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Abstract

Knowing the health of the aircraft supports safe, efficient, and sustainable operations.
It allows maintenance measures and retrofits of the aircraft in service to be used
economically. To meet the safety criteria for flight operations, a reliable assessment
is required. On the other hand, the assessment methods must become more precise.
This ensures technical modifications that even have a minor impact on the health of
the aircraft, such as sharkskin, can be classified as significant. If such modifications are
used fleet-wide and in a targeted manner, their potential can better be utilized.

To address the demand for increased precision, machine learning methods are used
in the context of prognostics and health management. However, the safety criterion
in aviation manifests the need for reliable and comprehensive methods, which are
experienced in physical model building. Consequently, the combination of both, the
hybrid model, found a branch of research to profit from the individual advantages.
The hybrid model is considered in this thesis to estimate and predict aircraft system
states accurately and physically consistently. The states are set to include time-variant
aircraft parameters representing system degradation and recovery within the aircraft
life cycle. Their estimation is assumed to be a key element for health assessment.

However, present approaches to hybrid model building are shown to be inappropriate
in such state estimation tasks. Therefore, a new hybrid model is developed in this thesis.
The developed hybrid model is characterized by a parameter scheduling structure
and a recursive filter method for system identification. Thus, a data-driven model, an
artificial neural network, can extend a physical model. Furthermore, requirements are
defined in initialization, generalization, interpretation, and recovery, addressed within
the development process.

The new hybrid model offers stepwise learning while considering measurement noise
and joint state estimation. In this way, the parameters and the weights of the artificial
neural network are considered states besides the dynamical states. Consequently, both
model parts adapt simultaneously. To handle nonlinearities, a modified unscented
Kalman filter is implemented. The use of state constraints further improves physical
consistency and filter stability.
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The developed hybrid model is evaluated using an unmanned aircraft system example.
Therefore, a flight test platform is introduced, and a flight simulation environment is
developed. A database of flight tests and flight simulations is built, including aircraft
modifications that abstract degradation and recovery effects. In four test series, the
aircraft is investigated by estimating the system states, including selected parameters,
using different physical models and databases. In detail, the unmodified and aerody-
namically modified aircraft are considered. In the case of real flight tests, the aircraft’s
main wing area is extended, and the virtual aircraft’s parameters are changed in the
case of flight simulations.

The hybrid model can estimate and predict the aircraft system states. The modified
parameters are estimated physically consistently in some of the test series. In conclusion,
the developed hybrid model can estimate and predict system degradation and recovery
in perspective and meets the defined requirements. However, two dilemmas are
recognized, which require further improvement. One concerns the hybrid model
structure, and the other one the learning algorithm, the filtering procedure. The open
hybrid model structure involves an artificial neural network, whose weighting enables
high adaptability to the considered database but decreases the model’s generalizability.
Second, the application-specific initialization of the covariance matrices of the filtering
procedure allows for high adaptability but negatively affects the filtering quality. As a
result, anomalies within the database cannot be properly detected and separated.

Finally, the new hybrid model is discussed in the context of artificial and natural in-
telligence. Descriptions learned via data-driven models are compared to the system
knowledge that can be physically experienced. The main contribution is extending
a physical model by an artificial neural network, which is recursively and simultane-
ously adapted. For future work, the expansion of physical knowledge using artificial
intelligence is proposed, where any dynamical systems can be considered.
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Kurzfassung

In der Luftfahrt wird stets nach einem sicheren, effizienten und nachhaltigen Betrieb
von Luftfahrzeugen gestrebt. Unterstützt wird dieser durch das Wissen um die Ge-
sundheit der im Betrieb befindlichen Systeme, was eine ökonomische Wartung und
Instandhaltung sowie Nachrüstung erlaubt. Um die Sicherheitskriterien für den Flug-
betrieb zu erfüllen, ist eine zuverlässige Bewertung notwendig. Andererseits ist eine
hohe Genauigkeit der Bewertungsmethoden erforderlich. Dadurch wird sichergestellt,
dass technische Änderungen, die sich auch nur geringfügig auf die Gesundheit des
Flugzeugs auswirken, wie beispielsweise Haifischhaut, als signifikant eingestuft werden
können. Wenn solche Modifikationen flottenweit und gezielt eingesetzt werden, kann
ihr Potential besser ausgenutzt werden.

