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Abstract

This thesis is dedicated to the modelling and numerical treatment of electromagnetic
phenomena governed by (nonlinear) field and circuit equations, which are the fundamental
topics in electrical engineering. The main focus is on energy transformation principles
and the construction of discretization schemes that preserve these principles. While the
numerical treatment of linear problems has been extensively studied in the literature over
the years, a systematic treatment of nonlinear problems is not yet fully established.

In the first chapter of the thesis, Maxwell’s equations in nonlinear media are discussed.
We consider an energy-based modelling approach for material description and present two
formulations that lead to systems of certain generalized (port-) Hamiltonian and gradient
structures. To preserve the underlying structure, we employ variational techniques based
on Galerkin approximations in space and discontinuous- or Petrov-Galerkin methods in
time. This approach allows a systematic construction of higher-order schemes based on
implicit time-stepping. The discrete energy balance can be derived under relatively general
assumptions. For energy-conserving systems, the two approaches enable the construction
of dissipative and energy-conserving schemes, ensuring the passivity of the discretizations.

The second chapter is dedicated to electric circuit problems. The state-of-the-art ap-
proach to modelling electric circuits is Modified Nodal Analysis (MNA). This formulation
leads to differential-algebraic systems with an index of ν ≤ 2, which presents challenges in
the analysis and numerical treatment. We present an alternative magnetic-oriented nodal
analysis formulation (MONA) that results in differential-algebraic systems with an index
ν ≤ 1, which is much simpler to handle. We demonstrate that both formulations result in
finite-dimensional systems of a certain port-Hamiltonian or gradient structure, similar to
the field problems. Therefore, variational time-stepping methods can again be utilized
to construct passivity-preserving higher-order time-discretization schemes.

In the last chapter, the systems with memory described by a Volterra-integro-differential
equation are considered. Such systems arise in the context of dispersive media or re-
duced order models for field circuit coupling. The numerical treatment of such problems
requires an efficient realization of the integral term in an evolutionary manner. After
an appropriate discretization, the Volterra integral term can be interpreted as a matrix-
vector product with a densely populated matrix. For a sufficiently fine approximation, the
size of the system becomes large, leading to storage and complexity issues. We present
a fast, oblivious, and evolutionary algorithm based on the H2−matrix compression tech-
nique. The approach can be applied to Volterra integrals of convolution type. Further,
it shares some similarities with the fast and oblivious quadrature methods of Schädle,
Lopez-Fernandez, and Lubich. The latter can be interpreted as a particular realization of
the H-matrix approximation.
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Zusammenfassung

Diese Dissertation widmet sich der Modellierung und numerischen Behandlung von elek-
tromagnetischen Feldern und elektrischen Schaltkreisen, die grundlegende Themen der
Elektrotechnik sind. Der Schwerpunkt liegt auf den Energietransformationsprinzipien und
der Entwicklung von numerischen Verfahren, die diese erhalten. Während der lineare Fall
im Laufe der Jahre gut verstanden wurde, ist eine systematische Behandlung nichtlinearer
Probleme noch nicht vollständig etabliert.

Im ersten Kapitel werden die Maxwell-Gleichungen in nichtlinearen Medien betrachtet.
Wir verwenden einen energiebasierten Ansatz für die Modelierung der Materialgesetze
und präsentieren zwei Formulierungen. Die erste Formulierung führt auf Probleme mit
einer verallgemeinerten Hamiltonschen Struktur. Die zweite Formulierung besitzt Gra-
dientenstruktur. Um die Struktur des Problems zu erhalten, verwenden wir Galerkin-
Methoden im Raum und discontinuous Galerkin bzw. Petrov-Galerkin-Verfahren in der
Zeit. Dadurch ist es möglich, Verfahren höherer Ordnung zu konstruieren, die auf im-
pliziter Zeitintegration basieren. Die diskrete Energiebilanz kann unter vergleichsweise all-
gemeinen Voraussetzungen hergeleitet werden. Für energieerhaltende Systeme ermöglichen
diese beiden Verfahren die Konstruktion von dissipativen und energieerhaltenden Schemata.

Das zweite Kapitel wird Modellierung und Diskretisierung elektrische Schaltkreise disku-
tiert. Die klassische Methode ist Modified Nodal Analaysis (MNA). Die Formulierung führt
zu differenzial-algebraischen Systemen mit einem Index von ν ≤ 2, was potenzielle Her-
ausforderungen in der Analyse und Diskretisierung mit sich bringt. Wir präsentieren eine
alternative Magnetic Oriented Nodal Analysis (MONA) Formulierung, die zu differenziell-
algebraischen Systemen mit einem Index von ν ≤ 1 führt und somit die Behandlung vere-
infacht. Wir zeigen, dass die MNA- und die MONA-Formulierung zu endlichdimension-
alen Systemen mit verallgemeinerten Hamiltonschen und Gradientenstrukturen führen,
ähnlich den Feldproblemen. Dies ermöglicht wiederum die Konstruktion von Passivität-
erhaltenden Methoden, welche auf den variationellen Zeitintegrationsverfahren basieren.

Im letzten Kapitel werden die Systeme mit Memory betrachtet, die durch eine Volterra-
Integro-Differentialgleichung beschrieben werden. Probleme dieser Art entstehen im
Kontext dispersiver Materialien oder Feld-Schaltkreis-Kopplungen. Die numerische Be-
handlung solcher Probleme erfordert eine effiziente Umsetzung des Integralterms auf evo-
lutionäre Weise. Nach einer geeigneten Diskretisierung kann der Volterra-Integralterm als
Matrix-Vektor-Produkt mit einer dicht besetzten Matrix interpretiert werden. Für eine
ausreichend feine Diskretisierung wird die Größe des Systems in Hinblick auf Speicher und
Komplexität problematisch. Wir präsentieren einen schnellen, vergesslichen und evolu-
tionären Algorithmus, der auf der H2−Matrixkompression basiert. Der Ansatz kann auf
Volterra-Integrale vom Faltungstyp angewendet werden. Dieser weist einige Ähnlichkeiten
mit den FOCQ-Methoden von Schädle, Lopez-Fernandez und Lubich auf, welche als eine
spezifische Realisierung der H-Matrixkompression interpretiert werden kann.
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Introduction

This thesis discusses the modeling and numerical treatment of certain types of nonlinear
problems in electrical engineering. The main focus is on energy transformation principles
and the construction of discretization schemes that preserve these principles.

Electromagnetic fields. The first problem under consideration is the electromagnetic
wave propagation in nonlinear Kerr-type media, which is a typical application in nonlinear
optics. A significant feature of the governing system of partial differential equations is their
passivity, i.e., the change in energy is determined by the power inflow through the sources
and the dissipation through Ohmic losses. In dielectric media with no sources and losses
and no power flow over the boundary, the energy of the system is conserved exactly.

The development of numerical schemes that preserve this property is an active field
of research. Several methods have been proposed over the years; see e.g. [2, 18, 74].
However, most of the existing approaches provide low-order approximations only. As we
will see, the main difficulty in constructing higher-order methods lies in time integration.
Furthermore, the schemes are developed explicitly for Kerr-type media; generalizing them
to different types of nonlinear media is not straightforward. In this thesis, we address this
issue and discuss strategies for the systematic construction of higher-order discretization
schemes in space and time applicable to a relatively general class of nonlinear problems.
The key ingredients are to use particular formulations and to utilize variational methods
for the overall discreitzation process.

A classical formulation for Maxwell’s equations is in terms of the electric and magnetic
fields e and h. Its particular (port-) Hamiltonian structure motivates the use of Galerkin
methods in space and discontinuous Galerkin time-stepping schemes, as suggested in [42].
Following this strategy, a systematic construction of passivity-preserving schemes of higher
order is possible. However, the resulting schemes have some numerical dissipation. While
this effect decreases when decreasing the time step size or increasing the polynomial degree
of approximation, numerical dissipation may become an issue for long-time simulation.

As a second attempt, we consider an approach based on the magnetic vector potential
a as a system unknown. The vector potential is a standard tool in low-frequency approx-
imations used to describe magnetic devices and electrical machines. It has been observed
that the vector potential formulation for the eddy current problem has a different canon-
ical energy-based structure, which can be understood as a generalization of gradient flow
systems. A suitable discretization strategy that preserves the underlying energy balance
has been proposed in [43]. This approach employs Galerkin approximation in space and
Petrov-Galerkin time-stepping, allowing for the systematic construction of higher-order
schemes. These ideas can be extended to Maxwell’s wave propagation problem. To this
end, we here consider a formulation based on the electric field e and the magnetic vector
potential a. In contrast to the previous strategy, this method preserves the energy balance
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exactly, making it perfectly suited for energy-conserving problems. The corresponding re-
sults were published in [48].

Electric circuits. Simulation of electric circuits is another topic discussed in this thesis.
The state-of-the-art approach for circuit modeling is Modified Nodal Analysis (MNA)
[62, 69]. This approach uses vectors of electric node potentials and some branch charges
as primary unknowns, leading to a differential-algebraic system of equations. It is well
understood that under appropriate assumptions on the elements, the governing systems
have an index ν ≤ 2, where the index depends on the topology of the circuit; see, e.g.,
[52, 110]. The differential-algebraic nature of MNA systems presents several challenges,
and the numerical investigation of DAEs has been greatly inspired by circuit simulations.
While index ν ≤ 1 systems are relatively easy to handle, the analysis and numerical
treatment of index-2 problems are challenging; see, e.g., [66, 81]. In particular, classical
implicit methods like the trapezoidal rule or BDF-2 schemes may become unstable in the
case of strong nonlinearities [62].

The MNA formulation shares several similarities with the e−h formulation of Maxwell’s
equations; in particular, it has a similar (port-) Hamiltonian structure, which automat-
ically ensures the passivity of the formulation. With this in mind, the systematic con-
struction of passivity-preserving discretization schemes can once again be achieved using
discontinuous Galerkin time-stepping. The lowest-order scheme coincides with the implicit
Euler method, the state-of-the-art approach for MNA systems [62].

Following the philosophy of the vector potential formulation for Maxwell’s equations, we
proposed the Magnetic Oriented Nodal Analysis (MONA) formulation for electric circuits
[122]. This formulation uses flux linkage potentials as the primary unknowns, which are the
integrated quantities corresponding to the electric node potentials used in MNA, similar
to how the vector potential is the integrated quantity related to the electric field. Besides
the similar modeling viewpoint, the two formulations share the same generalized gradient
flow structure, which guarantees the passivity of the MONA formulation. Furthermore,
Petrov-Galerkin techniques can again be used for the systematic construction of higher-
order schemes that preserve the underlying energy balance of the system.

The main advantage of the MONA formulation over the MNA approach is that it leads
to systems of a smaller index. While MNA systems have an index ν ≤ 2, the index of
MONA systems is ν ≤ 1, which drastically simplifies analysis and numerical treatment.
The index is again determined by the circuit’s topology, with the topological conditions
being very similar to those for MNA. In fact, the index of a MONA system is typically
smaller by one compared to that of an MNA system in most cases.

A typical application of MONA is in the context of field-circuit coupling. Such multiscale
models are often used for the accurate description of power transformers or electrical
machines. The fields are typically modeled by the vector potential formulation, while
the circuit is described by the MNA approach [117, 137]. Due to the different geometric
structures of the two subsystems, the construction of passivity-preserving schemes is not
straightforward. However, when MONA is used instead, the coupled system shares a
common generalized gradient flow structure. Consequently, Galerkin methods in space
and Petrov-Galerkin type time integrators can once again be employed for the systematic
construction of higher-order schemes.
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Solutions to large-scale field-circuit coupled problems are often computationally expen-
sive. In the typical scenario, the field part of the system drastically dominates the system
size and therefore represents the bottleneck of the method. Different techniques can be
used to improve computational costs. In particular, multirate methods [117, 118] have
often been used in this context. However, it is not yet clear whether the discrete energy
balance can be preserved in this case.

Reduced models. In the case where the field subsystem is linear, the degrees of freedom
associated with the field subsystem can be eliminated in the frequency domain, leading to
an equivalent Volterra-integro-differential system with a convolution-type integral term.
Similar techniques are often used in the context of dispersive media. The size of the sys-
tem is essentially determined by the size of the circuit subsystem, which is advantageous.
However, solving this system requires an evolutionary evaluation of the convolution in-
tegral, which might become expensive for a larger number of time steps. Furthermore,
the convolution kernel is given only implicitly via its Laplace transform. In such cases,
Convolution Quadrature methods (CQ) [89, 90] provide a suitable discretization strategy.
As discussed in [39, 46], an appropriate choice of CQ method allows for the construction
of schemes such that the numerical solutions of the reduced Volterra-integro-differential
and full coupled formulations coincide. Consequently, the discrete energy balance remains
valid after discretization of the reduced system.

As previously mentioned, the evaluation of convolution integrals can become expensive.
For N time steps, the naive implementation requires O(N2) operations and O(N) active
memory to store the history of the solutions. An improved approach, called Fast and
Oblivious Convolution Quadrature (FOCQ), achieves a complexity of O(N logN) and
requires O(logN) memory. A further enhancement is based on the key observation that
FOCQ can be viewed as a particular realization of the H matrix realization technique.
With this in mind we developed a fast evolutionary and oblivious algorithm based on the
cH2 approach, which requires only O(N) operations and O(logN) memory [40]. This
approach is applicable for general Volterra-type integrals, making it useful for a large class
of systems with memory.

Structure of the thesis

The thesis is structured into three chapters, each addressing specific areas: electromagnetic
field problems, electric circuits, and systems with memory. Let us briefly overview the
content and highlight the main contributions. A detailed introduction to each discussed
topic is provided at the beginning of the corresponding chapter.

Chapter 1: Electromagnetic waves in nonlinear media

The first chapter is dedicated to the simulation of electromagnetic fields. Although the
results apply to a large class of electromagnetic problems, we restrict our analysis to
nonlinear optics and consider the wave propagation problem in nonlinear dielectric media.

We start by recalling an energy-based approach to modeling material laws, which is
the key ingredient in the derivation of power and energy balances. We present two for-
mulations based on fields e and h and e and a, respectively. For each formulation, we
discuss its structure and derive the energy transformation principle. We apply variational
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methods in space and time, derive the corresponding discrete energy balance, and discuss
implementation details. We illustrate theoretical results in a series of numerical experi-
ments and compare the methods to several well-known approaches. This part is strongly
based on our publication [48].

Finally, we also show that the presented ideas can be extended to problems with disper-
sion, which often play an important role in nonlinear optics. We discuss the Kerr-Lorentz
model in detail; however, different types of dispersive behavior can be handled analogously.
The ideas have been partially presented in [39].

Chapter 2: Electric circuits

The second chapter of the thesis is devoted to electric circuit simulation. We begin the
chapter by providing basic concepts of circuit modeling. We discuss an energy-based
concept for modeling circuit elements, which is the essential assumption to obtain power
and energy balances. Then, we recall the basic aspects of the Modified Nodal Analysis
(MNA) formulation and discuss its (port-) Hamiltonian structure.

We derive the Magnetic Oriented Nodal Analysis (MONA) formulation for electric cir-
cuits. We provide a complete index analysis and discuss its generalized gradient flow
structure, which ensures passivity and allows the construction of schemes that preserve
the underlying energy evolution principle. This part is mostly based on our publication
[122]. We also discuss coupling to the field equations in the vector potential formulation
and show that the coupled problems again exhibit this canonical structure. We consider
stranded and solid conductor models for coupling. Finally, we illustrate the theoretical
results in a series of numerical examples.

Chapter 3: Systems with memory

In the last chapter of the thesis, we discuss the numerical treatment of Volterra-integro-
differential systems. We present an evolutionary fast and oblivious algorithm for the
approximation of Volterra integrals based on the H2 technique. We also present an al-
gorithm for Volterra integrals of convolution type, where the kernel is given implicitly in
the frequency domain. We discuss the relation of the algorithm to Convolution Quadra-
ture (CQ) methods and its connection to the Fast and Oblivious Convolution Quadrature
(FOCQ) algorithm. Finally, we illustrate the theoretical results in a series of examples.
The content of this chapter is strongly based on our recent publication [40].

This part of the thesis contains rather abstract results and is not explicitly linked to
previously discussed topics and electrical engineering in general. To provide the connec-
tion, we consider a magnetic oriented field circuit coupling as one of the examples. Further
examples in electrical engineering can be found in our publications [39, 46].

Publications

The following publications were submitted during the research phase of this thesis and are
used as the basis for individual chapters.
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Chapter 1.

Electromagnetic waves in nonlinear media

Simulation of electromagnetic fields is an active area of research in electrical engineering,
which is important for many applications, such as the transmission of radio and optical
signals, induction motors, and electrical machines. This chapter discusses the modelling
and numerical discretization of problems in high-frequency, high-intensity electrodynamics
relevant in nonlinear optics. The main focus of our discussion lies in the modelling of non-
linear materials, the derivation of energy transformation principles, and the construction
of discretization schemes that preserve these principles. Before we proceed, let us briefly
motivate the topic by a linear case.

Maxwell’s equations in linear media

The mathematical description of electromagnetic phenomena is based on Maxwell’s equa-
tions [73, 129]. They represent a set of four partial differential equations, namely, Faraday’s
and Ampere’s laws

∂tb = − curl e and ∂td+ j = curlh, (1.1)

as well as Gauss’s laws divb = 0 and divd = ρ of magneto- and electrostatics. Here e
and h denote the electric and magnetic fields, d and b denote the electric and magnetic
fluxes, and j and ρ represent the electric current density and the charge distribution.

For a complete description, one must further impose material laws, which provide the
relations between the fields and the fluxes. In the simplest case of linear isotropic non-
dispersive materials, these read

d = ϵe, b = µh, and j = σe+ js, (1.2)

where constants ϵ and µ are the electric permittivity and the magnetic permeability, σ is
the electric conductivity, and js is the imposed source current. Using these relations, the
flux variables can be eliminated, and (1.1) can be written as

µ∂th = − curl e, (1.3)

ϵ∂te = curlh− σe− js. (1.4)

Power balance

The conservation or redistribution of energy is an important principle of a dynamical
system, in particular for Maxwell’s equations. With the constitutive relations defined as
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in (1.2), the electric and magnetic energy densities are given by

wel(d) =
ϵ−1

2
|d|2 and wmag(b) =

µ−1

2
|b|2.

The energy densities can also be expressed in terms of the electric and magnetic fields by
wel(ϵe) = ϵ

2 |e|
2 and wmag(µh) = µ

2 |h|
2. The change of energy stored in a domain Ω is

then given by

d

dt

∫
Ω
wel(ϵe)+wmag(µh) dx =

∫
Ω
ϵ∂te · e+ µ∂th · h dx

= −
∫
Ω
σ|e|2 dx−

∫
Ω
js · e dx−

∫
∂Ω

(e× h) · n ds(x),

which is known as Poynting theorem [73]. The three terms on the right-hand side of this
power balance correspond to the Ohmic losses, the power provided to the system through
the power source, and the power flow through the boundary. Integrating in time leads to
the corresponding balance of energy, which states that the change of energy is given by
the power flow through the boundary and the power source and eddy current losses. With
the absence of power flow through the boundary and power source, the system’s energy
does not increase over time. Hence, the system is passive [3, 87]. This relation represents
a fundamental physical property of the system, which is relevant for stability analysis and
discretization.

Vector potential formulation

Next to the formulation in terms of fields e and h, there are many other formulations
based on different quantities. In particular, the magnetic vector potential a is often used
to describe electromagnetic phenomena. With the well known relations for vector potential
b = curla and e = ∂ta, one can consider the formulation

∂ta = −e, (1.5)

ϵ∂te = curl(ν curla) + σ∂ta− js, (1.6)

where ν = µ−1 denotes the magnetic reluctivity. This formulation can also be used for the
description of electromagnetic fields. The energy densities can then be expressed in terms
of the fields e and a by wel(ϵe) = ϵ

2 |e|
2 and wmag(curla) = ν

2 | curla|
2, and the power

balance translates to

d

dt

∫
Ω
wel(ϵe)+wmag(curla) dx =

∫
Ω
ϵe · ∂te+ ν curla · curl ∂ta dx

= −
∫
Ω
σ|∂ta|2 dx+

∫
Ω
js · ∂ta dx−

∫
∂Ω

(ν curla× ∂ta) · n ds(x),

where the three summands again correspond to the power dissipated through eddy current
losses, the power supplied by the source, and the power in or outflow through the boundary.
Integrating in time yields the corresponding energy balance for this formulation.

From the analytical point of view, both formulations (1.3)–(1.4) and (1.5)–(1.6) are
hyperbolic in nature. The existence and uniqueness of solutions corresponding to initial
and boundary value problems can be shown by standard semi-group theory. [53, 82].
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Numerical methods

A variety of different discretization schemes have been applied to Maxwell’s equations.
The state-of-the-art approach for transient simulation is the finite difference time domain
(FDTD) method; see [130, 144]. This method is based on a finite difference approximation
in space and an explicit leap-frog scheme in time. It provides second-order accuracy in
space and time for smooth isotropic coefficients and orthogonal grids. Generalizations
to different time-stepping strategies and nonlinear materials have been addressed in e.g.
[19, 77, 135]. It can be shown that the approximation satisfies a discrete energy balance
equation for linear and some nonlinear system types; see e.g. [19, 74].

The finite integration technique (FIT) developed in [141] has many similarities with
the FDTD, and on rectangular grids with leap-frog as a time-stepping scheme, the two
approaches coincide [142, 143]. A severe restriction of the FDTD and FIT methods is that
their analysis relies on orthogonal Cartesian grids. The generalization to non-rectangular
grids has been addressed in [33, 34, 108, 120], however, the second-order accuracy and
even stability may be lost, in general.

For complicated geometries, the finite element methods (FEM) provides a more flexible
approach. It can be used for the construction of arbitrary high-order schemes. Finite
element methods and discontinuous Galerkin schemes for Maxwell’s equations have been
discussed e.g. in [2, 99, 101]. The efficient realization using mass lumping techniques
has been studied in [45, 108]. The variational structure of FEM approximation is very
advantageous from the energy-based perspective. As we will discuss later, a semi-discrete
power balance can be directly derived for Galerkin approximation in space with the same
arguments as on the continuous level. For time stepping, well-established leap-frog and
higher order Runge-Kutta schemes have been discussed in the literature [2, 8, 16, 18, 70].
While for linear problems the discrete energy balance can be derived for high-order Runge-
Kutta schemes, for nonlinear problems this is not possible in general. Some particular
results can be found in [2, 18].

Outline and main contributions

In this chapter, we discuss extensions of the formulations above to nonlinear materials and
their numerical treatment. The essential point of our discussion is an appropriate descrip-
tion of energy densities and energy-based modelling of material relations. Then, nonlinear
versions of the Poynting theorem and resulting energy balances can be constructed in a
similar manner. To preserve the underlying energy balance in the simulations, structure-
preserving discretization strategies are proposed. As mentioned in the introduction, the
strategies utilize the particular structures of the formulations and employ variational meth-
ods in space and time [42, 43]. We consider mixed finite element approaches for discretiza-
tion in space and discontinuous Galerkin and Petrov-Galerkin schemes in time. Using the
proposed strategies, systematic construction of arbitrary high-order schemes based on im-
plicit time stepping is possible. Under relatively general restrictions on the materials, the
discrete energy balances can then be derived.

Although the presented formalism can be applied to a relatively general class of problems
in electromagnetism, we focus on applications motivated by nonlinear optics. We discuss
the propagation of high-intensity fields through nonlinear dielectric media of Kerr type,
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which has been discussed in many publications; see e.g. [2, 16, 74]. The generalization
to electrically conducting materials is straightforward. The nonlinear magnetic problems
can be handled by analogy. After that, we discuss the extension of the approaches to
materials with dispersion. The general treatment of memory-dependent materials is not
yet settled, therefore we only consider a particular Kerr-Lorentz model [19, 103, 126]. We
use the auxiliary representation of the dispersion term, which is essential for the analysis.
The medium with Debye dispersion can be handled similarly. The contents of this chapter
are based on our publications [39, 43, 48].

1.1. Constitutive relations

A correct representation of the constitutive relations is an essential ingredient in describing
power and energy balances. In the following, we will introduce the constitutive relations
and connect them to the energies. Here we discuss only instantaneous material responses.
The generalization to memory-dependent materials, which is also a topic our interest, is
still subject to ongoing work.

Instantaneous electric and magnetic responses

We take an energy-based perspective to modelling the constitutive relations [104, 125] and
assume that there exist electric and magnetic energy densities

wel : d 7→ wel(d) ∈ R and wmag : b 7→ wmag(b) ∈ R,

which are assumed to be sufficiently smooth functions of fluxes d and b, respectively.
Then, the constitutive relations between the electric and magnetic fields and fluxes can
be defined using the energy densities by

e = w′
el(d) and h = w′

mag(b), (1.7)

which describe the instantaneous electric and magnetic responses of the medium. Here
ω′(·) is the gradient of a scalar multivariable function ω(·). The expressions wel(d) =∫ d
0 e dd and wmag(b) =

∫ b
0 h db for the electric and magnetic energy densities can be

found in classical textbooks [73, 129] on electromagnetism. The constitutive relations
defined by (1.7) justify the well-posedness of these expressions.

Inverse relations

Assuming wel and wmag are smooth, strongly convex, and coercive functionals, the inverse
relations for the constitutive laws (1.7) are then given by

d = w′
∗,el(e) and b = w′

∗,mag(h) (1.8)

where w∗,el and w∗,mag are convex conjugate functions, also known as co-energy densities;
see [23, Section 2] and [22, 112]. From this standpoint, the variables d and b are also
called energy variables, while e and h are co-energy variables. Taking the time derivative
of the inverse relations (1.8) yields

∂td = ϵ(e)∂te and ∂tb = µ(h)∂th,
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where ϵ(e) = w′′
∗,el(e) and µ(h) = w′′

∗,mag(h) are the differential permittivity and perme-
ability, respectively.

Using the relation (1.8), the energy densities wel and wmag can be expressed as functions
of the co-energy variables e and h. In the following, we denote the electric and magnetic
energy densities as functions of the fields e and h with

w̃el(e) = wel(w
′
∗,el(e)) and w̃mag(h) = wmag(w

′
∗,mag(h)), (1.9)

respectively. We further conclude that

w̃′
el(e) = ϵ(e)e and w̃′

mag(h) = µ(h)h. (1.10)

These relations (1.9) and (1.10) provide a connection between the energy densities and
incremental permittivity and permeability, and play a fundamental role in the derivation
of power balances.

Example 1.1.1 (linear medium). In the linear case, the energy densities are quadratic

functions given by wel(d) =
ϵ−1

2 |d|2 and wmag(b) =
µ−1

2 |b|2 with constant permittivity ϵ
and permeability µ. Differentiating these energy densities leads to the well-known consti-
tutive relations e = ϵ−1d and h = µ−1b. The corresponding co-energy densities are given
by w∗,el =

ϵ
2 |e|

2 and w∗,mag =
µ
2 |h|

2, which leads to inverse relations d = ϵe and b = µh,
and w′′

∗,el(e) = ϵI and w′′
∗,mag(h) = µI, where I is the identity.

Example 1.1.2 (Kerr-type medium). As the second example, we consider the nonlinear
dielectric response of a Kerr medium, which represents the main focus of this chapter.
The constitutive relation for Kerr media is often written in the form

d = ϵ0(χ̃
(1) + χ(3)|e|2)e, (1.11)

with χ̃(1) = 1 + χ(1), where χ(1) and χ(3) are the susceptibility components [2, 24]. This
expression corresponds to the inverse constitutive relation d = w

′
∗,el(e), where the co-

energy density is now given by the relation w∗,el(e) =
ϵ0
2 (χ̃

(1)|e|2 + χ(3)

2 |e|4). Since w∗,el
is strongly convex and coercive, there exists an inverse relation e = w′

el(d), where wel(d)
is the convex conjugate to w∗,el(e) and is given by wel(d) = d · e− w∗,el(e). Substituting
the relation d = w′

∗,el(e) brings us to the expression for electric energy density in terms of
the co-variable e, namely

ω̃el(e) =
ϵ0
2
(χ̃(1)|e|2 + 3χ(3)

2
|e|4). (1.12)

Hence, the constitutive relations (1.11) and expression for energy density (1.12) are con-
sistent with the energy-based modeling. The differential permittivity is then given by

ϵ(e) = ϵ0(χ̃
(1) + χ(3)|e|2 + 2χ(3)ee⊤), (1.13)

accordingly. These relations play a fundamental role in our analysis below.
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Ohm’s law

For completeness, we also discuss the electric conductivity of the media. The electric field
within an electrically conducting material induces an electric current. We assume that the
current consists of the source current js and the current jc induced by the electric field e,
given by Ohm’s law, namely

j = jc + js with jc = σ(e)e,

where σ(e) is the nonlinear conductivity of the material, which we assume to be symmetric
and positive semi-definite. Let us note that the current flow within a conductor generates
heat. The amount of heating power is given by PJoule =

∫
Ω σ(e)e · e dx. This effect is

known as Joule’s heating, resistive heating, or Ohmic heating, because of its relation to
Ohm’s law. The loss of energy to heating is often called Joule loss or Ohmic loss.

1.2. Maxwell’s equations in nonlinear dielectric media

In this section, we discuss the propagation of high-frequency electromagnetic fields in non-
linear dielectric media, which is of relevance in nonlinear optics. The governing relations
are given by Maxwell’s equations

∂td = curlh and ∂tb = − curl e. (1.14)

In high-frequency applications, the nonlinearity of a medium response is significant for
electric quantities, while the magnetic response can be assumed to be linear. As previously
mentioned, we restrict our considerations to a nonlinear electric media of Kerr type, which
is the classical example of nonlinear optic media; see e.g. [2, 24, 74]. In the following, we
assume the constitutive relations

d = ϵ0(χ̃
(1) + χ(3)|e|2)e and b = µ0h, (1.15)

where µ0 is the permittivity of vacuum and χ̃(1) = 1+χ(1), where χ(1) and χ(3) are electric
susceptibility components. Generalization to different types of instantaneous material
responses, as well as electrically conducting materials is also possible.

We now present two formulations based on the fields e and h and e and a, respectively.
We derive the balances of power and energy and discuss the construction of higher-order
schemes, utilizing the frameworks [42, 43] discussed in Section A, which preserve these
balances. Additionally, we provide some details on the numerical realization and illustrate
the theoretical results using numerical examples.

1.2.1. The e− h formulation

We start with a formulation in terms of the fields e and h. Substituting the constitutive
relations (1.15) into Faraday’s and Amprere’s laws (1.14) results in the system

ϵ(e)∂te = curlh, (1.16)

µ0∂th = − curl e, (1.17)
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where the differential permittivity ϵ(e) is given by (1.13). In the scope of this section,
we restrict our discussion to a bounded Lipschitz domain denoted by Ω, and impose the
perfect magnetic boundary condition

n× h = 0 on ∂Ω. (1.18)

The analysis below can be easily extended to other types of boundary conditions with
minor modifications. Let us further note that conducting media, i.e. σ(e) ̸= 0, can be
handled by analogy.

Electromagnetic energy

As discussed in Examples 1.1.2 and 1.1.1, the choice of incremental permittivity and
permeability corresponds to expressions for electric and magnetic energy densities

ω̃el(e) =
ϵ0
2
(χ̃(1)|e|2 + 3χ(3)

2
|e|4) and ω̃mag(h) =

µ0
2
|h|2,

which are here written in terms of the co-energy variables e and h. Furthermore, we recall
the identities

ω̃′
el(e) = ϵ(e)e and ω̃′

mag(h) = µ0h, (1.19)

which play an important role in the upcoming discussion. With

E(e,h) =
∫
Ω
w̃el(e) + w̃mag(h) dx, (1.20)

we denote the corresponding expression for energy in terms of fields e and h.

Conservation of energy

Let us first introduce some basic notation. We denote by L2(Ω) the space of square-
integrable functions and use the abbreviations ⟨v,w⟩ =

∫
Ω v ·w dx and ∥v∥ = ⟨v,v⟩ for

the L2(Ω) scalar product and the norm. By H(curl, Ω) = {w ∈ L2(Ω) : curlw ∈ L2(Ω)}
we denotes the subspace of L2(Ω) functions with square-integrable curls.

The following lemma summarizes an important variational characterization of the solu-
tion, which is the foundation of the variational approach.

Lemma 1.2.1. Let (e,h) be a sufficiently smooth solution of (1.16)–(1.18). Then

⟨ϵ(e(t))∂te(t),v⟩ = ⟨h(t), curlv⟩, (1.21)

⟨µ0∂th(t),w⟩ = −⟨curl e(t),w⟩, (1.22)

for all test functions v ∈ H(curl, Ω) and w ∈ L2(Ω) and all t ≥ 0.

Proof. The variational identity (1.22) follows directly by multiplying (1.17) with a test
function w ∈ L2(Ω) and integrating over the domain Ω. For the first identity (1.21), we
multiply (1.16) with a test function v ∈ H(curl, Ω), integrate over the domain Ω, and use
integration by parts formula

⟨curlh,v⟩ = ⟨h, curlv⟩+
∫
∂Ω

n× h · v ds,

where the last term vanishes due to the choice of boundary condition (1.18).
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Using this variational characterization of solutions, one can immediately derive a power
balance and thus show that the energy of the system is conserved over time.

