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the real money supply. Via simulations one can show that the nonlin-
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on the parameters, the ‘equilibrium rate of unemployment’ may also
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1 Introduction

The paper develops a flow model of the labor market with wage bargaining
that can generate asymmetric persistence of unemployment rates and, de-
pending on the parameters, endogenous cycles. We understand asymmetric
persistence in the following way: if the economy is hit by shocks of the same
size but different signs, unemployment rates fall rather slowly after a nega-
tive (adverse) shock that raised unemployment, but return comparably fast
to the long run level after a positive (favorable) shock. If we change param-
eters, we get a second case, where the ‘equilibrium rate of unemployment’ is
locally unstable. Unemployment permanently overshoots the long run rate.
Adjustment processes never work themselves out and may even become very
complicated. In both cases, dynamics are driven by a nonlinear and convex
outflow rate from unemployment into employment.

In one of the first papers on asymmetric economic time series Neftci (1984)
claims that U.S. time series on unemployment are characterized by sudden
jumps of unemployment rates but slower drops. In the following years, it
has been argued by various authors (cf. Rothman (1998), Koop and Potter
(1999), Coakley et al. (2000)) that nonlinear time series models cope better
with asymmetric behavior than their linear counterparts. Forecasts on the
grounds of nonlinear models would yield, at least in some cases, better results
than linear models do.

Support for a nonlinear deterministic core in time series data for la-
bor markets comes from Brock and Sayers (1988), Alogoskoufis and Stengos
(1991), and Neugart (1999). However, while it is known that once nonlinear-
ities enter economic models a whole range of dynamic behavior can emerge
(i.e. Day (1994), Lorenz (1997), or Day (2000)), these econometric studies
cannot reveal the type of nonlinearity that is responsible for the dynamic
behavior. With respect to labor market flows, it was Mortensen (1999) who
only recently brought attention to the possibility of endogenous cycles in flow
models of the labor market.

We will make a rather simple argument that might explain asymmet-
ric adjustment paths of unemployment rates to exogenous shocks or even
endogenous cycles. After an adverse shock, unemployment may only grad-
ually converge to the ‘equilibrium rate of unemployment,’ as comparably
many workers compete for jobs. Hence, the outflow rate is smaller than in
equilibrium and it is less likely that an unemployed person finds a new job.
Outflows, the outflow rate times unemployment, exceed inflows into unem-
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ployment, but only to a small extent. Thus, unemployment drops only slowly
to the long run level. Contrary, unemployment rates return to the long run
equilibrium within rather short periods after favorable shocks. Now, even
though the outflow rate is higher, inflows exceed outflows as employment is
higher than in equilibrium.

The next section sets out the model. It starts with a basic flow equation
for the labor market where the outflow rate from unemployment is endoge-
nous. The denominator of the outflow rate consists of unemployed workers
who all search for a job and a fraction of employed workers who search on-
the-job. In a next step we derive the numerator of the outflow rate that is
the number of jobs that comes to the market every period. We do not model
the matching process. However, jobs are not fixed either. There is a cycli-
cal component to job creation. When the economy is not at its equilibrium
rate of unemployment, claims on the output are inconsistent. That leads to
changing prices which feedback on job offers through the real money supply.
At the end of section 2 we arrive at a two dimensional, nonlinear, first order
difference equation in unemployment and inflation. The dynamics of that
model are analyzed in section 3. The last section closes and gives policy
implications.

2 The model

2.1 Worker flows

We start from the following basic identity: changes in unemployment occur if
inflows into unemployment do not match outflows from unemployment into
employment, or

Ut+1 − Ut = i · (L− Ut)− ot · Ut, (1)

where U denotes unemployment, i is the inflow rate, L = 1 stands for the
labor force, and ot is the outflow rate from unemployment. Inflows into un-
employment shall be due to some kind of reallocation. Jobs go sour because
of structural shifts and people lose their jobs. Workers may also decide to
quit. The rate at which inflows occur is assumed to be exogenous at this
stage (with i > 0). This is not to state that the inflow rate is constant over
the cycle. One may easily think of a feedback mechanism from wages on the
inflow rate. In a tighter labor market wages may rise making jobs less prof-
itable. Also, workers may be more inclined to quit jobs when reemployment
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prospects are good as unemployment is low. However, holding the inflow
rate constant eases the analytical treatment of the model. In addition, when
analyzing the dynamics of the model we can derive some results by varying
the inflow rate.1 We put most of our efforts into modelling the outflow rate
from unemployment. That is defined as the fraction of jobs that comes to
the market at time t and the people who want to get one of these jobs. Job
offers consist of a constant number that roots in the structural characteris-
tics of the economy and a cyclical component. The cyclical component shall
be driven by changes in the real money supply, that is the difference in the
money growth rate and the inflation rate. The inflation rate out of equilib-
rium is determined by inconsistent claims on aggregate income of workers
and firms and expected inflation rates.

