based Transformers for Generally Structured Table Pre-training.”

In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &

Data Mining (2020).

[108] Roger C.F. Wong and Clement H.C. Leung. “Automatic Semantic Annotation of

Real-World Web Images.” In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 30.11 (2008), pp. 1933–1944. doi: 10.1109/TPAMI.2008.125.

217

Bibliography

[109] Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and Philip S. Yu.

“Multimodal Large Language Models: A Survey.” In: (2023). arXiv: 2306.13549.

url: https://arxiv.org/abs/2311.13165.

[110] Cong Yan and Yeye He. “Synthesizing Type-Detection Logic for Rich Semantic

Data Types Using Open-Source Code.” In: SIGMOD ’18. ACM, 2018, pp. 35–50.

isbn: 9781450347037. doi: 10.1145/3183713.3196888. url: https://doi.org/

10.1145/3183713.3196888.

[111] Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo, Jax Law, Noah Constant,

Gustavo Hernandez Abrego, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian

Strope, and Ray Kurzweil. “Multilingual Universal Sentence Encoder for Semantic

Retrieval.” In: CoRR abs/1907.04307 (2019). arXiv: 1907.04307.

[112] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. “TaBERT:

Pretraining for Joint Understanding of Textual and Tabular Data.” In: ACL2020.

Online: ACL, July 2020, pp. 8413–8426. doi: 10.18653/v1/2020.acl-main.745.

url: https://aclanthology.org/2020.acl-main.745.

[113] Dan Zhang, Madelon Hulsebos, Yoshihiko Suhara, Çağatay Demiralp, Jinfeng Li,

and Wang-Chiew Tan. “Sato: Contextual Semantic Type Detection in Tables.”

In: VLDB. Vol. 13. 12. VLDB Endowment, July 2020, pp. 1835–1848. doi: 10.

14778/3407790.3407793. url: https://doi.org/10.14778/3407790.3407793.

[114] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M. Procopiuc, and

Divesh Srivastava. “Automatic Discovery of Attributes in Relational Databases.”

In: SIGMOD. New York, NY, USA: ACM, 2011, pp. 109–120. isbn: 9781450306614.

218

	Declaration
	Abstract
	Publications
	Acknowledgments
	Contents
	Acronyms
	I Synopsis
	1 Introduction
	1.1 The Need for Metadata in Data Lakes
	1.2 Towards Learned Metadata Extraction
	1.3 Limitations of Existing Learned Approaches
	1.4 Contributions
	1.5 Outline

	2 Weak Supervision for Learned Semantic Type Extraction
	2.1 Study of Using Existing Learned Approaches
	2.1.1 Dataset and Methodology
	2.1.2 Results of the Study

	2.2 Weak Supervision to Adapt Learned Approaches to New Data Lakes
	2.2.1 Overview of Our Approach
	2.2.2 Label Generation Using Clustering

	2.3 End-to-End Evaluation
	2.4 Key Findings

	3 Steered Training Data Generation for Semantic Type Detection
	3.1 Overview of STEER
	3.1.1 The Labeling Framework
	3.1.2 Steered-Labeling Procedure

	3.2 Labeling Numerical Columns
	3.2.1 Labeling by Context-aware Clustering
	3.2.2 Determining the EMD Threshold
	3.2.3 Numerical-only Tables

	3.3 Labeling Non-Numeric Columns
	3.3.1 Generic Labeling Functions
	3.3.2 Domain-Specific Labeling Functions
	3.3.3 Discussion

	3.4 Experimental Evaluation
	3.4.1 Datasets
	3.4.2 Experimental Design
	3.4.3 STEER on Non-Numerical Data
	3.4.4 STEER on Numerical Data
	3.4.5 Ablation Study

	3.5 Summary

	4 SportsTables: The Missing Labeled Numerical Corpus
	4.1 The Need for a New Corpus
	4.2 Existing Corpora: Dominated by Textual Data
	4.3 The SportsTables Corpus
	4.4 Corpus Characteristics
	4.5 Study of Using SportsTables
	4.6 Summary

