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Abstract

The classical non-holomorphic Eisenstein series E};"“(z, s) on the upper half-plane H is associated
to a parabolic fixed point p of a Fuchsian subgroup I' C PSLy(R) of the first kind. Hyperbolic
and elliptic analogues of Egar(z, s) were also studied, namely non-holomorphic Eisenstein series
which are associated to a pair of hyperbolic fixed points of I or a point in the upper half-plane,
respectively. In particular, von Pippich derived Kronecker limit type formulas for elliptic Eisen-
stein series on the upper half-plane.

In the present thesis we consider hyperbolic and elliptic Eisenstein series in the n-dimensional
hyperbolic upper half-space H" for a discrete group I' of orientation-preserving isometries of H"™
which has finite hyperbolic volume. Here we realize these isometries as certain matrices with en-
tries in the Clifford numbers. We define the hyperbolic Eisenstein series E?g‘l”QQ)(P, s) associated

to a pair (Q1,Q2) of hyperbolic fixed points of I and the elliptic Eisenstein series E%”(P7 8) asso-
ciated to a point @@ € H". First we prove the absolute and locally uniform convergence of these
series for s € C with Re(s) > n — 1. Then we derive some other basic properties of E?Cyg?,Qz)(P, s)
and ESI(P, s) like I'-invariance, smoothness and certain differential equations that are satisfied by
these Eisenstein series.

We establish the meromorphic continuations of the hyperbolic Eisenstein series E?gi’ Q) (P, s) and

the elliptic Eisenstein series EEQU(P, s) in s to the whole complex plane. For that we employ the re-
lations between these Eisenstein series and the so-called hyperbolic kernel function K™P(P,Q, s),
which is meromorphically continued to all s € C by means of its spectral expansion. In this way we
also establish the meromorphic continuation of Eégf Q) (P, s) via its spectral expansion, and fur-
ther obtain the meromorphic continuation of Egl(P, 5) by expressing it in terms of K™P(P,Q, s).
Moreover, we determine the possible poles of E%?Qz)(P, s) and Egl(R s).

Using the aforementioned meromorphic continuations, we investigate the behaviour of the hyper-
bolic Eisenstein series Eég? QQ)(P, s) and the elliptic Eisenstein series ESI(P, s) at the point s =0

via their Laurent expansions. We determine the first two terms in the Laurent expansions of

E(hg?‘f Qz)(P’ s) and E%“(P, s) at s = 0 for arbitrary n and I'. Eventually, we refine the Laurent

expansion of Ezglj @) (Prs) forn =2, ' = PSLy(Z) and n = 3, I' = PSLy(Z[i]), as well as the Lau-
rent expansion of Egl(P, s) for n = 3, T' = PSLy(Z[i]), and obtain Kronecker limit type formulas
in these specific cases.
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Zusammenfassung

Die klassische nicht-holomorphe Eisensteinreihe EP*(z,s) auf der oberen Halbebene H ist as-
soziiert zu einem parabolischen Fixpunkt p einer Fuchsschen Gruppe I' C PSLo(R) erster Art.
Hyperbolische und elliptische Analoga von E};’ar(z, s) wurden ebenfalls untersucht; diese sind nicht-
holomorphe Eisensteinreihen, die zu einem Paar hyperbolischer Fixpunkte von I' bzw. einem Punkt
in der oberen Halbebene assoziiert sind. Insbesondere bewies von Pippich Kroneckersche Grenz-
formeln fiir elliptische Eisensteinreihen auf der oberen Halbebene.

In der vorliegenden Arbeit betrachten wir hyperbolische und elliptische Eisensteinreihen im n-
dimensionalen hyperbolischen oberen Halbraum H" fiir eine diskrete Gruppe I' orientierungserhal-
tender Isometrien von H", die endliches hyperbolisches Volumen besitzt. Hierbei realisieren wir
diese Isometrien durch bestimmte Matrizen mit Eintrégen in den Clifford-Zahlen. Wir definieren
die hyperbolische Eisensteinreihe E?éﬁ”Qz)(P, s), die zu einem Paar (@1, Q2) hyperbolischer Fix-

punkte von I' assoziiert ist, und die elliptische Eisensteinreihe Egl(P,S), die zu einem Punkt
@ € H"™ assoziiert ist. Zunéachst beweisen wir die absolute und lokal gleichméaflige Konvergenz
dieser Reihen fiir s € C mit Re(s) > n — 1. Anschlieend zeigen wir einige weitere grundlegende
Eigenschaften von E?%II”QQ)(P, s) und EeQ“(P7 s) wie I'-Invarianz, Glattheit und bestimmte Differ-
entialgleichungen, welche diese Eisensteinreihen erfiillen.

Wir etablieren die meromorphen Fortsetzungen der hyperbolischen Eisensteinreihe E%ﬁ’_%)(}’, s)

und der elliptischen Eisensteinreihe EE)H(R s) in s auf die gesamte komplexe Ebene. Dazu nutzen
wir die Relationen zwischen diesen Eisensteinreihen und der sogenannten hyperbolischen Kernfunk-
tion K™P(P,Q,s), die mit Hilfe ihrer Spektralentwicklung in alle s € C meromorph fortgesetzt

wird. Auf diese Weise etablieren wir auch die meromorphe Fortsetzung von E?g;l) Q2)(P, s) liber

ihre Spektralentwicklung, und erhalten auflerdem die meromorphe Fortsetzung von ESI(P7 s), in-

dem wir sie in Termen von K™P(P,Q, s) ausdriicken. Ferner bestimmen wir die moglichen Pole
h

von E(éﬁ”Q2)(P, s) und ES'(P,s).

Unter Verwendung der oben genannten meromorphen Fortsetzungen untersuchen wir das Verhal-

ten der hyperbolischen Eisensteinreihe E?Qy;l’ Q) (P, s) und der elliptischen Eisensteinreihe E‘?Q“(P, s)
im Punkt s = 0 mittels ihrer Laurent-Entwicklungen. Wir bestimmen die ersten beiden Terme
in den Laurent-Entwicklungen von E?g)i’ Q) (P s) und E3'(P,s) um s = 0 fiir beliebige n und T".

Schliellich verfeinern wir die Laurent-Entwicklung von E?gf Q) (P, s) fiir n =2, T" = PSLy(Z) und

n = 3, I' = PSLy(Z[i]), sowie die Laurent-Entwicklung von ESI(P, s) fur n = 3, ' = PSLy(Z[i]),
und erhalten Kroneckersche Grenzformeln in diesen konkreten Fallen.
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Introduction

This thesis deals with the study of certain complex-valued functions on the n-dimensional hyper-
bolic space, called hyperbolic and elliptic Eisenstein series. These functions generalize the known
parabolic, hyperbolic and elliptic Eisenstein series on the complex upper half-plane. In the in-
troduction we give a motivation for considering these Eisenstein series, present a summary of our
main results and outline the structure of this work.

Non-holomorphic Eisenstein series on the upper half-plane

Classically, in the theory of automorphic functions on the upper half-plane HH = {z € C | Im(z) > 0}
the non-holomorphic Eisenstein series associated to the cusp oo of the modular group I' = PSLy(Z)
is for z =z + iy € H and s € C with Re(s) > 1 given by

S

ar s 1 y
B (2,8) = Z Im(yz) =9 Z m,

YEL\T (c,d)€Z?,
ged(e,d)=1

where 'y, denotes the stabilizer of oo in I' and vz = (az + b) (cz + d)~*! for v = ch b) e .
1.

d
This series converges absolutely and locally uniformly for z € H and s € C with Re(s) > 1. The
function E¥2*(z,s) is invariant in z under the action of T', i.e. ER3(vz,s) = EP¥(z,s) for any

~v €T, and an eigenfunction of the hyperbolic Laplace operator
0? 0?
Ag=—1 | =—=+—
S (31‘2 " 3@/2)

on H with eigenvalue s(1 — s). Moreover, it is holomorphic in s for Re(s) > 1, and has a mero-
morphic continuation in s to the whole complex plane with a simple pole at s = 1. The famous
Kronecker limit formula gives the Laurent expansion of ER2'(z, s) at this pole, stating that

EP¥(z,8) =

g ~ L og (jAG) (=) 4 SZT2CED Z6108UT) gy oy

s—1 2« T

where A(z) = (E4(2)® — Eg(2)?)/1728 is the unique normalized cusp form of weight 12 for I' and

1 1
E = - —_— = 4
k(2) 2 E :2 (CZ+d)k (k ,6)
(c,d)ezZ”,

ged(e,d)=1

denotes the holomorphic Eisenstein series of weight k. From the functional equation of EP%*(z, s),
relating its values for s and 1 — s, one derives the Laurent expansion

EP(2,8) =1+ log (\A(z)|1/6 Im(z)) -5+ 0(s?) (0.2)
at s = 0. Since EP%(z, s) is harmonic with respect to Ap exactly for s = 0 and s = 1, it is natural

to study its behaviour at these two points.
More generally, for a cusp (parabolic fixed point) p of a Fuchsian subgroup I' C PSLso(R) of the
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first kind there is an associated non-holomorphic Eisenstein series, which for z € H and s € C
with Re(s) > 1 is given by

Ep*(z,s) = Z Im(o,, 'v2)°.
YETL\T

Here T', is the stabilizer of p in I and o, € PSL2(R) is a so-called parabolic scaling matrix of
p, satisfying o,00 = p. We call Egar(z, s) the parabolic Eisenstein series associated to the cusp
(parabolic fixed point) p. Again, the series converges absolutely and locally uniformly for z € H
and s € C with Re(s) > 1. Also the parabolic Eisenstein series EP*(z, s) is invariant in z under
the action of I' and an eigenfunction of Ay with eigenvalue s(1 — s). It is holomorphic in s for
Re(s) > 1, and admits a meromorphic continuation to all s € C (see, e.g., [Kub73], [Iwa02]).

In 1979, Kudla and Millson introduced hyperbolic analogues of parabolic Eisenstein series, namely
non-holomorphic Eisenstein series associated to a pair of hyperbolic fixed points of a Fuchsian
subgroup of the first kind (see [KM79]). While Kudla’s and Millson’s functions are 1-forms, scalar-
valued hyperbolic Eisenstein series twisted with modular symbols were later studied in [Ris04], and
von Pippich considered scalar-valued hyperbolic Eisenstein series associated to a pair of hyperbolic
fixed points of a general Fuchsian subgroup I' C PSLy(R) of the first kind in her Diploma thesis
[Pip05] (see also [JKP10]). More precisely, given a pair (h1, he) of hyperbolic fixed points of T with
stabilizer I' (4, p,), for z € H and s € C with Re(s) > 1 the hyperbolic Eisenstein series associated
to (h1, he) is given by

E?]zihz)(zv 5) = Z COSh(dH(’YZa E(hl,hz)))isa

YEL (hy h) \I'

where L4, p,) denotes the unique geodesic in H connecting hy and hy and du(v2, L4, ,1,)) is the
hyperbolic distance between vz and Ly, 4,y in the upper half-plane. As in the parabolic case,

the series defining E?}flp hQ)(z, s) converges absolutely and locally uniformly for 2 € H and s € C

with Re(s) > 1. The hyperbolic Eisenstein series E?glphz)(z, s) is smooth and invariant in z under

the action of T and a holomorphic function in s for Re(s) > 1. Though E?gf’hz)(z, s) is not an

eigenfunction of the hyperbolic Laplace operator, it satisfies the shift equation
h h h
Ay E(}Zﬁm)("" s)=s(1—s) E(gﬁhQ)(z, s) + 52 E(}fﬁh2)(z, s+2),
thus, it is harmonic at the point s = 0. In [JKP10] the authors established the meromorphic
continuation of E?glphg)(z, s) to all s € C and showed that it has a double zero at s = 0.
Elliptic analogues of the above non-holomorphic Eisenstein series were introduced by Jorgenson
and Kramer in their unpublished work [JKO04] (see also [JK11]). These are called elliptic Eisenstein
series and associated to elliptic fixed points or arbitrary points in H. Kramer’s student von Pippich
comprehensively studied elliptic Eisenstein series for an arbitrary Fuchsian subgroup I' C PSLs(R)
of the first kind in her PhD thesis [Pip10]. Given a point w € H with stabilizer subgroup T',,, for
z € H with z # yw for any v € T and s € C with Re(s) > 1 the elliptic Eisenstein series associated
to w is given by
EMN(z,5) = Z sinh(dg(yz,w))™".
yEL L\

The series converges absolutely and locally uniformly for z € H with z # ~w for any v € " and
s € C with Re(s) > 1. The elliptic Eisenstein series E¢!(z,s) has a singularity in z at every
I-translate of the point w. It is smooth and invariant in z under the action of I', wherever it is
defined, and holomorphic in s for Re(s) > 1. Moreover, E¢(z,s) satisfies the differential shift
equation

Ag EN(z,s) = s(1 — s) B9 (z,5) — s2 BV (2,5 + 2),
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which makes it plausible to study its meromorphic continuation to the harmonic point s = 0. This
was also done by von Pippich who proved in [Pip10] (see also [Pip16]) that the elliptic Eisenstein
series E°!(z, 5) has a meromorphic continuation to all s € C, and gave its Laurent expansion at
s = 0. For the specific group I' = PSL(Z) and its elliptic fixed points ¢ and p = exp (%) she
further determined the Kronecker limit type formulas

B (z,5) = —log (|Bo(2)  |A() /) -5+ O(s?),

B (z,5) = —log (|Ea(2)| |A(2) /%) - s 4+ O(s2).
In [Pip16], von Pippich also studied the relation of E¢!(z, s) to the automorphic Green’s function.

The goal of this thesis is to generalize the above hyperbolic and elliptic Eisenstein series for
higher dimensional hyperbolic spaces. We define hyperbolic and elliptic Eisenstein series in the
n-dimensional hyperbolic upper half-space H" for any n > 2, give some of their basic proper-
ties, establish their meromorphic continuations to the whole complex plane and investigate their
behaviour at the point s = 0.

The n-dimensional hyperbolic space and the group PSLy(C,,_1)

For n € N, n > 2, the upper half-space model of the n-dimensional hyperbolic space (hyperbolic
n-space) is the set
H" ={P = (z¢,...,Zpn—1) ER" | 2,1 > 0}.

Its boundary is {P = (zg,...,Zn_1) € R" | 2,1 = 0} = R"~! together with the point co and we
write R*—1 = R"~1 U {oo}. In the coordinates x, ..., z,—_1 the hyperbolic line element on H™ is
given by

dad + -+ da?

-1
ds, = 5 =
T

n—1

Then the hyperbolic distance of P,Q € H" derived from dsZ.,. is denoted by dy~ (P, Q) and the hy-
perbolic volume element on H" by pgn (P). Moreover, the hyperbolic Laplace operator associated
with dsZ, is given by

A ——.1?2 iQ+ _A'_LZ —|—(n—2)x -
T 1 922 0z? " Oy

For n = 2 this yields again the upper half-plane
H2=H={(z,y) eR* |y>0} = {z=2+iyecC|y>0},
while for n = 3 we obtain the upper half-space model
H? = {(z,y,7) €ER® | r>0}2{P=z2+jr|2€C,rcR, r>0}
of hyperbolic 3-space.

The Mébius transformations of H" UR™ ! can be realized as a certain group of 2 x 2-matrices with
entries in the Clifford numbers. This approach was first used in 1902 by Vahlen (see [Vah02]),
later rediscovered and improved by Maass (see [Maa49]) and also used by Ahlfors (see [Ahl85a],
[Ah186]). For n € N we define the Clifford numbers C,, as the associative algebra over R generated

by elements iy, .. .,i,_1, satisfying the relations i3 = —1 for k =1,...,n — 1 and iy, = —i;i), for
k,l=1,...,n—1with k # . Any a € C), can be uniquely written in the form a = >, as I, where
ar € R, the sum runs over all products I =1, ---¢,, with 1 < vy < .-+ <y, <n—1 and the

empty product I = () is interpreted as 1. We equip C,, with the square norm, so for a =Y ;ar [
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we have |a]? = >, a3

We define three involutions of Cy,: the map ' : a — a’, which replaces i, by —ip (k=1,...,n—1),
the map * : a — a*, which reverses the order of the factors in each product I =14,, ---4,,, and the
map ~ :a+— a = (a’)*, which is the composition of the previous two.

An element xz € C,, of the form x = xg + 191 + - + Tp_19n_1 with zqg,...,2,_1 € R is called a
vector. The subspace V,, C C,, of all vectors can naturally be identified with R™ which enables us
to regard R™ as a subspace of C,,. Any = € V,, \ {0} is multiplicatively invertible, so the non-zero
vectors generate a multiplicative group I',,, called the Clifford group. Then any a € I',, has the
multiplicative inverse a~! = a/|a|*.

SLy(C,) = {(Z z>

of matrices whose entries are certain Clifford numbers is a group under matrix multiplication, and
we can consider the quotient group PSLy(C),) = SLa(Cy,)/{%1I}. In the simplest cases n = 1,2 we
rediscover the well-known groups PSLy(C;) = PSLa(R) and PSLy(Cs) = PSLy(C).

Now let n € N with n > 2. Using the identification of R"~! and V,,_1, the group PSLy(C,,_1) acts
on R"! via the formula

The set

a,b,c,d € T',, U{0}, ab*,ed* € V,,, ad* — bc* = 1}

(7 = (Z Z) , P) = yP = (aP +b) (cP+d) !, (0.3)
where for P = oo we define yoo := ac™ ! if ¢ # 0, and yoo := o0 if ¢ = 0, and in the case cP+d = 0
and aP+b # 0 we set vP := co. In this way the right-hand side of (0.3) is always well-defined. The
group PSLo(C),_1) is isomorphic to the group of orientation-preserving Mobius transformations
of Rn—1. Further, it acts doubly transitively on @"‘1, i.e. for any P,Q,R,S € R"! with P #Q
and R # S there exists v € PSLo(C),—1) such that yP = R and vQ = S.

Taking into account that PSLy(C,—1) C PSLy(C),) and that R"~1 can be viewed as a subspace
of R, the action of PSLy(C,_1) naturally extends to R™ via (0.3) and PSLy(C,_1) also acts on
the hyperbolic space H" C R™. The group PSLy(C,,—1) is isomorphic to the group of orientation-
preserving Mdébius transformations of H”. It acts transitively on H", i.e. for any P,Q € H" there
exists 7 € PSLy(Cy,—1) such that yP = Q. The hyperbolic line element dsZ., the hyperbolic
distance dy-(P,Q), the hyperbolic Laplace operator Ay~ and the hyperbolic volume element
ppe (P) are all invariant under the action of PSLy(Cl,—1).

To consider an analogue of Fuchsian subgroups of the first kind in PSLy(C),—1), we endow it with
a topology, and a subgroup I' C PSLy(C,,—1) is called discrete if the induced topology on I is
discrete. This is the case if and only if I" acts discontinuously on H", i.e. for any compact subset
K C H" there are only finitely many v € T' with v(K) N K # 0. If ' € PSLy(C,,—1) is a discrete
subgroup, then for any P € H" the stabilizer subgroup I'p = {7 € T | vP = P} is finite and the
orbit 'P = {yP | v € T'} is a discrete subset of H".

For a discrete subgroup I' C PSLy(C),—1) the set T\H" = {I'P | P € H"} of orbits can be iden-
tified with a fundamental domain Fr, i.e. a non-empty, connected, open subset of H" such that
distinct points of Fr are not equivalent with respect to I' and every orbit I'P contains a point in
the closure Fp. Every discrete subgroup admits a fundamental domain which is not unique, but
all fundamental domains Fr for I have the same hyperbolic volume, called the volume vol(T'\H")
of T\H", respectively of I". We call I" cofinite if vol(IT'\H") < occ.

In the following we consider discrete and cofinite subgroups of PSLy(C,,—1) which generalize Fuch-
sian subgroups I' C PSLy(R) of the first kind and for which we will define Eisenstein series in
H"™. Important examples are the well-known modular group PSLy(Z) C PSLy(R) for n = 2, and
PSLa(Z[i]) € PSLy(C) in the case n = 3.



Parabolic Eisenstein series in H" and spectral expansion
D P

Elements of PSLy(C),—1) are classified in terms of the number and the location of their fixed points
in H" UR™ ! as follows: A matrix v € PSLy(Ch—1), v # I, is called parabolic if it has exactly
one fixed point in R and no fixed points in H", loxodromic if it has exactly two fixed points in
R and no fixed points in H", and elliptic if it has a (not necessarily unique) fixed point in H".
Moreover, a loxodromic element is called hyperbolic if it is conjugate in PSLy(Cj,—1) to a matrix

of the form with A € R\ {0,41}. This classification of an element is invariant under

A0
0 At
conjugation in PSLy(C,,—1) and depends only on its conjugacy class.

A point P € H* U R™! is called a parabolic, hyperbolic, elliptic or loxodromic fixed point of a
discrete and cofinite subgroup I' C PSLo(C),—1) if it is a fixed point of a parabolic, hyperbolic,
elliptic or loxodromic element of I', respectively.

Parabolic Eisenstein series in H" and spectral expansion

Let I' C PSLo(Cp—1) be a discrete and cofinite subgroup. An automorphic function with respect
to T' is a function f : H™ — C which satisfies f(yP) = f(P) for any v € ' and P € H". It is a
well-defined function on the quotient I'\H". Together with the addition and scalar multiplication
of functions the automorphic functions with respect to I' form a complex vector space A(I'\H").
The inner product of f1, fo € A(T'\H") is defined by

o= [ HP)EOP) e (P)

provided that the integral exists. The ugn-measurable functions f € A(T\H") with (f, f) < oo
together with the inner product (-,-) form a complex Hilbert space £2(I'\H").

An important example of an automorphic function in H" is the parabolic Eisenstein series asso-
ciated to a cusp of I'. We call a parabolic fixed point 7 of a discrete subgroup I' C PSLy(Cj,—1)
a cusp of I' if its stabilizer subgroup I';, = {y € T' | yn = n} contains a free abelian subgroup of
rank n — 1. By Cr we denote a complete set of I'-inequivalent cusps of I' and we set cr = |Cr|. If
T" is also cofinite, every parabolic fixed point is a cusp and the number cr is finite.

Let n; € Cr (j € {1,...,cr}) and 0,), € PSLy(C,,—1) be an element which satisfies o,),00 = 7; and
a certain normalization condition. Then for P € H" and s € C with Re(s) > n — 1 we define the

parabolic Eisenstein series E}?J‘f‘““(P7 s) associated to the cusp n; € Cr by

B (Ps)= S0 anoi(oy9P),
YELY \T

where xn,l(a;jlfyP) is the z,,_1-coordinate of 0’;],1’)/P. This series converges absolutely and locally
uniformly for P € H" and s € C with Re(s) > n — 1. The parabolic Eisenstein series EP* (P, s) is
an automorphic function with respect to I' and an eigenfunction of Ag» with eigenvalue s(n—1—s).
It admits a meromorphic continuation in s to the whole complex plane which has no poles with
Re(s) = 27! and only finitely many poles with Re(s) > “>1; these are located in the real interval
(251, n — 1] and are simple. For all these properties we refer to [CS80].
The spectrum of the hyperbolic Laplace operator Agn on £2(I'\H") consists of discrete and contin-
uous spectrum. We enumerate the eigenvalues of the discrete spectrum by 0 = Ag < A1 < Ao < ...
and write A\; = (%*1)2 +7r2=sj(n—1—s;), e s; = 251 +ir; with r; > 0 or r; € [—i %51,0).
Further, we choose an orthonormal basis {¢;(P) | j € No} of the eigenfunctions for the discrete
eigenvalues, where each v;(P) is an eigenfunction for A;, and the eigenfunction associated to
Ao = 0 is given by 9o(P) = vol(I'\H")~/2. The eigenvalues of the continuous spectrum are of
the form A = (%‘1)2 +t2=5(n—1-3),ie s = "?_1 + ¢t with ¢ € R, and the corresponding
eigenfunctions are the parabolic Eisenstein series ED* (P, ”T_l + it) (k=1,...,cr).
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In this setting, referring to [CS80] and [S6d12], every f € L£L2(I'\H") admits a spectral expansion

of the form
cr
Z a; V;(P) + — Z/ at oy E par P7 T + zt) dt, (0.4)

where the coefficients are given by a; = (f, ;) and
ane = | FQER(Q "= +it) m(Q),
F\Hn 2

and the series (0.4) converges in the £2(I'\H")-norm. If kg = |2 |+1 and f € C?*o(H")NL2(I'\H")
such that A]IHI” f € L2(T\H") forl = 0,...,ko, then the spectral expansion of f converges absolutely
and uniformly on compact subsets of H” and equation (0.4) holds true as a pointwise relation.

Hyperbolic and elliptic Eisenstein series in hyperbolic n-space

After these preliminaries we give an overview of our results about hyperbolic and elliptic Eisenstein
series in H"” in the next few sections.

Let I' C PSLy(Cp,—1) be a discrete and cofinite subgroup. By Hr we denote a complete set
of T-inequivalent pairs of hyperbolic fixed points of I'. For (Q1,Q2) € Hr there is an element
0(Q1,0.) € PSLa(Cp_1) with 0(g,,0,)0 = Q1 and 0(g,,g,)00 = @2, called a hyperbolic scaling

matrix of (Q1, Q2). Let I'(g, 0,) = {’y el ‘ YQ1 = Q1, YQ2 = QQ} denote the stabilizer subgroup
of (Q1,Q2) in T, then its subset

Pk(lgl),Qg) = {7 €l'q,,0.) | vy=1orvis hyperbolic}

is an infinite cyclic group, which we call the hyperbolic stabilizer subgroup of (Q1,@2) in I'. More
precisely, there exists u € R, u > 1, such that

hyp Mm 0 1
T@Qren = {"@qu) ( 0 u‘m> 7(Q1.Q2)

We write £, q,) for the unique geodesic in H" connecting Q1, Q2 € RP1. Tts image under the

m e Z} J{xI}.

n hyp n .
natural projection Tpne CH = Tl o )\H is a closed geodesic in F(Q ,Qz)\H which we
denote by L(qg,.q,), and we write l(q, q,) for its hyperbolic length.

Then for P € H” and s € C with Re(s) > n — 1 we define the hyperbolic Eisenstein series

E;g‘f Qz)(P’ s) associated to the pair (Q1,Q2) € Hr of hyperbolic fixed points by

E(%?,QQ)(P’ 5) = Z cosh(dun (YP, L(g,,q,))) " (0.5)
VEF}(%I;Qw\F
Here we remark that Eisenstein series in H? associated to a hyperbolic or loxodromic element of
a discrete and cofinite subgroup I' C PSLo(C) were considered in [Iril9b], while Eisenstein series
in H"™ which are associated to an involution and also called "hyperbolic Eisenstein series” were
defined in [Iril9al.
We prove in Lemma 4.1.4 that the series (0.5) converges absolutely and locally uniformly for
P € H"” and s € C with Re(s) > n— 1. In the proof we first assume that 1 = 0 and QQ oo and
we fix P € H". Choosing the representatives such that 1 < |yP| < p? for any v € e © OO)\F we
get the bound
Lz | D S OY 01

h;
IELG T
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where 0 = Re(s). Subsequently, using a result about eigenfunctions of PSLy(C),_1)-invariant
integral operators, we bound the last series as

2n—1 /"20

L1 o
P LSy vi= DD / mnt (@) e (Q) < (R )

F?gpoo)\r thp Be(py(vP)

where A(P) € C and B, (p)(7P) is the open hyperbolic ball with center vP and sufficiently small
radius ¢(P) > 0, with A(P) and 5( ) depending on P. From this we obtain the absolute and
locally uniform convergence of E(0 OO)( P, s) for s € C with Re(s) > n — 1. Eventually, if K C H"
is a compact subset, the constants A(P) and £(P) can be chosen uniformly for all P € K.

If (Q1,Q2) € Hr is an arbitrary pair of hyperbolic fixed points, then the discrete and cofinite
subgroup U(QIMQZ)FU(Qth) C PSL5(C,—1) has the hyperbolic fixed points 0 and oo, and the
hyperbolic Eisenstein series for I' and (@1, Q2) can be written in terms of the hyperbolic Eisenstein
series for O'(_ Qll’ Q) I'0(0,,q0,) and (0,00). In this way, the absolute and locally uniform convergence

of Eégp 0 )(P, s) follows from the specific case Q1 = 0, Q2 =
We easily see from its definition that the hyperbolic Eisenstein series E?gﬁ Q) (P, s) is invariant in
P under the action of I'. Moreover, from the proof of its convergence we conclude that for s € C
with Re(s) > n — 1 it is bounded on I'\H" and an element of £2(I"\H").

In Lemma 4.1.7 we show that for P = (z¢,...,2,-1) € H" and s € C with Re(s) > n — 1 the
hyperbolic Eisenstein series E( 01,05 )(P, s) is infinitely often continuously differentiable with respect
to xo,...,Zp—1. To that aim, for fixed v € F?gﬁ’Qz)\F we write g, (P) = cosh(du» (YP, L(g,,0,)))
in terms of the coordinates zy,...,x,—1 and see that g,(P)~* is infinitely often continuously
differentiable with respect to them. Hence, for any multi-index o € N{j the derivative

ol s
3Pa g’Y (P)
exists and is continuous, and we are left to prove that the respective series of partial derivatives

summed over all v € I‘?gl’ Q2)\F converges absolutely and uniformly on compact subsets K C H",

(0.6)

provided that Re(s) > n — 1. This is done by proving in several steps that for any o € Nj and

v € I’l(]gl’ @) \I' the derivative (0.6) can be majorized on K by a finite sum of summands of the

form |p(s)| - C(K) - go(P)~7, where ¢ = Re(s), p € Z[X] and C(K) > 0 is a constant depending
only on K. Then the desired absolute and uniform convergence on K follows from the convergence
of the series (0.5), provided that Re(s) > n — 1.

Though E¥P (P, s) is no eigenfunction of the hyperbolic Laplace operator Agn, it still fulfils

(Q1,Q2)
the shift equation

Aun BP o (Prs) =s(n—1=s)ESP o (Ps)+s"EQP  (Ps+2), (0.7)

Ql Q2) (Q1,Q2 (Q1,Q2

which is proven in Lemma 4.1.8 using so-called hyperbolic coordinates.

Now let @ € H" be a point with stabilizer subgroup I'g, then for P € H® with P # vQ for any
v €T and s € C with Re(s) > n — 1 we define the elliptic Eisenstein series ESl(P, s) associated to
Q by

EQ(P,s)= Y sinh(dg(vP,Q)) " (0.8)

YELQ\L

In Lemma 4.2.4 we prove that the series (0.8) converges absolutely and locally uniformly for
P € H" with P # ~Q for any v € " and s € C with Re(s) > n — 1. For that we first fix P € H"
with P # @ for any « € I' and majorize the elliptic Eisenstein series as

’Eell )| < Cl(P)—U Z exp(—U dH" (’YP,Q))v

YELQ\T
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where 0 = Re(s) and C1(P) > 0 is a constant depending only on P. Then we show that for r € R,
r > 0, the counting function N&'(r; P) = [{y € TQ\T' | dun (vP, Q) < 7} satisfies the estimate
Ne“(r; P) < C5(P) - exp((n — 1) r), where the constant C3(P) > 0 depends only on P. From this
we infer that

R o Cy(P)

_ n — 3 ell <
>. exp(-ode(7,Q) = Jim | exp(—or) dNG'(r;P) < T2,
YETQ\I

which gives us the absolute and locally uniform convergence for s € C with Re(s) > n—1. Finally,
for a compact subset K C H" not containing any I'-translate of @) the constants C;(P) and C2(P)
can be chosen uniformly for all P € K.

The proof of its convergence implies that for P € H” with P # vQ for any v € " and s € C
with Re(s) > n — 1 the elliptic Eisenstein series ES'(P, s) is bounded as P — 1, where n; € Cp
(j =1,...,¢cr) is a cusp of I'. It is directly seen from its definition that ESl(P,s) is invariant
in P under the action of I'. Following the same idea as for the hyperbolic Eisenstein series, we
further find in Lemma 4.3.8 that for P = (xg,...,2n,—1) € H" with P # ~Q for any v € T and
s € C with Re(s) > n — 1 the elliptic Eisenstein series EZ;“(P, s) is infinitely often continuously
differentiable with respect to xg,...,z,_1. It also satisfies a shift equation under the hyperbolic
Laplace operator, namely

Agn Ee“(P7 s)=s(n—1-1s) Eeu(P s)+s(n—2—5s) Ee“(P7 s+2),

which we verify in Lemma 4.2.8 using so-called elliptic coordinates centered at Q.

For P, € H" and s € C with Re(s) > n — 1 we additionally define the hyperbolic kernel function
K™P(P Q,s) b

K™P(P,Q,s) = cosh(dun (vP, Q)" (0.9)

yel’

The series (0.9) converges absolutely and locally uniformly for P,@ € H" and s € C with Re(s) >
n — 1. Immediately by definition the hyperbolic kernel function K™P(P, @, s) is symmetric in the
variables P and () and invariant under the action of I' in both P and (). Moreover, we find that
K™P(P,Q,s), as a function in P, is bounded on T'\H" and an element of £2(I'\H"). Also the
hyperbolic kernel function K"P(P, @, s) is infinitely often continuously differentiable with respect
to the coordinates of P = (x,...,2,—1) € H". Under the hyperbolic Laplace operator Ay~ with
respect to P we find the shift equation

Amn K™P(P,Q,5) = s(n =1 —s) K"P(P,Q, ) + s(s + 1) K™P(P,Q, s +2). (0.10)

We see in the next section how both hyperbolic and elliptic Eisenstein series can be expressed in
terms of K™WP(P,Q,s).

Spectral expansions and meromorphic continuations

In order to establish the meromorphic continuations of hyperbolic and elliptic Eisenstein series
in s to the whole complex plane, we first compute the spectral expansions of K™P(P,Q,s) and
E?gf Q)P 5). This is done similarly to the case n =2 (see [Pip10] and [JKP10]).

Using KWP(P,Q, s) € C°(H")NL*(T'\H") and the differential equation (0.10), we see in Theorem
5.1.1 that for P,@Q € H" and s € C with Re(s) > n — 1 the hyperbolic kernel function admits the
spectral expansion

- ar n—1 .
KYP(P,Q,5) Z%Q $) (P +*Z/ aena() B (P i) ar (0)
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which converges absolutely and locally uniformly, and we compute the coefficients as

n—1

wols) = 2T p(A I I p(2 2 S ),

I'(s) 2 2
2l sy sl gy o]
o) = E BT (I () (g 1)

Afterwards, in Proposition 5.2.1 we show that for P € H” and s € C with Re(s) > n — 1
the hyperbolic Eisenstein series Eég? Qz)(P7 s) can be written as a line integral of the hyperbolic

kernel function K™P(P,Q,s) along the closed geodesic L(q, g,) as

hyp — m hyp
Egnqn(Ps) = —7= K™P(P,Q, 5) dsun(Q). (0.12)
r (5) L@i.@

This formula generalizes the respective result of [JPS16] for n = 2. We first compute the above
integral over K™P (P, Q, s) for the hyperbolic fixed points Q; = 0, Q2 = oo, where we can identify
the closed geodesic Lg,o) With the subset

{(O7 e ,O,xn_l) c H" | Tp—1 € [1,6Xp(l(07oo)))}

of H", and then deduce the identity (0.12) for general (Q1,Q2) € Hr.
Making use of E%}f 0P s) € C=(H") N L2(T'\H") and the differential equation (0.7), we show
in Theorem 5.2.2 that for P € H" and s € C with Re(s) > n — 1 the hyperbolic Eisenstein series

admits the spectral expansion

. I [ n—1
hyp _ ) ) - ar .
ERP o (Ps) = JZ::ObJ(s) ¥i(P) + ];1 /m by (5) EP? (P, 2=+ zt) dt, (0.13)

which converges absolutely and locally uniformly. Substituting the spectral expansion of K™P(P, Q, s)
into (0.12) gives us the coefficients

1

bj(s)z W%QF(STJFZ‘T]‘)F(S";;Z'U)/L JJ(Q) dsgn (Q),

F(%) 2 (Q1,Q2)
i s— ozl s— o=l ¢ -1 .
be,ni (8) = I?r(;)zr( 22 )F( 22 )/L EET(Q,”2 —Zt) dsyn (Q).
2 (Q1,Q2)

Using the spectral expansion (0.11), we prove in Theorem 6.1.1 that the hyperbolic kernel function
K™P(P,(@Q,s) admits a meromorphic continuation in s to the whole complex plane. In the proof
we first establish the meromorphic continuation of the series in (0.11) arising from the discrete
spectrum. The explicit formula for the coefficient a; g (s) gives its meromorphic continuation to
the whole complex plane. Using Stirling’s asymptotic formula for the gamma function and the

bound ,
sup [v5(P)| =0 (r}%) (1 = o)
PcH”

for the eigenfunction v;(P), for any j € Ny with r; > 0 we get

la5.0(5) 65(P)] = O (1" exp (<22)) (1 = )

with an implied constant depending on s. Since by a result of Lax and Phillips (see [LP82]) there
exist only finitely many j € No with r; € [—i 25+, 0), the infinite series over j in (0.11) converges
absolutely and locally uniformly for all s € C and defines a holomorphic function away from the
poles of a; g(s).
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Afterwards, for a cusp nx € Cr (k =1,...,cr) we establish the meromorphic continuation of the
integral
= (s) EP**( P, n-1 +at) dt (0.14)
Gt (8 ( : i ) , )
4 f_ 0™ e 2

which arises from the continuous spectrum and is holomorphic in the half-plane Re(s) > 231

In a first step we use the residue theorem to establish its meromorphic continuation to the strip
-l — ¢ < Re(s) < %5 + ¢ for some sufficiently small e > 0. Using the residue theorem for
a second time, we then obtain the meromorphic continuation of the integral (0.14) to the strip
h 12 < Re(s) < "T_l, which is essentially given by the integral itself, together with two additional
summands involving the parabolic Eisenstein series associated to n;. These two steps together
provide the meromorphic continuation of (0.14) to the strip 25 — 2 < Re(s) < 27%. Continuing
the two-step process sketched above, we inductively derive the meromorphic contlnuatlon of the
integral (0.14) to the strip 251 — 2(m + 1) < Re(s) < %5 — 2m for any m € Ny, which gives us
the meromorphic continuation of the continuous part of the spectral expansion (0.11) in s to the
whole complex plane.

By analyzing the continued function we additionally see in Theorem 6.1.1 that the possible poles

of the function I'(s) T (s - %)_1 K™P(P,Q,s) are located at the following points:

(i) s = 25  +ir; —2N, where j,N € Ny and \; = s;(n—1—s5;) = (”—_1)2 +rj2- is the eigenvalue
of the eigenfunction ;(P).

(ii) s=n—1—p—2N, where N € Ny and w = p is a pole of the parabolic Eisenstein series
Epar(P,w) for some k € {1,...,cr} with p € (251, n—1].

(iii) s =p—2N, where N € Ng and w = p is a pole of the parabolic Eisenstein series EP*" (P, w)
for some k € {1,...,cr} with Re(p) < 251

We also compute the residues at the poles of type (i). Further, in Corollary 6.1.3 we obtain that
the hyperbolic kernel function K™P(P,(Q, s) admits a simple pole at s = n — 1 with residue

2,/Tn/2

Ress—p_1 KMWP(P,Q,s) = ——————.
R Q) = S T (3)

Proceeding as for the hyperbolic kernel function, we then establish the meromorphic continua-

tion of the hyperbolic Eisenstein series E(ép 0> )(P,s) in s to the whole complex plane via its

spectral expansion (0.13) in Theorem 6.2.1. We see that also the possible poles of the function

r (%)2 I(s— ”Tl)fl Eélyp Qn) (P 5) are located at the points of types (i), (i) and (iii) above, and
we compute the residues at the poles of type (i). In particular, we conclude in Corollary 6.2.3 that

?cygp QQ)(Pa s) admits a simple pole at s = n — 1 with residue

20Qua0 T T
Resg—pn_1 Ehyp (P,s) = TR
(Q1,Q2) vol(T\H") T (T)
To derive the meromorphic continuation of the elliptic Eisenstein series ESI(P, s), we follow the
idea given in [Pipl0] and first show in Proposition 6.3.1 that for P,Q € H" with P # vQ for any
v €T and s € C with Re(s) > n—1 it has a representation as an infinite sum of shifted hyperbolic
kernel functions as

1 o0
Eell _ o Z k: K™P(P.Q, s+ 2k), (0.15)
iz

where (%) c =1 (% + k) r (%)_1 denotes the Pochhammer symbol. After proving that the series
on the right-hand side of (0.15) converges absolutely and locally uniformly, the assertion follows
by inserting the definition of K™P(P,Q, s) and changing the order of summation.

10
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Using (0.15), we obtain in Theorem 6.3.2 the meromorphic continuation of ES'(P,s) in s to the
whole complex plane. For m € Ny we write the elliptic Eisenstein series as

1 & (3) 1 o
EZ\(P = Tai Z (3) K™P(P.Q,s+21) + ol > (N)lKhVP(P Q,s+20),  (0.16)
1=0 Q l=m+1

and show that the infinite sum in (0.16) converges absolutely and locally uniformly on the half-
plane H,, = {s € C | Re(s) > n —1—2(m + 1)}. Together with the meromorphic continuation of
K™P(P,@Q,s+2l) (I=0,...,m) this gives us the meromorphic continuation of the elliptic Eisen-
stein series E‘?Q“(P, s) to the half-plane H,,, and, as m € Ny can be chosen arbitrarily, to the whole

complex plane. Moreover, we show that the possible poles of the function I' (s - an) ! E‘?Q“(P, s)
are again located at the points of types (i), (ii) and (iii). Especially, we find that Eg'(P,s) admits

a simple pole at s = n — 1 with residue

2 7.(.n/2
Dol vol(T\H") T (%)’

Resg—y,— 1Ee“(P s) =

which is proven in Corollary 6.3.4.

Kronecker limit formulas

The formula for the meromorphic continuation of the hyperbolic Eisenstein series to s = 0 and
the knowledge of the coefficients b;(s) and by, (s) enable us to determine a Laurent expansion of

Eégﬁ’ Qz)(P’ s) at this point, which depends on the dimension of H". In Proposition 7.1.2 we prove

that for n =0 mod 2 the hyperbolic Eisenstein series E(hérl) Qz)(P, s) admits a Laurent expansion
at s = 0 of the form

L25] ;
hyp D (_ ) n—1
E(Ql,Q2)( s)2 F(S D + l)
2 =0
ZEPM (P, s+ 21)/ EP(Qun—1—s—21) dsu-(Q)
Lay.@2

l(Q1 Q>) 77% T (15”)
= 2 ' P )
( avol(\H") T ; Gr(@r.qna(P) ] s

l(Ql;Qz)ﬂ-nT_lF(liTn) (V-HP(O) (an)) ! ) 5
i ( Avol(T\H") + ) Hu(@u.ga(P) | -5° +0(s%), (0.17)

=1

where G, (0,,0,),(P) (1 =1,2) and H,, (g,,0,).(P) (I =1,2,3,4) are I'-invariant functions which

are given exphc1tly in the proof.

For n =3 mod 4 we obtain a similar Laurent expansion, which is stated in Proposition 7.1.4 and,

in contrast to (0.17), starts with a constant term. An almost identical formula holds in the case
=1 mod 4 (see Proposition 7.1.6), where in the proof we have to take into consideration that

the point s = 0 lies on the line Re(s) = 251 — 2. 221 with 27 € N.

Considering the case n = 2, in Proposition 7.2.2 we first give a Laurent expansion at s = 0 of
the hyperbolic Eisenstein series on H for a general Fuchsian subgroup I' C PSLy(R) of the first
kind. After that we treat the specific case of the modular group I' = PSLy(Z). Using the Laurent
expansions (0.1) and (0.2) of the parabolic Eisenstein series E?*"(z, s), in Theorem 7.2.4 we find

11
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a Kronecker limit formula for the hyperbolic Eisenstein series E?gf Q) (z,s) for PSLy(Z), namely
1
B gu(2:9) = (2 [ s (G A ) TnGe)) dsste)
1 2

4
‘+3la9hQ2)(244'@‘1)+40g(8W2)“1)4‘2{2171(QMQ2%KZ)> -5% +0(s%).

1=3
For n = 3 we derive a Laurent expansion at s = 0 of the hyperbolic Eisenstein series in H? for
a general discrete and cofinite subgroup I' C PSLy(C) in Proposition 7.3.2. Then we consider
the specific group I' = PSLy(Z[i]). Employing the results from chapter 8 of [EGM13] and a
functional equation for the parabolic Eisenstein series E22"(P, s) associated to the only cusp oo of
PSLy(Z]i]), we find the Laurent expansions of ER2"(P, s) at the points s = 2 and s = 0. With these
expansions we prove a Kronecker limit formula for the hyperbolic Eisenstein series E(Ql,Qz)(P’ s)

for PSLy(Z[i]) in Theorem 7.3.6. Precisely, we have

31 T
Ehyp P — (Q1,Q2)
@uan (P9 8Caw(2)

* (84@(1')(2) ‘/L(Ql on) log (UQ(z)(P) 77@(1)(62) r(P) T(Q)) dsps (Q) 9

[Quq) ™ N @ 2

——=<u22)  og (|A®)[MC) +2(1 — v+ log(2)) + s+ 0(s?), (0.18)
8 Co(i)(2) ( ) Co(i)(2)

where r(P) is the r-coordinate of P € H?, (g(;)(s) denotes the Dedekind zeta function of the

imaginary quadratic field Q(i), Cg(;) € C is a constant, g : H? — R is a function which satisfies

a b
no@y(0P) = ||cP + d\|277Q(i)(P) for any § = (c J

constant.

€ I', and v denotes the Euler-Mascheroni

Moreover, we use the decomposition (0.16) of the elliptic Eisenstein series, the formula for the
meromorphic continuation of the hyperbolic kernel function to s = 0 and the knowledge of the
coefficients a; g (s) and ay,y, ¢(s) to compute a Laurent expansion of ES'(P, s) at this point, which
again depends on the dimension of the hyperbolic space. For n =0 mod 2 we show in Proposition
8.1.2 that the elliptic Eisenstein series Egl(P, s) admits a Laurent expansion at s = 0 of the form

L=

o1 ’
1 2 23+21ﬂ. (§) (_l)l—l n—1
Ee“P 2 I(s— —=+1+1
() = 5] IT(s + 21) 2 =y (s= =5 +1+1)
=0 =l
ZEPM n—1—s—2U')EP*(P,s+2l')
n—1 |
T3 F(l n)
G G'I e
~ [Tqlvol(T\H") |FQ|Z nam(P) g |ZZ @m(P

=1 m=1

WRTAF(;”) (v +1log(4) + v (52)) 1 <
" ( BffglvelmE) g | £ Z Hn @

371 1-n
A=t (1=-IT (452 +1)
Hn m : 2 ) 1
> 12— 1) \FQ|vol(r\Hn |rQ| Z Z QL s+0(s7), (0.19)
1=1 I=1 m=1
WhereGn,Q,m( ) (m =1, )7G7L,Q,l,m(P) (l: 17-”7% -1, m= 1a2)aHn,Q,m(P) (m=1,2,3,4,5)
and H,, g, 1.m(P) (l ,...,2—-1,m=1,2,3, 4) are [-invariant functions which are given explic-

itly in the proof.
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QOutline of this thesis

In Proposition 8.1.4 we obtain a similar Laurent expansion for n = 3 mod 4, but which starts
with the s~!-term. In the case n =1 mod 4 there is an analogous formula (see Proposition 8.1.6),
where in the proof we have to pay attention that "T_l € N holds true.

Making use of (0.19) with n = 2, in Proposition 8.2.2 we rediscover the Laurent expansion at
s = 0 of the elliptic Eisenstein series on H for a general Fuchsian subgroup I' C PSLa(R) of the
first kind which was established in [Pip10].

As for the hyperbolic Eisenstein series, we then consider the case n = 3. In Proposition 8.3.2 we
first obtain a Laurent expansion at s = 0 of the elliptic Eisenstein series in H? for a general discrete
and cofinite subgroup I' € PSLy(C). Then we let I' = PSLy(Z[i]) and use the Laurent expansions
of the parabolic Eisenstein series E22"(P, s) at s = 2 and s = 0 to derive a Kronecker limit formula
for the elliptic Eisenstein series ESI(P, s) for PSLy(Z[i]) in Theorem 8.3.3. It is given by

37‘(’3 1 7T3 WC@(i)
SR N A (P) o P -
ol ® s+ 1l can @ o8 (1o (P) e (@ rP)r(@) = =5

i <log (\A(i)|1/6) —2(1 +7) + log(32) + ) +0(s), (0.20)

ES\(P,s) =

S (2)
Co(i)(2)

™

4Tl o (2)

where gy (), Cag), Moy and 7 are as in (0.18).

It is possible to establish Kronecker limit formulas similar to (0.18) and (0.20) also for hyperbolic
and elliptic Eisenstein series in H? for I' = PSLy(Of), where K is an imaginary quadratic field
with ring of integers Ok and class number 1. However, in this thesis we do not address this task
and leave it for future research.

Outline of this thesis

We quickly describe the outline of this work. In the chapters 1, 2 and 3 we fix definitions and
notations that we employ during the thesis and recall known results. Subsequently, we present
and prove our results about hyperbolic and elliptic Eisenstein series in n-dimensional hyperbolic
space in the chapters 4, 5, 6, 7 and 8.

In chapter 1 we introduce the n-dimensional hyperbolic space. We briefly present some of the most
common models for it, especially the upper half-space model H", and further define hyperbolic
and elliptic coordinates in H™.

Then we turn to the Mdbius transformations of hyperbolic n-space in chapter 2. To that aim we
first consider the Clifford numbers C,, and a few of their elementary properties. We introduce
two certain groups GL2(C),), SLa(C,,) of matrices with entries in the Clifford numbers and ex-
plain how these groups act on H"*! U R" via Mébius transformations. Afterwards, we consider
an analogue of Fuchsian subgroups I' C PSLy(R) of the first kind, namely discrete and cofinite
subgroups of PSLy(C,,—1). We establish the classification of elements of PSLy(C,,—1) as parabolic,
hyperbolic, elliptic and loxodromic. Finally, we treat fixed points of parabolic, hyperbolic and el-
liptic elements and their respective stabilizer subgroups in PSLy(C,,—1) and a discrete and cofinite
subgroup I" C PSLy(Cj—1).

Chapter 3 collects several topics and results needed later in this thesis. First we determine the
radial eigenfunctions of the hyperbolic Laplace operator Ay~ in elliptic coordinates. Then we
look at PSLy(C),—1)-invariant integral operators and eigenfunctions of these operators. After that
we introduce the notion of automorphic functions in H™ and consider the definition and basic
properties of parabolic Eisenstein series in H™. At the end of the chapter we establish the spectral
expansion of a square-integrable automorphic function.

In chapter 4 we introduce the main objects of this thesis. We define the hyperbolic Eisenstein
series E%?’QQ)(P, s) associated to a pair (Q1,Q2) of hyperbolic fixed points of a discrete and

13



Introduction

cofinite subgroup I' C PSLy(C,,_1) and investigate its basic properties. Subsequently, we do the
same for the elliptic Eisenstein series E(‘jg“(P7 s) associated to a point @ € H" and a discrete and
cofinite subgroup I' C PSLy(C,,—1). These functions generalize the known hyperbolic and elliptic
Eisenstein series on the upper half-plane H. Further, we introduce and study the hyperbolic kernel
function K™P(P,Q, s) which is closely related to hyperbolic and elliptic Eisenstein series.

Chapter 5 deals with the computation of some spectral expansions. First we determine the spectral
expansion of the hyperbolic kernel function. After that we prove a representation of the hyperbolic

Eisenstein series E%? Q2)(P, s) as a certain integral of K™P(P,Q,s) which enables us to derive

the spectral expansion of E?%?,Qg)(P» s).

In chapter 6 we use the results from the previous chapter to establish the meromorphic continu-
ations of hyperbolic and elliptic Eisenstein series in s to the whole complex plane and determine
the possible poles. Using their spectral expansions, we obtain the meromorphic continuations of
the hyperbolic kernel function K™P(P,Q, s) and the hyperbolic Eisenstein series E?Cy;l’ Q2)(P, s) to
all s € C. Afterwards, we also derive the meromorphic continuation of the elliptic Eisenstein series
ESI(P, s) to all s € C by expressing it in terms of the hyperbolic kernel function.

The aim of chapter 7 is to find an analogue of the Kronecker limit formula for the hyperbolic
Eisenstein series E(héliQQ)(P, s) in H"™. For arbitrary dimension n and an arbitrary discrete and
cofinite subgroup I' C PSLo(C),—1) we first compute the first two terms in the Laurent expansion

of Eéglf Qz)(P’ s) at the point s = 0. Then we consider the specific examples n = 2, I' = PSLy(Z)

and n = 3, T' = PSLy(Z[i]), and derive a formula of Kronecker limit type for E(héﬁ”QQ)(P, s) in both
of these cases.

Finally, in chapter 8 we look for an analogue of the Kronecker limit formula also for the ellip-
tic Eisenstein series E%H(P, s). We determine the first two terms in the Laurent expansion of
ESI(P,S) at the point s = 0 for arbitrary dimension n and an arbitrary discrete and cofinite
subgroup I' C PSLy(C),—1). Subsequently, we recall von Pippich’s results about Kronecker limit
formulas for the elliptic Eisenstein series in the specific case n = 2, I' = PSLy(Z), and then prove
a formula of Kronecker limit type for ECQQH(P, s) in the case n = 3, I' = PSLy(Z[i]).

Notations
We fix a few general notations that we will use during the course of this thesis.

o N={1,2,3,...} denotes the natural numbers.

No ={0,1,2,...} denotes the natural numbers with zero.

Z denotes the integers.

Q denotes the rational numbers.

e R denotes the real numbers.

C denotes the complex numbers.

Re(z) and Im(z) denote the real part and the imaginary part of z € C, respectively.
e log(x) denotes the natural logarithm of x € R, > 0.

o /2= 21/2 denotes the principal branch of the square root of a complex number z € C, so
that arg(y/z) € (-3, 3].

Log(z) denotes the principal branch of the complex logarithm of z € C\ {0}, so that
Im(Log(z)) € (—m, w]. Then we have Log(z) = log(z) for z € R, z > 0.

14



1. Hyperbolic n-space

In this first chapter we introduce the n-dimensional hyperbolic space (or short: hyperbolic n-space)
which is a central object in this thesis. We start with a short presentation of the most common
models for the n-dimensional hyperbolic space. In the second section we define different types of
coordinates for points in the upper half-space model H™ of the hyperbolic n-space.

1.1. The n-dimensional hyperbolic space

The n-dimensional hyperbolic space is the unique simply connected, n-dimensional, complete
Riemannian manifold of constant sectional curvature —1. There are several possible realizations of
this space, each of them suitable for the study of different aspects of hyperbolic space. All of these
models are isometric to each other. In this section we present the three most common realizations.
Throughout the section let n € N with n > 2.

1.1.1. The upper half-space model

During the course of this thesis we will solely work with the upper half-space model which realizes
hyperbolic n-space as the upper half of the vector space R™.

Definition 1.1.1. The upper half-space model H"™ of hyperbolic n-space is the set
H" ={P = (z¢9,...,Zpn—1) ER" | 2,1 > 0}.

So the space H™ consists of all points with n components and real entries whose last entry is
strictly positive. Its boundary OH" is given by

{P = (CEo, Ce ,l‘n_l) cR" | Tp—1 = 0} = Rnil,
together with the point oo, i.e. OH" = R"~! U {o0}.
Notation 1.1.2. For the boundary OH" we introduce the notation

Rr-1 .2 RO1 U {oo}.

The usual Euclidean norm on R™ naturally induces a norm on H". For P = (zg,...,2,_1) € H"
it is given by
Pl = \fag+-+a2_,.
In the rectangular coordinates P = (xg, ..., =,_1) the hyperbolic line element ds?, on H" is given
by
dag + - +da?_ dP|?
dst, = —2—— ”1:‘2|. (1.1)
Th—1 Th—1

Then the hyperbolic distance dgn (P, Q) from P € H" to Q € H" derived from ds3, is given by

1/2
dpn (P, Q) = inf ( / ds%ﬂn) , (1.2)
v ¥

where the infimum is taken over all continuous paths 7 : [0,1] — H" with 4(0) = P and 7(1) = Q.
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1. Hyperbolic n-space

For P = (x0,...,Zpn—1) € H" and Q@ = (yo,...,yn—1) € H™ the hyperbolic distance satisfies the
identity

P—QJ? )2 4 - 1 —Un1)?
cosh(dgn (P,Q)) =1+ P-QF — 1+ (w0 —yo)* + -+ (Tn-1 — Yn—1)
2Tp—1Yn-1 2Tp-1Yn-1
(1‘0 _ y0)2 ot (xn—Q - yn—2)2 + x%—l + y3—1

1.3

2 LTn—1Yn—1 ( )
The hyperbolic Laplace operator Ay, also called Laplace-Beltrami operator, associated with the
hyperbolic line element dsZ.., is given by

0? 0?
AHn = —xi_l <ax(2)++am2

n—1

> + (n - 2) Tn-1 (14)

8‘%7171 -
Moreover, the hyperbolic volume element pyr (P) on H™ with respect to the rectangular coordinates
P = (zp,...,2p—1) is given by

dx() cee dxn_l

pgn (P) = (L5)

n
Tn_1

The geodesics in H" are the half-circles and lines which are orthogonal to the boundary oH".
Example 1.1.3.

(a) For n =2 we write H? =: H which is the well-known upper half-plane
H={(z,y) eR? |y>0}={z=z+iycC|y>0}.

We usually write z € H in the form z = z + iy with 2,y € R, y > 0. For the norm |z| of
z = x +iy € H we then have |z| = y/z2 + y2. In the coordinates x,y the hyperbolic line
element dsZ on H is given by
dz? + dy?

y o
The hyperbolic Laplace operator Ay derived from dsZ and the hyperbolic volume element
wm(z) on H are given by

0? 02 dx dy
Ay = —y° (an + 8y2) ; pm(z) = B

2 _
dsy =

respectively. For the hyperbolic distance dy(z,w) from z € H to w € H we have the formulas

dy(z,w) :log<:z_z+lz_3:> (1.6)
(see e.g. [Beal2], p. 130) and
B lz—wl>  (Re(z) — Re(w))? + Im(z)? + Im(w)?
cosh(di(z,w)) =1+ 2Im(z) Im(w) 2Tm(2) Im(w) ' (L7)

(b) For n = 3 we obtain the upper half-space model

H3 = {(z,y,7) €ER® | r>0} =2 {P=z+jr|2€C,r€R, 7 >0}
2{P=x+4iy+jr|zyreR r>0}

of hyperbolic 3-space which is a subset of the quaternions R[¢, j, k] with the standard basis
{1,i,4,k}. The norm |P| of P = z + jr = x + iy + jr € H3 is given by

|P| = ]2]2+72 = Va2 +y2 + 12
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1.1. The n-dimensional hyperbolic space

In the coordinates z,y,r the hyperbolic line element dS%Hg, the hyperbolic Laplace operator
Aps and the hyperbolic volume element pgs (P) are given by

da? + dy? + dr? 0? 0? 0? 0 dx dy dr
2 _ .2 _
dS]HI?’_,r—Q’ Aps = —r @WLaiyg‘f'ﬁ +TE’ pms (P) = FER
respectively. The hyperbolic distance dis (P, Q) from P = z;+jr; € H? to Q = zp+jry € H?
satisfies

[P-Q? |-z +ri+r}

h(dys (P =1
cosh(ds(P.Q)) = 1+ 5 —< -

1.1.2. The unit ball model

Another model for the n-dimensional hyperbolic space is the realization as the interior of the unit
ball in R™.

Definition 1.1.4. The unit ball model B™ of hyperbolic n-space is the set
B" = {P = (zg,...,xn-1) ER" | |P| < 1}.
The boundary 0B™ is given by
OB" =S" 1 ={P = (zg,...,2,_1) €ER" | |P| =1},
which is the unit sphere in R™.
Definition 1.1.5. A point P € 0B" is called a point at infinity.

In the rectangular coordinates P = (zq,...,2,_1) the hyperbolic line element ds3,on B" is given
by
d(def+---+da?_y)  4]dP)?
(1= (z§+-+ap_q))?  (A-[PH?
Then the hyperbolic distance dg- (P, Q) from P € B" to ) € B" obtained from ds3, is given by

1/2
dgn (P, Q) = inf < / ds]%n) ,
v v

where the infimum is taken over all continuous paths v : [0, 1] — B™ with v(0) = P and v(1) = Q.

dsgn =

For P = (xg,...,Zn—1) € B™ and @ = (yo,.-.,Yn—1) € B™ the hyperbolic distance can be written
as
2|P - QJ?
(1=1PP)(1-1[QF)
2 ((xo—w0)® + -+ (Tn1 — Yn-1)?)
(M= (@g+-+ap_y) 1=+ +ya))
The hyperbolic Laplace operator Ag» derived from the hyperbolic line element ds3. is given by

(= PP? > # N . 1-|PP 0 9
Apn = 4 Oz Tt Ox2 (n=2) 2 o Oxo T d I O%p_1

n—1

cosh(dpn (P,Q)) =1+

_ (@)
B 4 Oz ox2_,
L-(ai+-tan,) (0
—(n-2) 5 xoaixo‘f"“‘f'xn—laxn_l )

and the hyperbolic volume element ug-(P) on B™ with respect to the rectangular coordinates
P = (zp,...,2n—1) is given by

(P) = 2%dwg - drp_1 2" dxo - - - dry—1
e G 1) Gy e e Y
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1. Hyperbolic n-space

1.1.3. The hyperboloid model

The hyperboloid model realizes hyperbolic n-space as the positive sheet of a two-sheeted hyper-
boloid in R?*1,

Definition 1.1.6. For P = (x¢,...,2,) € R""! and Q = (yo,...,yn) € R*""! the Lorentzian
inner product P o @ is defined by

PoQ=—xoyo+x1y1 + - + Tnln.

The space R"™! together with the Lorentzian inner product is called Lorentzian (n+ 1)-space and
is denoted by R,

In Lorentzian (n 4 1)-space also imaginary lengths are possible. The sphere of unit imaginary
radius

F*={PcR"™ | PoP=-1}

is a hyperboloid with two sheets, hence it is not connected. This issue is solved by discarding one
of the sheets.

Definition 1.1.7. The hyperboloid model T} of hyperbolic n-space is defined as the positive sheet
of F", i.e. as the set

F? = {P = (z9,...,2,) ER" | Po P =—1, 35> 0}.

In the rectangular coordinates P = (xo,...,2,) the hyperbolic line element ds]%z on [} is given
by
ds%i = —dxd +do? + -+ da?.

The hyperbolic distance dFi (P,Q) from P € F} to @ € F derived from ds%i is given by

1/2

where the infimum is taken over all continuous paths v : [0, 1] = F? with v(0) = P and 7(1) = Q.

If P=(xo,...,2,) €F} and Q = (yo,.-.,yn) € F7}, the hyperbolic distance satisfies the formula
cosh(dpn (P, Q)) = —PoQ =Zoyo — T1y1 — *** — Tnln

with the Lorentzian inner product o as in Definition 1.1.6.

The hyperbolic Laplace operator AM associated with the hyperbolic line element ds%i is given by

while the hyperbolic volume element JE (P) on F% with respect to the rectangular coordinates
P = (xg,...,x,) is given by
piFn (P) =dxy - -dxy,.

1.2. Coordinates in H"

During this thesis we will mainly work in the rectangular coordinates P = (zo, ..., Z,—1) of the
upper half-space H". However, for some computations it will be more convenient to employ some
other coordinate system. We now introduce two different coordinates for points in H”, namely the
so-called hyperbolic and elliptic coordinates, that will be useful in further chapters. Throughout
the section let n € N with n > 2.
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1.2. Coordinates in H™

1.2.1. Hyperbolic coordinates

For fixed 7 > 0 the set Sii, ! := {P € H" | |P| = r} of points in H" with norm r is the upper
half of a Euclidean (n — 1)—sf)here with center 0 and radius r. Thus, any point P € H" is uniquely
determined by its norm and (n — 1)-many angles describing the location of P on the half-sphere
Sﬁ;’l,,- For these angles we can take the usual n-dimensional polar coordinates which leads to the
definition of the following coordinates.

Definition 1.2.1.
(a) For n =2 and z = (x,y) = = + iy € H we have
x=e" cos(f), y=e"sin(h),

where the hyperbolic coordinates v = u(z) € R and 0 = 6(z) € (0, 7) are given by
u(2) = log(|2]) = log (Va” + 7).

0(z) := £(z, positive x-axis) = arccos (az) .

(b) For n >3 and P = (zg,...,T,_1) € H" we have

n—1 n—1 n—1
zo = e cos(f;) H sin(6;), @1 =e" H sin(f;), xp =e€" cos(6y) H sin(6;)
j=2 j=1 J=k+1

for k =2,...,n — 1, where the hyperbolic coordinates v = u(P) € R, 6, = 0,(P) € [0, 27),
O = 0r(P) € [0,7] (k=2,...,n—2) and 0, 1 = 0, 1(P) € [0,F) are given by

(P = tog(1Pl) = o (faf -2 )
01(P) := £(projection of P on the z-x1-plane, positive xp-axis)

. To
arccos( a:2+w2) , x1 >0,
— 0 1

27rarccos< Lo >, r1 <0,

Ve

01 (P) := 4(P, positive xj-axis) = arccos

Remark 1.2.2. As the unique geodesic in H" through P = (xq,...,2,—1) € H" and the "north
pole” (0,...,0,|P|) of the half-sphere S”:,ll Pl is perpendicular to the x,_i-axis, the hyperbolic
distance from P to (0,...,0,|P|) is equal to the hyperbolic distance from P to the positive x,_1-
axis. Using formula (1.3), for n > 3 its hyperbolic cosine can be expressed in terms of the angle
0,—1(P) of the hyperbolic coordinates as

ag+--+xi  + P2 2P |P| 1
22, 1|P| 2z, 1|P| w1 cos(0,_1(P))’

cosh(dgn (P, (0,...,0,|P]))) =

whereas in the case n = 2 we have

2 +y’ 42?212 2 1
cosh(dy(z, (0, |z = cosh(du(z,1i|z])) = = ==
(s, (0. 1)) = coshidn(z, i) = “L A = 220 = B = s
Through these relations, for n > 3 it is possible to replace the coordinate 6,,_1(P) in Definition
1.2.1 (b) by v(P) := dpn (P, (0,...,0,|P])), while for n = 2 one can replace the coordinate 6(z) by

v(z) := dg(z,1i|z]).
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1. Hyperbolic n-space

As an example we determine the hyperbolic line element dsZ, the hyperbolic volume element iy (2)
and the hyperbolic Laplace operator Ay in terms of the hyperbolic coordinates u, 6 on the upper
half-plane H. The case n > 3 is then considered in the subsequent lemma.

Example 1.2.3. For z = (z,y) = x + iy € H we have
x=e" cos(f), y=e"sin(h)

with the hyperbolic coordinates

u(z) = log (\/x2 + y2) , 0(z) = arccos (ﬁ) .

Computing
ox ox w
dzr = u du + 20 df = e" cos(6) du — e" sin(0) db,
_ Oy 9y U og
dy = Pu du+ —= 20 df = e* sin(6) du + e* cos(6) do,
we get

daz? = e*" cos()? du® — 2e** cos(8) sin(f) du df + ** sin(0)* db?,
dy? = e** sin(0)? du® + 2¢*" cos(#) sin(0) dudf + e** cos(#)? db>.

Thus, in hyperbolic coordinates the hyperbolic line element is given by

da? +dy* e (cos(0)? +sin(0)?) du? + e** (sin(6)? 4 cos(0)?) df?

ds2 = =
°H Y2 e?v sin(6)?
_eMdu? 4 e df? du® + db?
e?v sin(9)2  sin(6)2

From this we easily obtain the volume element

Y AR ,_ dudt
HE\E) = sin(0)2  sin(6)2 "  sin(0)?’

Finally, we can derive the hyperbolic Laplace operator as

. 0 (sin(6)? 0 0 (sin(9)? 0 . 02 0?
Ay =—s 2= — — =-5 2=+ = ).
w = —sin(9) <8u (sm(9)2 ou) " 90 \sin(0) 06 s\ az * a2
Lemma 1.2.4. Let n > 3. In terms of the hyperbolic coordinates the following assertions hold
true.

(a) The hyperbolic line element ds?.,. has the form

n—2
2 _ . 2 2 102
dsdn = COS( S du? +§ 4H sin(0)* | tan(0,-1)* dOj + — L do?_,.
k=1 \j=k+1

(b) The hyperbolic volume element umn (P) has the form

n—1 . i—1
. sin(6;)?
L (P) = Mdud& coodByq.
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1.2. Coordinates in H™

(¢) The hyperbolic Laplace operator Agn has the form

A cos(f,_1)? o "z:z ! e cos(f,_1)? 782
H» = — n—1) 7 o — e - an2 n—1 D)
Ou? k=1 (sz,fﬂ s1n(0j)2) tan(f,_1)? 905, 9074
w2 (k—1) cos(f,,_1)? 0 n—2 B

-2

k=2 (HJ g1 Sin(0;)? )tan(&k) 90 tan(fn—1) 0n1’

Proof.
(a) We compute
8.130 61‘0
dxo——d +Z d@l—e cos(fy) Hsm du — e" Hsm db;
n—1
+ Ze cos(fy) cos(6;) < H sin(# ) doy,
1=2
775l
ox 2 ox
dmlzaiuldu—i—l:l 801d9l_6 (Hsm )du+e cos(61) (Hsm >d6‘1
n—1 n—1
+ Z e" sin(67) cos(6;) ( H sm(HJ)) do,
=2 =2,
il
and
8xk iy 8xk 8xk sy al’k
dx, = —d — df du — df
T u M 9, T o < 95, "
= e" cos(f) < H sin(6 > u — e (Hsm )d&k
j=k+1
n—1
+ Z e* cos(f) cos(6;) ( H sin(6 )d@l
l=k+1 j=k+1,
il
for k=2,...,n — 1. Squaring dxy,...,dx,_1, we obtain
n—1 n—1
dat = e*" cos(6)? ( H sin(6 ) du® + e** ( H sin(ej)2> do?
j=1
n—1
+ Z et Cos(91 cos( 9; < H sin(6 > d@l — 2% cos(f;) sin(61) ( H sin(6 ) du db;
1=2
J#l
n—1 n—1
+ Z 2e2" cos(61)? cos(6;) sin(6;) ( H sin(ej)2> du df,
1=2 j=2,
J#l
n—1
- Z 2¢24 cos(61) sin(61) cos(6;) sin(6;) ( H sin(6 ) df, do,
1=2
J#l
n—1 n—1
+ Z 2e%* cos(01)? cos(6y,) sin(6;,) cos(;,) sin(8y,) H sin(6;) ) de,, do,,,
11,12=2, =2,
1112<lz2 ?ﬁll ]5‘612

21



1. Hyperbolic n-space

n—1
daz% = e < H sin(6;) ) du? + 24 cos( 91 < H sin(6 ) d92

j=1

n—1
+ Z p2u sm(01 cos( 91 ( H sin(6 ) dQI 4 9e2u cos(6y) sin(6) ( H sin(0 > du d;

1=2

J#l

n—1
+ Z 2¢2v s1n(91) cos(6;) sin(6;) ( H sin(6 ) du db,

1=2

Jsél

n—1
+ Z 2¢*" cos(#y) sin(f1) cos(;) sin(6;) ( H sin(6 > do, do,

1=2

J;ﬁl
n—1 n—1

+ Z 2e%* sin(0;)? cos(6y,) sin(6;,) cos(6y,) sin(fy,) ( H sin(é’j)2) de,, do,,

l1,l2=2, =2,

ll<l22 J#lhﬁélz
and

n—1
da? = e** cos(fy) ( H sin(6 )du + 62“< H sin(6 )d&k

Jj=k+1 j=k
n—1
+ Z e?" cos(0y)? cos(;)? ( H sin(6 )d@l — 2e%* cos(6y,) sin(fy) ( H sin(6 )du doy,
l=k+1 j=k+1, j=k+1
P
n—1 n—1
+ Z 2e2% cos(6y)? cos(6;) sin(6;) ( H sin(6 ) du do,
I=k+1 j=k+1,
G
n—1 n—1
- Z 2e2% cos(0,) sin(0x) cos(6;) sin(6;) ( H sin(6;) > by do,
I=k+1 j=k+1,
J#l
n—1 n—1
+ Z 2e2" cos(6x)? cos(6y,) sin(fy,) cos(fy,) sin(6y,) ( H sin(6;) > de,, do,,
I, ly=k+1, j=k+1,
l1<l2 JAL, j#L

for k = 2,...,n — 1. Making use of the identity cos(#;)* + sin(;)> =1 (j = 1,...,n— 1)
multiple times, a tedious but straightforward addition gives us

n—1 n—2
da? + de? + Z da? = e*" du® + Z e H sin(6;)? | o + e* do>_,.
k=2 k=1 j=k+1

We end up with the hyperbolic line element

u n—2 o n u
dzd+ -+ dz2_, e du® + 3 1 ] €? (HJ R ( ) >d92+62 dez_,

dst = -
SH x%—1 et cos(6,-1)?
n—2 1
= in(6;)? On—1)° dO; do?
cos( du + Z 11_1 sin(6;)* | tan(0,—1)° dby, + cos(B, )2 W1
=
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1.2. Coordinates in H™

(b) Using part (a), we obtain for the hyperbolic volume element that

pmn (P) =

1 n—2
cos(0,—1)? 1};[1 (<j_

n—2 . 1
H s1n(9j)2) tan(9n_1)2) m

k+1

\/(H?—_f sin(6;)20-1) )

tan(en_l)Q(n—Q)

cos(0,—1)?

