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Abstract

In Germany, as in many other countries, the “Energiewende” is a central political and social goal to
counteract climate change. To achieve this goal, dependence on fossil fuels must be reduced and a
transition to a sustainable energy economy promoted. However, this paradigm shift towards re-
newable energies, decentralized energy sources, and electrification of different sectors significantly
impacts the distribution grids’ structure and strains. Integrating decentralized, primarily volatile
energy sources, such as solar and wind power plants, leads to a locally and temporally fluctuating
electricity feed in. In addition, new consumers, such as electric vehicles and heat pumps, place
heavy strains on the lower voltage levels.

The distribution grid operators are now faced with the task of keeping the power supply stable
despite highly variable feed-in and load. In order to continue to ensure the reliability and efficiency
of the power supply, the integration of technologies for real-time monitoring and analysis of the
status is crucial. By using innovative monitoring that provides early warning of critical system
conditions and automated control applications, existing grids can usually continue to operate safely
for a longer period without needing immediate grid expansion.

In this thesis, a state estimation method for medium-voltage grids is developed. The aim is to
estimate the current state of the power system as accurately as possible. The focus here is on
detecting limit violations, such as voltage bands or thermal limit currents, and on the modeling of
uncertainties. Since medium-voltage grids are usually only equipped with a scarce measurement
infrastructure, additional input, usually only available historically, is used as background infor-
mation for the state estimation. This input has significantly higher uncertainties than the precise
real-time measurements. Therefore, it is particularly important in medium-voltage grids to apply
state estimation methods that consider these uncertainties in the output assessment.

Based on this requirement, a probabilistic state estimation method is developed that is suitable for
practice-relevant measurement availability scenarios. The basic algorithm of the developed state
estimation method is based on the Bayes’ rule. This algorithm was extended in the present work by
corresponding modules in order to fulfill the analyzed requirements for state estimation methods for
medium-voltage grids. These extensions include evaluating the probability distribution regarding
critical system states and parameterizing the statistical properties of loads using the available
measurement information. Annual simulations of a representative German medium-voltage grid
are used for the evaluation. With the developed method, it is possible to estimate the probability of
critical system states. The estimation takes less than one second, and the critical system states can
be reliably identified with a detection rate of over 90%. The method also includes classification
and output of warning and alarm stages, which provides an early warning of bottlenecks in the
grid. In order to be practicable for field usage, the method places particular emphasis on a realistic
assumption of the temporally available input data in medium-voltage grids.
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Zusammenfassung

In Deutschland, wie auch in vielen anderen Ländern, ist die Energiewende ein zentrales politisches
und gesellschaftliches Ziel, um dem Klimawandel entgegenzuwirken. Um dieses Ziel zu erreichen,
muss die Abhängigkeit von fossilen Brennstoffen reduziert und ein Übergang zu einer nachhaltigen
Energiewirtschaft gefördert werden. Dieser Paradigmenwechsel hin zu erneuerbaren Energien,
dezentraler Stromversorgung und Elektrifizierung verschiedener Sektoren hat jedoch erhebliche
Auswirkungen auf die Struktur und Belastung der Verteilnetze. Die Integration von dezentralen,
volatilen Energiequellen wie Solar- und Windkraftanlagen, führt zu einem örtlich und zeitlich
schwankenden Stromangebot. Hinzu kommen neue Verbraucher wie Elektroautos und Wärme-
pumpen, welche die unteren Spannungsebenen zusätzlich stark belasten.

Die Verteilnetzbettreiber stehen nun vor der Aufgabe die Stromversorgung, trotz stark variabler
Einspeisung und Last, stabil zu halten. Um die Zuverlässigkeit und die Effizienz der Stromversor-
gung weiterhin sicherzustellen, ist der Einsatz von Technologien zur Echtzeitüberwachung und
-analyse des Netzzustands von entscheidender Bedeutung. Durch den Einsatz von innovativen
Monitoringapplikationen, welche frühzeitig vor kritischen Systemzuständen warnen, und automati-
sierten Regelungsapplikationen können die bestehenden Netze meist für einen längeren Zeitraum
ohne einen sofortigen Netzausbau sicher weiter betrieben werden.

In dieser Arbeit wird eine Zustandsschätzungsmethode für Mittelspannungsnetze entwickelt. Ziel
ist es, den aktuellen Zustand des Stromsystems damit möglichst genau einzuschätzen. Hierbei liegt
der Fokus auf der Erkennung von Grenzwertverletzungen, so wie von Spannungsbändern oder
thermischen Grenzsströmen, und auf der Modellierung von Unsicherheiten. Da Mittelspannungs-
netze meist nur geringfügig mit Messinfrastruktur ausgestattet sind, werden zusätzliche, meist
nur historisch verfügbare Daten als Hintergrundinformation für die Zustandsschätzung verwendet.
Dieser Input weist im Vergleich zu den präzisen Echtzeitmessungen deutlich höhere Unsicher-
heiten auf. Daher ist es in der Mittelspannung besonders wichtig, Zustandsschätzungsmethoden
einzusetzen, die diese Unsicherheiten auch in der Output-Bewertung berücksichtigen.

Basierend auf dieser Anforderung wird ein probabilistisches Zustandsschätzungsverfahren entwi-
ckelt, das für praxisrelevante Messverfügbarkeitsszenarien geeignet ist. Der Basisalgorithmus der
entwickelten Zustandsschätzungsmethode beruht auf dem Konzept von Bayes. Dieser Algorithmus
wurde in der vorliegenden Arbeit durch entsprechende Module erweitert, um die analysierten
Anforderungen an Zustandsschätzungsmethoden für Mittelspannungsnetze zu erfüllen. Diese Er-
weiterungen beinhalten eine Auswertung der Wahrscheinlichkeitsverteilung hinsichtlich kritischen
Systemzuständen sowie eine Parametrierung der statistischen Eigenschaften von Lasten mittels der
zur Verfügung stehenden Messinformationen. Für die Auswertung werden Jahressimulationen eines
repräsentativen deutschen Mittelspannungsnetzes herangezogen. Mit der entwickelten Methode
ist es möglich, die Wahrscheinlichkeit für kritische Systemzustände abzuschätzen. Die Abschätzung
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erfolgt in weniger als einer Sekunde und die kritischen Systemzustände lassen sich mit einer
Erkennungsrate von über 90% zuverlässig identifizieren. Die Methode beinhaltet zudem eine
Klassifizierung und Ausgabe von Warn- und Alarmstufen, welche frühzeitig vor Engpässen im Netz
warnen. Um praktikabel für den Feldeinsatz zu sein, wird besonderer Wert auf eine realistische
Annahme der in Mittelspannungsnetzen zeitlich verfügbaren Inputdaten gelegt.
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1 Motivation - Increasing Need for State
Estimation in Medium-Voltage Grids

1.1 Expected Strong Increase of Operational Limit Violations in
Medium-Voltage Grids

In the last three decades, the generation structure of the German electricity supply system has
changed significantly [1]–[3]. In the design of conventional power grids, a few centralized large
generation units directly connected to the Transmission System (TS) supplied electricity to the
customers in the underlying Distribution System (DS). The German TS operates at the highest
voltage level (ultra-high voltage, UHV). In the DS, the power is conventionally distributed from
high voltage (HV) over medium voltage (MV) to low voltage (LV) grids1.

The progressive change in the generation structure mainly originates from two trends: the strong
increase in renewable energy sources (RES) [4] and the phase-out of large coal and nuclear power
plants [5]. These trends are increasingly leading to decentralized power generation by small-to-
medium power plants that are closer to energy consumption [6].

The major types of RES for power generation are solar, wind, biomass, and hydropower [7], [8].
Figure 1.1 shows the installed capacity of RES in 2012 and 2019. During these seven years, the
installed capacity increased strongly. In particular, for the volatile generation sources photovoltaic
(PV) and wind power, the capacity increased by a factor of 1.5 and 2, respectively. According
to the German Network Development Plan (NDP) [9], the installed RES capacity is expected
to double between 2019 and 2035. As can be seen in Figure 1.1, RES are primarily (> 98%)
installed in the DS (LV-, MV- and HV-level). Consequently, the function of the DS is no longer
consumption-determined only.

The phase-out of large coal and nuclear power plants in Germany are driven by governmental
actions of coal exit [10], to meet the targets of the Paris climate agreement [11], and by the Federal
Parliament resolution to gradually shut down all nuclear power plants [12]. Figure 1.2 shows the
forecasted decrease in the installed capacity of hard coal, lignite, and nuclear power plants. All
nuclear power plants were shut down on 15th of April, 2023. The numbers for installed coal plants
for 2025 result from legally binding decommissioning, i.e., § 50d German Energy Industry Act
(Energiewirtschaftsgesetz, EnWG). The values for 2035 are taken from the NDP. In two scenarios
(B and C) from NDP, all coal plants should be shut down until 2035. In scenario A, there is a
remaining 7MW for lignite.

1For Germany: UHV: 380/220 kV, HV: 110 kV, MV: 6-35 kV, LV: 0.4 kV. In other countries different voltage levels are
defined, e.g., the US levels reform to the ANSI C84.1-2020 standard.

1



LV MV HV UHV

0

10

20

30

40

50

2019 2019 2019 2019

In
st
al
le
d
ca
pa

ci
ty

in
G
W

PV Wind other RES

2012 2012 2012 2012

Figure 1.1: Installed capacity of RES in Germany in
2012 and 2019 for varying voltage levels
inGW [13]. It is clear to see that the overall
RES capacity has increased and that the
major part is installed in DS (LV-, MV- and
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Figure 1.2: Forecasted phase-out of coal and nu-
clear power plants in Germany [5],
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Additional challenges for power grids arise from the increasing integration of new load types, such
as electric vehicles (EV) [14] and heat pumps (HP) [15] or new storage systems [16]. According
to the German Federal Ministry for the Environment, an EV increases the electricity demand
of a 4-person household by about 50% [17]. The most significant load from EVs on the power
grids is expected from the “evening charging peak” resulting from the simultaneous charging by
commuters. In January 2023, the total number of electric vehicles was over 1 million EVs [18],
and the number of public charging stations reached over 80 thousand [19].

The current concerns about gas shortages and high gas prices increase the desire for heat pumps.
The trade association for heat pumps expected a plus of 52% for newly installed devices in
2023 [20]. When the new Building Energy Law (Gebäudeenergiegesetz, GEG) [21] comes into
force, the demand for heat pumps is expected to increase continuously. The long-term goal of
the law is to eliminate fossil fuel heating until 2045. Further, new heating equipment should be
operated with 65% RES, for which heat pumps are suitable. Since charging stations and heat
pumps are mainly installed in low- and medium-voltage grids, a strong, temporally fluctuating
increase in load is to be expected in these lower voltage levels.

Due to the changing generation structure and the additional consumers, the German power grids
are increasingly driven to their limits, in particular, the LV- and MV levels. However, actions like
grid extensions to increase the transmission capability are delayed or cannot be implemented fast
enough [22]. As a result, operational limits are more and more often violated [1], [23]. Stationary
operational limits of a power system are given by upper and lower voltage limits (voltage band)
and by thermal current limitation of lines and transformers [24]. Overloading equipment leads to
high temperatures, possibly damaging or prematurely aging grid components. In addition to grid
extension, a promising solution to avoid limit violations is to use flexibility options such as storage
systems or Power-to-Heat (P2H) applications [25] and delaying EV charging [26].
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Monitoring, control, and protection applications are necessary to prevent the grid from limit
violations. The basis for these applications is the quasi-stationary state of the system [27]. If an
operational limit is violated, the system state is claimed to be critical. The information whether
the grid is in a normal, nearly critical or critical state is necessary for distribution system operators
(DSOs) to know if recovering or preventive operational actions are required. Based on the system
state, operators can execute mitigation measures to bring the system back within operational limits.

The system state is estimated by an application called State Estimation (SE). For the TS and HV
grids, there is a widely used state estimation method [28], but not for the MV- and LV grids. In
the historical centralized power system, the consumption by customers in the lower voltage levels
was sufficiently predictable and volatile generation sources were not yet installed. Hence, there
was no need for state estimation applications in LV and MV levels, which would have justified the
associated costs and efforts. Until now, there are no widely used state estimation methods for these
voltage levels. However, the need for LV and MV grid state estimation methods strongly increases
with the transformation of the power system.

Since several LV grids are connected to one MV grid, the number of customers affected by dis-
ruptions in the corresponding grid is larger on MV than on LV level. Hence, the development for
monitoring applications in MV grid should be a priority. Further, the output of state estimation
methods is usually used as decision support for appropriate mitigation measures. Since system op-
erators in MV grids have higher degrees of freedom than in LV grids, e.g., in controlling generation
plants, the mitigation measures can be realized faster and easier here. Hence, this thesis focuses
on state estimation for MV grids.

In the German DS, the MV level has the largest share of installed RES capacity at 49.4% (51.71GW,
2021). Until 2031 the DSOs expect an increase to 69.5GW in the MV grids. According to a study
from German Energy Agency (Deutsche Energie-Agentur, dena)[1], this increase is leading to
more and more frequent back feeds from the MV level. This leads to voltage band and overload
problems that require grid expansion and operational management measures. On the demand
side, an increasing number of bottlenecks and limit violations due to e-mobility, heat pumps and
partly new storage systems is expected, especially in the MV and LV levels. Figure 1.3 shows
the consumption-related limit violations of line sections in German MV grids according to a poll
among 58 (2021) respectively 82 (2022) DSOs by the German Federal Network Agency (Deutsche
Bundesnetzagentur, BNetzA). In 2021, there were only nine limit violations [29]. In 2022, there
are already 59. They are expected to rise by a factor of 50 to nearly 3000 limit violations in 2027
[23].
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voltage band
branch currents
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*

Figure 1.3: Consumption-related limit violations of line sections in German MV grids in 2021 [29], 2022
and forecast for 2027 [23]

3



Given the strong expected increase of operational limit violations in MV grids, it becomes in-
creasingly important to monitor and control MV grids, as it has been done for the higher voltage
levels for years. However, in MV grids, there is only little development of real-time measurement
instrumentation and it is not expected to increase much in the medium term due to the high
retrofitting costs. Therefore, the widely used state estimation approach from TS, which depends
on a high amount of real-time measurements, can not be used directly in MV grids. In addition,
other state estimation approaches may be more suitable for MV grid state estimation.

Hence, there is an increasing need to develop state estimation methods for MV
grids to monitor the feasibility of the system state under changing system

conditions.

This is considered a precondition to mitigate the grid impact due to the increased share of RES and
the electrification of other energy sectors. Figure 1.4 summarizes the motivation in an overview of
changing system conditions and the status quo for MV grid state estimation methods.

New generation structure:
• Phase-out of large coal & nuclear

power plants (located in TS/HV)
• Strong increase of RES

(decentralized, mostly volatile
& primarily (> 98%) located in DS)

Additional consumers:
• Electric Vehicles
• Heat pumps
primarily connected to MV/LV

+

Higher strain on MV grids
→ Strong increase in limit violations expected
→ Need for monitoring, control and protection

application to ensure secure grid condition
→ Need for MV grid State Estimation – as the

above applications are base on the system state

MV grid state estimation methods
• In historical centralized power grid: sufficiently predictable demand for MV grids + no RES

→ no need for state estimation applications in MV-levels
Up to now: There is yet no widely used state estimation method for MV grids

& low level of measurement instrumentation
• There is a widely used state estimation algorithm for TS/HV, but it can not be used directly in
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Figure 1.4: Overview of changing grid conditions and the status quo for MV grid state estimation methods
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1.2 Objective, Structure and Contributions of this Thesis

As shown in Section 1.1, there is an increasing need for state estimation methods for MV grids to
ensure secure grid conditions further.

To meet the upcoming challenges of MV grids, it becomes increasingly important to deploy state
estimation methods adapted to the characteristics of MV grids

In order to reach this objective, the thesis is structured as follows:

To define the research question of this thesis, Chapter 2 discusses the requirements and challenges
for MV-state estimation. At first, the requirements for state estimation methods of MV grids are
defined. There are several challenges in meeting these requirements, mainly resulting from the
characteristics of the MV grids. For this, an overview of the characteristic of MV grids is given.
It focuses on the differences compared to TS and HV grids, where state estimation has been in
operation for years. It is followed by a discussion of the challenges for MV grid state estimation to
fulfill the previously defined requirements. It results in a derivation of necessary properties for
MV grid state estimation methods. The research questions arising from the preceding analysis are
given in Section 2.3.

The aim of Chapter 3 is to find a suitable approach for MV grid state estimation. Therefore different
state estimation algorithms are compared. The chapter starts with a definition of the power system.
After this, a literature review of MV grid state estimation approaches is given. In the subsequent
section, different state estimation algorithms are compared to determine which approach fits best
to the required properties defined in Section 2.2. Based on this, an analytic probabilistic approach
using Bayes’ theorem is chosen. After this, the basic principle of the selected Bayesian state
estimation algorithm is given. Own contributions have adapted the algorithm from the literature
to incorporate branch capacities, consider load correlations and use all measurable variables from
Remote Terminal Units (RTU) and Phasor Measurement Units (PMU).

To identify the research gaps for Bayesian state estimation approaches, Chapter 4 compares previ-
ously published Bayesian state estimation methods. First, the uncertainties and availability of the
inputs for Bayesian state estimation methods are analyzed. This section contains an end-to-end
real-time measurement uncertainty analysis for RTUs and PMUs and an overview of Smart Meter
(SM) coverage in European countries and US states. Second, Bayesian state estimation methods
from literature are compared to fulfill the requirements defined in Section 2.2. This clearly shows
the research gaps addressed in this thesis (Section 2.3). To face the research gaps two new
modules are developed which are added to the selected state estimation algorithm from 3.3: The
post-processing module calculates the probability of critical system states due to limit violations.
The pre-processing module is a statistics module for varying data sources with different levels of
temporal resolution. It focuses on considering correlations between customer behaviors, which
significantly benefits to the state estimation results.
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Chapter 5 contains several case studies. It starts by describing the simulation environment includ-
ing the test grid, the synthesized data and all defined test assumptions. The central part of this
chapter is the evaluation of accurately recognizing critical system states due to voltage band and
thermal current limit violations. Another essential part is the evaluation of the benefits of the
correlation-aware synthesis method for the state estimation results. The chapter concludes with a
summary of the strengths and limitations of the proposed MV grid state estimation method.

The main results of this thesis are summarized in Chapter 6. Also, an outlook on future research
topics is provided.
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2 Analysis – Requirements and Challenges for
State Estimation of MV Grids

This chapter analyzes the requirements for state estimation methods for MV grids and their
associated challenges. From this derive appropriate properties for MV grid state estimation
methods and the research questions of this thesis.

2.1 Requirements for State Estimation of MV Grids

Monitoring, control, and protection applications are required to protect the grid from limit viola-
tions [27]. These applications are based on the current system state of the power grid. Monitoring
applications use the system state as a basis for decision support. In control applications, the system
state can be used for switching connections or congestion management, such as load control
or generation curtailment. Further, the system state can also be used to adapt the protection
parameters in protection applications. Hence, the system state and, consequently, state estimation
methods are essential to react in case of critical system states with correct mitigation measures.

State estimation generally describes an approach to processing rawmeasurement data and topology
information to an estimate of the current state of a power system. The process can consist of several
steps linked with each other, including grid topology processing, observability analysis, a state
estimation algorithm, and bad data detection [24], [30]. The topology processor usually captures
the status of lines, tap changers, and switching devices and configures the current grid topology.
The observability analysis checks the measurement data availability1. Then, the processed grid
topology and available measurement data are used by the state estimation algorithm to estimate
the current state of the system. The function of bad data detection is to identify and remove data
affected by gross measurement errors.

The general objective of state estimation methods is to estimate the quasi-stationary system state
as accurately as possible [24], [31], [32]. For MV grids, the requirements for state estimation are
defined here by

• sufficient accuracy with a focus on the detection of limit violations and

• near real-time for timely interventions by system operators.

1If not enough real-time measurements are available, additional non-real-time input is used, or a grid reduction is
executed.
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The first requirement concerns the accuracy of the results. For a DSO, it is primarily important to
know whether any operational limit is violated that could disrupt the operation or whether the
system is in normal condition. Hence, the aim is not to find the best deterministic estimate but
to detect operational limit violations as accurately as possible. The considered operational limits
are voltage band and thermal current limit violations. If critical system states can be detected
prematurely, measures can be taken before the equipment gets harmed or the protection devices
are triggered. This thesis aims to achieve possibly high detection rates with the scarce measurement
instrumentation in MV grids. The target threshold value for detection rates is exemplary set at
90%2.

The near real-time condition must also be defined more precisely: Only static, non-dynamical effects
are considered. The state estimation results should be available timely after the measurements are
received. A millisecond interval would be unnecessary as the results are given to human-in-the-loop
actions for switching or congestion management and also because of the thermal inertia of the
components. This thesis aims for a computational time limit of up to 60 seconds for the state
estimation process. This requirement is in line with the definition for the real-time condition of the
German BNA [33]3. Internal exchanges with system operators have confirmed that time limits in
the range of 30 to 60 seconds are appropriate. The faster the results are available and, thus, the
quicker it is possible to react, the better the aging of the electrical equipment and triggering of the
protection devices can be prevented.

The fulfilment of these requirements for state estimation of MV grids faces some challenges, which
are analyzed in the following.

2.2 Challenges to Fulfill the Defined Requirements for State Estimation
of MV Grids

As the challenges for MV grid state estimation result mainly from the characteristics of the MV
grids, these are considered first. Table 2.1 compares MV grid characteristics to TS and HV grids,
where state estimation methods have been used for years.

One challenge to meet the near real-time requirement is the possible high number of buses in MV
grids. Large grid sizes can cause high calculation times and computational complexity, especially
for iterative calculation processes, e.g., required to handle non-linear models. Furthermore, power
flow model simplification (e.g., DC power flow) that can be used in TS to decrease calculation time
is not applicable for MV grids. The typical simplifications in UHV/HV levels take advantage of
neglectable small line resistances for the overhead lines (high X/R-value). MV grids typically have
a high wiring rate of 70% to 90%. Since the X/R-value is mostly below 1 for cables [38], the line
resistances must be addressed in power grid equations in MV grids.

2The target value for detection rates is a freely chosen parameter that can be adapted.
3The German BNA defines the term “real-time” as the period of time in which the information to be transmitted has to
be updated.

4In rural areas also, 40% possible
5Line inductance to resistance values
6Mostly only at HV/MV substations and central MV nodes [45]
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Table 2.1: Comparison of MV grid and TS/HV grids characteristics

Characteristic MV grid TS and HV grid

Grid structure Ring structure Meshed
mostly operated openly [34], [35]

Wiring rate Typical 70% to 90%4[36] UHV < 1% & HV < 10% [37]

X/R-value5 Mostly below 1 [38] Mostly between 4 and 6 [38]

Number of buses Possibly high number of buses [39] Limited to one connected TS grid

Phase imbalances Possible Symmetrical, three-phase
operation [3]but rare [40], [41]

Uncertainty in grid
topology

Possible Grid parameters and switching
states are fully known [1]but mostly assumed to be known

Measurement
coverage

Low [42]–[44], often less than 10%
busbar coverage6

Mostly every busbar is equipped
with real-time measurements [34]

In case of phase imbalances, a three-phase calculation for the correctness of the results is needed,
which leads to higher complexity and calculation times. Phase imbalances can result from unsym-
metrical phase loading or structural asymmetry of operating equipment. In Germany, the power
grid is three-phase, so only unsymmetrical phase loading is relevant here7. The imbalance ratio
in German MV and LV grids is limited by DIN EN 50160 norm to 2%8. For MV grids, the loads
are ordinarily three-phase and balanced. Large single-phase or two-phase loads can be connected,
such as AC overhead lines for trains or induction and resistance furnaces, but they can be mitigated
by using special transformers9 [40]. Imbalances between the three phases are more relevant for
the LV grids. Low voltage loads, e.g. PCs or lighting systems, are usually single-phase. So, the
load circuits are often distributed among the three outer conductors, for example, one per floor
of a building. The LV grid imbalances could be transformed to MV level, but this happens only
rarely for two reasons: Due to the usually large number of customers connected at one secondary
substation, the imbalances stochastically balance each other. Further, the star-delta switching10 of
the transformer compensates most effects of the LV side imbalance [41]. Consequently, imbalances
for MV grids are not considered further in this thesis and symmetrical grid operation is assumed.