2.2 The outflow rate from unemployment

There is a considerable body of evidence for on-the-job search. Rosenfeld
(1977) finds that 4.2% of the employed workers search. In Black (1981) and
Pissarides and Wadsworth (1994) that ratio is 5.5% and 5.2% respectively.
Hartog and van Ophem (1996) report on-the-job search ratios that go up to
25%. Rather high on-the-job search rates can also be found in Parsons (1991)
for young men (18.9%) and young women (15.9%). Additional evidence for
on-the-job search comes from measures of job-to-job mobility. A comparative
study of van Ours (1990) finds job-to-job mobility rates at 5% of employees
in the Netherlands, 9% in the U.K., 10.4% in France, 12.2% in Sweden, and
6% in Japan for data from 1985. Yearly job-to-job flows as a percentage of
employment are between 6.2% and 18.4% for the 13 countries Boeri (1999)
presents estimates for. Hence, we model an outflow rate from unemployment
that takes on-the-job searchers into account. This is in line with a number
of other flow models of the labor market (see i.e. Burdett (1978), Pissarides
(1994), or Burgess (1994)).

We depart from the standard approach (cf. Pissarides (1990)) by not
modelling the matching process of vacancies and job searchers explicitly.
Skipping vacancies, we can keep the system down to two dimensions, allowing
some analytical treatment of a model in inflation and unemployment. Still,

1In the appendix we make the inflow rate endogenous. There, it is a linear function of
the unemployment rate. We present simulations for two cases, ∂it/∂Ut > 0 and ∂it/∂Ut <
0, to compare in some numerical examples the properties with the case that is elaborated
more thoroughly throughout the paper.
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rather than setting job creation as fixed, we allow for a cyclical component
to job creation. It follows that the shape of the outflow rate does not differ
from other flow models. As in those cases, the outflow rate written as the
fraction of jobs that come to the market at time t to jobs searchers

ot =
Jt

Ut + d · (1− Ut)
(2)

is convex to the origin. The parameter 0 < d < 1 gives on-the-job searchers as
a constant fraction of employed workers.2 Jt denotes job creations. With such
an outflow rate from unemployment there are two congestion effects. Given
a certain number of jobs in the economy it is less likely that an unemployed
worker will leave unemployment if there is an increasing number of other
unemployed workers who want to have one of these jobs or the unemployed
worker has to compete with an increasing number of on-the-job searchers.
Thus, on-the-job searchers can crowd out unemployed job searchers from
finding jobs. Next we model job creations Jt of firms.

There shall be a constant number of jobs Js that are filled by firms. It is
the number of job creations that originate from the structural characteristics
of the economy. In addition to the structural component there is a feed-
back on jobs from the real money supply that drives the cyclical component
Jc,t. Job creations Jt shall be the sum of the structural Js and the cyclical
component

Jt = Js + Jc,t. (3)

From the quantity relationship we find that aggregate income changes if
the money growth rate does not equal the inflation rate. With a constant
marginal labor productivity y there is a proportional relationship between
output and employment, so that we can write the cyclical component of job
creations as Jc,t = γ · (m− πt) where γ > 0 is a parameter, m the exogenous
money growth rate, and πt the inflation rate at time t. Hence, if workers’
wage claims and expected inflation cause an inflation rate that is higher
than the money growth rate, real money supply declines and will show up
in a reduction of jobs. Vice versa, more jobs will be created if the inflation

2In Equation (2) all the unemployed and a constant fraction d of the employed workers
are looking for a job. In Neugart (2000) we analyze a model with an outflow rate from
unemployment where the parameter d itself is a function of the outflow rate. For ease
of analytical treatment this feature, for which some evidence exists (cf. Pissarides and
Wadsworth (1994) and Broersma and van Ours (1999)), is omitted here.
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rate falls short of the money growth rate, increasing the real money supply.
Finally, we get the outflow rate from unemployment

ot =
Js + γ · (m− πt)

Ut + d · (1− Ut)
. (4)

2.3 Prices and expectations

The inflation rate πt shall follow from the assumptions that nominal wage
increases are driven by the wage gap wb−wp

wp
, where wb is the bargained real

wage and wp is the price determined real wage, and the expected inflation
rate. Furthermore firms can only change prices by a fraction of nominal wage
changes at time t.

The part of the inflation rate that is driven by the wage gap can be
explained as follows. With relatively low unemployment rates, workers find
themselves in a good bargaining position. The bargained real wage will
exceed the price determined real wage, and consequently firms will try to
capture their share of the output by raising prices. On the other hand, if
unemployment is rather high, workers face a bad bargaining position. The
price determined real wage will be higher than the bargained real wage. As
claims on the output fall short of the latter, prices will decline.