Lemma 1.2.2. Let the energy be given as in (1.20). Then, any smooth solution (e,h) of
the system (1.21)–(1.22) satisfies the power balance

d

dt
E(e(t),h(t)) = 0, t > 0.

In particular, the system is passive.

Proof. Formal differentiation of the energy with respect to time yields

d

dt
E(e(t),h(t)) = ⟨∂te(t), w̃′

el(e(t))⟩+ ⟨∂th(t), w̃′
mag(h(t))⟩

= ⟨∂te(t), ϵ(e(t))e(t)⟩+ ⟨∂th(t),µ0h(t)⟩
= ⟨ϵ(e(t))∂te(t), e(t)⟩+ ⟨µ0∂th(t),h(t)⟩ = (∗).

Here we used the energy relations (1.19). Next, we use the results of Lemma 1.2.1 with
v = e(t) and w = h(t), which are admissible test functions, and obtain

(∗) = ⟨h(t), curl e(t)⟩ − ⟨curl e(t),h(t)⟩ = 0.

This already yields the desired result.

Structure of the e− h formulation

The power balance is a direct consequence of the variational principle (1.21)–(1.22) and
the choice v = e(t) and w = h(t) for the test functions. This principle holds because of
the particular port-Hamiltonian structure of the problem, namely

Q∗(u)∂tu = −A(u), (1.23)

E ′(u) = Q(u)u, (1.24)

where u = (e,h), the operator A(u) is defined in the weak sense by ⟨A(e,h), (v,w)⟩ =
⟨h, curlv⟩−⟨curl e,w⟩, the operator Q(u) is given by Q(e,h) = Q(e,h)∗ = diag(ϵ(e),µ0),
and the derivative of the energy is given by ⟨E ′(e,h), (v,w)⟩ = ⟨ϵ(e)e,v⟩+ ⟨µ0h,w⟩. The
power balance can be alternatively derived at the abstract level

d

dt
E(u(t)) = ⟨∂tu, E ′(u)⟩ = ⟨∂tu,Q(u)u⟩ = ⟨Q∗(u)∂tu,u⟩ = −⟨A(u)u,u⟩.

The variational discretization strategy for a problem that preserves the energy evolu-
tion principle has been proposed in [42]. Some important details are summarized in
Appendix A.1. As we will see in Chapter 2, problems of the same structure also arise in
electric circuits modelling. We now adopt the strategy and discuss the discretization of
the considered problem.
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1.2.2. Discretization of the e− h formulation

Let Wh ⊂ H(curl, Ω) and Qh ⊂ L2(Ω) denote some finite-dimensional subspaces and let
T = {tn : 0 ≤ n ≤ N} be a sequence of discrete time steps tn = nτ with τ = T/N . With
In = [tn−1, tn] we denote the n-th time interval and with Pk(I

n;V) we denote the space of
polynomials with values in V. By Pk(T ;V) we denote the space of piece-wise polynomials,
i.e., the functions whose restrictions to any interval In lie in Pk(I

n;V). We further use
(∗)|tn to abbreviate the evaluation of (∗) at time t = tn. We consider the approximation
of the problem (1.16)–(1.18) by the following method.

Problem 1.2.3. Let initial values e0h ∈Wh and h0
h ∈ Qh be given. Then, for 1 ≤ n ≤ N ,

we seek for enh ∈ Pk(I
n;Wh) and hnh ∈ Pk(I

n;Qh) such that∫
In
⟨ϵ(enh)∂tenh,vh⟩ − ⟨hnh, curlvh⟩ dt = ⟨ϵ(enh)(en−1

h − enh),vh⟩|tn−1 (1.25)∫
In
⟨µ0∂thnh,wh⟩+ ⟨curl enh,wh⟩ dt = ⟨µ0(hn−1

h − hnh),wh⟩|tn−1 (1.26)

holds for all test functions vh ∈ Pk(I
n;Wh) and wh ∈ Pk(I

n;Qh).

This scheme is based on a Galerkin approximation in space and a discontinuous method
in time. The energy balance provided by this scheme is summarized in the following result.

Lemma 1.2.4. Let (enh,h
n
h)n≥0 denote a solution of Problem 1.2.3. Then

E(enh(tn),hnh(tn)) ≤ E(emh (tm),hmh (tm)) (1.27)

holds for all time steps 0 ≤ m ≤ n ≤ N .

Proof. The following proof is a special case of [42, Theorem 4] which for convenience is
presented in Appendix A.1. We here derive the result for the particular problem under
investigation. We first consider the case m = n − 1. The change of energy between two
consecutive time steps can be decomposed as follows

E(enh(tn),hnh(tn))− E(en−1
h (tn−1),hn−1

h (tn−1))

= (E(enh(tn),hnh(tn))− E(enh(tn−1),hnh(t
n−1)))

+ (E(enh(tn−1),hnh(t
n−1))− E(en−1

h (tn−1),hn−1
h (tn−1)))

= (i) + (ii).

Using the fundamental theorem of calculus, we obtain

(i) =

∫
In

d

dt
E(enh(t),hnh(t)) dt

=

∫
In
⟨∂tenh(t), ω̃′

el(e
n
h(t))⟩+ ⟨∂thnh(t), ω̃′

mag(h
n
h(t))⟩ dt (1.28)

=

∫
In
⟨∂tenh(t), ϵ(enh(t))enh(t)⟩+ ⟨∂thnh(t),µ0hnh(t)⟩ dt

=

∫
In
⟨ϵ(enh(t))∂tenh(t), enh(t)⟩+ ⟨µ0∂thnh(t),hnh(t)⟩ dt.
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Here we used the relations for energy densities w̃′
el(e) = ϵ(e)e and w̃′

mag(h) = µ0h, which
hold for any e and h. By the variational scheme (1.25)-(1.26) with vh = enh and wh = hnh,
which are admissible test functions, we further conclude

(i) = ⟨ϵ(enh)(en−1
h − enh), e

n
h⟩|tn−1 + ⟨µ0(hn−1

h − hnh),h
n
h⟩|tn−1

= −⟨ϵ(enh)enh, (enh − en−1
h )⟩|tn−1 − ⟨µ0hnh, (hnh − hn−1

h )⟩|tn−1 .

We further use the convexity of the energy density to obtain

(ii) = E(enh(tn−1),hnh(t
n−1))− E(en−1

h (tn−1),hn−1
h (tn−1))

≤ ⟨ϵ(enh)enh, enh − en−1
h ⟩|tn−1 + ⟨µ0hnh,hnh − hn−1

h ⟩|tn−1 .

Adding (i) and (ii) together, we directly conclude that (i) + (ii) ≤ 0, which proves the
assertion for m = n− 1. The general case m < n follows directly by induction.

Remark 1.2.5. We can only guarantee that the energy does not increase over time,
while the analytic problem is energy conserving. The dissipative nature of discontinuous
Galerkin and the related implicit Euler and RadauIIA schemes are well known; see e.g.
[49]. However, for smooth bounded solutions, we expect the dissipation to become small for
sufficiently accurate discretizations, particularly when high-order time-stepping schemes
are employed.

Remark 1.2.6. The scalar product ⟨·, ·⟩ can be replaced by ⟨·, ·⟩h resulting from inexact
integration using a quadrature rule. Then, the energy balance (1.27) can also be shown for
the perturbed energy Eh(·, ·), which is computed using the same quadrature rule. However,
the exact evaluation of the time integrals

∫
In⟨ϵ(e

n
h)∂te

n
h,vh⟩ dt and

∫
In⟨µ0∂th

n
h,wh⟩ dt is

crucial for the proof of Lemma 1.2.4. Otherwise, the relation (1.28) would not hold in
general. The other integral terms can be approximated using a fixed quadrature rule,
without losing the energy-conserving property of the discretization.

The presented discretization strategy (1.25)–(1.26) represents a relatively general and
flexible approach. Let us make some remarks on possible numerical realizations.

Finite element discretization in space

We use mixed finite element methods for the discretization in space. The semi-discretization
of problem (1.21)–(1.22) using an appropriate method leads to a system of the form

Me(e(t))∂te(t) = Ch(t), (1.29)

Mh∂th(t) = −C⊤e(t), (1.30)

where e(t) and h(t) are coefficient vectors, and C, Mh, andMe(e(t)) are the system matrices.
In our numerical tests, we consider simplified problems in one and two spatial dimensions.
For completeness, we now briefly provide an example of a possible realization in 3D.

Example 1.2.7. Let Th = {K} denote a decomposition of the domain Ω into tetrahedra.
We denote by Pp(K) the space of polynomials of degree at most p and by P hp (K) we denote
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the space of homogeneous polynomials of degree exactly p over the element K. Then a
suitable pair of discrete subspaces is given by

Wh = {w ∈ H(curl, Ω) : w|K ∈ Np(K) for all K ∈ Th},
Qh = {q ∈ L2(Ω) : q|K ∈ Pp(K)3 for all K ∈ Th},

where Np(K) = Pp(K)3⊕{x×P hp (K)3} denotes the Nedelec space [99, 102]. In the lowest
order case a polynomial w ∈ N0(K) has the form w(x) = α+x×β with constant vectors
α and β. Now let {ϕk}k ⊂ Wh and {ψk}k ⊂ Qh denote sets of basis functions for the
finite dimensional subspaces Wh and Qh. The semi-discrete solutions eh(t) ∈ Wh and
hh(t) ∈ Qh can be expanded as eh(t) =

∑
k ek(t)ϕk and hh(t) =

∑
k hk(t)ψk where {ek}k

and {hk}k denote the corresponding coefficients. Then, the finite element discretization
leads to a system of differential equations (1.29)-(1.30) with

(Me(e))ij = ⟨ϵ(
∑
l

elϕl)ϕj ,ϕi⟩, (Mh)ij = ⟨µ0ψj ,ψi⟩, and (C)ij = ⟨curlϕi,ψj⟩.

Since the nonlinear terms consist of polynomial functions, the integration can be carried
out by an appropriate quadrature rule, possibly inexact; see Remark 1.2.6. In particular,
mass lumping techniques can be considered; see e.g. [44, 108]. For more details on Nedelec
spaces and the construction of basis functions, we refer to [17, 100].

Discontinuous Galerkin discretization in time

Next, we discuss the construction of discontinuous Galerkin time-stepping schemes. Since
we consider several problems of the canonical structure (1.23)–(1.24), it is convenient to
have a unified implementation for the problems of this type. For this reason, we write the
problem (1.29)–(1.30) in a abstract form

Q(u(t))⊤∂tu(t) + A(u(t)) = 0, (1.31)

where u(t) = (e(t), h(t)), A(u) = Ju, and matrices Q(u(t))⊤ and J are given by

Q(u(t))⊤ =

(
Me(e(t)) 0

0 Mh

)
and J =

(
0 −C
C⊤ 0

)
.

The scheme (1.25)–(1.26) can be equivalently written as follows: For a given u0 ∈ Rd we
seek un ∈ Pk(I;Rd), 1 ≤ n ≤ N , such that∫

In

[
Q(un(t))⊤∂tu

n(t) + A(un(t))
]
v(t) dt = (Q(un)⊤(un−1 − un)v)|t0 (1.32)

for all v ∈ Pk(I
n;R). Note that we consider scalar-valued test functions, which is sufficient.

Example 1.2.8. Consider the scheme for k = 0. For u ∈ P0(T ;Rd), let un ∈ Rd denote
the constant value of u on the interval In. Then, the numerical scheme (1.32) becomes

Q(un)⊤
un − un−1

τn
+ A(un) = 0.

Therefore, the lowest order scheme corresponds to the implicit Euler method.
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Remarks on implementation

For the implementation of higher-order schemes, we take a straightforward approach. For
simplicity, we now consider only a single time step, i.e. I = [t0, t1]. We denote the time
step by τ = t1 − t0 and use the abbreviation u = u1 ∈ Pk(I;Rd). Let ϕj(t) ∈ Pk(I;R)
denote the basis of the trial space. We now make the expansion assumptions

u(t) =
k∑
j=0

ujϕj(t) and ∂tu(t) =
k∑
j=0

uj∂tϕj(t) ∀t ∈ I,

where uj ∈ Rd are vector-valued coefficients. For the evaluation of the integrals, we utilize
a numerical quadrature. Now let (wℓ, ξℓ) denote the weights and points of an appropriate
quadrature rule and let ϕ̂j denote the basis functions on the reference element Î = [0, 1].
We now make the following denotation

γℓj = ϕ̂j(ξℓ), αℓj = ∂tϕ̂j(ξℓ), βj = ϕ̂j(1), and θj = ϕ̂j(0).

With the introduced notation, the numerical solution u1 = u(t1) is the solution of the
algebraic problem

L∑
l=0

wℓ

[
Q(Uℓ)

⊤U′
ℓ + τA(Uℓ)

]
γℓi + Q(U0)⊤(U0 − u0) = 0, 0 ≤ i ≤ k,

Uℓ =
k∑
j=0

γℓjuj , U′
ℓ =

k∑
j=0

αℓjuj , U0 =
k∑
j=0

θjuj , u1 =
k∑
j=0

βjuj .

For the solution of the algebraic system, we use Newton’s method. The expression for the
Jacobian can be constructed analytically by differentiation of individual terms.

An appropriate choice of a quadrature rule is crucial for our purposes. As mentioned in
Remark 1.2.6, it is essential that the energy-related integrals, i.e. the first term in (1.32),
are evaluated exactly. Since the permittivity ϵ(·) is quadratic, the chosen quadrature rule
must be exact for polynomials of degree 4k − 1, where k is the polynomial degree of the
approximation. For general problems with non-polynomial nonlinearities, the quadrature
has to be chosen such that the integration error becomes insignificant. Some particular
cases will be discussed below.

Here, we have used the same quadrature rule for the integration of both terms in (1.32).
However, this is not necessary. For the evaluation of the second term, a lower-order,
possibly inexact quadrature rule can be used. When a (k + 1)-node quadrature rule
is employed, Lagrange polynomials at the quadrature nodes can be chosen as the basis
functions ϕ̂j . This leads to γ

ℓ
i = δi,ℓ, and we obtain

τ

L∑
l=0

wℓ

[
A(Uℓ)

]
γℓi = τwiA(ui)ui.

This slightly simplifies the implementation. Since the term A(u) = Ju is linear, it can
be integrated exactly using a (k + 1)-node Radau quadrature rule. Therefore, the Radau

28



quadrature is a convenient choice for linear systems. Furthermore, when the right Radau
quadrature is employed, the resulting schemes can be shown to be equivalent to RadauIIA
collocation methods; see e.g. [4, 93, 134].

In this thesis, we focus solely on nonlinear systems. Therefore, it is necessary to use
a higher-order quadrature for integration. In numerical tests, we employ an appropriate
higher-order Gauss quadrature. We use Lagrange interpolation polynomials at the Gauss-
Lobatto nodes as the basis, which simplifies the implementation of the jump terms slightly;
see e.g. [83, 134]. For further details on the construction of different schemes and their
relations to collocation and Runge-Kutta methods, we also refer to [71, 95, 133].

One of the drawbacks of this approach is the numerical dissipation, especially for low-
order schemes like implicit Euler, where the dissipation can become significant. This is
particularly important for energy-conserving systems like the one we consider, as it violates
the underlying physics. To address this issue, we propose a different strategy based on
the e − a formulation. This approach enables the construction of arbitrarily high-order
schemes that unconditionally preserve the energy of the system.

1.2.3. The e− a formulation

The alternative energy-preserving approach is based on the magnetic vector potential a.
The following lemma defines the vector potential and proves its important properties.

Lemma 1.2.9. Let (e,b) be smooth functions satisfying Faraday’s law ∂tb = − curl e.
Further, let the magnetic vector potential be defined by a(t) = a0−

∫ t
0 e(s)ds with curla0 =

b(0). Then the following relations hold

e(t) = −∂ta(t) and b(t) = curla(t), ∀t ≥ 0.

Proof. The first equality is trivial. Substituting this equality into Faraday’s law leads to
∂tb(t) = − curl e(t) = curl ∂ta(t). Integrating both sides with respect to time yields

b(t) = b(0) +

∫ t

0
∂tb(t) dt = curla0 +

∫ t

0
curl ∂ta(t) dt = curla(t),

which completes the proof.

With the relation b = curla, we can write the constitutive equation b = µ0h in the
form h = ν0 curla, where ν0 = µ−1

0 denotes the magnetic reluctivity of vacuum. Substi-
tuting this relation into Ampere’s law ∂td = curlh and using the displacement current
representation ∂td = ϵ(e)∂te, we can reformulate the system (1.16)–(1.17) equivalently as

−ϵ(e)∂ta = ϵ(e)e, (1.33)

ϵ(e)∂te = curl(ν0 curla). (1.34)

Note that the particular choice of the multiplication factor in the first equation is necessary
for the energy-based structure of the problem and will become clear below. The perfect
magnetic boundary condition (1.18) then translates to

n× (ν0 curla) = 0 on ∂Ω. (1.35)

We call (1.33)–(1.35) the e–a formulation of our problem.
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Electric and magnetic energy densities

We also rewrite the energy densities in terms of the fields e and a, which are given by

w̃el(e) =
ϵ0
2
(χ̃(1)|e|2 + 3χ(3)

2
|e|4) and wmag(curla) =

ν0
2
| curla|2dx. (1.36)

The expression for the electric energy density is given as before. The expression for the
magnetic energy density (1.36) can be obtained by substituting b = curla in ωmag(b) and
following Example 1.1.1 with ν0 = µ−1

0 . With

H(e,a) =

∫
Ω
w̃el(e) + wmag(curla) dx, (1.37)

we denote the energy in terms of system variables e and a.

Conservation of electromagnetic energy

In the spirit of the previous section, we start with the variational characterization of the
solution, which is used to prove the conservation of energy and builds the foundation for
discretization in space, which we consider below.

Lemma 1.2.10. Let (e,a) be a sufficiently smooth solution of (1.33)–(1.35). Then

−⟨ϵ(e(t))∂ta(t),v⟩ = ⟨ϵ(e(t))∂te(t),v⟩, (1.38)

⟨ϵ(e(t))∂te(t),w⟩ = −⟨ν0 curla(t), curlw⟩, (1.39)

for all v,w ∈ H(curl, Ω) and t ≥ 0.

Proof. The variational identity (1.38) is a direct consequence of multiplying (1.33) by a
test function v ∈ H(curl, Ω) and integrating in time. The second identity follows from
multiplying (1.34) by a test function w ∈ H(curl, Ω), integrating in space, and using the
integration by parts formula

⟨curl(ν0 curla),w⟩ = ⟨ν0 curla, curlw⟩+
∫
∂Ω

n× (ν0 curla) ·w ds,

where the last term vanishes due to the choice of boundary condition (1.35).

Using the variational identities (1.38)–(1.39), we now derive the power balance and
prove the energy conservation for this formulation.

Lemma 1.2.11. Let the energy be given as in (1.37). Then, any smooth solution (e,a)
of the problem (1.33)–(1.35) satisfies the power balance

d

dt
H(e(t),a(t)) = 0, t ≥ 0.

Therefore, the energy of the system is conserved at all times and the system is passive.
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Proof. By formal differentiation of the energy functional, we obtain

d

dt
H(e(t),a(t)) = ⟨w̃′

el(e(t)), ∂te(t)⟩+ ⟨w′
mag(curla(t)), curl ∂ta(t)⟩

= ⟨ϵ(e(t))e(t), ∂te(t)⟩+ ⟨ν0 curla(t), curl ∂ta(t)⟩ = (∗),

where we used w′
el(e) = ϵ(e)e and w′

mag(b) = ν0b. Next, we use the result of Lemma 1.2.10
with v = ∂te(t) and w = ∂ta(t), which are admissible test functions, and obtain

(∗) = −⟨ϵ(e(t))∂ta(t), ∂te(t)⟩+ ⟨ϵ(e(t))∂te(t), ∂ta(t)⟩ = 0.

The conservation of energy follows immediately by integration in time.

Structure of the e− a formulation

In the derivation of the power balance, we simply used variational identities (1.38)–(1.39)
with test functions v = ∂te and w = ∂ta. This is again a direct consequence of the
particular structure of the formulation; while the e − h formulation has the generalized
port-Hamiltonian structure, the e − a formulation (1.33)–(1.34) can be written as an
abstract generalized Gradient system of the form

C(u)∂tu = −H(u), (1.40)

where u(t) = (e(t),h(t)), the operator C is given by

C(u) =

(
0 −ϵ(e)
ϵ(e) 0

)
,

and the energy functional is defined by ⟨H′(e,a), (v,w)⟩ = ⟨ϵ(e)e,v⟩+ ⟨ν0 curla, curlw⟩.
For problems of this structure, the power balance can then be directly derived as follows.

d

dt
H(u(t)) = ⟨∂tu,H′(u)⟩ = −⟨∂tu,C(u)∂tu⟩.

A variational discretization strategy for problems of this class that preserves the balance of
power has been proposed in [43]. Some important details are summarized in Appendix A.2.
We now adopt the strategy and discuss the discretization of the considered problem.

Let us further note that at this point, it should become clear why the specific multipli-
cation factor in (1.16) is chosen. This factor is chosen such that the right-hand side of the
system (1.16)–(1.17) corresponds to the derivatives of the energy densities.

1.2.4. Discretization of the e− a formulation

We denote by Wh ⊂ H(curl, Ω) a finite-dimensional subspace and adopt the notation of
Section 1.2.2. For the discretization of (1.33)–(1.35), we consider the following approach.

Problem 1.2.12. Let initial values e0h,a
0
h ∈ Wh be given. Then, for 1 ≤ n ≤ N find

enh,a
n
h ∈ Pk+1(I

n;Wh) with enh(t
n−1) = en−1

h (tn−1) and anh(t
n−1) = an−1

h (tn−1), such that

−
∫
In
⟨ϵ(enh)∂tanh, ṽh⟩ dt =

∫
In
⟨ϵ(enh)enh, ṽh⟩ dt, (1.41)∫

In
⟨ϵ(enh)∂tenh, w̃h⟩ dt =

∫
In
⟨ν0 curlanh, curl w̃h⟩ dt, (1.42)

for all test functions ṽh, w̃h ∈ Pk(T ;Wh).
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The method (1.41)–(1.42) corresponds to the Galerkin approximation of (1.38)–(1.39) in
space together with the Petrov-Galerkin approach in time [72, 95]. Let us emphasize that
in contrast to the previous approach, we are now looking for a solution that is continuous in
time, and the test functions might be discontinuous and have a smaller by one polynomial
degree. Thus, the method is indeed a Petrov-Galerkin approach. The energy-conserving
property of this approximation is summarized in the following lemma.

Lemma 1.2.13. Let (enh,a
n
h)n≥0 denote a solution of Problem 1.2.12. Then

H(enh(t
n),anh(t

n)) = H(emh (t
m),amh (t

m)), (1.43)

for 0 ≤ m ≤ n ≤ N . Thus, the discrete energy is conserved exactly for all time steps.

Proof. The proof is a direct consequence of [43, Theorem 2] that has been presented in
Appendix A.2. For the convenience of the reader, we show the proof for this particular
problem. First, let m = n− 1. By the fundamental theorem of calculus, we obtain

H(enh(t
n),anh(t

n))−H(enh(t
n−1),anh(t

n−1)) =

∫
In

d

dt
H(enh(t),a

n
h(t)) dt

=

∫
In
⟨w̃′

el(e
n
h(t)), ∂te

n
h(t)⟩+ ⟨w′

mag(curla
n
h(t)), curl ∂ta

n
h(t)⟩ dt (1.44)

=

∫
In
⟨ϵ(enh(t)), ∂tenh(t)⟩+ ⟨ν0 curlanh(t), curl ∂tanh(t)⟩ dt = (∗),

where we used w̃′
el(e) = ϵ(e)e and w′

mag(b) = ν0b, which hold for any argument. Now,
we use the scheme (1.41)–(1.42) with ṽh = ∂te

n
h and w̃h = ∂ta

n
h, which are admissible test

functions, and conclude

(∗) = −
∫
In
⟨ϵ(enh(t))∂tanh(t), ∂tenh(t)⟩ − ⟨ϵ(enh(t))∂tenh(t), ∂tanh(t)⟩ dt = 0.

Due to the continuity of solutions enh(t
n−1) = en−1

h (tn−1) and anh(t
n−1) = an−1

h (tn−1), we
further conclude that

H(enh(t
n),anh(t

n)) = H(enh(t
n−1),anh(t

n−1)) = H(en−1
h (tn−1),an−1

h (tn−1)),

which proves the statement for m = n− 1. The case m < n− 1 follows by induction.

Remark 1.2.14. Let us emphasize that the scalar product ⟨·, ·⟩ can be replaced by ⟨·, ·⟩h
that comes from inexact integration by a quadrature rule. The energy-conserving principle
(1.43) remains valid for the perturbed energy Hh(·, ·), which is computed with the same
quadrature rule. The exact evaluation of time integrals associated with the energy term,
namely

∫
In⟨ϵ(e

n
h)e

n
h, ṽh⟩ dt and

∫
In⟨ν0 curla

n
h, curl w̃h⟩ dt, is essential for the relation (1.44)

to hold. The other time integrals can be approximated by a fixed quadrature rule.

Similarly to the approach of Section 1.2.2, the scheme (1.41)–(1.42) represents a rather
general framework. Remarks on a possible numerical implementation are given below.
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Finite element discretization in space

We again use the finite element approach for the Galerkin approximation in space. How-
ever, now we use the same spaces in both variables. A semi-discretization of the system
(1.33)–(1.34) by an appropriate finite element method leads to a finite-dimensional system
of differential equations

−Me(e(t))∂ta(t) = Me(e(t))e(t), (1.45)

Me(e(t))∂te(t) = Kνa(t), (1.46)

where e(t) and a(t) are the coefficient vectors and Me(e(t)) and Kν are the system matrices.

Example 1.2.15. Following the Example 1.2.7, one can again consider discrete subspace

Wh = {w ∈ H(curl, Ω) : w|K ∈ Np(K) for all K ∈ Th},

where Np is the Nedelec space. With the appropriate choice of basis {ϕk}k ⊂ Wh,
the discretization of (1.38)–(1.38) leads to the system (1.45)–(1.46) with (Me(e))ij =
⟨ϵ(
∑

l elϕl)ϕj ,ϕi⟩ and (Kν)ij = ⟨ν0 curlϕj , curlϕi⟩. The inexact realization of the scalar
product using e.g. mass lumping techniques can also be considered; see Remark 1.2.14.

Petrov-Galerkin discretization in time

In this thesis, we consider several problems of the canonical structure (1.40). Therefore,
we again consider a unified implementation strategy. We write the system (1.45)–(1.46)
in the abstract form

C(u(t))∂tu(t) + H′(u(t)) = 0, (1.47)

where u(t) = (e(t), a(t)) is the vector with coefficients, C(u(t)) is a skew-symmetric matrix

C(u(t)) =

(
0 Me(e(t))

−Me(e(t)) 0

)
and H′(u(t)) =

(
M(e(t))e(t)

Ka(t)

)
.

The time stepping scheme (1.41)–(1.42) can then be formulated as follows: For given
un(tn−1) we seek for un ∈ Pk+1(I

n;Rd) such that∫
In

[
C(un(t))∂tu

n(t) + H′(un(t))
]
ṽ(t) dt = 0, (1.48)

holds for all ṽ ∈ Pk(I
n;R) and all 1 ≤ n ≤ N . We again use scalar-valued test functions;

see e.g. [43, 95]. The relation (1.48) is then a d− dimensional system of equations.

Example 1.2.16. Consider the scheme for k = 0. In this case, since the test function
v̄ ∈ P0(I

n;R) is constant over the time interval In, the multiplication with the test function
can be neglected. Using the simplified notation un = u(tn), the scheme can be written as∫

In
C(u(t)) dt

un − un−1

τn
+

∫
In

H′(u(t)) dt = 0

The method coincides with a discrete gradient approach; see e.g. [31, 58].
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Remarks on implementation

For further discussion on the construction of higher-order schemes, we use a simplified
notation. With I = [t0, t1] we denote the step of size τ and write u = u1 ∈ Pk(I;Rd). Now
let ψj(t) ∈ Pk(I

n;R) denote the basis of the test space. By expanding ∂tu ∈ Pk(I
n;R)

with respect to this basis, we obtain

∂tu(t) =
k∑
j=0

U′
jψj(t) and u(t) = u0 +

k∑
j=0

U′
j

∫ t

0
ψj(τ) dτ , ∀t ∈ I, (1.49)

where U′
j ∈ Rd, j = 0, . . . , k are the vector valued coefficients. For the evaluation of the

integral term in (1.48), we utilize numerical quadrature. Let (wℓ, ξℓ) be weights and points
of a quadrature rule and ψ̂j denote the basis functions on the reference interval Î = [0, 1].
Furthermore, we use the following notation

γℓj = ψ̂j(ξℓ), αℓj =

∫ ξℓ

0
ψ̂j(t) dt and βj =

∫ 1

0
ψ̂j(t) dt.

Substituting the ansatz (1.49) in the formulation (1.48), transforming to the reference
interval, and replacing the integral with the quadrature rule leads to the formulation

L∑
ℓ=0

wℓ

[
C(Uℓ)

k∑
j=0

γℓjU
′
j + H′(Uℓ)

]
γℓi = 0, 0 ≤ i ≤ k, (1.50)

Uℓ = u0 + τ

k∑
j=0

αℓjU
′
j , u1 = u0 + τ

k∑
j=0

βjU
′
j .

The problem represents a nonlinear system of size (k + 1)d, which can be solved by e.g.
Newton method. The expression for the derivative operator can be constructed analytically
by derivation of individual terms.

An appropriate choice of a quadrature rule is crucial for our purposes. As mentioned in
Remark 1.2.14, it is essential that the energy-related term is integrated exactly. Since the
permittivity ϵ(·) is quadratic, the chosen quadrature rule must be exact for polynomials
of degree 4k+3, where k+1 and k are the polynomial orders of the trial and test spaces.

Let us further note that we used the same quadrature for both summands, which is
not necessary. Moreover, the inexact realization of the first term often leads to simplified
schemes. A particular simplification can be achieved when a (k+ 1)− node quadrature is
chosen. By taking the Lagrange interpolation basis with respect to the quadrature nodes,
we conclude that γℓi = δiℓ and the first term in (1.50) reads

k∑
ℓ=0

wℓ

[
C(Uℓ)

k∑
j=0

γℓjU
′
j

]
γℓi = wiC(Ui)U

′
i.

The resulting scheme is then an average vector field collocation method [31, 58, 107]. These
methods are perfectly well suited for our purposes. When both terms are approximated
in this sense, the scheme becomes a Runge-Kutta collocation method. In particular,
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LobattoIIIA schemes can be obtained from the inexact realization of all terms by the
corresponding Lobatto quadrature rules.

In this thesis, we utilize the Lagrange interpolation polynomials at Lobtatto nodes as a
basis and use a Lobatto quadrature rule of sufficiently higher order for the integration.

1.2.5. Numerical illustration

To illustrate the theoretical results of the section and investigate the resulting discretiza-
tion schemes, we provide two numerical examples. First, we consider a one-dimensional
problem, as often done in the related literature; see e.g. [16, 18]. We demonstrate the
energy-diminishing and energy-conserving properties of the discretizations, discuss the
convergence of the schemes, and compare the methods to FDTD approaches of [94]. In
the second example, we consider a transverse magnetic regime. We briefly validate the
energy and convergence-related results and compare the efficiency of the schemes to the
FDTD approach of [74]. Here and in the following, we consider scaled problems as is often
done in related literature. The parameters are dimensionless. The constant corresponding
to the nonlinear factor is increased for better visualization of nonlinear effects.

1D optical pulse propagation

The one-dimensional problem is based on the assumptions that the fields are of the form
e = (ex, 0, 0) and h = (0,hy, 0), and depend only on the propagation direction z, which
leads to curl e = (0, ∂zex, 0) and curlh = (−∂zhy, 0, 0). We consider the formulation in
terms of ex and hy as follows

ϵ(ex)∂tex = −∂zhy, µ0∂thy = −∂zex.

By similar considerations, we conclude that a = (ax, 0, 0) and depends only on z. Then,
the formulation in terms of ex and ax reads

−ϵ(ex)∂tax = ϵ(ex)ex, ϵ(ex)∂tex = −∂z(ν0∂zax).

For simplicity, we set ϵ0 = µ0 = ν0 = χ̃(1) = 1 and χ(3) = 0.1. We choose the initial
values hy(0) = ax(0) = 0 and ex(0) = exp(−100z2). We consider a computational domain
Ω = [0, 1] and assume hy = 0 and ∂zax = 0 on ∂Ω, respectively. The snapshots of the
propagation of the electric field ex are illustrated in Figure 1.1. We also plot the solution
of the linear problem with χ(3) = 0 with a dashed line to highlight the nonlinear effect.
We observe the formation of the characteristic kink-solution, which can be verified at the
analytical level; see e.g. [16, 106].

Discretization in space. We denote by Th an equidistant mesh with grid points xi = ih.
Further, we utilize the piecewise polynomial subspaces Wh = Pp+1(Th)∩H1(Ω) and Qh =
Pp(Th) of degree p+ 1 and p for spatial discretization. Moreover, we choose the Lagrange
polynomials on Gauss Lobatto Legendre nodes as basis functions and consider an inexact
realization of the scalar product ⟨·, ·⟩h resulting from the corresponding Gauss quadrature
rule. The same quadrature rule is also used in the energy evaluation. As mentioned in
Remark 1.2.6 and Remark 1.2.14, the underlying energy principles remain valid.
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Figure 1.1.: Red solid: Numerical solution e(tn) at times tn = 0, 0.2, 0.4, 0.6 obtained
by the lowest order scheme (1.41)–(1.42). Black dashed: the corresponding
solution of the linear problem, i.e., with χ(3) = 0 for comparison.