7Structural asymmetry is present in US grids with single- and two-phase laterals MV feeders.
8measured as 10-minute values with an instantaneous maximum of 4%.
9e.g., transformer includes additional load for balancing

10Dyn5: Delta connection on primary side, star connection on the secondary side, star point led out on the secondary
side and 150 ◦ phase shift between primary and secondary side. For unbalanced loading on LV side the currents
flow in the star point of the transformer, so the secondary system receives a zero component. Because of the delta
configuration of the MV side, the primary system can not have a zero component. So, the current in the star point
causes uniformly distributed magnetizing flows on the transformer legs on the primary side.
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The accuracy of the state estimation results can be affected by the uncertainty of the grid model.
Any faulty assumption of switch configuration or uncertainty in line parameters can cause un-
certainty in grid topology11. Hence, there is a large research field for topology identification in
distribution grids [47]–[49]. Nevertheless, the grid topology is assumed here to be known to
maintain the focus on state estimation. The main challenge for MV grid state estimation results
from low real-time measurement coverage. The lack of real-time information affects the accuracy
of the results. Due to cost aspects, a full real-time meter coverage of MV grids with real-time PMU
or RTU sensors is not expected in the medium term. However, selectively placed micro-PMU can
be a cost-efficient option in the future [50]. Further, the small number of real-time measurements
in predominantly radially operated grids (open ring structure) could lead to single feeders with
no available measurement information. This affects the accuracy of the results in this feeder
tremendously.

One option to compensate for the scarce measurement infrastructure in MV grids is using non-real-
time input from additional data sources. This input is typically a batch of data available historically
or as forecast. A probability distribution can model the uncertainty of this input, and an empirical
probability distribution can fit the data batches. Hence, the state estimation method should be able
to take a probability distribution as input to consider the uncertainties of the input. Since iterative
approaches may have difficulty converging when processing inputs with high uncertainties, this is
also an argument for using non-iterative approaches or MV grid state estimation. As the input has
uncertainties, so does the output. Hence, to be aware of the output uncertainties, a probability
distribution is a valuable representation of the results. In addition, it should be noted that the
available non-real-time input for MV grid state estimation may have different temporal resolution
(time-resolved vs. only annual data). Therefore, the method should further be able to process
non-real-time data with varying levels of detail.

The following required properties for MV grid state estimation methods are derived from the above
challenge analysis and the defined state estimation requirements from Section 2.1:

1. The ability to process probability distributions as input: For accuracy aspects, the uncer-
tainties of the input have to be taken into account. So, the state estimation algorithm should
be able to process probability distributions as input.

2. Assume realistic availability for non-real-time inputs: The method should accommodate
inputs with varying levels of detail.

3. Being time-efficient: Time-saving non-iterative approaches help to achieve near real-time
conditions and also to avoid struggling with convergence issues.

4. Output the state estimation results as a probability distribution: The output of the algorithm
should be modeled as a probability distribution to reach uncertainty awareness for the results.

11For LV grid, where often no detailed and reliable grid model is given [46], the grid uncertainty is highly challenging
for state estimation.
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Figure 2.1 summarizes the results of this chapter. It compares the defined state estimation
requirements with MV grid characteristics and summarizes the resulting properties for MV grid
state estimation methods in an overview chart.

Near real-time
for timely interventions

possible high calculation times due to
• Possible high bus numbers
• High wiring rates & low X/R-values
• Possible phase imbalances*

vs.

Time-efficient:
Time saving & non-iterative
→ near real-time & no convergence issues

Accuracy
focusing on limit violation detection

• Low real-time measurement coverage
→ additional (non real-time) data

• Openly operated ring structure
• Possible grid topology uncertainty*

vs.

Input & output as probability distribution:
→ to model uncertainties
Realistic availability assumption for input

Requirements:

MV grid
characteristics:

Required SE
method properties
for MV grids:

*assumed negligibly small

Figure 2.1: Comparing defined state estimation requirements with MV grid characteristics and summarizing
the resulting properties for state estimation methods in MV grids

2.3 Research Questions of this Thesis

From the above-defined properties for MV grid state estimation method and the requirements from
Section 2.1, the main Research Question of this thesis results:

Research Question 1

Which method is efficient & practical for uncertainty-aware state estimation for MV grids?

The adjectives used to describe the properties required for the state estimation method are defined
as follows:

• Efficient: The method should be accurate with a focus on detecting limit violations. The
considered operating limits are voltage band and thermal current limits. High identification
rates (> 90%) of limit violations are required. Further, the results should be available in near
real-time for timely interventions of DSOs. Delay times of up to 60 seconds are tolerated.

• Practical: The method should be feasible under the scarce measurement infrastructure in
MV grids. This includes the ability to process the resulting uncertainties of the input, e.g., in
the form of a probability distribution, and to handle input data with varying levels of detail.

• Uncertainty-aware: The estimates should be a probability distribution to be aware of the
uncertainty of the result.
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The relevant information for MV grid operators is the current, possibly critical, state of their system.
As described in Section 2.1, the system state is used as a basis for monitoring applications. The
system state can be compared to operational limits to declare warning or alert messages. The
operational use case of this thesis is the decision support for monitoring applications. Future
research topics, not considered in this thesis, are use cases for control and protection applications.

As the state estimation output should be a probability distribution resulting from the requirement
of uncertainty awareness, the probabilistic information must be utilized for relevant operation use
cases. Hence, the probabilistic output should be processed so that the monitoring application can
output warning or alert messages. This results in a second Research Question:

Research Question 2

How can the probabilistic state information be utilized for practical decision support in grid
operation?
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3 Modeling - State Estimation Approaches

This chapter aims to find a suitable basis algorithm for MV grid state estimation methods. For
this, it compares different state estimation approaches from literature according to the defined
requirements from the previous Chapter 2. The first section contains the modeling of the power
system. The second section continues with a literature overview for state estimation algorithms. In
the following section, the selected Bayesian linear state estimation algorithm is given. In the last
section, the widely used state estimation approach for higher voltage levels is set as benchmark for
the case study analysis and is therefore described and compared to the selected approach.

3.1 Definition of the Power System

In this section, the power system is described. Firstly, it concentrates on the basic grid variables for
power system modeling. Secondly, the system state variables and the measurements, which are
the main elements for state estimation applications, are described. Thirdly, the operational limits
are defined.

3.1.1 Basic Power Grid Variables

Description of power grid basics can be found in many publications [3], [35], [51]–[53]. In
this thesis, the power grid is operated with alternating current (AC) for a given grid frequency,
e.g. 50Hz. The electrical grid variables in a power system are voltages V (kV), currents I (kA),
apparent power S (MVA) and admittances Y (Ω−1). They are assumed quasi-stationary and the
calculations are performed with RMS values1 [54]. The grid variables are complex-valued and can
be represented by the real and imaginary parts of the variable (rectangular form) are respectively
aim or alternatively by magnitude and phase (polar form) amag respectively aang.

• rectangular form: a = are + j · aim

• polar form: a = amag · ejaang = amag · (cos(aang) + j sin(aang))

The transformation steps from polar to rectangular (see Equations 3.1 and 3.2) and from rectangular
to polar form (see Equations 3.3 and 3.4) are below.

are = amag · cos(aang) (3.1)

aim = amag · sin(aang) (3.2)

amag = |a| =
√
(a2re + a2im) (3.3)

1In electronics, the RMS value is the Root-Mean-Square error of a time-varying physical quantity. For a sinusoidal
waveform, it is equal the peak value divided by

√
2.
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aang = arg(a) =



arctan(aimare ) if are > 0

arctan(aimare ) + π if are < 0, aim ≥ 0

arctan(aimare )− π if are < 0, aim < 0
π
2 if are = 0, aim > 0

−π
2 if are = 0, aim < 0

(3.4)

An asterisk ∗ next to a complex variable denotes a complex conjugation:

a∗ = are − j · aim = amag · e−jaang (3.5)

Multiple variables can be written as a matrix A. They are printed in bold to distinguish them from
the scalar variables. A one-dimensional matrix is a vector. A Transpose operation of matrix A is
denoted by AT, and a Hermitian conjugation by AH = A∗T. A diagonal matrix is a square matrix
with zero elements outside the main diagonal. The diagonal operation (diag) of a vector returns a
diagonal matrix with the elements of the vector on the main diagonal.

Based on the assumption of symmetrical grid operation, the modeling is done single-phase and is
adapted to a three-phase model at the end of this subsection. The grid is modeled withN+1 nodes,
also called buses. There are N non-slack buses and one slack bus marked with index “ns” and “0”,
respectively. The slack bus sets the reference voltage angle (mostly 0 ◦). Further, it balances the
apparent node power Sbus,n of the grid nodes n ∈ {1, ..., N + 1}. The real part of the apparent
power is called active power P and the imaginary part reactive power Q. Q is set to be positive
for inductive components. This thesis uses the passive sign convention (see Figure 3.1). This
convention defines a power flow from the grid into the connected component as positive and power
flowing from the component to the grid as negative [55]. So, the generation power is counted as
negative Sgen,n < 0 and the consumption power as positive Sload,n > 0. The whole grid is balanced
when the sum of the generation and consumption units minus the resulting grid losses Sloss > 0
over all grid nodes results in zero.

N+1∑
n=1

Sbus,n − Sloss =
N+1∑
n=1

(
Sload,n + Sgen,n

)
− Sloss

!
= 0 (3.6)

V

I

S

Figure 3.1: Passive Sign Convention [55]
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The nodes are connected byB branches, including lines and transformers. The power is transported
via the branches. This power flow’s driving source is the voltage potential differences between
the nodes [56]. The line losses can be divided into ohmic losses caused by the real-valued branch
resistances R and into inductive and capacitive losses, which sources can be summarized in a
real-valued branch reactance X. The resulting complex valued branch impedance Z is given by:

Z = R+ j ·X (3.7)

Its inverse is the branch admittance denoted by Y = Z−1.

The branches are modeled as π-equivalent circuits [57], which is given in Figure 3.2. Each branch
b ∈ {1, ..., B} has a “from” af,b and a “to” at,b side.

Vf,b Vt,b

If,b It,b

f t

Ysh,b Ysh,b

Zs,b =
1

Ys,b

Figure 3.2: π-equivalent branch model

The currents at both ends of the branch If,b and It,b can be calculated by the series branch admittance
Ys,b (resp. series branch impedance Zs,b), the shunt branch admittance Ysh,b, and the node voltages
at each end of the branch Vf,b and Vt,b respectively. The shunt branch admittance results mainly
from the line charging and is primarily capacitive.

[
If,b

It,b

]
=

[
Yff,b Yft,b

Ytf,b Ytt,b

][
Vf,b

Vt,b

]
(3.8)

[
Yff,b Yft,b

Ytf,b Ytt,b

]
=

(Ys,b + Ysh,b) · 1
|τb|2

−Ys,b · 1
τ∗b

−Ys,b · 1
τb

(Ys,b + Ysh,b)

 (3.9)

If the branch element is a transformer, the transformer ratio τb is given by Equation 3.10, otherwise,
it is equal 1 (for lines). τb is defined by the ratio of primary to secondary windings w at the “from”
node and by a possible phase shift θb in ◦.

τb = wb · ejθb·
π

180◦ (3.10)
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To generalize Equation 3.8 for all branch currents in the power grid, information about the node
connection is necessary. The connectivity matrices Cf ∈ RB×N+1 and Ct ∈ RB×N+1 denote which
bus is connected to which branch:

Cf,b,n =

{
1 if node n ∈ {1, ..., N + 1} at “from” side of branch b ∈ {1, ..., B}
0 else

(3.11)

Ct,b,n =

{
1 if node n ∈ {1, ..., N + 1} at “to” side of branch b ∈ {1, ..., B}
0 else

(3.12)

The “from” and “to” side branch admittance matrices Y f ∈ CB×N+1 and Y t ∈ CB×N+1 respectively,
can be calculated with the connectivity matrices as follows:

[
Y f

Y t

]
=

[
diag(Yff) diag(Yft)

diag(Ytf) diag(Ytt)

][
Cf

Ct

]
(3.13)

Yff =


Yff,1
...

Yff,B

 Yft =


Yft,1
...

Yft,B

 Ytf =


Ytf,1
...

Ytf,B

 Ytt =


Ytt,1
...

Ytt,B

 (3.14)

So, the generalized branch current equations for I f ∈ CB and I t ∈ CB are given by the product of
branch admittance matrices and the node voltage vector V ∈ CN+1:

I f = Y fV (3.15)

I t = Y tV (3.16)

The apparent branch power flows Sf ∈ CB and St ∈ CB can also be calculated in dependence on
V and branch admittance matrices Y f and Y t.

Sf = diag (V f)Y
∗
fV

∗ with V f = CfV (3.17)

St = diag (V t)Y
∗
tV

∗ with V t = CtV (3.18)

V f ∈ CB and V t ∈ CB are the voltage phasor vector of the voltages at the „from“ and „to“ sides
of the branches.

The relation between node voltages V and apparent power at the nodes Sbus is given by the bus
admittance matrix Y bus ∈ RN+1×N+1.

Sbus = diag (V )Y ∗
busV

∗ (3.19)

Y bus = −
(
CT

f Y f +CT
t Y t + diag(Y bsh)

)
(3.20)
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Ysh,n is the shunt element at the n-th bus. The vector for shunts at buses is given by:

Y bsh =


Ybsh,1

...
Ybsh,N

 (3.21)

For the passive sign convention, the diagonal elements (n = m) of the bus admittance matrix
Y bus,nn are equal to the negative sum of the series admittances of the branches (and all shunt
elements) connected to the corresponding node n. The non-diagonal elements (n 6= m) of Y bus,nm
consist of the series admittance of the branch between the two corresponding nodes n and m. The
negative and positive signs would be changed for the active sign convention.

The currents at the nodes Ibus ∈ CN+1, which flow into the connected components, are given by

Ibus = Y busV (3.22)

For a balanced three-phase power system, the three-phase apparent power is three times the
single-phase power: S3ph = 3Sph = V phI

∗
ph. Depending on the star or delta connection of the

phases, the values must be differentiated between phase-to-phase and phase values.

3.1.2 State Variables and Measurements

As defined by Roland E. Kalman in 1960, the state of a dynamical system is described by a set of
system variables that capture all relevant information needed to predict the system’s behavior over
time [58].

Definition 1: State Variables

A minimum set of variables that contain all relevant information to describe the state of
a system uniquely are called state variables according to [59]. From these state variables,
all other system variables can be calculated. The state variable vector is denoted by x. A
distinction is made between true and estimated state variables. An estimated state variable
vector is denoted by x̂.

The most common state variables for power systems consist either of all node voltage phasors
V ∈ CN+1 or of all branch currents I f ∈ CB (resp. I t) phasors. Further state variables are all
branch power or power node phasors. To address the research question, where accuracy with a
focus on voltage band and thermal current limit violations is required, the voltage and current
magnitudes are the relevant variables. For this thesis, voltage phasors in polar form are chosen as
state variables. They already include the voltage magnitudes. The branch current magnitudes are
part of the branch currents phasor, which can be calculated from the voltage phasors according to
Equations 3.15 and 3.16.
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The actual system state is not directly known but is measured by various meters. The resulting real-
time measurements contain measurement errors. There can be systematic or random measurement
errors [60]. Systematic errors reveal the same deviations for applying the measurement in the
same way. The primary source for systematic measurement errors results from human misconduct
(e.g., incorrect calibration, reversed connections of measurement devices or overdue maintenance).
Random errors may vary for the same measurement procedure. To focus on the algorithm part of
state estimation methods and their usability for monitoring applications, gross measurement errors,
which would need a separate bad data detection step, are not considered here. Since therefore
the uncertainty of real-time measurements is assumed to arise solely from random measurement
errors, the assumption of homoscedasticity2 for measurement errors is justified within the scope of
this thesis. In addition to measurement errors, there may be too few real-time measurements to
obtain a reliable result. In this case, input from additional data sources is required, as mentioned
in Section 2.2. This input is primarily historical or forecasted and thus has higher uncertainties
than real-time measurements. In summary, real-time measurements can not be directly taken
for the system state, but they can be processed (along with additional input) by state estimation
applications to provide an accurate estimate of the system state.

The state estimator receives a number M of real-time measurements z. The measurement function
h(x) maps x to the measured variables. Measurable variables are real and imaginary parts of
apparent power for node and branch measurements, and magnitude and angle parts of voltage and
branch current measurements. A fully occupied measurement function hfull(x) with all measurable
variables is given below.

hfull(x) =
[
P bus P f P t Qbus Qf Qt V mag V ang I f,mag I t,mag I f,ang I t,ang

]T
(3.23)

3.1.3 Operational Limits

For safe grid operation, V mag ∈ RN must be kept within a voltage band, which is determined by
an upper Vup and a lower Vlow voltage limit. The grid utilization is limited by the thermal branch
current Ith,b of the respective operating equipment b. The three operational limits can be defined
as follows:

Vlow ≤ Vmag,n ≤ Vup ∀n ∈ {1, ..., N} (3.24)

If,b ≤ Ith,b ∀ b ∈ {1, ..., B} (3.25)

It,b ≤ Ith,b ∀ b ∈ {1, ..., B} (3.26)

According to the mandatory European norm, DIN EN 50160 [62], the voltage limits in MV and LV
grids are set to ±10%3. As though most of the secondary substations have a fixed transformation
ratio, the voltage band must be divided for MV and LV level4. To ensure compliance with the
2Homoscedasticity means here the measurement errors are distributed in standard deviations [61].
395% of 10-minute average of the measured value of each weekly interval must be within ±10% of nominal voltage.
4For this, voltage drops over the lines as well as over the secondary substation have to be considered. The voltage rises
for connected generation units is limited to 3% for LV and 2% for MV grids [63]. Further, reserves for unbalances or
manufacturing tolerances are also often taken into account.
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combined limits for MV and LV grids, many distribution system operators set self-defined stricter
voltage band limits for their MV grids. In Germany, the limits are often set to ±4% [64] or ±6%
[65], [66]. In the USA, the limits are often ±5%, as given in the ANSI norm C84.1. One option for
higher grid utilization is a secondary transformer with controllable functionalities, often called a
smart transformer (regelbarer Ortsnetztransformator, rONT) [67].

The thermal current limits for the branch elements are given in several standards5 depending on
cable type and the operation conditions [68]. The cable types can be found in the data sheets of
the corresponding equipment.

Regarding the operational limits, normal and critical system states are defined as follows:

Definition 2: Normal vs. Critical System State

A system state is assumed normal if no operational limits, such as voltage band or thermal
current limits, are violated. Otherwise, the state is claimed to be critical (Critical System
State, CSS).

Only the quasi-stationary system state is considered here so that dynamical effects, which are
relevant for, e.g., detecting frequency limit violations, are not considered.

3.2 Overview of State Estimation Algorithms from Literature

This section gives a literature overview of the different state estimation approaches for MV grids.
For most state estimation approaches, firstly a measurement model is assumed. The conventional
measurement model is given by

z = h(x) + e . (3.27)

z is an M -dimensional measurement vector, x denotes the state variable vector, h is the previously
defined measurement function, and e is the measurement error vector. The measurement errors
are assumed to be independent and normally distributed with mean vector µe equal to zero and
standard deviation vector σe.

Concerning the state variables x, the following state variables for MV grid state estimation ap-
proaches are used in literature:

• Voltage phasors in polar [28] and rectangular forms [69]

• Branch current phasors in polar [70] and rectangular forms [71],

• Branch power phasors [72]

The approaches use homogeneous types of state variables. So, for example, the authors do not mix
voltage and current phasors in one subset or polar form with a rectangular form. This simplifies
the subsequent calculation of other state variables to direct matrix calculations.

5Exemplary standards for thermal current limits are DIN VDE 0276, DIN VDE 0271 and DIN VDE 0298–4.
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Concerning uncertainties, all state estimation approaches can be divided into two different approach
types [73]:

Definition 3: Deterministic vs. Probabilistic Approaches

• Deterministic: The model produces a single, definite outcome for any given set of inputs.

• Probabilistic: The model considers a range of possible outcomes, and the results are ex-
pressed in probabilities.

Most deterministic state estimation approaches aim to estimate x by minimizing (or maximiz-
ing6) an objective function J . J can include the variables x, z and h(x). The results are received
by the use of various solving algorithms.

x̂ = argmin
x

J(x, z, h(x)) (3.28)

Most of the probabilistic state estimation approaches from the literature use the Bayes rule. It
was first described by Thomas Bayes and was published posthumously in 1763 [75]. It describes
the ability to determine the probability of an event when another event has already occurred. This
is the basic idea of conditional probability. In the following, probabilistic state estimation methods
are also called Bayesian state estimation methods. For state estimation applications, the Bayes rule
is formulated as the conditional probability of the state variable vector x provided a measurement
vector z:

p (x | z) = p (z | x) p (x)
p (z)

. (3.29)

The left side of the Equation 3.29 is called posterior (po) probability. It is the probability for
x after (= lat. post) consideration of real-time measurements. When considering continuous
variables instead of discrete events, p are probability densities.

The prior (pr) probability p (x) is the probability of x before (= lat. prior) the availability of
real-time measurements. The conditional probability for z given x is called the likelihood function
p (z | x). It expresses the probability of the observed measurements z for different settings of
x. p (z) is the normalizing constant to ensure that the sum for discrete events or the integral for
continuous variables of the posterior probability over z equals one [76]. Hence, the posterior
probability is proportional to the product of likelihood and prior probability.

p (x | z) ∝ p (z | x) p (x) (3.30)

6Maximizing of an objective function is equal minimizing the negative objective function [74].
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To decide between deterministic and probabilistic approaches, the following consideration is taken:
The most widely used state estimation algorithm in TS and the other deterministic approaches
have only single-value outputs instead of distributions. For this, they neglect the uncertainties of
output. Concerning the research question 1, the following model decision is taken:

As only probabilistic approaches can process probability distributions, which are necessarily
needed for modeling the uncertainties of the input and output, a Bayesian algorithm is the

most suitable option for state estimation of MV grids.

However, many approaches in literature, especially the commonly used TS state estimation ap-
proach, are deterministic. To understand the idea and to be able to compare them to probabilistic
approaches, some of the most common deterministic state estimation approaches are discussed in
the following.

3.2.1 Overview of Deterministic Approaches

The conventional approach, which is widely used for TS and HV grids, uses voltage phasor in
polar form for state variables, the Weighted-Least-Squares (WLS) as the objective function, and
the Gauss-Newton optimization as an iterative solving algorithm. It was introduced by Schweppe
in 1970 [28]. This approach desires full observability by measurements. Explicit the number of
measurementsM must be at least 2N −1. In order to apply this approach to medium-voltage grids,
where there is little coverage by real-time meters, the estimator was adapted to use additional
non-real-time data as so-called pseudo-measurements [77]. These pseudo-measurements are given
to the estimator in the same way as the real-time measurements but with high standard deviations
for measurement accuracy.