A price determined real wage function can be derived from an imperfect
competition model where firms maximize profits G = P (h(E)) ·h(E)−W ·E
(cf. Carlin and Soskice (1990)) where P is the price level, E denotes labor
input, h is a production function, and W stands for the nominal wage. This
yields the price determined real wage wp as

wp = (1− µ) · y (5)

where µ ≥ 0 is the inverse of the demand elasticity, or the mark-up, and y is
the constant marginal labor productivity that will be normalized to one in
the following.

Usually, the bargained real wage is derived from value functions for work-
ers having a job or alternatively being unemployed, and the value for a firm
from having a job filled. A bargained real wage divides that surplus between
the two parties (see Pissarides (1990)). Generally, the resulting wage bar-
gaining curve is a decreasing function of the unemployment rate as higher
unemployment rates ease the filling of jobs for firms and make it more costly
for workers to become unemployed as their re-employment chances are lower.
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Hence, the bargaining power shifts towards firms as the unemployment rate
grows higher. We will use the following simplified function for the bargained
real wage

wb,t = 1− (1− b) · Ut. (6)

If there is no unemployment workers bargain for a real wage wb,t that equals
the marginal labor productivity (y = 1). When all workers are unemployed
the bargained real wage will equal the reservation wage 0 < b < 1, that
can be thought of as being determined by the unemployment benefits or
unemployment assistance system of a country, or income from black market
activity.

As a positive wage gap will result in rising prices, workers have to think
about how much to bargain for in nominal terms to get ‘their’ share of the
output. Thus, they have to predict the inflation rate of the following period.
Expected inflation rates πe of the following period shall be a weighted average
of the actual inflation rate and the predicted inflation rate

πe,t+1 = a · πt + (1− a) · πe,t. (7)

We are aware that such a model of our agents’ behavior can be questioned
on the grounds of rational behavior. Workers may systematically over- or
underestimate inflation rates. However, it has been shown recently (by e.g.
Hommes (1998)) that if models with backward looking expectations become
chaotic, even agents who only use past information may act rationally.

Finally, we assume that firms cannot raise prices to the same extent as
nominal wages increase at time t. That is why δ > 1 enters. Then, the
inflation rate can be written as

πt =
1

δ
· (πe,t +

wb,t − wp

wp

), (8)

where the sum of the expected inflation rate πe,t and the wage gap stand for
the nominal wage increase that translates into the inflation rate. Substituting
out from Equation (8) the price determined real wage (Equation 6) and the
bargained real wage (Equation 5), one reaches

πt =
1

δ
· (πe,t +

µ− (1− b) · Ut

1− µ
). (9)

Now, we are in a position to put all the pieces together. The identity in
Equation (1) determines unemployment dynamics with the outflow rate ot
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as given by Equation (4). Thus, one finds the unemployment rate Ut+1 as a
function of the current unemployment rate and the current inflation rate

Ut+1 = f(Ut, πt). (10)

The second dynamic equation is derived in the following way: time is shifted
forward in Equation (9) so that πt+1 becomes a function of πe,t+1 and Ut+1.
For the latter we use expression (10) and for πe,t+1 the equation on expecta-
tions formation (7) where πe,t comes from Equation (9). That gives inflation
πt+1 as a function of current inflation and current unemployment

πt+1 = g(Ut, πt). (11)

We assume that if all adjustment processes have worked themselves out
(πt+1 = πt and Ut+1 = Ut), actual inflation will equal the money growth
rate π∗ = m. From that we develop an expression for Js.

3 Analysis of the model

The full model writes

f(Ut, πt) = Ut + i · (1− Ut)− Ut · Js + γ · (m− πt)

Ut + d · (1− Ut)
(12)

and

g(Ut, πt) =
1

δ
· ( µ

1− µ
+ a · πt + (1− a) · (δ · πt − µ− (1− b) · Ut

1− µ
)

− 1− b

1− µ
· (Ut + i · (1− Ut)− Ut · Js + γ · (m− πt)

Ut + d · (1− Ut)
)).

(13)

Js follows from the assumption that in steady state inflation π equals the
money growth rate m. Thus, the structural component of job creations
becomes Js = i · (1−U∗)·(U∗+d·(1−U∗))

U∗ . Our simulations of the model, made by
using suitable values of the parameters and presented in more detail later on,
show that feasible trajectories exist. Therefore, let us now elaborate existence
and uniqueness of the steady state, as well as the stability properties of the
model before we turn to the numerical examples.
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As it is imposed that π∗ = m when all adjustment processes have worked
themselves out, a steady state p

[U∗, π∗] = [
µ−m · (δ − 1) · (1− µ)

1− b
,m], (14)

exists, provided that 0 ≤ µ−m·(δ−1)·(1−µ)
1−b

≤ 1.3 A sufficient condition for the
second inequality to hold, given that the money growth rate is positive, is
that b ≤ 1 − µ = wp. This means that the reservation wage is not higher
than the price-determined real wage.