B (H;L 2 sin(f;)7 ! ) tan(

du d91 e d971,—1

Hn_l)n—Q

o cos(f,—1)?

[T)=; sin(0;)7
 cos(Bp_1)"

dudby ---

du d91 s -dé’n,l

dbpn_1.

dudby ---

den— 1

¢) The hyperbolic Laplace operator derived from the hyperbolic line element dsZ, is now given
(c) yp p p yp & g

by

A]}ﬂn ==

_cos(fp)" 0
[T sin(,)* Ou

COS
Hn 21Sln ] 1 Z 00, (COS(Qn_l)"

B cos(f,—1)" 0

(IT5=s sin(@,) ) cos(Bu)?
cos(fp,—1)" ou

17~ sin(0,)/ !

H;L 2151n( )i=1 00,1

= —cos(0,—1)

COS(Gn_l)" Bﬂn_l

((H?_; sin(ﬁj)j_l) cos(0,_1)? b )

1 0?

o 5

_ COb n— 1 Z
I1;= ~, sin(6;)7! 0\ cos(6,,_)" (H? 13+1 sin(6,)? )tam(ﬁn,l)2

cos(0p—1)" 0

202
k=1 ( i k+1 sin(6;)? )tan(6‘ 1)? 90y

[T} sin(6,)7~!

—cos(0p_1)? =5—

[1=, sin(0;)7=1 00n—1

Computing the partial derivatives

IT)= sin(@;) "1\ o
cos(0y—1)" 2 Op_1’

154 sin(0,)~!

=

0
99 (cos(@nl)" (H? s

=0,
in(6,)? ) tan(0n1)2>

E

o ( [T sin(6,) ! )
90 cos(fp—1)" (Hj:k+1 81n(0j)2) tan(0,_1)>

= o6,

Kl ( (Hfzz sin (0

(H;c lem(aj)jfl) (k — 1) sin(6;,)F~2 cos(6y,) (H?;;H sin(ej)j*3)

cos(fp—1)" 2

)jﬂ) (H? o sin(9;)7 3) Sin(9n—1)"4)

cos(0,—1 )2

9
(H?;,fH Sin(Hj)Z) tan(f,_1)? aek)
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1. Hyperbolic n-space
fork=2,...,n—2, and

) (H}Ssin(ﬂj)“> I =

H sin(6,)7 ! tan(6,,_1)" 2

90p_1 \ cos(Op_1)" 2 |~ 90, o
(n—2) T2 sin(0, " tan(0, 1)
B cos(6,_1)2 ’
we obtain
- cos(p—1)” O H;L:_Ql sin(6;)7 _0
[Tj=2 sin(@;1 =" 001 \ cos(, 1) (IT)3 sin(6;)2) tan (0 1)? ’
cos(B,_1)" 0 H;L:_zl sin(f;)7 !
L sin:)7 1 90\ cos(, ) (T2, sin(6))2) tan (6,1 )2
7005(9n,1)2 (k—1) cos() (k—1) cos(0n_1)?
o sin0) (T2t sin@)2)  (T12h sin(6:)?) tan(6y)
fork=2,...,n—2, and
~cos(@p_1)" 0 (H;L—_zl sin(Gj)j1>
T sin(, 90\ cos(B )2
(n—-2) cos(0,—1)" "2 tan(f,—1)" "% . n-—2
sin(6,,—1 )2 tan(f,—1)
Inserting these identities into formula (1.8) yields the desired result
B , 02 =2 1 02 , O
Bur = ool g - k; (T2 5in(6,)2) tan(8, )2 o~ ) g

_f (k=1 cos(fa1)® 0  n=2 0
k=2 (H?:_klﬂsin(ej)?) tan(6y) 90y tan(fp—1) 90,1

1.2.2. Elliptic coordinates

Let @ € H" be fixed. Then for fixed r > 0 the set {P € H" | dy~ (P, Q) = r} of points in H" with
the hyperbolic distance r to @ is a hyperbolic (n — 1)-sphere with center ) and radius r. It is also
a Euclidean sphere, though with different center and radius. Thus, any point P € H" is uniquely
determined by its hyperbolic distance to (Q and some vector which describes the location of P on
that sphere. This gives rise to define the following coordinates.

Definition 1.2.5. Let () € H" be fixed. For P € H" we define the elliptic coordinates pg =
0q(P) € [0,00), Cg = (o(P) € S centered at @, where

0q(P) := dun (P, Q)

and (o(P) denotes the unit vector at @ that is tangent to the unique geodesic in H" through @
and P. By the usual identificiation of the unit tangent space at () and the unit sphere S~ we
write (o(P) € S"~L.
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1.2. Coordinates in H™

In the literature the coordinates from Definition 1.2.5 are often called geodesic polar coordinates.

Remark 1.2.6. The location of P € H" on the hyperbolic sphere of radius dg- (P, Q) around @
can also be uniquely described by (n—1)-many angles 9g 1(P), ..., 9gn—1(P). Hence, it is possible
to replace the coordinate (g (P) in Definition 1.2.5 by the coordinates ¥g 1(P),...,¢Qn-1(P).

Example 1.2.7. For n = 2 and z = (z,y) = = + iy € H we can define the elliptic coordinates
0= 0(z), 9 = J(z) centered at i € H as

o(z) = du(z,1),  I(z) = L(L,T2),

where L denotes the positive y-axis in H and 7T, is the tangent at the unique geodesic in H through
i and z at the point ¢. These coordinates are connected to the rectangular z-y-coordinates via the
relations ) )

sinh(p) sin(«}) 1

~ cosh(p) + sinh(p) cos(?)’ v= cosh(p) + sinh(p) cos(?¥)

(see, e.g., [Pip05]). In the elliptic coordinates g, the hyperbolic line element dsf, the hyperbolic
volume element py(z) and the hyperbolic Laplace operator Ay are of the form

dsf = do* + sinh(p)? di¥?,
pm(z) = sinh(g) do d¥,

The hyperbolic line element, the hyperbolic volume element and the hyperbolic Laplace operator
in terms of the elliptic coordinates centered at @@ € H™ are given in the following lemma. These
formulas follow from results about polar coordinates on Riemannian manifolds, since the elliptic
coordinates centered at () are obtained from polar coordinates on the tangent space at Q. We
omit the details here.

Lemma 1.2.8. Let Q € H" be fized. In terms of the elliptic coordinates centered at Q) the following
assertions hold true.

(a) The hyperbolic line element ds?. has the form
dsir. = dogy + sinh(0q)* |dCo?,
where |dCg|* denotes the line element on the unit sphere S*~1.

(b) The hyperbolic volume element pumn (P) has the form

pin (P) = sinh(0g)" * dog dvn—1(Co),
where dv,_1(Cq) denotes the volume element on the unit sphere S"~1.
(c) The hyperbolic Laplace operator Agr has the form

0? 1 0 1
Agn = —=5 —(n—1 - =
H D0, ( )tanh(gQ) Opg  sinh(pg)

= A,

where Agn—1 denotes the Laplace operator on the unit sphere S*~1.
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2. Groups acting on hyperbolic n-space

After the introduction of hyperbolic n-space we now turn to the groups that act on this space
via Mdbius transformations; these are certain groups of Clifford matrices. In the first section we
present Clifford numbers and the Clifford group and some of their basic properties. We define two
groups GLy(C,,), SL2(C},) of matrices whose entries are certain Clifford numbers in the second
section. ~Afterwards, we explain how these groups act on the upper half-space H"+! and its
boundary R™ via Mobius transformations in the third section, and give important properties
of this action. In the fourth section we consider discrete, cofinite subgroups I' C PSLy(C)—1)
which generalize the classical Fuchsian subgroups I' C PSLy(R) of the first kind. In the chapter’s
fifth section we establish the notion of parabolic, hyperbolic, elliptic and loxodromic elements of
PSL2(C,,_1), while we treat their fixed points in H* UR™ ! and the respective stabilizer subgroups
in the sixth section. The notations used in this final section will be employed in the later chapters
to define three different types of Eisenstein series in H".

2.1. Clifford numbers

There are several different ways to treat the theory of Mébius transformations in H"” UR"1. While
it is possible to express the orientation-preserving Mébius transformations in terms of the group
PSO(n, 1), we follow another approach involving matrices with certain Clifford numbers as entries.
It was first used in 1902 by Vahlen in [Vah02] and later rediscovered by Maass in [Maa49]. Before
we consider these matrices, we introduce Clifford numbers and some basic properties that we will
require later. We omit most of the proofs here. Throughout this section we let n € N.

Definition 2.1.1. We define the Clifford algebra C), as the associative algebra over R generated
by n — 1 elements iy, ...,i,_1, satisfying the relations

(i)it=-1fork=1,...,n—1,
(11) ity = —igig for k2l =1,...,n—1 with k # [.

Sometimes it might be convenient to introduce the additional generating element iy := 1. The
elements of C,, are called Clifford numbers.

It is immediately clear by definition that C), is a subalgebra of ), for any n € N. We note that
condition (ii) in Definition 2.1.1 implies that multiplication in C,, is not commutative for n > 3.

Remark 2.1.2. Most authors define the Clifford algebra as being generated by n elements
i1,...,%, instead of i1,40,...,7,_1. However, Definition 2.1.1 is in line with the definition in
[AhI85a] and [S6d12]. Moreover, it will suit our setting better in that a certain group of matrices
with entries in C),,_1 (instead of entries in C,,_3) will act on the n-dimensional hyperbolic space
H", and that the space V,, of vectors of C,, (see Definition 2.1.8) can be identified with R™ (instead
of R*H1).

Remark 2.1.3. An element a € C, can be uniquely written in the form a = ) ;as I, where
ar € R and the summation runs over all products I =4,, ---4,, with 1 <y <. <y <n-—1.
The empty product I = () is also permitted and interpreted as the real number 1. Hence, C,, is a
real vector space of dimension 27~ 1.

Definition 2.1.4. Let a = >, a;I € C,. The coefficient ap of the empty product is called the
real part of a and denoted by Re(a). The sum ;4 ar I of all other terms is called the imaginary
part of a and is denoted by Im(a).
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2. Groups acting on hyperbolic n-space

Definition 2.1.5. We equip the space C,, with the square norm, i.e. for a =", a;I € C,, we
have |a|* =), a7

In terms of the real and the imaginary part we can write |a|? = Re(a)? + |Im(a)|? for the norm of
a € Cy.

Definition 2.1.6.
(a) The degree of a product I =i, -+ -1i,, is the number k.

(b) The degree of an element a = >, a;I € C,, is the highest occurring degree of a product I
with ar 7é 0.

(c) An element a =) ;ar I € C, is called homogeneous if all products I with a; # 0 have the
same degree.

Example 2.1.7. As an example we consider the Clifford algebra in the simplest cases n = 1,2, 3.
(a) For n =1 the Clifford algebra C; can simply be identified with the real numbers R.

(b) In the case n = 2 we obtain the real associative algebra generated by the element i := iy
with 2 = —1, so Cy can be identified with the complex numbers C.

(¢) For n = 3 we can identify C3 with the quaternion algebra H, where the basic quaternions
1,7,k are represented by 41,42 and iqio.

Though the full Clifford algebra itself is a vector space, we use the term ”vector” only for specific
elements of C,,.

Definition 2.1.8. An element x € C, of the form = = x9 + 141 + -+ + Tp_19,—1, Where
Zg,...,Tn—1 € R, is called vector. The subspace of C,, consisting of all vectors is denoted by V,.

It is immediately seen that V,, is an n-dimensional real vector space which can naturally be
identified with R™ via

xo+x1i1 + -+ Tp_1in—1 € Vy — (0, 21,...,2n-1) € R™.
In section 2.3 we will use this identification to interpret R™ as a subspace of C,,.
The square of a vector z = xg + z;i1 + - -+ + Tp_11,—1 € V,, is again a vector, since
(wrin) (@) + () (TRin) = @iy + TRwiiiy = TpTyiph — Tp2igi = 0
holds true for k,0 =1,...,n — 1 with k # [. In particular, we have the formula
2? = Re(z)? + 2 Re(x) Im(x) — [Im(x)|?.

The same is true for any power z* with k& € N and for any polynomial in z with real coefficients.
An interesting property is that this carries over even to fractional powers. For instance, any x € V,,
with Im(z) # 0 has the two vector square roots

B |z] + Re(z)  Im(z) [|z|— Re(x)

(see, e.g., formula (1.3) in [AhI86]). Further, we note that any z¢o € R with zo > 0 has its usual
two real square roots in V,;, whereas for n > 3 any xg € R with zg < 0 has infinitely many square
roots in V,,, namely all y € V,, with Re(y) = 0 and |y|?> = [Im(y)|* = —x0.

Similar to complex conjugation, we have three commonly used involutions, respectively conjuga-
tions, in C), which are introduced in the next definition.
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2.1. Clifford numbers

Definition 2.1.9. We define the following functions from C), to C,,:

(a) Let ' : C,, — C, be the map which replaces i by —iy (k = 1,...,n — 1). It is called the
main involution or main conjugation, and o’ :="(a) is called the main conjugate of a.

(b) Let * : C,, — C, be the map which reverses the order of the factors in each product
I =iy, - iy,,. Itis called the reverse involution or reverse conjugation, and a* := *(a) is
called the reverse conjugate of a.

(c) Let = : C,, — C,, be the map which combines the previous two, i.e. for a € C,, we set
a:= (a)* = (a*). Tt is called the complex involution or complex conjugation, and @ := ~(a)
is called the complex conjugate of a.

Clearly, all of these maps are involutions of C,,. The involution ’ defines an algebra automorphism
of Cp, i.e. we have (a +b) = a’ + V' and (ab)’ = 'V’ for any a,b € C,,. The other two involutions
*and ~ are anti-automorphisms of C,,, i.e. we have (a + b)* = a* + b* and (ab)* = b*a*, as well
as a+b =a+ b and ab = ba for any a,b € C,. Moreover, for any product I = i, ---i,, with
1<y < <y <n—1 we simply have

I = (_1)k 1-7 I = (_1)k(k—1)/2 I, T= (_1)k(k+1)/2 TI.

For x € V,, it is obvious that 2* = x, and therefore T = 2’. Further, a straightforward computation
yields the identity 7 = Zz = |x|? for any x € V,,. So any non-zero vector is multiplicatively
invertible in C,, with inverse 2= = Z/|z|? € V,,. Since products of invertible elements are again
invertible, the non-zero vectors in C), generate a group with respect to multiplication.

Definition 2.1.10. The multiplicative group that consists of all products of elements of V,, \ {0}
is called the Clifford group and is denoted by I',,.

Example 2.1.11. Forn =1,2,3 we have I'; = R* =R\ {0}, 'y = C* = C\ {0} and I's = H\ {0}
for the quaternion algebra H. In the remaining cases, i.e. if n > 4, the Clifford group T, is a proper
subset of C,, \ {0}. This means that there are Clifford numbers that cannot be written as a product
of vectors.

In [AhI85a], Ahlfors proved the following properties for elements of the Clifford group.
Proposition 2.1.12. For any a,b € ', the following assertions hold true.

(a) aa = aa = |al?.

(b) labl = lal 8]

By applying the main involution /, part (a) of the proposition also shows that a’a* = a*a’ = |a|?
for any a € T',,. Moreover, it yields that, in analogy to vectors, there is a simple formula for the
inverse of an element of the Clifford group.

Corollary 2.1.13. Any a € T, has the multiplicative inverse a=! = a/|al|*.

It is easy to see that inverting an element commutes with all three involutions from Definition
2.1.9, i.e. for any a € T, the identities (¢/)! = (¢ 1), (¢*)"! = (a7!)* and @ ! = a~! hold true.

Example 2.1.14. Proposition 2.1.12 does not hold true for general elements of C,,.

(a) Let a = 1+ iyigiz € Cy, then we have @ = a and a? = 2 + 2iyizi3 = 2a. Consequently, we
get a@ = @a = a® = 2a, but |a|> = 2, meaning that in general a@ # |a|?>. This also shows
that @ = 1 + 44293 cannot be written as a product of vectors.

(b) If we view a = 1 + i1ii3 as an element of Cs, then a%iy = 2i4 + 2iyi2izis # 0. On the other
hand one can compute that aisa = 0, so that |a?i4| # |aisal and |aisa| # |ais]|al. This
proves that in general |ab| # |ba| and |ab| # |a| |b].
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2. Groups acting on hyperbolic n-space

However, we have the following weaker results for general Clifford numbers (see, e.g., [Wat93],
Theorem 1).

Proposition 2.1.15. For any a,b € C,, the following assertions hold true.
(a) |a|* = Re(a@) = Re(aa).
(b) If either a € T, or b € 'y, then |ab| = |a| |b].
(c) Yy arbr = Re (ab) = Re(ab).
(d) If a,b € V,,, then Y arby = % (ab + ba).

There is also a different characterization of elements of the Clifford group via bijective and
orientation-preserving isometries of V,, = R™ (see, e.g., [Ahl85a]).

Proposition 2.1.16. Ifa € T, and © € V,,, then also ax(a’)~t € V,, and the map V,, — Vi,
x — az(a’)™1, is a bijective and orientation-preserving isometry. Conversely, any a € C, such
that the map V,, — Vi, x v ax(a’)™!, is a bijective and orientation-preserving isometry already
satisfies a € T'y,. Moreover, this yields the isomorphisms I',,/R* =2 SO(n) and T',,/RT =2 PSO(n).

We close this section with two elementary results on Clifford numbers that will be of frequent use
in the remainder of this chapter. The first one can be found, e.g., in [Ahl86], while for the second
one we give a proof.

Proposition 2.1.17. Let a,b € T',,. Then ab~' € V,, if and only if a*b € V,,, and b='a € V,, if
and only if ba™ € V,,.

Lemma 2.1.18. Let a € Cpy1. If a € C,, C Cpa1, then we have ina = a'iy,.

Proof. We write a = > ;arI with a; € R, and where the summation runs over all products
I=i, -4y, withl <1 <--- <y, <n—1. Then for any such product I we have

i I =iniy, iy, = (—=1)*i0y, iy in = (1) Tiy, = I'iy.

/
1pa = E arin I = g arl'i, = ( E (I[I) in = a'iy.
I I I

This leads to

2.2. Clifford matrices

In this section we introduce two groups of 2 x 2-matrices whose entries are Clifford numbers
which are subject to certain conditions. We mainly follow Ahlfors’ approach in [AhlI86], though
we additionally define a slightly more general group. A different development of Clifford matrices
and their relationship to Mobius transformations is given, for instance, by Waterman in [Wat93].
As the results of this section are known, we do not carry out all of the proofs. Throughout the
section let again n € N.

Definition 2.2.1. We define the sets

GLy(Cy) = {(CC‘ Z)
SLo(Cy) = {(‘CL Z)

of matrices with entries in the Clifford numbers C,,. An element of GL2(C),) or SL2(C),) is called
a Clifford matriz.

a,b,c,d € T, U{0}, ab*,cd* € V,, ad* — bc* ER\{O}},

a,b,c,d € T, U{0}, ab™,ed” € V,,, ad* — be* = 1}
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2.2. Clifford matrices

From the definition we immediately see that SLa(C,,) C GLa(C,,).

Remark 2.2.2. As not all Clifford numbers are permitted as entries in Definition 2.2.1, more
precise notations would actually be GLy(T',,) and SLy(T,,) instead of GLo(C},) and SLy(C,). These
alternate notations are indeed used by Ahlfors in [Ahl86]. If we were really strict, we would even
have to write GLy(T",, U{0}) and SLy(T",, U{0}). However, our notations agree with the ones used
in [Wat93] and [S6d12].

The notations GLy(C},) and SLo(C},) already suggest that both sets form a group which is indeed
the case.

Theorem 2.2.3. The sets GL2(Cy,) and SLa(Cy) of Clifford matrices are groups under matriz
multiplication.

Proof. For SLy(C),) see, e.g., [Ahl86]. The proof for GLy(C),) is similar.

It is now justified to introduce the following notions.

Definition 2.2.4. We call GL2(C},) the general linear group and SLa(C,) the special linear group
over the Clifford numbers C,,.

Example 2.2.5. For n = 1,2 the sets GLa(C),) and SLy(C),) reduce to well-known groups of
matrices.

(a) In the case n =1 we have GLy(C1) = GL3(R) and SLy(C;) = SLa(R).
(b) For n = 2 we obtain GL2(C3) = GL2(C) and SL2(C3) = SL2(C).
We give a few further properties of Clifford matrices.

b

Lemma 2.2.6. For~ = (CCL d

) € GLo(C),) the following assertions hold true.

(a) a*c, b*d € V,,.
(b) d*a —b*c = ad* — be*.
Proof.

(a) If a =0 or ¢ =0, it is clear that a*c =0 € V,,. Now let a # 0 and ¢ # 0. By the definition
of GL2(C),) and Proposition 2.1.17 we have a~'b,c~1d € V,,. Writing

1= (ad* —bc*) ™" (ad* — be*) = (ad* — be*) ' a (d*(c) ™" —a'b) ¢,
we then obtain
(¢a)"! = a~L(¢*)"! = (ad* — be*) ! (d*(c*)fl —a'b)
= (ad* = bc*) ' ((c7'd)* —a™'b) = (ad* —bc*) ! (¢ 'd — a”'b) € V.

This gives us c*a = ((c*a)*l)fl €V, and a*c = (c*a)* € V,.

For b = 0 or d = 0 the condition b*d = 0 € V,, is again obvious. If b # 0 and d # O,
then by Proposition 2.1.17 we have b~'a € V,, as ba* = (ab*)* € V,,, and d~'c € V,, as
dc* = (cd*)* € V,,. Now we write

1= (ad* — be*) ! (ad* — be*) = (ad* — be*) 1 b (b7 a — ¢*(d*) 1) &,
which gives us
(d7) 7 =b7H(d") 7 = (ad” —be) 7 (b7 — e (d) )
= (ad* — be*) "t (b~a — (d™'6)") = (ad* — be*) "1 (b™La — dLc) € V.

This implies d*b = ((d"‘b)fl)f1 €V, and b*d = (d*b)* € V,.
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2. Groups acting on hyperbolic n-space

(b) If d = 0, then ¢ # 0 and there is A € R\ {0} such that —bc* = ad* — bc* = A. This implies

b= —\(c*)"! and
d*a —bc=—(=Mc)Hc=A"te =\ = ad* — bc".
Now let d # 0. From b*cd* = b*(ed*)* = b*dc* = (b*d)*c* = d*bc*, where we made use of
cd*, b*d € V,,, we obtain
(ad* —bc*) |d|? = d* (ad* — be*)d' = d*ad*d — d*bc*d' = d*ad*d — b*cd*d’
=d*al|d]® —b*c|d|* = (d*a — b*c)|d|*.
Dividing this identity by |d|? # 0 yields d*a — b*c = ad* — bc*, as asserted.
O

Definition 2.2.7. For v = (Ccl Z) € GL3(C,,) the expression pdet(vy) := ad* — bc* is called the

pseudo-determinant (sometimes also called Clifford determinant) of ~.

By Definition 2.2.1 we have pdet(y) € R\ {0} for any v € GL3(C,,), and pdet(y) = 1 for any
v € SLa(Cy).

We see in the next two lemmas that the pseudo-determinant satisfies several properties of a de-

terminant.

Lemma 2.2.8. The pseudo-determinant is multiplicative, i.e. for any v,6 € GLy(C,) we have

pdet(yd) = pdet(y) pdet(d).

Proof. If v = (Z Z) and § = (; {L), then

__(ae+bg af +bh
“\ece+dg cf+dh)’

Further, we have ef*, gh* € V,,, which implies ef* = (ef*)* = fe* and gh* = (gh*)* = hg*.
Using this together with pdet(d) € R\ {0}, we compute

pdet(yd) = (ae + bg) (c¢f + dh)* — (af + bh) (ce + dg)*
= (ae+bg) (f*c* + h*d*) — (af + bh) (e*c" + g*d")
(ef* = fe*)c" +a(eh” — fg*)d" +b(gf* — he*)c* +b(gh™ — hg™)d"
=a(eh” — fg*)d" —b(eh” — fg*)" ¢* = apdet(d) d* — bpdet(d)* ¢*
= (ad® — bc*) pdet(d) = pdet(vy) pdet(d).

¢
a

O

a b

Lemma 2.2.9. Ify= <c d d b

) € GLo(C),) and v* := < A ), then also v* € GLy(C,) and

—C

« _ . _ (pdet(v) 0

Proof. First we note that a, b, ¢,d € TI',U{0} implies that also a*, —b*, —c*,d* € I',U{0}. Moreover,
by Lemma 2.2.6 we have

& (=) = —d*b = —(b*d)* = —b*d €V, —c*(a*)" = —c*a=—(a*c)" = —a*c €V,

and d*(a*)* — (=b*)(—c*)* = d*a — b*c = ad* — bc* € R\ {0}. This shows that v* € GL2(C,,).
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2.2. Clifford matrices

Making use of ab*, cd*,a*c,b*d € V,, and d*a — b*c = pdet(7), a simple computation now gives us
g ) ) Y g

« _ [ad* —bc* —ab*+ba*\ [ ad*—bc*  —ab* + (ab*)*\ _ [pdet(y) 0
T = \edr —der —cb* +da*) T \ed* — (ed*)*  (ad* —bc*)* | 0 pdet(y)

and

. ( d*a —b*c  d*b—b*d > _ ( d*a — b*c b*d)* — b*d> _ <pdet(’y) 0 )

TT= \—cfa+a*c —c'b+a*d (a*c)* +a*c (d*a —b*c)* 0 pdet(y)
O

b

Corollary 2.2.10. Fory = (CCL d

) € GLy(C,,) its inverse matriz v~1 € GLa(Cy,) is given by

-1 __ 1 * 1 d* —b*
L pdet(7) T Tl —ber \—c* o )
Similar to SLy(R) and SLy(C), the special linear group SLa(C),) has a quite simple set of generators.

Proposition 2.2.11. The group SLy(C,,) is generated by the matrices

(2 _01> and (é f) (x € V). (2.1)

Proof. At first we note that

GG AR -6
(D=0 -6 67

0) with y € V,, is a product of the matrices (2.1).

o . (1
implies that any matrix (y 1

Y
0

) N R | SR R R R R I

Since both the square and the inverse of y are again vectors, this proves that any of these matrices
is a product of the claimed generators.

Now any element ( yOl) with y € V,, \ {0} can be written as

Next we consider matrices of the form (a 0 > with a € I',,. Then there are non-zero vectors

0 (a*)7!
Y1y Yk € Vi \ {0} with a = y; - - - yg, so that

We obtain
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2. Groups acting on hyperbolic n-space

which implies that any matrix <g (a*o)_l) with a € T, is a product of the elements (2.1).

Finally, let <CCL Z) € SLy(C,,) be an arbitrary matrix. If ¢ = 0, then we have a # 0, d = (a*) ™1,

a=1tb €V, (since ab* € V,,) and

(i Z>:(3 <a*131):(3 (%) (tl) a11b>

is a product of the claimed generating elements. And if ¢ # 0, then b = (ad* —1) (¢*)~%, ac™t €V,
(as a*c € V), ¢c1d € V,, (since cd* € V,,) and ¢~ 'd = (¢7'd)* = d*(c*)~!. Thus, we get that

£ 9= I)=(T )¢
66 D6

is a product of the matrices (2.1). This completes the proof.
O

It is easy to see that {A\ | A € R\ {0}} is a subgroup of GL2(C,) and {+I} is a subgroup

1
of SLy(C),), where I = 0 (1)
respective quotient groups which will appear as certain groups of Md&bius transformations in the

next section.

denotes the 2 x 2-identity matrix. Thus, we can consider the

Definition 2.2.12. We define the quotient groups
PSL(Cy) := SLa(C) /{£T1}.

Remark 2.2.13. To ease notation we will usually denote elements of PGLy(C,,), respectively of
PSL2(C,,), by matrices in GL2(C),), respectively in SLy(C,,), representing them.

2.3. The action of Clifford matrices

In [Ahl85a] and [Ahl86] Ahlfors explained how Mobius transformations of R" =R"U {o0} can be
described by the action of Clifford matrices. We essentially follow him, and subsequently see how
this action extends to the hyperbolic space H**!. Again we omit some of the proofs here.

Let n € N. By the natural identification of R™ with the space V,, of vectors in C,,, any P € R"
can be written in the form
P=xo+z1i1+ -+ Tp_10n_1

with zg,...,z,_1 € R.

Remark 2.3.1. For (CCL Z) € GLy(Cp) and P € R™ 2 V,, we have ¢,d € T',, U{0} and ed* € V,.

If ¢ = 0, then cP + d = d is either zero or invertible. In case that ¢ # 0, we can write ¢cP + d =
c(P+c7td). As cd* € V, is equivalent to ¢c~1d € V,,, the number P + ¢~ 'd is in T',, U {0}, and so
is ¢ (P + ¢~ 'd). Hence, cP + d is either zero or invertible.
Moreover, because of the condition ad* — bc* € R\ {0} the equations aP +b =0 and ¢cP+d =0
cannot be fulfilled simultaneously since otherwise

ad* —bc* = a(—cP)* — (—aP)c* = —aPc" +aPc* =0

would hold.
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2.3. The action of Clifford matrices

Definition 2.3.2. For a matrix v = <OCL b> € GLo(C),) and an element P € R™ we set

d
P := (aP +b) (cP+d)~ " (2.2)

We have to clarify how to interpret the right-hand side of (2.2), in order to assign it a value for
P = 0o and to permit it to take the value oco.

In general, for two Clifford numbers a, b € C,,, where b is multiplicatively invertible, also ab™"! is a
well-defined element of C,,. In the case b =0 and a # 0 we set ab~! := co. By our considerations
in Remark 2.3.1, in this way the right-hand side of formula (2.2) is always well-defined, either as
an element of C,, or as co.

Finally, for P = oo we define yoo := ac™! if ¢ # 0, and oo := oo if ¢ = 0.

Definition 2.3.3. We say that the matrix v € GLy(C,) induces the map R" — C,, U {cc} that
we have defined above. The map induced by « will be denoted by 7.

Definition 2.3.4. A map R™ — R™ is called a Mébius transformation if it is a finite composition
of reflections in hyperplanes and inversions in spheres.

As a matter of fact, for any v € GLy(C,) the map 7 even defines a Mobius transformation,

especially it maps to V;, U {oo} which is identified with R”. This is a particular consequence of
the following theorem.

Theorem 2.3.5. The group PGLso(C,,) is isomorphic to the full group of Mdobius transformations
of R": Each v € GLy (Cn) induces a Mobius transformation 5 : R™ — R, and if y1,72 € GLo (Chn)
induce ¥1,%2, then the product v17y2 induces the composite map 51 0 Yz : R™ — R, Conversely,
every Mébius transformation g : R™ — R™ is induced by the Clifford matrices »y (A € R\ {0}) for
some v € GLy(Ch).

Proof. See, e.g., [Wat93].
O

If we restrict v to the subgroup SLy(C,) C GL2(C}), it is now clear that the induced maps

v R" - Rn (v € PSLy(C,,)) form a certain subgroup of the full group of Mobius transformations.
The precise statement is formulated in the next theorem.

Theorem 2.3.6. The group PSLa(C,,) is isomorphic to the group of orientation-preserving Mdbius
transformations of R": Each v € SLa(C,,) induces an orientation-preserving Mébius transforma-
tion 7 : R* — ]@”, and if v1,72 € SLa(C,) induce 41,72, then the product y17y2 induces the
composite map Y1 0 Yz : R™ - R». Conwversely, every orientation-preserving Mdobius transforma-
tion g : R™ — R™ is induced by the pair £y of Clifford matrices for some v € SLa(C,,).

Proof. See, e.g., [Ahl86] or [Wat93].
O

Notation 2.3.7. From now on we drop the notation 7 and denote both the matrix and its induced
Mobius transformation by .

The action of GLa(C,,) and SLo(C,,) extends to R™1 in a natural way: By the definition of
the Clifford group T',, we have T';, C T',41, which yields GLs(C,) € GLy(Cpy1) and likewise
SL2(Cy) € SLa(Cpy1). Further, R™ can naturally be considered as a subspace of R"T1. Therefore,

the action of any matrix v € GL3(C),) extends automatically to R+ via formula (2.2), and R
is mapped on itself. Clearly, the same is true for SLy(C},).

From this extended action one obtains the following equivalent characterization of the group
GLy(Ch).
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2. Groups acting on hyperbolic n-space

Proposition 2.3.8. The group GLo(C),) is equal to the set

f-(20)

of matrices.

a,b,c,d € C,, v induces a bijection R+ HA%"H, P (aP+0b)(cP + d)_l}

(2.3)

Proof. See, e.g., [Wat93]. In fact, Waterman used (2.3) as definition of GLy(C),) and proved that
this agrees with Definition 2.2.1.

O

“ Z) € GL2(C,) and P,Q € R™"! such that yP,vQ € R"*L. Then

the following assertions hold true.

Lemma 2.3.9. Let v =

(a) We have
vP —=2Q = pdet(y) ((cQ +d)*) ™ (P = Q) (cP+d)~".

(b) We have the infinitesimal formula

d(yP) = pdet(7) ((cP +d)*)"*dP (cP +d)~*.

(¢) The linear distortion of 7 is

_ Ipdet(7)]

/
P)| = .

(d) The norm of yP —~Q is given by

et 1P =Q _ o :
WP =@l = p et = P~ QRPN @I

Proof.

(a) We first note that cP +d # 0 and cQ + d # 0 as by assumption vP,yQ € R™*!. Because of
(vQ)* = vQ we can write

YP —4Q =vP — (YQ)* = (aP +b) (cP +d) ™" — ((aQ +b) (cQ +d)*)"
— (aP+b) (cP+d)"" — (Qc* +d) " (Qa* + ")

— (Qc* +d) ((Qc* +d*) (aP +b) — (Qa* + b*) (cP + d)) (cP +d)~2.

Taking into account that c*a = (a*¢)* = a*c, d*b = (b*d)* = b*d and d*a—b*c = ad* —bc* €
R\ {0} by Lemma 2.2.6, the inner bracket equals

(Qc* +d*) (aP +b) — (Qa™ +b") (cP + d)
=Qc'aP + Qc*'b+d*aP +d*b — Qa*cP — Qa*d — b*cP — b*d
=(d*a—b"c)P—-Q (a*d—c'd) = (d*a—b"c) P — Q(d*a — b*¢)"
= (ad” —bc") (P — Q) = pdet(y) (P - Q).

Finally, this yields
7P —~Q = pdet(y) ((¢Q +d)*) " (P = Q) (cP +d) ™.

(b) Letting @ — P in part (a), we obtain the asserted formula.
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2.3. The action of Clifford matrices

(¢) By part (b) we have
|d(vP)| = [pdet(y)] - [((cP +d)*) | - [dP| - [(cP +d) 7],

hence
(P)] = [d(yP)| _ [pdet(7)] _ [pdet(y)]
[dP] [P +d)*||cP +d| _ |cP+d]?
(d) The equality
[pdet(7)| [P — Q|
P — =
P =0l = o d

is a direct consequence of (a). The second one follows from

S YO e /e

|cP + d| lcQ + d|
O

The next lemma enables us to conclude that the group SLo(C),) also acts on the (n+1)-dimensional
hyperbolic space H*t!.

Lemma 2.3.10. Let v = (Z Z

yP € R If we write YP = yo + y1i1 + - - + Ynin, then

_ pdet(y) zn
In =Py A

) € GLy(Cp) and P = xg + 10y + -+ + x4, € R such that

Proof. First we note that vP € R**! implies cP +d # 0. Setting Py := x¢ + -+ - + Tp_19p_1 SO
that P = Py + x,%,, we compute

AP = (aP+b)(cP+d)~" = (aP +b) (cP +d)

cP + dJ?
_ (aPy + azyin + ) (cPy + canin +d)  (aPo + awyin +b) (Poc — zyint + d)
P + d? P + dJ?
_alPy*¢ 4 aPod + bPyc + bd + az?¢ + azyin Po¢ — aPyZynint + axyind — by int
cP + dJ? '

By Lemma 2.1.18 we have i, Py = Pyin = Poin, ind = d*i,, and i,¢ = c*i,, which leads to

a(|Po)? + 22) ¢+ bd + aPod + bPyc + (ad* — be*) 2y

P =

v |cP + dJ?
_ alPl’e+bd +aRd +bRe | pdet(y)z,
- [cP +dJ? [eP +d? ™

The (n + 1)-dimensional hyperbolic space
H" = {P = (x0,...,7,) € R"™ | 2, > 0}
can naturally be identified with the subset

{zo +x1i1 + -+ anin [ 2o, 20 ER, 2, >0} C Vg
of the Clifford numbers C,, ;. If P € H**! and v = (a Z) € GLo(C),), then v P # oo, since the
equation cP + d = 0 is satisfied if and only if P = —c~'d, which is either co or an element of R"

by Proposition 2.1.17. Thus, Lemma 2.3.10 shows that yP € H"*!, provided that pdet(y) > 0.
So from Lemma 2.3.10 and its proof we can draw the following conclusion.
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2. Groups acting on hyperbolic n-space

Theorem 2.3.11. The group PSLo(C),) is isomorphic to the group of orientation-preserving
Mébius transformations of H™', where v = (g Z) € SLa(Ch) acts on H™ 1 vig (2.2). If

P =Py+ a,i, € H" with Py = a0+ 2141 + - + Tp_19n_1, then

where

ac|P|? +bd + aPyd + bPoc  (aPy + b) (cPy + d) 4 aca?
|cP + d|? B |cPy +d|? + |c[?22
Ty _ Ty
P +d?  [cPy+d? + |c[a?

Qo =

Yn =

Proof. The only assertions that are left to prove are the identities
at|P|* 4 bd + aPyd + bPyc = (aPy + b) (cPy + d) + acx?

and
|cP 4 d|* = |cPy + d|* + |c|*z2.

The first identity follows from

(aPy +b) (cPy + d) + acz? = (aPy + b) (Pyc + d) + aca?
= a|Py|*¢ + aPyd + bPyc + bd + aca?
= ac (|Py|* + 22) + bd + aPyd + bPyc
= ac|P> + bd + aPyd + bPye.

For the second identity we note that cPy + d € C,,, from which we conclude that
|cP 4+ d|? = |cPy 4 d + cxpin|? = |cPy + d|?* + |canin|? = |cPy + d|?> + |c[*22.
O

Remark 2.3.12. As we want to work with hyperbolic n-space H" instead of hyperbolic (n + 1)-
space H"*! in this thesis, from now on we let n € N with n > 2 and consider the group SLy(C),_1)

acting on H" U Rn-1,

Example 2.3.13. We illustrate the action of elements of SLy(C),—1) on H"™ U R with a few
examples.

(a) The matrix ((>)\ )\(_)1> with A € R\ {0} acts on H® UR""! as a dilation P ~ A?P by the

factor A2, while (E)\ )\01) 00 = 0.

(b) The element <(1) lf) with p € V,,_1 2 R" ! acts on H" UR™ ! as a translation P+ P+ pu

by u, and we have (é /f) 00 = 00.

2,) with @ € Tp,_1, |a| = 1, acts on H* UR"™! as P+ aP(a/)~! = aPa*,

(¢) The matrix (g

and (g a’) oo = co. We will see in section 2.5 that this map is a composition of rotations.
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2.3. The action of Clifford matrices

1 (1) acts on (H" UR™ 1)\ {0} as inversion P +— —P~! = —P/|P|?, while

0 1 0 1
we have <_1 O)O—ooand (_1 0)00—0.

The element (_0

The next proposition gives us information about the transitivity of the action of SLa(C),—1) on H"
and R,

Proposition 2.3.14. The following assertions hold true.

(a) The group SLa(C—1) acts transitively on H™, i.e. for any P,Q € H™ there exists an element

v € SLa(Cp_1) such that vP = Q.

(b) The group SLa(Cy—1) acts doubly transitively on @”*1, i.e. for any P,Q, R, S € Rn—1 with

P #Q and R # S there exists an element vy € SLo(Cp—1) such that yP = R and vQ = S.

Proof.

(a)

Let P=Py+ Tp_1ip—1 and Q = Qo + Yn—1in_1. Letting

op = <\/‘Tg_1 P;(J//\/rin_—;) € SL2(Cn—1)a 9Q = <\/y87_1 %(J//\/i/yy%__ll) € SLQ(Cn—l)’

we have .
Opln_1 = (\/xn—l in—1+ F:l) VTn—1=Tp-1in-1+ P =P,

and likewise ogin,—1 = Q. Because of a;lP = i,_1 the matrix v := 0Q0131 € SLy(Cp—1)
now satisfies yP = anr;lP =0Qin-1 = Q.

We start by showing that there is a matrix o(p gy € SLa(Cp—1) such that o(p )0 = P and
op,g)o0 = Q. If P,Q € R, then we have

_OV-1 _(p_ -1
(P 9P e
as ((P—Q)_l)_1 (—(P-Q)"'P)=—-PcV,and 17! (-Q) = —Q € V,,, where we also
apply Proposition 2.1.17, and it has pseudo-determinant
(P-Q) ' (-Q)'+(P-Q)'P=(P-Q) ' (-Q+P)=1.

Thus, its inverse matrix

g (P —(P=Q7'P\T _(-Q P(P-Q)

(PQ) = 1 -Q -1 (P!

is also in SLy(C),—1) and satisfies the conditions o(p )0 = P (P—Q)~"' ((P — Q)_l)fl =P

and o(pgyoo = (—Q)(-1)"' = Q.
In the case P € R*™! and Q = co the element o(p,@) can be chosen as

1 P
o(pQ) = (O 1) S SLQ(Cnfl)
since o(p,)0 = P and o(p )00 = 0o = ), whereas for P = oo and Q) € R"! we can set

- 1
opQ) ‘= <Ci? 0) S SLQ(Cnfl)

because o(p,)0 = 0o = P and o(pgyoo = (—Q)(—1)"' = Q. Completely analogous we find
O(R,S) € SLQ(Cnfl) with U(R,S)O = R and O(R,5)0 = S.
Now the matrix v := O'(R’S)O'(_PIQ) € SLy(C)—1) satisfies yP = O'(R’S)O'(_P{Q)P =ors0=R

and 7@ = U(R,S)a(_Pl’Q)Q = 0(R,5)00 = S.
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2. Groups acting on hyperbolic n-space

O

A further significant result is that the hyperbolic line element, the hyperbolic distance, the hyper-
bolic Laplace operator and the hyperbolic volume element on H"”, introduced in subsection 1.1.1,
are all invariant under the action of SLy(C)—1).

Proposition 2.3.15. The following assertions hold true.

(a) The hyperbolic line element ds%, on H", given in (1.1), is invariant under the action of
SLy(Cy—1), i.e. for any v € SLa(Cp—1) and P € H" we have ds. (vP) = dsi. (P).

(b) For any P,Q € H" and v € SLa(Cy—1) the hyperbolic distance dun(P,Q), given in (1.2),
satisfies
dgn (vP,7Q) = dun (P, Q).

In other words: the elements of SLo(Cp—1) act on H™ as isometries with respect to the
hyperbolic metric.

(¢) The hyperbolic Laplace operator Agn, given in (1.4), is an SLa(Cr_1)-invariant differential
operator on H", i.e. for any f € C?(H"), v € SLa(Cy,—1) and P € H™ we have Agn (f(yP)) =
(Apn f)(vP).

(d) The hyperbolic volume element py~(P) on H", given in (1.5), is invariant under the action
of SLy(Cr—1), i.e. for any v € SLy(Cp—1) and P € H™ we have pgn (yP) = pyn (P).

Proof.

a b
d
YP =y +y1i1 + - + Yn—1in—1, then by Lemma 2.3.9 (b) and Lemma 2.3.10 we have

(a) Let P = xg + x191 + -+ + Tp_1in—1 € H" and v = ) € SLy(Chr—1). If we write

052, (vP) = dys +---+dyn . [dOyP)]> |dP|?|cP + d|*
. v vz, (Pt d PP 1P,
dP]?  dxd+ .-+ da?
_ : > _ dag+ 2+ TRt _ g2 ().
Tn—1 Th—1

This proves that ds%, is SLz(C,,—1)-invariant.

(b) The assertion already follows from the definition of dy~ (P, Q) and the SLa(C),_1)-invariance
of the hyperbolic line element dsZ,..

Alternatively, if P,QQ € H" and v = (i b) € SL2(Cp_1), then formula (1.3), Lemma 2.3.9

d
(d) and Lemma 2.3.10 give us

B WP -0 P~ Q2 |cP + d2[cQ + d?
cosh(de (YPAQ)) = 1t S B enn(7Q) L 2[eP + dP [eQ + dF 2n1(P) s (D)
P— QP

=1+ = cosh(dgn (P, Q)).

2 mnfl(P) xnfl(Q)

Applying the inverse hyperbolic cosine to both sides of this equality, we obtain the desired
identity.

(c) As Agn is derived from the SLg(C,—1)-invariant hyperbolic line element ds#., this is a
consequence of part (a).

(d) The SLy(C),—1)-invariance of pyn (P) also follows immediately from part (a).
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2.4. Discrete and cofinite subgroups

Classically, a Fuchsian subgroup of the first kind is a discrete subgroup I' C PSLs(R) such that
a fundamental domain Fr C H for I' has finite hyperbolic volume. In this section we look at an
analogue of Fuchsian subgroups of the first kind in the more general setting of Clifford matrices.
These subgroups of PSLy(C),_1) were also considered, e.g., in [S6d12].

Since we have T',_; U {0} C C,_1 and the Clifford algebra C,,_; is a vector space over R of
dimension 2”2, we can identify GLo(C,_1) and SL2(C,,_1) as topological spaces with subsets of

(R ) = R2".

b

Definition 2.4.1. For v = (Ccl d

) € GLo(C),—1) we define its norm as

1] := Val? + [ + [ + [d]2.

Then GLo(C),—1) and SLo(C),—1) are topological groups with respect to the metric d(v, §) = ||y—4|
(7,6 € GL2(Cy,—1)) that is induced by this norm. The same holds true for the respective quotient
spaces PGL2(C),—1) and PSLy(C),—1).

Definition 2.4.2. A subgroup I' C PSLy(C,,_1) is discrete if the induced topology on I is discrete,
i.e. if for any v € T the set {7} is open in T.

A subgroup I' C PSLy(C),—1) is discrete if and only if the identity I is isolated from T'\ {I}, i.e. if
there is a neighbourhood of I which contains no element of T'\ {I}. Furthermore, any discrete
subgroup I" C PSLy(C),—1) is countable (see, e.g., [His94], Definition 1.15).

Definition 2.4.3. A subgroup I' C PSLy(C,,—1) acts discontinuously on H™ if for any compact
subset K C H" the number

{v el [v(K)NK # 0}

is finite.

Now we have the equivalent characterization of a discrete subgroup I' C PSLy(C),—1) that it acts
discontinuously on H™.

Proposition 2.4.4. A subgroup T' C PSLa(C),—1) is discrete if and only if it acts discontinuously
on H™.

Proof. See, e.g., [Rat94], Theorem 5.3.5. O
We give a few useful corollaries of this proposition.

Corollary 2.4.5. LetT' C PSLy(C),—1) be a discrete subgroup. Then for any P € H™ the stabilizer
subgroup I'p = {y € T' | vP = P} is finite.

Proof. As the set {P} is compact in H" and T" acts discontinuously on H", there exist only finitely
many v € I' with y({P}) N {P} # 0, i.e. with vP = P.
O

Corollary 2.4.6. Let I’ C PSLo(C,—1) be a discrete subgroup. Then for any P € H™ the orbit
TP ={yP | v €T} is a closed discrete subset of H™.

Proof. The assertion follows by combining Proposition 2.4.4 with [Rat94], §5.3., Lemma 5.
O

Corollary 2.4.7. Let T' C PSLy(C,—1) be a discrete subgroup. Then for any P,Q € H™ there
ezist at most finitely many v € I' with vP = Q.
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2. Groups acting on hyperbolic n-space

Proof. If there is no v € I" with vP = @, we are done. Suppose there exists v; € I' with 1P = Q
and let 75 € T be an arbitrary element with 7P = . Then we have 1P = 7P, so that
fyl_lfng = P and ’)/1_1")/2 € I'p. This yields 2 € 1 I'p which is a finite set by Corollary 2.4.5.

O

For a discrete subgroup I' C PSLy(C,,—1) acting on H" we can consider the set
MNH" ={TP | PeH"}

of orbits under I'. Endowing I"'\H" with the quotient topology, i.e. the finest topology in which
the natural projection 7p : H* — I'\H", P + I'P, is continuous, it becomes a topological space.

The action of a discrete subgroup I' C PSLy(C),—1) on H", respectively the quotient T\H", can
be visualized by a fundamental domain.

Definition 2.4.8. Let I' C PSLy(C,,—1) be a discrete subgroup. A subset Fr C H" is called a
fundamental domain for T if it satisfies the following conditions:

(i) Fr is a domain in H", i.e. a non-empty, connected, open subset of H".

(ii) If P,Q € Fr with P # @, then P and @ are not equivalent with respect to I', i.e. there is
no vy € I' with vP = Q.

(iii) Every orbit I'P of P € H" by I contains a point in the closure Fr of Fr in H".

Definition 2.4.9. A convex polyhedron Pr C H™ whose interior is a fundamental domain for T"
is called conver fundamental polyhedron for T

Any discrete subgroup I' C PSLy(C),—1) admits a fundamental domain and a convex fundamental
polyhedron. It can be constructed as a so-called Dirichlet domain and Dirichlet polyhedron.

Definition 2.4.10. Let I' C PSLy(C,,—1) be a discrete subgroup and @ € H" with trivial stabilizer
subgroup I'g = {I'}. The Dirichlet domain with center Q) is defined as

Dr(Q) :=={P e H" | du~(P,Q) < du~(vP,Q) for all y € I',y # I}

if T # {I}, and as Dr(Q) := H" in case that I' = {I}. Its closure Dr(Q) is called Dirichlet
polyhedron with center Q.

In the situation of the previous definition there always exists such a point @ € H" with trivial
stabilizer subgroup. This is, e.g., a consequence of Theorem 6.6.12 in [Rat94].

Proposition 2.4.11. Let I' C PSLy(C,—1) be a discrete subgroup and @ € H™ with T'g = {I}.
Then the Dirichlet domain Dr(Q) is a convexr fundamental domain for T', and the Dirichlet poly-
hedron Dr(Q) is a convex fundamental polyhedron for T.

Proof. This follows, e.g., from [Rat94], Theorem 6.6.13 and Theorem 6.7.1.
O

Remark 2.4.12. A fundamental domain Fr for I' is not unique because for any vy € I" also vFr
is a fundamental domain. However, by the I'-invariance of the hyperbolic volume element pg» (P)
(which is an immediate consequence of its SLa(C,,—1)-invariance) all fundamental domains Fr for
I" have the same hyperbolic volume

VOlHn (.FI“) = / HHn (P),
Fr

see also [Rat94], Theorem 6.7.2.

This fact justifies the following definition.
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Definition 2.4.13. Let I' C PSLy(C,,—1) be a discrete subgroup and Fr € H" a fundamental
domain for T'. We call vol(T'\H") := volg~ (Fr) the volume of T\H", respectively of T

In general this volume might be infinite, which makes it reasonable to introduce a notion for
discrete subgroups with finite hyperbolic volume.

Definition 2.4.14. Let I' C PSLy(C,,—1) be a discrete subgroup.
(a) T is called cofinite if vol(IT'\H") < cc.

(b) T is called cocompact if it has a fundamental domain Fr such that the closure Fr is compact
in H"™.

In the further course of this thesis we will consider discrete, cofinite subgroups of PSLo(C),—1) and
their action on H™.

Remark 2.4.15. Let I' C PSLy(C,,—1) be a discrete and cofinite subgroup. At some points in
this thesis we might call a subset F/r C H" a fundamental domain for T' if it is connected and
contains exactly one point of every orbit 'P of P € H™ by I'. Since in this case the natural
projection 7p : H® — I'\H" induces an isomorphism Fr = I'\H", in a slight abuse of notation
we will sometimes identify the quotient I'\H" with the subset Fr C H" and points in T'\H" with
their preimages in Fr.

Remark 2.4.16.

(a) For n = 2, a discrete subgroup I' C PSLy(C,,—1) = PSLy(R) is called a Fuchsian subgroup.
It is cofinite if and only if every point on the boundary R = R U {00} is a limit point of an
orbit I'z for some z € H (see, e.g., [Miy06], Theorem 1.9.1). A Fuchsian subgroup which

satisfies this condition is called Fuchsian subgroup of the first kind.
(b) In the case n = 3, a discrete subgroup of PSLy(C,,—1) = PSLy(C) is called a Kleinian group.

Example 2.4.17. The following examples of discrete, cofinite subgroups I' C PSLo(C),—1) will be
of particular interest in this thesis.

(a) For n = 2, the well-known modular group T' = PSL2(Z) C PSL2(R) is discrete, hence it is a
Fuchsian subgroup. A fundamental domain for I' is given by the set

1
Fr= {zeH ‘ Re(2)] < 3, I2| > 1},

which has the finite hyperbolic volume volg(Fr) = 7/3. Thus, PSLy(Z) is cofinite and
therefore a Fuchsian subgroup of the first kind.

(b) Let n = 3 and let K be an imaginary quadratic field with ring of integers Ok and discriminant
dr. Then the subgroup I' = PSLy(Ok) C PSLy(C) is discrete, thus it is a Kleinian group.
The quotient I'\H? has the finite hyperbolic volume

3/2
vol (T\H®) = |dZT|2 Cx(2),

with the Dedekind zeta function

x(s)= S NI
ICOk ideal,
{0}

where s € C with Re(s) > 1 and N(I) denotes the norm of I. Consequently, the group
PSL(Ok) is cofinite.
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In the particular case K = Q(i) we have Ok = Z[i] and dx = dg(;) = —4, and we obtain the
discrete and cofinite subgroup PSLsy(Z[i]) C PSLo(C). The set

1 1
JFr = {P:z+jreH3 |Re(z)] < 3 0 <Im(z) < 3 |P| > 1}

is a fundamental domain for I' = PSLy(Z[i]) and T\H® has the hyperbolic volume
2Gam(2)

VOIHS (]:1") = 2

2.5. Parabolic, hyperbolic, elliptic and loxodromic elements

According to the usual classification of Mébius transformations based on the number and the
location of their fixed points in H” U R"~!, we now define parabolic, hyperbolic, elliptic and
loxodromic elements of SLy(C,—1) and PSLa(C),—1). We also give important characterizations of
these elements in Remark 2.5.14 and Remark 2.5.15.

Definition 2.5.1. A point P € H* U R*lisa fized point of a Clifford matrix v € SLa(Cj,—1) if
vP = P.

a b

d
the equation aP 4+ b = P (cP + d), while co is a fixed point of v if and only if ¢ = 0. Further, we
note that 0 is a fixed point of ~ if and only if b = 0.

If~v= € SLy(Cy,_1), then P € H* UR™ ! is a fixed point of « if and only if it satisfies

In contrast to the cases n = 2 and n = 3, the fixed point equation aP + b = P (¢P + d) is not
trivially solvable anymore for n > 4 as multiplication in C},_; is no longer commutative. However,
the Brouwer fixed point theorem implies that any v € SLa(C),—1) has at least one fixed point in
H" UR™ L,

Clearly, for v = +1I every P € H" U R is a fixed point of 7. The non-identity elements
of SLy(Cp—1) can be classified in terms of the number and the location of their fixed points in
H"” UR" ! as follows.

Definition 2.5.2. Let v € SLo(Cp,—1) with v # +1.
(a) ~ is called parabolic if it has exactly one fixed point in R™~! and no fixed points in H".
(b) « is called lozodromic if it has exactly two fixed points in R™=! and no fixed points in H"™.

(c) v is called elliptic if it has a fixed point in H". Tt is called regular elliptic if its fixed point
in H™ is unique, and non-regular elliptic if it has more than one fixed point in H"™.

An element of PSLy(C,,—1) is called parabolic, loxodromic, elliptic, regular elliptic or non-reqular
elliptic if its preimages in SLy(C,,—1) have this property.

Remark 2.5.3. Let v € SLa(C),—1) with v # £I. For any Clifford matrix o € SLy(C\,—1), the

elements v and oyo~! are conjugate. If P € H* UR"~! is a fixed point of 7, then
(oyo~ 1) (oP) = 07(0710)]3 =oyP =0P,

so that o P € H" U R*1isa fixed point of oyo™". Moreover, for P € H" we have o P € H", and
P eRn1 implies that o P € Rn-1, Conversely, if P € H" UR" 1 is a fixed point of oyo ! then

(cyo )Y P=P = (e 'P)=(c"to)yo 'P=0""((cyo ")P)=0"'P,
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which shows that o~ 1P € H" U R 1is a fixed point of v. Furthermore, P € H" implies that
o~'P e H", and for P € R""! we have 0~'P € R""!.

This shows that the number and the location (in H™ or R™~!) of fixed points of v does not change
under conjugation and is the same for the whole conjugacy class

[’Y] — {g-'yo'_l | (S SL2(Cn71)}

Consequently, the classification of an element 7 € SLo(C,—1), v # =£I, in Definition 2.5.2 is
invariant under conjugation in SL(C),—1) and depends only on the conjugacy class [7].

Definition 2.5.4. A matrix v € SLy(C,,—1) is called normalized if it has the form
_(gc =
7= ( c cg)

The upper right entry of a normalized matrix v automatically equals gcg — (¢*)~! which easily
follows from the condition pdet(y) = 1.

withcel',,_1 and g € V,,_1.

We now give an equivalent characterization of parabolic, loxodromic and elliptic elements based
on their conjugacy classes. This classification is a consequence of the considerations in [Ahl85b].

Proposition 2.5.5. Let v € SLy(Cp—1) with v # +1. Then the following assertions hold true.

(a) v is parabolic if and only if it is conjugate in SLy(Cr—1) to a normalized matriz with fized
point 0, i.e. to a matriz of the form
gc O
c cg

(b) ~v is loxodromic if and only if it is conjugate in SLa(Ch—1) to a matriz of the form
A 0
0 (A)7t

(c) ~v is elliptic if and only if it is conjugate in SLy(Cy) to a matriz of the form

G )

For a parabolic element there is another equivalent characterization in terms of its conjugacy class.

withc € Ty—1 and g € V,_1 \ {0}.
with A € Tp_1 and |A| # 1.

with A € Ty, [N =1 and X # £1.

Lemma 2.5.6. Let v € SLo(Cp—1) with v # £I. Then «y is parabolic if and only if it is conjugate
in SLy(Cyr—1) to a matriz of the form
A A
(o )

with A € Tp_q, A =1, p € Vo1 \ {0} and Ap = p'.

Proof. By Proposition 2.5.5 (a) we know that ~ is parabolic if and only if it is conjugate in
SLo(Cr—1) to a normalized matrix with fixed point 0. Since being conjugate in SLa(Cj—1) is an
equivalence relation, it suffices to show that any normalized matrix with fixed point 0 is conjugate

in SLs(Cp,—1) to a matrix of the form (3 ))\\I,L> with A € T'poq, [N =1, g € V1 \ {0} and
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2. Groups acting on hyperbolic n-space

A= pN.
Let v := (gcc Bg) € SLo(Cp—q) with c€T',_1 and g € V,,_1 \ {0} be a normalized matrix with
fixed point 0. We note that 1 = pdet(yg) = ge(cg)* yields

1= |ge(cg)*| = lgel [(cg)*| = lgel leg| = leg]* = |egl =1

and gc = ((cg)*)™! = (cg)’. Letting o := ((1) 01) € SLy(Cp—1), we obtain

-1 [—c —cg 0 1\ f(fecg -—c
Mt _<gc 0)(—1 0>_(0 gc)'

Now we set A := cg and u := —g~!. Then we have A € T',_1, satisfying |A\| = |cg| = 1 and
N = (cg) =gc, u € Vi1 \ {0} and A\ = —cgg~! = —c = —g~1gc = pX. Hence, oygo " is indeed
of the form (>)\ >/\\I,L> with A € Ty_1, [A| =1, p € Vi1 \ {0} and A = p'.

O

Using the characterization of loxodromic elements in Proposition 2.5.5 (b), we are now able to
define hyperbolic elements of SLy(C,—1) and PSLa(Cj—1).

Definition 2.5.7. Let v € SLo(Cp,—1), v # £I, be loxodromic. Then = is called hyperbolic if the
Clifford number A in Proposition 2.5.5 (b) satisfies A € R\ {0, £1}. An element of PSLy(C),—1) is
called hyperbolic if its preimages in SLy(C),—1) have this property.

In other words: A matrix v € SLa(Cp,—1), v # %I, is hyperbolic if and only if it is conjugate in
SLo(Cr—1) to a matrix of the form
A0
0 A1
with A € R\ {0, £1}.
Remark 2.5.8. The classification of an element v € SLo(C\,_1), v # *1, as hyperbolic in Defi-

nition 2.5.7 is invariant under conjugation in SLy(C,,—1). Thus, it only depends on the conjugacy
class [v].

Notation 2.5.9. From now on we call a Clifford matrix v € SLa(C,—1), v # £I, lozodromic if it
is loxodromic but not hyperbolic. An element of PSLy(C},—1) is called lozodromic if its preimages
in SLy(C,,—1) are loxodromic but not hyperbolic.

Remark 2.5.10. For n = 2, the group SLy(C,_1) = SLy(R) contains no loxodromic element
as any A € I',_1 = R\ {0} with |A\| # 1 immediately satisfies A € R\ {0,£1}. So any matrix
~ € SLa(R) with v # &1 is either parabolic, hyperbolic or elliptic.

Note that in the characterization of an elliptic element v € SLo(C),—1), v # =£I, in Proposition
2.5.5 (c) we have required that « is conjugate in SL2(C)) D SL2(Cp—1) to a matrix of the form
A0
0o N
SL2(Cj—1). The next lemma shows what happens if we restrict to conjugacy in SLa(Cj—1).

) with A € Ty, |A] = 1 and XA # =+1, instead of being conjugate to such a matrix in

Lemma 2.5.11. Let n > 3 and let v € SLo(Cp—1) be conjugate in SLo(Cp—1) to a matriz of the
form (g\ )(\),> with A € T'y_1, |A| =1 and X\ # £1. Then v is non-regular elliptic.

Proof. That v € SLy(Cj,—1) is elliptic follows already from Proposition 2.5.5 (c). It remains to
prove that v has more than one fixed point in H"™.
Let o € SLy(C,,_1) such that oyo~! = (8 )(\)’> Then for any z,,_1 € R with 2,_1 > 0 we have

1 . . * ¥ . 2 . .
oo (xn—lzn—l) = Axn—lln—lA = )\Axn—lzn—l = ‘)\| Tpn-1tn—1 = Tn-1ln—1,
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where for the second equality we used Lemma 2.1.18. Therefore, z,_1i,—1 € H" is a fixed point
of oyo~?! for any x,_1 € R, x,_1 > 0. This implies that o~ !(z,,_1i,_1) € H" is a fixed point of
~ for any z,_1 € R, x,_1 > 0.

O

Example 2.5.12. We classify the matrices from Example 2.3.13 and give an example of a loxo-
dromic element.

(a) Any dilation (3 )\(_)1> with A € R\ {0, £1} is hyperbolic with the fixed points 0 and oco.

(b) Any translation ((1) lf) with p € V1 \ {0} is parabolic with the fixed point oco.

0 2, with a € T'),_1, |a| =1, a # %1, is a non-regular elliptic element which
leaves any point of the form z,,_14,_1 € H" with z,_1 € R, x,_1 > 0, fixed.

(¢) Any matrix (a

(d) The inversion (_01 é) is elliptic with fixed point 4,_; € H".

For n = 2 it is well-known that elliptic elements have exactly one fixed point in H. Hence,
in this case i,_1 = ¢ is the unique fixed point in H and the inversion is a regular elliptic
element. If n > 3, we have

'_1 1+ 1—17 . _1_1 1—41 —-1+4+4
O’.—2<1Z.1 1 i € SLy(Cp—q)  with o =5lies 144

and
0 1\ 4 1(14i 1—a\(1+i 1+a)_ (i O\ _ (i1 0
\-1 0/ Tal\-1-i 1—i)\c144q o 1-i) " \o —i) " \o @)

Thus, the matrix is conjugate in SLy(Cp,—1) to a matrix of the form (6\ )?’) with

0

-1 0
A€T,_1, A\ =1and A # £1. By Lemma 2.5.11, for n > 3 the inversion is non-regular
elliptic. It leaves any point of the form o~!(x,,_1i,_1) € H® with #,,_; € R, z,,_; > 0, fixed.

1+4; 0

S .
(e) For n > 3 the matrix < 0 11—y

> € SLy(Chp—1) is loxodromic with the fixed points
0 and co.

We want to understand the action of a parabolic, hyperbolic, elliptic or loxodromic element geo-
metrically. The next lemma gives us this geometric illustration for an elliptic element.

Lemma 2.5.13. Let v € SLo(C,—1) be elliptic. Then vy is conjugate in SLa(C,,) to a matriz of
A0 .
the form (0 X) with

3

=52
A= T,
m=0
where

1
T = c08(0p) + sin(0,,) tomiomre1 = B (14 i2m) (cos(0,) + sin(0) iom+y1) (1 —d2m) € Ty

and 0., € [0,2m) (m =0,..., L"T%J) Form = 0,..., L"T*‘SJ the matriz acts on

rm 0
0 r,
H™ UR"” ! as a rotation in the tom-tom+1-plane by 20,,. Further, the rp, (m =0,..., L"T’?’J)

commute and so do X\, X', \* and \.
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Proof. See, e.g., [Wat93], Lemma 13.
L]

Remark 2.5.14. We can now deduce the following geometric properties of the action of parabolic,
hyperbolic, elliptic and loxodromic elements.

(a) Let v € SLo(C,,—1) be parabolic. By Lemma 2.5.6, v is conjugate to a matrix of the form

G %) =606 )-616 V)

with A € Ty1, [N =1, p € Vo1 \ {0} and A = p)'. Therefore, up to conjugation, v acts
on H" UR™™! as a composition of a translation and finitely many rotations.

(b) Let v € SLa(Cp—1) be hyperbolic. By Proposition 2.5.5 (b) and Definition 2.5.7, up to
conjugation, v acts on H” UR" ! as a dilation.

(c) Let v € SLy(C,,_1) be elliptic. By Lemma 2.5.13, up to conjugation, v acts on H" UR"~!
as a composition of finitely many rotations.

(d) Let v € SLa(Cj,—1) be loxodromic. By Proposition 2.5.5 (b) and Notation 2.5.9, v is conju-
gate to a matrix of the form

(6 o) = (8 ) (0 ) = (0 ) (5 i)

with A € T',,_1, || # 1 and X ¢ R. Consequently, up to conjugation, v acts on H®* UR" ! as
a composition of a dilation and finitely many rotations.

In [AhI85b] Ahlfors gave a more detailed characterization of parabolic, hyperbolic and elliptic
elements v = <a b

c d
fixed points. We do not include these results here and simply refer to [Ahl85b]. Instead we
finish this section with a remark about the characterization of parabolic, hyperbolic, elliptic and
loxodromic elements in terms of their entries in the cases n =2 and n = 3.

) € SLo(Cp—1) in terms of the entries a,b,c,d, and also determined their

Remark 2.5.15. For n = 2 and n = 3 the classification of an element v = (i Z) € SLy(Cp—1),

~ # +1, simplifies significantly in the respect that it only depends on the trace tr(y) = a + d.

(a) In the case n = 2 an element v € SLy(Cp—1) = SLa(R), v # %1, is parabolic, hyperbolic or
elliptic if and only if its trace satisfies |tr(v)| = 2, [tr(y)| > 2 or |tr(7y)| < 2, respectively.

(b) If n = 3, an element v € SLa(C),—1) = SLa(C), v # +£1, is parabolic if and only if |tr(v)| = 2
and tr(y) € R, hyperbolic if and only if |tr(y)| > 2 and tr(y) € R, elliptic if and only if
[tr(y)] < 2 and tr(y) € R, and loxodromic if and only if tr(v) ¢ R.

2.6. Fixed points and stabilizer subgroups

Let ' C PSLy(C),—1) be a discrete and cofinite subgroup. We want to study the points in HrUR? !
that are fixed by parabolic, hyperbolic, elliptic or loxodromic elements of I". Further, we are also
interested in their respective stabilizer subgroups.

Definition 2.6.1. A point P € H" U R71 is called a parabolic, hyperbolic, elliptic or loxodromic
fized point of T if it is a fixed point of a parabolic, hyperbolic, elliptic or loxodromic element of T',
respectively.
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Definition 2.6.2. By Pr and Er we denote a complete set of I'-inequivalent parabolic and elliptic
fixed points of I, respectively, and by Hr and Ly we denote a complete set of I'-inequivalent pairs
of hyperbolic and loxodromic fixed points of I', respectively.

Lemma 2.6.3. For P € R"1 the following assertions hold true.
(a) P cannot be a parabolic and a hyperbolic fixed point of T' simultaneously.
(b) P cannot be a parabolic and a lozodromic fized point of T simultaneously.
Proof.

(a) Suppose P € R 1isa parabolic and a hyperbolic fixed point of I' simultaneously, i.e. there
are a parabolic element v; € T' and a hyperbolic element v € T" with 1P = P = P.
Since P must be the unique fixed point of 77, the two matrices have exactly one fixed point
in common. But then by Theorem 5.5.4 in [Rat94] the subgroup (vi1,72) C I', which is
generated by 1 and 2, is not discrete. This contradicts that I' C PSLy(C),—1) is a discrete
subgroup.

(b) Assuming that P € R 1isa parabolic and a loxodromic fixed point of I' simultaneously,
the contradiction follows in the same way as in (a).