Discretization in time. For the time integration, we write the semi-discrete problems in
abstract forms (1.31) and (1.47). We use Lagrange interpolation polynomials associated
with Gauss Lobatto nodes as the basis in both approaches. For details on implementa-
tion, we refer to Sections 1.2.2 and 1.2.4. Since the nonlinearity is polynomial, the exact
evaluations of time integrals can be achieved by a quadrature rule. For the e− h system,
the quadrature has to integrate polynomials of degree 4k − 1 exactly, while for the e− a
approach, the quadrature has to be exact for polynomials of degree 4k + 3. We use the
Gauss quadrature with 2k and 2k+2 nodes, respectively. The resulting nonlinear systems
are solved by the Newton method with tolerance 10−12.

Convergence of the e− h scheme. We applied the scheme (1.25)–(1.26) to the e− h
formulation with different polynomial degrees in space and time. In Tables 1.1 and 1.2, we
summarize the observed errors and convergence rates for polynomial degrees p = 1, 2, 3 of
approximation in space and degree k = 0, 1, 2 of approximation in time. The errors are

h p = 1 p = 2 p = 3

err × 10−1 e.o.c. err × 10−2 e.o.c. err × 10−3 e.o.c.

0.05 0.248186 — 0.387722 — 0.417564 —
0.025 0.071272 1.80 0.003319 3.54 0.018346 4.50
0.0125 0.018438 1.95 0.000299 3.47 0.000950 4.27
0.00625 0.004641 1.99 0.000034 3.11 0.000058 4.02

Table 1.1.: Convergence in space of the method (1.25)–(1.26) for the e− h formulation.

measured by err = max0≤n≤N ∥enx,h(tn)− enx,h/2(t
n)∥h/2, where ex,h/2 denotes the solution
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τ k = 0 k = 1 k = 2

err × 10−1 e.o.c. err × 10−2 e.o.c. err × 10−3 e.o.c.

0.025 0.257057 — 0.280420 — 0.550798 —
0.0125 0.171025 0.61 0.038358 2.87 0.019199 4.84
0.00625 0.100673 0.76 0.004879 2.98 0.000610 4.97
0.003125 0.054697 0.88 0.000612 3.00 0.000019 5.00

Table 1.2.: Convergence in time of the method (1.25)–(1.26) for the e− h formulation.

on the uniformly refined mesh Th/2 with size h/2. With ∥·∥h/2 we denote the approximation
of the L2 norm, which is computed by the numerical quadrature rule on the refined mesh
Th/2. We observe convergence O(hp+1) in space, which is known for linear problems; see
[35, 56]. The time discretization errors are computed by err = max0≤n≤N ∥enx,h(tn)−e2nx,h∥h,
where e2nx,h denotes a discrete solution on the uniformly refined grid, with τ̃ = τ/2. We

observe super convergence O(τ2k+1) in time. The convergence results coincide with the
results for linear problems and, in particular, with related Radau schemes with s = k + 1
stages; see [93, 134].

Convergence of the e− a scheme. In Table 1.3 and 1.4, we state the errors obtained
by the method (1.41)–(1.42) for different approximation orders p and k in space and
time. For error computations, we use the same expressions as previously. We observe the
convergence O(hp+1) in space and O(τ2k+2) in time. This super convergence in time has
been obtained in [10, 95] for different problems and coincides with that of related Lobatto
schemes.

h p = 1 p = 2 p = 3

err × 10−3 e.o.c. err × 10−3 e.o.c. err × 10−3 e.o.c.

0.05 0.412735 — 0.297889 — 0.277589 —
0.025 0.127333 1.70 0.022976 3.69 0.011844 4.55
0.0125 0.033235 1.94 0.002874 2.99 0.000747 3.99
0.00625 0.008372 1.99 0.000359 3.00 0.000046 3.99

Table 1.3.: Convergence in space of the method (1.41)–(1.42) for the e− a formulation.

τ k = 0 k = 1 k = 2

err × 10−1 e.o.c. err × 10−3 e.o.c. err × 10−4 e.o.c.

0.05 0.801343 — 0.611080 — 0.368882 —
0.025 0.226645 1.82 0.040060 3.93 0.006549 5.81
0.0125 0.057709 1.97 0.002538 3.98 0.000108 5.93
0.00625 0.014537 1.99 0.000160 3.98 0.000002 5.96

Table 1.4.: Convergence in time of the method (1.41)–(1.42) for the e− a formulation.

Evolution of energy. To emphasize the evolution of energy over time, we consider a
coarse grid with h = 0.25 and τ = 0.2 and increase the nonlinear factor to χ(3) = 1. We
consider low order approximations with p = 1 and k = 1. The evolution of the energy for
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the e−h approach is depicted with the red line in Figure 1.2. As expected we observe the
decay of the energy over time. This is no longer the case for the related 2-stage RadauIIA
method, which is illustrated with a red dashed line. For such a coarse discretization the
dissipation becomes significant. The strategy based on the e−a formulation, on the other
hand, preserves the energy up to the error of machine precision O(10−15). The evolution of
energy is illustrated by the blue line in Figure 1.2. Its inexact realization – the trapezoidal
rule, on the other hand, leads to energy growth, as depicted by the blue dashed line.
Moreover, the method becomes unstable for larger time steps.

0 0.2 0.4 0.6 0.8
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Figure 1.2.: Time evolution of energies for
h = 0.25, τ = 0.2, χ(3) = 0.9.

Figure 1.3.: Error - complexity plot.
x-axis: time, y-axis: error

Computational complexity. Let us start by mentioning that the complexity of the
variational time stepping schemes is comparable to that of the implicit s = k + 1 stage
Runge-Kutta methods. Both approaches lead to a nonlinear (k+1)d-dimensional system,
which has to be solved in each time step. The size of the semi-discrete systems for the two
approaches is d = (2Nz − 1)p and d = 2Nzp, respectively, where Nz is the number of grid
points in the spatial discretization. As previously mentioned, we use Newton’s method
for the solution of nonlinear problems. The accuracy O(10−12) is achieved with at most
3 iterations. For the solution of linear problems, we used Matlab’s backslash operator,
which seems to be of almost linear complexity.

With the blue line in Figure 1.3 we illustrate the relation between the computational
time and relative error for the e− h approach with p = 4 and k = 2, which leads to error
err = max0≤n≤N ∥enx,h(tn)−e2nx,h/2(t

n)∥h/2 = O(τ5+h5). Here we choose the discretization

with τ = h/2 = 0.1, 0.05, . . . , 0.1 · 2−6. With the green line, we illustrate the results for
the e − a approach with p = 5 and k = 2, which leads to an error of O(τ6 + h6). For
comparison, with orange and red lines, we illustrate the results for some of the FDTD
methods, namely, that of Method-1 and Method-2 in [94]. Let us note that Method-1 is
an implicit method and leads to second-order accuracy. Method-2 is, on the other hand,
fully explicit and much faster. However, we observe only linear convergence. When high
accuracy is desired, the proposed high-order schemes become more efficient. Let us remark
that the particular choice h = 2τ is motivated by the CFL condition, which is necessary
for the stability of the FDTD schemes, and is determined numerically.
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2D Transverse magnetic setting

For the second example, we follow [74] and consider the transverse magnetic regime. We
assume that e = (0, 0, ez) and h = (hx,hy, 0), where ez, hx, and hy are functions of x
and y. In this, we conclude that curl e = (∂yez,−∂xez, 0) and curlh = (0, 0, ∂xhy − ∂yhx).
With hxy = (hx,hy) we denote the x and y component of the vector field h and with
h⊥
xy = (−hy,hx) we denote its orthogonal. Then the e− h formulation can be written in

terms of ez and h⊥
xy as follows

ϵ(ez)∂tez = divh⊥
xy, µ0∂th

⊥
xy = −∇ez.

The vector potential then takes the form a = (0, 0, az) with az independent of z and we
have h⊥

xy = ∇az. Then, the e− a formulation reads

−ϵ(ez)∂taz = ϵ(ez)ϵz, ϵ(ez)∂tϵz = −div(ν0∇az).

We set ϵ0 = µ0 = ν0 = χ̃(1) = 1 and consider a bounded domain with Ω = [0, 1]2.
The snapshots of the magnitude of the electric field |ez| for χ(3) = 1 and initial values
ez(0) = exp(−1000x2 − 100(y − 0.5)2) and h⊥

xy(0) = 0 is illustrated in Figure 1.4. For

comparison, we also plot the solutions of the linear problem with χ(3) = 0. Here one can
observe the so-called self-focusing effect of the Kerr media – the intensity of the pulse
becomes highest at the center of the beam. We also plot the values at the horizontal cut
through the middle of the domain y = 0.5. Similarly to the previous example, we observe
the formation of the characteristic kinks. We also observe relatively strong oscillations,
related to the discontinuity of the solution.

Discretization details. For the finite element approximation in space, we consider a
structured tensor grid Txy = Tx × Ty where both Tx and Ty are equidistant meshes in x
and y direction. The bases for the discrete subspacesWh = Pp+1∩H1(Ω) and Qh = Pp are
constructed by the product of Lagrange polynomials on Lobatto nodes in each direction.
We also use inexact evaluation of the scalar products using the quadrature associated with
the Lobatto nodes; see e.g. [36]. The same quadrature is also used for the evaluation of
energies. For the time discretization, we use the same implementation as previously.

Simulation results. The energy dissipation and energy conservation results were verified
for this problem as well. For a sufficiently smooth solution, we also observe O(τ2k+1+hp+1)
convergence for the method based on the e− h formulation, and O(τ2k+2 + hp+1) for the
approach based on the e − a system. For comparison, we also applied the energy-stable
FDTD method of [74], which is second-order accurate. Convergence results for the fourth
order e − a approach, third order e − h method, and the FDTD scheme are illustrated
in Table 1.5. We also plot the relations between the error and computational times in
Figure 1.5. For these convergence results, we decreased the nonlinear impact by setting
χ(3) = 0.3, ez(0) = exp(−100(x−0.5)2−100(y−0.5)2), and decreasing simulation time to
T = 0.2 in order to reduce the impact of discontinuities. We use the same expression as for
the one-dimensional case for the evaluation of the error in space and time. The initial time
step τ and grid sizes h are chosen such that the errors in space and time are of the same
order, and then refined uniformly. One can again observe that the higher-order schemes
become more efficient when higher accuracy is needed. In our experiments, the Newton
solver required at most four iterations to achieve the desired accuracy of O(10−12), while
in the case of FDTD, it required at most two.
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(a) Snapshots of the magnitude of the electric field |ez(tn)| for nonlinear Kerr media with χ(3) = 1
(left) and for linear media with χ(3) = 0 (right) at time steps tn = 0.3, 0.6, 0.9.

(b) Values of the electric fields ez at the cut y = 0.5 for the nonlinear problem with χ(3) = 1 (red)
and for the linear problem with χ(3) = 0 (blue) at time steps tn = 0.3, 0.6.

Figure 1.4.: Behaviour of the electromagnetic field in nonlinear Kerr media with χ(3) = 1
and in linear media with χ(3) = 0 for comparison.

A note on generalizations

Up to this point, we have considered a specific example of a nonlinear dielectric medium of
Kerr-type. However, the methodology is not limited to Kerr media. The ideas presented
here can be applied to any other type of nonlinear electric media that satisfies the principles
of Section 1.1. The same approach can be extended to electrically conducting materials,
where instead of energy conservation, we obtain energy dissipation balances that can be
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FDTD e− a method (p = 3, k = 1) e− h method (p = 2, k = 1)

h = 8τ err e.o.c. h = 4τ err e.o.c. h = 4τ err e.o.c.

0.008 0.001842 – 0.25 0.027144 – 0.25 0.138261 –
0.004 0.000455 2.01 0.125 0.002953 3.3 0.125 0.027322 2.24
0.002 0.000149 1.91 0.0625 0.000107 4.6 0.0625 0.002730 3.32
0.001 0.000041 1.92 0.03125 0.000006 4.1 0.03125 0.000279 3.28

Table 1.5.: Convergence in space and time for different methods.
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Figure 1.5.: Efficiency comparison of the schemes for 2D transverse magnetic problem. As
the benchmark we take the FDTD method introduced in [74].

preserved using the same discretization techniques. Furthermore, the generalization to
nonlinear magnetic problems is straightforward, as long as the principles discussed in
Section 1.1 remain applicable. The treatment of the vector potential formulation for the
nonlinear eddy-current problem is covered in [43] and will be briefly addressed in Chapter 2

Furthermore, the concepts presented in this work can be extended to memory-dependent
materials. We stay in the context of nonlinear optical applications and discuss the treat-
ment of problems involving electric dispersion. It is important to note that this topic is still
under investigation and has only been explored for a few specific examples. We consider
a simple Kerr-Lorentz model where the dispersive component is described by the linear
Lorentz oscillator model. By analogy, the Debye model can also be considered. While the
generalization to a nonlinear dispersive Kerr-Debye-Lorentz model seems feasible, it has
not been extensively studied yet. Further generalizations are yet to be considered.

1.3. Nonlinear media with dispersion

We consider the propagation of electromagnetic field in a Kerr-Lorentz media [19, 103, 126].
As previously, the underlying physics are described by Maxwell’s equations

∂td = curlh and ∂tb = − curl e, (1.51)

and we assume the constitutive relations

b = µ0h and d = ϵ0((ϵ∞ + α|e|2)e+ p), (1.52)
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where ϵ∞ denotes the high-frequency limit of the relative permittivity and α is a constant
that describes the impact of the nonlinear effect. Furthermore, p denotes the frequency-
dependent part of the polarization, which is characterized by the auxiliary differential
equation

∂ttp+ γ∂tp+ ω2
0p = ω2

pe. (1.53)

Here, ω0 and ωp represent the resonance and plasma frequencies, respectively, and γ is the
damping parameter [84, 126]. It should be noted that these quantities are related through
the equation ω2

p = (ϵ∞ − ϵs)ω
2
0, where ϵs is the static relative permittivity, and γ = 1/τ ,

with τ being the relaxation time; see e.g. [18, 131].

Outline. By analogy to Section 1.2, we present two formulations as extensions of the e−h
and e−a formulations. We derive the energy balances associated with these formulations
and briefly discuss the construction of schemes that preserve these balances. The following
results has not been published yet.

1.3.1. The e - h formulation for Kerr-Lorentz model

We begin by rewriting equation (1.53) in the first-order form, which is a commonly used
practice. Introducing the linear polarization current density j = ∂tp, we obtain the system

∂tp = j, ∂tj+ γj+ ω2
0p = ω2

pe. (1.54)

By differentiating the constitutive relation (1.52) with respect to time and using the rela-
tion j = ∂tp, we obtain the relation for the displacement current

∂td = ϵ̃(e)∂te+ ϵ0j, (1.55)

where we use the abbreviation ϵ̃(e) = ϵ0(ϵ∞+α|e|2e+2αee⊤). Note that the term ϵ̃(·) no
longer corresponds to the permittivity in the classical sense but only to its instantaneous
part. Substituting the relations (1.54) and (1.55) into Maxwell’s equations (1.51) and
rearranging the terms leads to the system

ϵ̃(e)∂te = curlh− ϵ0j, (1.56)

µ0∂th = − curl e, (1.57)

ϵ0ω2
0

ω2
p
∂tp =

ϵ0ω2
0

ω2
p
j, (1.58)

ϵ0
ω2
p
∂tj = ϵ0e−

ϵ0ω2
0

ω2
p
p− ϵ0γ

ω2
p
j, (1.59)

which we call the e − h formulation for the Kerr-Lorentz model. The choice of multipli-
cation factors in equations (1.58) and (1.59) is again motivated by the energy structure of
the problem. Similarly to the e − h formulation of Section 1.2.1, the coefficients on the
left-hand side of the system relate to the derivatives of the energy density functions, as
will become clear below. Since the factors are constant, their choice is only for illustration
purposes. In the following analysis, we again consider the problem in the bounded domain
Ω and impose perfect magnetic boundary conditions

n× h = 0 on ∂Ω. (1.60)

The generalization to other types of boundary conditions is straightforward.
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Electromagnetic energy

Following [18] and using the notation from the previous section, the energy for the Kerr-
Lorentz problem (1.56)–(1.59) can be expressed as follows

E(e,h,p, j) =
∫
Ω
ω̃mag(h) + ω̃el(e,p, j) dx.

The magnetic energy density is given by ω̃mag(h) =
µ0
2 |h|2, as previously, and the electric

energy density function for this problem is given by

ω̃el(e,p, j) =
1
2

(
ϵ0ϵ∞|e|2 + 3ϵ0α

2 |e|4 + ϵ0ω2
0

ω2
p
|p|2 + ϵ0

ω2
p
|j|2
)
, (1.61)

which is a strongly convex function with respect to the argument. The differentiation of the

energy densities leads to expressions ω̃′
mag(h) = µ0h and ω̃′

el(e,p, j) = (ϵ̃(e)e,
ϵ0ω2

0
ω2
p
p, ϵ0

ω2
p
j),

which are important relations for our further analysis.

Let us note that the auxiliary differential equation representation of the polarization
term (1.53) is essential for our further analysis. In general, the constitutive relations for
dispersive materials are not instantaneous. Therefore, the concept of energy-based model-
ing as discussed in Section 1.1 cannot be directly applied in this setting. The generalization
of this concept to dispersive and memory-dependent media is not yet fully understood and
represents a topic for further investigation.

Power balance

We now again formulate the variational representation of the solution and show that it
implies the power balance, which is the basis of our strategy.

Lemma 1.3.1. Let (e,h,p, j) be a smooth solution of (1.56)–(1.59). Then, the identities

⟨ϵ̃(e(t))∂te(t),v⟩ = ⟨h(t), curlv⟩ − ⟨ϵ0j(t),v⟩, (1.62)

⟨µ0∂th(t),w⟩ = −⟨curl e(t),w⟩, (1.63)

⟨ ϵ0ω
2
0

ω2
p
∂tp(t), z⟩ = ⟨ ϵ0ω

2
0

ω2
p
j(t), z⟩, (1.64)

⟨ ϵ0
ω2
p
∂tj(t),q⟩ = ⟨ϵ0e(t)−

ϵ0ω2
0

ω2
p
p(t)− ϵ0γ

ω2
p
j(t),q⟩, (1.65)

hold for all v, z,q ∈ H(curl, Ω), w ∈ L2(Ω), and t ≥ 0. Moreover, it holds

d

dt
E(e(t),h(t),p(t), j(t)) = − ϵ0

τω2
p
∥j(t)∥2 ≤ 0. (1.66)

Therefore, the energy does not increase in time, and the formulation is passive.

Proof. The proof of the variational equalities is analogous to that of Lemma 1.2.1. We
multiply the system by test functions v, z,q ∈ H(curl, Ω) and w ∈ L2(Ω), and integrate
over the domain Ω. The relation (1.62) follows from the integration by parts formula,
where the boundary term vanishes due to the choice of the boundary condition (1.60).
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The proof of the power balance is based on the same arguments as used in the proof of
Lemma 1.2.2. Differentiating the energy with respect to time yields

d

dt
E(e(t),h(t),p(t), j(t)) = ⟨ϵ̃(e(t))e(t), ∂te(t)⟩+ ⟨ ϵ0ω

2
0

ω2
p
p(t), ∂tp(t)⟩+ ⟨ ϵ0

ω2
p
j(t), ∂tj(t)⟩

= ⟨ϵ̃(e(t))∂te(t), e(t)⟩+ ⟨ ϵ0ω
2
0

ω2
p
∂tp(t),p(t)⟩+ ⟨ ϵ0

ω2
p
∂tj(t), j(t)⟩ = (∗).

Using the variational principle (1.62)–(1.65) with test functions v = e(t), w = h(t),
z = p(t), and q = j(t), we further obtain

(∗) = ⟨h(t), curl e(t)⟩ − ⟨ϵ0j(t), e(t)⟩ − ⟨curl e(t),h(t)⟩+ ⟨ ϵ0ω
2
0

ω2
p
j(t),p(t)⟩

+ ⟨ϵ0e(t), j(t)⟩ − ⟨ ϵ0ω
2
0

ω2
p
p(t), j(t)⟩ − ⟨ ϵ0γ

ω2
p
j(t), j(t)⟩

= −⟨ ϵ0γ
ω2
p
j(t), j(t)⟩ = − ϵ0γ

ω2
p
∥j(t)∥2.

Integration in time provides the corresponding energy balance and proves passivity.

Structure

Similar to the e−h formulation discussed in Section 1.2.1, the key ingredient in derivation
of power balance (1.66) is the use of variational equalities (1.62)–(1.65) with the solution
v = e(t), w = h(t), z = p(t), and q = j(t). Therefore, one can directly conclude that the
formulation has the canonical port-Hamiltonian structure

Q∗(u)∂tu = −A(u), E ′(u) = Q(u)u.

Thus, we may once again employ the framework from [42] for constructing discretization
schemes that preserve the passivity of the system, in analogy to Section 1.2.2.

Discretization

As before, we write Wh ⊂ H(curl, Ω) and Qh ⊂ L2(Ω) for some finite-dimensional sub-
spaces, and we use the notation for the time discretization from Section 1.2.2. For the dis-
cretization of problem (1.56)–(1.60), we consider the following approach based on Galerkin
approximation in space and discontinuous Galerkin method in time.

Problem 1.3.2. Let the initial values e0h,p
0
h, j

0
h ∈ Wh and h0

h ∈ Qh be given. Then for
1 ≤ n ≤ N find enh,p

n
h,p

n
h ∈ Pk(I

n;Wh) and hnh ∈ Pk(I
n;Qh) such that∫

In
⟨ϵ̃(enh)∂tenh + ϵ0j

n
h,vh⟩ − ⟨hnh, curlvh⟩ dt = ⟨ϵ̃(enh)(en−1

h − enh),vh⟩|tn−1 , (1.67)∫
In
⟨µ0∂thnh + curl enh,wh⟩ dt = ⟨µ0(hn−1

h − hnh),wh⟩|tn−1 , (1.68)∫
In
⟨ ϵ0ω

2
0

ω2
p
∂tp

n
h −

ϵ0ω2
0

ω2
p
jnh, zh⟩ dt = ⟨ ϵ0ω

2
0

ω2
p
(pn−1

h − pnh), zh⟩|tn−1 , (1.69)∫
In
⟨ ϵ0
ω2
p
∂tj

n
h − ϵ0e

n
h +

ϵ0ω2
0

ω2
p
pnh +

ϵ0γ
ω2
p
jnh,qh⟩ dt = ⟨ ϵ0

ω2
p
(jn−1
h − jnh),qh⟩|tn−1 , (1.70)

holds for all test functions vh, zh,qh ∈ Pk(I
n;Wh) and wh ∈ Pk(I

n;Qh).
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Lemma 1.3.3. Let (enh,h
n
h,p

n
h, j

n
h)n≥0 denote the solution of (1.67)–(1.70). Then

Enh (tn)− Emh (tm) ≤ − ϵ0τ
ω2
p

∫ tn

tm
∥jNh (τ)∥2 dτ ≤ 0,

holds for 0 ≤ m ≤ n ≤ N , where by jNh ∈ Pk(T ;Wh), j
N
h |In = jnh we denote the global

solution in time and we use the abbreviation Ekh(t) = E(ekh(t),hkh(t),pkh(t), jkh(t)) for t ∈ Ik.

Proof. The proof of the statement is almost identical to that of Lemma 1.2.4. We start
by decomposing the evolution of energy after one time step as

Enh (tn)− En−1
h (tn−1) =

(
Enh (tn)− Enh (tn−1)

)
+
(
Enh (tn−1)− En−1

h (tn−1)
)
= (i) + (ii).

Using the fundamental theorem of calculus, the first term can be written as

(i) =

∫
In

d

dt
Enh (t) dt =

∫
In
⟨ϵ̃(enh(t))∂tenh(t), enh(t)⟩+ ⟨µ0∂thnh(t),hnh(t)⟩

+ ⟨ ϵ0ω
2
0

ω2
p
∂tp

n
h(t),p

n
h(t)⟩+ ⟨ ϵ0

ω2
p
∂tj

n
h(t), j

n
h(t)⟩ dt.

Using the variational scheme (1.67)–(1.70) with test functions vh = enh, wh = hnh, zh = pnh,
and qh = jnh, which are admissible test functions, we conclude

(i) = −
∫
In
⟨ ϵ0γ
ω2
p
jnh(t), j

n
h(t)⟩ dt+ ⟨ϵ̃(enh)(en−1

h − enh), e
n
h⟩|tn−1 + ⟨µ0(hn−1

h − hnh),h
n
h⟩|tn−1

+ ⟨ ϵ0ω
2
0

ω2
p
(pn−1

h − pnh),p
n
h⟩|tn−1 + ⟨ ϵ0

ω2
p
(jn−1
h − jnh), j

n
h⟩|tn−1 .

Lastly, we use the convexity of the energy denisties and obtain the following inequality

(ii) ≤ ⟨ϵ̃(enh)enh, enh − en−1
h ⟩|tn−1 + ⟨µ0hnh,hnh − hn−1

h ⟩|tn−1

+ ⟨ ϵ0ω
2
0

ω2
p
pnh,p

n
h − pn−1

h ⟩|tn−1 + ⟨ ϵ0
ω2
p
jnh, j

n
h − jn−1

h ⟩|tn−1

= ⟨ϵ̃(enh)(enh − en−1
h ), enh⟩|tn−1 + ⟨µ0(hnh − hn−1

h ),hnh⟩|tn−1

+ ⟨ ϵ0ω
2
0

ω2
p
(pnh − pn−1

h ),pnh⟩|tn−1 + ⟨ ϵ0
ω2
p
(jnh − jn−1

h ), jnh⟩|tn−1

Adding (i) and (ii) together proves the statement form = n−1, whereas the casem < n−1
follows by induction.

Remark on possible numerical realization

The spatial discretization of the problem (1.62)–(1.65) by an appropriate mixed finite
element method leads to the system of differential equations

Me(e) 0 0 0
0 Mh 0 0
0 0 Mp 0
0 0 0 Mj

 ∂t


e
h
p
j

 =


0 C 0 −Mϵ0

−C⊤ 0 0 0
0 0 0 Mp

Mϵ0 0 −Mp Md



e
h
p
j
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for the coefficients vectors e(t), h(t), p(t), and j(t). With M∗ we denote the mass matrices
with different coefficients in accordance to (1.56)–(1.59). The problem can be again written
in the abstract form

Q(u(t))⊤∂tu(t) = −A(u(t))

with u = (e, h, p, j) and Q(u) and A(u) accordingly. The implementation of the discontin-
uous Galerkin time-stepping method for Kerr-media, as discussed in Section 1.2.2, can be
directly applied in this context.

Next, we present the formulation based on the vector potential and discuss its discretiza-
tion. The proposed discretization strategy allows the construction of schemes that preserve
the energy balance exactly. This might be of a particular advantage in applications where
the loss term is neglected, i.e., when γ = 0, as considered in, for example, [19, 126].

1.3.2. The e− a formulation for Kerr-Lorentz problem

The construction of the e−a formulation works with similar arguments as in Section 1.2.3.
By using the relations ∂tp = j and e = −∂ta, equation (1.53) can be written as

∂tj+ γ∂tp+ ω2
0p = −ω2

p∂ta. (1.71)

Substituting the relations ∂td = ϵ̃(e)∂te+ϵ0∂tp and h = ν0 curla into Faraday’s law (1.51)
and using the relation (1.71), we obtain the following formulation

−ϵ̃(e)∂ta = ϵ̃(e)e, (1.72)

ϵ̃(e)∂te+ ϵ0∂tp = curl ν0 curla, (1.73)

−ϵ0∂ta− ϵ0γ
ω2
p
∂tp− ϵ0

ω2
p
∂tj =

ϵ0ω2
0

ω2
p
p, (1.74)

ϵ0
ω2
p
∂tp = ϵ0

ω2
p
j. (1.75)

The choice of the multiplication factors in (1.74) and (1.75) is again motivated by the
energy-based structure of the problem. The factors are chosen such that the terms on the
right-hand side of the system correspond to the derivatives of the energy densities. The
perfect magnetic boundary condition (1.60) then translates to

n× ν0 curla = 0 on ∂Ω. (1.76)

Let us mention that this formulation bears a close resemblance to the a − d formulation
recently proposed in [84]. However, a precise comparative study is yet to be done.

Electromagnetic energy and energy balance

By analogy to Section 1.2.3, we now denote the energy in terms of system variables by

H(e,a,p, j) =

∫
Ω
ωmag(curla) + ω̃el(e,p, j) dx,

where the expression for the electric energy density ω̃el(e,p, j) is the same as in (1.61),
while the magnetic energy density is now given by ωmag(curla) =

ν0
2 | curla|

2. By analogy
to previous sections, we now formulate the variational principles for the e−a formulation
(1.72)–(1.76) and derive the power balance, which is the foundation for the discretization
technique.
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Lemma 1.3.4. Let (e,a,p, j) be a smooth solution of (1.72)–(1.75). Then

−⟨ϵ̃(e(t))∂ta(t),v⟩ = ⟨ϵ̃(e(t))e(t),v⟩, (1.77)

⟨ϵ̃(e(t))∂te(t) + ϵ0∂tp(t),w⟩ = ⟨ν0 curla(t), curlw⟩, (1.78)

−⟨ϵ0∂ta(t) + ϵ0γ
ω2
p
∂tp(t) +

ϵ0
ω2
p
∂tj(t), z⟩ = ⟨ ϵ0ω

2
0

ω2
p
p(t), z⟩, (1.79)

⟨ ϵ0
ω2
p
∂tp(t),q⟩ = ⟨ ϵ0

ω2
p
j(t),q⟩, (1.80)

holds for all v,w, z,q ∈ H(curl, Ω), t ≥ 0. Moreover, the following power balance holds

d

dt
H(e(t),a(t),p(t), j(t)) = − ϵ0γ

ω2
p
∥∂tp(t)∥2 dτ ≤ 0. (1.81)

Therefore, the energy does not increase over time and the formulation is passive.

Proof. The proof uses a similar approach as the proofs of Lemma 1.2.10 and Lemma 1.2.11.
The variational identities follow directly from multiplying with test functions, integrating
over the domain, and utilizing the integration by parts formula, where the boundary term
disappears due to the choice of the boundary condition (1.76). For the proof of the second
statement, we again use the expression for power

d

dt
H(e(t),a(t),p(t), j(t)) = ⟨ϵ̃(e(t))e(t), ∂te(t)⟩+ ⟨ν0 curla(t), curl ∂ta(t)⟩

+ ⟨ ϵ0ω
2
0

ω2
p
p(t), ∂tp(t)⟩+ ⟨ ϵ0

ω2
p
j(t),q⟩ = (∗).

Then, using the variational identities (1.77)–(1.80) with v = ∂te(t), w = ∂ta, z = ∂tp,
and q = ∂tj, we conclude

(∗) = −⟨ϵ̃(e(t))∂ta(t), ∂te(t)⟩+ ⟨ϵ̃(e(t))∂te(t), ∂ta(t)⟩+ ⟨ϵ0∂tp(t), ∂ta⟩
− ⟨ϵ0∂ta(t), ∂tp(t)⟩ − ⟨ ϵ0γ

ω2
p
∂tp(t), ∂tp(t)⟩ − ⟨ ϵ0

ω2
p
∂tj(t), ∂tp(t)⟩+ ⟨ ϵ0

ω2
p
∂tp(t), ∂tj(t)⟩

= − ϵ0γ
ω2
p
∥∂tp(t)∥2.

Finally, integration in time proves the energy decay statement.

Structure

The key ingredient in the derivation of the power balance (1.81) is again the use of vari-
ational equalities (1.77)–(1.80) with the time derivatives of the solution as test function.
There, we can conclude that the problem has the structure

C(u)∂tu = −H′(u)

Thus, we may again utilize the framework [43] for the construction of discretization
schemes that preserve the energy balance of the system, in analogy to Section 1.2.4.
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Discretization

For the discretization of the system (1.72)–(1.75), we now consider the following method
based on the Galerkin discretization in space and the Petrov-Galerkin method in time.

Problem 1.3.5. Let the initial values e0h,a
0
h,p

0
h, j

0
h ∈ Wh be given. Then for 1 ≤ n ≤ N

find enh,a
n
h,p

n
h, j

n
h ∈ Pk+1(I

n;Wh) with enh(t
n−1) = en−1

h (tn−1), anh(t
n−1) = an−1

h (tn−1),
pnh(t

n−1) = pn−1
h (tn−1), and jnh(t

n−1) = jn−1
h (tn−1) such that

−
∫
In
⟨ϵ̃(enh)∂tanh, ṽh⟩ dt =

∫
In
⟨ϵ̃(enh)enh, ṽh⟩ dt, (1.82)∫

In
⟨ϵ̃(enh)∂tenh + ϵ0∂tp

n
h, w̃h⟩ dt =

∫
In
⟨ν0 curlanh, curl w̃h⟩ dt, (1.83)

−
∫
In
⟨ϵ0∂tanh +

ϵ0γ
ω2
p
∂tp

n
h +

ϵ0
ω2
p
∂tj

n
h, z̃h⟩ dt =

∫
In
⟨ ϵ0ω

2
0

ω2
p
pnh, z̃h⟩ dt, (1.84)∫

In
⟨ ϵ0
ω2
p
∂tp

n
h, q̃h⟩ dt =

∫
In
⟨ ϵ0
ω2
p
jnh, q̃h⟩ dt, (1.85)

holds for all test functions ṽh, w̃h, z̃h, q̃h ∈ Pk(I
n;Wh).