For showing that the steady state is unique we refer to the formulation of
the dynamic system in expected inflation and unemployment, F (f, g). Rear-
ranging the steady state conditions Ut = f and πe,t = g, and differentiating
those conditions with respect to U yields ∂πe

∂U
= 1−b

1−µ
+ i · δ

γ
·(1−d ·(1− 1

U2 ) > 0

and ∂πe

∂U
= − 1

δ−1
· 1−b

1−µ
< 0, respectively. Hence, the steady state p is also

unique.
Differentiating the ‘equilibrium rate of unemployment’ U∗ after the mark-

up µ and the reservation wage b shows the usual properties. The ‘equilibrium
rate of unemployment’ is increasing in the mark-up (dU∗

dµ
> 0) and in the

reservation wage (dU∗
db

> 0). The ‘equilibrium rate of unemployment’ is also
a function of the money growth rate m. Hence, in this model money has
an effect on real variables (dU∗

dm
< 0). But we will see in the section on

endogenous cycles that this does not necessarily establish a stable Phillips
curve with a menu of choice between inflation and unemployment.

3.1 Stability analysis: analytically and numerically

The stability of the steady state is determined by the eigenvalues of the
Jacobian matrix evaluated at the steady state. The Jacobian matrix J is
given by

J =

(
∂f
∂U
|p ∂f

∂π
|p

∂g
∂U
|p ∂g

∂π
|p

)

3Note that for deriving the steady state it is more comfortable to start from the dynamic
system written in unemployment and expected inflation: f(Ut, πe,t) = Ut +i ·(L−Ut)−Ut ·
Js+γ·(m− 1

δ ·(πe,t+
µ−(1−b)·Ut

1−µ )

Ut+d·(1−Ut)
and g(Ut, πe,t) = (1− a + a

δ ) · πe,t + a
δ · µ−(1−b)·Ut

1−µ . We also use
F (f, g) to show uniqueness of the steady state. However, for the local bifurcation analysis
and the simulations, we refer to the system in unemployment and inflation F (f, g).
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where

∂f

∂U
|p = j11 = 1− i · (1 + d · 1− U∗

U∗ · (U∗ + d · (1− U∗))
)

∂f

∂π
|p = j12 = γ · U∗

U∗ + d · (1− U∗)
∂g

∂U
|p = j21 =

1− b

δ · (1− µ)
· (1− a− j11)

∂g

∂π
|p = j22 =

1

δ
· (a + (1− a) · δ − 1− b

1− µ
· j12)

The corresponding eigenvalues of J are

λ1,2 =
j11 + j22

2
± 1

2

√
(j11 − j22)2 + 4 · j21 · j12.

The steady state p is locally stable for eigenvalues |λ1,2| < 1 and locally
unstable otherwise.4

We will numerically show that the steady state loses stability for rea-
sonable parameters, and unemployment rates stay bounded in [0, 1]. Nickell
(1997) reports replacement rates for OECD countries at around 60%. Given
that the equilibrium real wage is at about 90% of the constant marginal la-
bor productivity y, a reservation wage of b = 0.5 might be a good choice.
Firms can translate wage changes into price changes by half (δ = 2) at time
t. We set γ = 0.5, which is in the range of what Davis et al. (1997) report on
the cyclical component of job creation. The mark-up for what follows in the
stability analysis is µ = 0.04, and workers weigh past inflation and expected
past inflation equally (a = 0.5). Taking the eigenvalue with the negative root
and setting it equal to -1 yields with those parameters an expression for the
inflow rate of i = (1/56)·(258048·d·m2+112896·d·m−5152·d−243648·m2+
20304 ·m−423)/(−4+192 ·m−621 ·d−192 ·d ·m−2304 ·m2 +2304 ·d ·m2).
Then, for an on-the-job search ratio of d = 0.01 and a money growth rate of
3%, a period doubling bifurcation occurs at i ≈ 0.13199. If one solves for the
on-the-job search ratio under the assumption that i = 0.14 (cf. Pissarides

4In case of a locally unstable system, it may happen that unemployment hits the ‘capac-
ity constraints’ of a fully utilized labor force or all workers being unemployed. Then, the
underlying dynamic system F would have to be written as H(h, g) = (min{1,max{f, 0}}).
However, the simulations suggest that there exist cases where the unemployment rates stay
bounded in [0, 1].
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(1986) or Nickell (1998)), the bifurcation value becomes d∗ ≈ 9.125 · 10−3.
Solving for the money growth rate at which a period doubling bifurcation
occurs yields m∗ ≈ 2.956 · 10−2 (the other solution is of no interest as it
coincides with a negative steady state unemployment rate). Figures 1 and 2
show examples of bifurcation curves in (i, d)− space and (d,m)− space, re-
spectively. Along each of those curves a period-doubling bifurcation occurs.