Um die Anforderung einer hohen Genauigkeit zu erfüllen, werden im Kontext der
Prognostik und des Gesundheitsmanagements maschinelle Lernverfahren eingesetzt.
Die Sicherheitskritikalität von Luftfahrtsystemen manifestiert allerdings den Gebrauch
zuverlässiger und nachvollziehbarer Methoden, wie der physikalischen Modellbildung.
Folglich bietet sich die Kombination der beiden Ansätze zu einem hybriden Modell
an, was einen eigenen Forschungszweig eröffnet und die jeweiligen Vorteile zusam-
menführt. In dieser Arbeit wird das hybride Modell zur Schätzung und Vorhersage
der Systemzustände eines Luftfahrzeugs betrachtet. Dabei werden den Zuständen
zeitvariante Parameter zugeordnet, die perspektivisch eine Degradation und Erholung
im Lebenszyklus der betrachteten Systeme abbilden können. Vorausgesetzt wird, dass
die Kenntnis über die Parameter das Gesundheitsmanagement elementar stützt.

Die bisherigen Ansätze zur hybriden Modellbildung eignen sich jedoch nicht. Da-
her wird in dieser Arbeit ein neues hybrides Modell entwickelt. Die Neuentwicklung
zeichnet sich durch eine Modellstruktur geplanter Parameter aus, die mit einem re-
kursiven Filterverfahren identifiziert werden. Dieser Ansatz erlaubt die Erweiterung
eines physikalischen Modells durch ein datengetriebenes, das künstliche neuronale
Netzwerk. Darüber hinaus werden für die Entwicklung Anforderungen im Bereich der
Initialisierung, Generalisierung, Interpretation und Adaption definiert.
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Das entwickelte hybride Modell erlaubt schrittweises Lernen, die Berücksichtigung
von Messrauschen sowie eine gemeinsame Schätzung der beiden beteiligten Model-
le. Neben den dynamischen Zuständen werden somit die physikalischen Parameter
und Gewichte des künstlichen neuronalen Netzes als Zustände definiert, was eine
gleichzeitige Anpassung erlaubt. Nichtlinearitäten werden mit der Wahl des modifi-
zierten Unscented Kalman Filters aufgefangen, dessen Stabilität zusätzlich durch die
Begrenzung ausgewählter Systemzustände erhöht wird.

Zur Bewertung des Ansatzes werden ein unbemanntes Luftfahrzeug als Versuchsplatt-
form ausgewählt und eine Simulationsumgebung entwickelt. Mit der Durchführung
von Flugversuchen und Flugsimulationen wird eine Datenbasis aufgebaut, die eine Ab-
straktion von Degradations- und Erholungseffekten beinhaltet. In vier Testserien wird
das Luftfahrzeug unter Schätzung der Systemzustände und ausgewählter Parameter
untersucht, wobei das physikalische Modell und die verwendete Datenbasis Variatio-
nen enthalten. Im Detail wird das unmodifizierte und aerodynamisch modifizierte
Luftfahrzeug betrachtet, dessen Hauptflügelfläche technisch erweitert oder dessen
Parametrierung innerhalb der Simulationsumgebung verändert wird.