Lemma 1.3.6. Let (enh,a
n
h,p

n
h, j

n
h) denote the solution of (1.82)–(1.85). Then

Hn
h(t

n)−Hm
h (t

m) = − ϵ0γ
ω2
p

∫ tn

tm
∥∂tph(τ)∥2 dτ ≤ 0,

holds for all 0 ≤ m ≤ n, where pNh ∈ Pk+1(T ;Wh), p
N
h |In = pnh denotes the solution global

in time and we use the abbreviation Hk
h(t) = H(ekh(t),a

k
h(t),p

k
h(t), j

k
h(t)) for t ∈ Ik.

Proof. The proof works by analogy to that of Lemma 1.2.13 and that of [43, Theorem 2].
By the fundamental theorem of calculus we obtain

Hn
h(t

n)−Hn
h(t

n−1) =

∫
In

d

dt
Hn
h(t) dt =

∫
In
⟨ϵ̃(enh(t))enh(t), ∂tenh(t)⟩

+ ⟨ν0 curlanh(t), curl ∂tanh(t)⟩+ ⟨ ϵ0ω
2
0

ω2
p
pnh(t), ∂tp

n
h(t)⟩+ ϵ0

ω2
p
jnh(t), ∂tj

n
h(t)⟩ dt = (∗).

Next, we use the scheme (1.82)–(1.85) with ṽh = ∂te
n
h(t), w̃h = ∂ta

n
h(t), z̃h = ∂tp

n
h(t), and

q̃h = ∂tj
n
h(t), which are admissible test functions, and obtain

(∗) = −
∫
In

ϵ0γ
ω2
p
⟨∂tpnh(t), ∂tpnh(t)⟩ dt = − ϵ0γ

ω2
p

∫
In

∥∂tpnh(t)∥2.

The continuity of the solution at the junctions of the time intervals proves the statement
for m = n− 1. The general case m < n− 1 follows by induction.

Remarks on possible numerical realization

Discretization in space of the problem (1.77)–(1.80) using a suitable finite element method
leads to the system of differential equations

0 Me(e) 0 0
−Me(e) 0 −Mϵ0 0

0 Mϵ0 Md Mj

0 0 −Mj 0

 ∂t


e
a
p
j

 = −


Me(e) 0 0 0
0 Ka 0 0
0 0 Mp 0
0 0 0 Mj



e
a
p
j

 , (1.86)
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where e(t), a(t), p(t), and j(t) are the coefficient vectors andM∗ are the same mass matrices
as in Section 1.3.1. This problem can be compactly written in the abstract form

(C(u(t))∂tu(t) = −H′(u(t)),

where u = (e, a, p, j) and C(u) and H′(u) are given in accordance to (1.86). Petrov-Galerkin
time-stepping can be implemented in the same manner as for the e − a formulation for
Kerr-media, as discussed in Section 1.2.4.

1.3.3. Numerical illustration

In this section, we present a simple one-dimensional example. Similarly to Section 1.2.5,
we consider the propagation of the Gaussian pulse and demonstrate the effect of dispersion.
Then, we provide the convergence results and briefly discuss further observations.

Discretization details. We use the same discretization as for the one-dimensional ex-
ample discussed in Section 1.2.5. We use Lagrange polynomials on Lobatto nodes as the
basis for the semi-discretization, and we again utilize inexact integration in space. For the
time-stepping, we use Lagrange polynomials on Lobatto nodes as the basis and we utilize
higher order Lobatto quadrature rule for the evaluation of the time integrals.

Simulation results. For simplicity, we simply set ϵ0 = ϵ∞ = α = ω0 = τ = 1, ωp = 5.
Snapshots of the electric field are illustrated in Figure 1.6. For comparison, we also plot the
solution to the Kerr problem without polarization by the black dashed line. The results are
obtained using the lowest order scheme (1.82)–(1.85) with h = 0.01 and τ = 0.01. From
this figure, one can directly observe the impact of the dispersion. Due to the memory effect,
the propagation of the impulse leaves the polarization behind, which slowly oscillates and
diminishes through damping. If the loss terms are neglected, it results in the formation of
so-called kink-antikink solutions [19, 126].

h p = 1 p = 2 p = 3

err × 10−1 e.o.c. err × 10−2 e.o.c. err × 10−3 e.o.c.

0.05 0.152394 — 0.179533 — 0.174497 —
0.025 0.039763 1.94 0.014451 3.63 0.007996 4.44
0.0125 0.010038 1.98 0.001788 3.14 0.000483 4.04
0.00625 0.002515 1.99 0.000223 3.01 0.000031 4.01

Table 1.6.: Convergence in space of the method based on the e− h formulation.

τ k = 0 k = 1 k = 2

err × 10−1 e.o.c. err × 10−3 e.o.c. err × 10−4 e.o.c.

0.025 0.152881 — 0.604931 — 0.366292 —
0.0125 0.107546 0.51 0.082113 2.88 0.012139 4.91
0.00625 0.066889 0.68 0.010397 2.98 0.000385 4.97
0.003125 0.040212 0.73 0.001311 2.99 0.000012 4.99

Table 1.7.: Convergence in time of the method based on the e− h formulation.
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Figure 1.6.: Red solid: Numerical solution e(tn) at times tn = 0, 0.2, 0.4, 0.6 obtained
by the lowest order scheme (1.82)–(1.85). Black dashed: the corresponding
solution of the Kerr problem without dispersion.

h p = 1 p = 2 p = 3

err × 10−1 e.o.c. err × 10−2 e.o.c. err × 10−3 e.o.c.

0.05 0.202846 — 0.211564 — 0.175516 —
0.025 0.064344 1.65 0.022711 3.22 0.011844 3.89
0.0125 0.016893 1.92 0.002864 2.98 0.000747 3.98
0.00625 0.004260 1.98 0.000359 2.99 0.000046 3.99

Table 1.8.: Convergence in space of the method based on the e− a formulation.

τ k = 0 k = 1 k = 2

err × 10−1 e.o.c. err × 10−3 e.o.c. err × 10−3 e.o.c.

0.05 0.205263 — 0.670137 — 0.216656 —
0.025 0.055032 1.89 0.046396 3.85 0.004088 5.73
0.0125 0.013936 1.98 0.002949 3.97 0.000066 5.94
0.00625 0.003510 1.99 0.000185 3.99 0.000001 5.98

Table 1.9.: Convergence in time of the method based on the e− a formulation.

We tested the e−h formulation with different polynomial degrees in space and time. In
Tables 1.6 and 1.6, we summarize the observed errors in the electric field component and
the resulting convergence rates for polynomial degrees p = 1, 2, 3 of approximation in space
and degrees k = 0, 1, 2 of approximation in time. To produce these results, we considered
the time interval T = [0, 0.5]. The error is measured as in Section 1.2.5. We used the
expressions err = max0≤n≤N ∥enx,h(tn) − enx,h/2(t

n)∥h/2 and err = max0≤n≤N ∥enx,h(tn) −
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e2nx,h∥h to evaluate the errors in space and time. Let us recall that with subscript h/2 and
superscript 2n, we denote the solutions on the uniformly refined grid in space and time,
respectively. We observe the convergence O(hp+1 + τ2k+2). In Tables 1.8 and 1.9, we also
summarize the error in the electric field for the e − a approach. In this case, we observe
the convergence O(hp+1 + τ2k+2). As expected, these results coincide with the results of
Section 1.2.5 and the theoretical results mentioned there.

The theoretical results on energy balance could also be verified. It should be noted that
the lowest order e − h-based scheme with h = 0.01 and τ = 0.01 produces a discrepancy
between the energy and dissipation of order O(10−4), which is the order of the numerical
error. For the e−a approach with the same discretization parameters, on the other hand,
the balance was preserved up to machine precision O(10−16).

A note on comparison. A comparative study with related schemes is yet to be done.
In particular, the two approaches proposed in [19, 84] have not yet been implemented.
Although these approaches are capable of higher-order discretization in space, their time
stepping is only second-order accurate. Therefore, we anticipate similar results as in
Section 1.2.5. We expect our approach to be more efficient if higher accuracy is required.

1.4. Summary and outlook

In this chapter, we have discussed the propagation of the nonlinear electromagnetic field in
Kerr-type nonlinear media. We presented two formulations and derived energy balances,
which were only possible due to the energy-based modelling approach for constitutive re-
lations. To preserve these balances on the discrete level, we presented two variational
discretization strategies that can be used to construct arbitrary high-order schemes. We
verified our results with two numerical examples in one and two spatial dimensions and
compared the efficiency of the approaches to related FDTD schemes. Finally, we demon-
strated that the presented approaches can be extended to problems with linear Lorentz-
type dispersion and provided an illustrative numerical example in one spatial dimension.

There are many open questions that require further investigation. Firstly, the error
analysis and justification of the observed convergence rates are yet to be done. Addition-
ally, the question of efficiency has not been fully explored. It is possible that using different
types of Galerkin approximations or choosing different polynomial bases and quadrature
rules in space and time may be beneficial for this problem.

A further comparison to other methods represents another topic of further investiga-
tion. In particular, the DG-based schemes have not been implemented, for comparison.
Furthermore, the recently proposed a−d formulation [84] seems interesting. It seems that
there is a close resemblance with the presented e− a formulation. The comparison of the
two formulations and the possible adoption of the presented variational discretization is
yet to be covered.

Before we conclude this chapter, it is worth mentioning that the approaches presented
here can be applied to a much larger class of electromagnetic field problems. Although we
have focused on a specific example of Kerr media, other nonlinear materials with instanta-
neous responses can be handled in the same way, provided that the constitutive relations
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and the energy are consistent, as discussed in Section 1.1. This includes nonlinear mag-
netic materials. The vector potential formulation for the nonlinear eddy current problem
has been discussed in the original publication [43].

Next to the linear Lorentz dispersion, a single- or multi-pole Debye model can be con-
sidered by analogy, or a combination of both. The application to general dispersive and
memory-dependent materials is not yet settled. In particular, the extension of the energy-
based modelling concept is not yet completely clear. It seems that the nonlinear dispersive
Kerr-Debye model can also be handled in a similar manner. However, it is not yet com-
pletely settled and is subject to further investigation. The nonlinear magnetic problems
with hysteresis represent another topic of potential research.
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Chapter 2.

Electric circuits

Simulation of electric circuits is another fundamental problem in electrical engineering.
In this chapter, we discuss the modelling and numerical treatment of nonlinear electric
circuits and their coupling to field equations.

State of the art

The state-of-the-art approach for modeling electric circuits is the Modified Nodal Analysis
(MNA), introduced in [69]. In its conventional form, the MNA for a circuit consisting of
capacitors, inductors, resistors, voltage and current sources reads

ACCA
⊤
C∂te+ARGA

⊤
Re+ALiL +AV iV = −AIisrc,

L∂tiL −A⊤
Le = 0,

−A⊤
V e = −vsrc,

where e is the vector of electric node potentials, while iL and iV are the vectors of branch
currents through inductors and voltage sources, respectively. The topology of the circuit
is stored in partial incidence matrices AX , while the description of circuit elements is
encoded in capacitance C, inductance L, and conductance G matrices, or matrix valued
functions C(A⊤

Ce), L(iL), and R(A
⊤
Re) in general. See [32, 62, 110, 111] for an overview.

From a mathematical standpoint, an MNA system is a system of differential-algebraic
equations (DAEs) [60, 105]. In fact, research in differential-algebraic systems has been
driven for many years by electric circuits, and they can be found as a canonical example
in classical DAE books; see e.g. [26, 66, 81]. The classification of differential-algebraic
equations is based on the concept of index, which can be seen as a measure of difficulty
for solving the DAE – the higher the index, the more issues can appear. In particular, due
to the presence of algebraic constraints and possibly hidden constraints, the construction
of initial values might be difficult; see [26, 30, 66] for further discussions. For the MNA
formulation, the index has been extensively studied over the years. It is now well under-
stood that under appropriate assumptions on the circuit elements, the DAE index of an
MNA system is ν ≤ 2 and depends on the circuit’s topology. More precisely,

(a1) if the circuit contains neither loops of voltage nor cutsets of current sources, the
MNA system is a regular DAE of index ν ≤ 2;

(a2) if the circuit contains neither loops of capacitors and voltage source nor cutsets of
inductors and current sources, the index is ν ≤ 1 ;
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see [52, 61, 132, 136] for details and proofs.

Besides the analytical issues, also the numerical treatment of DAEs is difficult. Because
of the algebraic constraints, implicit time stepping schemes have to be used [26, 66, 81].
While passivity on the discrete level can be proven for the implicit Euler method, strict
passivity may in general be lost through discretization by standard single or multistep
schemes. In the presence of strong nonlinearities, even well-established second-order
schemes, like the trapezoidal rule (TR) or BDF-2 method, may become unstable [31].
Hence, low-order time integration schemes are typically used for discretization. In case
of stability issues, one switches to the implicit Euler method; we refer to [62, Ch. 10,11]
for detailed discussion on this topic. Fortunately, passive discretization can be achieved
using variational techniques. The MNA formulation leads to systems of a canonical port-
Hamiltonian structure, namely,

Q(u)⊤∂tu = −A(u) + f , E ′(u) = Q(u)u, (2.1)

where E is the energy functional. Note that this structure is similar to the structure of the
e − h-based formulations for Maxwell’s equations, as discussed in Chapter 1. Therefore,
following the framework presented in [42], the discontinuous Galerkin approximation can
be employed to construct arbitrarily high-order schemes that unconditionally preserve the
passivity of the discretization.

Magnetic oriented formulation

An alternativeMagnetic Oriented Nodal Analysis (MONA) formulation for electric circuits
was recently introduced in [122]. For circuits containing the same canonical elements,
namely capacitors, inductors, resistors, voltage, and current sources, the formulation reads

ARGA
⊤
R∂tψ +AC∂tqC +AV ∂tqV = −ALL−1A⊤

Lψ −AIisrc,

−A⊤
C∂tψ = −C−1qC ,

A⊤
V ∂tψ = −vsrc,

where ψ is the vector with magnetic vector potentials and qC and qV stand for charges
across capacitors and voltage sources. The magnetic potential ψ is defined such that

∂tψ = e and ϕL = A⊤
Lψ

hold, from which the electric node potential can be determined through differentiation in
time. On the other hand, the access to capacitor charges qC and inductor fluxes ϕL is
directly provided, which is of an advantage for particular applications; we refer to [62] for
discussion on related difficulties for the MNA systems.

A key advantage of the MONA formulation over the MNA is its lower DAE index.
It is shown in [52] that under appropriate assumptions on circuit elements, the MONA
formulation leads to systems of index ν ≤ 1. More precisely,

(b1) if the circuit contains neither loops of voltage sources nor cutsets of current sources,
the MONA system is a regular DAE of index ν ≤ 1;
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(b2) if the circuit contains neither loops of capacitors and/or voltage sources nor cutsets
of inductors and current sources, the index is ν = 0.

Note that the regularity condition (b1) is the same as (a1) for the MNA, while the index-0
condition (b2) is very similar to the index-1 condition (a2) for the MNA systems; c.f.
[52, 122]. Since MONA systems are of index ν ≤ 1, one can directly exclude the presence
of hidden constraints, which, in particular, simplifies the construction of consistent initial
values. Further, the discretization of index ν ≤ 1 DAEs has been much better studied
in the literature. In particular, full convergence rates for both differential and algebraic
variables can be expected for stiffly accurate time-stepping schemes; see e.g. [26, 66].

From the perspective of energy-based modelling, it is shown that the MONA formulation
leads to systems of a certain generalized gradient structure, namely

C(∂tu)∂tu = −H′(u) + f , (2.2)

where H denotes the energy functional. Let us note that the e− a-based formulations for
Maxwell’s equations, as discussed in Chapter 1, lead to problems of a very similar structure.
Hence, by following the same variational methodology introduced in [43], the passivity
of the problems can be preserved by employing Petrov-Galerkin schemes. Furthermore,
for circuits with no power sources and no dissipative elements (resistors), this approach
provides energy-conserving discretization schemes.

The magnetic oriented formulation for circuits takes a modelling approach similar to
the vector potential formulation for field problems. The two problems share not only the
magnetic viewpoint but also have similar geometric structures. As a result, the magnetic
oriented ansatz for the field-circuit coupling is not only convenient from a modelling point
of view but also leads to problems of the same canonical structure (2.2). Hence, the
energy balance preserving discretization for the coupled problems can be constructed with
Galerkin discretization in space for the field equations and Petrov-Galerkin time stepping.

Outline and main contributions

Let us briefly sketch the contents of this chapter and highlight the main contributions. In
Section 2.1 we start with discussing the fundamentals of circuit modelling – Kirchhoff’s
circuit laws and constitutive relations for different element types. We use an energy-based
modelling approach for the latter, which is crucial for further analysis. In Section 2.2 we
recall the conventional form of the MNA formulation and discuss the standard results on
regularity and index characterization. As our first contribution, we show that the MNA
systems have the particular port-Hamiltonian structure (2.1), which allows a passivity
preserving discretization based on the variational framework [42]. In Section 2.3, we
present a novel magnetic oriented formulation (MONA) for electric circuits and provide an
index analysis of the resulting DAE systems. This section represents the main contribution
of the chapter. We further show that the MONA system has the structure (2.2) and
discuss the discretization strategy which guides the construction of schemes preserving
the underlying energy balance of the system and, hence, ensuring the passivity of the
discretization. In Section 2.4 we briefly discuss the coupling of the proposed MONA
system to the field elements described by the magneto-quasistatic model stated in terms
of the magnetic vector potential. We show that the coupled problems have again the
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canonical structure (2.2), which ensures their passivity and provides the guideline for the
energy balance preserving discretization.

The contents of this chapter are based on our publications [43, 46, 122]. The main
contribution of this chapter is the MONA formulation for the circuits which has been
published in [122]. The magnetic oriented field-circuit coupling approach has not been
published yet.

2.1. Fundamentals of circuit modeling

An electric circuit is considered a composition of basic electric components like resistors,
capacitors, voltage sources etc.; see Figure 2.1a for a simple example. In this section, we
introduce the notation, the basic quantities, and the physical laws necessary for the system-
atic modelling of electric circuits. We start with discussing the interconnection structure
of the electric circuit, then we recall the physical balance laws and introduce the math-
ematical models describing the behavior of individual element types. An energy-based
perspective is chosen for the latter. For ease of presentation, we restrict our consider-
ations to circuits consisting of five basic element types: capacitors (C), inductors (L),
resistors (R), voltage (V), and current sources (I). The schematic representations of indi-
vidual element types are illustrated in Figure 2.1b. Further details and extension can be
found in e.g. [62, 109, 110].

n1

L

b4

n2
R1

b2

C

b1 n3
R2

b3

n4

V

b5

(a) Example: resonance circuit with damp-
ing.

capacitors (C)

resistors (R)

inductors (L)

voltage sources (V)

current source (I)

(b) Schematic representation

Figure 2.1.: Example of an electric circuit and schematic representation of its components.

2.1.1. Topology of the circuit

The interconnection structure of a circuit is modelled by a finite connected directed graph
G = (N ,B) with nodes n ∈ N and branches b ∈ B ⊂ N × N . We exclude self-loops by
assuming x ̸= y for every branch b = (x, y). The topology of the graph is encoded in the
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incidence matrix Ã ∈ R|N|×|B| defined as

Ãkj =


1, if branch bj leaves the node nk,

−1, if branch bj enters the node nk,

0, else.

The rows and columns of Ã contain the connectivity of nodes and branches, respectively.
By construction, each column has exactly two nonzero entries, and therefore the sum of
all rows is zero, i.e. the rows are linearly dependent. More precisely, it can be shown
that rank(A) = nn − 1 for any connected graph; see e.g. [109, Section 4]. Removing
one of the rows from the incidence matrix Ã results in reduced incidence matrix A, which
consequently has full row rank. This matrix will again be called the incidence matrix
in the following. As we will see below, removing one row from the incidence matrix is
related to setting the electric potential at the node associated with the row to zero. The
zero-potential node is also called the reference node. The branches of the graph may be
sorted based on the element type. Then the incidence matrix can be decomposed as

A = [AC |AR |AL |AV |AI ], (2.3)

where individual blocks contain all branches of the corresponding element types, e.g. AC
contains all the capacitors, AR all the resistors, etc.

Example 2.1.1. The circuit illustrated in Figure 2.1a consists of four nodes and five
branches indicated by ni and bj respectively. The underlying graph is then given by
G = (N ,B) where N = {n1,n2,n3,n4} and B = {b1, b2, b3, b4, b5} with b1 = (n1,n3),
b2 = (n2,n3), b3 = (n3,n4), b4 = (n1,n2) and b5 = (n4,n1). We consider the ground node
n4 as the reference node. The full and reduced incidence matrices are then given by

Ã =


1 0 0 1 −1
0 1 0 −1 0
−1 −1 1 0 0
0 0 −1 0 1

 and A =

 1 0 0 1 −1
0 1 0 −1 0
−1 −1 1 0 0

 .

Note that rank(Ã) = rank(A) = 3 and the branches are sorted in accordance to element
types, i.e. A = [AC |AR |AL |AV ] and AI is empty since there are no current sources
present.

2.1.2. Kirchhoff’s circuit laws

As the next step, we recall the basic balance laws for the electric circuits, which have
been postulated in 1845 by the German physicist Robert Gustav Kirchhoff [80]. The laws
are stated in terms of branch currents, branch voltages, and node potentials, which are
collected in vectors i, v, and e respectively. By iL, vC , etc. we denote the components of
the vectors related to the particular element types.

Kirchhoff’s current law

To avoid the accumulation of charge in the nodes of the circuit one has to assume that
the sum of all currents going into and out of a node vanishes; see Figure 2.2a for an
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illustration. With the introduced notation, this can be written as
∑

k Ajkij = 0 for all j,
or alternatively in compact form as

Ai = 0, (KCL)

where i is the vector of branch currents. Because the reduced incidence matrix is used, the
balance of currents for the reference node is not explicitly included in (KCL). However,
the relation is implicitly fulfilled as shown in Lemma B.2.1.

Kirchhoff’s voltage law

We associate an electric potential to every node of the circuit and define voltage as oriented
potential difference by

v = A⊤e, (KVL)

where e is the vector of node potentials and v is the vector of branch currents. As a direct
consequence, the sum of the voltages in every loop vanishes, which is the second funda-
mental law postulated by Kirchhoff; see Figure 2.2b for illustration. The last statement
is actually equivalent to the existence of a vector with node potentials such that (KVL)
holds; see [109, Section 4] or Appendix B.3 for details.

i1

ni2

i3

i5

i4

(a) −i1 + i2 − i3 + i4 + i5 = 0

v1
n1

n2

v2
v3

n3

n5
v5

n4

v4

⟳

(b) v1 − v2 + v3 − v4 − v5 = 0

Figure 2.2.: Simplified illustration of Kirchhoff’s current (left) and voltage (right) laws.

2.1.3. Constitutive relations

For a convenient description of constitutive relations, we introduce two further quantities
associated with the branches – a vector q of charges and a vector ϕ of fluxes which relate
to current and voltages as

i = ∂tq and v = ∂tϕ, (2.4)

respectively. For capacitors and inductors, these quantities have a clear physical meaning,
i.e. the entries qC of q represent the charges on the plates of capacitors, and the entries
ϕL of ϕ correspond to magnetic fluxes through the windings of inductors.

58



Energy storing elements

Capacitors and inductors correspond to elements that store electric and magnetic energy
respectively. Following the approach of the previous chapter, we take an energy-based
standpoint and assume to be given appropriate energy functionals

ϵC : qC 7→ ϵC(qC) ∈ R and ϵL : ϕL 7→ ϵL(ϕL) ∈ R,

where qC and ϕL are the vectors of capacitor charges and inductor fluxes. The constitutive
relations for capacitors and inductors are then defined through the relations

vC = ϵ′C(qC) and iL = ϵ′L(ϕL), (2.5)

where vC and iL are the vectors of capacitor voltages and inductor currents, respectively.

Remark 2.1.2. Assuming that ϵC and ϵL are smooth, strongly convex, and coercive, the
constitutive relations (2.5) can be inverted. The equivalent inverse relations are then given
by

qC = ϵ′∗,C(vC) and ϕL = ϵ′∗,L(iL), (2.6)

where ϵ∗,C and ϵ∗,L are convex conjugate functionals often called co-energies; see Sec-
tion 1.1. From this standpoint, the variables qC and ϕL are sometimes called energy
variables while vC and iL are the co-energy variables. By differentiating (2.6) and using
(2.4) we obtain

iC = C(vC)∂tvC and vL = L(iL)∂tiL, (2.7)

with C(vC) = ϵ′′∗,C(vC) and L(iL) = ϵ′′∗,L(iL) representing the differential or incremental
capacitance and inductance matrices.

Example 2.1.3. For an illustration of the above statements, let us consider quadratic
energy functionals ϵC(qC) = 1

2∥qC∥
2
C−1 and ϵL(ϕL) = 1

2∥ϕL∥
2
L−1 with given symmetric

positive definite matrices C and L. Then the constitutive relations (2.5) lead to

vC = ϵ′C(qC) = C−1qC and iL = ϵ′L(ϕL) = L−1ϕL.

The corresponding co-energies are then given by the quadratic functionals ϵ∗,C(vC) =
1
2∥vC∥

2
C and ϵ∗,L(iL) =

1
2∥iL∥

2
L, and the inverse relations (2.6) correspond to

qC = ϵ′∗,C(vC) = CvC and ϕL = ϵ′∗,L(iL) = LiL.

The Hessians ϵ′′∗,C(vC) = C and ϵ′′∗,L(iL) = L are the capacitance and inductance matrices,
and the voltage-current relations for capacitors and inductors can then be written in the
common forms iC = C∂tvC and vL = L∂tiL, corresponding to linear elements; see e.g.[62].

Energy dissipating elements

The resistors correspond to the elements which dissipate the energy. In contrast to energy-
storing elements, the voltage-current relation in resistors is algebraic and given by

iR = G(vR)vR, (2.8)
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which is known as Ohm’s law. The conductivity matrix G(vR) is assumed to be symmetric
and positive definite. According to Joule’s principle, the power dissipated by the currents
flowing through the conductors is given by PJoule(vR) = ⟨iR, vR⟩ = ⟨G(vR)vR, vR⟩ ≥ 0,
since we assume that conductivity matrix G(vR) is positive definite. Here, ⟨·, ·⟩ denotes
the scalar product.

Energy sources

While the capacitors and inductors store the energy and the resistors dissipate the energy,
the voltage and current sources act as energy sources and sinks. The constitutive relations
for these elements are simply given by

vV = vsrc and iI = isrc, (2.9)

where vsrc and isrc are assumed to be given, i.e. the source terms are assumed to be
independent. More general controlled sources are discussed, e.g. in [52, 62]. The power
supplied to or extracted from the system through voltage and current sources is then
given by Pv = ⟨vsrc, iV ⟩ and PI = ⟨isrc, vI⟩, where vI and iV are the vectors with voltages
through current sources and currents through voltage sources.

Having introduced the circuit topology, the basic balance laws, and the constitutive
relations for the individual elements, we are now in the position to present and discuss
two complete mathematical models for describing the physical behavior of electric circuits.

2.2. Modified Nodal Analysis for electric circuits

Kirchhoff’s circuit laws and the constitutive equations discussed in the previous section
allow a complete description of the dynamical behavior of electric circuits. However, some
of the introduced quantities are redundant and can be eliminated to reduce the system
and obtain a more compact representation. In this section, we discuss an approach based
on electric node potentials and currents across inductors and voltage sources, the so-called
Modified Nodal Analysis (MNA). Since its introduction in 1975 by Albert Ruehli and
co-workers [69], the approach has become the de-facto standard for circuit simulation in
industrial applications. Moreover, the modified nodal analysis was also studied intensively
in the literature; see e.g. [62, 110]. From the mathematical perspective, the formulation
typically leads to a system of differential-algebraic equations (DAE), which provides some
challenges for the analytical and numerical treatment, see e.g. [26, 66, 81]. We start this
section by deriving the MNA formulation and recalling some basic facts about DAEs and
their index, and the application of these results to MNA. Then, we study the particular
structure of the systems, prove passivity, and present a passivity-preserving discretization
strategy. The latter considerations are strongly based on the energy-based modelling
approach presented in Section 2.1.

2.2.1. The modified nodal analysis

Decomposition of the incidence matrix A and the current vector i into individual blocks
for each element type as in (2.3) allows to state Kirchhoff’s current law (KCL) as

ACiC +ARiR +ALiL +AV iV +AIiI = 0. (2.10)
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In a similar manner, Kirchhoff’s voltage law (KVL) can be stated as vX = A⊤
Xe for the

different element types X ∈ {C,R,L,V , I}. The constitutive relations (2.7) and (2.8) for
capacitors, resistors, and inductors can then be phrased in terms of currents and electric
potential by

iC = C(A⊤
Ce)A

⊤
C∂te, iR = G(A⊤

Re)A
⊤
Re, and A⊤

Le = L(iL)∂tiL. (2.11)

For voltage and current sources (2.9), we similarly have A⊤
V e = vsrc and iI = isrc. By

substituting these expressions into Kirchhoff’s current law (2.10), we obtain the systemACCA⊤
C 0 0

0 L 0
0 0 0

 ∂te
∂tiL
∂tiV

+

ARGA⊤
R AL AV

−A⊤
L 0 0

−A⊤
V 0 0

 e
iL
iV

 =

−AIisrc
0

−vsrc

 (2.12)

with C = C(A⊤
Ce), L = L(iL) and G = G(A⊤

Re) denoting the incremental capacity,
inductance, and conductivity matrices, respectively. The system (2.12) is known as the
conventional form of MNA. Generalizations, like charge-flux -based formulations and port-
Hamiltonian extensions, and their relation to the conventional form have been discussed
in e.g. [62, 116].

2.2.2. Index analysis of the MNA

Let us briefly recall some elementary notions used for the analysis of DAEs; for details, see
e.g. [26, 81, 110]. An initial value is called consistent with a DAE if a (local) solution to
the corresponding initial value problem exists. A DAE is called regular if, for any choice
of consistent initial values, the solution is unique. A further classification of DAEs can be
made according to their index. Within this thesis, we consider the differentiation index,
which essentially corresponds to the number of differentiations necessary to transform a
DAE into an equivalent ODE system; see e.g. [26, 81]. An overview of different index
concepts and their relations can be found in [96].

Let us return to the MNA system (2.12). The following theorem summarizes the most
important facts about its regularity and index characterization; see e.g [52, 109, 137] for
proofs and further details. Without further mentioning, we assume that C(·), L(·), G(·)
as well as vsrc(·), isrc(·) are smooth functions of their arguments.

Theorem 2.2.1. Let C(vC), L(iL), G(vR) be symmetric and positive definite matrices
for any admissible argument vC , iL, and vR. Further, assume that

N([AR,AC ,AV ,AL]
⊤) = 0 and N(AV ) = 0. (A1)

Then (2.12) is a regular system of DAEs with index ν ≤ 2. If additionally

N([AR,AC ,AV ]
⊤) = 0 and N([AC ,AV ]) = 0 (A2)

holds, then the system is of index ν ≤ 1. If further

N(A⊤
C) = 0 and dim(vsrc) = 0 (A3)

holds, then the system has index ν = 0, i.e., it is an ODE.
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Here and below we denote by N(B) the nullspace of a matrix B and by dim(v) the
size of a vector v. Let us note that the index-1 condition (A2) could actually be slightly
relaxed; for details, see [52, 137].

Remark 2.2.2. The algebraic conditions (A1)–(A3) are assumptions on the topology of
the circuit, and can be interpreted in physical terms as follows:

(A1) the circuit contains neither loops of voltage sources nor cutsets of current sources;

(A2) circuit contains neither loops of capacitors and/or voltage sources nor cutsets of
inductors and/or current sources;

(A3) every node in the circuit can be connected to the reference node through a path
containing only the capacitors.

Theorem 2.2.1 provides the existence of a unique solution to the MNA system (2.12)
for every consistent choice of initial values. Let us note that the construction of consis-
tent initial values for index ν = 2 systems is rather difficult due to presence of hidden
constraints; for related work on this topic, see e.g. [50, 51, 121], and references therein.

2.2.3. Port-Hamiltonian structure and energy balance

We now discuss the basic energy balance provided by the MNA system. To do so, it
is convenient to write (2.12) as an abstract port-Hamiltonian system, which is possible
because of the energy-based modelling approach discussed in Section 2.1.