0.008 0.01 0.012 0.014
d

0.11

0.12

0.13

0.14

0.15

0.16

i

Figure 1: Bifurcation curve in
(d, i)−space. b = 0.5, µ = 0.04, γ =
0.5, δ = 2, a = 0.5,m = 0.03

0.028 0.029 0.03 0.031 0.032
m

0.006

0.008

0.01

0.012

0.014

d

Figure 2: Bifurcation curve in
(m, d) − space. b = 0.5, µ =
0.04, γ = 0.5, δ = 2, a = 0.5, i =
0.14

Extending the analysis to the eigenvalue with a positive root by equalizing
it to 1 yields an expression i = (25/24) · (24 · m − 1)2/(192 · (1 − d) · m −
2304 · (1 − d) · m2 − 621 · d − 4). As the numerator is always positive and
the denominator negative, the inflow rate would have to be negative, which
is ruled out by assumption. Therefore the eigenvalue with a positive root
never crosses 1.

The panel of Figures 3 to 6 shows bifurcation diagrams. Those plot
the variables u and π for the long run for various parameter values. They
give some insight on whether the trajectories stay bounded in reasonable
ranges. The upper two relate the unemployment and inflation rate to various
levels of the inflow rate, respectively. Both figures show that there exists
a flip-bifurcation. As the inflow rate increases from 0.12 the system loses
its stable steady state. At i ≈ 0.13199, as calculated before, a period-two
cycle emerges. Increasing the inflow rate even further leads to additional
bifurcations. The period two cycle looses stability and becomes a period
four cycle and so on. The corresponding bifurcation diagram for the other
variable, the inflation rate, is plotted in Figure 4, where flip bifurcations
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occur at exactly the same values as in Figure 3. Figures 5 and 6 show the
long run behavior of the unemployment rates over varying money growth
rates (m) and different on-the-job search ratios (d), respectively. Compared
to the other two bifurcation diagrams, the inflow rate is fixed to 0.14, now,
but all other parameters are the same. Here, it can be seen that the steady
state looses stability as the money growth rate is raised. At m ≈ 0.029558
the system bifurcates and a stable period two cycle emerges. As the money
growth rate becomes larger further period doubling bifurcations occur. In
terms of the on-the-job search ratio the same dynamic properties can be
observed. For sufficiently low values of d the steady state is stable. It looses
stability via a flip bifurcation at d ≈ 9.125 · 10−3, and as d increases the
system bifurcates again, increasing the number of long run states for the
unemployment rate to four, eight and so on. Observe also, that for the
parameters chosen, the unemployment rates do not hit the lower and upper
bounds of the labor force in any of the bifurcation diagrams shown.

In the following we will show numerically that the stable and unstable
manifolds of F intersect. Observing such homoclinic points can imply very
complicated dynamics (see for example Lorenz (1997), Guckenheimer and
Holmes (1997), or Kuznetsov (1998)). This has been shown in an addiction
model by Feichtinger et al. (1997), a cobweb model by Brock and Hommes
(1997), an overlapping generations model by de Vilder (1996), and for a
Cournot competition model by Droste et al. (2002). However, as far as we
know, homoclinic points have not been detected in a flow model of the labor
market.

Consider our map F and recall that the steady state is denoted with p. It
has been argued before that the Jacobian of F evaluated at the steady state
p may have two real eigenvalues λ1 and λ2 such that 0 < |λ2| < 1 < |λ1|,
implying that p is a fixed saddle point. The stable and unstable manifolds
of F are defined as

W s(p) = {x; F n(x) → p as n → +∞}
W u(p) = {x; F n(x) → p as n → −∞},

respectively. The properties of the unstable and stable manifold are such that
they are tangent to the eigenvectors at the steady state p that correspond
to the eigenvalues λ1 and λ2, respectively. Whereas in the linear case, the
manifolds are given by the eigenvectors, they can have a very complicated
structure for a nonlinear map. That is why the manifolds are calculated
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0.12

0.14
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Figure 3: Bifurcation diagram U
over i. d = 0.01, b = 0.5, µ =
0.04, γ = 0.5, δ = 2, a = 0.5,m =
0.03

0.13 0.14 0.15 0.16 0.17 0.18
i

0.005
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0.015

0.02

0.025

0.03

Inflation

Figure 4: Bifurcation diagram π
over i. d = 0.01, b = 0.5, µ =
0.04, γ = 0.5, δ = 2, a = 0.5,m =
0.03

