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Abstract

The structure of atomic nuclei has far reaching consequences, including implications for fundamental
interactions, the astrophysical synthesis of heavy elements, and the properties of matter in neutron stars.
First-principles, or ab initio, nuclear structure theory aims to describe the structure of atomic nuclei based
on inter-nucleonic interactions, connecting our understanding of nuclear structure to our understanding of
the strong interaction. This approach has two key ingredients: nuclear forces describing the interactions
between the protons and neutrons, collectively nucleons, making up nuclei; and many-body calculations
computing the properties of many-nucleon systems starting from these nuclear forces. In this thesis, we
tackle key challenges in ab initio many-body calculations to reach higher accuracy and to describe heavier
systems.

Ab initio many-body methods capable of describing more than just the lightest elements rely on
controlled, systematically improvable approximations in their solution of the many-body problem. The
in-medium similarity renormalization group (IMSRG) is one such method. Its standard truncation at
the normal-ordered two-body level, the IMSRG(2), has been used very successfully over the past decade
to develop a comprehensive ab initio description of medium-mass nuclei. In this thesis, we develop the
IMSRG(3), the next truncation order including normal-ordered three-body operators in the many-body
solution. The extension of the IMSRG to the IMSRG(3) level brings greater precision to theoretical
predictions of energies and charge radii. Furthermore, it gives substantial corrections to other quantities of
interest where IMSRG(2) predictions are insufficient, such as the prediction of shell structure at doubly-
magic nuclei. With the IMSRG(2) and the IMSRG(3) together, many-body uncertainties due to the
approximate solution of the many-body problem can be robustly quantified. In addition to developing the
IMSRG(3), we improve the treatment of three-body forces in IMSRG calculations, extending the reach
of ab initio calculations to heavy nuclei and providing converged predictions of ground-state properties
of 208Pb. We also introduce multiple ways to accelerate IMSRG calculations, through basis optimization
via the perturbatively improved natural orbitals and through importance truncation techniques applied to
many-body operators in the IMSRG.

Using the improvements of the IMSRG we developed, we investigate carbon, calcium, and ytterbium
isotopes in close collaboration with current experimental efforts. The IMSRG(3) improves the description of
the structure of 48Ca, resolving a long-standing overprediction of the closed-shell structure by the IMSRG(2).
We also investigate the unresolved discrepancies between theory and experiment in calcium charge radii. In
ytterbium isotopes, we provide nuclear structure input for a search for a possible new boson in isotope shifts
of atomic transitions. Based on our input, we identify the leading signal in ytterbium isotope shifts to be
due to the structure of ytterbium isotopes, not the possible new boson. From this, we extract information
on δ⟨r4⟩, giving access to a new nuclear structure observable related to deformation. This highlights the
importance of nuclear theory to understand nuclear structure effects in searches for new physics.

These developments break new ground for ab initio nuclear theory, paving the way to a more compre-
hensive and precise description of atomic nuclei with many promising and interesting applications.
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Zusammenfassung

Ab-Initio-Rechnungen von neutronenreichen Atomkernen mit Vielteilchenoperatoren

Die Struktur von Atomkernen hat weitreichende Konsequenzen, u.a. für die beobachtete Stärke fundamen-
taler Wechselwirkungen, die astrophysikalische Synthese schwerer Elemente, und die Materialeigenschaften
von Neutronensternen. Die Ab-Initio-Kernstrukturtheorie zielt darauf ab, die Struktur von Atomkernen auf
der Grundlage von Kernkräften zwischen Nukleonen (d.h. Protonen und Neutronen) zu beschreiben. Diese
Herangehensweise verbindet unser Verständnis der Kernstruktur mit dem der starken Wechselwirkung und
hat zwei Schlüsselkomponenten: Kernkräfte, die die Wechselwirkungen zwischen den Nukleonen beschreiben,
aus welchen sich die Kerne zusammensetzen; und Vielteilchenrechnungen, die aus diesen Kernkräften
die Eigenschaften von Vielteilchensystemen errechnen. In dieser Arbeit behandeln wir wichtige Heraus-
forderungen innerhalb solcher Ab-Initio-Vielteilchenrechnungen, die zur Beschreibung schwererer Systeme
mit größerer Genauigkeit überwunden werden müssen.

Ab-Initio-Vielteilchenmethoden, die uns in die Lage versetzen mehr als nur die leichtesten Elemente ver-
lässlich zu beschreiben, müssen auf kontrollierten, systematisch verbesserbaren Näherungen bei der Lösung
des Vielteilchenproblems beruhen. Die In-Medium Similarity Renormalization Group (IMSRG) ist eine
solche Methode. Ihre Standardtrunkierung auf dem normalgeordneten Zweiteilchenniveau, die IMSRG(2),
wurde in dem letzten Jahrzehnt sehr erfolgreich eingesetzt, um eine umfassende Ab-Initio-Beschreibung
von mittelschweren Kernen zu entwickeln. In dieser Arbeit entwickeln wir die IMSRG(3), die nächste
Ordnung in diesem Trunkierungsschema, die in der Vielteilchenlösung zusätzliche normalgeordnete Dreit-
eilchenoperatoren beinhaltet. Die Erweiterung der IMSRG zur IMSRG(3) erhöht die Präzision theoretischer
Vorhersagen von Energien und Ladungsradien. Darüber hinaus liefert sie wesentliche Korrekturen für andere
interessante Größen, für die die Präzision der IMSRG(2) nicht ausreicht, wie zum Beispiel die Vorhersage
der Schalenstruktur bei doppeltmagischen Kernen. Der Vergleich von Vorhersagen der IMSRG(2) und
IMSRG(3) erlaubt eine robuste Quantifizierung von Unsicherheiten, die auf der näherungsweisen Lösung
des Vielteilchenproblems beruhen.

Zusätzlich zur Entwicklung der IMSRG(3) verbessern wir auch die technische Handhabung der Dre-
iteilchenkräfte innerhalb der IMSRG, um den Anwendungsbereich von Ab-Initio-Berechnungen auf die
schwersten natürlich vorkommenden Kerne auszudehnen und konvergierte Vorhersagen für die Grundzus-
tandseigenschaften von 208Pb bereitzustellen. Weiterhin führen wir mehrere Methoden zur Beschleunigung
von IMSRG-Rechnungen ein: (i) eine Basisoptimierung durch Verwendung von perturbativ verbesserten
natürlichen Orbitalen, und (ii) die Anwendung diverser vorteilshafter Trunkierungstechniken auf Viel-
teilchenoperatoren in der IMSRG.

Unter Verwendung der von uns hier entwickelten Verbesserungen der IMSRG, sowie in enger Zusamme-
narbeit mit aktuellen experimentellen Untersuchungen, betrachten wir als nächstes Kohlenstoff-, Calcium-
und Ytterbiumisotope. Die IMSRG(3) verbessert die Beschreibung der Struktur von 48Ca und löst ein
langjähriges Problem der IMSRG(2) bei der Vorhersage der geschlossenen Schalen in diesem Massenbereich.
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Bisher ungelöste Diskrepanzen zwischen Theorie und Experiment bei den Calcium-Ladungsradien sind ein
weiterer Gegenstand unserer Untersuchungen. Für Ytterbium liefern wir Kernstrukturvorhersagen zur Suche
nach einem möglichen neuen Boson in Isotopenverschiebungen von atomaren Übergängen. Basierend auf
unseren Vorhersagen identifizieren wir als führenden Beitrag zur Isotopenverschiebung in Ytterbium einen
Kernstruktureffekt anstelle der andernorts vorgeschlagenen Wechselwirkung mit einem postulierten neuen
Boson. Aus unserer Analyse extrahieren wir Informationen über δ⟨r4⟩, eine neue Kernstrukturobservable,
die bestimmte radiale Verformungen der Kerndichteverteilung charakterisiert. Diese Einsicht unterstreicht
die wichtige Rolle der Kerntheorie bei der Suche nach neuer Physik in Prozessen, bei denen die innere
Struktur des Atomkerns eine Rolle spielt.

Die hier beschreibenen Entwicklungen eröffnen neue Möglichkeiten für die Ab-Initio-Kernstrukturtheorie;
sie ebnen den Weg zu einer umfassenderen und präziseren Beschreibung von Atomkernen und versprechen
damit zahlreiche interessante und neuartige Anwendungen.



Contents

 Abstract iii

 Table of Contents vii

 List of Figures xi

 List of Tables xv

 1 Introduction 1
 1.1 Overview of this thesis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

 Part I Fundamentals 

 2 Nuclear forces  9
 2.1 Effective field theories for nuclear forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
 2.2 The similarity renormalization group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
 2.3 Uncertainty quantification for nuclear forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

 3 Many-body basics 19
 3.1 Second quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
 3.2 Normal ordering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 3.3 Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

 3.3.1 Single-particle bases and one-body densities  . . . . . . . . . . . . . . . . . . . . . . . 25
 3.3.2 Iterative solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
 3.3.3 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

 3.4 Many-body perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
 3.5 Uncertainty quantification for many-body calculations . . . . . . . . . . . . . . . . . . . . . 32

 4 The in-medium similarity renormalization group 33
 4.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
 4.2 Truncation schemes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
 4.3 Single-reference decoupling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
 4.4 Valence-space decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
 4.5 Magnus-expansion formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
 4.6 IMSRG successes and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
 4.7 Uncertainty quantification for the IMSRG  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



viii CONTENTS

 Part II Method advances  

 5 Normal-ordered three-body forces for heavy nuclei 49
 5.1 Normal ordering in a Jacobi basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
 5.2 Practical considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
 5.3 Applications to heavy nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

 6 Truncations for the IMSRG from perturbation theory 61
 6.1 Natural orbitals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

 6.1.1 Construction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
 6.1.2 Efficient use in many-body calculations . . . . . . . . . . . . . . . . . . . . . . . . . 64

 6.2 Importance truncation for the IMSRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
 6.2.1 Matrix element truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
 6.2.2 Application to nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
 6.2.3 Computational considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

 7 IMSRG(3) 83
 7.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
 7.2 Perturbative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
 7.3 Approximating the IMSRG(3)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
 7.4 Comparison against exact results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

 7.4.1 Helium-4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
 7.4.2 Oxygen-16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
 7.4.3 IMSRG(3) with harder Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

 7.5 Realistic IMSRG(3) calculations of nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

 Part III Applications 

 8 Ab initio studies of stable carbon isotopes  103
 8.1 Calculational details  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
 8.2 Ground-state properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
 8.3 Differential quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
 8.4 Hamiltonian dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

 9 IMSRG(3) investigations of calcium isotopes 109
 9.1 Improved structure of calcium-48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

 9.1.1 Single-reference IMSRG calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
 9.1.2 Valence-space IMSRG calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

 9.2 Trends of IMSRG(3) corrections to charge radii . . . . . . . . . . . . . . . . . . . . . . . . . 114
 9.3 Perspectives for converged IMSRG(3) calculations . . . . . . . . . . . . . . . . . . . . . . . 116

 10 New physics searches in ytterbium isotope shifts 121
 10.1 Isotope shifts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
 10.2 King-plot analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
 10.3 Ab initio nuclear theory input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
 10.4 Extraction of higher-order nuclear structure information . . . . . . . . . . . . . . . . . . . . 133

 11 Conclusion 137



CONTENTS ix

 Acknowledgments 141

 Appendix  

 Appendix A List of Abbreviations 147

 Appendix B IMSRG fundamental commutators 149

 Bibliography 153





Figures

 1.1 Progress in ab initio nuclear theory from 2010 to 2020.  . . . . . . . . . . . . . . . . . . . . . . 2
 1.2 Schematic overview of many-body expansion methods.  . . . . . . . . . . . . . . . . . . . . . . 3

 2.1 Contributions to NN, 3N, and 4N interactions in chiral EFT up to order N4LO.  . . . . . . . . 10
 2.2 SRG evolution of a chiral EFT NN potential.  . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
 2.3 Total proton-neutron scattering cross section predictions with Bayesian estimates for the chiral

EFT truncation uncertainty.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

 3.1 Mean-field single-particle levels from a schematic harmonic oscillator with spin-orbit interactions
and Hartree-Fock calculations for 16O and 12C.  . . . . . . . . . . . . . . . . . . . . . . . . . . 28

 4.1 Schematic representation of the IMSRG unitary transformation in the normal-ordered two-body
approximation.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

 4.2 First 2+ excitation energies of neutron-rich calcium isotopes.  . . . . . . . . . . . . . . . . . . . 43
 4.3 Discrepancies between different nuclear theory predictions and measured charge radii for neutron-

rich calcium isotopes.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

 5.1 Distributions of differences of two-body matrix elements of the effective two-body interaction in
the Jacobi and single-particle normal ordering.  . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

 5.2 Correlation energies for IMSRG(2) calculations of 78Ni in the single-particle normal ordering
and Jacobi normal ordering.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

 5.3 Hartree-Fock, IMSRG, and correlation energies for IMSRG(2) calculations of 132Sn in the
single-particle normal ordering and Jacobi normal ordering.  . . . . . . . . . . . . . . . . . . . 56

 5.4 Hartree-Fock, IMSRG, and correlation energies for IMSRG(2) calculations of 208Pb in the
single-particle normal ordering and Jacobi normal ordering.  . . . . . . . . . . . . . . . . . . . 58

 5.5 Charge radii from IMSRG(2) calculations of 208Pb in the single-particle normal ordering and
Jacobi normal ordering.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

 6.1 Radial wave functions of different proton orbitals of 16O in the HO, HF, and NAT bases computed
using the N3LO 450 Hamiltonian.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

 6.2 Radial wave functions of different proton orbitals of 16O in the HF basis and two NAT bases
employing different model-space truncations computed using the 1.8/2.0 (EM) Hamiltonian.  . 65

 6.3 Frequency dependence of ground-state energies and charge radii of 40Ca for the NN-only N3LO
EMN 450 and NN+3N N3LO 450 Hamiltonians in the HF and NAT bases.  . . . . . . . . . . . 66

 6.4 Frequency dependence of ground-state energies and charge radii of 40Ca for the 1.8/2.0 (EM)
Hamiltonian in the HF and truncated NAT bases.  . . . . . . . . . . . . . . . . . . . . . . . . . 68

 6.5 Frequency dependence of ground-state energies and charge radii of 78Ni for the 1.8/2.0 (EM)
Hamiltonian in the HF and truncated NAT bases.  . . . . . . . . . . . . . . . . . . . . . . . . . 69

xi



xii FIGURES

 6.6 Total number and corresponding storage requirements of nonzero two-body matrix elements for
different compression ratios in different model-space sizes.  . . . . . . . . . . . . . . . . . . . . 72

 6.7 Error on the ground-state energy of 40Ca in the NAT basis as a function of compression ratio
for IT-IMSRG(2) calculations using five IT measures.  . . . . . . . . . . . . . . . . . . . . . . . 76

 6.8 Relative IT-IMSRG(2) error on the correlation energy of 40Ca in the NAT basis using the
1.8/2.0 (EM) Hamiltonian as a function of the compression ratio for the model-space sizes
emax = 6, 10, and 14.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

 6.9 Relative IT-IMSRG(2) error on the correlation energy of 40Ca in the NAT basis using the
N3LO 500 Hamiltonian as a function of the compression ratio for the model-space sizes emax = 6,
10, and 14.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

 6.10 Ground-state energies for selected calcium and nickel nuclei in the IT-IMSRG.  . . . . . . . . . 78

 7.1 IMSRG(3) corrections to ground-state energies of 4He obtained in various truncation schemes
compared to exact results using the NN-only N3LO EM 500 λ = 1.8 fm−1 Hamiltonian in an HF
basis.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

 7.2 IMSRG(3) corrections to ground-state energies of 4He obtained in various truncation schemes
compared to exact results using the NN-only N3LO EM 500 λ = 1.8 fm−1 Hamiltonian in a NAT
basis.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

 7.3 IMSRG(3) corrections to ground-state energies of 4He obtained in various truncation schemes
using the NN+3N 1.8/2.0 (EM) Hamiltonian in a NAT basis.  . . . . . . . . . . . . . . . . . . . 92

 7.4 IMSRG(3) corrections to ground-state energies of 16O obtained in various truncation schemes
compared to exact results using the NN-only N3LO EM 500 λ = 1.8 fm−1 Hamiltonian in an HF
basis.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

 7.5 IMSRG(3) corrections to ground-state energies of 16O obtained in various truncation schemes
compared to exact results using the NN-only N3LO EM 500 λ = 1.8 fm−1 Hamiltonian in a NAT
basis.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

 7.6 Ratios of correlation energies obtained in IMSRG(2) and approximate IMSRG(3) calculations
relative to the IMSRG(3) correlation energies for different systems.  . . . . . . . . . . . . . . . 95

 7.7 IMSRG(3) corrections to ground-state energies of 4He and 16O obtained in various truncation
schemes compared to exact results using several unevolved chiral Hamiltonians.  . . . . . . . . 96

 7.8 The ground-state energy of 16O predicted by IMSRG(3)-N7 calculations as a function of three-
body truncations emax,3b and E3max.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

 7.9 The charge radius of 16O predicted by IMSRG(3)-N7 calculations as a function of three-body
truncations emax,3b and E3max.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

 8.1 Ground-state energies and charge radii for 12C and 13C predicted by VS-IMSRG calculations.  104
 8.2 Differences in ground-state energies and charge radii between 13C and 12C predicted by VS-

IMSRG calculations.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
 8.3 Charge radii of 13C and 12C along with their difference predicted by Hartree-Fock and VS-IMSRG

calculations using several Hamiltonians.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

 9.1 Ground-state energies and charge radii from IMSRG(2) and IMSRG(3)-N7 calculations of 48Ca.  111
 9.2 Ground-state energies from IMSRG(2) and IMSRG(3)-N7 calculations of 48Ca compared with

predictions from VS-IMSRG(2) and VS-IMSRG(3)-N7 calculations of 48Ca.  . . . . . . . . . . 112
 9.3 Excitation energies for the first 2+ state of 48Ca from VS-IMSRG(2) and VS-IMSRG(3)-N7

calculations.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
 9.4 Correlations of VS-IMSRG(3)-N7 corrections to charge radii of calcium isotopes.  . . . . . . . 115
 9.5 Schematic overview of the performance of IMSRG(3) methods . . . . . . . . . . . . . . . . . . . 119



FIGURES xiii

 10.1 King plot of the isotope shifts of the γPTB transition with respect to the isotope shifts of the
αPTB transition normalized with the inverse mass-ratio difference wA,A′ .  . . . . . . . . . . . . 124

 10.2 Observed and predicted nonlinearities decomposed in the (λ+, λ−) plane.  . . . . . . . . . . . . 126
 10.3 Valence spaces VS1 and VS2 employed for our VS-IMSRG calculations of ytterbium isotopes.  128
 10.4 Experimental δ⟨r2⟩A,A−2 values in ytterbium compared with nuclear theory predictions from ab

initio calculations and from density functional theory calculations.  . . . . . . . . . . . . . . . . 130
 10.5 Experimental δ⟨r4⟩A,A−2 trends in ytterbium compared with nuclear theory predictions from ab

initio calculations and from density functional theory calculations.  . . . . . . . . . . . . . . . . 131





Tables

 2.1 Summary of chiral EFT potentials used in this thesis.  . . . . . . . . . . . . . . . . . . . . . . . 12

 5.1 Hartree-Fock and IMSRG(2) ground-state energies for 132Sn obtained in the single-particle
normal ordering and Jacobi normal ordering employing various truncations and approximations
in the handling of the 3N potentials.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

 7.1 Summary of lowest-order perturbative contributions to the energy provided by each of the
IMSRG(3) fundamental commutators along with their computational costs.  . . . . . . . . . . 87

 7.2 Summary of approximate and complete IMSRG(3) truncation schemes.  . . . . . . . . . . . . . 88

 10.1 Notation for the transitions used in the King-plot analysis and the nonlinearity decomposition.  127
 10.2 VS-IMSRG(2) predictions of ⟨r2⟩ and ⟨r4⟩ for 168–176Yb.  . . . . . . . . . . . . . . . . . . . . . 132
 10.3 VS-IMSRG(2) predictions of δ⟨r2⟩ and δ⟨r4⟩ for neighboring isotope pairs in 168–176Yb.  . . . . 132
 10.4 Assessed standard deviations for δ⟨r2⟩ and δ⟨r4⟩ EFT, valence-space, and many-body errors.  . 133
 10.5 Electronic G

(4)
τ coefficients of atomic transitions in ytterbium.  . . . . . . . . . . . . . . . . . . 134

 10.6 Experimental δ⟨r4⟩A,A−2 values relative to δ⟨r4⟩176,174 = 7 fm4 extracted from ytterbium isotope
shifts.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xv





Chapter 1

Introduction

Atomic nuclei are exciting laboratories, both theoretically and experimentally, to test and refine our
understanding of fundamental physics [  1 ]. Improved knowledge of the structure of nuclei has far-reaching
implications. We learn about nuclear forces and how they emerge from strong interactions in the standard
model at low energies [ 2 – 4 ]. Based on the same nuclear forces, we can predict the properties of dense matter
in neutron stars [  5 – 9 ], also dominated by strong interactions and with densities comparable to those in
heavy nuclei [ 10 – 12 ]. Moreoever, we learn how various complex phenomena in nuclei emerge from nuclear
forces and quantum many-body physics [ 13 – 25 ]. Constraining the properties of neutron-rich nuclei improves
our understanding of the rapid neutron-capture process [  26 – 29 ], occuring in neutron-star mergers and some
supernovae and responsible for most of the synthesis of elements heavier than iron [ 30 – 32 ]. At the same
time, with high-precision measurements in atoms and nuclei and complementary theory predictions we
can test our understanding of fundamental interactions and search for new physics beyond the standard
model [ 33 – 36 ]. With this broad reach, developments towards high-precision theoretical predictions of nuclear
structure with robustly quantified uncertainties are particularly relevant.

In this thesis, the focus is the improved theoretical description of the structure of atomic nuclei using
first-principles, or ab initio, many-body methods. Nuclei are made up of protons and neutrons, collectively
referred to as nucleons. A first-principles description of nuclei amounts to solving the many-body Schrödinger
equation

H |Ψ⟩ = E |Ψ⟩ , (1.1)

which has two key ingredients: nuclear Hamiltonians H describing the interactions between nucleons; and
many-body calculations or simulations of A interacting nucleons to describe A-body nuclei, obtaining the
ground state |Ψ⟩. Nuclear forces and ab initio many-body methods are each challenging fields of active
research, and in the past three decades paradigm shifts and developments in both have drastically extended
the reach and the precision of such calculations [  37 – 52 ], nicely visualized in Fig.  1.1 . In both cases, the key
shifts have been towards low-resolution descriptions appropriate for the description of low-energy physics
coupled with controlled, systematically improvable expansions.

Low-resolution nuclear forces make use of effective field theory and renormalization group methods to
provide an efficient low-energy description of nuclear interactions. Of crucial importance here is the insight
that when considering low-energy phenomena we have limited resolution, and thus details at short distances
corresponding to small wavelengths or high energies do not affect the big picture at long distances we are
interested in. Effective field theories (EFTs) work within this picture by providing a general low-energy
expansion for unresolved short-distance physics in terms of contact interactions while explicitly including
long-distance physics resolved at low energies [ 53 ,  54 ]. Chiral EFT for nuclear forces [ 55 – 58 ] has been very
successful at producing quantitative nuclear interactions, in particular also including three-body forces

1
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Figure 1.1: Progress in ab initio nuclear theory from 2010 to 2020. The chart of nuclides as a function of
neutron number N and proton number Z, with stable isotopes indicated by dark gray squares. Isotopes for which
converged ab initio calculations based on two- and three-body nuclear interactions have been published are indicated
by the colored squares. The blue arrow indicates expected near-term progress towards heavier systems and a more
comprehensive description of open-shell systems in particular. Figure from Ref. [  86 ].

necessary for the quantitative description of nuclear many-body systems [ 59 – 61 ]. Renormalization group
(RG) methods fit nicely into this picture, allowing one to systematically dial the resolution of nuclear forces
via transformations that integrate out or decouple short-distance physics [  62 – 69 ]. The combination of these
two synergistic approaches has spurred the development of various low-resolution nuclear forces with many
interesting perspectives for further improvements [ 70 ].

Nuclear structure theory, the prediction of the properties of atomic nuclei, was traditionally the domain
of phenomenological methods like the shell model and density functional theory (DFT) [ 71 – 85 ]. While
generally successful in the regions where they are fit, phenomenological many-body methods lack a systematic
connection to nuclear forces limiting predictive power when extrapolating to exotic systems. On the other
hand, ab initio many-body methods require no adjustment or fitting to specific parts of the nuclear landscape,
giving them predictive power even in exotic systems [ 86 ]. The cost for this predictive power is the simulation
of an A-body system with A interacting nucleons, a formidable formal and computational task.

The aforementioned efficient, low-resolution description of nuclear forces based on chiral EFT and RG
transformations has allowed for ab initio nuclear many-body methods to thrive. Limited for a long time
to quantum Monte Carlo (QMC) simulations using phenomenological two- and three-body forces [ 87 ,  88 ],
low-resolution nuclear forces allowed for basis expansion methods to yield converged results, leading to first
ab initio many-body calculations based on chiral EFT potentials using the no-core shell model (NCSM) [ 89 ].
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systematic corrections to the reference state |Φ⟩ to obtain more quantitative approximations to the ground state |Ψ⟩.
We show truncations various of methods at several orders organized from left to right in terms of computational
cost and “completeness” (a more complete truncation provides a better approximation of the exact ground state):
many-body perturbation theory at second, third, and fourth order (MBPT2, MBPT3, and MBPT4); self-consistent
Green’s function theory within the second- and third-order algebraic diagrammatic construction (ADC) [ADC(2) and
ADC(3)]; the in-medium similarity renormalization group at the normal-ordered two- and three-body truncations
[IMSRG(2) and IMSRG(3)]; and coupled-cluster theory truncated at the singles and doubles level (CCSD) and at the
singles, doubles, and triples level (CCSDT).

Nuclear forces based on chiral EFT have since also been adapted for use in QMC calculations [ 90 ]. Still,
both QMC and the NCSM solve the Schrödinger equation in a quasi-exact manner. This means they are
limited in mass range to A ≲ 16 due to the exponential scaling of the methods in mass number A. This can
be seen in Fig.  1.1 , where in 2010 (yellow) ab initio calculations were strongly limited in their reach.

The extension to heavier systems is possible by introducing controlled approximations to the solution
of the many-body Schrödinger equation, with most methods employing what is called the many-body
expansion. Here, the key idea is that the ground state of a system |Ψ⟩ can be efficiently approximated
by a leading-order reference state |Φ⟩. This approximation is unfortunately not quantitative, but one can
efficiently compute corrections to the reference state to arrive at a quantitative description, and these
corrections can be computed with computational costs that scale as a low polynomial of the basis size
N [ 86 ]. 

1
 This reduction of the computational scaling from exponential to polynomial is what allows such

methods to be applied to systems as heavy as 208Pb [ 47 ,  49 ] and has led to the rapid expansion of the reach
of ab initio methods to heavy nuclei from 2010 to 2020 seen in Fig.  1.1 .

This many-body expansion can be formulated in different ways, schematically represented in Fig.  1.2 ,
leading to different many-body methods, such as many-body perturbation theory (MBPT) [ 91 ], coupled-
cluster (CC) theory [  92 ], self-consistent Green’s function (SCGF) theory [ 93 ], and the in-medium similarity
renormalization group (IMSRG) [ 94 ,  95 ]. All of these methods are formulated such that in some infinite limit
one solves the Schrödinger equation exactly, but in practice one only needs low-order expansions to arrive at a
quantitative description of many low-energy phenomena. Complementarily, recently developed approximate
lattice methods [ 96 – 98 ] are scalable to heavier nuclei, where the approximations are in the specific definitions
of leading order interactions required to tame the fermion sign problem and the (first-order) perturbative
treatment of higher-order interactions.

1Typical basis sizes N are on the order of ∼ 10A, making this effectively a polynomial scaling also in system size A.
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Employing low-resolution nuclear forces and scalable many-body methods, ab initio nuclear theory has
tremendous reach. Nuclear forces have free parameters that must be fit to data, but once such forces have
been fit they can be used consistently to describe few-body scattering, homogeneous nuclear matter, and
nuclei all over the nuclear chart. This consistency gives ab initio calculations predictive power in exotic
systems where phenomenological methods rely on uncontrolled extrapolations [ 44 ]. At the same time, being
able to compute different many-body systems from a single Hamiltonian allows us to test nuclear forces
in a variety of contexts and rule out those forces that only reproduce some, but not all observables of
interest [  47 ].

A key ingredient here is the ability to quantify the uncertainties of ab initio predictions, resulting from
the use of approximate theories for nuclear forces and approximate many-body methods. Both effective
field theories and many-body expansion methods rely on systematically improvable expansions that can in
practice be truncated at relatively low order. As a result, ab initio calculations are always approximate and
predictions must be coupled with estimated uncertainties. Fortunately, systematically improvable methods
with order-by-order convergence are perfect for assessing uncertainties due to missing higher orders [ 99 ]. In
the past decade, Bayesian methods have been established to study this order-by-order convergence [ 100 ] and
infer distributions of underlying theory parameters [ 101 ]. These methods, combined with emulators for few-
and many-body calculations [ 102 – 105 ], allow ab initio nuclear theory to give complete posterior predictive
distributions for observables, making statistically meaningful comparison with experiment and other theory
predictions possible. In practice, such uncertainty quantification is still challenging, but assessing the
uncertainty due to truncations in the EFT is steadily becoming more routine. A major milestone for ab
initio nuclear theory is treating the uncertainties due to many-body expansion truncations in the same way.

1.1 Overview of this thesis
In this thesis, we improve the precision and efficiency of IMSRG calculations with the ultimate goal of
making high-precision, uncertainty-quantified predictions of nuclear structure observables possible. Our
developments improve the treatment of three-body forces in calculations of heavy nuclei, make many-body
calculations more efficient through informed model-space truncations, and extend the many-body expansion
in the IMSRG to the next order, the IMSRG(3), including normal-ordered three-body operators in the
many-body solution. Developing the IMSRG(3) in particular is a milestone for nuclear structure theory,
offering at the same time higher precision and the ability to robustly quantify many-body uncertainties in
IMSRG calculations. We explore these developments in studies of carbon, calcium, and ytterbium isotopes,
seeking to understand and quantify many-body uncertainties in our calculations.

Part of the results of this thesis have been published in Refs. [ 45 ,  49 ,  52 ,  106 – 108 ]. In the chapters
outlined below, I discuss my contributions to each of the relevant publications.

This thesis is organized into the following chapters:

• Chapters  2 ,  3 , and  4 introduce the fundamentals necessary to understand the developments in
this thesis. Chapter  2 introduces nuclear forces, the basic input for our many-body calculations,
emphasizing the role of effective field theory and renormalization group methods. Chapter  3 introduces
the formal basics of many-body theory in general, and Chapter  4 introduces the IMSRG, the many-body
method we use throughout this thesis.

• In Chapter  5 , we present a framework to precisely include three-body forces in many-body calculations
via normal ordering in a Jacobi basis [ 49 ]. This approach avoids truncations that have limited ab
initio calculations of heavy nuclei, and we present converged ground-state energies and charge radii of
208Pb predicted by the IMSRG.
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• In Chapter  6 , we present two complementary developments that allow us to efficiently truncate
IMSRG calculations to reduce their computational cost. First, we construct perturbatively improved
natural orbital bases to optimize the computational bases we use in IMSRG calculations [ 106 ]. Our
results establish the benefits of basis optimization for many-body calculations, allowing for converged
results in substantially smaller model spaces. Second, we explore importance truncation in the
IMSRG [ 107 ], making informed truncations to compress our IMSRG calculations by as much as 99%
while introducing negligible errors. The truncation strategies we establish for IMSRG calculations are
generalizable to other many-body methods and will play an important role in making high-precision,
high-cost many-body methods like the IMSRG(3) computationally tractable.

• In Chapter  7 , we develop the IMSRG(3) [ 45 ], the next order in the IMSRG many-body method
including normal-ordered three-body operators in the many-body solution. We test the IMSRG(3) and
various approximations of it against exact theory results obtained from diagonalizations, establishing
the precision of the method. We find that lower-cost approximations of the IMSRG(3) are able to
give similarly precise results at substantially reduced computational cost. Such approximations, in
particular an approximation we name the IMSRG(3)-N7, pave the way to IMSRG(3) calculations in
medium-mass nuclei, where the computational cost of the full IMSRG(3) would be prohibitive.

• In Chapter  8 , we investigate the structure of 12C and 13C in IMSRG calculations [ 108 ], including also
converged IMSRG(3)-N7 calculations. The IMSRG(3) allows us to assess the many-body uncertainties
in our calculations, and we find that the cluster structure of these systems, especially 12C, leads to
larger many-body uncertainties in our predictions.

• In Chapter  9 , we perform preliminary studies of the structure of calcium isotopes using the
IMSRG(3)-N7 approximation. We are unable to provide fully converged results, but we still find
that the IMSRG(3)-N7 provides an improved description of the structure of 48Ca, giving important
corrections to the predicted 2+ excitation energy. We explore correlated uncertainties, improved
three-body basis truncations, and a new scalable numerical implementation as ways to reach fully
converged IMSRG(3)-N7 results.

• In Chapter  10 , we compute the ground-state properties of ytterbium isotopes as input for a search for
signals of a possible new boson in ytterbium isotope shifts [ 52 ]. Our fully uncertainty-quantified input
explains the leading signal as an effect of the nuclear structure of ytterbium isotopes, which are heavily
deformed. This complicated deformation makes the further analysis for new physics challenging, but
we are able to extract information on δ⟨r4⟩ from our measurements, giving access to a new nuclear
structure observable related to deformation.

• We offer a final conclusion in Chapter  11 .

This thesis opens up two new frontiers for IMSRG calculations, the frontier of heavy nuclei through the
improved treatment of three-body forces and the frontier of precision predictions using the IMSRG(3), and
explores them in subsequent applications. Establishing precise, fully uncertainty-quantified predictions with
the IMSRG sets the foundation for many interesting studies exploring nuclear structure in exotic nuclei, in
new physics searches, and in astrophysical environments.
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Chapter 2

Nuclear forces

The starting point for ab initio calculations of nuclei are nuclear forces describing interactions between
nucleons. While conceptually simple, determining nuclear forces is a long-standing challenge for low-energy
nuclear theory. This challenge ultimately lies in the fact that nucleons are not the fundamental degrees
of freedom through which we understand the strong interaction. The theory of the strong interaction,
quantum chromodynamics (QCD), is given in terms of quark and gluon degrees of freedom. At low energies
these are confined in hadrons like nucleons, and so nuclear forces are residual effective strong interactions
between bound quarks and gluons. Moreover, analytically deriving expressions for these effective strong
interactions is currently not possible, as large values of the strong coupling constant αs(q2) at low energies
prevent a perturbative treatment.

Still, over many years our understanding of nuclear forces has been refined to a point where today it is
both very quantitative and at the same time rooted in our understanding of QCD. Following the postulate
of the one-pion exchange potential by Yukawa [ 109 ], initial efforts to obtain realistic nuclear interactions
employed phenomenological parametrizations [ 110 ,  111 ] or tuned meson-exchange models [ 112 – 116 ] to fit
nucleon-nucleon potentials that achieved a high quality reproduction of nucleon-nucleon scattering data.
These efforts made great strides in setting the foundation for ab initio nuclear structure calculations, but
it quickly became clear that a description of nuclei based on only two-body forces is incomplete: Three-
nucleon forces are a necessary ingredient for a quantitative description of nuclear structure [ 59 – 61 ,  117 – 127 ].
Such phenomenological approaches lacked the predictive power to arrive at comprehensive, systematically
improvable descriptions of three-body forces.

Based on these challenges, the paradigm of low-resolution nuclear theory appropriate for the description
of low-energy phenomena was established for nuclear forces [ 55 ,  65 ,  66 ,  68 ,  128 – 134 ]. Essentially any
description of nuclear forces is necessarily approximate, limited by either theory truncations or incomplete
parametrizations, and nuclear forces are not unique, but scale- and scheme-dependent. As a result, low-
energy nuclear theory has the freedom to choose to construct forces in such a way that emphasizes the
reproduction of relevant low-energy physics. This paradigm is a crucial part of modern nuclear theory, where
nowadays effective field theories and renormalization group methods are key ingredients to constructing
the low-resolution nuclear forces that provide an efficient, predictive description of nuclear interactions in
low-energy many-body systems.

In this chapter, we introduce chiral effective field theory and renormalization group methods for
nuclear forces, both essential to understand the nuclear potentials used in this thesis, and explain how the
uncertainty in our understanding of nuclear forces can be robustly quantified. This discussion is selective,
focusing on details relevant for this thesis, and we refer the reader to the excellent reviews and articles in
Refs. [ 54 ,  56 ,  57 ,  68 ,  100 ,  135 ] for a more comprehensive treatment.

9
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Figure 2.1: Contributions to NN, 3N, and 4N interactions in chiral EFT up to order N4LO. Solid
lines indicate nucleon propagators. Dashed lines indicate pion propagators. The number of new LECs for the new
interaction contributions at each new order is shown in the top right corner. Figure from Ref. [  61 ].

2.1 Effective field theories for nuclear forces

Effective field theories are a pillar of modern physics, broadly employed to capture relevant phenomena in
systems characterized by multiple momentum scales and clear scale separations. They provide a way to
define effective degrees of freedom and interactions between those in a systematically improvable expansion.
The key ingredient is a clear separation of scales between relevant low-energy phenomena and irrelevant
high-energy physics that the theory will not resolve. This allows for an efficient expansion of low-energy
physics. Crucially, effective theories are constructed in a general way based on symmetries. Through this
they can be connected to a more fundamental theory by respecting the known symmetries (exact and
approximate) of the underlying theory.

Defining an EFT requires identifying three ingredients [ 54 ]: degrees of freedom of the theory; a high-
momentum scale Λb characterizing unresolved physics; and a set of symmetries the theory must respect.
The task is then to construct the most general Lagrangian with the chosen degrees of freedom consistent
with the underlying symmetries [ 53 ]. The result is a theory that resolves low-energy interactions explicitly
and expands high-energy interactions in terms of a general expansion in low momenta Q or light masses
m over the breakdown scale Λb. This general expansion captures short-distance details of the underlying
theory and comes with free parameters, known as low-energy constants (LECs) or also Wilson coefficients,
which must be fit to data or matched to simulations of the underlying theory [ 136 – 142 ].

Chiral EFT is an effective theory for nuclear forces describing interactions between nucleons in terms
of pion exchanges and short-range contact interactions [ 56 ,  57 ]. It is connected to chiral perturbation
theory [ 143 – 147 ] (used to describe, for example, pion-nucleon scattering) via the common underlying chiral
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symmetry of QCD, resulting in the same effective Lagrangian and common LECs. For the constuction of
the EFT, QCD has various relevant symmetries, but the one that gives chiral EFT its character is the
aforementioned approximate chiral symmetry. Chiral symmetry is an approximate global SU(2)L × SU(2)R

symmetry of the QCD Lagrangian. This symmetry is spontaneously broken in nature, giving rise to the
anomalously light pion as the Goldstone boson of the spontaneously broken SU(2)A symmetry, and also
explicitly broken by the nonzero quark masses and electroweak interactions [ 148 – 150 ]. Accounting for this
symmetry and its breaking at low energies is what connects chiral perturbation theory and chiral effective
field theory with our understanding of QCD.

With this, the symmetries and the degrees of freedom (nucleons and pions) of the effective theory are
fixed. Looking at the next heaviest meson not explicitly included, we can identify the breakdown scale to
be around the mass of the ρ meson, Λb ∼ mρ ≈ 770 MeV. 

1
 The low-energy scales of the theory are the

characteristic momenta Q that we consider and the pion mass mπ ∼ 140 MeV. This clear separation of
scales allows chiral EFT to provide an efficient, robust expansion for nuclear interactions in terms of pion
exchanges and contact interactions, made systematic by a power counting scheme.

The final result of this approach in the Weinberg power counting [ 55 ] is shown in Fig.  2.1 . The leading
order (LO) description of nuclear forces is given by nucleon-nucleon (NN) interactions, with the one-pion
exchange (indicated by the dashed line between the solid nucleon lines) and two contact interactions
(indicated by the orange diamond). At higher orders, the nucleon-nucleon interactions become more
complicated, with many more pion-exchange contributions coming in at each order and further contact
interactions at next-to-leading order (NLO) and next-to-next-to-next-to-leading order (N3LO). We note
also that the blue vertices in certain pion-exchange diagrams indicate pion-nucleon couplings that are
fixed in chiral perturbation theory for pion-nucleon scattering [ 152 ,  153 ]. Fitting the LECs associated with
the LO, NLO, and N3LO contacts to scattering data and summing up all contributions allows modern
chiral EFT NN potentials to provide a high-precision description of nucleon-nucleon scattering data up to
laboratory energies of 290 MeV [ 154 – 160 ].

At the same time, chiral EFT naturally and consistently predicts the appearance of three-nucleon (3N)
forces at next-to-next-to-leading order (N2LO). Here, one immediately has two short-range 3N interactions
(indicated by the green square and the orange pentagon) with two LECs cD, cE to be fit to data but also
a long-range pion-exchange term with the same pion-nucleon couplings as before. Furthermore, the 3N
contributions at the next order, N3LO, are predicted without any new LECs, with the only couplings coming
from lower orders in the power counting. This nicely shows the consistency of chiral EFT and the resulting
predictive power. Four-nucleon (4N) forces appear at N3LO without any LECs to fit [ 161 – 164 ] but are
generally not included in ab initio calculations today. The 3N LECs cD and cE cannot be determined from
NN scattering data and are often fit to uncorrelated observables in three- and four-body systems, such as the
3H binding energy and the 3H β-decay half life [ 61 ]. Recent approaches have also explored alternative fits to
medium-mass nuclei and/or nuclear matter properties to better capture saturation properties [ 47 ,  165 – 167 ].

Given the low excitation energy of the ∆ resonance of the nucleon at m∆ − mN ≈ 300 MeV, a so-called
∆-full chiral EFT formulation has been developed to include the ∆ as a low-energy degree of freedom in
the effective theory [ 47 ,  167 – 170 ]. A notable change in this formulation is that 3N forces already appear
at NLO, one order early than without explicit inclusion of the ∆ resonance [ 169 ]. Such forces have been
derived and optimized up to N2LO.

In general, nuclear potentials must be explicitly regularized to make divergent integrals over intermediate
momenta convergent, introducing a dependence on the regularization scheme and the cutoff scale Λ used.

1Throughout this thesis, we employ units such that ℏ = c = 1. This means energies have units of fm−1 expressed in length
dimensions, and we can quickly convert between MeV and fm using ℏc = 1 = 197.3269804 MeV fm [ 151 ].
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Table 2.1: Summary of chiral EFT potentials used in this thesis. We name the potentials used in this
thesis, providing the references in which they were constructed. For the NN potentials, we provide the chiral order,
regularization cutoff Λ, and SRG resolution scale λ (if relevant). For NN+3N potentials, we provide the chiral order,
regularization cutoff Λ, and SRG resolution scale λ (if relevant) for the 3N potential as well, which may differ from
the NN potential.

Name Refs. NN 3N
Order Λ (MeV) λ (fm−1) Order Λ (MeV) λ (fm−1)

N3LO EM 500 [ 154 ] N3LO 500 - - - -
N3LO EM 500 λ = 1.8 fm−1 [ 154 ] N3LO 500 1.8 - - -

N3LO EMN 450 [ 157 ] N3LO 450 - - - -
N3LO EMN 500 [ 157 ] N3LO 500 - - - -

1.8/2.0 (EM) [ 171 ] N3LO 500 1.8 N2LO 394 -
2.0/2.0 (EM) [ 171 ] N3LO 500 2.0 N2LO 394 -
2.2/2.0 (EM) [ 171 ] N3LO 500 2.2 N2LO 394 -

N3LO 450 [ 157 ],[ 166 ] N3LO 450 - N3LO 450 -
N3LO 500 [ 157 ],[ 166 ] N3LO 500 - N3LO 500 -

N3LO 500 λ = 2.0 fm−1 [ 157 ],[ 166 ] N3LO 500 2.0 N3LO 500 2.0
N2LOsat [ 165 ] N2LO 450 - N2LO 450 -

∆N2LOGO [ 167 ] N2LO 394 - N2LO 394 -

This dependence can be understood as an artifact related to the uncertainty due to working at a finite
order in the EFT. Each additional order in the EFT cancels out the scale dependence of the previous order,
and in the limit of infinite order all observables should not depend on the regularization scheme or scale (for
reasonable choices of scheme and scale). Alternatively, we can consider the scheme and scale dependence as
to some extent quantifying the intrinsic uncertainty in our forces due to operating at finite order in the
EFT [  68 ]. We return to this topic of uncertainty quantification for nuclear forces in Sec.  2.3 .

Nowadays, there are many optimized chiral EFT NN+3N potentials, with various construction schemes
for the NN potentials [ 154 – 159 ,  165 ,  167 ,  172 – 179 ] and different approaches to fitting the consistent 3N
potentials [ 61 ,  166 ,  180 ,  181 ]. To quickly understand the essential characteristics of a given potential, one
can consider the chiral order and the cutoff scale Λ used in the regularization. Most high-quality chiral
EFT potentials used in nuclear structure today are either at N2LO or N3LO and employ a regulator cutoff
between Λ = 394 MeV and 500 MeV. We summarize the potentials used in this thesis in Table  2.1 .