O

2.6.1. The parabolic case

In this subsection we first determine the stabilizer subgroup of a point n € R”1 in PSLa(Cr—1).
After that we introduce cusps of I' and determine the stabilizer subgroup and the translational
stabilizer subgroup of a cusp n € R*~! in .

We start by considering the special case n = co.

Lemma 2.6.4. The stabilizer subgroup PSLy(Cp_1)so of the point oo € R"™! in PSLy(Cp_y) is
given by
PSLy(Ch1)oo = 4 (& 7
2\n—1)oc — 0 (a*)—l

Proof. Using Proposition 2.1.17, we see that any matrix v = (g (az)ﬁ_l) with a € I',_1 and

ael,_q, B € an} /{:l:[}

B € V,,_1 is an element of PSLy(C),—1) and clearly fixes oo.

Conversely, let v = (CCL Z

and the condition 1 = pdet(y) = ad* — bc* = ad* implies a # 0 and d = (a*)~'. Moreover,
from ab* € V,_; and Proposition 2.1.17 we conclude that a='b € V,,_;. Therefore, we have

_fa ap
v = (0 (a*)_1> for somea € I'y,_1 and B € V,,_1.

) € PSLy(C,,_1) with yoo = co. Then yoo = ac™! gives us ¢ = 0,

O

Now let 7 € R"~! be an arbitrary point on the boundary of H". As PSLy(C,_1) acts (doubly)
transitively on Rr-1 by Proposition 2.3.14 (b), there exists o € PSLy(C,—1) with coo = 1. This
matrix is unique up to multiplication on the right by elements of PSLs(C)_1)s0, since o1,09 €
PSLy(C,,_1) with o100 = og00 = 7 implies o5 ‘o100 = 00 and 5 ' € PSLy(Chi_1)oo-

We see now that the stabilizer subgroup PSLs(C,,—1), is obtained by conjugating the stabilizer
subgroup PSLy(C),—1)00 by & matrix o € PSLy(C,,—1) with oo = 1.
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Lemma 2.6.5. Letn € R and o € PSLo(Cp—1) with oo = 1. Then the stabilizer subgroup
PSLy(Cp—1)y of the point n in PSLo(C)p—1) is given by

PSLQ(Cnfl)n == UPSLQ(Cnfl)OO 0_1.
In particular, PSLy(Cr—1)y is isomorphic to PSLa(Ch_1)eo-

Proof. Let v € 0 PSLy(Cp_1)so 0L, ie. v = 060! for some § € PSLy(C,,_1)so. Then we have
v e PSLQ(Cn_l) and

v = odo 1y = odoco = ooo =1,

so that v € PSLy(Cy—1),. Conversely, if 7 € PSLy(Cp,_1),, then 0~ *yo € PSLy(C,—1) and
afl'yaoo = 07177] = 07177 = 0.
This yields 0~ !1vo € PSLa(C,—1)oo and v € 0 PSLa(C—1)oo 0 L.

Clearly, the subgroups PSLy(Cp—1), and PSLy(C)—1)s are isomorphic as they are conjugate to
each other.

O
We note that the stabilizer group PSLo(C),—1) o particularly contains any translation in PSLo (C),—1),
. . 1 . . .
i.e. any matrix of the form 0 f with 8 € V,,_1, and that the translations form an abelian sub-

group of PSLy(C),—1)00. This leads to the following definition.

Definition 2.6.6. We define the translational subgroup N(C)_1) of PSLo(C\_1) as

N(Coyr) = {(é f) ‘ Be Vn_l} J{TY.

Considering the group isomorphism
LB
N(Cnfl) — anl, 0 1 {:l:]} — 5,

onto the additive group V,,_; and recalling the identification of V;,_; and R™~!, the translational
subgroup N(C,,_1) is isomorphic to the additive group R" 1.

Now let T' C PSLy(C,,—1) be a discrete and cofinite subgroup and n € Pr be a parabolic fixed
point of I'. For o € PSLy(C,,_1) with 0oo = n we can look at the conjugate group o N(C,,_1)o~!
and its intersection with I

0 (a*)7!
where a € I';,_1 and (1, B2 € V,,—1, we have

-1 *
T2yt = <O (aciﬂ)l—1> <é 612) (aO iia >
-1 * *
= (5 O (0 ) = () ) enienn,

Here we used that af2a* = |a|? afa(a’)™! € V,,_1 by Proposition 2.1.16. Since the matrix o is
unique up to multiplication on the right by elements of PSLy(C},—1)s0, we can deduce from the
above calculation that the group o N(C,_1) o1 does not depend on the exact choice of o.

First we note that for any ~; := (a oy ) € PSL2(Ch—1)s0 and o := <(1) 612> € N(Cp-1),

IS
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2.6. Fixed points and stabilizer subgroups

Definition 2.6.7. Let n € Pr be a parabolic fixed point of I and o € PSLy(C),—1) with coo = 7.
We define the translational stabilizer subgroup I'; of nin I' as

I, :=TNoN(Cp 1) o L.

Remark 2.6.8. From the definition it is immediate that T';; N o N(Cy,_1)o~" C I';. Moreover,
for v € T}, we have

yeTNoN(Cpo1)o ' CI'NoPSLy(Cr1)ee 0t = NPSLy(Cy1)y = Iy,
ie.yelyNoN(Cp1)o ', sothat T} =T, No N(Cp_1)o~". Together with
(07'T0)ee ={0 o |y€T, 0 Yoo =0} ={o7yo |y, yn=n}=0"'T,0
this gives us the identity
o 'To=0"Ty0NN(Cp1)=(0""T0)c NN(Cp1) = (67" To).

Now 0!I o = (67! o)., is a discrete subgroup of N(Cj,1), which implies that I} is isomorphic
to a discrete additive subgroup of R"71, i.e. to a lattice A,, C R"~!. This lattice is a free abelian
group of rank <n — 1.

We want to introduce a notion for a parabolic fixed point 1 € Pr for which the free abelian group
I, has full rank n — 1.

Definition 2.6.9.

(a) Let n € Pr be a parabolic fixed point of I' and o € PSLy(C),—1) with ooo =n. We call n a
cusp of T', if the translational stabilizer subgroup F% is a free abelian group of rank n — 1,
i.e. if there exists a lattice A,, C Vj,_1 = R™~1! of full rank n — 1 such that

Iop\
F%:{U(O 1)0

(b) A cusp of P'\H" is defined as the I-orbit of a cusp of T".

NeAn}/{iI}-

Definition 2.6.10. By Cr we denote a complete set of I'-inequivalent cusps of I' and we set
Cr = |CF|

Having made this definition, the quotient T'\H" admits cr cusps.

While for discrete subgroups I' C PSLy(C,,—1) of infinite volume, not necessarily any parabolic
fixed point has to be a cusp, for cofinite subgroups we have the following result.

Lemma 2.6.11. Let T' C PSLy(C,—1) be a discrete and cofinite subgroup and let n € Pr be a
parabolic fized point of I'. Then the translational stabilizer subgroup F;] s a free abelian group of
rank n — 1 and has finite index in the full stabilizer subgroup I'y,. In particular, n is a cusp of I.

Proof. See, e.g., [Her93], pp. 471-472.
O

Remark 2.6.12. By the last lemma, in our study of discrete and cofinite subgroups T' C PSLo(C),—1)
in this thesis we can use the terms ”parabolic fixed point” and ”cusp” synonymously. For brevity
we will usually just employ the term ”cusp”.

Remark 2.6.13. Identifying the quotient I'\H™ with a convex fundamental polyhedron Pr for
I', we can view the cusps of I'\H" as the parabolic fixed points of T in Pr N R"1. Then Pr
consists of a subset of H" together with cr vertices on the boundary OH" = R"1. The group I'
is cocompact if and only if cp = 0, i.e. if and only if I'\H" has no cusp.
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2. Groups acting on hyperbolic n-space

Proposition 2.6.14. Let I' C PSLy(C,,—1) be a discrete and cofinite subgroup. Then T\H" has
only finitely many cusps, i.e. the number cr is finite.

Proof. For torsion-free T see, e.g., [Wie77], Theorem 1 (a) (see also [Kel95], Satz 2.2.3).
Now suppose that T' is not torsion-free. By a theorem of Selberg [Sel60] any discrete and cofinite
subgroup I' C PSLy(C,,_1) has a torsion-free subgroup T of finite index (see also [Bor63], Theorem
B (ii)). As T is a discrete subgroup of PSLy(C,,—1), also T C T is. Moreover, by Theorem 6.7.3 in
[Rat94] we have

vol (T\H") = [I": T - vol(I'\H") < oc.

This shows that I' € PSLy(C,,_1) is a discrete and cofinite subgroup.
By the result in the torsion-free case, the quotient T'\H", respectively a convex fundamental
polyhedron Pr for T, has only finitely many cusps. Since I is a subgroup of I', a convex fundamental
polyhedron Pr for I' can be chosen as a subset of Pr. Hence, also the polyhedron Pr, respectively
the quotient T'\H", has only finitely many cusps.

O

Notation 2.6.15. In the following the cusps of I' are frequently denoted by n; (j =1,...,cr).
Let n; € Cr be a cusp of I'.

Definition 2.6.16. An element o,, € PSLy(C,,_1) with 0, 00 = 7; is called parabolic scaling
matriz of n; if a fundamental parallelotope for the action of o I‘;“ oy, on R™ 1, i.e. a fundamental
parallelotope for the lattice A, ,, has Euclidean volume 1. ' '

Remark 2.6.17. Let O’nj,O';]j € PSLy(C,—1) be two parabolic scaling matrices of n; € Cr,

L.e. op;00 = 03 00 = 17; and
A +7) = / 1 14 /—1
pe by o AE =30, (g 1) om

n
where A,,J.,A;U C V,_1 2 R™! are lattices of rank n — 1 whose fundamental parallelotopes both

I op) 1
P, = {U’” (0 1) s pe A%j}/{ﬂ}»
have Euclidean volume 1.

We have already seen that o, = 07'71_5 for some 0 € PSLo(Ch—1)00. Let § = ((g ((ﬁ)ﬁl> with

a€ly,;and B €V, 1, then for u € A, we have

5 1 u s (@ af 1w\ (a7t —Ba*\ (1 aua*
0 1 “\0 (a®)7t)\0 1 0 ar ) \0 1 )
so that
’ / Lop\ 1 1 N A
Fm‘ - {Uﬁj(S (0 1) 0 Tn; | HE Ay, } /) = {UW (0 1) T

and A;” = al,,a”. By the identification V;,_1 = R™~! and Proposition 2.1.16 the map

e aA,,joz*} D

Rn—l N Rn—l7 o a,ua* _ |o/|20¢,u(o/)_1,

is an isometry if and only if [o'| = |a| = 1. Therefore, the lattice A} = aA,;a* has a fundamental
parallelotope of Euclidean volume 1 if and only if || = 1.
This shows that a parabolic scaling of 7; is unique up to multiplication on the right by elements

of the form (g (Zf) with a € Ty—1, o] =1, and B € V,,_1.

We can state the following result about the structure of the stabilizer subgroup and the transla-
tional stabilizer subgroup of a cusp.
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2.6. Fixed points and stabilizer subgroups

Proposition 2.6.18. Let 0, € PSLy(Cp—1) be a parabolic scaling matriz of the cusp n; € Cp.
Then the following assertions hold true.

(a) The stabilizer subgroup T',; of n; in T is isomorphic to a discrete subgroup of PSLa(Cp_1)oo-
Moreover, we have

o o _
Iy, C {Unj (0 aé) Unjl

(b) The translational stabilizer subgroup I'y = of n; in I' is given by

I 1 n -1
Ly = {UW (() 1) %n

where Ay, CV, 1 = R™ ! is a lattice of full rank n — 1. In particular, F;” is isomorphic to

ael, 1, |Oé| =1, ﬁ S an} /{:t]}

MGATU}/{iI}v

the additive group Z"'.
Proof.

(a) Because of T';, = I' N PSLy(Cy—1),, it is immediate that I',, is a discrete subgroup of
PSL2(Cp—1)y,. This group is, in turn, isomorphic to PSLy(Cp,—1)o by Lemma 2.6.5.
Now we have
0 Ty, oy C 0yt PSLa(Cr1); 0y = PSLa(Cri1) oo

3 0 (Oé*)_l
only remains to show that |a| = 1.
Any non-identity element of I';. is either parabolic or elliptic by Lemma 2.6.3. By the con-
jugacy invariance of the classification of elements, the same is true for the group o ! Ly, o0

. . . b
From section 2.5 we know that there exists a matrix 6 = <(CL d

so that any v € 0;1 Iy, oy, is of the form <a af ) witha eI,y and g € V,,_1. It

> € PSLy(C},) such that
0o X

ac aaB+b@*)"H\ _ fa b\ [(a aB \ _ (A M\ [a b
ca caf+da*)™t) " \e d)\0 («)7t) " \0O XN )\c d
[ Aa+Auc Ab+ Aud

n Nec Nd '

Syt = (A )\M> for some A € T',, with |A\| =1 and p € V,,_1. This means

If ¢ # 0, then the identity ca = Ne¢ implies |c| || = |N|]|c|] and || = |[N| =1. If ¢ = 0,
then a # 0 must hold and the equality ac = Aa + Auc = Aa yields |a||a| = |A||a|] and
o] = [Al = 1.

(b) It already follows from the definition of a cusp that

op\
I, = {UW (0 1) T

for some lattice A, C V1 = R”~! of full rank n — 1. Then 1";7]_ is isomorphic to the group

(o

pe A} J{£1}

NGAU]‘}/{:‘:I}
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2. Groups acting on hyperbolic n-space

since they are conjugate by the matrix o,,,. Further, the map

()

onto the additive group A, is also a well-defined group isomorphism, and the free abelian
group A, of rank n — 1 is isomorphic to the additive group zn 1,

ueAm}/{ﬂ} S hy (g 1) En e

O

Example 2.6.19. We give some examples for the (translational) stabilizer subgroup of a cusp in
the 2- and the 3-dimensional case.

(a)

54

Let n = 2 and I' C PSLy(R) be a Fuchsian subgroup of the first kind. If n; € Cr is a cusp,
its stabilizer subgroup I';; is an infinite cyclic group which is generated by some parabolic
element v, € I, called a primitive parabolic element. There exists a parabolic scaling matrix
oy, € PSLy(R) such that o, 00 = 17;,

and

1 m _
F77j = {Unj <0 1) Unjl
I, © {an (é f) 0—77]’1

we further get I, =1T,.

m e Z} J{£I}.

Because of

B e R} = oy, N(R) o,

Let n =3 and I' C PSLy(C) be a discrete and cofinite subgroup. The translational subgroup

N<<c>={(3 ) |ﬁ6©}/{ﬂ}

of PSLy(C) is isomorphic to the additive group C. It is the maximal unipotent subgroup,
i.e. the unipotent radical, of the stabilizer subgroup

PSLy(C) s = {(8 a&)

of oo in PSLy(C). Let n; € Cr be a cusp with parabolic scaling matrix o,, € PSLy(C).
There are several possibilities for the stabilizer subgroup I';;. For the case n; = co they are
summarized in Theorem 2.1.8 in [EGM13]. The translational stabilizer subgroup

a € C\ {0}, Be(C}/{iI}

F'], =T Noy, N(C)U;jl =T, Noy, N((C)U_1

n nj

is the maximal unipotent subgroup of I';; and consists of the identity and the parabolic
elements of I[',,. There is a lattice A,,]. C C of full rank 2 such that

r_ 1w -1
Ty, = {UW (0 1) %

is finite and restricted to the values 1,2, 3,4, 6.

pe, } J{£D).

The index [I'y, : I, ]



2.6. Fixed points and stabilizer subgroups
Now let K be an imaginary quadratic field with ring of integers Ok and class number hy

and let I' = PSLy(Ok). Then I' has hyx cusps. For n; € Cr there is a parabolic scaling

matrix o, = (Z Z) € PSLy(K) such that 0,00 = n; and

uop -1
Ly, = {aﬂj (0 ul) Iy,

with the lattice A, = (a Ox + cOk)~2 C C of full rank. Moreover, its maximal unipotent
subgroup I‘;H, consisting of the identity and the parabolic elements of I'; ,, satisfies

1o 1w -1
Iy, = {Jm‘ <0 1) %

where A,; is as above. From this we can deduce that [I'; : I} ] = 3 0%

uwe Ok, pe Am}/{il}

NGAW}/{:‘:I}W

To close this subsection, we note an important fact that will be useful in later chapters to derive
results for a discrete and cofinite subgroup with an arbitrary cusp 7; from the special case 7; = oo.

Remark 2.6.20. If I' C PSLy(C,,—1) is a discrete and cofinite subgroup with the cusp n; and
o € PSLy(Cy,_1), then 071 T'o C PSLy(C,,_1) is a discrete and cofinite subgroup with the cusp
o~ 1n;, the stabilizer subgroup

(67'T0)g-1y, =0 'y 0
and the translational stabilizer subgroup

(1 To),

. __—11v
n =0 Fnjo.

In particular, if o), is a parabolic scaling matrix of 7);, then o T oy, has the cusp oo, the stabilizer
subgroup

-1 _ -1
<O7Ij T am)oo =0, Ly, on,

and the translational stabilizer subgroup
!/
—1 R
(anj r Unj)oo =0, Fnj Tn,;-

2.6.2. The hyperbolic case

Now we determine the stabilizer subgroup and the hyperbolic stabilizer subgroup of a pair (Q1, Q2)
of distinct points Q1,Q2 € R™™! in PSLy(C,,_1), and of a pair (Q1,Q2) € Hr of hyperbolic fixed
points Q1,Q2 € R*~1in T’

At first we treat the special case Q1 = 0, Q2 = oc.

Lemma 2.6.21. The stabilizer subgroup PSLa(Cp_1)(0,00) 0f the pair (0, 00) of points in PSLy(Cy,—1)
s given by

PSLa(Co1) (0.00) = {(g (af;_1> ae rnl} {1}

a

0 (a*o)l) with @ € T',,_1 is an element of PSLy(C;,—1) and

Proof. Clearly, any matrix v = (
fixes both 0 and oc.

Conversely, let v = b

d
00 = ac™! this yields b = 0 and ¢ = 0. The condition 1 = pdet(y) = ad* — bc* = ad* now implies

a#0and d=(a*)"!, so that v = (g (a*())1> with a € T, 1.

) € PSLy(C,,_1) with 40 = 0 and y0o = co. Because of 70 = bd~! and

O
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2. Groups acting on hyperbolic n-space

An element (g (a*(;_1> of PSL2(Cy—1)(0,00) is hyperbolic if and only if a € R\ {0, 41}, which

leads to the following corollary.

Corollary 2.6.22. We have the identity

{7 € PSLa(Cr—1)(0,00) | ¥ =1 or 7 is hyperbolic} = {(g a01> a€R\ {O}} J{£I}.

Obviously, the right-hand side in the last corollary is again a group.

Definition 2.6.23. We define the hyperbolic stabilizer subgroup PSLQ(Cn_l)l(’IgI;O) of the pair
(0,00) of points in PSLy(Cy,—1) as

0
pstacifit = { (5 )

Now let Q1,Q2 € R7! with Q1 # Q2 be two arbitrary distinct points. As PSLo(C),—1) acts doubly
transitively on R"~! by Proposition 2.3.14 (b), there exists 0 € PSLy(C,_1) with 00 = Q; and
000 = Q2. This matrix is unique up to multiplication on the right by elements of PSL(Cy—1)(0,00)
because for 01,09 € PSLy(Cp—1) with 010 = 020 = @1 and 0100 = 0900 = @2 we obtain
051010 =0 and J{loloo = 00, hence 05101 € PSL2(Cr—1)(0,00)-

ac R\{O}} J{£1D.

Next we prove that we obtain the stabilizer subgroup PSL2(Cy—1)(@,,0.) of (Q1,Q2) by conjugat-
ing PSLQ(C»”_I)(O’OO) by such a matrix o € PSLy(C),—1).

Lemma 2.6.24. Let 1,Q2 € R*1 with Q1 # Q2 and o € PSLy(Cpr_1) with 00 = Q1 and
000 = Q2. Then the stabilizer subgroup PSLa(Cpn_1)q, @) of the pair (Q1,Q2) of points in
PSLy(Ch—1) is given by

_ 0 _
PSLQ(Cn—l)(Ql,QQ) = (TPSLQ(Cn_l)(Opo) o L= {(T (8 (a*)_l) o 1 [AS Fn—l} /{:l:[}

In particular, PSLy(Cpn_1)(q,,0,) is isomorphic to I'y,_1/{%1}.

Proof. Let v € 0 PSLa(Cr—1)(0,00) o1, ie. v = cdo! for some § € PSL2(Crn-1)(0,00)- Then we
have v € PSLo(C),—1) with

YQ1 =060 Q1 = 060 = 00 = Q and YQs = 060 1Qs = 000 = 500 = Q2,

so that v € PSLa(Ch-1)(Q,,0.)-
Conversely, if v € PSLa(Cy,—1)(0,,q,), then clearly o~ 'y0 € PSLy(C,,_1). Further, we have

o 'y00=0"19Q1 =07'Q1 =0 and o lvooo = 0719Qy = 071Qy = o,
which implies 0~ !yo € PSL2(Cr—1)(0,00)- This shows that v € 0 PSLa(Cp—1)(0,00) o L.

The conjugate subgroups PSLy(Cp—1)(g,,0,) and PSLa(Cy—1)(0,00) are clearly isomorphic, and
the map

PSLQ(Cnfl)(O,OQ) — anl/{:tl}, (8 (a*(;l) .{:I:I} — a-{j:l},

is also a well-defined group isomorphism.
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Definition 2.6.25. Let Q1, Q> € R"~! with Q1 # Q, and o € PSLy(Cp,_;) with 00 = Q; and
000 = Q2. We define the hyperbolic stabilizer subgroup PSLg(C’n_l)?gl’ @) Of the pair (Q1,Q2) of
points in PSLo(C,,—1) as

PSLs(C1)( 00y = 0 PSLa(Cr1)(30, 07

As the matrix o is unique up to multiplication on the right by elements of PSLa(Cy—1)(0,00), this
definition does not depend on the exact choice of 0. The next lemma shows that it indeed makes
sense to denote the introduced group as "hyperbolic stabilizer subgroup” of (Q1,Q2).

Lemma 2.6.26. We have the identity

PSLg(Cn,l)?g;;QQ) = {7 € PSLa(Cr-1)(01,0,) | ~v=1or~is hyperbolic} )

Proof. Let v € PSLQ(C’n,l)?é';l%)7 then we have v = odo~! for some 6 € PSLQ(C’n,l)}(l&I;O),

a
0
holds true. If @ = £1, then clearly v = +1. And if a # +£1, then « is hyperbolic as it is conjugate to

the matrix § = (8

ie. d= a01> for some a € R\{0}. In particular, ¥ € 0 PSL3(Cr—1)(0,00) 0 ' = PSL2(Cr1)(0,.05)

a01> with a € R\ {0,41}. This proves that 7 is contained in the right-hand

side.
Conversely, let v be an element of the right-hand side. As in this case v € PSLa(Cr-1)(0,,Q,) =
0 PSLa(Cr—1)(0,00) o1, we know that 0~ !yo € PSL2(Ch-1)(0,00), i-€. we have o lvo = (g (a*O)1>
for some a € T',,_;. If vy = I, then 07 'v0 = I and @ = 1. And if v is hyperbolic, also o~ 1yo
must be hyperbolic, so that a € R\ {0, £1}. In both cases a € R\ {0} holds true, which implies

_ h h _ h
o lvo € PSLQ(C’n,l)(gf;O) and v € UPSLg(Cn,l)(gf;o) oa— PSLQ(Cn,l)(Z';;Qz). -
Lemma 2.6.27. Let Q1,Q2 € Rr1 with Q1 # Q2. Then the hyperbolic stabilizer subgroup
PSLg(Cn_l)?gi Q) is isomorphic to R* /{£1}.

Proof. We directly see that the groups PSLQ(Cn_l)?é}z Q) and PSLQ(C’n_l)]E‘gP;O) are isomorphic,

since they are conjugate to each other. Moreover, the map

PSLy(Cp1)3b,, — R*/{£1}, <g a‘fl) AT} = a-{£1},

is a well-defined isomorphism of groups.

O

Now let I' € PSLo(C),—1) be a discrete and cofinite subgroup and (Q1,Q2) € Hr be a pair of
hyperbolic fixed points Q1, Q2 € R ! of T

Definition 2.6.28. An element o(q, g,) € PSL2(C,—1) with (g, ,)0 = Q1 and 0(q, g,)00 = Q2
is called hyperbolic scaling matriz of the pair (Q1,Q2) of hyperbolic fixed points.

Definition 2.6.29. We define the hyperbolic stabilizer subgroup FI(IZ?II”QZ) of (Q1,Q2) in T as

hyp ._ hyp
F(Qth) = I'NPSLy (Cnfl)(leQz).

From Lemma 2.6.26 we immediately derive
h . .
I‘(CYQI;,QQ) = {7 €T NPSLy(Cpn—1)(@1,0,) | ¥ =1 or 7 is hyperbolic}
= {’y €., | y=1or~is hyperbolic} .
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Remark 2.6.30. Both the stabilizer subgroup I'(g, g,) and the hyperbolic stabilizer subgroup

thp
(@1
hyperbolic element « € T" with the fixed points @1 and Q.

Q2) of a pair (Q1,Q2) € Hr of hyperbolic fixed points of I' are non-trivial since there is a

We can now prove the following important result.
Proposition 2.6.31. The following assertions hold true.

(a) The stabilizer subgroup I' g, 0, of the pair (Q1,Q2) € Hr in T is isomorphic to a non-trivial,
discrete subgroup of T'y_1/{%1}.

(b) The hyperbolic stabilizer subgroup I‘?gﬁ Q) of the pair (Q1,Q2) € Hr in T’ is isomorphic to
the additive group Z. If 0(q, q,) € PSLa(Cyr_1) is a hyperbolic scaling matriz of (Q1,Q2),
then there exists p € R, p > 1, such that

hyp _ w0 1
F(Qth) - {J(Q17Q2) ( 0 ,Um> U(Q1,Q2) m € Z} /{:I:I},

Proof.

(a) We see that ', g,) = I NPSL2(Cr_1)(q,,@.) is a discrete subgroup of PSLy(Cy—1)(0,,0.);
and the latter is isomorphic to I',,_1/{%1} by Lemma 2.6.24. That I' is non-trivial
(Q1,Q2)
has already been noted in the previous remark.

(b) It is immediate that F?Z)?,Qz) is a discrete subgroup of PSL, (Cnfly(gl),gz)’ with the latter
being isomorphic to R* /{£1} by Lemma 2.6.27. Since discrete subgroups of R* /{£1} are
cyclic, F?y? Q) is a cyclic group. Moreover, by the previous remark the hyperbolic stabilizer
subgroup F?é’zlle) is non-trivial. As any a € R with a # £1 has infinite order in R* /{£1},
the group F?éi’,@z) is infinite. Hence, it is isomorphic to the additive group Z.

Let 0(g,,@,) € PSL2(Cy_1) be a hyperbolic scaling matrix of (Q1,Q2). Using
-1 h; -1 h
9 Q1@ L (@102 7(@1.22) € 9(01.,00) PSL2(Cn1) Q) 0, 7(@1.02)

_Psm(cn_l)?ggo)—{(g‘ ) aeR\{O}}/{ﬂ},

—1 hyp . . 1% 0
we find that 71,09 P(Ql,Qz) 0(Q.,Q.) is generated by a matrix of the form (0 H1> for

some p € R with ¢ > 0, i.e.

m e z} J{£ID.

hyp _ " 0 -1
F(Qth) - {U(Qth) ( 0 M’”) 7(@1.Q2)
Since m runs through all integers, it is no restriction to assume p > 1.
O

Definition 2.6.32. Let (Q1,Q2) € Hr be a pair of hyperbolic fixed points of I'. A matrix

Y@1,Q2) € F?Cyglj Q2) that generates the cyclic group F?é'fl’,Qz) is called primitive hyperbolic element.

Proposition 2.6.31 (b) yields that a primitive hyperbolic element is of the form

_ (Q1,Q2) 0 -1
Y(Q1,Q2) = 9(Q1,Q2) < (1) ’ N(_Ql 0 )> 7(Q1,Q2)
1,2

for some 110, q,) € R with u(,,q,) > 1, and a hyperbolic scaling matrix o(g, g,) € PSL2(Cp_1)
of (Q1,Q2).
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Notation 2.6.33. Let (Q1,Q2) € Hr be a pair of hyperbolic fixed points of I'. By L, 0,) We
denote the unique geodesic in H" connecting (01 € R"~1 and Q- € Rn-1,

Example 2.6.34. The unique geodesic L(g ) in H" which connects the points 0 and oo is the
positive x,,_1-axis, respectively i, _1-axis, in H", i.e.

‘C(O,oo) = {(O, R ,O,xn_l) ‘ Tp—1 > 0} = {xn_lin_l | Tp—1 > 0}

A hyperbolic scaling matrix (g, ,q,) € PSL2(Cr-1) of (Q1,Q2) satisfies 0(g,,0,)0 = Q1 and
0(Q.,Q2)00 = Q2, thus, it maps L ) to the geodesic L, q,)-

Remark 2.6.35. The elements of PSLa(Ch—1)(0,,q,) and PSLQ(Cn,l)}(lg;;QQ) leave the geodesic
L(q,,q,) fixed, but move points P € L, q,) along this geodesic.

Remark 2.6.36. Let (Q1,Q2) € Hr be a pair of hyperbolic fixed points with hyperbolic scaling
matrix o(g, 0,) € PSL2(Cr_1) and primitive hyperbolic element

(Q1,Q2) 0

— -1 hyp
Y(Q1,Q2) = 9(Q1,Q2) < 0 u(inl Q2)> 7(Q1.Q2) € F(Qth)

for some p(q,,q,) € R with 11(q,,q,) > 1. For a point P € L, q,) we have

. _ —1 2 —1
l(@1,Q2) + = dan (P, (@1, P) = da (U(Ql,@)R 1(Q1,Q2) (J<Q1,Q2>P>)

= log (lu’%Qth)) = 2log (1(@1.2)) »

where we used that 0(62117Q2)P € L(0,00)- Therefore, we can rewrite v(q,,q,) as

1
exp (5l(Q,, 0 1
Y(Q1,Q2) = 9(Q1,Q2) ( (2 (()Q1 QZ)) exp (—%Z(Ql QQ))) 7(@1.Q2)"

Since the geodesic Lq, q,) is mapped to itself under the primitive hyperbolic element v, q.), the
. . . . h .
points P € L0, ,q,) and v(@,,0.)P € L(g,,0,) are identified in I'\H" and F(é?,Qg\H"- This means

: oot . hyp n g
that the image wr?épler)(ﬁ(Qth)) under the natural projection Mphe H™ — F(Ql,Qg)\H is

a closed geodesic in F%‘;Qﬁ\Hn of hyperbolic length I(¢, q,)-

. . . 1h
Notation 2.6.37. We denote the closed geodesic Mphe (L£(@1,00)) in 1"(2'21?7622)\]}}1" by Lo, ,q.)-
Definition 2.6.38. The number /g, q,) is called the length of the pair (Q1,Q2) of hyperbolic
fixed points, of the geodesic L, q,), or of the closed geodesic L(q, q,), respectively.

Finally, we note an important fact that will be useful in the coming chapters to deduce results for
a discrete and cofinite subgroup with an arbitrary pair (Q1,Q2) of hyperbolic fixed points from
the special case Q1 = 0, ()2 = <.

Remark 2.6.39. If I' C PSLy(C,,—1) is a discrete and cofinite subgroup with the pair (Q1,Q2)
of hyperbolic fixed points and o € PSLy(C,,_1), then 07! T'c C PSLy(C,_1) is a discrete and
cofinite subgroup with the pair (¢71Q1,071Q2) of hyperbolic fixed points, the stabilizer subgroup

(U_l FU)(0*1Q1,0’1Q2) =o't F(QLQZ) g
and the hyperbolic stabilizer subgroup

(Uﬁlfa)hyp -ir

_ hyp
(671Q1,071Q2) — 7 1 (Q1.Q2) 7
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2. Groups acting on hyperbolic n-space

In particular, if o(g, ¢,) is a hyperbolic scaling matrix of (Q1,Q2), then o(_Ql1 Q) I'oq, @, has
the pair (0, 00) of hyperbolic fixed points, the stabilizer subgroup

—1 —1
("(Ql,<;)2> FJ(Ql,Q2)> (00) ~ 0(Q1,02) L@1.02) 7@

and the hyperbolic stabilizer subgroup

h;
P -1 hy

—1 _ yp
(U(Ql,@) PU(Ql»Qz)>(O)OO) = %(@1.02) 1(@1.02) 7(Q1.Q2)

2.6.3. The elliptic case

We now turn to determine the stabilizer subgroup of a point @ € H" in PSLy(C,,—1) and I'. Since
we will define elliptic Eisenstein series associated to arbitrary points in H™ in section 4.2, we do
not restrict to @ being an elliptic fixed point of I'. We start with the special case @ = i,,_; € H".
The assertion of the following lemma was also noted in [Wat93], p. 97.

Lemma 2.6.40. The stabilizer subgroup PSLa(Cy—1) of the point in_1 € H" in PSLy(Cr—1)
s given by

in—1

PSLQ(Cn_l) = PSUQ(Cn_l) = SUQ(Cn_l)/{:EI},

in—1

SU(Co—1) ::{<_“b, f)
a b

Proof. First we recall from Theorem 2.3.11 that the action of v = (c d

where

a,bel,_1U{0}, ab* € V,,_4, \a|2 + |b|2 — 1} .

) € PSLy(Cy—1) on a
point P =xg + x191 + -+ + Tp_1ip—1 = Py + Tp_1i,—1 € H" is given by
PP =yo+y1i1+ -+ Yn-19n-1= Q0+ Yn—1in_1,

where
(aPy +b) (cPy +d) + acx?_, _ Tr—1
Py +d2+ P22, U T eyt dP P

Qo =

If v = (_ab/ j,) € PSU5(Cy—1), then —V/'(a')* = —(ba*) = —((ab*)*) = —(ab*)’ € V,_1 and
pdet(y) = aa@ + bb = |a|? + |b|> = 1, so that v € PSLy(C,,_1). We have i, 1 = Qo + Yn_19n_1
with

b?—ay ba* — ab* * * * ) *
:|a’|2+|—b’\2:|a\2—|—|b|2:ba —ab* = (ab*)* —ab* =0,
B 1 S B
S PR TR PR TR

Qo

i.e. yip—1 = ip—1. This proves that v € PSLy(C)_1)
b
d

Gn—1°

Conversely, let v = (Z ) € PSLy(Ch—1) with vip—1 = Qo + Yn—19n—1 = in—1. By the formulas

bd + ac 1

D=yETeE Un1 = a2 o

this implies a¢+bd = 0 and |c|? +|d|> = 1. Using these conditions and ad* — bc* = 1, we compute
0 = (ac + bd) cd* = accd* + bded* = aced* + bd(cd*)* = aced* + bddc*
= a|c|*d* + bld|*c* = ad*|c|* + bc*|d|* = ad* (1 — |d|*) + bc™|d|?
=ad* — (ad* —bc*) |d]* = ad* — |d|* = (a — d') d*.
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2.6. Fixed points and stabilizer subgroups

Hence, we have a —d’ = 0 or d = 0. The first case means d = a’. In the latter case ¢ # 0 must
hold, so 0 = a¢ + bd = ac gives us a = 0 and again d = d’ is satisfied. Now we employ this to
obtain

0=1—ad* +bc* =1—dd* +bc* =1~ |d*+bc* = |c|* +bc* = (¢ +b)c,

ie. d+b=0o0r ¢c=0. In the first case we have ¢ = —b'. In the latter case d # 0 must hold, and
from 0 = a¢ + bd = bd we obtain b = 0, which shows that again ¢ = —V'.
Moreover, we have
L=el* +[d? = |0 + |a'[* = [af* + [b]*.
The conditions a,b € T',—1 U {0} and ab* € V,_; follow immediately from the definition of
PSLo(Cy—1). Overall, this yields v € PSU(Cj—1).
O

Definition 2.6.41. We call SU5(C,,—1) the special unitary group over the Clifford numbers C,,_.

Now let @ € H" be an arbitrary point. Since PSLo(C),—1) acts transitively on H™ by Proposition
2.3.14 (a), there exists 0 € PSLy(C,—1) with ¢i,,—; = Q. This matrix is unique up to multiplication
on the right by elements of PSU3(C,,—1), as for 01,09 € PSLy(Cp—1) with 01ip,—1 = 02ipn—1 = Q
we get 0'2_10'17;n_1 = 4,—1 and so 0'2_10'1 S PSLQ(Cn_l) = PSUQ(On_l).

in—1

The next lemma shows that the stabilizer subgroup PSL2(Cj—1)g of @ is simply obtained by
conjugating PSU5(C),—1) by such an element o.

Lemma 2.6.42. Let Q € H" and o € PSLy(C\—1) with ci,—1 = Q. Then the stabilizer subgroup
PSLy(Cr—1)q of the point Q in PSLy(C,—1) is given by

PSLQ(On_l)Q = UPSUQ(Cn_l) o L.
In particular, PSLy(Cr—1)q is isomorphic to PSUy(Cp—_1).

Proof. If v € 0 PSU5(C,,_1) 01, then v = odo~! for some § € PSU3(C,,_1) = PSLy(Cp,_1)
This implies that v € PSLo(C,,—1) with

’VQ = 0—50—7162 = 00ip_1 = 0lp_1 = Q,

which shows that v € PSLa(Cr—1)g.
Conversely, let v € PSLa(Cj,—1)g. Then we have 0~ 'yo € PSLy(C,,—1) with

in—1°

J_llyainfl = 0—_1’762 = U_IQ =in_1.

This means o~ 'yo € PSLy(Cy,_1);,_, = PSU2(C,_1), so that v € 0 PSUo(C,,_1) o~ L.
The isomorphy of PSLy(C),—1)¢g and PSU3(C),—1) is immediate.
O

Remark 2.6.43. For ) € H" the elements of the stabilizer subgroup PSLy(C),—1)¢g act on H™ as
hyperbolic rotations around @, since for P € H” and v € PSLy(C,,—1)¢g we have

dH” (’YP7 Q) = dH"L (P7 ’YilQ) = dﬂ'ﬂ" (P7 Q)

Now let T' C PSLo(C),—1) be a discrete and cofinite subgroup and @ € H" be a point which is not
necessarily an elliptic fixed point of T'.

Definition 2.6.44. An element og € PSLo(C,_1) with ogi,—1 = @ is called elliptic scaling
matriz of the point @ .

Considering the stabilizer subgroup of @) in I'; we can now derive the following result.
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2. Groups acting on hyperbolic n-space

Proposition 2.6.45. The stabilizer subgroup I'q of the point Q € H™ in I' is isomorphic to a
finite subgroup of PSUs(Cy—1). Moreover, any non-trivial element of T'q is elliptic.

Proof. First we note that I'g = I' N PSL2(C,,—1)¢ is a discrete subgroup of PSL2(C),—1)q. Thus,
I'g is isomorphic to a discrete subgroup of PSU3(C,—_1) by Lemma 2.6.42. From Corollary 2.4.5
we conclude that I'g is even a finite group.
If y € I'g, v # I, is a non-trivial matrix which has the fixed point € H", then + is elliptic by
Definition 2.5.2 (c).

O

Remark 2.6.46. The stabilizer subgroup I'g is non-trivial if and only if there exists an element
vy eT, v# I, with yQ = @, i.e. if and only if @ is an elliptic fixed point of T'.

Example 2.6.47. Let n = 2 and I' C PSLy(R) be a Fuchsian subgroup of the first kind. The
stabilizer subgroup I'y, of an elliptic fixed point w € Er is a finite cyclic group which is generated by
some elliptic element 7,, € I'. The matrix ~,, is called primitive elliptic element. If o,, € PSLa(R)
is an elliptic scaling matrix, i.e. o, = w, then =, is of the form

om0 N o

—sin (%) Cos (H w?

where the number n,, = |I'y,| € N denotes the order of the elliptic fixed point w in T
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3. Linear operators and automorphic
functions

This chapter acts as a collection of several topics and results that we will need in the further
course of this thesis. We begin by determining the radial eigenfunctions of the hyperbolic Laplace
operator Agn in elliptic coordinates in the first section. After that, we consider PSLy(C)—1)-
invariant integral operators in the second section, and derive a result about eigenfunctions of these
operators. In the chapter’s third section we introduce automorphic functions in the upper half-
space H". Important examples for these functions are parabolic Eisenstein series whose definition
and basic properties we give in the fourth section. In the fifth and final section we deal with the
spectral expansion of a square-integrable automorphic function on I'\H" and give some conditions
for its convergence.

3.1. Radial eigenfunctions of the hyperbolic Laplace operator

At several points in this thesis we will need the radial eigenfunctions of the hyperbolic Laplace
operator Ay in elliptic coordinates, so we determine them in this section. This was done before,
e.g. by Awonusika in section 4.1 of his PhD thesis [Awo16].

Definition 3.1.1.

(a) A function f : H* — C, P — f(P), is called radial at @ € H™ if it only depends on the
hyperbolic distance dyn (P, Q), i.e. if it can be written as f(dgn~ (P, Q)).

(b) A function f:H" x H® — C, (P,Q) — f(P,Q), is called radial at @ € H" if, as a function
of P, it only depends on the hyperbolic distance dy-(P,Q), i.e. if it can be written as
f(dH"L (P7 Q)a Q)

The eigenvalue problem in H"” is the equation
AgnG = A\G, (3.1)

where G(P) is an eigenfunction of the hyperbolic Laplace operator Ay~ with eigenvalue A € C.
From Lemma 1.2.8 (c) we know that in elliptic coordinates g := gq(P), ¢ := (g(P) centered at
some point ) € H™ the hyperbolic Laplace operator takes the form

9? 1 0 1

A = 5~V Gk 9 ~ sk

Agn 1,

with its radial part Agn a4 given by
0? 1 0
Agn rad — T 5 o9 -1)— —.
H” rad 002 (n ) tanh(p) Op
If we assume a product solution of (3.1) of the form G(p,¢) = O(p) ¥(¢), we obtain

0?0 1 00 o

Yo T DY i) 0 T sh(op

Agn 1l =—-)OU.

By multiplication with sinh(g)?/(© ¥) on both sides, this can be rewritten as

sinh(p)? 9?0 LR 1
© 0 ©

. 00 ) 1
cosh(p) sinh(p) B0 + A sinh(p)? = -7 Agn1 V.
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3. Linear operators and automorphic functions

Now the left-hand side depends only on p, while the right-hand side depends only on (. Thus,
both sides must be equal to some constant o2, resulting in the two separate equations
sinh(p)? d’© n—1
S do? €]

cosh(p) sinh(p) % + X sinh(p)? = o (3.2)

and
Agn1¥ = —0° U, (3.3)

where

o =m(m+n—2) (m € Np)

are the eigenvalues of Agn—1 corresponding to the eigenfunctions W. The equation (3.2) is an

ordinary differential equation.

Remark 3.1.2. In the special case that G is radial at @, i.e. that G(P) = G(p) only depends
on ¢ = dyn (P,Q), we have ¥ = 1 and 0% = 0. Hence, equation (3.3) becomes redundant and the
eigenvalue problem (3.1) reduces to the ordinary differential equation (3.2) with right-hand side
equal to zero.

If we multiply equation (3.2) by © sinh(g) 2, we get
d*e 1 do o2
—_— 1) ——— — A——— | ©=0.
a2 " ) a0 < sinh(g)?)
This homogeneous second-order linear differential equation is solved in the following lemma.

Lemma 3.1.3. Let P¥(z) denote the associated Legendre function of the first kind of degree v and
order p (see (A.24)), and let Q*(z) denote the associated Legendre function of the second kind of

degree v and order p (see (A.25)). Then for r = \/s(n —1-3s)— ("771)2 the functions

1 n_

O () = sinh(0)' "% P'3 2 " (cosh(g)), O] .(0) = sinh(e)' " Q"% (cosh(0))
2 2

n,s,m
form a fundamental system of solutions of the differential equation

420 B 1 de s(n— _s_m(m+n—2) B
Tt s dg+(( 1) Mmrn—2) )9_0. (3.4)

In particular, the functions
0 o(0) =sinh(e)'~# P'7% (cosh(g)), O (o) = sinh(o)' ™% Q' 2, (cosh(o))
2 2

form a fundamental system of solutions of the differential equation

d’e 1 do

and the functions

1—n

') (o) = sinh(o)' "% P

n,

1

L7 " (eosh(g), O, (0) = sinh(e)'~F Q1" (cosh(o))

form a fundamental system of solutions of the differential equation

d*e 1 d® m(m+n-—2)

a " (g 4 T s 0" o
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3.1. Radial eigenfunctions of the hyperbolic Laplace operator

Proof. Let A\ :=s(n —1—5s) and 02 := m(m +n — 2). We make the substitution

O(0) = sinh(0)' "% f(o)
with

% = sinh(g)'"2 % + <1 - g) cosh(p) sinh(p)~% f
and
65;) = sinh(g)' "% f;{ + (1 - %) cosh(p) sinh(p)~ % %
# (1) (coshlo) (o) * L ()% £~ § cosh(? snn(o)F )
= sinh(p)' "2 g + (2 — n) cosh(p) sinh(o)™? Zi;

2

n ((1 - g) sinh(p)' "% + (’Z - Z) cosh(p)? smh(g)—?—1> f.

Inserting these identities into (3.4), we obtain

0=sinh(@)'* L+ (2 ) cosh) sinh(e) ¢ L
+ ((1 — g) sinh()' ™% + (Tf - Z) cosh(o)? sinh(g)§1> f
+(n—1) m (sinh(g)l—’; % +(1- g) cosh(g) sinh(g) 3 f)
+ (A ~ SIHEEQ)Q) sinh(0)'" % f
= sinh(o)' % ZZJ; + cosh(g) sinh(g)~% ;LJ;
+ ((1 - %) sinh(o)' 7% + (Tf - Z) cosh(p)? sinh(g)—3—1> f

2
" ((‘T; +5 1) cosh(g)? sinh(e) ¥~ + A sinh(g)' ¥ — o sinh(g)gl) I

Multiplying this equation with sinh(g)2 ! yields
d*f 1 df

~de® " tanh(o) do
n n? n 1 n?  3n 1 o2
QUL (RO L N Y (0 L T [ S (A
* < 2 + ( 4 2) tanh(g)? + < 2 + 2 > tanh(p)? + sinh(g)2> !
2

d>f 1 df n n 1 o2
do? + tanh (o) do + < 2 tA+ < 4 tn ) tanh(g)? sinh(g)2) f

0

If we now set z := cosh(p) and y(z) := f(0), we have 22 — 1 = sinh(p)?,

Gy dyde oy
do do dxdo de
and
2 2 2
[ d7y d 2 47y dy
- o Y _ sinh h(o) ¥
)2 sinh(p) 2, T h(p) sinh(p) — teos (0) I
d’y | dy
2
= _— 1 _
(@ ) dx? e dx
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3. Linear operators and automorphic functions

Plugging in these identities and multiplying by —1, the equation further simplifies to

d2 d 2 2 2
) a2y dy n (%—n+1>x2+02
:(l—x)@—zx%—k —)\—&-5—1— T3 y. (3.7)

In the next step we want to determine v, u € C such that this becomes the associated Legendre
equation

dy s

of degree v and order p (see (A.23)). To do this, we first rewrite the bracket above as

2 2 2
7}\+ﬁ717 (%—n—%—l)x + o :_)\_;'_%_14_)\372_%12_*_1,2_112412+nm2_$2_0_2
2 1— 22 1— 22
:—A+g—1+m2+%—#—a2:(%—g—A)(1—x2)—%2+n—1—a2
1— 22 1— 22
n? on %2*71+1+02
402 1 — 22

Thus, the degree v must satisfy
viv+1) =

from which we derive the quadratic equation

Pav— 4 T a=0

4 2
with solutions
L, / n2 w_ L [(n-1 2 N
3 T2 2 — T
where we have set r := \//\ —1)2 = \/s(n —1-3s)— (”?*1)2 Further, the order pu is given by

[n2 — 402 —9)2 + 4m2 + 4m(n — 2
— ——n—|—1+a2— \/n 2440 :i\/(n )+m4+ m(n — 2)
n—2—|—2m n—2+2m
:i\/ S —i(——l )
4 2 g 1M

This shows that (3.7) is indeed the associated Legendre equation of degree v = —% + ir and order
p = 1—% —m, which has the fundamental system P N +Wm(x), Ql_li;m(x) of solutions. Recalling
2

that we have made the substitutions = = cosh(p), ( ) = f(0) and O(p) = sinh(p)'~% f(0), we
end up with the fundamental system

O (o) = sinh(0) "% P17 2" (cosh(0)),  ©P) (o) = sinh(o)' "% Ql,éi;m(cosh(g))

of solutions of the eigenvalue problem (3.4).
If we have m = 0, we obtain the claimed fundamental system of solutions of (3.5), while for s =0
(which implies ir = —251) we get the asserted fundamental system of solutions of (3.6).

2
O
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3.1. Radial eigenfunctions of the hyperbolic Laplace operator

Remark 3.1.4. In case that we are interested in the eigenfunctions G(P) = G(p) of Ay~ that
are radial at @ € H™, we just have to solve equation (3.2) with the right-hand side zero which
becomes equation (3.5) through multiplication by © sinh(g)~2. Hence, the eigenfunctions which
are radial at @ are exactly given by the solutions of (3.5).

The first of the two linearly independent solutions of (3.5), namely the function @51)50( ), is
bounded at ¢ = 0 and we can determine its value at this point.

Lemma 3.1.5. The function @n s.0(0) from Lemma 3.1.8 has the special value

213
n,s (O) - n\
0 r(z)

Proof. We make use of formula (A.26), i.e. of the integral representation

() — (2,’2—1)“/2 1 (1_t2)u—1/2
Pl (2) QHﬁF(M+%)/_ (Z—i—t\/ﬁ)uiy dt,

which is valid for Re(u) > —1 and |arg(z £ 1)| < 7. Inserting 4 = 2 — 1, v = —1 +ir and
z = cosh(p) into this identity, we obtain

. _n _1-2
O o(0) = sinh(g)' "% P12 (cosh(o))

n n—3
= sinh(g)' "% (coahle) ~1)% / v o
251 /mT(%52) o 1 (cosh(g +tW) o
. sinh(g)%~! ! 1-12)"%
=sinh(g)'~? ﬂfllﬂ ) n—1 / -t =, 4
2871 ml (%57) Jo1 (cosh() + ¢ sinh())*z

/1 (1-1)

] A n—1 . dt
NZR % (T ) —1 (cosh(g) + t sinh(p)) 2 —'"
For o = 0 we have

-1 n—1

(cosh(g) + t sinh()) "z ~" =172

—ir _ e(";l—ir) log(1) _ 0 _ 1

so the function @5117)5)0(9) simplifies to

_n 1
o () = 2 [a-er=
VAl (252) Ja

Moreover, by formula (A.17), for Re(a) > 0 we have

/11(1 —)e T dt = 2/01(1 —})*"tdt=B (;a> — m

where B(a, b) is the beta function (see (A.16)). Choosing a = , this now gives us the asserted
equality
2l=5  rl (%) 23
1
6,140(0) = —-—

VAT (5h)  T(5) T T(3)
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3. Linear operators and automorphic functions

3.2. The PSLy(C,,_1)-invariant integral operators

In this section we introduce PSLo(C),—1)-invariant integral operators and the notion of a point-pair
invariant function. We proceed essentially as in section 1.8. in [Iwa02], where PSLy(R)-invariant
integral operators are treated. Our main result on eigenfunctions of PSLs(C),_1)-invariant integral
operators will be employed to use in proving the absolute and locally uniform convergence of
hyperbolic Eisenstein series in section 4.1.

Definition 3.2.1.

(a) A linear operator L is an endomorphism of the space {f : H® — C} of complex-valued
functions on H".

(b) A linear operator L is called PSLy(C),—1)-invariant if

L(f(yP)) = (L)(vP)
for any v € PSL2(Cy,—1) and P € H".

Example 3.2.2. By Proposition 2.3.15 (c), the hyperbolic Laplace operator Agx is a PSLo(Cj—1)-
invariant linear operator.

Definition 3.2.3. An integral operator L is given by
(Lf)(P) = ; K(P,Q) f(Q) pmn (Q), (3.8)
where f:H" — C and where K : H" x H" — C is a given function called the kernel of L.

In the following we always assume that the kernel K (P, Q) and the function f(Q) are such that
the integral in (3.8) converges absolutely.

An integral operator L with kernel K defines a linear operator, and it is PSLs(C),_1)-invariant if
and only if

K(P,Q) f(VQ) pun(Q) = | K(yP,Q) f(Q) prn(Q)

H”L H”
for any v € PSLa(C),—1) and P € H". For that it is necessary and sufficient that
K(vPHQ) = K(P,Q) (3.9)

for any v € PSLy(Cy,—1) and P, Q € H".

Definition 3.2.4. A function K : H" x H" — C which satisfies (3.9) for any v € PSLy(C),—1)
and P, € H" is called point-pair invariant.

Lemma 3.2.5. A point-pair invariant function K : H* x H" — C, (P, Q) — K(P,Q), depends
only on the hyperbolic distance dyn (P, Q), i.e. it can be written as K (dgn (P, Q)).

Proof. Let Py, Ps,Q1,Q2 € H" with dygn (P1, Q1) = dgn (P2, Q2). We prove that there is a matrix
~v € PSLy(C),—1) such that vP; = Py and vQ1 = Q2:

We let op, € PSLy(Cyr—1) be an elliptic scaling matrix of Py, i.e. a}llpl = 4,_1. Furthermore,
there exists a hyperbolic rotation around i,_; € H” which maps 01311@1 onto the z,_i-axis, i.e. we
can choose 0 € PSLy(Cj—1) = PSU3(C,,—1) such that 5(01311Q1) = ti,,_1 for some t € R, ¢t > 0.

After a possible application of the inversion (_01 (1)

the matrix v; := 501311 € PSLy(C,,—1) satisfies v1 P1 = i,—1 and v1Q1 = ti,—1. Moreover, we have

7;n—l

) € PSU,(C),—1) we can assume t > 1. Now

. . 1 1
cosh(dun (P1, Q1)) = cosh(dmn (71 P1,71Q1)) = cosh(dun (in—1,tin—1)) = 2 (t + t) ,
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3.2. The PSLy(C,,—1)-Invariant integral operators

which yields dyn (P1, Q1) = log(t) and ¢t = exp(dyn (P1,Q1)).

Analogously, there exists an element 75 € PSLo(C—1) with y9 Py = 4,1 and 72Qa = t'i,—1 for
some t' € R, t' > 1, and from dyn (P2, Q2) = du» (P1, Q1) we can deduce ¢’ = exp(dyn (P2, Q2)) = t.
Thus, the matrix v := 'y;l'yl € PSLy(C),—1) has the required properties vP; = P> and vQ1 = Q2.
Since the function K is point-pair invariant, we finally get

K(P,Q2) = K(vP1,7Q1) = K(P1,Qn),
proving that K (P, Q) only depends on dyn (P, Q).
O

Remark 3.2.6. For P,Q € H" we have dy»(P,Q) = 0q(P) =: o(P,Q), where gg(P) is the first
component of the elliptic coordinates of P centered at Q (see Definition 1.2.5). Thus, a point-pair
invariant function K (P, Q) can always be viewed as a function

K(P,Q) = K(o(P,Q)) = K(o)
in a single variable p € [0, 00).

We recall from Definition 3.1.1 (b) that a function f: H" x H* — C, (P,Q) — f(P,Q), is radial
at @ € H" if, as a function of P, it only depends on the hyperbolic distance dy- (P, Q). A function
f:H" x H" — C which is radial at some point () € H" is in general not necessarily radial at other
points. Though, if f is point-pair invariant, then it is always radial at any @ € H"™.

To a given function f : H" — C we can associate a function fg : H" — C which is radial at
some point € H". This radial function can be obtained by averaging f(P) over the stabilizer
subgroup PSLy(C,,—1)g. We formalize this in the following definition of the mean-value operator.

Definition 3.2.7. Let f: H* — C and ) € H". We define the mean-value operator Mg as the
mapping f — fg with
folP) = | FP) d. (3.10)
PSLz(Cnfl)Q

We prove now that this indeed yields a function which is radial at Q.

Lemma 3.2.8. The function fq(P) from Definition 3.2.7 is radial at Q. Moreover, it satisfies
fo(Q) = f(Q).

Proof. Let Py, P, € H" with dgn (Py, Q) = dgn (P2, Q). Then P; and P, both lie on the hyperbolic
sphere with center @ and radius dg- (P;, Q) = dgn (Ps, Q), so there is a hyperbolic rotation around
@ which maps P to Py, i.e. a matrix o € PSLy(C),—1)g with 0Py = P». This implies

folP2) = [

PSL2(Cn71)Q

- / F(vPy) dy = fo(Py),
PSLQ(C7L71)Q

F(vPy) dry = / (o) dvy

PSLQ(Cnfl)Q

so fo(P) depends only on the hyperbolic distance dpn (P, Q).
For the second assertion we use y@Q) = @ for any v € PSLy(C),—1)¢ to obtain

fo(@) = /P e SO = / £(Q) dv = 1(Q).

PSL2(Cn-1)q

O

Remark 3.2.9. The mean-value operator Mg can also be applied to a linear operator L by setting

(MQL)(f) := Lfq

for a function f:H" — C.
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3. Linear operators and automorphic functions

Lemma 3.2.10. A PSLy(C,_1)-invariant integral operator L is not altered by the mean-value
operator, i.e. we have

(MpL)[f)(P) = (Lf)(P)
for any P € H" and f: H" — C.

Proof. Let K : H" x H" — C be a kernel of L. For f: H" — C and P € H" we compute

(MpL)f)(P)= (Lfp)(P K(P,Q) fp(Q) pmn(Q)

HTL

- [ ke / F(Q) dy | s (Q)
PSL2 n— l)P
- / ( K(P.Q) F(1Q) e <Q>) .
PSL3(Cr_1) H»

Since L is a PSLy(C),—1)-invariant integral operator, we have

K(P,Q) f(hQ) pn (@) = | K(vP,Q) f(Q) pz(Q),

H~ H"

from which we obtain

(MpL)f)(P)

/P e < [ KoP.Q)1(@ an@)) dy

_ ( . K(P,Q) f(Q) prn (Q)> </pSL2(Cn1)P Ch)

= [ K(P,Q)f(Q) pun (Q) = (LF)(P).

Hn

O

In order to state our main result on PSLy(C),_1)-invariant integral operators, we need two more
lemmas.

Lemma 3.2.11. Let Qp € H" and A = s(n — 1 — s) € C be fized. Then there exists a unique
function w : H* — C, P — w(P,Qq), which satisfies the following properties:

(i) w(P,Qq) is radial at Qo,
(ZZ) AHnw(P, Qo) = )\W(P, Qo),
fiii) w(Qo, Qo) = 1.

Proof. Let w : H* — C be a function which satisfies the properties (i) and (ii). Using elliptic
coordinates centered at Qq, by (i) we can write w(P, Qo) = w(o), where

0= 0(P,Qo) = 0q,(P) = dun (P, Qo).

On the other hand, we have seen in Lemma 3.1.3 and Remark 3.1.4 that the eigenfunctions of Agn
in elliptic coordinates which are radial at ()¢ are the solutions of the differential equation

d*e 1 do

g 1y = —1— —
dg? +n-1) tanh(g) do +s(n s)6 =0,

which has the fundamental system

. _n 1-z . n
Ol o(0) =sinh(e)' "% P17 (cosh()), O (e) = sinh(e)' ¥ Q% (cosh(o))
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3.2. The PSLy(C,,—1)-Invariant integral operators

of solutions, where r = \/s(n —1—3s)— ("7*1)2 Hence, w(p) is a linear combination of @S}xo(g)

and 02 (0). The function ol (o) is bounded at ¢ = 0 by Lemma 3.1.5, while the function

n,s,0 n,s,0
. _n 1-Z
O o(e) = sinh()' % Q1% (cosh(o))

is unbounded at ¢ = 0. Thus, if the function w(P, Qo) should additionally satisfy property (iii),
ie.
w(0) = w(Qo, Qo) =1,

using Lemma 3.1.5, we find

=281 (2) 0l 4(e(P, Qo).

w(P, Qo) = w(o(P,Qp)) = —==2 2

This proves that the function w(P, Qo) exists and is uniquely determined by (i), (ii) and (iii).
O

Lemma 3.2.12. Let f : H" — C be an eigenfunction of Agn with eigenvalue A = s(n—1—s) € C,
and let fq : H" — C be the function which is associated to f via (3.10) and radial at Q € H".
Then we have

fo(P) =w(P,Q) f(Q)
for any P € H" with w(P,Q) as in Lemma 3.2.11.

Proof. The function fg(P) is radial at @ € H™ by construction, so it satisfies property (i) in
Lemma 3.2.11. Using the PSLy(C,,—1)-invariance of the hyperbolic Laplace operator, we further
have

Ase fo(P) = A / f(/P) dy | = / Age (f(vP)) dvy
PSL2(Cn_1)q PSL2(Cn-1)q

-/ Bunf)0P) dy = | M (P) dy
PSL2(Cr-1)o PSL2(Cr-1)o
= Mq(P).
Hence, fo(P) also satisfies property (ii) in Lemma 3.2.11. Now the lemma and its proof yield that
fo(P)=C(Q)w(P,Q)

must hold, where w(P, Q) is the function from Lemma 3.2.11 and C(Q) € C is a constant which
only depends on . Finally, we can determine this constant as

CQ)=C(Q)-1=0Q)w(Q,Q) = fo(Q) = f(Q),

where the last equality follows from Lemma 3.2.8. This completes the proof.

After these preliminaries we are now able to prove the following proposition.

Proposition 3.2.13. Let f : H* — C be an eigenfunction of the hyperbolic Laplace operator Agn
with eigenvalue A = s(n — 1 — s) € C, and let L be a PSLy(C,,—1)-invariant integral operator on
H™ with kernel K such that Lf exists. Then f is an eigenfunction of L. More precisely, there
exists a constant A(\, K) € C, depending only on A and K, such that

Lf = AN K) f,

| K@ (@) = A K) £(P)
for any P € H".
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3. Linear operators and automorphic functions

Proof. Making use of Lemma 3.2.10 and Lemma 3.2.12, for P € H"™ we compute

(Lf)(P) = ((MpL)f)(P) = (Lfp)(P) = | K(P,Q)fp(Q) p(Q)

Hn»

— [ K(P,Q)w(Q. P) F(P) 1 (Q) = (

H™

K(P.Q)w(Q, P) MHW<Q>) £(P).

H™

Since w(Q, P) is radial at any P € H", we have w(Q, P) = w(du~(Q, P)) = w(P, Q). Moreover, we
also write the point-pair invariant function K (P, Q) as K(dg~ (P, Q)).

Let op € PSLa(C),—1) be an elliptic scaling matrix of P, i.e. opi,—1 = P. Using the PSLy(C),—1)-
invariance of pg-(Q), we observe that the integral

i K(P,Q)LU(Q,P) NH"(Q) = i K(dH"(Pv Q))w(dH"(P7Q)) HJH"(Q)

= n K(dun(opin-1,Q)) w(dun(0pin-1,Q)) pun(Q)

_ / K (e (in-1,05'@Q) @ (A (in-1,07'Q)) e (@)

= K (dH"L (in—la Q)) w (dH"L (in—l, Q)) Hmn (Q)
HTL
is independent of P. If we take into account that w(P, Q) depends only on A and set
A()‘>K) = - K(P?Q) W(P7 Q) MH"(Q) = - K(P’ Q)UJ(Q,P) MH"(Q)7

we obtain (Lf)(P) = A\, K) f(P), where the constant A(A, K) € C depends only on A and K.
O

3.3. Automorphic functions in H"

Let I' C PSLy(Cj,—1) be a discrete and cofinite subgroup. We now introduce the notion of auto-
morphic functions in H™ with respect to I'. These are complex-valued functions on H™ which are
invariant under the action of I'.

Definition 3.3.1. A function f: H" — C with the property

f(yP) = f(P)
for any v € I and P € H" is called an automorphic function with respect to I.

Remark 3.3.2. An automorphic function f : H® — C with respect to I' yields a well-defined
function IM\H™ — C, I'P — f(P) on the quotient I'\H".

It is immediate from the definition that the automorphic functions with respect to I', together
with the usual addition and scalar multiplication of functions, form a complex vector space.

Notation 3.3.3. The complex vector space of automorphic functions with respect to I' is denoted
by A(T'\H").

Remark 3.3.4. Let n; € Cr be a cusp with parabolic scaling matrix o,, € PSLy(C,_1) and
translational stabilizer subgroup I‘;H. Then

1
—11v 1%
Unj Fm’ On; = {(0 1)

NGAW}/{:‘:I}
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3.3. Automorphic functions in H"

for some lattice A,, C V;,_1; = R"~! of full rank n — 1 (see Proposition 2.6.18 (b)). Thus, for any

0 1
Let f be an automorphic function with respect to I'. For u € A,; and P = Py + w1051 € H"
we have

p € Ay, there is a matrix v, € F’m such that o), <1 N) = Y0,

Fon P =1 (o0, (5 1) P) = £u00,P) = 1o, P

so that the function f(o,,P) is periodic under the lattice A, with respect to Py. Therefore, a
smooth automorphic function f € A(T'\H") admits a Fourier expansion with respect to the cusp
n; of the form

flon, P) = Z Apsn; (Tn—1) it lo) — ao,n; (Tn-1) + Z sy (Tn—1) e%iw’PO)a (3.11)
MGA;;J, MEA:‘U,
n#0

where (-, -) is the usual scalar product on R?~! and
Ay =A{ne R™ ' | (u,v) € Z for any v € A, }
denotes the dual lattice of A, and where the Fourier coefficients a,,, (r,—1) are given by

1 )
) = P)e2milnPo) gp,.
@in, (Tn-1) covol(A,,) /Rnl/An, fow,P)e ’

j

Example 3.3.5. Let n = 2 and I" C PSLy(R) be a Fuchsian subgroup of the first kind. Moreover,
let n; € Cr be a cusp with parabolic scaling matrix o,, € PSLy(R) and stabilizer subgroup
'y, = (v,) for some primitive parabolic element ~,; (see Example 2.6.19 (a)). For an automorphic
function f € A(I'\H) on the upper half-plane H and z = = + iy € H we derive from v, € T the
identity

fm;o0,2) = floy,2).

Because of v, 0y, = 0y, (é 1) and (é D z = z + 1 this yields

f(gnj (Z + 1)) = f(O'an>7

so that the function f(o,,2) is 1-periodic with respect to x = Re(z). Hence, f has the Fourier
expansion

f = Z Amn; (y) eQm’m:c (312)

mEZ

with respect to the cusp 7;, where the coefficients a,,,, (y) are given by

1
A, (V) :/0 fon,2) e~ 2mime g

If f € A(T\H) is smooth, the series (3.12) converges absolutely and uniformly for z ranging over
compact subsets K C H.

Definition 3.3.6. For two automorphic functions f1, fo € A(I'\H"™) we define their inner product
<f17 f2> by

o= [ AOPVTP) o (P),

provided that the integral exists.
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3. Linear operators and automorphic functions

Now the pgn-measurable functions f € A(I'\H") satisfying the property
Fd) = [ ISP i (P) <,
r\Hn»

together with the inner product (-,-), form a complex Hilbert space.

Notation 3.3.7. The Hilbert space of ugn-measurable functions f € A(T\H") with (f, f) < o0
is denoted by £2(I"\H") and the norm on this space by

||f‘|£2(F\H") =V <fa f>

Remark 3.3.8. Since I'\H" has finite hyperbolic volume, every function f € A(I'\H") which is
bounded on T'\H" satisfies f € £2(I'\H").

3.4. Parabolic Eisenstein series

In this section we define an important class of automorphic functions in H™, namely parabolic
Eisenstein series. These are a generalization of the classical non-holomorphic Eisenstein series
on the upper half-plane H. We give some properties of parabolic Eisenstein series, and treat the
special case n = 2 in more detail as an example.

Let I' € PSLy(Cp—1) be a discrete and cofinite subgroup. Further, let n; € Cr (j € {1,...,cr})
be a cusp (see Definition 2.6.9) with parabolic scaling matrix o,, € PSLy(C,_1) (see Definition
2.6.16), stabilizer subgroup I';; and translational stabilizer subgroup F;,j (see Definition 2.6.7).

Definition 3.4.1. For P € H" and s € C with Re(s) > n — 1 we define the parabolic Eisenstein
series EP*(P, s) associated to the cusp n; € Cr by

EP(Ps)= Y an_i(og'yP)*, (3.13)
VELH;\I

where xn,l(U;jl’yP) denotes the x,,_-coordinate of a;jlvP.

Notation 3.4.2. In case we want to refer explicitly to the dimension n, we write E,f{aéj (P, s)
instead of E};’fr(P, s). If we want to refer explicitly to the underlying group I', we write Ellfdéj (P, s)

or EP% (P, s).

n,I',n;

Remark 3.4.3. We make two remarks on the above definition of parabolic Eisenstein series.

(a) If o} € PSLy(Cy—1) is another parabolic scaling matrix for the cusp 7;, then by Remark

o «

2.6.17 we have o/ = oy, 0 for some § = (0 a'> € PSLy(Cri—1) oo With a € Ty 1, || = 1,

i

-1 *
and 3 € V,,_;. This leads to 6! = (ao g? > and
J;n,1(an_j17P)

Pt (0 19P) = 2 (674 P) =

=Tp_1 (a,jjlyP)

for v € T',,\I'. Hence, the parabolic Eisenstein series E};’fr(P, s) is independent of the exact
choice of the parabolic scaling matrix oy,

(b) Some authors prefer to define the parabolic Eisenstein series associated to the cusp n; € Cr
as
Er(Pos)= Y an1(0,'vP)° (3.14)

el AL
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instead of (3.13). If § € I';,, then by Proposition 2.6.18 (a) we have

1. f[a af) 4
anj6—<0 a,)am

for some o € T,y with |a| =1 and 8 € V,,_;. For any ¢ € l";]j \I';,, this gives us

_ a _ xnfl(U_jl’YP) _
x”—l(aﬂj157p) = Tn-1 (<O Oé?) UT];‘1’YP> = W = ’In_l(anjl’yp)'

Since the index [I'y; : I'} ] = [}, \I';,| is finite by Lemma 2.6.11, we can rewrite the parabolic
Eisenstein series EP*" (P, s) from Definition 3.4.1 as

B (ps) = Y % S aai(og 0y P)

n; + Ly
YEL AL ! i 6el A\,

:ﬁ Z zn_l(agjlfyP)s.

T
1T yery AT

Therefore, the definitions (3.13) and (3.14) agree up to the factor [I'y; : I’} ], i.e. we have

Er(P,s) = [Ty, : Ty | E¥™(P,s).

We list several important properties of parabolic Eisenstein series. Throughout we omit the proofs
and just refer, e.g., to [CS80], chapter 6, instead.

Lemma 3.4.4. For P € H" and s € C with Re(s) > n—1 the series (3.13), defining the parabolic
Eisenstein series E,f;;“r(P, s), converges absolutely and locally uniformly. It is a holomorphic func-
tion for s € C with Re(s) > n — 1.

Lemma 3.4.5. The parabolic Eisenstein series E}i’fr(P, s) is invariant in P under the action of
T, i.e. we have

EP™ (yP,s) = B (P,s)
forany v €', P € H" and s € C with Re(s) > n — 1. Thus, we obtain EP**(P,s) € A(I'\H").
Lemma 3.4.6. For P = (zg,...,2n—1) € H" and s € C with Re(s) > n—1 the parabolic Eisenstein
series E,P]’f”r(P, s) is infinitely often continuously differentiable with respect to xg, ..., Tp—1.