Port-Hamiltonian structure of the MNA formulation

The total energy in an electric circuit is stored in capacitors and inductors and is given
by ϵC(qC) + ϵL(ϕL). According to the inverse constitutive relations qC = ϵ′∗,C(vC) and

ϕL = ϵ′∗,L(iL), and the voltage relationA⊤
Ce = vC , the energy can be expressed as a function

of MNA system variables by E(e, iL, iV ) = ϵC(ϵ
′
∗,C(A

⊤
Ce))+ ϵL(ϵ

′
∗,L(iL)). Differentiation of

this expression and using (2.4) and (2.11) leads to

∂e E(e, iL, iV ) = ACC(A
⊤
Ce)A

⊤
Ce,

∂iL E(e, iL, iV ) = L(iL)iL,

∂iV E(e, iL, iV ) = 0,

(2.13)

where C(vC) = ϵ′′∗,C(vC) and L(iL) = ϵ′′∗,L(iL) are the incremental capacitance and induc-
tance. The conventional MNA formulation (2.12) and the energy relation (2.13) can now
be written compactly as

Q(u)⊤∂tu = −A(u) + f , (2.14)

E ′(u) = Q(u)u, (2.15)

with state vector u = (e, iL, iV ), source vector f = (−AIisrc, 0,−vsrc), function A, which
takes the form A(u) = (R(u)− J)u, and matrices Q = Q(u), R = R(u), and J given by

Q⊤ =

ACCA⊤
C 0 0

0 L 0
0 0 0

 , R =

ARGA⊤
R 0 0

0 0 0
0 0 0

 , and J =

 0 −AL −AV
A⊤
L 0 0

A⊤
V 0 0

 .
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Noting that C = C(vC), L = L(iL) and G = G(vR) were assumed symmetric positive
definite, we see that Q = Q(u) and R = R(u) are symmetric positive semi-definite and J
is skew-symmetric.

The structure (2.14)-(2.15) of the MNA formulation is therefore similar to that of e−h-
based formulations for Maxwell’s equations. The properties of finite dimensional port-
Hamiltonian systems have been studied intensively in the literature; see e.g. [42, 97, 139].
As shown in [98], the index of (linear) systems is always ν ≤ 2. Furthermore, as briefly
discussed in Chapter 1, port-Hamiltonian systems come with a natural balance of power.

Energy balance

Following Section 1.2.1 and Appendix A.1, the energy balance for the problems of this
structure can be directly derived using simple variational calculus. A solution u of the
problem (2.14)-(2.15) satisfies the following power balance

d

dt
E(u(t)) = ⟨∂tu(t), E ′(u(t))⟩ = ⟨∂tu(t),Q(u(t))u(t)⟩

= ⟨Q(u(t))⊤∂tu(t),u(t)⟩ = −⟨A(u(t)),u(t)⟩
= −⟨R(u(t))u(t),u(t)⟩+ ⟨f(t),u(t)⟩. (2.16)

In the last step, we substitutedA(u) = R(u)−J and used the fact that J is skew-symmetric
and ⟨Jx,x⟩ = 0. Integrating with respect to time leads to the energy balance

E(u(t))− E(u(s)) = −
∫ t

s
⟨R(u(τ))u(τ),u(τ)⟩ dτ +

∫ t

s
⟨f(τ),u(τ)⟩ dτ .

With the assumption that R(u) is symmetric positive semi-definite we obtain

E(u(t))− E(u(s)) ≤
∫ t

s
⟨f(τ),u(τ)⟩ dτ ,

which holds for any input f and the corresponding solution u of (2.14)-(2.15). The energy
of the system thus can only grow by power supplied through the inputs, i.e., the system
is passive; see e.g. [3, 87].

Remark 2.2.3. The relation (2.16) can be directly applied to the MNA formulation
(2.12), leading to the following power balance

d

dt
E(e, iL, iV ) = −⟨G(A⊤

Re)A
⊤
Re,A

⊤
Re⟩ − ⟨vsrc, iV ⟩ − ⟨isrc,A⊤

I e⟩.

This shows, that the MNA formulation together with our assumptions on constitutive
equations leads to a passive system.

Utilizing the particular structure of the problem and following the framework [42], we
now formulate the discretization strategy based on the discontinuous Galerkin approach
that allows the construction of passivity-preserving schemes.
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Passivity preserving discretization

Let d denote the size of the system, i.e., u(t) ∈ Rd. Let T = {tn : 0 ≤ n ≤ N} be a
sequence of discrete time steps tn = nτ with τ = T/N . With In = [tn−1, tn] we denote the
n-th time interval and with Pk(I

n;V) we denote the space of polynomials with values in
V. By Pk(T ;V) we denote the space of piece-wise polynomials, i.e., the functions whose
restrictions to any interval In lie in Pk(I

n;V). We further use (∗)|tn to abbreviate the
evaluation of (∗) at time t = tn. For the problem (2.14)–(2.15), we now consider the
following method.

Problem 2.2.4. Let u0 = u0(0) be given. For 1 ≤ n ≤ N , find un ∈ Pk(I
n;Rd) such that∫

In
⟨Q⊤(un(t))∂tu

n, v(t)⟩ dt + ⟨Q⊤(un)(un − un−1), v⟩|tn−1

=

∫
In
⟨(J −R(un(t)))un(t), v(t)⟩ dt+

∫
In
⟨f(t), v(t)⟩ dt, ∀v ∈ Pk(I

n;Rd).
(2.17)

The method is a finite-dimensional version of [42, Scheme 4.2] or Scheme (A.8) adapted
to the problem structure. Thus, we can directly conclude that its solution satisfies the
following dissipation inequality.

Lemma 2.2.5. Let u ∈ Pk(T ;R) be a solution of (2.17). Then

E(un(tn))− E(um(tm)) ≤ −
∫ tn

tm
⟨R(u(t))u(t),u(t)⟩ dt+

∫ tn

tm
⟨f(t),u(t)⟩ dt.

Proof. The proof of the statement is identical to that of [42, Theorem 4.1], which has been
summarized in Lemma A.1.4 in Appendix A.1.

The scheme applied to the MNA system (2.12) leads to the energy dissipation principle

E(en(tn), inL(tn), inV (tn))− E(em(tm), imL (tm), imV (tm))

≤ −
∫ tn

tm
⟨G(A⊤

Re)A
⊤
Re(t),A

⊤
Re(t)⟩ dt−

∫ tn

tm
⟨vsrc(t), iV (t)⟩ dt−

∫ tn

tm
⟨isrc(t),A⊤

I e(t)⟩ dt,

which ensures the discrete passivity for the MNA formulation.

A note on numerical realization

The numerical realization of the schemes has already been discussed in Section 1.2.2. Let
us emphasize that an appropriate choice of the quadrature rule (wi, ξi) is an essential
ingredient. In Chapter 1, we discussed problems with quadratic nonlinearities, allowing us
to easily determine the necessary exactness degree of the quadrature. In this chapter, we
are dealing with non-polynomial nonlinearities. Therefore, the quadrature must be chosen
in such a way that the integration error becomes negligible. Our choices are discussed in
Section 2.5 below.
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2.3. Magnetic oriented nodal analysis for electric circuits

After analyzing the MNA formulation and providing the passivity-preserving discretiza-
tion, we now draw our attention to an alternative Magnetic Oriented Nodal Analysis
(MONA) formulation, recently introduced in [122]. The MONA formulation is derived
from the same physical principles and constitutive relations as the MNA. However, it is
written in terms of different quantities, which leads to systems of a smaller index. More
precisely:

• the MNA uses electric node potentials and currents as system unknowns and leads
to DAEs of index ν ≤ 2;

• the MONA formulation is based on magnetic node potentials and charges and leads
to systems of index ν ≤ 1.

Further, the particular structure of the MONA systems allows the construction of dis-
cretization schemes, which preserve the underlying energy balance exactly. Similar to the
previous section, we start by deriving the MONA formulation, then analyze the regularity
of DAE systems and characterize their index. As the final step, we study the particular
structure of the problems, show passivity, and present a structure-preserving discretization
strategy.

2.3.1. The magnetic oriented nodal analysis

Like in Section 2.1 we introduce vectors q, ϕ, ψ of electric charges, magnetic fluxes, and
magnetic node potentials, such that

i = ∂tq, v = ∂tϕ, and e = ∂tψ;

compare with relations (2.4). The Kirchhoff’s current law (KCL) can be written as

AC∂tqC +AR∂tqR +AL∂tqL +AV ∂tqV +AI∂tqI = 0.

and Kirchhoff’s voltage law (KVL) can be written as ϕX = A⊤
Xψ for different element types

X ∈ {C,R,L,V , I}. The constitutive relations (2.5) and (2.8) for capacitors, inductors,
and resistors can finally be phrased as

AC∂tψ = ϵ′(qC), ∂tqL = ϵ′L(A
⊤
Lψ), and ∂tqR = G(A⊤

R∂tψ)A
⊤
R∂tψ. (2.18)

For voltage and current sources (2.9), we similarly have A⊤
V ∂tψ = vsrc and ∂tqI = isrc.

Putting everything together we arrive atARG(A⊤
R∂tψ)A

⊤
R AC AV

−A⊤
C 0 0

−A⊤
V 0 0

 ∂tψ
∂tqC
∂tqV

 = −

ALϵ′L(A⊤
Lψ)

ϵ′C(qC)
0

−

AIisrc0
vsrc

 , (2.19)

which we call the MONA formulation; see [122]. Since the two formulations MNA and
MONA are based on the same physical principles and constitutive laws, they are equivalent
and can be transformed into each other.
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2.3.2. Analysis of the MONA system

In the following, we summarize some important properties of the MONA system, which
were originally stated in [122]. As in the previous section, we assume that the conductivity
G(·), the source current isrc(·), and source voltage vsrc(·) are smooth functions of their
arguments.

Theorem 2.3.1 (Regularity and index; Theorem 1 in [122]).
Let the conductivity matrix G(vR) be symmetric positive definite for any vR, and the
energy functionals ϵC(·), ϵL(·) be smooth and strictly convex. If

N([AR,AC ,AV ,AL]
⊤) = 0 and N(AV ) = 0, (B1)

then the system (2.19) is a regular DAE of index ν ≤ 1. If in addition to (B1) also

N([AR,AC ,AV ]
⊤) = 0 and N([AC ,AV ]) = 0 (B2)

hold, then the index is ν = 0, i.e., (2.19) is an ordinary differential equation.

Proof. The proof is adopted from [122]. To simplify the notation, we use the abbreviation
Gψ = G(A⊤

R∂tψ) and consider vsrc = 0 and isrc = 0 without loss of generality. We start
with the second assertion. The leading matrix in (2.19) has the form(

K B⊤

−B 0

)
(2.20)

with B⊤ = [AC ,AV ] and K = ARG
ψA⊤

R. Using assumptions (B1)-(B2), we see that B⊤

is surjective and that K is regular on N(B). As a consequence of Brezzi’s lemma, see
[15, Theorem 3.2], the matrix (2.20) is regular, hence (2.19) can be transformed into an
explicit ordinary differential equation. Now we prove the first assertion. If condition (B2)
does not hold, we can split the spaces of magnetic potentials ψ and charges q = (qC , qV )
into

Vψ = N([AR,AC ,AV ]
⊤)⊕N([AR,AC ,AV ]

⊤)⊥,

Vq = N([AC ,AV ])⊕N([AC ,AV ])
⊥.

We further choose an orthogonal basis for corresponding subspaces and decompose

ψ = Q1ψ1 +Q2ψ2 and q = P1q1 + P2q2.

such that [AR,AC ,AV ]
⊤Q1 = 0 and [AC ,AV ]P1 = 0, while [AR,AC ,AV ]

⊤Q2 and [AC ,AV ]P2

have trivial nullspaces. Moreover, Q = [Q1,Q2] and P = [P1,P2] are regular orthogonal
matrices. We further decompose the projectors into(

qC
qV

)
=

(
P1,C

P1,V

)
q1 +

(
P2,C

P2,V

)
q2.

We now multiply the system (2.19) from left by blkdiag(Q⊤,P⊤) and use the above de-
compositions for ψ and q = (qC , qV ), which leads to the equivalent form

0 0 0 0

0 K̃ψ 0 B̃⊤

0 0 0 0

0 −B̃ 0 0



∂tψ1

∂tψ2

∂tq1
∂tq2

 = −


Q⊤

1 ALϵ
′
L(A

⊤
L (Q1ψ1 +Q2ψ2))

Q⊤
2 ALϵ

′
L(A

⊤
LQ1ψ1 +Q2ψ2))

P⊤
1,Cϵ

′
C(P1,Cq1 + P2,Cq2)

P⊤
2,Cϵ

′
C(P1,Cq1 + P2,Cq2)
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with K̃ψ = Q⊤
2 ARG

ψA⊤
RQ2 and B̃⊤ = (Q⊤

2 [AC ,AV ]P2). With a slight rearrangement of
variables and equations, the system can then be written compactly as

Mψ∂ty = f(y, z), (2.21)

0 = g(y, z), (2.22)

where y = (ψ2; q2), z = (ψ1; q1), and the matrix in front of the derivative is given by

Mψ =

(
K̃ψ B̃⊤

−B̃ 0

)
.

We now show that (2.21)–(2.22), which up to elementary algebraic transformations is
equivalent to (2.19), is a Hessenberg system of index-1; see [66]. This requires to verify
that Mψ and the partial Jacobian gz(y, z) are regular. We first show that the matrix Mψ

is regular. To do so, we note that N(B̃⊤) = 0 by construction. Furthermore, Kψ is regular
on N(B̃), which can be seen as follows:

N(B̃) = N(P⊤
2 [AC ,AV ]

⊤Q2) = N([AC ,AV ]
⊤Q2).

Since Gψ is symmetric and positive definite, we have

N(K̃ψ) ∩N(B̃) = N(A⊤
RQ2) ∩N([AC ,A

⊤
V ]Q2) = N([AR,AC ,AV ]

⊤Q2) = 0,

by the construction of Q2. Hence, by Brezzi’s theorem [15, Theorem 3.2], the matrix Mψ

is regular, as desired, i.e., (2.21) can be transformed to an explicit ODE. In the second
step, we show that gz(y, z) is regular. To do so, we differentiate the algebraic constraints

0 = g(y, z) :=

(
Q⊤

1 ALϵ
′
L(A

⊤
L (Q1ψ1 +Q2ψ2))

P⊤
1,Cϵ

′
C(P1,Cq1 + P2,Cq2)

)
.

By the chain rule, we obtain

gz(y, z) =

(
Q⊤

1 ALϵ
′′
L(vL)A

⊤
LQ1 0

0 P⊤
1,Cϵ

′′
C(qC)P1,C

)
, (2.23)

where vL = A⊤
L (Q1ψ1 + Q2ψ2) and qC = P1,Cq1 + P2,Cq2. Since the energies ϵC and

ϵL are convex by assumption, the two Hessians ϵ′′C(qC) and ϵ′′L(ϕL) are positive definite
for arbitrary arguments. The regularity of the upper left block in (2.23) follows from
N(A⊤

LQ1) = 0, which is a direct consequence of the first condition in (B1). Further, from
N(AV ) = 0 we can directly deduce that (0, qV ) ∈ N(AC ,AV ) implies qV = 0. This shows
that P1,C is injective, and the lower right block of (2.23) is regular. Therefore the Jacobian
gz(y, z) is regular. In summary, we conclude that (2.21)-(2.22) is a Hessenberg system of
index ν = 1, and in particular, a regular DAE. Since only the algebraic equivalence
transformations were performed, the result translates to the MONA system (2.19).

Remark 2.3.2. Theorem 2.3.1 guarantees the existence of a unique solution for every
choice of consistent initial values. Let us note that the construction of consistent initial
values for index ν ≤ 1 systems is much simpler than for the index ν = 2, since no
hidden constraints are present. From this perspective, the MONA formulation represents
a significant improvement over the MNA.
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Note that conditions (B1)–(B2) are equivalent to conditions (A1)–(A2) for the MNA
formulation, which automatically implicates the equivalent interpretation in terms of topo-
logical connectivity as discussed in Remark 2.2.2. The MONA formulation leads to a
system of a smaller index compared to the MNA in most cases.

2.3.3. Geometric structure and power balance

The fact that both MNA and MONA are based on the same physical principles, allows
us to directly deduce the passivity of the latter. However, the underlying structure of
MONA differs from that of the MNA; while the MNA systems fit into the port-Hamiltonian
framework, the MONA system has a different geometric structure – a generalized gradient
flow structure. We now take a closer look at this particular structure, derive the associated
power balance, and prove the passivity of the system.

Geometric structure of the MONA formulation

Let us recall, that the energy of a circuit consists of electric and magnetic energies stored
in capacitors and inductors, respectively. With H(ψ, qC , qV ) = ϵL(A

⊤
Lψ) + ϵC(qC) we

denote the energy as a function of MONA variables. Differentiating this expression we
obtain ∂ψH(ψ, qC , qV ) = ALϵ

′
L(A

⊤
Lψ), ∂qCH(ψ, qC , qV ) = ϵ′C(qC), and ∂qV H(ψ, qC , qV ) =

0. Abbreviating u = (ψ, qC , qV ), H′(u) = (∂ψH(u), ∂qCH(u), ∂qV H(u)), the MONA system
(2.19) can be written compactly as

C(∂tu)∂tu = −H′(u) + f (2.24)

with state vector u = (ψ, qC , qV ), source vector f = (−AIisrc, 0,−vsrc), operator C, which
can be decomposed into C(∂tu) = (R(∂tu)− J), and matrices

R(∂tu) =

ARG(A⊤
R∂tψ)A

⊤
R 0 0

0 0 0
0 0 0

 and J =

 0 −AL −AV
A⊤
L 0 0

A⊤
V 0 0

 .

Since G = G(vC) was assumed symmetric and positive definite for any vR, we see that
R(∂tx) is symmetric and positive semi-definite. Moreover, we observe that J is skew-
symmetric.

The structure (2.24) of the MONA formulation is similar to that of e− a formulations
for Maxwell’s equations discussed in Chapter 1. As briefly discussed in Section (1.2.3),
the problems of this structure naturally provide the underlying energy balance.

Power balance

It is easy to observe that a smooth solution u of (2.24) satisfies the power balance

d

dt
H(u(t)) = ⟨H′(u(t)), ∂tu⟩ =− ⟨C(∂tu)∂tu(t), ∂tu(t)⟩+ ⟨f(t), ∂tu(t)⟩

=− ⟨R(∂tu(t))∂tu(t), ∂tu(t)⟩+ ⟨f(t), ∂tu(t)⟩, (2.25)
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where in the last step we used C(∂tu) = (R(∂tu(t)) − J) and the skew-symmetry of J ,
which leads to ⟨J∂tu, ∂tu⟩ = 0. Integration of (2.25) with respect to time results in the
following energy balance

H(u(t))−H(u(s)) = −
∫ t

s
⟨R(∂tu(τ))∂tu(τ), ∂tu(τ)⟩ dτ +

∫ t

s
⟨f(τ), ∂tu(τ)⟩ dτ .(2.26)

With the assumption that R(∂tu) is positive semi-definite, we obtain

H(u(t))−H(u(s)) ≤
∫ t

s
⟨f(τ), ∂tu(τ)⟩ dτ ,

which holds for any input f and the corresponding solution u of (2.24). Hence, the energy
of the system can only grow by the energy supplied through the sources, proving the
passivity.

Remark 2.3.3. The balance (2.25) can be directly applied to the MONA formulation
(2.19), which leads to the following power balance

d

dt
H(ψ, qC , qV ) = −⟨G(A⊤

R∂tψ)A
⊤
R∂tψ,A

⊤
R∂tψ⟩ − ⟨vsrc, ∂tqV ⟩ − ⟨isrc,A⊤

I ∂tqI⟩. (2.27)

For positive definite conductivity matrices G(A⊤
R∂tψ), the MONA systems are passive.

Utilizing the particular structure of the problem and following the framework presented
in [43], we now formulate a discretization strategy based on Petrov-Galerkin time-stepping
that allows the construction of schemes preserving the underlying energy balance.

Structure preserving discretization

Let d denote the size of the system, i.e., u(t) ∈ Rd, and recall the notation of Section 2.2.3.
We now consider the approximation of the system (2.24) by the following method.

Problem 2.3.4. Find u ∈ Pk+1(T ;Rd) ∩ C([0,T ;Rd]) with u(0) = u0 and∫
In
⟨(R(∂tu(t))− J)∂tu(t), v̄(t)⟩ dt

= −
∫
In
⟨H′(u(t)), v̄(t)⟩ dt+

∫
In
⟨f(t), v̄(t)⟩ dt,

(2.28)

for all v̄ ∈ Pk(I
n;Rd) and 1 ≤ n ≤ N .

The scheme is a finite-dimensional version of [43, Approach 3.1] and Scheme A.14
adapted to the problem under the investigation. The discrete energy balance is provided
in the following lemma.

Lemma 2.3.5. Any solution u of Problem (2.28) satisfies

H(u(tn))−H(u(tm)) = −
∫ tn

tm
⟨R(∂tu(t))∂tu(t), ∂tu(t)⟩ dt+

∫ tn

tm
⟨f(t), ∂tu(t)⟩ dt

for all 0 ≤ tm ≤ tn ≤ T .
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Proof. Proof of the statement is identical to that of [43, Theorem 2], also presented in
Lemma A.2.4 in Appendix A.2.

Thus, for the MONA system (2.19) the energy balance (2.27) is exactly preserved under
the proposed discretization. Therefore, the method is particularly well suited for energy-
conserving circuits.

A note on numerical realization

The approach allows the construction of arbitrary higher-order schemes. Details on a
possible realization have already been discussed in Section 1.2.4. The details on the choice
of an appropriate quadrature rule for the integration are discussed in Section 2.5

2.4. Magnetic oriented formulation for field-circuit coupling

The circuit models discussed in the previous sections are based on simplified descriptions
of resistors, capacitors, inductors, and power sources. For more complex circuit elements,
electromagnetic field models should be used to obtain an adequate description of their
behaviour. In the following, we call these types of elements simply field elements. The
modelling of circuits containing field elements leads to problems with field-circuit coupling,
which have been addressed in a variety of publications; see e.g. [13, 117, 138, 140] and
references are given there. We also refer to [13, 37, 55] for the index characterization of cou-
pled problems. In this section, we consider electromagnetic field elements modelled by the
eddy current approximation of Maxwell’s equations. We introduce a magnetic-oriented
formulation for the corresponding field-circuit coupled problems, which is based on the
MONA formulation for the circuit and the magnetic vector potential formulation for the
field equations. We show that this formulation leads to systems with the canonical struc-
ture (2.24). Hence, energy-stable discretization can be achieved by the Petrov-Galerkin
technique discussed above. For the coupling between circuit and field quantities, we con-
sider stranded and solid conductor models discussed in e.g. [14, 119]. The results of this
section have not been published yet.

2.4.1. Coupling through stranded conductor

Assume that the current is injected into the field element through a stranded conductor.
Before we proceed, let us briefly recall some basic details about voltage and current exci-
tation in the field element. We mainly follow [68, 119], where further details are provided.

Voltage-current excitation problem

The stranded conductor model is based on the assumption that the current density is a
multiple of the current, i.e. js = iM j0, where js is the current density within the stranded
conductor, iM denotes the total current, and j0 is a given winding function, also known as
generator current density. Then, the current excitation problem for a single conductor in
a bounded domain Ω reads

σ∂ta+ curl ν(curl(a)) curla = iM j0, (2.29)
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where a is the magnetic vector potential, σ is the electric conductivity, ν(·) is differential
reluctance; see [119, 128] for details. The expression

⟨j0, ∂ta⟩Ω + riM = vM (2.30)

for the voltage can be derived by comparing the balances of power, as discussed in [68, 128].
With ⟨·, ·⟩Ω we denote the L2 scalar product ⟨v,w⟩Ω =

∫
Ω v ·w dx. The quantity r > 0

denotes the Ohmic resistance of the stranded conductor. The formulation (2.29)–(2.30)
is sometimes called the a∗− formulation for a stranded conductor; see e.g. [55, 119]. For
simplicity, we assume perfect magnetic boundary condition ν(curla) curla×n = 0 on ∂Ω.

A Galerkin discretization of (2.29)-(2.30) in space by an appropriate finite element
approximation incorporating gauging conditions leads to a system of the form

Mσ∂ta+ K(a)a = BiM , (2.31)

B⊤∂ta+ riM = vM , (2.32)

where a(t) is the vector with coefficients with respect to the chosen finite element basis.
Since σ = 0 in the nonconducting region, the mass matrix Mσ is singular and positive
semi-definite by construction.

We further assume that the differential reluctivity ν(·) is defined through the energy
relation w′

mag(b) = ν(b)b, where wmag(b) is the magnetic energy density; see Section 1.1.
With ϵM (a) = wmag(curlah) we define the discrete energy as a function of coefficients
with respect to the chosen finite element discretization. Then the relation ϵ′M (a) = K(a)a
holds by definition of system matrix K(·).

Remark 2.4.1. Modelling of the multi-port field elements, i.e. the elements, where
current is injected through several disjoint conductors, leads to the systems of the same
form (2.31)–(2.32), where B and r are matrices and iM and vM are vector-valued.

Field-circuit coupling

Now we consider the circuits consisting of capacitors (C), resistors (R), inductors (L),
current (I) and voltage (V) sources, and an additional field element (M) described by
(2.31)-(2.32). We denote with AM the block of the incidence matrix corresponding to the
field element. Similarly to Section 2.3.1, we write Kirchhoff’s current law (KCL) as

AC∂tqC +AR∂tqR +AL∂tqL +AV ∂tqV +AI∂tqI +AM∂tqM = 0, (2.33)

where iX = ∂tqX for different element types. With Kirchhoff’s voltage law vX = A⊤
X∂tψ,

the constitutive relations for capacitors, inductors, and resistors are stated as in (2.18),
namely,

AC∂tψ = ϵ′(qC), ∂tqL = ϵ′L(A
⊤
Lψ), and ∂tqR = G(A⊤

R∂tψ)A
⊤
R∂tψ, (2.34)

while for voltage and current sources we require A⊤
V ∂tψ = vsrc and ∂tqI = isrc. The system

describing the field element is obtained from (2.31)-(2.32) and reads

Mσ∂ta− B∂tqM = −ϵ′M (a),

−A⊤
M∂tψ + B⊤∂ta+ r∂tqM = 0,
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where A⊤
M∂tψ = vM and ∂tqM = iM . Putting everything together finally leads to
ARGA

⊤
R 0 AM AC AV

0 Mσ −B 0 0
−A⊤

M B⊤ r 0 0
−A⊤

C 0 0 0 0
−A⊤

V 0 0 0 0



∂tψ
∂ta
∂tqM
∂tqC
∂tqV

 = −


ALϵ

′
L(A

⊤
Lψ)

ϵ′M (a)
0

ϵ′C(qC)
0

−


AIisrc

0
0
0
vsrc

 ,(2.35)

with G = G(A⊤
R∂tψ) denoting the voltage dependent conductivity matrix for the resistors.

Since the formulation is based on magnetic vector potential and magnetic node potentials,
we call (2.35) a magnetic oriented formulation for field-circuit coupling.

Geometric structure of the coupled problem

The total energy now consists of electric energy stored in the capacitors and magnetic
energy stored in inductors and the field element. With H(ψ, a, qM , qC , qV ) = ϵL(A

⊤
Lψ) +

ϵM (a)+ϵC(qC) we denote the energy in terms of the system variables. The coupled system
(2.35) has the same geometric structure as MONA, namely

(R(∂tu)− J)∂tu = −H′(u) + f , (2.36)

with state vector u = (ψ, a, qM , qC , qV ), source vector f = (−AIisrc, 0, 0, 0,−vsrc) and
system matrices

R =


ARGA

⊤
R 0 0 0 0

0 Mσ 0 0 0
0 0 r 0 0
0 0 0 0 0
0 0 0 0 0

 and J =


0 0 AM AC AV
0 0 −B 0 0

−A⊤
M B⊤ 0 0 0

−A⊤
C 0 0 0 0

−A⊤
V 0 0 0 0

 .(2.37)

The skew-symmetry of J is obvious. Assuming that G = G(A⊤
R∂tψ) is symmetric positive

definite as before, using thatMσ is symmetric positive semi-definite, and noting that r > 0,
the matrix R(∂tu) can be seen to be symmetric and positive semi-definite. Hence, with
the same arguments as used in Section 2.3.3, we obtain the energy balance, as stated in
the following corollary.

Corollary 2.4.2. Let u = (ψ, a, qM , qC , qV ) be a sufficiently smooth solution to (2.36),
where J and R(∂tu) are given as in (2.37). Then the energy balance (2.26) holds, namely

H(u(t))−H(u(s)) = −
∫ t

s
⟨R(∂tu(τ))∂tu(τ), ∂tu(τ)⟩ dτ +

∫ t

s
⟨f(τ), ∂tu(τ)⟩ dτ ,

where the dissipative term is now given by

⟨R(∂tu)∂tu, ∂tu⟩ = ⟨G(A⊤
R∂tψ)A

⊤
R∂tψ,A

⊤
R∂tψ⟩+ ⟨r∂tqM , ∂tqM ⟩+ ⟨Mσ∂ta, ∂ta⟩.(2.38)

The three summands in (2.38) correspond to Ohmic losses caused by circuit resistors,
losses caused by the resistance of the stranded conductor, and due to eddy currents within
the conducting domain of the field element, respectively. With the assumption that R(∂tx)
is positive semi-definite, we obtain the passivity of the coupled problem (2.35), as discussed
in Section 2.3.3.
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Remark 2.4.3. Because of the particular problem structure (2.36), the construction of
schemes, which preserve the underlying energy balance for the coupled problems, can be
achieved using the Petrov-Galerkin approach, as discussed in the previous section.

2.4.2. Coupling through solid conductor

We now turn to the case where the current is injected into the field element through a
solid conductor, which leads to a system with a slightly different structure. We follow [68,
Section 5] for modelling voltage and current excitation in the field element. For further
details, we also refer to [5, 41, 128].

Voltage-current excitation problem

We consider the following model for voltage and current excitation through a solid con-
ductor

σ∂ta+ curl ν(curla) curla = vMσp, (2.39)

−⟨∂ta,p⟩σ + vM∥p∥2σ = iM , (2.40)

where p is a winding function representing a normalized electric field distribution in the
conductor; see e.g. [119]. We again consider a bounded domain Ω and assume boundary
condition ν(curla) curla× n = 0 on ∂Ω.

The Galerkin discretization of (2.39)-(2.40) in space using an appropriate finite element
subspace incorporating gauging conditions leads to a system

Mσ∂ta+ K(a)a = −BvM , (2.41)

B⊤∂ta+ PvM = iM . (2.42)

Note that for multi-port field elements, B and P are matrices and iM and vM are vector-
valued. System (2.41)-(2.42) looks similar to (2.31)-(2.32), but its analysis requires some-
what different arguments.

Field-circuit coupling

Similar to the analysis of the previous section, we use Kirchhoff’s voltage law vM = A⊤
M∂tψ

and relation iM = ∂tqM to write the system (2.41)-(2.42) as

BA⊤
M∂tψ +Mσ∂ta = −ϵ′M (a),

PA⊤
M∂tψ + B⊤∂ta = ∂tqM ,

where ϵM (a) is the magnetic energy and ϵ′M (a) = K(a)a holds. Together with Kirchhoff’s
current law (2.33) and the constitutive relations (2.34) for the circuit components, we
obtain the magnetic oriented formulation

ARGA
⊤
R +AMPA⊤

M AMB⊤ AC AV
BA⊤

M Mσ 0 0
−A⊤

C 0 0 0
−A⊤

V 0 0 0



∂tψ
∂ta
∂tqC
∂tqV

 = −


ALϵ

′
L(A

⊤
Lψ)

ϵ′M (a)
ϵ′C(qC)

0

−


AIisrc

0
0
vsrc

 .
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Like before, G = G(A⊤
R∂tψ) denotes the voltage-dependent conductivity matrix for the

resistive elements. In contrast to the coupling via stranded conductor, the quantity qM
could be eliminated and does not appear in the system.

Geometric structure of the coupled problem

The total energy of the field-circuit coupled system is given by H(ψ, a, qC , qV ) = ϵC(qC)+
ϵL(A

⊤
Lψ) + ϵM (a), and the coupled problem is again of the canonical structure

(R(∂tu)− J)∂tu = −H′(u) + f , (2.43)

with state vector u = (ψ, a, qC , qV ), source vector f = (−AIisrc, 0, 0,−vsrc), and system
matrices

R(∂tu) =


ARG(A

⊤
Rψ)A

⊤
R +AMPA⊤

M AMB⊤ 0 0
BA⊤

M Mσ 0 0
0 0 0 0
0 0 0 0

 and J =


0 0 AC AV
0 0 0 0

−A⊤
C 0 0 0

−A⊤
V 0 0 0

 .

(2.44)

The skew-symmetry of the matrix J immediately follows from its structure. The positive
semi-definiteness of R(∂tx) follows from positive semi-definiteness of matrix G̃ given by

G̃ =

(
AMPA⊤

M AMB⊤

BA⊤
M Mσ

)
,

as shown in the following lemma.

Lemma 2.4.4. The matrix G̃ is positive semi-definite.

Proof. By construction of Mσ we have ⟨Mσy, y⟩ = ⟨yh,yh⟩σ, where yh is a function in the
finite element subspace associated with the vector of coefficients y. In a similar manner
we can write ⟨Pz, z⟩ = ⟨zp, zp⟩σ and ⟨B⊤y, z⟩ = −⟨yh, zp⟩σ by construction of P and B,
respectively. Therefore, we have

⟨G̃y, y⟩ = ⟨Mσy
1, y1⟩+ ⟨Py2, y2⟩+ 2⟨B⊤y1, y2⟩

= ⟨y1
h,y

1
h⟩σ + ⟨y2p, y2p⟩σ − 2⟨y1

h, y
2p⟩σ = ∥y1

h − y2p∥2σ ≥ 0,

which proves that G̃ is positive semi-definite.