Despite its success and ubiquity, there are still many open questions regarding the derivation of
potentials via chiral EFT and their consistent application in many-body calculations. For example, there
are multiple schools of thought regarding what the correct power counting for nuclear potentials is [ 182 – 184 ].
Additionally, the uncertainties from the regularization scheme and scale for nuclear potentials are still often
dominant in many-body calculations [ 40 ,  47 ,  185 ]. In particular, potentials that are most successful in
nuclear structure are the ones that deviate the strongest from the consistency philosophy of chiral EFT,
employing inconsistent orders and regularizations for the NN and 3N potentials [ 51 ,  171 ,  186 ] and/or fitting
to many-body data [ 165 ,  167 ,  187 ], motivating developing chiral EFT to even higher orders to reduce
uncertainties [ 188 ]. However, the rapid expansion of the range of ab initio calculations over the past two
decades has been in no small part due to the introduction of chiral potentials and the development of
auxiliary tools to aid in their application to many-body calculations.
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2.2 The similarity renormalization group
Renormalization group methods [ 62 – 68 ,  189 – 192 ] allow one to connect theories at different resolution scales
via smooth transformations that integrate out or decouple high-energy states from the problem. Effectively,
they allow one to dial the resolution of a theory systematically, allowing one to shift to a low-resolution
description that makes subsequent calculations much more tractable.

The similarity renormalization group (SRG) [ 63 ,  64 ,  67 ,  189 ] is the most wide-spread renormalization
group method for nuclear physics today. Instead of integrating out high-energy states from the problem,
it aims to construct a unitary transformation of the Hamiltonian decoupling these states from relevant
low-energy states:

H(s) = U(s) H U †(s) . (2.1)

The transformation is chosen to be a function of a continuous flow parameter s, allowing one to rewrite
Eq. ( 2.1 ) as the flow equation

dH(s)
ds

= [η(s), H(s)] , (2.2)

with the generator η(s) = U(s)dU †(s)/ds, the commutator [A, B] = AB − BA, and the initial condition
H(s = 0) = H. The SRG unitary transformation is performed by solving the coupled differential equation,
Eq. ( 2.2 ), from s = 0 towards s → ∞.

A unitary transformation of the Hamiltonian and consistent transformation of all other operators leaves
observables unchanged. While it is possible to do this for two- and three-body systems [ 190 – 192 ], it is
infeasible for heavier systems, meaning an exact application of the SRG is generally not possible. Still, the
SRG can very effectively be used to transform two- and three-body potentials and other operators to “softer”
low-resolution forms, decoupling low- and high-momentum states. This transformation is exact in the two-
and three-body systems, leaving all observables like differential cross sections, binding energies, charge
radii, and half lives unchanged. NN phase shifts are also preserved by the transformation. Still, in four-
and higher-body systems, the SRG induces many-body potentials that are not captured in the two- and
three-body SRG evolution. These missing many-body forces are the price one pays for the transformation
to lower resolution, a common feature of all renormalization group methods.

The standard generator definition for SRG calculations today is

η(s) = [Trel, H(s)] , (2.3)

with the relative kinetic energy Trel. This generator choice η = [X, H] builds off the intuition from
Wegner [ 64 ] that such a generator will drive H to the form of the operator X. Trel is diagonal in momentum
space, with no coupling between low- and high-momentum states, so choosing X = Trel generates the
desired decoupling. In fact, things become very intuitive if one changes variables to

λ = 1
s1/4 , (2.4)

which has units of fm−1 and goes from λ → ∞ towards λ = 0 during the SRG evolution. Doing this, one sees
that off-diagonal NN potential matrix elements SRG transformed to a resolution scale λ are exponentially
suppressed for p2 − p′2 ≥ λ2 for incoming and outgoing relative momenta p and p′ [ 67 ].

Thus λ functions as a resolution or cutoff scale for the SRG-evolved potential with the intuition that
physics at momentum scales above λ has been decoupled. This can be seen quite nicely in Fig.  2.2 . The
N4LO EMN 500 NN potential [ 157 ] has a cutoff of Λ = 500 MeV ≈ 2.5 fm−1. In the left two panels for
λ = 5.0 fm−1 and λ = 4.0 fm−1, the potential is hardly affected by the SRG transformation as λ is still
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Figure 2.2: SRG evolution of a chiral EFT NN potential. Contour plots of V (p, p′) for the N4LO EMN 500
NN potential from Ref. [ 157 ] in the 3S1 part of the 3S1-3D1 channel SRG evolved to resolution scales λ.

considerably larger than 2.5 fm−1. Evolving to even lower resolution scales, we see that the potential begins
to change with V (p, 0) for p ≥ λ being driven to 0. At λ = 1.5 fm−1, the low- to high-energy couplings
present in the initial potential have all been transformed away, leaving a very soft NN potential.

These soft SRG-evolved potentials can be used as input for many-body calculations, which benefit
immensely from the decoupling [ 68 ,  190 ,  191 ,  193 – 196 ]. In practice, using low-resolution potentials means
substantially smaller model-space sizes can be used (see Chapters  3 and  4 for details), reducing computational
costs and allowing converged results in larger systems. Still, the missing induced many-body forces from the
SRG evolution mean that many-body observables will not be fully invariant under the SRG transformation.
The trick is to operate in a middle ground, evolving far enough to get soft potentials that make many-body
calculations substantially easier while not evolving too far such that induced many-body forces remain
small and under control (ideally smaller than the EFT uncertainty for the forces). This can be probed by
using multiple forces at different resolution scales λ and checking how observable predictions depend on
λ. A strong dependence would indicate significant missing contributions from many-body forces while no
dependence would indicate approximate renormalization group invariance, a desirable outcome [ 68 ].

Included in the summary of the potentials used in this thesis in Table  2.1 are several SRG-evolved
potentials, most of which are either NN-only SRG-evolved potentials or NN+3N potentials that have been
consistently evolved. A notable exception is the set of potentials introduced in Ref. [ 171 ], the 1.8/2.0 (EM),
2.0/2.0 (EM), and 2.2/2.0 (EM) potentials. For these potentials, the N3LO EM 500 NN potential [ 154 ] is
SRG evolved to a resolution scale λ. The 3N potential is regularized with a lower cutoff Λ3N = 2.0 fm−1

and the 3N LECs are fit to the 3H binding energy and the 4He point-proton radius. This hybrid approach
was adopted out of necessity, as consistent NN+3N SRG evolution in momentum space was not possible at
the time, but the basic intuition is that refitting the 3N potential after the SRG evolution captures many of
the induced 3N interactions that one would get from a consistent NN+3N SRG evolution. These potentials
have been exceptionally successful in nuclear structure calculations, especially the 1.8/2.0 (EM) potential,
which gives an excellent reproduction of ground-state energies, spectra, and differential charge radii up to
heavy nuclei [ 3 ,  44 ,  51 ,  61 ].

2.3 Uncertainty quantification for nuclear forces
Nuclear forces are inherently uncertain. In chiral EFT, this uncertainty comes primarily from the truncation
in chiral order, but also from the regularization scheme and scale, the strategy for fitting to data, and
possibly the resolution scale coming from a further renormalization group transformation. Quantifying all
of these sources of uncertainty is challenging, but in recent years substantial progress has been made on
giving statistically meaningful, robust estimates of nuclear Hamiltonian uncertainties [ 100 ,  101 ,  135 ].
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Figure 2.3: Bayesian estimates for the chiral EFT truncation uncertainty. Total proton-neutron scattering
cross section σtot calculated order by order at different energies using potentials from Ref. [  155 ]. The thick and thin
error bars indicate 68% and 95% degree-of-belief intervals obtained via Bayesian uncertainty quantification [  100 ].
Figure adapted from Ref. [ 100 ].

In principle, all EFT uncertainties arise due to the truncation of the EFT at a finite order. The leading
approach to understanding this truncation uncertainty [ 100 ,  135 ,  155 ,  176 ] postulates an expansion of the
observable X in chiral order n

X = Xref

∞∑
n=0

cnQn, (2.5)

with dimensionful reference scale Xref, the dimensionless expansion coefficients cn, and the expansion
parameter 

2
 

Q = max(p, mπ)
min(Λ, Λb) . (2.6)

The error due to a truncation at finite order k should roughly behave as

∆X(k) ∼ Xref ck+1Qk+1 . (2.7)

Intuitively, chiral EFT should provide a well-behaved convergent prediction for X, so given a proper
definition of the expansion parameter Q the expansion coefficients cn should be of natural size, meaning of
order 1. This means ck+1 can be estimated based on the c0, . . . , ck from the available orders, either by taking
the maximum magnitude from previous orders (called the EKM prescription in the literature) [ 155 ,  176 ] or
by performing a Bayesian analysis to determine a distribution for the expansion coefficients cn to arrive at
a statistical distribution for the final error ∆X(k) [ 100 ,  135 ,  197 – 199 ].

This approach is nicely demonstrated in Fig.  2.3 , where the total proton-neutron scattering cross section
at various energies is predicted at multiple orders in chiral EFT. The predictions from chiral EFT converge

2Note that the notation for the expansion parameter, Q, used in Refs. [ 100 ,  176 ] overlaps with the previous notation for
external momenta in effective field theories. From the context, it should be clear which Q is meant, also by considering that an
external momentum Q has dimensions of fm−1 and an expansion parameter Q is dimensionless.
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very systematically when going to higher orders. Additionally, the truncation uncertainty, assessed using
the approach discussed above, allows the error at lower orders to be robustly quantified, and at N4LO one
sees that the truncation uncertainty is very small. Specifically, one sees that the higher-order predictions
generally lie within the uncertainty estimates of the lower-order predictions, demonstrating a very nice
consistency.

There are a few key benefits of the Bayesian tools [ 99 ] used for uncertainty quantification [ 100 ,  135 ,  197 –
 199 ], LEC inference [ 200 – 204 ], and experimental design [ 205 ]. One is the ability to encode prior knowledge
into the analysis in the form of priors. This forces us to confront and quantify the assumptions going into an
analysis, making it possible to also investigate the sensitivity to these assumptions and test them against the
data. The second is that the final predicted or inferred values will in fact be distributions. Based on these
distributions, we can make statistically robust degree-of-belief statements for values, investigate correlations,
and even explore the reasons behind unexpected distribution forms, such as bimodal distributions. Finally,
Bayesian statistics comes with a suite of model checking procedures, which assist tremendously in validating
and refining our analyses.

In recent years, a complementary approach to Hamiltonian uncertainty quantification has been introduced
in nuclear theory using the methods of history matching and importance resampling [ 47 ,  50 ,  101 ,  206 – 208 ].
The central goal is to capture the uncertainty in nuclear Hamiltonians in distributions for the LECs. The
way this is achieved is by sampling the parameter space broadly and then confronting these samples with
data.

In a first stage, called history matching, LEC combinations are compared against a collection of
data [ 207 ,  208 ]. At this point, the only goal is to determine if these LEC combinations produce predictions
that do not plausibly reproduce experimental data. This requires two things. First, it is essential that one
accounts for the theory and experimental uncertainties in this comparison, which are typically dominated
by the EFT truncation uncertainty. For this estimate, one generally uses the prescription discussed above.
Second, the LEC combinations that one tests should be exhaustive, covering all edges of the parameter space,
so one needs to try many millions or billions of parameter combinations. For this reason, it is very important
to have efficient emulators for theory predictions, which give “good enough” estimates for the predicted
values for a given parameter combination at a tiny fraction of the cost of a full theoretical prediction.
Fortunately such emulators have proliferated in nuclear physics in recent years [ 102 – 105 ,  209 – 225 ], making
such ambitious analyses possible.

At the end of history matching, one is typically left with some small set of valid LEC combinations
that passed all implausibility checks. This set on its own, however, does not provide a proper statistical
distribution; the samples that remain carry no information about how relatively likely or unlikely they are
given the data. In a second stage, called importance resampling, theoretical predictions from the remaining
samples are compared against data accounting for all uncertainties to assign relative likelihoods to each
sample [ 101 ,  206 ]. The data one compares to here can be the same as in the history matching step, but
importantly one can also perform this calibration against additional other observables that might not have
been accessible in the history matching stage. The final result is a set of LEC combinations with relative
likelihoods that can be understood as coming from an underlying distribution for the LECs. This set can
be used to linearly propagate the distribution of LECs to a sampled posterior predictive distribution for an
observable by simply evaluating the observable for each LEC combination and weighting that prediction by
the LEC combination’s relative likelihood.

Uncertainty quantification for nuclear forces is still challenging, but methods to do it robustly are
becoming well established and the analyses are becoming more and more routine. This thesis focuses on
developments in many-body methods that, in the long term, will make comparable uncertainty quantification
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(including many-body uncertainties discussed in the next two chapters) possible in nuclear structure
calculations.





Chapter 3

Many-body basics

Solving the quantum many-body problem given an input Hamiltonian is a standard challenge in many fields
of physics, including condensed-matter physics, atomic physics, molecular physics, and, of course, nuclear
physics. The tools to approach this problem efficiently, second quantization, normal ordering, mean-field
approximations, and (non)perturbative expansions beyond the mean field, are well-established [ 226 – 230 ],
and in this chapter we briefly review the most important formalisms and concepts from the perspective of
nuclear physics. This sets the foundation for a focused discussion of the in-medium similarity renormalization
group, the central many-body method of this thesis, and the method developments and nuclear structure
applications presented.

3.1 Second quantization

Second quantization provides us with the tools to efficiently represent many-body states that respect the
required antisymmetry under the exchange of indistinguishable fermions. The basic strategy is to define
field operators that obey this antisymmetry and to then use those to construct states and many-body
operators.

We start by considering a basis for a single fermion {|p⟩}, a single-particle or one-body basis, where p is
a collective index for all of the quantum numbers of the state. This basis can be chosen in different ways
(for example, as |kmsmt⟩ for calculations in infinite matter), and for finite nuclei a convenient choice is

|p⟩ = |n(ls)jmjmt⟩ , (3.1)

with the following quantum numbers: the radial excitation number n, the orbital angular momentum l,
the spin s = 1/2, the total angular momentum j from coupling l and s, its projection mj , and the isospin
projection mt distinguishing protons and neutrons. 

1
 The harmonic oscillator energy quantum number

e = 2n + l is often used to organize and truncate such single-particle bases. The field operators a†
p and ap

create and annihilate a particle in the state |p⟩, respectively:

a†
p |0⟩ = |p⟩ , (3.2)

ap |p⟩ = |0⟩ , (3.3)
a†

p |p⟩ = 0 , (3.4)
ap |0⟩ = 0 . (3.5)

1In this thesis, where it applies we use the convention that protons have mt = 1/2 and neutrons have mt = −1/2.

19
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Here |0⟩ is the physical vacuum, the state with no particles.

Once one considers constructing states of multiple fermions, second quantization differs from standard
quantum mechanics (“first quantization”). Traditionally, one would set up the two-body basis as the
product of two distinguishable single-particle bases, {|p⟩1} and {|q⟩2}. The simple product states |p⟩1 |q⟩2,
however, do not satisfy the required antisymmetry for fermions, and the basis must be reduced to those
linear combinations of simple product states that are appropriately antisymmetric:{ |p⟩1 |q⟩2 − |q⟩1 |p⟩2√

2

}
, with q > p . (3.6)

In the case of two-body states, this is still relatively simple, but this approach rapidly becomes unwieldy for
many-body states.

In second quantization, one simply demands that the field operators obey

{a†
p, a†

q} = 0 , (3.7)
{ap, aq} = 0 , (3.8)
{a†

p, aq} = δpq , (3.9)

where the anticommutator {A, B} = AB + BA. This gives the two-body states a†
pa†

q |0⟩ = |pq⟩, which have
the properties

|pq⟩ = a†
pa†

q |0⟩ = −a†
qa†

p |0⟩ = − |qp⟩ , (3.10)
|pp⟩ = − |pp⟩ = 0 (3.11)

resulting from the antisymmetry of the field operators.

This also naturally extends to many-body states, allowing us to efficiently generate an antisymmetric
A-body product state

a†
p1 · · · a†

pA
|0⟩ = |p1 . . . pA⟩ , (3.12)

known as a Slater determinant. 

2
 Such a state is fully characterized by its occupation numbers np,

a†
pap |p1 . . . pA⟩ = np |p1 . . . pA⟩ . (3.13)

np = 1 for states occupied in the Slater determinant (that is, p ∈ {p1, . . . , pA}), and np = 0 for the remaining
states not occupied in the Slater determinant. When one considers states that are not a single Slater
determinant (as we do in Section  4.4 ), the occupation numbers can also generally take on values between 0
and 1.

Within the same formalism, it is easy to define many-body operators to represent interactions or
transitions between many-body states. For one-body operators, the definition is simple:

O(1B) =
∑
pq

Opqa†
paq . (3.14)

If O has a well-defined Hermiticity hO = 1, −1, then Oqp = hOOpq. One can quickly verify that O(1B)

preserves particle number (meaning that matrix elements between states with different particle number
vanish) and that O(1B) acting on |0⟩ vanishes.

2The “determinant” part of “Slater determinant” comes from the fact that in first quantization the state can be understood
as the determinant of a matrix of single-particle states where the A rows span the sets of state quantum numbers and the A
columns span the coordinates of the different particles.
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Two-body operators are defined as

O(2B) = 1
(2!)2

∑
pqrs

Opqrsa†
pa†

qasar . (3.15)

There are a few things worth noting in the definitions. First, the order of indices pqrs in Opqrs differs from
the order in the field operator string that follows, simply as a result of considering what field operators are
required to connect ⟨pq| and |rs⟩ without an overall prefactor of −1. Second, the overall factor of 1/(2!)2

comes from the fact that the sums over p, q, r, and s are completely unrestricted. In the two-body basis
|pq⟩ and |qp⟩ are the same state, differing by just an overall factor of −1. Thus, the minimal two-body
space in second quantization is |pq⟩, q < p. However, it is generally convenient to accept redundancy in the
two-body basis and simply include an overall factor accounting for the overcounting in the basis, leading to
a factor of 1/2! for each bra and ket bases.

The operator O(2B) gives 0 when acting on a state with less than two particles and conserves particle
number. The matrix elements Opqrs have a few useful properties: for definite Hermiticity hO,

Orspq = hOOpqrs ; (3.16)

and antisymmetry means that
Opqrs = −Opqsr = −Oqprs = Oqpsr . (3.17)

This is very easily generalized to three-body operators,

O(3B) = 1
(3!)2

∑
pqrstu

Opqrstua†
pa†

qa†
rauatas , (3.18)

with analogous Hermiticity and antisymmetry properties, and also higher-body operators, which are
generally not used in nuclear theory currently and thus we do not treat in this work.

3.2 Normal ordering
Normal ordering is a technique that allows many-body operators and their contributions to be efficiently
represented with respect to a given state, called the reference state. Simply stated, this is done by accounting
for the reference-state expectation value of operators and pulling this out. However, normal ordering
goes beyond this and allows the effects of, for example, three-body operators to be partially captured via
normal-ordered one-body and two-body operators. This rearrangement of many-body interactions allows for
many-body methods to be efficiently formulated and evaluated once a reference state has been determined,
as we discuss in this chapter and the next.

For this discussion, we start by considering an A-particle Slater-determinant reference state

|Φ⟩ =
[ A∏

i=1
a†

i

]
|0⟩ . (3.19)

It is useful to distinguish between states occupied in |Φ⟩ with ni = 1, known as hole states, and unoccupied
states with na = 0, known as particle states. We use the convention for state indices that hole states
are labeled i, j, . . . , particle states are labeled a, b, . . . , and general states are labeled p, q, . . . . Normal
ordering may also be extended to general reference states [ 231 ], but this is beyond the scope of this work.

A string of field operators is in normal order with respect to |Φ⟩ if all the field operators that would
annihilate the reference state are to the right of the remaining field operators in the string. Field operators
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that annihilate |Φ⟩ are hole state creation operators a†
i and particle state annihilation operators aa. We

indicate this normal ordering by : ABC . . . : , where

: ABC . . . : = sign(σ)σ(ABC . . . ) , (3.20)

and σ is a permutation of ABC . . . that brings it into normal order. 

3
 So, for example, : a†

aa†
i : = a†

aa†
i as

the field operators are already in normal order, and

: a†
aai : = −aia

†
a = a†

aai − {a†
a, ai} . (3.21)

In the latter example, we see the downfall of normal ordering “by hand,” as one needs to identify a
permutation of field operators that is in normal order (made complicated by the necessary distinction
between particles and holes), identify an appropriate sequence of pairwise permutations to get everything
into normal order, perform the permutations manually, and keep track of minus signs and Kronecker deltas
for individual pairwise permutations.

The task of bringing an arbitrary string of field operators into normal order is made systematic and
easy by Wick’s theorem [ 232 ]. The core of Wick’s theorem is the normal ordering of two field operators
AB, where

: AB : = AB − AB . (3.22)

The Wick contraction AB is defined as the reference-state expectation value of AB, ⟨Φ| AB |Φ⟩. For the
various combinations of field operators, these contractions are

a†
pa†

q = 0 , (3.23)

a†
paq = npδpq , (3.24)

apa†
q = (1 − np)δpq , (3.25)

apaq = 0 . (3.26)

Note that the contraction in Eq. ( 3.24 ) only contributes for hole states, and the contraction in Eq. ( 3.25 )
only contributes for particle states.

The power of this approach becomes clear when normal ordering an arbitrary string of operators
ABCDEF . . . . With Wick’s theorem, one is able to rewrite a general string of operators as a sum of terms
consisting of normal-ordered operators and Wick contractions:

ABCDEF . . . = : ABCDEF . . . :

+ AB : CDEF . . . : −AC : BDEF . . . : + singles

+ (ABCD − ACBD + ADBC) : EF . . . : + doubles
+ · · · + full contractions . (3.27)

To simplify the contraction and pull it out of the normal-ordered product, we must anticommute the
contracted operators such that they are adjacent, giving rise to the minus signs above. Even more powerful
is Wick’s theorem applied to the product of two normal-ordered products : ABC . . . : : XY Z . . . : , where
only contractions between the two terms must be considered. Considering additionally that only certain

3The sign of σ is 1 if σ decomposes into an even number of pairwise permutations and −1 if it decomposes into an odd
number.
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kinds of contractions contribute allows one with a bit of practice to perform normal ordering very efficiently.
A diagrammatic approach to doing so is provided by Goldstone or Hugenholtz diagrams, which further
simplify the task by providing diagrammatic rules to avoid identifying and collecting identical terms in the
normal ordering [ 229 ].

In this thesis, we do not explicitly derive the normal ordering of expressions. Most expressions we give
are well established and validated, and new expressions derived for our research were cross-checked against
automatic normal ordering tools [ 233 ]. Still, for the interested and motivated reader, Wick’s theorem, a
little bit of patience, and a lot of care are all that are required to rederive the many-body formalisms we
discuss.

Let us now consider normal ordering a Hamiltonian, which is the first step needed for the IMSRG and
most reference-state-based many-body methods. In nuclear physics, Hamiltonians generally have the form

H = T
(1+2B)
int + V

(2B)
NN + V

(3B)
3N , (3.28)

which can be split into one- through three-body parts

H(1B) = T
(1B)
int , (3.29)

H(2B) = T
(2B)
int + V

(2B)
NN , (3.30)

H(3B) = V
(3B)

3N . (3.31)

Here, VNN and V3N are the two- and three-body potentials, respectively, and Tint is the intrinsic kinetic
energy (with the center-of-mass kinetic energy subtracted). This subtraction causes Tint to have one- and
two-body parts, defined as

T
(1B)
int =

(
1 − 1

A

)∑
i

k 2
i

2m
, (3.32)

T
(2B)
int = − 1

Am

∑
i<j

ki · kj (3.33)

with the single-particle momentum ki of nucleon i.

Normal ordering a given Hamiltonian with respect to a reference state |Φ⟩ is formally simple:

E =
∑

i

niH
(1B)
ii + 1

2
∑
ij

ninjH
(2B)
ijij + 1

6
∑
ijk

ninjnkH
(3B)
ijkijk , (3.34)

fpq = H(1B)
pq +

∑
i

niH
(2B)
piqi + 1

2
∑
ij

ninjH
(3B)
pijqij , (3.35)

Γpqrs = H(2B)
pqrs +

∑
i

niH
(3B)
pqirsi , (3.36)

Wpqrstu = H
(3B)
pqrstu , (3.37)

where we employ the conventional names for the normal-ordered zero- through three-body parts of the
Hamiltonian, E, f , Γ, and W . Note that Eqs. ( 3.34 )–( 3.37 ) are not specific to the Hamiltonian and the
normal-ordered matrix elements of other operators can be obtained analogously.
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The normal ordering can also be reversed:

H
(3B)
pqrstu = Wpqrstu , (3.38)

H(2B)
pqrs = Γpqrs −

∑
i

niH
(3B)
pqirsi , (3.39)

H(1B)
pq = fpq −

∑
i

niH
(2B)
piqi − 1

2
∑
ij

ninjH
(3B)
pijqij , (3.40)

Eres. = E −
∑

i

niH
(1B)
ii − 1

2
∑
ij

ninjH
(2B)
ijij − 1

6
∑
ijk

ninjnkH
(3B)
ijkijk , (3.41)

where Eqs. ( 3.38 )–( 3.41 ) are to be evaluated in order. Here we allow for a residual energy Eres. that is 0 if
we just normal order H and then undo the normal ordering. Later we consider undoing the normal ordering
after doing some approximate transformations of the normal-ordered H, where Eres. is not 0 and in fact
contains important information about many-body forces from these calculations. These “un-normal-ordered”
interactions can be provided to other many-body methods to treat other parts of the problem, as we discuss
for the valence-space IMSRG in Section  4.4 .

3.3 Hartree-Fock
Hartree-Fock (HF) is a conceptually simple method, and here we focus on the basic concepts and outline
steps to arrive at an HF solution. Solving for the ground state |Ψ⟩ can be seen as minimizing the energy
functional

E
[ |Ψ⟩ ] = ⟨Ψ| H |Ψ⟩

⟨Ψ|Ψ⟩ . (3.42)

For interacting systems, the exact ground state is generally not a single Slater determinant, but a linear
combination of many Slater determinants. Hartree-Fock seeks to identify the Slater determinant |Φ⟩ that
minimizes Eq. ( 3.42 ) within the space of Slater determinants,

E
[ |Φ⟩ ] = ⟨Φ| H |Φ⟩

⟨Φ|Φ⟩ . (3.43)

This state serves as an energetically optimal starting point for a many-body expansion to compute the
ground state of the system.

Our goal is to arrive at a Slater determinant |Φ⟩HF, which can be written as a product state in the basis
{|p⟩HF}. We start from a harmonic oscillator (HO) starting point |Φ⟩HO with single-particle basis {|p⟩HO}.
An unknown unitary transformation Cpp′ connects these two bases,

|p⟩HF =
∑
p′

Cpp′ |p′⟩HO , (3.44)

so once we have solved for this transformation, we can construct our HF state. This solution is obtained
iteratively, where at iteration i we have a trial state |Φ⟩i and basis {|p⟩i} connected to the HO basis via
C

(i)
pp′ .

We have split the following discussion into three parts: first, we carefully discuss single-particle bases
and their properties; then, we discuss how Hartree-Fock is solved iteratively, using many of the properties
of single-particle bases to arrive at a unitary transformation to the HF basis Cpp′ . These two sections are
rather technical, but explain in detail how one solves for the HF basis and provide useful expressions for
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basis transformations and related quantities. Finally, we discuss the properties of the HF basis to provide a
starting point for our discussion of many-body perturbation theory, a perturbative expansion around the
reference state |Φ⟩.

3.3.1 Single-particle bases and one-body densities

In most contexts in many-body nuclear physics, the single-particle basis is fixed, and the goal is to solve
for many-body operators with respect to this single-particle basis {|p⟩}. However, when optimizing the
single-particle basis itself, one clearly needs to consider how to transform between bases and how to represent
operators and states in different bases. Fortunately, this is generally straightforward, especially with the
definition of one-body density matrices for states introduced in Eq. (  3.60 ).

We consider bases A and B, {|p⟩A} and {|p⟩B}, connected by a unitary transformation Cpp′ , 

4
 such that

|p⟩B =
∑
p′

Cpp′ |p′⟩A , (3.45)

|p⟩A =
∑
p′

Cp′p |p′⟩B . (3.46)

The field operators for the two bases are not identical, related by

b†
p =

∑
p′

Cpp′a†
p′ , (3.47)

bp =
∑
p′

Cp′pap′ , (3.48)

a†
p =

∑
p′

Cp′pb†
p′ , (3.49)

ap =
∑
p′

Cpp′bp′ . (3.50)

This leads to the general fermionic anticommutation relations

{b†
p, a†

q} = 0 , (3.51)
{bp, aq} = 0 , (3.52)
{bp, a†

q} = Cqp , (3.53)
{b†

p, aq} = Cpq . (3.54)

An operator O can be easily transformed from basis A to B. Given the zero- through three-body matrix
elements of O in basis A, O0, Opq, Opqrs, and Opqrstu, the matrix elements in basis B are

Õ0 = O0 , (3.55)
Õpq =

∑
p′q′

Cpp′Cq′qOp′q′ , (3.56)

Õpqrs =
∑

p′q′r′s′
Cpp′Cqq′Cr′rCs′sOp′q′r′s′ , (3.57)

Õpqrstu =
∑

p′q′r′s′t′u′
Cpp′Cqq′Crr′Cs′sCt′tCu′uOp′q′r′s′t′u′ . (3.58)

4For our applications, Cpp′ is real, meaning that where complex conjugation would typically be required (for example for
transformations of bra states) we may simply use C∗

pp′ = Cpp′ to simplify things. Furthermore, for the inverse transformation
C† = CT , we typically evaluate the transposition explicitly (C∗

pp′ = Cp′p).
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For a Slater determinant constructed as a product state in basis A

|Φ⟩A =
[ A∏

i=1
a†

i

]
|0⟩ , (3.59)

it is fully characterized by its occupations in basis A, n
|Φ⟩A
p . 

5
 Once we try to represent |Φ⟩A in basis B, it is

no longer a simple product state and thus no longer has simple occupation numbers in basis B. Instead, the
more general characterization of a Slater determinant in any orthonormal single-particle basis is via the
one-body density matrix:

ρ
|Φ⟩A
pq = ⟨Φ| b†

pbq |Φ⟩ . (3.60)

For the state |Φ⟩A, the basis {|p⟩A} is the eigenbasis of ρ|Φ⟩A :

ρ
|Φ⟩A
pq = n

|Φ⟩A
p δpq . (3.61)

In basis B, the matrix elements of ρ|Φ⟩A are given by a simple unitary transformation

ρ
|Φ⟩A
pq =

∑
p′q′

Cpp′Cq′qn
|Φ⟩A
p′ δp′q′ . (3.62)

Similarly, for a product state in basis B

|Φ⟩B =
[ A∏

i=1
b†

i

]
|0⟩ (3.63)

the one-body density matrix elements in basis A are

ρ
|Φ⟩B
pq =

∑
p′q′

Cp′pCqq′n
|Φ⟩B
p′ δp′q′ . (3.64)

3.3.2 Iterative solution

It can be shown that the state |Φ⟩HF that minimizes Eq. ( 3.43 ) has a one-body density matrix ρHF such
that

[ρHF, fHF] = 0 , (3.65)

where fHF is the normal-ordered one-body Hamiltonian (normal ordered with respect to |Φ⟩HF) as given by
Eq. ( 3.35 ) [ 234 – 236 ]. This means that ρHF and fHF share an eigenbasis, the HF single-particle basis, and
so finding a basis in which fHF is diagonal corresponds to finding the HF basis, allowing one to construct
|Φ⟩HF.

As mentioned above, Hartree-Fock is solved iteratively. At iteration i one has a trial product state |Φ⟩i

constructed from basis {|p⟩i} with a one-body density matrix in the starting HO basis ρ
(i)
pq . We solve for a

unitary transformation from basis {|p⟩HO} to basis {|p⟩i+1}. This is done by constructing f (i) in the HO
basis and diagonalizing it. In the basis {|p⟩i},

f̃
(i)
12 = H̃

(1B)
12 +

∑
p′

n
(i)
p′ H̃

(2B)
1p′2p′ + 1

2
∑
p′r′

n
(i)
p′ n

(i)
r′ H̃

(3B)
1p′r′2p′r′ , (3.66)

5For this discussion, we are painfully verbose to be clear which state occupation numbers and density matrices characterize.
Elsewhere, we leave this away as it is (hopefully) clear which reference state is at play.
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where the tilde means the Hamiltonian matrix elements have been transformed from the HO basis to {|p⟩i}
as in Eqs. ( 3.56 )–( 3.58 ). Reexpressing everything in the HO basis gives

f
(i)
12 = H

(1B)
12 +

∑
p′

n
(i)
p′
∑
pq

Cp′pCqp′H
(2B)
1p2q

+ 1
2
∑
p′r′

n
(i)
p′ n

(i)
r′
∑
pqrs

Cp′pCqp′Cr′rCsr′H
(3B)
1pr2qs

= H
(1B)
12 +

∑
pq

H
(2B)
1p2q

∑
p′q′

n
(i)
p′ δp′q′Cp′pCqq′

+ 1
2
∑
pqrs

H
(3B)
1pr2qs

∑
p′q′

n
(i)
p′ δp′q′Cp′pCqq′

∑
r′s′

n
(i)
r′ δr′s′Cr′rCss′

= H
(1B)
12 +

∑
pq

ρ(i)
pq H

(2B)
1p2q + 1

2
∑
pqrs

ρ(i)
pq ρ(i)

rs H
(3B)
1pr2qs , (3.67)

employing the definition of the one-body density matrix in Eq. ( 3.64 ).

Diagonalizing f (i) gives us the unitary transformation C(i+1), which defines a new single-particle basis
{|p⟩i+1} with |p⟩i+1 = ∑

p′ C
(i+1)
pp′ |p′⟩HO. We construct a new trial state |Φ⟩i+1 as a product state in this

basis, we compute the density ρ(i+1), and we start another iteration. The iterative approach reaches
convergence when the eigenvalues of the diagonalization of f (i),

e(i)
p C(i+1)

pq =
∑

r

f (i)
pr C(i+1)

rq , (3.68)

are stable between iterations such that e
(i+1)
p ≈ e

(i)
p within tolerances.

3.3.3 General properties

An important feature of the HF basis, in addition to the energetic optimization of the reference state
|Φ⟩ = |Φ⟩HF, is that the normal-ordered one-body matrix elements fpq are diagonal, with fpq = εpδpq. εp

are the single-particle energies of the system, which define the mean-field spectrum. Here, “mean field”
refers to the fact that Hartree-Fock solves for an average one-body potential that binds all the particles in
the system. This mean field differs in general for protons and neutrons, both due to isospin asymmetry in
systems where Z ̸= N and due to isospin charge independence breaking effects (like the Coulomb potential
between protons).

Figure  3.1 shows the mean-field spectrum of a schematic harmonic oscillator with spin-orbit interactions
and of Hartree-Fock calculations (specifically HF+NAT, described in Sec.  6.1.2.2 ) of 16O and 12C. 

6
 We

caution at this point that single-particle energies and the mean-field spectrum are not observable quantities.
Still, they provide an intuitive guide to understand phenomena in nuclear structure. For example, we
very nicely see the different energies for proton and neutron orbitals due to repulsive contributions to
proton-proton interactions like the Coulomb interaction. In heavier systems, this difference becomes very
pronounced as exemplified by 100Sn (N = Z = 50), which is symmetric and essentially at the proton drip
line, and 208Pb (Z = 82, N = 126), which marks the end of the valley of stability.

Hartree-Fock does an excellent job of optimizing occupied single-particle states, making them independent
of the initial HO basis used to store interaction matrix elements. This is not the case for particle states,

6In this thesis, we use the orbital labeling n+1lj , such that the lowest lying orbital is 1s1/2.
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Figure 3.1: Mean-field single-particle levels. Left: Single-particle levels from a schematic harmonic oscillator
with spin-orbit interactions. Center, right: Single-particle levels for 16O (center) and 12C (right) obtained from
ab initio Hartree-Fock calculations. We show the HF+NAT single-particle levels (see Chapter  6 for details) for
occupied (solid) and unoccupied (dotted) orbitals for 16O and 12C computed using the 1.8/2.0 (EM) Hamiltonian in
an emax = 16, E3max = 24, ℏω = 16 MeV model space. We highlight the large shell gap of the doubly-magic 16O and
the considerably smaller shell gap of 12C with a light gray band.

which are generally very sensitive to details of the initial basis. The optimization of hole states allows
Hartree-Fock to generally capture bulk properties of the system quite well, with the HF energy EHF = E
from Eq. ( 3.34 ) capturing a lot of the binding energy of the system. Additionally, densities and radii are
also qualitatively correct at the Hartree-Fock level.

However, for many interesting observables and also for a quantitative description of bulk properties,
the HF state and the mean-field picture are insufficient. It is the task of many-body methods to construct
a systematic expansion around |Φ⟩ to capture what are called “many-body correlations,” driven by the
residual interactions of the nucleons with respect to the reference state. These residual interactions are
given by the normal-ordered many-body parts of the Hamiltonian, Γ and W .

One obvious solution is to take the HF state and the mean-field picture and to construct a basis of
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Slater determinants to span the A-body Hilbert space. To be concrete, given an A-particle reference state
|Φ⟩, the Hilbert space is spanned by states where holes have been excited into particles:

|Φa
i ⟩ = a†

aai |Φ⟩ , (3.69)
|Φab

ij ⟩ = a†
aa†

baiaj |Φ⟩ , (3.70)
|Φabc

ijk⟩ = a†
aa†

ba
†
caiajak |Φ⟩ , (3.71)

. . . ,

known as 1-particle 1-hole (1p1h), 2-particle 2-hole (2p2h), and 3-particle 3-hole (3p3h) states, with up
to A-particle A-hole states. Given such a basis, one simply needs to construct the Hamiltonian matrix
elements in this basis and diagonalize it to get the ground-state energy and wave function.

The challenge with this approach is that the basis grows much too quickly for large numbers of particles.
This can be understood relatively simply: the number of B-particle B-hole combinations possible for A
particles in a single-particle basis of size N is given by the product of binomial coefficients(

A

B

)(
N − A

B

)
∼ A!(N − A)! . (3.72)

This factorial scaling of the basis size is completely prohibitive for medium-mass nuclei, preventing so-called
full “configuration space” diagonalizations of Hamiltonians. Still the configuration space picture is quite
intuitive and handy, and we make use of it to motivate the developments in the chapters to come.

More efficient many-body methods stray from the path of exact diagonalization and seek to instead
build an approximate expansion that converges towards the exact result [ 86 ,  91 – 95 ]. The key here is the
reference-state starting point and the ability to define residual interactions with respect to it via Γ and W .
Accounting for these interactions in a perturbative way gives many-body perturbation theory, discussed in
the following section. More sophisticated nonperturbative approaches can also be constructed based on the
same ideas, like coupled-cluster theory [ 92 ] and the IMSRG [ 94 ,  95 ], discussed in the next chapter.

3.4 Many-body perturbation theory
Many-body perturbation theory is a powerful, formally and conceptually tractable method to include
so-called “dynamic correlations” beyond the reference state into the many-body solution. It has been used
very successfully in calculations of nuclear matter also at finite temperature [ 8 ,  61 ,  166 ,  171 ,  237 – 242 ] and has
also seen success in nuclear structure calculations when using soft SRG-evolved Hamiltonians [ 91 ,  243 ,  244 ].
Even without using it to solve the many-body problem, MBPT is useful in constructing improved bases
and performing informed truncations, discussed in Chapter  6 , and as an intuitive guide to understand and
improve complex nonperturbative many-body methods, discussed in Chapter  7 .

Given its success and ubiquity, MBPT is well-covered in textbooks and review articles (we refer the
interested reader to Refs. [ 91 ,  229 ,  230 ]). For this reason, we do not cover the formalism here, but focus
instead on the setup, the underlying principles, and the key results.

Any perturbative scheme relies on a partitioning of the Hamiltonian H = H0 + gH1 into an exactly
solved Hamiltonian H0 and a perturbation gH1, where g is set to 1 once the perturbative expansion has
been set up. For MBPT, there are a few choices for partitionings, but a convenient conventional choice is
the Møller-Plesset partitioning, with

H0 = E + diag(f) , (3.73)
H1 = f − diag(f) + Γ + W . (3.74)
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Since f is diagonal in the HF basis, this just simplifies to H0 = E + f , H1 = Γ + W when starting from an
HF reference state. In the following discussion, we assume that we are using an HF reference state and
basis for simplicity.

The relevant ingredients for the MBPT expansion are the diagonal matrix elements of f , εp = fpp,
known as the single-particle energies, and the residual interactions Γ and W . We focus on the case where
we employ the so-called normal-ordered two-body approximation for the Hamiltonian, truncating the
residual three-body interactions W . While including W in MBPT is not conceptually challenging, it leads
to considerable additional formal complexity and computational cost [ 166 ,  241 ,  242 ,  245 ].

In this case, MBPT up to second order only produces one contribution for corrections to the reference-
state energy,

E(2) = 1
4
∑
ijab

ΓijabΓabij

εab
ij

, (3.75)

where
εab...

ij... = εi + εj + . . . − (εa + εb + . . .) . (3.76)

Note that this difference of single-particle energies is always negative, so the second-order MBPT correction
is always negative (Γijab = Γabij due to Hermiticity).

At third order, there are three contributions,

E(3) = E
(3)
ph + E(3)

pp + E
(3)
hh , (3.77)

with

E
(3)
ph = −

∑
abcijk

ΓijabΓkbicΓackj

εab
ij εac

kj

, (3.78)

E(3)
pp = 1

8
∑

abcdij

ΓijabΓabcdΓcdij

εab
ij εcd

ij

, (3.79)

E
(3)
hh = 1

8
∑

abijkl

ΓijabΓklijΓabkl

εab
ij εab

kl

. (3.80)

The “ph” refers to the fact that the middle interaction Γkbic is between a particle (c → b) and a hole (i → k),
and similar reasons apply to E

(3)
pp and E

(3)
hh .

We are now equipped to discuss general features of MBPT energy contributions. A common matrix
element in all energy contributions is Γp′ph′h (in our expressions always the rightmost term), which excites
two holes out of the reference state into particle states. From the reference state, this is the only allowed
interaction, as the reference state has no fermions occupying the particle states. Once particles have been
excited out of the reference state, more general interactions can contribute, like particle-hole interactions
Γp′h′ph as in Eq. ( 3.78 ), particle-particle interactions Γp′′′p′′p′p as in Eq. ( 3.79 ), or hole-hole interactions
Γh′′′h′′h′h as in Eq. ( 3.80 ). Finally, to connect back to the reference state, all excited particles must return
to the missing holes in the reference state, accomplished by the Γh′hp′p matrix elements.

The three contributions at third order are somewhat special. They each have analogous higher-order
terms where the pp, hh, or ph interaction is iterated. As an example, at fourth order there is one contribution,

E
(4)
hh-ladder = 1

16
∑

abijklmn

ΓijabΓmnijΓklmnΓabkl

εab
ij εab

mnεab
kl

, (3.81)
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with two subsequent hole-hole interactions. Such contributions, known as particle-particle and hole-
hole ladders and particle-hole rings, can be summed to all orders to capture some many-body physics
nonperturbatively [ 227 ,  246 – 248 ].

As also known from perturbation theory, for intermediate states (for example following a 2p2h excitation)
there is always an associated energy denominator. In MBPT, this energy denominator is very simple
(because the reference-state energy cancels out), consisting of simple differences of single-particle energies
εabcd...

ijkl... . These single-particle energies always have the form of Eq. ( 3.76 ), subtracting particle state energies
from hole state energies, where the particle states by definition have larger single-particle energies. If the
energy gap between the highest hole state and the lowest particle state is large, MBPT contributions at
higher orders are rapidly suppressed by the appearance of multiple large energy denominators. In Fig.  3.1 ,
we see such a large shell gap for 16O, making MBPT rapidly convergent when using soft Hamiltonians [ 243 ].

On the other hand if the energy gap is very small, as is the case for 12C in Fig.  3.1 , the perturbative
expansion is challenging, typically not actually convergent at all. This can be seen as a sign that the
Hartree-Fock mean-field picture is insufficient to provide a good starting point for a perturbative expansion,
requiring the many-body expansion to work hard to capture dynamic correlations. This can be the case
for very nonperturbative Hamiltonians, but it can also be caused by exotic structures that cannot be well
described by a Slater determinant.

It is also the case when considering open-shell systems, where the reference state is essentially degenerate
with respect to its excitations. In such cases, one can consider a more general mean-field picture allowing
for a reference state with a more general structure [  249 ,  250 ] and typically breaking certain symmetries
of the many-body problem [ 251 – 256 ]. Such approaches are state-of-the-art in ab initio nuclear structure
today, and in the case of symmetry breaking it is still being actively researched how to effectively break
and restore symmetries.

The derivation of MBPT energy contributions is most practically done via a diagrammatic approach [ 229 ].
This involves two steps: the generation of all possible diagrams; and the evaluation of the diagram using
diagram rules, giving the interactions and energy denominators along with the overall symmetry factor [for
example, the factor of 1/8 in Eq. ( 3.79 )]. Derivation via diagrams makes this process easier, but it is still
cumbersome and error-prone when done by hand, and so automated tools have been developed to handle
the systematic generation of all terms up to high orders [ 8 ,  166 ,  257 ,  258 ].