Lemma 3.4.7. For P € H" and s € C with Re(s) > n—1 the parabolic Eisenstein series EP* (P, s)
satisfies the differential equation '

(Amn — s(n—1—s)) EP™(P,s) =0.
Hence, EP* (P, s) is an eigenfunction of Agn with eigenvalue s(n —1 — s).

If n, € Cr (k € {1,...,cr}) is a cusp of I' with parabolic scaling matrix o,, € PSLy(C),—_1)
and P = Py + xp—1in,—1 € H", then the function Eﬁfr(ank P, s) is periodic under the lattice A,,,
corresponding to the translational stabilizer subgroup F’nk, with respect to Fy. This leads to the
following Fourier expansion of Eﬁfr(P, s).

Theorem 3.4.8. For P = (xg,...,2p—1) € H* and s € C with Re(s) > n — 1 the parabolic
FEisenstein series ngr(P,s) admits a Fourier expansion with respect to the cusp np € Cr (k €

{1,...,cr}) of the form

n-1 ,
EY (o Prs) = 0k 21+, i (5) Tl Z Cusmy e (8) 224 Ks—"Z;l(27T |l ) 27 FO),
HEAT
p#0

where &y, is the Kronecker delta, oy, n, (s) is a meromorphic function, A, denotes the dual lattice
of Ay.s Cusn; i (5) € C and K, (z) is the modified Bessel function of the second kind (see (A.29)).
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Theorem 3.4.9. For P € H" the parabolic Eisenstein series Eg;“(P,s) admits a meromorphic

continuation in s to the whole complex plane. It has only finitely many poles with Re(s) > ”?71;
they are located in the interval (”T_l,n — 1] on the real azis and are simple. Moreover, there is
always a simple pole at s =n — 1.

Definition 3.4.10. The meromorphic functions ¢, ,, (s) (j,k = 1,...,cr) appearing in the
Fourier expansion in Theorem 3.4.8 are called the scattering constants, and the matrix

CI)(s) = (90777',771« (5))j7k'=1,~~70r
with the scattering constants ¢, ,, (s) as entries is called the scattering matriz.

Writing all parabolic Eisenstein series E};fr(P, s) (j=1,...,cr) together in a vector

EPY(P,s) := (ErFI’IaT(P, 8)yenes ES?;(R S))T ,
we obtain the following functional equation involving the scattering matrix.
Proposition 3.4.11. For s € C the vector EP? (P, s) satisfies the functional equation
EPY(Pn—1—38)=®(n—1—3s)EPY(P,s),

i.e. for j =1,...,cr we have the identity
cr
EP™(Pn—1—5)=> @p y(n—1—s)E(Ps). (3.15)
k=1
Corollary 3.4.12. For s € C the scattering matriz ®(s) satisfies the identity

dn—1—28)P(s) =1,

i.e. for j,k=1,... cr we have
cr
> (= 1= ) 0y (5) =5k (3.16)
1=1

We give a few further properties of the scattering matrix.
Proposition 3.4.13. The following assertions hold true.

(a) The scattering matriz ®(s) is symmetric, i.e. for j,k = 1,...,cr and s € C we have
Pk (S) = Pnr.n; (S)

(b) For s € C the scattering matriz ®(s) satisfies ®(5) = ®(s).

(c) The scattering matriz ®(s) is holomorphic for Re(s) = 251. It is a unitary matriz on this

line, i.e. for j,k=1,...,cr and t € R we have
L n—1 . n—1 .
Z Pngm (T + Zt) Prgm (T + Zt) = 0j,k-
1=1

(d) If ®(s) is holomorphic at some point s € C, then also EP** (P, s) is.

From parts (c) and (d) of the previous proposition one can draw the following fundamental con-
clusion.

Corollary 3.4.14. The parabolic Eisenstein series EN*" (P, s) is holomorphic on the line Re(s) =

n—1

"7_1. In particular, there are no poles with Re(s) = "3
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Example 3.4.15. We want to consider the case n = 2 and particularly the case I' = PSLy(Z)
in more detail. All the results stated in this example are well-known. A more extensive study
of parabolic Eisenstein series on H including proofs could be found, e.g., in [Hej06], [Iwa02] or
[Kub73].

(a) Let I' C PSLy(R) be a Fuchsian subgroup of the first kind, let ; € Cr (j € {1,...,cr}) be
a cusp with parabolic scaling matrix o,, € PSLy(R) and stabilizer subgroup I',,. Then for
z € Hand s € C with Re(s) > 1 the parabolic Eisenstein EJ’, (z,s) series associated to the
cusp 7; € Cr is denoted by E};’fr(z, s) and given by

EP*(z,8) = Z Im(an_jl'yz)s. (3.17)
’YGFT/J-\F

The series (3.17) converges absolutely and locally uniformly for z € H and s € C with
Re(s) > 1, and it is a holomorphic function for s € C with Re(s) > 1. The parabolic
Eisenstein series E}*"(z, s) is invariant in z under the action of I', so EP*'(z,s) € A(I'\H).
It satisfies the differential equation

(Am —s(1 —s)) EP*(2,8) = 0.

Therefore, EP®™(z, s) is an eigenfunction of Ay with eigenvalue s(1 — s) which implies that
it is a real-analytic function with respect to z = z + iy.

For z € H and s € C with Re(s) > 1 the parabolic Eisenstein series EP*(z, s) admits the
Fourier expansion '

By (og, 2, 8) = Z A (Y S) erimae
meZ

with respect to the cusp n € Cr (k € {1,...,cr}), where the coefficients are given by

VAl (s—3) 1o

aom; . (Y, 8) = 05k y° + sy Y " P (5);

s ‘m‘s—l
A, i (Y5 8) = () yt/? K, 12 [m|y) mim, . (5) (m #0).

Here, for m € Z the function ¢y, 5, (s) is given by

Pmin; i (8) = Z 25 Z exp <2mmc)
c=1

d mod c,
* ok -1
(c d)eg"lj Do,

The parabolic Eisenstein series E,P]’?r(z, s) admits a meromorphic continuation to all s € C.

It has no poles with Re(s) = 1 and only finitely many poles with Re(s) > %; they are located

2
in the interval (%, 1] on the real axis and are simple. There is always a pole at the point

s = 1 with residue )

Ress—1 EP¥ = —

ess=1 B (2 9) = S
While there are Fuchsian subgroups of the first kind with parabolic Eisenstein series having
many poles in the open interval (%, 1)7 in case that I' C PSLy(R) is a congruence subgroup,

the only pole of EP*(z, s) with Re(s) > jisat s =1.
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Furthermore, the parabolic Eisenstein series E,I;fr(z, s) satisfies the functional equation

E(z,1—s) Z‘Pmmk s) Eptt (2, s), (3.18)

where the scattering constants

@nj,nk(s) = I‘(s)2) P0s5n;,ms, (s)

fulfil the identity
angym SDVH 7]19( ) 7,k (j7k:17"'7cr)'

For n = 2 and the modular group I' = PSL3(Z) there are further interesting results about
parabolic Eisenstein series. In this case I' has only one cusp 7; = oo with o, = I, and for
z=x+1iy € H and s € C with Re(s) > 1 the parabolic Eisenstein series EY>"(z, s) is given

by
EP (2, 5) Z Im(yz)® Z M
2 lez +d|?s”
'Yeroo\r‘ (c,d)€Z2,
ged(e,d)=1

It admits the Fourier expansion

B (z,8) ="+ 0(s)y' "+ > om(s)y'/* K 1 (27 [m|y) 7"

meZ,
m;ﬁO

with respect to the cusp oo, where

Val(s—3) ¢(2s - 1)
T'(s) ¢(2s)

o(s) =

and

27’(5 mls— 1/2 .
Qﬁm(s)— ‘ ‘ Z dl—2

for m € Z, m # 0, with ((s) denoting the Riemann zeta function (see (A.28)). Moreover,
the functional equation (3.18) simplifies to

EP(z,1—5) = (1 —s)EY(z,s). (3.19)

The parabolic Eisenstein series ER*(z, s) has only one pole with Re(s) > 1; it is located
at s = 1 and the residue is Ress—1 E2*"(2,s) = 3/m. The famous Kronecker limit formula
provides information about the Laurent expansion at this pole (see e.g. [Sie80] or [Zag92]).
It states that for z € H the parabolic Eisenstein series ER2"(z, s) admits a Laurent expansion
at s =1 of the form

3 1 1 6—72¢"(—1) — 6 log(4m)

par _ 2. L 6 .
EP¥(z,8) = e R log (|A(2)]Im(2)°®) + - +O(s—1).
In this formula
3 2
A(z) = Eu(z)” — Eo(2) (3.20)



3.5. Spectral expansion

denotes the Delta function which is a cusp form of weight 12 with respect to I' = PSLy(Z),
where for k € 2Z with k > 4,

1 1 1
Ey(2) = Z [CETL =3 Z CETIE (3.21)

* ok 2
€l \I (e, d)ez=,
(C d) = ged(e,d)=1

is the normalized holomorphic Eisenstein series of weight k. As its name suggests, Fi(z) is a
modular form of weight k& with respect to I' = PSLy(Z). Further, from the functional equa-
tion (3.19) one can deduce that the parabolic Eisenstein series E2*'(z, s) admits a Laurent
expansion at s = 0 of the form

EP (2, 5) =1+ log (|A(z)|1/6 Im(z)) -5+ 0(s?).

3.5. Spectral expansion

Let I' € PSLo(C,,—1) be a discrete and cofinite subgroup, and let Ag» be the hyperbolic Laplace
operator on H™. In this section we consider the spectral expansion of a square-integrable auto-
morphic function with respect to I' in terms of eigenfunctions associated to the discrete and the
continuous spectrum of Agn. Referring to [S6d12], we also give some conditions under which this
expansion converges absolutely and locally uniformly on H™.

The hyperbolic Laplace operator Ag» defined on a suitable domain in £2(I'\H") has a unique
positive, self-adjoint extension to an operator on the whole space £2(I'\H"), also denoted by Apn.

Definition 3.5.1.

a unction f € is called a cuspidal function with respect to T' if in every cusp
A f i L2(T\H") i lled idal ti ith t T if i
nj € Cr (j = 1,...,cr) it admits a Fourier expansion of the form (3.11) with ag,,; (zn—1) = 0.

(b) We define C(T'\H") as the subspace of £L2(I'\H") of all cuspidal functions with respect to T

(¢) A cuspidal function f € C(T'\H") is called a cusp form with respect to T if it is an eigenfunc-
tion of the hyperbolic Laplace operator Agn.

Let EP*(P,s) be the parabolic Eisenstein series associated to the cusp n, € Cr (k = 1,...,cr)
introduced in Definition 3.4.1. Every pole s = s; of EP*'(P,s) with Re(s;) > 2-1 s related to
an eigenvalue \; of the hyperbolic Laplace operator Ay~ via A; = sj(n — 1 — s;). By Theorem
3.4.9 the poles s; are all located in the interval ("7*1, n— 1] on the real axis. The residue of the
parabolic Eisenstein series E};SY(P, s) at s = s; is an automorphic function with respect to I' which
is an eigenfunction of Ag» and an element of £2(T'\H").

Definition 3.5.2. We define R(I"\H") as the complex vector space that is spanned by the residues
of all parabolic Eisenstein series EP*(P,s) (k = 1,...,cr) at all poles s = s; in the interval
n—1
("gn—1].
7 N

n—1

As each EP*(P,s) (k = 1,...,cr) has only finitely many poles in the interval (%51, n—1] by
Theorem 3.4.9, the space R(I'\H") is finite-dimensional.

Definition 3.5.3. We define £(I'"\H") as the complex vector space that is spanned by the parabolic

Eisenstein series EP?(P,s) (k = 1,...,cr) along the line Re(s) = %51, i.e. by EP> (P, 251 + it)
(k: 1,...,CF).
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3. Linear operators and automorphic functions

The space £2(I'\H") decomposes orthogonally into Agn-invariant subspaces
L3T\H™) = C¢(T\H") @ R(T\H") & £(T\H").

The spectrum of Agn in C(I'\H"™) & R(I'\H") is discrete, while the spectrum of Agn in E(T'\H")
is absolutely continuous.

The discrete spectrum contains 0 and is a discrete subset of the non-negative real numbers [0, 00).
We enumerate the eigenvalues of the discrete spectrum by

0= <A <A <.

and write

n—1\"
)\j:< 5 )—i—rjz-:sj(n—l—sj),

ie. s; = "7_1 +dr; with r; > 0 or r; € [—i"T_l,O)7 so that either s; € ["T_l, ”;1 +ioo) or
s e (25t —1].

Remark 3.5.4. For a discrete subgroup I' C PSLy(C,,—1) which is geometrically finite, i.e. which
admits a convex fundamental polyhedron with finitely many sides, Lax and Phillips proved in
[LP82] that there are only finitely many eigenvalues \; of the hyperbolic Laplace operator Agm

on L2(I'\H") such that \; € [07 (";1)2), each of finite multiplicity (see also, e.g., [GM12]). By

[Wie77], Theorem 1 (a), every discrete, cofinite and torsion-free subgroup I' C PSLy(Cp—1) is
geometrically finite (see also, e.g., [Kel95], Satz 2.2.3). Further, if I' C PSLy(C),—1) is discrete and
cofinite but not torsion-free, it has a torsion-free subgroup T' of finite index which is also discrete
and cofinite (see also the proof of Proposition 2.6.14). Then I' admits a convex fundamental
polyhedron Py with finitely many sides, and because of T CT a convex fundamental polyhedron
Pr for I can be chosen as a subset of Pr. Consequently, also Pr has finitely many sides and I is
geometrically finite.

n—1

Hence, in the setting of this section there are only finitely many j € Ny with A; € [0, (T)z),
that is s; € (5%, n — 1] and r; € [—i %51,0).

Now we choose a complete orthonormal system of cusp forms in C(I'\H") and an orthonormal basis
in R(I'\H") out of which we choose an orthonormal basis {1;(P) | j € Ng} of C(T\H") ®R(I'\H"),
where each 1;(P) is an eigenfunction for the discrete eigenvalue \;.

In the case j = 0 we have \y = 0, sp = n—1 and ryp = —i "7*1, and the eigenfunction g (P)
associated to the eigenvalue 0 is given by

1
/vol(T\H")

For j > 1 the eigenfunction v,(P) is a smooth function and admits a Fourier expansion with
respect to the cusp n, € Cr (k=1,...,cr) of the form (see, e.g., [S6d12], section 4.1)

Yo(P) =

s n—1 )
V(o P) = aj;om, AN Z Qjspismye T2 Ksjf"T*l@ﬂ"Mxn—l)€2m<“’P0>a

;LEA;k,

n#0

where P = (20,...,Tn_1) = Py + Tp_1in_1 € H", A;, denotes the dual lattice of A, and K,(2)
is the modified Bessel function of the second kind. Here a;.g., = O is satisfied if ¢;(P) is a
cusp form. Otherwise ¢;(P) is a linear combination of the residues of the parabolic Eisenstein
series EP*(P,s) (I = 1,...,cr) at s = s; € (251,n —1]. In the case s; € [251, 251 4+ ic0),
ie. \j > (251)? and r; > 0, the function ¢;(P) is always a cusp form.
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3.5. Spectral expansion

The spectrum of Ag- in E(T'\H") is absolutely continuous and covers the interval [(”7_1)2 ,oo)

uniformly with multiplicity cp. The eigenvalues of the continuous spectrum are of the form

n—1\°
)\:( 5 ) +t2=s(n—1-5s),

ie. s =111t witht € R, so that s € (— — 00, = + zoo) The corresponding eigenfunctions
are given by the parabolic Eisenstein series EP* (P, Ly zt) (k=1,...,cr).

For a function f € £2(I'\H") there is a spectral expansion in terms of the eigenfunctions 1, (P)
associated to the discrete eigenvalues A; of the hyperbolic Laplace operator Ag» and the parabolic
Eisenstein series ED*(P,s) associated to the cusps ni, € Cr (k = 1,...,cr) (see, e.g., [S6d12],
section 4.1, and [CS80], chapter 7).

Theorem 3.5.5. Every f € L2(T'\H") admits the spectral expansion

Z% ¥ (P +Z/ e By P,Tl +zt) dt, (3.22)

where the coefficients a; and gy, are given by

=)= [ HQH@ @)

i = 57 [ SQ (5 +t) (@)

respectively. The series (3.22) converges in the L2(I'\H")-norm. Moreover, we have a correspond-
ing Parseval’s formula

o cr o0
Aoy = S la? +27 S / (o |? .
§=0 k=1

We want to give some conditions on f that are sufficient for the absolute and locally uniform
convergence of its spectral expansion on H”, so that equation (3.22) holds true as a pointwise
relation.

Proposition 3.5.6. Let kg = | 2| +1 and f € C?*o(H")NL*(I\H") such that AL, f € £2(T'\H")
forl=0,... kg. Then the spectral expansion of f converges absolutely and uniformly on compact
subsets of H™.

Proof. See, e.g., [S6d12], section 4.2.
O

Remark 3.5.7. By the Bessel inequality (see, e.g., [CS80], 7.3 and Corollary 7.7), applied with
the full spectral expansion (3.22) (see, e.g., formula (4.9) in [S6d12], and also [Iwa02], Proposition
7.2, for the case n =2), for T > 1 and P € H" we have

ST P |2+Z/ By P,——i—zt)’ dt = O (T + T Yp(P)" 1),

J€No:
|rj|<T

where

P) = ne P
Gh(P) = g i ana (o7 P)
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3. Linear operators and automorphic functions

denotes the invariant height function (see, e.g., [S6d12], section 2.3), and where the implied con-
stant depends only on I'. Particularly, for each j € Ny with |r;| <T we have the bound

[ (P)? =0 (T" +TYr(P)"") = O(T") (T — 00).

If r; > 1, letting T' = r;, for P € H" we obtain

[ (P) = OG}) (rj = 00) and  [u;(P)| = O (%) (r; = o0).

This yields the bound
n/2
sup [v;(P)| =0 (r}%)  (r; o),

PeHn

which will be essential in chapter 6, where we establish meromorphic continuations via spectral
expansions.

Remark 3.5.8. We want to rewrite the ”Eisenstein part”

i / 9o B3 ( P,T—Ht) di
1y (o "
3 [ reme(e

in the spectral expansion (3.22) arising from the continuous spectrum, in order to bring it into the
familiar form from the 2-dimensional case. Using the identity

n—1
+ it) for (P, S+ it) pn (Q) dt

(=1 —1
BN (P o= +it) = BR (P M= —it)

for P € H" and t € R and the functional equation (3.15), we have
N/ on—1 n—1
ar . r .
> ER (Q. " 5= +i(=) B (P "= +i(-))
-1 -1
_ Z Ep (Q, z't) ER (P, - zt)
n— X n—1 -1
=S (@5 ) Yoo (Mg i) (P )
L n—1
- Z g (P A= i) Zl%,m ("= —it) B (@ " S i),

The symmetry of the scattering matrix (see Proposition 3.4.13 (a)) and a second application of
(3.15) further give us

Y n—1 N,/ n—1
Z EY ( 5 + Zt) kz_:l@nk’m (T — zt)Ef;k (Q, —5 + zt)
- n—1 n—1
- ZEP( 7 ) emn (T —it) B (@ S + it
k=1
ar -1 ar n—1 .
=S (25 ) mp (025 )
—par n — 3 ar n—1 .
_ ];E};k (Q, 2= —|—zt) Ep? (P, o+ zt).
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3.5. Spectral expansion
This means that
R par n—1 | var ( p 1
5C, tes § EP (Q,—Q +zt) B ( TJrzt)

defines an even function. Thus, provided that all integrals exist, which is particularly the case if
the spectral expansion (3.22) converges absolutely and locally uniformly, we can write

cr
Z/ 9ty g:r P, T + Zt) dt
= %/0 /F\Hn (Z Epar( ’7 + t) EPer (R nT—l + zt)) e (Q) dt

k=1

— iﬂ /o; /F\]HI" (Z E,I;:r( ’n 1 +zt> B (P, anl +z‘t)> L (Q) dt

k=1

cr 00 L _ B
“ [ E (@ ) (p g ) @)
CZF/ Aty Epwr P,T +Zt) dt,

where the coefficient ay ,, is given by
par -1
At = fQ)E (Q, — Tt Zt) pin (Q).-
T\H"

In chapter 5 we use this form of the spectral expansion of a function f € £2(I'\H").
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4. Hyperbolic and elliptic Eisenstein series
in H"

In this chapter we introduce the functions on the hyperbolic upper half-space H that are the main
objects of this thesis. We define hyperbolic Eisenstein series associated to a pair (Q1,Q2) € Hr of
hyperbolic fixed points of a discrete and cofinite subgroup I' C PSLy(C,,—1) and elliptic Eisenstein
series associated to a point () € H™ in the first and second section, respectively, and investigate
their basic properties. These series are generalizations of hyperbolic and elliptic Eisenstein series
on the upper half-plane which have been considered before. Moreover, in the third section we
define the hyperbolic kernel function, that will act as a kind of auxiliary function, and study its
properties.

4.1. Hyperbolic Eisenstein series

In [KM79] Kudla and Millson introduced form-valued non-holomorphic Eisenstein series on the
upper half-plane H which are associated to hyperbolic elements of a Fuchsian subgroup of the first
kind, and called them ”hyperbolic Eisenstein series”. Later, scalar-valued hyperbolic Eisenstein
series on H were investigated, e.g., in [Ris04], [Fal07] and [JKP10]. Analogues in higher dimensions
were considered, e.g., by Irie who studied hyperbolic Eisenstein series in H? that are associated to
hyperbolic or loxodromic elements of a cofinite Kleinian group I' C PSLy(C) in [Iril9b], as well
as hyperbolic Eisenstein series in the upper half-space H" that are associated to an involution
in [Iril9a]. We now introduce hyperbolic Eisenstein series in H" that are associated to a pair of
hyperbolic fixed points of a discrete and cofinite subgroup I' C PSLy(C,—1). We determine its
range of convergence and prove several other of its basic properties. To be more precise, we find
that the hyperbolic Eisenstein series is invariant under the action I', bounded and square-integrable
on I'\H", a smooth function, and fulfils a certain differential equation under the hyperbolic Laplace
operator.

Let T' C PSLy(C),—1) be a discrete and cofinite subgroup. Further, let (Q1,Q2) € Hr be a pair
of hyperbolic fixed points with hyperbolic scaling matrix o(qg, g,) € PSL2(C,_1) and hyperbolic

stabilizer subgroup F?gz 0. and let L(g, q,) be the unique geodesic in H" connecting Q1 and Q».

Definition 4.1.1. For P € H"” and s € C with Re(s) > n — 1 we define the hyperbolic Eisenstein
series E?yp (P, s) associated to the pair (Q1,Q2) € Hr of hyperbolic fixed points by

Q1,Q2)
h; —s
ERP o) (Prs) = > cosh(dun (VP Lqy.0.))) " (4.1)
VEL(R, )\
Notation 4.1.2. In case we want to refer explicitly to the dimension n, we write Ezy(lzgl Q) (P, s)
instead of E?Cy;l’ Q2)(P, s). If we want to refer explicitly to the underlying group I', we write
h h . h

EF?(lean) <P’ S) or Eﬂ?ﬁ(Qth)(P’ s) instead of E(éi@z) (P, S)

Remark 4.1.3. We make two remarks on the definition of hyperbolic Eisenstein series.

(a) In Remark 1.2.2 we have noted that for n > 3 the hyperbolic distance of a point P =
To,.-.,Tn_1) € H" to the positive x,_1-axis L o) satisfies the identity
(0,00)

P 1
cosh(dmn (P, L(0,00))) = cosh(dmn (P, (0,...,0,|P]))) = a;| _|1 = cos(0 1 (P))
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4. Hyperbolic and elliptic Eisenstein series in H™

with 6,,_1(P) as in Definition 1.2.1 (b). As the element T(Q1,@2) € PSLy(Cr—1) maps Lg,0)
onto the geodesic L, q,), and the hyperbolic distance is PSLy(C),_1)-invariant, for n > 3

the hyperbolic Eisenstein series E(Q1 Q2)(P, s) can be written in terms of the hyperbolic

coordinates u,01,...,0,_1 as
h, —s
B qnPs)= > cosh(du (YP.0(q1.0:L0.x))
T o\
1:Q2)

Z cosh (d]HI" (Ufcgll,Qz)VP’ ‘C(OVOO))) B

~yerbyp \I

(Q1,Q2)
—1 S
Zn-1(o 7@ 07P) 1 .
-y (et L S (e (riden?)
’Yer?éri@z)\r (Q17Q2) ’yer?éliv@z)\r
Analogously, in the case n = 2 we have by Remark 1.2.2
lz] 1

cosh(du(z, L(0,5))) = cosh(du(z,1i|z|)) = ;o M’

where z = © + iy € H and 0(z) is given as in Definition 1.2.1 (a). Hence, the hyperbolic

Eisenstein series Ehy(lzgl Qz)(z, s) can be written in terms of the hyperbolic coordinates u, 6
as
h —1 o
E }E%hQ?)( s) = Z cosh (dH (O’(Qth)fyZ’E(O’OO)))

hyp
’YEF(QLQz)\F

- s (BB 5 i)
\ ~yer

z
hyp | (Q1 ,Qz)’y | hyp
'YEF(QLQz) (Ql:Qz)\F

(b) The hyperbolic Eisenstein series E(ép Q> )(P, s) can be expressed as the Stieltjes integral

EGyr g2 (P 5) :/0 cosh(u)™* AN@P o (u; P), (4.2)

where N(gp @»)(; P) denotes the counting function
h h
N(gpQ )( P) = |{FY < F(g?i)sz)\F ’ dH"(FYP’E(Qth)) < u}|

In the rest of the section we give some elementary properties of hyperbolic Eisenstein series. We
start by proving its absolute and locally uniform convergence.

Lemma 4.1.4. The following assertions hold true.

(a) For fired P € H™ the series (4.1), defining the hyperbolic Eisenstein series E(Q Qs )(P,s),

converges absolutely and locally uniformly for s € C with Re(s) > n — 1, hence it defines a
holomorphic function there.

(b) For fized s € C with Re(s) > n — 1 the series (4.1), defining the hyperbolic Eisenstein series

?g)p 0» )(P, s), converges absolutely and uniformly for P ranging over compact subsets of H™.

Proof. The proof is similar to the 2-dimensional case (see [Pip05], see also [KM79]), but we have
to make some adaptations for general n.
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4.1. Hyperbolic Eisenstein series

(a) We write s = o 4+ it € C and assume that o = Re(s) > n — 1. First we suppose that the
hyperbolic fixed points are given by @)1 = 0 and )2 = oo and prove the assertion for the
hyperbolic Eisenstein series

Eég:go)(P, 8) = Z COSh(dHn (’yp,[,(o’oo)))is

hyp
’YEF(O,OQ)\F

Choosing 0(g,,0.) = 0(0,00) = I as hyperbolic scaling matrix, by Remark 4.1.3 (a) we can

write (4P
h; Tn—1 "YP
A= 3 ()
YErRP \I

hyp _ pur 0

for some p € R, 1 > 1, by Proposition 2.6.31 (b), the set

Since

m e z} J{£I}

]?F?gp):{PeH”|1<|P|<u2}

is a fundamental domain for Fzg};@)'

Now let P € H™ be fixed. Due to the definition of a fundamental domain, for any v € T’
there exists an element 7' € F(o o) Such that ~'yP € ]-"thp ) and v’y € T represents the

same right coset in rhy \I‘ as 7. Therefore, the representatives v € I' of the right cosets

(Ooo

F}(lgio)\I‘ can be chosen such that they all satisfy vP € ]—'thp , and even 1 < |yP| < p?.
(0,00)

This implies that |yP| > 1 for any v € F(o o) \F7 so we obtain the bound

Ereals 2 |(=pR0) = 2 EpEe S ke

VETP A\ YET P\ VETIP\T

The function H* — C, R — x,,—1(R)*® is an eigenfunction of the hyperbolic Laplace operator
Apgn with eigenvalue A = s(n — 1 — s) as

s 2 32 0 s
AH" z”—l(R) = Tp—1 O a2 + (n - 2) Tn—1 Wl Ty

n—1
=-s(s—1aj_1+(n—-2)sa;,_y =s(n—1-s)aj_,.
Moreover, for € > 0 we define the function

]., if dHn (R, Q) < 5,
0, otherwise,

KE PHY x H* — {0’ l}a KE(Ra Q) = {

which clearly is a point-pair invariant function. Thus, it yields a PSLy(C,,—1)-invariant
integral operator L. which is given by

(L) = [ Ke(R.Q)1(Q) i (@)

By Proposition 3.2.13 there is a constant A, = A (), K.) € C, depending only on A and K.,
such that
Ls xn—l(R)s == As xn—l(R)sa
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i.e. for any R € H" we have

i (R) = Ai Ko(R.Q) 2n1(Q)° pssn (Q) = Ai /B oy E (@ (@)

Hn

where B.(R) denotes the open hyperbolic ball with center R and radius e.

Now let ¢ = £(P) > 0 be chosen sufficiently small such that the open hyperbolic balls
B.(p)(vP) with center vP and radius ¢(P) do not intersect for all v € thp ~o) \I' and are all
contained in the open box

(_MQ’MZ)n—l % (07M2) C H".
Such an e(P) exists since T' acts discontinuously on H". Then by our above considerations

we have
1

T OP)" = 3 (P)

[ @ (@
<«p)(YP)

for any v € F(o OO)\I‘ Hence, writing @ = (yo,...,Yn—1), we obtain the bound

3 |xn1<vP>3|sAiP)| 3 / [20-1(Q)] 12 (Q)

YETP \D YETP AT Be(py(vP)
1 J,
= Tp-1(Q)7 prn (Q)
‘AE(P)| ; Bepy(vP)
Yp—1 Yo .. dyn—2 dyn—
“woil / et s
e / I . 7 Gl
|A€(p ‘ 0 ! |A5(p)| c—n+1
2n—1 M2O’

CJAcpyl (0 —n+1)

where we used that 0 > n — 1. This shows the absolute and locally uniform convergence of

the series E(gp )(P;s) for s € C with Re(s) >n — 1.

For the general case let (Q1,Q2) € Hr be an arbitrary pair of hyperbolic fixed points of
I'. Then by Remark 2.6.39 the group O‘(Q an L o@ae) S PSLs(Cy—1) is a discrete and
cofinite subgroup with the hyperbolic fixed points 0 and oo and

hyp
— —1 _ 1 hyp
5= ("(cgl,Qz)F"(Qth))(o o) 7(Q1.22) V(@1.Q2) 7(@1.Q2)-

For s € C with Re(s) >n —1 and Q := O'(Q Q)P this gives us

EDYP (Q,s) = Z cosh(dmn (YQ, L(0,00))) " *

9(@1.02) L 9(Q1,02),(0,20) 1
vES\ (‘7(@1 ot "(QLQQ))

>, cosh (dH" (g(_Qlva2)70-(QlaQ2)Q7 [:(0700))) h

hyp
TEL(G o\

= Y cosh(du (YP,0(q1.00)L(0.00)))

hyp
YEL Q1 0\

= Y cosh(dun (VP L£(g1.00)) 0 = B, o0 (Prs)-

hyp
€L Q1 00 \1
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4.1. Hyperbolic Eisenstein series

Thus, the absolute and locally uniform convergence of E (Q, s) for fixed
?(@1.02) [ 7(@1,22):(0,%0)

Q@ € H" and s € C with Re(s) > n—1, proven above, implies the absolute and locally uniform
convergence of Er (01.0,)(D: ) for fixed P € H" and s € C with Re(s) > n — 1.

This proves the claim for an arbitrary discrete and cofinite subgroup I' C PSLy(C,,—1) with
the pair (Q1,Q2) of hyperbolic fixed points.

(b) Let K C H™ be a compact subset. Then the constant e(P) in part (a) of the proof can be
chosen uniformly for all P € K, i.e. as

€:= min e(P).

Through this ¢ we also obtain a uniform constant A, = A py for all P € K, satisfying

[Ae| = min |Ac(p)].

Hence, for fixed s € C with Re(s) > n — 1 the series E(g;p 0s )(R s) converges absolutely and

uniformly on K.

O
We can easily conclude from its definition that the hyperbolic Eisenstein series is I'-invariant.

Lemma 4.1.5. The hyperbolic Fisenstein series E(Q Qs )(P, s) is invariant in P under the action

of I, i.e. we have

hyp hyp
E@Q) 0P 8) = B q,)(F:5)

for anyy €T, P € H" and s € C with Re(s) > n — 1. Thus, we have E™, P, s) € A(T\H").

@1
Proof. If v € T is fixed, then 77y runs through a system of representatives for F(Q Q2) \I' if and

only if 17 does. This implies

E on(Ps) = > cosh(dm (mP,Lig,.0)) "

hyp
nEF(QLQz)\F

h,
= Y cosh(du (0P £01.02)) " = B ) (Prs)-

hyp
neF(Ql,Qz)\F

O

Now we show that the hyperbolic Eisenstein series is bounded on T'\H" and therefore a square-
integrable function.

Lemma 4.1.6. For s € C with Re(s) > n — 1 the hyperbolic Eisenstein series Eéglf Qz)(P,s) is

bounded on T\H" and satisfies E;gp o (Pr8) € L2T\H™).

Proof. For s € C with Re(s) > n — 1 the series E(ép 0» )(P,s) converges absolutely and locally

uniformly on H", so it only remains to prove that the hyperbolic Eisenstein series is also bounded
at the cusps of T\H".

For that we first assume that the hyperbolic ﬁxed points are given by @1 = 0 and Q3 = o©
and consider the hyperbolic Eisenstein series E(o )(P,s). As oo is a hyperbolic fixed point of

hyp
(0,00

representatives 11, ...,7, of the cusps such that n; € R ! with 1 < In;| < p? (5 =1,...,cr).
Now the bound

I, Lemma 2.6.3 (a) implies that oo is no cusp of I'. Because of T’ y € T' we can choose the

hyp 2n—1 MZU
EMP (P ‘ <
‘ 0.9 (%) |Accpy| (0 =n+1)
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4. Hyperbolic and elliptic Eisenstein series in H™

in the proof of Lemma 4.1.4 (a), where 0 = Re(s), shows that E(hyp

0.00) (Ps 8) is bounded for P — ;.

In the case of an arbitrary pair (Q1,Q2) € Hr of hyperbolic fixed points of T' we have seen in
the proof of Lemma 4.1.4 (a) that 0(_6211 01 0@10:) S PSLy(Cj—1) is a discrete and cofinite

subgroup with the hyperbolic fixed points 0 and oo, and for s € C with Re(s) > n — 1 we have

Ehvp

h
r(Qnqn) (D 8) = BN

P,
701,02 L 7(@1.02):(0, oo)( (Q1,Q2) S)

Moreover, if n; € Cr is a cusp of I', then a(leth)nj is a cusp of 0'(22117622) I'oq,,q,) by Remark
2.6.20. Now the boundedness of Er (01,2 )(P, s) as P tends to 7, is established by the boundedness

of EhXP; P,s) as ot P tends to o,

(Q Q2)FU(Q1 Qo) (0 OO)( (Q17Q2) (leQ ) (Ql Q2 )77‘7

Since I' C PSLy(C),—1) is a cofinite subgroup, the hyperbolic volume vol(T'\H") is finite. Together

with the boundedness this proves that Ezgp Qn)(Prs) € L£2(T\H"). -

The next lemma gives us that the hyperbolic Eisenstein series is a smooth function in P € H".

Lemma 4.1.7. For P = (z9,...,2p_1) € H" and s € C with Re(s) > n — 1 the hyperbolic Eisen-

stein series E(hélf Qg)(P’ s) is infinitely often continuously differentiable with respect to xg, ..., Tp_1.
hyp a b .
Proof. For fixed v € I' | o, )\F we let O'(Q Q)= (c d) € PSLy(Cy,—1) and write

gy(P) : = cosh(dun (VP, L(q,,0,))) = cosh (dHn (U(QIDQQ)'YP’ E(o,oo)))

-1 Tp_1 |cP + d|~2 Ty
Tn-1 (U(Qth)’YP) ' | | '

If a # 0, we can write |aP + b| = |a(P + a™1b)| = |a||P + a™1b], and a™*b € V,,_1 2 R" lisa
vector by the definition of PSLy(C,,_1) and Proposition 2.1.17. Letting a='b =: (yo,...,Yn_2), we
get

—1
0@ P |@PB) (P At aP+bleP +d

n—2

P +b = la| \| > (z; +y;)> +22_,.
=0

Analogously, if ¢ # 0, we write [cP +d| = |c(P+c¢7'd)| = |¢| |[P+c'd|, and ¢7'd € V},_q 2 R*!

is a vector. We set ¢=*d =: (20, ..., 2n_2), 0 that
n—2

|cP +d| = |c| Z(asj + 22+ 22,
3=0

Note that the equalities a = 0 and ¢ = 0 cannot be fulfilled simultaneously. Hence, we have

ol lel /S22y + )2 + 22 1¢zj 2wy ) a2,

, fa#0,c#0,
bl |e (xj+ 2 —|—m72_
gu(p) = | PIAVES @2 vat s (13)
LTn—1
lal [d] /3255 (; + ) + 27,
Tn—1
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4.1. Hyperbolic Eisenstein series

Since x,—1 > 0, in each of the cases in (4.3) the function g-(P) is infinitely often continuously

differentiable with respect to the coordinates o, . . ., z,,—1, and the same is true for g, (P)~°, where
s € C with Re(s) > n — 1. Therefore, for any multi-index o = («v, . .., an—1) € Ny the derivative
ol s ol .
P cosh(dun (VP, £(q,,02))) " = W cosh(dun (VP, £(Q,,Q.)))

exists and is continuous, and we are allowed to arbitrarily interchange the order of differentiation.
We are left to prove that for any o € Nj the series of partial derivatives

olal . ol .
Z 9P« cosh(du (VP £(Q1,2))) " = Z arﬁgv(P) (4.4)
VEL(G, ) \T VEL(R, 1o \T

converges absolutely and uniformly on compact subsets K C H"”, provided that Re(s) > n — 1.
This is done in eight steps.

We assume that a # 0 and set h.(P) := Z;:OQ(xJ +y;)* +2%_,, where (yo,...,yn—2) = a " 'b.

In the first step we show that for any e = (v, ..., a,—1) € Nj there exists a constant A, (K) > 0,
depending only on the compact set K, such that

x|
P < Aa(8) (P (@.5)

for any”yeI‘(Q Qs )\F and P € K. For a € Nj we find

hy(P), if |af = ZO‘J—O

2(xg +yx), if ap =1 for some k € {0,...,n —2} and Zaj:O,

7=0,
J#k
gl =
Wh’y(P) =\ 2%p-1, ifap1=1and Zaj =0,
Jj=0

2, if ap =2 for some k € {0,...,n— 1} and Zajzo,
g
Jj#k
0, if o,y > 1 for some k,l € {0,...,n— 1} with k #1
or ay > 3 for some k € {0,...,n — 1}

We verify the bound (4.5) separately in each of these five cases. Both for gl‘.%h (P) = 0 and
gl‘%h.y(P) = h,(P) the bound is immediate. If o ~(P) =2, we find

P>
lex| 2h (P 2
(P 2= e 2 < 2 )
Yjool(zity)?+tan_y  Taa

In the case m‘,%h (P) = 2x,,—1 we obtain

21‘n1h() < 2

n—2 ’
Yo (@)t tan T Tn-t

olel
’apahv(P)‘ =2Tp_1 =
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4. Hyperbolic and elliptic Eisenstein series in H™

And for g%hﬂ,(P) = 2(zk + yg) for some k € {0,...,n — 2} we get

2 |xk + yi| b~y (P
2wl baP) (-
ijo (@ +y;)* + 24 Tn—1

Hledl
o7

wP)] = et gl =

where we used that

n—2

lzg + yr| < max(1, (zg +yx)?) < max | 1, Z(x] +y)t ol
=0

This proves that in each case there is a constant Ao (K) > 0, depending only on K, such that the
bound (4.5) is satisfied for any v € I'¥? _ \TI' and P € K.

(Q1,Q2)
In the second step we show by induction over the order |a| that for any e = («g, ..., n—1) € Nj
the partial derivative
glal | n=2 glel
2pa @ity a, = apa V(P
j=0

is a finite sum of summands of the form

Lo T a|ﬁ(j)‘
tehy(P) 57T H Whv(P), (4.6)
j=1
where t € Q, r € Ng with 7 < |a| and 8Y) € N? (j = 1,...,r) are multi-indices with Z;Zl }ﬁ(j)’ =
|at|. In the case || = 1 this is a consequence of

0 1 0

——\/hy(P) = = ho(P) Y2 —h (P

5o\ (P) = 5o (P) 2 S (P)
fork=0,...,n—1. Now let & € N} with || = m+1 for some m € N. Then there is a multi-index
o = (op,...,al,_1) € Ny with |a’| = m such that ax = o), + 1 for some k € {0,...,n — 1} and

aj =« for j # k, and we have

olel 9 [ ol¢l
7pe hy(P) = Do (apaf\/hv(P)) :

Employing the induction hypothesis, the partial derivative in the bracket is a finite sum of sum-
mands of the form (4.6), where t € Q, r € Ny with » < m, and ﬁ(j) eNp (j=1,...,r) are
multi-indices with Z;Zl ‘ﬁ(j )‘ = m. If we differentiate such a summand with respect to the
variable xj, we obtain

9 t-ho(P)/2r - LIﬁm'h P
Txk ’ w( ) .H(’*)Pﬁm 7( )

Jj=1

r 7
=t- (1 _T) Chey (P)Y/27 0D ihv(P) . H ol h~(P)

2 3Z‘k L W v
j=1
- a [ olB? o ol8)]
. 1/2-r Y [ ) ar
+; t-hy(P) B <6Pﬁm hy(P) E opa ()|
1#]
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4.1. Hyperbolic Eisenstein series

which is again a finite sum of summands of the form

’ 1/2—7' " 8"81m|
t 'h’Y(P) : H

Jj=1

spr (),

where t' € Q, v’ € Ny with v’ <m + 1 = |a], and ﬁ'(j) e Ny (4 =1,...,7") are multi-indices with
>im1 ‘5/(3)’ =m+ 1= |al. As the derivation is linear, also the derivative gl‘% h~(P) is a sum

of summands of the asserted form, completing the second step of the proof.

In the third step we deduce from the first two steps that for any o € Njj there exists a constant
B (K) > 0, depending only on K, such that

gled
O Jin(P)| < Ba() /i (P) (47)
OP>

forany v € F%‘l” @, \I'and P € K. In the second step we have seen that the derivative % h~(P)

is a finite sum of summands of the form (4.6). Moreover, by the bound (4.5), for each of these
summands there are constants Agy) (K) >0 (j =1,...,7), depending only on K, such that

- r alﬁ(j)‘ - r a‘ﬁ(j)‘
(P2 T (P = Il (P2 T | S (P)
Jj=1 j=1
< |t| - by (P27 H (Agir (K) - hy(P)) = [t| - \/hy(P) - H Agin (K)
j=1 j=1

for any v € F}(]yli Qz)\F and P € K. Now the sum of the terms [t| - [[;_; Agw (K) in the finitely

many summands of % h(P) is a constant Bq(K) > 0, depending only on K, such that the
bound (4.7) holds true for any v € F%‘z o, \I'and P € K.

In the fourth step we prove that for any a = (ay, ..., an—1) € N there is a constant Cq(K) > 0,
depending only on K, such that

olel 1

I < Cu(K) - 4.8
oOP> x,,_1| — ( ) Tp—1 ( )
for any P € K. For o € Njj we easily see that
(=) apy! =
1+amn—1 it Z Qaj = 0,
olel 1 B Tp—1 j=0
opPe Tp—1 a n—2
0, if Y a;>1
j=0

In the second case the bound (4.8) is obvious, while in the first case it follows from

‘ 3“"‘ 1 - Ckn,ﬂ - O[n,1! 1
— T¥an_1  0n-1 :
oP™ x,,_4 l’ntolé ! T, 1 Tnp-1

This finishes the fourth step of the proof.
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4. Hyperbolic and elliptic Eisenstein series in H™

In the fifth step we infer from the previous two steps that for any a € Nf there is a constant
Do (K) > 0, depending only on K, such that

0 h., (P
— K)- ﬁ (4.9)
8P CCn 1 Tn—-1
for any v € F(Q Qs )\F and P € K.
Recall that for two multi-indices a = (g, ..., @n-1),8 = (Bo,- -, Bn-1) € Nj we have

B<la < Bj<a; forallj=0,...,n—1

(Z) ﬁ'aﬁ H =T_[()

Now the product rule for partial derivatives ylelds

Al /i (P) _ > <a> Pl gle—Bl

(P) e ——.
oP« ITn—1 ﬁ 8Pﬁ 8P°‘*ﬁ Tn—1

and

BENg,
B

Consequently, by (4.7) and (4.8) there are constants Bg(K), Co_g(K) > 0, depending only on K,

such that
\5|\/7 Hla—5l 1
< 3 () |5y 5

5‘P°‘ In 1 "
BeENG,
BLla
o 1
< > () BotK) - /ha(P) - Cap() -
BENE, n—1
BLa

— M . ﬁ%) <g> -Bg(K) - Co_p(K)
BLla

for any v € I‘(Q Q2) \I" and P € K. This proves the asserted bound (4.9), where the constant

Dali)i= 3= (§) - BalK) - Caal)

depends only on K.

In the sixth step we conclude in each of the three cases in (4.3) that for any o € Njj there exists
a constant Fo (K) > 0, depending only on the compact set K, such that

‘ gl

Gt (P < EalF) - 0:(P (1.10)

for any v € I‘}(IZ'QII)’QQ)\F and P € K.

In case that ¢ = 0, we have a # 0 and

n—2
lal |d| \/Zj:o (zj + ;)% + 25 _ lal|d] /A, (P)

Tn—1 Tp—1

9(P) =
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4.1. Hyperbolic Eisenstein series

Hence, the bound (4.9) from the fifth step immediately yields

a | \/7

<la|-|d| - Da(K) - Y222 =
o L < ol Da()

olel
Spaon(P) = llld

for any ~y € Ft’gﬁ Q2)\F and P € K.

If a = 0, then ¢ # 0 and

18] |c] \/zj gtz aioy Jbllel B (P)

n—1 Tn—1

ng

with A ~(P) = Zj O(mj + 2;)% +22_,, where (20,...,2,—2) = ¢ 'd. If we replace y; by z; for
j=0,...,n—2, then completely analogous to the first five steps of the proof we obtain the bound

glel \/hy(P) 7 (P)
— Y < N S .
ope | S Do (K) - (4.11)

for any v € TP I'and P € K, with D, (K) as in (4.9). This gives us
(Q1,Q2)

ol VI (P)] 0] - |e| - Da(K) - VB Da(K) - 9:(P)

olel
‘ 8Pa Tp—1 - Tn—1

S (P)] = e

forany’yEprQ)\FandPEK

Moreover, for a # 0 and ¢ # 0 we have

|al || \/ZJ Zo (@i +y)E+an g \/E; o (@it 22+, B lal |c] v/ (P) %'y(P)
ITn—-1 '

Tn—1

g'yP

From the product rule and the bounds (4.7) and (4.11) we derive the existence of constants
Bg(K),Dq-p(K) > 0, depending only on K, such that

‘ gle olel /1y (P) /1 (P)

S (P)| = lalle | e Y

a\ﬂl % 3Ia B (P)
BeNg,
B<a

h. (P
<lalld ( ) K) /(P Do) - L2

BeNT,
B<Lla

—0?-| T (“) B(K) - Da_p(K)
,3’3€<N§,

for any ~y € Ft’gﬁ Qz)\F and P € K. This proves the bound (4.10), where the constant

Eo(K) = *) . Bs(K) - Da_p(K)
%g(ﬁa) 7 ?
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4. Hyperbolic and elliptic Eisenstein series in H™

depends only on K, and completes the sixth step of the proof.

In the seventh step we show by induction over |a that for any o = (ag,...,an—1) € Nj the
partial derivative

ol _, ol .
pa coshdm (7P, £Q1,0:)) ™" = 552 9v(P)

is a finite sum of summands of the form

r 8|B(J')|
p(s) - g4 (P)*7"- H WQV(P% (4.12)

j=1

where p € Z[X] is a polynomial with integer coefficients and deg(p) < ||, r € Ny with r < |a],
and BY) ¢ Ny (j = 1,...,r) are multi-indices with Z;zl |,6'(J)| = |a|. In the case |a] = 1 this
follows from

0 0
7 P) 5 = _g- P —s—1 _~ P
Oz 9+(P) s+ gy(P) Ok 9+(P)
fork=0,...,n—1. Now let & € N} with || = m+1 for some m € N. Then we can choose a multi-
index o’ = (), ..., 1) € Nj with |&’| = m such that oy, = o), + 1 for some k € {0,...,n —1}

and a; = of; for j # k, and we write

Hlel 9 [ ol¢l

- P - —_ ____ I P —s .

apag’Y( ) aIL'k (apa/gv( )
By the induction hypothesis the partial derivative in the bracket is a finite sum of summands of
the form (4.12), where p € Z[X] is a polynomial with integer coefficients and deg(p) < m, r € Ny
with r < m, and B8Y) € Ny (j =1,...,r) are multi-indices with Z;:1 |,6(J)| = m. Differentiating
such a summand with respect to the variable zj gives us

9 r a|ﬁ(j)|
— | p(s) - g (P) " [ [ 55794(P)
oxy, ok opPBY
i 9 r a|ﬁ(j)|
=p(s) (=5 =) gy (P) "0 g (P) - [ 5 e on (P
j=1

R PN ey
+ p(s) gy(P)"7" o | —=z559(P) | - —=a9+(P) |,
= Oz \ OPP i1 opPs8

I#j
which is again a finite sum of summands of the form
P(s) gy (P) 77 H LUy
G ope

where p’ € Z[X] is a polynomial with integer coefficients and deg(p’) < m+1 = |a|, ' € Ny with
r' <m+1=|al,and 8% € N (j =1,...,r') are multi-indices with > i1 ’,6"(])| =m+1=lal
—S

The linearity of the derivation implies that the same is true for the derivative g%gy(P)

In the eighth and last step we finally conclude that any series (4.4) converges absolutely and
uniformly on compact subsets K C H", provided that o := Re(s) > n — 1. From the previous step
we know that the derivative

gled . Hlel .
TPO‘ COSh(dHn (’YP7[’(Q1,Q2))) = WQW(P)

96



4.1. Hyperbolic Eisenstein series

is a finite sum of summands of the form (4.12). By the bound (4.10) from the sixth step, for each

of these summands there are constants Egi)(K) >0 (j = 1,...,7), depending only on K, such
that

a|[3(j)| r a|[3(.7‘)‘
p6) (P T g on (P = )0 ()0 apwgm’
<|p(s)| - g,(P)"77"- H (Eg(j)(K) - g9+(P)) = Ip(s)| - g(P H Ego) (K

for any v € rhp I" and P € K. The absolute and uniform convergence of the series
(Q1,Q2)

S [p(s)]g, (P H Ego (K) = p(s)|- H Ego(K) Y cosh(dun (4P, Lig1,02)) 7
Yy p hyp
VET (G ) \T V€L Q) o \I

on K now follows from Lemma 4.1.4 (b), provided that ¢ > n — 1. This proves the absolute and
uniform convergence of the series (4.4) on compact subsets K C H" for o > n — 1.

O

In contrast to parabolic Eisenstein series, the hyperbolic Eisenstein series E Q )(P,s) is no

eigenfunction of the hyperbolic Laplace operator. However, it still fulfils a certaln differential

equation under Ag. involving the shifted function E;g‘l’ Q) (Prs+2).

Lemma 4.1.8. For P € H” and s € C with Re(s) > n — 1 the hyperbolic Fisenstein series
E(héﬁ’ Qg)(R s) satisfies the differential equation

(Apn — s(n —1—s)) EélyP’Qz)(P,s) s Ezgp QQ)(P7S +2).

Proof. We first assume that n > 3 and use the hyperbolic Laplace operator
2 X 1 02 02
Agn = —cos(0,_1)? = — —— —cos(0n_1)*
du? kZ:l (H] iy Sin(0;)? )tan(& 1)? o0}, 202_,
n—2

_ Z 1) cos(6,—1)* 0 n—2 o
(H] k41 Sln<9 ) )tan(Gk) 89k tan( ) 80n 1

in hyperbolic coordinates, computed in Lemma 1.2.4 (c), and the representation

E?Cy)i%)( 5) = Z cos <9n,1 (g(*thQzﬂp))S.

hyp
€L Q) o \I

Since Agn is invariant under the action of PSLo(C),—1) and E?Cygp Q2)(P, s) € C?(H") by Lemma
4.1.7, it is sufficient to prove the identity

(Apn — s(n—1—5)) cos(B,_1)° = s cos(B,_1)" T2
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4. Hyperbolic and elliptic Eisenstein series in H™

This follows from the straightforward calculation

0? n—2 0
Batr €08(0n1)" = <_C°S(9"1) 902, ‘tan(0,_1) 00 )COS(QM)S
n—1 n—

= —cos(0n—1)° (s(s — 1) cos(6,—1)*? sin(6,-1)* — s cos(6,,-1)*)

a ﬁ (—s cos(0,—1)*"" sin(6,-1))

= —s(s—1) cos(Bp_1)® sin(f,_1)* + 5 cos(0,_1)* T2 + s5(n — 2) cos(6,,_1)*

= —5% cos(6,_1)* (1 — cos(@n_l)Q) + s cos(f,—1)° (sin(ﬁn_l)2 + cos(ﬁn_l)Q)
+ s(n—2) cos(0,—1)°

= —5% cos(Bp_1)° + 5% cos(Bp_1)*"2 + 5 cos(Bp_1)° + s(n —2) cos(,_1)°

=s(n—1—5) cos(0p_1)° + 5% cos(f,,_1)* 2.

It remains to consider the case n = 2. We make use of the hyperbolic Laplace operator

) 0? 0?
AH = — sm(9)2 (82 + 802)

in hyperbolic coordinates from Example 1.2.3 and the representation

E;“Egl@z)(z, 5) = Z sin (9 (0(2211@2)72))3 )

hyp
€01 o \I

Taking into account that Agy is PSLy(C),—1)-invariant and E2 01,0275 8) € C?(H), it suffices to

prove the identity
(Ag — s(1 — s)) sin(0)* = s? sin(0)*+2.
This is a consequence of the straightforward calculation
92
Ay sin(0)® = —sin(6)? 35 sin(0)® = —sin(0)* (s(s — 1) sin(0)*2 cos(0)* — s sin(0)*)
—s(s — 1) sin(#)* cos(6)* + s sin(6)*+>
= —s?sin(0)* (1 —sin(h)?) + s sin(0)* (cos()? + sin(6)?)
= —5% sin(h)* + 5% sin(0)*? + s sin(h)*
= s(1 — ) sin(#)® + s? sin(h)*+2.

O

We shortly consider the case n = 2 as an example. For a more comprehensive study of hyperbolic
Eisenstein series on the upper half-plane H we refer, for instance, to [Fal07], [GIMO0S], [KM79],
[Ris04] or [Pip05].

Example 4.1.9. Let I' C PSLy(R) be a Fuchsian subgroup of the first kind, and let (Q1,Q2) €
Hr be a pair of hyperbolic fixed points with hyperbolic scaling matrix o, 0,) € PSL2(R) and
hyperbolic stabilizer subgroup F(Q Q)" Note that F(Q Qn) Agrees with the full stabilizer subgroup

I'(.,q.) because the latter contains no elliptic and no loxodromic elements in the 2-dimensional
case. Further, let £(g, g,) be the unique geodesic in H connecting @1 and Qs.

For z € H and s € C with Re(s) > 1 the hyperbolic Eisenstein series E;‘y(gl 0n) (%, 5) associated to
the pair of hyperbolic fixed points (@1, Q2) € Hr is given by

E;y(%hQZ)(Zv 5) = Z cosh(dm (72, £(q,,0,))) °- (4.13)
’YEF(QLQQ)\F
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4.2. Elliptic Eisenstein series

The series (4.13) converges absolutely and locally uniformly for z € H and s € C with Re(s) > 1,

and is a holomorphic function for s € C with Re(s) > 1. Moreover, the hyperbolic Eisenstein

series E;“Egl QQ)(@ s) is invariant in z under the action of I" and bounded on I'\H, therefore we

have E;}EE?th)(Z’ s) € L2(T\H). It satisfies the differential equation

(Ag — s(1—s)) E;y(gth)(z, s) =52 E;y(gth)(z, 5+2).

4.2. Elliptic Eisenstein series

Non-holomorphic Eisenstein series on the upper half-plane H that are associated to elliptic fixed
points of a Fuchsian subgroup of the first kind were introduced by Jorgenson and Kramer in 2004
in their unpublished work [JK04] (see also, e.g., [JK11]). Later, their student von Pippich studied
these elliptic Eisenstein series in detail in her PhD thesis [Pip10]. In this section we define elliptic
Eisenstein series in the upper half-space H" that are associated to a discrete and cofinite subgroup
I’ C PSLy(C,—1) and a point € H™ which is not necessarily an elliptic fixed point of I'. We prove
some of its basic properties, including its range of convergence. Moreover, we see that the elliptic
Eisenstein series is invariant under I', bounded at the cusps, and satisfies a certain differential
equation under the hyperbolic Laplace operator.

Let T' C PSLy(C,—1) be a discrete and cofinite subgroup. Further, let @ € H" be a point with
elliptic scaling matrix og € PSLy(C),—_1) and stabilizer subgroup I'¢.

Definition 4.2.1. For P € H" with P # vQ for any v € I" and s € C with Re(s) > n — 1 we
define the elliptic Eisenstein series ESI(P, s) associated to the point @ € H" by

EZ(P,s)= Y sinh(dun(vP,Q)) " (4.14)
YELQ\T

Notation 4.2.2. In case we want to refer explicitly to the dimension n, we write Ezl}Q(P, s)
instead of ESI(P, s). If we want to refer explicitly to the underlying group T', we write Efal’lQ(P, s)
or Efl{IF,Q(P, s) instead of E%“(P, s).

Remark 4.2.3. We make some remarks on the above definition.

(a) For any n € I'g we have dy»(nyP, Q) = dy~(vP,n7'Q) = du~(vP,Q), and Tq is a finite
subgroup of I of order |I'g|. Hence, we can rewrite the elliptic Eisenstein series E‘?Q“(P, s) as

EN(Ps) = 3 |F1Q| S sinh(dse (17P, Q) = |F1Q S sinh(dse (vP, Q).

YT\ nelq ~el’

(b) If @ is not an elliptic fixed point of T, then the stabilizer subgroup I'q is trivial. In this case
we have

Eg'(P,s) =Y _sinh(dar (vP, Q)"
yel’

(¢) The elliptic Eisenstein series Eé“(P, s) can be expressed as the Stieltjes integral

EQN(P,s) = / sinh(u)~* dNg' (u; P), (4.15)
0

where Ngl(u; P) denotes the counting function

N&'(u; P) = |{y € TQ\I' | dun (vP, Q) < u}|. (4.16)
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4. Hyperbolic and elliptic Eisenstein series in H™

In the following we give a few basic properties of elliptic Eisenstein series, beginning with their
convergence.

Lemma 4.2.4. The following assertions hold true.

(a) For fized P € H™ with P # vQ for any v € T the series (4.14), defining the elliptic Eisenstein
series EGQH(P,S), converges absolutely and locally uniformly for s € C with Re(s) > n — 1,
hence it defines a holomorphic function there.

(b) For fixred s € C with Re(s) > n — 1 the series (4.14), defining the elliptic Eisenstein series
ECCQH(P, s), converges absolutely and uniformly for P ranging over compact subsets of H™ not
containing any translate vQ of Q by v € I

Proof. We mimic the proof of Lemma 3.1.3 (i), (iii) in [Pip10] for n = 2, but make the necessary
adaptations to the general n-dimensional case.

(a) We write s = o + it € C and assume that o = Re(s) > n — 1.
Let P € H" be fixed with P # ~@Q for any v € I'. As the group I' acts discontinuously on
H™ and vP # Q for any v € I' by the choice of P, the minimum

Ruin(P) := min dgn (7P, Q)
yel

exists and is greater than zero. Hence, setting

_ 1 — exp(—2Rmin(P))

Cl(P)I 2 s

we have C1(P) > 0 and
1~ exp(—2ds (4P, Q)
2

> C1(P)
for any v € I'. This yields the estimate

— exp(—2du- (vP, Q))
2

sinh(dyn (vP, Q)) = exp(du (VP, Q)) - !
> C1(P) - exp(dun (VP Q))

for any v € I'. From this we obtain the bound

EQ(Ps)| < Y [sinh(dan (vP,Q)*| = Y sinh(due (vP, Q)7

YELQ\I YELQ\I'

<Py Y exp(-odun(7P.Q).

YELQ\I

So it remains to prove that the series

Z exp(—o dgn (vP, Q))

YETQ\I

converges locally uniformly for o > n — 1.

In order to do this, for r € R, r > 0, we consider the counting function NSI(T; P) given as
in (4.16), i.e.
Ngl(r;P) = |Ng(r; P)]  with  Ng(r; P):={y € To\I' | dun (7P, Q) < r}.

Recalling Corollary 2.4.6 and Corollary 2.4.7, we note that the number Ngl(r; P) is always
finite. Moreover, by the definition of Ry, (P) we have NSI(T; P) =0 for r < Ryin(P).
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4.2. Elliptic Eisenstein series

Next we derive an estimate for the number Ng'(r; P) for fixed r € R, r > 0. We choose
€ = £(P) > 0 sufficiently small such that the open hyperbolic balls B.(p)(yP) with center yP
and radius £(P) do not intersect for all v € I'g\I'. Then the finitely many balls B.(p)(vP)
around the translates v P of P for v € N(r; P) are all contained in B, .(p)(Q), which gives
us

N§'(r; P) - volsn (Be(p) (YP)) < Vol (Brye(p) (Q))

for any v € Ng(r; P). This implies the bound

Ngl(r; P) <

volin (Bryep) (@) _ 2721 (3) " fo " sinn(t)* dt
volgn (Bop)(YP)) /2 ()7 E(P sinh(t)»~1 dt
Jre® sinn()m-1 dt

f;(P) sinh(¢)n=1 dt

Using the inequality sinh(t) < § exp(t), we can bound the numerator as

r+e(P) r+e(P) 1-n
/ sinh(#)" ! dt < 21_”/ exp((n—1)t) dt = — (exp((n—1) (r+e(P))) —1)
0 0
1-n
< 2% exp((n—1)<(P)) exp((n 1))

Therefore, we obtain the estimate
Ne“(r; P) < Cy(P) -exp((n—1)r), (4.17)
where the constant Co(P) > 0 is given by
2177 exp((n — 1) e(P))
(n—1) [ sinh(t)1 dt

OQ(P) =

For fixed R € R, R > 0, the monotonically increasing step function N§' : [0, R] — Ny
induces a Stieltjes measure dNe“(r; P) on the interval [0, R]. Since Ne“(r; P) is of bounded
variation and the function exp( or) : [0, R] = (0,00) is continuous, the function exp(—or)
is Riemann-Stieltjes integrable with respect to Ng'(r; P) on the interval [0, R]. Moreover,
both functions are bounded on [0, R]. Thus, applying the theorem of partial integration we
obtain

R
> exp(—odur(vP,Q)) = / exp(—or) ANg'(r; P)

YENQ(R;P)
[Ncn(r; P) exp(— / CH d(exp(—or))

[NEH(T P) exp(— 0'7“ +0/ e“ (r; P) exp(—or) dr. (4.18)
Using the estimate (4.17), the two summands in (4.18) can be bounded as
[Nen(T; P) eXP(*UT)}: = ell(R P)-exp(—oR) < Cy(P) -exp((n —1—0)R)
and

R
/ ell P) exp(—or) dr < OC’Q(P)/ exp((n—1—=o0)r) dr
0

- % (exp((n —1-0) R) —1),
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4. Hyperbolic and elliptic Eisenstein series in H™

respectively. These two bounds now imply

Z exp(—ody» (vP,Q)) = lim Z exp(—o dg» (vP, Q))

R—o00
¥E€LQ\D YENQ(R;P)
. O’CQ(P)
< lim <C'2(P) rexp((n —1-0)R) + ———- (exp((n—1-0)R) 1))
. (TCQ(P)
Co—-n+1’

where we used o > n — 1, so that limg_,o, exp((n —1 — o) R) = 0. This gives us the asserted
absolute and locally uniform convergence of the elliptic Eisenstein series E‘?Q“(P, s) for s € C
with Re(s) >n — 1.

(b) If K C H" is a compact subset not containing any translate vQ of @ by v € T, then the
constants C1(P) and Cy(P) from part (a) of the proof can be chosen uniformly for all P € K|
i.e. we can set
Cy:=min C1(P) and Cy:=max Cy(P).
PEK PEK
Therefore, for fixed s € C with Re(s) > n — 1 the series ESI(P, s) converges absolutely and
uniformly on K.
O

An easy consequence of the definition of the elliptic Eisenstein series is its I'-invariance.
Lemma 4.2.5. The elliptic Fisenstein series EZQH(P, s) is invariant in P under the action of T,
i.e. we have

EQ'(vP,s) = B (P,s)
for any vy €', P € H" with P # nQ for anyn € I and s € C with Re(s) > n — 1.

Proof. As for a fixed v € T', ny runs through a system of representatives for I'o\I' if and only if n
does, we have

Eg'(yP,s) = Y sinh(dan (P, Q)™ = Y sinh(dum (nP, Q)" = EZ'(P, ).
nELQ\T nelQ\l'

O

Though the elliptic Eisenstein series ESI(P, s) is unbounded near the translates yQ of @ by v € T,
it is bounded at the cusps of T'.

Lemma 4.2.6. For P € H" with P # vQ for any v € T and s € C with Re(s) > n—1 the elliptic
Eisenstein series E‘EQH(P7 s) is bounded as P — n;, where n; € Cr (j=1,...,cr).

Proof. For P € H" with P # vQ for any v € T" and s € C with Re(s) > n — 1 we have seen in the
proof of Lemma 4.2.4 (a) that

O'CQ(P)

EellP < P)°
[Eg(P.s)| < Cu(p)e T2

where o = Re(s). This proves that EQ'(P, s) is bounded for P — ;.
O

Remark 4.2.7. For P = (xq,...,2p—1) € H" with P # 4@ for any v € T" and s € C with
Re(s) > n — 1 the elliptic Eisenstein series Eg'(P, ) is infinitely often continuously differentiable
with respect to zg,...,z,—1. We will prove this result as Lemma 4.3.8 in the next section.

102



4.2. Elliptic Eisenstein series

Similar to hyperbolic Eisenstein series, also the elliptic Eisenstein series satisfies a certain shift
equation under the hyperbolic Laplace operator.

Lemma 4.2.8. For P € H" with P # vQ for any v € T and s € C with Re(s) > n—1 the elliptic

FEisenstein series Egl(P, s) satisfies the differential equation

(Amn — s(n—1—15)) ES'(P,s) = s(n— 2 — s) B9 (P, s + 2).

Proof. Using elliptic coordinates centered at @ € H" (see Definition 1.2.5), by Lemma 1.2.8 (c)
the hyperbolic Laplace operator is given by

0? 1 0 1

Apn = ——5 —(n—1 -
" agé (n )tanh(gQ) 0og  sinh(pg)?

Agn 1.

Further, we have oo (vP) = dun (7P, Q) and

ESI(P,S): Z sinh(pg(yP))~°.
YELQ\I

Since the differential operator Ay is invariant under the action of PSLy(C,—1) and ESI(P, s) €
C?(H"), as we will see in Lemma 4.3.8, it suffices to prove the identity

(Mg — s(n —1 - s)) sinh(eq) ™ = s(n — 2 — 5) sinh(eg) ">,

This follows immediately from the calculation

tanh(og) OJog
—s(s+ 1) sinh(og) ™*~2 cosh(pg)? + s sinh(og) ~*
+ s(n — 1) sinh(og) "2 cosh(og)?
(—=s(s+ 1)+ s(n — 1)) sinh(og) *"2 (1 + sinh(pg)?) + s sinh(og) ~*
s(n —2—s) sinh(pg) "% + s(n — 2 — s) sinh(gg) ™ + s sinh(pg) "
s(n —2 — s) sinh(og) * 72 + s(n — 1 — s) sinh(og) *.

) s 0? 1 0 ) s
Apr sinh(pg) ™% = (—892 —-(n-1)——— > sinh(pg) ™
Q

O

In the following example we briefly take a closer look at elliptic Eisenstein series on the upper
half-plane H that are associated to an elliptic fixed point of a Fuchsian subgroup of the first kind.

Example 4.2.9. Let I' C PSLy(R) be a Fuchsian subgroup of the first kind, and let e; € Ep
(7 €{1,...,er}) be an elliptic fixed point of order n., with elliptic scaling matrix o, € PSLy(R)
and stabilizer subgroup I'c;. Using elliptic coordinates o = p(z) and ¢ = 1¥(2) centered at i (see
Example 1.2.7), for z € H with z # ~e; for any v € " and s € C with Re(s) > 1 the elliptic

Eisenstein series ES“GJ (z, s) associated to the elliptic fixed point e; € Er is given by

Eg}lej(z,s): Z sinh(g(ae_jlvz))_s: Z sinh(du(vz,€;))"°. (4.19)
~YET \I Y€\

For z € H with z # ~e; for any v € I and s € C with Re(s) > 1 the series (4.19) converges
absolutely and locally uniformly, and it defines a holomorphic function for s € C with Re(s) > 1.
The elliptic Eisenstein series Eg‘“e] (2, 8) is invariant in z under the action of I'. It satisfies the
differential equation

(Ba —5(1— ) B5L (2,5) = —s? E5L (2,5 +2)
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4. Hyperbolic and elliptic Eisenstein series in H™

and is a real-analytic function with respect to z = = + iy.

In [Pip10], von Pippich further computed the parabolic, hyperbolic and elliptic Fourier expan-
sion of ES}LJ(Z,S). Moreover, she proved that the elliptic Eisenstein series ESIL] (z,8) admits a
meromorphic continuation in s to the whole complex plane and computed its possible poles and

residues. There is always a simple pole at the point s = 1 with residue

2
Res,_; B! = -
€Ss=1 2,ej(z’s) nejV01<F\H)

In [Pip10] (see also [Pip16]), von Pippich further determined a Kronecker limit type formula for
elliptic Eisenstein series which we will recall in section 8.2.

4.3. The hyperbolic kernel function

Let T' C PSLy(C,,—1) be a discrete and cofinite subgroup. Having introduced hyperbolic and
elliptic Eisenstein series, we now define a third function called the hyperbolic kernel function. We
determine its range of convergence and present some other elementary properties. We see that
the hyperbolic kernel function is symmetric in the variables P, Q) € H" and I'-invariant in both of
them, bounded and square-integrable on I'\H™ and a smooth function with respect to P, and that
it fulfils a certain differential equation under the hyperbolic Laplace operator. Additionally, we
prove that the elliptic Eisenstein series associated to a point in H" is also a smooth function. The
hyperbolic kernel function will be of great importance in the upcoming chapters, in which we will
see that both hyperbolic and elliptic Eisenstein series can be expressed in terms of this function.
In the case n = 2, this idea was first given in [Pip10] for elliptic Eisenstein series, while in [JPS16]
the idea was realized for hyperbolic Eisenstein series.

Definition 4.3.1. For P,Q € H" and s € C with Re(s) > n — 1 we define the hyperbolic kernel
function K"P(P,Q, s) by

K™P(P,Q,s) = cosh(dun (vP, Q)" (4.20)
~el

Notation 4.3.2. In case we want to refer explicitly to the dimension n, we write K¥P(P,Q, s)
instead of K™WP(P,Q,s). If we want to refer explicitly to the underlying group I', we write
KIl}yp(P, Q,s) or KE??(P, Q, s) instead of K"P(P,Q, s).