0.0295 0.03 0.0305 0.031 0.0315
m
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0.08
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Figure 5: Bifurcation diagram U
over m. d = 0.01, b = 0.5, µ =
0.04, γ = 0.5, δ = 2, a = 0.5, i =
0.14

0.008 0.009 0.011 0.012 0.013 0.014
d
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0.04

0.06

0.08

0.1

U

Figure 6: Bifurcation diagram U
over d. b = 0.5, µ = 0.04, γ =
0.5, δ = 2, a = 0.5, i = 0.14,m =
0.03

numerically. The following parameters have been chosen: i = 0.185, d =
0.01,m = 0.03, δ = 2, µ = 0.04, b = 0.5, a = 0.5 and γ = 0.5. In this case,
the eigenvalues are λ1 ≈ −1.78 and λ2 ≈ 0.74. The eigenvectors vu and vs

at the steady state p follow from

(
j11 − λ1 j12

j21 j22 − λ1

)
vu = 0

and (
j11 − λ2 j12

j21 j22 − λ2

)
vs = 0,
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respectively. In our numerical example, the unstable eigenvector is vu ≈
{−0.97, 0.23} and stable eigenvector is vs ≈ {0.14, 0.99}. Figure 7 shows
numerically computed points on the two branches of the stable manifold
in a neighborhood of the steady state, and on one branch of the unstable
manifold.5 It can be seen that one branch of the stable manifold intersects
the unstable manifold. Given such homoclinic points, one may expect com-
plicated dynamics in our model. We elaborate this with further numerical
examples in the following section.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
Ut

0.022

0.024

0.026

0.028

0.03

0.032

0.034

Inflationt

Figure 7: Numerically computed points on two branches of the stable man-
ifold and on one branch of the unstable manifold: d = 0.01, b = 0.5, µ =
0.04, γ = 0.5, δ = 2, a = 0.5, i = 0.185,m = 0.03

3.2 Numerical examples

In Figures 8 and 9 we show the adjustment paths for the unemployment and
inflation rates after adding positive (favorable) and negative (adverse) shocks
of 0.05 percentage points of unemployment to Equation (12). The param-
eters are chosen such that the equilibrium rate of unemployment is 10.5%
(d = 0.05, b = 0.5, µ = 0.08, γ = 0.5, δ = 2, a = 0.5, i = 0.15,m = 0.03). The
structural component of jobs that come to the market every year amounts
to approximately 19% of the labor force in this example. It can be seen that
the adjustment path of the unemployment rate differs for positive and neg-
ative signs of the exogenous shock. While the unemployment rates increase

5For computing the manifolds small segments on the eigenvectors very close to the
steady state consisting of 500 points were iterated a number of times. Note also that our
map F is not invertible. For computing some points on the stable manifold, we took that
part of the solution that contains the steady state.
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rapidly after a favorable shock, it takes longer until the unemployment rate
has reached its long run level after an adverse shock of the same size. Hence,
for this set of parameters there is asymmetric persistence of unemployment.
Asymmetry stems from the congestion effect that the nonlinear outflow rate
from unemployment captures. If the actual unemployment rate is higher
than the ‘equilibrium rate of unemployment’, unemployment rates converge
to the steady state only gradually. As many workers compete for jobs, the
outflow rate is comparably small. Even though unemployment is rather high,
outflows from unemployment are only slightly larger than inflows into unem-
ployment. During booms, when unemployment is below the ‘equilibrium
rate of unemployment’, inflows into unemployment exceed outflows from un-
employment. Now, there are relatively few workers who compete for one
of the jobs. The outflow rate is high, but unemployment is low, meaning
high employment rates and, at a fixed inflow rate, comparably large inflows.
Unemployment rises, and due to the rather sharp drop of outflows when
unemployment approaches zero, unemployment increases quickly. The cor-
responding time series on inflation rates shows that inflation rates increase
with a favorable shock to the market (where unemployment drops) as claims
on the aggregate output are inconsistent while inflation rates fall for a shock
that temporarily raises the unemployment rate. In the long run, inflation
rates converge to the money growth rate.