At the same time, going to high orders in MBPT is technically quite challenging. This is for two reasons.
First, the number of diagrams at higher orders grows rapidly, with 39 diagrams at fourth order, in contrast
to one at second order and three at third order, and quickly growing intractable beyond that. This is
even worse if one allows residual three-body interactions W , where at third order there are already 17
diagrams [ 245 ]. Numerically implementing and optimizing such a large amount of terms is infeasible for
humans, but can be approached again using automated tools for code generation [ 166 ,  233 ,  257 ].

Second, the computational cost of high-order MBPT diagrams is quite high. If we consider a single-
particle basis of size N with A holes and N − A ≈ N particles, fourth-order MBPT diagrams cost between
O(N2A6) and O(N6A2) to evaluate. By contrast, nonperturbative many-body methods such as CC or the
IMSRG have powerful approximations that scale like O(N6) per iteration (requiring only between ten and
a few hundred iterations). Given that these methods are generally more powerful, less complex, and can
flexibly target observables beyond the ground-state energy, this makes high-order MBPT less attractive.
Moreover, MBPT is only rarely convergent at high orders [  91 ,  243 ], meaning that nonperturbative methods
are generally necessary for a quantitative solution to the many-body problem. For this thesis, the IMSRG,
discussed in the next chapter, is the method of choice for all of the reasons mentioned here: it is flexible,
nonperturbative, formally simple, and quite precise at low-order approximations.
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3.5 Uncertainty quantification for many-body calculations
Before discussing the IMSRG, a few comments are in order about general sources of uncertainty in many-body
calculations. In Section  4.7 , we revisit this topic from the specific perspective of the IMSRG.

At the heart of the many-body methods we discuss are many-body operators, where the matrix elements
are represented in a single-particle basis. Recall that for finite nuclei we use a basis with states

|p⟩ = |nljmjmt⟩ , (3.82)

which are generally taken initially to be eigenstates of the isotropic three-dimensional harmonic oscillator.
Hartree-Fock (in a spherically symmetric framework) preserves this structure, and so do other basis
optimizations considered in nuclear theory [ 106 ,  259 ].

For many-body calculations, the single-particle basis must be truncated, and it is important to demon-
strate convergence with respect to the single-particle basis size and its parameters. The basis truncation for
the initial HO basis is typically taken as emax ≥ ep = 2n + l for any state |p⟩ in the basis. The underlying
HO basis also has an intrinsic frequency ℏω. In the infinite basis size limit, all results would be independent
of ℏω, but working in a finite truncated basis, results must be invariant to small changes in emax and ℏω
to be considered converged. In nuclei, emax = 12, 14, 16 is typically sufficient for medium-mass (A ≤ 60),
medium-heavy (60 ≤ A ≤ 140), and heavy systems (A ≥ 140) when using an HF basis. Such truncations
are generally easily accessible for many-body calculations, and so the model-space uncertainty due to finite
basis size is well under control and can be quantified by performing two calculations at emax and emax ± 2.

An additional model-space uncertainty enters in the handling of matrix elements of three-body forces
Vpqrstu. For typical emax, the basis size is of the order N ∼ 2000, meaning the three-body matrix elements
require 109 GB to store. Even fully exploiting symmetries of three-body forces, storing Vpqrstu without
truncations is completely out of reach. For this reason, three-body matrix elements for many-body
calculations must be truncated, and one typically truncates in the three-body basis, only including states
|pqr⟩ where ep + eq + er ≤ E3max. For calculations, one must also demonstrate convergence with respect
to E3max, quantifiable by varying E3max by ±2. For most of the past decade, this truncation was limited
to E3max = 16, 18, which is sufficient to converge calculations for nuclei up to A ∼ 70 with relatively
soft Hamiltonians. In heavy nuclei, for example 132Sn, such values of E3max are completely insufficient,
and recent developments discussed in Chapter  5 have extended and bypassed this truncation completely,
allowing converged calculations of 208Pb [  46 ,  47 ,  49 ].

The model-space uncertainties discussed above are relatively easy to explore and quantify. The same is
not true for the many-body approximation used in MBPT discussed above and also the IMSRG and other
methods. All of these methods are necessarily approximate, allowing them to describe medium-mass nuclei
at relatively low computational cost. For example, in MBPT we only compute energy contributions up to
some finite order, typically third order. To quantify the uncertainty due to missing orders, one needs to
understand how they behave. This is made complicated by the limited orders one has access to (typically
only one or two approximations, like second and third order MBPT) and by the fact that the higher orders
are not guaranteed to converge nicely (for example, MBPT is known to generally diverge at high orders).
With such limited knowledge, one can compare results from different many-body methods to get insight
into missing higher-order contributions, or one can push a single method to higher orders to (hopefully)
see signals of rapid convergence. In this thesis, we develop the IMSRG to the next order and explore the
many-body convergence of the method. As we discuss in Section  4.7 , this makes it possible to quantify the
IMSRG many-body uncertainty, a key milestone for nuclear structure theory.



Chapter 4

The in-medium
similarity renormalization group

Within the diverse set of many-body methods available for nuclear structure theory [ 76 ,  86 ,  88 ,  89 ,  91 – 96 ],
the in-medium similarity renormalization group [  94 ,  95 ,  260 ,  261 ] has emerged as a particularly scalable,
powerful, and versatile method. Originally developed to compute ground-state properties of closed-shell
systems, it has since been extended to also access open-shell systems [ 95 ,  249 ,  250 ,  261 – 263 ] and to compute
a much broader set of nuclear structure properties, including spectra [  249 ,  250 ,  261 ,  264 ], electromagnetic
observables [ 265 – 267 ], nuclear responses [ 268 ], weak decays [ 35 ,  269 ,  270 ], continuum efects [ 271 ], and
nuclear matrix elements for beyond-standard-model transitions [ 36 ,  249 ,  272 ,  273 ]. This has established
the IMSRG as an integral part of the nuclear theory landscape today and makes improvements on the
method and novel applications highly relevant not just to nuclear structure but also to adjacent fields
like nuclear astrophysics and fundamental interactions as well as to many-body method developments in
quantum chemistry and condensed-matter physics.

In this chapter, we introduce the IMSRG. We focus on the intuition and concepts behind the method
necessary to understand the developments on the IMSRG in Chapters  6 and  7 and the applications of the
method in Chapters  5 and  8 – 10 . For the reader interested in exploring more details, we refer them to the
comprehensive reviews in Refs. [  94 ,  95 ].

4.1 Formalism
The IMSRG builds on the SRG approach, solving for a targeted continuous unitary transformation of a
Hamiltonian

H(s) = U(s) H U †(s) (4.1)

via the solution of the SRG flow equation

dH(s)
ds

= [η(s), H(s)] . (4.2)

The desired unitary transformation is achieved via an appropriate definition of the generator η. For the
IMSRG this is generally a unitary transformation that partially diagonalizes the Hamiltonian, as shown in
Fig.  4.1 , giving the ground-state energy E and wave function |Ψ⟩ = U(s) |Φ⟩ . A key aspect of the IMSRG
is that Eq. ( 4.2 ) is formulated in terms of operators that are normal ordered with respect to a reference
state |Φ⟩ for the system of interest. This makes the IMSRG unitary transformation system-specific, rather
than general like the free-space SRG for nuclear potentials, allowing it to very effectively capture induced

33
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Figure 4.1: The IMSRG unitary transformation. A schematic representation of the IMSRG unitary
transformation in the normal-ordered two-body approximation. The initial Hamiltonian H(s = 0) has nonzero matrix
elements coupling the reference state |Φ⟩ to its 1-particle 1-hole and 2-particle 2-hole excitations |Φa

i ⟩ and |Φab
ij ⟩,

respectively. The initial Hamiltonian is unitarily transformed to give the final Hamiltonian H(s → ∞) in such a way
that these matrix elements are 0, meaning the ground-state energy is simply the reference-state expectation value
⟨Φ|H(s → ∞)|Φ⟩. Figure adapted from Ref. [  94 ].

many-body interactions via the continuous normal ordering. This is the feature that makes the IMSRG able
to describe many-body systems while the free-space SRG is currently limited to the two- and three-body
level [  61 ,  94 ].

The IMSRG also makes it easy to consider other observables, such as charge radii or nuclear matrix
elements for transitions. For general observables, the corresponding operator O is normal ordered with
respect to |Φ⟩ and transformed consistently

O(s) = U(s) O U †(s) . (4.3)

The transformed operator can then be used to compute ground-state expectation values or to evaluate
matrix elements between two states in a transition.

In this thesis, we only consider ground-state energies, spectra, and ground-state charge radii. Ground-
state energies and spectra can be obtained from the Hamiltonian, so the only operators we need to consider
transforming consistently are those associated with the charge radius. We compute the charge radius as

R2
ch = ⟨R2

p⟩ + ⟨r2
so⟩ + r2

p + N

Z
r2

n + 3
4M2 , (4.4)

with the nucleon mass M , neutron number N , and proton number Z. Here, ⟨R2
p⟩ and ⟨r2

so⟩ are the nuclear
point-proton radius and nuclear spin-orbit radius expectation values, with the operator expressions

R2
p =

∑
i

[
(1 + τi)

1
2Z

(
1 − 2

A

)
+ 1

A2

]
r2

i +
∑
i<j

[ 2
A2 − 2

AZ

(
1 + τi + τj

2
)]

ri · rj , (4.5)

r2
so = −

∑
i

µi − Qi/2
ZM2 (κi + 1) . (4.6)

µi gives the magnetic moment of the particle species in state i (relative to the nuclear magneton µN)

µi =
{

2.793 if i is a proton,

−1.913 if i is a neutron,
(4.7)
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Qi gives the charge of the particle species in state i

Qi =
{

1 if i is a proton,

0 if i is a neutron,
(4.8)

and κi gives the spin-orbit correction

κi =
{

li if ji = li − 1
2 ,

−(li + 1) if ji = li + 1
2 .

(4.9)

⟨R2
p⟩ is the dominant contribution to the charge radius, and ⟨r2

so⟩ accounts for spin-orbit corrections [ 274 ]. 
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The remaining three corrections in Eq. ( 4.4 ) are due to finite proton and neutron charge radii, where we
use the values r2

p = 0.771 fm2 and r2
n = −0.115 fm2, and the relativistic Darwin-Foldy correction [ 276 ]. In

Chapter  10 , we also introduce R4
p as an additional operator we evaluate to gain access to higher-order

moments of the charge distribution.

The IMSRG is particularly flexible in what kinds of unitary transformations can be generated and what
approaches one can take to describe the many-body system and compute expectation values and transition
matrix elements. We describe two of these approaches in Sections  4.3 and  4.4 .

4.2 Truncation schemes

The starting point for the IMSRG is the normal-ordered Hamiltonian

H = E + f + Γ + W . (4.10)

The integration of Eq. ( 4.2 ) will cause the evolving Hamiltonian to also have induced many-body interactions

H(s) = E(s) + f(s) + Γ(s) + W (s) + . . . . (4.11)

For an A-body system, up to A-body interactions need to be included for an exact solution for the ground-
state energy. This is impossible for many-body systems, so the IMSRG employs truncations in many-body
operators. Practically such truncations yield approximate many-body methods that are able to compute
the structure of medium-mass and heavy nuclei efficiently.

The IMSRG(2) truncates the IMSRG equations at the normal-ordered two-body level. This means that
the Hamiltonian

H(s) = E(s) + f(s) + Γ(s) + W (s) + . . . (4.12)

is truncated such that
H(s) = E(s) + f(s) + Γ(s) (4.13)

for all s. An identical truncation is employed for all operators, including the generator

η(s) = η(1B)(s) + η(2B)(s) , (4.14)
1Our expression for r2

so in Eq. ( 4.6 ) corrects an error in the expression of Ref. [ 274 ] pointed out by Martin Hoferichter. The
correction is simple:

µi − Qi → µi − Qi/2 .

The error in the previous implementation and validity of the correction were ensured by calculations of the Φ′′(q) nuclear
responses, which are related to the spin-orbit radius at q = 0 [ 275 ].
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which does not have a zero-body part due to its anti-Hermiticity. This approximation is systematically
improvable by allowing also three- and higher-body operators in the IMSRG solution.

To derive the IMSRG(2), one considers the IMSRG commutator

[η(s), H(s)] = [η(1B)(s) + η(2B)(s), E(s) + f(s) + Γ(s)] (4.15)

with the normal-ordered two-body truncation applied. This expression, specifically the products of operators
arising due to the commutator, needs to be brought into normal order, which can be accomplished via
Wick’s theorem. This is generally done by considering the individual terms

[η(s), H(s)] = [η(1B)(s), f(s)] + [η(1B)(s), Γ(s)] − [f(s), η(2B)(s)] + [η(2B)(s), Γ(s)] (4.16)

and normal ordering them individually.

These individual terms can be expressed in terms of fundamental commutators between a K-body
operator A and an L-body operator B. Such a commutator produces an operator C such that

[A(KB), B(LB)] =
K+L−1∑

M=|K−L|
C(MB). (4.17)

This relation makes it clear how the IMSRG commutator induces many-body interactions even when the
initial operators only have up to two- or three-body interactions. It is useful to distinguish between the
different M -body parts of C, and we use the convenient notation [K, L] → M to indicate the commutator
contribution such that

C(MB) = [A(KB), B(LB)](MB) . (4.18)
For the IMSRG(2), due to the normal-ordered two-body truncation, there are only 7 relevant fundamental
commutators, [1, 1] → 0, [1, 1] → 1, [1, 2] → 1, [1, 2] → 2, [2, 2] → 0, [2, 2] → 1, and [2, 2] → 2. We provide a
detailed discussion of IMSRG fundamental commutators, including complete general expressions up to the
normal-ordered three-body level, in Appendix  B .

Plugging the IMSRG(2) commutators back into the IMSRG flow equation one gets the IMSRG(2) flow
equations:

dE

ds
=
∑
pq

(npn̄q − n̄pnq) ηpqfqp + 1
4
∑
pqrs

(npnqn̄rn̄s − n̄pn̄qnrns) ηpqrsΓrspq , (4.19)

df12
ds

=
∑

p

(η1pfp2 − f1pηp2) +
∑
pq

(npn̄q − n̄pnq) (ηpqΓ1q2p − fpqη1q2p)

+ 1
2
∑
pqr

(n̄pn̄qnr + npnqn̄r) (η1rpqΓpq2r − Γ1rpqηpq2r) , (4.20)

d Γ1234
ds

= (1 − P12)
∑

p

(η1pΓp234 − f1pηp234) − (1 − P34)
∑

p

(ηp3Γ12p4 − fp3η12p4)

+ 1
2
∑
pq

(n̄pn̄q − npnq) (η12pqΓpq34 − Γ12pqηpq34)

− (1 − P12)(1 − P34)
∑
pq

(npn̄q − n̄pnq) ηp23qΓ1qp4 , (4.21)

where the permutation operator Ppq exchanges the indices p and q in the following expression (ensuring
antisymmetry of two-body matrix elements), and n̄p = 1 − np. For clarity, we have suppressed the s
dependence of E(s), f(s), Γ(s), and η(s).
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Equations ( 4.19 )–( 4.21 ) are a large set of coupled differential equations with the initial condition
E(s = 0) = E, f(s = 0) = f , and Γ(s = 0) = Γ, and these must be integrated from s = 0 towards s → ∞
until a fixed point where [η(s), H(s)] ≈ 0 is reached. We discuss this condition in the next two sections.

The most expensive parts of the IMSRG(2) equations are the final two terms of Eq. ( 4.21 ). These scale
like O(N6) in the size of the single-particle basis N . Depending on the definition of the generator, one
can show that it is in fact only O(A2N4), but generally this naive computational cost scaling gives a good
assessment of the cost of the IMSRG(2) relative to other many-body methods. 

2
 

The IMSRG(2) truncation in Eq. ( 4.13 ) truncates also the initial Hamiltonian at s = 0, discarding the
residual three-body force W (as is also the case in our discussion of MBPT in Sec.  3.4 ). This truncation is
known as the normal-ordered two-body (NO2B) approximation for the Hamiltonian, and this approximation
is essential for the IMSRG(2), which only includes up to NO2B operators. The effect of this approximation
has been studied in CC and NCSM calculations [ 277 – 279 ], and W has been observed to contribute at the
subpercent level to binding energies in light and medium-mass nuclei. For this reason (and the formal
complexity of including a three-body Hamiltonian in CC calculations), the NO2B approximation is widely
used for IMSRG and CC calculations of medium-mass and heavy nuclei.

The structure of Eqs. ( 4.19 )–( 4.21 ) is not particularly transparent, but one can make a connection with
MBPT to understand the many-body physics captured by the IMSRG(2). We refer the interested reader
to Refs. [ 94 ,  280 ] and only discuss a few key points here. Upon inspection, the second term in Eq. ( 4.19 )
looks a lot like the second-order MBPT correction to the energy in Eq. ( 3.75 ). This is not coincidental, and
although it is not directly obvious how this works out with the integration this term does in fact account
for all second-order MBPT corrections in the IMSRG(2).

The IMSRG(2) is complete up to third order in MBPT, but also includes plenty of higher-order
contributions and does so nonperturbatively. Excellent examples of this are the particle-particle and
hole-hole ladder diagrams. In the second-to-last term of Eq. ( 4.21 ), one sees that there are two contributions
accounting for the interaction between two holes (npnq) and the interaction between two particles (n̄pn̄q).
These terms account for pp and hh interactions in a way that gives the right contributions at third order,
but also at all higher orders. This means the IMSRG(2) resums the full set of pp and hh ladder diagrams,
accounting for this physics nonperturbatively. While it is less obvious from the form of the expression, the
final term in Eq. ( 4.21 ) similarly generates the full set of ph ring diagrams. This is a clear demonstration
of the power of nonperturbative many-body methods: a general formulation allows one to automatically
capture a lot of physics in a way that would require considerable formal work and selection by hand in the
case of MBPT.

A final feature of the IMSRG is that the method is size extensive, meaning that the error between the
theoretical exact result and the IMSRG(2) result scales like the system size (and not worse). Specifically,
this applies to the correlation expansion after Hartree-Fock, so

|(Eexact − EHF) − (EIMSRG(2) − EHF)| ∼ A . (4.22)

This is also a feature of CC and MBPT, and in the case of the IMSRG and CC this arises because both
methods are formulated as a commutator expansion of the many-body problem. This guarantees that
so-called “disconnected” diagrams are not included in the calculations (as they vanish in the commutator),
and the final result only includes connected diagram contributions that would also be included in (high-order)
MBPT.

2In fact, solving the IMSRG via the Magnus expansion (see Sec.  4.5 ) requires the evaluation of general fundamental
commutators (making no assumptions on the form of A or B in [A, B]), which then causes the IMSRG(2) to explicitly scale as
O(N6).
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Our discussion here is focused on the IMSRG(2), which is the well-established standard for IMSRG
calculations. A key development of this thesis is the extension of the IMSRG to the three-body level, the
IMSRG(3) discussed formally in Chapter  7 , and its application to high-precision calculations in nuclei. The
IMSRG(3) is a systematic improvement of the IMSRG method, bringing the method closer to an exact
treatment of the many-body problem. It brings greater precision, but comes at a higher computational cost
as the treatment of three-body operators presents a considerable formal and computational challenge.

4.3 Single-reference decoupling
In the standard IMSRG, where a Slater-determinant reference state is employed, the target of the IMSRG
transformation is a unitary transformation of the Hamiltonian that achieves a partial diagonalization,
extracting the ground-state energy and (indirectly) the ground-state wave function. This is shown schemat-
ically in Fig.  4.1 . For the initial (unevolved) Hamiltonian, the Hamiltonian can couple the ground-state
|Φ⟩ to its excitations |Φa

i ⟩, |Φab
ij ⟩. 

3
 A full diagonalization of the Hamiltonian would decouple |Φ⟩ from all

excitations, but also all excitations from each other. The minimal decoupling we actually want to achieve is
a block diagonalization such that |Φ⟩ is decoupled from excitations, but we enforce no decoupling on any
other states. This is what is shown in Fig.  4.1 for the transformed Hamiltonian.

The task is to tailor the IMSRG unitary transformation to achieve this decoupling. This can be achieved
through a proper definition of the generator η. For the IMSRG equation in Eq. ( 4.2 ) to integrate to a stable
result as s → ∞, [η(s), H(s)] must vanish. This can trivially occur for two definitions of η, η(s) = 0 and
η(s) = H(s), both of which lead to no change of the Hamiltonian. In the original studies of the SRG [ 64 ], a
useful nontrivial definition of η was found to be

η(s) = [Hod(s), Hd(s)] , (4.23)

where the Hamiltonian is split into two parts H(s) = Hd(s) + Hod(s). Hod is the “off-diagonal” part of
the Hamiltonian, coupling parts of the Hamiltonian that one wants to decouple. If decoupling is achieved,
Hod(s → ∞) ≈ 0 following the SRG transformation. The remaining “diagonal” part of the Hamiltonian
Hd = H − Hod changes minimally with no explicit decoupling enforced. The form of η in Eq. ( 4.23 ),
known as the Wegner generator, has been used in a broad range of contexts generally achieving the desired
decoupling in practice.

A clear question is: what is the appropriate definition of Hod(s) for IMSRG calculations? Fortunately,
our discussion has made it clear that we want to suppress matrix elements of H(s) that couple |Φ⟩ with its
excitations. These are:

⟨Φa
i |H|Φ⟩ = fai , (4.24)

⟨Φ|H|Φa
i ⟩ = fia , (4.25)

⟨Φab
ij |H|Φ⟩ = Γabij , (4.26)

⟨Φ|H|Φab
ij ⟩ = Γijab , (4.27)

. . . .

These matrix elements coupling the reference state and its excitations must be driven to 0 by the IMSRG
transformation, and we can use this to define η.

3At the NO2B level, these are the only excitations that couple directly to the reference state, while higher excitations are
coupled via successive particle-hole excitations. If we include W in our initial Hamiltonian, couplings to |Φabc

ijk ⟩ would also be
allowed.
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The Wegner generator discussed above is generally successful in SRG studies, but for the IMSRG
different generators have proliferated where matrix elements of η are (quasi)linearly proportional to matrix
elements of Hod. These generators, introduced below, have the benefits that they are easier to construct
and that they make the analysis of the IMSRG via perturbation theory easier.

For completeness, we introduce the three generators most commonly used in IMSRG calculations, the
White, imaginary-time, and arctan generators. The White generator has the nonzero matrix elements

ηia = fia

∆(1B)
ia

, (4.28)

ηai = − fai

∆(1B)
ia

, (4.29)

ηijab = Γijab

∆(2B)
ijab

, (4.30)

ηabij = − Γabij

∆(2B)
ijab

, (4.31)

. . . .

Here and in the following definitions, the energy denominators ∆(1B)
ia and ∆(2B)

ijab can simply be taken to be
the Møller-Plesset definitions,

∆(1B)
ia = εi − εa , (4.32)

∆(2B)
ijab = εi + εj − (εa + εb) , (4.33)
. . . ,

as is done in this work. Another alternative is to use the Epstein-Nesbet energy denominators as is discussed
in Ref. [ 94 ]. In practice, Møller-Plesset and Epstein-Nesbet energy denominators behave very similarly,
leading to the same IMSRG decoupling behavior.

The imaginary-time generator has the nonzero matrix elements

ηia = sign(∆(1B)
ia )fia , (4.34)

ηai = −sign(∆(1B)
ia )fai , (4.35)

ηijab = sign(∆(2B)
ijab )Γijab , (4.36)

ηabij = −sign(∆(2B)
ijab )Γabij , (4.37)

. . . .

The arctan generator, a regularized version of the White generator that prevents large generator matrix
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elements for vanishing energy denominators, has the nonzero matrix elements

ηia = 1
2 arctan 2fia

∆(1B)
ia

, (4.38)

ηai = −1
2 arctan 2fai

∆(1B)
ia

, (4.39)

ηijab = 1
2 arctan 2Γijab

∆(2B)
ijab

, (4.40)

ηabij = −1
2 arctan 2Γabij

∆(2B)
ijab

, (4.41)

. . . .

The choice of generator may have a qualitative impact on how easy the IMSRG equations are to solve,
but all generators that produce the correct decoupling give equivalent results up to many-body truncation
effects. In this thesis, we use the arctan generator for nearly all calculations except for the results of Ref. [ 45 ]
in Chapter  7 , where we use the imaginary-time generator. In this case, we tested generator dependence
and found changes in ground-state energies of less than 1 keV [ 45 ]. A practical thing to note is that the
units of s depend on the generator employed: for the White and arctan generators s has units of 1; for the
imaginary-time generator s has units of MeV−1; and for the Wegner generator s has units of MeV−2.

4.4 Valence-space decoupling

When one considers open-shell systems, the single-reference approach discussed previously stops making
sense. A single Slater-determinant reference state would consist of a few fermions occupying a partially
filled orbital, which would be degenerate with respect to “excitations” within the same orbital. This means
the clear separation between particles and holes is blurred, and a different perspective is needed. This
problem can be approached using techniques to break symmetries in order to lift the degeneracy. These
symmetries must later be restored, which is formally and computationally challenging.

The valence-space picture, which is the basis for the shell model [  71 ,  72 ], takes a different approach. The
mean-field picture is split into three parts. Particles in the static core are not excited and do not interact
with particles outside the core. The remaining few particles above the core are active in a valence space,
where all possible excitations and interactions are allowed. Crucially, the valence space is relatively small,
decoupled from the remaining outside space of higher energy orbitals, making a complete diagonalization
possible. The blurring line between particles and holes in the single-reference picture is replaced by a
complete active space around the Fermi surface. A simple diagonalization in this active space completely
solves the many-body problem for interactions that would be difficult to account for otherwise.

The challenge from a microscopic perspective lies in obtaining an effective Hamiltonian in the valence
space and accounting for the structure of the static core appropriately. Essentially since the introduction
of the shell model, the long history of developments on nuclear forces has been paralleled by efforts to
arrive at effective shell-model interactions based on these forces, with generally lackluster success for atomic
nuclei [ 73 ,  281 – 285 ]. In the mean time, phenomenologically tuned shell-model interactions proliferated and
were quite successful (albeit only close to where the interactions were originally fit) [ 74 ,  77 ,  286 – 292 ].

With a bit of rethinking, the IMSRG can be used to obtain microscopic, effective shell-model Hamiltonians
in a systematic nonperturbative way [  95 ,  261 – 263 ]. This general, nonperturbative treatment is the difference
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maker, allowing the IMSRG to succeed where older approaches to computing effective Hamiltonians failed.
Additionally, this perspective connects nicely with the SRG philosophy of transforming the Hamiltonian
such that it is easier diagonalize [ 61 ,  67 – 69 ,  190 – 195 ,  249 ,  250 ,  293 ,  294 ], in this case possible to diagonalize
in the shell model.

The great benefit of the IMSRG in this approach is how easily the generator can be tweaked to suppress
additional couplings in the Hamiltonian. To arrive at a valence-space Hamiltonian, we must decouple the
core (c), valence (v), and outside (o) spaces fully. The only allowed one-body matrix elements are fcc′ , fvv′ ,
and foo′ , and similarly the only allowed two-body matrix elements are Γcc′c′′c′′′ , Γvv′v′′v′′′ , and Γoo′o′′o′′′ . 
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The remaining matrix elements are Hod in the valence-space decoupling, and the generator definitions in
Sec.  4.3 are easily applied to this more general off-diagonal Hamiltonian. This is generally safe as the
core states have lower energies than the valence states, which have lower energies than the outside states,
preventing vanishing energy denominators.

Following such a decoupling procedure H(s → ∞) can be fed into a shell-model code to be diagonalized.
This gives access to not only the ground state, but also excited states, and one can use this solution to
evaluate expectation values or transition matrix elements of other effective operators O(s → ∞). This
makes the valence-space IMSRG (VS-IMSRG) immediately able to access observables like spectra and
transition strengths that would otherwise require an equation-of-motion extension to the single-reference
IMSRG.

It is useful to discuss a few technical details on normal ordering here for completeness. The initial
treatment in the VS-IMSRG is identical to the single-reference IMSRG; we solve for a single-particle basis
(for example, via Hartree-Fock), construct our reference state from the lowest A states in that basis, and
normal order our Hamiltonian and all operators with respect to this state. The only difference is that the
occupation numbers np may take on fractional values for orbitals that are only partially filled [ 95 ,  261 ]. Still
we perform the normal ordering using the exact same expressions, Eqs. ( 3.34 )–( 3.37 ), summing over all core
and valence states. The IMSRG equations are then solved in a two-step procedure, first decoupling the core
states c from valence v and outside states o, and then decoupling the valence space fully as described above.

To use these matrix elements in shell-model calculations, we must undo the normal ordering using
Eqs. ( 3.38 )–( 3.41 ). We then normal order with respect to our core using Eqs. ( 3.34 )–( 3.37 ) with all sums
restricted to only core states c. This gives us our remaining “free” effective operators in the valence space.
For the Hamiltonian we find the zero- through two-body parts Ecore, fvv′ , and Γvv′v′′v′′′ . All remaining
matrix elements are decoupled and irrelevant for the further shell-model calculations.

4.5 Magnus-expansion formulation
The standard formulation of the IMSRG integrating Eq. ( 4.2 ) makes consistently evolving other operators
challenging. To obtain the transformation of an operator O,

O(s) = U(s) O U †(s) , (4.42)

the operator must be consistently evolved using the same flow equation
dO(s)

ds
= [η(s), O(s)] , (4.43)

with the initial condition O(s = 0) = O. This is conceptually simple, but in practice η(s) is only available
as we are transforming H(s), so O(s) must be transformed at the same time as H(s), extending the set of

4A technical detail is that many shell-model solvers expect a diagonal one-body Hamiltonian, so we typically also suppress
fvv′ where v ̸= v′.
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coupled differential equations. For a single operator, this is still manageable, but if one is interested in
transforming many operators [for example, densities ρ(r) at many r or form factors F (q) at many q] the
consistent evolution of all the operators becomes prohibitive.

The key problem here is that by integrating the flow equation we do not have direct access to the
unitary transformation generated by the IMSRG, U(s). An approach that resolves this challenge is the
Magnus expansion [ 295 – 297 ]. The Magnus expansion postulates the form U(s) = exp(Ω(s)) for the unitary
transformation generated by the IMSRG in terms of the anti-Hermitian Magnus operator Ω(s). The normal
flow equation for the Hamiltonian can be converted into a flow equation for Ω(s),

dΩ(s)
ds

=
∞∑

k=0

Bk

k! adk
Ω(s)(η(s)) . (4.44)

Here, Bk are the Bernoulli numbers, and adk
X(Y ) are the recursively defined commutators

ad0
X(Y ) = Y , (4.45)

adk
X(Y ) = [X, adk−1

X (Y )] . (4.46)

The solution for Ω(s) requires η(s) [which depends on H(s)], so Ω(s) and H(s) are solved for together.
Ω(s → ∞) then gives the full IMSRG unitary transformation in terms of a single operator. This can be
saved once and then reused many times independently to transform other operators of interest using the
Baker-Campbell-Hausdorff (BCH) formula,

O(s) = eΩ(s)Oe−Ω(s) =
∞∑

k=0

1
k!adk

Ω(s)(O) . (4.47)

In general, the Magnus operator is truncated at the same many-body level as all other operators, so at the
two-body level for the IMSRG(2).

The Magnus expansion is numerically very robust, allowing for considerable simplifications. The sum
in Eq. ( 4.44 ) can be truncated at relatively low kmax, and the integration in s for Ω(s) can be performed
using a crude Euler method. These features, in addition to the clear benefit of having direct access to the
IMSRG transformation, make the Magnus expansion the approach of choice for IMSRG calculations today.
In this thesis, we use the Magnus-expansion formulation for nearly all calculations except for the results of
Ref. [ 45 ] in Chapter  7 , where we directly integrate the IMSRG flow equation.

4.6 IMSRG successes and challenges
The IMSRG(2), introduced in nuclear physics in 2011 [ 260 ], has emerged as a remarkably powerful and
flexible method to describe nuclear structure. In a single-reference context, it has many of the same strengths
as other nonperturbative reference-state-based many-body methods like CC or SCGF. Important work has
been done to allow a diverse set of operators to be consistently transformed by the IMSRG, allowing many
observables including complex electromagnetic observables to be computed [ 264 – 267 ].

The valence-space extension of the IMSRG has been particularly powerful. This extension was suggested
very early in the IMSRG’s development [ 262 ] and was made conceptually and formally simple by the fact
that the unitary IMSRG transformation gives a Hermitian transformed Hamiltonian, easily interfacing
with existing shell-model machinery [  95 ,  261 ,  263 ]. This is to be contrasted with the derivation of effective
shell-model interactions within coupled-cluster theory, where a generalized non-Hermitian solver must be
used to perform the shell-model diagonalization [ 298 – 300 ]. The VS-IMSRG allows the IMSRG to access all
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Figure 4.2: First 2+ excitation energies of neutron-rich calcium isotopes. Left: 2+ excitation energies
E(2+

1 ) of neutron-rich calcium isotopes predicted by VS-IMSRG(2) calculations and coupled-cluster calculations from
Ref. [ 39 ], with all calculations using the 1.8/2.0 (EM) Hamiltonian [  171 ]. Right: 2+ excitation energies E(2+

1 ) of 48Ca
computed using several Hamiltonians [  165 ,  167 ,  171 ]. Our VS-IMSRG(2) calculations (blue circles) use HF+NAT
bases computed in an e

HF/NAT
max = 16, E3max = 24, ℏω = 16 MeV model space before being truncated to emax = 12 for

the IMSRG calculation (see Chapter  6 for details) and are consistent with the VS-IMSRG(2) predictions in Ref. [  3 ]
using the 1.8/2.0 (EM) Hamiltonian. The EOM-CCSD calculations (green triangles) are truncated at the two-body
level, analogous to the VS-IMSRG(2), while the EOM-CCSD(T) calculations (orange diamonds) include three-body
contributions. Experimental values from Ref. [  303 ].

systems that are accessible to the shell model, extending its reach tremendously. A few highlight studies
enabled by this are the prediction of the closed-shell structure of 78Ni [ 42 ] and the global prediction of
separation energies up of ∼ 700 isotopes up to iron to explore the locations of drip lines [ 44 ].

The derivation of a valence-space Hamiltonian in the VS-IMSRG has not been the only successful
extension of the IMSRG approach. Powered by the development of a complete multireference treatment
of the IMSRG equations [ 301 ,  302 ] (performing normal ordering with respect to a general, non-Slater-
determinant reference state), various approaches have been explored to access open-shell systems. The
details of these methods [ 249 ,  250 ] are beyond the scope of this thesis, but intuitively there are two
important steps. First, a suitable multireference approximation to the ground-state is obtained, using
a restricted diagonalization or a method more tailored to capture deformation in the system of interest,
typically done via generator coordinate method calculations. Then the IMSRG(2) is solved with the general
multireference normal ordering. This approach is not able to decouple the ground-state completely and so
a final diagonalization is performed to get the ground state and other observable expectation values. The
ideas here are very similar to the VS-IMSRG, with ability to support more general reference states at the
cost of greater formal and computational complexity.

The IMSRG(2) truncation in its various forms has been very successful for certain observables. In



44 CHAPTER 4. THE IN-MEDIUM SIMILARITY RENORMALIZATION GROUP

40 42 44 46 48 50 52 54
ACa

3.2

3.3

3.4

3.5

3.6

3.7

R
ch

(fm
)

VS-IMSRG(2), HF+NAT, emax = 12

e
HF/NAT
max = 16, E3max = 24, h̄ω = 16 MeV

ACa1.8/2.0 (EM)
2.0/2.0 (EM)
2.2/2.0 (EM)
N2LOsat

∆N2LOGO

Expt.
DFT (UNEDF0)

VS-IMSRG(2)
0.00

0.02

0.04

0.06

0.08

∆
R

ch
(fm

)

52Ca− 48Ca

Expt.

Figure 4.3: Discrepancies between nuclear theory predictions and measured charge radii for neutron-
rich calcium isotopes. Left: Charge radii Rch of calcium isotopes from 40Ca to 54Ca. Right: Charge radius
differences ∆Rch between 52Ca and 48Ca. We compare our VS-IMSRG(2) predictions for several Hamiltonians
(colored markers) [ 165 ,  167 ,  171 ] with experimental results (black solid line) and DFT predictions using the UNEDF0
functional (gray dashed line) from Ref. [ 307 ]. Our VS-IMSRG(2) calculations use HF+NAT bases computed in an
e

HF/NAT
max = 16, E3max = 24, ℏω = 16 MeV model space before being truncated to emax = 12 for the IMSRG calculation

(see Chapter  6 for details).

particular, ground-state energies are captured extremely well by the IMSRG(2), not requiring a perturbative
three-body correction like CC to get high accuracy [ 3 ,  44 ,  86 ,  94 ]. However, the normal-ordered two-body
truncation has also reached its limits for some observables in the past decade. Three notable examples are the
overprediction of dipole polarizabilities αD when considering excitation of a nucleus by an electromagnetic
probe [ 304 ,  305 ]; the general underprediction of B(E2, 2+ → 0+) transition strengths (where two-body
currents may also play an important role) [ 267 ,  306 ]; and the overprediction of excitation energies of the first
2+ state in closed-shell nuclei [ 3 ,  39 ,  42 ]. For a quantitative prediction of such observables, more complex
many-body effects must be captured, which means using more complete, but more expensive many-body
truncations like the IMSRG(3) or CC approximations with three-body operators.

One case that we revisit in this thesis is the first 2+ energy of 48Ca, presented in Fig.  4.2 . In the left
panel, we see VS-IMSRG(2) predictions for E(2+

1 ) for 42Ca to 54Ca using the 1.8/2.0 (EM) Hamiltonian,
which gives a good reproduction of the energies of most calcium isotopes. A notable exception here is
48Ca, a doubly-magic nucleus, where the VS-IMSRG(2) substantially overpredicts the 2+ energy. This
overprediction is not unique to the 1.8/2.0 (EM) Hamiltonian, as seen in the right panel for five different
chiral EFT Hamiltonians [ 165 ,  167 ,  171 ], indicating that it is due to the IMSRG(2) truncation. In Ref. [ 39 ],
Hagen et al. investigated the 48Ca 2+ energy with coupled-cluster calculations, using CC approximations
at the normal-ordered two-body level, EOM-CCSD, and also including three-body effects, EOM-CCSD(T).
There, they found a similar overprediction for many Hamiltonians at the two-body level, giving results very
consistent with the VS-IMSRG(2) results. Including three-body effects in the coupled-cluster calculations
provides significant corrections, bringing the 2+ energy down considerably. In Chapter  9 , we revisit this
deficiency of the VS-IMSRG(2) with the IMSRG(3), expecting three-body operators in the IMSRG produce
a similar correction.
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There are also some puzzles in ab initio nuclear structure theory. In these cases, it is not clear whether
the existing discrepancy to experiment is due to deficiencies or uncertainties of the Hamiltonian or due
to the many-body approximation. A key example is the trend of charge radii in neutron-rich calcium
isotopes [ 307 ], shown in Fig.  4.3 . Ab initio calculations fail to capture the key features, the “crown”
or “parabola” in charge radii between 40Ca and 48Ca [ 308 ] (which have nearly the same charge radius)
and the steep increase in charge radii after 48Ca [ 307 ]. In the left panel of Fig.  4.3 , we see that the
VS-IMSRG(2) predictions of absolute radii are strongly Hamiltonian-dependent. In particular, the low-
resolution Hamiltonians from Ref. [  171 ] give smaller radii than experiment. This behavior was originally
related to nuclear matter saturation properties of the interactions [ 3 ,  166 ], but recent results have suggested
that the picture connecting nuclear matter saturation density and nuclear charge radii is not completely
clear [ 185 ]. However, the relative trends for all Hamiltonians are very similar. Charge radii are predicted to
be flat from 40Ca to 48Ca and then increase considerably after 48Ca. This misses the larger charge radius
of 44Ca relative to 40Ca and 48Ca. In the right panel, we see that the increase in the charge radius of
52Ca relative to 48Ca is also consistently underpredicted by all Hamiltonians. These trends are generally
challenging to reproduce, also in coupled-cluster calculations [  307 ,  309 ] and in phenomenological shell model
and density functional theory calculations [  307 ,  310 ], but recent work exploring and optimizing the Fayans
functional for radii have allowed for a better description of calcium radii [ 82 ,  309 ,  311 ,  312 ]. An important
step to understand what is missing in ab initio calculations is going to the next order in the many-body
approximation to quantify and reduce many-body uncertainties.

4.7 Uncertainty quantification for the IMSRG
Uncertainty quantification for many-body calculations is challenging, and the IMSRG is no exception.
There are multiple sources of uncertainties, and assessing the magnitude of those uncertainties typically
requires performing larger, more expensive calculations.

For an IMSRG calculation, the errors we make are due to the many-body approximation [typically the
IMSRG(2)], the finite model space (emax and E3max, as discussed in Sec.  3.5 ), and the IMSRG numerical
solution. The IMSRG solver errors are due to many different choices that are made to set up an IMSRG
calculations. These choices include: the generator; the decoupling threshold that determines when a
calculation terminates; the numerical integration approach; and the handling of the Magnus operator. 

5
 

Generally, one can control for these solver errors, and their effects are well understood and small. Model-space
errors are also well understood and can be controlled for in most systems.

Errors due to the many-body approximation are considerably less well understood, but are particularly
important for the predictive power of ab initio methods in exotic systems. A common strategy has been to
compare IMSRG(2) predictions based on a given Hamiltonian to predictions from other many-body methods
for the same Hamiltonian. Other methods, like CC and SCGF, employ other many-body approximations,
so the extent to which multiple complementary approximate many-body methods agree gives some insight
into the general uncertainties of the methods. In particular, IMSRG, CC, and SCGF calculations can
be compared to results from exact diagonalizations in light systems, where the effect of the many-body
approximation is unambiguous. This was done, for example, for ground-state energies in oxygen isotopes [ 86 ],

5The unitary transformation in the Magnus expansion is typically split up into a series of smaller unitary transformations
solved for and performed sequentially,

U(s → ∞) = UN UN−1 . . . U2U1 , (4.48)
each parameterized by their own Magnus operator. This approach has the benefit that small unitary transformations are easy
to solve for and the Magnus and BCH expansions converge quickly. How this splitting is performed is one choice that must be
made in IMSRG calculations, and the sensitivity to this choice is due to the many-body approximation at play in IMSRG
calculations.
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and one found that the approximate many-body methods reproduce exact binding energies to within about
1%.

Such comparisons between complementary many-body methods inspire confidence in the robustness of
the many-body approximations at play, but there are open questions and also limits to this approach. First,
these different methods are complementary, but not fully independent. The many-body approximations
employed are often similar, motivated by arguments from perturbation theory, and as a result all methods
may miss the same physics essential to reproduce a given observable and thus agree on a wrong result. For
bulk properties of nuclei this is unlikely, but for more exotic observables this has been observed [ 306 ].

At the same time, comparisons between two many-body methods are only possible for systems accessible
by multiple approaches. The IMSRG, CC, and SCGF have different strengths, and in general different
systems and observables are accessible to each method. In such cases where a given approach is uniquely
able to provide predictions, one would still like to be able to robustly assess the many-body uncertainty,
and this involves going to high orders in the many-body expansion. This has been done in CC theory,
comparing CCSD [coupled-cluster with singles and doubles, a comparable truncation to the IMSRG(2)]
with various approximations that also include three-body operators [ 313 – 319 ]. Within the IMSRG, this
requires going beyond the IMSRG(2) and investigating the effects of three-body operators in the IMSRG(3).
Such calculations are tremendously expensive, but available due to the developments in this thesis, and
robust many-body uncertainty quantification for IMSRG calculations is now becoming possible.
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Chapter 5

Normal-ordered three-body forces
for heavy nuclei

When computing heavy nuclei beyond A ∼ 100, the treatment of three-body forces in many-body calculations
becomes a challenge. Storing complete three-body matrix elements in a single-particle basis ⟨pqr|V3N|stu⟩
would require 10s or 100s of TB of memory, so a truncation on three-body states E3max ≥ ep + eq + er

is typically used when transforming V3N to a single-particle basis. Standard values of E3max = 16, 18
are sufficiently converged in systems with A ≤ 100 for soft Hamiltonians, but for heavier systems a
strong dependence on E3max is observed in ground-state energy predictions, indicating that the three-body
truncation is insufficient to fully capture the three-body potential in larger systems.

Recent efforts have refined the treatment of three-body forces within the normal-ordered two-body
approximation, where the three-body force is normal ordered with respect to a reference state |Φ⟩ and
treated at the effective two-body level in the following many-body calculation. In this approximation, what
is actually used in the many-body calculation is

Γ3N
pqrs =

∑
t

ñt ⟨pqt|V3N|rst⟩ =
∑
tt′

ρtt′ ⟨pqt|V3N|rst′⟩ (5.1)

from Eq. ( 3.36 ). 

1
 In practice, allowed values of t, t′ are strongly constrained by symmetries, so only a subset

of the complete set of matrix elements of V3N must be stored to compute Γ3N. This approach is exploited
by Miyagi et al. in Ref. [ 46 ], allowing NO2B many-body calculations up to E3max = 28. We present a
complementary approach where Eq. ( 5.1 ) is evaluated in a relative basis without ever needing to store
V3N in a single-particle basis, circumventing the need for an E3max truncation at all [ 49 ]. The improved
treatment of V3N is sufficient to deliver converged ground-state energies and radii for 208Pb, opening the
frontier of heavy nuclei to ab initio calculations. This work is published in Ref. [ 49 ].