Der Ansatz zur hybriden Modellbildung erfüllt die definierten Anforderungen und
ermöglicht eine Schätzung und Vorhersage aerodynamischer Degradation und Er-
holung. Allerdings werden zwei Dilemmata festgestellt, die zum einen die hybride
Modellstruktur und zum anderen den Lernalgorithmus, das Filterverfahren, betreffen.
Die offene hybride Modellstruktur beinhaltet ein künstliches neuronales Netz, dessen
Gewichtung eine hohe Anpassungsfähigkeit an die betrachtete Datenbasis ermöglicht,
die Generalisierbarkeit des Modells jedoch verringern kann. Die anwendungsspezifi-
sche Initialisierung der Kovarianzmatrizen des Filterverfahrens ermöglicht ebenfalls
eine hohe Anpassungsfähigkeit, diese kann sich aber negativ auf die Filterqualität
auswirken, sodass Anomalien innerhalb der Datenbasis nicht mehr sachgemäß erkannt
und getrennt werden.

Abschließend wird der neue Ansatz zur hybriden Modellbildung im Kontext künstlicher
und natürlicher Intelligenz diskutiert. Im Zuge dessen wird die maschinell erlernte
Abbildung dem physikalisch erfahrbaren Systemwissen gegenübergestellt. Wesentli-
che Beiträge dieser Arbeit bestehen in der Erweiterung eines physikalischen Modells
durch ein künstliches neuronales Netz, das rekursiv und gleichzeitig angepasst wird.
Für weiterführende Forschungen wird die Erweiterung physikalischen Wissens unter
Verwendung künstlicher Intelligenz empfohlen, wobei beliebige dynamische Systeme
betrachtet werden können.

x



Danksagung

Die vorliegende Dissertation ist während meiner Zeit als wissenschaftlicher Mitarbeiter
am Institut für Flugsysteme und Regelungstechnik der Technischen Universtität Darm-
stadt entstanden. In erster Linie möchte ich mich bei Professor Dr.-Ing. Uwe Klingauf
bedanken, der mich als Institutsleiter bei der Anfertigung der Dissertation fachlich un-
terstützt hat und mir den notwendigen Rückhalt gab. Professor Dr.-Ing. Eckhard Kirchner
danke ich für die Übernahme des Korreferats und die kritische Auseinandersetzung
mit meinem Dissertationsthema.

Auch möchte ich mich bei allen Kolleginnen und Kollegen bedanken, die mich in dieser
Zeit am Institut begleitet haben. Die fachlichen Diskussionen und persönlichen Begeg-
nungen sind für mich von unschätzbarem Wert. Ganz besonderer Dank gilt Professor
Dr.-Ing. Jürgen Beyer, dessen gemeinsame Forschung im Bereich der Optimalfilter
und künstlicher Intelligenz mich und diese Arbeit bereicherte. Für die Diskussionen
und gemeinsame Forschung auf dem Gebiet unbemannter Luftfahrzeuge bedanke ich
mich bei Frederik Prochazka, Saleh Krüger, Tilman Strampe und Alexander Joest. Für
die fachlichen Auseinandersetzungen auf dem Gebiet der Prognostik und Zustands-
überwachung bedanke ich mich bei Henrik Simon, Henrik Heier und David Hünemohr.
Ihm danke ich besonders für die wertvolle Beratung bei der Verschriftlichung meiner
Ergebnisse. Auch möchte ich mich bei Robert Heigl der Lufthansa Technik AG bedanken,
der mich bis zuletzt über die gemeinsame Projektarbeit hinaus unterstützt hat.

Abschließend bedanke ich mich bei meiner Familie und meinen Freunden. Meinen
Großeltern und insbesondere meiner Oma Helga danke ich für ihre zeitlose Unter-
stützung. Meinen Eltern Andreas und Birgit danke ich für ihre Unterstütztung, ihren
moralischen Kompass und ihren Halt in allen Lebenslagen. Meiner Frau Maike be-
danke ich mich für ihr unermüdliches Wesen und die viele Kraft, die sie mir gegeben
hat. Zuletzt bedanke ich mich bei meinem Sohn Hektor für seinen wundervollen und
phantastischen Blick für unsere Welt.