Remark 4.3.3. The hyperbolic kernel function K™P(P,(Q,s) can be expressed as the Stieltjes
integral

K"WP(P Q,s) = / cosh(u) ™% AN™P(u; P,Q), (4.21)
0
where N"P(y; P, Q) denotes the counting function
N"P(y; P,Q) := |{y € T | du~(vP, Q) < u}|.
We give some elementary properties of the hyperbolic kernel function in the form of several lemmas.

Lemma 4.3.4. The following assertions hold true.

(a) For fived P,Q € H" the series (4.20), defining the hyperbolic kernel function K"™P(P,Q,s),
converges absolutely and locally uniformly for s € C with Re(s) > n — 1, hence it defines a
holomorphic function there.

(b) For fized Q@ € H" and s € C with Re(s) > n — 1 the series (4.20), defining the hyperbolic
kernel function K™P(P,Q, s), converges absolutely and uniformly for P ranging over compact
subsets of H™.
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4.3. The hyperbolic kernel function

(¢) For fized P € H" and s € C with Re(s) > n — 1 the series (4.20), defining the hyperbolic

kernel function K™P(P,Q, s), converges absolutely and uniformly for Q ranging over compact
subsets of H™.

Proof.

(a)

By the bound

|[K™P(P,Q, )| < |cosh(dan (vP,Q))*| = ) _ cosh(dgn (vP, Q)) )

yel’ vyel’

and the inequality cosh(x) > sinh(z) (z € R), for P,Q € H™ with P # vQ for any v € T the
function K™P(P,(@Q, s) can be majorized by the series

S sinh(din (vP, Q) ") = |Tg| EG(P, Re(s)).
yel

Using Lemma 4.2.4 (a), for fixed P, @ € H" with P # vQ for any v € " we obtain the absolute
and locally uniform convergence of the series K™P(P, Q,s) for s € C with Re(s) >n — 1.

Now suppose that P,Q € H" with wP = @, i.e. P = fyl_lQ, for some v; € I'. Then for
any v2 € I' with 2P = @, i.e. P = 72_162, we have fygfyl_lQ =@ and 7271_1 € I'g, so that
71 and 2 represent the same right coset in I'g\I'. Taking into account that dm» (nvP, Q) =
dpn (YP, Q) for any n € T'g, we can write

K™P(P,Q,s)= Y Y cosh(dan(nyP,Q))™* = Tq| Y cosh(den(vP,Q))~"

YeTQ\I' n€lg YETQ\T
= [Tq| cosh(dun (1P, Q)"+ Tql > cosh(dun(vP,Q))~*
YETQ\T,
YEY
=[Tol+ Tl Y cosh(dan(vP,Q))~"
~v€ElQ\T,
Y#EYL
<[Tol+[Tql Y sinh(dan(vP, Q).
YETQ\T,
Y#EYL

The absolute and locally uniform convergence of the latter series for s € C with Re(s) > n—1
can be verified analogously to the proof of Lemma 4.2.4 (a). This proves that the hyperbolic
kernel function K™P(P,Q,s) converges absolutely and locally uniformly for s € C with
Re(s) > n — 1.

Analogous to the proof of part (a), depending on whether 1P = @ for some v, € T
or not, we can majorize the hyperbolic kernel function K™P(P,Q,s) either by the series
Po| B! (P, Re(s)) or by

Tol+ Mol > sinh(da-(vP, Q)"
YELQ\T,
Y#EYL

The first series converges absolutely and locally uniformly for P ranging over compact subsets
of H" by Lemma 4.2.4 (b), while the absolute and uniform convergence of the latter series
on compact subsets of H™ follows analogously to the proof of Lemma 4.2.4 (b). For fixed

Q € H" and s € C with Re(s) > n — 1 this shows that the series K™P(P,Q, s) converges
absolutely and uniformly for P ranging over compact subsets of H".
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4. Hyperbolic and elliptic Eisenstein series in H™

(c) Asthemap I' = T, v+ 7!

K"WP(P.Q,s) Zcosh du- (7P, Q)) ZCOSh (dun (Q,7P))™*

, is a bijection, we obtain

yel yel’
= cosh(dan (y'Q, P))™* = cosh(dan (vQ, P))~* = K™?(Q, P, s).
yel’ vyel

Hence, the assertion follows immediately from part (b).

Lemma 4.3.5. The following assertions hold true.

(a) The hyperbolic kernel function K™P (P, Q,s) is symmetric in the variables P and Q, i.e. we
have
K™P(Q,P,s) = K™P(P,Q,s)

for any P,@Q € H" and s € C with Re(s) > n — 1.

(b) The hyperbolic kernel function K™P(P,Q,s) is invariant under the action of T' in both P
and Q) i.e. we have

K"P(yP,Q,s) = K™P(P,4Q,s) = K™P(P,Q,s)

for any v € T, P,Q € H" and s € C with Re(s) > n — 1. Hence, for fixed s € C with
Re(s) > n —1, it is a well-defined function on (D\H") x (T'\H").

Proof.
(a) This was already shown in the proof of Lemma 4.3.4 (c).
(b) For fixed v € T' the map n — ny defines a bijection I' — T, so that

K™P(yP,Q,s) = cosh(dgn (7P, Q))~* = Y _ cosh(dan (nP,Q))~* = K™P(P,Q, 5).
nel’ nel’

Likewise, for fixed v € I' the map n — v~ ' defines a bijection I' — T, which gives us

K™P(P,4Q,s) = cosh(dyn (nP,¥Q))~° = _ cosh(dun (v~ 'nP,Q))*
nel nel’
= cosh(dgn (nP,Q)) ™" = K™P(P,Q, s).
nel’

O

As for the hyperbolic Eisenstein series, we find that the hyperbolic kernel function is bounded on
I'\H" and an element of £2(T"\H").

Lemma 4.3.6. For Q € H® and s € C with Re(s) > n — 1 the hyperbolic kernel function
KWP(P,Q,s), as a function in P, is bounded on T\H" and satisfies K™P(P,Q,s) € £2(T'\H").

Proof. Since for Q € H" and s € C with Re(s) > n—1 the series K"P(P, Q, s) converges absolutely
and locally uniformly on H", it remains to show that the hyperbolic kernel function is bounded at
the cusps of T'\H".

If P is sufficiently close to a cusp n; € Cr (j =1,...,cr), then P # 4@ for any v € I" and we have
seen in the proof of Lemma 4.3.4 (a) that K™P(P, @Q, s) can be majorized by the elliptic Eisenstein
series |I'g] Ee“(P7 Re(s)). Now Lemma 4.2.6 implies that K"P(P,Q, s) is bounded as P — 7;.

Because the group I' C PSLy(C),—1) has finite hyperbolic volume, we deduce from the boundedness

that K™P(P,Q,s) € L2(T'\H").
O
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Examining the differentiability of the hyperbolic kernel function K"™P(P,Q, s) with respect to the

coordinates of P = (xg,...,2,—1) € H", we have the following result.
Lemma 4.3.7. For P = (xg,...,2p—1),Q € H" and s € C with Re(s) > n—1 the hyperbolic kernel
function K™P(P,Q, s) is infinitely often continuously differentiable with respect to g, ..., Ty 1.

Proof. For fixed Q € H" and v € T we let v 1Q =: (yo,...,yn_1) € H" and write

-2
Do (wg —y;)? +ah g +yn g

f+(P) := cosh(dyn (vP, Q)) = cosh(dun (Py7'Q)) = 2Tp_1Yn—1

(4.22)

As 2 _1,Yn—1 > 0, this function is infinitely often continuously differentiable with respect to the

coordinates o, ..., Zn—1, and the same is true for f,(P)®, where s € C with Re(s) > n — 1.
Hence, for any multi-index o = (v, - .., an—1) € N the derivative

ol h(d P, ¢ ol h(d, P, -

ope (dun (P, Q)% = WCOS (dan (7P, Q))

exists and is continuous, and we are allowed to arbitrarily interchange the order of differentiation.
It remains to prove that for any o € Nij the series of partial derivatives

oled a\a\
2 Spa cosh(dyn (VP,Q))~ % 5pa I+ ( (4.23)

converges absolutely and uniformly on compact subsets K C H", provided that Re(s) > n — 1.
We do this in four steps.

In the first step we compute the partial derivative

5|a alal

for an arbitrary multi-index o = (a,...,an—1) € Nj. Considering only the derivatives with
respect to zg, ..., xn—_2 first, for any o € Nj with a,,_; = 0 we find
H(P), if|a|l= Zaj =0,
M, if a, = 1 for some k € {0,...,n — 2} and Za] =0,
Tn—1Yn—1
o= P H““ 4.24
gl (M= 24
——, ifap =2 for some k € {0,...,n — 2} and a; =0,
Tn—1Yn—1 F { } Z ’
J;ﬁk
0, if ag,q > 1 for some k,l € {0,...,n — 2} with k #1
or ay, > 3 for some k € {0,...,n — 2}.
Now we compute
n—2 n—2
s, £(P) = =20 (@ —y)? Fah _y —yn g 0? £.(P) = Yo (@i —yi)? +yna
axnfl 7 B 237%_1 Yn—1 ’ ax%_l K B m%_l Yn—1 ’

and generally

Qo n—2
9n—1 P (=)t ay ! (Zj=0 (z; *yj)2+y721_1) ( > )
A n_1 = ) Ap—1 2 4),
Dyt 255,1:1“ Yn—1
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as well as
O%n—1 _ —1)&n-1 n— | —
o ( Tk — Yk ) _ (=1) 1+3 ! (o — yr) (k=0,...n—2 an1>0),
axn—l Tp—1Yn—1 n_1n71 n—1
aan—l 1 _1 Qp—1 n— !
901 ( ) = ( 1J2an,1 Anl (anfl > 0)'
L1 LTn—1Yn—1 T, 4 Yn—1
Therefore, from (4.24) we can deduce for any o = (ay,...,a,—1) € Nj that
n—1
H(P), iflal =) a; =0,
§=0
n—2 2 2 2 n—2
— 2o\ Tj —Y;)° + 2 —Yp—
2370(1 2%) n—1"Yn 17 ifZaj=Oandozn_1:1,
2$n,1yn71 =0
n—2
(1) apq! (Zj:() (zj —y;)* + 972171) ooz
TE— , if Z aj =0and ap_1 > 2,
dled P 22,21" Yot s
Y (P =
ope’? 1)t (g — n—2
(=1) Hgnﬂl (@ yk), if a =1 for some k € {0,...,n — 2} and Zaj =0,
n—1 n—1 j=0,
7k
(,1)047171 an—l! n—2
o if ap =2 for some k € {0,...,n — 2} and Zaj =0,
Tp—1  Yn—-1 j=0,
i#k
0, if ag,aq > 1 for some k,l € {0,...,n— 2} with k #1
or ay, > 3 for some k € {0,...,n — 2}.
(4.25)
This finishes the first part of the proof.
In the second step we prove that for any a = (v, ..., @,—1) € N there is a constant Cy, (K) > 0,
depending only on the compact set K, such that
oled
e (P)| < Calh) - £(P) (4.20

for any v € T and P € K. We verify this bound separately in each of the six cases in (4.25). In
the cases gI‘TQLfW(P) =0 and %fy(P) = f(P) the bound (4.26) is obvious. For

8'“' (—1)a"’1 Oén_1!
opa’Y P) = piTon—1 y

n—1 n—1

we have
olel o apq! - 2ay,-1! f(P) < 2an! P
op« 7( ) — 14anp_1 - Q1 n—=2 9 9 2 = ota,_1 f'y( )
Tp—1 Yn—1 Ty (Zj:O (xj - y]) + Th—1 + ynfl) Tn—1
If
el (—D)* 11! (zr — yr)
wﬁf'y(P) = T+an—1

Ty_q Yn—1
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4.3. The hyperbolic kernel function

for some k € {0,...,n — 2}, we find

’ iy <p>] _ o~y _ 2an—lok =yl f(P)
¥ = T Itan- T oo -
ope T eyt (S50 — ) wd +vi )

2an—ﬂ 2an 1
SmaX( 2Fan_1’ :I:Oén 1 f’Y( )

n—1 n—1

where we made use of

n—2

| =y <max(1, (zp —yr)?) <max [ 1, Y (x5 —y)* + 201 + i,
§=0
In the case
ol ) (1) ! (Z}L}?(%‘ —y)* + yi_l)
ope’” - 2xi+clvn 1 Y1
we obtain
n—2 n—2
’ 0 ‘ ot (S92 = w4 92e) ! (S50 s — )2 + 420 ) o(P)
o’ = 14+an,— = Qe n—
or 22,0 Y "7 (Zj=02(xj —y)tFan_ + y3,1>
an 1
< —ay  fy(P).
x?’: 1 K
And for .
ol £(P) = =20 (@ —y)? +ah_ —yn g
ope’’ 222 Yo
we get
n—2
‘ ol f (P)‘ ‘ijo (zj —y)? —an_y + y%—l‘ ’Z] oz —y)? —an_y + y?z—l’ f~(P)
ot = 2 2
or 2801 Yn— Tn—1 (ijo (j —y;)? +an_y + y%—l)
1
< - (P
Arxn—l f&( %

where we used that

|
N

n

) —xl  Fyn | < (xj =)+ a0 +yn

Jj=0

<.
I
o

This proves that in each case there exists a constant Cq (K) > 0, depending only on K, such that
the bound (4.26) is satisfied for any v € I' and P € K, completing the second part of the proof.

As a third step we conclude, exactly analogous to the seventh step in the proof of Lemma 4.1.7,
that for any o € Nij the partial derivative

olel ., ol .
pe cosh(dgn (YP,Q))° = aﬁfv(P)
is a finite sum of summands of the form
r éﬂﬁuq
p(s) - fy(P)°7"- H wa(P)a (4.27)
j=1
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4. Hyperbolic and elliptic Eisenstein series in H™

where p € Z[X] is a polynomial with integer coefficients and deg(p) < ||, r € Ny with r < |a,
and BY) € N (j =1,...,r) are multi-indices with 23:1 |ﬁ(3)‘ = |a.

In the fourth and final step we now conclude that any series (4.23) converges absolutely and
uniformly on compact subsets K C H", provided that o := Re(s) > n — 1.
By the third step of the proof the derivative

olel _, Ol .
5pa cosh(dgn (vP,Q))* = aﬁfv(P)

is a finite sum of summands of the form (4.27). Further, from the second step of the proof we infer

that for each of these summands there are constants Czi;)(K) >0 (j = 1,...,r), depending only
B

on K, such that

T a‘lg(j)| ‘ r a|ﬁ(]’)|
p(s) - F(P) 7 JL g (D) = ()l /(P77 ] Wmmp)‘
<Ip(s)l- £5(P) " - [T (Caonr (5) - 1,(P)) = Ips)| - £,(P) ™2 - [T G (56)

for any v € I' and P € K. Provided that ¢ > n — 1, the absolute and locally uniform convergence
of the series

S ) £ (P) 7 T] G () = o) - [T Coon (K) 3 coshlasn (7P, @)~

yel’ yel

follows from Lemma 4.3.4 (b). For o > n — 1 this proves the absolute and uniform convergence of
the series (4.23) on compact subsets K C H™.
O

Using our considerations in the proof of Lemma 4.3.7, for P = (zo,...,zp—1) € H" with P # vQ
for any v € I" and s € C with Re(s) > n — 1 we now study the differentiability of the elliptic
Eisenstein series

1
BY(Ps)= 3 sinhlds(0P,Q) 7" = 0 Y sinh(dan (0P, @)
YETQ\T Qlyer
with respect to xg,...,Z,_1. As we already mentioned in Remark 4.2.7, it is also infinitely often

continuously differentiable.

Lemma 4.3.8. For P = (xg,...,2p—1) € H" with P # ~Q for any v € T and s € C with
Re(s) > n — 1 the elliptic Fisenstein series Egl(R s) 1is infinitely often continuously differentiable
with respect to xg, ..., Tnp_1.

Proof. For fixed v € T we let v7'Q =: (yo,...,yn—1) € H" and f,(P) as in (4.22) and write

sinh(dw» (YP,Q)) = 4/ fy(P)? — 1. (4.28)
Provided that P # 4@ for any v € I', we have f,(P) > 1. This implies that the function
sinh(dgn (7P, Q)) is infinitely often continuously differentiable with respect to xo, ..., z,—1 in any
such point P, and the same is true for sinh(dgn (yP, @))%, where s € C with Re(s) > n—1. Thus,
for any multi-index o = (e, ..., ap—1) € Njj the derivative
ol h(d P = ol inh(d| P —*
op sinh(dg (YP,Q))”* = Wbm (dun (7P, Q))
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4.3. The hyperbolic kernel function

exists and is continuous, and we are allowed to arbitrarily interchange the order of differentiation.
It remains to prove that for any a0 € Njj the series of partial derivatives

ol
> 5 pa Sinh(due (vP, Q)™ (4.29)
el

converges absolutely and uniformly on compact subsets K C H" not containing any translate vQ
of @Q by v € T, provided that o := Re(s) > n — 1.

By the product rule for partial derivatives we have
ol ) a\ o8l Hlee—8l
Mﬁfv(P) - Z (IB) ’ aPﬁf”(P) : apa—ﬁfV(P)'

BeENG,
B<a

So the bound (4.26) in the proof of Lemma 4.3.7 gives us

o 918l gle—8l
<ﬁ€ZNn <6) ' ‘8Pﬁf”<P)' ' ‘apa—ﬂfW(P)’
p<a’

Fy(P)?

ol
o7

<X (g)'OB(K)'f’y(P)'Ca—B(K)'f’y(P):fw(P)Q' >
B, Bl

(5) - Catr) ol

for any v € I' and P € K, where the constants Cg(K),Cqa_g(K) > 0 (8 € Nij, 8 < ) depend
only on the compact set K and are as in the proof of Lemma 4.3.7. Further, as for P € K
the minimum min,er dpn (7P, Q) exists and is greater than zero, there is a constant C'(K) > 0,
depending only on K, such that

cosh(dg (vP, Q))* < C'(K) - sinh(dg- (YP, Q))?,

ie. f(P)? < C'(K) - (fy(P)?—1), for any v € I and P € K. Thus, we have the bound

< Ba(K) - (f,(P)* ~ 1) (4.30)

ol
‘apa-f’Y(P)2

for any v € I' and P € K, where the constant

Ba(K) = C'(K) - *) . Os(K) - Cap(K)
ﬂg:w(ﬁ) ? ?

depends only on K.

Next, we find, analogous to the second step in the proof of Lemma 4.1.7, that for any a =
(o, ..., an—1) € Nj the partial derivative

glel olel
S0 (1P, Q)) = S\ [ (P2 1
is a finite sum of summands of the form
L (L (P)? = 1) H o (f(P)> = 1) = t- (f,(P)> = ))V/>~ H i (P)?
2l e aP,@(j) Yy - Y e apﬁ(ﬂ') Y )
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4. Hyperbolic and elliptic Eisenstein series in H™

wheret € Q, r € Ny with r < |a] and BY) e Ny (j =1,...,r) are multi-indices with Z 1 },6'(3 ’ =
|ar]. Using the bound (4.30), for each of these summands we have constants Bg) (K ) >0 (=

1,...,r), depending only on K, such that
t P 2 1 1/2—r 8‘IB<J)‘ = |t P 2 1 1/2—r . 8|B<j)| P 2
(P 1) ~H6P5<J>fw( I = It (R (P =1) 1:I oo 2(P)
<[t - (£ (P)? = 1)V2 7 IT (B (K) - (£, (P)? = 1)) = [t] -4/ £y (P)2 = 1- ]| By (K
j=1 j=1

for any v € T'and P € K. The sum of the terms |¢| 'ngl Bg() (K) in the finitely many summands

of gl‘:a f+(P)? —1is a constant Ay (K) > 0, depending only on K, such that the bound

‘ Hledl

o fV<P>2—1]s14a<K>- f(Py—1 (431)

is satisfied for any vy € I' and P € K.

As in the seventh step in the proof of Lemma 4.1.7 and the third step in the proof of Lemma 4.3.7,
we find that for any o € Njj the partial derivative

gled
P

is a finite sum of summands of the form

sinh(dgr (YP, Q))~°

189
p(s) - sinh(dzn (7P, Q) Hl o a0y Sinh(dar (VP Q)),
j
where p € Z[X] is a polynomlal with integer coefficients and deg(p) < ||, r € Ny with r < |,
and BY) e N (j = ,7) are multi-indices with ijl |ﬂ(3)| = |af.
Recalhng (4. 28) and usmg (4.31), for each of these summands there are constants Agg) (K) > 0
(j=1,...,r), depending only on K, such that

R
p(s) - sinh(dgn (vP,Q))~°" H 5PE0 sinh(dy» (YP, Q))

r | 18]
= |p(s)] - sinh(dg~ (vP,Q))~ 7" - H 3pF0 sinh(dg- (P, Q))

j=1
T

< |p(s)| - sinh(dmn (YP,Q)) """ - H (Agw (K) - sinh(dgn (vP,Q)))

j=1
= [p(s)| - sinh(dsn (vP, Q)7 - [ [ Agin (K)
for any v € I and P € K. The absolute and locally uniform convergence of the series
Z Ip(s)] - sinh(dgn (vP, Q))~ H A (K) = |p(s)] - ﬁ Agi (K) ZSinh(dHn (vP,Q))"7

yer Jj=1 yer

on K follows from Lemma 4.2.4 (b), provided that o > n — 1. This implies the absolute and
uniform convergence of the series (4.29) on compact subsets K C H" not containing any translate
7@ of Q by ~ € T, provided that o > n — 1.

O
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4.3. The hyperbolic kernel function

To finish this section we establish the differential equation of the hyperbolic kernel function under
the hyperbolic Laplace operator. Again we find a certain shift equation.

Lemma 4.3.9. For P,Q € H" and s € C with Re(s) > n — 1 the hyperbolic kernel function
K™P(P,Q,s) satisfies the differential equation

(AH" - S(?’l -1- 8)) Khyp(PaQas) = S(S + 1) Khyp(PanS + 2)7
where Agn is the hyperbolic Laplace operator with respect to P.

Proof. If we use elliptic coordinates centered at @ (see Definition 1.2.5), we have gg(yP) =
dggn (7P, Q) and
K"WP(P Q,s) = Z cosh(oq(vP)) ™%,
yel’

and by Lemma 1.2.8 (¢) the hyperbolic Laplace operator is given by

02 1 0

Agn = ——— — (n— —
" (n tanh(pg) dog  sinh(pg)?

ASH— 1.
2
905

Since Agn is invariant under the action of PSLy(C,,_1) and K™P(P,Q,s) € C*(H") by Lemma
4.3.7, it it sufficient to prove that

(Agn — s(n — 1 —5)) cosh(og)™* = s(s + 1) cosh(og) * 2.
This is an immediate consequence of the calculation

02 1 0
Agn cosh(og)™* = <—3ng —(n—1) tanh(og) ag@) cosh(oq) ™"
= —s(s+ 1) cosh(pg) *~? sinh(og)? + s cosh(pg) ~* + s(n — 1) cosh(og)~*
= —s(s+1) cosh(pg) * 2 (cosh(og)? — 1) + sn cosh(pg)~*
= —s(s+ 1) cosh(pg) ™ + s(s + 1) cosh(og) * % + sn cosh(og) *
c

= 5(s+1) cosh(og) " * 2+ s(n — 1 — s) cosh(og) *.
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5. Spectral expansions

In this chapter we compute the spectral expansion of the hyperbolic Eisenstein series in H” which
will be fundamental in establishing its meromorphic continuation in s to the whole complex plane in
the next chapter. We start by determining the spectral expansion of the hyperbolic kernel function
K™P(P,(@Q,s) in the first section. After that, we derive the spectral expansion of the hyperbolic
Eisenstein series E(Q s )(P s) in the second section, using a representation of E(Q Qz)(P7 s) as an
integral of K"™P(P, (@, s) along a certain closed geodesic. This generalizes the spectral expansion
of hyperbolic Eisenstein series on the upper half-plane which was derived in [JKP10].

5.1. Spectral expansion of the hyperbolic kernel function

Let I' C PSLy(C),—1) be a discrete and cofinite subgroup. In this section we determine the spectral
expansion of the hyperbolic kernel function in terms of the eigenfunctions ;(P) associated to the
discrete eigenvalues A; of the hyperbolic Laplace operator Ay~ and the parabolic Eisenstein series

EPat (P, s) associated to the cusps nx € Cr (k= 1,...,cr), as well as its range of convergence.

Theorem 5.1.1. For P,Q € H" and s € C with Re(s) > n — 1 the hyperbolic kernel function
K™P(P,Q,s) admits the spectral expansion

KM (P,Q,s Zan i/ Q0 (s) ED (P,Tl tit) i, (5)

where the coefficients a;o(s) and asy, o(s) are given by

trls) = E I p(A ) (2 Sy )

I'(s) 2 2
2l sl gy sl gy o1
o) = E BT (I (S (g 1)

respectively. For s € C with Re(s) > n — 1 the spectral expansion (5.1) converges absolutely and
uniformly for P ranging over compact subsets of H™.

Proof. For fixed Q € H" and s € C with Re(s) > n—1 the hyperbolic kernel function K™P (P, Q, s),
viewed as a function in P, is infinitely often continuously differentiable on H" by Lemma 4.3.7,
and an element of £?(I'"\H") by Lemma 4.3.6. From the differential equation

Apn K"P(P,Q,s) = s(n — 1 — s) K™P(P,Q,s) + s(s + 1) K™P(P,Q, s + 2)

(see Lemma 4.3.9), where Agn is the hyperbolic Laplace operator with respect to P, it follows
inductively that

AL KMP(P,Q, s) Zpk - K™P(P,Q, s+ 2k)

for | € Ny, where p, € Z[X] (k= 0,...,1) are polynomials with integer coefficients. This implies
that AL, K™P(P,Q, s) € L2(T'\H") for any [ € Ny.

Hence, by Theorem 3.5.5 and Remark 3.5.8 the hyperbolic kernel function admits a spectral
expansion of the form (5.1), which is absolutely and uniformly convergent on compact subsets of
H" by Proposition 3.5.6.
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5. Spectral expansions

It remains to compute the coefficients in the spectral expansion. Using the definition of K"™P (P, Q, s)
and identifying I'\H" with a fundamental domain Fr for I, for j € Ny the coefficient a; g(s) arising
from the discrete spectrum is given by

ara(s) = | K"P(P,Q,s)0;(P) psn (P) = /f S cosh(dsn (vP. Q)" 5 (P) puge (P)

Jr ~v€eT

=3 [ coshldin(uP.Q) T (P) e (P).

yel’

We note that interchanging integration and summation is justified because the hyperbolic kernel
function converges absolutely and locally uniformly for P, € H" and s € C with Re(s) > n — 1.
Since 1, (P) and the hyperbolic volume element - (P) are invariant under the action of I', and
the union of all translated fundamental domains v for v € ' covers the whole upper half-space
H"™, we further obtain

aa(5) =3 / cosh(dse (P, Q)~° T (v P) psn (v~ P)

~er JFr

=2 /ﬁr cosh(dgn (P,Q))~* 1, (P) pzn (P)

yel’

= [ cohde (P.Q) 5 (P) e (P,

Using elliptic coordinates ¢ := pg(P), ¢ := (g(P) centered at @ (see Definition 1.2.5) and the
corresponding volume element

prn (P) = sinh(0)" ! do dvy,_1(C)

from Lemma 1.2.8 (b), this becomes

QE(P) dynl(()> sinh(g)”_1 do

Snfl
= [ coshio)* (P) s de, (5.2)
where we have set
[P = [ B(P) dvaa Q)

It remains to compute the integral f;(P). As we integrate over the whole sphere S™~!, the function
f;(P) is independent of the angle { = {o(P). Thus, f;(P) solely depends on the hyperbolic distance
dpn (P, @), which means that it is radial at ) (see Definition 3.1.1). Moreover, since ¢;(P) is an

eigenfunction of Ag» with eigenvalue A\; = s;(n —1—s;) = (”7_1)2 + rjz € R, the same holds true

for the function f;(P). This implies that f;(P) = ]?j(dHn (P,@)) is a radial eigenfunction of the
hyperbolic Laplace operator Ag» and we have

—~ 2qn/2 __

fi(0) = £;(Q) = $5(Q) dvn_1(¢) = Ty Vi@ (5:3)
Sn-t 2

On the other hand, the radial eigenfunctions of Ay were determined in Lemma 3.1.3, i.e. the
functions

. _n 1-2 . n 1-n
Ol o0) =sinh(0)' # P17 (cosh(e)), O () =sinh(e)' "% Q1% (cosh(o))

—gtiry
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5.1. Spectral expansion of the hyperbolic kernel function

are a fundamental system of solutions of the differential equation

d?e 1 de
where s; = ”T_l +ir; and
0? 1 0
Y n-1) - <
002 (n—1) tanh (o) do

is the radial part of the hyperbolic Laplace operator Ay~ in elliptic coordinates centered at (). The
first of these two linearly independent solutions of (5.4), i.e. the function @fl)g 0(0), is bounded at
¢ = 0 by Lemma 3.1.5, while the second solution, given by

O, o) = sinh(o)' "3 Q1,% (cosh(0)),

is unbounded at ¢ = 0. Hence, we can drop the function @n s; 0(0) here, and up to a constant
factor the function O

n,s;,0

that is bounded at ¢ = 0. The condition (5.3) and the value @fl)s o(0) =2"2T (%)71 from
Lemma 3.1.5 now yield

(0) is the unique radial eigenfunction of the hyperbolic Laplace operator

_ J?(O) (1) 22 __ ny . PO
fJ(P) - m (_)nl,sj,o(g) F(%) 'Q[J] (Q) (5) Slnh(g)l P—%-ﬁ—irj (COSh(Q))

n 1-—

= (27r)n/2 J](Q) sinh(g) z P %j-zn (cosh(p)).
Inserting this identity into (5.2) we obtain
a;0(s) = 20" T5(Q) / cosh(g)~* sinh(e)"/* P!}, (cosh(g)) d.
0
It remains to compute the integral

/ cosh(g)~* sinh(g)”/2P lj (cosh( )) do
0

1

= / cosh(0) ™% (cosh(g)? — 1)1~ 2 sinh(p) Pi_;ir_(COSh(Q)) do
0 2 J
o . 2 n 1 1—
:/ (2 1) E P
1 2
where we have substituted ¢ = cosh(p). Finally, we use the identity (A.27), i.e

e PARETIE s+pu+v s+pu—v-—1
=S (2 — 1) K/2 ph = r r
/1 R TR dt = s (5 )t

which is valid for Re(p) < 1, Re(s + p +v) > 0 and Re(s + p —v) > 1, with p = 1 — § and
V= f% —+ 17 to get

o n _n 9s=1-% o n-l 4 g s n=l .
- 1)ETE P (1) dt = F( 2 J)F( 2 J).
/1 ( ) ~yin, D) V7 (s) 2 2

All in all, we end up with the coefficient

w0(0) = r Q) S (P ) p ()
‘QSrl(Z;ZlF(S_22+irj)r(s_n;21_”j)1m(ca>,
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5. Spectral expansions

which completes the proof for the discrete part.

The coefficient

a7 n—1 |
Q)= [ KMPPQ) BT (P 5 i) e (P)
r

arising from the continuous part can be computed analogously by replacing s; = "7_1 +ir; by
2=l 4 it and ¢;(P) by EP¥(P, 25 + it), and taking into account that EN(P, 25+ + it) =
Epa(P, 2=l _jt) for any t € R. This gives us

25—17TT S—L_1+it S_M_it ar n—1 )
u0(5) = M)t () (e )

which completes the proof.

Remark 5.1.2. The continuous part
1 & [ par(p =1
o ; - atne.Q(s) BT (P, 5 + zt) dt

in the spectral expansion (5.1) in Theorem 5.1.1 does not appear in the case cp = 0, i.e. if the
discrete and cofinite subgroup I' C PSLy(C),—1) contains no parabolic element.

5.2. Spectral expansion of hyperbolic Eisenstein series

Now we turn to determine the spectral expansion of the hyperbolic Eisenstein series and its range
of convergence. To do this, we first establish an integral representation of the hyperbolic Eisenstein
series involving the hyperbolic kernel function, and then apply the results from the previous section.
This gives us a generalization of the result of [JKP10] for n = 2.

Let I' C PSLy(C),—1) be a discrete and cofinite subgroup. Further, let (Q1,Q2) € Hr be a pair
of hyperbolic fixed points with hyperbolic scaling matrix (g, q,) € PSL2(Cy,—1) and hyperbolic

stabilizer subgroup I‘?gfi Q)" Let L£(q,,q,) be the unique geodesic in H" connecting Q1 and Q2,

and let L, g,) = Tpove  (L£(Q,,0,)) denote its image under the natural projection mpny» :
(Q1,Q2) (Q1,Q2)

H* — F?gin)\H”, which is a closed geodesic in F?é?,QQ)\H” of hyperbolic length (g, q,)-

The hyperbolic Eisenstein series E%? Qz)(P’ s) associated to the pair (Q1,Q2) € Hr of hyper-

bolic fixed points can essentially be written as a line integral of the hyperbolic kernel function
K™P(P,Q,s) along the closed geodesic L(g, o,) as follows.

Proposition 5.2.1. For P € H" and s € C with Re(s) > n — 1 we have the relation

2175 (s)
h; _
E(%?,Q2)(P’ s) = T (s)2

2

[ ERQs) dse @) (5.5)
L(erQQ)

Proof. We first assume that the hyperbolic fixed points are ()1 = 0 and Q2 = co and the hyperbolic
scaling matrix is given by 0, ,0,) = 7(0,00) = I

From Proposition 2.6.31 (b) and Remark 2.6.36 we know that the hyperbolic stabilizer subgroup
F?gf)o) of the pair (0,00) € Hr of hyperbolic fixed points is an infinite cyclic group which is
generated by the primitive hyperbolic element

~ (exp (3(0,00)) 0
Y(0,00) = ( 20 exp (—3L0,00)) )
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5.2. Spectral expansion of hyperbolic Eisenstein series

where /(o) is the hyperbolic length of the closed geodesic L g ). For m € Z the matrix fy(g'm)
acts on P € H" as '

r}/(nOl,oo)P = eXp<m l(O,oo))Pa

so we can identify Lo o) with the subset

{(0, ey 0,pq) €EH" | 2p_q € [1,exp(l(0’oo)))}
= {zn—1in-1 | Tn-1 € [L,exp(l0,00))) } = {€“in—1 | u € [0,{(0,00)) } € H".

By its absolute and locally uniform convergence, for P,Q € H" and s € C with Re(s) > n — 1 we
can rewrite the hyperbolic kernel function as

K" (P,Q,s) = Y cosh(din ((P,Q) " = 3. Y cosh(din (nyP. Q)"

ver YETEP T el

Z Z cosh (d]I-]In ~P, n_lQ))

h:
"/EF(O oy \I ner gl

> > cosh (dﬂ-}l” (vP, 7(_0,720)62))78

’yEthp \1—\ meZ

Z Z cosh (dHn (yP,exp(—m l(o,oo))Q)) -

'yEthp A\ mez

Z Z cosh (dHn (vP, exp(ml(o,oo))Q)yS )

’yEthp \1" me”Z

and the series in the last line is again absolutely and locally uniformly convergent. For the line
integral of K™P(P,(Q,s) along L 9,0) we obtain

/L KPPPQus) e (@ = Y Y [ coh (dn (0P explmlio.)Q) " die (@)
(0,00)

'yEthp \F MEL L0,00)

(5.6)
Employing hyperbolic coordinates (see Definition 1.2.1), for n > 3 the line of integration

{Q = (07 cee 707%—1) = yn—lin—l ‘ Yn—1 € [Lexp(l(o,oo)))}

becomes
T T
{Q*(u,ovga"'a§70> ‘U*IOg(‘@ Ol(Ooo) }
where Q = (u,01,...,0,_1) with u = u(Q), 61 = 01(Q), ..., Op—1 = 0,-1(Q). On this line
e

dspgn (Q) reduces to du, while y,—1 = e cos(f,—1) simplifies to e* cos(O) = e". Moreover, for
n = 2 the line of integration

{w=(0,y) =iy |y [1exp(lo,0))) }

becomes
’/T
{w=(u.3) | w=108(w]) € [0,1000)) }
where w = (u, #) with the hyperbolic coordinates u = u(w), 8 = 6(w). On this line dsg(w) reduces

to du, while y = ¢" sin(f) simplifies to e* sin (3) = e*.
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5. Spectral expansions

Using these considerations, for v € Ft’gio)\F and m € Z we write

/L cosh (dgn (YP, exp(ml(0,00))Q))  dsun(Q)
(0,00)

—S

Lo.00)
= / cosh (dHn (YP, exp(m 19,00y + u) in,l)) du
0

(m+1)1(0,00)
:/ cosh (dgn (YP, €% ip_1))" " du.

ml(oyx)

Now we consider the hyperbolic triangle with vertices yP, e“i,_1 and |yP|i,_1. As the geodesic
through vP and |yP|i,_1 is perpendicular to the positive i, j-axis L9 ), this triangle has a
right-angle at |yP|i,—1. Applying the first law of cosines for right-angled hyperbolic triangles (see
(A.31)) gives us the identity

This yields the equality

| cosh (dan(rPexplm 0.)Q) dsan(Q)
(0,00)

(m+1)1(0,00)
— cosh(dipn (VP Lo.o0))~* / cosh(u — log(|7P]))~* du. (5.7)
ml(o,oo)
Inserting (5.7) into equation (5.6), we get
/ Khyp(P7 Q7 S) dSH” (Q)
Lio,00)
] (m+1) l(0,00) ’
= Z cosh(dun (VP, L(0,00))) " Z cosh(u — log(|yP|))~* du
erlg et St
= Z cosh(dyn (vP, ﬁ(o,oc)))_s/ cosh(u — log(|yP]))~* du
YETRP ) \T o
= Z cosh(dHn('yP,E(Oyoc)))*s/ cosh(u)™* du.
YETRP ) \T -
Using the identity
9] oo 23—1 (s 2
/ cosh(u)™* du = 2/ cosh(u)™* du = #
—o0 0 F(S)

for Re(s) > 0 (see (A.18)), we finally obtain

. 25717 (3)° _
/ K"P(P,Q,s) dsur(Q) = ———~2— > cosh(dur (P, Lig,00)))
L0,00)

I'(s
( ) 'yEF](“g“;o)\F
270 (5)° e
=TT E§ 00y (Ps5),
i.e. the integral representation
21—s I'(s)
E(hg,go)(va) = ﬁ/ Khyp(P,Q,S) dsgn (Q)
r (5) L(0,00)
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5.2. Spectral expansion of hyperbolic Eisenstein series

This proves the assertion in the special case Q1 = 0, Q2 = co.

Now let (Q1,Q2) € Hr be an arbitrary pair of hyperbolic fixed points of I'. As in the proof of
Lemma 4.1.4 (a), the discrete and cofinite subgroup 0(76211,Q2)F0(Q17Q2) C PSLy(C,—1) has the
hyperbolic fixed points 0 and oo and

hyp _ rhyp -1
Eri.qn(Ps) = E e 2 T(@1.02):(0,00) ("(Ql,Qg)P’ S)

for P € H" and s € C with Re(s) > n — 1. Setting

e (£0,00))5

/ I
(0,00) "= (-1
(U(Ql,Qz) FU(QLQz))(OYm)

the first part of the proof yields

2175 (s)
hyp — hyp
EF,(Qth)(P’S) = 7// K 7% ( 7(01,02) P Q, ) dspn (Q).

2 o I'o
S s (Q1,Q2)
I (2) (0,00) (Q1,Q2)

The hyperbolic kernel function K ( 7(G1,02) P, Q, ) can be rewritten as

(Ql Qs) Fow@.Q0)

hyp —1 =F
K(’(_Qll,QwFU(Ql,QQ) ( Y@uon D@ ) N Z cosh (dHn (VU(Q“Q?)P’ Q>)

—1
V€T (G,,Q9) Fo@Q.Q2)

—s .
= Z cosh (dH“ (U(Q;I’QQ)IYU(Ql7Q2)0(6211,Q2)P7 Q)) = Z cosh (dH" (7P7 O—(leQZ)Q))
v€er ver

= K;lyp (P, O’(Qth)Q, 8) .

From this identity and the PSLy(C},_1)-invariance of the hyperbolic line element we infer that

hyp Ps) — 27T (s) Khve (p d
ErQuan D) = — 5 v’ (P,0(0,,0:)@:5) dsu-(Q)

s\2 ,
I'(3) Lio,00)
21=s (s
= s (2 ) / Kll“lyp (P7 Q7 S) dSH” (Q)
r (5) 7(Q1.Q2) L0, 00

Making use of
hyp

s — g hyp
(J(Ql’Qz) PO’(QLQQ))(O,OO) = J(Ql’Qz) F(Ql,Qz) U(Ql-,QQ)
and 0(Q,,Q,)L(0,00) = £(Q1,Q.), We find

~1 h
7(Q1,02)L{0,00) = 7(Q1,@2) ({U(Ql,QQ) L&) 0. 0@.anP ’ Pe E(o,oo)})
h; h
= {F(Z)?QQ) U(Qth)P ) P e 5(0»00)} = { ((}5}3 Qs) P|Pe £(Q11Q2)}
= L(Ql,Qz)‘

This implies

21751 (s)
h; —
Friuentho) ="

2

/ Kgyp (P7 Q7 8) dSH” (Q)u
L@i.@2)

which proves the claim for an arbitrary pair (Q1,Q2) € Hr of hyperbolic fixed points.
O

Theorem 5.1.1 and Pr0p081t10n 5.2.1 together give us the following spectral expansion of the
hyperbolic Eisenstein series E(Q Qs )(P, s) in terms of the eigenfunctions ;(P) associated to the
discrete eigenvalues A; of the hyperbolic Laplace operator Ay» and the parabolic Eisenstein series
Epar(P, s) associated to the cusps nx € Cr (k=1,...,cr).
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5. Spectral expansions

Theorem 5.2.2. For P € H" and s € C with Re(s) > n — 1 the hyperbolic Eisenstein series

lyhyp

(@ Q2)(P, s) admits the spectral expansion

oo cr 1
h; ar
E(gzll),Qz)(P’S) Zba( bi(P)+ o~ Z/ ben, (s) B3 (P, T +Zt> dt, (5.8)
7=0
where the coefficients bj(s) and by, (s) are given by

bi(s) = 71'7?121_‘(3_”21+Z'Tj)r<3_n21_irj>A T5(Q) dsin (Q),

2 2 (Q1,Q2)

n—1 - n—1 -
T2 §— 5=+t s— = —it ar n—1 .
b (5) =~ r( z )r( 2 )/ Ep? (Q,T —zt) dsun (Q),
r (5) L1,

respectively. For s € C with Re(s) > n — 1 the spectral expansion (5.8) converges absolutely and
uniformly for P ranging over compact subsets of H".

Proof. For s € C with Re(s) > n — 1 the hyperbolic Eisenstein series Eég? Qz)(P7 s) is infinitely
often continuously differentiable on H" by Lemma 4.1.7, and an element of £?(I'\H") by Lemma
4.1.6. From the differential equation

Bun B g (Pro) = sln = 1= ) B ., (P.8) + 82 Bl g, (P +2)

(see Lemma 4.1.8) we conclude inductively that

At B ) (P Zpk B gy (Prs 4 2K)
for I € Ny, where p;, € Z[X] (k= 0,...,1) are polynomials with integer coefficients. Thus, we have
AL EPP  (P,s) e L2(T\H") for any | € Ny.

(Q1,Q2)
Now Theorem 3.5.5 and Remark 3.5.8 imply that the hyperbolic Eisenstein series admits a spectral

expansion of the form (5.8), which converges absolutely and uniformly on compact subsets of H™
by Proposition 3.5.6.

The coefficients in the spectral expansion can now be derived from Theorem 5.1.1 and Proposition
5.2.1: Substituting the spectral expansion (5.1) of K™P(P, Q,s) into the identity (5.5), we obtain

cr 1
h ar
(5PQ (P 5) Zb s) ¥;(P +*Z/ bene (8) B <P,7+zt) dt

e ON RS e den |
B I ((‘;)2 Z </L(Q1 Q2) J)Q( ) ! . (Q)> wJ(P)

2 Jj=0

=

Comparing coeflicients leads to the formulas

n—1 )
atmk,Q(S) d5H'"(Q)> Es:r (P7 5 + Zt) dt) .

(Q1,Q2)

21731—\
bJ(S) = 1_‘(5)(28)/14 CL‘%Q(S) dSH”(Q)
2 (Q1,Q2)

_ 9l—s F(S) 9s-1 71—”771 S — "T—l + iTj s — nT_l B ZTJ

- W /L(Q1 Q2) I'(s) F< 2 ) F( 92 ) d’](Q) dspn (Q)
N I = Sy P S 1 B

= F 2 J 1—1 P} j - d )
I (%)2 ( 2 ) ( 2 ) /L(Q1 Q2) ¥3(Q) dow-(Q)

122



5.2. Spectral expansion of hyperbolic Eisenstein series

and
2175 ()
bt (8) = ﬁ/ atm,@(s) s (Q)
r (5) L@y.@2)
21781" 2571 n-1 _ n—1 it _n=1 _ it —1
:7(28)/ F7T 2 F(S 2 +2)F<S P Z)Egjr<Q7L*it> dSHn(Q)
r (%) Lioy .y (s) 2 2 2
n-t n—1 . n—1 :
— B2+t — Dot it -1
Lt ) [ (et i) aso
r (%) L(leQZ)

This finishes the proof of the theorem.
Remark 5.2.3. The continuous part
1 &K [ b (p =1
=0 bun(s) B (P, 2=+ zt) dt
k=177

in the spectral expansion (5.8) in Theorem 5.2.2 does not appear in the case cr = 0, i.e. if the
discrete and cofinite subgroup I' C PSLy(C,,—1) contains no parabolic element.
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6. Meromorphic continuations

After having determined the spectral expansions of the hyperbolic kernel function and the hy-
perbolic Eisenstein series in the last chapter, we now use our knowledge of the coefficients in
these expansions to establish the meromorphic continuations of the hyperbolic kernel function
K™P(P,(Q,s), the hyperbolic Eisenstein series E?é‘;’QQ)(P,s) and the elliptic Eisenstein series

EE}I(P7 s) in s to the whole complex plane. In the first and second section we do this for the hy-
perbolic kernel function and the hyperbolic Eisenstein series, respectively. In the chapter’s third
section we derive a relation between the elliptic Eisenstein series and the hyperbolic kernel func-
tion which enables us to establish the meromorphic continuation of the elliptic Eisenstein series as
well. These methods follow the ideas that were employed for n = 2 to establish the meromorphic
continuations of hyperbolic Eisenstein series in [JKP10] and elliptic Eisenstein series in [Pip10].

6.1. Meromorphic continuation of the hyperbolic kernel function

Let I' C PSLy(C),—1) be a discrete and cofinite subgroup. In this section we use the spectral
expansion of the hyperbolic kernel function computed in section 5.1 to establish its meromorphic
continuation in s to the whole complex plane. Moreover, we also determine its possible poles.

Theorem 6.1.1. For P,Q € H" the hyperbolic kernel function K™P(P,Q,s) admits a meromor-
phic continuation in s to the whole complex plane. For any m € Ny the possible poles of the
function

[(s) K™P(P,Q,s)

ro- )

in the strip {

(m+1) < Re(s) < 251 — Qm} are located at the following points:

(i) s = "5 +ir; — 2N, where j € Ng and \j = s;(n — 1 —s;) = ("771)2 + 73 is the eigenvalue
of the eigenfunction 1;(P), and where N := [m + M—‘ has to satisfy N > 0.
If N Fir; ¢ No and 2N Fir; ¢ Ny, it is a simple pole with residue

I'(s) KWP(P,Q, 3)1

Ress: "gl +ir; —2N

r (3 - ”%1)
—1)N 277 Firi 2N 175 D(ipy
_ (=D i Z WP
NIT (:tzrj —2N)
lENg:
TI=T5
and if N Fir; € Ny, it is a simple pole with residue
R F(S) Khyp(P)Qas) 2”31 ii’,‘j72N Z 1[)
€S n—1 . =
s="5—=tir; —2N T (S _ nT_l) NI (N F Z?“ P l
0-
TI=T;

In case that N Fir; ¢ No and 2N Fir; € Ny, it is no pole but a removable singularity.

(ii) s=n—1—p—2N, where N € {max(m— L"T_lj ,O) ,...,m}, and where w = p is a pole
of the parabolic Eisenstein series EP*(P,w) for some k € {1,...,cr} with

n—1

pe[ +2(m — N), T1+2(m+1—N)>,
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6. Meromorphic continuations

in particular, p € ("771,71 — 1].

(ii) s = p— 2N, where N € {0,...,m}, and where w = p is a pole of the parabolic Eisenstein
series EP* (P, w) for some k € {1,... cr} with

Re(p) € (

‘ : —1
in particular, Re(p) < "5=.

1 1
B 9m+1-N), Y

—Q(m—N)};

The poles given in the cases (i), (ii), (11i) might coincide in parts.

Moreover, the possible poles of the function
L(s) K™P(P,Q, s)
=y
in the half-plane {s € C | Re(s) > ”?_1} are located at the points s = %‘1 +ir; — 2N, where
jeENyand \j =sj(n—1—s;) = (”771)2 + ’I“J2- is the eigenvalue of the eigenfunction v;(P) with

r; € [—z' ”T*I,O), and where N € Ny with N < % The orders and residues are as in the case (i)
above.

Proof. We use the spectral expansion of K™P(P,Q, s) to prove its meromorphic continuation. By
Theorem 5.1.1, for P,@ € H™ and s € C with Re(s) > n — 1 the hyperbolic kernel function admits
the spectral expansion

o 1 cr [e%e] n — 1
h; r .
K" (P.Q,s) = ;:o: a;.0(s);(P) + E?_l: /_ _aunals) B (P, . —Ht) dt,  (6.1)

where a; o(s) and ay o (s) are given by

) = IS r () (I f), 2
) = T (N (T (0 ) 6

respectively.

First we give the meromorphic continuation of the series
oo
Y a;0(5) %;(P) (6.4)
j=0

that arises from the discrete spectrum. The explicit formula (6.2) already proves the meromorphic
continuation of the coefficient a;o(s) in s to the whole complex plane. We are left to show that
the series (6.4) converges absolutely and locally uniformly for all s € C.

For this we use Stirling’s asymptotic formula (A.5) for the gamma function, which for fixed o € R
gives us the asymptotics

t
[T(o + it)| ~ V27 [H7~ /2 exp ((— %) (It} = o0)

with an implied constant depending on ¢. Using this formula, for fixed s € C and any j € Ny with
r; > 0 we obtain the bound

Re(s)  n+41

n—1 . -
s — "= Eirg\| [Im(s) £ ;] 2 4 o Im(s) £ ;]
‘F(2 )’ =0 [V2r (2 exp|——— ——

e(s n+1 I j: ; Re(s)  n+1 ;
= 0 (Im(e 4258 o (T L)) g (1198 o (7))
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6.1. Meromorphic continuation of the hyperbolic kernel function
as r; — 00, with an implied constant depending on s. This yields

F(sfnT_lJrirj)F(sf%_lfirj)
2 2

with an implied constant depending on s. In Remark 3.5.7 we have seen that the eigenfunction
1;(P) satisfies the bound

=0 (r?c(s)fngl exp (—%)) (rj —»o0) (6.5)

s [0 (P)| =0 (%) (= o).

Further, by Remark 3.5.4 there are only finitely many j € Ny with A; € [0, ("7_1)2), i.e. with

T € [ 1 7 0) Hence, for all but these finitely many j € Ny we obtain the bound

e =0 (105 ey (212)12) =0 (05 ey (2] (0

with an implied constant depending on s. This shows that the series (6.4) arising from the discrete
spectrum converges absolutely and locally uniformly for all s € C. Consequently, it defines a
holomorphic function away from the poles of a; ¢(s).

Now we can determine the poles of the series (6.4) after multiplication by I'(s) T’ (s — ”7_1)71,
i.e. the poles of
9s—1 W"’gl o0 g— n=l +ir n—1 e
4 meE F( 2 ]) F( 2 ) . (P, 6.6
yeE=yp3S 2 ) Bi(@) v (P) (6:6)

which can only arise from the two gamma factors in the sum. Recall from section A.1 that
ze=>T ( %) is a meromorphic function for all z € C whose poles are located at the points z = —2N
(N € Np) and are simple. This gives us the possible poles s = % +ir; — 2N of (6.6), where
7, N € Np.

We note that 251 — 2(m + 1) < Re (251 +ir; — 2N) < 271 — 2m holds true for some m € Ny if
and only if m =+ RC(” )< N<m+1+ RC(Q"V)

yields N = [m + w—‘, while, due to the condition NV € Ny, also N > 0 must hold.

Further, Re (%5* +ir; —2N) > 251 is equivalent to N < iw. Since either r; > 0 or
T € [fz' ”T_l, O), the condition N <

i Re(irj)
s =271 —ir; — 2N with Re(s) > On the other hand the condition N <

a pole of the form s = 251 + ir] - 2N with Re(s) >

As this interval contains exactly one integer, this

cannot be satisfied, and there is no pole of the form

Re(ir;) , respectively

2 , is only possible for r; € [ "771, 0).

If NFir; ¢ Ng and 2N Fir; ¢ Ny, the point s = ”;1 +1ir; — 2N is a simple pole of exactly one of
the gamma factors in the sum and no pole of T’ (s — 7) Thus, it is a simple pole of (6.6). The
summands that contribute to the residue are all these for which [ € Ny satisfies 7; = r;. Using the
fact that

z— L g 2\ 2(=1)N
Res,_uayy, oy T(——5——) = Res.eoan (5 ) = =~ (6.7)

and inserting s = an +4r; — 2N into the terms that are holomorphic at this point, we obtain the
asserted residue

(—1)N 2%+ =2N 7557 D(4ip; — G(P
NIT (%ir; — 2N) Z !

S\

TI=ry

If N ¥ ir; € Ny holds true, then also 2N F ir; € Ng, and s = 5% £ ir; — 2N is a simple pole

of both gamma factors in the sum and a simple pole of T" (s — ”T_l) as well. Hence, it is a simple
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6. Meromorphic continuations

pole of (6.6), and again all the summands with | € Ny such that 7, = r; contribute to the residue.
Setting M := N Fir;, we have

L _n-l iZ’I“] B 2\ 2(_1)M B 2(_1)N3Firj
Reszznglj:irj—ZNr(#) = Resz:—2MF(§) - Ml (N Firy)!

and
( 1)M+N (_1)2N:Fi7“j
(M+N)!~ @NFir)!

n—1

Resz:”;lﬂrszr<Z_ ) Res.— () I'(2) =

Together with (6.7) this yields the residue

2n+1 :I:zr172N 2N ¥ ZT‘] Z w
1

N! (N Firj el

TI=T}

If NFir; ¢ Ny and 2N Fir; € Ny hold, the point s = "*1 +14r; — 2N is a simple pole of exactly
one of the gamma factors in the sum but also a simple pole of I' (s - —) Consequently, these
two poles cancel each other and it is a removable singularity of (6.6).

This finishes the treatment of the discrete part of (6.1).

For a cusp ny, (k=1,...,cr) of I' we now give the meromorphic continuation of the integral
1 [ arf/ o, M—1
= /_OO At () Eg’k (P, 5 + zt) dt

s— n—3 00 n—1 . n—1 .
:2 115 / F(szJrzt)F(sf?fzt) par(Q
4T(s) oo 2 2 ’

that arises from the continuous part of the spectral expansion (6.1). Through the substitution
w = %’1 + it the integral becomes

) (=1
)Egj (P,T—i—zt) dt

9s=1 p5° s—n+1l+w s—w
I (s)i= 2" ° F( )r( ) EP™(Q,n — 1 — w) Y™ (P,w) dw,
=t o : ) B (Qun— 1 w) B (Pw) du

where the line of integration goes from 251 —ioo to 251 +iocc. The function I, (s) is holomorphic
for s € C with Re(s) > n — 1. In fact, it is even holomorphic for s € C with Re(s) # 27 — 2m

for any m € Ny, so that in particular 17(72)(3) = I, (s) is a meromorphic function on the half-plane
Re(s) > 251

Now let ¢ € (0,1) sufficiently small such that the parabolic Eisenstein series EP*"(P,s) has no
poles in the strip ”T_l —2e < Re(s) < ”T_l + 2e. Such an € exists by Corollary 3.4.14. For fixed
s € C with 251 < Re(s) < 251 4 ¢ we set

9s—1 n_3 _ 1
fnk,s(w) o T2 (s n+1l+4+w

T CEEY (U @ 1 w) B (Pw)

Let y € R with y > |Im(s)| and let W, . denote the following piecewise linear path: the vertical
line from 251 —joo to 251 — iy, the horizontal line segment from 5% — iy to 25% + ¢ — iy, the
vertical line segment from ”T_l +e—1iy to ”T_l +¢e+1y, the horizontal line segment from %‘1 +e+iy
to %=L + 4y, and the vertical line from 5=+ iy to ”;1 + 100.

Then the parabolic Eisenstein series EP*(Q,n — 1 — w), Ep*(P,w) have no poles on W, . by
the choice of €. The factor ' (s w) of fp,.s(w) has no poles on the vertical parts of W, ., since

on these we have 0 < Re (52“’) < g/2 and —¢/2 < Re (5_2“’) < 0, respectively, and we chose
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6.1. Meromorphic continuation of the hyperbolic kernel function

€ € (0,1). On the horizontal parts of W, . it has no poles as well, because |Im(w)| = y > |[Im(s)]
and thus Im (25%) # 0 holds true there by the choice of y. Likewise, the factor I' (=242 of
fur,s(w) has no poles on the vertical parts of W), ., as on these we have 0 < Re (£=2£14%) < £/2
and £/2 < Re (%) < g, respectively. On the horizontal parts of W, . it also has no poles,
since |Im(w)| = y > |[Im(s)| and Im (£=2E14E%) = Tm (££2) 5 0 holds true there by the choice of

Y.

Overall, f,, s(w) is a meromorphic function on a suitable domain containing Wy, . and has no poles
on this path. Setting

Tpye(s) = / Foes(w) du,
VVy,E

we get by the residue theorem

n

I’?xmy,s(s) - Im (5) = [1*
P)

;1+57iy n;1+€+iy

Fos(w) du + / Fos () duw

1 n—1

—iy o= te—iy

iy iy
—|—/ﬂ Jow,s(w) dw —|—/ Jo,s(w) dw

%1+s+iy "T—l +iy

= 2m Z Resw:a fnk75(w)’

where we sum over all poles ¢ € C that are contained in the box an < Re(a) < ”Tfl + &,

—y < Im(a) < y. Hence, for s € C with 251 < Re(s) < 251 + ¢ we get

~ 251 p 75"
I (5) = Iy e (s) — 2mi 4iT(s)
s—n+l+w s—w ar .
-3 Resuca [F( 5 )F( 2 )Eﬁ’k (Qn—1—w)ER(Pw)|,

where the sum runs over all poles a € C with 251 < Re(a) < 251 + ¢ and —y < Im(a) < y.

By the choice of ¢ the parabolic Eisenstein series EP*(Q,n — 1 — w), EP*(P,w) have no poles
in this box. The function I' (%) also has no poles there, since in the considered box
0 < Re (==2414%) < ¢ holds true. Further, the function I' (£5%) has only one pole in this box

2
at w = s, because —¢/2 < Re (55%) < ¢/2 holds true there and we chose ¢ € (0,1), and the

corresponding residue is equal to —2. This implies

~ 2571 ’/T% n—1
Iﬂk (5) = Ink,y,s(s) + Ts) F(s —

) EP™(Q,n — 1 —s) E?(P,s). (6.8)

The right-hand side of (6.8) is a meromorphic function for 251 — & < Re(s) < 23! + ¢ and

—y < Im(s) < y. Since y can be chosen arbitrarily large, this gives the meromorphic continuation
L(,(,:’l)(s) of the integral I, (s) to the whole strip 251 — ¢ < Re(s) < 251 +¢.

Now we assume 25+ — ¢ < Re(s) < 25%. Let y € R with y > [Im(s)| and the path W, . as above.
The parabolic Eisenstein series EP* (Q,n—1—w), EP* (P, w) have no poles on W, .. The function
r (sz) has no poles on the vertical parts of W, ., as on these we have —¢/2 < Re (%) <0
and —e < Re (%) < —g/2, respectively, and we chose ¢ € (0,1). That it has no poles on

the horizontal parts of W, . follows from the choice of y, as before. Likewise, I (%) has

no poles on the vertical parts of W), ., since on these we have —¢/2 < Re (%) < 0 and
0 < Re (%) < &/2, respectively, and we chose € € (0,1). From the choice of y we conclude
that it has no poles on the horizontal parts of W, . as well.
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6. Meromorphic continuations

So, using the residue theorem as above, for s € C with "Tfl —e < Re(s) < "771 and —y < Im(s) <y
we obtain

257171'"7_3
0,1 _ .
I,Sk )(8)—Im(s)—|—2m- i)
s—n+1l+w s—w ar ar
-3 Resuca {r( 5 )r( 5 )Eg;k (Q,n—1—w) E2™(P,w)
28717‘-%—1 n—1 ar ar
+WF(S— 5 )Ef?’k (Q,n—l—s)Ef;k (P, s),

where we sum over all poles a € C with *7 L < Re(a) < "?71 +¢e and —y < Im(a) < y again.

As above, the parabolic Eisenstein series EW“(Q7 n—1—w), EP*(P,w) have no poles in this box.
Also the function ' (5_2“’ “’) < 0 holds true
there and we chose € € (0,1). Moreover, the function T’ ( has only one pole in this box
at w=mn—1-s, since —£/2 < Re (5=2454%) < £/2 holds true there and € € (0,1), and the
corresponding residue is equal to 2. So we obtain

) has no poles in the considered box, as —¢ < Re (5_2
s—n+1+w)
2

28_171'”7_1 n—1 . "
IO (5) = Iy () + =T (s = == ) B3 (Q,5) B (Pon— 1 5)

I'(s) 2
25—l %5 n—1
R — _ par 1 par
O F(s 5 )Em (Q,n—1—s) EE*(P,s). (6.9)

The right-hand side of (6.9) is now a meromorphic function for 251 — 2 < Re(s) <

the meromorphic continuation 17(72’2)(8) of the integral 17(72’1)(.9) to this strip.
On the line Re(s) = %5+ the meromorphic continuation of the integral I, (s) is given by the right
hand side of (6.8), where y has to be chosen such that y > [Im(s)|. Together these formulas provide

’fL

L giving

the meromorphic continuation 17(7?(5) of the integral I, (s) to the strip 251 — 2 < Re(s) < 251,

In the following we continue this two-step process and show inductively that for m € Ny the
meromorphic continuation L(]k +1)( ) of the integral I, (s) to the strip 25+ — 2(m 4 1) < Re(s) <

”T — 2m is given by

251t N (—1)! -1
I, (s) + F(Z)Z S (z1> r(s—”2 )EW(Q,n—1—3—21)Eg§r(P,s+21)
1=0 ’
251t I (—1)! n—1,
o par par _ — —
T l§:0 - F(s 5 )E (Q,s+20) EE™(Pn—1—s—20) (6.10)

for 251 —2(m 4+ 1) < Re(s) < an — 2m, while on the line Re(s) = 251 — 2m we have to take

~ sf "‘7 m n—1 . "
Iy, ye(s) + S) Z (s— S 1) ER(Qun— 1= s — 20) B (P,s +21)
=0
25—l (1) n—1
I(s— B 20) EP* (P —1— s — 2
T Il (5 +l> (Q,s+20) E)Y (P 5 —20),

(6.11)

where y is chosen sufficiently large such that y > |Im(s)|.
Suppose, for some m € Ny We have established the meromorphic continuation Lg:lﬂ)(s) of the

integral I, (s) to the strip 252 —2(m+1) < Re(s) < 251 —2m via the formulas (6.10) and (6.11).
Let s € C with 2= — 2(m + 1) < Re(s) < %52 —2(m +1) + ¢ and y > |Im(s)], and let the path
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6.1. Meromorphic continuation of the hyperbolic kernel function

Wy, as before.
The parabolic Eisenstein series E}*(Q,n — 1 — w), Ep*(P,w) have no poles on W, .. The func-
tion T’ (%) has no poles on the vertical parts of W, ., because on these we have —(m + 1) <
Re (55%) < —(m+1)+¢/2 and —(m+1)—e/2 < Re (55%) < —(m+1), respectively, and we chose
€ (0,1). On the horizontal parts of W, . it has no poles, since [Im(w)| = y > |Im(s)| and thus
Im (Sgw) # 0 holds true there by the choice of y. Similarly, the function I' (W) has no poles
on the vertical parts of Wy, ., as on these we have —(m+1) < Re (£=2£4%) < —(m+1)+¢/2 and
—(m+1)+¢/2 < Re (£=2£14%) < —(m+1)+e, respectively, and € € (0,1). On the horizontal parts
of W, . it also has no poles, because [Im(w)| = y > [Im(s)| and Im (=2542) = Im (252) £ 0
holds true there by the choice of y.

Now for s € C with 251 — 2(m + 1) < Re(s) < %5+ — 2(m + 1) + ¢ the residue theorem yields

_ ) 257171. )
Iy (8) = Ly y.e(s) — 2mi - 4il(s)

-3 Resuca [F(S —ntl “”) (200 B Qo — 1 - w) B (Pw)|

2

where we sum over all poles a € C with 272 < Re(a) < 25 + ¢ and —y < Im(a) < y.

By the choice of ¢ the parabolic Elsensteln series EP*(Q,n — 1 —w), EP*(P,w) have no poles
in this box. Also the function I' (£=2£14%) has no poles in the considered box, as —(m + 1) <
Re (&==2414%) < —(m 4 1) + ¢ holds true there and we chose £ € (0,1). Moreover, the func-
tion I' (£5%) has only one pole in this box at w = s + 2(m + 1), because —(m + 1) — £/2 <
Re (9;211)) < —(m+1)+4¢/2 holds true there and € € (0,1), and the corresponding residue is equal
to —2(=1)™*1/(m + 1)!. We obtain

n

~ 25 lptr (—1)m+! n—1
T(s)  (m+1) (s= =5 +m+1)

CEP(Qn—1—5— 2(m+1)) EP(Pis+2(m+1))

and
9s—1 n-l m —1)
I (s) + F(Z)2 Z< “> F( )EPar Q.n —1—s—20) EE*(P, s + 21)
=0
9s—1 n-l m —1)!
+ F(Z)z Z( “) r( )Epar Q,s+20) EP"(Pon—1— s — 21)
1=0 ’
- 29—17.(."21 m+1 l

-1
= D) + ( Lo ) ER(Qun— 1= s — 20) ER(Ps + 21)

57

1 -1
( n )Epar(Q,erQl)EE:r(P,n—17.9721).

E

(6.12)

The right-hand side of (6.12) is a meromorphic function for 251 — 2(m + 1) — ¢ < Re(s) <
"T_l —2(m+1)+¢e and —y < Im(s) < y. Thus, as we can choose y arbitrarily large, this gives the
meromorphic continuation I,S;"“’l) (s) of the integral Iy, (s) to the whole strip 25 —2(m+1)—¢ <
Re(s) < 25t —2(m+1) +-.

Now we assume 51 — 2(m + 1) —e < Re(s) < 251 — 2(m + 1) and let y > [Im(s)| and W,
as before. The parabolic Eisenstein series EP™(Q,n — 1 — w), Ep*(P,w) have no poles on W), ..

The function T' (25%) has no poles on the vertical parts of W, ., as on these —(m + 1) —£/2 <
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6. Meromorphic continuations

Re (55%) < —(m+1) and —(m+1) —e < Re (55%) < —(m+1)—£/2 holds true, respectively, and
we chose ¢ € (0,1). That it has no poles on the horizontal parts of W,, . follows from the choice
of y, as above. Similarly, T" (W) has no poles on the vertical parts of W, ., since on these
—(m+1)—¢g/2 <Re (=2Ht2) < —(m+1) and —(m + 1) < Re (&=2E14%) < —(m + 1) +¢/2
holds true, respectively, and € € (0,1). From the choice of y it follows that it also has no poles on
the horizontal parts of W, ..

Hence, for s € C with 251 —2(m + 1) —e < Re(s) < 251 —2(m + 1) and —y < Im(s) < y the
residue theorem gives us

o1 _m=3
() = Iy (o) +2mi- T
. ZReSw:a {F(S - nJ; 1+ w) F(S ;U’) EP(Q,n — 1 — w) EX™(P,w)
n—1 1
T Y G-t ) e s e
-#Tlﬂ%fﬁf“*yrG—“”_l +1) B Qs+ 20) B (Pon—1— s —21)
0s) & 2 ’ e |
where the sum runs over all poles a € C with 251 < Re(a) < %5* +¢ and —y < Im(a) < y again.

As above, the parabolic Eisenstein series Epar(Q, —1—w), Ep*(P,w) have no poles there. The
function I' (£5%) also has no poles in this box, because —(m + 1) — & < Re (55%) < —(m + 1)
holds true there and we chose ¢ € (0,1). Further, the function I' (52414} has only one pole
there at w =n — 1 — s — 2(m + 1) with residue equal to 2 (—1)™"/(m + 1)!, as in the considered
box —(m+ 1) — /2 < Re (£=24142) < —(m + 1) + £/2 holds true and ¢ € (0,1). This implies

2571 7'('% (_1)m+1 -1
I () = T, I(s— 1
w8 = In(8) + e (s= 5 +m+1)

B (@, s +2(m + 1)) E};;jr(P, n—1-s5—2(m+1))
n—-1 m+l1

2871 oz (_1)l n-— par par
50 > r<s— 5 )E (Q,n—1—s—21) EP™ (P, s + 21)

=0
s_ n_l 3 n—1 ar ar
Z ( B +)Ep (Q.s+21) EP*(P,n—1—s—2I)
=0
2371 1 m+1 ( 1) n— 1
— I F — Epar _ 1 e 21 Epar P 2l
(ot F(S) — 1 (s 2 ) @, s —20) B (P s +21)
2571 7-['”;1 ™ (_1)l n ar ar
T & D(s = "5 1) ER(Qus + 2) ER(Pin =1~ s = 20).

(6.13)

The right-hand side of (6.13) is a meromorphic function for 251 — 2(m + 2) < Re(s) < 25 —

2(m + 1), hence it gives the meromorphic continuation L(]TH’Q)(S) of the integral IT(,ZLH’U(S)

this strip.
On the line Re(s) = 251 —2(m+1) we have to take the right hand side of (6.12) as the meromorphic
continuation of the integral I,, (s), where y has to be chosen such that y > |Im(s)|. Together

to

these formulas give us the meromorphic continuation Lg;nw)(s) of the integral I,, (s) to the strip
-l _2(m+2) <Re(s) < 251 —2(m+1).
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6.1. Meromorphic continuation of the hyperbolic kernel function

We have proven that for m € Ny the meromorphic continuation of the integral I, (s) to the strip
2= _2(m+1) < Re(s) < %5 —2m is given by the formulas (6.10) and (6.11). Overall, we obtain
the meromorphic continuation of the integral I, (s) in s to the whole complex plane.

From the functional equation (3.15) of the parabolic Eisenstein series and Proposition 3.4.13 (a),
i.e. the symmetry of the scattering matrix, for w € C we obtain

cr cr c¢cr
S EM(Qun—1—w) B (Pw) =Y Y @pon, (n—1—w) EP*(Q,w) EX™(P,w)
k=1 k=1 j=1

cr cr
=Y EF(Q,w) Y @nym, (n— 1 —w) ER™(P,w)
j=1 k=1
cr
ZEPM ,w)Zgommk(n—l—w) Eﬁsr(Paw)
k=1
cr
= Z EP(Qw) > @y, (n— 1 —w) EP* (P, w)
j=1
_ZEPM w) P (Pn—1—w).