For the rest of the paper we set d = 0.01 and lower the mark-up to
µ = 0.04 (as in the numerical stability analysis), but leave all parameters
unchanged. We will analyze the dynamics of the model by varying the in-
flow rate i. From Equation 14 one can see that a lower mark-up reduces the
equilibrium rate of unemployment. For µ = 0.04 it is U∗ ≈ 0.022. Figures 10
and 11 show time series for period two cycles of the unemployment rate and
the inflation rate. The ‘equilibrium rate of unemployment’ is never reached.
There is a steady state but actual unemployment varies endogenously. Un-
employment cycles and changes in the inflation rate are persistent without
exogenous shocks. In other words, market participants permanently fail to
clearing the market. The oscillations of the unemployment rate are not sym-
metric to the locally unstable ‘equilibrium rate of unemployment’. Therefore,
the downward pressure on prices differs from the upward pressure on prices
over the cycle. Average inflation rates are downward biased with respect
to the money growth rate (m = 0.03). Such an outcome can be observed
as, with a lower mark-up, firms lose market power and the price determined
real wage declines. As shown before, to get consistent claims on the output,
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the equilibrium rate of unemployment has to be lower. This shifts the long
run equilibrium into the regime where the outflow rate drops rather sharply.
Any deviation from the steady state changes outflows from unemployment
severely. At an unemployment rate lower than the steady state, workers bar-
gain for a wage that is not consistent with the price determined real wage.
This drives prices up, and firms will offer fewer jobs as the real money supply
declines. Hence, unemployment rises in the next period. Now, confronted
with an unemployment rate that exceeds the steady state rate of unemploy-
ment, the bargained real wage will fall short of the price determined real
wage. Prices decline, and firms offer more jobs. The chances for an unem-
ployed worker to find a job increase. However, the market overshoots again.
Unemployment falls below the equilibrium rate, the only unemployment rate
that would ensure compatible claims on the output in the long run.

In Figures 12 and 13 the inflow rate is increased to 0.18. Now, the unem-
ployment rate never settles to the ‘equilibrium rate of unemployment,’ nor
does the inflation rate converge to a single value or a regular cycle. The
cycles are irregular even though there is no exogenous component added.

An attractor of F , plotted in Figure 14, shows the inflation rate over
the unemployment rate for 500 iterations (where the initial 100 values are
dropped). One may interpret the attractor as a Phillips curve (note, that it
is downward sloping here), but a researcher confronted with this data set, not
knowing about the underlying system, would probably conclude that there is
a stable trade-off. However, there is none, as the system shifts up and down a
negatively sloped Phillips curve erratically. A pair of inflation-unemployment
rates today cannot tell where the economy will be in the long-run. The
Phillips curve consists of ‘unstable disequilibria.’ Only by luck would one
run into the steady state, which is a very unlikely long-run equilibrium, as a
small perturbation will move the system away from it, again.

4 Conclusion

The model that we developed generates a range of adjustment paths. For
the stable case we get asymmetric persistence. While unemployment rates
quickly converge to the steady state after a favorable shock, it can take longer
until the unemployment rate has reached the steady state after an adverse
shock. Given the number of job searchers, there are too few job offers to
establish an immediate return to the ‘equilibrium rate of unemployment.’
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Outflows from unemployment compensate inflows into unemployment, but
are too low to reduce unemployment quickly. Besides asymmetric persistence,
and depending on the calibration, the model can generate endogenous cycles;
in that case, the labor market will never return to its long run equilibrium.
Unemployment rates and expected inflation rates may even become irregular.
The attractor generated by our model implies a negatively sloped Phillips
curve. However, this Phillips curve consists of ‘unstable disequilibria’ so that
there is no orthodox inflation-unemployment trade-off.

With respect to the asymmetric adjustment of unemployment rates to
symmetric shocks, policy makers might underestimate the self regulating
forces of labor markets. When unemployment falls below the ‘equilibrium
rate of unemployment’ in our model, it may return to its long run rate
rather quickly. Long periods of high inflation rates do not occur. Policy
makers who are not aware of this asymmetric behavior might choose measures
to beat inflation and do harm in the end. Irregular endogenous cycles can
have important policy implications, too. Monetary authorities often take the
‘natural rate of unemployment’ as the reference point for upcoming rising or
falling inflation rates. However, comparing the actual rate of unemployment
with a locally unstable ‘equilibrium rate of unemployment’ might be a policy
trap as the causality that runs from a gap between the ‘equilibrium rate of
unemployment’ and the actual rate of unemployment and the inflation rate
is blurred if both variables change irregularly and the long run behavior is
not predictable. In addition, there is no menu from which policy makers can
choose although there appears to be a negative trade-off. While people order,
the menu will change, and it does so because of the orders. It is the cook
who decides what is on the table, and customers will find themselves happy
or sour with what they get. There is definitely no room for the management
to accept or refuse orders of customers, such as in the old-fashioned orthodox
policy-matters-approaches of Phillips curves.6

Appendix 1 Thus far we have discussed a flow model of the labor market
where the outflow rate from unemployment was endogenous and the inflow
rate i was exogenous. The purpose of this section is to make the inflow rate
endogenous it, also dependent on the state of the labor market. As outlined
before there may be countervailing forces on the inflow rate from the state of
the labor market. Let us take unemployment as an indicator for economic

6We owe this metaphor to Michael Bolle.
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activity. Then, if unemployment is rather high, firms’ lay off rate may be
higher too. On the other hand, workers will be less inclined to quit into
unemployment, as getting a new job is more difficult when unemployment
is rather high. If the latter effect is stronger than the former, ∂it/∂Ut < 0
(first case). If the former effect is stronger than the latter, ∂it/∂Ut > 0
(second case). For the simulation of the flow model when the inflow rate is
endogenous we choose a linear specification of the following form:

it = ie +
i− ie
U∗ · Ut.