5.1 Normal ordering in a Jacobi basis

Nuclear forces are efficiently represented in a plane-wave partial-wave basis (see Chapter 3 and Appendix A
of Ref. [ 61 ] for details). Such bases exploit the Galilean and rotational invariance of nuclear interactions,
making them the basis of choice for the construction of NN and 3N potential matrix elements. The 3N
single-particle basis |k̃1k̃2k̃3⟩ with |k̃i⟩ = |kimsimti⟩ is highly redundant in comparison. This redundancy

1In this chapter, we denote the occupation number for the state t by ñt, distinguishing it from the radial excitation number
nt, for notational consistency with Ref. [ 49 ].

49
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is the cause of the computational challenges in normal ordering 3N potentials in a single-particle basis. To
get around this, we reformulate the normal ordering procedure in Eq. ( 5.1 ) in a relative basis.

We start from a single-particle plane-wave basis,

⟨k̃′
1k̃′

2|Γ3N|k̃1k̃2⟩ =
∫

dk3dk′
3

(2π)6
∑

ms3 m′
s3

∑
mt3 m′

t3

ρ(k̃3, k̃′
3) ⟨k̃′

1k̃′
2k̃′

3|V3N|k̃1k̃2k̃3⟩ , (5.2)

with the density matrix

ρ(k̃3, k̃′
3) = δmt3 m′

t3

∑
n3l3j3mj3

ñ3 ⟨k̃′
3|φn3l3j3mj3 mt3

⟩ ⟨φn3l3j3mj3 mt3
|k̃3⟩ . (5.3)

This density matrix is constructed from the orbitals occupied in the reference state,

⟨kimsimti |φnilijimji
mti

⟩ =
∑
mli

Cjimji

limli

1
2 msi

Ylimli
(k̂i) φnilijimji

mti
(ki) , (5.4)

with the Clebsch-Gordan coefficients Cjmj

lml1/2 ms
coupling the single-particle orbital angular momentum and

spin to the total angular momentum, the spherical harmonics Ylml
, and the angular orientation k̂ and

modulus k = |k| of the vector k.

Equation ( 5.2 ) may be reexpressed in terms of the relative momenta p and q and the two-body and
three-body center-of-mass momenta P and P3N,

p = 1
2(k1 − k2) , (5.5)

P = k1 + k2 , (5.6)

q = 1
3(2k3 − P) , (5.7)

P3N = k3 + P , (5.8)

yielding

⟨p̃′P′|Γ3N|p̃P⟩ =
∫

dk3dk′
3

(2π)6
∑

ms3 m′
s3

∑
mt3 m′

t3

ρ(k̃3, k̃′
3) ⟨p̃′q̃′|V3N|p̃q̃⟩ (2π)3δ(P3N − P′

3N) . (5.9)

The three-body center-of-mass dependence is trivial due to Galilean invariance, but the two-body center-of-
mass dependence in the normal-ordered 3N interaction is not as one integrates over k3 ̸= k′

3.

To arrive at plane-wave partial-wave matrix elements, we perform a partial-wave decomposition of the
three-body states |p̃q̃⟩ and the generalized two-body states |p̃P⟩. For the three-body states,

|p̃q̃⟩ = |pSMSTMT qmsmt⟩ =
∑

LML

∑
lml

Y ∗
LML

(p̂)Y ∗
lml

(q̂)
∑
JMJ

∑
jmj

CJMJ
LMLSMS

Cjmj

lml
1
2 ms

×
∑

J MJ

∑
T MT

CJ MJ
JMJ jmj

CT MT
T MT

1
2 mt

|pq[(LS)J(ls)j]J (Tt)T ⟩ , (5.10)

with the magnitudes of the Jacobi momenta p = |p| and q = |q|; the orbital angular momentum L, spin S,
total angular momentum J , and the isospin T of the two-body subsystem of particles 1 and 2 with Jacobi
momentum p; orbital angular momentum l, spin s = 1/2, total angular momentum j, and the isospin



5.1. NORMAL ORDERING IN A JACOBI BASIS 51

t = 1/2 of particle 3 relative to the two-body subsystem; and the total three-body angular momentum J
and total three-body isospin T . It is convenient to use the compact notation

|pqα⟩ = |pq[(LS)J(ls)j]J (Tt)T ⟩ , (5.11)

where the index α collects all the partial-wave quantum numbers.

The two-body state decomposition works analogously, and we arrive at states

|pP [(L̄S̄)J̄ L̄CM]J̄totMJ̄tot T̄MT̄ ⟩ = |pPγ⟩ , (5.12)

with the relative partial-wave quantum numbers associated with p, L̄, S̄, J̄ , T̄ , and MT̄ (distinguished from
the analogous quantum numbers in |pqα⟩ by an overline), and the center-of-mass orbital angular momentum
L̄CM coupled to the total two-body angular momentum J̄tot. Again, all partial-wave quantum numbers are
collected in γ for convenience.

Applying the decomposition to Eq. ( 5.9 ) and simplifying yields

⟨p′P ′γ′|Γ3N|pPγ⟩ =
∑
J T
ll′jj′

∫
dP̂dP̂′ dk3

(2π)3 ⟨p′q′α′|V3N|pqα⟩

×
∑

jxjyjz
mymz

∑
ML̄CM

M ′
L̄CM

∑
mlm

′
l

Aαα′γγ′
jxjyjz

B
T̄ T̄ ′MT̄ T
jxjyjzmymz

(k3, k′
3)

× Cjymy

lmlL̄
′
CMM ′

L̄CM

Cjzmz

l′m′
l
L̄CMML̄CM

× Y ∗
L̄CMML̄CM

(P̂) YL̄′
CMM ′

L̄CM
(P̂′) Y ∗

lml
(q̂) Yl′m′

l
(q̂′) , (5.13)

with the superscripts α and γ indicating the dependence on all of the quantum numbers defined in Eqs. ( 5.11 )
and (  5.12 ), respectively. We introduced the quantities

Aαα′γγ′
jxjyjz

= δJ̄JδJ̄ ′J ′(−1)−J̄+J̄ ′+j+j′+2jx+jy−jz Ĵ 2ĵĵ′ĵy ĵz ĵ2
x

×
{

L̄′
CM l jy

1
2 jx j

}{
L̄CM l′ jz

1
2 jx j′

}
jx L̄′

CM j

L̄CM J̄tot J̄

j′ J̄ ′ J

 , (5.14)

and

B
T̄ T̄ ′MT̄ T
jxjyjzmymz

(k3, k′
3) =

∑
MT

∑
jumu

∑
n3l3j3mj3

ml3 m′
l3

mt3

ĵ2
3 Cjumu

l3ml3 jzmz
Cjumu

l3m′
l3

jymy
CT MT

T̄ MT̄
1
2 mt3

CT MT
T̄ MT̄

1
2 mt3

×


jx

1
2 jy

1
2 j3 l3

jz l3 ju

Yl3m′
l3

(k̂′
3) Y ∗

l3ml3
(k̂3)φn3l3j3mj3 mt3

(k3) φn3l3j3mj3 mt3
(k′

3) , (5.15)

with ĵ =
√

2j + 1 for all angular momentum quantum numbers and the Wigner 9j and 6j symbols [ 320 ].
In addition we introduced the auxiliary quantum numbers jx, jy, jz, and ju as well as their projections my,
mz, and mu. These intermediate quantities are obtained by coupling l with L̄′

CM to jy, l′ with L̄CM to jz,
l3 with jy and jz to ju, and s = 1/2 with jy and jz to jx.



52 CHAPTER 5. NORMAL-ORDERED THREE-BODY FORCES FOR HEAVY NUCLEI

5.2 Practical considerations

At this point, the discussion of a few practical considerations is in order. First, Eq. ( 5.13 ) requires the
density of the reference state |Φ⟩ as input. This reference state is ideally computed via Hartree-Fock or a
perturbative natural orbitals calculation. Implicit in this is the dependence on the 3N potential, which
enters the construction of the mean-field potential. It would in principle be possible to do the Jacobi normal
ordering in Eq. ( 5.13 ) iteratively to also solve the HF and NAT equations, but the normal ordering is
too expensive for this to be practical. Instead, the reference state is constructed once from a truncated
single-particle 3N potential that is still restricted by some E3max cut. This is a pragmatic solution that
takes advantage of the fact that mean-field approaches converge more quickly in E3max than the following
IMSRG calculations. This means that even for 132Sn an HF reference state constructed at E3max = 18
provides a density ρ that is converged in E3max (as we see later in this chapter) and can be used for the
normal ordering in a relative basis.

A second important consideration is the necessary truncations in the Jacobi normal ordering and how
they compare with the single-particle normal ordering. From Eq. ( 5.13 ), we see that there are two kinds of
truncations one could impose: truncations on the external two-body partial-wave numbers in γ; and/or
truncations on the summed-over three-body partial-wave numbers J , l, l′. Note that these truncations
serve to limit the computational cost of the normal ordering, but do not arise due to any practical limits on
memory; in principle, the truncations on γ can be taken quite large without producing prohibitively large
normal-ordered 3N matrix element files. We find that it is conceptually and computationally practical to
impose a truncation on J̄tot and L̄CM and to allow all other quantum numbers to extend to their limits.
This choice gives nice convergence patterns for ground-state energies and radii, and we are able to test it
systematically in the following.

The truncations in J̄tot and L̄CM in the Jacobi normal ordering are quite different from the E3max
truncation in the single-particle normal ordering. E3max primarily truncates in the radial oscillator numbers
n, given the higher “cost” of n in e = 2n + l, imposing strong infrared and ultraviolet cuts on the three-body
force [ 321 – 325 ]. By contrast, the Jacobi normal ordering is free of such cuts due to the representation of
Γ3N in momentum space. The truncation in J̄tot, the total two-body angular momentum for the effective
potential, intuitively lines up with the expectation that important many-body physics is restricted to
relatively low J̄tot. The reference state of 132Sn only allows coupling up to J̄tot = 9, and for 208Pb this only
extends to J̄tot = 11. This is to be contrasted with the maximum value allowed by the model space, which
is J̄tot = 29 for emax = 14 and J̄tot = 33 for emax = 16. The truncation in L̄CM is a bit less intuitively clear,
as it relates to the ability to resolve the center-of-mass dependence of the effective potential, but we find
that L̄CM ∼ J̄tot is sufficient to yield convergence with respect to L̄CM.

For IMSRG calculations, we must transform Γ3N to a two-body single-particle basis. This transformation
proceeds in two steps. First, we transform to a relative HO basis

|NNCMγ⟩ =
∫

dp dP p2P 2RNL̄(p, brel)RNCML̄CM
(P, bCM) |pPγ⟩ , (5.16)

with the oscillator lengths bi = 1/
√

Mωi and the radial part RNL̄ of the harmonic oscillator wave function
in momentum space is given by RNL̄(p, b) = ⟨pL̄|NL̄⟩. The oscillator parameters are related by [ 61 ]

brel =
√

2 b , bCM = 1√
2

b , (5.17)

where b is the single-particle oscillator length of the HO basis. Then we transform from relative HO states
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Figure 5.1: Matrix element differences in the Jacobi and single-particle normal ordering. Distributions
of differences Γ3N

Jac − Γ3N
sp for different J̄tot blocks of J̄tot < 2 (green), 2 ≤ J̄tot ≤ 5 (orange), and J̄tot ≥ 5 (blue) in

the effective two-body interaction. We show results for different truncations in the Jacobi normal ordering, using
J̄max

tot = L̄max
CM = 3, 5, 7, and 9 in the first through fourth panel, respectively. The y axis shows the percentage of matrix

elements with the difference specified on the x axis in the selected J̄tot block. Results are shown for the 1.8/2.0 (EM)
3N interaction with emax = 4, E3max = 12, and ℏω = 16 MeV using an 16O HF reference state. Figure from Ref. [  49 ].

to single-particle HO states

|(ab)J̄totT̄MT̄ ⟩ =
∑
λS̄

ĵaĵbλ̂
2 ˆ̄S ˆ̄J


la sa ja

lb sb jb

λ S̄ J̄tot


∑

NCML̄CM
NL̄

⟨(NCML̄CMNL̄)λ|(nalanblb)λ⟩

×
∑

J̄

(−1)L̄+S̄+J̄

{
S̄ L̄ J̄

L̄CM J̄tot λ

}
|NCMN

[
(L̄S̄)J̄ L̄CM

]
J̄totT̄MT̄ ⟩ . (5.18)

Here, we employ the Wigner 9j and 6j symbols [ 320 ] and the relative to single-particle HO brackets [ 326 – 329 ]
to transform relative HO states to single-particle HO states:

|(nalanblb) λ⟩ =
∑

NCML̄CMNL̄

⟨(NCML̄CMNL̄)λ
∣∣(nalanblb)λ⟩ |(NCML̄CMNL̄)λ⟩ . (5.19)

Performing these transformations and decoupling from coupled isospin T̄ , MT̄ , we arrive at our desired
coupled two-body single-particle basis states |(pq)J̄tot⟩.

In this basis, we can perform benchmarks with the single-particle normal ordering both at the matrix
element level and the level of predicted ground-state energies. We start with the former, where we compare
the matrix elements ΓJ̄tot

pqrs = ⟨(pq)J̄tot|Γ3N|(rs)J̄tot⟩ obtained in the single-particle normal ordering as
in Eq. ( 5.1 ) and in the Jacobi normal ordering as in Eq. ( 5.13 ). For a clean comparison, we use the
single-particle truncations emax = 4, E3max = 12 such that no E3max cut is active and test the robustness
of our truncations in the Jacobi normal ordering. We normal order the 3N part of the 1.8/2.0 (EM)
Hamiltonian [ 171 ] with respect to an HF reference state for 16O computed at ℏω = 16 MeV.
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Figure 5.2: IMSRG(2) correlation energies for 78Ni. Left: Correlation energies Ecorr as a function of E3max
in the single-particle normal ordering. Right: Correlation energies Ecorr as a function of L̄max

CM and J̄max
tot in the Jacobi

normal ordering. The blue line shows Ecorr as a function of L̄max
CM while keeping J̄max

tot at its maximal value of 12, and
the red line shows Ecorr as a function of J̄max

tot while keeping L̄max
CM at its maximal value of 12. Results are obtained

using the 1.8/2.0 (EM) interaction, an emax = 14 model space, and an oscillator frequency of ℏω = 16 MeV in the HF
basis. The Jacobi normal ordering uses an E3max = 16 HF reference state. Figure from Ref. [  49 ].

The distibution of matrix element differences for the Jaocbi normal-ordered matrix elements Γ3N
Jac and

the single-particle normal-ordered matrix elements Γ3N
sp is shown in Fig.  5.1 . We divide the matrix elements

into different blocks based on J̄tot, considering a low-J̄tot block with J̄tot ≤ 2, an intermediate block with
2 ≤ J̄tot ≤ 5, and a high-J̄tot block with J̄tot ≥ 5 (the maximum allowed J̄tot is 9 for emax = 4). Performing
the Jacobi normal ordering with the truncations J̄max

tot = L̄max
CM = 3 yields considerable matrix element

differences in all blocks. Increasing the truncation to 5 allows the Jacobi normal ordering to perfectly
reproduce the single-particle normal ordering result in the low-J̄tot block, with decreasing discrepancies
for higher J̄tot as well. Further increasing the truncation to 7 brings the intermediate block into excellent
agreement, and by increasing it to 9 we find that the Jacobi normal ordering and single-particle normal
ordering give numerically the exact same matrix elements. This both affirms that our derivation and
implementation is correct and gives a sense for what truncations are required to accurately reproduce matrix
elements of Γ3N for different J̄tot. From our results, it generally seems to be the case that L̄max

CM = J̄tot + 2
gives good reproduction of matrix elements up to J̄tot.

Accurately reproducing matrix elements is a good check, but in practice not all matrix elements are
equally important in many-body calculations [ 107 ,  330 – 332 ]. In the following we test Γ3N obtained from
Jacobi and single-particle normal ordering in IMSRG(2) calculations. Γ3N can be included in IMSRG(2)
calculations at the same cost as VNN, with only slightly modified normal ordering expressions [compare
with Eqs. ( 3.34 )–( 3.36 )]

E =
∑

i

niH
(1B)
ii + 1

2
∑
ij

ninj(H(2B)
ijij + 1

3Γ3N
ijij) , (5.20)

fpq = H(1B)
pq +

∑
i

ni(H(2B)
piqi + 1

2Γ3N
piqi) , (5.21)

Γpqrs = H(2B)
pqrs + Γ3N

pqrs . (5.22)

To understand the effects of the J̄max
tot , L̄max

CM truncations in many-body calculations, we consider emax = 14
IMSRG(2) calculations for 78Ni using Jacobi and single-particle normal-ordered 3N potentials as input.
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We use the 1.8/2.0 (EM) Hamiltonian [ 171 ] for all the applications discussed in this chapter, and use the
NuHamil code to access large E3max in the single-particle normal ordering [ 333 ]. Note that for emax = 14,
we cannot reach either E3max-completeness in the single-particle normal ordering or J̄max

tot -completeness
in the Jacobi normal ordering, so such a comparison represents a test of both truncation efficiency and
consistency in realistic many-body calculations.

In Fig.  5.2 , we show the IMSRG(2) correlation energy Ecorr = EIMSRG(2) −EHF as a function of E3max for
the single-particle normal ordering in the left panel and as a function of J̄max

tot and L̄max
CM for the Jacobi normal

ordering in the right panel. In the single-particle normal ordering, we observe that Ecorr converges quickly
in E3max, with the energy converged to within 1 MeV at E3max = 18. For our Jacobi normal ordering, we
show convergence with respect to J̄max

tot and L̄max
CM separately, with the red line showing convergence in J̄max

tot
with L̄max

CM = 12 and the blue line showing convergence in L̄max
CM with J̄max

tot = 12. The Jacobi normal ordering
converges systematically to the same Ecorr value, and even moderate truncations of J̄max

tot = L̄max
CM = 9 are

sufficient to be converged well within 1 MeV. Recall that the 78Ni reference state typically has the neutron
1g9/2 orbital occupied, meaning the reference state can couple to up to J̄tot = 9.

5.3 Applications to heavy nuclei

Up until the developments in Refs. [  46 ,  49 ], 78Ni was at the limit of comfortable convergence in E3max.
Applications to heavier systems at A ∼ 100 and beyond [ 41 ,  43 ] had to contend with nonnegligible model-
space uncertainties or exploit features of emax and E3max convergence for specific observables to safely
extrapolate. We now explore applications in the heavy nuclei 132Sn and 208Pb to establish the improved
normal ordering approaches as robust and powerful ways to tackle nuclear structure in heavy systems.

In Fig.  5.3 , we consider IMSRG(2) calculations of 132Sn using the 1.8/2.0 (EM) Hamiltonian. All
calculations are performed at emax = 14, ℏω = 12 MeV, using an HF reference state. In the single-particle
normal ordering (left panels), one observes that EHF is converged within 1 MeV around E3max = 18 while
Ecorr, and as a result EIMSRG(2), converge more slowly. Convergence within 1 MeV is reached around
E3max = 24, highlighting the importance of improved normal ordering in fully capturing the NO2B 3N
interaction.

We study the convergence in the Jacobi normal ordering with respect to J̄max
tot with L̄max

CM = 12 and with
respect to L̄max

CM with J̄max
tot = 12. We test the dependence on the reference state by employing E3max = 18

and E3max = 28 reference states. The results for EHF, Ecorr, and EIMSRG(2) are the same for both reference
states. This indicates that the HF solution converges more quickly with respect to E3max and one can rely
on a reference state computed at relatively small E3max as input for the Jacobi normal ordering.

We observe systematic convergence in both J̄max
tot and L̄max

CM , with Ecorr converged within 1 MeV around
J̄max

tot = L̄max
CM = 11. Again, this aligns well with the fact that the 132Sn reference state can couple up to

J̄tot = 11. The converged correlation energies in the single-particle and Jacobi normal ordering agree to
within 1 MeV.

Considering EIMSRG(2), one observes a slightly larger difference between the two approaches, which can
be traced back to different converged values for EHF. We understand this difference to be due to differences
in how three-body forces are handled in the two approaches. These differences are:

1. whether V3N is antisymmetrized in the HO basis or in the Jacobi momentum-space basis;

2. what truncations are employed for J and l in α [see Eq. ( 5.11 )];
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Figure 5.3: Hartree-Fock and IMSRG(2) energies for 132Sn. Same as Fig.  5.2 but for 132Sn and ℏω = 12 MeV.
We also show the HF energy EHF and IMSRG energy EIMSRG in the top and middle panel, respectively, and increased
the E3max range in the single-particle normal ordering (left) to E3max = 28. The Jacobi normal ordering (right) uses
an E3max = 28 HF reference state (filled circles) and an E3max = 18 HF reference state (open circles). Figure from
Ref. [ 49 ].

3. and what floating-point precision is used to store V3N matrix elements and transformation coefficients
during the various stages of the calculations.

The single-particle normal ordering typically antisymmetrizes V3N in the Jacobi HO basis, uses Jmax = 8,
Jmax = 7, and Jmax = 6 for three-body channels α with J ≤ 5/2, J = 7/2, and J ≥ 9/2, respectively, and
no restriction on l, and employs half precision for the storage V3N in a single-particle basis (which is required
to reach E3max = 28). By contrast, the Jacobi normal ordering antisymmetrizes V3N in the Jacobi momentum-
space basis, uses Jmax = 5, lmax = 5 everywhere, and employs single precision or higher at all stages in
the calculation. The Jmax = 5, lmax = 5 truncation is closely tied to the necessary antisymmetrization
in momentum space for the Jacobi normal ordering, as the antisymmetrization in momentum space is
approximate, and keeping Jmax and lmax relatively low ensures proper antisymmetry [ 61 ]. 

2
 

2In practice, it has been seen that channels with J ≥ 5 typically only provide very small contributions in calculations of
nuclei and nuclear matter [ 61 ].
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EHF (MeV) EIMSRG (MeV)
Antisymmetrization in Jacobi HO basis
single precision −806.11 −1109.02
Jmax = lmax = 5 truncation −808.79 −1111.83
half precision −807.84 −1110.49
Antisymmetrization in Jacobi momentum-space basis
single precision −807.19 −1110.27
Jmax = lmax = 5 truncation −809.05 −1112.29
Jacobi normal ordering
L̄max

CM = J̄max
tot = 13 −809.49 −1113.33

Table 5.1: Impact of 3N potential treatment in normal ordering for 132Sn. Hartree-Fock energies EHF
and IMSRG(2) ground-state energies EIMSRG for 132Sn for an emax = 14 and E3max = 24 model space. Results
are given for different 3N interaction files in the single-particle normal ordering. The first three rows apply the
antisymmetrization in the Jacobi HO basis, whereas the next two rows perform the antisymmetrization in the Jacobi
momentum-space basis in comparison to the Jacobi normal ordering results in the bottom row. If not stated otherwise,
the single-particle normal ordering uses the truncation of Jmax = 8, 7, and 6 (as described in the main text) and no l
truncation. The truncation Jmax = lmax = 5 is used in the Jacobi normal ordering. Table from Ref. [  49 ].

We tested the effects of these differences by varying the treatment in the single-particle normal ordering
at emax = 14, E3max = 24, where one can also use single precision to store the matrix elements. The results
for HF and IMSRG(2) energies are listed in Table  5.1 . One sees that varying the treatment of V3N in the
single-particle normal ordering to that used in the Jacobi normal ordering brings the results systematically
into agreement. In general, the differences affect the correlation energy less, indicating that this is mostly
about small differences in matrix elements that are particularly important at the HF level. Overall, the
agreement is still very good (∼ 3 MeV on a binding energy of ∼ 1100 MeV), but calculations in heavy nuclei
reveal small uncertainties in how we treat three-body forces in preparation for many-body calculations.
These uncertainties are still smaller than IMSRG(2) uncertainties on binding energies in these systems and
much smaller than uncertainties in the Hamiltonians employed.

Turning our attention to the ground-state energy of 208Pb in Fig.  5.4 , we find a similar picture as
for 132Sn, but with slower convergence due to the heavy mass. In particular, we find that emax = 14
is insufficient for model-space convergence, and we provide IMSRG(2) calculations of the ground-state
energy at emax = 16. In the single-particle normal ordering, the HF solution continues to converge quickly
with respect to emax and E3max, with emax = 14, E3max = 20 being sufficient to converge EHF. For Ecorr,
the convergence is more challenging. Going from emax = 14 to emax = 16 gives about a 2% correction,
and sub-MeV convergence in E3max is not quite reached. Still, the convergence patterns up to emax = 16
and E3max = 28 are likely sufficient for an exponential extrapolation if precision greater than ±5 MeV
is desired [ 46 ,  47 ]. This is not relevant at the IMSRG(2) level, but at the IMSRG(3) level, where the
many-body solution would be accurate to within 2–3 MeV, model-space uncertainties due to emax and
E3max would need to be reduced.

In the right panels of Fig.  5.4 , we show results for the Jacobi normal ordering with respect to J̄max
tot with

L̄max
CM = 13 and with respect to L̄max

CM with J̄max
tot = 13. We employ an E3max = 28 HF reference state, but note

that an E3max = 20 HF reference state would likely yield indistinguishable results. We observe systematic
convergence in J̄max

tot and L̄max
CM , with convergence to within 1–2 MeV reached at J̄max

tot = L̄max
CM = 13. This
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Figure 5.4: Hartree-Fock and IMSRG(2) energies for 208Pb. Same as Fig.  5.3 but for 208Pb. The
single-particle normal ordering results (left) are shown for emax = 14 and emax = 16 model spaces. The Jacobi normal
ordering (right) uses an emax = 16 and E3max = 28 HF reference state. Figure from Ref. [  49 ].

once again aligns with the fact that the 208Pb reference state can couple up to J̄tot = 13 due to the neutron
1i13/2 orbital being occupied. For Ecorr, the agreement with the single-particle normal ordering is good
within the remaining E3max uncertainty. For EHF, we see a similar discrepancy between the two normal
ordering approaches as in 132Sn, with slightly larger absolute differences due to the larger system and larger
HF energy. At the IMSRG(2) level, these differences are acceptable, and the consistency of the two normal
ordering approaches is important to establish their correctness in heavy systems.

Finally, in Fig.  5.5 , we show charge radii as computed by the IMSRG(2) using the single-particle and
Jacobi normal ordering approaches. Charge radii are known to be efficiently captured at the HF level,
with only small corrections from the IMSRG(2) or other many-body methods. As an example, at the HF
level, Rch = 5.14 fm, which is to be contrasted with the IMSRG(2) prediction of 5.19 fm. It is, therefore,
unsurprising to see that Rch converges similarly to EHF, with convergence in the single-particle normal
ordering reached around emax = 14, E3max = 20. The Jacobi normal ordering converges nicely to the same
result, further demonstrating the consistency of the two approaches. 

3
 

3The HF value of Rch is the same for both normal ordering approaches, so it is only possible for a difference to arise due to
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Figure 5.5: IMSRG(2) charge radii for 208Pb. Same as the middle panel of Fig.  5.4 but for the charge radius
Rch. Figure from Ref. [ 49 ].

Overview and perspectives
This discussion of the developments of Ref. [ 49 ] establishes normal ordering in a relative basis as a way
to converge the contributions of three-body forces in heavy nuclei. We derived the equations to obtain
normal-ordered three-body interactions Γ3N in a relative basis and introduced J̄max

tot and L̄max
CM as the relevant

key truncations at play in the normal ordering, replacing E3max in single-particle normal ordering. We
demonstrated consistency with traditional single-particle normal ordering, both on the matrix-element level
and in many-body calculations in 16O, 48Ca, and 78Ni (where only the latter was discussed in this chapter).
In calculations of 132Sn and 208Pb we showed systematic convergence and consistency with the large-E3max
developments by Miyagi et al. [ 46 ]. These developments together offer a long-term perspective for ab initio
studies of heavy nuclei, where further developments on many-body methods and their implementations will
be necessary to provide a global ab initio description.

My contributions in Ref. [  49 ] touched the relative normal ordering, the handling of the matrix elements of
Γ3N, and the inclusion of Γ3N in IMSRG calculations. I worked on the numerical optimization of the normal
ordering implementation, which is generally very computationally expensive due to the multidimensional
integrals and sums that need to be evaluated. I formally extended the treatment of the density in the normal
ordering to allow it to describe systems where only one of two spin-orbit partner orbitals is occupied (for
example, 24O where the neutron 1d5/2 orbital is occupied, but the 1d3/2 orbital is unoccupied). Additionally,
I worked on the approaches used to include Γ3N in IMSRG calculations. I implemented the general two-body
transformation to a single-particle basis, accounting for the center-of-mass dependence appropriately. I
performed the systematic matrix element benchmarks in 16O and implemented the file formats used to read
the matrix elements into IMSRG calculations.

Given the cost of Jacobi normal ordering calculations, it is an important outstanding task to further
accelerate the numerical implementation. Still, we expect the Jacobi normal ordering to play the role of an
expensive high-fidelity method in cases where the large-E3max developments of Miyagi et al. are insufficient.
In such cases, the better infrared and ultraviolet convergence of the Jacobi normal ordering may be important
to give converged results. Extensions to more complicated references states [ 244 ,  249 ,  250 ,  256 ,  334 ,  335 ] or
in deformed many-body calculations [ 251 ,  252 ] are also conceivable on the longer term, and it remains to
be understood how the E3max and J̄max

tot /L̄max
CM truncations differ in such applications.

many-body correlations (because of differences in Γ3N) on the small corrections computed by the IMSRG(2). With this in
mind, the agreement is unremarkable, but of course important to confirm.





Chapter 6

Truncations for the IMSRG
from perturbation theory

Despite its efficient computational scaling for medium-mass and heavy nuclei, the IMSRG is still a
computationally challenging many-body method, requiring large-scale calculations on supercomputers to
solve realistic problems in nuclei. This computational challenge is especially pronounced when considering
higher-order many-body truncations like the IMSRG(3) (see Chapter  7 ) [ 45 ], deformed single-particle bases
where angular momentum coupling cannot be applied [ 251 ,  336 ], or tensor operators as required to describe
electromagnetic transitions [ 265 – 267 ] and complex nuclear responses [ 268 ,  275 ,  337 ,  338 ]. To address this,
one can make informed truncations to restrict the model-space size required for converged calculations and
thus reduce the computational cost of IMSRG calculations.

In this chapter, we discuss two complementary approaches to making informed, controllable truncations
in IMSRG calculations leveraging cheap perturbation theory calculations. First, we present the application
of the perturbatively improved natural orbital basis in IMSRG calculations, allowing converged calculations
in smaller model spaces [  106 ]. Second, we discuss a different approach to performing importance truncation
(IT) in IMSRG calculations, demonstrating that for soft Hamiltonians significant truncations are possible
without introducing considerable errors in IMSRG predictions [ 107 ]. The results discussed in this chapter
are published in Refs. [  106 ,  107 ].

6.1 Natural orbitals
The starting point for many-body calculations of finite nuclei are nuclear Hamiltonian matrix elements in an
HO basis. While this generic, system-independent representation is practical as a starting point, the explicit
dependence on ℏω means that setting up an efficient reference state |Φ⟩ requires the optimizing the basis to
obtain a better ground-state estimate. This is conventionally done via Hartree-Fock calculations (discussed
in Section  3.3 ), which optimize the hole orbitals for a system of interest to obtain an energetically optimal,
frequency independent Slater-determinant reference state. However, the HF basis, despite producing the
energetically optimal reference state, is not necessarily the ultimate basis choice, owing primarily to the
fact that it does not effectively optimize particle states not occupied in the reference state to efficiently
capture interactions relevant to describe the wave function of the system of interest.

In this section, we explore the construction and application of the natural orbital basis in IMSRG
calculations. The natural orbitals have a long history of success in quantum chemistry [ 339 – 353 ] and were
recently explored in nuclear physics contexts [ 251 ,  259 ,  354 – 356 ]. In particular, the success of perturbative
natural orbitals and the proliferation of highly optimized localized basis sets in quantum chemistry has

61
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spurred interest in ab initio nuclear theory in developing and employing improved bases in many-body
calculations [ 357 – 359 ].

We establish one strategy to establish faster model-space convergence using the natural orbitals. Model-
space convergence in many-body calculations is tested by checking the dependence of predicted observables
on ℏω and emax. For this reason, in the following sections we focus heavily on discussing the frequency
(in)dependence of our results and investigating convergence in emax, ultimately establishing a way to provide
ℏω- and emax-independent predictions at small model-space truncations, significantly reducing the costs of
the IMSRG calculations of the systems considered. This strategy is generically applicable to many-body
methods that use an emax-like single-particle truncation to set up their bases for many-body calculations.

6.1.1 Construction

The natural orbital basis is defined as the eigenbasis of the one-body density matrix, with matrix elements
given by

ρpq ≡ ⟨Ψ| : a†
paq : |Ψ⟩

⟨Ψ|Ψ⟩ , (6.1)

where |Ψ⟩ denotes the exact ground state. Instead of employing the exact ground state, which is exponentially
expensive to construct, one may construct the density matrix for an approximation of the ground state.
The simplest approximation is a single Slater determinant, for example the HF state, giving the density
matrix (in its eigenbasis)

ρHF =
(

1hh 0
0 0

)
, (6.2)

where 1hh denotes the identity in the sub-block of hole states.

The full density matrix can be better approximated using perturbation theory, where keeping terms up
to second order in the interaction the approximate density matrix becomes

ρMP2 ≡ ρHF + ρ(02) + ρ(20) + ρ(11) , (6.3)

where

ρ(mn)
pq ≡ ⟨Φ(m)| : a†

paq : |Φ(n)⟩ (6.4)

is the MBPT contribution to the density matrix arising from the bra and ket wave-function corrections
at orders m and n, respectively. See Refs. [ 106 ,  259 ] for the full expressions for the contributions to ρ(02),
ρ(20), and ρ(11).

Diagonalizing ρMP2 gives the perturbatively improved natural orbital (abbreviated NAT) basis

ρMP2 |p⟩NAT = nNAT
p |p⟩NAT , (6.5)

with the NAT occupation number nNAT
p . The states |p⟩NAT are related to the HF states |p⟩HF via a unitary

transformation, so it is easy to transform all operators to the NAT basis via the familiar expressions in
Sec.  3.3.1 . However, since the perturbatively improved state used to construct ρMP2 is not a single Slater
determinant, nNAT

p are no longer simply 0 or 1. The NAT construction has included many-body correlations
in the density matrix, “smearing out” the Fermi surface of the HF state. Low-lying hole states still have
NAT occupations close to 1, and high-lying particle states still have NAT occupations close to 0, but hole
and particle states near the Fermi surface have occupation numbers considerably different from 1 and 0,
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respectively. This means nNAT
p can tell us something about how strong the many-body correlation effects

are for a given state |p⟩NAT. This metric is used as an organizational principle in IT procedures and in
many-body basis constructions, as we discuss later in this chapter.

Once we have obtained the NAT basis by diagonalizing ρMP2, we want to use it as a starting point for
many-body calculations. At this point, a few subtleties come into play. The NAT density is not the density
of a Slater determinant, which is the reason why the NAT occupations are smeared out around the Fermi
surface. Many many-body methods like the IMSRG expect, however, that the computational basis is the
eigenbasis of the density and that the density corresponds to a single Slater determinant, meaning that we
have ρ |p⟩ = np |p⟩. This means it is not immediately obvious how to use our NAT basis appropriately when
setting up our IMSRG calculations. Here we employ a pragmatic approach, constructing our reference state
for IMSRG calculations from the A lowest states in the NAT basis:

|Φ⟩NAT =
[ A∏

i=1
a†

i,NAT

]
|0⟩ . (6.6)

In Sec.  6.1.2.2 , we consider an alternative approach where we construct a mixed basis from the HF and
NAT bases and use our HF reference state in that basis, avoiding the need to redefine our reference state.

In the following, we consider two chiral Hamiltonians: the NN+3N N3LO 450 Hamiltonian with the
NN potential constructed in Ref. [ 157 ] and the consistent 3N potential constructed in Ref. [  166 ]; and the
NN+3N 1.8/2.0 (EM) Hamiltonian constructed in Ref. [  171 ]. The unevolved N3LO 450 Hamiltonian is
substantially less perturbative than the 1.8/2.0 (EM) Hamiltonian, and this difference allows us to see the
sensitivity of our results on the perturbativeness of the employed Hamiltonian.

Constructing the NAT basis for 16O using the N3LO 450 Hamiltonian at emax = 10, we find the desired
frequency independence in particle radial wave functions, shown in Fig.  6.1 . Of the shown orbitals, only
the proton 1p3/2 is occupied in 16O, and the remaining orbitals are particle states. We see that for the
HO basis (left column), all orbitals are manifestly dependent on ℏω, as observed by the changing radial
wave functions going from ℏω = 16 MeV to ℏω = 36 MeV. In the HF basis (middle column), we see that
the 1p3/2 orbital is optimized such that it is independent of ℏω. The weak change for ℏω = 36 MeV is an
artifact of the emax = 10 truncation together with the suboptimal, large HO frequency leading to significant
infrared truncations in the HF calculation. The particle states, however, all show strong ℏω dependence
in the radial wave functions, demonstrating that they are not properly optimized by HF. In the NAT
basis (right column), one observes substantially reduced frequency dependence in all radial wave functions,
demonstrating the successful basis optimization by the NAT construction.

Looking closely, we see that for some frequencies the NAT 2p1/2 squared radial wavefunctions have three
peaks, rather than two as expected from the radial quantum number. This is the NAT basis optimization
doing its job: the many-body correlations from the NAT construction tend towards smaller, more compact
orbitals, and for smaller HO frequencies (with larger radial extent in coordinate space) the NAT basis is
assembled from a linear combination of high n HO orbitals to have larger amplitudes at small r. In this
case, the emax = 10 truncation serves to limit the ability of the NAT basis to also optimize the tail of the
wave function at large r, causing the visible third maximum.

In Fig.  6.2 , we show a similar picture as in Fig.  6.1 for 16O using the 1.8/2.0 (EM) Hamiltonian. The HF
basis (left) is really only frequency independent for the proton 1p3/2 state. The NAT basis constructed in
emax = 10 (middle) shows essentially perfect frequency independence for all shown orbitals, with the slight
ℏω dependence for the 2p1/2 orbital being ironed out by employing a larger emax = 14 model space (right).
This demonstrates two main features of the NAT construction: first, it is better able to optimize away
frequency dependence for softer Hamiltonians (as is reasonable for a perturbative construction); second, it
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Figure 6.1: HO frequency optimization of the HF and NAT bases. Squared absolute value of the radial
wave function u(r) of 16O for different proton orbitals in the HO, HF, and NAT bases in the first, second, and third
columns, respectively. We show results for the occupied 1p3/2 (first row) and some of the first unoccupied orbitals
(second through sixth rows) for the N3LO 450 Hamiltonian at various oscillator frequencies ℏω. The HF and NAT
orbitals include single-particle HO states up to emax = 10, and three-body forces are truncated at E3max = 14 for the
HF and NAT basis constructions. Figure from Ref. [  106 ].

benefits from large model-space truncations to minimize the effects of infrared and ultraviolet cuts in the
starting HO matrix elements of the Hamiltonian.

6.1.2 Efficient use in many-body calculations

Applying the HF and NAT bases to IMSRG(2) calculations of 40Ca in Fig.  6.3 , we find a somewhat puzzling
picture. Despite the optimization of the orbitals, the predictions of ground-state energies and charge radii
in the NAT basis do not show reduced frequency dependence or faster emax convergence compared the
predictions in the HF basis. This is particularly surprising as the NAT basis clearly led to substantially
faster convergence and reduced frequency dependence in NCSM calculations in Ref. [ 259 ].

Understanding this behavior requiries considering how the two main changes induced by using the NAT
basis (the new reference state and the unitary transformation of the basis) affect the many-body calculation.
From Figs.  6.1 and  6.2 , one can see that the occupied orbitals are not significantly changed in the NAT
basis, so the NAT reference state is very similar to the HF reference state. This means that the NAT basis
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Figure 6.2: HO frequency optimization of the NAT basis in large model spaces. Same as Fig.  6.1 but for
the 1.8/2.0 (EM) Hamiltonian showing results for the HF and NAT bases using emax = 10 in the left and middle
columns, respectively, as well as emax = 14 for the NAT basis in the right column. Figure from Ref. [  106 ].

construction primarily generates a unitary transformation of the particle states such that the low-lying
particle states become frequency independent. The frequency dependence in the basis must go somewhere,
and as a result clearly lands in the high-energy highly virtual single-particle states.

Another important realization is that the commutators that are evaluated in the IMSRG (and also
CC theory) are invariant under single-particle unitary transformations (assuming that the one-body
density is consistently transformed). This means the methods are approximately invariant under unitary
transformations of the particle states.  

1
 As a result, it is unsurprising that IMSRG(2) calculations using

HF and NAT bases constructed in the same model space give very similar ground-state energy and charge
radius predictions. They both start from a nearly identical reference state, and the unitary transformation
of the particle space leaves the working equations of the theory essentially invariant.

Properly benefitting from the NAT basis optimization requires a more clever approach, and we discuss
a few strategies developed in this direction in the following sections.

1This invariance is only approximate because the definition of the generator η in the IMSRG is not fully invariant under
unitary transformations.
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Figure 6.3: Naive application of NAT basis in IMSRG(2) calculations. IMSRG(2) ground-state energies E
(upper row) and charge radii Rch (lower row) of 40Ca as a function of the oscillator frequency ℏω for the NN-only
N3LO EMN 450 (triangles) and NN+3N N3LO 450 (circles) Hamiltonians. We show results for the HF and NAT bases
in the left and right panels, respectively, using several single-particle truncations emax with E3max = 14. Experimental
values from Refs. [  360 ,  361 ]. Figure from Ref. [ 106 ].

6.1.2.1 Basis truncation

The strategy we employ to exploit the NAT basis optimization is hinted at in Fig.  6.2 , where going from
emax = 10 to emax = 14 allows the NAT construction to better optimize the low-lying particle space. In
very broad terms, the strategy constructs the NAT basis in a large model space Mfull before truncating to
a small model space Mreduced for the following IMSRG(2) calculation.

Constructing the NAT basis amounts to setting up a basis

{|p⟩NAT =
∑
p′

Cpp′ |p′⟩HF , p, p′ ∈ Mfull} (6.7)

in a given model space Mfull, for our purposes parametrized by e
HF/NAT
max . For large e

HF/NAT
max , the low-lying

|p⟩NAT are well optimized, in particular including very high radial quantum numbers n in the construction
of the radial part of the NAT state wave function. Truncating in the NAT basis after this means keeping a
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basis
{|p⟩NAT =

∑
p′

Cpp′ |p′⟩HF , p ∈ Mreduced, p′ ∈ Mfull} (6.8)

in a smaller model space Mreduced parametrized by emax. In this basis construction, we keep the optimized
low-lying NAT states while truncating out highly virtual states that are not optimized by the NAT basis at
all.

Intuitively, by constructing the NAT basis in Mfull we are informing the basis construction about very
high-energy interactions in the HF basis. However, the low-resolution picture of nuclear many-body physics
suggests that interaction effects are dominated by excitations near the Fermi surface, exciting nucleons a
few (but certainly not 10) oscillator shells outside the reference state. In the NAT basis, this picture is
effectively realized because the particle space is appropriately optimized by the NAT construction. This
means that one no longer needs a large model space Mfull to capture high-energy virtual excitations, but
a smaller model space Mreduced will suffice. How small Mreduced can be depends on the system size, the
perturbativeness of the Hamiltonian, and the quality of the basis optimization.

In Figs.  6.4 and  6.5 , we explore this strategy in IMSRG(2) calculations using the 1.8/2.0 (EM)
Hamiltonian. For the NAT calculations (right panels), we construct the HF and NAT basis in Mfull with
e

HF/NAT
max = 14 and truncate to Mreduced with emax = 6, 8, 10, 14 for the IMSRG(2) calculation. The

HF-based IMSRG(2) calculations construct the HF basis and perform the IMSRG(2) calculation in the
same model space Mreduced. 

2
 

Ground-state energy and charge radius predictions for 40Ca are shown in Fig.  6.4 . Comparing results using
the HF and NAT bases, we find reduced frequency dependence at smaller emax truncations. Additionally,
the convergence with respect to emax is drastically improved, with the charge radius converged at emax = 8
and the ground-state energy converged at emax = 10. The remaining ℏω dependence is due to the remaining
e

HF/NAT
max = 14 truncation, also visible in the emax = 14 HF results.

In Fig.  6.5 , we see a similar picture for 78Ni. The NAT results are substantially less dependent on ℏω,
and convergence with respect to emax is also improved. As 78Ni is slightly heavier, emax = 10 is not fully
sufficient to converge the ground-state energy to within 1 MeV, but emax = 12 (not shown) is certainly fully
converged.

In 78Ni, one also sees that the improved frequency independence and convergence is limited by the
e

HF/NAT
max of the HF/NAT basis construction. e

HF/NAT
max = 14 is not sufficient to completely avoid infrared

and ultraviolet convergence problems for suboptimal ℏω, so there is still clear benefit for operating at the
“optimal” ℏω. Up to A ∼ 100, this is ℏω = 16 MeV for the 1.8/2.0 (EM) Hamiltonian, while for heavier
systems this shifts to 14, 12, and 10 MeV.

The strategy outlined here is remarkably successful at accelerating convergence for IMSRG calculations.
It is also very straightforward in its application. One simply needs to construct the NAT basis in as
large a model space as possible, making the basis and reference state insensitive to the infrared and
ultraviolet truncations of the e

HF/NAT
max employed. One can then truncate aggressively in emax and investigate

convergence in relatively cheap IMSRG(2) calculations. The reduced emax required is especially valuable for
IMSRG(3) calculations, where model-space size causes substantial challenges.