Using this identity, the meromorphic continuation of the continuous part

S par n—1 .
Z at% s) EP (P, 5 —i—zt) dt

of the spectral expansion (6.1) to the strip 25+ — 2(m + 1) < Re(s) < %7 — 2m is given by

= 2°m > - (_1)l n—1 - par par
kZ:lIm,(s)Jr 0 > F(s— . +1) S ERT(Qn—1—s—21) ER(P,s +21) (6.14)

k=1

N
I
<

for 251 — 2(m + 1) < Re(s) < ”T_l — 2m, while on the line Re(s) = 251 — 2m we have to take

cr n—l m— 1 er
T n—1
2 () ¢ Z Fr(s ="t et) S @n -1 s B (P 20
=t =0 k=1
42 F(S) — r(s——+m) ZEpa (Q,n —1— 5 — 2m) EP™ (P, 5 + 2m),

(6.15)

where ¢ € (0,1) is chosen sufficiently small such that all parabolic Eisenstein series EP* (P, s)
(k=1,...,cr) have no poles in the strip %‘1 —2e < Re(s) < %‘1 + 2¢, and y is chosen sufficiently
large such that y > |[Im(s)|. In this way we get the meromorphic continuation of the continuous
part of the spectral expansion (6.1) in s to the whole complex plane.

Now we turn to the computation of the poles arising from the continuous part after multiplication
by I'(s)T (s — %)_1. Using formulas (6.14) and (6.15), valid in the strip 25 — 2(m + 1) <
Re(s) < 271 — 2m, we have to determine the poles of

—3
_ 1 _

T Z/ S nt +w> I‘(s w) EDY(Q,n —1—w) EPY(P,w) dw
2 Re(w)= 2 2

S

4ZF

+28w%§:(_1)l( ) ZEPM n—1—s—21) E?™(P,s +21)

!
—
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6. Meromorphic continuations

or

257171'n773 2 s—n+1+w

5 r( . )r(s;w)Egjr(Q,n_1_w)Eggr(P,w) dw

1
_|_287T"zlmzl(_1)l( n—l) ZEParQn—l—s—2l)Epar(Ps—|—2l)
) Nk )

) ZEW Q,n—1—s—2m) EE*(P, s +2m),

respectively. The poles of both can only arise from the functions E,I;]":r(Q,n —1—s—2[) and
Ep(P,s +21), where [ =0,...,mand k=1,...,cr.

The poles of EP(Q,n — 1 — s — 2l) are located at s =n — 1 — p — 2I, where w = p is a pole of
the parabolic Eisenstein series E};Z‘T(Q,w). The condition ”Tfl —2(m+1) < Re(s) < "7*1 —9m
implies that 25+ 4+ 2(m — 1) < Re(p) < 251 + 2(m + 1 — 1), and particularly Re(p) > 251. By

Theorem 3.4.9 there are only finitely many poles p with Re(p) > 25+ which are located in the

real interval (251, n — 1] and are simple, and no poles with Re(p) > n — 1. Therefore, we can
only get such a pole s =n —1— p— 2l if the inequality "T_l +2(m — 1) < n —1 holds, which is
equivalent to I > m — M This 1mphes > {m — ”T_q =m — L"T_lj and a pole can only occur
for [ = max (m— L"le 70) N

Thus, we obtain the poles s =n—1—p—2N, where N € {max( — L" 1J 70) .. m} and w =p
is a pole of EP(Q, w) for some k € {1,...,cr} with p € [25+ +2(m — N), 5 —|—2(m+1—N))
and we have seen that in particular p € (" Ln— 1]

The poles arising from Eg’:r(P,s + 21) are located at s = p — 2l, where w = p is a pole of the

parabolic Eisenstein series EP*"(P,w). From the condition -l —2(m+1) < Re(s) < 251 —2m

we get the inequality 252 —2(m+1—1) < Re(p) < 251 —2(m —1), and particularly Re(p) < 251
By Corollary 3.4.14 there is no pole p with Re(p) = "T_l

In this way we obtain the poles s = p — 2N, where N € {0,...,m} and w = p is a pole of
EPar(P,w) for some k € {1,...,cr} with Re(p) € (%% —2(m+1—N), 251 —2(m — N)], and

. . -1
we have seen that in particular Re(p) < 5.

Finally, we note that for s € C with Re(s) >

)
part of (6.1) after multiplication by I'(s) T (s — "T_l)fl since

”51 there are no poles arising from the continuous

is a holomorphic function in the half-plane Re(s) > ”T_l This completes the proof of the theorem.
O

Remark 6.1.2.

(a) The possible poles of the types (ii) and (iii) in Theorem 6.1.1 do not occur in the case c¢p = 0,
i.e. if the discrete and cofinite subgroup I' C PSLy(C),—1) contains no parabolic element.

(b) The orders of the possible poles of the types (ii) and (iii) in Theorem 6.1.1 and the corre-
sponding residues depend on the location and orders of the poles of the parabolic Eisenstein
series EP*(P,w) (k= 1,...,cr) and their corresponding residues.

As a corollary of Theorem 6.1.1 we obtain that the hyperbolic kernel function K™P(P, @, s) has a
simple pole at s =n — 1, and we can determine its residue.
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6.2. Meromorphic continuation of hyperbolic Eisenstein series

Corollary 6.1.3. For P,Q € H" the hyperbolic kernel function K™P(P,Q,s) admits a simple
pole at s =n — 1 with residue

2 7r"/2

Resoen 1 KMP(P,Q,5) = ——— .
esemn—t KE(PQ08) = e T (2

Proof. By Theorem 6.1.1, the function I'(s) T’ (s — ”7_1)71 K™P(P, (@, s) has a possible pole in the

half-plane {s € C | Re(s) > "T_l} at any point s = ”T_l +ir; — 2N, where j € Ny and \; =
1

sjln—1—s;) = ("?’1)2 + 77 is the eigenvalue of the eigenfunction v;(P) with r; € [—i 251,0),

and where N € Ny with NV < %

For N=0and j =0,ie \; =0, 7; = —i 2% and wj( ) = vol(I'\H")~'/2, we obtain the point

s=n—1. Since N —ir; = 2N —ir; = % ¢ Ny, it is a simple pole with residue
R L(s) KM (PQs)| _2n'as T("5h) 1 2t
€Ss—n_ = = .
YT (s - ";1) T (%2) vol(T\H") ~ vol(T\H")

As T'(s) and T (s — 251) have the non-zero values I'(n — 1) and ' (%5%) at s = n — 1, we can

infer that also the hyperbolic kernel function K™P(P,Q, s) admits a simple pole at s = n — 1 with
residue

2n—17T";1 F(n—l) 9 /2
P hyp P = 2 -
feseon KB Q) = S E T~ 1)~ Vol DVE T (3)

where for the last equality we made use of the duplication formula (A.4) with s = "7’1

6.2. Meromorphic continuation of hyperbolic Eisenstein series

Analogous to the previous section, we now establish the meromorphic continuation of the hyper-
bolic Eisenstein series in s to the whole complex plane via its spectral expansion computed in
section 5.2, and determine its possible poles.

Let ' C PSLy(Cp—1) be a discrete and cofinite subgroup. Further, let (Q1,Q2) € Hr be a
pair of hyperbolic fixed points with hyperbolic scaling matrix o(g, g,y € PSL2(Cy—1) and hy-

perbolic stabilizer subgroup F?gl’,Qz). Let £(q,,q,) be the unique geodesic in H" connecting Q1

and @2, and let Lg, g,) = Wthp (ﬁ(Qth)) denote its image under the natural projection
@

T phyp HY — F?é;p @) \H", Wthh is a closed geodesic in thp \H” of hyperbolic length
(Q1,Q2)
L@@

Theorem 6.2.1. For P € H" the hyperbolic Fisenstein series E(Q Qs )(P, s) admits a meromor-
phic continuation in s to the whole complex plane. For any m € Ny the possible poles of the
function
hyp
L (3)" B (Prs)

- 5)

in the strip {

(m+1) < Re(s) < 251 — Qm} are located at the following points:

i) s =" 4ir; —2N, where j € Ng and \; = sj(n — 1 —s;) = "—*124—7"24 1s the eigenvalue
2 j j j J p) J
of the eigenfunction 1;(P), and where N := [m + w—‘ has to satisfy N > 0.
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6. Meromorphic continuations
If N Fir; ¢ Ng and 2N Fir; ¢ Ny, it is a simple pole with residue

612
R L(3) E(}g?,Qz)(P’S)
CSg—n_liip, —2N T (s— n—l)

2

n—1
Nor = I( (Firy —

_ =) B |
- NIT (£ir; — 2N) ZGEN: (P /L(Q1 " 0i(Q) dsun (Q);

TI=Tj

and if N Fir; € Ng, it is a simple pole with residue

. L) o, (P9
s=21tir;—2N F(s—%l)

471' N (2N F zrj Z —
- aP) [ Q) dse (@)
NU(N F iry)! 1€No: L@i.q2)

rI= ’I“]
In case that N Fir; ¢ No and 2N Fir; € Ny, it is no pole but a removable singularity.

(ii) s=n—1—p—2N, where N € {max(m— L”Tflj ,O) ,...,m}, and where w = p is a pole
of the parabolic Eisenstein series EP™ (P, w) for some k € {1,...,cr} with

n—1

PG[ 5 +2(m — N), T—i—Z(m—i—l—N)),

in particular, p € (—1 n— 1]

(iii) s = p— 2N, where N € {0,...,m}, and where w = p is a pole of the parabolic Eisenstein
series B (P,w) for some k € {1,...,cr} with

1 1
B 9m+1-N), Y

Re(p) € ( —2(m— N);

in particular, Re(p) < 5%,

The poles given in the cases (i), (ii), (1ii) might coincide in parts.
Moreover, the possible poles of the function
T ($)*ERP (P,

(Q1,Q2)
I (s—25)

in the half-plane {s € C | Re(s) > ”?_1} are located at the points s = %‘1 +ir; — 2N, where
jeENyand \j =sj(n—1—s;) = (”771)2 + ’I“J2- is the eigenvalue of the eigenfunction v,;(P) with

r; € [—z' ”T*I,O), and where N € Ny with N < % The orders and residues are as in the case (i)

above.

Proof. In order to derive the meromorphic continuation of Eégp 0» )(P,s)7 we use its spectral
expansion. Theorem 5.2.2 shows that for P € H" and s € C with Re(s) > n — 1 the hyperbolic
Eisenstein series E?gf Qz)(P’ s) admits the spectral expansion

%) cr _1
hyp ar
E(Ql,Q2 Z bj(s)¥;(P) + — Z/ bt ( Ep (Pa T + Zt) dt, (6.16)

j=0
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6.2. Meromorphic continuation of hyperbolic Eisenstein series

where the coefficients b;(s) and b, (s) are given by
n—1

o = T (R (Y [ F@uase@,

2 2 (Q1,Q2)

n=1 n—1 . n—1 .
T2 s — 5=+t §— 5= —1t ar n—1 .
)= F ot ()T () [ mr(e g i) dse @)
I( La1,q2

(6.18)

respectively.

We start by giving the meromorphic continuation of the series

> bys) 04(P) (6.19)

j=0

that arises from the discrete spectrum. The explicit formula (6.17) already gives us the meromor-
phic continuation of the coefficient b;(s) in s to the whole complex plane. It remains to show that
the series (6.19) converges absolutely and locally uniformly for all s € C.

As formula (6.5) in the proof of Theorem 6.1.1 we have established the bound

_n=1l 4 i _n=1l_ .. N ntl .
() (P ) o (0 e (-T2)) (r—oo)

with an implied constant depending on s. Moreover, the sup-norm bound
2
sup [45(P)| =0 (r}%)  (rj = ox)
PeH?

from Remark 3.5.7 also yields

< sup [15(P)] - liguaa = O (157%) (= 00).
PEHTI

[ 5@
L(leQz)

Together, for all but the finitely many j € Ny with A; € [O, (”;1)2) (see Remark 3.5.4), i.e. with
rj € [i251,0), this gives us
n41

|b;(s)y;(P)| =0 (r?e(s)f 2 exp (—%) 7‘7) =0 (T?E(S)Jr%l exp (—%)) (rj = o00)

with an implied constant depending on s. Thus, the series (6.19) converges absolutely and locally
uniformly for all s € C and defines a holomorphic function away from the poles of b;(s).

We determine the poles of the series (6.19) after multiplication by T (%)2 r (s — "T_l)fl, i.e. the
poles of

T N (5 — Bt i s = "ot =iy — |
r(s—”;l);f( (3 )wxp)/L(Qsz)wJ(Q)dan@). (6.20)

These can only arise from the two gamma factors in the sum, so the series (6.20) has the possible
poles s = "7’1 +14r; — 2N, where j, N € Ny.

The condition 251 —2(m + 1) < Re (25 £ ir; — 2N) < 251 — 2m for some m € Ny is equivalent
tom £ % <N<m+1=£ w This interval contains exactly one integer, which implies

that N = [m + %—‘, while also N > 0 must hold.
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6. Meromorphic continuations

Moreover, Re (251 £ ir; — 2N) > 251 holds true if and only if N < :I:Re(m As we either have
rj >0orr; € [—i%*,0), the mequahty N < —Relins)

of the form s = Tl —ir; —2N with Re(s) > T' In turn, the condition N < , respectively

a pole of the form s = 251 + ir; — 2N with Re(s) > 251, is only possible if r; € [—i 251, 0).

cannot be fulfilled, so that there is no pole
Re(ir;)
2

The residues at the above poles can now be computed similarly to the proof of Theorem 6.1.1. If
N Fir; ¢ No and 2N Fir; ¢ No, then s = % +4r; — 2N is a simple pole of (6.20) and the
corresponding residue is given by

(=~ 277 T INE=72 o
NIT (Lir; — 2]<f Z Yi(P /L(Q1 . 1(Q) dspn (Q).

1€Np:
TI=ry

In case that N Fir; € Ny, also 2NV F ir; € Ny holds true, and the point s = "T_l fir; —2N is a
simple pole of (6.20) with residue

dntT QN:FZT’J Z _
Py (P / P(Q) dsun (Q).
NN F i) 1€Ny: L@y.q2)

=T

If NFir; ¢ Ng and 2N F ir; € Ny, the point s = ”7’1 + ir; — 2N is a removable singularity of
(6.20). In each of these three cases the details are analogous to the proof of Theorem 6.1.1.

Foracuspng (k=1,...,cr) of I we now turn to give the meromorphic continuation of the integral
1 / o n—1
= b, (s) EP (P, n it) dt
Ar e 2

n=3 00 -1 . -1 .
L/ F(S—%+lt>r<5—7l2 —’Lt)Egsr(P’L_l_'_Zt)
41*( ) 2 2 2
(0, "= i) dt
' . Nk (Qa 2 -1 ) SH"(Q)
(Q1,Q2)

arising from the continuous part of the spectral expansion (6.16). Substituting w := ”7*1 + it, we
rewrite the integral as

n—3
Tz s—n+l4+w s—w ar
T (s) 1= ——— /R( )7;11‘( : )r( . ) g (P,w)

4iT (g)
. (/ EP(Qun— 1 —w) dsun (Q)) duw,
Lq,,q9)

where the line of integration goes from x —ico to « + ico. The function J,, (s) is holomorphic for
s € C with Re(s) > n—1. Indeed, it is even holomorphic for s € C with Re(s) # 25+ —2m for any

m € Ng. In particular, Jék)( ) = Jp, (8) is a meromorphic function on the half—plane Re(s) > 251
Using Corollary 3.4.14, we choose ¢ € (0,1) sufficiently small such that the parabolic Eisenstein
series EP* (P, s) —+ —2e < Re(s) < 251 +2e. Let y € R with y > |Im(s)|
and the piecewise linear path W), . as in the proof of Theorem 6.1.1: the vertical line from ”Tfl — 300
to ”Tfl — iy, the horizontal line segment from 251 — iy to ”7*1 + ¢ — 4y, the vertical line segment

2
from ”T_l +e—1y to "T_l + € + 1y, the horizontal line segment from ”;1 +e+1y to "T_l + iy, and
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6.2. Meromorphic continuation of hyperbolic Eisenstein series

n n—

the vertical line from %1 + iy to ?1 + i00. Further, we set

n—3
~ T2 s—n+1+w s—w ar
Tnne®) =~ [ r(E ) p(S5) Eppw)
Wy.e

T 4ir (5)?
. (/ EP(Qun—1—w) dan(Q)> dw.
L(Qlsz)

Then for s € C with 25 < Re(s) < 5% + ¢, analogous to the proof of Theorem 6.1.1, we obtain
from the residue theorem

w

n—s
2

YR [r(s—”;Hw)r(s;w)Eg;r<p,w>/L

where the sum runs over all poles a € C with 231 < Re(a) < 251 + ¢ and —y < Im(a) < y.

By the same arguments as in the proof of Theorem 6.1.1 the parabolic Eisenstein series EP*" (P, w),
Ep(Q,n — 1 —w) and the function I (£=2t14w) have no poles in this box, while the function
r (5’27“”) has only one pole there at w = s and the corresponding residue is equal to —2. This
yields

I (s) = jm,y,e(s) — 27 -

BN (Q,n—1—w) dan(Q)] ,

(Q1,Q2)

~ ™ n—1
In(8) = e+ Ty (o= 5 BRI (R) | Er@a—1-9 4@ 620
(Q1,Q2)

n—1 n—1

The right-hand side of (6.21) is a meromorphic function for "7= — ¢ < Re(s) < "5 + ¢ and
—y < Im(s) < y. As y can be chosen arbitrarily large, this gives the meromorphic continuation

J,(,g’l)(s) of the integral J,, (s) to the whole strip 251 — ¢ < Re(s) < 251 + .

n—1

- =
Now assuming “5= — ¢ < Re(s) < "3

theorem gives us

and choosing y > |Im(s)| and W), . as before, the residue

n—3
JOD(s) = J, (s) + 2mi - ———
" " 4iT (3)°
s—n+l+w s—w ar ar
> Resymy [P(TIE R (220 (P,w)/ EP(Qun— 1 - w) dsin (Q)
a Lq,.q9)
n—1
T2 n—1 . .
+ S D(s— =) B (P,s)/ ER(Qon—1— s) dsan (Q),
r (5) Liqy.@2)

where we sum over all poles a € C with 27+ < Re(a) < 25 4 ¢ and —y < Im(a) < y again.
As in the proof of Theorem 6.1.1, the parabolic Eisenstein series EP*(P,w), EP*(Q,n — 1 — w)
and the function T’ (%) have no poles in the considered box, while the function I" (%)

has only one pole there at w =n — 1 — s and the residue is equal to 2. Thus, we obtain

TrnTil n—1 ar ar
']7(12’1)(5) = Jp,.(s) + 3 F(s - ) By (Pn—1-— s)/ EX (Q,s) dspn(Q)
r (5) L@y.q9)
T n—1
+ T (s EPr (P, s)/ EPN(Qyn— 1 — s) dsgn (Q).
r (%) ( 2 ) " L(Q1~Q2) "
(6.22)
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6. Meromorphic continuations
Now the right-hand side of (6.22) is a meromorphic function for 27t — 2 < Re(s) < 25%, giving

the meromorphic continuation Jégg)(s) of the integral Jég’l)(s) to this strip.
Moreover, on the line Re(s) = “51 the meromorphic continuation of the integral .J,, (s) is given by
the right hand side of (6.21), where y has to be chosen such that y > |Im(s)|. Together this provides

the meromorphic continuation Jéi)(s) of the integral J,, (s) to the strip 251 — 2 < Re(s) < 251,

Continuing this two-step process, we now prove inductively that for m € Ny the meromorphic
continuation J7(7:l+1)(8) of the integral J,, (s) to the strip 251 — 2(m + 1) < Re(s) < 251 — 2m is
given by

i (=1 F(s _n 5 ! +z) EP*(Pys + 21)

: / EP(Qun —1— s — 21) dsin (Q)
Lqi.q2)

7 = (—1) n—1
+ 22 I'(s— +1 Ep:r(P,n—l—s—Ql)/ EP(Q, s 4 21) dsun (Q)

r (%) 1=0 i ( 2 ) ! Lqy,@2) !
(6.23)

for 251 — 2(m + 1) < Re(s) < 251 — 2m, while on the line Re(s) = 251 — 2m we have to take

T ™2 G (_1)l n—1 ar
I y.e(8) + > . F(sf 5 +l> EP™(P,s + 21)

. / EX(Q,n—1—s—2l) dsu(Q)
LQy.02)

n—-1 m-—1
nt oy L
sy ( u) r(s- = +1) Ef,’:r(P,n—l—sfﬂ)/ EP™(Q, s + 21) dsun (Q),
r (%) 1=0 : Lay.@2

(6.24)

where y is chosen sufficiently large such that y > [Im(s)].

Suppose, for some m € Ny we have established the meromorphic continuation Jé:ﬂﬂ)(s) of the
integral .J;, (s) to the strip 25+ — 2(m + 1) < Re(s) < 271 — 2m via (6.23) and (6.24). Then for
s € Cwith 252 —2(m+1) < Re(s) < %52 —2(m+1) + ¢ and y > |Im(s)|, analogous to the proof
of Theorem 6.1.1, the residue theorem gives us

n—3
~ 2
Ine (8) = Ty ye(8) = 2mi - ———
Mk Nk Y€ 42:[‘(%)2
s—n+l+4+w s—w ar ar
-3 Resy—a [F( 5 )r( 5 )Egk (P,w)/L ER(Qun—1—w) dsun (Q) |
a (Q1,Q2)

where we sum over all poles a € C with 2 < Re(a) < 25! + ¢ and —y < Im(a) < y.
The same arguments as in the proof of Theorem 6.1.1 show that the parabolic Eisenstein series
EPar(Pw), EF*(Q,n — 1 — w) and the function I' (£=254) have no poles in this box, whereas

the function I" (%) has only one pole there at w = s 4+ 2(m + 1) and the corresponding residue

is equal to —2 (—1)™*1/(m + 1)!. This implies
" wanl (_1)m+1

J, =J
nk(s) nk7y35(8)+1_‘(()2 (m+1)!

5
2

n—1
r(s— . +m+1) EP™(P,s +2(m + 1))

E};}i‘r(Q,n —1—-—5=2(m+1)) dspn(Q)
L(Q1xQ2)
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6.2. Meromorphic continuation of hyperbolic Eisenstein series

and
n—l m "1
T (5 O Z ( —+ l) EP(Py s + 21)
(3) 1=
. / EP(Qun — 1 — s — 2) dsun (Q)
L@y.00

"’71 = n—1 ar ar

ok Z ( 1) B (P,n—l—s—2l)/L B (Q, s+ 21) dsin (Q)

2 = (R1,Q2)

~ =t mH n—1
= Teye ok Z . ( 1) B (P + 20)
(3)
. / EP(Qun—1— s — 21) dswn (Q)
L@y.02)
71.—1 m
-1
a ( n —+ z) EP(Pon—1—s— 2l)/ B2 (Q, 5+ 21) dsun (Q).
5 -0 Lqi,@2)
(6.25)

The right-hand side of (6.25) is a meromorphic function for 251 — 2(m + 1) — e < Re(s) <

"T’l —2(m+1) 4 e and —y < Im(s) < y. Since we can choose y arbitrarily large, this gives the

meromorphic continuation Jf,:”l’l) (s) of the integral J,, (s) to the whole strip 5% —2(m+1)—
Re(s) < 251 —2(m+1) +e.

If we assume 51 —2(m + 1) — e < Re(s) < %5 — 2(m + 1) and choose y > [Im(s)|, as before we
obtain from the residue theorem

n—3
m . T2
J”(]k +1, 1)( ) J”]k (S) + 27TZ . ﬁ
— 1
3" Resue [(5 ”; “”) r(20) B, w)/ EP(Qun— 1 — w) dsye (Q)
a L@@
i T (—1)! n—1 . "
+ . r( - +z) Ep (P,s+21)/ EE(Qun—1— s — 21) dswn (Q)
r() = * L(@1.@2)
T O (—1) n—1
Y F(s -+ z) EP*(Pyn—1—s— 21)/ EP(Q, 5+ 21) dsun (Q),
r (%) =0 ’ L@@
where the sum runs over all poles a € C with 25 < Re(a) < "T71 +eand —y < Im(a) < a again.

As in the proof of Theorem 6.1.1, the parabohc Eisenstein series EP*(Q,n — 1 —w), EP*(P,w)
and the function I' (Sgw) have no poles in this box, whereas the function I w has only
one pole there at w =n — 1 — s — 2(m + 1) with residue equal to 2 (—1)™"1/(m + 1)!. This yields

n—1

+11 _ T3 ( 1>m+1 n—1 .
T )(3)—Jnk(s)+r(;)2(m+1)!r(8—2+m+1)E}?: (Pn—1—s5—2(m+1))

/ EP(Q, s +2(m +1)) dsgn(Q)
Lqi.q2

Tz (1) n—1

TN o G O Aty EPM(P,sz)/ B (Qun— 1 — s —21) dsun (Q)
F(%) 1=0 /! ( 2 ) " L(Q1.02) "

n T i (-1 F(s _nzly z) EP(Pop—1—5— 21)/ EP(Q, s + 21) dsz (Q)
T (3)2 — i 2 Nk I Nk )

(R1:Q2)
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6. Meromorphic continuations

i.e. we have

n—1 m+1 1
m T2 (—1) n—1 .
D (s) =y () + S D0 S Ds = o 1) B (P +20)
r (5) =0 :
: / E;‘])}?I‘(Q’ n—1—s— 2l) dSHn (Q)
L@i.@
n—1 m-+1 1
T2 (-1 n—1 . .

+F(§)2 Z I F(s— 5 —l—l) E};f (P,n—l—s—2l)/L E};’j (Q,s+2l) dsyn (Q).

2 =0 (Q1.,Q2)

(6.26)

As the right-hand side of (6.26) is a meromorphic function for 251 — 2(m + 2) < Re(s) < 5% —

2(m + 1), it gives the meromorphic continuation J,SZ"H’Q)(S) of the integral J,g;nﬂ’l)(s) to this
strip.

Furthermore, on the line Re(s) = 271 — 2(m + 1) we have to take the right hand side of (6.25)
as the meromorphic continuation of the integral J,, (s), where y is chosen such that y > |Im(s)].
Together these formulas provide the meromorphic continuation Jy(,:nﬁ) (s) of the integral J,, (s) to
the strip 251 — 2(m + 2) < Re(s) < %5+ — 2(m + 1).

Since we have seen that for m € Ny the meromorphic continuation of the integral J,, (s) to the
strip 251 — 2(m +1) < Re(s) < 251 — 2m is given by means of the formulas (6.23) and (6.24), we

obtain the meromorphic continuation of the integral J,, (s) in s to the whole complex plane.

Using the identity

cr cr
S OEPT(Qn—1—w)EPY(Pw) =Y ER™(Q,w)EX*"(Pn—1—w)
k=1 k=1

for w € C, established in the proof of Theorem 6.1.1, the meromorphic continuation of the contin-

uous part
cr 1
L5 [ om(pt ) a

of the spectral expansion (6.16) to the strip 25+ — 2(m + 1) < Re(s) < 25 — 2m is given by
277 7 e (—1) n—1
ZJ,M S (s -+

ZEW (P,s+ 21)/ EP™(Qun—1—s—21) dsu-(Q) (6.27)

L@1.02)
for 251 — 2(m 4 1) < Re(s) < 251 — 2m, while on the line Re(s) = 251 — 2m we have to take
°r M m— n—1
ZJmmy,a S Z ( 5 4 l)
k=1 (3)" =
cr
Y ER(Ps +21) / B (Qun—1— s — 21) dspn (Q)
k=1 L(Qlsz)
n—1
Tz (=1)™ n—1
+ 3 ( ? F(S — —+ m)
r(). m

cr

Sompr o) [ B @i —1—s - 2m) dsn (@)
k=1 L@i.Q2)
(6.28)
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6.2. Meromorphic continuation of hyperbolic Eisenstein series

where ¢ € (0,1) is chosen sufficiently small such that all parabolic Eisenstein series EP* (P, s)
(k=1,...,cr) have no poles in the strip ”T_l —2e < Re(s) < "T_l + 2¢, and y is chosen sufficiently
large such that y > [Im(s)|. In this way we obtain the meromorphic continuation of the continuous
part of the spectral expansion (6.16) in s to the whole complex plane.

Next we turn to compute the poles arising from the continuous part after multiplication by

r (%)2 I(s— %)_1. Making use of formulas (6.27) and (6.28), valid in the strip 251 —2(m+1) <

Re(s) < %51 — 2m, we have to determine the poles of
n—3 i/ s—n—|—1+w>r(3—1U)Epar(Pw)
44T (s — 2=1) 2 2 e A7

. (/ Ep(Q,n—1—w) dan(Q)> dw
Liqy,02)

+27r"%§: (-1) ( ) ZE;;,jr (P, 5+2l)/ EP™(Q,n —1—s—21) dsg-(Q)
: L

(Q1,Q2)

or

n—o T _ 1 _
‘ T2 _ / F(s n + er)r(s w) Eﬁir(Rw)
42I‘(s— w,, 2 2

. (/ EP(Q,n— 1 —w) dsan (Q)) dw
L@i.q2

m—1 c
e —1)¢ 1 T
+27 21 Z ( ) (8— n )l ZEs:r(P7S+2Z)/ EEST(Q,n—l—S—QZ) dSHn(Q)
' k=1

2 L1,

cr

(s="57), o mr s om) [ BT Qa1 s 2m) don(Q)

2 k=1 Lai.2

respectively. The poles of both can only arise from the functions EP*(Q,n — 1 — s — 2[) and
EP(P, s+ 2l), where [ = 0,...,m and k = 1,.

The poles arising from EP*(Q,n — 1 — s — 21) are located at s =n —1— p — 2l, where w = p is a
pole of the parabolic Eisenstein series EP*(Q, w). From 25t —2(m + 1) < Re(s) < 25+ — 2m we
deduce that 25 +2(m — 1) <Re(p) < %5+ +2(m+1 — l) As in the proof of Theorem 6.1.1, we
see that a pole can only occur for [ = max (m — L"T_lJ ,0) ,m and that p € ( ,n — 1] must
hold.

Hence, we obtain the poles s =n—1—p—2N, where N € {max ( L”Tflj ,O) yens ,m} andw = p
is a pole of EP™(Q, w) for some k € {1,...,cr} with p € [251 +2(m — N), 25 +2(m + 1 — N)),
and particularly p € ("T_l, n— 1].

The poles of EP*(P,s + 21) are located at s = p — 2I, where w = p is a pole of the parabolic
Eisenstein series EP* (P, w). The inequality 2=l —2(m+ 1) < Re(s) < %5+ — 2m implies that
2=l —2(m+1—1) <Re(p) < %5+ — 2(m — 1), especially we have Re(p) < 251.

We obtain the poles s = p — 2N, where N € {0,...,m} and w = p is a pole of EP*(P,w)

Mk
for some k € {1,...,cr} with Re(p) € (%51 —2(m+1— N), 251 — 2(m — N)], and particularly
Re(p) < 5%,

Lastly, we observe that for s € C with Re(s) > "T_l there are no poles arising from the continuous
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6. Meromorphic continuations

part of (6.16) after multiplication by T' (%)2 r (s — "T_l)_l since

cr

L)l—l Z I (s)

F(S_ 77) k=1

is a holomorphic function in the half-plane Re(s) > “7*. This finishes the proof.

Remark 6.2.2.

(a) The possible poles of the types (ii) and (iii) in Theorem 6.2.1 do not occur in the case c¢r = 0,
i.e. if the discrete and cofinite subgroup I' C PSLy(C),—1) contains no parabolic element.

(b) The orders of the possible poles of the types (i) and (iii) in Theorem 6.2.1 and the corre-
sponding residues depend on the location and orders of the poles of the parabolic Eisenstein
series EP*(P,w) (k=1,...,cr) and their corresponding residues.

From Theorem 6.2.1 we can conclude that the hyperbolic Eisenstein series Ezglf n) (P 8) associated
to the pair (Q1,Q2) € Hr of hyperbolic fixed points has a simple pole at s = n — 1, and we can
compute its residue.

Corollary 6.2.3. For P € H" the hyperbolic Eisenstein series Eégf Qz)(P’ s) admits a simple pole
at s =n — 1 with residue

n—1
B (pg) = —2MQ10)T 2

Resg—p— = .
o 1H(Q1,Q2) vol(T\H") T (231)

Proof. Theorem 6.2.1 shows that the function T (%)2 I(s— "7’1)_1 E?g;j 0n)(P:8) has a possible

pole in the half-plane {s € C | Re(s) > "7_1 at any point s = ”T_l +ir; — 2N, where j € Ny and
Aj =sj(n—1-s;) = ("Tfl)z—l—r? is the eigenvalue of the eigenfunction ¢;(P) with r; € [—i 25%,0),
and where N € Ny with NV < %

If N=0and j=0,ie X\ =0, r; =—i2L and ¢;(P) = vol(I'\H")"'/2, we get the point
s=n—1. We have N —ir; = 2N —ir; = _an ¢ Ny, thus, it is a simple pole with residue

s 2 hyp n—1 n—
Res_ F(5) E@ron(Ps)| _2n% F<21)/ s (@)
e r (8 - nT_l) r (nT_l) L(QLQQ) VOI(F\Hn)
2T
~ vol(T'\Hn)

Since I’ (s — %‘1) and I’ (%)2 have the non-zero values T’ ("T_l) and I (”51)2 at s = n —1, also
the hyperbolic Eisenstein series E(}gﬁ’sz)(P, s) admits a simple pole at s =n — 1, and the residue

is given by

-

21 5
Ressen_1 BPP  (P,s) = (Q1,Q2) T

P s)= 27— }
(@) vol(M\HM) T (252)%  vol(T\H") T (%3*)

r (B) 2Z(Q1=Qz)ﬂnT71
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6.3. Meromorphic continuation of elliptic Eisenstein series

In this section we first prove that the elliptic Eisenstein series has a representation as an infinite
sum of shifted hyperbolic kernel functions. Subsequently, we employ this relation to determine its
meromorphic continuation in s to the whole complex plane and its possible poles.

Let I' C PSLo(Cp—1) be a discrete and cofinite subgroup. Further, let @ € H" be a point with
elliptic scaling matrix og € PSLa(Cy—1) and stabilizer subgroup I'g.

The elliptic Eisenstein series EEQH(P, s) can be written in terms of the hyperbolic kernel function
K™P(P Q,s) as follows.

Proposition 6.3.1. For P,Q € H" with P # vQ for any v € T and s € C with Re(s) >n—1 we
have the relation

Eell P ( )k: Khyp P 2%
(Ps) = Mzk, (P.Q.s +2k).
where (%), is the Pochhammer symbol (see (A.14)).

Proof. The proof is similar to the proof of Lemma 3.3.8 in [Pip10]. Nevertheless, we carry it out
in detail.

First we have to check the absolute and locally uniform convergence of the series

i (Z’f K"WP(P Q, s+ 2k) (6.29)
k=0

for fixed P,@Q € H™ with P # vQ for any v € I and s € C with Re(s) > n — 1. Because I' acts
discontinuously on H" and we assume P # 7@ for any v € I', the minimum min,er du- (7P, Q)
exists and is greater than zero. Thus, there is a constant C' = C'(P, Q) > 1, depending only on P
and @, such that

cosh(disn (7P, Q)) = C
for any v € I'. Furthermore, for s’ € C with Re(s’) > 0 we have the estimate

IT(s")] < T(Re(s"))| = T'(Re(s")),

. F(Re2(s)+k_) F(Re2(s)> (Re2(s))k
G == = ran

for any k € Ny. Using these bounds and the identity (A.22), we get

which implies that

> (3) £ KMP(P,Q, s + 2k) Z 5 i D cosh(din (vP, Q)77
k=0 k=0 yeT
( 2 ) (RET(S))k 2k —Re(s)
2 k=0 ver
(R ) —Re(s)/2
_ 2 N h
= F %)‘ (1— 02> K"WP(P,Q,Re(s)).

This shows that the series (6.29) indeed converges absolutely and locally uniformly for s € C with
Re(s) >n —1.
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6. Meromorphic continuations

Now we are allowed to change the order of summation and obtain

Z (k)'k Zcosh dgn (YP,Q)) 572
k=0 veT

o

1
|FQ|
o0

|FQ| Zcosh (du» (vP,Q))~ Z

~yel k=0

l\')\tn

k cosh(dun (YP,Q)) >

Finally, a second application of formula (A.22) gives us

(3)k o 1 2
wz KPP0, 4 2K) = e 3 cosh(die (1, @) (1- o

yel
|F | Z (cosh(dmn (vP,Q))* — 1)~ /2 _ \I‘ | Zsmh (du» (vP,Q))~°
Q yel’ yel’
= Eg\(P,s).

This proves the asserted relation.
O

With Proposition 6.3.1 we are now able to derive the desired meromorphic continuation of the
elliptic Eisenstein series ES'(P, s) associated to the point @ € H" to the whole complex plane.

Theorem 6.3.2. For P € H" with P # ~vQ for any v € I the elliptic Fisenstein series Egl(P, s)
admits a meromorphic continuation in s to the whole complex plane. For any m € Ny the possible
poles of the function

E‘SH(P7 s)

in the strip
Sni={seC|n—-1-2(m+1)<Re(s) <n-—1-2m}

are located at the following points:

(i) s =" £ir; — 2N, where j € Ng and \; = sj(n — 1 —s;) = (”7_1)2 + 77 is the eigenvalue
of the eigenfunction ;(P), and where N :=m — {"Tfl F %J .

(ii) s=n—1—p—2N, where w =p is a pole of the parabolic Eisenstein series EN™ (P, w) for

some k € {17 .er} with p € (%52, n— 1], and where N :=m — | £].
(i1i) s = p — 2N, where w = p is a pole of the parabolic Fisenstein series E};’fr(P,w) for some

ke {l,...,cr} with Re(p) < *5*, and where N :=m — {%WJ.

The poles given in the cases (i), (ii), (11i) might coincide in parts.

Proof. First we prove that for P € H" with P # ~vQ for any v € I and any m € Ny the elliptic
Eisenstein series E‘Z?“(P7 s) has a meromorphic continuation in s to the half-plane

Hi :={s€C|Re(s) >n—1-2(m+1)}.

By Proposition 6.3.1, for P € H" with P # @ for any v € I" and s € C with Re(s) > n — 1 the
elliptic Eisenstein series can be written in terms of the hyperbolic kernel function K hyp(P, Q, s) as

e 1 o (5
EQ\(P,s) = Nz(j!)lKhyp(P,Q,sml)
=0
1 zm: 3 LEWP(PLQ, s 4 2l) 4 —— i i)Khyp(pQ +20).  (6.30)
=Tl &1 8 o] I '’ |
1=0 m+1
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6.3. Meromorphic continuation of elliptic Eisenstein series

Next we show that the series

1 > (3
— Z 2 LK"WP(P Qs+ 20) (6.31)
Q — !

converges absolutely and locally uniformly for s € C with Re(s) > n —1—2(m + 1). As in the
proof of Proposition 6.3.1 there is a constant C' = C(P, @) > 1, depending only on P and @, such
that

cosh(dg» (YP,Q)) > C
for any v € I'. Using this constant, we find the bound

) (?u)lKhyp(R@H?l = 1+7l;1+11 K"™P(P,Q,s+2(+m+1))
I=m+1 ’ 1=0
> |(%)l+m+1|
< \2/i4m+1 | cosh dHn ’YP Q)) Re(s)—2(l+m+1)
;( m+ 1)! ;
<Z‘<(2$Tf>‘ O3 cosh(dige (7P, Q)) ()24

I
=)

yel

S

> c
= K™P(P,Q,Re(s) +2(m + 1)) Z &)t |
l:O +m+1)!

As Re(s) +2(m + 1) > n — 1 holds true for any s € C with Re(s) > n — 1 — 2(m + 1), the
series K"P (P, Q,Re(s) + 2(m + 1)) is absolutely and locally uniformly convergent for s € C with
Re(s) > n—1—2(m + 1). Moreover, the absolute value of the ratio of successive terms in the

series
l+m+l ‘ C 21 (632)
— l + m-+1

has the limit

lim M072(l+1)wcgl _ L($+1+m+2)
l=oo [ (I +m + 2)! (2 )H_m+1 oo |(l+m+2)T (§+1+m+1) C?
I S+Hl+m+1 1 1
= m|-— = — .
I—oo |[(I+m+2)C?|  C?

By the ratio test the series (6.32) converges absolutely and locally uniformly for s € C with
Re(s) > n— 1 —2(m + 1). This implies that also the series (6.31) is absolutely and locally
uniformly convergent for s € C with Re(s) > n—1—2(m+1), so it defines a holomorphic function
on the half-plane H,,

Since the finite sum .

1 §
ol > 2' K™P(P,Q,s+21)
=0

admits a meromorphic continuation in s to the whole complex plane by Theorem 6.1.1, this proves
the meromorphic continuation of the elliptic Eisenstein series E‘g?“(P, s) to the half-plane H,,. As

m was chosen arbitrarily, we can conclude that Ee“(P, s) has a meromorphic continuation in s to
the whole complex plane.

Now, in order to determine the poles of the function I’ (s - ”T’l)fl Ea“(P, s) in the strip

Sm={s€Cln—-1-2(m+1)<Re(s) <n-—-1-2m}
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6. Meromorphic continuations

for any m € Ny, we consider the decomposition (6.30). Since the infinite sum (6.31) is holomorphic
in this strip, the possible poles can only arise from the finite sum

1 ()i on
_ K™ (P,Q, s + 21),
T (50 & 1

respectively from the functions I' (s — ”T’l)_l KWP(P,Q,s+2l) for | =0,...,m

Writing
K™P(P,Q,s+2)  (5—"5%), T(s+2l) K"P(P,Q,s+2l)
Teoi5) TeiE T(raon)
observing that the function (s — 25%),, T'(s +2)~"! has no poles and using Theorem 6.1.1, we sce

that for any I € {0,...,m} the possible poles of T' (s — ”T_l)fl K"WP(P,Q,s + 2l) are located at
the following points:

(i) s = 25t £ ir; —2(M +1), where j,M € Ny and \j = s;(n — 1 —s;) = ("771)2 + 77 is the
eigenvalue of the eigenfunction v, (P),

(i) s=n—-1—p—2(M +1), where M € Ny and w = p is a pole of the parabolic Eisenstein
series EP* (P, w) for some k € {1,...,cr} with p € (%,n — 1},

(iii) s = p—2(M +1), where M € Ny and w = p is a pole of the parabolic Eisenstein series
EPar(P,w) for some k € {1,...,cr} with Re(p) < 25+

It remains to check which of these points are contained in the strip S,,.

For a pole of type (i) the condition 25t +ir; — 2(M +1) € Sy, i.e.
n—1
n—1-2(m+1)< TiRe(er)—Q(M—&—l) n—1-—2m,

holds true if and only if

n—1 , Re(iry) n—1 , Re(iry)
4 2 - 4 2

This gives us M = {m—l—%iw—‘ :m—l—{ ¥ "a)J So for any ! € {0,...,m} in

the strip S, the function I' (s — "T_l)_l K™P(P,Q,s+2l) has the possible poles s = 2> +ir;—2N,

where j € Ny and \; =s;(n—1— sj) = ("T_l)z + r? is the eigenvalue of the eigenfunction ;(P),

and where N := M +1=m — { 2 F RE(WJ)J
Furthermore, for a pole of type (ii) we have n — 1 — p — 2(M + 1) € S, i.e.
n—1-2m+1)<n—-1-p—2(M+1)<n—1-2m,

if and only if

P P
—l—-=<M 1—-71—~.
m 5 = <m—+ 5

This yields M = [m—1— 5] =m —1— |4|. Thus, for any [ € {0,...,m} in the strip S, the
function I’ (s — ”7_1)71 K™P(P,Q,s+2l) has the possible poles s = n—1—p—2N, where w=pis
a pole of the parabolic Eisenstein series EP*" (P, w) for some k € {1,...,cr} with p € ( ,— 1},

and where N :=M +1=m — ng
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6.3. Meromorphic continuation of elliptic Eisenstein series

Moreover, for a pole of type (iii) the condition p — 2(M +1) € Sy, i.e.
n—1-2(m+1) <Re(p) —2(M +1) <n—1-2m,
is equivalent to

~ n—1—Re(p) n—l—Re(p).

2

m—1 <M<m+1-1-

We obtain M = [m —1— %Re(p)—‘ =m—I— l%m(p)J’ and for any [ € {0, ..., m} in the strip

S, the function T’ (s — %)71 K™P(P,Q,s+2l) has the possible poles s = p — 2N, where w = p

is a pole of the parabolic Eisenstein series EP%" (P, w) for some k € {1,...,cr} with Re(p) < "7—17
and where N := M + 1 =m — L%WJ
O

Remark 6.3.3. The possible poles of the types (ii) and (iii) in Theorem 6.3.2 do not occur in
the case ¢r = 0, i.e. if the discrete and cofinite subgroup I' C PSLs(C),—1) contains no parabolic
element.

To close this section, we show that the elliptic Eisenstein series ECH(P, s) associated to the point
@ € H" has a simple pole at s = n — 1 and determine the corresponding residue.

Corollary 6.3.4. For P € H" with P # ~vQ for any v € I the elliptic Fisenstein series E‘?Q“(P, s)
admits a simple pole at s = n — 1 with residue

n/2

Tal Vol(F\H") (3)

ReSg—y,— 1EeH(P s) =

Proof. By the proof of Theorem 6.3.2, in the strip So = {s € C | n — 3 < Re(s) < n — 1} we have
the decomposition

b

1] 1 = 2
EQN(P,s) = ﬁKIYP(P Q,s) F—Z 2' K™P(P,Q, s+ 21),
=1

where the infinite sum over [ is holomorphic in s. Since by Corollary 6.1.3 the hyperbolic kernel
function K™P(P, (@, s) has a simple pole at s = n — 1 with residue

) ,n_n/2

Resgep_1 KYP(P,Q,s) = ————
RO = e T (3)

we can conclude that also the elliptic Eisenstein series Ee“(P, s) admits a simple pole at this point,

and the residue is given by

271'”/2

Res,—n—1 EG'(P, .
eSs=n—1 B (Pr5) = D] vol(T\H") T (2)

Res,—,_1 K™P(P,Q,s) =

IFQ|
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7. Kronecker limit formulas for hyperbolic
Eisenstein series

Classically, in the case n = 2 and ' = PSLy(Z), Kronecker’s limit formula states the behaviour of
the parabolic Eisenstein series EP2"(z,s) at s = 1, and explicitly gives the constant term in the
Laurent expansion. In this chapter we are interested in an analogue for the hyperbolic Eisenstein
series Eg?’Qz)(P, s) in H™ at the point s = 0, so we study its behaviour in terms of its Laurent
expansion. We compute the first two terms in the Laurent expansion for arbitrary dimension n
and an arbitrary discrete and cofinite subgroup I' C PSLo(C),—1) in the first section. Then we
consider two examples of specific dimensions and groups in the subsequent sections, and prove a
formula of Kronecker limit type for the hyperbolic Eisenstein series in both cases. In the second
section we do this for n = 2 and T' = PSLy(Z), while in the third section we treat the case n = 3
and T' = PSLy(Z[i]).

7.1. The Laurent expansion at s =0

In this section we determine the Laurent expansion of the hyperbolic Eisenstein series at s = 0 via
its meromorphic continuation established in section 6.2. We find that the form of this expansion
depends on n mod 4 for the dimension n of the hyperbolic space H". Therefore, we consider the
cases n =0 mod 2, n =3 mod 4 and n =1 mod 4 in three separate propositions.

Let I' C PSLy(Cy,—1) be a discrete and cofinite subgroup. Further, let (Q1,Q2) € Hr be a pair
of hyperbolic fixed points with hyperbolic scaling matrix o(q, q,) € PSL2(C,—1) and hyperbolic
stabilizer subgroup F?g?p Q)" Let £(q,,q,) be the unique geodesic in H" connecting @1 and Q2,

and let L(q, g,) = Tpuyr L(q,,0,)) denote its image under the natural projection Trbye :
(Q1,Q2) (R1,Q2)

H™ — I‘%p @ )\H which is a closed geodesic in F(Q Q2 )\H” of hyperbolic length I, g,)-

Notation 7.1.1. To keep the notation simple, in this beCthIl we again omit the index n and
write E((}Q'p 0n) (P> 8) for the hyperbolic Eisenstein series E (Q1 0n) (P 5) associated to the pair
(Q1,Q2) € Hr of hyperbolic fixed points, and EP* (P, s) for the parabolic Eisenstein series
EP2r (P, s) associated to the cusp n, € Cr (k=1,...,¢cr).

Nk

In case that the dimension is even, i.e. n =0 mod 2, we find the following result.

Proposition 7.1.2. Letn =0 mod 2. For P € H" the hyperbolic Eisenstein series E?yp 2)(P, s)
admits a Laurent expansion at s = 0 of the form

h; ar
E(CSI: Qz)(P’ 8) - gFQl,Qﬂ (P 5)

(g T T T(352) &
_< 2vol(r\Hn +ZG (@1.Q)1(P) ] -8
[t 2 (o0 02

4
L §2 3
4vol(T\H") +;H7L,(Q1,Qz),l(P)> s*+0(s%), (7.1)
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7. Kronecker limit formulas for hyperbolic Eisenstein series

where
no [ 27
27 2 (1) n—1
par —
g(Ql;Qz (P’ S) T (s 2 ! F(S B 2 + l)
(3)" =

ZEW (P,s + zz)/ EP(Qun—1 — 5 — 21) sy (Q),
L@@

7 denotes the Euler-Mascheroni constant (see (A.6)), (9 (s) is the digamma function (see (A.8)),
and where the functions Gy, (q,, Q2), ((P) (1=1,2) and H, (q, ,q,).(P) (I =1,2,3,4) are invariant
under the action of I', and are given by the formulas (7.3), (7.4), (7.5), (7.6), (7.7) and (7.8) in
the proof, respectively.

Proof. For P € H" the hyperbolic Eisenstein series E(ép 0s )(R s) admits a meromorphic continua-
tion in s to the whole complex plane by Theorem 6.2.1. In the proof of this theorem we established
that for s € C with 251 —2(m+1) < Re(s) < 25 —2m (m € Ny) this meromorphic continuation
is given by means of

(oo}
h ar n—1 .
£, an(P ;) bj(s) ¥;(P) + — Z/ bt (8) ED (P, —— T zt) dt
o r( )ZEparPs+2l)
5 =0

. / Ef;:r(Q,n —1—s5—2) dsyn (Q),
L@i.q2)

where the coefficients b;(s) and by ,, (s) are given by

n—1 n—1 . n—1 .
T2 §— 5= +r; §— 5= —ry —
by(s) = (B (2 ) [ 5@ dewe (@)
F(% ( 2 ) ( 2 ) L@i.@2)
n—1 n—1 . n—1 .
T2 s — 5=+t s — I —= —it . n—1 .
O r( [ mp (Q, RoE i) dswn (@),
r (5) Liqi.@2)
respectively. In particular, in the strip 25 — 2 (| 21| + 1) < Re(s) < 25 — 2 | 21| the identity
hyp par
EiQi.q2) ( $) = 90102 (P 5)
cr 1
bi(s);(P)+ — Z/ bene (5) D" (P, — 4+ zt) dt (7.2)
j=
holds true. From the assumption n = 0 mod 2 we conclude that L%J < 7, which implies

that the point s = 0 lies in the considered strip. Hence, to derive the Laurent expansion at s = 0
we work from formula (7.2).

For j =0, ie. A; =0, r; = —i 25 and ¢;(P) = vol(I'\H")~'/2, the function b;(s) ¢;(P) in the
series in (7.2) arising from the discrete spectrum takes the form

s—n+1

(s> (s—n‘*‘l):l(Ql,Qz)“"le( 5)

2 2 vol(I\H") T ()

l(Q17Q2) ﬂ_";l
b P)=
O(S) ¢O( ) VOI(F\H”) T (%)2

At s = 0 we have the Laurent expansions
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7.1. The Laurent expansion at s = 0

where v denotes the Euler-Mascheroni constant (see (A.6)), 1(%)(s) is the digamma function (see
(A.8)), and where we used 251 ¢ Ny, (A.9), (A.12) and (A.13). This implies that the function
bo(s) ¥o(P) admits a Laurent expansion at s = 0 of the form

e ™ T I (Y leuen ™ DY) (h+9@ (551) 5
bo(s)o(P) = =5 oy~ ° Avol(T\H") 187+ 0.

Now we consider j > 1 so that either r; > 0 or r; € (—i ”;1,0} holds true. In the first case it is
clear that 251 4+ 2 ¢ Ny. In the latter case we have 271 + % € R with 231 — %2 € (0, 271] and

nol g ”’ € [7 "—) The natural numbers contalned in the interval ( ;] are 1,..., L%J,
n

2
whlle the interval [—, "771) contains the natural numbers {”Tflw ooy — L

n—1 -
This implies that the function T’ (@) has a pole at s = 0 if and only if

el e e ) e i PRI

while the function I' (

2 _W’) as a pole at s = 0 if and only if

nil + 3 {nﬂ ’g_l}
e e A

Further, if "Tfl — i — N for some N € {1, cee LBJ }, then ”Tfl & 7 implies that

2 1
n—1 ir; n—1
— = —N €7
4 + 2 2 #
cannot be an element of Ny; and if conversely 271 4 ”’ = N for some N € {{ w R 1}7

then ”—1 ¢ 7 yields that
n—1 ir; n—1
- — = - N ¢7Z
4 2 2 ¢
cannot be an element of Ny. This shows that for any 57 > 1 at most one of the two functions

n—1 .. —nd s

o= {4 (752 [ e (e 271
oy = iy [ e (50 B )

we have shown above that M (n) N Ma(n) = 0.

At s = 0 the function T’ (%)72 has the Laurent expansion

—_

I 5, 7
ﬁ:,.s + =
IO

If r; € Mi(n), then r; ¢ Msy(n), and, by (A.12) and (A.13), at s = 0 we have the Laurent
expansions

-7+ 0(s%).

n=1 no1_ it R S
s — 2= +ary 2(—1)"= 2 1 (=1)7q 2
F( 2 J): 1
5 SRR S+ PR Z 77 +0(s),
1 2 1 2 =1
n—1
s — = —ar; i n—1 1 i n—1 i n—1
() e (- R (- - o
2 2 1 )73 2 7)Y 2 1) st o)
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7. Kronecker limit formulas for hyperbolic Eisenstein series

Thus, setting
ij(Qlan) ::/ 1/’3(@) dsun (Q),
L@@

for j > 1 with r; € My(n) the function b;(s);(P) admits a Laurent expansion at s = 0 of the
form

bj<s>¢j<P>=(‘21%“ "’f)f (=% 2T (P Gy auan -8

) n—1_ irj
j n—1 e

L i

(1) 7 = 7=z ( ir; n—l) 1 (0)( ir; nfl)

* (22— ) S 2 ptot 2 4
1 2 ) =1

) '(/)J(P) Cja(Q11Q2) s+ 0(53)7

and the respective part of the series in (7.2) arising from the discrete spectrum has a Laurent
expansion at s = 0 of the form

Z b () V5 (P) = Grn(@r,02)1(P) - 5+ Hy (0,,0) 1 (P) - 8* + O(s%),
jEN:
rj€My(n)

where

)
GTM 1, s (P) = i

T w; n—1
F(—jj— 1 ) i(P)Ci@iqay  (T:3)

r;€My(n)
(71)%17? i ir; n—1
Hy (01,0:)1(P) = Z ., (n71 m)' F(— 5 T2 ) i(P) Ci(@1,Q2)
jEN: =)
’l‘jé]\/[l(’fb) 4 2
s
1 ir; n—1
z (0) ( _m ) . 4
; R 5 (74)

If r; € My(n), then r; ¢ My(n), and, again by (A.12) and (A.13), at s = 0 we have the Laurent
expansions

F(S—%_l—i-irj)

() (e (1) o

2 2 4 27\ 2
s—nsl iy 2(-1)"TEE 1 (—n)tE e
F( 2 )Z i1 i\ s (m1 i 77| Ol
<T+TJ)! <T+TJ)! =1

Consequently, for j > 1 with r; € M3(n) the function b;(s) ¢, (P) admits a Laurent expansion at
s = 0 of the form

()Tt T iy -1
bi(s) 5 (P) = " S T (5 = 5 ) (P Cranan 5
2(2 + %)
(—1)71471‘“%]’ ™ _sir; n-—1 T 1 irg n—1
TGt D b ()
a(2t+ ) =

’ wj (P) Cj7(Q1,Q2) -s% 4 O(SS)’
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7.1. The Laurent expansion at s = 0

which implies that the respective part of the series in (7.2) arising from the discrete spectrum has
a Laurent expansion at s = 0 of the form

> bi(8)%i(P) = Gi(r.00)2(P) - $ + Hy(1.02)2(P) - 8 + O(s),
jEN:

rj €Mz (n)
where
(—1)"4_14'? i r; mn—1
G"»(Qth)’Q(P) = Z F(ij - ) J(P) ij(leQ2)’ (7'5)
jen: 2 (nT_l + ”TJ)' 2 4
rjE€Ma(n)
N
—1) 7T T2 12 iri n—1
Ho@r002(P) = = = 1“(4 - 7) ¥;i(P) Cj.01.Q)
e a(pa) NP
rj €Mz (n)
nTil-i_% ir n—1
(0)(4 )
2 +y+9( 5 1 (7.6)

If r; & Mi(n) U Ms(n), then (A.13) implies that at s = 0 we have the Laurent expansions

s— 2L 4 g ir, n—1 1 ir, n—1 ir, n-—1
F(#):F(iif ) ,F(iijfi) (U)<:|:73f ) 2y,
2 2 1 ) T3 2 7)Y 2 ;) st00)

Hence, for j > 1 with r; ¢ M;(n) U Mz(n) the function b;(s);(P) admits a Laurent expansion
at s = 0 of the form

i ir, n-—1 ir, n-—1
bi(s) 5 (P) = T D(H = 2= ) T(= 5 = 2= ) 0(P) Cauqm - 52+ O(5°),

so the respective part of the series in (7.2) arising from the discrete spectrum has a Laurent
expansion at s = 0 of the form

> bj(s) ¥i(P) = Hy (q,.Qs)3(P) - 5° + O(s%),

JEN:
TjQMl(n)UMQ(n)
where
I wr; n—1 ir; n—1
H”’(Qlsz),?’(P) = Z 4 F(é_ 4 )F(_é_ 4 )%(P) Cj’(Q17Q2)' (7‘7)
jeN:
'rJ-QMl](n)UJ\/Iz(n)

Moreover, for any t € R at s = 0 we have the Laurent expansions

e e O B M )

where we used 231 ¢ Ny and (A.13). From this we conclude that for k =1,...,cr and any t € R
the function by ,, (s) in the integral in (7.2) arising from the continuous spectrum admits a Laurent
expansion at s = 0 of the form

=z /it n-—1 it n-—1
b () = "0 (5 =) T(= 5= 777) Cunc@nan -5 +0(")
. ‘I‘(ﬁ _n— 1
4 2 4

2
)| Comei@ran - 5* + 0%,
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7. Kronecker limit formulas for hyperbolic Eisenstein series

where we have set

ar n—1 .
Otﬂ?m(Qth) = / EE,C (Q, T - Zt) dSH"(Q)'
L(Q1YQ2)
Hence, at s = 0 we obtain the Laurent expansion
cr
Z/ bt (5) Ep2 (P, 7= Ly it) dt = Hy(q,,00.4(P) - 8* + O(s")

of the continuous part, where

—1y2 . n—1 .
4 )‘ E?I;z? <P7 2 + Zt) Ct,ﬁk7(Q1,Q2) dt. (7'8)

H, J(Q1,Q2), 4

Summing up, for P € H"™ we obtain a Laurent expansion at s = 0 of the form

By an(P9) = Q(Ql Q). (P 5)
A lguon T T T(452)
a ( 2v01(r\Hn Z (@1.Q2)4(P)
l@ian ™ - r(s" ) ( +v© (157)) 2 3
+< 4V01( \H") +;Hm(Q1,Q2),l(P) -s7 4+ 0(s?),

where G, (@,,0,).(P) (I =1,2) and Hy, (q,,0.),:(P) (Il = 1,2,3,4) are given by (7.3), (7.4), (7.5),
(7.6), (7. 7) and (7 8), respectively.

We know that the eigenfunctions ¢;(P) (j € N) and the parabolic Eisenstein series EP* (P, s)
(k =1,...,cr) are all T-invariant. Therefore, also the functions G, (g,,q0.),(P) (I = 1,2) and
Hy 0,,00),(P) (1 =1,2,3,4) are invariant under the action of I'.

O

Remark 7.1.3. In the cases n = 2 and n = 4 the Laurent expansion of the hyperbolic Eisenstein
series in Proposition 7.1.2 simplifies as follows:
Ifn=2orn=4,thereisno N €e Nwith 1 <N < L%J,sotheset

n—1

i = o (o) | e {2 )

in the proof of Proposition 7.1.2 is empty. This implies that both G, (g, 0.)1(P) = 0 and
H,, (Q,,0.)1(P) = 0 as the sums defining these functions are empty, meaning that the functions
G (1,021 (P) and H,, (9, 0,),1(P) in the Laurent expansion (7.1) do not appear for n = 2 and
n=4.

Moreover, if n = 2, there is no N € N with { W < N < 3 — 1 which yields that the set

) [ve{[* ] 51}

in the proof of Proposition 7.1.2 is empty. Hence, Gy, (,,0.),2(P) = 0 and H,, (9, 0,),2(P) =0
since the sums defining these functions are empty. This shows that also the functions G, (,,0,),2(P)
and Hy, (q,,0,),2(P) in the Laurent expansion (7.1) do not appear for n = 2.

Mg(n):{fi(

In the next proposition we consider the case n =3 mod 4.
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7.1. The Laurent expansion at s = 0

Proposition 7.1.4. Letn =3 mod 4. For P € H" the hyperbolic Eisenstein series Eég‘; QQ)(P, s)
admits a Laurent expansion at s = 0 of the form

EMP _ (P,s)—GP (P, s)

(Q1,Q2) (Q1,Q2),2
l(@u.qn) (-7)°T l(91,Qs) 1. 2
= 2 F P — P . O
(ﬂ)!VOI(F\Hn) + n:(Ql,Qz)( )+ 9 (n 1)'vol F\H" Z I 7(Q1,Q2)( ) s+ O(s%),
2 =1
(7.9)
where
s ﬂzé
par L n—1
(Q1,Q2), 2( ’ % 2 — ( 2 + l)

cr

- ER(Ps +21) / ER(Qun—1— s —21) dsg-(Q),

k=1 Liqy.@2)

and where the functions F,, (g, 0.)(P) and G, (q, q,)(P) are invariant under the action of T', and
are given by the formulas (7.11) and (7.12) in the proof, respectively.

Proof. The assumption n =3 mod 4 gives us ”T_g € Ny. Then, similar to the proof of Proposition
7.1.2, we see that for s € C with 25 — 2 (252 + 1) < Re(s) < 251 — 2+ 252 the identity

B 0)(Pos) =G5t o)) 2(Prs)

- ibj(s) i (P) + 4i Z / " by () EE (P "T’l +it) dt (7.10)

=0 k=17~

holds true, where the coefficients b;(s) and b ,, (s) are given by the formulas

En s— =L 4 ir; s— =L i, _
o) = T r (I () [ Q) dse (@
’ r (%)2 ( 2 ) ( 2 ) L@1.@2) ’
n—1 n—1 - ne1l _ ;
—noly gt —nel 1
i, (8) = ;(:)2 F(S 22 t ) F(S 22 ) ) /L E};:Lr (Q, nT _ Zt) dsgn (Q),
5 (@1.Q2)

respectively. The equality "T_l -2 ”T_?’ = 1 yields that the point s = 0 lies in the considered strip.
To derive the Laurent expansion at s = 0 we work from formula (7.10).

Analogous to the proof of Proposition 7.1.2, for j = 0, i.e. A\; =0, r; = —i "7*1 and ¢, (P) =
vol(T'\H")~%/2, the function b;(s)¥;(P) has the form

n—1

l(Ql,Qz) § F( 2
bo(s) 1o (P) = vol(T\H") T (%)

Using (A.12), at s = 0 we have the Laurent expansions
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7. Kronecker limit formulas for hyperbolic Eisenstein series

as now 251 € Ny. Consequently, the function by(s)1o(P) admits a Laurent expansion at s = 0 of
the form

o1 n—1

_ l(Q1,G2) (=)= l(Ql»Qz)(_TOnTil - 1 2
bo(#) Yo(P) = (2D vol(T\H") 2 (251)!vol(T\H") ; [ ] 5T OE:

Now let j > 1, so that we either have 7; > 0 or r; € (— i7, 0]. In the first case 7+ i i ¢ Ny

holds true, while in the latter case 27t + ”7 € R with 2 — 127 € (0,241] and ol + 1;’ €
(22, ”T’l) The interval (0, 23] contams the natural numbers 1,...,23, while the natural
numbers contained in the interval [”—1, "771) are ”H ey ans

NEES
As in the proof of the previous proposition, this 1mphes that the function I’ (%) has a

pole at s = 0 if and only if

S R R B B Sl Ceaet ) | L (s
while the functlonf(é —Z “»]> has a pole at s = 0 if and only if
ere{ n-g}
2 4 T2
o e (ol e L)

Moreover, if ”T_l — ﬂ = N for some N € {1 "23}, then % € 7Z yields that

n—1 ir; n-—1 n—1 n+1l n—-3
ER. N e€Z and 2—_N [ , } :
TR 2 €& 2 T
so also 27t + ir" € { ..., 2531 Conversely, if we have 21 + "J = N for some N €
”T'H, . } then 6 Z 1mphes that
n—1 ir; n—1 n—1 n—3
B e S S
1 2 2 <& 2 <M
so also ”Tfl — % € {17 ey ”773} holds true. This proves that for any j > 1 either both of the two

: 5= tir; s— gt —iry _
functions I' S , T 5 have a pole at s = 0, or none of them has. If we set

o~ {250 e ),
Mg(n):z{—i(

4 2
lhe COnSideI‘atiOHS abo\/e ShOW that M (n) - M}(n) = M(n)

We recall that at s = 0 the function I' (%)_2 has the Laurent expansion

1 1 ¥
ﬁ:1'82+1'33+0(84).
()

If r; € M(n), then, using (A.12), at s = 0 we have the Laurent expansions

s— =L +gp 2(—1)FE 1 _pES 8 ¥
F( 2 ]): 1) _ 2 B : E f*v +O(s).
2 n—1 wi\y 8 n—1 i\
( 1 + 2 ) ( 4 + 2 ) =1
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7.1. The Laurent expansion at s = 0

This yields that for j > 1 with r; € M (n) the function b;(s) ¢;(P) admits a Laurent expansion at
5 = 0 of the form

4 2
N n—1 iy n_1_irj
(771_)7 4 2 1 4 2 1
+ n—1 i\ [ n=1 i\ 7 + Z i
2 7 + - )'\—2 — =% =1 =1

’ wj(P) Cj:(Q17Q2) s+ 0(32)7
where again

C%KQLQ@:=14; 7(Q) dsun (Q).

(Q1,Q2)

Thus, the respective part of the series in (7.10) arising from the discrete spectrum has a Laurent
expansion at s = 0 of the form

D bi(8)i(P) = Fr(01.0) (P) + Gr(@r,00) (P) - 5+ O(s%),

jEN:
r;EM(n)
where
(-m'T
Fn,(Ql,Q2)<P) = Z (n—l N iTj)' (n—l irj)' wj(P) Cj’(Ql’Q2)7 (7.11)
en: ("t ) - )]
erEM(n) 4 2 4 2
no1 n1y el T
(—TF) > 4 2 1 4 2 1
P) = il —
r;€M(n)
15(P) Cj@1,Q2)- (7.12)

If r; ¢ M(n) holds true, then (A.13) yields that at s = 0 we have the Laurent expansions

s— =L 4 g ir, n-—1 1 ir; n—1 ir; n-—1
F(Qij)zp(iiﬂ_ ) ,F(iiﬂ_i) (0)(i—]— ) O(s?).
2 2 1 )13 2 )Y 2 ;) st O6Y

This implies that for j > 1 with r; € M (n) the function b;(s) ¢, (P) admits a Laurent expansion
at s = 0 of the form

n—1

Tz ir; n—1 r; n—1
bi(s)5(P) = T T (% = 2= ) T(= 52 = =) (P) Cgauqm - 52 + O(5°).

Hence, the respective part of the series in (7.10) arising from the discrete spectrum has a Laurent
expansion at s = 0 of the form

> bils)s(P) = O,
rj ;55(“)

Further, as in the proof of Proposition 7.1.2, we have "T_l ¢ Ny and the continuous part in (7.10)
admits a Laurent expansion at s = 0 of the form

1 & [ on—1 )
M;/_wbt,nk(s)E};f (P25 +it) dt = O(s?)
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7. Kronecker limit formulas for hyperbolic Eisenstein series

Putting everything together, for P € H" we obtain a Laurent expansion at s = 0 of the form

hyp par
@) an(F8) =90, 0.2 (P> 5)

l (—m) "= ! »
(Q1,Q2) (01,Q2) )
= + F; P 1 . o ’
(n 1)IVO1(F\H71,) n,(Qth)( )+ 2 (n 1)'vol I‘\H” ; 1 Gy, (Ql,QQ)( ) s+ 0(s%)

where Fy, (q, @) (P) and Gy, (@,,0,)(P) are given by (7.11) and (7.12), respectively.

Since the eigenfunctions ¢;(P) (j € N) are invariant under the action of T', the same is true for
the functions F, (g, q,)(P) and Gy, (@,,0.)(P)-
O

Remark 7.1.5. In the case n = 3 the Laurent expansion of the hyperbolic Eisenstein series in
Proposition 7.1.4 simplifies significantly:
Since for n = 3 thereisno N € Nwith 1 <N < »= 3 and no N € N with "*1 < N < 5=, the set

_1 _
M(n):{ﬂ'("2 72N)’N6{1,...,n43}}
1 n+1 n—3
oyt e
{ Z( 171 2
in the proof of Proposition 7.1.4 is empty. Thus, we have F}, (g, 0,)(P) = 0 and G,, (¢, ,q,)(P) =0

as the sums defining these functions are empty. This shows that the functions F, (o, q,)(P) and
G1,(0.,Q5)(P) in the Laurent expansion (7.9) do not appear for n = 3.

Now we treat the remaining case n =1 mod 4.

Proposition 7.1.6. Letn =1 mod 4. For P € H" the hyperbolic Eisenstein series E(Q @ )(P, s)
admits a Laurent expansion at s = 0 of the form

hyp ar
E(Ql Q2)( ) gFQl Q2), (P’ 8)

n—1

n—1 n—1

l@1.qy) (=) > l@1.0:) (=) 7 22 RS
- ’ +F7 P + - 7 G P :
(n;1>'V01(F\Hn) z,(Qth)( ) 9 (ngl)'VOI(F\H") £ I +; n,(Qth)J( ) S

+0(s?), (7.13)

where

1
2777 & (1) n—1
par —
Glor.00 3P 8) = - i F(S— 5 —|—l)

ZEPM Ps+ ZZ)/ EP(Q,n — 1 — s — 21) dsun (Q),

L@,.q2)

and where the functions F, (g, q.,)(P) and Gy, (9,,0.),(P) (I = 1,2) are invariant under the action
of T, and are given by the formulas (7.15), (7.16) and (7.17) in the proof, respectively.