Many approaches in literature have adapted the conventional approach in different ways. Some
authors change the objective function to achieve more robustness against outliers or use different
solving algorithms. Table 3.1 shows an overview of different objective functions used for state
estimation approaches in literature.
The first five objective functions (WLS, LMS, LTS, LAV and GML) focus on minimizing the residuals
rm, which are defined as the difference between the measurement value zm and its measurement
function entry hm(x) for m ∈ {1, ...,M}.

rm = zm−hm(x) (3.31)

WLS, LMS, LTS, LAV and GML are all used for regression methods. The most common regression
method is the method of Least Squares (LS), which goes back to Gauss or Legendre. It aims to
minimize the sum of squared residuals:

x̂LS = argmin
x

M∑
m=1

r2m (3.32)
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Table 3.1: Objective functions for MV grid state estimation algorithms from literature

Abbreviation Name Objective function Literature

WLS Weighted Least Squares argmin
x

(rTWr) [28]

LMS Least-Median of Squares argmin
x

(median{r2m}) [78]

LTS Least Trimmed Squares argmin
x

Mtrim∑
m=1

(r2)(m) [78]

LAV Least Absolute Value argmin
x

M∑
m=1

| rm | [79]

GML Generalized Maximum-Likelihood argmin
x

(
M∑

m=1
σ−2
e,mζ(rm)) [80]

MMSE Minimized Mean Square Error argmin
x

(E
[
(x− x̂)T (x− x̂)

]
) [81]

MAP Maximum-A-Posterior argmax
x

(p (x | z)) [82], [83]

LS has computational simplicity but lacks robustness, as the squares heavily penalize large residuals.
As LMS, LTS, LAV and GML are more robust against outliers, they are called robust regression
methods [84]. They are more computationally demanding than LS.

• WLS: Minimizes the weighted sum of squared residuals. The weight matrix is denoted as
W = (diag(σe))

2 ∈ RM×M , where the weights on the diagonal elements are the inverse
of the squared standard deviations. Measurements with higher variance are given lower
weights and measurements with lower variance are given higher weights. This means that z
with more reliable and less variable measurements has a stronger influence on the regression
model, while z with more uncertainty has a reduced impact. Like the LS, it is pretty sensitive
to outliers.

• LMS: Minimizes the median of the squared residuals. The median operation is denoted by
median{}. The median is less sensitive to extreme values than the mean, which is used in
the LS method.

• LTS: Minimizes the sum of the smallest ordered squared residuals. First, all residuals are
squared and ordered by size from smallest to highest values. r(m) denotes the m-th ordered
residual. Then only a subset of all measurements is taken into account, and the other
part does not influence the fit. The trimming constant Mtrim of the subset has to satisfy
M
2 < Mtrim ≤ M . As the residuals were ordered first, it considers only the smaller residuals.

• LAV: Minimizes the sum of absolute residuals. The idea is that absolute values treat large
residuals more moderately than squared residuals.
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• GML: Minimizes the weighted sum of a certain function ζ applied to the residuals. Commonly
used functions include the absolute or normalized residuals, Huber’s loss or Tukey’s biweight
[80].

MMSE and MAP have another focus than minimizing the residuals:

• MMSE aims to find x̂ that minimizes the average squared difference between x̂ and x. E
denotes the expectation value operation. MMSE focuses on minimizing the estimation error,
not the measurement error.

• MAP intends to find x̂ that maximizes the conditional probability for x given measurements
z. With a normal distribution, this is the expectation value of the posterior probability.

The estimates of the above objective functions can be obtained by different solving algorithms.
The overview in Table 3.2 of the mathematical modeling and exemplary solving algorithms for MV
grid state estimation approaches covers most of the used models and algorithms from literature.

Table 3.2: Mathematical modeling and solving algorithms for optimization problems for MV grid state
estimation approaches from literature

Mathematical
modeling

Exemplary solving
algorithm

Description Literature

Unconstrained
optimization

Gauss-Newton or
Newton-Raphson

Iterative approximation algorithm for
numerical solution of nonlinear systems of
equations.

[28], [78]

Constrained
optimization

Interior Point
Optimization

Solve constrained optimization problems
by finding points within the feasible
region.

[85]

Neural
Network

Back-propagation Used in feed-forward neural networks to
train the network by iteratively adjusting
the weights of the connections.

[86], [87]

Swarm
intelligence

Particle swarm, Ant
colony, Artificial Bee
Colony, Firefly

Inspired by the collective behavior of
social insects, that communicate to solve
optimization problems.

[88]–[91]

Fuzzy logic
based

Fuzzy C-Means Using fuzzy set theory to incorporate
information affected by uncertainty.

[92], [93]
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3.2.2 Overview of Bayesian Approaches

Bayesian state estimation approaches can be divided into analytic [94], iterative [83] and machine
learning based [95] approaches. A short explanation for each of them in the context of state
estimation is given below:

• Iterative approaches repeat an action multiple times to approach a numerical approximated
solution of the non-linear analytically given state equations.

• In Machine Learning approaches for state estimation, an artificial neural network is trained
by historical data to learn the behavior in order to predict current cases.

• An Analytic (or direct) approach obtains a solution through direct calculations.

The second defined property for MV grid state estimation methods from Section 2.2 requires meth-
ods to be non-iterative to achieve near real-time conditions and not to struggle with convergence
issues. So, iterative Bayesian approaches are not considered for the method in this thesis.

The processes of neural networks take place in a black box and are, therefore, not easily compre-
hensible. Another disadvantage is the need for huge amounts of data to train the neural network
usefully. As in MV grids, often only scarce measurements are available (see Section 2.2), this can
cause difficulties for applying neural networks.

An analytic Bayesian approach is more transparent than a neural network and has better explain-
ability. Further, it can deal with the scarce available meter data. Compared to iterative approaches,
it is time-saving since it essentially consists of only a few matrix multiplications, and it has no
convergence issues.

Consequently, in this thesis, an analytic Bayesian approach is
chosen for the state estimation method for MV grids.

3.3 Basic Principle of Bayesian Linear State Estimation Algorithm

The basic principle of Bayesian linear state estimation for power distribution grids was established
in 2014 by Schenato et al. [94]. The algorithm is further developed in this thesis by:

• Incorporating branch capacities (capacitive reactance) in linearized power flow equation.

• Considering load correlations by applying the multivariate complex normal distribution.

• Utilization of all measurable variables from (micro) Phasor Measurement Units (PMU) and
Remote Terminal Unit (RTU) using Jacobi Matrix of h(x).
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3.3.1 Multivariate Normal Distribution

In the following, all distributions are assumed to be multivariate normal distributed with expectation
value vector µ and covariance matrix Σ. The probability density function Φy for a multivariate
normal distribution for D dimensional real-valued vector y ∈ RD is given by [76]

Φy = N
(
y | µy,Σy

)
=

1

(2π)
D
2 |Σy|

1
2

exp
{
−1

2

(
y − µy

)T
Σy

−1
(
y − µy

)}
. (3.33)

The expectation value µy ∈ RD and the covariance matrix elements Σyij for i, j ∈ {1, ..., D} are
defined as

µy = E[y] =
∫ ∞

−∞
N
(
y | µy,Σy

)
ydy (3.34)

Σyij = E
[
(yi − µyi)(yj − µyj )

]
. (3.35)

The diagonal elements (i = j) of the covariance matrix Σy ∈ RD×D are the marginal variances,
which are equal to the squares of the standard deviations σyi .

Σyii = var(yi) = σ2
yi (3.36)

The non-diagonal elements (i 6= j) can further be defined over the Pearson correlation coefficient
ρyij between element yi and yj and their standard deviations:

ρyij =
Σyij

σyi · σyj
(3.37)

If element yi and yj are uncorrelated (ρyij = 0), then the corresponding covariance matrix elements
(Σyij and Σyji) are zero. Hence, if all elements of the vector y are uncorrelated, Σy results in a
diagonal matrix.

3.3.2 Calculation Steps of Bayesian Algorithm

In order to obtain the voltage posterior distribution ΦVpo , Bayes rule from 3.29 is applied. For this,
it is necessary to build the product of the likelihood distribution Φz|x and the prior distribution of
voltages ΦVpr .

ΦVpo ∝ Φz|x × ΦVpr (3.38)

When the prior distribution of voltages ΦVpr is not known or not available, it can be approximated
from the distributions of loads using a linearized power flow calculation. A load probability
distribution ΦS can be used to capture the distribution of load cases in the system. The process is
described in more detail below.
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Background Distribution

ΦS is given for the apparent power S ∈ CN of possible consumer and generation units connected
to the non-slack nodes of the grid. In the context of Bayesian state estimation, this distribution
for loads is often called Background distribution. The expectation values µS and the covariance
matrix ΣS can be determined e.g., from historical power series. The algorithm is implemented in
rectangular form. When using the multivariate normal distribution, the real and imaginary parts
of vectors and matrices are stacked as shown in Equation 3.39 exemplary for S, µS and ΣS . The
relation of real and imaginary parts in the stacked covariance matrix ΣS ∈ C2N×2N are denoted
with r and i for real and imaginary parts, respectively.

ΦS = N (S | µS ,ΣS) = N

((
Sre

Sim

)∣∣∣(µS,re

µS,im

)
,

(
ΣS,rr ΣS,ri

ΣS,ir ΣS,ii

))
(3.39)

Linearized Power Flow

For the transformation of ΦS to ΦVpr , a linearized power flow is applied. The linearized power flow
equation used here is equal to the first iteration step of the forward/backward sweep-based power
flow algorithm [96]. For this, the bus admittance matrix is split into a slack row L0,row ∈ C1×N , a
slack column L0,col ∈ CN×1, a slack variance L0,0 ∈ C and remaining non-slack parts L ∈ CN×N .

Y bus =

[
L0,0 L0,row

L0,col L

]
(3.40)

With Equation 3.40, the bus current Equation 3.22 can be written as:

[
I0

Ins

]
=

[
L0,0 L0,row

L0,col L

][
V0

V ns

]
(3.41)

The non-slack currents result in 3.42 and can be rewritten to Equation 3.43 for non-slack voltages
Vns. Substituting Ins by the complex conjugated product of apparent power and voltage results in
Equation 3.44.

Ins = L0,colV0 +LV ns (3.42)

V ns = L−1(Ins −L0,colV0) = −L−1L0,colV0 +L−1Ins (3.43)

= −L−1L0,colV0 +L−1V −1∗
ns S∗. (3.44)
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For the first iteration step, all voltage phasors are assumed to equal the slack voltage phasor
Vns,n = V0. So, the linearized power flow equation is given by

V ns = −L−1L0,colV0 +
L−1

V ∗
0

S∗. (3.45)

The power flow equation contains the slack voltage phasor V0 ∈ C, the complex conjugated appar-
ent power of consumers and generation units at all non-slack buses S∗ ∈ CN , as well as “non-slack”
L ∈ CN×N and slack column L0,col ∈ CN of the bus admittance matrix Y bus.

The form of this equation slightly differs from the equation used in [94]. The additional matrix
factor −L−1L0,col in front of V0 considers the line capacities in the system. This term cannot be
neglected for grids with a high number of underground cables having high line capacities without
loss of precision. Furthermore, the equation here assumes not only real-valued slack voltages.

The linear affine transformation is done with complex components to consider the load correlation
between the buses and between the real and imaginary parts in the algorithm. Hence, the load
distribution ΦS is converted to complex normal form ΦC

S . This is a more general solution than the
restrictive assumption of independent loads and an addition to the proposed algorithm in [94]. The
calculation of the complex expectation value µS ∈ CN , the complex covariance matrix Γ S ∈ CN×N ,
and the pseudo-covariance matrix CS ∈ CN×N is given in Equations 3.47 to 3.49 [97].

ΦC
S = N (S | µS ,Γ S ,CS) (3.46)

µS = µS,re + jµS,im (3.47)

Γ S = ΣS,rr +ΣS,ii + j
(
ΣS,ir −ΣS,ri

)
(3.48)

CS = ΣS,rr −ΣS,ii + j
(
ΣS,ir +ΣS,ri

)
(3.49)

Prior Distribution

Now, the affine transformation of the linearized power flow equation is executed to reach the voltage
prior distribution. Any linear transformation of a Gaussian distribution is again Gaussian. The
general form of linear affine transformation for a normal and a complex-valued normal distribution
is given in Appendix A.2.1. For the transformation, the power flow Equation 3.45 is rewritten as

V ns = AS∗ + b (3.50)

with A =
L−1

V ∗
0

and b = −L−1L0,colV0.
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The explicit calculation steps for the linear affine transformation of complex load distribution ΦC
S

to complex prior voltage distribution ΦC
Vpr

are given below.

ΦC
Vpr = N

(
V | µVpr ,Γ Vpr ,CVpr

)
(3.51)

µVpr = AµS∗ + b (3.52)

Γ Vpr = AΓ S∗AH (3.53)

CVpr = ACS∗AT (3.54)

For the subsequent calculation step Φz|x × ΦVpr , the complex voltage prior distribution ΦC
Vpr

must
be re-transformed to real component normal distribution ΦVpr [97].

ΦVpr = N
(
V | µVpr ,ΣVpr

)
(3.55)

ΣVpr =

(
1
2Re

(
Γ Vpr +CVpr

)
1
2Im

(
−Γ Vpr +CVpr

)
1
2Im

(
Γ Vpr +CVpr

)
1
2Re

(
Γ Vpr −CVpr

) ) (3.56)

Likelihood Distribution

The likelihood distribution Φz|x = N
(
z | µz|x(x),Σz|x

)
is defined by the expectation value

µz|x ∈ RM and the covariance matrix Σz|x ∈ RM . Σz|x is determined by the accuracy of the given
measurements. It is a diagonal matrix with squared standard deviations of the measurements
σz ∈ RM×M for the diagonal elements. The standard deviations can be obtained from the accuracy
of the installed measurement devices.

Σz|x = (diag(σz))
2 (3.57)

For µz|x, the measurement function h(x) is linearized around µVpr using Taylor series linearization
(see appendix A.2.2).

µz|x(x;µVpr) ≈ h
(
µVpr

)
+H

(
x− µVpr

)
(3.58)

H ∈ CM×2N is the Jacobian matrix of measurement function and is given by

H =
(
∂h(x)m
∂Vre,n

∂h(x),m
∂Vim,n

)
(3.59)

It is received by partial deviations with respect to Vre,n and Vim,n. In [94], H was only defined for
voltage phasor measurements. In this thesis, it was extended for all measurable variables according
to entries of hfull from Equation 3.23. The resulting entries are given in Appendix A.2.3.
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Bayes Step

The product of two normal distributions results in another normal distribution [98]. Using the
“completing square” operation [76], the expectation value and covariance matrix for the posterior
distribution can be determined. The exponent of a normal distribution can be written in quadratic
form:

−1

2
(x− µx)

TΣ−1
x (x− µx) = −1

2
xTΣ−1

x x+ xTΣ−1
x µx + const. (3.60)

Here it can be seen that the second-order term in x equals the inverse of Σx, and the first-order
term in x equals Σ−1

x µx. Hence, for a normal distribution resulting from the product of two other
normal distributions, the covariance matrix and the expectation value can be obtained from second
and linear-order terms from the quadratic form of the exponent.

For this, the posterior distribution can be derived from the sum of the exponents of the likelihood
and the prior distribution.

−1

2

[(
z − µz|x

)T
Σ−1

z|x

(
z − µz|x

)
+
(
x− µVpr

)T
Σ−1

Vpr

(
x− µVpr

)]
(3.61)

In this Equation 3.61 µz|x is substituted by Equation 3.58. After multiplying out, there are second-
order terms of x (3.62), linear x terms (3.63, 3.64) and terms independent of x (3.65).

−1

2

[
HTxTΣ−1

z|xHx+ xTΣ−1
Vpr

x (3.62)

−HTxTΣ−1
z|x(z +HµVpr − h(µVpr))− xTΣ−1

Vpr
µVpr (3.63)

−(z +HµVpr − h(µVpr))
TΣ−1

z|xHx− µT
VprΣ

−1
Vpr

x (3.64)

+(z +HµVpr − h(µVpr))Σ
−1
z|x(z +HµVpr − h(µVpr)) + µT

VprΣ
−1
Vpr

]
(3.65)

According to 3.60, the inverse of the second-order terms is equal to the new covariance matrix:

ΣVpo = (HTΣ−1
z|xH +Σ−1

Vpr
)−1 (3.66)

= ΣVpr −ΣVprH
T (HΣVprH

T +Σz|x
)−1

HΣVpr (3.67)

With the theorem from [99], Equation 3.66 can also be written as Equation 3.67. The general
form of this theorem is given in Appendix A.2.4.
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According to Equation 3.60, the new expectation value for posterior distribution µVpo is equal to
the product of the posterior variance and the linear terms of the exponent in x:

µVpo = ΣVpo(H
TΣ−1

z|x(z +HµVpr − h(µVpr)) +Σ−1
Vpr

µVpr) (3.68)

Posterior Distribution

Hence, the voltage posterior density function ΦVpo can be written as below with posterior distribu-
tion covariance ΣVpo and expectation value µVpo:

ΦVpo = N
(
V | µVpo ,ΣVpo

)
(3.69)

ΣVpo = ΣVpr −KHΣVpr (3.70)

µVpo = µVpr +K
(
z − h

(
µVpr

))
(3.71)

with K = ΣVprH
T (HΣVprH

T +Σz|x
)−1

Finally, ΦVpo is marginalized to distributions of the posterior voltage ΦVpo,n at each node n ∈
{0, ..., N}.

ΦVpo,n = N (Vpo,n | µVpo,n, ΣVpo,n) (3.72)

In the last step, each ΦVpo,n is transformed to polar form. The conversion of the expectation value
to magnitude and phase follows the general Equations 3.3 and 3.4, respectively.

µVpo,mag,n =

√(
µVpo,re,n

)2
+
(
µVpo,im,n

)2 (3.73)

µVpo,ang,n = arg
(
µVpo,n

)
(3.74)

A linear Taylor series approximation is used to transform the marginalized posterior variances into
polar form. Their derivation is given in Appendix A.2.5.

ΣVpo,mag,n =

(
µVpo,re,n

µVpo,im,n

)T

×ΣVpo,n ×

(
µVpo,re,n

µVpo,im,n

)
×
(
µVpo,mag

)−2 (3.75)

ΣVpo,ang,n =

(
−µVpo,im,n

µVpo,re,n

)T

×ΣVpo,n ×

(
−µVpo,im,n

µVpo,re,n

)
×
(
µVpo,mag

)−4 (3.76)
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3.3.3 Summary of Bayesian Algorithm

Figure 3.3 summarizes the above-described state estimation algorithm steps in a flow chart.
The algorithm output constitutes the marginalized voltage posterior distribution in polar form
(Vmag,n, Vang,n for n ∈ RN ). As mentioned in definition 1, the other state variables can be calculated
from them by using Equations 3.15-3.19.

The required inputs for the Bayesian state estimation algorithm are:

• The grid topology, which includes line connections and switching states, and the grid pa-
rameters. From this, Y bus can be built, which is necessary for the linearized power flow
transformation to calculate ΦVpr (see Equation 3.45) and for possible node power measure-
ments in h(x) and H. Further, Y f and Y t can be calculated, which are needed for various
branch measurements in h(x) and H.

• The real-time measurements z, their uncertainties σz and the measurement type and element.
Together with the bus and branch admittance matrices, the measurement uncertainties, type
and element information are necessary to generate the likelihood distribution Φz|x.

• The non-real-time meter data to generate the background distribution of loads ΦS .

A dashed line frames the part for the online7 state estimation. The prior and the measurement
distribution can be calculated offline, whereas the state is updated every time new real-time mea-
surements are available. The Bayes step is illustrated in the small exemplary graph in Figure 3.3.

Summary: The state estimation algorithm for MV grids in this thesis is set on analytic Bayesian
algorithm (see Section 3.2). The algorithm has been described in detail in Section 3.3.2, and
the single steps are given in an overview chart in the current section. Finally, a short section
follows, where the equations of the Bayesian approach are compared to the most widely used state
estimation approach for TS.

7“Online estimation algorithms estimate the parameters and states of a model when new data is available during the
operation of the physical system.” [100]
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Figure 3.3: Flow chart of proposed Bayesian Linear State Estimation algorithm. The blue marked steps are
added or adapted to the work of [94]. As mentioned at the beginning of section 3.3, with these
adaptions it is possible to incorporate branch capacities in the linearized power flow equation,
to consider load correlations, and to utilize all measurable variables from PMUs and RTUs.
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3.4 Comparison of Bayesian to Benchmark State Estimation Algorithm

In this thesis, the widely used state estimation approach for TS grids is selected as benchmark state
estimation algorithm. It solves the WLS objective function by using the iterative Gauss Newton
algorithm. The solving scheme is given in the following Subsection. After this, the Bayesian based
objective functions MAP is compared to the WLS objective function from the benchmark approach.

3.4.1 Benchmark State Estimation Algorithm

As mentioned in Section 3.2.1, the WLS objective function aims to minimize the squared sum of
residuals weighted by the standard deviation of measurements. In the conventional approach, it
is assumed that all measurements are uncorrelated. Hence the covariance matrix is, in fact, a
diagonal matrix, i.e. W−1 = diag( 1

σe
)2.

x̂WLS = argmin
x

[
(z − h(x))TW−1(z − h(x))

]
(3.77)

This objective function J(x) = x̂WLS is solved iteratively with Gauss-Newton function [24]. To find
x that minimizes J , the first-order derivation of J according to x has to be satisfied:

g(x) =
∂J(x)

∂x
= −HTW−1[z − h(x)]

!
= 0 (3.78)

H =
∂h(x)

∂x
(3.79)

Due to non-linear measurement function h(x), the results can not be calculated in closed form.
Hence, g(x) is linearized around xk by using linearized Taylor series (see Equation A.4 in ap-
pendix A.2.2). The Gauss-Newton iteration uses an approximated gain matrixG(x), which neglects
the higher order terms8.

g(x) ≈ g(xk) +G(xk)(x− xk)
!
= 0 (3.80)

G(xk) =
∂g(x)

∂x
≈ HT (xk)W

−1H(xk) (3.81)

The iterative solution scheme for Gauss-Newton method with iteration index k is then given by:

x(k+1) = xk − [G(xk)]
−1 · g(xk) (3.82)

The algorithm converges if ∆x =| x(k+1) − xk | is smaller than a given tolerance.

8Netwon-Raphson iterations take the second-order terms into account. For this, it has higher computational costs.
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3.4.2 Comparison of Maximum-A-Posterior and Weighted Least Square Approach

Bayesian state estimation methods can generally be used to calculate a full probability distribution
of system state variables. As the benchmark approach has only a deterministic output, its estimate
can not be compared to the entire posterior distribution but to e.g., the Maximum-A-Posterior
estimate (MAP). MAP aims to find x that maximizes the posterior probability p(x | z). By (3.29),
this is equivalent to finding x that maximizes the product of the likelihood p(z | x) and the
prior (“pr”) probability p(x) (3.84), since the marginal measurement probability p(z) acts as a
normalizing constant.

x̂MAP = argmax
x

p (x | z) (3.83)

= argmax
x

p (z | x) p (x) (3.84)

For (multivariate) normal Gaussian distributions, finding x that maximizes the posterior distribution
Φpo is equivalent to finding x that minimizes the negative sum of the exponents of the likelihood
(z−µz|x)

TΣ−1
z|x(z−µz|x) and the prior distribution (x−µxpr)

TΣ−1
xpr(x−µxpr) (see Equation 3.61).

x̂MAP = argmax
x

Φxpo (3.85)

= argmin
x

[
(z − µz|x)

TΣ−1
z|x(z − µz|x) + (x− µxpr)

TΣ−1
xpr(x− µxpr)

]
(3.86)

Further, for normal Gaussian distributions, the MAP estimate is equal to the expectation value of
the posterior distribution µxpo and hence equal to the MMSE defined by

x̂MMSE = E [x | z] = µxpo = x̂MAP. (3.87)

The first multiplier of MAP is the likelihood function. The Maximum-Likelihood (ML) estimator
(x̂ML) maximizes the conditional probability for x given z (3.88).

x̂ML = argmax
x

p (z | x) (3.88)

= argmax
x

[
(z − µz|x)

TΣ−1
z|x(z − µz|x)

]
(3.89)

If in the Maximum-A-Posterior Equation 3.83, the prior distribution is assumed to be uniform and
thus p(x) is a constant for all x, then x̂MAP= x̂ML.

Assuming normal distributions, independence and homoscedasticity of measurement errors, and
µz|x = h(x), then the WLS objective function equals the ML objective function [101].
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Hence, for the assumption of a uniform prior distribution (MAP equal ML) together with the above
assumptions, the objective function of MAP is equal to WLS. Figure 3.4 compares ML, WLS and
MAP for varying modeling assumptions.