Frankfurt, September 2023

Franz Enkelmann

xi





Contents

Symbols and abbreviations xvii

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. State of the art 5
2.1. Aspects of aircraft maintenance . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Corrective and preventive maintenance . . . . . . . . . . . . . 7
2.1.2. Perfective maintenance and aircraft retrofits . . . . . . . . . . 9
2.1.3. Intelligent maintenance of aircraft systems . . . . . . . . . . . 11

2.2. Fundamentals in aircraft system identification . . . . . . . . . . . . . 13
2.2.1. Overview of aircraft system identification methods . . . . . . . 13
2.2.2. The recursive filter method . . . . . . . . . . . . . . . . . . . . 14
2.2.3. Observability of system states . . . . . . . . . . . . . . . . . . 18
2.2.4. Evaluation techniques in model building . . . . . . . . . . . . . 19

2.3. Definitions in the field of hybrid models . . . . . . . . . . . . . . . . . 21
2.3.1. Physical models . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2. Data-driven models . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3. Hybrid models . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4. Digital models, shadows, and twins . . . . . . . . . . . . . . . 26
2.3.5. Natural and artificial intelligence . . . . . . . . . . . . . . . . . 27
2.3.6. Machine learning, deep learning, and the Artificial Neural Network 28

2.4. Hybrid models using Artificial Neural Networks (ANNs) . . . . . . . . 31
2.4.1. Physical-based Feature Engineering . . . . . . . . . . . . . . . 31
2.4.2. Physical Guided Neural Network . . . . . . . . . . . . . . . . . 32
2.4.3. Physical Informed Neural Network . . . . . . . . . . . . . . . . 33
2.4.4. Physical Encoded Neural Network . . . . . . . . . . . . . . . . 34

2.5. Research gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xiii



3. Development of a new approach to hybrid model building 39
3.1. Development methodology . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2. Introduction of the approach and definition of requirements . . . . . . 40

3.2.1. Needs related to the hybrid model design . . . . . . . . . . . . 41
3.2.2. Needs related to the aircraft system . . . . . . . . . . . . . . . 42
3.2.3. Transformation of needs into requirements . . . . . . . . . . . 43
3.2.4. Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3. Design of the concept and model structure . . . . . . . . . . . . . . . 46
3.3.1. Concept of integrating an ANN into a physical model . . . . . . 47
3.3.2. Development of the hybrid model structure . . . . . . . . . . . 48

3.4. System identification and state estimation . . . . . . . . . . . . . . . . 50
3.4.1. Choosing the Unscented Kalman Filter (UKF) and filter modifi-

cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2. Joint estimation of the physical model and ANN . . . . . . . . 54

3.5. Preliminary studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.1. A study on a basic mass-spring-damper model . . . . . . . . . . 55
3.5.2. A study on the efficiency of an aircraft engine . . . . . . . . . . 57
3.5.3. Feedback on the model design . . . . . . . . . . . . . . . . . . 59

3.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4. Experimental design including flight tests and simulation 61
4.1. The Unmanned Aircraft System (UAS) as a flight test platform . . . . . 62

4.1.1. Description of the UAS used . . . . . . . . . . . . . . . . . . . 62
4.1.2. Implemented modifications for flight testing . . . . . . . . . . . 67

4.2. Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.1. The architecture of the experimental setup for data generation 71
4.2.2. Treatment factors of the experimental design . . . . . . . . . . 72
4.2.3. Operational conditions for flight testing and simulation . . . . 75

4.3. Flight testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.1. Flight test planning . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2. Flight test execution . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.3. Data acquisition and analysis . . . . . . . . . . . . . . . . . . . 80

4.4. Design of a simulation environment . . . . . . . . . . . . . . . . . . . 82
4.4.1. Design of the simulation framework . . . . . . . . . . . . . . . 82
4.4.2. Design of the physical model . . . . . . . . . . . . . . . . . . . 84
4.4.3. Plausibility analysis and adjustment of the physical model using

flight test data . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.4. Abstraction of aerodynamic degradation and recovery . . . . . 96

xiv



4.4.5. Execution of flight simulations . . . . . . . . . . . . . . . . . . 99
4.4.6. Data acquisition and analysis . . . . . . . . . . . . . . . . . . . 100