Remark 2.4.5. In the proof we used that Mσ, B, and P are constructed with respect to
the same scalar product ⟨·, ·⟩σ. This must be taken into account if the inexact integration
by e.g. mass lumping is considered.

Since the coupled field-circuit problem is again of the canonical structure (2.43), we can
use the arguments of Section 2.3.3 and derive the energy balance for the coupled problem
as stated in the following corollary.
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Corollary 2.4.6. Let u = (ψ, a, qC , qV ) be a sufficiently smooth solution to (2.43), where
J and R(∂tu) are given as in (2.44). Then the energy balance (2.26) holds, namely

H(u(t))−H(u(s)) = −
∫ t

s
⟨R(∂tu(τ))∂tu(τ), ∂tu(τ)⟩ dτ +

∫ t

s
⟨f(τ), ∂tu(τ)⟩ dτ ,

where the dissipative term is now given by

⟨R(∂tu)∂tu, ∂tu⟩ = ⟨G(A⊤
R∂tψ)A

⊤
R∂tψ,A

⊤
R∂tψ⟩+ ∥ − ∂tah +A⊤

M∂tψp∥2σ. (2.45)

The latter summand in (2.45) corresponds to the approximation of the Joule losses ∥e∥2σ;
see [68, 128] for details. The construction of the energy balance preserving scheme can
then again be achieved using the Petrov-Galerkin approach.

2.5. Numerical illustration

To illustrate some of the discussed aspects, we provide three numerical examples. In
the first test case, we consider a nonlinear LC circuit – the most simple example of an
energy-preserving system. We illustrate the energy behavior of the presented schemes
and investigate their convergence rates. In the second test case, we discuss the particular
numerical challenges arising in the index-2 circuits. We illustrate that hidden constraints
may cause instabilities when initial values are chosen inappropriately and verify the loss of
convergence in algebraic variables. In the third numerical example, we consider a rectifier
circuit in which the transformer is modelled by magneto-quasistatic field equations. We
illustrate the preservation of energy balance by the proposed discretization when solving
the coupled nonlinear field-circuit problem.

Example 1: Nonlinear LC circuit

Consider a simple circuit consisting of an inductor connected to a capacitor as illustrated
in Figure 2.3a. This is a canonical example of an energy-conserving system – the electric
energy of capacitors transforms into the magnetic energy of the coil and vice versa while
the total energy of the system is conserved.

n1

L

C

(a) LC circuit

0 5 10 15 20 25

−2

−1

0

1

2

e
i

(b) Potential and current

Figure 2.3.: Schematic representation of the circuit and numerical solutions obtained by
the proposed discretization schemes for MNA (solid) and MONA (dashed)
formulations.
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The MNA formulation. As the constitutive equation for the capacitor, we consider a
nonlinear device model given by C(v) = c0(1+

v
v0
)−γ with parameters c0 = 7.575, v0 = 0.8,

and γ = 0.45 (slightly modified [1, SMV1235]). For the inductor, we simply assume L = 1.
The ground node is set to zero potential. With AC = 1 and AL = −1 the MNA system
for the LC circuit 2.3a reads

C(e)∂te− i = 0, (2.46)

L∂ti+ e = 0, (2.47)

where e is the potential at the node n1 and i denotes the current through the inductor.
This particular problem is of index-0, i.e. is a system of ordinary differential equations.
Since there are no algebraic constraints, the choice of initial values is arbitrary. We set

e(0) = 1 and i(0) = 0 (2.48)

as an initial condition. Figure 2.3b illustrates the numerical solutions e(t) and i(t) over
the time interval t ∈ [0, 8π].

Results for the MNA system. For our numerical tests, we used the dG schemes
(2.17) with polynomial order k = 0, 1, 2. As the basis, we take Lagrange polynomials
associated with Gauss Lobatto Legendre nodes. The time integration is performed with
Gauss quadrature of a sufficiently high order, such that the integration error becomes
insignificant. The nonlinear systems (2.17) in every time step are solved numerically with
a tolerance of 10−15. Table 2.1 illustrates the convergence results for the electric potential
e. The reported errors are computed by err = max0≤n≤N |en(tn) − ẽ(tn)|, where ẽ is a

τ k = 0 k = 1 k = 2

err × 10−1 e.o.c. err × 10−3 e.o.c. err × 10−6 e.o.c.

1 2.244 – 1.322 – 2.12225 –
0.5 1.199 0.90 0.173 2.92 0.06963 4.93
0.25 0.542 1.15 0.022 2.98 0.00221 4.97
0.125 0.184 1.55 0.003 3.15 0.00007 5.03

Table 2.1.: Convergence of the schemes (2.17) applied to (2.46)-(2.47).

numerical solution computed with a sufficiently fine discretization. Similar to the related
RadauIIA schemes with s = k+1 stages [4], we observe super convergence results O(τ2k+1);
see [66]. Similar results also hold for the current i.

The MONA formulation. The MONA formulation for the LC circuit 2.3a reads

∂tq = −ϵ′(L), (2.49)

−∂tψ = −ϵ′C(q), (2.50)

where ψ(t) is the magnetic potential at the node n1 and qC(t) is the capacitor charge. The
constitutive laws for the capacitor and the inductor are given by

ϵ′L(ψ) = L−1ψ and ϵ′C(q) = v0

((
1−γ
v0c0

q + 1
) 1
1−γ − 1

)
,
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respectively. The expression for the capacitor is determined analytically through relations,
discussed in Section 2.1.3. It is easy to observe that the MONA formulation leads to a
system of ordinary differential equations, hence the initial values can be chosen arbitrarily.
For the purpose of comparison to the MNA, we chose ψ(0) = L−1i(0) = 0 and q(0) =
c0v0
1−γ ((1 + 1

v0
)1−γ − 1) ≈ 22.58, which correspond to initial values (2.48). The solutions

e = ∂tψ and i = ∂tq are depicted by the dashed lines in Figure 2.3b.

Results for the MONA system. In the numerical tests, we use the Petrov-Galerkin
approach for k = 1, 2, 3. We use Lagrange polynomials associated with Gauss Lobatto
Legendre nodes as a basis and utilize higher degree Gauss quadrature for integration. The
resulting nonlinear systems (2.28) in every time step are solved with a tolerance 10−15.
Table 2.2 illustrates the convergence results for the magnetic potential ψ, with the error
calculated via err = max0≤n≤N |ψn(tn) − ψ̃(tn)|, where ψ̃ is a numerical solution with a
sufficiently small time step. Similar to the related LobattoIIIA methods with s = k + 1
stages, we observe the convergence rates O(τ2k); see [66].

τ k = 1 k = 2 k = 3

err × 10−2 e.o.c. err × 10−5 e.o.c. err × 10−8 e.o.c.

1 2.249 – 5.688 – 6.95031 –
0.5 0.576 1.96 0.359 3.98 0.11069 5.97
0.25 0.138 2.06 0.022 3.99 0.00175 5.98
0.125 0.028 2.32 0.001 4.08 0.00004 5.58

Table 2.2.: Convergence of the schemes (2.28) applied to (2.49)-(2.50).

The electric node potentials and currents are computed by differentiation in the post-
processing. Since a collocation approach is used, the differentiation can be done exactly
without a loss of convergence for the differentiated quantities.

Evolution of the energy. To illustrate the discrete energy balance and passivity of
the two approaches, we consider schemes with a larger time step τ = 1. The red line in
Figure 2.4 shows the evolution of the energy for the MNA system (2.46)-(2.47) discretized
by the discontinuous Galerkin approach (2.17) with k = 1. As expected the energy decays

0 5 10 15 20 25
2.2

2.4

2.6

2.8

3

DG
PG

RadauIIA-2
LobattoIIIA-2

Figure 2.4.: Evolution of energies

over time. This is not the case for discretization by the corresponding RadauIIA scheme
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with s = 2; the evolution of energy is depicted with a red dashed line in Figure2.4. For
the energy calculation, we use the analytic expression

E(e, i) = Li2

2
+

c0v0
1− γ

(
1 +

e

v0

)1−γ
e− c0v

2
0

(1− γ)(2− γ)

((
1 +

e

v0

)2−γ
− 1

)
.

The evolution of the energy of the MONA system (2.49)-(2.50) discretized by the Petrov-
Galerkin approach (2.28) is depicted with a blue line in Figure 2.4. For the calculation of
energy, we use the analytic expression

H(ψ, q) =
L−1ψ2

2
+

c0v
2
0

2− γ

((
1− γ

v0c0
q + 1

) 2−γ
1−γ

− 1

)
− v0q.

As expected, the energy of the system is conserved up to an accumulated error of machine
precision O(10−13). This is not the case for discretization using the LobattoIIIA scheme.

Example 2: Linear index-2 circuit; [122, Example 1]

The next example illustrates the impact of a higher index on the numerical solution. We
consider the circuit illustrated in Figure 2.5, an example taken from [62, Ch. 10]. Because

vsrc(t)

n1

R1

C1

R2

n2

C2

R3 n3

C3

Figure 2.5.: Circuit containing a CV loop from [62, Fig. 10.2].

of the CV loop, depicted by the red dashed line, the conventional MNA leads to a problem
with index ν = 2, while the MONA approach results in a system with index ν = 1. The
circuit graph consists of four nodes connected by seven branches, corresponding to three
capacitors, three resistors, and one voltage source. The ground node is considered to be
the reference node. So, three potentials at the nodes n1, n2, and n3 are required for the
circuit description. The circuit topology is then encoded in the reduced partial incidence
matrices

AC =

 1 0 0
−1 1 0
0 0 1

 , AR =

1 0 0
0 1 1
0 0 −1

 , and AV =

1
0
0

 .

For ease of presentation, we simply set Ci = 1 and Ri = 1 for i = 1, 2, 3, which results in
the conductivity and capacitance matrices G = C = I3, where I3 is the identity matrix of
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size 3. The conventional MNA formulation then leads to the following system(
ACCA

T
C 0

0 0

)
d

dt

(
e
iV

)
+

(
ARGA

T
R AV

−ATV 0

)(
e
iV

)
=

(
0

−vsrc(t)

)
, (2.51)

while the MONA formulation results inARGATR AC AV
−ATC 0 0
−ATV 0 0

 d

dt

 ψ
qC
qV

+

0 0 0
0 C−1 0
0 0 0

 ψ
qC
qV

 =

 0
0

−vsrc(t)

 .

Due to our choice of constitutive equations, both systems are linear and time-invariant.

Instabilities caused by hidden constraints. Figure 2.6 illustrates some electric quan-
tities obtained by numerical solution of the two equations by the trapezoidal rule (TR)
with a fixed time step τ = 0.1 and for vsrc(t) = sin(πt). For the simulation, we chose

0 2 4 6 8 10

−1

−0.5

0

0.5

1 e1
e2
e3

0 2 4 6 8 10

−4

−2

0

2

4 iMNA
V

iMONA
V

Figure 2.6.: Numerical solutions obtained by TR method applied to the MNA and MONA
formulations. Left: potentials (MNA: dotted; MONA: solid); right: current
through the voltage source.

trivial initial conditions, which are consistent with the algebraic constraint caused by the
voltage source. This suffices to guarantee stability for the index-1 formulation obtained
by MONA and, as predicted by the theory, we observe a second-order convergence. The
MNA system, on the other hand, has index ν = 2 and an additional hidden constraint
arises, which is not satisfied by our choice of initial conditions and causes large oscillations
in the algebraic solution component; see Figure 2.6 for illustrative comparison. Let us
note that this weak instability could be cured by an appropriate initialization phase by
performing the first time step with the implicit Euler method. If we choose the source
term vsrc(t) = cos(t) inconsistent with the trivial initial values, then the TR-discretization
of the MNA formulation leads to strong instabilities which require a longer initialization
phase. In contrast, the MONA approach shows a weak instability that can be cured by a
single initialization step.

Convergence reduction for index-2 system. Loss of convergence (order) is a known
issue for index-2 problems; see e.g. [66]. In Table 2.3 we report the convergence rates
for the discontinuous Galerkin schemes schemes (2.17) with polynomial degrees k = 1, 2
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τ k = 1 k = 2

y z y z

err ×10−3 e.o.c. err×10−1 e.o.c. err ×10−5 e.o.c. err ×10−2 e.o.c.

1 2.1934 – 1.7605 – 2.6574 – 2.7084 –
0.5 0.3009 2.87 0.5294 1.74 0.0956 4.89 0.4195 2.69
0.25 0.0395 2.93 0.1321 2.01 0.0031 4.95 0.0544 2.95
0.125 0.0045 3.14 0.0267 2.29 0.0001 5.01 0.0061 3.15

Table 2.3.: Convergence in differential y and algebraic z variables for schemes (2.17) ap-
plied to the index-2 system (2.51).

observed in our tests. With y and z we denote the differential and algebraic variable,
respectively, which can be determined by appropriate projections. The errors and conver-
gence rates are computed as in the previous example. We observe a super convergence
O(τ2k+1) in differential variable y, while the algebraic variable z converges with reduced
rate O(τk+1). This result is not surprising since there is an equivalence between the dis-
continuous Galerkin and RadauIIA schemes for linear circuits [4], and for the latter, the
obtained convergence rates are expected; see [66].

Example 3: Field-circuit coupling

In the last example, we consider a full wave rectifier circuit from [117, Section 6.2] illus-
trated in Figure 2.7. The transformer is described by the field equations, which leads to a

M
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n2
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D3

n3 n4

R

⊗
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⊗
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⊗
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⊙
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⊙

⊙

⊙

ΩC

Ωl
−Ωl

+ Ωr
−Ωr

+

Figure 2.7.: Schematic sketch of a full wave rectifier circuit (left) and geometry of trans-
former modelled by the field equations (right).

coupled field-circuit problem, discussed in Section 2.4. The topology of the circuit is given
by the following partial incidence matrices

AR =


0 0 0 0 0
−1 1 0 0 0
1 0 1 0 −1
0 −1 0 −1 1

 , AV =


1
0
0
0

 , and AM =


1 0
0 1
0 0
0 0

 .

The circuit contains four diodes, which are modelled as nonlinear resistors. We assume
nonlinear voltage-current relation iD = 2.5 exp(4vD)vD for diodes and set R = 1 for the
remaining resistor.
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Description of the field element. For the description of the transformer we consider
a 2D magneto-quasistatic model based on assumptions j = (0, 0, jz) and a = (0, 0, az),
where jz and az are independent of z. The computational domain Ω is illustrated in
Figure 2.7. We set σ = 1 in ΩC and assume ν(b) = ν0(1 − α

β+|b|) in Ω with ν0 = 1,

α = 0.5, and β = 1. This choice of reluctivity function ν(·) corresponds to the energy

density ϵmag(b) =
ν20
2 (|b|

2−α log(β+ |b|2)). The current is injected through two stranded
conductors with domains Ωl± and Ωr±. In this setting, the current excitation problem
(2.29) simplifies to

σ∂ta
z − div ν(∇az)∇az = ilj

z
0,l + irj

z
0,r.

The winding functions are defined by jz0,l = χΩl
+
− χΩl

−
and jz0,r = χΩr

+
− χΩr

−
for the

left and right conductor, respectively. We neglect the Ohmic resistances of the stranded
conductors, which leads to the following expressions for voltages

vl = ⟨∂taz, jz0,l⟩ and vr = ⟨∂taz, jz0,r⟩.

For the purpose of this section, we use a fixed Galerkin approximation in space by con-
tinuous, piece-wise linear finite elements, which leads to the DAE system of the form
(2.31)-(2.32). Note, that for this problem in two dimensions, no gauging is necessary.

Simulation results. Since the circuit contains neither inductors, nor capacitors, nor
current sources, the coupled problem (2.35) simplifies to

ARGA
⊤
R 0 AM AV

0 M −B 0
−A⊤

M B⊤ 0 0
−A⊤

V 0 0 0



∂tψ
∂ta
∂tqM
∂tqV

 = −


0

Kν(a)a
0
0

−


0
0
0

vsrc(t)

 .

For the time integration, we apply the lowest order Petrov-Galerkin schemes (2.28) with
a constant time step τ = 0.01 on the time interval [0, 4]. The nonlinear systems in every
time step are solved with tolerance 10−12. The numerical solution for the rectified voltage
vR(t) = A⊤

R∂tψ for the given voltage input vsrc = sin(2πt) is illustrated in Figure 2.8a.
With a dashed line, we plot the solution to the problem with ν(b) = ν0 to highlight the
nonlinear effect. Figure 2.8c illustrates the eddy currents σ∂ta

z inside of the transformer
core at the time step t = 0.15. Figure 2.8b illustrates the evolution of magnetic energy
Hn = ϵM (an(tn)) as well as the supplied and dissipated energies given by

Hn
supp =

n∑
k=1

∫ tk

tk−1

vsrc(t)∂tq
k
V and Hn

loss =

n∑
k=1

∫ tk

tk−1

⟨Mσa
k, ak⟩,

respectively. We list in Table 2.4 the maximal discrepancy in the energy balance errH =
maxn |H0 + Hn

loss − Hn
supp − Hn| obtained with Petrov-Galerkin and LobattoIIIA time

schemes. As expected from theoretical results, for the Petrov-Galerkin approximations,
the energy balance Hn = H0 + Hn

loss − Hn
supp is conserved up to the tolerance of the

nonlinear solver O(10−12) and does not depend on the time step width. This is not the
case for the related Lobatto schemes, for which the error in energy is correlated to the error
of the discretization. Similar results also hold for the coupling through a solid conductor.
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(a) Numerical solution for vR = A⊤
R∂tψ.
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Figure 2.8.: (a) Numerical solution for vR = A⊤
R∂tψ for vsrc = sin(2πt). (b) Evolution of

energy H, supplied energy Hsupp, and dissipated energy Hloss. (c) Induced
current σ∂ta

z at the time t = 0.15.

τ PG(k = 1) Lobatto(s = 2) PG(k = 2) Lobatto(s = 3)

0.1 1.9895·10−13 3.523·10−2 1.625·10−13 2.704·10−3

0.05 1.3567·10−13 1.184·10−2 2.771·10−13 3.382·10−4

0.025 1.8652·10−13 3.067·10−3 9.037·10−13 1.718·10−5

0.0125 6.8923·10−13 7.738·10−4 7.105·10−13 9.891·10−7

Table 2.4.: Maximal discrepancy in the energy errH = maxn |H0 + Hn
loss − Hn

supp − Hn|
obtained by Petrov-Galerkin and LobattoIIIA schemes.

2.6. Summary and outlook

We now briefly summarize the main contributions of this chapter and provide an outlook
of some open questions for further research. In this chapter, we consider the modelling
of electric circuits from an energy-based viewpoint. We show that the conventional MNA
formulation leads to systems of a particular port-Hamiltonian structure, which allows the
construction of passivity-preserving schemes of arbitrarily high order.

We introduce the MONA formulation, based on magnetic node potentials and charges
across capacitors and voltage sources as unknowns. Despite the different modelling per-
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spectives, the proposed formulation is suitable for the same general class of circuits. We
show that under appropriate assumptions on circuit elements, the MONA formulation
leads to a regular DAE system of index ν ≤ 1, while the MNA systems have index ν ≤ 2.
This is a significant advantage of the magnetic-oriented approach. We further show that
the MONA formulation leads to a system of a particular geometric structure and discuss
the construction of energy-balance-preserving schemes.

Lastly, we formulate the magnetic-oriented formulation for the field-circuit coupling,
where the field model is given by the magneto-quasistatic problem in terms of the magnetic
vector potential. We show, that under an appropriate Galerkin semi-discretization for the
field equations, the coupled problems have the same canonical structure as MONA systems,
and the same energy balance-preserving time-stepping strategy can be applied.

The study of the magnetic-oriented approach for circuits is far from complete. The index
analysis for the coupled magnetic-oriented problems is missing. Further incorporation of
different field models or complicated circuit elements, like transistors and switches is yet
to be considered. In particular, the index analysis results of [37] for the circuits containing
generalized elements seem to be possible to adopt.

The error analysis of the discussed variational schemes is another topic of future re-
search; the analytical justification for observed super convergence is missing. Further,
the efficiency of the schemes has not been optimized. The symbolic analysis techniques
can be applied to MNA systems [123, 124], while the extension to MONA seems possible,
yet requires further investigation. We further expect that efficient construction of initial
values based on topological arguments [50] can be done for MONA systems in a similar
manner.

The magnetic-oriented perspective is not necessarily restricted to the nodal analysis.
In a similar manner, the magnetic oriented loop analysis (MOLA) formulation can be
derived. The corresponding analysis of the MOLA formulation is currently in progress.
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Chapter 3.

Systems with memory

In this chapter, we focus on systems with memory and discuss the numerical treatment of
problems that can be modelled by an abstract Volterra-integro-differential equation

M(y(t))∂ty(t) +N(y(t)) =

∫ t

0
k(t, s)f(s, y(s)) ds, 0 ≤ t ≤ T . (3.1)

Problems of this form arise in many different applications, such as neural sciences [7],
problems with transparent boundary conditions [6, 65, 75, 76], wave propagation problems
[6, 39, 65], field-circuit coupling [46], and more; see [27, 28, 90, 114] for an overview.

The main challenge in the numerical treatment of (3.1) arises from the integral term. Its
proper realization is the key aspect in the construction of efficient schemes and represents
the main topic of this chapter. To keep the reader’s attention on the essential parts, we
restrict our discussion to a simple Volterra equation of the first kind

y(t) =

∫ t

0
k(t, s)f(s) ds, 0 ≤ t ≤ T . (3.2)

The discretization strategy presented for (3.2) can then be easily adapted to (3.1). Before
we begin, let us briefly highlight the main issues and review related methods.

The main challenges

The discretization of the integral term (3.2) by an appropriate quadrature rule leads to a
matrix-vector multiplication

yn = (Kf)n, 1 ≤ n ≤ N , (3.3)

with vectors y, f ∈ RN and matrix K ∈ RN×N , which is dense and lower block triangular,
in general. Since we are interested in the discretization of Volterra-integro-differential
problems (3.1), the data fn may depend on yn. Therefore, it is essential that the values
yn are computed in an evolutionary manner, i.e., where the data fn is only required in
time steps m ≥ n. Since K is a lower triangular matrix, this can be achieved by a textbook
multiplication row-by-row, i.e., by traversing the matrix from top to bottom. A naive
realization of the matrix-vector product can be done in O(N2) algebraic operations and
requires O(N) active memory to store the history of the solutions yn. For a sufficiently
large N , memory consumption represents a major challenge in the simulations. A different
realization is based on traversing the matrix K from left to right. In this case, the entry fn
is only required in the n−th time step and the implementation becomes oblivious. This
realization requires O(N2) arithmetic operations and O(N) active memory to store the
partial sums of each row. An essential drawback of this approach is that the number of
time steps N has to be fixed a-priori.
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Convolution type integrals

We are particularly interested in problems where the integral in (3.2) is a convolution, i.e.,

k(t, s) = k(t− s).

In this case, an appropriate discretization leads to an algebraic system (3.3), where the
matrix K has a block Toeplitz structure. Hence, if the values of f and the number of
time steps N are fixed, the implementation of the matrix-vector product can be done with
complexity O(N logN) using fast Fourier transform. This realization is not evolutionary,
and, it is therefore not suitable for (3.1). An evolutionary version can be realized with
O(N log2N) operations; see [67].

Our discussion also involves problems where only the Laplace transform of the convolu-
tion kernel k̂(s) is known. In particular, many coupled nonlinear-linear problems can be
equivalently formulated as (3.1). Let us consider for example the problem

M(y(t))∂ty(t) +N(y(t)) = C⊤z, (3.4)

E∂tz +Az = By. (3.5)

Assuming the trivial initial condition z(0) = 0, we may eliminate the linear part in the
frequency domain using the Schur complement technique and obtain a system of the form
(3.1), where f(s, y(s)) = y(s) and the convolution kernel k is defined implicitly via its
Laplace transform by

k̂(s) = C⊤(sE +A)−1B.

When the size of the linear system is much larger than the size of the nonlinear system, the
formulation (3.1) can have several advantages over (3.4)–(3.5) in the numerical treatment.
Such problems arise in e.g. the context of field-circuit coupling; see [46] and Section 3.4.

Convolution quadrature methods

In the case, where the kernel is given in the frequency domain, the convolution quadra-
ture methods (CQ) introduced in [88, 89, 91] provides a suitable discretization strategy.
These methods for integral equations are closely related to the time-stepping schemes for
differential equations. In particular situations, one can show that the discrete solution of
problem (3.4)–(3.5) by a time stepping scheme and that of (3.1), where the convolution is
approximated by the corresponding convolution quadrature, coincide; see [39, 46, 91].

The application of convolution quadrature methods leads to the algebraic problem (3.3).
The computation of the entries in the matrix K requires O(N) evaluations of k̂(s), which
might be computationally expensive. The realization of the discrete convolution requires
O(N) active memory and O(N2) operations if done naively.

An improved fast and oblivious convolution quadrature (FOCQ) approach has been
introduced in [85, 92]. The approach provides a fast, evolutionary, and oblivious algorithm
of complexity O(N logN) and uses O(logN) active memory, and can be understood as
a low-rank approximation of matrix K; see Section 3.3. Moreover, the algorithm requires
only O(logN) evaluations of k̂(s), which in many applications is the essential factor. The
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drawback of the approach is that the number of time steps N has to be known in advance.
The fast and oblivious convolution quadrature schemes have been applied in a variety
of related problems involving e.g. fractional diffusion [115], impedance and transmission
boundary conditions [65], boundary element methods [114], and more.

Hierarchical approximation methods

An extension of the fast and oblivious CQ algorithm to more general kernels k(t, s) is
not directly clear. Matrix approximation methods e.g. fast multipole [54, 59, 113], H-
and H2-matrices [21, 63], multilevel techniques [25, 57] or wavelet algorithms [38], on the
other hand, can be applied in this setting. For asymptotically smooth kernels, the matrix
K can be stored efficiently in O(N logαN) memory where α ≥ 0 is some constant. For
the convolution-type integrals, the memory requirement is only O(N). If the data fn is
independent of yn, the realization of the matrix-vector product can be done with complex-
ity O(N logαN) under appropriate smoothness assumptions; see [21, 64] and references
within for details. The mentioned realizations are not evolutionary and can not be applied
to (3.1) directly.

Main contributions

We now discuss an algorithm for the realization of Volterra integrals (3.2) or corresponding
matrix-vector products (3.3) which has the following important properties, namely, it is

• evolutionary : the approximations yn can be computed one after another and the
number of time steps N and values of f do not need to be known in advance,

• oblivious: the entry fn of the right-hand side is only required in the n−th step,

• fast : the evaluation of all yn, 1 ≤ n ≤ N requires only O(N) operations, and

• memory efficient : the storage of the matrix K requires only O(N) memory for general
kernels and O(logN) in the case of the convolution. The matrix entities can be
computed on the fly, such that only O(logN) active memory is required to store a
compressed history of the data f.

The approach has been published in [40]. The key idea of the method is based on the
hierarchical block-wise low-rank approximation for the convolution matrix K using the
polynomial H2−matrix compression techniques [20, 63]. The accuracy of the approxi-
mation can then be guaranteed by well-known approximation results; see [21, 64]. The
particular one-dimensional structure of the integration domain allows the explicit charac-
terization of partitioning into blocks in the approximation matrix. This knowledge can
be used in the construction of an evolutionary algorithm for matrix-vector multiplication,
that traverses the approximation matrix top to bottom with complexity O(N) without
the need to fix N in advance.

In the case of convolution kernels, the hierarchical approximation yields compression al-
gorithms for the history of the data f, which reduces memory consumption. The approach
shares similar ideas with [6, 11, 75, 76], where a fast multipole expansion was employed
to accelerate the sum of exponentials approach, or to [78], where a polynomial on growing
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time steps was employed for the compression of the data, as well as to [79], where an
evolutionary H-matrix approximation with a special low-rank structure was constructed.

We also show that the strategy can be integrated into the convolution quadrature frame-
work [88, 89, 91], where the kernel is accessible via its Laplace transform. The resulting
schemes share strong similarities with the fast and oblivious convolution quadrature meth-
ods [85, 92]. Moreover, the latter can be understood as a H−matrix approximation with
the specific realization of the matrix-vector product.

Outline

In Section 3.1 we recall some general approximation results, introduce our basic notation,
and state a slightly modified algorithm for the dense evaluation of the Volterra integral
operators to illustrate some basic principles that we exploit later on. In Section 3.2 we
discuss the partitioning on the domain of integration, the multilevel hierarchy used for the
H2-compression, and the description and analysis of our new algorithm. In Section 3.3
we consider convolution kernels k̂(s) and discuss the relation of our algorithm to Lubich’s
convolution quadrature and the connections to the fast and oblivious algorithm of [92, 115].
Finally, some numerical results are provided in Section 3.4. To provide a connection to
electrical engineering, we consider the application of the approach to field-circuit coupling,
similar to [46]. Problems with dispersion can be handled in a similar manner; see [39].

The results of this chapter are based on our publications [39, 40, 46]. Most of the
presentation follows closely to [40].

3.1. Approximation of Volterra integrals

Let us start by summarizing some necessary information on the discretization of Volterra
integral operators. We briefly discuss some general approximation results, introduce the
basic notation, and present an algorithm for the uncompressed approximation, which
builds the basis for our further discussion. For simplicity, we consider a simple Volterra
integral equation of the first kind

y(t) =

∫ t

0
k(t, s)f(s) ds, (3.6)

with scalar valued functionsy, k, and f . The extension to systems of the general form
(3.1) is then discussed in Section 3.4.

General approximation results

Let kh and fh denote suitable approximations of k and f . Substituting these approxima-
tions in the integral equation (3.6) leads to

ỹh(t) =

∫ t

0
kh(t, s)fh(s)ds, (3.7)

where ỹh is then the approximation of the solution y. The following lemma provides an
error bound for the approximation, which is an essential result used in the following.
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Lemma 3.1.1 (see Lemma 1 in [40]). Let T > 0, kernels k, kh ∈ L∞(0,T ;Lr(0,T )), and
f , fh ∈ Lr

′
(0,T ) be given with 1 ≤ r, r′ ≤ ∞ with 1/r + 1/r′ = 1. Furthermore, assume

that

∥k − kh∥L∞(0,T ;Lr(0,T )) ≤ ϵ and ∥f − fh∥Lr′ (0,T ) ≤ ϵ. (3.8)

Then the functions y, ỹh defined by (3.6) and (3.7) satisfy

∥y − ỹh∥L∞(0,T ) ≤ C(∥k∥Lr(0,T ) + ∥f∥Lr′ (0,T ) + ϵ) ϵ, (3.9)

i.e., the error in the results can be bounded uniformly by the perturbation in the data.

Proof. From Hölder’s inequality, we can deduce that

|y(t)− ỹh(t)| ≤
∫ t

0
|k(t, s)||f(s)− fh(s)|+ |k(t, s)− kh(t, s)||fh(s)|ds

≤ ∥k(t, ·)∥Lr(0,T )∥f − fh∥Lr′ (0,T ) + ∥k(t, ·)− kh(t, ·)∥Lr(0,T )∥fh∥Lr′ (0,T ).

The result then follows by estimating ∥fh∥ ≤ ∥f∥+ ∥f − fh∥, using the estimates for the
differences in the data, and taking the supremum over all 0 < t < T .

Let us note that the constant C in the estimate (3.9) is independent of T . Therefore,
it can be used for arbitrarily long time intervals. Using the same arguments, it is also
possible to obtain similar estimates can also be obtained for different norms.

The lemma above provides a general approximation result. In the following, we consider
a piecewise polynomial approximation, which is often used as a basis in numerical methods
for integral, differential, and integro-differential equations.

3.1.1. Piecewise polynomial approximation

We consider a uniform grid of the time interval [0,T ] with grid points tn = nh, 0 ≤ n ≤ N ,
where h denotes the constant time step. By In = [tn−1, tn] we denote the n−th time
interval and we write Th = {In : 1 ≤ n ≤ N} for partitioning of the time interval [0,T ].
We denote by Pp(I) the space of polynomials of degree at most p over the interval I, and
we write Pq,q(I × J) = Pq(I) ⊗ Pq(J) for the space of polynomials in two variables of
degree at most q in each variable. We define piecewise polynomial spaces

Pp(Th) = {f ∈ L1(0,T ) : f |In ∈ Pp(In)},
Pq,q(Th × Th) = {k ∈ L1((0,T )× (0,T )) : k|Im×In ∈ Pq,q(Im × In)},

over the grid Th and the tensor-product grid Th × Th.

For sufficiently smooth functions f and k, we now consider a picewise polynomial ap-
proximations fh ∈ Pp(Th) and kh ∈ Pq,q(Th×Th), which satisfy (3.8) for sufficiently small
mesh size h. Without any particular knowledge about f and k, the use of uniformly par-
titioned meshes Th and Th × Th seems plausible. Let us note that for the evaluation of
the integral (3.7) only values k(s, t) with s ≤ t are essential. Therefore, only cells corre-
sponding to s ≤ t have to be taken into account. The examples of essential cells in the
uniformly partitioned grids for the approximation kh are illustrated in Figure 3.1.
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Figure 3.1.: Examples of grids Th×Th for approximation of k. Only the cells required for
approximating k(t, s) for s ≤ t are illustrated. The cells near the diagonal are
the nearfield cells. They are highlighted in gray and will be treated separately
in the following. (See Figure 1 in [40])

We now split the integral (3.7) into two parts corresponding to integrals over the farfield
cells and nearfield cells, which are depicted by white and gray in Figure 3.1. We write

ỹh(t) = w̃h(t) + z̃h(t),

where w̃h denote the contribution from farfield and z̃h from the nearfield cells. These
contributions are treated in a different manner, as discussed in the following passage.