Modeling assumptions Consequences

• Uniform prior distribution

• normal distribution
• independence & homoscedasticity

of measurement errors
• µz|x = h(x)

ML = MAP

ML = WLS

ML = MAP = WLS&

Figure 3.4: Comparing ML, MAP and WLS for different modeling assumptions

Instead of neglecting the prior distribution or assuming it uniform, the WLS objective function can
also be extended to equal the MAP estimate: The Extended Kalman Filter9 (EKF) [103] adapts the
WLS by a forecast state (prior knowledge) in such a way that it is equal to the MAP estimate. Hence,
MAP and the EKF can be used equivalently as objective function for state estimation algorithms.

9The Kalman filtering recursively updates its estimates based on new measurements [102].
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4 Method - Bayesian State Estimator for MV Grids

This chapter compares the Bayesian state estimation methods from literature according to the
requirements defined in research question 1. One of the requirements for the state estimation
method is to consider the uncertainties of the input data and its varying temporal availability.
Hence, before the literature analysis, the inputs for Bayesian state estimations must be analyzed in
more detail (see Section 4.1). From the subsequent literature review, the research gaps result for
Bayesian state estimation methods in MV grids. To face these research gaps, two new modules are
developed here that complement the selected basis algorithm (Bayesian linear state estimation
algorithm) described in the previous chapter.

4.1 Input of Bayesian State Estimation Methods for MV Grids

The inputs for the Bayesian state estimator have already been mentioned in Subsection 3.3.3. They
include the grid topology and parameters, the non-real-time data for background distribution,
and the real-time measurements. The real-time measurements and the non-real-time inputs are
distinguished according to the following definitions:

• Real-time measurements: Measurements from the field that are available to the system
operator within seconds. Each time new real-time measurements are available, a new state
estimation run is performed (see online state estimation in Subsection 3.3.3).

• Non-real-time data: Data that is only available to the system operator minutes to months
after the actual measurement or comes from forecasting tools or exogenous data sources such
as weather measurements. This data is used in the background distribution of the Bayesian
linear state estimator.

In the following, different real-time measurement devices are compared in terms of measurable
values, measurement accuracy, and temporal consistency. It continues with an overview of different
non-real-time inputs for the background distribution and a deep dive into its correlation properties.
The last subsection concerns practice-relevant considerations for the grid topology of test grids.

4.1.1 Real-Time Measurements

In MV grids, real-time measurements are usually only taken at HV/MV substations and at central
MV nodes [45]. In addition to widely used RTU data, more and more PMUs are installed in the
power grids [104]–[106]. RTUs measure a set of system variables including Vmag, Imag, P or Q
measurements, while PMUs measure the complete voltage or current phasors (V , I). Due to the
additional angle measurement, PMUs require an accurate time synchronization. For this, a global
positioning system (GPS) receiver connected to the PMUs is required. In addition, PMU devices
have high-quality sensors, for which their overall measurement accuracy is at least one order of
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magnitude higher than for RTUs1. The highly precise PMUs are more expensive than RTUs, mainly
due to the expensive high-speed core processor and GPS equipment. The main differences between
RTU and PMU technologies are summarized in Table 4.1 [105], [107], [108].

Table 4.1: Comparison of RTU and PMU devices

RTU PMU

Magnitude measurement X X

Phase measurement X

Time synchronization X

Time resolution 1ms - 1 s 0.001ms
Measurement device uncertainty mostly 0.2 - 1.5% mostly < 0.05%
Phase deviation 0.01 - 0.05◦

Advantage more cost effective accurate time synchronization

In the future, so-called micro-PMUs (µ-PMU) will be promising real-time measurement devices
in MV grids. They are one order of magnitude cheaper than PMUs by replacing the expensive
high-speed processor with low-cost microprocessors [109], [110]. They are claimed to have
standard deviations of 0.05%, and 0.01◦ and benefit from possible angle measurement if connected
to a GPS receiver [111], [112]. Currently, there are only a few µ-PMUs implemented.

To generate the likelihood distribution, the uncertainty of the real-time measurements is required
(see Equation 3.57). In the field, measurement devices are connected to instrument transformers,
which also cause measurement uncertainties. Consequently, not only the measurement device itself
(RTU or PMU) is decisive for the uncertainty of a measurement value [113]. For this, the state
estimation method must consider the end-to-end uncertainty of the entire measurement chain.
This is analyzed in the following.

End-to-End Real-Time Measurement Uncertainty Analysis

For the accuracy of the state estimation result, the quality of the real-time measurements plays
an important role. The quality of the real-time measurements depends on the measurement
accuracy and temporal consistency. The accuracy of a measured value depends on all devices in
the measurement chain, which is exemplary given in Figure 4.1.

Actual values Instrument transformer Measurement device Control center

total deviation = difference between value in control center & actual value in field

Figure 4.1: Measurement chain: from actual values to values received in the control center

1The high accuracy, together with the high reporting rate, allows observation of transients, which is important for
frequency stability in (ultra) HV levels.
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The difference between the value received in the control center and the actual value in the field is
the total measurement error. Hence, for the uncertainty of a measurement value, the uncertainties
of all chain elements must be considered. The resulting measurement accuracy thus includes the
accuracy of the measurement device and the connected instrument transformer.

Instrument transformers are divided into current transformers (CT) [114] and voltage transform-
ers (VT)2 [115]. The accuracy of the instrument transformers depends on the materials of the core.
Some cores are designed to provide high accuracy for measurement applications, and others are
designed to be more robust for protection measures to provide reliable performance during fault
conditions. The accuracy classes for instrument transformers are given in the IEC 61869 standard
for current [114] and voltage [115] transformers. For measurement applications, the accuracy
classes range from 0.1 to 3. The accuracy class number equals the maximum relative error for
magnitude values in %3. The maximum relative errors for protection cores are between 1 and 3%
for CTs and 3 or 6% for VTs, and thus are higher than with measurement core. Hence, real-time
measurement devices for state estimation applications should be primarily connected to instrument
transformers with measurement cores to achieve accurate results 4. For further consideration, in-
strument transformers with a 0.5 measurement accuracy class are selected. In the accuracy classes,
there is also a phase displacement given. For the 0.5 accuracy class, it is 0.33◦ for VT and 0.5◦ for CT.

Now, the accuracies of the measurement devices (RTU and PMU) are discussed. The so-called
performance classes for RTUs are given in the IEC 61557-12 standard [116]. The performance
class number corresponds to the maximum allowed relative deviations (equivalent to the accuracy
class of instrument transformers). For voltage and current measurements, the performance classes
range from 0.05 to 2. The performance classes for active power measurement lie between 0.1
and 2.5. For reactive power measurements, performance classes of 2 or 3 can be assumed. The
accuracy of the PMU measurements is affected by the accuracy of the analog-to-digital converter
[107], the central processing unit [117], and the GPS receiver [118]. The synchrophasor standard
IEEE C37.118.1 [119] defines a maximally allowed total vector error of 1% [120]. Hence, for zero
phase deviations, the allowed magnitude deviation is 1%, and for zero magnitude deviation, the
allowed phase deviation is 0.47 ◦ (= 26µs). In reality, none of them is zero. To not violate any of
the magnitude or angle limits, the PMUs are designed to reach higher accuracies: In literature
and data sheets, the standard deviation for PMUs is given between 0.01-0.06% for magnitude
measurements and 0.01-0.05 ◦ for phase deviation [121]–[124].

For generating the covariance matrix of the likelihood distribution for Bayesian state estimation,
the standard deviations of measurement errors are necessary. For this, the standard deviation for
exemplary PMU and RTU measurement chains is calculated. Each measurement chain consists of
the standard deviation of the measurement device and instrument transformer. The instrument
transformer is assumed to have the accuracy class 0.5 and RTU to have the performance class
0.5 for V & I and 1 for P & Q. As the values for instrument transformers and RTUs are given
as maximum thresholds, they first must be transformed to standard deviation values. According
to [125], [126], it is assumed that the given maximum error covers 95% of all measured values.

2VTs are also called potential transformers (PT).
3For CT, there are higher deviations if the measured current is < 20% of rated primary current.
4If a measurement device should be installed where a protection device is already available, the measurement device
is mostly connected to the existing protection instrument transformers for economic aspects.
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Assuming normally distributed measurement errors, the error interval is consequently in the range
of µe ± 1.96σe. For this, the maximum deviation values from the standards are divided by a
factor of 1.96 to reach the value for one standard deviation. The PMUs’ standard deviations are
assumed to be 0.02% and 0.02 ◦ from literature analysis. The combined standard deviation for the
measurement chain is calculated by the root sum of squares with the assumption of statistically
independent errors. The results are rounded to one decimal place and are given in Table 4.2.

Table 4.2: Comparison of standard deviations for RTU and PMU measurement chains with 0.5 accuracy
class for instrument transformer and RTU performance class 0.5 for V & I and 1 for P & Q.
Standard deviation of PMU are assumed to be 0.02% and 0.02 ◦.

PMU chain RTU chain
V I V & I P & Q

magnitude deviation in % 0.2 0.2 0.4 0.6
angle deviation ◦ 0.2 0.3 - -

In Table 4.2, the end-to-end standard deviations for PMU and RTU measurement chains for node
voltage and branch current magnitude measurements differ only by 0.2%. The reason is that the
major part of the uncertainty of the PMU chain results from the instrument transformer. Hence, for
actual values from the field measured by a PMU directly connected to an instrument transformer,
the high accuracy of the PMU device itself is, therefore, not fully effective. In the example given in
the table above, the factor of improvement for PMU over RTU from individual devices to devices
within a measurement chain reduces from 10 to 2.

In addition to the measurement accuracy, the quality of the real-time measurements depends also
on the temporal consistency. For PMUs, the temporal consistency is high for two reasons: once for
the time stamps given to the values by the GPS receiver and twice for low latencies prescribed by
communication protocols. The PMU sends data mostly via Ethernet connection to the phasor data
concentrator with IEEE C37.118.2 protocol [127], and the phasor data concentrator sends the data
forward to the control center with the ICCP protocol [120], [128]. The RTU transmits the data to
the Supervisory Control and Data Acquisition (SCADA) system via wired (e.g., Ethernet, RS-485)
or wireless (e.g., Wi-Fi, cellular) connections based on IEC 61850 and IEC 60870-5-104 standards
[105], [129]. The RTU measurements do not receive time stamps in the measurement device, only
when received in the control center. Hence, the delay time caused during transmitting the measured
values from the measurement location to the control center is the determined value for temporal
consistency. Since the exact measurement time for RTU is not known, the non-synchronized RTU
data leads to problems in the temporal allocation for state estimation applications and thus to
measurement uncertainties.

Summary for Real-Time Measurements

In summary, PMU devices have higher (about one order of magnitude) accuracy than RTU devices.
While RTUs are more cost-effective, PMUs have the advantage of additional angle measurement
and time stamps, resulting in higher temporal consistency. Another way to obtain real-time
measurements is to use µ-PMUs. They offer a good balance between cost and time consistency.
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Future developments and tests in the field will show their applicability for MV grid state estimation.
In practice, real-time measurement devices in the field are connected to instrument transformers.
The uncertainty caused by the instrument transformer is mostly the determining factor for the
accuracy of the measurement chain. Hence, for state estimation, the end-to-end uncertainty of
the entire measurement chain must be considered and not only the standard deviation of the
measurement device. As MV grids have different real-time measurement configuration, only RTU or
PMU or combined, the Bayesian state estimation method should be able to process all measurable
quantities of these both devices.

4.1.2 Non Real-Time Measurements

As mentioned in 2.2, the low coverage with real-time measurement in MV grids can be partly
compensated using additional data sources. The additional non-real-time data is used to generate
the background distribution, which is then used to calculate the voltage prior distribution for the
Bayesian state estimation algorithm.

For MV nodes, where a large customer is directly connected, usually time-resolved historical power
series (German: Registrierende Leistungsmessung, RLM) are available. The RLMs are mandatory
for large, mostly commercial customers whose yearly energy demand is greater than 100MWh
[130]. Their power consumption is typically recorded in 15min intervals. Furthermore, large
commercial RES plants that are directly connected to MV nodes and receive EEG remuneration5

must provide the grid operators electricity feed-in data annually [4]. According to the EEG, the
feed-in tariff in Germany is usually settled in 15-minute intervals. Therefore, the feed-ins must
also be recorded in 15min resolution.

For MV nodes with underlying LV grids, power series directly measured at the MV nodes are not
available (except if a real-time measurement is placed there). However, in the underlying LV grids,
there are time-resolved power series from customers equipped with a Smart-Meter (SM). A SM
is a digital meter combined with a so-called SM-gateway to transmit the power measurements
digitally to the system operator6. These are typically recorded in regular intervals, e.g., in the
European Union at least every 15 minutes [132]. The recorded SM measurements can be used
aggregated for estimating the power series of the connected MV nodes described in detail later.
Customers connected to LV grids without SM-gateways only report annual consumption values from
analog or digital meters. System operators conventionally estimate the power consumption of these
non-metered grid users by standard load profiles (SLPs). SLPs are 15-minute time-resolved power
time series for one year, typically representing the average of a consumer group [133]. A further
source of additional input can be gained from weather measurements. The power generation from
PV or wind turbines can be calculated by solar irradiation or wind velocity measurements. Further
data sources can be PV converters, heat pumps or EV charging stations.

5The beneficial remuneration of RES plants in Germany is determined by the Renewable Energy Sources Act (EEG).
6In Germany, the implementation of SM gateways is mandatory until 2032 under certain conditions. This relates to
grid customers with annual energy demand between 6 and 100MWh, plant operators with an installed capacity of 7
to 100 kW, and customers with controllable loads such as HP or night storage heating [131].
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The above mentioned non-real-time data sources are summarized:

• Time-resolved recorded power measurements (RLM), which are mandatory for large cus-
tomers whose yearly energy demand is greater than 100MWh. Such customers are mostly
directly connected to MV nodes.

• Time-resolved feed-in measurements from large renewable energy units directly connected
to MV nodes.

• Smart-Meter measurements from underlying LV grids typically recorded in regular intervals.
SMs are digital meters communicating to the system operator via an SM-gateway.

• Annual energy demand from analog or digital meters from customers with no SM or RLM
measurement.

• Standard load profiles (SLP), which are power time series for one year in 15min resolution.
They typically represent the average of its consumer group.

• Data from exogenous sources like solar irradiation or wind velocity measurements to estimate
generation from PV or wind turbines.

• Data from PV converters, heat pumps or EV charging stations.

Depending on future technological developments this list can be further extended, e.g. data from
mobile apps including social media.

In Figure 4.2, the available power measurement data for MV grid state estimation are exemplary
shown. Historical power profiles can be obtained from recorded real-time measurements (orange),
RLM and commercial RES measurements (blue), or from SMs (green) in underlying LV grids.

MV grid

open ring

HV grid
LV grid

LV grid

LV grid

Real-time measurement
Recorded power measurement
Smart meter

Figure 4.2: Exemplary MV nodes with different available power measurement data
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The non-real-time measurement data varies strongly in its levels of detail: from 15-minute time-
resolved power measurement to only annual energy values. Since most MV nodes have LV grids
connected to them and their local grid transformer is usually not directly metered, the availability
of time-resolved data strongly depends on the SM coverage in the underlying LV grid. To give an
order of magnitude on how many customers are equipped with SM measurements, which are then
available to DSOs for state estimation as background information, an overview of the SM coverage
for European countries and US states is given in the following.

Smart Meter Coverage

Only a few European countries or US states have near 100% SM coverage. With the Third En-
ergy Package (European Union, 2009), European member states are required to implement SMs.
The currently achieved SM coverage differs strongly for European countries [134], [135]. Swe-
den, Norway, Spain, and Italy have an extremely high SM coverage of over 97%. Conversely,
Poland, Hungary, and Slovakia have coverage smaller than 10%. For Germany, the SM coverage
ranges between 2% and 15% across DSOs 7. Similarly, in the US [136], the SM coverage for
Utah and New Mexico is below 20% while California, Nevada, Georgia, and Washington State
achieve high coverage over 80%. New York State andWest Virginia have rates between 20 and 40%.

In summary, for US- and European grids, only a few countries or states have nearly 100% SM
coverage. Hence, in most countries, there is a substantial number of customers for which only
annual energy consumption is known. Consequently, combined non-real-time data with varying
levels of detail (from detailed readings (SM, RLM, and commercial RES) to aggregated yearly
consumption only) should be considered as input for MV grid state estimation as it represents
realistic conditions for data availability.

Correlations

It is important to note that state variables in a power system are not statistically independent. If, for
instance, the voltage magnitude at one node increases, the voltage magnitude at the neighboring
nodes often increases as well. These correlations are valuable for state estimation because they allow
one to use data from one node to infer information about other nodes, particularly unmeasured
ones. These node voltage correlations originate from two different causes:

1. Physical correlation is caused by the physical coupling of the grid, for example, by a high
voltage at one grid node being transmitted via a line to another node.

2. Load correlation is caused by similar behavior of grid customers independent from the grid,
i.e., even for electrically unconnected customers. Load correlation of grid customers includes
both consumer and generation behavior. Regarding generation units, in particular, volatile
RES (PV and wind) are highly correlated in space and time. An example of consumption
behavior causing high load correlations: If it is a warm day, the power consumption for air
conditioning will be higher than the historical average for all households simultaneously. This
will cause a voltage drop in different grid segments that may not even be physically connected.

7The delay of German SM roll-out is due to strict data protection regulations and security issues.
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The load correlations can be considered in the background distribution, i.e., the load probability
distribution of the connected loads and generation units. Properly accounting for these load
correlations in the state estimation process can drastically improve the accuracy of the state esti-
mation results [137] [138]. Therefore, it is essential to consider the load correlations in the state
estimation input.

Between the real-time measurements also exist correlations. However, the authors in [137] find out
that incorporating the real-time measurement correlations achieves only a small benefit, particularly
in comparison with load correlations.

4.1.3 Grid Topology

Another highly relevant input to Bayesian state estimation approaches is the grid topology. For
a realistic scale of the grid, the number of substations should be in realistic order of magnitude
(about 80-200 [139]). As most of the MV grids in Germany have ring structures (see Section 2.2),
partly also operated as closed rings, a state estimation method for MV grids should be able to deal
with non-radial structures. As also mentioned in Section 2.2, there are possibly phase imbalances
in MV grids, for which a three-phase model would be reasonable. However, despite of some special
cases, they can often be neglected for the discussed reasons, given in Section 2.2. One further point
concerns the uncertainty of grid topology8. However, since many switching states in MV grids
are not reported digitally [1], having a topology identification before the actual state estimation
can be helpful [140]. With such a topology estimation preceding the actual state estimation step,
the grid topology can be assumed to be known. If this is not given, the grid uncertainties should
usually be considered in the input for MV grid state estimation.

4.2 Comparison of Bayesian State Estimation Methods for MV Grids in
Literature

Bayesian state estimation approaches are now compared according to the method requirements
defined in research question 1. First, the comparison criteria are defined. Secondly, a literature
review of Bayesian state estimation methods for MV grids is given. This results in the research
gaps of MV grid Bayesian state estimation methods. Thirdly, the research gaps considered in this
thesis are exposed.

4.2.1 Comparison Criteria

According to research question 1, MV grid state estimation methods should be efficient, practical,
and uncertainty-aware. These requirements are now reformulated as discrete comparison criteria:

Efficient

One defined requirement is to obtain the state estimation results near real-time. So the methods
from the literature are compared according to achieve computation times smaller than 60 s.
Another requirement is to achieve accurate results with a focus on detecting limit violations. For
8As already mentioned in 2.2, to focus on state estimation topology identification is not a topic in this thesis.
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this purpose, the output must be evaluated with respect to limit violations and checked for
correct identification. A detection rate of at least 90% should be achieved.

Practical

The requirement for practical state estimation methods for MV grids demands that the method is
feasible despite the low level of measurement instrumentation. Hence, the method should handle
realistic available types and amounts of measurements and consider realistic MV characteristics
of grid topology. For assuming practice-relevant MV grids, the Bayesian state estimation method
should consider a realistic grid-scale (>80 buses) and be able to deal with ring structures. For
completeness, the methods are also compared according to 3-phase modeling and uncertainty
in grid topology, even if assumed negligibly small for this thesis. Concerning the real-time mea-
surement input, the method should be able to process all measurable variables from both mostly
implemented real-time measurement devices (PMU and RTU). Hence, the methods are compared
if these are considered. The non-real-time inputs are compared for involving smart meter data,
weather data, and annual energy demand. A further criterion in this context is if the method
considers the mostly varying temporal availability of the non-real-time data. The literature
approaches are also compared to consider load and measurement correlations in the non-real-time
input for the background distribution.

Uncertainty-aware

The last requirement is to consider the posterior variances for evaluation in addition to the
expectation values.

4.2.2 Literature Review of Bayesian State Estimation Methods for MV Grids

A few Bayesian state estimation methods using the Bayes rule to fuse the scarce real-time mea-
surements with various background inputs have already been proposed in literature. For each
paper, the main idea is summarized shortly. Then, the papers are compared according to the
previously defined comparison criteria. Although this thesis focuses on analytical Bayesian state
estimation algorithms (see Subsection 3.2.2), methods based on machine learning and iterative
approaches are also included in the review. In principle, machine learning and iterative Bayesian
state estimation approaches can also handle probability distributions, and thus, they are considered
in this comparison for completeness.

[81], [94], [141]–[143] propose methods for analytic Bayesian state estimation methods.
In [94], the basic principle for Bayesian Linear DSSE is demonstrated for a radial, 15 buses, 11 kV
grid. The authors assume full SM coverage to generate the background distribution. They analyze
the accuracy of state estimation results as a function of varying numbers of PMU measurements.
The calculations are executed with normal Gaussian distributions, and load correlations are not
considered. [141] proposes a method that overcomes the simplification of uncorrelated customer
behavior by considering the load correlations calculated from historical data. For this, the authors
use the complex form of the multivariate normal distribution. They demonstrate their method
for a radial 11 kV grid with 747 buses. They validate their approach with different measurement
scenarios for RTU data and achieve computational time below 3 seconds. [142] developed the
method to use non-Gaussian distributions for load modeling by applying model matching with
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known distributions and empirical distribution fitting. The method considers load correlations of
SM data by using copulas for the background distribution9. They assume uniformly distributed
measurements and incorporate PMU and RTU measurements. They demonstrate the method on
a 20 kV feeder with only 5 buses. In [81], the load modeling is done by Gaussian Mixture. The
authors consider RTU and PMU measurements and correlations of historical load data. They
tested the method for the IEEE 14, 30 and 118 bus systems. Even for the 118 bus system, they
achieve computational time below 1 second. There is also a proposal for an analytic three-phase
Bayesian state estimation method [143]. The authors forecast load probability distributions based
on historical load data. Instead of forward/backward sweep power flow equation, which is used
by [94] and also in this thesis (see Equation 3.45), they use the LinDist3Flow model according to
[145]. For real-time measurements, they assume PMU devices. The tests were executed on 37,
142, and 8500 bus systems.

In addition to analytic Bayesian approaches, there are papers combining machine learning with the
Bayes rule [95], [146]. A neural network processes input data through different layers, adjusting
connection strengths called weights to learn patterns and make predictions [147]. Compared to
conventional neural networks with deterministic weights, Bayesian neural networks have probabil-
ity distributions as weights. The model considers the load and measurement correlations. The tests
in [95] were executed with RTU measurements. The method was demonstrated for a radial 85 bus
LV grid and a meshed 3120 bus grid. [146] analyzed varying PMU measurements on a radial LV
grid with 13 buses.

Examples of iterative Bayesian state estimation methods are given in [83], [148]–[150]. The
authors used the belief propagation algorithm, which is a message-passing algorithm10. It is
combined with a Bayesian network, a specific type of probabilistic graphical model using factor
graphs. In all four papers, RTU measurements are used. [83] used additional PMU input. [83],
[148] use historical load data to calculate a prior distribution. Both other papers start with broad
prior distributions and assumed all nodes with voltage phasors for 1 pu and 0◦. [148] demonstrated
the method on the IEEE 4 bus test feeder, whereas the authors of the other three papers chose
larger varying IEEE test systems, e.g., IEEE 14 and 118. [83] explicitly tested the model for ring
structure and investigated the computational times. One recently published iterative method [82]
uses a Bayesian information fusion to combine data with different sampling rates from milliseconds
up to 30 minutes time intervals. They consider SM, RTU, and PMU measurements and incorporate
load correlations. The method is demonstrated for IEEE 123 and 342 bus systems and simulated
for a real three-phase meshed Brazilian grid with 1058 buses.