Proof. In the proof of Theorem 6.2.1 we have seen that for P € H" and s € C with Re(s) =

2= —2m (m € Ny) the meromorphic continuation of the hyperbolic Eisenstein series E( 0r.Q2) (P;s
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7.1. The Laurent expansion at s = 0
is given by

o) n—3 cr
0] ™2
B P = 2o ws(P 4 T 3 [

’ CT]I«’(Qi’Qz)(n -1- w) dw

s—n+1+w s —w ar
( 2 )F( 2 )Ei)k (P,w)

cr

n—1 m-—1
2m 7 —1)! ~1
Ml Z( )r(s_nz +l>ZEE:Y(P,S+2Z)Cm7(Q17Q2)(n—1—s—2l)

El |
r() i " e
n—1 .
T 2 (_1)m n—1 r N
+F(%)2 m! F(S_ 2 +m) ;Esk (P’S+2m)cﬁk’(Q17Q2)(n_1—8—2m),

where for z € C we have set

C”]kv(Qth)(z) ::/ Esjr(Q,Z) dspn (Q).
L, Q2)

Here W, . denotes the following piecewise linear path: the vertical line from ”T_l — 100 to % — 1y,

the horizontal line segment from 2 7 —iy to %L e —iy, the vertical hne segment from %=L +e—iy

to L + ¢ 4 iy, the horizontal line segment frorn ”— +e+41iy to & T + 4y, and the vcrtical line
frorn "— + iy to 2L + oo, where £ € (0,1) is chosen sufficiently small such that all parabolic
Eisenstein series EP™ (P, s) (k =1,...,cr) have no poles in the strip 251 —2¢ < Re(s) < 251 +2¢,

and y is chosen sufficiently large such that y > |Im(s)|. Moreover, the coefficient b;(s) is given by

bi(s) = mE F(S_nT_;”T'J‘)r( "521 ' )/L 05(Q) dsgn (Q).

(Q1,Q2)

Substituting w = ”T_l +it in the integral, the above meromorphic continuation on the line Re(s) =
2= — 2m (m € Ny) can be written as

cr
hyp ar n—1 .
ERP o (Pys) = Zb 5) (P +*Z/ btnk s) Ep? (P,Tﬂt) dt

) ZEW (P, s +21) Cyp (01.00)(n — 1 — 5 — 21)

r(s— "= L m) ZEW (P,s+2m) Cyy (91.00)(n — 1 — 5 — 2m),

where W;E denotes the following piecewise linear path: the horizontal line from —oo to —y, the
vertical line segment from —y to —y — de, the horizontal line segment from —y — ic to y — ie,
the vertical line segment from y — ie to y, and the horizontal line from y to oo, and where the
coefficient b; ,, (s) is given by

1

T e e e | R A )

2
r (5) (R1:Q2)
The assumption n =1 mod 4 yields "Tfl € N, so particularly on the line Re(s) = "7*1 —92. anl =0
the identity
hyp
B, Q2>(P $) = 9(01.02).3(F:9)
IS n—1
ar .
B Z b 477 21 /W; ) bt (S) Ef;k (Pv BN + Zt) dt
n—1 n—1
mr (D) —1 n—1
+ = ( ) Epar( n-1l, s) c, ,,(QI,QQ)( - s) (7.14)
r(s)? (%) Z . -
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7. Kronecker limit formulas for hyperbolic Eisenstein series

holds true. Thus, to derive the Laurent expansion at s = 0 we work from formula (7.14).

As in the proof of Proposition 7.1.4, for j = 0,i.e. \; = 0, r; = —i 251 and ¢;(P) = vol(I'\H")~!/2,
the function

bo(s) Yo (P) = L. T 7 T (5=041)

volT\E") T (3)

admits a Laurent expansion at s = 0 of the form

n—1

_ l(Ql,Q2) (_77.)% l(Ql,QQ) (—71‘)%71 2 1
)= (253) ! vol(T\H™) 2 (251)!vol(T\H") 75T O(s?)

=1

since we have "7_1 € Np.

Now we let j > 1, so either r; > 0 or r; € ( i Tl,O} holds true. In the first case clearly

ol 4 irj ¢ Np, while in the second case we have 271 + "’ € R with 2= — ﬂ € (0,271] and
"T_l + W’ € [— ”7) The natural numbers contamed in the interval (0 %1] are 1,..., ”T_l,
and the 1nterval [—, %‘1) contains the natural numbers ”T_l, ceey ”T_?’

Analogous to the proofs of the previous two propositions we see that the function T’ (9_12%)
has a pole at s = 0 if and only if

-1 -1 -1 -1
il .,"4 b e it o) [ ve fu

4 2 4
while the functlonf‘( )hasapole at s = 0 if and only if
n—l irj 6{ n—3}
2 4 7772
— 1€ { z<2N 1)‘Ne{n;1,...,n;3}}.
If "T_l — % = N for some N € {1,...,”7_1}, then from "7_1 € Z we derive that
n;1+%:n;1—N €Z and %—Ne[nll,n;3],
so that also "T_l + i” € {"_ _3} holds true. Conversely, if ”4_1 + % = N for some
N e {”117 3} then eZglves us that
";1—%:";1—N €Z and %_I—Ne [1,”T_1},
so that also ”T_l—i%j € {1,...7”7_1}. From this we can conclude that for any j > 1 either both

n—1 . _n—1_ .
of the two functions T’ (57T2+ZT]), r (S % W]) have a pole at s = 0, or none of them has.

Setting
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7.1. The Laurent expansion at s = 0

As in the proof of Proposition 7.1.4, at s = 0 we find the Laurent expansion

Z bj(8) Vi (P) = Fn(Q1,Q2)(P) + Gny(@1.@2)1 (P) -5+ O(s?),

jEN:
r;€M(n)
where
(_ﬂ_)n;1
Fn,(Q1,Q2)(P) = Z 1 ir 1 T "/}J( ) 7,(Q1,Q2)> (715)
jeN: (7+ J) (T*TJ)
r;€M(n)
e =1y i n—1_
(—W)Tl S 2 1 3
Gn’(Q17Q2)71(P) = Z n—1 ir n—1 ir; 7 +
Gpteesple-gp =
15 (P) Cj(@1.Q2) (7.16)
with

Ci(@1,@2) ¢=/L $;(Q) dsun (Q),
(Q1,Q2)

as well as the Laurent expansion

D bi(s)(P) = O(s%).

jEN:
r;@M(n)
For any t € W, _ with Re(t) # 0 we have "T_l + it € R, so that in particular "T_l + it € Np.
Further, the only ty € Wy . with Re(tg) = 0 is tg = —ie. Using ”T_l € Ny and ¢ € (0,1), we also
"4_1 + ity = "T_l + ¢ ¢ Np. Together with (A.13) this implies that for any t € W, _ at s =0
we have the Laurent expansions

1 1
=t 06,
r'(3)
s— Il 4t it n—1y 1 it
) () (e oo (2 v
2 5”1 )72 2 v )
Thus, for k = 1,...,cr and any t € W, _ the function by ,, (s) in the 1ntegra1 in (7.14) arising from

the continuous spectrum admits a Laurent expansion at s = 0 of the form

n—1
T2 it n—1 it n—1 n—1 .
btﬂlk (8) = 4 F(E - 4 ) F( - 5 - 4 ) Cﬂk,(QhQ2)( 2 - lt) - s” + 0(83)'

This shows that at s = 0 we have the Laurent expansion

i/ btm Par(P,n;1 +it) dt = O(s2).

Moreover, the fact that 271 € Ny yields that at s = 0 we have the Laurent expansion
n—ly (D% 1 (% [
F(s— ): — e e - =7 | +0(s).
) s e (&
Since the parabolic Eisenstein series EP*(P,w) (k =1,...,cr) have no poles on the line Re(w) =
”T’l, for k =1,...,cr we find the Laurent expansions
r n-—- r
By (P ) = B (PE5) 406
n—1 —1
CT]A-,,(QLQ2)( 2 - S) = m (Q1,Q2) ( ) )
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7. Kronecker limit formulas for hyperbolic Eisenstein series

at s = 0. Together this gives us that the last summand on the right-hand side of (7.14) admits a
Laurent expansion at s = 0 of the form

FW()Q(("{I‘)l)' r(s- )ZE""“<P,—1+5) Cnmczh@z)(ngl =)
2

= G”1(Q11Q2)72(P) 5+ O(S )7

where
n—1

Cn(@1,02)2(P) = - = .2 Z par( 7 1)(1%(@1,@2)( > ) (7.17)

Overall, for P € H" we obtain a Laurent expansion at s = 0 of the form

hyp par
E(Q17Q2)(P’ S) o g(Ql Q2), 3( )

_ l(leQ2)( )%
(2= D) Ivol(T\H")

+0(s%),

where F,, (0,,0,)(P) and G, (@,,0.),:(P) (I = 1,2) are given by (7.15), (7.16) and (7.17), respec-
tively.

L@y .qu) (=
2 (251) 1 vol( F\H”

2
1
7+ZG (Q1,Q2), (P)|-s

=1 =1

M :
[
)

Fr Qi (P) +

The eigenfunctions ¢;(P) (j € N) and the parabolic Eisenstein series EP*(P,s) (k = 1,...,cr)
are invariant under the action of I'. Hence, also the functions F, (g, 0.)(P) and G, (0,,0.),1(P)
(I =1,2) are I'-invariant.

O
Remark 7.1.7. The functions FS;QQ)J(P,S), g?giQQ)’Q(P, s) and gfgj’ng(P, s) that are sub-
tracted from the hyperbolic Eisenstein series Eég? Qz)(P7 s) in the Laurent expansions (7.1), (7.9)
and (7.13), respectively, differ only by the upper limit of summation in the sum over I. This is
because the explicit formulas for the meromorphic continuation of E(ép Qs )(P, s) to the point s = 0
slightly vary in the different cases for n.

7.2. Example 1: The case n =2, I' = PSLy(Z)

In this section we first give a Laurent expansion at s = 0 of the hyperbolic Eisenstein series on
the upper half-plane H for a general Fuchsian subgroup I' C PSLs(R) of the first kind. Then we
consider the case I' = PSLy(Z) and use the Laurent expansions of the parabolic Eisenstein series
associated to the cusp oo at the points s = 0 and s = 1 to derive a Kronecker limit formula for
the hyperbolic Eisenstein series for PSLy(Z).

Throughout the section we let n = 2. Let I' C PSLy(R) be a discrete and cofinite subgroup, i.e. a
Fuchsian subgroup of the first kind. Further, let (Q1,Q2) € Hr be a pair of hyperbolic fixed points
with hyperbolic scaling matrix o(g, g,) € PSL2(R) and hyperbolic stabilizer subgroup F%}I,QQ)‘

Then F?ép Q.) Bgrees with the full stabilizer subgroup T'(g, 0,) of (Q1,Q2). Let L, q,) be the

unique geodesic in H connecting @1 and Q2, and let L(g,,g,) = T, o, (£(@1.@,)) denote its
image under the natural projection (0,00 H — T',,q,) \H, which is a closed geodesic in
I'(9,,0.)\H of hyperbolic length I(g, 0,)-

Notation 7.2.1. To keep the notation simple, in this section we again omit the index 2 and

write E(g Qs )( z,s) for the hyperbolic Eisenstein series E2}EZ?1 QZ)(z,s) associated to the pair

(Q1,Q2) € Hr of hyperbolic fixed points, and EP*(z,s) for the parabolic Eisenstein series

EY,). (2,8) associated to the cusp ny € Cr (k=1,...,cr).
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7.2. Example 1: The case n =2, I' = PSLy(Z)
Before we consider the specific case of the modular group PSLy(Z), we first state a consequence
of Proposition 7.1.2 for a general Fuchsian subgroup of the first kind.

Proposition 7.2.2. For z € H the hyperbolic Eisenstein series E(Q s )( s) admits a Laurent
expansion at s = 0 of the form

R Vo (et

(Q1,Q2)

1 cr

((j 2) S ER(, /L EP*(w, 1~ s) dsu(w)
2 k=1 (Q1,Q2)

l(Ql Q) T Z(Ql Q2) 7 (1 — log(2 9 3
—_——rres _ ) H .
vol(T\H) ° vol(I'\H) Z 2,(Q1,@2)1(2) | - 87+ O(s7),

where the functions Hy (o, 0,),(2) (I = 3,4) are invariant under the action of I', and are given
by the formulas (7.18) and (7.19) in the proof, respectively. Moreover, for z € H they satisfy the
differential equation

4

l@@) ™ | phyp

Ag <§ :HQ,(Ql»Qz),l(Z)> = W + E(Ql Qz)( )
=3

Proof. From Proposition 7.1.2 we can deduce that for z € H the hyperbolic Eisenstein series
Egg? Qz)(z, s) admits a Laurent expansion at s = 0 of the form

cr

27T (s— 1)
B o0 (25) - 2Vl (s —5) }:Ew / EP* (1,1 — 8) dsy(w)
b L(Ql Q2)

(
_ Z(Q17Q2) QU l(Qth) ™ (1 - IOg(Q)) . 2
o ( VOI(W + Z Gy (Q1,Q2), 1(z) | s+ | - vol(T'\ H) + Z HQ,(Qth)»l(Z) S

=1
+0(s%),

where we used the special values I' (—1) = —2 /7 and ¢(©) (—1) =2 — v — log(4) (which follows

from (A.10) and the recursion formula (A.11)). Further, in Remark 7.1.3 we have seen that the
functions G (9,,0,).(2) (I = 1,2) and Hy (g, 0,),:(2) (I = 1,2) vanish identically as the sums
defining these functions are all empty. Consequently, we have a Laurent expansion at s = 0 of the
form

2\/>F - l S ar ar
EMP )(2:8) — i ) ZEP (z,5) / EM(w,1 — s) dsu(w)
2

Q1,Q
(@@ ( k=1 Lq,.02)
Z(Ql Q)T l(Ql Q)T (1 - IOg 2
—_rrxe) } H . O 3
vol(\H) ~° + vol(T'\H) Z 2,(Q1,Q2),1(2) | - 574+ 0O(s7),
where the functions Hy (g, ,q,)1(2) (I = 3,4) are given by

Hy @1.05(2) \fz(m)(?bwwé Ty(w) dss(w),  (7.18)

(Q1,Q2)

1
Hy,(Q1,02)4(2 16\[2/ (F Zt - ’ Eg,jf(z,§+z‘t)

. 1 .
. (/ B (w, 3~ zt) dsH(w)> dt, (7.19)
L@i.02)

respectively, and are invariant under the action of I'. It remains to prove the claimed differential
equation.
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7. Kronecker limit formulas for hyperbolic Eisenstein series

We write the above Laurent expansion at s = 0 as

2 ‘\/EF S 2 ar ar
E%?Q2)(z,s) ZEP 2,8 / B (w,1—s) dsp(w ZC(Q17Q2)
( Lq,,q9)
(7.20)
with
L@@ ™ ke Q) ™ (1 —log(2)
0= Bt =D S,

Moreover, for z € H the function Eégf 0:) (z, 5+ 2) is holomorphic at s = 0 and non-vanishing by
the definition of the series. Thus, we have a Laurent expansion at s = 0 of the form

h
Egyqn(#8+2) Zd (@1,Q2).r ( (7.21)

with d(g,,q,),0(2) = E(éf @) (%,2) # 0. Making use of the differential equations

(Au = s(1—8) B o (2,8) = 8 B (2,54 2)

and
(Ag —s(1 —s)) EP*(2,8) =0 (k=1,...,cr),
we obtain
27l (s — 1) &
(Ag — s(1—s)) (E(hcy)i%)( s) — VT ( 3) > EP(z,s / ER™(w,1 — s) dsH(w)>
(§ k=1 L@1.02)

=5 E;gpQ (2,8 +2).

Substituting the Laurent expansions (7.20) and (7.21) into both sides of this equality yields the
identities

ZAHC(QlQ’z ZS 1—5 C(Q1Q2 S _ZS d(Q1Q2 )

r=1 r=1
and
D BB Q. (2) 5" =D C@ranr—1(2) 8" =Y ¢@u.@ar—2(2) 5"+ Y d(Q,.Quyr—2(2) 5"
r=1 r=2 r=3 r=2

Comparing coefficients gives us the recurrence formula

Ab €(Q1,Q2).(2) = €Q1,02).r-1(2) = €(Q1,Q2).r—2(2) + d(Q1,Q2) r—2(2),
where c(g,,q,),r(2) =0 for r < 1 and d(q, q,),»(2) = 0 for » < 0. In particular, for r = 2 we get

An C(Ql,Qz)Q(Z) = C(Ql,Qz);l(z) + d(Qth)aO(Z)’

i.e.

; lran ™ (1~ log(2)
Am ZHQ’(Qth)J(Z) =Au | - vol(T'\H) J'_;H?’(Qth)vl(z)

=3

Z(Ql Q)T hyp
’ - 2).
vol (T'\ HI) + (Ql,Qz)(z’ )

This finishes the proof of the proposition.
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7.2. Example 1: The case n =2, I' = PSLy(Z)

Remark 7.2.3. Taking into account that
I 1.
AH 1,[)](2) = )‘j dJJ(Z) == <§ + Z’I"j) <§ — Z’I‘j) 1/JJ(Z)
for j € N, and
A par 1 . — 1 N 1 - par 1 N
m B, (z, 3 + zt) = (5 + Zt) (5 — zt) Ey, (z, 3 + lt)
for k =1,...,cr and t € R, and using the spectral expansion (5.8) with n = 2 and s = 2, the
differential equation

4

L@, ™ h

Ag (Z Hza(Ql,Q2)»l(z)> - _W\?}H) T E(é?ﬁh)('z’ 2)
=3

can also be obtained by a direct computation.

For the rest of this section we let I' = PSLy(Z). In this case we have Cr = {¢; = oo} and
vol(I'\H) = /3. From Example 3.4.15 (b) we recall that the parabolic Eisenstein series EL2*(z, s)
for I" admits the Laurent expansions

R (z,5) = 1+ log (JA(=)[/* Tm(2) ) - 5 + O(s?), (7.22)

_ 1(__ _ 1
ER(z,s) = % . sil _ %log(‘A(z)um(z)s) L6720 17)T 6 log(47)

+0(s—1) (7.23)
at s = 0 and s = 1, respectively, where the Delta function A(z) is given by (3.20).

Using (7.22) and (7.23) together with Proposition 7.2.2, we find the following Kronecker limit
formula for E?g?f Q) (%:8)-

Theorem 7.2.4. Let I' = PSLy(Z). For z € H the hyperbolic Fisenstein series Eégf Q2)(z,s)

admits a Laurent expansion at s = 0 of the form

B an (%) = (1 [ s AE AW ) T(w)*) dssw)

4

+31(0,.0) (24¢(—1) + log(87%) — 1) + Z HQ,(Q17Q2)71(2)> 524+ 0(s%),
=3

where the functions Hy (g, 0,),:(2) (I = 3,4) are invariant under the action of T, and are given
by the formulas (7.24) and (7.25) in the proof, respectively. Moreover, for z € H they satisfy the
differential equation

4

h

Am (Z HQ,(Qth)J(Z)) = =3U@1.Q2) T B0 0 (%:2):
1=3

Proof. By Proposition 7.2.2, for z € H the hyperbolic Eisenstein series E%?Q2)(z,s) admits a

Laurent expansion at s = 0 of the form

2rl (s — 1
EMP - (z,5) — M EPY(z,5) E2* (w,1 — s) dsg(w)
(Q1,Q2) T (§)2 00 L 00
2 (Q1,Q2)
4
=-3lQ.,Q) s+ <_3Z(Q1,Q2) (1 —1log(2)) + ZHZ(Qqu)J(Z)) -s° +0(s?),
1=3

167



7. Kronecker limit formulas for hyperbolic Eisenstein series

where the functions

T — ;1 ;1 —
Ha(01.02.(2) = % Zr(ﬁ - 1) r( ~F-Pue [ D) das(w) (7.24)
] Q1,Q2
2 1 1
H, — — = )| EX¥(z,=+it EP(w, = —it) dsg(w) | dt
2,(Q1,Q2), a( / o (% (/ 00 ) H )
16f ( 2 ) Leor.om ( 2 )

(7.25)

are invariant under the action of I' and satisfy the asserted differential equation.

In order to derive the Laurent expansion of the hyperbolic Eisenstein series E(Q 0s )(z s)at s =0,
we first determine the respective expansion of

27T (s —3) EP(z, s)/L EZ (w,1 = s) dsu(w).

N

T (5) (@1,@2)

At s = 0 we have the Laurent expansions

1 L 5,7 3 4

—— =--5"+—- -5+ 0(s%),

O
1

1"(5—5) = 27— 27 (27 —log(4)) - s + O(s?),

yielding the expansion

w =—7-5" =27 (1 —1log(2)) - s> + O(s*).

r(3)°

Further, from (7.22) and

B, 1 — ) = —2 - 2 L iog (|A(w) Tm(w)®) +

T s 27

6—72¢'(—1) — 6 log(4r)

™

+ O(s),

which is an immediate consequence of (7.23), at s = 0 we obtain the Laurent expansion

EP*(z, s)/ EP*(w,1 — s) dsg(w)
Lqi.q2)
31 1 3l 1
S L SO g (A O Im()) - 5- [ log (1AGw) lm(w)®) dsaw)
@ s & Lqi.@2)

+ l(Ql,Qz) (6 — 72 CI(*]-) -6 10g(47T))
s

+ O(s).

This implies that at s = 0 we have a Laurent expansion of the form

2Vl (s —3) EP™ (2, )/L EE (w,1 = s) dsp(w)

]_"(%)2 (Q1,Q2)

= 31100 5+ (611.0n (1~ 108(2)) + 31, 0z 10g (IAG)[/ Im(2))

+1/
2 L
=31(Q1.Q2) " 8
1
+ (65@1,@2) (12¢'(—1) + log(27)) + 5/L

+0(s%).

log (|A(w)[ Im(w)®) dsu(w) — (q,,0.) (6 —T2¢ (1) — 6 10g(47r))> 52+ 0(s%)

(Q1,Q2)

log (|A(2)] | (w)] Im(2)° Tm(w)?) dsH<w>> s

(Q1.Q2)
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7.3. Example 2: The case n = 3, I' = PSLy(Z][i])

Consequently, for z € H the hyperbolic Eisenstein series Eég? QQ)(z, s) admits a Laurent expansion
at s = 0 of the form

B gu(2:9) = (; [ eI ) tnGe)) dost

4
+31(0,.0,) (24¢(—1) +log(87?) — 1) + Z HQ,(QI,QZ)J(Z)> 52+ 0(s%).
=3

O

Remark 7.2.5. A different Kronecker limit type formula at s = 0 for the hyperbolic Eisenstein
series for PSLy(Z) is proven by Matsusaka in Appendix B in the preprint [Mat20]. Instead of using
spectral expansions he follows a different approach involving the automorphic Green’s function.
For his result we refer to [Mat20].

7.3. Example 2: The case n = 3, I' = PSLy(Z[i])

As a second example we treat the case n = 3 and I' = PSLy(Z[i]) in this section. First we give a
Laurent expansion of the hyperbolic Eisenstein series at s = 0 for a general discrete and cofinite
subgroup I' C PSLy(C). Then we let I' = PSLy(Z[i]) and examine the behaviour of the parabolic
FEisenstein series associated to the only cusp oo of this group at the points s = 0 and s = 2. This
leads to a Kronecker limit formula for the hyperbolic Eisenstein series for PSLy(Z[i]).

Throughout the section we let n = 3. Let I' C PSLy(C) be a discrete and cofinite subgroup.
Further, let (Q1,Q2) € Hr be a pair of hyperbolic fixed points with hyperbolic scaling matrix
0(Q1,0,) € PSL2(C) and hyperbolic stabilizer subgroup F(Q @) Let L(q,,q,) be the unique

geodesic in H? connecting Q; and Q, and let Lg,,q.) = ﬂ'thp (L(Ql 0,)) denote its image under
@

3 hyp ’
the natural projection T8 a0 CHY =T o, )\H which is a closed geodesic in F(Q Q2) \H of
hyperbolic length Z(QI,QQ)

Notation 7.3.1. To keep the notation simple, in this sectlon we again omit the index 3 and
write Eégp 0s )(P s) for the hyperbolic Eisenstein series E. 32 0s )(P, s) associated to the pair

(Q1,Q2) € Hr of hyperbolic fixed points, and EP*(P,s) for the parabolic Eisenstein series

B3 (P, s) associated to the cusp n, € Cr (k= 1,...,cr).

Before we consider the specific case I' = PSLy(Z[i]) later in this section, from Proposition 7.1.4 we
can easily draw the following conclusion for a general discrete and cofinite subgroup I' C PSLy(C).

Proposition 7.3.2. For P € H? the hyperbolic Fisenstein series E}gf Q2)(P, s) admits a Laurent
expansion at s = 0 of the form

27T(s — 1) o
EGyr guy(P:5) = 2l > ER(Ps) / EP(Q,2 — s) dsus(Q)

r (%)2 k=1 L@i.q2)

h@ien™  l@ienT™ 2
“rol(T\EE) 2oy T O

Proof. Proposition 7.1.4 implies that for P € H? the hyperbolic Eisenstein series E?yp 2)(P, s)

admits a Laurent expansion at s = 0 of the form

h 27 (s — 1 . .
E(%T,Qz)(P 5) — ZEPa P s) o )Ef]’: (Q72 — 8) dsys (Q)
1:%2

L™ 11, ™ )
vol(T'\H?3) +Fs@uea(P)+ 2 vol(T'\ H3) + G3,01,Q2) (P) | - s + 0(s7)

169



7. Kronecker limit formulas for hyperbolic Eisenstein series

Moreover, we have noted in Remark 7.1.5 that the functions Fj (g, g,)(P) and Gs (0, q,)(P)
vanish identically since the sums defining these two functions are empty. Thus, we obtain the
claimed Laurent expansion at s = 0 of the form

270(s — 1) o~ ppar .
By n(P25) = Fés)z);EEZ (RS)/L EP™(Q,2 = s) dsys(Q)
=

(Q1,Q2)

Z(QI;Q2) m l(Qth) m 2
= TTol(TVE) ~ 2voimmmy S T O

O

Now let K be an imaginary quadratic field with ring of integers Ok, discriminant dx and class
number hy. Here and throughout this section we assume that a fixed embedding K C C has
been chosen. Recalling Example 2.4.17 (b) and Example 2.6.19 (b), the group I' = PSLy(Ok) is
a discrete and cofinite subgroup of PSLy(C). It admits hx cusps and the finite hyperbolic volume

B |dK|3/2

vol(T\H?) = anZ Cx(2)
with
k=3 N
ICOy ideal,
I#{0}

denoting the Dedekind zeta function, where s € C with Re(s) > 1 and N (/) is the norm of I.

We write elements of H? in the form P = z + jr = z + iy + jr with 2 € C, z,y,7 € R and r > 0.
Then for P € H? and s € C with Re(s) > 1 the Eisenstein series E, (P, s) associated to the cusp
oo after Elstrodt, Grunewald and Mennicke (see, e.g., [EGM13], section 3.2) is defined by

Ew(Pys)= > r(yP)**,
YETLAT

where
I, ={y €Tl |y=id or v is parabolic}

is the maximal unipotent subgroup of the stabilizer subgroup
I'eo = {y €T'[y00 = o0}

of oo in I'. This Eisenstein series is invariant in P under the action of I', holomorphic in s, and
admits a meromorphic continuation in s to the whole complex plane with a simple pole at s =1
with residue

o2
Rk :=Ress—1 Ex(P,s) = ldk|¢r(2)

In this setting the Kronecker limit formula states

R

iy (B (Pos) = 255 ) = =R og(n(P) (P) +

s—1 s—1

(see, e.g., [EGM13], chapter 8, or also [Her+19]), where C'x € C is a constant depending only on
a

K. The function nx : H® — R satisfies g (yP) = ||cP + d||? nk (P) for any v = (c Z) eI and

can be seen as an analogue of the weight 2 real-analytic modular form |n(z)|*.
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7.3. Example 2: The case n = 3, I' = PSLy(Z][i])

We want to derive the respective residue and Kronecker limit formula of the parabolic Eisenstein
series EP3 (P, s) associated to the cusp oo from Definition 3.4.1, which is given for P € H? and
s € C with Re(s) > 2 by

B (Ps)= > r(yP)".

YET o \I

Replacing the summation condition v € ', \I' by the condition v € T, \T" results in a multipli-
cation by the finite index [ : I, ] (see Remark 3.4.3 (b)) which is equal to 1 |O| by Example
2.6.19 (b). This implies

X

@
Eo (P, s) = % EP* (P, s+ 1), respectively ~ EP(P,s) =

2

|(9 | Ex(P,s—1).

Hence, the parabolic Eisenstein series FR2"(P, s) admits a simple pole at s = 2 with residue

2
() = 2B _ A
0kl 10k ldk |k (2)’

Ress—o B2 (P, s) =

IO \
and the Kronecker limit formula takes the form

2 R >_ 2 R 2Cx

hm (Epar(P,S) — 7|O;<(‘ (5 — 2) |O | ( (P) T'(P)) + @

s—2 o0
with Ry, Cx and ni (P) as above.
Now we let K = Q(i) which is an imaginary quadratic field with ring of integers O = Z][i],

discriminant dy = dg(;y = —4 and class number hx = hg(;) = 1. Then the group I' = PSLy(Of)
PSLo(Z[i]) has only one cusp 11 = oo and the hyperbolic volume

|do [ 2 Goe)(2)

(T\H®) = =L ¢, = WAV .
VO ( \H ) 471_2 CQ(z)(Q) 7T2 (7 26)
Moreover, we have |0} | = |Z[i]*| = 4, which gives us

1
E(P,s) =2EN (P, s+ 1), respectively EP*¥(P,s) = B E(P,s—1).

We obtain the residue

Roy = 1
2 4low(2)  2vol(I\H3)’

Ress—o EPY (P, s) =

and at s = 2 we have the Laurent expansion

2 1

460 (2) s—2  4Cue)(2)

2
EP¥(P,s) = T

log(nge) (P) r(P)) + @ + O(s — 2), (7.27)

where Cg(;) € C is a constant and ng;) : H> — R satisfies ng(;)(vP) = |[cP + d||? ng (P) for any

N = <z Z) € I'. For the rest of this section we let I' = PSLy(Z][i]).

Introducing the normalized Dedekind zeta function

Gy (8) =47 T(s) Caei(s),

satisfying
Caiy(8) = Cgry (1 — ),
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7. Kronecker limit formulas for hyperbolic Eisenstein series

and the normalized parabolic Fisenstein series
ER2(P,5) = Gy (s) ERT(P,s) = 4w T(s) o (s) ER" (P, s),

we have the functional equation (see, e.g., [Szm83], p. 395)

EP*(P,s) = ERY(P,2 — s).
This yields the identity
4m572T(2 — ) CQ(i)(2 —3)
4m=>T(s) Goei)(s)
47572 T(2 = s) (o) (2 — 9)

_ EP¥ (P2 — s), 7.28
O R (P2~ 5) (7.28)

which we will use together with (7.27) to derive the Laurent expansion of E?**(P,s) at s = 0.
Prior to that we need two further lemmas.

EP*(P,s) = EP* (P2 —s)

Lemma 7.3.3. For s € C with Re(s) > 1 the Dedekind zeta function (g(;)(s) satisfies the identity

]‘ ar .
C@(z‘) (s) = 5 ¢(2s) EQPSL2 (Z),oo(z’ s),

where ((s) is the Riemann zeta function (see (A.28)) and Eg‘r;Ser(Z) (2, 8) denotes the parabolic
FEisenstein series on the upper half-plane H associated to the modular group PSLy(Z) and the cusp

Q.

Proof. As Z[i] is a principal ideal domain, any non-trivial ideal {0} # I C Z[i] is of the form
I = (ci + d) for some pair (c,d) € Z* with (c,d) # (0,0). Moreover, two elements wy,ws € Z[i]
generate the same principal ideal if and only if we = pw; for some pu € Z[i]* = {£1,£i}.
Thus, for any ideal {0} # I C Z[i] there are exactly four pairs (¢;,d;) € Z* (j = 1,2,3,4) with
(¢j,d;) # (0,0) and I = {(c;i + d;). Taking into account that

N(<C’L + d>) = NQ(i)/Q(Ci + d) = 62 + d2,

this leads to
_s 1 . _s 1 1
Cow(8) = E NUI)™* = E N({ci+d)™° == E ORI
— 4 4 (24 d?)
ICZ[i] ideal, (c,d)ez?, (e.d)ez2,

I#{0} (¢,d)#(0,0) (¢,d)#(0,0)

On the other hand we can rewrite EQP,aSSLZ(Z),oo(Z” s) as

1 1 1 1 1
Epar ] = — = —_—
2,PSL2(Z),oo(Z, s) 2 Z lci 4 d|2s — 2¢(2s) 1; k|25 Z i + d|?s

(c,d)ez?, (c,d)eZ?,
ged(e,d)=1 ged(e,d)=1
- 1 1 1
Y L enE X e
2((2s) ey |kei + kd| 2¢(29) Wty et + d|
ged(c,d)=1 (c,d)#(0,0)

1 1
- 20(2 Z 2 2)s*
C@s) oo (EFP)
(e,d)#(0,0)
Consequently, we obtain

1 ar .
CQ(i) (5) = 5 C(ZS) E;ps.[,2 (Z),oo(l7 5)'
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7.3. Example 2: The case n = 3, I' = PSLy(Z][i])
Lemma 7.3.4. At s =0 we have the Laurent expansions

G (5) = — — Tog (JAG)[®) + — Tog(dm) + O(s),

G = o (s (1801) =+ 1oglam) -7+ 0,

where A(z) is the Delta function given by (3.20) and 7 denotes the Euler-Mascheroni constant
(see (A.6)).

Proof. The previous lemma gives us the identity
Chiay(s) = 47" T(s) oo () = 27 T(s) C(28) ER%gy ) oo (i 8).
At s = 0 we have

7% =1—log(m) - s + O(s?),

so that we obtain the Laurent expansion
27T (s) ¢(2s) = —% + v —log(4m) 4+ O(s)
at this point. Further, we recall from (7.22) that
Bt 200 (128) = 14 Tog (JA@)V0) -5 4 O(s?).
Combining these two formulas, at s = 0 we get
G () =~ — 108 (1AG]) +7 ~ Tog(4m) +O(s),
as claimed. Setting a := —1 and
bi=—log (|A@)]'/°) + 7 — log(4m),

the second of the asserted Laurent expansions follows from

1 1 s b, 3
= = —_- — — +O
Go® T4 00) a a T

= —s+ (1og (IAG)["/%) = 7 + log(4m)) - 5> + O(s?).

O

Now we turn to determine the Laurent expansions of the parabolic Eisenstein series ER2" (P, s) and
of the product ER¥(Q,2 — s) ER (P, s) at s = 0, where P,Q € H>.
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7. Kronecker limit formulas for hyperbolic Eisenstein series

Lemma 7.3.5. Let I' = PSLy(Z[i]). For P,Q € H3, at s = 0 we have the Laurent expansions

b9 _g =" L__ ™ | Cad)
522t (Ps) = 1+ (toglnog (P) () — 22 S0
~1og (IAG0)[M®) + 29— 1~ log(4) - 0@ L o),
Coei)(2)
par par _ 7T2 1 7T2
ERN(Q,2 = s) BRI (P, s) = @ s 1tu® log (119(:) (P) 10y (Q) (P) 7(Q)) + Cag
m N\ 11/6 _ C<I@(i)(2)
D <1og (1AG)1Y) +1 29 +log(4) + @ ) O

Proof. The first of the stated Laurent expansions, i.e.

2 1

7T2
T4 (2) s 4w (2)

log(0() (Q) r(Q)) + Z22 1 0 (s),

EP*(Q,2—s) = 5

is an immediate consequence of (7.27).

Next we derive the Laurent expansion of EP2*(P,s) at s = 0 with the aid of relation (7.28). Using
(A.9) and (A.13), at s = 0 we have

X 1 1
7% = 2 O;gr(;r) -5+ 0(s%),

F2-s)=1+(y—1)-s+0(s?),

which implies the Laurent expansion

o 4  4(y—1+1log(m
47 2F(2fs):ﬁ+ ( — ())~5+0(32).

Together with the Laurent expansion

o) (2 — ) = o) (2) = (o (2) - s + O(s?)

this yields

4 G (2) N 4 ((V — 1+ log(m)) Go@i)(2) - %(i)(?))
7-[-2

4202 = 8) (o (2 — ) = — s+ 0(s?).
Further, by Lemma 7.3.4 we have
1
= s (log <|A(i)|1/6) —’y+log(4ﬂ')) - 52+ 0(s%).
CQ(Z')(S)
All in all, at s = 0 we find Laurent expansions of the form
452 F(Q — S) C@(Z)(2 — S)
Saw ()
tCow@  A(Mog(IADIME) +1-27+10g(4) (@) + Gy @),
=—— 5 st s s+ 0(s”)
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7.3. Example 2: The case n = 3, I' = PSLy(Z][i])

and
e ) = SRS e
Q(4)
9 o Corn (2 ’ Con (2
14 (10g(77(@(i)(P) T(P)) _ %ﬂ() — log (|A(z)|1/6) +2y—-1- 10g(4) - 43822;) .8

+0(s?).

This proves the second Laurent expansion in the lemma.

Finally, combining the first two expansions, at s = 0 we get the Laurent expansion

ar ar _ 7T2 1 2
EXN(Q,2 —s) EXY (P, s) = 1w @ ST 100 @) log (nae) (P) now) (Q) r(P) r(Q)) + Cqq)
72 Chen(2)
™ og (IAG)V6) +1— 29 11 aG) o
6D <og (1AGI) +1 - 29+ 10g(4) + g@(i)@)) +0(s),

which finishes the proof.
O

With the aid of the last lemma we are now able to derive a Kronecker limit formula for the
hyperbolic Eisenstein series E%T Q) (P:8)-

Theorem 7.3.6. Let I' = PSLy(Z[i]). For P € H? the hyperbolic Eisenstein series E%}z QQ)(P, s)

admits a Laurent expansion at s = 0 of the form

31 3
hyp (P,s) = — (Q1,Q2) T

E(Qth) 8CQ(i)(2)
" l@1,@2) ™ Cag)
8 Com (2) ! ) (P i P dsps ——xxs) <
" <8CQ(1‘)(2) /L@l,%) 0g (o) (P) o) (@) r(P)7(Q)) dsis (Q) 5
Qe ™ (1 (a6 o G®\ ., o
86a(2) (Og (| W ) PR los) Co(2) s+ O(s%).

Proof. From Proposition 7.3.2 we know that for P € H3 the hyperbolic Eisenstein series Eég‘l) Q) (P, s)
admits a Laurent expansion at s = 0 of the form

27 T(s — 1)
hyp
E(Ql,Qz)(P’ s) = T (E)Q

2

ERr (P, s) / ER Q.2 — s) dss (Q)

Lq,,09)

Lo ™ Qi) T )
== : - : ©5+ O(S )a
201 (2)  4gw)(2)
EhYP

where we used (7.26). To derive the Laurent expansion of the hyperbolic Eisenstein series (01,Q2) (P, s)
at s = 0, we first compute the respective expansion of
27T(s —1)

r(3)”

R (P, s) / B (Q,2 — 5) dsus (Q).

(Q1,Q2)

Using the Laurent expansions

1 5 7 3 4
=06,
r(s" ¢ 4
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7. Kronecker limit formulas for hyperbolic Eisenstein series

at s = 0 we obtain the Laurent expansion

27l(s—1) 7 T 5 3
F(%)Q =—5 8758 + O(s?).

From Lemma 7.3.5 we can conclude that at s = 0 we have the Laurent expansion

BB (P,5) / ERN(Q.2 — s) dsg (Q)
Lqy.09)
2

l L | T
= Que) L2 / log (19 (P) moe) (Q) (P) 7(Q)) dsws (Q) + La1.0,) Cay
(Q1,Q2)

460w (2) s 4w (2)

(@100 ™ (1 (AMDIVEY 41— 20 4 1on(a) + 2O L
T <og(| ()[°) +1 2y+log) + 2955 | +0(s)

Hence, at s = 0 we have

s [ EE@2-9) dw(Q)
r (5) L@y.Q2)
1Q1.Q) ™ m / l(@1,2) ™ Cagi)
= . + log (no) (P) nowi(Q) r(P)r(Q)) dsys (Q) — —————=
8o (2) 50 ®@ i o (maei) (P) nei) (Q) r(P) 7(Q)) dsp=(Q) 5
lQ1,x) ™ N\ 11/6 %ﬂ(i)@) 2
— L8 = og (|AG)]YC) — 2y + log(4) + -5+ 0(s).
secy (o (1) W+ 205 (s%)
Adding up, at s = 0 we get the Laurent expansion
31 3
Ehyp P I (Q1,Q2)
@@ (%) 8Co(2)
7 l@1.@2) ™ Cog
smm [ om0 (P 1 (@r(P) (@) dis(Q) - AT
Q) L@1.02)
11 ™ L6 Sow @ 2
—=n) = og (JAG)|YC) +2(1 —~ 4 log(2)) + -5+ 0(s%).
8 Cai)(2) (‘ ) ) ( @) o (2)

O

Remark 7.3.7. Similar to Theorem 7.3.6, one could also derive a Kronecker limit formula for
hyperbolic Eisenstein series in H? for I' = PSLy(Ox ), where K is some other imaginary quadratic
field with ring of integers Ok and class number hx = 1.
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8. Kronecker limit formulas for elliptic
Eisenstein series

As we have done for the hyperbolic Eisenstein series, in this final chapter we study the behaviour of
the elliptic Eisenstein series Eeu(P7 s) in H™ at the point s = 0 in terms of its Laurent expansion. In
the first section we determine the first two terms in this Laurent expansion for arbitrary dimension
n and an arbitrary discrete and cofinite subgroup I' C PSLy(C),—1). Afterwards we consider two
examples of specific dimensions and groups. In the special case n = 2 and I' = PSLy(Z) the
Kronecker limit formula for the elliptic Eisenstein series was proven by von Pippich in [Pip10],
and we recall her results in the second section. Finally, in the third section we derive a Kronecker
limit formula for the elliptic Eisenstein series in the case n = 3 and I" = PSLq(Z]1]).

8.1. The Laurent expansion at s =0

In this section we use the meromorphic continuation of the elliptic Eisenstein series established
in section 6.3 to compute its Laurent expansion at s = 0. Since the form of this expansion again
depends on the dimension n of the hyperbolic space H”, precisely on n mod 4, we have to consider
the cases n =0 mod 2, n =3 mod 4 and n =1 mod 4 separately.

Let I' C PSLo(Cp—1) be a discrete and cofinite subgroup. Further, let @ € H" be a point with
elliptic scaling matrix og € PSLa(C,—1) and stabilizer subgroup I'g.

Notation 8.1.1. To keep the notation simple, in this section we again omit the index n and write
Egl(P, s) for the elliptic Eisenstein series Eell o(P, s) associated to the point @ € H", and Epar(P s)

for the parabolic Eisenstein series EP% (P s) associated to the cusp n, € Cr (k=1,. cr)

We first assume that the dimension is even, i.e. that n =0 mod 2.

Proposition 8.1.2. Let n = 0 mod 2. For P € H"™ with P # nQ for any n € T the elliptic
FEisenstein series Egl(P, s) admits a Laurent expansion at s =0 of the form

Eell( ) gpdr (P S)

ol 5) ZG 1 EZ_: ZQ:G (P
n m T n,Q,l,m
~ [Tolvol(T\H") |FQ| QT pg] 2o 20 T
n—1
o T (552) (y+1o 0) (Lsn 1 <
N (137) (v +log(4) Y (=) S Hy 0 (P)
2[Lq| vol(I"'\H™) Tol ~—=
37h -1 ot =0 27! 4
A=t (I -DIT (52410 1 )
+ + Hn, ,l,m(P) 8+O(S )7 (81)
l; 1(20 — 1)! [Tg| vol(T'\H") Co ;; @
where
310, 1 L] :
1 2 9s+2l 75 (§) 4 (71)l =l n—1
par — 21 r _ l /
96.1(F9) = 1r 2« U (s + 21) ; @ =1 (s= =5 +1+1)

Z EP™(Q,n—1—s—2I') B2 (P,s +2U'),
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8. Kronecker limit formulas for elliptic Eisenstein series

7 denotes the Euler-Mascheroni constant (see (A.6)), (9 (s) is the digamma function (see (A.8)),
and where the functions G, g.m(P) (m =1,2), Ghgum(P) (1=1,...,2 =1, m=1,2), H, g.m(P)
(m=1,2,3,4,5) and Hy,,0,1.m(P) (l =1,...,5-1,m=1,2, 3,4) are invariant under the action
of ', and are given by the formulas (8.8), (8.10), (8.11), (8.12), (8.13), (8.14), (8.15), (8.18),
(8.19), (8.20), (8.21), (8.22) and (8.23) in the proof, respectively.

Proof. For P € H" with P # nQ for any n € I and s € C with Re(s) >n—1—2(N+1) (N € Ny)
the elliptic Eisenstein series EC“(P, s) is given by the decomposition (6.30) in the proof of Theorem
6.3.2, i.e. as

N g 00 s
1 s 1 ),
EQ\(P. —_— § S 2 LKMP(P, 21) + Y —ELEMP(P, 21
o . Qs 20+ 5 T (P,Q,s+2),
=0 I=N+1
where the infinite sum is a holomorphic function in s. In particular, for Re(s) >n—1—2- 2 we

have

(SIS

o ) LKWP(P,Q, s+ 21) +|r |Z &) LEWP(P.Q, s+ 2), (8.2)
Rl 5o = !

where the infinite sum is holomorphic for s € C with Re(s) >n —1—-2-% = —1, and the point
s = 0 lies in this half-plane.

Moreover, for P,Q € H" and [ = 0,..., % —1 the function K™P(P,@Q, s+2l) admits a meromorphic
continuation in s to the whole complex plane by Theorem 6. 1 1 From the proof of this theorem
we deduce that for s € C with 251 —2(m+1) < Re(s)+2l < 251 —2m (m € Ny) the meromorphic
continuation is given by means of

- ar -1 .
Khyp(P,Q,S+21 ZQJQ S+2l T,ZJJ 471'2/ at,m.,Q S+2l)Ep ( , 5 )dt

7=0

25+2lﬂ.—";1 m (_l)l’ n—1
r( P —— l’)
T Tera ; T 7 °

ZEP‘“ (Qn—1—s—2(1+1))EP(P,s+2(l+1)),
(8.3)

where the coefficients a; o (s + 21) and ay,p, (s + 21) are given by

ajq(s +20) =

9sH2A—Lpfyt 542l — 2oLy p; s+20 — 2t iy
T 2 J K
T(s + 2) ( 2 )r( 2 ) %@

gs+2l-1 nzl F<s+2l—”T’1+it)F(s+2l—”T’1—it> par(Q
T(s +21) 2 2 ’

atﬂ)m@(s + 21) =

‘)7

respectively, while for s € C with 25 < Re(s) + 2I the meromorphic continuation is already given
by

) - ar n—1 A
K"WP(P.Q,s+2]) = ZaJQ (s +20) ¢ (P) +—Z/ atm,@(s +20) Ep (P,T—l—zt) dt.

3=0

As Y, becomes the empty sum for m < 0, formula (8.3) is indeed valid for s € C with
2l —2(m+1) < Re(s) + 2l < 25 — 2m for any m € Z.
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8.1. The Laurent expansion at s = 0

Especially, in the strip 251 —2 ([ 27| =1+ 1) < Re(s)+2l < 252 -2 (|22 | 1) (1€ {0,..., 2 —1})
the identity

- ar n—1 -
Khyp(P Q,5+2l ZQJQ S+2[)1/)]( +7Z/ atnkQ(S+21)E$k (P,T+Zt) dt

7=0

n—1 —1
2s+2 pigt =) (-1)¥ n—-1
*Tora > F(s+2l——2 +l)

ZEP‘“ n—1—s=2(+1))EP*(P,s+2(1+1))
(8.4)

holds true, where we can rewrite the sum over I’ as

LﬂT_lJ (_1)l'7l
Z WF( 7+l+l)zEpar ,n—1—3—21’)E$:Y(P,s+2l’).
U=l '

The assumption n = 0 mod 2 gives us L%J < "Tfl, which yields that for [ = 0,...,5 — 1 the
point s = 0 lies in the considered strip.

Thus, inserting (8.4) into (8.2), at s = 0 we obtain the identity

g
ar = (3) 1 =06
Eell( s) — gp |I‘ 227 K"™P(P,Q,s+21) + ﬁ ?,)lzaj,Q(5+2l)1//j(P)
Q 1= n Q =0 ’ j=0
L.
12 (% N n-t
L - 90) EPar (P, 't) dt,
(8.5)

and to derive the Laurent expansion at this point we work from formula (8.5).

We start by determining the Laurent expansion at s = 0 of the series

IS LR

By the proof of Theorem 6.3.2 this series is a holomorphic function for P € H" with P # nQ for
any n € I'and s € C with Re(s) >n—1-2-% = —1. For any [ > % the function KWP(P,Q,s+2l)
admits a Laurent expansion at s = 0 of the form

K™P(P,Q,s+2l) = K™P(P,Q,2l) 4+ O(s),

while the Pochhammer symbol (%) , has the Laurent expansion

sy (1—1) G- (21, .
(§>l =Ty ot mzzlﬁ 5+ 0(s) (86)
at s =0 (see (A.15)). Thus, at s = 0 we obtain the Laurent expansion
G Hy,.1(P)
hyp n,Q,1 . 2
|FQ| E T LEWP(P,Q, s+ 21) = o] s+ 0(s%), (8.7)
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8. Kronecker limit formulas for elliptic Eisenstein series

where

H, o1(P):= Z %Khyp(P,Q, 21). (8.8)

=n
172

Now we turn to the other summands on the right-hand side of (8.5), and first consider the case
[=0.

For j =0, ie. A\; =0, r; = —i 5% and 1;(P) = vol(['\H") /2, the function a;o(s);(P) in the
series

> ajqs) ¥ (P) (8.9)
j=0

arising from the discrete spectrum takes the form

w0001 = i (2) (5 )

At s = 0 we have the Laurent expansions

2871:7 2
5 5 s+ 0O(s%),
- 2 3

—F(S)—s—kv s+ 0(s”),

S 1
r()=2.- -
(2 s 7+ 0(s),
1

(A5 (557 45T () w0 () s ol

where v denotes the Euler-Mascheroni constant (see (A.6)), (%) (s) is the digamma function
(see (A.8)), and where we used 27 ¢ Np, (A.12) and (A.13). This implies that the function
ap,o(s) Yo(P) admits a Laurent expansion at s = 0 of the form

n—1

T w7 T (452) (7 +log(4) + 4 (452))
vol(T\H") 2vol(T\H")

a0,q(s) Yo(P) = 15+ 0(s7).

Now we consider j > 1, so that either 7; > 0 or r; € (—i25%,0] holds true. In the proof of

n—1 .
Proposition 7.1.2 we have shown that the function T’ (@)

if
n—1 ir; n—1
ST AL
4 2 6{ 4

e (o) [ ve {1 < ono)
while the functionl"(#lfm) has a pole at s = 0 if and only if
et )
— rje{fi(mf”;l) ‘NE{[nil—‘,...,gfl}}::Mg(n),

and that Mj(n) N Ma(n) = 0.

has a pole at s = 0 if and only
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8.1. The Laurent expansion at s = 0

If r; € Mq(n), then r; ¢ My(n), and, using (A.12) and (A.13), at s = 0 we have the Laurent
expansions

n—1_1irj

n—1 j n—1_irj T ) 1
— =7 + O(S)a

F(s—"T_;+irj)_2(—l)4_2 .1_’_(—1)14—2 Z

S (nmt )y s (nm1 o in)
1 2 ) 1 2 ) m=1
n

s— 1=l . i -1 1 i n—1 s n—1
F(Qij)zp(_i_ ) ,F<_7J_7> (0)<_7J_ ) 2y,
2 2 TR 2 )Y 2 ;) st oY)

ir

Hence, for j > 1 with r; € M;(n) the function a; o(s) v;(P) admits a Laurent expansion at s = 0
of the form

_ ()T e e ir; n-—1
el ==, (-5 =) w(P) 6@
4 2
(- / N = : 1
- ™ i n — s n —
| A = log (4 O - =21 _
* 2 (2 - ), ( 2 4 ) mz::l m Py los® Y ( 2 4 )

and the respective part of the series (8.9) arising from the discrete spectrum has a Laurent expan-
sion at s = 0 of the form

3 450(8) (P) = Guga(P) + Huga(P) - s + O(s%),
jEN:

r;€My(n)
where
(—1)"5 o ir; n-1 _
Croa(P)i= 3 = r(-5 - ) 6P %@, (8.10)
jEN: = — 3 )
rjejlil(n) 4 2

(-1)* T = "z ir; n-—1
Huqa(P)i= Y ATE Sy

r;€My(n
S ir:  n—1 —
S by tlog) +90 (= 2 - ) ()T @ (311)
m=1

If r; € Ma(n), then r; & M;(n), and, using (A.12) and (A.13) again, at s = 0 we have the Laurent
expansions

F(s—%—&-irj)

T () () e (Y o

2 4

ir; ir; n—1
. S*nT_lfiTj _2(_1)n21+TJ 1 (_1)n,21+ o T 73
2 ) N s 1

(nzl + %)[ S (nz + %)' oo

Thus, for j > 1 with r; € M>(n) the function a; ¢(s) ¥;(P) admits a Laurent expansion at s =0
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8. Kronecker limit formulas for elliptic Eisenstein series

of the form
(—1)* 5+ E 2 iy, n—1 —
a5(8) 4;(P) = ~—p—— (% = =) v(P) 5;(Q)
(n;+71)!
4 2
+(1)n41+i;j”n21r(mnl) %@1+ +1o (4)“#(0)(&77171)
2(ot ey 02 L TR 2 1

“(P)$(Q) - s+ O(s?),

which implies that the respective part of the series (8.9) arising from the discrete spectrum has a
Laurent expansion at s = 0 of the form

Y 4i(9)¥i(P) = Guga(P) + Huqa(P) - s+ 0(s%),

jEN:
rj€Ma(n)
where
(—1)n11+1;j ' ir n—1 —
Guqa(P)i= Y. (%) P(5 =) (P 9@, (8.12)
jeN: 5
TjGJJWg(n) 4 2
B (—1)* T+ 2 i n—1
HugalP)= 3 7= T(5 - )
JEN: 2 T =)
r;€Mz(n)
n471+”?.7‘ iwr; n—1 —
S r+log@ 0O (=) | 0P (@) (3.13)
m=1

If r; & Mi(n) U Msy(n), then (A.13) yields that at s = 0 we have the Laurent expansions

Llii?‘j) :F<iﬁ,”_1>+%F(iﬂf%)¢<0>(iﬁ7n_l)~s+O(sQ).

F(S_ 2
2 2 1 9 2 1

Thus, for j > 1 with r; & M;(n) U Ma(n) the function a; g(s)¢;(P) admits a Laurent expansion
at s = 0 of the form

0(s) (P = T (T Ly (LY ) o)

so the respective part of the series (8.9) arising from the discrete spectrum has a Laurent expansion
at s = 0 of the form

> aj.q(s) ¥ (P) = Hy qa(P)- s+ O(s?),
JEN:

rj €M1 (n)UMz(n)
where
n—1
T2 i, n—1 ir; n—1 —
Hia(P):= Y (5 - ") (-5 - ) e E@. (319
jEN:
r @M (UM (n)

Further, for any t € R at s = 0 we have the Laurent expansions

s— =L 4t it mn—1 1 it n—1 it n—1
P ) =r(tg - ) +5r (=5 - ") O (5 - ") s+ o),
2 2 1 )13 5~ 1 )Y 5~ 1 ) e TOE)
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8.1. The Laurent expansion at s = 0

where we made use of ”Tfl ¢ Ny and (A.13). Hence, for k =1,...,cr and any t € R the function
at .0 (8) in the integral

o n—1
/ at e, () EPY (P, —— zt) dt

arising from the continuous spectrum admits a Laurent expansion at s = 0 of the form

T it n—1 it n-—1 .
ae®) =5 T(5 - 7)0(- 5 - ) Br(e 5

n—1

T2 it n—1\2 n—1

=5 PG -l E(e g - ) a0l
5 ‘ 5 1 e @ it) s+ 0(s%)

We conclude that at s = 0 we have the Laurent expansion

')~s+0(82)

cr _ 1
Z/ @ Q(8) Bl” (P’ - 2 it) dt = Hy,q5(P) - s +0(s%)
of the continuous part, where
7T 2 — 1\ r n—1 . r n
H, o5(P):= Z/ )‘ EP? (P, 5 —Ht) EP? (Q7

Adding up and using ( ) /0! = 1, the summand for [ = 0 on the right-hand side of formula (8.5)
admits a Laurent expansion at s = 0 of the form

ar n—1 .
IFIZ%’ )P 4W|PQ|Z/ o as) B (P 7 it e

n—1
=z I (1 ")
~ TglvolEY * g \ZG @m(P

; ) dt. (8.15)

T T (15 (7 + log(4) + ¥ (154))
+ n.0.m s+ 0(s?). (8.16
( 2T vol(T\ ") |FQ|Z @ (). (816)
Now we consider the case [ >0, i.e. 1€ {1,...,2 —1}.

If j =0,1e. A\; =0, r; = —i 251 and 9;(P) = vol(I\H")~!/2, the function aj (s + 20) ¥;(P) in
the series

> aj0(s +20) v;(P) (8.17)

=0

arising from the discrete spectrum takes the form

d0.0(s 4+ 2) o (P) = Vdf;:;n;”(ﬁm (C4)r(imirt )

At s = 0 we have the Laurent expansions
2S+2l71 — 22l71 4 22[71 lOg(Q) .54 0(32)7

11 O 1 1
T(s+20) T(2) T2 5+ 0(%) = @ -1 (@ -1 (

P(2+1) =10+ ;T 0 2) _ RGN ASE 2
5 = STV (1) 5 +0(s%) = (1= D+~ Zm—v s+ 0(s?),

) () (e s () o
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8. Kronecker limit formulas for elliptic Eisenstein series

where we used 251 ¢ Ny and the formulas (A.9) and (A.13). This implies that the function
ap,q(s+20) Yo(P ) admits a Laurent expansion at s = 0 of the form

22012 (1 — 1)IT (52 +1)

ao,q (s +20) Yo(P) =

(2 — 1)l vol(T\H")
-1 — 1) -1 21 .
= (2z_j)'v21(r\( H") +0 (;;2;;”*10%(4)“”‘“)(12“))'5

+ O(s?).

Together with the Laurent expansion (8.6) of the Pochhammer symbol (%)l, at s = 0 we obtain
the Laurent expansion

(), 4

77 (1 - )IT (552 +1)

~2oL 20) o (P) = O(s?).
i w0a(s+2)%o(P) 1(20 — 1) vol(D\H") s+ 0(s")
Now we let j > 1 so that either r; > Oorr; € (fi 5 ,O] holds true. In the first case it is clear that
nl £ % ] ¢ Ny. In the latter case we have 271 £ %1 — ] € R with 271 — 0 ] € (1, 271 — ]
and"—l+m le [——l ——Z)
The elements of Ny contained in the interval (fl "—_1 — l] are 0,..., L”T_lJ — [. The interval
[”T_l -1, "T_l — l) contains the elements [”—11 —l,...,5=1-10fNgif [ < "T_l, and the elements
0,...,5 =1l —1of Ng if I > n—l showing that the elements of Ny contained in the interval

=125~ ) wre max ([25] = 10),. 8 1 - L

n—1 s
s+421— - +m) has a pole at s = 0 if and only if

Tt o P ) e e )
e i) [ve o 5]

n—1 i
s+2l*27*”1) has a pole at s = 0 if and only if

[n4—1

This implies that the function I" (

while the function I' (

”;1+%L46{mquiq_Lngg_l_@
= +?%€{wa([4 )51

5) |3 e {ima U )5 -1}

Further, if 2% — "J = N for some N € {l L” L]}, then 251 ¢ Z implies that

PEN rje{—z'(

1
n—1 irj
4 2 2
cannot be an element of No; and if 2% + WJ = N for some N € {max ([2:1],]),...,2 — 1},

then 5= L & 7 yields that
n—1 4r; n-—1
- — = - N ¢7Z
4 2 2 z
cannot be an element of Ny. This proves that for any j > 1 at most one of the two functions

s+2l— 27 tir; s+21— 271 —
r (=2 T .

i = {1 (5 ) [ v e e |27
= {1 "50) [ e {5 0) 51}

irj) has a pole at s = 0. Now we set
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8.1. The Laurent expansion at s = 0

and we have just shown that My (n,l) N Ma(n,l) = 0.

If r; € Mi(n,l), then r; € Ms(n,l), and at s = 0 we have the Laurent expansions

ir;

n—1 i

s+20— 251 4ir; 2(—1)"4_1*1;]71 1 (= [T T
4 4 2 - m=1
21 — Ll gy Ty -1
() = (- )
+1r(—iﬁ——”_1+z)w<0>(—ﬁ—”_1+z) s+ 0(s2)
2 2 4 2 4 '

Together with the Laurent expansion

9s+21-1 921—1 92l—1 -1 )

= - — log(2) | - 0)

Ts+2)  @—1)  @—1) ;m+”+0g() s+0(s)

this implies that for j > 1 with r; € Mi(n,[) the function a; (s + 21) ¢;(P) admits a Laurent
expansion at s = 0 of the form

i n—1

— 1
sl + 2P = s (m_i;j_z);F(? ) P@)-

921 (—1) Tl ir; n—1
+<211>'(”41“;l)!F(_?_ e
nol iy 21 _
1 1 ir; n—1 —
S ——2Y —yrlog@ + v (= S - T 1) | 45(P) Q)+ O(s),
m=1 m=1

and the respective part of the series (8.17) after multiplication by (%) ; /U! has a Laurent expansion
at s = 0 of the form

(), Yo ajels +20)95(P) = Gngui(P) + Hugui(P) - s+ O(s%),

I
JEN:
r; €My (n,l)

where

2A-1 ()2l r;  n— ——
GrauP)= Y 2 >|F(—J— L) (P T@. (818)

jen: 1(21,1)1(%—17%71. 2 4
T’jEMl(TL,l)
411 (—1) B et ir; n-—1
Hn,le,l(P) = Z ( ) — . F( — 7] — 1 + l) wj(P) ¢] (Q)
jen:  L(20—-1)! (HT_TJ—l)!
r;€Mi(n,l)
e ! 2—1

-1 )
1 1 1 ir; n—1
——22 — E — log(4 (0)(——]— l)
m m:1m+m:1m+7+0g()+w 2 4 +

m=1
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8. Kronecker limit formulas for elliptic Eisenstein series

In the case r; € Ma(n,l) we have r; € M;y(n,l) and at s = 0 we have the Laurent expansions

5420 — ;. n—1
r( )=y
2 2 4 *
1 n — i
ot (Tt (G- SO,
no1 , irj n—1_ irj nfl 43—
F(8+21—"51 LGS AN S ) B +Z =] 06,

Hence, for j > 1 with r; € Ms(n, 1) the function a; g(s+ 2{) ¢;(P) admits a Laurent expansion at
s = 0 of the form

(-t iy -1 1
(s +20)uy(P) = T TT T (T L)) (@)
(214)!(”——%714)! s
20—1 1 2 1 o -1
L2 (% n +l)

)T
21—1'(”4 ﬂ—z)! (5

nly g 20—1 ) 1

> oY bytlos) + 9@ (2 - 4) | (P 5@ +0Gs),
m=1

m

which implies that the respective part of the series (8.17) after multiplication by (%)l JU! has a
Laurent expansion at s = 0 of the form

(?!)l > Qs +20)¢(P) = Gugua(P) + Hugua(P) - s+ 0(s%),

jEN:
r;€Ma(n,l)
where
22-1(— 1)%1*%’17#771 ir; n—1 —
GnoiaP) = Y T - T ) (P 3@, (820)
s r@ - (et )
r; €Mz (n,l)
AT (L) ir; n-—1 —
Hypua(P)i= ) ) T F(# - -H) Vi (P)¥;(Q)
Sl (%JFTJ —z)!
r;€Ma(n,l)
g = r; n—1
> ——22 4 Z L+ log( )+w(°)(7]— I +l)
m=1
(8.21)
If r; & Mi(n,l) U Ma(n,l), then at s = 0 we have the Laurent expansions
s+20— 2L +ir; ir; n—1
M) =r(x % - )
1 ir; n-—1 ir; n—1
fF(i—in z) (O)(i—Jf l)~ 2,
t3 5 .t P 5 YR s+ 0(s%)

This yields that for j > 1 with r; & My(n,l) U Ma(n,!l) the function a; (s + 21) ¢;(P) admits a
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8.1. The Laurent expansion at s = 0

Laurent expansion at s = 0 of the form

22171 T3

aj,Q<s+2Z>wj<P>=(2l_Jr(";— ") (=TT ) u(P) Q)

+4117T_7121F<7:,r,jn41+l)r<irjn1+l>’l)[}j(P)7/)j(Q)

Q-1 \2 2 4

g | i n—1 ir n—1
= — (O B of_“5 _ "7 . 2
( 2321 + 2y +log(4) + ¢ ( 3 1 +l) + ( 5 1 —H)) s+ 0O(s%),

so the respective part of the series (8.17) after multiplication by (%)l /U! has a Laurent expansion
at s = 0 of the form

(i)l > aj@(s+20) ¢;(P) = Hy qu13(P) - s+ O(s?),
JEN:
’r‘ngl(’n,l)UJ\/lg(’rL,l)
where
Hn0u3(P) = 3 ‘;l_ljF(ﬂ—”_lﬂ)r(—"—j—” +z) 0 (P)85(Q).
@ —1) \2 4 2 4

jEN:
ri €My (n,l)UM3(n,l)

(8.22)
Moreover, for any t € R at s = 0 we have the Laurent expansions

s+20— 2l 4+t it n— 1 it n—1 it n—1
r( ) =r(x 5 - ) +al(25 -+ (+5 - )
2 2 1 S+ 2 2 T 2 ;i)

+0(s%),

where we used 21 ¢ Ny and (A.13) again. Hence, for k = 1,...,cr and any ¢ € R the function
At (s +20) in the integral

° par n—1 .
at (s +20) B (P, — 4+ zt) dt
. 2
arising from the continuous spectrum admits a Laurent expansion at s = 0 of the form
220-1n"t it m—1 2
e LT
20— 1)! ‘ 2 1 @ !

41 st it n 1

o PG -t )] E (et - )

20—1 . .
1 it n—1 it n—1
R - - o) (= _ o _ 2 _ . 2
<2m§_1m+27+10g(4)+w (2 1 +l)+7j} ( 3 1 +l>> s+ 0O(s7).

atJHmQ(S + 2l) =

We conclude that, after multiplication by (%)l /l!, at s = 0 we have the Laurent expansion

s cr
2 ) _ 1 .
2—' E / at (s + 20) B (R nT + Zt) dt = Hy.gu.4(P) -5+ O(s?),

A2 it L oo it n—1 2 n—1 . n—1 .
Hogua(P) = 5o Z/ r(§ - +0)| o (P A= it) Bp (@, = —it) .
T k=177

(8.23)
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8. Kronecker limit formulas for elliptic Eisenstein series

no_

Summing up, for [ =1,..., 5 — 1 we obtain a Laurent expansion at s = 0 of the form

1 (5), S 1 (%) =l n—1

— =27 ; 2 P) 4 — 21 2l) EP (P, ——

Fal 1 20l D)+ g , / el +20) B (P72 it d

2 I

1 4 (1—1)'r(

= Gn7 7l,m(P) + n lm ]
|FQ\mZ:1 © 12 -1)! |FQ|vol<\ |FQ|Z @
+0(s?). (8.24)

Putting (8.7), (8.16) and (8.24) together, for P € H", we finally obtain a Laurent expansion at
s = 0 of the form

E(P,s) — G (P.s)

n-1 _ 2 5—1
PRI () 1
Talvol TV + gl 2 Gram(P)+ 1 |lZmZ at
T (452) (v +log(d) + w0 (152))
+< 2 T vol(T\E") i Q\ ZH"Q”’
=1
4 > (1-1)I0 (452 )
+ m( - s+ 0O(s7),
; l(2l71).\I‘Q|vol(F\H" |rQ|lz;mZ1 s (s°)

where G, o, m(P) (m = 1,2), Gnoum(P)(1=1,...,2 -1, m=1,2), Hygm(P) (m=1,2,3,4,5)
and Hy, g1.m(P) (1= Ly —=1,m=1,2,3 4) are glven by (8.8), (8.10), (8.11), (8.12), (8.13),
(8.14), (8.15), (8.18), ( 9), (8.20), (8.21)7 (8.22) and (8.23), respectively.

We know that the eigenfunctions v;(P) (j € N), the parabolic Eisenstein series EP* (P, s) (k =
1,...,cr) and the hyperbolic kernel function K™P(P,(Q,s) are all T-invariant. Therefore, also
the functions Gy, gm(P) (m = 1,2), Gpoum(P) (I=1,....,%2 =1, m=1,2), Hy, gm(P) (m =
1,2,3,4,5) and Hy, g 1,m(P) (l =1,...,5-1,m=1,2, 3,4) are invariant under the action of T

O

Remark 8.1.3.

(a) In the cases n = 2 and n = 4 the Laurent expansion of the elliptic Eisenstein series in
Proposition 8.1.2 simplifies as follows:
Forn=2orn =4 thereisno N e Nwith1 <N < L"T_lJ,sotheset

o {1 (2o e {2

in the proof of Proposition 8.1.2 is empty. This implies that both Gy g1(P) = 0 and
H, 02(P) = 0 as the sums defining these functions are empty. Hence, the functions
Gn,01(P) and H, g2(P) in the Laurent expansion (8.1) do not appear for n = 2 and
n =4.

Moreover, if n = 2 or n = 4, then for [ = 1,...,5 — 1 there exists no N € N with
I<N<L L” 1J so that the set

n—1

Ml(n,l):{—i< 5 —2N)‘Ne{z,...{”;1”} (1:1,...72—1)

in the proof of Proposition 8.1.2 is also empty. Therefore, Gy, g ,1(P) =0 (l =1,...,5 — 1)
and H,, g11(P)=0 (l =1,...,5 — 1) because the sums defining these functions are empty,
and the functions G, g,1(P) (l =1,...,5— 1) and Hy, g.1,1(P) (l =1,...,5 — 1) in the
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8.1. The Laurent expansion at s = 0

Laurent expansion (8.1) do not appear for n = 2 and n = 4.
Further, for n = 2 there is no N € N with [231] < N < % — 1 which implies that the set

s = {1 (25" 1) [ {502 ))

in the proof of Proposition 8.1.2 is empty. Thus, we have G,, g 2(P) =0 and H,, g 3(P) =0
since the sums defining these functions are empty. We conclude that also the functions
Gn,g2(P) and Hy ¢ 3(P) in the Laurent expansion (8.1) do not appear for n = 2.
Additionally, in the case n = 2 the sum ZZ%; _11 is empty. Hence, the functions G, g,,2(P)
(l =1,...,5— 1) and H,, 0.1,m(P) (l =1...,5-1,m= 2,3,4) in the Laurent expansion
(8.1) do also not appear for n = 2.

(b) If n = 0 mod 2 and I > |23, the set Mi(n,l) in the proof of Proposition 8.1.2 is
empty, so we always have G, g 11(P) =0 (l = [ lJ +1,...,2 — 1) and H, g11(P) =0

(l = L"ZlJ +1,...,5 - 1) since the sums defining these functlons are empty.

Next we treat the case n =3 mod 4.