	5 Pythagoras: Semantic Type Detection of Numerical Data
	5.1 Context is Essential for Numerical Data
	5.2 Background to GNNs
	5.3 Overview of Pythagoras
	5.3.1 Graph Representation of Tables
	5.3.2 Leveraging Contextual Information
	5.3.3 Model Architecture

	5.4 Experimental Evaluation
	5.4.1 Data Sets and Baselines
	5.4.2 Experimental Design
	5.4.3 Exp. 1: Overall Efficiency
	5.4.4 Exp. 2: Performance for Individual Types
	5.4.5 Exp. 3: Ablation Study

	5.5 Summary

	6 Conclusion and Future Work
	6.1 Reflection
	6.2 Future Research Directions
	6.2.1 Out-Of-Distribution Identification & Human in the Loop
	6.2.2 Extract Relationships Between Table Columns
	6.2.3 Metadata Extraction Beyond Tabular Data

	II Peer-Reviewed Publications
	7 Towards Learned Metadata Extraction for Data Lakes
	7.1 Introduction
	7.2 Overview of Existing Approaches
	7.2.1 Extraction of Semantic Types
	7.2.2 Extraction of Relationships

	7.3 Study of Using Learned Approaches
	7.3.1 Data Sets and Methodology
	7.3.2 Results of the Study

	7.4 Weak Supervision for Semantic Type Extraction
	7.4.1 Overview of Our Approach
	7.4.2 Label Generation using Clustering
	7.4.3 Future Directions

	7.5 End-to-End Evaluation
	7.6 Conclusions

	8 SportsTables: A new Corpus for Semantic Type Detection
	8.1 Introduction
	8.2 Existing Corpora with Semantic Data Types
	8.3 The SportsTables Corpus
	8.4 Analysis of the Corpus
	8.4.1 Corpus Characteristics
	8.4.2 An Initial Study of Using SportsTables

	8.5 Further Research Challenges
	8.6 Conclusion

	9 Steered Training Data Generation for Learned Semantic Type Detection
	9.1 Introduction
	9.2 Overview of STEER
	9.2.1 The Labeling Framework
	9.2.2 Steered-Labeling Procedure

	9.3 Labeling Numerical Columns
	9.3.1 Labeling by Context-aware Clustering
	9.3.2 Determining the EMD Threshold
	9.3.3 Numerical-only Tables

	9.4 Labeling Non-Numeric Columns
	9.4.1 Generic Labeling Functions
	9.4.2 Domain-Specific Labeling Functions
	9.4.3 Discussion

	9.5 Experimental Evaluation
	9.5.1 Datasets
	9.5.2 Experimental Design
	9.5.3 STEER on Non-Numerical Data
	9.5.4 STEER on Numerical Data
	9.5.5 Ablation Study

	9.6 Related Work
	9.7 Conclusions

	10 SportsTables: A new Corpus for Semantic Type Detection (Extended Version)
	10.1 Introduction
	10.2 Existing Corpora
	10.3 The SportsTables Corpus
	10.4 Analysis of the Corpus
	10.4.1 Corpus Characteristics
	10.4.2 Study of Using SportsTables

	10.5 Future Challenges
	10.6 Conclusion
	10.7 Acknowledgements

	11 Pythagoras: Semantic Type Detection of Numerical Data Using Graph Neural Networks (Short Paper)
	11.1 Introduction
	11.2 Overview of Pythagoras
	11.3 Initial Experimental Results
	11.4 Acknowledgements
	11.5 Appendix
	11.5.1 List of Features

	12 Pythagoras: Semantic Type Detection of Numerical Data in Enterprise Data Lakes
	12.1 Introduction
	12.2 Overview of Pythagoras
	12.2.1 Graph Representation of Tables
	12.2.2 Leveraging Contextual Information

	12.3 Model Architecture
	12.3.1 Architecture and Training
	12.3.2 Detecting Numerical Types

	12.4 Experimental Evaluation
	12.4.1 Data Sets and Baselines
	12.4.2 Experimental Design
	12.4.3 Exp. 1: Overall Efficiency
	12.4.4 Exp. 2: Performance for Individual Types
	12.4.5 Exp. 3: Ablation Study

	12.5 Related Work
	12.6 Conclusion
	12.7 Acknowledgements