Table 4.3 compares the Bayesian state estimation methods from literature according to the defined
criteria from Subsection 4.2.1. For clarity, papers whose considerations are fully covered by another
paper are not separately listed.

9The authors use Sklar’s theorem [144], which states that the joint distribution of two variables can also be represented
as the product of the copula of the variables and the marginals.

10The algorithm iteratively passes messages between neighboring nodes. At each iteration, the messages are updated
based on the incoming messages. The update process is designed to refine the beliefs about the variables.
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The results of this comparison can be summarized as follows:

• All papers assume to know the grid parameters and grid topology including the switching
states. None considered uncertainty in the grid topology.

• Some discuss using weather data as input, but none have done so yet.

• Further, none of them considered customers with only annual energy demand information. All
papers assume the non-real-time inputs for the MV nodes to be available fully time-resolved,
e.g., full smart meter coverage or historical power series at every MV node. In view of the low
coverage with time-resolved measurements (e.g., SM), this should be adapted to practically
relevant measurements configurations.

• Concerning the output, most of the papers only take the expectation values of their posterior
distributions as the estimates; thereby, they ignore important uncertainty information of the
output. Two papers ([83], [142]) plot one exemplary estimate of the posterior variance, but
they consider only the expectation values for the evaluation.

• None of the papers address the probabilistic post-processing of uncertainty information,
which can be easily modeled in the Bayesian framework. The results are not further analyzed,
e.g. to quantify the probabilities of operational limit violations.

• Moreover, none of the papers compare the estimates with limit violations, not even the
expectation values.

The method developed in this thesis is also included in the comparison review of Table 4.3. That
the ticked criteria are actually fulfilled will be proven in the results and discussed afterwards.
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Table 4.3: Comparing Bayesian state estimation methods from literature according to criteria resulting from requirements defined in research
question 1

Compared criteria [142] [81] [143] [95] [146] [83] [82] thesis

Practice-relevant
MV grids

Realistic scale X X X X X X

Deals with ring structure X X X X

3 phase/unbalanced X X

Topology uncertainty

Realistic available
measurement
inputs

PMU measurements X X X X X X X

RTU measurement X X X X X X

Smart meter data X X X X

Weather data

Annual energy demand X

Non-real-time data with varying
levels of detail

X

Correlation
consideration

Load correlation X X X X X X

Measurement correlation X X

Near real-time Calculation time < 60 s X X X X X X X X

Uncertainty-aware
evaluation

Consider posterior variance X

Identification of limit
violations

Compare estimates to voltage band &
thermal current limits

X
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4.2.3 Addressed Research Gaps in This Thesis

This thesis addresses the following research gaps:

• Considering customers with only annual energy demand information in addition to time-
resolved non-real-time input: This thesis proposes a new method for the use of non-real-
time input with different levels of data availability ranging from complete time-resolved
measurement sets to yearly energy consumption data only.

• Evaluating uncertainty-aware identification of limit violations: In this thesis, a new method
for processing Bayesian state estimation output is proposed. It focuses on identifying opera-
tional limit violations while considering the uncertainty of the output.

Figure 4.3 compares the considerations of this thesis graphically to the approaches from literature.

[142] [81] [143] [95]

[146] [83] [82] thesis

Uncertainty-
aware
evaluation

Realistic available
measurement
inputs

Practice-relevant
grids

Near real-time

Correlation
consideration

Identification of
limit violations

Figure 4.3: Graphical illustration of research gaps considered in this thesis
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The colored areas represent the addressed topics of each paper. The corner points of the areas
in Figure 4.3 derive from the comparison in Table 4.3. The compared criteria are clustered in six
topics, given in the left column in Table 4.3 and put at the corners of the hexagon in Figure 4.3.
The further out a corner point of a colored area reaches, the more the topic named at the corner is
considered in this paper. The three levels in the hexagon represent that a topic is partly, mostly or
fully considered.

Pre- and Post-Processing Modules

To address the above research gaps, the following two modules were developed:

• One pre-processing module is added, which generates the background distribution from
non-real-time inputs. This statistics module is a newly proposed synthesis method for data
sources with varying levels of detail. The synthesis incorporates load correlations, which
significantly benefits the state estimation results.

• Further, one post-processing module is added after estimating the marginalized voltage
posterior distribution. It calculates the probability of critical system states due to operational
limit violations by using the uncertainty of the posterior variance. With this criticality analysis
module a higher detection accuracy of limit violations can be achieved than with deterministic
approaches.

Figure 4.4 shows the adapted Bayesian linear state estimation method. Blue rectangles mark
the developed pre- and post-processing modules. The next section describes the post-processing
module for calculating the probability of critical system states due to operational limit violations.
The pre-processing module is proposed in the last section of this chapter. It is a correlation-aware
synthesis module for input with varying levels of detail.

Background
distribution

Correlation-aware
synthesis module

Non-real-time
input

Real-time
measurement

Measurement
uncertainty

Grid topology

BLSE

Posterior distribution
(marginalized)

Criticality analysis
module

pre-processing module

post-processing module

prior

posterior

Input

Output

new

new

Figure 4.4: Adaption of Bayesian linear state estimation method (BLSE) with pre- and post-processing
modules
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4.3 Calculating the Probability of Critical System States due to
Operational Limit Violations

According to research question 1, the developed MV grid state estimation method should aim to
identify limit violations as accurately as possible. If an operational limit is violated, the system state
is defined as critical (see Definition 2). Hence, identifying operational limit violations is assumed
to be equal to identifying critical system states. Without sufficient real-time measurements, a
deterministic statement about the system state is not reasonable. The methodology developed in
this work therefore uses probabilistic modeling.

The new idea is to calculate the probability of critical system states to combine the uncertainty of
the state estimation output with the identification of critical system states. This idea was introduced
in [151], [152].

Idea: The area of a marginalized posterior distribution exceeding an operational limit equals the
estimated probability of a system state being critical. This idea is illustrated in Figure 4.5.
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Figure 4.5: Probability of critical system state due to lower voltage limit violation

Figure 4.5 shows the critical system state regarding lower voltage band violation. The marginalized
voltage magnitude posterior distribution φpo,Vmag,n for bus n and a given lower voltage limit Vlow =
0.94 pu is pictured. The colored area left to the limit is equivalent to the estimated probability of
violating the given voltage limit pcss,Vlow,n.

pcss,Vlow,n =

Vlow∫
−∞

ΦVpo,mag,ndVmag · 100% (4.1)

This procedure can also be done for upper voltage limits. The probability of critical system states
due to upper voltage limit violation pcss,Vup is equivalent to the area right to upper limit Vup. Hence,
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the integral limits are set from Vup to ∞.

pcss,Vup,n =

∞∫
Vup

ΦVpo,mag,ndVmag · 100% (4.2)

A critical system state can also be caused by overloading the operating equipment. Considering
line and transformer thermal current limits Ith, it is necessary to know the posterior distribution
of branch current magnitudes. An affine linear transformation by use of Equation 3.15 helps
to transform the voltage to current posterior distribution ΦIpo . The resulting complex branch
current posterior distribution is marginalized and transformed to polar form according to equa-
tions 3.72-3.76.

Hence, the probability of critical system state due to current thermal limit violation pcss,Ith,b at
branch b is defined by

pcss,Ith,b =

∞∫
Ith

ΦIpo,mag,bdImag · 100% (4.3)

The benefit of considering the entire posterior distribution instead of simply using the expectation
values can be seen in Figure 4.5. In a situation where µpo does not violate the given limit Vlow,
an expectation-value-based conclusion would be that there is no critical system state. Actually,
there is a 19% probability for critical system state, which is neglected by methods only considering
expectation values.

Considering the entire posterior distribution is particularly important for state estimation in MV
grids. To clarify the importance, a small example is given below. Figure 4.6 shows a lower voltage
limit Vlow and two voltage posterior distributions with different variances. The shown posterior
variances depend on the uncertainty of the inputs. If the state estimation receives a high amount
of only highly accurate measurements as the state estimators in TS, the posterior variance would
be small as in Figure 4.6a. For this, the expectation value µpo is a good approximation for the
current state. Suppose the state estimation receives many uncertain input data, as is the case for
MV grid with low real-time measurement coverage. In that case, the estimate has larger posterior
variances, as exemplary shown in Figure 4.6b. For this, the single expectation value µpo is no
sufficient estimate.

Hence, for MV grid estimation methods with low real-time coverage and thus higher uncertainties in
input and output, it is recommended to consider the posterior variances for identifying critical sys-
tem states. A case study for calculating the probability of critical system states is given in Section 5.1.
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(a) Highly accurate inputs result in small posterior
variances. For this, the expectation value is a good
approximation for the state.
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(b) Uncertain inputs result in larger posterior vari-
ances. For this, the single expectation value is no
sufficient estimate.

Figure 4.6: Importance of considering the posterior variance of the Bayesian state estimation output when
using uncertain input data

In the current section, the basic principle of the criticality analysis module has been described.
Further, two additional points should be remarked:

1. The application of this post-processing module for calculating the probability of critical system
states is not restricted to normal distributions. For generalization, it can be applied to every
integrable posterior probability distribution, e.g., Gaussian Mixture or beta distributions.

2. In order to address research question 2, the probabilistic output can be processed for practical
decision support. For this, a probability threshold pthres is introduced. The threshold can be
used to classify an element as critical, e.g., if the probability of critical system states for a
node or branch element elements exceeds the given threshold. Further, multiple probability
thresholds can be introduced to assign elements to warning and alert stages. This allows for
greater sensitivity to near-critical conditions.

4.4 Correlation-Aware Synthesis Module for Input with Varying Levels
of Detail

The pre-processing module proposed in this section aims to estimate the background distribution
ΦS for state estimation methods by combining non-real-time inputs with varying levels of detail
and properly accounting load correlations. This module was introduced in [138], [153]. The
following recorded non-real-time inputs are considered:

• Power measurement from real-time devices at MV nodes in 15min resolution;

• 15min time-resolved power measurements for large customers (RLM) and renewable gener-
ation units, which are directly connected to the MV grid;

• 15min time-resolved SM measurements from underlying LV grids;

• Annual energy demand values for every costumer in underlying LV grid, which is not equipped
with SM.
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Further exogenous measurements can also be considered like solar irradiation measurements for
power estimation of PV modules or wind velocity measurements for estimated power of wind
turbines.

Assuming the case that time-resolved power series SMV,n,t are available for an MV node n resp. m ∈
{1, .., N} with time steps t ∈ {1, ..., T}, the parameters of the normal distributed background distri-
bution (µSn , ΣSnm) can be easily calculated by the sample mean µS,samp,n and sample covariance11
ΣS,samp,nm.

µS,samp,n =
1

T

T∑
t=1

SMV,n,t (4.4)

ΣS,samp,nm =
1

T − 1

T∑
t=1

(
SMV,n,t − µSsamp,n

) (
SMV,m,t − µSsamp,m

)
(4.5)

Note that for normal distributions, the real and imaginary parts of the expectation value vector µS

and the covariance matrix ΣS are stacked as defined in Equation 3.39. In this chapter, such as in
the equations above, the elements of the vector and matrix are first calculated for complex-valued
apparent power for a more compact notation and divided into real and imaginary parts in the end.

Since, in reality, not every MV node has a time-resolved power series recording, the proposed
module generates synthesized power series for unmeasured MV nodes. For this, the MV nodes
at first differed depending on their available measurement information. They are classified into
Measurement Instrumentation Scenarios (MIS). Then, for every MIS, a determination for time-
resolved power series is presented. In the last step, the calculation of background distribution
parameters from the power series is proposed. The steps for the correlation-aware synthesis module
can be summarized as follows:

1. Classifying every MV node into a Measurement Instrumentation Scenario. The MIS scenarios
are explained in detail in Subsection 4.4.1.

2. Determination of power time series for MV nodes according to their assigned MIS as described
in Subsection 4.4.2.

3. Determination of background distribution parameters µS and ΣS , which is explained in
Subsection 4.4.3.

4.4.1 Measurement Instrumentation Scenario

In this subsection, each MV node is assigned to a Measurement Instrumentation Scenario according
to the data availability. For a MV node, where no direct measurement information is available,
measurements from the underlying LV grids can be taken into account. This is a justifiable
assumption: if all customers in an LV grid are equipped with SMs, their summed-up demand would
be approximately the demand at the connected MV node12. Hence, for classifying each MV node
11The formula for unbiased sample covariance is used: According to the Bessel’s correction it must divided by T − 1

instead of T .
12plus small line and transformer losses
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according to its available data, further information is necessary: the assignment of connected LV
nodes to their corresponding MV node given by grid topology and the smart meter coverage of the
underlying LV grid. Further external information required is the type and index of measurements
at the MV node. The classification for MV nodes into MIS is proposed in table 4.4.

Table 4.4: Classification of MV nodes into different Measurement Instrumentation Scenarios

Name Description of MIS

MVmeas Recorded measurement data at MV node
SM100% 100% SM coverage in underlying LV grid
SM≥αthres SM coverage ≥ αthres in LV grid
SM<αthres SM coverage < αthres in LV grid

The first scenario (MVmeas) covers all MV nodes with recorded real-time measurements, with RLMs,
and with feed-in measurements of commercial RES. Here, the meter devices are directly installed at
the MV nodes. This usually only applies to the primary substation, central MV nodes or MV nodes
with directly connected large customers. Most of the MV nodes are not equipped with a metering
device, but historical data from the SMs of the underlying LV grids can be used as an information
source. Three scenarios are defined for the underlying LV grids, corresponding to full, substantial,
or low SM coverage. Here, a low SM coverage means that the set of customers with SMs cannot be
assumed to be statistically representative of the behavior of all consumers. The scenario where
the LV grid is fully covered with SMs is denoted by SM100%. To differentiate between LV grids
with substantial and low SM coverage, a threshold fraction αthres is defined (e.g., αthres = 60%).
Using this threshold fraction, the measurement instrumentation scenario SM≥αthres represents grids
where SM measurements are available for at least αthres of all customers. Analogously, the scenario
SM<αthres represents grids where SM measurements are available for less than αthres of all customers.
In Figure 4.7 each exemplary MV node from Subsection 4.1.2 is assigned to one of the proposed
MISs.

As mentioned in Subsection 4.1.2, system operators conventionally use SLPs to estimate the power
consumption of non-metered grid users. In this module, it is also possible to take SLPs for the LV
grid profiles. However, using SLPs does not correctly reproduce correlations between groups of
customers. Simply calculating the sample correlations between two MV nodes using the same
SLP time series in the underlying LV grids results in an unrealistically high correlation value of
100%. One way to avoid such unrealistic correlation values is to consider correlations between
comparable LV grids. By this, for non-metered grid users, exemplary synthetic power time series
are generated from power profiles of comparable grids. A more detailed description is given in the
following.
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Figure 4.7: Exemplary MV nodes assigned to proposed MISs

4.4.2 Determination of Power Time Series

The MV node power series is denoted by SMV,n,t at every MV node n ∈ {1, .., N} for every time
step t ∈ {1, ..., T}. Table 4.5 shows the calculation steps for determining the power series values
for each MIS. For MV nodes assigned to scenario MVmeas, the recorded measurements at the

Table 4.5: Determination of power time series SMV,n,t for MV node n according to MIS classification

MIS Determination of Time Series for MV nodes

MVmeas Recorded MV node measurements SMV,n,t = SMVmeas,n,t

SM100% Sum up SM-data from the underlying LV
grid

SMV,n,t ≈ S∑
SM,n,t =

NSM,n∑
l=1

SSM,n,l,t

SM≥αthres Sum up data from SM nodes & scale up to
meet total annual energy consumption

SMV,n,t ≈ S∑
SM,n,t · fscale,n

with fscale,n =
E∑

LV,n
E∑

SM,n

SM<αthres Calculate K exemplary, synthetic time series
from sum of SM-data for SM nodes & sum of
comparable profiles for non-SM nodes

SMV,synth,n,t,k = S∑
SM,n,t+S∑

LVcomp,n,t,k

with k ∈ {1, ...,K}

MV nodes SMVmeas,n,t can directly be used as time series input. The other scenarios require the
power time series from the SMs of the underlying LV grid. The SM power time series for LV node
l ∈ {1, ..., NSM} connected to MV node n are denoted SSM,n,l,t. NSM,n is the number of the LV nodes
equipped with smart meters connected to MV node n.
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For the scenario with the assumption of 100% SM coverage in LV grids, the SM power series of all
LV nodes are summed up for the corresponding MV node n and result in a time series S∑

SM,n,t

with a quarter-hourly resolution. As the losses in LV systems are bounded by 5% for active and
10% for reactive power, they are neglected here to simplify the approach13.

For LV grids with larger SM coverage than the threshold αthres, it is assumed that the summed-up
time series S∑

SM,n,t of the SM measured grid users is representative for the behavior of this LV
grid. To achieve correct energy demand values at the MV nodes, the aggregated SM time series are
multiplied with a scaling factor fscale,n that compensates for the missing power contributions from
unmeasured customers. This factor is calculated as the ratio of the summed-up annual energy
demand of all LV nodes of this grid E∑

LV,n and the summed-up energy demand recorded by SM
E∑

SM,n.

In the last scenario SM<αthres , the SM information cannot be assumed to be representative for
the non-SM nodes due to the small sample size. So, a set of K exemplary, synthetic time series
SMV,synth,n,k,t for k ∈ {1, ...,K} is created. These exemplary time series will be used to estimate the
parameters of the background distribution representing this MV node. That the use of proxy time
series is justified and that correlation parameters from similar groups of customer profiles can be
used is shown in Section 4.4.3. The number of power profiles K should be high enough to achieve
sufficient sampling. For every LV node that is not a SM-node, a residential profile from comparable
grids is randomly assigned. The profiles are scaled to the LV nodes’ annual consumption. For
each sampling index k, the synthesized time series SMV,synth,n,t,k is now defined as the sum of the
aggregated SM profiles S∑

SM,n,t for the SM nodes and of the aggregated comparable profiles for
the non-SM nodes S∑

LVcomp,n,t,k. To select suitable comparable profiles, the profiles should equal
the SLP classes of the assigned customer. Hence, MV nodes assigned to SM<αthres require the SLP
classes of the consumers in the underlying LV grid.

4.4.3 Determination of Background Distribution

This subsection includes the calculation steps of determining a correlation-aware background
distribution from the generated power time series. For all MIS, the mean µS is calculated from
the time series as the sample expectation value µSsamp (see Equation 4.4). This is equivalent to the
annual energy consumption divided by the number of time steps T . As the synthetic time series
are scaled to the annual consumption, the mean is always the same for every exemplary K.

µS,samp,n =
1

T
· E∑

LV,n (4.6)

The elements of background distribution covariance matrix ΣSnm with n,m ∈ N are calculated
according to Table 4.6. For n,m-pairs, where none of n and m is assigned to scenario SM<αthres ,
the covariance matrix elements are calculated as the sample covarianceΣSnm,samp (see Equation 4.5).

13For future research, the line losses can approximated and added to the equation.
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If at least one of the nodes (n or m) is classified as SM<αthres (i.e., no sufficient measurement
coverage), then the sample covariance ΣSnm,samp,k is calculated for every k and then averaged
over all k. To calculate the sample covariance for k ∈ {1...K}, the k-th synthesized time series
SMV,synthn,k,t for every n ∈ SM<αthres and the measured time series SMV,n,t for every n 6∈ SM<αthres

are used. To validate this approach, a statistical analysis of an exemplary set of residential active
power profiles was performed in the following Subsection 4.4.4.

Table 4.6: Determination of ΣS element for (n,m)-pairs and included MIS

MIS of n and m Calculation of elements for ΣS

n,m 6∈ SM<αthres ΣS,samp,nm = 1
T−1

∑T
t=1

(
SMV,n,t − µSsamp,n

) (
SMV,m,t − µSsamp,m

)
n ∈ SM<αthres or m ∈ SM<αthres ΣScomp,nm = 1

K

K∑
k=1

ΣS,samp,nm,k

ΣS,samp,nm,k = 1
T−1

T∑
t=1

(
Sn,t − µSsamp,n

) (
Sm,t − µSsamp,m

)
Sn,t =

{
SMV,synthn,k,t , if n ∈ SM<αthres

SMV,n,t , else

The steps of the correlation-aware synthesis module for input with varying levels of detail, described
in this section, are summarized in Figure 4.8. A case study for the benefits of this proposed module
for Bayesian state estimation results is executed in 5.214.

Classification
of MV nodes

MV nodes assigned
to scenarios

Determination of
power time series

SMV,n,t ∀n ∈ {1, ..., N}
for t ∈ {1, ..., T}

Determination of ΣSnm (see Table 4.6) Calculation of
µS,samp,n

see Equation 4.6

Determination of ΦS

n,m 6∈ SM<αthres

Calculation of
ΣS,samp,nm

n ∈ SM<αthres

or m ∈ SM<αthres

Calculation of
ΣScomp,nm

ΣS , µS

Recorded power & energy
demand measurements,
SLP classes of LV nodes,

grid topology

Start

End

Figure 4.8: Flow Chart for Correlation-Aware Synthesis Module

14As a site note: The resulting background distribution can also be used to enhance the state-of-the-art state estimation
approach that consider correlations between pseudo-measurements.
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4.4.4 Correlation Analysis between LV grids

A statistical analysis of correlations between LV grids is performed to justify the assumption for
using comparable LV grids for non sufficiently metered LV grids. For this, an exemplary set of
residential active power profiles is taken from OpenEI [154]. The profiles are taken for Washington
state, because of moderate climate and correlation values similar to load profiles from HTW-Berlin15
[155]. OpenEI provides a “publicly available dataset of calibrated and validated 15-minute resolution
load profiles for all major residential and commercial building types and end uses, across all climate
regions in the United States” [154]. This database has previously been used by other authors for
state estimation methods [142]. For Washington state, 4947 individual residential profiles are
available. The correlation coefficient between these individual consumption profiles is 11% on
average. Building types with electric heating are excluded. This simplification can currently be
justified for German households as less than 5% of residential buildings are heated electrically
[156]. This should be appropriately included for future scenarios with high heat pump penetration.
Furthermore, the selected profiles do not include buildings with mobile home classification since
these are rare in Germany.

For the analysis of correlations between subgrids with a varying number d of households, for
each pair of subgrid sizes (d1 and d2) one thousand samples of d1 and d2 are randomly chosen.
The required power profiles are taken from over 4900 Washington state profiles. Each subgrid is
characterized by the number of households in the underlying subgrid represented by the variables
d1 respectively d2. For each subgrid pair (d1 and d2) the following steps are performed:

1. For the subgrids, d1 (or d2) randomly chosen power profiles are summed up to obtain MV
node time series (for active power PMV,t).

2. A correlation coefficient is calculated for the aggregated power profiles of the subgrid pair.

These steps are performed 1000 times for each subgrid pair for statistical purposes. The resulting
mean and standard deviations of the correlation coefficients for each subgrid pair, µρ respectively
σρ, are plotted as heat maps in Figure 4.9. It can be seen, that for a small number of households
(< 3) the correlations variate with standard deviations up to 14%. However, already for subgrids
consisting of only 30 customers each, the variance in correlation values drops to ∼ 4%. This indi-
cates that the correlation of two similarly sized subgrids taken from a comparable region provides
a reliable estimate for the correlation coefficient of two individual subgrids. This universality of
the correlations is used in the correlation aware synthesis module. Furthermore, if the size of
the subgrids increases, so does the accuracy of the estimate: For a sufficiently large number of
households in the subgrids (> 80), the mean of correlation coefficients µρ is an accurate estimate
of the correlation as the standard deviation for correlation coefficients σρ is lower than 1%.