The success of the NAT basis makes it the basis of choice for most applications discussed in this thesis.
We routinely construct NAT bases in e

HF/NAT
max = 16, where the basis construction is still cheaper than an

2Truncating the HF basis using two model spaces Mfull and Mreduced does not work because the HF basis does not
effectively optimize the particle states. This means that the IMSRG(2) must include all states in Mfull to account for highly
virtual, but nonnegligible high-energy excitations of nucleons.
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Figure 6.4: Improved convergence of 40Ca using truncated NAT basis. IMSRG(2) ground-state energies
E (upper row) and charge radii Rch (lower row) of 40Ca as a function of the oscillator frequency ℏω in the HF and
NAT bases for the 1.8/2.0 (EM) Hamiltonian. We use a model space Mfull with e

HF/NAT
max = 14 to construct the NAT

basis, whereas the IMSRG calculations are performed for emax = 6, 8, 10, and 14, with E3max = 16 in both cases.
Experimental values from Refs. [  360 ,  361 ]. Figure from Ref. [ 106 ].

emax = 12 IMSRG(2) solution. The success of the NAT basis opens up the door to further improved bases
that further accelerate emax convergence for many-body calculations. Until the basis construction becomes
more expensive than the untruncated many-body calculation, one profits from this approach in terms of
total computational cost.

6.1.2.2 Mixing HF and NAT bases

Despite its clear success, the perturbatively constructed natural orbital basis also has a few challenges.
These challenges are related to the fact that the improved density matrix is constructed perturbatively,
which makes it cheap to compute, but at the same time fragile when dealing with reference states where
perturbation theory breaks down. One case investigated in Ref. [ 106 ] is 12C, where the very weak shell
closure makes perturbation theory a poor choice to describe the ground state. This leads to among other
things unphysical negative NAT occupation numbers nNAT

p , which indicate strong correlations in the relevant
orbitals caused by a poor reference state for perturbation theory [ 106 ,  347 ].
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Figure 6.5: Improved convergence of 78Ni using truncated NAT basis. Same as Fig.  6.4 but for 78Ni. Note
that the experimental ground-state energy from Ref. [  361 ] is extrapolated. Figure from Ref. [  106 ].

In Chapter  8 , we discuss IMSRG(3) calculations of 12C and 13C. As the NAT basis is especially
important for model-space convergence in the IMSRG(3), we investigated how to make it usable in 12C.
There are two key findings regarding the NAT basis that allow us to improve how we use it in many-body
calculations.

The first finding is that the most effective organizational metric for NAT states is |nNAT
p |. When

constructing the NAT states |p⟩NAT = |n(ls)jmt⟩NAT one must make a choice about quantum number
assignments. Specifically, the radial quantum number n is arbitrary, so one must assign an increasing
n to each state in the new basis. How to do so is not immediately clear, 

3
 and past investigations have

considered sorting NAT states by nNAT
p and by εp = fpp. It was established that sorting by nNAT

p yields more
systematic convergence behavior, making it the preferable metric. In complex nonperturbative systems,
this is complicated by the appearance of negative NAT occupation numbers for states, which we find are
“important” according to their magnitude, not their value. This gives an effective way of organizing the
NAT basis even in more challenging cases.

The second finding in 12C is that in nonperturbative cases it is not the basis that breaks down, but

3It is clear that the hole states must be sorted below the particle states, which every reasonable scheme accomplishes.
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the new reference state constructed in the NAT basis. As a reminder, in NAT calculations we typically
construct the reference state |Φ⟩NAT as a Slater determinant of the lowest A states in the NAT basis. In
standard cases, this is nearly identical to the HF reference state, so the NAT reference state is comparable.
In 12C, this construction breaks down, and the NAT reference state |Φ⟩NAT (even with no model-space
truncation) performs substantially worse than the HF reference state. This shows that a considerable part
of the problem is the poor reference state from the NAT basis.

This makes it clear that the NAT basis for 12C is optimized in a useful way, but at the same time
produces a suboptimal reference state. A hybridization of HF and NAT offers a way forward. We use
|p⟩HF for all states occupied in the reference state, orthogonalize |p⟩NAT for the unoccupied NAT basis with
respect to the occupied HF states, and use this orthogonalized NAT basis for the particle states. Specifically,
we go through the unoccupied states in order of decreasing |nNAT

p |, and orthogonalize these with respect to
the orthogonalized basis |q⟩HF+NAT, q < p, where for the lowest A states we take |p⟩HF+NAT = |p⟩HF.

This solution makes sense because the HF hole states are already optimized (truly optimized to produce
the lowest HF energy) and thus frequency independent. The NAT basis is optimized to include many-body
correlations in low-lying particle states. Combining the two yields both an energetically optimal reference
state and a well optimized low-lying particle state basis, allowing for rapidly converging calculations. This
is beneficial for ensuring model-space convergence in challenging systems like 12C. At the same time, as we
show in Chapter  8 , it does not solve the challenging many-body characteristics of these systems, which
might require high-order many-body truncations like the IMSRG(3) to properly address. Still, the hybrid
HF+NAT basis addresses a clear weakness of the perturbatively improved NAT basis, making it a valuable
improvement in constructing an efficient starting point for many-body calculations.

6.1.2.3 Three-body basis truncations

We have emphasized a few times that the NAT occupation numbers nNAT
p , or more specifically their

magnitude |nNAT
p |, give valuable insight into the importance of the associated single-particle state |p⟩NAT.

This allows one to efficiently truncate the single-particle basis, but can also be used to truncate the
substantially larger two- and three-body bases employed in many-body calculations.

We focus heavily on two-body truncations in IMSRG(2) calculations in the next section, so here we
briefly highlight the optimization of the three-body basis in the context of coupled-cluster calculations.
Performing coupled-cluster calculations with three-body operators at the CCSDT-1 level [  92 ,  251 ,  313 ,  362 ]
is challenging, and any reduction in the amount of three-body matrix elements that must be computed
and stored reduces the cost of these calculations considerably. The three-body cluster amplitudes T3 are
represented in a basis of three-hole ket states and a basis of three-particle bra states: ⟨abc|T3|ijk⟩. Storing
all possible amplitudes for a given emax without truncations is impossible for most nuclei, so the three-body
bases are typically truncated. A conventional truncation is the E3max truncation, giving the three-body
basis

{|pqr⟩ , ep + eq + er ≤ E3max} . (6.9)
When using NAT orbitals, one can also consider guiding the basis construction using the NAT occupation
numbers. This was done in Ref. [ 251 ], where the three-hole basis

{|ijk⟩ , n̄NAT
i n̄NAT

j n̄NAT
k ≥ εNAT} (6.10)

and the three-particle basis
{⟨abc| , nNAT

a nNAT
b nNAT

c ≥ εNAT} (6.11)
are truncated based on the NAT occupation numbers with n̄NAT

i = 1 − nNAT
i and a chosen threshold

εNAT. This truncation gives greater importance to states with strongly “smeared out” occupation numbers
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indicating strong many-body correlations, which tend to be near the Fermi surface. This synergizes nicely
with the fact that T3 is an operator to generate triple excitations around the Fermi surface. This truncation
was shown to be substantially more efficient than E3max and allowed for converged CCSDT-1 calculations
in neon and magnesium [ 251 ], and it will be an important step for IMSRG(3) developments to exploit a
similarly efficient three-body truncation.

6.2 Importance truncation for the IMSRG
The core idea of importance truncation is that making informed selections in setting up theoretical
calculations allows one to achieve the same precision as general expansions at substantially reduced cost.
This formulation is intentionally vague as importance truncation has been realized in many different ways
in many-body calculations.

A classic well-established example is IT in the no-core shell model, yielding the so-called IT-NCSM [ 330 ,
 363 ]. In the NCSM, a diagonalization of the many-body Hamiltonian is set up in a basis of Slater-
determinant configurations, as discussed in Sec.  3.3.3 . Generically, this configuration basis is truncated
using an uninformed Nℏω truncation. 

4
 However, such a configuration basis grows too quickly for converged

calculations in medium-light nuclei like 16O, so in IT one subselects only the configurations that are
estimated to be most important for the description of the ground-state wave function. Such an estimate is
made using perturbation theory and can also be used to assess the uncertainty due to the induced IT error.
This approach has been very successful in the NCSM and is routinely used in calculations today.

In this section, we establish the importance-truncated IMSRG (IT-IMSRG), a strategy for importance
truncation in the IMSRG [ 107 ] focusing on truncating two-body matrix elements, which drive the storage
and computational cost of IMSRG(2) calculations. The goals for the IT-IMSRG (or IT in any method)
are clear: substantially reduced cost of the problem through informed truncations; systematic convergence
towards the untruncated result together with a way to assess the magnitude of the IT error; effectiveness and
robustness in a variety of contexts; and clear computational benefits relative to untruncated calculations.

6.2.1 Matrix element truncation

Our approach to IT in the IMSRG is to truncate the matrix elements of two-body operators Opqrs. This
can be generalized to three-body matrix elements, which dominate the cost of IMSRG(3) calculations, but
in the following we focus on a robust comparison with the untruncated IMSRG(2). We decide for each
index combination pqrs whether the matrix element Opqrs is important based on an IT measure, which we
discuss later. Generically, this amounts to evaluating an importance κpqrs(O) for each pqrs, where larger
κpqrs means “more important.” This IT measure produces a “mask” dependent on the IT measure and
importance truncation threshold κmin:

κmask
pqrs =

{
1 if pqrs is important (i.e., κpqrs ≥ κmin),
0 otherwise.

(6.12)

Given such a mask, the matrix elements of a two-body operator Opqrs can be split into an important
part,

Oimp.
pqrs = κmask

pqrs Opqrs , (6.13)

4Nmaxℏω allows all excited configurations of the reference state |Φ⟩ that are excited by Nmax oscillator shells or less in the
harmonic oscillator picture.
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Figure 6.6: Demonstration of possible compression of two-body matrix elements. Total number (left
y axis) and corresponding storage requirements (right y axis) of nonzero two-body matrix elements for different
compression ratios RC for model-space sizes emax. For RC = 1 the number of matrix elements corresponds to the
initial Hamiltonian without any IT. Figure from Ref. [  107 ].

and a residual part,

Ores.
pqrs = (1 − κmask

pqrs )Opqrs . (6.14)

Keeping only the important part of all two-body matrix elements in the IMSRG amounts to solving the
flow equation for only a subset of single-particle index combinations. The residual part may be treated
approximately independent of the IT-IMSRG solution. The treatment of the residual part may either be
used to correct for the truncation or to quantify the uncertainty due to the IT.

One subtlety here is that the IMSRG commutator may induce non-zero contributions in “unimportant”
index combinations. We disregard these contributions and solve the IT-IMSRG flow equations solely for
the important part:

dH imp.

ds
= [ηimp.(s), H imp.(s)] , (6.15)

dHres.

ds
= 0 . (6.16)

The benefit of this IT approach is that the IT-IMSRG needs to solve a substantially reduced amount of
coupled differential equations based on the IT mask that is determined once at the start of a calculation.
This benefit is characterized by a compression ratio,

RC = # of nonzero matrix elements
# of nonzero matrix elements − # of IT-neglected matrix elements , (6.17)

given by the ratio of the number of initial nonzero two-body matrix elements over the number of remaining
nonzero two-body matrix elements after the IT. Truncating no matrix elements yields RC = 1, increasing
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with increasing number of matrix elements truncated. This effect is demonstrated in Fig.  6.6 for different
model-space sizes. For emax = 14, the standard cost of storing the nearly 500 million two-body matrix
elements is approximately 4 GB. Truncating 99% of matrix elements to achieve a compression ratio RC = 100
reduces this cost to around 40 MB. This is less than the storage cost of untruncated emax = 8 two-body
matrix elements, and in the following we show that such compression is possible at high accuracy in the
IT-IMSRG for soft Hamiltonians.

For our comparisons in the IT-IMSRG(2), we always compare to untruncated IMSRG(2) results, aiming
to reproduce these as accurately as possible. Ideally, the IT induces an error that is negligible when
compared to Hamiltonian and many-body uncertainties. For the IMSRG(2), the many-body uncertainty on
ground-state energies is about 1–2% of the correlation energy Ecorr. For this reason, acceptable fidelity for
the IT-IMSRG(2) would be up to about 0.5% of Ecorr.

In our work, we found that the IT is especially sensitive to truncating in specific particle-hole blocks of
the two-body Hamiltonian. Based on a detailed study of truncations in individual blocks [ 107 ,  364 ], we
identified two blocks as being prime candidates for importance truncation: the pppp block with 4-particle
interactions, and the hppp (and its Hermitian conjugate pphp) with hole-particle to particle-particle
interactions. Truncating in these blocks allows for substantial compression (as the number of particles far
exceeds the number of holes) while producing small, controllable IT truncation errors in calculations.

Based on this truncation selection, we introduce a perturbative estimate for the error induced by the IT
in the hppp and pppp blocks. The IMSRG(2) is complete up to third order in perturbation theory [  94 ],
so we assess the IT error as the MBPT contributions up to third order truncated through the IT. Second
order MBPT corrections only depend on the hhpp block and are unaffected by our truncations. The terms
that are impacted by our truncation appear at third order. Thus we define our IT error estimate based on
the third-order MBPT contributions involving the residual Hamiltonian:

E
(3)
IT = E(3)

pp + E
(3)
hppp , (6.18)

with the two parts given by

E(3)
pp = 1

8
∑

abcdij

Γijab Γres.
abcd Γcdij

εab
ij εcd

ij

, (6.19)

E
(3)
hppp = 1

2
∑
abcij

Γijab Γres.
abcj fci

εab
ij εc

i

+ 1
2
∑
abcij

fai Γres.
ajcb Γcbij

εa
i εbc

ij

, (6.20)

where the IT-neglected matrix elements are given by Γres. as defined in Eq. ( 6.14 ) and the matrix elements Γ
and f without superscript correspond to the initial two- and one-body contributions of the normal-ordered
Hamiltonian.

6.2.1.1 Importance measures

We introduce and explore several importance measures for the IT-IMSRG(2). Our goal is to develop
measures that are cheap to construct and allow for robust, systematic compression in both perturbative
and nonperturbative contexts.

The simplest measure we consider uses matrix element magnitude as an importance measure:

κΓ
pqrs(Γ) = |Γpqrs| . (6.21)

The intuition for this measure is that large matrix elements produce larger contributions in the IMSRG(2)
flow equations and are thus more important to include. It is linear in Γ, with an O(N4) cost of construction.
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An obvious deficiency of this measure is that it doesn’t account for system details (beyond the normal
ordering of the 3N interactions).

A more refined version of the κΓ measure includes information about the single-particle spectrum of the
system via the inclusion of MBPT-like energy denominators:

κΓ/ε
pqrs(Γ) = |Γpqrs/εsum| . (6.22)

The standard MBPT energy denominators involve equal numbers of holes and particles, which is not the
case for the pppp and hppp blocks. For this reason, we compute more general MBPT denominators for
these blocks, defined as

εsum =
{

4εF − εp1 − εp2 − εp3 − εp4 for pppp,

2εF + εh − εp1 − εp2 − εp3 for hppp.
(6.23)

Here εF is the Fermi energy, the energy of the energetically highest-lying hole orbital. 

5
 The intuition behind

the κΓ/ε measure is that matrix elements are enhanced or suppressed in importance depending on where
the involved single-particle states lie relative to the Fermi surface. This stems from MBPT, where all
interactions come with energy denominators that suppress the contributions of high-energy states far from
the Fermi surface. This measure is similar in spirit to MBPT-inspired IT measures in the NCSM [ 330 ],
Bogoliubov MBPT [ 331 ], and Gorkov SCGF [ 332 ]. κΓ/ε is linear in Γ, with an O(N4) cost of construction.

When using a natural orbital basis, one has access to even more correlation information via the
NAT occupation numbers nNAT

p , and it is possible to construct an importance measure based on this
information. As a reminder, the NAT occupation numbers indicate strong many-body correlations when
nNAT

i is significantly different from 1 for hole states or when nNAT
a is significantly different from 0 for particle

states.

The simplest measure we consider using the NAT occupation numbers is based on a product of occupation
numbers, also used to truncate the three-body basis in CC calculations [ 251 ]:

κn
pqrs =

∏
i∈{p,q,r,s}

{
|nNAT

i | if i is a particle state,
|1 − nNAT

i | if i is a hole state.
(6.24)

The product is given by the natural orbital occupation numbers for the p, q, r, and s orbitals, with nNAT
a

for particle states and nNAT
i = (1 − nNAT

i ) for hole states. The intuition behind the κn measure is that
by considering the product of the relevant hole/particle NAT occupation numbers we give the greatest
importance to matrix elements with interactions between strongly correlated states near the Fermi surface
and the smallest importance to matrix elements with interactions between weakly correlated states far from
the Fermi surface. κn is independent of Γ, with an O(N4) cost of construction, but implicitly relies on Γ in
the construction of the NAT basis. It also cannot be effectively used in HF-based calculations.

Combining κn and κΓ gives a slightly more sophisticated measure that also accounts for “interaction
strength” via matrix element magnitude:

κΓn
pqrs(Γ) = |Γpqrs| ×

∏
i∈{p,q,r,s}

{
|nNAT

i | if i is a particle state,
|1 − nNAT

i | if i is a hole state.
(6.25)

This seeks to combine the intuition behind κΓ and κn, sampling important states via the product of NAT
occupation numbers while giving especially large importance to large matrix elements that contribute

5In general, the Fermi energies for protons and neutrons are different. We tested accounting for this explicitly and simply
averaging proton and neutron Fermi energies, and the difference in IT-IMSRG(2) calculations is negligible.
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strongly in the IMSRG equations. κΓn is linear in Γ, with an O(N4) cost of construction. It also cannot be
effectively used in HF-based calculations.

The final measure we consider differs in its construction and motivation from those discusssed above.
This measure considers the IMSRG flow equation at s = 0 and analyzes the derivative to make an importance
assessment:

κ∂Γ
pqrs(Γ) =

∣∣∣dΓpqrs

ds

∣∣∣ =
∣∣ [η, H](2)

pqrs

∣∣ . (6.26)

The intuition here is that matrix elements with initially large derivatives will change a lot due to the
IMSRG solution, making them important to include in the IMSRG calculation. κ∂Γ is quadratic in Γ, with
an implicit dependence on Γ in η. It also has an O(N6) cost of construction, making it considerably more
expensive to construct than the other importance measures considered.

6.2.2 Application to nuclei

In the following, we employ the NAT basis (as discussed in the previous section) for all our calculations. We
consider two NN+3N chiral Hamiltonians, the 1.8/2.0 (EM) Hamiltonian from Ref. [ 171 ] and the N3LO 500
Hamiltonian with NN interactions constructed in Ref. [ 157 ] and consistent 3N interactions constructed in
Ref. [ 166 ]. Furthermore, we consider the SRG evolution of the N3LO 500 Hamiltonian to lower resolution
scales λ to investigate the impact of Hamiltonian perturbativeness on our importance truncation. Note
that the 1.8/2.0 (EM) Hamiltonian is rather soft while the unevolved N3LO 500 Hamiltonian is fairly
hard. In particular, in the model spaces we consider the N3LO 500 Hamiltonian is not fully converged for
medium-mass nuclei. However, for our purposes a clean comparison between IT-IMSRG(2) and IMSRG(2)
results is still possible.

To understand the various importance measures introduced and select especially promising candidates
for further study, we consider IT-IMSRG(2) calculations of 40Ca in Fig.  6.7 . For each importance measure,
we show the effect of the IT going from no truncation (RC = 1 on the left) to complete truncation of the
pppp and hppp blocks (RC ∼ 60 on the right for the emax = 10 model space employed).

For the 1.8/2.0 (EM) Hamiltonian (top panel), we observe that fully truncating the pppp and hppp
blocks only leads to a relatively small error on Ecorr. At moderate to low compressions RC ∼ 10 all
importance measures show systematic convergence towards the untruncated result. Additionally, the error
on Ecorr in this regime is small, less than 0.5% for all measures except for κΓ. The occupation-number-based
measures κn and κΓn perform remarkably well, with very systematic convergence and small errors out to
RC ∼ 30. This demonstrates the power of the NAT occupation numbers and the benefit of doing importance
truncation when using such perturbative Hamiltonians.

For the N3LO 500 Hamiltonian (bottom panel), we see that the IT produces considerably larger errors.
Fully truncating the pppp and hppp blocks induces a nearly 8% error in Ecorr, corresponding to an over
20 MeV error on the ground-state energy. Again, all measures converge towards the untruncated result
systematically. The performance of the NAT-based measures κn and κΓn at low compressions RC ∼ 3–5
leaves much to be desired, with larger than acceptable errors at nearly no compression. At the same time,
κΓ and κΓ/ε perform remarkably well up to moderate compressions, with κΓ/ε inducing only small errors
within 0.5% up to RC ∼ 30. Such a nonperturbative Hamiltonian is a clear challenge for the IT, especially
with its perturbative motivation. Still, some measures are able to perform quite robustly in this context.

For the next investigations, we choose to focus further on κΓn and κΓ/ε. κΓn shows remarkable
performance for perturbative Hamiltonians, and κΓ/ε performs well in perturbative contexts while also being
very robust when using nonperturbative Hamiltonians. We note that while κ∂Γ shows similar performance
to other measures considered, it is more expensive to construct.



76 CHAPTER 6. TRUNCATIONS FOR THE IMSRG FROM PERTURBATION THEORY

RC
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

re
la

tiv
e

er
ro

r
E

co
rr

(%
)

1.8/2.0 (EM), NAT, emax = 10

100 101 102

RC

−8
−7
−6
−5
−4
−3
−2
−1

0
1

re
la

tiv
e

er
ro

r
E

co
rr

(%
)

N3LO 500, NAT, emax = 10

κΓ

κΓ/ε

κΓn

κn

κ∂Γ

−1.0

−0.5

0.0

0.5

1.0

1.5

∆
E

(M
eV

)

−24

−20

−16

−12

−8

−4

0

∆
E

(M
eV

)

40Ca

Figure 6.7: Performance of IT measures in IMSRG(2) calculations. Error on the ground-state energy of
40Ca in the NAT basis as a function of compression ratio RC for IT-IMSRG(2) calculations using five IT measures
defined in Eqs. ( 6.21 )–( 6.26 ). In the top panel the 1.8/2.0 (EM) Hamiltonian is used, and in the bottom panel the
N3LO 500 Hamiltonian is used. The left y axis indicates the relative error on the correlation energy Ecorr, and the
right y axis shows the absolute error on the ground-state energy. All calculations are performed in an emax = 10
model space. The dashed vertical line indicates the maximum compression ratio. Figure from Ref. [  107 ].

In Fig.  6.8 , we consider IT-IMSRG(2) calculations of 40Ca using the 1.8/2.0 (EM) Hamiltonian and
the κΓn and κΓ/ε importance measures. We consider three model-space sizes, emax = 6, 10, and 14, and
find that the greatest benefit in terms of possible compression comes in larger model spaces. For emax = 6,
one finds that only mild compression is possible at all, making it unattractive for importance truncation.
On the other hand, for emax = 14 one finds that both measures can reach RC = 100 without inducing
substantial errors. Given the fact that 40Ca can be converged at emax = 10 in the NAT basis (see previous
section), this makes sense. By going to larger model spaces, we are including many new matrix elements
that are all unimportant for convergence, so an effective importance truncation approach should truncate
essentially all of these matrix elements between emax = 10 and 14, giving much larger compression.

In Fig.  6.8 , we also show the perturbative estimate of the IT error introduced in Eq. ( 6.18 ) as a band.
While the IT error is only shown in one direction (based on the sign of the MBPT correction), it can be
interpreted as the size of our IT uncertainty. With this in mind, we observe that the perturbative estimate
gives an appropriate magnitude for the IT error when compared to the actual error to the untruncated
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Figure 6.8: Compression in large model spaces using the 1.8/2.0 (EM) Hamiltonian. Relative IT-
IMSRG(2) error on the correlation energy Ecorr of 40Ca in the NAT basis using the 1.8/2.0 (EM) Hamiltonian as
a function of the compression ratio RC for the model-space sizes emax = 6, 10, and 14. We show results for the
IT measures κΓ/ε (circles) and κΓn (diamonds). The right y axis indicates the absolute difference between the
emax = 14 IT-IMSRG(2) results and the exact IMSRG(2) result. The MP3 energy correction for the κΓ/ε IT-neglected
contributions is indicated by the corresponding band for each model-space truncation and the vertical dashed lines
correspond to the maximum RC for the given model space. Figure from Ref. [  107 ].
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Figure 6.9: Compression in large model spaces using the N3LO 500 Hamiltonian. Same as Fig.  6.8 but
for the N3LO 500 Hamiltonian. Figure from Ref. [ 107 ].

IMSRG(2) results. Only for the very largest compressions does the uncertainty estimate substantially
overestimate the observed error.

In Fig.  6.9 , we see a similar picture for IT-IMSRG(2) calculations of 40Ca for the harder N3LO 500
Hamiltonian. Substantial compressions are achievable in an emax = 14 model space, especially when using
the κΓ/ε measure. We find that this measure can also achieve sub-0.5% errors on Ecorr at RC ∼ 100 in
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Figure 6.10: IT-IMSRG(2) for calcium and nickel isotopes. Ground-state energies E for selected calcium
and nickel nuclei in the IT-IMSRG with compression ratios RC = 10, 50, and 100 for the measure κΓ/ε. Results are
shown for the NAT basis and the unevolved N3LO 500 Hamiltonian (top) and SRG-evolved N3LO 500 λ = 2.0 fm−1

Hamiltonian (bottom) in emax = 14 model spaces. Figure from Ref. [  107 ].

emax = 14. On the other hand, the perturbative IT error estimate clearly overestimates the actual error
for moderate compression ratios. We understand this to be an artifact of the perturbative construction
combined with the use of a relatively hard Hamiltonian in this case. We emphasize also that even though
the κΓn measure does not introduce merely negligible IT errors in this case, it still performs very robustly
remaining within 2% of the IMSRG(2) Ecorr. In general, our perturbatively inspired IT measures perform
very well for soft Hamiltonians and moderately well at intermediate compressions for hard Hamiltonians.

In Fig.  6.10 , we turn our attention to binding energies of heavier systems from 40Ca to 78Ni using the
unevolved N3LO 500 Hamiltonian (top panel) and the N3LO 500 Hamiltonian SRG evolved to λ = 2.0 fm−1

(bottom panel). We use an emax = 14 model space and the κΓ/ε IT measure, which shows balanced
performance for harder and softer Hamiltonians. For the unevolved N3LO 500 Hamiltonian, we find that
RC = 10 and 50 give reasonably small IT errors in calcium isotopes (albeit with substantially overestimated
IT uncertainties indicated by the bands). For the nickel isotopes, RC = 100 induces large, but still relatively
reasonable IT errors. These results would not be acceptable for a quantitative description of the nuclei
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involved, but still demonstrate the robustness of our approach when performing extreme truncations.

Using the SRG-evolved N3LO 500 λ = 2.0 fm−1 Hamiltonian, we find that the IT-IMSRG(2) performs
remarkably well across all systems. Even strong truncations yielding RC = 100 produce negligible IT errors
for the IT-IMSRG(2) binding energies, and the uncertainties assessed by our perturbative IT error estimate
are small and consistent with the observed differences to exact IMSRG(2) results. This establishes the
IT-IMSRG(2) as a robust way to deliver quantitative descriptions of nuclei for soft Hamiltonians at high
compressions.

6.2.3 Computational considerations

The possible compression demonstrated in the IT-IMSRG(2) is very promising, but ultimately one must
also demonstrate computational benefits. In Ref. [ 107 ], we implemented the importance truncation within
a dense IMSRG(2) solver [ 365 ], not exploiting the resulting sparsity but using the implementation to test
the importance truncation. This means that the IT mask was constructed and applied as in Eq. ( 6.13 ) to
maintain the importance truncation in the IMSRG(2) solver.

An ideal IT-IMSRG(2) implementation would fully leverage the sparsity of the importance-truncated
two-body matrix elements to reduce the storage cost of the two-body operators and at the same time more
efficiently solve the IT-IMSRG(2) flow equations using these matrix elements. While likely possible, we
have not achieved such an implementation so far. In the following, we discuss a few strategies explored in
Ref. [ 107 ] and unpublished explorations afterwards, highlighting the challenges we encountered with the
sparse implementation.

In Ref. [ 107 ], we investigated replacing the dense matrix storage in our IT-IMSRG(2) solver with sparse
matrices in the compressed sparse column (CSC) format [  366 ,  367 ]. In the IMSRG(2), there are two terms
that dominate the cost, the two-body particle-particle term, which looks like

Cpp
1234 = 1

2
∑
pq

n̄pn̄q (A12pqBpq34 − B12pqApq34) , (6.27)

and the two-body particle-hole term, which looks like

Cph
1234 = 4

∑
pq

(npn̄q − n̄pnq)Ap23qB1qp4 . (6.28)

Equation ( 6.27 ) scales like O(N6), but is generally very efficiently computed as a matrix product. Equa-
tion ( 6.28 ) scales like O(N5A), but is much more challenging to optimally implement due to the splitting
of the p and q indices onto the bra and ket sides of the two-body matrix elements.

We found that switching to a CSC sparse-matrix storage yielded immediate substantial speedups for
the particle-particle term. However, the particle-hole term was slowed down considerably from its dense
implementation. This performance change (and the general challenge of a sparse IT-IMSRG implementation)
can be understood in terms of sparse-matrix formats and their computational features. The CSC format
is optimized for efficient sparse matrix multiplication, naturally giving speedups in the particle-particle
term. The tradeoff here is that the CSC format is not optimized for single matrix element access, or
“random access,” making such random accesses very slow in comparison. The problem is that the natural
implementation of the particle-hole term is exclusively random accesses, meaning that using the CSC format
leads to a computational slowdown despite needing to work with substantially fewer matrix elements.

There are of course sparse formats optimized for random access [for example, the dictionary of keys
(DOK) format]. These are in turn not very efficient for matrix multiplication, which benefits very strongly
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from “in-order” access in the CSC format. This “in-order” access is not possible for the DOK format
because of how the dictionary behind the efficient random access works.

In the time since the publication of Ref. [ 107 ], we explored the development of sparse formats tailored
to the problems in the IT-IMSRG(2). While the format is beyond the scope of this thesis, it is essentially a
redundant hybrid between the CSC and DOK formats. The organizational scheme of the CSC format is
used to store matrix elements in order and to provide fast matrix optimization, but an additional dictionary
is provided to allow O(1) random matrix element access to facilitate the implementation of the particle-hole
term. Implementing the IT-IMSRG(2) in this framework, we found at emax = 14 that our implementation
begins to outperform the dense IMSRG(2) at a compression ratio RC ∼ 40 and a factor of 4 speed-up is
achieved by RC ∼ 200.

While a nice demonstration of the possible computational gains, such speed-up numbers are still not
sufficient to motivate a universal switch to the IT-IMSRG(2). The challenge here is that optimal algorithms
for sparse tensor contractions (which would be the backbone of the IT-IMSRG) are much less well studied
than dense tensor contraction algorithms. Tackling this problem will require targeted collaboration with
supercomputing experts and computer scientists. Ultimately, there is a tradeoff to be made between
truncations and optimizations that fit into the dense tensor contraction paradigm of many-body calculations
(like the NAT truncation strategy introduced in the previous section) and the development of new specialized
implementations and truncations requiring considerable redevelopment.

Overview and perspectives
This discussion of the developments of Refs. [ 106 ,  107 ] establishes complementary strategies to reduce the
costs of IMSRG(2) calculations via informed truncations. The NAT basis provides an optimized single-
particle basis informed about the structure of many-body correlations via perturbation theory. Importantly,
this optimization brings most relevant many-body physics into low-lying states near the Fermi surface.
This allows for the optimized basis to deliver fast convergence in emax, allowing IMSRG(2) calculations in
smaller emax to deliver converged results. This improved convergence combined with strategies to combine
the NAT and HF bases make the natural orbitals a very powerful tool to accelerate many-body calculations.

The NAT basis and perturbative tools may also be used for importance truncation in two-body matrix
elements in the IMSRG(2). We have established the IT-IMSRG(2) using various importance measures as a
way to significantly compress IMSRG(2) calculations to use much less memory. This is the most powerful for
soft Hamiltonians in large model spaces, but we saw compression potential even for harder Hamiltonians in
heavy systems. There is still outstanding work to be done on this end to effectively leverage this compression
in many-body calculations, but a systematic understanding of how to set up the importance truncation has
now been formed.

My contributions to Refs. [ 106 ,  107 ] touched the basis truncation in the NAT basis, the computational
development of the importance truncation, and the formal development and interpretation of the importance
measures. I worked on the computational setup using a reduced model space for the IMSRG(2) solution,
implementing the two model-space strategy established in Ref. [ 106 ]. In later applications using the NAT
basis, I developed and tested the improved ordering of the NAT basis and the combination of the HF
reference state with the NAT particle orbitals required for IMSRG(2) and IMSRG(3) calculations of 12C.
The IT-IMSRG(2) was first developed in my IMSRG(2) implementation before being transfered to the
established imsrg++ code [ 365 ]. I worked on the development and refinement of the importance measures in
the IT-IMSRG(2), in particular κΓ/ε. I also performed substantial explorations of the truncations presented
in this chapter working towards IMSRG(3) developments, where such truncations are essential to reducing
the computational cost, including the development of a completely new sparse IT-IMSRG(2) solver that
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successfully offered (modest) performance benefits relative to the untruncated IMSRG(2) in the imsrg++
solver.

The success of the NAT basis is very promising for nuclear many-body theory. The perspective that
with an optimized basis one is able to quickly converge many-body calculations opens up medium-mass
nuclei to more comprehensive studies and enables well-converged calculations in heavy nuclei. There is
still certainly room for further basis optimization, making the NAT basis less sensitive to perturbation
theory challenges or just employing even further optimized bases as is done in quantum chemistry, and the
strategies developed for combining hole orbitals from the HF basis with optimized single-particle bases
offer a clear strategy to optimize the basis for many-body calculations without obvious compromises. The
perspectives for importance truncation in the IMSRG are more open. It is an important task to establish
a computational approach able to benefit from moderate compression such that the IT-IMSRG(2) offers
considerable benefits over the untruncated IMSRG(2). This will require collaboration between physicists
and computer scientists to develop strategies to efficiently evaluate sparse tensor contractions. At the
same time, there is still room to improve the importance measures presented, making them more robust in
nonperturbative contexts and making better estimates of the IT error with hard Hamiltonians.





Chapter 7

IMSRG(3)

The extension of the IMSRG to the next order, the IMSRG(3), is a milestone for the method and for nuclear
structure theory as a whole. IMSRG(3) calculations provide a more precise many-body description of nuclei,
important for the quantitative reproduction of certain observables. Moreover, the comparison of IMSRG(2)
and IMSRG(3) results allows for the robust assessment of many-body uncertainties in calculations, which
so far has mostly been accomplished via comparisons between predictions by complementary methods as
discussed in Sections  3.5 and  4.7 .

In this chapter, we develop the IMSRG(3). We explore the precision and the many-body uncertainty of
the method in restricted model spaces where comparisons with exact results are available, and we outline a
path to realistic IMSRG(3) calculations of medium-mass nuclei.

For the developments in this chapter, the initial computational developments and angular momentum
coupling were completed in my Master’s thesis [ 368 ], while the corrected derviation of the IMSRG(3) (see
Appendix  B ), the approximations of the IMSRG(3) based on perturbative and computational arguments
(discussed in Sections  7.2 and  7.3 ), and the exploration of these developments in nuclei also based on further
computational developments (discussed in Sections  7.4 and  7.5 ) were completed in my doctoral studies.
The work presented in Sections  7.2 – 7.4 is published in Ref. [ 45 ].

7.1 Formalism
The IMSRG(3) includes up to normal-ordered three-body parts in the Hamiltonian

H(s) = E(s) + f(s) + Γ(s) + W (s) , (7.1)
the generator

η(s) = η(1B)(s) + η(2B)(s) + η(3B)(s) , (7.2)
the Magnus operator

Ω(s) = Ω(1B)(s) + Ω(2B)(s) + Ω(3B)(s) , (7.3)
and any other operators O

O(s) = O(0B)(s) + O(1B)(s) + O(2B)(s) + O(3B)(s) (7.4)
in the IMSRG flow equations

dH(s)
ds

= [η(s), H(s)] , (7.5)

dO(s)
ds

= [η(s), O(s)] (7.6)

83
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or in the Magnus approach

H(s) = eΩ(s)HeΩ†(s) , (7.7)

O(s) = eΩ(s)OeΩ†(s) . (7.8)

This complete nonperturbative treatment of three-body operators in the IMSRG(3) distinguish it from
perturbative three-body treatments as for example in Λ-CCSD(T) [  92 ,  317 – 319 ].

Conceptually and formally, this step is simple. All commutator evaluations now involve up to three-body
operators, so the general commutator one must evaluate is

C = [A, B] , (7.9)
C(0B) + C(1B) + C(2B) + C(3B) = [A(1B) + A(2B) + A(3B), B(1B) + B(2B) + B(3B)] . (7.10)

This product must be normal ordered, which we have done both by hand and using automated normal
ordering tools [ 233 ]. Once this is done, one has derived all that is necessary for IMSRG(3) calculations.
Note that the commutator in Eq. ( 7.10 ) is truncated, as [A(3B), B(3B)] has in general up to five-body parts.

It is convenient to break Eq. ( 7.10 ) into fundamental commutators [K, L] → M , isolating individual
commutator contributions

C(MB) = [A(KB), B(LB)](MB) , (7.11)

as introduced in Section  4.2 and Appendix  B . The IMSRG(3) includes 10 new fundamental commutators
in addition to those included in the IMSRG(2), given in Table  7.2 . 

1
 These fundamental commutators scale

computationally as O(NK+L+M ), from O(N6) to O(N9). This makes the IMSRG(3), despite its formal
simplicity, an immense computational challenge, one that we address in various ways in this thesis.

7.2 Perturbative analysis

A great benefit of the generic nonperturbative expansion of the IMSRG and similar methods in many-
body operators is the model independence of the approach combined with its rapid convergence for many
observables. At the same time, this has the drawback that the relevant many-body physics (connecting
to, for example, more traditional phenomenological intuition) is often not clear, and understanding this
requires considerable formal analysis work.

A framework that has proven successful for the IMSRG is the perturbative analysis of the IMSRG flow
equations [ 94 ,  280 ]. This connects the IMSRG with MBPT, making the perturbative content of the method
clear. At the same time, it is possible to consider also nonperturbative many-body effects and identify them
in the method. We focus on using the perturbative analysis to understand the importance of individual
fundamental commutators in the IMSRG, which informs additional approximations of the IMSRG(3) that
we explore in Section  7.3 .

The intuitive understanding of the perturbative analysis is very clear when using the White generator

1Recall that [L, K] → M is simply −1×[K, L] → M , so one only needs to consider K ≤ L for a complete set of fundamental
commutators.
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in the IMSRG,

ηia = fia

∆(1B)
ia

, (7.12)

ηijab = Γijab

∆(2B)
ijab

, (7.13)

ηijkabc = Wijkabc

∆(3B)
ijkabc

, (7.14)

with Møller-Plesset energy denominators as defined in Eq. ( 4.32 ) and the following.

We focus on the case where we use an HF reference state and work in the NO2B approximation, where
the initial off-diagonal matrix elements of f and all the initial matrix elements of W are 0. Working with a
Møller-Plesset MBPT partitioning of the initial Hamiltonian,

H = f + g Γ , (7.15)

we have the following power-counting scheme:

fpp = O(g0) , (7.16)
Γpqrs = O(g1) , (7.17)

that is, the diagonal one-body matrix elements are O(g0) and the two-body matrix elements are O(g1).

Looking at the IMSRG flow equations, the zero-body part (up to the three-body level) has three
contributions from the [1, 1] → 0, [2, 2] → 0, and [3, 3] → 0 commutators,(

dE

ds

)
110

=
∑
ia

(ηia(s)fai(s) − ηai(s)fia(s))

= 2
∑
ia

ηia(s)fai(s) = 2
∑
ia

fia(s)fai(s)
∆(1B)

ia (s)
, (7.18)(

dE

ds

)
220

= 1
2
∑
ijab

ηijab(s)Γabij(s)

= 1
2
∑
ijab

Γijab(s)Γabij(s)
∆(2B)

ijab (s)
, (7.19)

(
dE

ds

)
330

= 1
18

∑
ijkabc

ηijkabc(s)Wabcijk(s)

= 1
18

∑
ijkabc

Wijkabc(s)Wabcijk(s)
∆(3B)

ijkabc(s)
, (7.20)

which look remarkably similar to the second-order MBPT corrections to the energy. Indeed, if one approxi-
mates the hole-particle block matrix elements fia(s), Γijab(s), and Wijkabc(s) by their basic suppression
behavior due to the White generator [ 94 ],

fia(s) ≈ fia(s = 0) exp(−s) , (7.21)
Γijab(s) ≈ Γijab(s = 0) exp(−s) , (7.22)

Wijkabc(s) ≈ Wijkabc(s = 0) exp(−s) , (7.23)
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and one approximates the energy denominators by their initial values, then Eqs. ( 7.18 )–( 7.20 ) can be
analytically integrated to get the results

E(s → ∞)110 ≈
∑
ia

fia(s = 0)fai(s = 0)
∆(1B)

ia (s = 0)
, (7.24)

E(s → ∞)220 ≈ 1
4
∑
ijab

Γijab(s = 0)Γabij(s = 0)
∆(2B)

ijab (s = 0)
, (7.25)

E(s → ∞)330 ≈ 1
36

∑
ijkabc

Wijkabc(s = 0)Wabcijk(s = 0)
∆(3B)

ijkabc(s = 0)
. (7.26)

These are exactly the second-order MBPT corrections to the energy, and this shows that these corrections
are absorbed into the IMSRG correlation energy, making the IMSRG at any many-body truncation
second-order complete in MBPT. Recall that in our analysis (using an HF reference state and the NO2B
approximation), fia and Wijkabc are 0, so Eqs. ( 7.24 ) and ( 7.26 ) vanish. Nevertheless, the [1, 1] → 0 and
[3, 3] → 0 commutators are important at higher orders, and the intuition above for how they generate
contributions to the ground-state energy is key to understanding the perturbative analysis fully.

Extending this analysis to higher orders in MBPT requires considering how the hole-particle matrix
elements of f , Γ, and W change over the course of the IMSRG evolution beyond the basic suppression of
their initial values. On a high level, this corresponds to the IMSRG evolution “dressing” the one-, two-, and
three-body vertices with effective interaction contributions that generate higher-order MBPT diagrams. A
detailed analysis of this is given in Refs. [ 94 ,  280 ], but to make this concept a bit more concrete we discuss
one contribution at a high level. Considering the particle-particle part of the [2, 2] → 2 commutator,

C1234 = 1
2
∑
pq

n̄pn̄q(A12pqBpq34 − B12pqApq34) , (7.27)

and plugging in O(g) matrix elements for A = η and B = H, one sees that this generates O(g2) matrix
elements in Γijab when integrated in s. Plugging this O(g2) contribution together with an O(g) contribution
into Eq. ( 7.19 ) gives a third-order contribution to the energy. Keeping track of all prefactors and energy
denominators, one finds that the integration in s works out such that this is exactly the particle-particle
third-order MBPT contribution given in Eq. ( 3.79 ). Similar results are obtained for the other third-order
MBPT contributions, so one finds that the IMSRG(2) is complete up to third order in MBPT. This sets
the intuitive foundation for the perturbative analysis.

Returning to our original power-counting scheme

H = f + g Γ , (7.28)

with

fpp = O(g0) , (7.29)
Γpqrs = O(g1) , (7.30)

we see that the hole-particle block of f is induced by the [2, 2] → 1 commutator (the [1, 2] → 1 commutator
initially does not induce hole-particle contributions because fia and thus η(1B) are 0), and the matrix
elements of W are induced by the [2, 2] → 3 commutator. This means

fia = O(g2) , (7.31)
Wpqrstu = O(g2) , (7.32)
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Commutator Cost Perturbative order
[1, 1] → 0 O(N2) g4

[1, 1] → 1 O(N3) g4

[1, 2] → 1 O(N4) g5

[1, 2] → 2 O(N5) g2

[2, 2] → 0 O(N4) g2

[2, 2] → 1 O(N5) g4

[2, 2] → 2 O(N6) g3

[2, 2] → 3 O(N7) g4

[1, 3] → 2 O(N6) g5

[1, 3] → 3 O(N7) g4

[2, 3] → 1 O(N6) g5

[2, 3] → 2 O(N7) g4

[2, 3] → 3 O(N8) g5

[3, 3] → 0 O(N6) g4

[3, 3] → 1 O(N7) g6

[3, 3] → 2 O(N8) g5

[3, 3] → 3 O(N9) g6

Table 7.1: Summary of IMSRG(3) fundamental commutators. The lowest-order perturbative contributions
to the energy provided by each of the IMSRG(3) fundamental commutators along with their computational costs.
Table from Ref. [  45 ].

and, as a result, their contributions to the energy are both O(g4).

Thus, the contribution of any induced two-body parts to E is suppressed by O(g1), and the contributions
of induced one- and three-body parts to E are suppressed by O(g2). This allows one to quickly perturbatively
estimate the importance of different fundamental commutators, provided in Table  7.1 .