3.1.2. Practical realization

With the polynomial approximations fh ∈ Pp(Th) and kh ∈ Pq,q(Th × Th) in (3.7), we
can directly conclude that ỹh ∈ Pp+q+1(Th). With the application to Volterra-integro-
differential systems (3.1) in mind, it is convenient to look for an approximation of the same
degree as the data fh. We replace ỹh in (3.3) by the interpolation yh = (Ppỹh)(t) ∈ Pp(Th)
of degree p. Following the ideas of collocation schemes, we chose a set of collocation points
tnj = tn−1+cjh, j = 0, . . . , p in the interval In and use Lagrange interpolation polynomials
ψnj ∈ Pp(In) as the local basis. The approximation yh is then defined through

yh(t
n
j ) = ỹh(t

n
j ), 0 ≤ j ≤ p. (3.10)

We expand the data fh and the solution yh locally with respect to this basis as

yh(t) =

p∑
j=0

ynj ψ
n
j (t), fh(t) =

p∑
j=0

fnj ψ
n
j (t), for t ∈ In. (3.11)

Next, we chose a basis {φni }i=0,...,q ⊂ Pq(In) for the kernel function kh ∈ Pq,q(Th × Th)
and expand it with respect to this basis in each component as follows

kh(s, t) =

q∑
i=0

q∑
j=0

km,n
i,j φmi (s)φ

n
j (t), for s ∈ Im, t ∈ In. (3.12)

Let us note, that we allow the approximations for yh, fh, and kh to be of different degrees,
i.e., q ̸= p, and therefore, we use two different sets of basis functions.

Since we only consider uniform meshes, it is natural to assume that this basis is invariant
under the transformation, i.e., it holds φni (t − tn) = φmi (t − tm) for all 0 ≤ i ≤ q and all
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1 ≤ m,n,≤ N . The Lagrange basis for fh and yh is invariant by construction. These
properties are important and will be utilized in the construction of the algorithms below.

For the evaluation of (3.7) at the time t = tmj ∈ Im, we now split the interval [0, tmj ]
into sub-intervals of the mesh and separate the integral into two contributions based on
nearfield and farfield cells, as illustrated in Figure 3.1. Using the relation (3.10) we obtain

yh(t
m
j ) =

m−2∑
n=1

∫
In
kh(t

m
j , s)fh(s) ds+

∫ tmj

tm−2
j

kh(t
m
j , s)fh(s) ds, (3.13)

where the two summands correspond to the farfield and nearfield contributions respec-
tively. Using the basis representations (3.11) and (3.12) for yh, fh, and kh, the integrals
of the farfield contribution can be written as∫

In
kh(t

m
j , s)fh(s) ds =

q∑
i=0

φmi (t
m
j )

q∑
k=0

km,n
i,k

p∑
r=0

(∫
In
φnk(s)ψ

n
r (s) ds

)
fnr .

For simplicity in notation, we now introduce the matrices P and Q defined as follows

Pj,i = φmi (t
m
j ), Qk,r =

∫
In
φnk(s)ψ

n
r (s) ds, (3.14)

Due to the invariance of the bases, we can conclude that these values are independent of
the time interval, i.e., the matrices are independent of m and n. By ym we denote the
vector with the solutions at the collocation points ymj = yh(t

m
j ), j = 0, . . . , p given by

(3.13). By the separation into nearfield and farfield contributions, we now write

ym = wm + zm.

The evaluation of the farfield contribution wm can then be compactly written as

wm = Pum, um =
m−2∑
n=1

km,ngn, gn = Qfn, (3.15)

where km,n is the matrix containing the entries km,n
i,j . Alternatively, the expression for wm

can be simplified to wm =
∑m−2

n=0 K
m,nfn, where Km,n = Pkm,nQ. The notation (3.15)

is used on purpose and will be helpful in the following section. In a similar manner, the
nearfield contribution zm can be expressed by

zm = Km,m−1fm−1 +Km,mfm, (3.16)

where the matrices Km,m−1, Km,m are constructed by analogy.

Implementation details

Let y, f ∈ RN(p+1) denote the global vectors by stacking together the contributions ym,
fn, respectively. And let K ∈ RN(p+1)×N(p+1) denote the block lower triangular matrix
consisting of blocks Km,n, n ≤ m. The discretization of (3.6) can then be formulated
compactly as a matrix-vector product

y = Kf, (3.17)
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Algorithm 1 Evaluation of Volterra integrals for uniform meshes; see Alg. 1 in [40].

for m = 1, . . . ,N do
u = 0
for n = 1, . . . ,m− 2 do

u = u+ km,ngn

end for
gm = Qfm

wm = Pu
zm = Km,m−1fm−1 +Km,mfm

ym = wm + zm

end for

as outlined in the Introduction. With the introduced notation, the numerical realization
of this vector-matrix product can be done, as summarized in Algorithm 1.

First, let us mention that this realization is evolutionary. The entries ym are computed
successively and only require the knowledge of fn, n ≤ m. The complexity of the algo-
rithm can be roughly estimated as O((p + 1)2N2) resulting from the block-wise matrix
multiplication. It is oblivious, but only in the sense that only fm and fm−1 are required
in the m−th time step. The storage of values gn, n = 1, . . . ,m − 1 is still required for
the evaluation of ym. This is a significant issue, which will be resolved in the following
section. A rough approximation of the memory consumption adds up to O((p + 1)2N2)
for the storage of the blocks in the matrix K and O((p+ 1)N) for the values fm and gm.

Let us emphasize that this algorithm serves a purely educational purpose. The algorithm
shares structural similarities with the one developed in the following section, which will
aid in highlighting the essential components through direct comparison.

3.2. A fast and oblivious algorithm

We now present an algorithm for evaluation of (3.17), which is based on H2− compression
technique; see e.g. [21, 64]. The presented technique drastically reduces memory con-
sumption and improves the complexity of the matrix-vector product evaluation, which is
beneficial for long-time simulations. We start with the introduction of hierarchical meshes,
which are the key ingredients of the presented methods.

3.2.1. Multilevel partitioning

The basic idea is to use an adaptively coarsening grid for the integration of the farfield
contributions. For simplicity, we assume that the number of time steps satisfies N = 2L for
L ∈ N. Then we denote by I(n;1) = In and define the hierarchy of partitions constructed
by recursive coarsening into sub-intervals I(n;ℓ) given by

I(n;ℓ) = I(2n−1;ℓ−1) ∪ I(2n;ℓ−1)=
[
t2

ℓ−1(n−1), t2
ℓ−1n

]
, ℓ > 1.

The number ℓ, 1 ≤ ℓ ≤ L − 1 stays for the level of coarsening. By construction we can
conclude that the length of I(n;ℓ) is 2ℓ−1h, where h = T/N . The level ℓ = 1 is called the
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finest level, which corresponds to initial partitioning I(n;1) = In. The construction of such
a hierarchical mesh is illustrated in Figure 3.2.

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

I(1;1) I(2;1) I(3;1) I(4;1) I(5;1) I(6;1) I(7;1) I(8;1)

I(1;2) I(2;2) I(3;2) I(4;2)

I(1;3) I(2;3)

I(1;4)

Figure 3.2.: Mesh hierarchy obtained by recursive coarsening of intervals I(n;1) = In with
maximal coarsening level L = 3 and N = 2L = 8 fine grid cells; see [40, Fig. 2].

We now introduce the hierarchical mesh used for the approximation of the kernel kh by

ATh = {I(m;ℓ)×I(n;ℓ) : ℓ = 1 with n ∈ {m− 1,m} or

I(m;ℓ) ∩ I(n;ℓ) = ∅ with I(⌈m/2⌉;ℓ+1) ∩ I(⌈n/2⌉;ℓ+1) ̸= ∅},

where ⌈r⌉ denotes the smallest integer larger or equal to r. Examples of such adaptive
meshes ATh are illustrated in Figure 3.3. With gray we again highlight the nearfield
cells. Let us emphasize, that the coarsening acts only on the farfield cells, the nearfield
cells stay untouched. Every element of the adaptive mesh is the square of size 2ℓ−1h,
where ℓ = 1, . . . ,L. This partitioning is the standard choice for the related methods, in
particular, H− and H2− matrices; see e.g. [64].

Figure 3.3.: Adaptive hierarchical meshes ATh obtained by recursive coarsening of farfield
cells in the uniformly refined meshes Th×Th illustrated in Figure 3.1; see [40,
Fig. 3].

3.2.2. Adaptive data-sparse approximation

As the next step, we define by Pq,q(ATh) the space of piece-wise polynomials of degree
≤ q in each variable over the adaptive mesh ATh. Since the adaptive hierarchical mesh
ATh is constructed by coarsening of the uniform grid Th × Th, we can conclude that

Pq,q(ATh) ⊂ Pq,q(Th × Th).

The key ingredient is to use this subspace Pq,q(ATh) in the approximation of (3.13), instead
of the space Pq,q(Th × Th) on the uniform grid, as discussed in Section 3.1.1.
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Considering a coarser grid for the approximation may reflect on the accuracy of the
approach. However, the accuracy of the approximation can be preserved for the adaptive
approximation under particular assumptions on the kernel. Now let us assume that the
kernel k is asymptotically smooth, i.e., there exist constants c1, c2 > 0, r ∈ R such that∣∣∂αt ∂βs k(t, s)∣∣ ≤ c1

(α+ β)!

cα+β2

(t− s)r−α−β (3.18)

for all α, β ≥ 0 and all t ̸= s. As shown in [21, 64], adaptive approximations kh ∈ Pq,q(ATh)
can be constructed for asymptotically smooth kernels, which converge exponentially in q
in the farfield. Therefore, the same accuracy can be achieved by adaptive and uniform
approximations.

The adaptive approximation requires much fewer degrees of freedom than the uniform
approximation. Indeed, it is easy to verify that dim(Pq,q(Th × Th)) = O(N2q2) while
dim(Pq,q(ATh)) = O(Nq2). The adaptive hierarchical approximation thus is data-sparse
and leads to a significant reduction of memory consumption, required for storing the kernel
approximation or its matrix representation (3.17).

In the following section, we discuss the appropriate evaluation of the matrix product
(3.17) which leads to a significant reduction of complexity and compression of data kept in
memory, as outlined in Section 3.1.2. To do so we use the hierarchical basis representation.

3.2.3. Multilevel hierarchical basis

In accordance with the multilevel partitioning of the domain, we define the multilevel basis

φ
(n;ℓ)
i (t) =

{∑q
j=0A

(1)
i,j φ

(2n−1;ℓ−1)
j (t), t ∈ I(2n−1;ℓ−1),∑q

j=0A
(2)
i,j φ

(2n;ℓ−1)
j (t), t ∈ I(2n;ℓ−1),

(3.19)

of the spaces Pq(I(n;ℓ)), ℓ > 1, where φ
(n;1)
i = φni is the basis on the finest level, as discussed

in Section 3.1.2. The recursive construction plays an important role in the following. It

is important to note that the coefficients A
(1)
i,j and A

(2)
i,j are independent of n and ℓ, due

to the invariance of the basis. Now, in each cell of the domain ATh we expand the kernel
with respect to this basis as

kh(s, t) =

q∑
i=0

q∑
j=0

k
(m,n;ℓ)
i,j φ

(m;ℓ)
i (s)φ

(n;ℓ)
j (t), (s, t) ∈ I(m;ℓ) × I(n;ℓ). (3.20)

For the evaluation of (3.13), we now split the farfield integration domain into

[0, tm−2] =

L(m)⋃
ℓ=1

B(m;ℓ)⋃
n=1

I(P (m,n;ℓ);ℓ), (3.21)

where L(m) = ⌈log2(m)⌉ − 1 is the number of levels involved, B(m; ℓ) = bin(m)ℓ + 1 ∈
{1, 2} is the number of intervals on each level, and P (m,n; ℓ) = C(m; ℓ) − n − 1 with
C(n; ℓ) = ⌈n/2ℓ−1⌉ corresponds to indices of the intervals on the level ℓ. With bin(m)ℓ we
denote the ℓ−th digit from behind of the binary representation of m obtained by Matlab’s
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m = 14

I(1;3)

I(2;3)

I(5;2)

I(11;1)

I(12;1)

⇒ B(m, 3) = 2

⇒ B(m, 2) = 1

⇒ B(m, 1) = 2

⇒ L(m) = 3

[0, tm−2] =
(
I(1;3) ∪ I(2;3)

)
∪ I(5;2) ∪

(
I(11;1) ∪ I(12;1)

)
Figure 3.4.: Illustration of partitioning with the description of the underlying quantities

L(m), B(m, ℓ), and P (m,n; ℓ) in (3.21) for m = 14; see [40, Fig. 4]

dec2bin function. The partitioning (3.21) of the integration domain corresponds to the
cells of the mesh ATh. An example of the splitting is illustrated in Figure 3.4.

By decomposing the farfield integral term in (3.13) with respect to the splitting (3.21),
we obtain the expression

yh(t
m
j ) =

L(m)∑
ℓ=1

B(m;ℓ)∑
n=1

∫
I(P (m,n;ℓ);ℓ)

kh(t
m
j , s)fh(s) ds+

∫ tmj

tm−2

kh(t
m
j , s)fh(s) ds.

Using the expansion (3.20) of the kernel on the interval I(P (m,n;ℓ);ℓ), the farfield integrals
can be expressed as∫

I(P (m,n;ℓ);ℓ)

kh(t
m
j , s)fh(s) ds =

q∑
i=0

φ
(C(n;ℓ);ℓ)
i (tmj )

q∑
k=0

k
(C(n;ℓ),P (m,n;ℓ);ℓ)
i,k g

(P (m,n;ℓ);ℓ)
k ,

where

g
(P (m,n;ℓ);ℓ)
k =

∫
I(P (m,n;ℓ);ℓ)

φ
(P (m,n;ℓ);ℓ)
k (s)fh(s) ds.

By the definition of φ(n;ℓ) as in (3.19), the latter expression satisfies the recursive relation

g
(i;ℓ)
k =

∫
I(i;ℓ)

φ
(i;ℓ)
k (s)fh(s) ds =

q∑
j=0

(
A

(1)
i,j g

(2i−1;ℓ−1)
k +A

(2)
i,j g

(2i;ℓ−1)
k

)
, for ℓ > 1,

and g
(i;1)
k = gik =

∑p
r=0Qk,rf

i
r for the finest level, as discussed in Section 3.1.1. The

evaluation of the relation (3.19) at the time step tmj yields

φ
(C(n;ℓ);ℓ)
i (tmj ) =

q∑
k=0

A
(B(m,ℓ−1))
i,k φ

(C(n,ℓ−1);ℓ−1)
k (tmj ),

such that we may define intermediate values

u
(C(n;ℓ);ℓ)
j =

q∑
i=0

A
(B(m;ℓ))
i,j u

(C(m,ℓ+1);ℓ+1)
i +

B(m;ℓ)∑
n=1

q∑
k=0

k
(C(n;ℓ),P (m,n;ℓ);ℓ)
i,k g

(P (m,n;ℓ);ℓ)
k .
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Similarly to (3.15), the integral (3.13) can then be obtained

ymj = yh(t
m
j ) =

q∑
k=0

Pj,ku
(m;1)
k + zm,

where nearfield contributions zm are as in (3.16) and projections Pj,k are given in (3.14).

Implementation details

The evaluation of the matrix product based on the introduced ideas is summarized in
Algorithm 2.

Algorithm 2 A fast and oblivious evolutionary algorithm; see Alg. 2 in [40].

1: for m = 1, . . . ,N do
2: Lcoarse = 1 + ⌊log2(bitxor(m,m− 1))⌋
3: for ℓ = Lcoarse, . . . , 1 do
4: if B(m; ℓ) ̸= B(m− 1; ℓ) then
5: g(2;ℓ) = g(1;ℓ)

6: if ℓ > 1 then
7: g(1;ℓ) = A(1)g(1;ℓ−1) +A(2)g(2;ℓ−1)

8: else
9: g(1;ℓ) = Qf(2)

10: end if
11: Set (Kn)i,j = k

(C(n;ℓ),P (m,n;ℓ);ℓ)
i,j for n ∈ {1,B(m; ℓ)}

12: uℓ = K1g
(1;ℓ)

13: if B(m; ℓ) = 2 then
14: uℓ = uℓ + K2g

(2;ℓ)

15: end if
16: uℓ = uℓ +

(
A(B(m;ℓ))

)⊤
u(ℓ+1)

17: end if
18: end for
19: f(2) = f(1)

20: f
(1)
j = f(tmj ), j = 0, . . . , p

21: zm = Km,m−1f(2) +Km,mf(1)

22: ym = Pu(1) + zm

23: end for

The implementation is done in Matlab. We use the build function bitxor(a, b), which
returns the integer generated by a bit-wise xor comparison of the binary representation
of a and b, to compute the value Lcoarse in O(1) complexity. One may set Lcoarse = L(m)
without any notable difference in computation times. Let us note that at each level ℓ only
one value u(n;ℓ) and two values of g(n;ℓ) are required. Furthermore, at most two values of
fn are required at any time step. The required buffers are denoted by u(ℓ), f(i), and g(i;ℓ),
i = 1, 2, ℓ ∈ N. For illustration purposes, a time-stepping is summarized in the following
example.
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Example 3.2.1. From the illustration in Figure 3.4 we see that the partitioning of [0, tm−2]
for m = 14 and m = 15, corresponding to the farfield contributions, are given by[

0, t12
]
=
(
I(1;3) ∪ I(2;3)

)
∪ I(5;2) ∪

(
I(11;1) ∪ I(12;1)

)
,[

0, t13
]
=
(
I(1;3) ∪ I(2;3)

)
∪
(
I(5;2) ∪ I(6;2)

)
∪ I(13;1),

and that a change in the partitioning structure is only given in the smaller time intervals
with coarsening level ℓ ≤ 2. As a consequence, the algorithm only changes variables on
level ℓ ≤ 2 in the for loop for m = 15, which we would like to elaborate on in the following.
At the beginning of the loop, the values of the variables storing the history of the data are

f(1) = f14, g(1;2) = g(5;2),

f(2) = f13, g(2;2) = g(4;2) (unused),

g(1;1) = g(12;1), g(1;3) = g(2;3),

g(2;1) = g(11;1), g(2;3) = g(1;3),

in correspondence to the partitioning of the farfield. Using the recursive relations of the
multilevel hierarchy, they are changed efficiently to

f(1) = f15, g(1;2) = g(6;2) = A(1)g(11;1) +A(2)g(12;1),

f(2) = f14 (by copying), g(2;2) = g(5;2) (by copying),

g(1;1) = g(13;1) = Qf13, g(1;3) = g(2;3) (unchanged),

g(2;1) = g(12;1) (by copying), g(2;3) = g(1;3) (unchanged),

during the loop, which corresponds to the decomposition of the farfield at m = 15. The
intermediate values for computing the farfield contributions at the beginning of the loop
are given by

u(3) = K(4,1;3)g(2;3) +K(4,2;3)g(1;3),

u(2) =
(
A(1)

)⊤
u(3) +K(7,5;2)g(1;2),

u(1) =
(
A(2)

)⊤
u(2) +K(14,11;3)g(2;3) +K(14,12;3)g(1;3),

and, using the multilevel hierarchy again, are changed efficiently to

u(3) = K(4,1;3)g(2;3) +K(4,2;3)g(1;3) (unchanged),

u(2) =
(
A(2)

)⊤
u(3) +K(7,5;2)g(1;2),

u(1) =
(
A(1)

)⊤
u(2) +K(14,11;3)g(2;3) +K(14,12;3)g(1;3).

Complexity and memory consumption

We consider the Algorithm 2 for the evaluation of (3.13) with kernel kh ∈ Pq,q(ATh)
and data fh ∈ Pp(Th), and with N = 2L denoting the number of time intervals in Th.
The algorithm (2) represents ah H2− vector-matrix product with the rearrangement of
the operations. Therefore, complexity and memory consumption can then be directly
estimated; see e.g. [21]. For convenience, we summarize the results.
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Lemma 3.2.2 (Lemma 2 in [40]). Algorithm 2 can be executed in O
(
N(p2 + q2)

)
opera-

tions.

Proof. The algorithm rearranges the operations of a standard H2-matrix-vector multi-
plication without adding any significant operations. We therefore simply estimate the
complexity of the corresponding H2-matrix-vector multiplication. Let us first remark that
the computation of zm in line 21 requires O(p2) operations in each time step. Second,
on a given level ℓ, we have to perform O(2ℓ) applications of A(1) and A(2) in total for
obtaining the g(n;ℓ) from the ones on level ℓ − 1, see line 7. Similarly, O(2ℓ) applications
of A(B(m;ℓ)) in line 16 are in total required on level ℓ for the computation of the u(n;ℓ) and
O(2ℓ) multiplications by k(k,n;ℓ) need to be performed in lines 12 and 14. Finally, O(N)
values of gn = Qfn and Pu(1) need to be computed in line 9 and line 22. Summing up
yields

O(Np2) + 3O(q2)
L∑
ℓ=1

O(2L−ℓ) + 2O(Npq) = O(Np2) +O(2Lq2) +O(Npq),

and since N = 2L Young’s inequality yields the assertion.

Lemma 3.2.3 (Lemma 3 in [40]). The H2-matrix representation K of the adaptive hi-
erarchic approximation kh ∈ Pq,q(ATh) can be stored in O

(
N(p2 + q2)

)
memory. If the

kernel is of convolution type, i.e., k(t, s) = k(t − s), then the memory cost reduces to
O
(
p2 + log2(N)q2)

)
.

Proof. The proof for the adaptive approximation is similar to the previous lemma, with
the p2-related term arising from the nearfield and the q2-related term from the farfield.
For a kernel of convolution type, the hierarchical approximation provides a block Toeplitz
structure, such that we only have to store O(1) coefficient matrices per level for the farfield
and O(1) coefficient matrices for the nearfield.

Let us finally also remark on the additional memory required during execution.

Lemma 3.2.4 (Lemma 4 in [40]). The active memory required for storing the data history
required for 2 is bounded by O(q log2N + p).

Proof. We require O(1) vectors of length p for the nearfield and at most two vectors g(n;ℓ)

of length q on L = log2(N) levels for the farfield contributions.

The algorithm is executed in an oblivious and evolutionary manner and can therefore be
generalized immediately to integro-differential equations of the form (3.1). Furthermore,
knowledge of the number of time steps N is not required prior to execution.

The discussed computational approach relies on the explicit knowledge of the kernel. As
mentioned in the introduction, a particular interest represents the convolution integrals,
where the kernel is given in the frequency domain via its Laplace transform. In the next
section, we discuss the extension of the algorithm to the problems of this setting. Our
approach is based on convolution quadrature methods [88, 91] and closely related to the
fast and oblivious convolution quadrature approach of [115].
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3.3. Approximation of convolution operators

We now discuss the numerical evaluation of the Volterra integral operators with a kernel
of the convolution type

k(t, s) = k(t− s),

which is implicitly given via its Laplace transform

k̂(s) := (Lk)(s) :=
∫ ∞

0
e−stk(t) dt, s ∈ C.

In the context of dynamical systems, the quantity k̂(s) is called the transfer function, f
is the input, and y is the output. The access to the kernel can be provided by the inverse
Laplace transform

k(t) = (L−1k̂)(t) =
1

2πi

∫
Γ
etλk̂(λ) dλ, t > 0, (3.22)

where Γ is a contour in the complex plain connecting −i∞ and i∞; see e.g. [9]. The
well-posedness of this relation can be guaranteed under further assumptions on the kernel.
We follow [88, 91] and assume that

k̂(λ) is analytic in a sector | arg(λ− c)| < φ,
π

2
< φ < π, (3.23)

and |k̂(λ)| ≤M |λ|−µ for some fixed M ,µ > 0, (3.24)

and the contour Γ lies within the analyticity domain of the function k̂.

The necessary modification to Algorithm 2 is the use of the inverse Laplace transform
(3.22) for the evaluation of the kernel function. In the following lemma we show that a
kernel defined via (3.22) with imposed assumptions (3.23) and (3.24) is asymptotically
smooth, and, therefore, the adaptive approximation as discussed in Section 3.2 is justified.

Lemma 3.3.1 (Lemma 5 in [40]). Assume that k̂ satisfies (3.23) and (3.24). Then k as
defined in (3.22) is asymptotically smooth, i.e., it satisfies (3.18) with c2 = sin(φ− π/2).

Proof. It is sufficient to consider the case c = 0 in (3.23) and µ = 1 in (3.24). Otherwise, we

simply transform k̂(λ+ c) = L(e−ctk(t))(λ) and k(t) = k
(µ−1)
∗ (t) with k̂∗(λ) := L(k∗)(λ) =

|λ|µ−1k̂(λ) for µ ̸= 1. From [9, Theorem 2.6.1], also see [127], we deduce that k has a
holomorphic extension into the sector | arg(λ)| < φ − π/2 with φ as in (3.23). Thus, the
radius of convergence of the Taylor series of k around t0 ∈ (0,∞) is given by c2t0, with
c2 = sin(φ− π/2) independent of t0. This implies∣∣∂αt k(t)∣∣ ≤ c1

α!

cα2 t
α

for some constant c1 > 0. Condition (3.18) then follows by the chain rule.

For the evaluation of the nearfield contribution, we use the convolution quadrature
methods [88, 89, 91]. Let us briefly summarize the basic ideas.
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3.3.1. Convolution quadrature methods

By substituting the expression for the kernel (3.22) into Volterra integral equation (3.6)
with k(t, s) = k(t− s) and changing the order of integration leads to the expression

y(t) =
1

2πi

∫
Γ
k̂(λ)

∫ t

0
e(t−s)λf(s) ds︸ ︷︷ ︸
=:z(t;0,λ)

dλ, t ∈ [0,T ]. (3.25)

The function z(t; 0,λ) is the solution of the initial value problem

∂tz(t; 0,λ) = λz(t; 0,λ) + f(t), z(0; 0,λ) = 0. (3.26)

The key idea of the approach is to discretize this equation by an appropriate method.
Multistep methods and Runge-Kutta schemes have been applied in [88, 89, 90].

For illustration, let us consider a simple implicit Euler scheme as presented in [114]. A
discretization of problem (3.34) by the implicit Euler time-stepping scheme with uniform
step-size h, time steps tn = nh, n ≥ 0, and initial value z−1(λ) = 0 leads to approximations

zn = h

n∑
ℓ=0

1

(1− hλ)ℓ+1
f(tn−ℓ) ≈

∫ tn

0
eλsf(tn − s) ds. (3.27)

Inserting the approximation (3.27) into (3.25) yields

y(tn) ≈ yh(t
n) :=

n∑
ℓ=0

ωℓf(t
n−ℓ) with ωℓ =

(
h

2πi

∫
Γ

k̂(λ)

(1− hλ)ℓ+1
dλ

)
.

Then the discretization of the convolution integral (3.6) can yields to the algebraic problem
(3.17) with ym = yh(t

m), fn = f(tn), and Km,n = ωm−n for n ≤ m.

The approximation by higher-order Runge-Kutta collocation methods can be considered
in a similar manner. Following [91], application of an (p+ 1)−stages scheme for solution
of (3.34) results into

yh(t
n
j ) =

n∑
ℓ=0

p∑
i=0

ωℓ,jif(t
n−ℓ
i )

where the quadrature weights ωℓ,ji are the entries of the matrix Wℓ defined by

∞∑
n=0

Wℓζ
n = k̂

(∆(ζ)

h

)
with ∆(ζ) = (A+

ζ

1− ζ
1b⊤), (3.28)

where A and b are the Runge-Kutta coefficients. Note that with this notation the function
k̂ takes matrix-valued arguments. This is to be interpreted in terms of the power series
and therefore k̂ acts on the eigenvalues of the matrix-valued arguments. By choosing
ζ = ρeiϕ sum in (3.28) becomes the Fourier series, which leads to the explicit formula for
the weights

Wℓ =
1

2πρn

∫ 2π

0
k̂(∆(ρeiϕ)/h)e−inϕ dϕ.
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The efficient approximation can then be done using a fast Fourier transform with com-
plexity O(N logN). As discussed in [88, 91], the weights can be computed with accuracy
O(ϵ) with L = O(log ϵ)N points for contour integration and log ϵ = O(h). For accuracy
O(

√
ϵ) it is sufficient to use L = O(N) points and ρ = 2N

√
ϵ.

The evaluation of the matrix-vector product (3.17) can be realized in O(N logN) oper-
ations and requires O(N) memory to compute and store the weights Wℓ and the interme-
diate results. As outlined in [67], an evolutionary version of the convolution sum can be
realized in O(N log2N) complexity.

Let us note that the collocation time stepping scheme applied (3.34) implicitly utlizes
polynomial approximations fh, yh on each of the intervals In. Therefore, convolution
quadrature methods formally fit into the abstract approximation setting considered in
Section 3.1. However, the polynomial basis is not directly visible from the collocation
schemes. And thus, it is not directly clear how the matrix Q in 3.14 for evaluation
gn = Qfn is necessary for the adaptive approximation in the following section. The
computation of

gnk =

∫
In
φnk(s− tn−1)fh(s) ds

is equivalent to solving the differential equation

∂tz̃k(t; t
n−1, fh) = φnk(t− tn−1)fh(t), z̃k(t

n−1; tn−1, fh) = 0, (3.29)

up to time tn. Thus, gn = z̃k(t
n; tn−1, f) can be computed from fn by using the same

time-stepping scheme as used for the convolution quadrature applied to (3.29) and does
not require any additional evaluations of fh. In fact, the time stepping procedure can be
rewritten as gn = Qfn where the coefficients of Q can be copied from the coefficients of
the underlying time stepping scheme.

3.3.2. Adaptive approximation

We proceed by analogy and split the convolution integral into farfield and nearfield con-
tributions as

yh(t
n) =

∫ tn−2

0
kh(t

n − s)fh(s) ds+

∫ tn

tn−2

kh(t
n − s)fh(s) ds (3.30)

The treatment of the farfield contributions is analog to Section 3.2, where the access to the
kernel function kh(s) is provided by the numerical approximation of (3.22), as discussed
below.

Numerical inversion of Laplace transform

We follow the approach of [85, 115] and consider a hyperbolic contour of the form

γ(θ) = µ(1− sin(α+ iθ)) + σ, θ ∈ R, (3.31)
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with 0 < µ, 0 < α < π/2 − φ, and σ ∈ R, such that the contour remains in the sector
of analyticity (3.23) of k̂. The discretization of the integral (3.22) by the trapezoidal rule
with with step τ yields

k(t) ≈
R∑

r=−R

iτ

2π
eγ(θr)tγ′(θr)k̂(γ(θr)), (3.32)

with θr = τr. For the evaluation of k(t) in the interval t ∈ [tmin, tmax] with chosen α and
σ, the parameters τ and µ are chosen as

τ = aρ(ρopt), µ =
2παR(1− ρopt)

tmaxaρ(ρopt)
, ρopt = argmin

ρ∈(0,1)

(
ϵϵR(ρ)

ρ−1 + ϵR(ρ)
ρ
)
,

where ϵ is the machine precision and

aρ(ρ) = acosh

(
tmax/tmin

(1− ρ) sin(α)

)
, ϵR(ρ) = exp

(
−2παR

aρ(ρ)

)
.

For more details on the parameter choice and precise error bounds, we refer to [85, 115].
In the numerical tests we chose α = 3π/16 and σ = 0.

3.3.3. Relation to fast and oblivious convolution quadrature methods

The presented hierarchical approximation is closely related to fast and oblivious convolu-
tion quadrature methods introduced in [92, 115]. There, the authors propose a hierarchical
partitioning into L-shaped cells as illustrated in Figure 3.5. The convolution integral (3.30)
is again decomposed into the nearfield and farfield contributions. The nearfield contribu-
tions are computed using the convolution quadrature methods.

Figure 3.5.: Hierarchical partitions of fast and oblivious convolution quadrature [115]; see
[40, Fig. 5].

The farfield part for the entry yh(t
m) is then based on the partitioning

[0, tm−2] =

L(m)⋃
ℓ=1

B(m;ℓ)⋃
n=1

I(P (m,n;ℓ);ℓ) =

L(m)⋃
ℓ=1

IℓFOCQ,m.