15HTW-Berlin supplies real measured power profiles of 74 residential customers in Germany.
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(a) Mean µρ for correlation coefficients

86%

(b) Standard deviation σρ for correlation coefficients

1.7%

Figure 4.9: Illustrative representation of mean µρ (a) and standard deviation σρ (b) for correlation coef-
ficients between two subgrids with varying number of households in %. For example: two
subgrids with d1 = 100 and d2 = 50 households, the mean of correlation coefficient is 86%
(chart a). Furthermore, in all samples of the subgrids of these sizes, the correlation coefficient
has a standard deviation of 1.7% (chart b).
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5 Results - Case Studies for the Proposed State
Estimation Method

In this chapter, the proposed uncertainty-aware state estimation method is applied to different
case studies. The proposed method consists of a combination of the basic linear Bayesian state esti-
mation algorithm described in Section 3.3 and the pre- and post-processing modules from Section
4.3 and 4.4. First, in Section 5.1, the detection accuracy of critical system states is evaluated for
the results obtained with the criticality analysis module. In the second step, the correlation-aware
synthesis module for non-real-time input with varying levels of detail is added. Section 5.2 shows
the accuracy gains from using this pre-processing module for the Bayesian linear state estimation.

Furthermore, this chapter analyses whether the proposed Bayesian state estimation method meets
the requirements defined in research question 1. Finally, the strengths and limitations of the
method and of the case study assumptions are discussed.

5.1 Recognition of Critical System States

This section evaluates the proposed Bayesian state estimation method for recognizing critical system
states. The proposed method considers the entire posterior distribution, i.e., the expectation value
and (in particular) the variance of the posterior distribution. The probability of critical system states
is calculated according to the approach proposed in Section 4.3. The method is compared to a
Bayesian state estimator that considers only the expectation values of the posterior distributions and
with the selected WLS benchmark estimator. Hence, the following three different state estimates x̂
are compared regarding the correct recognition of critical system states:

• The probability of critical system state pcss based on the entire posterior distribution (see
equations 4.1-4.3);

• The expectation value of the posterior distribution µpo (see Equation 3.71);

• The estimate of the WLS state estimation approach x̂WLS widely used in TS (see equations in
Section 3.4.1).

This section begins with an introduction to the performance metrics used for the evaluation. A
description of the simulation environment follows. Then, exemplary warning and alert messages
for system operators are presented graphically. Finally, the state estimation results are evaluated
for correct recognition of critical system states.
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5.1.1 Performance Metrics

According to Definition 2, a system state is classified as critical if any operational limit is violated.
However, in the following evaluation, the criticality analysis is carried out separately for each
element. This has the following reason: If, for example, one element recognizes its limit violation
correctly while another element (maybe even in another feeder) does not recognize its limit
violation, the state of the entire system would be assumed critical. Hence, it would be correctly
recognized that there is a limit violation in this time step but not the locations of every critical
element. As the location of the critical elements is highly important for the system operator to react
with spatially correct mitigation measures, this separate evaluation for the elements is necessary.
Consequently, the state for each element is evaluated separately at each time step with respect to
criticality detection.

First, an indicator function for operational limit violations is introduced. The indicator function
κx,ε,t,lim ∈ [0, 1] is defined to be 1 if a given limit lim ∈ [Vlow, Vup, Ith] is violated in a state xε,t for
time step t ∈ {1, ..., T} at element ε ∈ {1, . . . , E}1. If no operational limit is violated, the indicator
function is set to 0.

κx,ε,t,lim =

{
1 if lim is violated in state xε,t for time step t for element ε
0 otherwise

(5.1)

Simulated states resulting from a non-linear power flow calculation are used as the ground truth
(xε,t = xtrue,ε,t). If xtrue,ε,t violates an operational limit, the state is assumed to be actually critical.
For this, the indicator function is set to 1. Hence, the number of true critical states postrue is equal
to the sum of κxtrue,ε,t,lim over all time steps and elements. The number of all evaluated states for
all time steps t and elements e equals the product of T and E. The number of non-critical states
negtrue result from the difference between all evaluated states and the true critical states.

postrue =
T∑
t=1

E∑
ε=1

κxtrue,ε,t,lim (5.2)

negtrue = T · E − postrue (5.3)

The estimates of the different state estimators are given to the indicator function to obtain a
criticality classification. For both deterministic state estimation results, µpo and x̂WLS, the indicator
function from Equation 5.1 can directly be used to classify the estimated states x̂ε,t as critical (1)
or non-critical (0). For the probabilistic estimate pcss, an adapted indicator function is proposed
(see Equation 5.4).

1If voltage band limit violations are considered, these elements are the grid nodes, and hence, E is equal to the number
of non-slack nodes N . If thermal current limits are considered, E equals the number of branches B.
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For pcss, an estimated state x̂ε,t is classified as critical by the indicator function κpcss,ε,t,lim if the
probability pcss,lim,ε,t for a limit violation of element ε at time t is above a chosen threshold pthres.

κpcss,ε,t,lim =

{
1 if pcss,ε,t,lim > pthres

0 otherwise
(5.4)

Hence, one or multiple probability thresholds must be selected for this indicator function. The
following two thresholds are chosen for the evaluation:

pthres,σ : A state is classified as critical if any value in the range of µpo±σpo is critical. For normally
distributed posterior estimates, this range contains 68.3% of the estimated states. Hence,
15.85% ((100%− 68.3%)/2) remains on each side. Consequently, the resulting threshold is
set to ∼ 15.9%.

pthres,2σ : A state is classified as critical if any value in the range of µpo± 2σpo is critical. This range
contains 95.45% of the estimated states. The resulting threshold is set to ∼ 2.3%.

The thresholds pthres,σ and pthres,2σ are pictured in Figure 5.1.

95.45%

68.3%

pthres,σ pthres,σ

pthres,2σpthres,2σ

15.9%

2.3%

15.9%

2.3%

µpo − 2σpo µpo − σpo µpo µpo + σpo µpo + 2σpo

Standard deviations
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Figure 5.1: Thresholds for the indicator function of pcss estimate, considering the range within one standard
deviation pthres,σ and within two standard deviations pthres,2σ

Next, the classified estimates are compared to the true states. If the estimate x̂ε,t correctly recognizes
a critical system state, it is set to true-positive (tp). More detailed: a correct detection is present
if the indicator function classifies the true and the estimated state as critical

(
κxtrue,ε,t,lim = 1

)
∧(

κx̂ε,t,lim = 1
)
. For the correct recognition of non-critical states, the estimate is set to true-negative

(tn). For this, the indicator function has to classify x̂ε,t and xtrue,ε,t as non-critical states, setting
κx̂ε,t,lim and κxtrue,ε,t,lim to 0.

tpx̂,ε,t,lim =
(
κxtrue,ε,t,lim = 1

)
∧
(
κx̂,ε,t,lim = 1

)
(5.5)

tnx̂ε,t,lim =
(
κxtrue,ε,t,lim = 0

)
∧
(
κx̂,ε,t,lim = 0

)
(5.6)
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Distribution system operators need to know if and where it is necessary to execute mitigation
measures to ensure secure grid conditions. An indicator of whether the system operator gets the
correct information about existing critical states is the aggregated true-positive rate tprx̂,lim. It is
defined by the sum of all correctly recognized critical states tpx̂,ε,t,lim over all elements and time
steps, divided by all true critical states postrue.

tprx̂,lim =
1

postrue

T∑
t=1

E∑
ε=1

tpx̂,ε,t,lim (5.7)

A high aggregated true-positive rate indicates a high recognition rate of critical system states.

The number of critical states that are not correctly recognized, and so missed by the estimate, can
be quantified by the aggregated false-negative rate fnr (see Equation 5.8). It equals the share of
true critical states that are not correctly recognized.

fnrx̂,lim = 1− tprx̂,lim. (5.8)

Further, it is important not to classify normal states as critical. The aggregated true-negative
rate tnrx̂,lim quantifies correctly recognized non-critical states. It equals the sum of all correctly
recognized normal states (non-critical) divided by all true normal states negtrue.

tnrx̂,lim =
1

negtrue

T∑
t=1

E∑
ε=1

tnx̂,ε,t,lim (5.9)

Normal states that are incorrectly assumed to be critical are classified as false positives (fp). The
aggregate false positive rate fpr is defined by

fprx̂,lim = 1− tnrx̂,lim. (5.10)

To correctly classify non-critical states, the aggregated false-positive rate should be low or, equiva-
lently, the true-negative rate possibly high.

The overall accuracy can also be aggregated for all elements and time steps. The aggregated
accuracy (ac) is the sum of all correctly recognized states (true critical and true non-critical states)
divided by the number of all evaluated states (T · E = postrue + negtrue).

acx̂,lim =
1

T · E

T∑
t=1

E∑
ε=1

(tp+ tn)x̂,ε,t,lim (5.11)

The aggregated rates are multiplied by 100% so that the rates are expressed in %.
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5.1.2 Simulation Environment

A practice-relevant MV grid is required for the following tests. The grid should have realistic grid
parameters, e.g. line impedance and line lengths, a realistic order of magnitude of the buses, and
a realistic grid topology. Simbench [139] provides four synthetic German MV grids fulfilling these
requirements. One of these is selected for the following case studies. It is called commercial and
owns 107 buses. It can be seen in Fig. 5.2. The 20 kV grid is given in pandapower data model [38]2.
It has ring structures that are operated radially (open switches) except for one ring. The wiring
rate is 70%, which is typical for MV grids (see Section 2.2). Load and generation profiles for one
year with a 15-minute resolution are assigned to the MV nodes. The renewable generation plants
directly connected to MV nodes include PV, wind, biomass, and hydropower units. In summary, 10
large RES units and 19 large commercial customers are connected at the MV level. Among the MV
nodes, 79 have underlying LV grids. The LV grids have varying numbers of customers: 13 to 118.
Different LV grid types are included: rural, urban, and semi-urban. The aggregated power profiles
of the LV grids include in-feed from rooftop PVs (2% to 31%). Table A.2 in Appendix A.3.1 gives a
more detailed breakdown of the connected grid users.

5
23

77

2

87

Figure 5.2: 20 kV Test grid from simbench [139]

In the simbench baseline scenario no limit violations occur. That currently still represents most of
the German MV grids. However, the installed capacity of RES in German MV grids is expected to
increase by a factor of three to four in the next 20 years [158] and with the expected strong increase
of heat pumps and EV, the annual electricity demand of individual households could increase by a
factor between 1.5 and 5 [159]. Hence, to create a simplified scenario for testing the developed
algorithm, the load and generation profiles are multiplied by a factor of three. This simplified sce-
nario includes possible future peak strains resulting in limit violations. Current violations occur in
24% of the time steps, and voltage limit violations occur in 31% of the time steps for at least one el-

2Pandapower is a Python library for power system calculation [157].
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ement3. While this thesis focuses on algorithm development for uncertainty-aware state estimation
methods, future research should include a more detailed modeling of load and generation scenarios.

For each time step, a power flow calculation is executed with the Newton Rapshon algorithm from
the Matpower library [53] included in pandapower. These non-linear power flow results represent
the true system states xtrue. Simulated measurements are obtained from true system states without
adding synthetic errors. The proposed uncertainty-aware state estimation method is compared to
the selected WLS benchmark approach. The commonly used WLS algorithm receives the same
synthetic real-time measurements as the Bayesian algorithm and the background distribution
parameters as pseudo-measurements. In particular, the pseudo-measurement values are equal to
µS and for the weights, the standard deviations σS are calculated from the diagonal elements of
the background distribution covariance matrix σSn =

√
ΣSnn (see Equation 3.36).

The thermal branch limits for lines and transformers are given by the realistic standard line-type
tables of the chosen simbench grid; different environmental conditions are not evaluated. For the
voltage limits, the measurement configuration, and the measurement uncertainty, an initial setup
is assumed. It is varied through the tests.

The initial setup assumes:

• Voltage limits: ±6% (see Subsection 3.1.3)

• Real-time measurement uncertainty σz: 0.2% and 0.2◦ (from Table 4.2)

• Measurement type and configuration: 5 voltage PMU measurements at transformer busbar
and feeder ends

In Figure 5.2, the measurements of the initial setup are marked in orange: one measurement is
located at the lower side of the HV/MV transformer station (2) and four at randomly chosen end
feeder nodes with switches, one closed (5) and three open (23, 77 and 87). Hence, in this setup,
less than 5% of the nodes are equipped with real-time measurements.

Based on the initial setup, the following three variations are applied:

1. Stricter voltage limits: ±4%

2. Higher real-time measurement uncertainty: 1.5% and 1◦

3. Higher real-time measurement coverage: voltage PMU measurements at transformer busbar
and at all feeder ends (11% of the nodes are equipped with real-time measurements)

For each setup variant, only the explicitly mentioned parameters change; the other parameters are
equal to the initial setup.

3The postrue is 7% and 1% respectively
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5.1.3 Warning and Alert Stages for Critical System States

According to research question 2, one aim of this work is to develop a method that outputs warning
and alert messages as decision support for system operators. To address this aim, a criticality
stage classification is applied to the system. An exemplary demonstration of the graphical message
output is given below. One warning and one alert stage are defined. The two thresholds from
Figure 5.1 are taken for the warning and alarm stages assignment. An element ε is assigned

• To a warning stage, if pcss,ε exceeds pthres,2σ;

• And to an alert stage, if pcss,ε exceeds pthres,σ.

For two exemplary time steps, the elements of the test grid from Subsection 5.1.2 are assigned to
the stages according to the above definition. In Figure 5.3, the assigned buses and lines are marked
with colors. Red elements are assigned to the alert stage, and orange elements are assigned to
the warning stage. Further, the feeders, including the affected buses or lines, are colored in the
background.

(a) Affected buses and feeders containing them (b) Affected lines and feeders containing them

Figure 5.3: Graphical output for buses (a) and lines (b) assigned to warning (orange) and alert (red) stages

5.1.4 Test Results for Recognition of Critical System States

This section evaluates the accuracy performance of the three different state estimates pcss, µpo,
and x̂WLS for recognition of critical system states. For this, the performance metrics described in
Section 5.1.1 are applied to the different estimates for each setup described in Subsection 5.1.2.

Initial setup

For the first evaluation, the aggregated true-positive rate tprx̂,lim, the aggregated true-negative
tnrx̂,lim and the aggregated accuracy acx̂,lim are calculated for the initial setup defined in Section
5.1.2. Figure 5.4 and Figure 5.5 show the results for critical system states due to lower and upper
voltage limit violations. It should be noted that in the load-dominated test case upper voltage limit
violations occur only in 1% of time steps in the test scenario.
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Figure 5.4: Aggregated accuracy acx̂,lim, true-positive tprx̂,lim and true-negative rate tnrx̂,lim for the differ-
ent state estimation results pcss, µpo, and x̂WLS for violating Vlow (-6%) for initial test setup . A
state is classified as critical if pcss exceeds the given threshold pthres.

Figure 5.5: Aggregated accuracy acx̂,lim, true-positive tprx̂,lim and true-negative rate tnrx̂,lim for the differ-
ent state estimation results pcss, µpo, and x̂WLS for violating Vup (+6%) for initial test setup
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The results for critical system states due to Ith-violations are given in Figure 5.6.

Figure 5.6: Aggregated accuracy acx̂,lim, true-positive tprx̂,lim and true-negative rate tnrx̂,lim for the differ-
ent state estimation results pcss, µpo, and x̂WLS for violating Ith for initial test setup

The results for pcss are plotted over different threshold values pthres (see Equation 5.4 in Subsection
5.1.1), from 0 to 50%. A state is classified as critical if the probability of a critical system state
pcss exceeds the given pthres. For Gaussian distributions, the results for pcss with a threshold of
50% equal the results obtained with the expectation value-based method µpo. The results for the
benchmark method x̂WLS are shown on the right axis. x̂WLS does not depend on the threshold.

For the cases where Vlow and Ith violations are considered, the tprpcss,lim starts at a level near 100%
and decreases with increasing pthres (since pcss is only classified as critical if pcss > pthres). The
true-negative rate tnrpcss,lim shows opposite behavior. It increases with the increasing threshold.
The behavior of tprpcss,lim and tnrpcss,lim imply that for higher pthres less states are classified as critical.
The acpcss,lim first grows with increase of tnrpcss,lim, but then falls with the strongly decreasing
tprpcss,lim. As most states in the test set are actually non-critical, the true-negative estimates have a
stronger impact on the aggregated accuracy than the true-positive estimates. Consequently, the
ac curve is closer to tnr than to tpr. For the violations of the upper voltage limit Vup, the results
of tpr, tnr and ac for pcss are consistently above 99.8% for the evaluated thresholds (0 to 50%).
This means that the Bayesian method accurately detects critical and non-critical states for upper
voltage limit violations. For pthres,2σ, the tnrpcss,lim and acpcss,lim are above 99% for all evaluated
limits. Hence, applying this threshold for warning stages would accurately detect (near) critical
states. For pthres,σ, the tprpcss,lim is higher than 91% for Ith, 94% for Vlow, and 99% for Vup. Hence,
by using pthres,σ as an alarm stage, the detection rate for all types of operational limit violation is
above 90% as required by definition in 1.
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Comparing the results of the pcss method to the deterministic results of µpo and x̂WLS, shows
following:

• Processing the entire posterior distribution and assuming a threshold pthres < 50%, instead
of considering only the expectation value µpo (equivalently pthres = 50%), can lead to a
significantly higher true positive rate (up to 12% for Vlow, and 24% for Ith).

• The tpr for x̂WLS is below the tpr for pcss and µpo for all considered limit violations. For Vlow
it is up to 16%, for Vup up to 8%, and for Ith even up to 65% below the true-positive rates of
pcss results.

• The lower true-positive rates of x̂WLS imply that the conventional WLS benchmark method is
more likely to miss critical states.

Stricter Voltage Limits

A test scenario with a stricter voltage limit of ±4% was chosen to analyze the sensitivity of the
estimates to different share of true critical system states in the evaluated states. For the voltage
limit of ±4%, the percentage of time steps in the test set, which are true critical due to lower and
upper voltage limit violation, rise to 58.7% respectively 6%4. Changing the voltage limits does not
change the results for violating the thermal current limits. They are identical to the initial setup
(see Figure 5.6). Figure 5.7 and Figure 5.8 show the calculated performance metrics tpr, tnr, and
ac for violating Vlow (−4%) respectively Vup (−4%).

Figure 5.7: Aggregated accuracy acx̂,lim, true-positive tprx̂,lim and true-negative rate tnrx̂,lim for the differ-
ent state estimation results pcss, µpo, and x̂WLS for violating stricter voltage limits Vlow (−4%)

4The postrue is 26% for Vlow respectively 2% for Vup.
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Figure 5.8: Aggregated accuracy acx̂,lim, true-positive tprx̂,lim and true-negative rate tnrx̂,lim for the differ-
ent state estimation results pcss, µpo, and x̂WLS for violating stricter voltage limits Vup (+4%)

The behavior of tprpcss,Vlow
, tnrpcss,Vlow and acpcss,Vlow show similar behavior for the 4% voltage limits

as for the 6%. However, for pthres = 0% the values for acpcss,Vlow and tnrpcss,Vlow are significantly lower
for the stricter limit than for 6%. This implies that for very small thresholds, e.g., pthres < pthres,2σ,
the number of critical states is overestimated. The tprpcss,Vlow

shows a flatter decreasing profile
until 92%. Hence, also with 4% voltage limit, the proposed method reaches the aim of > 90%
detecting rate. Limit violations due to Vup are recognized by all three estimates with true-positive
rates above 96%. The aggregated true-negative rates for Vup (+4%) lie above 99.8%. In this setup,
the pcss results for pthres,2σ and pthres,σ achieve higher tpr than for x̂WLS and µpo method. However,
the advantage of this setup is reduced in comparison to the initial setup. This implies that the
pcss method is particularly advantageous when the true critical states are less frequent (as in the
initial setup). Since grids should be properly designed, critical states should be rare. For this, the
proposed method is a good option to accurately detect rare violations. The differences between
the true-negative rates of pcss for the both thresholds, µpo, and x̂WLS are only 3% in maximum.

Higher Measurement Uncertainties

To evaluate the influence of measurement uncertainties, the third setup assumes higher real-
time measurement uncertainties with σz of 1.5% for magnitude and 1◦ for phase. The acpcss,lim
and tnrpcss,lim start for pthres = 0% at a lower percentage value than for lower measurement
uncertainties but rise until pthres,2σ over 96% for all operational limit violations. The tprpcss,lim
decreases steeply until pthres = 50% (µpo) to 49.7% for Vlow, 45.2% for Vup, and 43.2% for
Ith. Hence, the improvement of considering the entire posterior distribution over expectation
value-based approaches rises to over 50%.
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Figure 5.9: Aggregated accuracy acx̂,lim, true-positive tprx̂,lim and true-negative rate tnrx̂,lim for the differ-
ent state estimation results pcss, µpo, and x̂WLS for violating Vlow (−6%) for higher measurement
uncertainty

Figure 5.10: Aggregated accuracy acx̂,lim, true-positive tprx̂,lim and true-negative rate tnrx̂,lim for the
different state estimation results pcss, µpo, and x̂WLS for violating Vup (+6%) for higher
measurement uncertainty
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Figure 5.11: Aggregated accuracy acx̂,lim, true-positive tprx̂,lim and true-negative rate tnrx̂,lim for the
different state estimation results pcss, µpo, and x̂WLS for violating Ith for higher measurement
uncertainty

This again shows the importance of considering the entire posterior distribution instead of the single
expectation values. Large posterior variances can result from high measurement uncertainties
and high uncertainties in the background input. For larger uncertainties, the pcss method (with
pthres < 50%) is more accurate in detecting limit violations than the expectation value-based
approach. Hence, these results confirm the graphical example from Figure 4.6 in Section 4.3 for
different posterior uncertainties. For the WLS benchmark estimator, the aggregated true-positive
rate for Vlow limit detection changes only marginally for the different real-time measurement
uncertainties. However, Vup and Ith violations are hardly recognized at the higher real-time
measurement uncertainties (< 40% for Vup and < 10% for Ith). The high tnr and the extremely
low tpr for the x̂WLS estimate support the assumption that the benchmark estimator is more likely
to miss a critical state than to miss-classify non-critical states.

Higher Measurement Coverage

In order to evaluate the improvements that can be achieved by additional real-time measurements,
a setup with voltage measurements placed at all branch ends is investigated. In the initial setup,
only 1/3 of all feeder ends are measured. With the additional real-time measurements, the tpr and
tnr and thus ac of all estimates could be improved (up to 8%, see Appendix A.3.3). The results
for this setup show the same trends as for the initial setup. Consequently, the conclusions are the
same; therefore, the results will not be discussed in detail. The only additional finding from this
setup is that the state estimation results, and thus the detection rates, benefit from additional
accurate real-time measurements.
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Overview and Summary

The results of the previous case study for detecting limit violations are given in Tables 5.1, 5.2, and
5.3. The aggregated true-positive and true-negative rates are compared for lower and upper voltage
band and thermal current limit violations. They are calculated for the different state estimation
results pcss, µpo, and x̂WLS for the varying setups. For pcss, the results are given for thresholds
pthres,σ and pthres,2σ, which are described in 5.1.1.