Proposition 8.1.4. Let n = 3 mod 4. For P € H"™ with P # nQ for any n € T the elliptic
FEisenstein series Egl(P, s) admits a Laurent expansion at s =0 of the form

Eell( ) gpar ( )

) (’?)!2|(r;7)vz<lr\ﬂn> 1 R ZF"’Q“P) &
" <"21)!(|;Z|);i11<r\Hn> mZ_ m B ) G|PQQ(|P)
! Z ] 21_13((1)”;1 l;ﬁr;ﬂol_(rlzw ra ;;GW“" )+ 0le), (8:25)
where
G (P s) == @;ﬁi - )QIZ R ( _n;1+z+z’)

ZEW Q.n—1—s—2I")EF"(Ps+2l),

and where the functions Fy, (P), Fn,q,(P) (l =1,..., %4), Gn,o(P) and Gy.q,1,m(P)
l=1,. Tl m= 1,2) are invariant under the action of ', and are given by the formulas
(8.29), (8.30), (8.33), (8.34) and (8.35) in the proof, respectively.

Proof. Similar to the proof of Proposition 8.1.2, for P € H"™ with P # nQ for any n € T" and
Re(s) > n—1—2(51 + 1) = —2 we have

l\)\m

E(Ps) = 3 §> K" (P,Q,s +20) + Khyp P.Q,s+20),

L
Tol &= I Lol 4

where the infinite sum is holomorphic in s and we used that 251 € N.
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8. Kronecker limit formulas for elliptic Eisenstein series

Furthermore, making use of L"TflJ = ”T*?’, for P,QQ € H", | = 07“.7%71 and s € C with
2l -2 (238 —141) <Re(s) + 21 < 251 — 2 (272 — 1) the identity

- ar n—1 .
K"™P(P,Q,s +21) = ZCLJQ (s+20) ¢ +—Z/ at Qs+ 20) B (P,TJrzt) dt
2422t I (—1)f n—1
r( LY z')
LS PET) lz::l @) p T

Z EP™(Q,n—1—s—2U')EP™(P,s +2l)

holds true, where the coefficients a; (s + 20) and a¢,,, o(s + 2l) are given by the formulas

2521 p5t 542l — 2l 4y s+20 — 2t —irj\
@582 = TR ( )T ) B(Q),

A R AT ) =y A\ S B
Qs +2) = = ( R )F( R )ES; (Q’ _”)’

respectively. Since ";1 -2 ("4_3 — l) =142l for ]l = 0,...,”7_1 the point s = 0 lies in the
considered strip.

Putting the above equalities together, at s = 0 we obtain the identity

EA(P,s) — GES(P,s) = FLZ (), hyr>(P,Q7s+2l)+L (E—RZZ%Q(H?Z)%(P)
sy S

1 ’2 S N ar n—1 .
Jr|I‘7Q\ | 47TZ/ atm,,@ (s +20) EP7 <P,T+Zt> dt.

(8.26)
To derive the Laurent expansion at s = 0 we work from formula (8.26).
As in the proof of Proposition 8.1.2, at s = 0 we obtain a Laurent expansion of the form
1 X (%)
T Z 2 LKMP(P,Q, s+ 21) = O(s). (8.27)

Now we consider the other summands on the right-hand side of (8.26), and start with the case
l=0.

Analogous to the proof of Proposition 8.1.2, for j = 0, ie. A\; =0, r; = —i% and ¥;(P) =
vol(T'\H")~%/2, the function a; o(s)¥;(P) in the series

> ajq(s)1;(P) (8.28)
j=0

arising from the discrete spectrum has the form

slpts s 5—mn
05 0(P) = e T (5) T ()
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8.1. The Laurent expansion at s = (

Using formula (A.12), at s = 0 we have the Laurent expansions

201 = % + 1°g2(2) -5+ 0(s?),
1 _ 2 3
F(S)_S—'_’y S +O(8 )7
F(% —=2.= —~y+0(s),
s—n+1y 2(-1)"z 0 (&1
r - 2 L
=)= s |\ S o

since "T_l € Ny holds true. Consequently, the function ag q(s) ¥o(P) admits a Laurent expansion

at s = 0 of the form

n—1
2

n—1

2(—m)"% 1 (—m)"
P D) ol(T\H") 5

1
(1) vol () m; — +log(4) | +0(s).

ao,Q(s) Po(P) = (

Now we let j > 1, so that we either have r; > 0 or r; € (fi "?71,0}. In the proof of Proposition

7.1.4 we have verified that the function I' (9_%%) has a pole at s = 0 if and only if

n—1 ir; n—3
S }
4 2 6{ 4

) ‘Ne{l,...,n;?)}}::Ml(n),

n—1 .
while the function I’ (@) has a pole at s = 0 if and only if

/N
— ’I“jE{—Z(

2

n—1 ir; {n+1 n—3}

L
1) ’Ne{"zl,...,”QS}}:;MQ(n),

ir;

s— =L tir 2(=1)" T FF 1 AR F CERNE I
M%) = : 1) » ';+( ) < 2. 5| 0w
n— 4 n— r;
(T:FT)! (T:FTJ)! m=1
This implies that for j > 1 with ; € M(n) the function a; g(s) 1;(P) admits a Laurent expansion
at s = 0 of the form

2(-m)"7 1
45.0(8) 3 (P) = +— (P 55(Q) -
(7 %) (7 %) ;
( ) n41 Igj nzl_i;j
—T 1 1 _
— — +log(4 (P, 0
+(L_l+ﬁ)' ) St X o | wiPTQ)+00)
1 2 ) m=
and the respective part of the series (8.28) arising from the discrete spectrum has a Laurent

expansion at s = 0 of the form

> 00 Ui(P) = Fug(P)- 5 +GaalP) +0(s)
rj:’is\lj(:n)
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8. Kronecker limit formulas for elliptic Eisenstein series

where
2(-m)*F
—r _
F, o(P) = : : (P)0;(Q), 8.29
A= 3 ey e P (5.29)
r;€M(n)
()25 e P
CGog(P)i= Y S Y ) | (@
. n—1l 4 5 ) (n=1 _ 7)) m
jEN: ( 1 + D) )( 1 2) m=1 m=1
r;€M(n)
(8.30)
If r; ¢ M(n) holds true, then (A.13) yields that at s = 0 we have the Laurent expansions
s——:l:zr] _ wj n—1 1 irj  n—1\ iy n—1 2
M) =r(+ 3 ) gt (a5 - )0 (2 5 - ) e o),

So for j > 1 with r; ¢ M (n) the function a; o (s)¢,;(P) admits a Laurent expansion at s = 0 of
the form

aj,Q(s)¢j(P):”?r(i;j_”41)r( W) (P Q) s+ O(s2)

Hence, the respective part of the series (8.28) arising from the discrete spectrum has a Laurent
expansion at s = 0 of the form

Z a;,q(s) ¥;(P) = O(s).
Tjgﬁ\?(:n)

Further, since “! ¢ Ny holds true again, as in the proof of Proposition 8.1.2 we find the Laurent

eXpanswn
cr 1
Z/ Q¢ M, Q Epar (P, T + ’Lt) dt = O(S)

of the continuous part at s = 0.

Adding up and making use of (%)0 /0! = 1, we obtain that the summand for [ = 0 on the right-hand
side of formula (8.26) admits a Laurent expansion at s = 0 of the form

 — -1

N . . par -

|PQ‘ ;:0 a]yQ(S) w]( 47T|FQ| § :/ at,n,,Q ET]k (P D) +Zt) dt
2(—m) "5 E,o(P)) 1

(( (—m) . Fugl >>_

254)!H T | vol(T'\H") Tql s
n—1
(=m)*7 ~ 1 Gno(P)
+ = — +log(4) | + —=——= +O(s). (8.31)
(25)! [P vol(T'\H™) mzz:l m Tol
Now we turn to the case [ > 0, i.e. [ € {1, ceey "T_l}

For j =0,ie. A\j =0,7; = =& "T_l and ¢;(P) = Vol(F\H”)’l/z, the function a; g (s + 21) ;(P)
in the series

> ajo(s +20) 1;(P) (8.32)

Jj=0
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8.1. The Laurent expansion at s = 0

arising from the discrete spectrum has the form

2s+2l—1 T3

ao,q(s +20) Yo(P) =

Vol(T\H") (s + 21) r(;+) F(# +1).

At s = 0 we have the Laurent expansions

2S+2l 1 22l 1 22171 10g(2) . S+O( 2)’

1 B 1 20—1 O ,
L(s+20) (2—1) 21—1)| Z*—W s+ 0(s7),

r(%u) (1—1)! (l ;—>~s+0(82),
=1

n—1 n—1 n=1_y
s—n+1 2(=1)"= ! I i 1

e i
A =Tl PO

where we used 251 € Ny and [ < 5%, as well as the identities (A.9), (A.12) and (A.13). It follows
that the function ag,q(s + 21) 1o(P) admits a Laurent expansion at s = 0 of the form

e N S U VI
a0.Q(s + 20 %o(P) = /=3 T~ oY)

21 ()t () [ 21
* (20— )1 (252 — 1) vol(T'\H") Z m Z -+ Z — +1og + O(s).

Together with the Laurent expansion of the Pochhammer symbol (%)l, at s = 0 we obtain the
Laurent expansion
(),

TGO (3"‘21)1/}0(13) =

P () L 1)
(@ = 01 (52 = ivalrn O

Now let j > 1 so that we either have r; > 0 or r; € ( i "Tl 0} In the first case 22 L4 "’ —1¢ Ny

holds, while in the latter case 23t + "J -1 € R with 21 — @ l e (—Z,T —1] and
Bl [l g g ).

The interval ( == — l] contains the elements O, ..., % — [ of Np. The elements of Ny con-

tained in the 1nterval [— -1, ——Z) are "TH —1,...,n=3 _ifl < —, and O o 23 —1

if I > ”T_l proving that the elements of Ny contained in the interval [" 41 , l) are

max("TH —Z,O),...,"?_B—l.

This shows that the function I" (%) has a pole at s = 0 if and only if

n—1 ir; n—3 n—1 ir; n—3
% _gedo,. —l} — _ {l }
4 2 6{ 4 4 2 < 4

= rje{—i( n_g}}::Ml(n,l)7

n—1

—2N) ’Ne{l,...,

n—1_ .
while the function T" (5+2[+

WJ) has a pole at s = 0 if and only if
—1  ir 1 _
n +ﬁ716{max(%fl,o),...,”234}

4 2
o ()5
<:>7°j€{—i( 1)‘Ne{max(nT—H,l>7...,nT_3}}::Mg(n,l).
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8. Kronecker limit formulas for elliptic Eisenstein series

23 then Mi(n,l) = 0 and trivially Mi(n,l) C Ms(n,l). Moreover if | < 272 and
nol 20 = N for some N € {I,..., 273}, then max (2, 1) = 2H and 25! € Z gives us
n—1 ir; n-—1 n—1 n+1l n—-1
%= -N ez ad “_S-nNe| ~1|,
1 2 2 €& 2 Sl
so also 27t 4 e {nHl o nol 4 C fmax (24L,1),..., %53 ). Therefore, we have proven

that in any case Mi(n,l) C Ma(n,!l) holds true.

Similar to the proof of Proposition 8.1.2, we see that for j > 1 with r; € Ma(n,l) \ Mi(n,l) we
obtain a Laurent expansion of the function a; (s + 21) ¢,;(P) at s = 0 of the form

41" THE e iy n—1 1
, D (P) = 2 L D) (P (0) - =
a‘LQ(SJrQ )wj( ) (21_ 1)! ("21 4 “; —l)! F( 2 4 + )wj( )%(Q) s
2201 (—1)" T+ Felat i on—1
+ ,F<7J_TH)

(20— ! (251 + 5 - 1)1

i 21 .
1 i n

> o0 by rlos) + o (2 - 4) | (P T5@ +0Gs),
= m=1

implying that the respective part of the series (8.32) after multiplication by (%) . /l! has a Laurent
expansion at s = 0 of the form

—~
(1Y

‘“)z > aj,q(s +20) ¥;(P) = Gnqu1(P) + O(s),

jEN:
r;€Ma(n,l)\Mi(n,l)

where
920-1 (1) 5+l i, n—1 —
Gnqua(P) = > (=) r(# -+ l) Ui (P) ¥;(Q).
et L= 1) (2 )
TJEMz(n D\ M (n,l)
(8.33)
In the case r; € Mi(n,l) C Ma(n,l) we have the Laurent expansions
l 1 ( )n—l ir ! ( )71—1 ir; . n4—1_i;j 1
5420 — 254 4ar 2(-1)" T = 1 —1)T =
F( 2 J) _ Lz — - O(s),
2 (L—l_ﬁ_l)l 5+(L—1 iy l)l Z 7]+ O0)
1 2 : 1 2 m=1
sl _jpy g(o1)iEHESL 1 (CptReEa (T
( 2 ) = ~+ S Sy | +ow
? (Feg-gr s (seg-g| s

at s = 0. This implies that for j > 1 with r; € M;(n,!) the function a; (s + 2I) ¥;(P) admits a
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8.1. The Laurent expansion at s = 0

Laurent expansion at s = 0 of the form

— 1
; +2[ (P) = . - (P . Q R
ajq(s )i (P) (21_1)!<nT_1+£2j_l)! nzl_zgj l)!wj( ) ¥;(Q) $2
4 (—m)" T

+ : ¥;(P) (@)

- (et ) (et -

el iy no1_ iy . 21
Z E—i_ Z E—sz—&-log(zl)

and the respective part of the series (8.32) after multiplication by (%)l /I! admits a Laurent ex-

pansion at s = 0 of the form

(?!)l Z a;j, (s +20) ¥;(P) = Fnqu(P) - % + Gn1,2(P)+ 0(s),

jEN:
r;€My(n,l)
where
4l (=) —
FroiP)= Y T (P T Q.
So1@-1) ("j 4 z)! ("4—1 _in 1)!
r; €My (n,l)
921-1 (=) .
Gnia(P)i= > R S $;(P);(Q)
o (”T + i fz)! (n4 _ i fz)'
r; €My (n,l)
i i 21-1

m=1 m=1

1 1 2 1 1 1*11
3 — 3 E—Z;%—i—;%—i—log(@ . (8.35)

As in the case r; & M (n,l)UMs(n,!) in the proof of Proposition 8.1.2, for j > 1 with r; & Ma(n, 1)

the function a; (s + 21) ¢;(P) has a Laurent expansion at s = 0 of the form

20—-1 5t i — 12 — _
aja(s + 20wy (P) = 2o (W ) o= ) (P (@)

(20 —1)! 2 4 2 4

g1 i on—1 ir;s n—1 _
e TG - )T (- e ) w ) E@

2 4 2 4

21—1 . .
1 ir, n-—1 wr;, n—1
= - o(x2s 2~ o _ "3 _ . 2
( 23,1 + 2y +log(4) + ¢ ( +l)+z/1 ( +l)> s+ O(s%),

so the respective part of the series (8.32) after multiplication by (%)l /I! has a Laurent expansion

at s = 0 of the form ( )
% Z aj,q(s+20)v;(P) = O(s).
’ JEN:
ri & Ma(n,l)

Moreover, because of ”T_l ¢ Ny we immediately obtain, analogous to the proof of Proposition

8.1.2, that at s = 0 we have the Laurent expansion

S

() 1 e(p =1,
7! E ; - at,nk,Q(s + QZ) E'r]k (P7 T + Zt) dt = O(S)
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8. Kronecker limit formulas for elliptic Eisenstein series

Summing up, for [ =1,..., ”Tfl we get a Laurent expansion at s = 0 of the form

1 Gy 1%1CF f(pn—1
o Z!lZaJyQ(S—i-Ql)wj(P) Tl 1 4—2/ g, (s + 21) EP? (P’T“t) gt

Foo.(P) 1 22-1 (—1)" ~lr"e (1 —1)!
P R Gn 'm O
s 120 — 1) (25 — 1)1 T vol(I\H") |FQ| Z Qm(P)+0(s).

(8.36)

Putting (8.27), (8.31) and (8.36) together, for P € H™ we finally obtain a Laurent expansion at
s = 0 of the form

B (P,s) - G5 (P.s)

n—1

2(_77) 2 FnQ Z 1
n— n l PR
(%55)! [P vol(T\H") \FQ| |FQ\ @ s
n—1
(-m)* % =1 Gno(P)
+ s — +log(4) | + —=—=
(257)!IPq| vol(T\H") \ 4= m Tol

|
—

20 () e (- )]
G, .t.m 0
L(20— 1) (22 — 1)1 Tg| vol(D\H") |rQ| Z Z QLm(P)+0(s),

=1 m=1

(P) (I=1,..., 21), Gn,Q(P) and Gn.gum(P) (I1=1,...,2%51,m=1,2)
.30), (8.33) ( 4) and (8.35), respectively.

+

N ‘
I Mm
I

where FmQ(P), Fn Q.1
are given by (8.29), (8
Since the eigenfunctions ¢;(P) (j € N) are invariant under the action of I', the same is true for the
functions F,, o(P), Fy,q,i1(P) (l =1,..., "771), Gn,o(P)and G, Q.1,m(P) (l =1,..., %47 m=1, 2).

O
Remark 8.1.5.

(a) In the case n = 3 the Laurent expansion of the elliptic Eisenstein series in Proposition 8.1.4
simplifies considerably:

Since for n = 3 there is no N € N with 1 < N < 222 and no N € N with ”+1 <N <252
the set

n—1 n—3
M :{—'( —2N>‘N {1 }}
(n) i\ € 1
n—1 n+1 n—3
(o A LES R Y
{~i( )[vels 2
in the proof of Proposition 8.1.4 is empty. Thus, we have F,, o(P) = 0 and G, o(P) =0

as the sums defining these functions are empty. This shows that the functions F,, o(P) and
Gr,o(P) in the Laurent expansion (8 25) do not appear for n = 3.

Moreover, forn =3 andl =1,..., %5 L there exists no N € N with max( T l) <N <252
which implies that also the set
1 1 -3
Mg(ﬂ,l)z{—i( )‘Ne{max(i,l),...7n }}
4 2

in the proof of Proposition 8.1.4 is empty. Hence, we get Fj, 0 (P) =0 (I =1,...,%5%) and
Gn.oum(P)=0(l=1,...,%5, m = 1,2) since the sums defining these functlons are empty,
and the functions Fj, g (P) (I=1,...,%5) and Gnoum(P) (I=1,...,%5%, m=1,2) in

the Laurent expansion (8.25) do also not appear for n = 3.
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8.1. The Laurent expansion at s = 0

(b) If n =3 mod 4 and | > 273, the set

n—1

—2N) ‘Ne{l7...,n;3}}

in the proof of Proposition 8.1.4 is empty. We can conclude that we always have F), ¢ ;(P) =0
(l = ”Il, ceey "T_l) and Gp,g2(P) =0 (l = ”T'H, ey "T_l) since the sums defining these
functions are empty.

Ml(n,l):{—i(

It remains to consider the case n =1 mod 4.

Proposition 8.1.6. Let n = 1 mod 4. For P € H" with P # nQ for any n € T the elliptic
FEisenstein series Ee“(P, s) admits a Laurent expansion at s =0 of the form

EZ(P.s) = G55 (P.s)

n_1 EN

= — + : —|— Fn, 1 P .
(25! Tolvol(T\H") ~ [Tol  [Tq ; Qu(P) |-~
(—71')"51 a 1 5
Rl — +log(4) | + Gr.om(P
(1)1 [ vol(TVE) | 2= 15 | [ |mZ:1 Q.m(P)
& P (C)E T g ) |3
+ Py + GTL7Q7l,m(P)
; 120 = 1) (252 — ) [Dg|vol(D\H") = [Tq| 1=Z1 mZ:1
. =
A n P , .
+ gl 2, Gnaia(P)+06) @3)
1 nIS
where
1 nT_12s+2l (é) n l—l N
par P 5 - . /
Gaallio)i= |FQ\Z I'T (s + 21) Z W —l) (8 5 +l+l)

U=l

Z EP™(Q,n—1—s—2I') EP*(P,s +21),

C)

and where the functions F,.o(P), Frnoi(P) (
(l=1,..., 4, m=1,2,3) and Gpn,04(P) (
T, and are given by the formulas (8.43), (8.44
the proof, respectively.

"),

| = n+3 ;1
). (8.45), (8.47),

n,om(P) (m=1,2), Gpoim(P)
are invariant under the action of
8.48), (8.49), (8.50) and (8.52) in

—~—

Proof. As in the proof of Proposition 8.1.4, for P € H" with P # nQ for any n € I and Re(s) >
n—1-2(%2+1) = —2 we have

l\D\rn

1 ozt § 1 >
E(P T Z 2 LKMWP(P,Q, s + 21) F— Z Khyp P,Q,s+2l), (8.38)
1=0 ' 1=nf1

where the infinite sum is holomorphic in s and we made use of ”;1 € N again.

Moreover, in the proof of Theorem 6.1.1 we have seen that for P,QQ € H", [ =0,..., an and s € C
with Re(s) + 21 = %2 — 2m (m € Ny) the function K™P(P,Q, s + 2l) admits the meromorphic
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8. Kronecker limit formulas for elliptic Eisenstein series

continuation

K"P(P,Q,s+21) = ajq(s+20) ¢ (P)

j=0
25“1*1 & s+2—n+1+wy /s+2—w
LT F( )F( )EP“ n—1—w) EP*(P,w) d
=1 Y,
2s+2l T m—1 (_1)[’ n—1
P(s+20- "= +7)
T(s+2) &~ 1\’ + 2t
Z EP™(Qun—1—s—2(141)EF*(Ps+2(1+1))
25+2171 ﬂ_"gl (_1)m n—1
(5420 "= 4m)
L VP R R G p T
cr
DY ER(Qun =1 — s = 2(1+m)) EX(P,s + 2(1 + m)).
k=1
Here W, . denotes the following piecewise linear path: the vertical line from %1 — 100 to % — 1y,
the horizontal line segment from = T —iy to %=L +e—iy, the vertical line segment from 251 +¢—iy
to 5= + € + 1y, the horizontal line segment from "— +e+ iy to ”— + iy, and the vertical line
from 2l 4y to 251 + ico, where € € (0,1) is chosen sufficiently smail such that all parabolic
Eisenstein series B (P, s) (k =1,...,cr) have no poles in the strip 251 —2¢ < Re(s) < 5% +2¢,

and y is chosen sufficiently large such that y > |Im(s)|. Further, the coefﬁment a;o(s+21) is given
by

25+2l_17rnT_1 8—|—21— L_l-f—’”’ S+21— n—1 N
as+20) = (—F— ) ——F—)u@
a‘]aQ(S—i_ ) F(8+21) 2 2 ,(/J](Q)
Through the substitution w = % + 1t in the integral the above meromorphic continuation on the
line Re(s) + 2l = 2= — 2m (m € Ny) becomes

cr _1
K™P(P,Q,s +21) = }:%@ +20) 9 (P +“*§:/‘ %QW(+QDE$%RQE*+“)ﬁ
7=0

gs+2l 15t m—1 (— )l/
I'(s+2i) "
cr

STERQun 1 - s — 20+ 1) ER¥(P,s + 21+ 1))
k=1

gM

l/ F(s+2l—nT_1+l’)

2s+2l—1 71'";1

(_m

1)
(s +20) m!

n—1
+ I‘(s+2l—T+m>

ZEPM Q.n—1—s5—2(1+m)) EX™(P,s+2(l+m)),

where W;’E denotes the following piecewise linear path: the horizontal line from —oco to —y, the
vertical line segment from —y to —y — ie, the horizontal line segment from —y — ic to y — ie,
the vertical line segment from y — ic to y, and the horizontal line from y to co, and where the
coefficient a; gy, (s + 21) is given by

gstA-lptgt 542l — n=l gy s+20— 251 —it ar(ny M1
Qs +2) = == r( 2 )r( 2 ) B (@ 2 ~it).
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8.1. The Laurent expansion at s = 0

The assumption n = 1 mod 4 implies that an € N, so particularly on the line Re(s) + 2 =

nol —2 (2t —1) =20 (1€{0,..., 23 }) the identity

- ar n—1 .
K"WP(P,Q,s+2]) = Zan 54 20) (P +—Z/ at,Q.m, (s +20) B (P,?+zt) dt

7=0

23+2l7r"771 I (_1>l

n—1
PR P R )

: ZEP“ Qn—1—s=2(1+1)EX(Ps+2(1+1))

n—1 —1

(—1)1 iz)! P(s+l— L‘1>

2s+2l—1 T3 1

T(s+20) (22 4
- —1 . -1
: ;E};’jf (@ 5= —s) (P2 = +5) (8.39)

holds true, and the sum over I’ in (8.39) can be rewritten as

01

n—

1 l’fl _
Z (s—n HH)Z:E]par Q,n—1—s=2I") Ep¥(P,s +2U').
On the line Re(s) +21 = 251 =2 (272 —1) =21 (1€ {"}%,..., "5 }) we have Re(s) + 20 > 51,

so the meromorphic continuation is already given by means of

cr
h, ar n—1 .
K™P(P,Q,s+2l) = JEOaJQ s+ 20) (P +—§ / atm,@(s +20) Ep (P,T+zt> dt.

(8.40)
Inserting (8.39) and (8.40) into (8.38), at s = 0 we obtain

n—

BE(P,s) — OB (P, f%z Gl gerww(p, s 1 a1y 1+ ! 5—2 (s +20) ;(P)

el =

1 n% %l 1 ar n—1 .
+|I‘Z[4k/ at%QS‘FQl)EE,k (P;T—Flt) dt

-
Il
=)

S Z G 1y /Ooa (s+21)EPa‘”(PL_1+it)dt
Tq I dr b @ T2

k=1Y7"°°

~
b
H
w

n-1_,

n—1 n—
PSR Ce Ly
Tol & IT(s+2]) ("T‘l—l)! 4

' g:lEE?r (Q, 2 ) Bhe (P, noly s) (8.41)

2
and to derive the Laurent expansion at s = 0 we work from formula (8.41).

As in the proofs of Proposition 8.1.2 and Proposition 8.1.4, at s = 0 we have the Laurent expansion

1°°S

— Z lKhyp P,Q,s+2l) = O(s). (8.42)

199



8. Kronecker limit formulas for elliptic Eisenstein series

We start the treatment of the other summands on the right-hand side of (8.41) with the case [ = 0.

As in the proof of Proposition 8.1.4, for j = 0,i.e. A\; =0,7; = — "T_l and ¢;(P) = vol(T'\H"™)~1/2,
the function

e T3 ()

admits a Laurent expansion at s = 0 of the form

a0,q(s) Po(P) =

n—1
n—1 n—1 5

2(—m) = 1 (—m)"2 1

ao,q(s) ho(P) = (

since "T_l € Ny holds true.

Now we let j > 1, so either 7; > 0 or r; € (—i 25%,0] holds true. In the proof of Proposition 7.1.6

n—1 .
— g tiry

we have seen that the function I' (S S ) has a pole at s = 0 if and only if

n—1 r; n—1 /mn—1 n—1
Sl e (S an) [N e L S ),
1 5 E{ 1 ;€ i 5 S 1 1(n)

while the function I’ (@) has a pole at s = 0 if and only if

n—1+&€{n—1 n—3}
4 2 4 777772
-1 -1 —
<:>rje{—i 2N—n2 )‘Ne{n4 ,...,n23}}::M2(n)7

and that M;(n) = Ms(n)

I
=
<

Completely analogous to the proof of Proposition 8.1.4, at s = 0 we find the Laurent expansion

> (s Us(P) = Fug(P) - = + G (P) + O(s),

jEN:
ri€M(n)
where
2(—m)" —
Fua(P)i= o u(P) (@) (8.4
n—1 i)y n=1 LAY
jEN: (4 +T)'(T_7)'
r;€M(n)
oy syl et B
Gnqa(P) = Z n—1 , irj |y (=1 _ irj )y m Z E_HOg(él) Vi(P)¥5(Q),
jEN: (T+ D) )( 1 _7) m=1 m=1

r;€M(n)
(8.44)

as well as the Laurent expansion

> Q) 4;(P) = O(s).
Tjéi?(:")

Analogous to the proof of Proposition 7.1.6, the assumptions 271 € Ny and ¢ € (0,1) imply that

1
"T_l it ¢ Ny for any t € W, _. Together with (A.13) this yields that for any t € W, _at s =0

€
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8.1. The Laurent expansion at s = 0

we have the Laurent expansions

1 log(2
2571 = 3 + og2( ) -5+ 0(s?),
I 2 3
F(S)_S+’Y S +O(S )a
n-l 4t it n-—1 1 it n—1 it n-—1
M) =r(2g - ") +3(25 - ") v (£5 - 7) s+ 06,
2 2~ 4 )73 2 1 )V 3”1 ) stol)
Thus, for k = 1,...,cr and any t € W, _ the function a¢,, o(s) admits a Laurent expansion at

s = 0 of the form

T it n—1 it m—1\ ./ n—1
atvnk,Q(S) = 2 F(§ - 4 )F( - 5 - 4 ) ETI;; <Q7 2 - Zt) + S + 0(82)'

This shows that at s = 0 we have the Laurent expansion

S ar 1
47r2/, atne.Q(s) EpY (P,TJrzt) dt = O(s).

Moreover, the fact that "Zl € Ny implies that at s = 0 we have the Laurent expansion

n—1

n—1 (-H) = 1 (=)= 1
F(S— ): — e e — —7 | +0(s).
) e (2
As the parabolic Eisenstein series £P* (P, w) (k = 1,...,cr) have no poles on the line Re(w) = el
for k =1,...,cr we find the Laurent expansions
n—1 . n—1
B (P = 4s) = B (P2 =) + 0(s),
r n ar n—1
B (@ 1= —s) = By (Q. =) +0(s)
at s = 0. Together this gives us a Laurent expansion at s = 0 of the form
251 pts (—1)" T n—1y < n—1
D ) 0 S i (2 ) G0t
ORNCS Z s °

where

Gn,@2(P) == (=) QZ p( 1) p"“(Q, 1). (8.45)

Adding up and taking into account that ( ) /0! = 1, the summand for [ = 0 on the right-hand
side of formula (8.41) admits a Laurent expansion at s = 0 of the form

ar n—1 .
\FIZJQ J¥i(P 4wrQ|Z/ aunQ(3) By (P’ 2 Ht)dt

— n—1

9s—1 25t (-1)= n—1 par -1 par n—1
T TRlTG) () ( )ZE ( ) —S)Enk (P,TH)
_ 2(—m)*F PP 1
(%) gl vol(M\H") © [Tol | s
(-m)*= = 1o
i (%)!|FQ|V01(F\H”) mZ:1 m +log(4 |F ‘ Z Gn.@m(P) + O(s). (8.46)
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8. Kronecker limit formulas for elliptic Eisenstein series

Next we turn to the case [ € {17 ceey ”771}

If j =0, ie A; =0, r; = —i22 and ¢;(P) = vol(I'\H")~/2, analogous to the proof of
Proposition 8.1.4, the function

( (), gt somt1
~2 a0q(s +20) Yo (P) = ?!lvol(I‘\Hn) (s +20) ()5 +)

[

~

admits a Laurent expansion at s = 0 of the form

)

= a0,Q(s +20) Yo(P) =

n

221 (—1) ?* ERU))
L(20— 1) (252 — 1) vol(T\H")

[\l (v

+ O(s).

~

Now we let j > 1, so that either r; > 0 or rj € (—i25%,0] holds true. In the first case clearly
nol 4 % ] ¢ Np, and in the latter case “31 £ 2 — | € R with 27 — 20 — [ € (=1, 27% ]

and"—1+”7 le [——l ——Z)
The elements of Ny contained in the interval (fl, ”Tfl - l} are 0,..., "T’l — [, and the interval
[”T’l —1, %’1 — l) contains the elements ”T’l —1,..., %’3 — 1 of Ny.

n—1 fon
Analogous to the proofs of the previous propositions, this implies that the function I' (M)

has a pole at s = 0 if and only if

n—1 ir; n—1 n—1 ir; n—1
ENGE { —z}<:> " {z , }
4 2 AL 4 4 2 < 4

n—1

—2N) ‘Ne{l,..., - }} = Mi(n, 1),

irj) has a pole at s = 0 if and only if

n—1

— re{-if

s+20— "t —
2

n—1+ﬁ_ E{n_l—l n—3_l}<:>n +ﬂ {n—l n—3}
4 2 4 9 4 2 4 772

while the function I' (

1 -1 -3
— rje{—z'(Q )’Ne{n4 ,...,n2 }}:IMQ(TL,Z).
Moreover, if an - % = N for some N € {l,...,%}, then an € Z gives us
n—1 4r; n-—1 n—1 n—1n-1
— = —N €Z d ——N { , -1,
1 T2 T2 8 ad S R
so also "T_l +i;—j € {"T_l,...,”T_lfl} - {"T_:L,...,”T_?’}. Therefore, we have proven that

Ml(’fL, l) Q Mg(n, l)

Exactly as in the proof of Proposition 8.1.4, at s = 0 we obtain the Laurent expansion

(il)l Z a;o(s+20);(P) = Gpn,01,1(P) + O(s),
) JEN:
T3 €Mz (n,)\ M1 (n,1)

where

2L ()l i n—1 _
Cron(P)= % CUT 2 T p(T ) ey @)
= z<2171)!(n74+7171)!
TJGMQ(TL D\ M1 (n,l)
(8.47)
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8.1. The Laurent expansion at s = 0

the Laurent expansion

G " aq(s +20)¢(P) = Fogu(P)- % + Gn@u2(P) + O(s),

!
JEN:
r; €My (n,l)
where
4! —W)% -
Fogu(P):= > - ( — ¥ (P)9;(Q), (8.48)
s 1 () (2 - )
r; €My (n,l)
22-1 (_7) 7t _
Gnia(P)i= Y ERT - $;(P);(Q)
= 1(21f1)!(”7+7uz)!(%77u1)1
r; €My (n,l)
2ol 1 nol iy 1 -1, =l
— — =2 — — +log(4) |, (8.49
Zowt o E w im0

and the Laurent expansion
% > ajqs+20)¢;(P) = 0(s).
) jeN:
i EMa(n,l)

Moreover, from ”T_l,l € Ny and ¢ € (0,1) we can conclude that ”T_l — 1+ § & Ny, yielding that
% — 1l +it ¢ Ny for any t € W;’E. Consequently, for any ¢t € W/ _ at s = 0 we have the Laurent

Y,e
expansions

gsH2l=1 — 921=1 4 92=1 196(2) - 5 4+ O(s?),

1 1 1 20—-1 1
T(s+20) (2-1)! (2—1) (; m 7) 15+ 0(s%),

=1
s—|—21—"T71:tit it n—1
F( 2 )‘F(ii_ 4 H)

O R LA SR

This implies that for k = 1,...,cr and any ¢ € W, _ the function at,, (s + 2/) admits a Laurent
expansion at s = 0 of the form

atm,Q(s +21) = MF(Z; - n;1 +Z)F(—%t— n;1 +l) Ep“(Q,nT_l—it> + O(s).

Together with the Laurent expansion

-1
(2) - (1;1)! o (1,41)1 (Z nz) 24 0(s")

at s = 0 of the Pochhammer symbol (%) , this shows that after multiplication by (%)l /llat s=0
we have the Laurent expansion

(3),

1 &E n—1 .
T E Z /W at,nk,Q(S + 21) EE:F <P> T + Zt) dt = O(S)
: k=17Wy.e
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8. Kronecker limit formulas for elliptic Eisenstein series

Furthermore, 251 € Ny and [ < ”11 imply that at s = 0 we have the Laurent expansions
n— 1 (_1)77,21 —1 1 (_1>7121_l %4—[ 1
F(s—i—l— ): — e — — v | +0O(s),
T A =y A P PR
grer(p ! —pe(p "1 40
Nk ’ +s)= Nk ’ + (8)7
r n ar n 1
B (@M= = s) = B (@7 ) + 0(s).

Using this together with the Laurent expansion of (%)l, we obtain a Laurent expansion at s = 0
of the form

gs+2l—1 =5t (%)l( 1)”41 -l n—1\ & n—1 n—1
_ par _ par
IT(s+2) (- ),F<S+l ) (@ ) (R g )

k=1
= Gn,qu3(P) +0(s),

where
41=1 (—mr) et r n—1 n—1
Gnus(P) = Bp (P =) B (@), (8.50)
’ (g e N e e
Summing up, for { =1,..., ”21 we obtain a Laurent expansion at s = 0 of the form

§ cr
EhL S [ ateran g (.

1
a;o(s+20)¢;(P) + —=
ITQI l' Z] (P + Tol "

1 ost-1pngt (;) _) n—1
+\FQ| IT(s+21) ( —1 z) (3”_ 4)

t) dt

cr
Z par( , )Epar( : >
k=1

Foo.(P) 1 221 (— 1)"51—1 T (1—1)!
= —= =+ Gn,0.1.m(P) + O(s).
Tol s 12— D(2F" = )![Tq| vol(T\H") \FQI Z @
(8.51)
It remains to consider the case [ € {”T‘Ha, e "T_l}

Asfor 1€ {1,..., 22} if j =0, 1e. A\; = 0, 7; = —i %5L and 1;(P) = vol(I'\H")~'/2, then the
function

(3) 2521 s s—n+1
7 a0 (s +20) vo(P) = l!lvol(F\H”) (s+2l) g+ +)

admits a Laurent expansion at s = 0 of the form

G

[\l [v

~

221-1 (— 1)”51— (- 1)!

21 = O(s).
1 a0.(s +20) $o(P) = L@ = DL (55X~ 1) vol(T\E") +O(s)
Let j > 1, so we either have r; > 0 or r; € (—i25%,0]. In the first case 21 ”] — 1 ¢ Ny,
while in the latter case we have -1 + "J —1 € R with 2% — W] -1l e (fl, 2=l ] and
-l %o ¢ [”—1—1 o=l ).

The interval ( = — l} contains no element of Ny because of [ > ”T_l, whereas the interval
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8.1. The Laurent expansion at s = 0

["Tfl -1, an — l) contains the elements 0, ..., ”773 — [ of Ny.
n—1 , .
This shows that the function I' (M) cannot have a pole at s = 0, while the function

T (s+2l—"Tfl—irj

5 ) has a pole at s = 0 if and only if

n—1 ir; n—3 n—1 ir; n—3
i _yelo,. . —z} — i {l }
TR e{ 2 1 T €

— rje{—i<2N—n;1) ’Ne{l,...,n;B}}::Mg(n,l).

If r; € M3(n,l), then at s = 0 we have the Laurent expansions

F(S+217n771+7;7"j) :F(ﬁ—n_l—l—l)

2 2 4
1 ir; -1 i -1
+§F(%—RT+Z>¢(°)(%—”4 —|—l)-s+0(82)7
irs ir n—1_ i
s+20— 2L —ir; 2(—1) i E 1 (cnrEE e [T
F( 2 )Z n—1 iry |;+ n—1 ir; | Z g +O(S)
<T+7*l)~ (TJFT*Z) me1

Therefore, for j > 1 with r; € M3(n, 1) the function a; g(s+2l) ¢;(P) admits a Laurent expansion
at s = 0 of the form
L e e R |

— 1
sl + WP = 2 (D) P(% =" 1) w(P) 5@ £ +0(),

4

implying that the respective part of the series after multiplication by (%)l /I! admits a Laurent
expansion at s = 0 of the form

(i,)l > ajq(s+20)¢(P) = Grgua(P)+O(s),
’ jEN:
rjejl\ig(n,l)

where

92l—1 (_1)n;1+ p) T irs n—1 o
GniaP)= > EuT 1“(7] -—+ l) D;(P)6;(Q).  (8.52)
jen: (20 —1)! (”T + % —l)!
r;€Ms(n,l)

In the case r; ¢ M3(n,l) we have the Laurent expansions

F(S+2l_nT_lii’rj):F(iﬁ—n;1+l>

2 2
1 w; n—1 (0)( w; n—1 ) 2
+2F(j: g +1)¢ £l - 1) s+ O(s).
at s = 0. For j > 1 with r; & Mjs(n,l) this gives us a Laurent expansion of the function

a; (s +20)¢;(P) at s =0 of the form

20-1 2ot . B - B L
tals +2)05(P) = gt T = P+ ) D= = 1) (P Q) + 0L

and the respective part of the series after multiplication by (%)l /l! has a Laurent expansion at
s = 0 of the form
S
(),

= > ajols+20)¢(P) = 0(s).
’ jEeN:
i€ Msz(n,l)
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8. Kronecker limit formulas for elliptic Eisenstein series

Moreover, from the inequality [ > "Tfl we derive that for any ¢ € R at s = 0 we have the Laurent
expansions

2l — 2=l 44t ] -1
(R er(e g )

2 2 4
1 it n—1 it n—1
fl“(j:—— z) (0)(1—— z). 2,
+ 5 5 1 +1)y 5 1 + s+ O(s%)
Thus, for k =1,...,cr and any ¢ € R the function a;,, o(s + 20) admits a Laurent expansion at
s = 0 of the form
2-lrts it p—1 it _n—1,

_ 2 :7r<f7 z)r(fff )EW( , ) .
Qs +2) =g Mg ===+ 2 4 @ +0(s)
This implies that after multiplication by (;) /1! we have the Laurent expansion

S cr
' Z/ at 0 s—|—2l)Epm( g ')dt:O(s)
at s =0.
Summing up, for [ = ”T‘L?’, ey "Tfl we get a Laurent expansion at s = 0 of the form
1 (5), & (3), 1 & el =1
1_‘772 S+21 ( )+7Qi'72 a’tnk, $+2l)E77k (P,T—i—zt)dt
221 ()"l (1 -1 Gn P
C )1 U] 1alP) | o). (8.53)
Tl - 1! (5L 1) [Tl volT\E") ' [Tg]

If we finally put together (8.42), (8.46), (8.51) and (8.53), for P € H" we obtain a Laurent
expansion at s = 0 of the form

E(P,5) — G5 (P.s)

2(—m) " Fpo(P 1
= + Froul( L=
("55)! g vol(T\H") |FQ| |FQ| Z @ s
(-m)* =1
+ n— 7+10g Gn m
(") g vol(T\H") mzzlm |F | £ Z @

n—1

921 1( 1) > (l—l
l(2l—1)!(”* ) |FQ|VOI(F\H7, |rQ| ZZGanm

=1 m=1

+

N
)
H

Ghn,0,1,4(P) + O(s),
ITQIl;S

where Fn’Q(P), Fn’Q’l(P) (l = 1, ey nT_l), Gn,Q,m(P) (m = 1,2)7 Gn,Q,l,m(P) (l = 1 <y 4 5
m=1,2,3) and G, g4(P) (I =22, ..., 21) are given by (8.43), (8.44), (8.45), (8. 47), (8.48),
(8.49), (8.50) and (8.52), respectively.

The eigenfunctions ¢;(P) (j € N) and the parabolic Eisenstein series EP*(P,s) (k = 1,...,cr)
are invariant under the action of I'. Hence, also the functions F), o(P), F), g1 (P) (l =1,..., "21 ,
Gnom(P) (m=1,2),Gpgum(P) (l=1,...,%7, m=1,2,3) and G, qu4(P) (I = 2F2,..., 251)
are I'-invariant.

O
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8.2. Example 1: The case n =2, T' = PSLy(Z)

Remark 8.1.7. Forn =1 mod 4 and [ > "773 the set

Mg(n,l)z{—z‘(zzv—";l) )Ne{z,...,”;g’}}.

in the proof of Proposition 8.1.6 is empty. Thus, we always have G, g 4(P) =0 for [ = ”T_l since
the sum defining this function is empty.

Remark 8.1.8. The functions G5)') (P, s), G55 (P, s) and G)'s (P, s) that are subtracted from the

elliptic Eisenstein series EEQH(P, s) in the Laurent expansions (8.1), (8.25) and (8.37), respectively,
differ only by the upper limits of summation in the sums over [ and I’. This is because the explicit
formulas for the meromorphic continuation of ES'(P,s) to the point s = 0 slightly vary in the

different cases for n.

8.2. Example 1: The case n =2, [' = PSLy(Z)

For elliptic Eisenstein series on the upper half-plane H the Laurent expansion at s = 0 and the
Kronecker limit formula in the case I' = PSLy(Z) were determined by von Pippich in her PhD
thesis [Pip10]. Therefore, the results stated in this section are already known. Nonetheless, we
include them here for the sake of completeness.

Throughout the section we let n = 2. Let I' C PSLy(R) be a discrete and cofinite subgroup, i.e. a
Fuchsian subgroup of the first kind. Further, let w € H be a point with elliptic scaling matrix
0w € PSLa(R) and stabilizer subgroup T'y,.

Notation 8.2.1. To keep the notation simple, in this section we again omit the index 2 and write
EZl(z,s) for the elliptic Eisenstein series ES'), (2, s) associated to the point w € H, and EP*(z, s)

for the parabolic Eisenstein series E5 (2, s) associated to the cusp n, € Cr (k= 1,...,cr).

As an application of Proposition 8.1.2 we can reprove the Laurent expansion of the elliptic Eisen-
stein series E!(2, 5) on the upper half-plane H at s = 0, which was established as Proposition 6.1.1.
in [Pip10] (see also Proposition 5.1 in [Pip16]). Note that our function K™P(z,w,s) differs from
the function P& (z,s) in [Pip10] and [Pip16] by the factor [T, i.e. K™P(2,w,s) = |T,| Pe(2, 5).

Proposition 8.2.2. For z € H with z # nw for any n € T the elliptic Eisenstein series E<(z, s)
admits a Laurent expansion at s = 0 of the form

29/ml (s — 3) &
Epar 1— Epar
ITw|T(s) Z e (w, s) Ept(z, )

k=1
2 2T 1
= - + | — +
[T vol(T\H) (rw|vol<r\H> Tl

EMN(z,5) —

(Haw,1(2) + Ho ya(z) + H27w75(z))) 54 0(s%),

where the functions Ha o m(2) (m = 1,4,5) are invariant under the action of I', and are given by
the formulas (8.54), (8.55) and (8.56) in the proof, respectively. Moreover, for z € H they satisfy
the differential equation

27
Ay (H. H. Hj 4 =
H (Hz,w,1(2) + Hz,wa(2) + Haw,5(2)) TIRNE)
Proof. Proposition 8.1.2 gives us that for z € H with z # nw for any n € T the elliptic Eisenstein
series E°!!(z, s) admits a Laurent expansion at s = 0 of the form

25 /ml (s —3) & (
ell 2 ar ar
E; (z,8) — LT ng EN(w, 1 —5) EP*(z, s)

2 5
= ) m — Hoom ) 2y,
T vol(TVH) T T ;Gm, (2) + ( T Tvol () 0] m§:1 2w, (z)) s+ 0(s%)
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8. Kronecker limit formulas for elliptic Eisenstein series

where we used the special values I' (—3) = —2 /7 and »(© (=%) =2 —~ —log(4). Moreover, in
Remark 8.1.3 (a) we have noted that the functions Go 4 m(2) (m =1,2) and Hj pm(2) (m=2,3)
vanish identically since the sums defining these functions are all empty. Thus, we obtain a Laurent
expansion at s = 0 of the form

25wl (s—3)

Eg\(z,8) — TTE § EP(w,1—s) ERY (2, s)
2w 2m 1
=— — Ho . H H : 2
[T, vol (\H) +< T lvol(VE) T [T,] (et () F Howale) + 2’“”5(2))) °+ 06,

where the functions Ha , m(2) (m = 1,4,5) are given by

Hy 1 (2) = Z%Khyp(z,wﬂl), (8.54)
=1
p o - 1 - 1 o
Hawa) =25 20(5 - 3) (=5~ g) v ) (8:55)

Zt 2 ar 1 . ar 1 .
Ho5(z 8\FZ/ ‘r - ‘ for <Z,§+zt> fo (w,ﬁ—zt) dt, (8.56)

respectively, and are invariant under the action of I'. We are left to prove the asserted differential
equation.

We write the above Laurent expansion at s = 0 as

28 /ml (s —1)

Efun(zas) - |1—\ |F

ZEPM w,1—3) Epa’r (z,8) chr 5", (8.57)
where

2 . (z)—— 27 + 1
Ty vol(T\H)" ™" = 0| vol(T\H) ' |T|

Cuw0(2) = — (H2,uw,1(2) + Hapa(2) + Ha o 5(2)).

Further, for z € H the function E¢!(z,s + 2) is holomorphic at s = 0 and non-vanishing by the
definition of the series. Hence, we have a Laurent expansion at s = 0 of the form

EMN(z, s +2) = Zdw s, (8.58)

where dy, 0(2) = ES(2,2) # 0. Using the differential equations
(An — 51— 8)) Bz, 8) = —s? BN (2, 5+ 2)

and
(Ag —s(1 —s)) EN*(2,8) =0 (k=1,...,cr),

we obtain the identity
25 F l cr
(Ag — s(1—s)) (Efj,“(Z,s) |fr e 2) ZEP‘“ w,1— s) EP™(z, 5)) = —s?EM(z,5+2).

Substituting the Laurent expansions (8.57) and (8.58) into both sides of this equation gives us the

identities - - -
> Amcwr(z) 5" =Y s(1=58)cur(z) 5" ==Y s2du,(2) s
r=0 r=0 r=0
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8.2. Example 1: The case n =2, T' = PSLy(Z)

and
S [eS) &S] [
r r r
g Cwr(z) -8 = E c g c -8t — g Ay r_2(z)-s".
, )
AH wr( ) w,r— 1 w,r— 2 w,T 2( )
r=0 r=1 =2 r=2

Comparing coefficients yields the recurrence formula

Ag ey r(2) = Cwr—1(2) — cwr—2(2) — dwr—2(2),
where ¢y »(2) = dy,r(2) = 0 for » < 0. In particular, for r = 1 we obtain
Ap w1 (2) = cwo(2),
which leads to
Ay (Ha,1(2) + Hop,a(2) + Haw5(2))

2T 1
=IT,,|A —
Tl “ﬂ( T vol(TVED) [T

This finishes the proof.

27
vol(T\H) "

(Ha 1 () + Haa(2) + H2,w,5(2))> .

Remark 8.2.3. Observing that
Ag K™P(z,w,21) = 21 (1 — 21) K™P(z,w, 21) + 21 (21 + 1) K"P (2, w, 2l + 2)
forl € N,

Barty(2) = ty(2) = (5 +iry) (5~ i) 052)

for j € N, and

w1 1 N/l 1
Ay EJ? (z, 3 + zt) = (5 + zt) (5 — zt) B (z, 3 + zt)
for k =1,...,cr and t € R, and using the spectral expansion (5.1) with n = 2 and s = 2, the
differential equation
2w

AIHI (HQ,wJ(Z) + H2,w,4<z) + H27w,5(2>) = _m.

can also be verified by a direct computation.

In the remainder of this section we state the results from [Pip10] and [Pip16]. We omit the proofs
here.

Theorem 8.2.4. For z € H with z # yw for any v € T the elliptic Eisenstein series ESY(z, s)
admits a Laurent expansion at s = 0 of the form
25 /7T (s
ell ar ar
By (2,8) — W ZEP w, s) ENY(z,s)
2T og ([Hu(2)| Im(2)%") - s+ O(s?),
T T Tulvol\H) 8\t

where H.,(z) is a holomorphic function, unique up to multiplication with a complex constant of
absolute value 1, which vanishes if and only if z = yw for some v € ', and which satisfies

Hu(v2) = €w() (cz + d)2cw Hu(2)

or any vy = € I'. Here ey(v) € C is a constant of absolute value 1 which depends only on
f fyZZFH C f absol lue 1 which depends onl

w and vy but is independent of z, and

2

O = 17, Tvol(TVH

€ Q.
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8. Kronecker limit formulas for elliptic Eisenstein series

Proof. See [Pip10], Theorem 6.1.2. See also [Pip16], Theorem 5.2.
[

For the specific group I' = PSLy(Z) and the elliptic Eisenstein series Eeei_l(z, s) associated to the

27t

elliptic fixed points e; = i and e; = p := exp (T) of ', von Pippich has proven the following

Kronecker limit formulas.

Proposition 8.2.5. Let ' = PSLy(Z). For z € H with z # ~i for any v € T the elliptic Eisenstein
series ES'(z, s) admits a Laurent expansion at s = 0 of the form

2571 /7 (s — %
I'(s)
= =3+ (—log(|Es(2)| Im(2)*) + B;) - s + O(s?),

Ef“(z7 s) — ) EP*(i,1 — s) EP¥(z, 8)

where B; := —72('(—1)+3 log(2m)—12 log (I' (1)), and where Eg(2) is the holomorphic Eisenstein
series of weight 6 given by (3.21).

Further, for z € H with z # ~vp for any v € T the elliptic Eisenstein series Egu(z,s) admits a
Laurent expansion at s = 0 of the form

20 7T (s — 1)
vV o\ 2) prar 1 — g) gpar
STy ER (1 = ) B2

=-2+ (— log(|E4(2)| Im(2)?) + Bp) 54 0(s%),

ell
Ep (Z? S) -

where B, := —48¢'(—1)+4 log (2—\/%) —121log (I' (3)), and where E4(z) is the holomorphic Eisen-

stein series of weight 4 given by (3.21).

Proof. See [Pip10], Proposition 6.2.2. See also [Pip16], Proposition 6.2.
O

Corollary 8.2.6. Let I' = PSLy(Z). For z € H with z # i for any v € I' the elliptic Fisenstein
series Ef“(z, s) admits a Laurent expansion at s =0 of the form

B (z.) = = og (|Es()| |A(:) ) -5+ O(s?).

Further, for z € H with z # ~p for any v € T the elliptic Eisenstein series E:’;“(z,s) admits a
Laurent expansion at s = 0 of the form

Bz, 5) = ~log (IE4(2)] |A(2)]7/%) - s+ O(s?).

Here A(z) is the Delta function given by (3.20).
Proof. See [Pip10], Corollary 6.2.3. See also [Pip16], Corollary 6.3.

8.3. Example 2: The case n = 3, I' = PSLy(Z]i])

As in the previous chapter we now consider the specific case n = 3 and I' = PSLy(Z[i]) as a
second example. We first give a Laurent expansion of the elliptic Eisenstein series at s = 0 for
a general discrete and cofinite subgroup I' C PSLy(C), and then use our knowledge about the
parabolic Eisenstein series ER?"(P,s) for PSLy(Z[i]) to derive a Kronecker limit formula for the
elliptic Eisenstein series for this group.

Throughout the section we let n = 3. Let I' C PSLy(C) be a discrete and cofinite subgroup.
Further, let Q € H? be a point with elliptic scaling matrix oo € PSLy(C) and stabilizer subgroup
Tg.
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8.3. Example 2: The case n = 3, I' = PSLa(Z]i])

Notation 8.3.1. To keep the notation simple, in this section we again omit the index 3 and write
EQ'(P, s) for the elliptic Eisenstein series ES', (P, s) associated to the point @ € H?, and Epar(P s)
for the parabolic Eisenstein series E3 (P, s) associated to the cusp n, € Cr (k =1,. cF)

Before we treat the special case I' = PSLg(Z[i]), from Proposition 8.1.4 we derive the following
Laurent expansion for a general discrete and cofinite subgroup I' C PSLo(C).

Proposition 8.3.2. For P € H? with P # ~Q for any v € T the elliptic Eisenstein series
EE;“(P7 s) admits a Laurent expansion at s =0 of the form

Eell(P ) |FQ| S—]. ZEPET QaQ_S) ES:Y(P) S)

2 1 1—log(4
:_—Wg.%(—g()?}w(s).
Tl vol(T\H3) s = |T'q|vol(I'\H3)
Proof. Proposition 8.1.4 implies that for P € H? with P # vQ for any « € I the elliptic Eisenstein
series EeQ“(P, s) admits a Laurent expansion at s = 0 of the form

ell 25 o N
B3 (P9~ i 1) 2 P (@2 - ) BRI (Ps)
— (_ 2 n Fs0(P) F3,Q,1(P)) 1
[Tq| vol(T\H?) Tol Dol S
7 (14 log(4)) Gs.0(P) o0
" Tolvol(T\E?) gl [Tl vol(T\EP) |r | Z G.01m(P) + O(s),

m=1

where we used that I'(s) "' T'(s — 1) = (s — 1)~!. Further, we have noted in Remark 8.1.5 (a) that
the functions F3 o(P), G3.q(P), F3,0,1(P) and G3 ¢ 1,m(P) (m = 1,2) all vanish identically since
the sums defining these functions are empty. Thus, we obtain a Laurent expansion at s = 0 of the
form

ell ar ar
E(P,s) - |FQ‘ 5 ZEP (Q,2 — 5) EP™(P,s)

B 27 1 (1 —1log(4))
= oVl ) s T Tovamae) T O

O

In the remainder of this section we consider the case I' = PSLy(Z[i]). To that aim we quickly
recall the setting and the results from section 7.3.

The imaginary quadratic field K = Q(4) has the ring of integers Ok = Z[i], discriminant dg =
dg(iy = —4 and class number hx = hgy = 1. Further, the group I' = PSLy(Of) = PSLo(Z[i])
is a discrete and cofinite subgroup of PSLy(C) which admits only one cusp 71 = oo and has the
hyperbolic volume

‘3/2

. 2 Corin (2
vol(D\H?) = %CQU)@):%)(). (8.59)

The parabolic Eisenstein series EP3 (P, s) associated to the cusp oo of I', which is given for P € H?
and s € C with Re(s) > 2 by
ER(Ps)= Y r(yP)’,
YET o \T
admits a simple pole at s = 2 with residue
72 _ 1
4Cow)(2)  2vol(D\H3)’

Ress—o EP¥ (P, s) =
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8. Kronecker limit formulas for elliptic Eisenstein series

At s = 2 it has the Laurent expansion

2 1

7T2
160 (2) s—2 4(ew(2)

EXN(Pys) =

loB(nac) (P) (P)) + “22 1 0(s —2),

where Cg(;) € C is a constant and 7g(;) : H* — R is a function which satisfies ng(;)(vP) =
b
||cP + d||*> ng(;) (P) for any v = <Z d) el

Using Proposition 8.3.2 and the results from section 7.3, in particular Lemma 7.3.5, we now find
the following Kronecker limit formula for the elliptic Eisenstein series ESI(P7 s).

Theorem 8.3.3. Let I' = PSLy(Z[i]). For P € H? with P # nQ for any n € T the elliptic

Eisenstein series EZ;“(P, s) admits a Laurent expansion at s =0 of the form

33 1 w3 7 Co(i)
_ e A (P) 106 P -
Tolcan® s+ 1l con @ 08 (Mo (P) a6 (@ r(P)r(@) = =p

3 (l% (1A@I®) =2 (1+7) +log(32) + CQ(MQ)) +0(s)

v
4Tl G (2) Coi)(2)

ES\ (P, s) =

where (o) (s) is the Dedekind zeta function of Q(i) and A(z) is the Delta function given by (3.20).

Proof. Proposition 8.3.2 yields that for P € H? with P # nQ for any n € T the elliptic Eisenstein
series EEQ“(P, s) admits a Laurent expansion at s = 0 of the form

2%
EI(Ps)— ———— EP¥(Q,2 — s) EP¥(P
Q( 75) |FQ|(S—1) oo(Q7 5) oo( ,S)
3 1 72(1—log(4))

- - 0(s),
Tolten® s 2olcam@ O

where we inserted the hyperbolic volume (8.59). In order to obtain the Laurent expansion of the
elliptic Eisenstein series Egl(P, s) at s = 0, we first determine the respective expansion of

27

Col(s —1)

From the Laurent expansions

Eggr(Q’ 2 - 8) Egoar(P7 S)

2% =1+ 1log(2) - s + O(s?),
1

o] =—1-s+0(s?),
at s = 0 we derive the Laurent expansion
29 1+ log(2
™ — _ 7T _7T( +Og( ))S+O(82)
Tal (s —1) Tl Lol

Moreover, by Lemma 7.3.5, at s = 0 we have the Laurent expansion

2 1

4w (2) s 4Com(2)

. Som (2
<log (|A(z)|1/6> +1—2v+log4) + E) + O(s).

2

EP™(Q,2 — s) EX(P,s) = log (ng() (P) nae) (Q) r(P) r(Q)) + Cag

Lo
4Ca(2)

212



8.3. Example 2: The case n = 3, I' = PSLa(Z]i])

Therefore, at s = 0 we obtain

2°m
——— EPY(Q,2 —s) EX¥(P, s
Tol(s -1 = (@27 BB
3 1 3 7 Coi
= ot log (1) (P) o) (@) r(P) 7(Q)) —
4|0l o (2) s 4[TqlCew(2) (o) (P) no(s) (@) r(P) r(Q)) ITo|
3 o @)
- [ log (|A@)[Y¢) — 2y +log(2) + +O(s).
4Tl o (2) ( ( ) o (2)
Adding up, at s = 0 we finally get the Laurent expansion
37‘(3 1 3 71'0@(1-)

Eg\(P,s) = log (o) (P) noei) (@) r(P) r(Q)) —

iy
_ PR— Jr
40l ¢ (2) s 41Tq| o) (2)

3

4T o (2)

ITql

<1og (IA@ME) = 2(1+7) +log(32) + CQ(”@)) +0(s).

Cow (2)
O

Remark 8.3.4. Similar to Theorem 8.3.3, one could also derive a Kronecker limit formula for
elliptic Eisenstein series in H? for I' = PSLy(Of ), where K is some other imaginary quadratic
field with ring of integers Ok and class number hg = 1.
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A. Appendix: Special functions and
identities

The main references for this appendix are [GR14] and [AS48].

A.1. The gamma function and related functions
For s € C with Re(s) > 0 the gamma function T'(s) is defined as the integral
T'(s) ::/ exp(—t) ! dt.
0

It admits a meromorphic continuation in s to the whole complex plane, which is given by

I'(s) = /OOO exp(—t)t5~1 dt + Z
m=0

This implies that I'(s) has a simple pole at the point s = —m for any m € Ny with residue

(-pm™ 1
m! s+m’

=
m!

Ress——n ['(s) = (A1)

The meromorphically continued function I'(s) has no zeros in C, so that 1/T'(s) is an entire function.

For any m € N the gamma function has the special value

while other important values are

F(%) =+/m and F(— 1) = —2+/7.

A further useful property is the identity

() =I(s). (A.2)

The function I'(s) satisfies the well-known recursion formula

D(s+1) =sT(s), (A.3)
the functional equation
7r
I(s)T(1—s)=
()T =) sin(7s)
and the duplication formula
1
T(s) F(s + 5) = 91=%5 /7 T(2s). (A4)

Stirling’s asymptotic formula states that

log(T'(s)) = % log(2m) — % log(s) + s log(s) — s +o(1)
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as s — oo, provided that s remains in a sector of the form |arg(s)| < m — ¢ for some € > 0. In
particular, for fixed o € R and [t| — 0o we have the asymptotics

t
ID(o + it)| ~ V27 [t}7~1/2 exp ( - %) (A.5)
with an implied constant depending on o.

The FEuler-Mascheroni constant ~ is defined as the limit

~v:= lim < % — 10g(n)> . (A.6)

It has the numerical value v = 0.57721....

For k € Ny the polygamma function ¥ (s) of order k is defined as the (k + 1)-th derivative of
the logarithm of the gamma function, i.e.

A dFt1
P () = ot loa(T(s)). (A.7)
The function ¥(*)(s) is meromorphic on C and admits a pole of order k + 1 at the point s = —m

for any m € Ny.
In particular, for k = 0 we get the digamma function ¥(9)(s), which is given by

d I'(s)
() = — log(T = A.
vO(s) = L 1os(0s) = (A8)
and satisfies the identity
dk
k _ 0
Y0(s) = T4 Os).
Thus, the derivative I'(s) of the gamma function can be written as
I'(s) =T(s)$V(s) (k€ No).
For any m € N the function ¥(?)(s) has the special value
m—1 1
POm) =3 7 -, (4.9)
=1
while for m € Ny we have
»(© (m + 1) = i 2 v — 2log(2). (A.10)
2 — 20 -1
The digamma function satisfies the recursion formula
1
PO (s +1) =ypO(s) + =. (A.11)
S
For any m € Ny, at the pole s = —m the gamma function admits a Laurent expansion of the form
_E=ym o1 =™ 0
Fls) = m! s+m + m! Y(m+1)+0(s +m)
-Hm 1 )™ (1
:( iy +( ) - =7 ] +0(s+m). (A.12)
m)! s+m m)! — l
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A.1. The gamma function and related functions

If T'(s) is holomorphic at some point sy € C, then at s = sy it admits the Laurent expansion
(respectively, the Taylor expansion)

I'(s) =T(so) + I'(so0) PO (s0) - (s — 50) + O((s — 80)?). (A.13)

For s € C and m € Ny the Pochhammer symbol (s), is given by

T'(s+m)
From (A.3) one derives the alternative formula
H s+7).
At s = 0 the Pochhammer symbol (s),, admits the Laurent expansion
(8)m = L(m) - s + T(m) (@ (m) +7) - s* + O(s")
m—1
1
=(m-1)" - 1! — |- s +0(s%). A.15
(m =1+ (m )<;l>s+<s> (A.15)
For a,b € C with Re(a), Re(b) > 0 the beta function B(a,b) is defined as
1
B(a,b) = / 1 (1= )L . (A.16)
0
It is related to the gamma function via the identity
['(a)T(b)
B(a,b) = ——= = B(b,a).
(@) = Fisg) = Blb.a)
For a € C with Re(a) > 0 we have (see, e.g., [GR14], formula 3.249, 5.)
! 1_/1 Val(a)
1—tH)tdt=-B(s,a) =~ A7
/0( ) 38(3:9) 2T (o + 1) (A.17)
Further, for p,v € C with Re(u) > —1 and Re(v — p) > 0 the integral formula
°° sinh(u)* 1 _/p+1 v—p
2\ gu= B
/Ocosh(u)”u 2(2’2)
holds true (see, e.g., [GR14], formula 3.512, 2.). Choosing p = 0, for Re(r) > 0 we obtain
> . L vy _ V7T ()
/0 cosh(u)™ du = B(2 2) 2F( iy
Applying the duplication formula (A.4) for the Gamma function now yields the identity
o] 21/—2 T(t 2
/0 cosh(u)™ du = I‘(y§2)’ (A.18)

where Re(v) > 0.
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A.2. The Gauss hypergeometric function
The differential equation
z2(1—=2)f"+(c—(a+b+1)z) f'—abf =0,
where a,b,c € C, ¢ # —m for any m € Ny and z € C, has as solution the Gauss hypergeometric
function o Fy(a,b;c; z). For z € C with |z| < 1 it is given by the series
oF1(a,b;¢; 2) i LIZ £ (O 2~ (A.19)

k=0 ()

For Re(c) > Re(b) > 0 the Gauss hypergeometric function has the integral representation (see,
g., [GR14], formula 9.111)

L'(c) g —b—1 -
F b;c;z) = ————— t 1—-1)° 1—tz)"* dt.
2 1(@, 7672) F(b)F(C—b)/O ( ) ( Z)

This integral is an analytic function for z lying in the complex plane cut along the real axis from

1 to oo, giving the analytic continuation of the series (A.19).

The function o F}(a, b; ¢; z) satisfies a variety of transformation formulas, examples of these being
the linear transformation rules

z

o _ _ \—a _ _ \—b P ol
oF 1 (a,b;¢;2) = (1 — 2)" %9 Fy (a,c b; c; 1) =(1-2)""2F (b,c a5 ¢; 1)
=(1-2)°" " F(c—a,c— b; ¢ 2) (A.20)

(see, e.g., [GR14], formula 9.131, 1.), and

o F1(a,b;c;2) = I‘EZ;FEi:a;(l,Z) 2F1<a,cfb;afb+1;1iz)
T(c)T(a - b) - L
+m(l—z) bQFl(b, — Qj; b—CL“Fl E)a (A21)

where |arg(l — z)| < 7 (see, e.g., [AS48], formula 15.3.8).

Moreover, for z € C with |z| < 1 the identity

2F1abbzzza—)'kk (1—2)"" (A.22)
k=0

holds true (see, e.g., [AS48], formula 15.1.8).

A.3. Associated Legendre functions

The differential equation

(1— Z2) f// — 92z f’ + (V(V +1) - 1 ﬁ222> f=0, (A.23)

where the degree v € C and the order p € C are arbitrary complex numbers, is called associated
Legendre equation. A fundamental system of solutions for this homogeneous linear differential
equation of second order is given by the associated Legendre functions P#(z) and Q#(z).

218
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For z € C with |arg(z = 1)| < 7 the associated Legendre function of the first kind PF(z) of degree
v and order y is given by

1 24 1\ M2 1—2
P = — Fil — 1:1 — pu; —— A.24
$6) =t (1) B (w1120, (A.24)

while for z € R with —1 < z < 1 we have the representation

1 14+ 2\"? 1—2
4 = — [ — . _ .
PiG) F(lu)(lz) 2F1< vyt L= = )

Furthermore, for z € C with |arg(z &+ 1)| < 7 the associated Legendre function of the second kind
QL (z) of degree v and order p is given by

et aT(v+p+1)
P+ D)

2 1 1
vtp+2 v+ p+ -1/+§- —),(A.25)

Qllj(z) = D) ’ 9 ) 927 52

(22—1)M/2 Zﬁyiuil 2F1<

and for z € R with —1 < z < 1 we have the representation

Fv+p+l) -,
Tv—p+tl) ” (z)>'

In the case p = 0, equation (A.23) is called Legendre equation and its linearly independent solutions

QU(e) = g (PEG) eostum) -

17
Py(2)i= PY(2) = oy ( — vy + 131 =)

and Q,(z) := Q%(2) are called Legendre functions of the first and second kind, respectively. For
u =0 and v € Ny, equation (A.23) reduces to the differential equation for Legendre polynomials.

For Re(p) > —3 and |arg(z + 1)| < 7 the associated Legendre function of the first kind has the
integral representation

N Gt Vi N (2 e
FAe = 20 /mT (1 +3) /—1 (z+tvz2—1)"" “ (4.20)

(see, e.g., [GR14], formula 8.711, 1.).

Moreover, for Re(u) < 1, Re(s + p+v) > 0 and Re(s + p — v) > 1 we have the identity (see, e.g.,
formula [GR14], 7.132, 7.)

[Ots (12— 1)"#/2 Pr(t) dt = ?;(;)F<S+g+”)r(s+“;”_l). (A.27)

A.4. Further functions and identities
For s € C with Re(s) > 1 the Riemann zeta function ((s) is defined as the Dirichlet series

((s) =) ki (A.28)

k=1

It admits a meromorphic continuation in s to the whole complex plane, which is holomorphic on
C\ {1} and has a simple pole at s = 1 with residue 1.
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The function ((s) satisfies the functional equation

m™s

C(s) = 2°7°1 sin (?) T(1—s)C(1—s),

which can also be written in the symmetric form

r(g) 72 ((s) = r(l 5 S) r=D/2¢(1 = ).

The Riemann zeta function ((s) has no zero with Re(s) > 1, and a zero at the point s = —2m for
any m € N. The remaining zeros of ((s) are all located in the strip {s € C | 0 < Re(s) < 1}.

Well-known values of the Riemann zeta function include

7.(.2
@="" O=-5 md (-)=-7.

The differential equation
ZQf”-FZf/—(ZQ—VQ)f:O

has as solutions the modified Bessel functions. The modified Bessel function of the first kind I,,(z)

is given by
> 1 2\ v+2k
I,(z) = —_— (= ,
Q ];) KT +k+1) (2)

while the modified Bessel function of the second kind K,(z) is given by

(A.29)

Finally, we state the first law of cosines in hyperbolic geometry, which we quote from Theorem
3.5.3. in [Rat94]: If o, 3,~ are the angles of a hyperbolic triangle and a, b, ¢ are the lengths of the
opposite sides, then we have

cosh(a) cosh(b) — cosh(c)
sinh(a) sinh(b)

cos(y) = (A.30)

In case that v is a right angle, we have cos(y) = 0, so (A.30) implies that the side lengths satisfy
the identity
cosh(c) = cosh(a) cosh(b). (A.31)
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