It is worth noting that the [1, 1] → 1, [1, 2] → 2, and [1, 3] → 3 commutators have higher perturbative
importance than their [1, 2] → 1, [2, 2] → 2, and [2, 3] → 3 counterparts, a consequence of the fact that they
are sensitive to the diagonal part of f , which is O(g0). The former [1, B] → B commutators are responsible
for the suppression of the B-body hole-particle blocks of the Hamiltonian and play a central role in the
behavior of the IMSRG evolution.

A key result of the analyses in Refs. [ 94 ,  280 ] is that the IMSRG(2) is complete up to third order in
MBPT and contains many fourth-order diagrams as well. At the NO2B level, the IMSRG(3) accounts
for the induced three-body effects, which are what is missing for the complete inclusion of fourth-order
diagrams in the IMSRG(2), making the IMSRG(3) fourth-order complete at the NO2B level [ 94 ,  280 ].

7.3 Approximating the IMSRG(3)

In this chapter, we are able to perform full IMSRG(3) calculations because we work in restricted model
spaces where the IMSRG(3) and also exact diagonalizations are computationally feasible. The IMSRG(3)
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Commutator Cost Included in IMSRG(3)-. . .
MP4 N7 N8 g5 full IMSRG(3)

[2, 2] → 3 O(N7) ✓ ✓ ✓ ✓ ✓

[2, 3] → 2 O(N7) ✓ ✓ ✓ ✓ ✓

[1, 3] → 3 O(N7) ✓ ✓ ✓ ✓ ✓

[3, 3] → 0 O(N6) ✓ ✓ ✓ ✓ ✓

[2, 3] → 1 O(N6) ✓ ✓ ✓ ✓

[1, 3] → 2 O(N6) ✓ ✓ ✓ ✓

[3, 3] → 1 O(N7) ✓ ✓ ✓

[2, 3] → 3 O(N8) ✓ ✓ ✓

[3, 3] → 2 O(N8) ✓ ✓ ✓

[3, 3] → 3 O(N9) ✓

Table 7.2: Summary of approximate IMSRG(3) truncations. The computational cost of the IMSRG(3)
fundamental commutators and whether they are included in various approximate and full IMSRG(3) truncation
schemes. Table from Ref. [ 45 ].

without truncations, however, is far too expensive for calculations of medium-mass nuclei in realistic model
spaces (“realistic” meaning that the model-space truncations are sufficient to converge observables at the
three-body level). This is also the case for CC theory with triples, which without any truncations yields the
O(A3N6) CCSDT theory [ 314 ,  315 ]. In CC theory, a variety of approximations of CCSDT have proliferated
accounting for the effects of triples in different ways [ 92 ,  313 ,  316 – 319 ,  362 ]. These approximations,
while more expensive than CCSD, are well established and computationally feasible in nuclear structure
calculations and play an important role where precision and uncertainty quantification are concerned. We
aim to do the same for the IMSRG(3), establishing approximations of the IMSRG(3) that include the most
essential features of the IMSRG(3) needed for high precision while remaining computationally tractable in
large-scale calculations.

The strategy we employ is relatively simple. We include full three-body operators in our calculations
(rather than treating three-body effects perturbatively). Of the 10 IMSRG(3) fundamental commutators
that would be necessary for a full IMSRG(3) calculation, we select only a subset to keep in our equations.
Ideally, we are able to neglect the most expensive fundamental commutators while introducing only small
errors in the IMSRG(3) solution and substantially improving over the IMSRG(2). Our approach and the
approximations we introduce in the following are summarized in Table  7.2 .

The minimal IMSRG(3) scheme we consider includes four fundamental commutators, motivated by our
typical NO2B starting point 

2
 and the perturbative analysis of the IMSRG(3). Starting from an NO2B initial

Hamiltonian, a three-body part must be induced by the [2, 2] → 3 commutator. Once a three-body part is
generated, its off-diagonal contributions must be suppressed, which is achieved by the [1, 3] → 3 commutator.
Similarly, for the three-body part to affect observables, it must couple back to the zero- through two-body
parts of the IMSRG(3). There are two O(g4) commutators allowing the three-body part to “feed back” into
lower-body parts, the [2, 3] → 2 and [3, 3] → 0 commutators. Including these four commutators yields the

2With the IMSRG(3), it is in principle no extra cost to also include the initial residual three-body Hamiltonian W . This is
currently not done, but should be investigated in the future as it is a key advantage of the IMSRG over CC theory, where the
theory needs to be generalized considerably to include a three-body Hamiltonian [  277 ,  278 ].
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IMSRG(3)-MP4 truncation. We note that in this truncation all O(g4) commutators are included, making
this truncation complete to fourth order in MBPT, motivating its name. The IMSRG(3)-MP4 is most
similar to iterated coupled-cluster methods like CCSDT-1 [ 92 ,  313 ,  362 ], as both methods are fourth-order
complete. However, CCSDT-1 scales like O(A3N4) while the IMSRG(3)-MP4 scales like O(N7).

Beyond the IMSRG(3)-MP4 truncation, we consider two approaches to including further commutators.
The first is inclusion based on computational cost, including first the cheapest of the remaining commutators
before including the more expensive commutators. The rationale here is that by using this approach one
can include as much “physics” as possible while increasing the computational cost incrementally, hopefully
leading to a fairly faithful reproduction of the full IMSRG(3) results. The second approach is based on the
perturbative analysis discussed in Section  7.2 , where remaining commutators are included in the order of
their perturbative importance. This physically motivated approach attempts to capture as best as possible
the available physics in a consistent manner before including “higher-order” effects. One would hope to see
that these higher-order effects generate only small changes in energies and in practical calculations some
“complete” lower-order approximation could be used.

Following the first approach, including the [2, 3] → 1, [1, 3] → 2, and [3, 3] → 1 commutators on top
of the IMSRG(3)-MP4 approximation yields a truncation that includes all IMSRG(3) commutators that
cost O(N7) or less. We refer to this truncation as the IMSRG(3)-N7 truncation. The inclusion of the
[2, 3] → 3 and [3, 3] → 2 commutators on top of this truncation yields the IMSRG(3)-N8 truncation, which
includes all commutators that cost O(N8) or less. This truncation differs from the full IMSRG(3) only by
the missing [3, 3] → 3 commutator.

Following the second approach, the next truncation we present includes the remaining O(g5) commutators,
the [2, 3] → 1, [1, 3] → 2, [2, 3] → 3, and [3, 3] → 2 commutators, on top of the IMSRG(3)-MP4 truncation.
We refer to this truncation as the IMSRG(3)-g5 truncation. This truncation includes two commutators
that cost O(N8), making that the cost of the truncation. The two remaining commutators are O(g6), so
this is the only complete perturbatively guided truncation between the IMSRG(3)-MP4 and full IMSRG(3)
truncations.

7.4 Comparison against exact results

To test the precision of the IMSRG(3) and its approximations relative to the IMSRG(2), we consider
IMSRG calculations of ground-state energies in an emax = 2 model space. In this model space, we are able
to compare against exact results. For 4He, we perform a full configuration interaction (FCI) diagonalization
using the bigstick code [ 369 ]. For 16O, we perform NCSM diagonalizations based on the emax = 2 model
space using the kshell code [ 370 ].

We focus on two soft chiral Hamiltonians, the N3LO chiral NN potential from Ref. [ 154 ] SRG evolved
to λ = 1.8 fm−1 (referred to as “N3LO EM 500 λ = 1.8 fm−1”) and the chiral NN+3N “1.8/2.0 (EM)”
potential constructed in Ref. [ 171 ]. We also consider three harder chiral NN-only Hamiltonians, the N3LO
potential from Ref. [  154 ] with a cutoff of 500 MeV (referred to as “N3LO EM 500”), the N3LO potential
from Ref. [  157 ] with a cutoff of 450 MeV (referred to as “N3LO EMN 450”), and the N3LO potential from
Ref. [ 157 ] with a cutoff of 500 MeV (referred to as “N3LO EMN 500”).

We employ two basis sets, the HF and NAT bases. For the HF bases, the HF solution and subsequent
IMSRG calculation are both performed in an emax = 2 model space. For the NAT bases, we follow the
strategy discussed in Chapter  6 [ 106 ], using a model space of e

HF/NAT
max = 14 (with E3max = 16 for 3N forces

where relevant) before truncating to emax = 2 for the IMSRG calculation.
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Figure 7.1: IMSRG(3) corrections for 4He in the HF basis. Ground-state energies E of 4He obtained
in various truncation schemes using the N3LO EM 500 λ = 1.8 fm−1 NN-only Hamiltonian and an HF reference
state following the computational and perturbative truncation orderings for the fundamental commutators (left
and right panels, respectively). Thicker, darker bars correspond to the major truncations summarized in Table  7.2 .
Thinner, lighter bars correspond to intermediate truncations where a single fundamental commutator has been added
relative to the truncation scheme to the left. The dashed line indicates the emax = 2 exact result obtained for
this Hamiltonian. The blue band indicates the range spanned by the results obtained from the IMSRG(3)-N7 and
IMSRG(3)-g5 truncations. The starting mean-field energy expectation value is provided in the bottom right corner.
Figure from Ref. [ 45 ].

We solve the IMSRG equations via direct integration of the flow equations (rather than employing the
Magnus expansion [ 297 ]), and we employ the imaginary-time generator throughout.

7.4.1 Helium-4

In the following, we discuss figures like Fig.  7.1 , where ground-state energy predictions obtained via the
IMSRG(2) and various IMSRG(3) approximations are compared against exact results indicated by the
black dashed line. We investigate the convergence from the IMSRG(2) to the full IMSRG(3) truncations
following the computational and perturbative approaches to approximating the IMSRG(3) discussed in
Sec.  7.3 and summarized in Table  7.2 . The “major truncations” given there are shown as thicker, wider,
darker lines, while minor truncations including one fundamental commutator in addition to the truncation
on the left are shown as thinner, narrower, lighter lines.

In the left panel, we follow the approach to approximating the IMSRG(3) based on computational
cost: we start with the IMSRG(2) on the left; we add the [2, 2] → 3, [2, 3] → 2, [1, 3] → 3, and [3, 3] → 0
commutators to arrive at the IMSRG(3)-MP4; we further add the [2, 3] → 1, [1, 3] → 2, and [3, 3] → 1
commutators to arrive at the IMSRG(3)-N7; we further add the [2, 3] → 3 and [3, 3] → 2 commutators to
arrive at the IMSRG(3)-N8; and we add the [3, 3] → 3 commutator to arrive at the IMSRG(3). In the
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Figure 7.2: IMSRG(3) corrections for 4He in the NAT basis. Same as Fig.  7.1 but using a NAT reference
state constructed in an e

HF/NAT
max = 14 model space. Figure from Ref. [  45 ].

right panel, we follow the approach to approximating the IMSRG(3) based on perturbative importance: we
start with the IMSRG(2) on the left; we extend this to the IMSRG(3)-MP4; we further add the [2, 3] → 1,
[1, 3] → 2, [2, 3] → 3, and [3, 3] → 2 commutators to arrive at the IMSRG(3)-g5; and we add the [3, 3] → 1
and [3, 3] → 3 commutators to arrive at the IMSRG(3).

In Fig.  7.1 , we consider IMSRG calculations of 4He starting from an HF reference state using the
N3LO EM 500 λ = 1.8 fm−1 Hamiltonian. The exact result for this Hamiltonian is shown by the black
dashed line. We see that for this Hamiltonian and reference state, the IMSRG(2) error to the exact result
is surprisingly small, less than 10 keV on a correlation energy of Ecorr ∼ 3.6 MeV. The error of the full
IMSRG(3) is similarly small. We see that the IMSRG(3)-MP4 contains significant repulsive contributions
relative to the IMSRG(2), which can be understood by the fact that the quadruples in fourth-order
MBPT are generally repulsive for these soft Hamiltonians and are included in the IMSRG(3)-MP4, but
not in the IMSRG(2). Including more terms beyond the IMSRG(3)-MP4 yields the IMSRG(3)-N7 and
IMSRG(3)-N8 truncations, which differ only weakly from the full IMSRG(3). We also see that most
individual commutators only give small corrections to the energy, with the exception of the [2, 3] → 1
commutator. This establishes the systematic convergence of the IMSRG(3) and its approximations towards
the exact result, and also suggests that low-cost IMSRG(3) commutators are sufficient to quantitatively
approximate the full IMSRG(3) result.

In the right panel, we find that the IMSRG(3)-g5 approximates the full IMSRG(3) quite well. A similar
systematic convergence is observed for the individual commutators added beyond the IMSRG(3)-MP4,
suggesting that the perturbative power counting is effective for this system and Hamiltonian. We note that
the band spanned by the IMSRG(3)-N7 and IMSRG(3)-g5 approximations contains the IMSRG(3) result.

In Fig.  7.2 , we consider starting from a NAT reference state instead. Here we find that the IMSRG(2)
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Figure 7.3: IMSRG(3) corrections for 4He with the 1.8/2.0 (EM) Hamiltonian. Ground-state energies E
of 4He obtained in various truncation schemes using the 1.8/2.0 (EM) Hamiltonian and a NAT reference state. The
blue band indicates the range spanned by the results obtained from the IMSRG(3)-N7 and IMSRG(3)-g5 truncations.
The NAT basis is constructed in an e

HF/NAT
max = 14, E3max = 16, ℏω = 32 MeV model space before being truncated to

emax = 2 for the IMSRG calculations. The starting mean-field energy expectation value is provided in the bottom
right corner. Figure from Ref. [  45 ].

error to the exact result is larger, around 25 keV, which is more in line with the expected IMSRG(2) error
of 1–2% of Ecorr ∼ 3.6 MeV. This suggests the small IMSRG(2) error in the HF case above is coincidental.
The IMSRG(3)-MP4, IMSRG(3)-N7, IMSRG(3)-N8, and IMSRG(3)-g5 approximations show systematic
convergence towards the IMSRG(3) result, which has only a small error less than 10 keV to the exact
energy. Individual commutators generally give small corrections [beyond the large correction going from the
IMSRG(2) to the IMSRG(3)-MP4], and the IMSRG(3) result lies in the band between the IMSRG(3)-N7

and IMSRG(3)-g5 approximations.

Comparing the computational and perturbative IMSRG(3) approximation approaches, we find that the
IMSRG(3) is best approximated by the IMSRG(3)-N8 and IMSRG(3)-g5. This is somewhat unsurprising
as these approximations only omit two and one commutators from the IMSRG(3), respectively. However,
looking at the perturbative truncation scheme, one sees that the sizes of corrections generally follow the
perturbative importances, with a large correction due to the O(g4) contributions in IMSRG(3)-MP4, smaller
corrections at O(g5), and only very small O(g6) corrections bringing the IMSRG(3)-g5 to the full IMSRG(3).
This suggests the perturbative importance estimate is a useful guide when using soft Hamiltonians. At the
same time, the computational truncation scheme establishes the IMSRG(3)-N7 in particular as being able
to quantitatively approximate the full IMSRG(3) result at substantially lower computational cost, making
it an excellent candidate for realistic calculations.

In Fig.  7.3 , we find a similar picture when using the NN+3N 1.8/2.0 (EM) Hamiltonian with a NAT
reference state. A considerable correction arises at the IMSRG(3)-MP4 truncation, but further adding
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commutators only delivers small corrections. The IMSRG(3)-N8 and IMSRG(3)-g5 both approximate
the full IMSRG(3) very well, but the IMSRG(3)-N7 and IMSRG(3)-MP4 also provide good quantitative
approximations of the IMSRG(3) result.

7.4.2 Oxygen-16

We extend our systematic study to 16O to explore how our findings depend on the system considered.
In 16O, we perform NCSM diagonalizations using the kshell code [ 370 ], using Nmax = 2, 4, 6, and 8
truncations. We extrapolate these results to Nmax → ∞ by fitting a decaying exponential in Nmax. We
assess the uncertainty in the extrapolation by leaving one of Nmax = 2, 4, 6 out of the fit.

In Fig.  7.4 , we consider IMSRG calculations of 16O using the N3LO EM 500 λ = 1.8 fm−1 Hamiltonian
and an HF reference state. We find that the IMSRG(2) error is about 180 keV, which is around 1.8% of
the correlation energy. The IMSRG(3)-MP4 gives a sizeable repulsive correction, underbinding compared
to exact results, and the IMSRG(3)-N7, IMSRG(3)-N8, and IMSRG(3)-g5 give attractive corrections that
converge systematically towards the full IMSRG(3). The IMSRG(3) differs from exact results by less than
40 keV, a substantial improvement in precision.

In Fig.  7.5 , we consider the same calculations but using a NAT reference state. We find that the
IMSRG(2) error is very small, less than 20 keV. This surprisingly small error is once again coincidental. The
IMSRG(3)-MP4 gives a small repulsive correction, and the IMSRG(3)-N7, IMSRG(3)-N8, and IMSRG(3)-g5

again give attractive corrections that converge systematically towards the full IMSRG(3). The IMSRG(3)
differs from exact results by less than 30 keV.

We find quantitatively consistent results in 4He and 16O when one considers correlation energies for the
different many-body calculations. This is summarized in Fig.  7.6 , where we consider IMSRG calculations
of 4He and 16O using HF and NAT reference states and the NN-only N3LO EM 500 λ = 1.8 fm−1 and
the NN+3N 1.8/2.0 (EM) Hamiltonians. We compare the correlation energies of IMSRG(2) and various
approximate IMSRG(3) calculations relative to the full IMSRG(3) correlation energy, Ecorr,IMSRG(3). We
find that the IMSRG(2) overbinds all systems considered, with up to 2% differences in the correlation
energy. This gives us the rule of thumb that IMSRG(2) ground-state energy predictions have a many-body
uncertainty of around 1–2% of Ecorr. For all systems considered, the IMSRG(3)-MP4 truncation underbinds
relative to the IMSRG(3), with up to 1% differences in Ecorr. The IMSRG(3)-N7 improves on this in
most cases, bringing the the difference in Ecorr down to 0.5% or less. The IMSRG(3)-g5 very accurately
reproduces the IMSRG(3) with differences in Ecorr of less than 0.2%. We find that gray band between the
IMSRG(3)-N7 and IMSRG(3)-g5 results includes the IMSRG(3) result for all systems shown.

7.4.3 IMSRG(3) with harder Hamiltonians

The previous sections focused on the soft N3LO EM 500 λ = 1.8 fm−1 and 1.8/2.0 (EM) Hamiltonians.
In this section, we explore the many-body convergence when using hard Hamiltonians, focusing on the
NN-only N3LO EM 500, N3LO EMN 450, and N3LO EMN 500 Hamiltonians.

In Fig.  7.7 , we explore various IMSRG calculations for the given Hamiltonians, showing their errors
to exact results for various truncations. In the top plot, we consider 4He, where the errors due to the
IMSRG(2) approximation are considerable. These errors of 350–500 keV correspond to errors of 3.5–5%
on the correlation energy, much larger than observed for soft Hamiltonians. Going to the IMSRG(3)-MP4
truncation reduces this error somewhat, but going to any higher-fidelity truncation reduces the error
considerably. The full IMSRG(3) results are all within 100 keV of the exact results, but the same is also
true for the IMSRG(3)-N7 and IMSRG(3)-g5 results.
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Figure 7.4: IMSRG(3) corrections for 16O in the HF basis. Same as Fig.  7.1 but for 16O with ℏω = 24 MeV.
Figure from Ref. [ 45 ].
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for different systems discussed in Ref. [  45 ]. The gray band indicates the range spanned by the IMSRG(3)-N7 and
IMSRG(3)-g5 results. Figure from Ref. [  45 ].

In the bottom plot, we consider 16O. The approximate IMSRG(3) truncations systematically improve
over the IMSRG(2), and the final IMSRG(3) results differ from the exact results by just over 100 keV,
which is an error of about 0.5% in the correlation energy for both Hamiltonians. For the N3LO EM 500
Hamiltonian in the emax = 2 model space, the IMSRG(2) calculation of 16O does not converge. The
IMSRG(3) improves on this by delivering converged results that differ from exact results by about 3%,
stabilizing the solution of IMSRG flow equations.

We see that the IMSRG(3) offers substantial, systematic improvements over the IMSRG(2). These
improvements are largely already present in approximate IMSRG(3) truncations with lower computational
cost, such as the IMSRG(3)-N7. We note that the IMSRG(3) is not able to achieve as small of errors
for these harder Hamiltonians as it is able to achieve for the N3LO EM 500 λ = 1.8 fm−1 Hamiltonian
with errors of up to 0.6% in the correlation energy. This suggests that the many-body expansion in the
IMSRG converges more slowly when using harder Hamiltonians (as one would also expect from perturbative
arguments). Still, the convergence behavior of the IMSRG many-body expansion is systematic in the cases
discussed here, and the general trends discussed the previous sections continue to hold.

7.5 Realistic IMSRG(3) calculations of nuclei
The work discussed in the previous sections and in Ref. [ 45 ] establishes two points: the many-body
expansion in the IMSRG converges systematically in the systems considered, allowing the IMSRG(3) to
deliver high-precision results for ground-state energies; the benefits of the IMSRG(3) can generally be
reaped at considerably lower computational cost by leaving out selected unimportant, but computationally
expensive terms. Specifically, the IMSRG(3)-N7 and IMSRG(3)-MP4 approximations with their O(N7)
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Figure 7.8: IMSRG(3) predictions for the ground-state energy of 16O. The ground-state energy E of 16O
as predicted by the IMSRG(2) (dash-dotted), Λ-CCSD(T) (dashed), and the IMSRG(3)-N7 as a function of emax,3b
and E3max (blue triangles, orange circles, green diamonds) using the 1.8/2.0 (EM) Hamiltonian from Ref. [  171 ].
For the IMSRG(3)-N7 calculations, the NAT basis was constructed using e
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max = 16, E3max = 22 before being

truncated to emax = 10. Λ-CCSD(T) value from Ref. [  371 ]. Experimental value from Ref. [ 361 ].

computational scaling provide a tractable option to do “IMSRG(3)” calculations in realistic model spaces.
The differences between the two truncations are subtle. In general, the IMSRG(3)-N7 performed better than
the IMSRG(3)-MP4 relative to the IMSRG(3), making it the preferred method, but the IMSRG(3)-MP4
may be useful to assess how sensitive certain results are to the IMSRG(3) approximation we employ.

In later chapters of this thesis, we explore IMSRG(3) calculations of nuclei in realistic model spaces
(albeit not always fully converged). In these cases, these are always IMSRG(3)-N7 calculations. Further, we
currently use the IMSRG(3) calculations starting from an NO2B Hamiltonian, meaning the initial residual
three-body interactions W (s = 0) are discarded. We use the IMSRG(3) to capture induced many-body
interactions as best as possible to probe the many-body truncation uncertainty without considering the
NO2B approximation. This represents the cleanest initial exploration of the IMSRG(3), where one is
able to test the effect of the inclusion of three-body operators independent of any other improvements. It
also allows for clean comparison with CC calculations including triples, which always employ the NO2B
approximation for the Hamiltonian. In the future, it will be interesting to explore the additional effect of
including W (s = 0) in IMSRG(3) calculations.

Given the immense cost of representing three-body operators in a single-particle basis, we employ
additional truncations for the three-body basis in our IMSRG(3) calculations. We represent our three-body
operators in a basis

{|pqr⟩ , ep ≤ emax,3b, eq ≤ emax,3b, er ≤ emax,3b, ep + eq + er ≤ E3max}, (7.33)

with the single-particle truncation emax,3b ≤ emax and the three-body truncation E3max. Fully relaxing
these truncations means taking emax,3b = emax and E3max = 3emax. This truncation approach, in particular
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calculations, the NAT basis was constructed using e
HF/NAT
max = 16, E3max = 22 before being truncated to emax = 10.

the emax,3b truncation, relies very heavily on the optimization of the particle states provided by the natural
orbitals, which makes the additional emax,3b cut well behaved. Alternative truncations based on NAT
occupation numbers have been explored in CC calculations [ 251 ] and are being considered for improved
IMSRG(3) calculations. For all the IMSRG calculations in the rest of this chapter and the following chapters,
we employ the imsrg++ code [ 365 ] for which we developed these computational strategies.

As a demonstration, we consider IMSRG(3)-N7 calculations of the ground-state energy of 16O using the
1.8/2.0 (EM) Hamiltonian [ 171 ] in Fig.  7.8 . We find that for this Hamiltonian the IMSRG(2) reproduces
the experimental binding energy quite well. Coupled-cluster results with perturbative triples (gray dashed
line) lie even closer to the experimental value. Including three-body operators in the IMSRG by doing
IMSRG(3)-N7 calculations gives us insight into what the IMSRG(2) uncertainty is and what the exact
result for this Hamiltonian is.

For our IMSRG(3)-N7 calculations, we employ a NAT reference state and basis constructed in an
e

HF/NAT
max = 16, E3max = 22 model space that we truncate to emax = 10 for the IMSRG calculation. We have

access to emax,3b = 4 and 5 up to E3max = 12 and 15, respectively, and emax,3b = 6 up to E3max = 14. We
observe systematic convergence of small corrections to the binding energy. We are able to converge within
E3max, but have a small remaining model-space uncertainty of around 150 keV due to the emax,3b truncation.
The remaining many-body uncertainty of the IMSRG(3)-N7 is likely also around 100 keV. Considering these
uncertainties, we see that the IMSRG(3)-N7 prediction is very compatible with the Λ-CCSD(T) prediction
and for this Hamiltonian also in excellent agreement with the experimental value.

In Fig.  7.9 , we study the same trends for the charge radius. We see a similar systematic convergence,
with the caveat that the convergence in emax,3b seems to be considerably slower. If one compares HF to
IMSRG(2) to IMSRG(3)-N7, one sees that IMSRG(3) corrections to the IMSRG(2) are not much smaller
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than the IMSRG(2) corrections to HF. This seems to indicate the radii may have relatively larger IMSRG(3)
corrections than ground-state energies, but this must be established more systematically across various
nuclei and for various Hamiltonians.

The two examples above are based on single-reference IMSRG(3)-N7 calculations, employing the
standard decoupling described in Sec.  4.3 . The applications discussed in the following chapters will mostly
make use of the VS-IMSRG, both to easily describe open-shell systems and to access spectra. In the
VS-IMSRG, we decouple an appropriate valence-space Hamiltonian as outlined in Sec.  4.4 to be subsequently
diagonalized by the kshell code [ 370 ]. kshell is tremendously powerful and very flexible, but it has the
notable limitation that it cannot include three-body Hamiltonian contributions in the diagonalization and
cannot evaluate expectation values of three-body operators. At the VS-IMSRG(2) level, this is perfectly
suitable as the normal-ordered two-body truncation restricts the shell-model Hamiltonian and the effective
operators to the two-body level. At the VS-IMSRG(3) level, after completing the VS-IMSRG(3) solution
we have a residual three-body Hamiltonian W (s → ∞) and also residual three-body terms in our operators
O(3B)(s → ∞). To work with kshell, we make the pragmatic choice to truncate all three-body terms
before redoing the normal ordering to arrive at shell-model matrix elements. This corresponds to leaving out
Eq. ( 3.38 ) and setting H(3B) = 0 in Eqs. ( 3.39 )–( 3.41 ). This second normal-ordered two-body approximation
relies on the hierarchy of many-body operators being maintained during the many-body solution, such
that the truncated three-body terms are substantially less important than the kept two- and one-body
terms. This maintained hierarchy is a reasonable assumption as if this is not the case then there are likely
also more fundamental problems for the IMSRG many-body truncation. Still, it is an approximation that
we would like to test in future work, working with no-core shell-model codes [ 89 ,  330 ,  369 ] able to handle
three-body forces and operators.

Overview and perspectives
Our work in this chapter and in Ref. [ 45 ] breaks ground on high-precision nuclear structure calculations
with the IMSRG(3). In particular, we show systematic many-body convergence from the IMSRG(2) to the
IMSRG(3) for ground-state energies by providing detailed comparisons against exact results. This work
establishes robust ways to approximate the IMSRG(3) at lower computational cost based on computational
and perturbative schemes, and we show that these low-cost approximations provide nearly all of the
precision of the IMSRG(3), which is especially beneficial in nonperturbative contexts. This opens the path
to IMSRG(3) calculations in realistic model spaces for the precision description of nuclei, and we introduce
the standard truncations emax,3b, E3max that we use to truncate three-body operators to make IMSRG(3)
calculations in medium-mass nuclei possible. These calculations are explored in the following chapters in
various applications in close connection to nuclear structure experiment.

The IMSRG(3) developments here are a milestone for nuclear structure theory, but much still remains
to be done. A key outstanding task is the efficient, scalable computational implementation of the IMSRG(3)
to give fully converged results in heavy systems. Moreover, it is still very important to understand the
many-body content of the IMSRG(2) and IMSRG(3) better to efficiently approximate the IMSRG(3) in
a physics-guided manner. This understanding will certainly be observable-dependent, and building up
an understanding of how different observables converge differently (as seen in Figs.  7.8 and  7.9 ) requires
a better understanding of static versus dynamical correlations for short-range and long-range operators.
Nevertheless, the IMSRG(3) is a key component in quantifying many-body uncertainties, which will make
further understanding the method and many-body physics for different nuclear structure observables while
accounting for input and method uncertainties possible.
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Chapter 8

Ab initio studies of stable carbon isotopes

Light nuclei exhibit several interesting phenomena that make them attractive to study. Two notable
examples are the relevance of α clusters in the structure of many light nuclei [ 22 ] and the appearance
of neutron and proton halo nuclei near the drip lines [ 13 ,  14 ,  16 ]. Capturing these emergent many-body
phenomena is theoretically challenging and represents an excellent test case for nuclear theory.

Recent measurements at the COALA (Collinear Apparatus for Laser Spectroscopy and Applied Science)
setup at the Technische Universität Darmstadt [ 372 ,  373 ] investigated the charge radii of 12C and 13C using
laser spectroscopy [ 108 ,  374 – 377 ]. We seek to provide complementary nuclear theory predictions using the
VS-IMSRG. Carbon isotopes, especially 12C, are not the ideal systems for the IMSRG: first, they are in a
mass range that can be reached by exact methods, making the use of a scalable, but approximate many-body
method less attractive; second, the relevance of clustering especially in 12C is known to be challenging for
many-body expansion methods, where the truncation at the two-body level may be insufficient [ 250 ,  261 ].
Still, for the VS-IMSRG(3) it represents a case where, due to the light masses, we are able to give well-
converged IMSRG(3) results. We can use this to test the IMSRG(3) in systems with challenging nuclear
structure and understand how it performs relative to other approaches.

In this chapter, we present VS-IMSRG(3)-N7 results for ground-state energies and charge radii of 12C
and 13C, focusing on the convergence of the many-body expansion and the behavior of the IMSRG results
beyond the IMSRG(2) level. This work is in preparation for publication together with the results of the
all-optical charge radius measurements at COALA by Patrick Müller et al. [ 108 ].

8.1 Calculational details

In this chapter, we solve for the ground-state properties of carbon isotopes using the VS-IMSRG, decoupling
a p-shell valence-space Hamiltonian using the imsrg++ code [ 365 ] for a subsequent diagonalization with
kshell [ 370 ]. Our VS-IMSRG(3)-N7 calculations use the strategy described in Sec.  7.5 , employing a
normal-ordered two-body approximation for the initial Hamiltonian and for the final decoupled operators.

For all calculations, we construct a hybrid HF+NAT basis (see Sec.  6.1.2.2 ) using an e
HF/NAT
max = 14,

E3max = 22 model space with a frequency of ℏω = 16 MeV. To assess model-space uncertainties we vary
e

HF/NAT
max and E3max by ±2. Following the basis construction, we truncate our model space to emax = 10 for

the VS-IMSRG solution. Again, we vary this truncation by ±2 to assess model-space uncertainties. We
find ground-state energies and charge radii of 12C and 13C to be nicely converged for this choice of model
space. For our VS-IMSRG(3)-N7 calculations, we truncate our three-body operators using the model-space
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Figure 8.1: VS-IMSRG(3) predictions for ground-state energies and charge radii of 12C and 13C.
Ground-state energies E (top) and charge radii Rch (bottom) for 12C (left) and 13C (right) predicted by VS-IMSRG
calculations using the 1.8/2.0 (EM) Hamiltonian [  171 ]. Results from VS-IMSRG(3)-N7 calculations are presented
as a function of the three-body truncations emax,3b and E3max. For each observable, the Hartree-Fock ground-state
expectation value is shown in the top left corner of the appropriate panel. Our VS-IMSRG calculations use HF+NAT
bases computed in an e

HF/NAT
max = 14, E3max = 22, ℏω = 16 MeV model space before being truncated to emax = 10 for

the IMSRG calculation. Experimental values from Refs. [  108 ,  377 ,  379 ].

parameters emax,3b and E3max as described in Sec.  7.5 and investigate convergence with respect to these
parameters.

We compute radii using Eq. ( 4.4 ). In this chapter, we use updated values for the proton and neutron
squared charge radii from Ref. [ 378 ], with r2

p = 0.7071 fm2 and r2
n = −0.1155 fm2.

8.2 Ground-state properties

We start by considering IMSRG calculations of 13C using the 1.8/2.0 (EM) Hamiltonian [  171 ] in the right
panels of Fig.  8.1 . Hartree-Fock values for the ground-state energy and charge radius are given in the top
left corner, and the IMSRG(2) values are shown as a dash-dotted gray line. We note that the IMSRG(2)
correlation energy is 36 MeV, and the IMSRG(2) correction to the radius is very small at just over 0.01 fm.
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Relative to the experimental values shown as solid black lines, the IMSRG(2) predictions underbind 13C by
1 MeV and give a charge radius that is substantially too small. This is consistent with the general behavior
of the 1.8/2.0 (EM) Hamiltonian giving good reproduction of ground-state energies while underpredicting
charge radii systematically [  3 ]. However, as we see in Sec.  8.4 , this underprediction of the carbon charge
radii is shared by all Hamiltonians we investigated.

Considering the IMSRG(3)-N7 corrections to the energy, we observe very stable convergence in emax,3b
and E3max. Relatively small model-space truncations (for example, emax,3b = 4, E3max = 12) are sufficient
to deliver converged results within 200 keV. The total IMSRG(3) corrections to the ground-state energy are
about 1.4 MeV. This is a somewhat large correction, nearly 4% of the IMSRG(2) correlation energy, but
within reason.

Turning our attention to the charge radius, we see slower convergence in emax,3b and E3max, as also
observed in Sec.  7.5 in 16O for charge radii. It is also worth noting that the IMSRG(3) corrections of around
0.04 fm are large compared to the IMSRG(2) corrections to the HF radius. In this case, it is likely that the
HF to IMSRG(2) correction is anomalously small.

Overall, the IMSRG(3) corrections to the ground-state energy and the charge radius converge nicely for
13C, and their magnitudes suggest relatively systematic behavior of the many-body expansion. For the
larger radius corrections, one must always keep in mind that charge radii are captured very efficiently at the
Hartree-Fock level, and the IMSRG(2) and IMSRG(3) corrections are relatively minor adjustments. The
IMSRG(3) corrections to the charge radius serve to improve the theory prediction relative to experiment.
For the ground-state energy, however, the agreement with experiment gets worse.

In the left panels of Fig.  8.1 , we consider IMSRG calculations of 12C using the 1.8/2.0 (EM) Hamilto-
nian [ 171 ]. At the IMSRG(2) level, we see that 12C is slightly overbound with respect to experiment and
the charge radius is slightly underpredicted. For the ground-state energy, we once again observe systematic
model-space convergence for our IMSRG(3)-N7 calculations. The converged IMSRG(3) correction to
the IMSRG(2) energy is about 2.4 MeV, about 5.5% of the IMSRG(2) correlation energy. Again, this
is somewhat large compared to typical closed-shell systems, but within reason given the more complex
structure of 12C. The resulting IMSRG(3) ground-state energy prediction slightly underbinds 12C with
respect to experiment.

The picture for the charge radius of 12C is quite different. The IMSRG(2) correction to the radius is
0.08 fm, very large when compared with 16O in Fig.  7.9 . The IMSRG(3) corrections on top of this converge
much more slowly than in 13C, with a notable large contribution coming in at emax,3b = 5. Overall, in large
model spaces it still appears to reach convergence, especially considering the small corrections going from
emax,3b = 6 to emax,3b = 8, but the absolute size of the IMSRG(3) charge radius corrections of 0.1 fm is
concerning. These large corrections also serve to make the IMSRG(3) charge radius substantially larger
than the measured value.

This slower convergence in the charge radius is likely a result of clustering being relevant in 12C, but
this hypothesis is difficult to test in the IMSRG. It is not immediately obvious what operator or observable
would clearly show signs of clustering, but given such an operator it would be informative to consider
it in correlation with charge radii at the IMSRG(2) and IMSRG(3) levels. Regardless, it is clear that
it is challenging to fully capture the structure of 12C in the IMSRG, leading to slow convergence of the
many-body expansion as evidenced by the larger IMSRG(3) corrections. This is especially pronounced for
the charge radius and less pronounced for the ground-state energy, suggesting that while the wave function
changes a lot going from the IMSRG(2) to the IMSRG(3) the many-body interactions work out such that
the energy is not very sensitive to these changes.
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Figure 8.2: VS-IMSRG(3) predictions for differences of ground-state energies and charge radii
between 13C and 12C. Differences in ground-state energies E (left) and charge radii Rch (right) between 13C and
12C predicted by VS-IMSRG calculations using the 1.8/2.0 (EM) Hamiltonian [  171 ]. Results from VS-IMSRG(3)-N7

calculations are presented as a function of the three-body truncations emax,3b and E3max. For the charge radius
difference, the Hartree-Fock ground-state expectation value is shown in the top left corner of the panel. Our VS-IMSRG
calculations use HF+NAT bases computed in an e

HF/NAT
max = 14, E3max = 22, ℏω = 16 MeV model space before being

truncated to emax = 10 for the IMSRG calculation. Experimental values from Refs. [  108 ,  377 ,  379 ].

8.3 Differential quantities
In ab initio calculations, considering differential quantities such as radius differences or separation energies
is generally advantageous because systematic errors leading to correlated uncertainties cancel out in the
difference [ 3 ,  44 ,  47 ]. In Fig.  8.2 , we consider differences of the ground-state energies E and the charge
radii Rch between 13C and 12C. In the case of correlated uncertainties, in particular correlated IMSRG(3)
model-space uncertainties, these quantities should converge more quickly than their absolute values in
Fig.  8.1 .

In the left panel of Fig.  8.2 , we consider the ground-state energy difference E13C − E12C, which is simply
the negative neutron separation energy −Sn. We see considerable IMSRG(3) corrections on the IMSRG(2)
prediction, which is not unexpected as we are looking at a difference of two large numbers. Still, the
IMSRG(3) values converge very quickly in emax,3b and E3max, plateauing at −4.0 MeV. This systematic
behavior allows for converged results at very modest model-space sizes, making the ab initio prediction in
principle substantially cheaper. The resulting energy difference is closer to the experimental value, but still
0.9 MeV too small.

In the right panel of Fig.  8.2 , we consider the charge radius difference Rch,13C − Rch,12C. At the HF
level, this quantity is positive, and substantial IMSRG(2) corrections serve to bring it down to a negative
value of −0.056 fm. Compared with the experimental value of −0.0253 (14) fm [  108 ,  377 ], the IMSRG(2)
predicts a much larger decrease in the charge radius from 12C to 13C. The IMSRG(3) corrections on top of
this converge very slowly and serve to bring the radius difference even more negative, with an estimated
converged value at −0.11 (2) fm. From the slow convergence, we see that the model-space convergence
behaviors in 12C and 13C are not correlated for charge radii. Moreover, the challenges in the description
of 12C produce exaggerated IMSRG(3) corrections in the difference, making the IMSRG(3) uncertainty
naively estimated based on the difference between the IMSRG(2) and IMSRG(3) predictions 100%. In this
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Figure 8.3: Charge radii of 12C and 13C from chiral EFT Hamiltonians. Charge radii Rch of 13C (center)
and 12C (left) along with their difference ∆Rch (right) predicted by Hartree-Fock and VS-IMSRG calculations using
several Hamiltonians [  165 ,  167 ,  171 ]. Our VS-IMSRG calculations use HF+NAT bases computed in an e

HF/NAT
max = 14,

E3max = 22, ℏω = 16 MeV model space before being truncated to emax = 10 for the IMSRG calculation. Model-space
uncertainties are assessed by variations of e

HF/NAT
max , E3max, and emax for HF and VS-IMSRG(2) calculations and by

variations of emax,3b and E3max for VS-IMSRG(3)-N7 calculations. Experimental values from Ref. [  108 ,  377 ].

case, given the clearly different structure of 12C and 13C, the predictive power of the IMSRG(3) for the
differential charge radius is limited.

8.4 Hamiltonian dependence

A notable trend in Fig.  8.2 is that the charge radius goes from positive at the HF level to negative at the
IMSRG(2) level. Standard intuition would expect an increase in the charge radius with increasing mass
number as the additional neutron serves to make the proton density more diffuse. Between 12C and 13C
and also in many other light systems, this is not the case. An intuitive explanation is that 12C has an
anomalously large radius due to its structure as three α particles. This cluster structure is softened out by
the addition of a neutron in 13C, ultimately leading to a smaller charge radius. The experimental charge
radius difference of −0.0253 (14) fm [ 108 ,  377 ] is intuitively consistent with this picture, but on its own not
necessarily evidence of the relevance of clustering in 12C and 13C.

In Fig.  8.3 , we consider IMSRG(2) calculations of charge radii of 12C and 13C along with their difference
for several Hamiltonians [ 165 ,  167 ,  171 ]. We also include the IMSRG(3)-N7 results for the 1.8/2.0 (EM)
Hamiltonian discussed in the previous section. Looking at the absolute charge radii predicted by the
different Hamiltonians, we see that at the HF level the predictions are very scattered, but in a correlated
way in 12C and 13C. Going to the IMSRG(2), we see that many-body correlations bring the charge radius
predictions for the different Hamiltonians into much better agreement [2.42 (2) fm for 12C and 2.37 (2) fm
for 13C]. Both predictions are smaller than the experimental radii, and given the consistency across many
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Hamiltonians this suggests that this underprediction is likely not simply a Hamiltonian deficiency but
perhaps related to the many-body solution.

This remarkable consistency also extends to the charge radius difference between 13C and 12C, shown in
the right panel of Fig.  8.3 . All Hamiltonians predict a positive radius difference at the HF level around
0.02 fm, but at the IMSRG(2) level this is brought down consistently to −0.05 (1) fm. No Hamiltonian
gives a prediction that is directly compatible with the experimental value around −0.025 fm, but the
many-body uncertainties for this observable are very large, as discussed in the previous section. One clearly
sees that Hamiltonian uncertainties are very correlated in 12C and 13C. One also sees that the IMSRG(2)
and beyond-mean-field effects more generally are key to producing a decreasing charge radius change from
12C to 13C.

Overview and perspectives
Our work in this chapter explores the VS-IMSRG(3) in converged calculations of carbon isotopes. Despite
light systems with cluster structures like 12C and 13C not being ideal applications for the IMSRG, we
find that in many cases the IMSRG(3) gives controlled, albeit large corrections to IMSRG(2) predictions.
For the charge radius of 12C, we find large corrections with challenging systematics from the IMSRG(2)
and IMSRG(3), suggesting that the many-body truncation is insufficient to capture the essential physics
relevant for the observable. This also has a pronounced effect on the predicted charge radius difference
between 13C and 12C, with the IMSRG(3) giving nearly 100% corrections to this quantity. At the same
time, even though this observable is challenging for the IMSRG, it is clear that many-body effects beyond
Hartree-Fock are essential to produce a negative charge radius difference between 13C and 12C.

In light systems with pronounced cluster structures, the VS-IMSRG(3)-N7 should clearly still not
be the method of choice. Resolving such cluster structures in the many-body expansion requires either
a more complete IMSRG(3) approximation or the inclusion of higher-body operators beyond even the
IMSRG(3), making it an inefficient choice to describe systems where exact methods [ 88 ,  89 ], lattice theories
that naturally capture clustering [ 96 ,  97 ,  380 ], and cluster effective theories [ 54 ,  381 ,  382 ] are available.
Employing a more informed reference state in IMSRG calculations, from, for example, a truncated NCSM
or Hartree-Fock-Bogoliubov calculation [ 250 ,  302 ], and solving the IMSRG in a multireference formulation
may improve this somewhat, but previous studies have found considerable uncertainties for multireference
IMSRG and in-medium NCSM calculations in 12C [ 250 ]. It is an outstanding task to also include three-body
operators in such calculations, which should give more complete insight into the many-body expansion and
resulting uncertainties. There are still a few open questions from this study that present interesting avenues
for future study: What is the effect of residual three-body operators truncated in the VS-IMSRG(3), and
are these able to help with the description of clustering in 12C? What easily accessible operators can be
evaluated by many-body methods to quantify clustering, and how significantly do these operators change
from the IMSRG(2) to the IMSRG(3) in 12C? We expect to explore the former in the near future, but
the latter will be more challenging to explore within the IMSRG, as most approaches to address this use
coordinate-space evaluations of the density [ 380 ,  383 – 386 ].