Table 5.1: Aggregated true-positive tprx̂,Vlow
and true-negative tnrx̂,Vlow rates for the different state estimation

results pcss, µpo, and x̂WLS for violating Vlow in varying setups

pcss & pthres,2σ pcss & pthres,σ µpo x̂WLS

Setup tpr tnr tpr tnr tpr tnr tpr tnr

Initial setup 97.6 99.4 94.2 99.8 87.2 99.9 83.6 99.7

Stricter voltage limits 99.6 96.8 98.9 99.0 93.5 99.8 97.3 98.1

Higher RTM∗ uncertainty 95.5 96.5 80.6 99.5 49.7 99.9 79.2 99.0

Higher RTM∗ coverage 98.2 99.4 96.1 99.8 90.6 99.9 89.5 99.8

∗Real-Time Measurement

Table 5.2: Aggregated true-positive rates tprx̂,Vup
for the different state estimation results pcss, µpo, and

x̂WLS for violating Vup in varying setups, tnrx̂,Vup is for all setups and estimates > 99.9%

Setup pcss & pthres,2σ resp. pthres,σ µpo x̂WLS

Initial setup 99.9 99.9 92.1

Stricter voltage limits 99.9 99.9 96.2

Higher RTM∗ uncertainty 99.9 43.4 41.0

Higher RTM∗ coverage 99.9 99.9 97.5

∗Real-Time Measurement

Table 5.3: Aggregated true-positive tprx̂,Ith and true-negative tnrx̂,Ith rates for the different state estimation
results pcss, µpo, and x̂WLS for violating Ith in varying setups

pcss & pthres,2σ pcss & pthres,σ µpo x̂WLS

Setup tpr tnr tpr tnr tpr tnr tpr tnr

Initial setup 97.8 99.6 91.3 99.9 75.5 99.9 34.0 99.6

Higher RTM∗ uncertainty 99.6 98.5 90.6 99.7 43.2 99.9 8.8 99.8

Higher RTM∗ coverage 99.4 99.6 95.8 99.9 83.3 99.9 46.1 99.8

∗Real-Time Measurement

74



The results from the tables can be summarized as follows5:

• By considering the entire posterior distribution, a more accurate critical state detection can
be achieved than for the widely used WLS benchmark estimator (tprpcss,lim > tprx̂WLS,lim)
and expectation value-based approaches (tprpcss,lim > tprµpo,lim). Instead of taking single
estimated values as true representatives for state variables, the new method beneficially
considers the uncertainties of the output.

• With the pcss method, it is possible to choose multiple thresholds to be more sensitive to
(near) critical states.

• For stricter voltage limits, the tpr increase and the tnr decrease for every estimate. Hence,
more critical system states can be detected, but more normal states are also assumed to be
critical. Further, the pcss method is more advantageous when the true critical states are less
frequent. Hence, this method is more suitable for properly designed grids and, thus, for
practical applications.

• For higher measurement uncertainties, the tpr gets mostly smaller. The lower measurement
accuracy particularly deteriorate results for µpo and x̂WLS. Better results can be achieved
by pcss. Hence, it becomes even more important to consider the output variances by using
the pcss method for state estimation methods with higher real-time measurements or higher
background input uncertainties.

• A higher real-time measurement coverage improves all tpr results, and the aggregated true-
negative rates retain their high values. This implies that the recognition rates benefit from
additional real-time measurements. Hence, an economical optimal meter placement allows a
more accurate state detection.

5.2 Usage of Non-Real-Time Input with Varying Levels of Detail for
State Estimation

This section uses the correlation-aware synthesis module from Section 4.4 to estimate the back-
ground distribution for Bayesian linear state estimation. The pre-processing module enables
estimating a background distribution, including load correlations for non-real-time data with
varying levels of detail. The state estimation results are evaluated for recognizing critical system
states. It can be shown that considering load correlations can strongly improve the Bayesian
state estimation results for detecting limit violations. Furthermore, it is shown that good results
can be obtained even for MV nodes with no time-resolved historical power series available. The
section starts with describing adjusted test conditions. It presents the used test cases for different
smart meter coverage and load correlation assumptions. Then, the results for the recognition of
limit violations are discussed. Further, the accuracy of the estimated voltage prior distribution is
analyzed to get a more detailed view of the improved state estimation accuracy achieved by using
the proposed synthesis module.

5The results for pcss are compared for assumption pthres,2σ < pthres ≤ pthres,σ.
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5.2.1 Adjusted Test Conditions

To evaluate the effect of load correlations, and thus the benefit of the correlation-aware synthesis
module, the approach from Section 4.4 is tested in a simulation study. The 20 kV grid presented in
5.1.2 is chosen as a test system. In order to study correlations, a test case with a more detailed
modeling of the statistical properties of individual loads had to be created. Since the original
simbench data set allocates load and generation profiles from a limited set of profiles, some MV
nodes are assigned to the same profiles. This results in unrealistically high correlations of 100%
between these nodes. Since the load correlations significantly impact the assessment of the effec-
tiveness of the correlation-aware synthesis module, it is crucial for this test system to realistically
replicate the correlations among power profiles of different MV nodes. Therefore, only the static
specification of the grid topology and the load types is retained from the original simbench data
set. The load profiles are synthesized using a bottom-up method. For MV nodes with underlying
LV grids dominated by household profiles, every LV node is assigned a new, unique residential
profile from an independent pool of 7000 OpenEI load profiles for New York state [154]. The
commercial profiles from simbench are replaced by commercial profiles from OpenEI of the same
SLP type. The PV and wind profiles are taken from simbench, with careful attention to avoid
duplicate assignments and, thus, unrealistic correlations. To estimate the background distribution
for subgrids with low smart meter coverage, the load profiles from OpenEI for Washington state
are employed as comparable profiles as outlined in Subsection 4.4.4. This procedure prevents the
comparable load profiles from being unrealistically similar to the actual load profiles in the test data.
For the calculation of the reactive power profiles, a constant power factor P

S = cos(ϕ) = 0.95 is as-
sumed. Hence, the reactive power can be calculated byQ = P tan(ϕ) from the active power profiles.

The performance of the correlation-aware synthesis module is evaluated to identify critical system
states correctly. To obtain a representative number of true critical system states for testing detection
accuracy, the load and generation profiles are multiplied by a factor of three. With the synthesized
power profiles, a power flow calculation is executed for every time step. The results represent
the true system state (ground truth). Simulated measurements are obtained from true system
states without adding synthetic measurement errors. The initial voltage limit and measurement
setup from 5.1.2 is assumed. In the following, different scenarios with varying SM coverage and
correlation assumptions are introduced for the evaluation. On the one hand, they aim to show
the importance of considering load correlations. On the other hand, they show the benefit of the
correlation-aware synthesis module for estimating the background distribution, particularly for
customers with only annual energy demand information.

5.2.2 Test Cases with Varying SM Coverage and Load Correlation Assumptions

According to Subsection 4.4.1, the MV nodes of the test set are assigned to the following MISs.

• The 5 MV nodes with real-time measurements and the 21 MV nodes with RLMs (large
commercial consumers and RES) are assigned to MVmeas.

• The 79 MV nodes with underlying LV grids can be assigned to SM100%, SM≥αthres , or SM<αthres

depending on the SM coverage. The following tests consider the two extreme SM coverage
scenarios of 0% and 100%.
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Four test cases with varying SM coverage and load correlation assumptions are defined. The
test cases that consider load correlations (correlation-aware) are denoted by cor. Test cases that
neglect load correlation (correlation-unaware) are denoted by cor0. Each test case is defined by
two parameters: the SM coverage given in % and the correlation assumption (cor or cor0).

Test case 1: 100% & cor
The SM coverage of all underlying LV grids is assumed to be 100%, i.e., 15min time-resolved
measured power profiles at every load are available for the estimation. Hence, the MV
nodes with underlying LV grids are assigned to SM100%. The sample background distribution
covariance ΣS,samp,nm is calculated according to the description in Subsection 4.4.3. Hence,
this test case considers the load correlations (correlation aware).

Test case 2: 100% & cor0
The SM coverage is also assumed to be 100%, but the load correlations are not considered
(correlation-unaware). This results in a diagonal covariance matrix of the background
distribution.

Test case 3: 0% & cor
A SM coverage of 0% is assumed for all LV grids, i.e., only the annual energy demand is
available for the estimation approach. For this, the MV nodes with underlying LV grids are
assigned to SM<αthres . The background distribution is calculated according to the approach
described in Subsection 4.4.3, using a value ofK = 1000. The comparable profiles for non-SM
nodes (in this case, all nodes in the LV grid) are drawn from the pool of 4947 OpenEI power
profiles of Washington state described in Subsection 4.4.4. Hence, this test case considers
the load correlations (correlation aware).

Test case 4: 0% & cor0
The same SM coverage (0%) as for the third test is assumed, but the load correlations are
neglected (correlation-unaware).

5.2.3 Limit Violation Detection after Applying the Correlation-Aware Synthesis Module

The background distribution is estimated according to the procedure described in Section 4.4.
Then, for each time step t ∈ {1, ..., t}, the Bayesian linear state estimation algorithm is performed
according to Section 3.3, resulting in a posterior distribution. Subsequently, from the resultant
posterior distribution, the probability of critical system states pcss is calculated as presented in
Subsection 4.3. The results are evaluated for threshold pthres,σ for each test case described above.
The performance metrics from Section 5.1.1 are applied to measure how well critical system states
are recognized.

Table 5.4 shows the aggregated true-positive rate in % for recognizing critical system states due to
low voltage and thermal current limit violations. In the adjusted test case, no violations of the upper
voltage limit are to be evaluated. The aggregated true-negative rate, which gives the percentage
of correctly recognized non-critical system states, is for all four test cases and considered limit
violations (Vlow, Ith) larger than 99.6%.
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Table 5.4: Aggregated true-positive rates in % for recognition of critical system states due to low voltage
limit (6%) and thermal current limit violation by Bayesian linear state estimation for different
SM coverage with (cor) and without (cor0) considering load correlation

Test case 1: 100% & cor 2: 100% & cor0 3: 0% & cor 4: 0% & cor0

tprpcss,Vlow
98.0 82.1 98.0 80.7

tprpcss,Ith 97.6 76.7 95.2 72.8

The results from Table 5.4 are discussed first for considering and neglecting load correlations and
then for considering different SM coverage.

Benefit of Considering Load Correlation

First, the results of the test cases with 100% SM coverage are compared (test cases one and
two). Considering load correlations in the background distribution improves the true-positive rate
tprxest,lim by 15.9% for voltage limit violations and by 20.9% for thermal current limit violations. A
similar result is found for the 0% SM coverage (test cases three and four): Here, tprxest,lim improves
by 17.3 percentage points for voltage limit violations and by 22.4 percentage points for thermal
current limit violations.

The benefit of considering load correlations becomes even more striking when viewed from the
perspective of critical system states that are missed (i.e., not correctly recognized). This is given
by the aggregated false-negative rate fnr (see Equation 5.8). Table 5.5 shows the aggregated
false-negative rates for recognizing critical system states in the four test cases.

Table 5.5: Aggregated false-negative rates in % for recognition of critical system states due to low voltage
limit (6%) and thermal current limit violation by Bayesian linear state estimation for different
SM coverage with (cor) and without (cor0) considering load correlation

Test case 1: 100% & cor 2: 100% & cor0 3: 0% & cor 4: 0% & cor0

fnrpcss,Vlow
2.0 17.9 2.0 19.3

fnrpcss,Ith 2.4 23.3 4.8 27.2

Where no smart meter measurements are available (0% SM coverage), the approach that neglects
the load correlations (cor0) misses 19.3% of critical system states caused by voltage limit violations.
Using the correlation-aware estimation of background distributions (cor), that fraction drops to
2%, a reduction by a factor of 9.7. Analogously, a reduction of the fnr by a factor of 5.7 is observed
for thermal current limit violations. For 100% SM coverage, the improvement of the false-negative
rate achieved by considering load correlation is a factor of 9 for voltage limit violations and a factor
of 9.7 for current limit violations. The factor reduction of fnr by considering load correlation for
background distribution calculation can be seen graphically in Figure 5.12. These findings confirm
the importance of considering load correlations in MV grid state estimation algorithms.

78



100% 0%
0

10

20

/9.7/9f
n
r
in

%

SM Coverage
(a) Vlow

100% 0%
0

10

20

/5.7
/9.7

f
n
r
in

%

100% & cor

100% & cor0

0% & cor

0% & cor0

SM Coverage
(b) Ith

Figure 5.12: Factor reduction of aggregated false-negative rates by considering load correlation for recogni-
tion of critical system states due to (a) low voltage limit (6%) and (b) thermal current limit
violation by Bayesian linear state estimation for 0% and 100% SM coverage

Non-Real-Time Data with Varying Levels of Detail

The high tpr (> 95%) of test case three in Table 5.4 shows that by using the correlation-aware
synthesis module, critical system states can be reliably detected even for 0% SM coverage. The first
and third test cases (100% vs. 0% SM coverage, each with correlation awareness) lead to similar
true-positive rates. This means that the estimation of background distribution for non-metered
customers is sufficiently accurate to detect limit violations. Furthermore, test case three shows
a significantly higher tpr than test case two. This implies that even without smart meter cover-
age (0%), the accuracy by incorporating load correlation (cor) is much better than what can be
achieved without considering load correlation, even with full SM coverage (100% & cor0). Hence,
for accurate detection of limit violation, it is essential to properly estimate the load correlation
between the MV nodes, e.g., by using the proposed correlation-aware synthesis module.

It is important to note that the proposed approach only uses comparable load profiles to estimate
correlations for the test cases with 0% SM coverage. These give an approximate indication of the
true load correlation between loads in the system. The estimated correlation values differ from
the empirical correlation in the ground truth by 12% on average, with a maximum value of 39%.
However, as the results above show, this approximation is good enough to improve the accuracy of
the resulting state estimation substantially and, consequently, the recognition of critical system
states (tprpcss,lim > 95%).

Summarized Benefit for Recognition Accuracy

In summary, considering load correlations allows for substantially more accurate recognition of
critical system states in the context of Bayesian linear state estimation. Therefore, using the
correlation-aware synthesis module can be beneficial even in cases where no smart meter mea-
surements are available that would allow an empirical estimation of load correlations. Instead,
knowledge extracted from a set of comparable (but different) load profiles from an entirely different
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geographical region can be used to achieve accuracy levels comparable to the case where full
smart meter coverage is available. Future research should include a selection of the most suitable
comparison region.

The following subsection analyzes the accuracy of the estimated prior distributions for the test cases
defined in Subsection 5.2.2 to gain a more detailed insight into the benefits of the correlation-aware
synthesis module for Bayesian linear state estimation results.

5.2.4 Accuracy of Estimated Voltage Prior Distribution

The varying assumptions for SM coverage and load correlation change only the elements of the
background distribution covariance ΣS (see Table 4.6), µS is not affected (see Equation 4.6).
According to equations 3.51-3.54, changes in ΣS only change the covariance matrix of the voltage
prior distribution ΣVpr

6. For this, the varying assumptions for generating the background distribu-
tion change the elements of the voltage prior covariance matrix.

To achieve a high detection rate of critical system states, the estimated voltage prior distribution ΦVpr

should represent the true voltage prior distribution ΦVpr,true as accurately as possible. To illustrate
this fact, the Bayesian linear state estimation based on true, empirical voltage prior ΦVpr,true is
performed. The approximated true prior distribution is obtained by fitting a Gaussian distribution
to the voltage time series from the simulated ground truth states. By using the fitted true prior
distribution and pthres,σ, the recognition rate of critical system states is > 99%: The tprpcsslim for
Vlow violation results in 99.9% and for Ith violation in 99.0%.

To assess the impact of changes in background distribution covariances on the estimated prior
voltage distribution, the calculated voltage prior covariance matrices ΣVpr (for each test set) are
compared to the true empirical covariance matrix ΣVprtrue. The following two characteristics of the
prior voltage distribution are evaluated:

• Standard deviation σVpr (overall variation of voltage values for each node);

• Correlation coefficient ρVpr (correlation between voltage values at different nodes).

The normalized Root-Mean-Square-Error NRMSE is used as an error metric to evaluate the
accuracy of the estimated prior distribution. It is defined by the RMSE between true ytrue and
estimated ŷ values, normalized to the mean of the true values:

NRMSE =
RMSE

1
N

N∑
n=1

ytrue,n

· 100% with RMSE =

√√√√ N∑
n=1

(ytrue,n − ŷn)2. (5.12)

First, the standard deviations are discussed and then the correlation coefficients.

6µVpr depends only on µS and not on ΣS .
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Standard Deviations

The marginalized true and estimated prior distribution for voltage magnitude and angle is shown
in Figure 5.13 for an exemplary bus (97). It illustrates the effects of load correlation and SM
coverage assumptions on the variances of the estimated prior distribution.
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Figure 5.13: The marginalized true and estimated node voltage distribution ΦVpr for voltage magnitude (a)
and angle (b) at the exemplary bus (97) are shown. The colors represent the true empirical
values and the four test cases described in Subsection 5.2.2, covering different SM coverage
and load correlation assumptions.

On a qualitative level, the standard deviation of the voltage prior distribution calculated without
considering load correlations (cor0) always substantially underestimates the true standard devia-
tion. Thus, σVpr for cor0 assumes a much lower variation of voltage values in the prior distribution.
This observation is also valid for every other bus in the grid. On the other hand, if load correlations
are considered (cor), the resulting standard deviation is very close to the true empirical values.
There are only small deviations with a maximum of ± 2.7% relative to the mean.

Table 5.6 shows the NRMSE (see Equation 5.12) for σVpr for each of the four test cases from
Subsection 5.2.2, separately for magnitude and angle components of Vpr. If load correlations are
not considered (cor0 columns), relatively high NRMSE values (∼ 72% for voltage magnitude
and ∼ 45% for voltage angle) are observed independently of the level of smart meter coverage.
This confirms the qualitative observation from Figure 5.13. Considering load correlations reduces
that error. In the case of full smart meter coverage, the error levels are reduced to ∼ 1/5 for
voltage magnitude (15.5% vs. 71.9%) and to ∼ 1/30 for voltage angle (1.5% vs. 44.7%). Even
in the case where no smart meter measurements are available as non-real-time input, using the
correlation-aware synthesis module can reduce the error levels from neglecting load correlations
to ∼ 1/3 for Vpr,mag (27.6% vs. 72.3%) and ∼ 1/4 for Vpr,ang, (1.6% vs. 44.8%).
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Table 5.6: NRMSE in % for the standard deviation of the voltage prior distribution σVpr for calculated and
true voltage prior covariance depending on SM coverage and load correlation assumptions

Test case 1: 100% & cor 2: 100% & cor0 3: 0% & cor 4: 0% & cor0

Vpr,mag 15.5 71.9 27.6 72.3

Vpr,ang 1.5 44.7 11.6 44.8

Correlation Coefficient

Now, the correlation coefficients of the voltage prior distribution for the different test cases are
analyzed. Table 5.7 shows the NRMSE for the correlation coefficient of voltage prior distribution
ρVpr for each of the four test cases from Subsection 5.2.2, separately for magnitude and angle
components of Vpr. Regarding theNRMSE for the correlation coefficients of the prior distribution,
a strong improvement can also be observed when considering load correlation in the background
distribution covariance matrix. If load correlations are neglected the NRMSE is ∼ 41% for
voltage magnitude and ∼ 36% for voltage angle. When considering load correlations the error
reduction for 100% SM coverage is ∼ 1/20 and for 0% SM coverage ∼ 1/9 for Vpr,mag and Vpr,ang.

Table 5.7: NRMSE in % for the correlation coefficient of the voltage prior distribution ρVpr
for calculated

and true voltage prior covariance depending on SM coverage and load correlation assumptions

Test case 1: 100% & cor 2: 100% & cor0 3: 0% & cor 4: 0% & cor0

Vpr,mag 2.1 40.9 4.8 41.3
Vpr,ang 1.6 36.4 3.8 36.6

Summarized Analysis of Prior Variance Accuracy

The results from Subsection 5.2.3 and 5.2.4 for the different test cases show that a more accurate
estimation of the voltage prior distribution ΦVpr translates into a more accurate recognition of
critical system states. By considering load correlation for generating the background distribution,
the NRMSE for true and estimated standard deviation of the voltage prior distribution σVpr can
be reduced to at least ∼ 1/3 and the correlation coefficient of the voltage prior distribution ρVpr to
∼ 1/9. This shows that load correlation consideration for the background distribution in Bayesian
linear state estimation strongly improves the estimation of the prior distribution ΦVpr . Further, the
above results show that even without any SM measurements as non-real-time background input,
the proposed correlation-aware synthesis module impressively improves the accuracy of the prior
voltage distribution by accounting for the load correlations.

5.2.5 Summary for Applying Correlation-Aware Synthesis Module

Calculating a background distribution with load correlations was previously only demonstrated
for a complete set of time-resolved power measurements at all MV grid nodes (e.g., historical
measurements MVmeas or SM from underlying LV grids SM100%). With the correlation-aware
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synthesis module, a background distribution incorporating load correlation can be estimated for
MV grids with different MIS, including SM>αthres and SM≤αthres . The pre-processing module enables
an accurate estimation of correlation-aware background distribution, even for MV nodes with
underlying LV grids with less or without SM measurements.

It was shown that the background distributions for MV nodes with underlying LV grids having
low SM coverage (SM≤αthres) can be accurately synthesized with properties of comparable LV grids.
Section 5.2.3 highlights the importance of accurately modeling load correlations in Bayesian linear
state estimation. It was demonstrated that using the correlation-aware synthesis module for estimat-
ing the background distribution and thus considering load correlation substantially improves the
recognition accuracy of critical system states. Even for cases with no or very limited data availability,
up to 98% of the true critical system states are correctly identified. The fraction of missed crit-
ical system states can be reduced by a factor of up to 9 compared to neglecting the load correlations.

The results emphasize the importance of accurately modeling the statistical properties of customer
behavior in distribution system state estimation. The correlation-aware synthesis module can
adequately account for such load correlations. Further, using the pre-processing module, the
recognition rate calculated with non-real-time data assuming 0% SM coverage is nearly as high as
with full-time-resolved SM coverage.

5.3 Strengths and Limitations of the Proposed Method and the Case
Study

This section provides an overview of the strengths and limitations of the proposed Bayesian state
estimation method for MV grids, including the modules presented. It also points out the limitations
arising from the assumptions of the case study. Before discussing the strengths and limitations, the
proposed uncertainty-aware state estimation method is analyzed according to the fulfillment of
the requirements defined in research question 1.

5.3.1 Requirement Fulfillment of the Proposed State Estimation Method

In Section 4.2, the Bayesian state estimation methods from literature have been compared accord-
ing to achieve the defined requirements from Section 2.2. For this, comparison criteria have been
defined (see Subsection 4.2.1). The comparison criteria concerning the inputs are now inserted
on the left-hand side in Table 5.8. On the right-hand side of the table, it is discussed whether the
proposed state estimation method fulfills these criteria.

Three more requirements are analyzed in the comparison study of Section 4.2. They also result
from research question 1: near-real-time condition, uncertainty-aware evaluation, and identi-
fication of limit violations. Now, it is discussed whether they are considered in the proposed
uncertainty-aware state estimation method.
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Table 5.8: Relevant inputs considered in this thesis

Assertion Evidence

Practice-relevant grids
realistic scale and partly
closed ring structure

The test grid from Subsection 5.1.2 was chosen for the simulations
in this chapter. It has 107 buses and thus fulfills the requirements
for a realistic scale of a test grid with over 80 buses. Further, it
has one exemplary ring structure. The tests show that the chosen
model can handle this non-radial structure.

Heterogeneous meter input
including PMU & RTU
measurements, SM data,
annual energy demand, and
non-real-time data with
varying levels of detail

Concerning the heterogeneous meter input, first, the real-time mea-
surements are considered. As shown in Section 3.3, the model
for Bayesian Linear state estimation from [94] was extended by
using the Jacobi Matrix of measurements (see Equation 3.59). This
allows handling all measurable variables from PMU and RTU mea-
surements. The correlation-aware synthesis module developed
in this thesis is used to generate the background distribution. It
incorporates Smart Meter data and annual energy demand from
non-metered customers. Thus, it can process non-real-time data
with varying levels of detail (see Subsection 5.2).

Load correlation The pre-processing module is explicitly beneficial for accounting
for load correlations. Thus, load correlations can be considered for
every MV node, even if the node is not directly metered.

In order to achieve low computation times for the near-real-time requirement, an analytical
Bayesian state estimation approach was chosen (see Subsection 3.2.2). This non-iterative approach
is very time-saving. Tests with different numbers of real-time measurements are evaluated to prove
the near-real-time property of the method. All simulations are obtained using Python on an Intel
Core i7-9850H CPU with 16GB RAM.

• The computation time for calculation of the posterior distribution (only the online state
estimation part) never exceeds 12ms (see Figure A.1a).