4.5. Conclusions in the field of observability . . . . . . . . . . . . . . . . . 103
4.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5. Application and evaluation of the hybrid model, results and discussion 109
5.1. Initialization procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2. Application to flight simulation data . . . . . . . . . . . . . . . . . . . 112

5.2.1. Test series 1: Investigation of the unmodified UAS . . . . . . . 112
5.2.2. Test series 2: Investigation of the modified UAS . . . . . . . . . 119
5.2.3. Test series 3: Investigation of the modified UAS with a reduced

filter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3. Application to flight test data . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.1. Test series 4: Investigation of the unmodified and modified UAS 130
5.4. Evaluation of the approach to hybrid model building . . . . . . . . . . 137

5.4.1. Fulfillment of the initialization requirements (A) . . . . . . . . 137
5.4.2. Fulfillment of the generalization requirements (B) . . . . . . . 138
5.4.3. Fulfillment of the interpretation requirements (C) . . . . . . . 140
5.4.4. Fulfillment of the adaption requirements (D) . . . . . . . . . . 141

5.5. Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.5.1. The structural dilemma and the filter dilemma . . . . . . . . . 144
5.5.2. Contributions in the context of artificial intelligence . . . . . . 145
5.5.3. Contributions in the field of aircraft maintenance . . . . . . . . 146

6. Summary and conclusions 147
6.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Literature 151

Related Student Theses 171

A. Supplementary information to the UAS flight test platform 173
A.1. Technical drawing of the hybrid Scihunter UAS . . . . . . . . . . . . . 174
A.2. Motorization of the hybrid Scihunter UAS . . . . . . . . . . . . . . . . 176
A.3. Mounting the technical modifications of the UAS . . . . . . . . . . . . 178
A.4. Flight test environment . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.5. Specification of the flight path using waypoints . . . . . . . . . . . . . 180
A.6. Definition of the waypoints used in ardupilot mission planner . . . . . 181

xv



A.7. Flight tests using the aerodynamically modified UAS . . . . . . . . . . 183
A.8. Flight simulations using the aerodynamically modified and unmodified

UAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.9. Initial parameter set describing the Scihunter UAS . . . . . . . . . . . 184
A.10.Calibration of the aerodynamic control surfaces of the Scihunter UAS . 185
A.11.Additional information on the initialization of the SCmUKF . . . . . . 186

B. Matlab code of the physical model implemented 191
B.1. Forces and moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
B.2. System state equations (Flight dynamics) . . . . . . . . . . . . . . . . 202
B.3. Measurement equations (Sensor model) . . . . . . . . . . . . . . . . . 204

C. Supplementary data analysis 209
C.1. Additional data analysis of the commercial transport aircraft flight data 209
C.2. Comparison of the flight test and simulation data . . . . . . . . . . . . 210
C.3. Additional data analysis in TS1 . . . . . . . . . . . . . . . . . . . . . . 211
C.4. Additional data analysis in TS2 . . . . . . . . . . . . . . . . . . . . . . 225
C.5. Additional data analysis in TS3 . . . . . . . . . . . . . . . . . . . . . . 227
C.6. Additional data analysis in TS4 . . . . . . . . . . . . . . . . . . . . . . 229

xvi



Symbols and abbreviations

Latin Letters

Notation Description Unit

A Rotor surface m
a Acceleration m

s2

alt Altitude above sea level m
b Wingspan m
C Physical coefficient -
cpi Motor power coefficient of the respective motor i -
cperm Coefficient describing permanent degradation -
cpermt Coefficient describing the period of permanent degradation s
crev Coefficient describing reversible degradation -
crevt Coefficient describing the period of reversible degradation s
Dr Damper ratio -
D Aerodynamic drag N
d Rotor diameter m
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ttot Total time s
U Voltage V
u Input (introduced in Chapter 2) -
u Airspeed in body-fixed x-direction (introduced in Chapter 4) m