Chapter 9

IMSRG(3) investigations
of calcium isotopes

The calcium isotopic chain is particularly exciting for nuclear structure, both experimentally and theoretically.
Experimentally, 40Ca and 48Ca (both Z = 20 and N = 20 and N = 28, respectively) are well established as
doubly-magic nuclei, but recent measurements from TITAN at TRIUMF, from ISOLTRAP at ISOLDE, and
at the Radioactive Isotope Beam Factory (RIBF) at RIKEN have suggested N = 32 in 52Ca and N = 34 in
54Ca as new magic numbers [ 2 ,  20 ,  387 – 389 ]. On the other hand, measured charge radius differences from
COLLAPS at ISOLDE found a puzzlingly large increase in the charge radius of 52Ca relative to 48Ca [ 307 ],
a trend also observed in potassium, manganese, iron, and nickel isotopes at BECOLA at the National
Superconducting Cyclotron Laboratory (NSCL) and at COLLAPS and CRIS at ISOLDE [ 390 – 396 ], calling
into question N = 32 as a shell closure. Further planned measurements of charge radii of 53Ca and 54Ca at
COLLAPS hope to give further insight into these seemingly contradictory trends [ 397 ]. Additionally, the
neutron drip line in calcium isotopes is not yet determined. 60Ca has been observed at RIBF [  398 ], but
with indications that it may not be doubly magic [ 399 ,  400 ], and measurements of the structure of 60Ca and
beyond are foreseen at the Facility for Rare Isotope Beams (FRIB) and the Facility for Antiproton and Ion
Research (FAIR) [ 401 ,  402 ]. Finally, back in the stable calcium isotopes, high-precision laser spectroscopy
measurements are searching for signals of new physics in isotope shifts [ 403 – 405 ], a topic we discuss for
stable ytterbium isotopes in Chapter  10 .

At the same time, calcium isotopes are a theoretically interesting and accessible region for a variety of
reasons. First, calcium nuclei are spherical and relatively light, simplifying the theoretical treatment and
reducing the cost of ab initio calculations. Together with the Z = 20 shell closure, the (sub)shell closures
at N = 20, 28, 32, and 34 allowed initial single-reference CC studies with particle-attached extensions to
access many isotopes (all doubly-magic nuclei and their neighbors) [ 37 ]. Subsequent developments opened
the full isotopic chain up to SCGF and multireference IMSRG calculations [  38 ,  302 ], the valence-space
IMSRG [ 3 ,  261 ], and recently Bogoliubov coupled-cluster theory [ 335 ]. Ab initio calculations generally see
the same signatures suggesting shell closures at N = 32 and N = 34 as experiment, high 2+ excitation
energies and decreases in two-neutron separation energies beyond the shell closures [ 3 ,  37 ,  39 ,  44 ,  302 ]. At
the same time, ab initio calculations currently cannot reproduce the large increase in charge radii from
48Ca to 52Ca [ 307 ], with many Hamiltonians and many-body methods giving a similar underprediction. For
the neutron dripline in calcium, several ab initio calculations suggest that it lies at 60Ca [ 335 ,  406 ,  407 ], but
the trends of predicted two-neutron separation energies are so close to zero and so flat with increasing N
that a dripline between N = 40 and 50 or even beyond 70Ca has reasonable probability [  44 ], consistent with
the findings from density functional theory [ 80 ,  408 ]. From the IMSRG perspective, the clear challenges
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to address in calcium are: the overprediction of the 2+ energies of 48Ca, 52Ca, and 54Ca relative to
experiment [  3 ], a trend also seen in CC calculations at the CCSD level and resolved by the inclusion of
three-body operators [ 39 ]; and missing trends in charge radii, including the crown between 40Ca and 48Ca
and the steep increase from 48Ca to 52Ca [ 307 ]. Addressing these challenges requires the IMSRG(3) to
quantify the effects of missing three-body operators in the IMSRG(2).

In this chapter, we perform preliminary investigations of the structure of calcium isotopes with the
IMSRG(3). We focus our discussion on 48Ca, comparing the IMSRG(3)-N7 to the VS-IMSRG(3)-N7 for
ground-state properties and considering also spectra in the VS-IMSRG, where the VS-IMSRG(2) overpredicts
the first 2+ excitation energy. We then turn our attention to trends for the IMSRG(3) corrections to
charge radii in neutron-rich calcium isotopes, seeking to understand the discrepancies between theory and
experiment. We find in all of these cases that we are unable to fully converge the IMSRG(3) contributions
with respect to our model-space truncations, so we discuss perspectives for reaching convergence, including
more efficient model-space truncations and new computational approaches.

9.1 Improved structure of calcium-48

In this section, we solve for the ground-state properties and low-lying spectrum of 48Ca using the IMSRG
and VS-IMSRG. For all calculations, we use the 1.8/2.0 (EM) Hamiltonian [ 171 ]. We construct a NAT
basis (see Sec.  6.1 ) using an e

HF/NAT
max = 16, E3max = 22 model space with a frequency of ℏω = 16 MeV.

Following the basis construction, we truncate our model space to emax = 12 for the (VS-)IMSRG solution.
At the IMSRG(2) level, we varied this truncation to emax = 10 and found only a 200 keV change in the
ground-state energy, suggesting this model space is well converged. For our (VS-)IMSRG(3)-N7 calculations,
we truncate our three-body operators using the model-space parameters emax,3b and E3max as described in
Sec.  7.5 and investigate convergence with respect to these parameters. All VS-IMSRG calculations decouple
a neutron pf -shell valence-space Hamiltonian with the imsrg++ code [ 365 ] for a subsequent diagonalization
with kshell [ 370 ]. Our VS-IMSRG(3)-N7 calculations use the strategy described in Sec.  7.5 , employing a
normal-ordered two-body approximation for the initial Hamiltonian and for the final decoupled operators.

9.1.1 Single-reference IMSRG calculations

We begin by performing single-reference IMSRG calculations of the ground state of 48Ca. Accessing excited
state properties requires either an equation-of-motion extension on top of the ground-state result [ 39 ,  264 ]
or using the valence-space IMSRG, as we consider in the next section.

In Fig.  9.1 , we consider the ground-state energy and charge radius of 48Ca in the left and right panels,
respectively. We show IMSRG(3)-N7 results as a function of emax,3b and E3max and compare against the
experimental value for the ground-state energy and results from coupled-cluster theory employing the same
Hamiltonian [  40 ,  371 ,  409 ,  410 ]. Let us first consider the ground-state energy on the left. We see that the
IMSRG(2) result lies very close to the experimental value, a feature of the 1.8/2.0 (EM) Hamiltonian and a
result of the high precision of the IMSRG(2) for ground-state energies relative to, for example, CCSD. The
Λ-CCSD(T) and CCSDT-1 predictions are also very close, overbinding 48Ca by only 3 MeV and 4.5 MeV,
respectively.

The IMSRG(3)-N7 predictions show very systematic convergence behavior with increasing three-body
model-space size. We are able to reach the limit E3max = 3emax,3b for both emax,3b = 4 and 5 and are
nearly able to do so for emax,3b = 6. We find that the IMSRG(3) corrections to the ground-state energy
are small and attractive, consistent in sign and magnitude with the difference between the IMSRG(2)
and Λ-CCSD(T) predictions. The convergence is, however, notably slower than in 16O in Fig.  7.8 . For
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Figure 9.1: Ground-state properties of 48Ca from IMSRG(3) calculations. Ground-state energies E
and charge radii Rch from IMSRG(2) and IMSRG(3)-N7 calculations of 48Ca. We show IMSRG(3)-N7 predictions
as a function of emax,3b and E3max. All IMSRG calculations use the 1.8/2.0 (EM) Hamiltonian and a NAT basis
constructed in an e

HF/NAT
max = 16, E3max = 22, ℏω = 16 MeV model space before being truncated to emax = 12 for

the IMSRG calculation. For comparison, we show the experimental ground-state energy of 48Ca from Ref. [ 379 ],
the CCSD and CCSDT-1 ground-state energies from F. Bonaiti [  409 ], the Λ-CCSD(T) ground-state energy from
Ref. [ 371 ], the CCSD charge radius from Ref. [  40 ], and the CCSDT-1 charge radius from Refs. [  409 ,  410 ].

16O, going from emax,3b = 5 to emax,3b = 6 changed the ground-state energy by about 150 keV, while for
48Ca it changes by 640 keV. This is an unsurprising sign that heavier nuclei require larger three-body
model-space truncations to converge the effects of three-body operators. Even at emax,3b = 6, E3max = 16,
our model-space uncertainty is still roughly 600 keV, while our IMSRG(3) correction is in total less than
2 MeV. With this in mind, our results are not acceptably converged, but the trend is consistent with
coupled-cluster with triples, and the fully converged result will likely lie quite close to the Λ-CCSD(T)
value.

We note that Λ-CCSD(T) is a perturbative triples scheme, meaning that the effects of three-body
operators are computed once perturbatively rather than solved for fully nonperturbatively in the coupled-
cluster equations. The IMSRG(3)-N7 treats three-body effects nonperturbatively, keeping three-body
operators fully in the IMSRG equations, making it a more complete many-body approach than Λ-CCSD(T),
more closely related to CCSDT-1. Thus, when fully converged IMSRG(3)-N7 results are available, we
would interpret them as more precise than the Λ-CCSD(T) results and directly comparable to the CCSDT-1
results. All in all, we see nice consistency between the IMSRG(3)-N7, Λ-CCSD(T), and CCSDT-1 results,
suggesting the remaining uncertainty on the ground-state energy is very small, likely around 1 MeV. We also
note that the correlation energy for our IMSRG calculations is roughly 110 MeV. Comparing the 2–3 MeV
IMSRG(3)-N7 ground-state energy corrections to the correlation energy, we see that the IMSRG(2) has a
many-body uncertainty of around 2% of Ecorr on ground-state energies.

In the right panel of Fig.  9.1 , we consider IMSRG(2) and IMSRG(3)-N7 predictions for the charge
radius. We note that the 1.8/2.0 (EM) Hamiltonian generally gives smaller charge radii than experiment
despite predicting binding energies quite well, which can be traced back to a saturation density in nuclear
matter that is too high [ 3 ,  166 ,  171 ]. For this reason, we only compare against results from CCSD and
CCSDT-1 from Refs. [ 40 ,  409 ,  410 ]. The IMSRG(2) and CCSD results are very consistent, agreeing to
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Figure 9.2: Comparison of IMSRG(3) and VS-IMSRG(3) ground-state energies of 48Ca. Ground-
state energies E from IMSRG(2) and IMSRG(3)-N7 calculations of 48Ca (left) compared with predictions from
VS-IMSRG(2) and VS-IMSRG(3)-N7 calculations of 48Ca (center). On the right we explicitly show the differences of
IMSRG and VS-IMSRG ground-state energy predictions ∆E for the same many-body and model-space truncations [for
example, the dash-dotted gray line is the difference of the VS-IMSRG(2) value from the IMSRG(2) value]. We show
(VS-)IMSRG(3)-N7 predictions as a function of emax,3b and E3max. All IMSRG calculations use the 1.8/2.0 (EM)
Hamiltonian and a NAT basis constructed in an e

HF/NAT
max = 16, E3max = 22, ℏω = 16 MeV model space before being

truncated to emax = 12 for the IMSRG calculation. For comparison, we show the experimental ground-state energy of
48Ca from Ref. [ 379 ] and the Λ-CCSD(T) ground-state energy from Ref. [  371 ].

within 0.002 fm. Comparing this with the NAT reference-state expectation value for the charge radius,
3.277 fm, we find that both IMSRG(2) and CCSD give only small, but very consistent corrections.

Considering the IMSRG(3)-N7 predictions, we find again that charge radii converge more slowly in our
model-space parameters than ground-state energies. Due to computational constraints, we were unable to
reach emax,3b = 6, E3max = 16 as for energies, but estimating based on the current convergence pattern,
we observe that each step in emax,3b gives a correction on the order of 0.005 fm. The corrections are
towards slightly larger radii, but overall these are relatively small corrections. This tracks well with the
intuition that charge radii in most systems are quantitatively captured quite well at the mean-field level
and many-body methods only include very small corrections on top of this. Still, the order of magnitude of
the full IMSRG(3)-N7 corrections, which could plausibly be anywhere from 0.02 fm to 0.04 fm, is the same
size as the IMSRG(2) corrections to the mean-field prediction. These trends are also consistent with the 1%
uncertainty on the charge radius at the CCSD level as assessed by Hagen et al. [ 40 ] and with the CCSDT-1
results from Ref. [ 410 ].

9.1.2 Valence-space IMSRG calculations

We now consider valence-space IMSRG calculations of 48Ca, which are also able to access excited states.
We note that (as discussed in Sections  4.3 and  4.4 ) the decoupling conditions and resulting unitary
transformations for the IMSRG and VS-IMSRG are different, but without truncations equivalent. Thus
the differences between IMSRG and VS-IMSRG predictions are reflective of the many-body truncation
employed. We would expect the IMSRG(3) to reduce differences between single-reference and valence-space
results at the IMSRG(2) level due to reduced many-body uncertainties.
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Figure 9.3: Improved 2+ energy of 48Ca from VS-IMSRG(3) calculations. Excitation energies for the
first 2+ state of 48Ca, E(2+

1 ), from VS-IMSRG(2) and VS-IMSRG(3)-N7 calculations. We show VS-IMSRG(3)-N7

predictions as a function of emax,3b and E3max. All IMSRG calculations use the 1.8/2.0 (EM) Hamiltonian and a NAT
basis constructed in an e

HF/NAT
max = 16, E3max = 22, ℏω = 16 MeV model space before being truncated to emax = 12

for the IMSRG calculation. For comparison, we show the experimental value from Ref. [  303 ] and the EOM-CCSD
and EOM-CCSD(T) predictions from Ref. [  39 ].

In Fig.  9.2 , we compare IMSRG and VS-IMSRG predictions for the ground-state energy of 48Ca employing
the same model-space truncations and Hamiltonian. We see that the convergence of the IMSRG(3)-N7

predictions in the left panel (the same as in Fig.  9.1 ) and the convergence of the VS-IMSRG(3)-N7

predictions in the center panel look very similar, simply with an apparent overall offset. This overall offset
is the difference between the IMSRG(2) and the VS-IMSRG(2) due to the many-body truncation discussed
previously. To gain some insight into this difference and how it changes due to the IMSRG(3)-N7, we
consider the difference explicitly in the panel on the right.

At the IMSRG(2) level, the IMSRG(2) prediction lies 1.3 MeV above the VS-IMSRG(2) prediction.
Going to the (VS-)IMSRG(3)-N7, we see that including three-body operators systematically decreases this
difference with increasing three-body model-space truncations. For the largest truncations we consider,
with emax,3b = 6, E3max = 16, we find that this difference is decreased to nearly 750 keV. This excellently
demonstrates the reduced many-body uncertainty and systematic improvement that the IMSRG(3) offers,
in this case improving the consistency between the IMSRG and VS-IMSRG for systems that can be treated
in both approaches.

We now turn our attention to the excitation energy of the first 2+ state of 48Ca. As discussed in Sec.  4.6 ,
this is a case where the VS-IMSRG(2) systematically overpredicts the 2+ energy, which is an indicator
of the doubly-magic nature of 48Ca. This can be seen in Fig.  9.3 , comparing the gray dash-dotted line
indicating the VS-IMSRG(2) prediction with the solid black line indicating the experimental value. In
coupled-cluster theory, predictions using the same 1.8/2.0 (EM) Hamiltonian without triples, the dotted
EOM-CCSD line, saw the same overprediction of the 2+ energy, giving results quite compatible with the
VS-IMSRG(2) prediction [ 39 ]. Including triples, the dashed EOM-CCSD(T) line, brings the 2+ energy



114 CHAPTER 9. IMSRG(3) INVESTIGATIONS OF CALCIUM ISOTOPES

down into excellent agreement with experiment, consistent with the excellent agreement for spectra for
other calcium isotopes for the 1.8/2.0 (EM) Hamiltonian.

We see that including three-body operators in the IMSRG solution via the VS-IMSRG(3)-N7 does the
same, systematically bringing down the 2+ energy towards the EOM-CCSD(T) and experimental values.
For the largest model-space truncation we consider, emax,3b = 6, E3max = 16, the 2+ energy is down to
4.15 MeV, a nearly 15% reduction. This establishes excitation energies at shell closures as an observable
where the IMSRG(3) is necessary for a quantitative description. This is to be contrasted with ground-state
energies and charge radii, where the IMSRG(3) is nice to have for precision and many-body uncertainty
quantification but the description at the IMSRG(2) level is already very good.

At the same time, we see that the convergence challenges for ground-state properties are also present
for the 2+ energy. The convergence behavior is systematic, and we are essentially fully converged in E3max
for the truncations shown, but we clearly need to extend our calculations to higher emax,3b to get a handle
on the three-body model-space uncertainty. In the next section, we consider preliminary calculations
exploring correlated model-space uncertainties in neighboring calcium isotopes as a way to gain insight
into IMSRG(3) corrections without being able to give converged results. Then, in the following section,
we discuss perspectives and numerical strategies to surmount the current computational limititations
on IMSRG(3) calculations. Nonetheless, the improvements in the description of the structure of 48Ca
offered by the VS-IMSRG(3)-N7 represent a significant step forward for the IMSRG and motivate further
developments and applications of the method.

9.2 Trends of IMSRG(3) corrections to charge radii
In this section, motivated by the slow convergence of observables in VS-IMSRG(3)-N7 calculations with
respect to emax,3b and E3max, we consider correlated model-space uncertainties for VS-IMSRG(3)-N7 calcu-
lations of the charge radii of 44Ca, 48Ca, 50Ca, 52Ca, and 54Ca. We use the 1.8/2.0 (EM) Hamiltonian [  171 ]
and construct an HF+NAT basis (see Sec.  6.1.2.2 ) using an e

HF/NAT
max = 16, E3max = 24 model space with a

frequency of ℏω = 16 MeV. Following the basis construction, we truncate our model space to emax = 10 for
the VS-IMSRG solution. The emax = 10 truncation gives predictions for charge radii at the VS-IMSRG(2)
level that are converged to within 0.003 fm for 54Ca and less for the remaining isotopes.

We are interested in the corrections to the charge radius due to the IMSRG(3),

∆Rch,IMSRG(3)(emax,3b, E3max) = Rch,IMSRG(3)(emax,3b, E3max) − Rch,IMSRG(2) , (9.1)

and show these for different isotope pairs in Fig.  9.4 . The different symbol colors indicate different values
of E3max, and the different symbols indicate different values of emax,3b. One immediately sees that the
IMSRG(3) corrections are highly correlated between different calcium isotopes, even between 44Ca and
52Ca. This is interesting because these systems are already rather far apart, separated by eight neutrons
and a shell closure, and quite different in terms of structure. 44Ca is definitely not a doubly-magic nucleus
while 52Ca has many features that suggest it is doubly magic.

Such tight correlations as we observe here are very powerful, because they can be determined in small
“cheap” model-space sizes and then used to transfer high-fidelity calculations from one isotope into robust
predictions for neighboring isotopes based on the correlation. Even without converged calculations for any
isotopes, we can use these correlations to give some preliminary insight into what happens to the charge radii
of 48Ca and 52Ca due to the IMSRG(3). We note first that all corrections due to the VS-IMSRG(3)-N7 are
towards larger charge radii. Second, we consider how the points lie relative to the black lines, which indicate
the case that the IMSRG(3) corrections in both systems are identical. We see that for 52Ca vs. 48Ca,



9.2. TRENDS OF IMSRG(3) CORRECTIONS TO CHARGE RADII 115

0.000

0.005

48
C

a

0.000

0.005

50
C

a

0.000

0.005

52
C

a

E3max = 4
E3max = 6
E3max = 8
E3max = 10
E3max = 12

0.000 0.005
44Ca

0.000

0.005

54
C

a

0.000 0.005
48Ca

0.000 0.005
50Ca

0.000 0.005
52Ca

∆Rch,IMSRG(3) (fm) for ACa

1.8/2.0 (EM), HF+NAT

e
HF/NAT
max = 16, E3max = 24
emax = 10, h̄ω = 16 MeV

y = x

emax,3b = 4
emax,3b = 5
emax,3b = 6
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the points all lie below the black line, indicating that the IMSRG(3) corrections are larger for 48Ca than
for 52Ca. Looking at 48Ca vs. 44Ca in the top left, we see that the IMSRG(3) corrections for 48Ca are
larger than those for 44Ca. Following the correlation to the converged model-space limit, the charge radius
corrections for 48Ca will be larger than those for 44Ca or 52Ca. This means that the IMSRG(3) corrections
will not produce a crown between 40Ca and 48Ca and will not produce a steeper charge radius increase
from 48Ca to 52Ca. We have also observed the same trends in less comprehensive correlation studies using
the ∆N2LOGO Hamiltonian.

While the correlations here are very strong, we emphasize that the results are still preliminary, and it is
important to establish such correlation behavior with fully converged results before using the correlations
to extrapolate. Given the computational limitations of the current approach, this was not possible for this
thesis, but will be a priority for upcoming studies where we will have converged results for calcium isotopes.
In cases where convergence remains challenging, it would also be nice to have ways to perform controlled
model-space extrapolations, either using physically motivated parametrizations as in Refs. [ 46 ,  323 – 325 ] or
using machine learning techniques as in Refs. [ 411 – 414 ].

9.3 Perspectives for converged IMSRG(3) calculations

In the previous sections, we have seen that the three-body model-space truncations we employ, emax,3b
and E3max, are insufficient to converge the effects of three-body operators in IMSRG(3) calculations. In
this section, we discuss perspectives for employing more efficient truncations and for new computational
strategies, both with the goal of achieving convergence in IMSRG(3) calculations.

While the behavior of the emax,3b and E3max truncations is quite systematic, the convergence with respect
to these truncations is quite slow when compared to the convergence of triples observed in Ref. [ 251 ] using
a different, natural-orbitals-based truncation (also discussed in Sec.  6.1.2.3 ). Using the NAT occupation
numbers nNAT

p , the truncated three-hole basis is constructed as

{|ijk⟩ , n̄NAT
i n̄NAT

j n̄NAT
k ≥ εNAT} , (9.2)

and the three-particle basis is constructed as

{⟨abc| , nNAT
a nNAT

b nNAT
c ≥ εNAT} , (9.3)

with n̄NAT
i = 1 − nNAT

i and a threshold εNAT. This truncation emphasizes the inclusion of hole states near
the Fermi surface, with nNAT

i considerably less than 1, and particle states near the Fermi surface, with
nNAT

a considerably greater than 0, in the three-body basis construction, capturing low-energy correlations
around the Fermi surface.

To adapt this strategy to the IMSRG(3), we need to consider a more general basis construction as our
three-body operators have more particle-hole blocks than the coupled-cluster triples amplitudes, which only
have the ppphhh block. For this purpose, we introduce a general NAT occupation number metric

ñNAT
p =

{
n̄NAT

p if p is a hole state,
nNAT

p if p is a particle state.
(9.4)

Using this, we can easily construct a truncated three-body basis as

{|pqr⟩ , ñNAT
p ñNAT

q ñNAT
r ≥ εNAT} (9.5)
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without distinguishing between holes and particles. This truncation is exactly identical to Eqs. ( 9.2 )
and ( 9.3 ) in the hhh and ppp blocks, respectively, but also handles parts of the basis with mixed holes and
particles. Equation ( 9.4 ) is also easily generalized to a core, valence, and outside partitioning,

ñNAT
p =


n̄NAT

p if p is a core state,
max(n̄NAT

p , nNAT
p ) if p is a valence state,

nNAT
p if p is an outside state.

(9.6)

It remains to be seen how this truncation plays out in realistic calculations, but we see a substantial
reduction in the number of three-body matrix elements to be stored in our current implementation. As one
example, emax,3b = 6, E3max = 18 three-body operators cost 1,422 GB to store in memory. 

1
 For 54Ca, using

an emax = 6 NAT basis and the valence-space NAT truncation metric in Eq. ( 9.6 ), choosing a threshold of
εNAT = 10−6 cuts this down to 233 GB, and choosing a threshold of εNAT = 10−5 cuts it down even further
to 21 GB. Such values of εNAT with the “average” ñNAT

p in a three-body state around 0.01 are what we
anticipate to be necessary to converge our three-body contributions. A key advantage is that this truncation
allows us to completely avoid the emax,3b and E3max truncations, as it efficiently selects low-lying states
in the spectrum, and the same εNAT = 10−6 truncation for 54Ca in an emax = 12 basis gives three-body
operators that only cost 296 GB to store, down from 6,603,810 GB for untruncated emax = 12 three-body
operators.

For future developments of the IMSRG(3), such a truncation will be crucial to make efficient convergence
of three-body contributions possible. Adapting our storage of three-body operators to work with this
truncation has made it more flexible, and we plan to explore other metrics like the entanglement entropy,

sp = nNAT
p log(nNAT

p ) + (1 − nNAT
p ) log(1 − nNAT

p ) , (9.7)

to investigate the benefits of intuition from quantum information science in nuclear many-body calcula-
tions [  355 ,  357 – 359 ].

Another essential development for the IMSRG(3) is the scalable implementation for large-scale super-
computers. The computational needs of the IMSRG(3), simply based on the cost of storing and computing
so many three-body matrix elements, are completely different from the IMSRG(2). As a point of reference,
the IMSRG(2) can be solved in most cases using less than 192 GB and running for under 24 hours on
a single node of a modern supercomputer. The relatively low cost of storing two-body matrix elements,
O(1–10 GB), and the ability to efficiently implement most expressions in the IMSRG(2) equations via
matrix multiplications make such calculations too costly for a personal computer, but very routine on
a supercomputer. Even simply the memory requirements of the IMSRG(3) discussed above require a
completely different treatment, as the storage on a single supercomputer node is in general not possible.
When one considers the computational cost, in an emax = 12 model space the most expensive term in
the IMSRG(2), the [2, 2] → 2 commutator, costs about 5 seconds per evaluation. The most expensive
term in the IMSRG(3)-N7, the [2, 2] → 3 commutator, costs 1,650 seconds per evaluation in an emax = 12,
emax,3b = 6, E3max = 16 model space (evaluated on a single node). This makes it clear that the IMSRG(3)
is numerically a problem of completely different scale and requires an appropriately tailored treatment.

The truncations discussed above are one step to making the IMSRG(3) more tractable, but fundamentally
any IMSRG(3) implementation will require a distributed numerical solution. Such a distributed solver runs
on many supercomputing nodes simultaneously, splitting large memory objects up into small chuncks that

1For this discussion, we do not exploit antisymmetry, meaning we store all pqr rather than p ≥ q ≥ r as is often done to
reduce memory costs at the price of increased computational costs.
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can be stored and processed on each node independently. In the case of the IMSRG(3), the three-body
operators are what must be distributed. The remaining two- and one-body parts may also be distributed or
may be stored redundantly on each supercomputer node. The benefit of such an approach is the ability to
manage large memory objects via distribution and at the same time apply substantially more computational
resources to the problem by using all CPU cores on all nodes rather than being limited only to the cores
available on a single node. The challenges lie in identifying an effective distribution scheme and managing
communication between nodes for parts of the calculation that need to be synchronized.

We have adopted an approach where we distribute three-body matrix elements across nodes while
treating two- and one-body matrix elements redundantly. For the distribution scheme, we follow the general
strategy outlined in Ref. [ 415 ]. We break our three-body matrix elements Opqrstu into symmetry blocks

O
ξpq ,ξst,ξ3
pqr,stu = Opqrstu , (9.8)

where ξpq (ξrs) is the two-body symmetry block for indices pq (rs) and ξ3 is the three-body symmetry block. 

2
 

We distribute different ξ3, ξpq pairs to different nodes such that if a node has the blocks ξ3, ξpq it then
has all assoicated ξst blocks and all matrix elements Opqr,stu belonging to those blocks. This distribution
scheme has the advantage that at the IMSRG(3)-N7 truncation no communication of three-body matrix
elements is required. This means each node can solve for its three-body part completely independently,
allowing our implementation to scale very efficiently to many nodes.

This implementation is still not complete, but the most expensive terms of the IMSRG(3)-N7, the
[2, 2] → 3 and [2, 3] → 2 commutators, have been implemented, validated, and optimized in this scheme.
The [2, 2] → 3 commutator remains by far the most expensive term, but our results look very promising. In
a NAT three-body model space with truncations emax = 12 and εNAT = 10−6, as discussed above, running
on 20 supercomputer nodes allows us to evaluate the [2, 2] → 3 commutator in 170 seconds. Typical
IMSRG solutions require around 500 commutator evaluations, so this puts the total cost of the [2, 2] → 3
commutator at 23.6 hours. Further optimization and scaling out will bring this down even further, so that
IMSRG(3)-N7 calculations can be run routinely with relatively short runtimes.

Overview and perspectives
In the preliminary investigations of calcium isotopes in this chapter, we established the benefits of the
IMSRG(3)-N7 in describing the structure of 48Ca while finding slow convergence in our chosen model-space
truncations. The IMSRG(3)-N7 gives only small corrections to ground-state properties, and we find nice
consistency with complementary results from coupled-cluster theory within model-space and many-body
uncertainties. For the first 2+ excitation energy of 48Ca, we find that the IMSRG(3)-N7 gives the expected
improvement, bringing the 2+ energy down into better agreement with experiment and coupled-cluster
calculations including triples. The corrections here are large, over 15% on the total observable, and we
establish this as a clear case where the IMSRG(3) offers significant corrections that are important for a
quantitative description of the structure of 48Ca. At the same time, we find slow convergence of IMSRG(3)
corrections in our model-space parameters. We investigated correlations of IMSRG(3) corrections in charge
radius predictions of calcium isotopes and found signs that the charge radius of 48Ca increases more than
those of 44Ca and 52Ca.

Still, fully converged IMSRG(3) calculations of calcium isotopes are a high priority to address the various
challenges ab initio theory faces. Work on both improved three-body model-space truncations based on

2For the purpose of clarity, we discuss this without angular momentum coupling, but in our implementation we do this
using angular-momentum-coupled matrix elements.
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Figure 9.5: Overview of IMSRG(3) methods. A schematic overview of the computational costs, model-space
truncations, and expected typical errors for ground-state energies ∆E and charge radii ∆Rch of the IMSRG(2),
IMSRG(3)-N7, and IMSRG(3) approximations. For the IMSRG(3), calculations in realistic model spaces are
intractable. ∆E estimates are based on calculations in Chapters  7 and  9 , where in many cases exact results are
available to benchmark. For ∆Rch, we currently have not performed such benchmarks against exact results, so
estimates are based on comparison with CC calculations (including CCSDT-1 results in Ref. [  410 ]) and based on
the many-body convergence going from IMSRG(2) to IMSRG(3)-N7. We highlight promising developments by He
and Stroberg [ 416 ,  417 ] to approximate the IMSRG(3)-N7 at O(N6) cost and the outlook to improve our three-body
model-space truncations by using the natural orbitals truncation of Ref. [  251 ].

natural orbitals and a scalable numerical implementation designed to meet the computational needs of the
IMSRG(3) are important steps in this direction. Once converged IMSRG(3) results are available, systematic
studies based on multiple Hamiltonians and the IMSRG(2) and IMSRG(3)-N7 approximations will give
insight into the discrepancies with experiment by allowing us to quantify the many-body uncertainty via
the IMSRG(3). Such studies will also benefit from a robust understanding of correlated uncertainties as we
explored in Sec.  9.2 .

Figure  9.5 shows an overview of IMSRG(3) method developments of this thesis. The IMSRG(3)-N7

introduced in Chapter  7 is a tractable approximation to the IMSRG(3) that captures many of the
improvements in precision that the IMSRG(3) has to offer. Notably, our calculations in Chapter  7 

and this chapter establish the remaining IMSRG(3)-N7 uncertainty on the ground-state energy of spherical
medium-mass nuclei at less than 1% of Ecorr, very comparable to the error of the full IMSRG(3) to exact
results observed in Chapter  7 . This further establishes the IMSRG(3)-N7 as a promising way to achieve
increased precision in IMSRG calculations, one that is expensive, but still tractable unlike the full IMSRG(3).

The behavior of charge radii in IMSRG(3)-N7 calculations in this thesis has a less clear interpretation.
On one hand, the IMSRG(3)-N7 corrections seem to be significant when compared to IMSRG(2) corrections
to Hartree-Fock charge radius predictions. On the other hand, both the IMSRG(2) and IMSRG(3)-N7

corrections beyond Hartree-Fock are very small in terms of the total charge radius, at the level of 1% in
48Ca, suggesting they are not terribly important for quantitative predictions for charge radii. For this reason,
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the absolute precision of the IMSRG(3)-N7 for charge radii is not completely clear. As IMSRG(3)-N7

calculations become more routine, it will be important to establish the precision of IMSRG(3)-N7, both
with thorough comparisons against other high-precision many-body truncations like CCSDT-1 and with
benchmarks against exact results in light systems.

A promising alternative to IMSRG(3) with explicit three-body operators has been recently introduced by
He and Stroberg [ 416 ,  417 ]. This approach works within the Magnus expansion, where induced three-body
operators in the recursive nested commutators evaluated in Eq. ( 4.44 ) are treated exactly by considering
the explicit evaluation of two nested commutators. In a simple sense, this amounts to evaluating

[Ω, [Ω, H]] (9.9)

with Ω and H both kept at the normal-ordered two-body level but keeping the induced three-body term
from [Ω, H] rather than discarding it as is typically done in the normal-ordered two-body approximation.
Doing this naively would be as expensive as the IMSRG(3)-N7, as one would store the result of [Ω, H](3B)

in a three-body operator, leading to the same computational limitations as we face in the IMSRG(3)-N7.
However, a key assumption of the approach of Refs. [ 416 ,  417 ] is that the dominant effect of [Ω, H](3B) is
its contributions in

[Ω, [Ω, H](3B)](1B), (9.10)
[Ω, [Ω, H](3B)](2B), (9.11)

where [Ω, H](3B) is only an intermediate and does not need to be stored throughout the IMSRG solution.
In this case, Eqs. ( 9.10 ) and ( 9.11 ) are expanded and evaluated at once. The resulting expressions look
closer to those of coupled-cluster theory than the IMSRG, and in fact standard factorization strategies
from CC [ 92 ,  229 ,  277 ] can be used to evaluate these expressions with costs that scale as O(N6), exactly
the same as the IMSRG(2). How this approach, named the IMSRG(3f2), compares to the IMSRG(3)-N7

in cases where the IMSRG(2) is clearly deficient remains to be understood, but it is a clear innovative
improvement over the IMSRG(2) that avoids the leading challenges of any IMSRG(3) approximation with
full inclusion of three-body operators.



Chapter 10

New physics searches
in ytterbium isotope shifts

Although broadly successful, the standard model (SM) of particle physics has reached its limits and is
unable to explain observed phenomena like neutrino masses, matter-antimatter asymmetry, and dark matter.
Developing a fundamental understanding of these beyond-standard-model (BSM) phenomena requires us to
observe new physics processes. Such studies proceed in two steps: theoretical extensions to the SM, either
including explicit new physics or via general EFT parametrizations of BSM physics, are proposed together
with potentially observable signals of the BSM theory; and then experimental campaigns are performed
to search for these signals using high-energy colliders, astrophysical and cosmological observations, or
complementarily high-precision measurements in stable systems (searching for weak signals of rare BSM
processes) [ 34 ]. Such high-precision tests of the standard model are frequently performed in nuclei, and for
these studies an understanding of nuclear structure is essential to isolate the effects of possible new physics.

Recent work [ 418 ] has proposed the existence of a new intermediate-mass boson coupling the standard
model to an unknown dark sector producing also measureable interactions between electrons and neutrons in
atoms. Such interactions would lead to measureable shifts in atomic energy levels in isotopes with increasing
neutron number N . These so-called isotope shifts are also sensitive to changes in nuclear structure and are
as a result commonly used to extract changes in nuclear charge radii [ 419 ] via a linear King-plot analysis
(as we discuss later). At sufficiently high experimental precision, nonlinear behavior can also be observed,
which may be due to higher-order nuclear structure effects or possibly the proposed new boson.

In this chapter, we discuss a collaborative effort to perform high-precision measurements of atomic
and nuclear structure in ytterbium isotopes and explain the observed signals based on atomic and nuclear
structure calculations [ 52 ]. This work builds on previous studies [ 420 – 422 ] that observed nonlinear behavior
in the King-plot analysis in ytterbium isotopes (168Yb, 170Yb, 172Yb, 174Yb, 176Yb), but were limited by
experimental precision and uncertainties in the understanding of the nuclear structure of the relevant Yb
isotopes. Leveraging the improvements in recent years in the treatment of three-body forces in ab initio
nuclear structure calculations [ 46 ,  49 ], the diagonalization of large valence-space Hamiltonians beyond
the limits of Lanczos-based approaches [ 423 ], and the ability to assess many-body uncertainties via the
IMSRG(3) [ 45 ], we are able to provide uncertainty-quantified nuclear structure input to interpret the
observed signals. Based on this understanding, we are able to adapt the King-plot approach to extract also
higher-order nuclear structure information from such high-precision measurements.

The work in this chapter is submitted for review in Ref. [ 52 ] in collaboration with the Pentatrap
experiment at the Max Planck Institute for Nuclear Physics, the group of Tanja Mehlstäubler at the
Physikalisch Technische Bundesanstalt Braunschweig, the group of Elina Fuchs at the Leibniz Universität
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Hannover, and Julian C. Berengut at the University of New South Wales. My contributions to Ref. [ 52 ] were
in the aspects of the study discussed in this chapter. I derived and implemented the ⟨r4⟩ operator together
with Takayuki Miyagi, performing independent derivations and providing independent implementations to
validate our results. I performed VS-IMSRG(2) and VS-IMSRG(3)-N7 calculations of the relevant ytterbium
isotopes together with Takayuki Miyagi and Noritaka Shimizu. I assessed the theoretical uncertainties of our
results, constructing the correlated statistical model presented in this chapter. Furthermore, I contributed
heavily to the King-plot analysis of the data, working closely with Fiona Kirk on both the nonlinearity
decomposition and the extraction of δ⟨r4⟩ information from the nonlinearity. My handling of correlated
uncertainties in the analysis allowed for robust propagation of data uncertainties to the final results.

10.1 Isotope shifts

In the standard model, for an infinitely heavy point-like nucleus the atomic structure for different isotopes
of the same element is identical. This is simply because you always have the same number of electrons in
the same external electric field produced by the infinitely heavy nucleus. 

1
 However, nuclei are both finitely

heavy, with masses that are different in different isotopes A and A′, and have finite charge distributions
that are also different in different isotopes leading to modified potentials within the charge distribution.
This leads to small, but measureable shifts in electronic spectrum of the atom, which can be probed via
laser spectroscopy performed on a specific atomic transition τ .

Performing such measurements for two isotopes of the same element with masses A and A′, one observes
an isotope shift of the transition frequency νA,A′

τ = νA
τ − νA′

τ . In a first approximation, the isotope shift can
be decomposed as

νA,A′
τ ≈ νA,A′

τ,MS + νA,A′
τ,FS , (10.1)

with a mass shift (MS) due to the changing reduced mass of the electron-nucleus system and a field shift
(FS) due to the changing charge radius squared of the nucleus [ 419 ,  424 ]. The mass shift is dominant in
light elements, where the nuclear mass changes by significant amounts in neighboring isotopes, while the
field shift is dominant in heavy elements, where charge radii are considerably larger and the mass shift is
suppressed.

Because the electronic structure of the atom does not affect the nuclear structure, the individual isotope
shift contributions factorize into a change in nuclear structure between isotopes and a resulting change in
atomic structure for a given transition τ . 

2
 For Eq. ( 10.1 ), this gives

νA,A′
τ ≈ Kτ wA,A′ + Fτ δ⟨r2⟩A,A′

. (10.2)

The nuclear structure contributions are the difference in inverse nuclear mass ratios wA,A′ = mAref/mA −
mAref/mA′ with respect to a reference isotope Aref (in this work we choose the reference isotope 172Yb for the
mass ratios) and the difference in the squared charge radius δ⟨r2⟩A,A′ = ⟨r2⟩A − ⟨r2⟩A′ . Kτ and Fτ are the
transition-dependent coefficients for the linear response of the electronic structure to the nuclear structure
changes, the mass and field shift coefficients, respectively. These atomic coefficients may be computed from
electronic structure calculations or fit to data using isotope-shift measurements from multiple transitions in
a sufficient number of isotopes.

1The first SM correction in this picture comes through the exchange of a Higgs boson, which is extremely suppressed in
atomic structure because of the heavy mass of the Higgs boson [ 418 ].

2Because this change is small and thus perturbative, it can be to a very good approximation linearized [ 424 ]. This linear
factorization has been demonstrated at the level of 10−3 [ 425 ], but can be corrected for by explicitly accounting for nonlienar
terms [ 426 ].
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Going beyond our first approximation for the isotope shift in Eq. ( 10.2 ), one finds that there are
contributions from both higher-order nuclear structure and possibly the interaction of the proposed new
boson,

νA,A′
τ = Kτ wA,A′ + Fτ δ⟨r2⟩A,A′ + G(2)

τ (δ⟨r2⟩2)A,A′ + G(4)
τ δ⟨r4⟩A,A′ + αNP

αEM
Dτ hA,A′ + . . . . (10.3)

The terms given here are:

• the quadratic field shift with coefficient G
(2)
τ and nuclear structure contribution (δ⟨r2⟩2)A,A′ =

(δ⟨r2⟩A,Aref)2 − (δ⟨r2⟩A′,Aref)2 with respect to a reference isotope Aref (in this work we choose the
reference isotope 176Yb for the quadratic field shift);

• the quartic shift with coefficient G
(4)
τ and nuclear structure contribution δ⟨r4⟩A,A′ = ⟨r4⟩A − ⟨r4⟩A′ ;

• and a shift due to the proposed new boson based on the difference in the number of neutrons in the
two isotopes hA,A′ = A − A′.

The new boson ϕ with mass mϕ is postulated to mediate a Yukawa-like interaction between electrons
and neutrons with the potential Vne(r) = αNP exp(−mϕ)/r. The coupling strength αNP = (−1)s+1ynye/(4π)
is based on its spin s and its coupling with neutrons (yn) and electrons (ye) separately. In Eq. ( 10.3 ), we
normalize this coupling by the fine-structure constant αEM = e2/(4π) with the elementary charge e.

For this work, high-precision mass spectrometry and isotope-shift measurements of five stable, spinless
ytterbium isotopes were performed. Both the mass spectrometry and the isotope-shift spectroscopy are up
to two orders of magnitude more precise than previous measurements [ 421 ,  427 ,  428 ]. The isotope mass
ratios, which reach a relative precision of a few 10−12 corresponding to a relative precision of 10−10 for
the isotope shifts, were determined by Menno Door and collaborators using highly charged Yb ions in the
Penning-trap mass spectrometer Pentatrap [ 429 ] at the Max Planck Institute for Nuclear Physics in
Heidelberg [ 430 ]. The isotope-shift spectroscopy was performed by Chih-Han Yeh and collaborators at the
Physikalisch-Technische Bundesanstalt (PTB) Braunschweig [ 431 ] on Yb+ on the 2S1/2 → 2D5/2 electric
quadrupole transition and the highly forbidden 2S1/2 → 2F7/2 electric octupole transition with a relative
precision as low as 10−9.

Experimentally, the goal of such high-precision measurements is to resolve isotope shifts so precisely
that one would be able to detect the effect of the new boson. Theoretically, this requires one to disentangle
the standard model effects (including higher-order nuclear structure effects) from a possible new physics
contribution. We do this via a King-plot analysis to isolate the signal beyond the leading mass and field
shifts, discussed in the next section, and by providing ab initio nuclear structure input to understand this
remaining signal, discussed in the following section.

10.2 King-plot analysis
The King plot is a tool to use multiple isotope-shift measurements to reduce Eq. ( 10.2 ) to a linear form,
allowing one to determine electronic coefficients by fitting to data rather than relying on uncertain electronic
structure predictions.

Given isotope shifts for two transitions ντ and νρ, one can eliminate one of δ⟨r2⟩ and w from Eq. ( 10.2 ).
Given that nuclear masses can be determined much more precisely than charge radii, one typically eliminates
δ⟨r2⟩, giving

1
Fτ

ντ
A,A′ − Kτ

Fτ
wA,A′ = 1

Fρ
νρ

A,A′ − Kρ

Fρ
wA,A′

. (10.4)
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Figure 10.1: Nonlinear King plot of ytterbium isotope shifts. Top: King plot of the isotope shifts of the
γPTB transition νA,A′

γPTB with respect to the isotope shifts of the αPTB transition νA,A′
αPTB normalized with the inverse

mass-ratio difference wA,A′ . The insets are magnified by a factor of 104. Bottom: Residuals of the linear fit in the
King plot. For visibility of the values in the y axis, the uncertainties for both axes are multiplied by a factor of 200.
Figure adapted from Ref. [ 52 ].

This can be simplified to the linear form

ν̃A,A′
τ = Fτρν̃A,A′

ρ + Kτρ , (10.5)

with the mass-normalized isotope shift ν̃A,A′
τ = νA,A′

τ /wA,A′ and the modified electronic coefficients Fτρ =
Fτ /Fρ and Kτρ = Kτ − FτρKρ. Measurements of νA,A′ and wA,A′ for two transitions and two isotope pairs
(A, A′) are sufficient to fit the linear relation, and using more isotope pairs can both reduce fit uncertainties
and expose nonlinear behavior.

These so-called “King nonlinearities” are the focus of this work, because all higher-order effects in
isotope shifts can be detected as nonlinear behavior deviating from Eq. ( 10.5 ). 