• With the subsequent calculation of the probability of critical system states, the algorithm
needs maximal 1/4 s in total (see Figure A.1b).

Hence, the computation time for the proposed state estimation method is less under the require-
ment of 60 s.

The two other requirements, namely the consideration of the output uncertainty in the evaluation
and the detection of limit violations, are covered by using the post-processing module for calculating
the probability of critical system states (see Section 5.1). The criticality analysis module uses the
uncertainty of the output to give a probabilistic estimate of the criticality of a system state. It was
evaluated for accurate detection of limit violations and achieved the required detection rate of
> 90%.
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5.3.2 Strengths

The strengths of the proposed method are summarized below. First, the benefits resulting from
algorithm choice are discussed. Since the chosen Bayesian linear state estimation algorithm is
non-iterative, there are no convergence issues for ring structures or a low amount of accurate
real-time measurements, which is typical for MV grids. Further, as it is an analytical approach, the
computation times are short, as previously evaluated in Subsection 5.3.1. The linearized power
flow equation used to estimate the voltage prior distribution from the background distribution
only approximates the actual non-linear power flow. Thus, the results include deviations. However,
the magnitude and angle deviations of voltage prior expectation values are less than 0.5% respec-
tively 0.001 ◦. Hence, compared to Monte Carlo simulations or machine learning algorithms, this
approximation is a suitable and time-saving tool for appropriately estimating the prior distribution.
Further, compared to the widely used WLS estimator and many other deterministic approaches,
the Bayesian method does not assume a single estimated value as “true and only” representative
for the state. Due to the low level of measurement instrumentation, the input has uncertainties,
and thus does the output. Hence, it is better to be aware of the uncertainties of the output than
ignore them.

The proposed additions to the algorithm from [94] developed in this thesis (see Subsection 3.29)
include further strengths. The method is no longer limited to any specific measurement type. This
is achieved by incorporating the Jacobi matrix of measurement function into the approach (see Sec-
tion 3.3). Further, by using the complex form of normal distribution to transform the background
distribution to voltage prior distribution, the method can incorporate the load correlation of the
background input. This option to consider load correlation is a massive strength of the proposed
state estimation method, as it enables more accurate detection of limit violations even with a small
amount (< 5%) of real-time measurements (see Section 5.2.3).

This paragraph summarizes the benefits of the criticality analysis module. By using the entire
posterior distribution, i.e., the covariance in addition to the expectation value, high recognition
rates for identifying critical system states are achieved. The module for calculating the probability
of critical system states is not limited to normal distributions. It can evaluate every integrable
posterior probability. Further, the proposed method can output warning and alert messages in
case of (near) critical system states. This has two advantages: First, if the grid expansion does not
proceed fast enough and the expected high number of limit violations actually occurs, the grid
operators know where to act in the critical case. Second, newly planned grids no longer have to
meet the strict connection regulations calculated for the worst-case scenario. In the normal case,
the grids can be loaded higher, and the grid operator is warned when a limit value is in danger of
being violated.

Last, the strengths resulting from using the correlation-aware synthesis module are pointed out. The
module generates background distributions for realistic availability assumptions of non-real-time
data as it incorporates non-real-time data with varying levels of detail. It considered time-resolved
smart meter data and customers with only annual energy demand information. Further, the method
accounts for load correlations, even for non-metered customers. Thus, the method takes advantage
of correlated consumer behavior and highly spatial and temporal correlated volatile energy sources.
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5.3.3 Limitations

The main limitations of the method and the case study result from the model assumptions made at
the beginning. Possible uncertainties in grid topology and phase imbalances are assumed to be
negligibly small because of the reasons given in Section 2.2. Hence, this method does not consider
uncertain switching states, and the modeling is only done for three-phase symmetrical systems.
The assumption for normal distributed loads is an additional limitation of the approach. Even if the
load distributions at MV nodes are often statistically close to Gaussian [160], several consumption
and generations units could be modeled more appropriately by non-normally distribution, e.g.,
Gaussian Mixture [161], [162] or beta and log-normal distribution [163]. A further limitation is
that measurement errors are not simulated so far.

Subsection 5.2.4 shows the benefits of an accurately estimated prior distribution. However, this
also implies a strong dependency on the estimation accuracy of prior distributions for the state
estimation results. This means that if the prior distribution does not include critical states that will
occur in the future, it is more difficult to recognize them. So far, in the correlation analysis study,
only LV grids with residential profiles are considered. They are the predominant type of customers,
but there are also small rural and commercial customers. Hence, the correlation analysis does not
distinguish between rural, semi-urban, and urban grids, thus limiting the application. However,
the same concept can be straightforwardly extended to more diverse classes of customers and LV
grid types. Further research should be carried out on the detailed modeling of scenarios for grids
with higher penetration of heat pumps, EV and RES. A further limitation of the case study is that
no optimal meter placement was applied for the location of real-time measurements.

5.3.4 Summary of Strengths and Limitations

The discussed strengths and limitations of the proposed state estimation method and the case
study are summarized in Table 5.9.
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Table 5.9: Summarized strengths and limitations of the proposed state estimation method and of the
simulation study

Strengths Limitations

• No convergence issues for ring structures or a
low amount of accurate real-time
measurements

• Short computation times

• Time-saving linearized power flow equation
for prior estimation

• Consideration of input & output uncertainties

• No limitation to any specific measurement
type

• Incorporating load correlation

• High recognition of critical system states

• No limitation to normal distribution for
post-processing module

• Output warning and alert messages as
decision support for operators

• Higher grid utilization possible

• Possibly incorporating non-real-time-data
with varying levels of detail

• Accounting for load correlations, even for
non-metered customers

• Assumption of known grid
topology and symmetrical phases
required

• Normal distributed modeling of
algorithm

• Neglecting simulation of
measurement errors

• Dependency on accurate
estimation of prior distribution

• Lack of correlation analysis for
different LV grid types

• No detailed scenario modeling

• No application of optimal meter
placement
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6 Conclusion and Outlook

6.1 Conclusion

This thesis focuses on the objective of deploying a state estimation method adapted to the charac-
teristics of MV grids to meet the upcoming challenges of changing system conditions. To reach this
objective, a new method for medium-voltage grid state estimation was developed and evaluated
through multiple simulation test cases. The following research question results from an analysis of
the today’s requirements and challenges for medium-voltage grid state estimation, caused by an
increasing share of photovoltaic, heat pumps and electrical vehicles.

1. Which method is efficient & practical for uncertainty-aware state estimation for MV grids?

To address this question, a probabilistic Bayesian approach was chosen for the state estimation
algorithm. Since it considers the uncertainties of the input and output, it enables an uncertainty-
aware state estimation. To fulfill the requirements of efficiency and practicality, this algorithm was
extended by one statistics module parameterizing the background distribution and one criticality
analysis module evaluating the probability of limit violations. The evaluated tests show that the
proposed method is highly efficient in detecting voltage band and thermal current limit violations.
In case studies, the proposed state estimation method achieves a higher detection accuracy of
criticality than the widely used Weighted-Least-Squares state estimation approach used for trans-
mission systems and performs also better than expectation value-based approaches. With short
computation times for realistically sized grids, faster than a second, the new method allows timely
intervention by grid operators.

The selected test grid reproduces typical properties of MV grids, such as a realistic number of
buses and partially closed ring structures. It also has a typically low share of buses receiving
real-time measurements (5%) and so the tests demonstrate the feasibility of the method with
low measurement instrumentation. The pre-processing module developed in this thesis allows
to parameterize the background load distributions for all practically relevant measurement avail-
ability scenarios while accounting for load correlations. The module can process time-resolved
smart meter measurements as well as non-metered customers with only annual energy demand
information. Tests were performed for non-real-time data with varying levels of detail using a new
developed correlation-aware synthesis module. The results show the importance of considering
load correlations by achieving substantially higher accuracy of state estimation results and, thus,
higher recognition rates of critical system states than if correlations are neglected. Further, using
comparable but different load profiles to estimate the behavior of unmetered customers shows that
the detection rate of critical system states is nearly as high as with full smart meter coverage.
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Since the proposed method is accurate in recognizing limit violations with detection rates over
90% and as the results are available in near-real time, it meets the defined requirements for MV
grid state estimation methods resulting from the requirement analysis performed in this thesis.

The usability of the result of the proposed state estimation method for system operators is addressed
in a second research question:

2. How can the probabilistic state information be utilized for practical decision support in
grid operation?

The output of the proposed uncertainty-aware state estimation method is the probability of critical
system states. This can be used to classify the grid elements into warning and alert stages based
on configurable probability thresholds. This differentiation into criticality stages provides practical
decision support for grid operators. In particular, stages with low, conservative thresholds can be
used for early warning. The probabilistic method with stage differentiation can be highly beneficial
to the grid operators, as it is more sensitive to (near) critical system states than deterministic
approaches. With this information, the grids can be better utilized, and the technical connection
regulations do not have to be as strict.

6.2 Outlook

Several limitations of the proposed method and the case study were identified that should be
addressed in future research.

Grid topology uncertainties and topology identification were excluded in this thesis to focus on
the state estimation task. However, the grid topology uncertainties could play a major role, es-
pecially for medium-voltage grids with non-digitally monitored switching states. Therefore, the
combination of grid topology estimation and state estimation is an interesting and important
research area. Together with the authors from [140], a new idea for probabilistic topology and
state estimation was developed during this thesis [164], which is able to provide state estimates in
uncertain topologies and is promising to develop further.

The modeling in this thesis is done for a symmetrical, balanced three-phase grid. This is suitable
for most European-type medium-voltage grids. However, when it is necessary to include phase
imbalances, e.g., for specific applications or for US-type grids, the method could be extended to
three-phase calculation in future research [143].

Furthermore, the load profiles are assumed to be normally distributed in this thesis. However, in
some cases, other distribution types are more suitable than the normal distribution for modeling
the behavior of grid users. To address this challenge, the given state estimation algorithm could
also be modeled for Gaussian Mixture distribution similar to [81] or for log-normal distribution.

In the current case study, no tests for (gross) measurement errors were evaluated. Additional tests
with measurement errors would further confirm the realistic application of the proposed method.
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So far, the correlation analysis study has considered only low-voltage grids with residential load
profiles. For future research, the correlation analysis could be evaluated for different types of
low-voltage grids. The distinction between rural, semi-urban, and urban grids could open a broader
application scope for the proposed method. For future decarbonization scenarios, further research
would be needed to determine load correlations between low-voltage grids with high photovoltaic,
electric vehicles, and heat pump penetrations.

The locations of the real-time measurements in this thesis were selected based on experience and
exchange with system operators, but no optimal meter placement approach was applied. With
an optimal meter placement for a given number of measurements, the best possible information
gain can be achieved. [167] proposes an optimal meter placement approach based on a sensitivity
analysis of the posterior variance.

The accuracy of the Bayesian linear state estimation can be further improved if a more accurate
background distribution is available. An example would be distinguishing between weekdays
and weekends or different seasons, using a separate background distribution for each setting. In
addition, new input sources, such as weather data, time-varying tariffs, and penetration rates of
heat pumps or wall boxes, are promising exogenous inputs for future research.

In response to the increasing need for efficiency and reliability within the distribution grid, there
is a pressing demand for the continuous development of system monitoring and smart grid oper-
ation. The proposed uncertainty-aware state estimation method is suitable for dealing with the
uncertainties arising with the changing system conditions. The use of artificial intelligence and the
creation of flexibility options will also play a central role in future energy systems. The overall
goal is to minimize congestion and limit violations, optimize load consumption, and thus ensure a
sustainable, reliable, and flexible electricity supply.
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Nomenclature

Variable Description Units
ΓS/ΓVpr Complex-valued covariance of background/prior distribution
µS/µVpr/µVpo/µx|z Expectation value of background/ voltage prior/ voltage

posterior/ likelihood distribution
µS,samp Sample mean of background distribution
ΣS/ΣVpr/ΣVpo/Σx|z Real-valued covariance of background/ voltage prior/

voltage posterior/ likelihood distribution
ΣSsamp/ΣScomp Sample/synthesized covariance of background distribution
κx,lim/κpcss,lim Indicator functions [0,1]
σe/σz/ σVpr Standard deviation of measurement error/ measurement/

voltage prior distribution
ΦS/ΦVpr/ΦVpo/Φx|z/ΦIpo Density function of background/ voltage prior/ voltage

posterior/ likelihood / branch current posterior distribution
ΦC
S /ΦC

Vpr
Complex-valued density function of
background/prior/posterior/likelihood distribution

ρVpr Correlation coefficient of prior distribution %
τ Transformer ratio
ζ Function included in GML estimator
acx̂,lim Accuracy for x̂ and given limit lim
CS/CVpr Pseudo-covariance of background/prior distribution
e Measurement error
E∑

SM/E
∑

SM Summed up energy demand of all customers/customers with
SM in LV grid

MWh

fscale Scaling factor for energy demand
fnrx̂,lim/fprx̂,lim False-negative/-positive rate for x̂ and given limit lim
G Gain matrix
H Jacobi matrix of measurement function
h/hfull Measurement function/ fully occupied measurement

function
Ibus/If/It Current flow into bus/Branch current at “from”/“to” side kA
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Iph Single phase current kA
I0/ Ins Slack and non-slack currents kA
J Objective function
L Admittance matrix without slack row and column Ω−1

L0,0/L0,col/L0,row Slack variance/Slack column/row of admittance matrix Ω−1

Sbus/Sf/St Apparent power at bus/ apparent power at “from”/“to” side
of branch

MVA

Sgen/Sload Apparent power of generation/consumption unit MVA
Sloss Apparent power of transmission losses MVA
S3ph Three-phase apparent power MVA
SMV,synth/SMV,meas/SMV Synthesized/ measured/ apparent power at MV node MVA
S∑

SM/SSM Summed up/ apparent power of Smart Meter MVA
S∑

LVcomp Summed up apparent power of comparable LV grid MVA
Pbus/Pf/Pt Active power at bus/ active power at “from”/“to” side of

branch
MW

pcss,lim Probability of critical system states for given limit lim %
pthres,σ/pthres,2σ Probability threshold for range µ± σpo/µ± 2σpo

Qbus/Qf/Qt Reactive power at bus/ reactive power at “from”/“to” side of
branch

MW

R Line resistance Ω

r/r(m) Residual/m-th ordered residual
tnrx̂,lim/tprx̂,lim True-negative/positive rate for x̂ and given limit lim %
V /Vf/Vt Node voltage at bus/ node voltage at buses of “from”/“to”

side of a branch
kV

Vph Single phase voltage kV
V0/ Vns Slack and non-slack voltages kV
W Weight matrix
X Line reactance Ω

x State variable
xtrue/x̂ True/estimated state variable
x̂MAP/x̂ML/x̂MMSE Estimated state variable for MAP/ML/MMSE/LS/WLS

estimatorx̂LS/x̂WLS

Ybus/Yf/Yt Bus admittance/branch admittances for “from”/“to” side Ω−1

Ys/Ysh/Ybsh Series branch/ shunt branch/ shunt bus admittance Ω−1

z Measurement variable
Z Branch impedance Ω
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Parameters Description
αthres Threshold for Smart Meter Coverage %
θ Phase shift ◦

B Number of branches
Cf/Ct Connectivity matrix for “from”/“to” side of branch
E Number of node or branch elements
Ith Thermal current limit kA
K Number of simulation runs
M Number of real-time measurements
Mtrim Trimming constant
N Number of non-slack buses
NSM Number of Smart meters
pthres Probability threshold %
T Number of time steps
Vlow/Vup Lower/Upper voltage band limit kV
w Ratio of primary to secondary windings

Symbols Description
MVmeas, SM100%/ Measurement instrumentation scenarios (see Table 4.4)
SM≥αthres/SM<αthres

cor/cor0 Considering/neglecting correlations
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A.2 Appendix for Model Chapter

A.2.1 Linear Affine Transformation for Normal Distribution

One time assuming a normal distribution Φx according to equation 3.33 and a linear relation
between y and x:

y = Ax+ b (A.1)

Then is the normal distribution for y equal

Φy = N
(
y | Aµx + b, AΣxA

T) (A.2)

Another time assuming a complex valued normal distribution ΦC
x = N (x | µx, Γx, Cx) and again

the linear relation A.1, then the complex valued normal distribution for y is given by

ΦC
y = N

(
y | Aµx + b, AΓxA

T, ACxA
T) (A.3)

A.2.2 Linearized Taylor Series

The linearized Taylor series of function f(x) at linearization point a is given by:

f(x; a) ≈ f(a) +∇f(a)T(x− a) (A.4)

The ∇ operator is a vector whose components are the partial derivative operators ∂
∂x for vector x.

A.2.3 Jacobi Matrix of Measurement Function

In table A.1 are the possible entries for Jacobi-matrix of measurement function are given. These
are partial deviations of hfull(x) with respect to Vre and Vim. The required physical equations are:

Ibus = Y ∗
busV

∗ (A.5)

Sbus = diag(V )Y ∗
busV

∗ (A.6)

If = YfVf = Yf,reVre − Yf,imVim + j ·
(
Yf,reVim + Yf,imVre

)
(A.7)

Sf = diag(Vf)Y
∗
f V

∗
f (A.8)

The links to the full equation of partial deviations are given behind every entry. The partial
deviations for the ”to” elements are equivalent to ”from” elements by substitute all ”f” indices by
”t”.
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Table A.1: Jacobi-matrix H entries for measurement function hfull(x)

Partial deviation of ∂Vre ∂Vim

Pbus
∂Pbus
∂Vre

= Re
(
∂Sbus
∂Vre

)
A.9 ∂Pbus

∂Vim
= Re

(
∂Sbus
∂Vim

)
A.10

Pf
∂Pf
∂Vre

= Re
(

∂Sf
∂Vre

)
A.11 ∂Pf

∂Vim
= Re

(
∂Sf
∂Vim

)
A.12

Pt
∂Pt
∂Vre

= Re
(

∂St
∂Vre

)
∂Pt
∂Vim

= Re
(

∂St
∂Vim

)
Qbus

∂Qbus
∂Vre

= Im
(
∂Sbus
∂Vre

)
A.9 ∂Qbus

∂Vim
= Im

(
∂Sbus
∂Vim

)
A.10

Qf
∂Qf
∂Vre

= Im
(

∂Sf
∂Vre

)
A.11 ∂Qf

∂Vim
= Im

(
∂Sf
∂Vim

)
A.12

Qt
∂Qt
∂Vre

= Im
(

∂St
∂Vre

)
∂Qt
∂Vim

= Im
(

∂St
∂Vim

)
Vmag

∂Vmag
∂Vre

A.13 ∂Vmag
∂Vim

A.14
Vang

∂Vang
∂Vre

A.15 ∂Vang
∂Vim

A.16
If,mag

∂If,mag
∂Vre

A.17 ∂If,mag
∂Vim

A.18
It,mag

∂It,mag
∂Vre

∂It,mag
∂Vim

If,ang
∂If,ang
∂Vre

A.19 ∂If,ang
∂Vim

A.20
It,ang

∂It,ang
∂Vre

∂It,ang
∂Vim

∂Sbus
∂Vre

= diag(V )(Ybus)
∗ + diag(YbusV )∗ (A.9)

with
∂V

∂Vre
= diag(1) and

∂Ibus
∂Vre

= Ybus

∂Sbus
∂Vim

= j · (diag(YbusV )∗ + diag(V )(Ybus)
∗) (A.10)

with
∂V

∂Vim
= −j · diag(1) and ∂Ibus

∂Vim
= j · Ybus
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∂Sf
∂Vre

= diag(Vf)(Yf)
∗ + diag(YfV )∗Cf (A.11)

with
∂Vf
∂Vre

= Cf and
∂If
∂Vre

= Yf

∂Sf
∂Vim

= j · (diag(YfV )∗Cf + diag(Vf)(Yf)
∗) (A.12)

with
∂Vf
∂Vim

= j · Cf and
∂If
∂Vim

= j · Yf

∂Vmag

∂Vre
= diag(Vmag)

−1diag(Vre) (A.13)

∂Vmag

∂Vim
= diag(Vmag)

−1diag(Vim) (A.14)

∂Vang

∂Vre
= −diag(V 2

ang)
−1diag(Vim) (A.15)

∂Vang

∂Vim
= diag(V 2

mag)
−1diag(Vre) (A.16)

∂If,mag

∂Vre
= diag(If,mag)

−1diag(If,re)Yf,re + diag(If,mag)
−1diag(If,im)Yf,im (A.17)

∂If,mag

∂Vim
= diag(If,mag)

−1diag(If,re)Yf,im + diag(If,mag)
−1diag(If,im)Yf,re (A.18)

∂If,ang
∂Vre

= −diag(I2f,mag)
−1diag(If,im)Yf,re + diag(I2f,mag)

−1diag(If,re)Yf,im (A.19)

∂If,ang
∂Vim

= diag(I2f,mag)
−1diag(If,im)Yf,im + diag(I2f,mag)

−1diag(If,re)Yf,re (A.20)
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A.2.4 Inverse of the Sum of Matrices including a Matrix Product

Assuming A,B,C and D are all matrices the following theorem [99] holds:

(A+ CBD)−1 = A−1 −A−1C(B−1 +DA−1C)DA (A.21)

A.2.5 Linearized Transformation of Variance from Rectangular to Polar Form

Assuming a linearized function according to A.1 and the linear affine transformation for normal
distribution A.2, then A from equation A.2 is equal ∇f(a)T. And as AΣAT, then the linearized
function for the variance is given by

var[f(x; a)] ≈ ∇f(a)TΣxx∇f(a) (A.22)

Now the first function is given calculation the magnitude from rectangular form

f1(x) = xmag =
√
x2re + x2im (A.23)

The derivation of f1(x) for xre and xim result in

∇f1(x) =

(
∂f1(x)
∂xre

∂f1(x)
∂xim

)
=

 xre
xmag
xim
xmag

 =
1

xmag

(
xre

xim

)
(A.24)

The second function is calculating the phase from rectangular form

f2(x) = xang = arctan
xim
xre

+ const. (A.25)

The derivation of arctan is 1
1+x2 , there the derivation of f2(x) for xre and xim result in

∂f2(x)

∂xre
=

1

1 + (xim
xre

)2
−xim
x2re

=
−xim

−x2im + x2re
=

−xim
x2mag

(A.26)

∂f2(x)

∂xim
=

1

1 + (xim
xre

)2
=

1

xre
=

xre
x2mag

(A.27)

∇f2(x) =
1

x2mag

(
−xim

xre

)
(A.28)
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A.3 Appendix for Result Chapter

A.3.1 Connected Customers

Table A.2: Overview of connected grid customers

Customers type connected
to MV buses

number of buses connected to
the respective customer type

number of
consumers

LV rural 1 1 13
LV rural 2 9 99
LV rural 3 6 118
LV semi urban 4 23 41
LV semi urban 5 22 104
LV urban 6 18 111
G0 3 1
G1 4 1
G2 1 1
G3 4 1
G5 1 1
G6 1 1
PV 5
Wind 3
Biomass 1
Hydro power 1
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A.3.2 Computation Time

(a) Online state estimation

(b) Online state estimation with subsequent calculation of probability
of critical system state

Figure A.1: Computation time for (a) only online state estimation (b) with subsequent calculation of
probability of critical system state with varying number of measurements obtained using Python
on an Intel Core i7-9850H CPU with 16GB RAM
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A.3.3 Results for Higher Measurement Coverage

Figure A.2: Aggregated accuracy acx̂,lim, true-positive tprx̂,lim and true-negative rate tnrx̂,lim for the differ-
ent state estimation results pcss, µpo, and x̂WLS for violating Vlow (-6%) for higher measurement
coverage

Figure A.3: Aggregated accuracy acx̂,lim, true-positive tprx̂,lim and true-negative rate tnrx̂,lim for the differ-
ent state estimation results pcss, µpo, and x̂WLS for violating Vup (+6%) for higher measurement
coverage
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Figure A.4: Aggregated accuracy acx̂,lim, true-positive tprx̂,lim and true-negative rate tnrx̂,lim for the
different state estimation results pcss, µpo, and x̂WLS for violating Ith for higher measurement
coverage
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