Hence, at the steady state the endogenous inflow rate equals the exogenous
inflow rate, i(U∗) = i. The choice of ie determines the elasticity of the inflow
rate with respect to unemployment which is ε = 1 − ie/i. If ie = i then the
elasticity is zero, for ie > i the elasticity is negative, and positive otherwise.

Figures 15 and 16 show simulations for ε < 0, and Figures 17 and 18
for the second case where the inflow rate increases with higher unemploy-
ment. In both cases asymmetric adjustment to the steady state after equally
sized shocks with different signs remains as a qualitative feature of the model.
Note that for the simulations of asymmetric adjustment, parameter values
equal the case with an exogenous inflow rate. In Figure 16 the evolution
of unemployment is irregular. Here, all parameters equal the case with an
exogenous inflow rate, except for the choice of i = 0.17. Endogenous unem-
ployment cycles can only be observed at a positive elasticity if the steady state
inflow rate is increased to i = 0.22; see Figure 18. Hence, ∂it/∂Ut > 0 seems
to exert a stabilizing force. Once unemployment deviates from the steady
state, for example to a lower level of unemployment, the inflow rate becomes
smaller so that inflows are smaller, too, and the market does not overshoot.
Summing up, these simulations suggest that, at least for the elasticities of
the inflow rate chosen here, in small neighborhoods to the steady state the
qualitative dynamic properties remain if the inflow rate is also endogenous.
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Figure 8: Unemployment rate fol-
lowing impulses to Equation 12 of
ε = ±0.05 after every 15th period.
d = 0.05, b = 0.5, µ = 0.08, γ =
0.5, δ = 2, a = 0.5, i = 0.15,m =
0.03

10 20 30 40 50 60
t

0.02

0.025

0.03

0.035

0.04

Inflationt

Figure 9: Inflation rate follow-
ing impulses to Equation 12 of
ε = ±0.05 after every 15th period.
d = 0.05, b = 0.5, µ = 0.08, γ =
0.08, δ = 2, a = 0.5, i = 0.15,m =
0.03
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Figure 10: Unemployment rate.
d = 0.01, b = 0.5, µ = 0.04, γ =
0.5, δ = 2, a = 0.5, i = 0.14,m =
0.03
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Figure 11: Inflation rate. d =
0.01, b = 0.5, µ = 0.04, γ = 0.5, δ =
2, a = 0.5, i = 0.14,m = 0.03
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Figure 12: Unemployment rate.
d = 0.01, b = 0.5, µ = 0.04, γ =
0.5, δ = 2, a = 0.5, i = 0.18,m =
0.03
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Figure 13: Inflation rate. d =
0.01, b = 0.5, µ = 0.04, γ = 0.5, δ =
2, a = 0.5, i = 0.18,m = 0.0322
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Figure 14: Attractor: ‘Phillips curve’. d = 0.01, b = 0.5, µ = 0.04, γ =
0.5, δ = 2, a = 0.5, i = 0.18,m = 0.03
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Figure 15: Unemployment rate fol-
lowing impulses of ε = ±0.05 af-
ter every 15th period, inflow rate is
endogenous with ε = −0.02. d =
0.05, b = 0.5, µ = 0.08, γ = 0.5, δ =
2, a = 0.5, i = 0.15,m = 0.03
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Figure 16: Attractor, ‘Phillips
Curve’, inflow rate is endogenous
with ε = −0.02. d = 0.01, b =
0.5, µ = 0.04, γ = 0.5, δ = 2, a =
0.5, i = 0.17, ε = −0.02,m = 0.03
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Figure 17: Unemployment rate fol-
lowing impulses of ε = ±0.05 af-
ter every 15th period, inflow rate
is endogenous with ε = 0.02. d =
0.05, b = 0.5, µ = 0.08, γ = 0.5, δ =
2, a = 0.5, i = 0.15, ε = 0.02,m =
0.03
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Figure 18: Attractor, ‘Phillips
Curve’, inflow rate is endogenous
with ε = 0.02. d = 0.01, b =
0.5, µ = 0.04, γ = 0.5, δ = 2, a =
0.5, i = 0.22, ε = 0.02,m = 0.03
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