3
 Reexpressing Eq. ( 10.3 )

using mass-normalized nuclear structure quantities, one obtains

ν̃A,A′
τ = Fτρν̃A,A′

ρ + Kτρ + G(2)
τρ (δ̃⟨r2⟩2)A,A′ + G(4)

τρ δ̃⟨r4⟩A,A′ + αNP
αEM

Dτρh̃A,A′ + . . . , (10.6)

3The exception to this is if higher-order nuclear structure or new physics effects have exactly the same behavior along the
isotopic chain as either the mass shift or the field shift.
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with

(δ̃⟨r2⟩2)A,A′ = (δ⟨r2⟩2)A,A′
/wA,A′

, (10.7)
δ̃⟨r4⟩A,A′ = δ⟨r4⟩A,A′

/wA,A′
, (10.8)

h̃A,A′ = hA,A′
/wA,A′ (10.9)

along with the modified electronic coefficients

G(2)
τρ = G(2)

τ − Fρτ G(2)
ρ , (10.10)

G(4)
τρ = G(4)

τ − Fρτ G(4)
ρ , (10.11)

Dτρ = Dτ − Fρτ Dρ . (10.12)

Observing nonlinear King-plot behavior means that at least one of these additional terms is relevant in the
isotope shift, and disentangling which one(s) could potentially point to new physics.

In this work, we focus on the even-mass, stable ytterbium isotopes 168–176Yb, using the isotope pairs
(A, A′) a = (168, 170), b = (170, 172), c = (172, 174), and d = (174, 176). We first consider the King plot of
isotope shifts ν for the two transitions measured at the PTB, the 2S1/2 → 2D5/2 electric quadrupole transition
(denoted as αPTB) and the 2S1/2 → 2F7/2 electric octupole transition (denoted as γPTB), normalized by
the mass ratios w, shown in the top panel of Fig.  10.1 . Immediately, one sees that the points for all four
isotope pairs clearly lie along a line, reflecting the dominance of the mass and field shifts in the isotope shift.
The red line shown is obtained from a weighted linear fit taking into account the relative uncertainties for
each isotope pair. Upon closer inspection in the insets in the top panel and in the residuals shown in the
bottom panel, one finds that the points for each of the isotope pairs deviate considerably from the linear
fit. We note that the precision of the measurements performed in this work is such that both frequency
and mass-ratio uncertainties are shown but not visible without considerable magnification. With this, we
confirm the King-plot nonlinearity observed in previous work [  420 – 422 ].

Having confirmed the nonlinearity, the question remains whether this is simply an effect of higher-order
nuclear structure or rather the proposed new boson. To understand this, it is convenient to work with
four-vectors collecting the measured values or nuclear structure quantities for the four isotope pairs. For
example, the isotope shifts and mass ratios considered so far are simply

ναPTB = (νa
αPTB , νb

αPTB , νc
αPTB , νd

αPTB) , (10.13)
νγPTB = (νa

γPTB , νb
γPTB , νc

γPTB , νd
γPTB) , (10.14)

w = (wa, wb, wc, wd) . (10.15)

We consider a basis of four vectors for these quantities:

ν̃δ = (νa
δ /wa, νb

δ/wb, νc
δ/wc, νd

δ /wd) , (10.16)
1 = (1, 1, 1, 1) , (10.17)

Λ+ ∝ (ν̃c
δ − ν̃b

δ , ν̃a
δ − ν̃d

δ , ν̃d
δ − ν̃a

δ , ν̃b
δ − ν̃c

δ) , (10.18)
Λ− ∝ (ν̃d

δ − ν̃b
δ , ν̃a

δ − ν̃c
δ , ν̃b

δ − ν̃d
δ , ν̃c

δ − ν̃a
δ ) . (10.19)

Here Λ+ and Λ− are normalized to 1 Hz (that is,
√

Λ+/− · Λ+/− = 1 Hz). We use isotope shifts of the
1S0 → 3P0 transition in Yb [ 432 ] (denoted δ) in Eq. ( 10.16 ) to set up the full basis with which we analyze
all other isotope-shift data. The intuition behind this basis is quite simple: 1 and ν̃δ are the basis for the
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included in the linear fit through the origin (solid line). The slope of this line is compared to the predicted slopes for
the δ⟨r2⟩2 (dotted), δ⟨r4⟩ (dashed lines and gray band), and new physics (dash-dotted) nonlinearities. Figure adapted
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linear part of the King plot as in Eq. ( 10.2 ); 

4
 Λ+ and Λ− (introduced in Ref. [ 421 ]) are constructed to be

orthogonal to 1 and ν̃δ and thus are the basis for the nonlinear part of the King plot. In summary, any
mass-normalized isotope shift can be written as

ν̃τ = Fτδν̃δ + Kτδ1̃ + λ+Λ+ + λ−Λ− , (10.20)

where the coefficients λ+ and λ− are projections of the mass-normalized isotope shift onto a “King
nonlinearity” space.

In Fig.  10.2 , we plot the coefficients (λ+, λ−) for different mass-normalized isotope shifts measured in
ytterbium (αMIT, αPTB, β, γMIT, γPTB, ϵ, summarized in Table  10.1 ), all using the basis defined above
in terms of the δ isotope-shift measurements. We find that all points lie essentially on a line passing
through the origin (shown by the solid black best fit line), but at different locations for different transitions.
The reason for this can be understood quite simply. In general, there are many nonlinearities in isotope
shifts due to higher-order nuclear structure, as seen from Eq. ( 10.3 ). However, if there is one dominant
contribution xA,A′ with electronic coefficient Xτ , the mass-normalized isotope shift can be written as

ν̃τ = Fτδν̃δ + Kτδ1̃ + Xτδx̃ + . . . , (10.21)

with Xτδ = Xτ − FτδXδ and x̃A,A′ = xA,A′
/wA,A′ . λ+ and λ− are then simply given by the decomposition

of Xτδx̃ into Λ+ and Λ−. This is not simply a projection because Λ+ and Λ− are not orthogonal, but
4Note that this is not the same King plot as shown in Fig.  10.1 , but the King plot of a given isotope shift with respect to

νA,A′
δ .
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Table 10.1: Summary of ytterbium atomic transitions. Notation and references for the transitions used in
the King-plot analysis and the nonlinearity decomposition. Table from Ref. [  52 ].

Notation Transition λ (nm) Refs.
αMIT

2S1/2 → 2D5/2 E2 in Yb+ 411 [ 420 ,  421 ]
αPTB

2S1/2 → 2D5/2 E2 in Yb+ 411 [ 52 ]
β 2S1/2 → 2D3/2 E2 in Yb+ 435 [ 420 ,  421 ]

γMIT
2S1/2 → 2F7/2 E3 in Yb+ 467 [ 420 ,  421 ]

γPTB
2S1/2 → 2F7/2 E3 in Yb+ 467 [ 52 ]

δ 1S0 → 3P0 in Yb 578 [ 432 ]
ϵ 1S0 → 1D2 in Yb 361 [ 422 ]

it is unique and ultimately λ+ and λ− are both proportional to Xτδ. This has the consequence that in
the ratio λ−/λ+ the dependence on Xτδ (and thus the transition τ) drops out, making the ratio, which
is the slope in Fig.  10.2 , a transition-independent quantity only sensitive to the nuclear structure part of
the isotope-shift nonlinearity x, assuming one can neglect all higher-order contributions [ 426 ]. This makes
the slope of the nonlinearities in different transitions in Fig.  10.2 a very useful tool to identify the nuclear
structure contribution to the leading dominant source of nonlinearity in the King plot.

For this, we perform the nonlinearity decomposition into (λ+, λ−) for different nuclear structure
contributions to isotope shifts in ytterbium. We consider only the slope λ−/λ+ and compare a line with the
given slope through the origin with the fit to experimental nonlinearities, the solid black line in Fig.  10.2 .
We start with h, the neutron-number change leading to the isotope shift contribution of the postulated
new boson. This leads to the dash-dotted black line with a slight negative slope. This slope is completely
different from the experimentally observed nonlinearity, meaning that the proposed boson is certainly not
the leading source of nonlinearity in ytterbium isotope shifts. So the nonlinearity must be due to some
higher-order effects from the nuclear charge distribution. Next, we consider δ⟨r2⟩2, which we compute using
experimentally determined squared charge radii from Ref. [  360 ]. The decomposition gives the dotted black
line with a slight positive slope, also unable to explain the experimentally observed nonlinearity. We note
here that the effect of uncertainties in the δ⟨r2⟩ values is smaller than the line in Fig.  10.2 .

The final nuclear structure contribution we consider is that of δ⟨r4⟩. There is no experimental data
for this quantity available, as this would otherwise only be precisely determined in high-precision electron
scattering experiments [ 433 ]. As a result, we rely on ab initio nuclear theory to predict δ⟨r4⟩A,A′ for the
relevant isotope pairs, which we discuss in the next section. We provide two representative sets of calculations
for δ⟨r4⟩A,A′ , indicated by the orange and blue dashed lines, and a general uncertainty estimate coming
from a correlated statistical error model accounting for EFT and many-body errors in our calculations,
indicated by the gray band. The band should be interpreted as an expert assessment of “1σ” uncertainty
arising from nuclear theory.

Generally speaking, the uncertainty in our predictions of δ⟨r4⟩ leads to a large uncertainty in the
predicted slope due to δ⟨r4⟩. This is because nuclear theory uncertainties are considerable, but also because
the nonlinearity decomposition is quite sensitive to fine changes in trends along the isotopic chain. This
means that small independent changes in δ⟨r4⟩ for two isotope pairs quickly lead to large shifts in the slope
coming from the decomposition. Still, our calculations of δ⟨r4⟩ and the assessed uncertainty are better
able to explain the observed dominant nonlinearity. This clearly suggests that δ⟨r4⟩, which is related to
deformation in nuclei, is the dominant source of nonlinearity in ytterbium isotopes, confirming the postulate
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Figure 10.3: Valence spaces for VS-IMSRG calculations. Valence spaces VS1 (left) and VS2 (right) employed
for our VS-IMSRG calculations of ytterbium isotopes. We show the HF single-particle levels for 172Yb computed
using the 1.8/2.0 (EM) Hamiltonian in an emax = 14, E3max = 28, ℏω = 12 MeV model space. 172Yb has Z = 70
protons and N = 102 neutrons, leading to the shown occupied (solid) and unoccupied (dotted) levels. Note that the
neutron 1h9/2 orbital is only partially filled with occupation number np = 8/10 = 0.8. Both valence spaces share the
same upper limits, the proton 1h11/2 and neutron 1i13/2 orbitals, but differ in their definition of the decoupled core.

of Ref. [ 434 ] and the similar conclusion of Ref. [ 421 ] based on density functional theory calculations. In
Sec.  10.4 , we work under this assumption that the leading nonlinearity is due to δ⟨r4⟩ to use the experimental
data to extract changes in δ⟨r4⟩ across the ytterbium isotopes.

10.3 Ab initio nuclear theory input

The ground-state properties of nuclei, such as ⟨r2⟩ and ⟨r4⟩, can be computed using ab initio nuclear
structure theory. Yb isotopes are challenging to describe ab initio due to being heavy and open-shell, and
our work leverages recent developments improving the treatment of three-nucleon forces in heavy nuclei [ 46 ]
and performing large-scale diagonalizations of the many-body Hamiltonian [ 423 ]. Our calculations are
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performed with the valence-space IMSRG [ 94 ,  95 ,  260 ], decoupling an effective valence-space Hamiltonian
at the IMSRG(2) level that is subsequently diagonalized via large-scale shell-model methods. We solve
the IMSRG(2) using the imsrg++ [ 365 ] in an emax = 14 model space based on an underlying harmonic
oscillator basis with frequency ℏω = 12 MeV, including three-nucleon forces with a truncation of E3max = 28
made possible by Refs. [  46 ,  333 ].

We employ two nuclear Hamiltonians with two- and three-nucleon interactions derived within chiral
EFT. The 1.8/2.0 (EM) Hamiltonian [ 171 ] is constructed from the N3LO EM 500 NN potential [ 154 ],
transformed using the similarity renormalization group to a resolution scale of λ = 1.8 fm−1, and N2LO
three-nucleon interactions with a regulator cutoff Λ3N = 2.0 fm−1. It is fit to few-body systems (up to 4He)
and predicts ground-state energies, spectra, and differential radius trends well in medium-mass and heavy
nuclei [ 3 ,  44 ,  51 ,  61 ]. The ∆N2LOGO Hamiltonian [ 167 ] is constructed at N2LO with explicit inclusion of ∆
isobars in the EFT and is fit to few-body data and nuclear matter properties and optimized to reproduce
bulk properties in medium-mass nuclei. Differences in results obtained by the two Hamiltonians reflect the
underlying EFT uncertainty for nuclear forces.

We employ two valence spaces shown in Fig.  10.3 : VS1 with a 132Sn core and an active valence space
consisting of 1g7/2, 2d5/2, 2d3/2, 3s1/2, 1h11/2 proton orbitals and 2f7/2, 1h9/2, 1i13/2, 2f5/2, 3p3/2, 3p1/2
neutron orbitals; and VS2 with a 154Gd core and an active valence space consisting of 2d3/2, 3s1/2, 1h11/2
proton orbitals and 1h9/2, 1i13/2, 2f5/2, 3p3/2, 3p1/2 neutron orbitals. Varying the valence space allows us
to assess some of the uncertainty due to the employed many-body approximation. Recent developments
have made IMSRG calculations at the normal-ordered three-body level available [ 45 ]. These calculations
can currently not be converged in Yb, but we performed restricted calculations to estimate the order of
magnitude of truncated contributions in the IMSRG, another source of many-body uncertainties.

To compute ⟨r2⟩ and ⟨r4⟩, we evaluate the ground-state expectation values of the translationally invariant
point-proton radius operators R2

p and R4
p, with the definitions

R2
p =

∑
i

[
(1 + τi)

1
2Z

(
1 − 2

A

)
+ 1

A2

]
r2

i +
∑
i<j

[ 2
A2 − 2

AZ

(
1 + τi + τj

2
)]

ri · rj , (10.22)

R4
p =

∑
i

[
(1 + τi)

1
2Z

(
1 − 4

A

)]
r4

i

+
∑
i<j

−2
AZ

[
(1 + τi)r2

i + (1 + τj)r2
j

]
ri · rj + O(A−2) . (10.23)

We neglect the indicated higher-order contributions in R4
p, which would also include three- and four-

body parts but are strongly suppressed. For ⟨r2⟩, we also include the spin-orbit [ 274 ] and relativistic
Darwin-Foldy [ 276 ] corrections and account for the finite size of nucleons.

Our computed values of ⟨r2⟩, ⟨r4⟩, δ⟨r2⟩, and δ⟨r4⟩ are given in Tables  10.2 and  10.3 . We note that
we obtained nonphysical results for 168Yb with the ∆N2LOGO Hamiltonian, with an inversion of proton
2d3/2 and 1h11/2 single-particle orbitals at the Hartree-Fock level relative to 170–176Yb. For the δ⟨r2⟩ and
δ⟨r4⟩ values in Table  10.3 , we obtain extrapolated values for ∆N2LOGO based on the differences observed
for (172, 170) and (170, 168) for the 1.8/2.0 (EM) Hamiltonian in the same valence space. Our results
are compared with experimental measurements of δ⟨r2⟩ from Ref. [ 360 ] and our extraction of δ⟨r4⟩ trends
(discussed in the next section) in Fig.  10.4 and Fig.  10.5 , respectively.

To assess theoretical uncertainties, we employ a correlated statistical uncertainty model. For the
propagation of uncertainties in δ⟨r2⟩ and δ⟨r4⟩ to King-plot analyses, it is essential to account for correlations
across isotope pairs. Errors due to truncations in ab initio nuclear theory are very systematic in nature,
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several functionals [SV-min, RD-min, UNEDF1, Fy(∆r)]. We compare nuclear theory predictions with experimental
δ⟨r2⟩A,A−2 values from Ref. [  360 ]. The gray bands give estimated uncertainties of the theory results. Figure from
Ref. [ 52 ].

producing similar errors in neighboring isotopes. As a result, strong correlations arise, and we attempt to
quantify and account for these in the following.

We assume that a prediction for given observable

o = (o(170,168), o(172,170), o(174,172), o(176,174)) (10.24)

(true value unknown) can be understood as

o = õ + εEFT + εVS + εMB , (10.25)

where õ is the approximate prediction and εEFT, εVS, and εMB are errors made due the necessary truncations
in the EFT for the Hamiltonians, the valence space, and the many-body method, respectively. We choose

õ = 0.75 o1.8/2.0 (EM),VS1 + 0.25 o∆N2LOGO,VS1 (10.26)
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Figure 10.5: Ab initio and DFT δ⟨r4⟩ predictions vs. experimental trends. Top: δ⟨r4⟩A,A−2 values
predicted by VS-IMSRG(2) calculations using the 1.8/2.0 (EM) Hamiltonian in valence spaces VS1 and VS2 the
∆N2LOGO Hamiltonian in valence space VS1. All VS-IMSRG(2) calculations employ an HF basis computed in
an emax = 14, E3max = 28, ℏω = 12 MeV model space. The extrapolated value for A = 170 for the ∆N2LOGO
Hamiltonian is discussed in the main text. Bottom: δ⟨r4⟩A,A−2 values predicted by DFT calculations in Ref. [  421 ] using
several functionals [SV-min, RD-min, UNEDF1, Fy(∆r)]. We compare nuclear theory predictions with experimental
δ⟨r4⟩A,A−2 values relative to δ⟨r4⟩176,174 = 7 fm4 (star) extracted from isotope shifts from the α transitions using
atomic theory (fiducial, core holes). The gray bands give estimated uncertainties of the theory results. Figure from
Ref. [ 52 ].

based on the reproduction of experimental δ⟨r2⟩ values. Additionally, we model the EFT, valence-space,
and many-body errors as random variables distributed as multivariate normal distributions,

εEFT ∼ N (0, ΣEFT) , (10.27)
εVS ∼ N (0, ΣVS) , (10.28)
εMB ∼ N (0, ΣMB) . (10.29)

We use full covariance matrices Σ to allow us to consider correlations across isotope pairs in our error model,
which we discuss below.
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Table 10.2: VS-IMSRG(2) predictions of ⟨r2⟩ and ⟨r4⟩. VS-IMSRG(2) predictions of ⟨r2⟩ and ⟨r4⟩ for
168–176Yb using the 1.8/2.0 (EM) Hamiltonian with valence spaces VS1 and VS2 and using the ∆N2LOGO Hamiltonian
with valence space VS1. All VS-IMSRG(2) calculations employ an HF basis computed in an emax = 14, E3max = 28,
ℏω = 12 MeV model space. Missing results for 168Yb with the ∆N2LOGO Hamiltonian are discussed in the main text.
Table from Ref. [  52 ].

Isotope
A

⟨r2⟩ (fm2) ⟨r4⟩ (fm4)
1.8/2.0 (EM) ∆N2LOGO 1.8/2.0 (EM) ∆N2LOGO

VS1 VS2 VS1 VS1 VS2 VS1
168 24.233 24.287 (*) 710.4 719.5 (*)
170 24.387 24.457 26.609 719.3 728.9 850.9
172 24.534 24.621 26.711 727.8 738.4 857.4
174 24.674 24.781 26.810 736.2 747.8 863.6
176 24.761 24.868 26.906 743.3 755.5 869.6

Table 10.3: VS-IMSRG(2) predictions of δ⟨r2⟩ and δ⟨r4⟩. VS-IMSRG(2) predictions of δ⟨r2⟩ and δ⟨r4⟩
for neighboring ytterbium isotope pairs in 168–176Yb using the 1.8/2.0 (EM) Hamiltonian with valence spaces VS1
and VS2 and using the ∆N2LOGO Hamiltonian with valence space VS1. All VS-IMSRG(2) calculations employ
an HF basis computed in an emax = 14, E3max = 28, ℏω = 12 MeV model space. Extrapolated results (*) for
(A, A′) = (170, 168) for the ∆N2LOGO Hamiltonian are discussed in the main text. Table from Ref. [  52 ].

Isotope pair
(A, A′)

δ⟨r2⟩(A,A′) (fm2) δ⟨r4⟩(A,A′) (fm4)
1.8/2.0 (EM) ∆N2LOGO 1.8/2.0 (EM) ∆N2LOGO

VS1 VS2 VS1 VS1 VS2 VS1
(170,168) 0.153 0.170 0.108(*) 8.85 9.48 6.81(*)
(172,170) 0.148 0.164 0.103 8.51 9.48 6.47
(174,172) 0.140 0.160 0.099 8.35 9.34 6.21
(176,174) 0.087 0.087 0.096 7.11 7.70 6.00

We estimate the variances [i.e., σ2
i = diag(Σi)] for our EFT and valence-space errors as

σ2
EFT = (o1.8/2.0 (EM),VS1 − o∆N2LOGO,VS1)2 , (10.30)
σ2

VS = (o1.8/2.0 (EM),VS1 − o1.8/2.0 (EM),VS2)2 . (10.31)

To estimate σ2
MB, we performed VS-IMSRG(3)-N7 calculations for 172Yb [ 45 ]. VS-IMSRG(3) calcu-

lations cannot currently be converged in Yb, but by including restricted three-body operators in the
calculations, we gain insight into the magnitude of the VS-IMSRG(3) corrections. Moreover, calculations
in calcium have shown that the three-body corrections are strongly correlated across systems (with a
correlation coefficient r ≥ 0.99, see Fig.  9.4 ). We find the VS-IMSRG(3) corrections for ⟨r2⟩ and ⟨r4⟩ in
172Yb to be on the order of 0.06 fm2 and 2 fm4, respectively. Assuming a size extensive scaling of radius
corrections and exploiting the strong correlation between neighboring isotopes, we find small many-body
uncertainties σ2

MB for the differential quantities δ⟨r2⟩ and δ⟨r4⟩. All employed standard deviations are
given in Table  10.4 .

Finally, the covariance between ε
(A,A−2)
i and ε

(B,B−2)
i (i ∈ {EFT, VS}) is estimated as

cov(ε(A,A−2)
i , ε

(B,B−2)
i ) = r

(A−B)/2
i σ

(A,A−2)
i σ

(B,B−2)
i , (10.32)
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Table 10.4: Uncertainty estimates for VS-IMSRG(2) predictions. Assessed standard deviations σ for δ⟨r2⟩
and δ⟨r4⟩ EFT, valence-space, and many-body errors. Table from Ref. [  52 ].

Isotope pair
(A, A′)

δ⟨r2⟩(A,A′) (fm2) δ⟨r4⟩(A,A′) (fm4)

σ
(A,A′)
EFT σ

(A,A′)
VS σ

(A,A′)
MB σ

(A,A′)
EFT σ

(A,A′)
VS σ

(A,A′)
MB

(170,168) 0.045 0.016 0.005 2.04 0.63 0.15
(172,170) 0.045 0.017 0.005 2.04 0.97 0.16
(174,172) 0.041 0.020 0.005 2.14 0.98 0.16
(176,174) 0.009 0.001 0.005 1.11 0.58 0.16

assuming an exponentially decaying correlation with a correlation ri. Based on tests of different correlation
values against our computed values, we found rEFT = 0.99 and rVS = 0.97. For the many-body uncertainties,
we conservatively assumed no correlations.

We emphasize that these uncertainties and the underlying variances are not meant to be interpreted
statistically but rather as an expert assessment of underlying parameters in our model to estimate correlated
uncertainties and propagate those to King-plot nonlinearity analyses. We find this model to work well for
δ⟨r2⟩ when compared to experimental values and expect it to work similarly well for δ⟨r4⟩.

10.4 Extraction of higher-order nuclear structure information
Assuming that the leading source of nonlinearity in the King plot is δ⟨r4⟩, we can use isotope-shift
measurements to extract information on this quantity. We proceed in two steps: Using the precise nuclear
mass and frequency measurements presented in this work, we construct the quantities

ν̂a,r
τ =νa

τ − wa

wr
νr

τ , (10.33)

where τ is the transition index, r = (174, 176) denotes the reference isotope pair, and a ∈ {(168, 170),
(170, 172), (172, 174)} is an isotope pair index. Approximating Eq. ( 10.3 ) by

νa
τ ≈ Fτ δ⟨r2⟩a + Kτ wa + G(4)

τ δ⟨r4⟩a , (10.34)

we obtain

ν̂a,r
τ ≈ Fτ Da,r + G(4)

τ Qa,r , (10.35)

where the isotope-pair-dependent quantity

Da,r =δ⟨r2⟩a − wa

wr
δ⟨r2⟩r , (10.36)

can be constructed from the charge radius measurements tabulated in Ref. [ 360 ], and

Qa,r =δ⟨r4⟩a − wa

wr
δ⟨r4⟩r (10.37)

describes the evolution of δ⟨r4⟩ along the isotope chain. Following the King-plot approach, we perform a
linear fit in isotope-pair space, fitting Fτ to

ν̂r
τ ≈ Fτ Dr , (10.38)
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Table 10.5: Quartic shift coefficients. Electronic G
(4)
τ coefficients of the transitions τ defined in Table  10.1 .

Two approaches outlined in Ref. [  52 ], “fiducial” and “core holes,” are used, which represents one form of uncertainty
assessment. Table adapted from Ref. [  52 ].

Transition G
(4)
τ (MHz/fm4)

τ Fiducial Core holes
α 8.76 10.80
β 8.75 11.00
γ −19.47 −30.38
δ 7.12 7.57
ϵ 9.91 10.41

Table 10.6: Experimental trends for δ⟨r4⟩. Experimental δ⟨r4⟩A,A−2 values relative to δ⟨r4⟩176,174 = 7 fm4

extracted from isotope shifts from the αPTB transitions using atomic theory. Uncertainties and covariances are
propagated from input uncertainties. Table from Ref. [  52 ].

Isotope pair
a = (A, A′) δ⟨r4⟩a (fm4)

cov(δ⟨r4⟩a, δ⟨r4⟩b) (fm8)
Isotope pair b = (A, A′)

(170,168) (172,170) (174,172)
(170,168) 7.33 (27) 0.076 −0.088 −0.010
(172,170) 7.53 (32) −0.088 0.104 0.006
(174,172) 6.97 (28) −0.010 0.006 0.079
(176,174) 7 (reference)

where xr = (xa,r, xb,r, xc,r, xd,r), x ∈ {ν̂τ , D}. In this way, the precision of the isotope-shift measurements
and nuclear mass measurements is exploited and field shift coefficients Fτ can be obtained with relative
uncertainties at the level of ≈ 0.3 %.

Next, we subtract the fit results from ν̂a,r and obtain the residuals

ν̂a,r
τ − Fτ Da,r = G(4)

τ Qa,r . (10.39)

Making use of the calculated electronic coefficients G
(4)
τ , which are listed in Table  10.5 we deduce three

independent objects Qa,r per isotope shift transition τ . Fixing r = (174, 176) and τ = αPTB and choosing
a value δ⟨r4⟩r = −7 fm4, we are able to extract δ⟨r4⟩ values for the remaining isotope pairs, given in
Table  10.6 . We choose the reference value δ⟨r4⟩r = −7 fm4 informed by predictions from ab initio nuclear
structure theory and density functional theory shown in Fig.  10.5 , which all predict this value to lie between
6–8 fm4. Beyond this chosen reference value, uncertainties and covariances are obtained by propagating
uncertainties from experimental input (νa

τ , wa, and δ⟨r2⟩a) and atomic theory (G(4)
τ ) assuming independent

normal distributions. The dominant source of uncertainty is δ⟨r2⟩(170,168), and we also understand this
uncertainty to lead to correlations in the fit in Eq. ( 10.38 ), leading to the considerable anti-correlation
between δ⟨r4⟩(170,168) and δ⟨r4⟩(172,170).

We note that the approach outlined here to extract information on δ⟨r4⟩ from a King-plot nonlinearity
is unable to give information on the absolute scale of δ⟨r4⟩. This is simply because we are considering only
the nonlinearity, but δ⟨r4⟩ also produces an isotope-shift contribution parallel to the linear field shift. We
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are unable to disentangle this contribution from the dominant field shift, so our approach is only able to
make statements about how δ⟨r4⟩ changes across the isotopic chain.

These values are compared with predictions for ab initio nuclear structure theory and density functional
theory in Fig.  10.5 . Our extracted δ⟨r4⟩ values show a weak decrease between δ⟨r4⟩(172,170) and δ⟨r4⟩(174,172)

and otherwise flat trend in δ⟨r4⟩ across the ytterbium isotopes studied here. Comparing this to the
discussed nuclear structure calculations, we find that the flatter δ⟨r4⟩ trends of ab initio calculations more
closely reproduce the extracted trends. However, within the large theoretical uncertainties our results are
compatible with both ab initio nuclear structure theory and density functional theory predictions.

Overview and perspectives
This work, particularly on the state-of-the-art VS-IMSRG calculations of ytterbium isotopes, establishes
δ⟨r4⟩ as the source of the leading nonlinearity in ytterbium isotope shifts. Based on this information,
we use the King-plot analysis to turn the high-precision measurement of nonlinear isotope shifts into an
experimental determination of changes in δ⟨r4⟩ along the isotopic chain. This novel observable serves as a
useful test for nuclear structure theory where high-precision isotope-shift measurements are possible. In
particular, δ⟨r4⟩ is related to deformation, and access to this observable can provide complementary insight
for comparison with different ab initio nuclear theory approaches to capturing deformation in many-body
calculations. The main conclusions of this work are: δ⟨r4⟩ is the leading source of nonlinearity in ytterbium
isotope shifts, not the proposed new boson; this makes it possible to extract changes in δ⟨r4⟩ from precise
measurements, unlocking a new nuclear structure observable; and the remaining nonlinearity signal can be
used to set bounds on the coupling of the proposed new boson.

For future nonlinear isotope-shift studies, ytterbium seems less attractive due to its complicated nuclear
structure, which will make disentangling nuclear structure effects from new physics challenging. Interesting
alternatives are calcium, tin, and xenon isotopes, with relatively simple nuclear structure in calcium and
tin and also many stable isotopes. Studying more isotope pairs in such systems provides the King-plot
analysis with more data that can be used to control for uncertain higher-order nuclear structure effects and
increase sensitivity to BSM physics. At the same time, such measurements can also give more insight into
the nuclear structure of the isotopes through δ⟨r4⟩. In all of these efforts, there is a key role to be played by
ab initio nuclear structure theory, providing uncertainty-quantified predictions to explain observed signals
and enhance our understanding of physics within and beyond the standard model.





Chapter 11

Conclusion

This thesis makes significant strides towards a more complete description of nuclear structure using ab
initio methods. In particular, we have established developments allowing more efficient and higher-precision
calculations in the IMSRG. We explored applications in light, medium-mass, and heavy nuclei made possible
by the developments in this thesis, improving our ab initio understanding of the structure of these systems.

The key method developments were on the improved inclusion of three-nucleon forces in many-body
calculations, on informed truncations for many-body calculations, and on extensions of the IMSRG to
the next order of the method, including also normal-ordered three-body operators. The inclusion of 3N
forces in many-body calculations has been a long-standing challenge for nuclear structure theory, requiring
substantial truncations E3max that limited the application to heavy systems. Critically, 3N forces are
typically included in many-body calculations at the normal-ordered two-body level as effective two-body
interactions, and we introduce a way to compute these effective two-body interactions via normal ordering
in a Jacobi basis, avoiding the E3max truncation altogether [ 49 ]. We benchmarked this approach against
traditional normal ordering approaches in light and medium-mass systems, finding excellent agreement and
systematic behavior of our truncations in angular momentum quantum numbers. We used this new Jacobi
normal ordering approach to obtain converged ground-state predictions for 132Sn and 208Pb, two systems
that were far out of reach just five years ago. This opens up the new frontier of nuclei with mass numbers
A ≳ 100 to ab initio calculations.

While many-body expansion methods like the IMSRG are scalable to heavy systems, they are still
computationally challenging especially when using high-precision approximations like the IMSRG(3). We
explored two ways to make informed truncations for many-body calculations. In the first approach [ 106 ],
we optimized the computational basis for our many-body calculations by constructing the perturbatively
improved NAT basis. In this basis, we were able to show substantially reduced dependence on our underlying
basis parameters, notably the harmonic oscillator frequency ℏω, and much faster convergence in our basis
size. This serves to accelerate many-body calculations substantially, especially in medium-mass nuclei,
where the smaller basis sizes lead to an order-of-magnitude reduction in the cost of IMSRG calculations. In
the second approach [ 107 ], we investigated a more fine-tuned importance truncation approach to IMSRG
calculations. We presented a variety of ways to assess the importance of two-body matrix elements in
the IMSRG(2), allowing us to make informed truncations and compress the IMSRG(2) calculations by as
much as 99%. The benefits of this IT-IMSRG(2) were most pronounced for soft Hamiltonians in large
model spaces, but we found that this approach could also be robustly applied to harder Hamiltonians
for selected importance measures. We have not yet succeeded in actually exploiting this compression
computationally, but this work, along with the successes of factorizations of nuclear forces and few- and
many-body methods [ 331 ,  435 – 438 ], demonstrates that nuclear many-body calculations are generally highly
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redundant. Developing compressed operator bases is a promising way to make calculations much cheaper,
which would unlock higher-order many-body methods like the IMSRG(3) at reasonable computational cost.

A key challenge for the IMSRG in nuclear structure has been the restriction to the IMSRG(2) approxima-
tion. While generally very successful, we understand that this approximation has its limits. The extension
of the IMSRG to the normal-ordered three-body level, the IMSRG(3), allows for both higher-precision
many-body calculations where the IMSRG(2) is insufficient and for quantification of many-body truncation
uncertainties in IMSRG calculations. We developed the IMSRG(3) in this thesis [ 45 ], establishing the
systematic behavior of the method by comparing IMSRG(2) and IMSRG(3) calculations with results from
exact diagonalizations. We found systematic improvement through the IMSRG(3), and this improvement
was also found in lower-cost approximations of the IMSRG(3). These lower-cost approximations are scalable
to larger model spaces and heavier nuclei, paving the path to realistic “IMSRG(3)” calculations for nuclear
structure. The IMSRG(3) is a milestone for nuclear structure theory, and in the coming years many
high-precision, fully uncertainty-quantified ab initio studies will be possible based on the developments of
this thesis.

The applications considered in this thesis are centered around the IMSRG(3), where we are able to
understand many-body uncertainties using the IMSRG(2) and IMSRG(3) together. In collaboration with
the all-optical charge radius measurement at COALA, we studied the IMSRG(2) and IMSRG(3) in 12C and
13C [ 108 ]. In most cases, we found that the behavior of our calculations was systematic, with the IMSRG(3)
giving significant, but controlled corrections to energies and charge radii. A notable exception is the charge
radius of 12C, where IMSRG(3) corrections are very large and show challenging model-space convergence
patterns. This behavior seems to be related to the cluster structure of 12C, which is generally challenging
for many-body expansion methods. Nevertheless, we establish many-body correlations beyond Hartree-Fock
as essential to producing a decreasing charge radius from 12C to 13C.

In calcium isotopes, we performed preliminary investigations of the structure of 48Ca and neighboring
systems with the IMSRG(3). In these systems, we are unfortunately unable to fully converge our IMSRG(3)
calculations in our three-body model-space truncations. Still, we very clearly see the benefits of the
IMSRG(3) over the IMSRG(2) in the description of the structure of these isotopes. We see that IMSRG(3)
corrections to ground-state energies and charge radii are small and under control, consistent with other
many-body methods. The IMSRG(3) brings the single-reference and valence-space description of 48Ca
into systematically better agreement, reflecting the reduced many-body uncertainties. The IMSRG(3)
also gives significant corrections to the first 2+ energy of 48Ca, resolving a long-standing challenge of
the IMSRG(2), which systematically overpredicts this quantity. Furthermore, we found that correlated
IMSRG(3) corrections to charge radii suggest that the long-standing puzzle of the large charge radius of
52Ca relative to 48Ca will not be resolved by the IMSRG(3), but is likely due to uncertainties in nuclear
forces. Still, we expect in the near future to be able to provide fully converged IMSRG(3) predictions for
calcium isotopes, making more robust statements on many-body uncertainties for calcium charge radii
possible.

In stable ytterbium isotopes, we provided ab initio predictions for the charge radius observables ⟨r2⟩ and
⟨r4⟩ using the VS-IMSRG as part of a collaborative search for new physics in isotope-shift measurements
in ytterbium [ 52 ] (in collaboration with high-precision mass spectrometry performed at the Max Planck
Institute for Nuclear Physics and high-precision laser spectroscopy performed at the PTB Braunschweig
along with atomic and particle theorists). These high-precision measurements found a nonlinear King
plot for the isotope shifts, which could potentially be attributed to new physics beyond the standard
model but must be disentangled from higher-order nuclear structure effects. Our VS-IMSRG(2) predictions,
coupled with a correlated uncertainty assessment of Hamiltonian and many-body uncertainties using also
the IMSRG(3), allowed us to interpret the nonlinear King plot as being primarily due to nuclear structure,
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specifically due to δ⟨r4⟩, which is related to the deformation of the ytterbium isotopes. This allowed us to
extract information about δ⟨r4⟩ from the measured data, giving access to a new observable to test nuclear
structure theory. This study highlights the growing importance of ab initio nuclear structure predictions in
searches for new physics in nuclei and atoms. In such searches, nuclear structure effects need to be clearly
identified and disentangled to isolate any signal of BSM physics, and ab initio calculations provide a way to
do that with both predictive power and fully quantified uncertainties.

The developments of this thesis touch many aspects of ab initio nuclear structure, providing both method
developments and applications to improve our understanding of the structure of nuclei. We are growing
closer to a comprehensive ab initio description of the entire nuclear chart with fully quantified uncertainties,
and the development of the IMSRG(3) in this thesis is a key step in that direction. Specifically, the
IMSRG(3) will provide both higher precision and an understanding of many-body uncertainties in nuclear
structure calculations in the future. These aspects will be key to provide controlled ab initio predictions
for new measurements in exotic nuclei, for the structure of atomic nuclei in astrophysical environments
relevant for the rapid neutron-capture process, and for nuclear structure effects in new physics searches.
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Abbreviations

Fundamental physics and nuclear forces:

SM standard model
BSM beyond standard model
QCD quantum chromodynamics
EFT effective field theory
LEC low-energy constant
NN nucleon-nucleon
3N three-nucleon
4N four-nucleon
LO leading order
NLO next-to-leading order
N2LO next-to-next-to-leading order
N3LO next-to-next-to-next-to-leading order
N4LO next-to-next-to-next-to-next-to-leading order
RG renormalization group
SRG similarity renormalization group

Many-body methods:

QMC quantum Monte Carlo
FCI full configuration interaction
NCSM no-core shell model
DFT density functional theory
HO harmonic oscillator
HF Hartree-Fock
NAT natural orbitals
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MBPT many-body perturbation theory
CC coupled cluster
CCSD coupled cluster with singles and doubles
CCSDT coupled cluster with singles, doubles, and triples
SCGF self-consistent Green’s function
ADC algebraic diagrammatic construction
IMSRG in-medium similarity renormalization group
VS-IMSRG valence-space in-medium similarity renormalization group
NO2B normal-ordered two-body
IT importance truncation / importance-truncated
IT-NCSM importance-truncated no-core shell model
IT-IMSRG importance-truncated in-medium similarity renormalization group

Institutions, facilities, and experiments:

TU Darmstadt Technische Universität Darmstadt
COALA Collinear Apparatus for Laser Spectroscopy and Applied Science
RIBF Radioactive Isotope Beam Factory
FRIB Facility for Rare Isotope Beams
FAIR Facility for Antiproton and Ion Research
NSCL National Superconducting Cyclotron Laboratory
PTB Physikalisch Technische Bundesanstalt
ERC European Research Council
DFG Deutsche Forschungsgemeinschaft
NIC John von Neumann Institute for Computing
JSC Jülich Supercomputing Centre

Miscellaneous:

BCH Baker-Campbell-Hausdorff
CSC compressed sparse column
DOK dictionary of keys
MS mass shift
FS field shift
EM Entem, Machleidt
EKM Epelbaum, Krebs, Meißner



Appendix B

IMSRG fundamental commutators

For the commutator of a normal-ordered K-body operator A(KB) and a normal-ordered L-body operator
B(LB), the resulting operator has different normal-ordered M -body parts C(MB):

[A(KB), B(LB)] =
K+L−1∑

M=|K−L|
C(MB). (B.1)

We isolate the different M -body parts that arise from the commutator of a K-body operator and an L-body
operator, using the following schematic notation in terms of their many-body ranks:

[K, L] → M . (B.2)

These are the fundamental commutators of the IMSRG, the basic computational unit that must be
implemented.

In the following, we provide the nonantisymmetrized expressions for the matrix elements of the
fundamental commutators required by the IMSRG(3). For the two- and three-body parts, the matrix
elements must be antisymmetrized by applying the appropriate two- and three-body antisymmetrizer. The
expressions were derived using the automated normal-ordering tool drudge [ 233 ], and, in cases where
our expressions did not match those provided in Ref. [ 94 ], the results were verified by hand. The section
headings employ the schematic notation introduced above, where [K, L] → ◦ is short for

[A(KB), B(LB)] → C . (B.3)

To avoid notational clutter, we only denote the many-body rank for the zero-body part, C(0B), and use
the convention

C12 = C
(1B)
12 , (B.4)

C1234 = C
(2B)
1234 , (B.5)

C123456 = C
(3B)
123456 , (B.6)

where the many-body rank is obvious from the number of indices. Moreover, use the convention that the
indices 1, 2, 3, . . . are used for external indices on the resulting matrix elements of C and the indices p, q,
r, . . . are used for internal indices appearing only on matrix elements of A and B, which are summed over
in the fundamental commutator.
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B.1 [1, 1] → ◦

C12 =
∑

p

(A1pBp2 − B1pAp2) , (B.7)

C(0B) =
∑
pq

(npn̄q − n̄pnq)ApqBqp , (B.8)

with n̄p ≡ 1 − np and the one-body matrix elements of the result C12.

B.2 [1, 2] → ◦

C1234 = 2
∑

p

(A1pBp234 − Ap3B12p4) , (B.9)

C12 =
∑
pq

(npn̄q − n̄pnq)ApqB1q2p . (B.10)

B.3 [2, 2] → ◦

C123456 = 9
∑

p

(A3p45B126p − B3p45A126p) , (B.11)

C1234 = 1
2
∑
pq

(n̄pn̄q − npnq) (A12pqBpq34 − B12pqApq34)

− 4
∑
pq

(npn̄q − n̄pnq)Ap23qB1qp4 , (B.12)

C12 = 1
2
∑
pqr

(n̄pn̄qnr + npnqn̄r) (A1rpqBpq2r − B1rpqApq2r) , (B.13)

C(0B) = 1
4
∑
pqrs

(npnqn̄rn̄s − n̄pn̄qnrns)ApqrsBrspq . (B.14)

B.4 [1, 3] → ◦

C123456 = 3
∑

p

(A3pB12p456 − Ap6B12345p) , (B.15)

C1234 =
∑
pq

(npn̄q − n̄pnq)ApqB12q34p . (B.16)
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B.5 [2, 3] → ◦

C123456 = 3
2
∑
pq

(n̄pn̄q − npnq) (A12pqBpq3456 − Apq45B123pq6)

+ 9
∑
pq

(n̄pnq − npn̄q)A3pq6B12q45p , (B.17)

C1234 =
∑
pqr

(n̄pn̄qnr + npnqn̄r) (Ar1pqBpq234r − Apqr3B12rpq4) , (B.18)

C12 = 1
4
∑
pqrs

(npnqn̄rn̄s − n̄pn̄qnrns)ApqrsBrs1pq2 . (B.19)

B.6 [3, 3] → ◦

C123456 = 1
6
∑
pqr

(npnqnr + n̄pn̄qn̄r) (A123pqrBpqr456 − B123pqrApqr456)

+ 9
2
∑
pqr

(n̄pn̄qnr + npnqn̄r) (Apq345rB12rpq6 − Bpq345rA12rpq6) , (B.20)

C1234 = 1
6
∑
pqrs

(n̄pn̄qn̄rns − npnqnrn̄s) (A12spqrBpqr34s − B12spqrApqr34s)

+
∑
pqrs

(npnqn̄rn̄s − n̄pn̄qnrns)Apq1rs3Brs2pq4 , (B.21)

C12 = 1
12

∑
pqrst

(npnqnrn̄sn̄t + n̄pn̄qn̄rnsnt) (Ast1pqrBpqrst2 − Bst1pqrApqrst2) , (B.22)

C(0B) = 1
36

∑
pqrstu

(npnqnrn̄sn̄tn̄u − n̄pn̄qn̄rnsntnu)ApqrstuBstupqr . (B.23)

B.7 Corrections to Hergert et al., Phys. Rep. 621, 165 (2016)
Our expressions above correct a few errors in the published expressions of Ref. [ 94 ]. The differences are:

1. Our expression for the [1, 3] → 2 commutator has an overall factor of 1/4 relative to that of Ref. [ 94 ].

2. We include an additional term in the [2, 3] → 3 commutator that is missing in Ref. [ 94 ].

3. We provide an expression for the [2, 3] → 2 commutator that is generally valid. The expression given
in Ref. [ 94 ] is valid only when one of A and B is Hermitian and the other is anti-Hermitian.

B.8 Practical considerations
The commutators given above are completely general, applicable to any many-body problem with indistin-
guishable fermions with interactions resolved in some single-particle basis. For nuclear physics, it is generally
relevant to work in an angular-momentum-reduced formalism, which exploits the rotational invariance of
nuclei and nuclear Hamiltonians to substantially reduce the computational cost of calculations. This can be
done automatically based on the expressions above using the amc code [ 439 ], and we provide complete
angular momentum coupled expressions for the fundamental commutators given above in Ref. [  45 ].
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