Choosing an appropriate contour Γℓ as in (3.31) and corresponding quadrature points θ
(ℓ)
r
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for each farfield cell and using (3.32) yields an approximation∫
IℓFOCQ,m

k
(
tm − s

)
f(s) ds

≈
∫
IℓFOCQ,m

iτ

2π

R∑
r=−R

k̂
(
γ(θ(ℓ)r )

)
γ′
(
θ(ℓ)r
)
eγ(θ

(ℓ)
r )(tm−s)f(s) ds

=
iτ

2π

R∑
r=−R

k̂
(
γ(θ(ℓ)r )

)
γ′
(
θ(ℓ)r
)
eγ(θ

(ℓ)
r )(tm−b(ℓ))

∫
IℓFOCQ,n

eγ(θ
(ℓ)
r )(b(ℓ)−s)f(s) ds︸ ︷︷ ︸

=z(c(ℓ);b(ℓ),γ(θ
(ℓ)
r ))

, (3.33)

with b(ℓ) = min IℓFOCQ,m and c(ℓ) = max IℓFOCQ,m. The values z(c(ℓ); b(ℓ), γ(θ
(ℓ)
r )) can be

computed by numerically solving the ordinary differential equation

∂tz(t; b
(ℓ), γ(θ(ℓ)r )) = γ(θ(ℓ)r )z(t; b(ℓ), γ(θ(ℓ)r )) + f(t), z(b(ℓ); b(ℓ), γ(θ(ℓ)r )) = 0. (3.34)

Thus, the fast and oblivious convolution quadrature provides an approximation of the
convolution matrix by solving an auxiliary set of (2R+1)L differential equations. In order
to obtain an oblivious algorithm it is crucial that the solution of each differential equation
is updated in each time step, i.e., the compressed convolution matrix must be evaluated
from left to right ; see [92, 115] for details.

The compression approach of the fast and oblivious convolution quadrature can be
understood as a low-rank approximation in each of the farfields L-shaped blocks

k(t, s) ≈
R∑

r=−R

(
iτ

2π
eγ(θ

(ℓ)
r )(t−b(ℓ))k̂

(
γ
(
θ(ℓ)r
))
γ′
(
θ(ℓ)r
))
eγ(θ

(ℓ)
r )(b(ℓ)−s)

=
R∑

r=−R
U(t, θ(ℓ)r )V (s, θ(ℓ)r ).

Then, the farfield approximation (3.33) can then be written as

∫
IℓFOCQ,m

k
(
tn, s

)
f(s) ds ≈

R∑
r=−R

U
(
t, θ(ℓ)r

) ∫
IℓFOCQ,m

V
(
s, θ(ℓ)r

)
f(s)ds

=

R∑
r=−R

U
(
t, θ(ℓ)r

)
z
(
c(ℓ), b(ℓ), θ(ℓ)r

)
.

Thus, it can be understood as a realization of a low-rank matrix-vector product by the
numerical solution of a differential equation. Furthermore, since the partitioning depicted
in Figure 3.5 can easily be refined to an adaptive partitioning as in Figure 3.3, the fast and
oblivious convolution quadrature can be interpreted as a particular case of an H-matrix
approximation with a specific realization of the H-matrix-vector product; see e.g. [21, 64]
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3.4. Numerical examples

To illustrate the results we consider two numerical examples. In the first example, we con-
sider the numerical solution of Volterra integral equations stemming from the reformation
of an ordinary differential equation by variation of constants formula. In the second exam-
ple, we consider the discretization of the Volterra-integro-differential equation stemming
from the reformulation of the field-circuit problem of Chapter 2.

Variation of constants formula; see [40, Example 5.1]

In the first example, we consider the initial value problem

y′(t) = −2ty(t) + 5 cos(5t), y(0) = 2. (3.35)

By the variation of the constants formula, the solution can be expressed as

y(t) = 2e−t
2
+ 5

∫ t

0
es

2−t2 cos(5s) ds. (3.36)

Let us note that the integral kernel k(t, s) = es
2−t2 satisfies the asymptotic smoothness

assumption (3.18), which justifies the use Algorithm 2.

We chose the polynomial degree q = 16 for the approximation of kernel function and
p = 1, 2, 3 for data f(t) = cos(5t) and solution y. We chose the right Radau collocation
points for the discretization of (3.36) which relates to the solution of (3.35) using RadauIIA
schemes. The Radau nodes are the classical choice in the convolution quadrature literature
[91, 115]. Furthermore, for the farfield approximation, we construct cells by combining
nmin × nmin = 16 × 16 cells on the finer level, which is the common choice in the related
literature.
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Figure 3.6.: Approximation errors (left) and computation times (right) for the variation
of constants formula example of Section 3.4.

The left plot of 3.6 illustrates the convergence rates. We observe the error decay

eh =: max
ti∈Th

|y(ti)− yh(ti)| ≤ Ch2p−1,
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as expected; see e.g. [27, Chapter 2]. As the reference solution, we chose the approximation
with N = 219. On the plot of Figure 3.6 we the relation between the computational time
and the number of discretization points. We clearly observe linear convergence, as expected
from the theoretical results.

Field-circuit coupling

In our second experiment, we consider the example of the field circuit coupling model of
a rectifier of Section 2.5, as illustrated in Figure 3.7.

M

V

n1

n2

D2

D4

D1

D3

n3 n4

R

0 1 2 3 4

−1

−0.5

0

0.5

1

vsrc
vredR · 50
vfullR · 50

Figure 3.7.: Left: Schematic representation of the rectifier circuit. Right: the input vsrc
and rectified voltage drop at the load vR at the time interval [0, 4] determined
numerically by solving the reduced system (3.42)–(3.43) and of the full system
(3.37)–(3.40) for comparison.

Problem description. Let us recall that the vector potential formulation for the coupled
problem is described by the following set of equations

ARGA
⊤
R∂tψ +AV ∂tqV +AM∂tqM = 0, (3.37)

−A⊤
V ∂tψ = −vsrc, (3.38)

Mσ∂ta(t) + Kνa(t)− B∂tqM (t) = 0, (3.39)

−A⊤
M∂tψ(t) + B⊤∂ta(t) = 0, (3.40)

where G = G(A⊤
R∂tψ) is nonlinear. For a precise description of the geometry for the

field element, the topology of the circuit, and further details on the model, we refer to
Section 2.5. The only change is that we now consider a linear model for the field element,
i.e., Kν is constant. In the numerical experiments, we set constant ν = 1 in the complete
domain Ω and σ = 103 in conducting domain Ωc.

Volterra integro-differential equation formulation. By the linearity of the subsys-
tem describing the field element, the magnetic vector potential can be eliminated from the
subsystem in the frequency domain. Applying the Laplace transform to (3.39) and (3.40)
and rearranging the terms the charge flux relation can be formulated as

AMsq̂M (s) = k̂(s)ψ̂(s), k̂(s) = AM (B⊤(sMσ + Kν)
−1B)−1A⊤

M . (3.41)
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where ψ̂ and q̂M denote the Laplace transforms of ψ and qM , respectively. Assuming the
trivial initial values, the current-flux relation in the time domain becomes a convolution

AM∂tqM =

∫ t

0
k(t− s)ψ(s) ds,

where the kernel k is given in the frequency domain via (3.41). Substituting this expression
in (3.37) together with (3.38) leads to a Volterra integro-differential system

ARGA
⊤
R∂tψ +AV ∂tqV +

∫ t

0
k(t− s)ψ(s) ds = 0, (3.42)

−A⊤
V ∂tψ = −vsrc(t). (3.43)

In our example, the circuit part has dimension 5 composed of four node potentials and
one charge drop across the voltage source. The dimension of the equations for the field
element can be arbitrarily large, depending on the accuracy of the semi-discretization.
In our simulation, we use discretization in space which results in a(t) ∈ R640. Hence,
the reduced system (3.42)–(3.43) is much smaller than the coupled system (3.37)–(3.40),
which reflects in the numerical treatment, as illustrated below.

Discretization. We implemented only the second-order method. The circuit equations
are discretized by the lowest order Petrov Galerkin scheme; see Example 1.2.16. The treat-
ment of the Volterra term is based on the corresponding collocation points. The nearfield
contributions are computed using the corresponding convolution quadrature method. The
minimal size of the nearfield is again chosen to be size 16. The right plot in Figure 3.7
illustrates the input voltage vsrc(t) and the numerical solution to the rectified voltage at
the load vredR (t). For comparison, we also plot the solution of the full system.

Convergence results. We applied the plain convolution quadrature and the presented
adaptive methods to this problem. The left plot in Figure 3.8 illustrates the error conver-
gence of the potential ψ3 at the node n3 for different schemes. As expected we observe
second-order convergence. Here, we compute the error via eh = maxti∈Th

|ψ3(ti)−ψ3
h(ti)|,

whereas the reference solution we use the numerical solution obtained by a solution of the
full system with N∞ = 16384. For these results, we set L = N and ϵ = 10−8 for the
computation of the convolution quadrature weights, we chose the polynomial degree q = 8
for the approximation of the kernel and use Lp = 16 points for the evaluation of inverse
Laplace transform.

The observed saturation of convergence is the consequence of the inexact realization
of the inverse Laplace transform. The right plot in Figure 3.8 illustrates the discrepancy
between the numerical solutions of full and reduced systems on the same grid. As expected,
up to the error in the compression and inexact realization of the convolution quadrature
weights and inverse Laplace formula, the solutions coincide; see [39, 46]. In particular,
we can conclude, that the energy-dissipation balance, as discussed in Section 2.5 remains
valid up to an error that is controlled by the discretization parameters.

Computation times. The main advantage of the approximation of the reduced system
is the gain in efficiency. The convolution quadrature and the presented method require
evaluating the transfer function at particular frequencies. This is a costly procedure, which
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Figure 3.8.: Convergence of the schemes and discrepancy to the numerical solution of the
fully coupled problem.
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Figure 3.9.: Equivalent circuit.

requires the solution of large-scale problems. For a fixed discretization and number of time
steps N this can be done in the pre-processing, independent of the circuit.

We compare the method to the solution of the fully coupled system, to the solution of
the reduced system, where the integral term is computed using the convolution quadrature
technique, and to the solution of an equivalent circuit problem. For the latter, we con-
sider an approximation of the transformer by a simplified circuit illustrated in Figure 3.9.
Replacing the field element with the equivalent circuit leads us to the system of size 7;
the two additional degrees of freedom are potential at the nodes between resistors and
inductors in the equivalent circuit. The parameters for the circuit Req = diag(Req

1 ,Req
2 )

and Leq ∈ R2×2 are determined by fitting

Req + sLeq ≈ B⊤s(sMσ + Kν)
−1B,

in a least square sense over the range of frequencies [0, 103]. Let us note that the circuit is
a simple approximation, resulting in a modeling error 10−1, and is intended for illustrative
purposes only. Systematic construction of equivalent circuits can be achieved using rational
approximations of the transfer function.

The computational times for the approaches are summarized in Table 3.1. For the
H2− approach, we use the set of parameters as previously. As expected, we observe the
complexity O(N). For the convolution quadrature approach, we set L = N and ϵ = 10−8.
Here, we use a straightforward implementation of the matrix-vector product, which has
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n full equiv CQ−red H2−red

off on off on

512 23.35 1.04 23.36 0.94 52.98 1.28
1024 49.99 1.96 46.57 1.94 80.09 2.67
2048 99.77 4.08 95.24 3.83 156.28 5.66
4096 194.39 7.94 184.09 8.33 262.63 10.38
8192 389.91 15.81 468.62 32.16 387.24 18.02

Table 3.1.: Computational times for different methods.

the complexity O(N2). The solutions of the coupled system and of the equivalent circuit
problem require O(N) operations. We observe that the online computation times of the
presented method are comparable to those for the equivalent circuit.

3.5. Summary and outlook

In this section, we discussed the fast and oblivious algorithm for the treatment of Volterra
integral operators based on H2− matrix compression technique. The algorithm is evolu-
tionary and can therefore be used for the treatment of integro-differential equations. The
algorithm can also be extended to Volterra integrals of the convolution type with the ker-
nel given implicitly in the frequency domain. The resulting method perfectly fits into the
convolution quadrature framework and is closely related to fast and oblivious convolution
quadrature methods.

A precise numerical comparison to fast and oblivious convolution quadrature methods
is yet to be done. In particular, the adaptive algorithms [12, 86] are yet to be considered.
Comparison to the parallel methods and multi-rate co-simulation techniques [29, 118] is
another topic of further research.
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Conclusion

This thesis covers several important problems in electrical engineering. First, we discussed
two strategies for passivity-preserving discretization of Maxwell’s equations in nonlinear
media. The key ingredients for our approach were formulating the problem in a certain
(port-) Hamiltonian or generalized gradient flow form and utilizing variational methods in
space and time. The construction of higher-order schemes with provable discrete energy
balance could be done systematically. The first approach utilizes the e − h formulation
and allows the construction of dissipative schemes, while the second approach is based on
the e − a formulation and leads to energy-balance-conserving schemes. Both approaches
result in implicit time integrators, which for linear media coincide with certain Runge-
Kutta methods.

This methodology applies to a variety of problems in nonlinear electromagnetics. Fur-
thermore, similar ideas could also be transferred to electric circuits. In the second chapter
of the thesis, we showed that MNA and MONA have structures similar to the e− h and
e − a formulations, respectively. In fact, the development of the MONA approach was
motivated purely by the vector potential formulation for field problems. The structural
similarity of the two formulations is advantageous for field-circuit coupling. The coupled
system then inherits the common generalized gradient flow structure, which ensures its
passivity and allows the construction of energy-balance-preserving schemes. Furthermore,
we showed that MONA systems have a lower differential-algebraic index than those of
the MNA, drastically simplifying the analysis and numerical treatment. Therefore, the
MONA approach seems to be a promising method for circuit simulators.

In the last chapter, we discussed an efficient discretization of Volterra-integro-differential
systems, mainly motivated by field-circuit coupling and dispersive media. We presented
an efficient evolutionary and oblivious algorithm for the approximation of Volterra inte-
grals based on the H2 matrix compression technique. This approach is related to well-
established CQ methods and represents an improvement over the FOCQ technique. How-
ever, it is not restricted to convolution-type integrals, making it more flexible. Using this
approach, field-circuit coupled problems could be solved essentially at the cost of solving
only the circuit part.

Although the focus of this thesis lies on particular applications, the presented ideas and
approaches can be extended to a variety of different problems in electrical engineering
and beyond. In particular, the magnetic oriented ansatz to modeling electric circuits
represents a fundamentally new idea, opening many possibilities for improvement and
further research. In fact, it is a foundation for several publications that are in process.
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Appendix A.

Variational frameworks

In this thesis we used two variational discretization frameworks [42, 43]. Let us provide a
brief summary of the necessary facts. Most of the results are taken from the corresponding
publications, where further details are provided.

A.1. Dissipative framework [42]

Let H be a Hilbert space and let V ⊂ H and W ⊂ H be two reflexive Banach spaces
continuously and densely embedded into H. By identifying H with its dual space H∗ we
obtain the Gelfand triples V ⊂ H ⊂ V∗ and W ⊂ H ⊂ W∗ and, therefore, the inclusions
V ⊂ W∗ and W ⊂ V∗ hold. Now let the given energy functional E : V ⊂ W∗ → R
be differentiable on its domain dom(E) = {u ∈ V : E(u) < ∞}. We assume that the
derivative can be written as

E ′(u) = Q(u)u, ∀u ∈ dom(E) ⊂ V, (A.1)

where Q(u) : V → W is a bounded and linear operator. We now consider the evolution
problems of the form

Q(u(t))∗∂tu(t) = −A(u(t)), ∀t ≥ 0, (A.2)

where Q(u(t))∗ : W∗ → V∗ is the dual operator and A : V → V∗ is a nonlinear operator.
Let us note that the form of A is not essential for further discussions. Similar results
hold for more general systems with A(t,u, ∂tu) instead of A(u). Based on the structural

assumptions (A.1)–(A.2) one can immediately derive the power balance and, consequently,
the energy balance of the system.

Lemma A.1.1. Let u : [0,T ] → V be sufficiently smooth solution of (A.2). Then

d

dt
E(u(t)) = −⟨A(u(t)),u(t)⟩V∗×V, t ≥ 0. (A.3)

Proof. Formal differentiation of the energy functional with respect to time yields

d

dt
E(u(t)) = ⟨∂tu(t), E ′(u(t))⟩W∗×W = ⟨∂tu(t),Q(u(t))u(t)⟩W∗×W

= ⟨Q(u(t))∗∂tu(t),u(t)⟩V∗×V = −⟨A(u(t)),u(t)⟩V∗×V,

and concludes the proof.
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Integration in time leads to the corresponding energy balance

E(u(t))− E(u(s)) = −
∫ t

s
⟨A(u(τ)),u(τ)⟩V∗×V dτ . (A.4)

In the following, we discuss the discretization strategy of [42], which respects this energy
balance principle. More precisely, the strategy allows the construction of schemes that
fulfill (A.4) with ”≤” instead of equality. Therefore we call this framework ”dissipative”.

Let us note, that the proof of the statement is based purely on variational arguments.
A solution to the system (A.2) can be characterized by the variational principle

⟨Q(u(t))∗∂tu(t), v⟩V∗×V = −⟨A(u(t)), v⟩V∗×V, ∀v ∈ V, t ≥ 0. (A.5)

The derivation of the power balance relies on this variational principle with v = u(t) as a
test function. This is the key ingredient used for the numerical treatment and motivates
the use of Galerkin schemes for spatial approximation.

Galerkin approximation in space

Let Vh ⊂ V denote a closed subspace. The Galerkin approximation of (A.5) in space reads

⟨Q(uh(t))
∗∂tuh(t), vh⟩V∗×V = −⟨A(uh(t)), vh⟩V∗×V, ∀vh ∈ Vh, t ≥ 0. (A.6)

Due to the particular structure of the problem, the power balance (A.7) is then preserved
under the approximation, as summarized in the following lemma.

Lemma A.1.2. Let u : [0,T ] → Vh be a smooth solution to (A.6). Then

d

dt
E(uh(t)) = −⟨A(uh(t)),uh(t)⟩V∗×V, t ≥ 0. (A.7)

Proof. The proof of Lemma A.1.1 can be directly transferred to the semi-discrete case.

Integration in time leads to corresponding energy balance

E(uh(t))− E(uh(s)) = −
∫ t

s
⟨A(uh(τ)),uh(τ)⟩V∗×V dτ .

In other words, the energy balance (A.4) is preserved under a Galerkin semi-discretization.
Similar results also hold for specific approximations of individual terms in (A.6). Certain
inexact realizations of the duality brackets can also be used.

The result holds for any Galerkin-type approximation. In this thesis, we specifically
focus on finite element schemes. However, since we apply this strategy to various types of
problems, particularly those with finite dimensions, we do not discuss the details here.
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Discontinuous Galerkin discretization in time

Let T = {tn : 0 ≤ n ≤ N} be a sequence of discrete time steps tn = nτ with τ = T/N .
With In = [tn−1, tn] we denote the n-th time interval and with Pk(I

n;V) we denote the
space of polynomials with values in V. By Pk(T ;V) we denote the space of piece-wise
polynomials, i.e., the functions whose restrictions to any interval In lie in Pk(I

n;V). We
further use (∗)|tn to abbreviate the evaluation of (∗) at time t = tn. We now consider the
time discretization by the following discontinuous Galerkin method.

Problem A.1.3. Let u(0) ∈ V be given. For 1 ≤ n ≤ N , find un ∈ Pk(I
n;V) such that∫

In
⟨Q(un(t))∗∂tu

n, v(t)⟩V∗×V dt+ ⟨Q(un)∗(un − un−1), v⟩V∗×V|tn−1

= −
∫
In
⟨A(un(t)), v(t)⟩V∗×V dt, ∀v ∈ Pk(I

n;V).
(A.8)

The main feature of this approach is that the discrete solution satisfies an energy dissi-
pation inequality, assuming the convexity of the energy functional.

Lemma A.1.4. Let u ∈ Pk(T ;V) be solution of the scheme (A.8) and assume E(·) is
convex. Then

E(un(tn))− E(um(tm)) ≤−
∫ tn

tm
⟨A(u(t)),u(t)⟩V∗×V dt.

Proof. The following proof is identical to the proof of [42, Theorem 4]. We first consider
the case m = n− 1. By the fundamental theorem of calculus, we conclude

E(un(tn))−E(un−1(tn−1)) = E(un(tn))− E(un(tn−1)) + E(un(tn−1))− E(un−1(tn−1))

=

∫
In

d

dt
E(un(t)) dt+

(
E(un(tn−1))− E(un−1(tn−1))

)
=

∫
In
⟨∂tun(t), E ′(un(t))⟩W∗×W dt+

(
E(un(tn−1))− E(un−1(tn−1))

)
= (∗) + (∗∗).

Since E(·) is convex, we can conclude the following inequality for the (∗∗) term

(∗∗) = E(un(tn−1))−E(un−1(tn−1)) ≤ ⟨un(tn−1)− un−1(tn−1), E ′(un(tn−1))⟩W∗×W

= ⟨un(tn−1)− un−1(tn−1),Q(un(tn−1))un(tn−1)⟩W∗×W

= ⟨Q(un(tn−1))∗(un(tn−1)− un−1(tn−1)),un(tn−1)⟩V∗×V.

Using the scheme (A.8) with test function v = un ∈ Pk(I
n;V) and making use of the

energy relation E ′(un) = Q(un)un we further obtain

(∗) =
∫
In
⟨∂tun(t),Q(un(t))un(t)⟩W∗×W dt =

∫
In
⟨Q(un(t))∗∂tu

n(t),un(t)⟩V∗×V dt

=−
∫
In
⟨A(un(t)),un(t)⟩V∗×V dt− ⟨Q(un(tn−1))∗(un(tn−1)− un−1(tn−1)),un(tn−1)⟩V∗×V.
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Taking the sum of the two terms (∗) and (∗∗) yields

(∗) + (∗∗) ≤ −
∫
In
⟨A(un(t)),un(t)⟩V∗×V dt,

which proves the statement for m = n− 1. The case m < n− 1 follows by induction.

Since the underlying structure is preserved under Galerkin approximation in space, the
time stepping scheme can be applied to the semi-discrete problem. Hence, the energy
dissipation balance can be obtained at the fully discrete level.

A.2. Conservative framework [43]

The second framework [43] used in this thesis is applicable to problems with a different
structure. Consider an abstract evolution problem of the form

C(u(t))∂tu(t) = −H′(u(t)), t ≥ 0, (A.9)

where H : V → R is the energy functional with the derivative H′ : V → V∗. Here, V is a
Banach space with the duality product ⟨·, ·⟩. We assume that C(u(t)) : V → V∗ is linear
and sufficiently smooth and f(t) ∈ V∗. Let us note that the particular form of C is not
essential for the method. Similar results can be obtained with C(t, ∂tu,u) instead of C(u).
Furthermore, we may consider f(t, ∂t,u) with the same arguments.

Similar to the previously discussed framework, the specific structure of the problem
allows for direct access to the power balance, as summarized in the following lemma.

Lemma A.2.1. Let u : [0,T ] → V be sufficiently smooth solution of (A.9). Then

d

dt
H(u(t)) = −⟨C(u(t))∂tu(t), ∂tu(t)⟩+ ⟨f(t), ∂tu(t)⟩, t ≥ 0. (A.10)

Proof. Formal differentiation of the energy functional with respect to time leads to

d

dt
H(u(t)) = ⟨H′(u(t)), ∂tu(t)⟩ = −⟨C(u(t))∂tu(t), ∂tu(t)⟩+ ⟨f(t), ∂tu(t)⟩

and completes the proof.

Integration in time yields the corresponding energy balance

H(u(t))−H(u(s)) = −
∫ t

s
⟨C(u(τ))∂tu(τ), ∂tu(τ)⟩+ ⟨f(τ), ∂tu(τ)⟩. (A.11)

We now discuss the discretization strategy which allows the construction of schemes that
preserve this energy balance exactly. Therefore, we call this framework ”conserving”.

As in the previous framework, the derivation of the strategy in this framework is based
on purely variational arguments. We simply utilize the variational formulation

⟨C(u(t))∂tu(t), v⟩ = −⟨H′(u(t)), v⟩+ ⟨f(t), v⟩ (A.12)

for the problem (A.9) with v = ∂tu(t). This is the key ingredient for constructing numerical
schemes and motivates the use of Galerkin-type schemes for discretization. In contrast to
the framework discussed in Section A.1, where the energy balance arises from testing with
the solution, in this framework we need to test with the time derivative. This motivates
the use of a different variational method for time integration, namely, a certain Petrov-
Galerkin approach.

114



Galerkin approximation in space

Let Vh ⊂ V be a close subspace. The Galerkin approximation of (A.12) in space reads

⟨C(uh(t))∂tuh(t), vh⟩ = −⟨H′(uh(t)), vh⟩+ ⟨f(t), vh⟩, ∀vh ∈ Vh, t ≥ 0. (A.13)

The following Lemma shows that the power balance (A.10) holds for the approximation.

Lemma A.2.2. Let [0,T ] → Vh be a smooth solution of (A.13). Then

d

dt
H(uh(t)) = −⟨C(uh(t))∂tuh(t), ∂tuh(t)⟩+ ⟨f(t), ∂tuh(t)⟩, t ≥ 0.

Proof. The proof of Lemma A.2.1 translates verbatim since vh = ∂tuh(t) is an admissible
test function.

Integration in time leads to the same energy balance (A.11) for the semi-discretization.
Therefore, the energy balance is preserved under the Galerkin approximation in space.

Petrov-Galerkin discretization in time

Let us recall the notation of Section A.1. For the numerical discretization in time we
consider the following Petrov-Galerkin time-stepping strategy.

Problem A.2.3. Let u(0) be given. Find u ∈ Pk+1(T ;V) ∩ C([0,T ;V]) such that∫
In
⟨C(u(t))∂tu(t), v̄(t)⟩ dt = −

∫
In
⟨H′(u(t)), v̄(t)⟩ dt+

∫
In
⟨f(t), v̄(t)⟩ dt, (A.14)

holds for all v̄ ∈ Pk(I
n;V) and 1 ≤ n ≤ N .

Let us note that the trial functions are of polynomial degree k + 1 and continuous in
time, whereas the test functions are of polynomial degree k and can be discontinuous at
the junctions. Hence, this method is indeed a Petrov-Galerkin approach.

Lemma A.2.4. Let u ∈ Pk+1(T ;V) ∩ C([0,T ;V]) be a solution of (A.14). Then

H(u(tn))−H(u(tm)) = −
∫ tn

tm
⟨C(u(t))∂tu(t), ∂tu(t)⟩ dt+

∫ tn

tm
⟨f(t), ∂tu(t)⟩ dt.(A.15)

Proof. The proof is identical to the proof of [43, Theorem 2]. First, we consider m = n−1.
By the fundamental theorem of calculus, we conclude

H(u(tn))−H(u(tn−1)) =

∫
In

d

dt
H(u(t)) dt =

∫
In
⟨H′(u(t)), ∂tu

n(t)⟩ dt = (∗).

Using (A.15) with v̄ = ∂tu
n, which is an admissible test function, we conclude

(∗) =
∫
In
⟨C(un)∂tun(t), ∂tun(t)⟩ dt+

∫
In
⟨f(t), ∂tun(t)⟩ dt

The general case m < n− 1 follows by induction with continuity of the solution u.

Since the Galerkin approximation in space preserves the underlying structure, the time-
stepping method can be applied to the semi-discrete problem. Hence, the fully discrete
schemes preserve the energy balance exactly. This property is especially advantageous for
energy-conserving systems.
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Appendix B.

Electric circuits

B.1. Graphs

Definition B.1.1. Graph related definitions:

1. A graph is a set of branches. If branches are oriented, the graph is called oriented.
The ends of the branches are called nodes. We denote the graph by G = (N ,B) with
N the set of nodes and B the set of branches.

2. A set of branches {b1, . . . bk} is called a path between node i and j if

• the two following branches have a common node

• each node belongs to two branches except for nodes i and j which belong to
exactly one path

3. A graph is connected if there exist at least one path between any nodes.

4. A subgraph G̃ ⊂ G is called a loop if G̃ is connected and each node has exactly two
branches

5. A subgraph of connected graph G̃ ⊂ G is called a tree if G̃ is connected, contains all
nodes of G and has no loops

6. A set of branches B̃ is called a cutset, if removing it the graph becomes disconnected
and adding any branch of B̃ would again lead to a connected graph

B.2. Kirchhoff’s current law

Lemma B.2.1. Let Ã and A denote full and reduced incidence matrices. Then the
Kirchhoff’s laws

Ai = 0 and Ãi = 0

are equivalent.

Proof. Let Ai denote rows of matrix Ã. Without loss of generality we assume the reduced
incidence matrix A is constructed by removing the last row of the full incidence matrix

Ã⊤ = (A⊤
1 , ...,A

⊤
n ) and A⊤ = (A⊤

1 , ...,A
⊤
n−1).

”⇐”: trivial, since A is the upper block of Ã.
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”⇒”: Since
∑n

k=1Ak = 0 we write An = −
∑n−1

k=1 and it holds

Ani = ⟨−
n−1∑
k=1

Ak, i⟩ = −
n−1∑
k=1

⟨Ak, i⟩ = 0

since ⟨Ak, i⟩ = 0 for k = 1, . . . ,n− 1.

B.3. Loop matrix and Kirchhoff’s voltage law

Another important topological construct we utilize is the so-called loop matrix. Let L
denote the set of loops of G and let nl = |L| denote the number of loops. For the chosen
orientation of the loop we define full loop matrix B̃ ∈ Rnl×nb by

B̃ij =


1 if branch bj belongs to loop li and has the same orientation

−1 if branch bj belongs to loop li and has the opposite orientation

0 else

The rows of B represent loops, each row contains nonzero entries at the positions corre-
sponding to branches the loop contains. The entry 1 corresponds to the branches with
the same direction where −1 stays for the opposite direction. The columns of B represent
branches. Each column has nonzero entries at the positions corresponding to the loops it
is contained. The entry 1 corresponds to the case if the orientation of the loop coincides
with the orientation of the branch and −1 when the orientation is opposite.
As shown in [109, Section 4], the full loop matrix has linear dependent rows. More

precisely, for connected graph holds rank(B̃) = nb − nn + 1. The reduced loop matrix B
can be constructed by picking nb − nn + 1 independent row. Let us further mention that
incidence and loop matrices satisfy the following relations

ker B̃ = im(Ã⊤) and kerB = im(A⊤) (B.1)

as shown in [109, Section 4].

Example B.3.1. Consider the circuit illustrated in Firgure 2.1a. The circuit contains
three loops

L = {l1 = (b1, b2, b4), l2 = (b1, b3, b5), l3 = (b4, b2, b3, b5)}

The full and reduced loop matrices are given by

B̃ =

−1 1 0 1 0
1 0 1 0 1
0 1 1 1 1

 and B =

(
−1 1 0 1 0
1 0 1 0 1

)

and rank(B̃) = rank(B) = 2. In this example one can directly observe that the sum of first
two rows of B̃ equals to the third row. Further, one can directly verify the orthogonality
conditions B̃Ã⊤ = 0 and BA⊤ = 0

Remark B.3.2. To provide an analogy with the field equations, let us remark that the
operators A could be interpreted as a divergence, A⊤ as a gradient, and B as a curl.
Where the relation (B.1) represents the vector identity curl∇ = 0
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With a similar notation, we postulate the voltage law by

nb∑
j=1

Bkjvj = 0 for all k = 1, . . . ,nl (B.2)

where vj is the voltage over branches bj . Thus, in every loop, the sum of the voltages
in the clock direction equals the sum of the voltages in the counter clock direction; see
Figure 2.2b for illustration. In vector form, the voltage law can be expressed as

Bv = 0 (B.3)

where v ∈ Rnb is the vector of branch voltages. Here as well, the relation (B.2) corresponds
to B̃v = 0 for the full loop matrix B̃, although the relations are equivalent based on similar
arguments as for Kirchhoff’s current law.
The voltage law (B.3) together with identity (B.1) yield the existence of electric node

potential e ∈ Rnn−1 such that

v = A⊤e

and since the rows of the reduced matrix are linearly independent the potential is unique.
The electric potential of the reference node, associated with the removed row, is zero.
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[104] T. Péra, F. Ossart, and T. Waeckerle. Numerical representation for anisotropic
materials based on coenergy modeling. Journal of applied physics, 73(10):6784–6786,
1993.

[105] L. Petzold. Differential/algebraic equations are not ODE’s. SIAM J. Sci. Stat.
Comput., 3:367–384, 1982.

[106] M. Pototschnig, J. Niegemann, L. Tkeshelashvili, and K. Busch. Time-domain sim-
ulations of the nonlinear Maxwell equations using operator-exponential methods.
IEEE Transactions on Antennas and Propagation, 57(2):475–483, 2009.

[107] G. Quispel and D. I. McLaren. A new class of energy-preserving numerical integra-
tion methods. Journal of Physics A: Mathematical and Theoretical, 41(4):045206,
2008.

129



[108] B. Radu. Finite element mass lumping for H (div) and H (curl). PhD thesis,
Dissertation, Darmstadt, Technische Universität Darmstadt, MAGA, 2022.

[109] T. Reis. Mathematical modeling and analysis of nonlinear time-invariant RLC
circuits. In Large-scale networks in engineering and life sciences, pages 125–198.
Springer, 2014.

[110] R. Riaza. Differential-Algebraic Systems: Analytical Aspects and Circuit Applica-
tions. World Scientific, 2008.

[111] R. Riaza and J. Torres-Ramı́rez. Non-linear circuit modelling via nodal methods.
Int. J. Circ. Theor. Appl., 33:281–305, 2005.

[112] R. T. Rockafellar. Convex analysis, volume 18. Princeton university press, 1970.

[113] V. Rokhlin. Rapid solution of integral equations of classical potential theory. Journal
of Computational Physics, 60(2):187–207, Sept. 1985.

[114] F.-J. Sayas. Retarded Potentials and Time Domain Boundary Integral Equations,
volume 50 of Springer Series in Computational Mathematics. Springer International
Publishing, Cham, 2016.
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