s
u⃗ Input vector -
uk Input at time step k -
unn Scheduling inputs to the ANN -
ui Input of the index or input layer neuron i -
V⃗ Vector of speeds m

s
Va True Airspeed (TAS) m

s
Vk Kalman gain at time step k -
V S Vertical Speed (VS) m

s
v Airspeed in body-fixed y-direction m

s
w Airspeed in body-fixed z-direction m

s

w
(c)
i Weighting of the sigma points -

wij Coefficient of a matrix with row i and column j -
wHIji Weights of the indices i and j connecting the input and

hidden layer nodes HI
-

wOHnj Weights of the indices j and n connecting the hidden and
output layer nodes OH

-

X̂ Sigma points based on P̂xx -
x States or transition value in Chapter 2 -
x̂ Estimated states -
x⃗ State vector -
∆x̂k State update at time step k -
Y Side force N

Ŷ Transformed sigma points based on X̂ -
ŷ Estimated output -
y⃗ Vector of outputs -
yn Output of output layer neuron n -
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Greek Letters

Notation Description Unit

α Angle Of Attack (AOA) rad
αUKF Hyperparameter of UKF to adjust the spread of sigma points -
β Side Slip Angle (SSA) rad
βUKF Hyperparameter of UKF to adjust the mean sigma point -
δ⃗ Vector of deflections rad
ζ Rudder deflection rad
η Elevator deflection rad
θ Pitch angle rad
κUKF Hyperparameter of UKF to adjust the spread of sigma points -
λ Hyperparameter of UKF, affecting the weighting of sigma

points
-

ξ Aileron deflection rad

ρ0 Air density at standard atmosphere kg
m3

Φ⃗ Vector of attitude angles rad
s

ΦP ,ΦLi Logical values of active motors -
ϕ Roll angle rad
χ Ground course rad
ψ Yaw angle rad

Ω⃗ Vector of rotational rates rad
s

ω Motor rotational rate rpm

ω0 Eigenfrequency rad
s

Indices

Notation Description Unit

b body-fixed Coordinate System (CS) -
bat Value of the battery -
D Down -
d Value concerns system dynamics -
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Notation Description Unit

E East -
e experimental Coordinate System (CS) -
i,j ,n Indices of a series or matrix -
ideal Ideal value -
ini Initial value -
k Value at time step k -
k|k−1 Value at current time step k given the information at the

previous time step k − 1

-

k|k Value at current time step k given the information at the
current time step k

-

k+1|k Value at next time step k + 1 given the information at the
current time step k

-

Li Value of a lift motor -
L left side -
lb Lower boundary -
max Maximum value -
mod Modified value -
N North -
n Normed value -
nn Value concerns an ANN -
ops Operational -
P Value of the pusher motor -
p Value concerns physical parameters -
phy Value of a physical model -
prior Value of a prior model -
R right side -
red Reduced -
rel Relative value -
s Value concerns static moments -
sim Value concerns the simulation environment -
supplement Value of a supplementary model -
training Value concerns training data -
ub Upper boundary -
UKF Value concerns the UKF -
validation Value concerns validation data -
w Value concerns wind -
x,y ,z In x-, y-, z-direction -
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Notation Description Unit

1,2,3,4 Value of the lift motors 1, 2, 3, and 4 -

Superscripts

Notation Description Unit
A Value describes aerodynamics -
c Value describes commands -
(c) Value concerns covariance -
G Value describes gravity -
HI Connection of the input and hidden layer nodes -
M Value describes measurements -
OH Connection of the hidden and output layer nodes -
T Value describes thrust -
T Transposed -
(x) Value concerns system states -
∗ Value affected by a specification -

Mathematical operations

Notation Description Unit
δ
δu Partial differentiation by signal u -
d
dt Differentiation by signal t 1

s
f(x, u) System state equations as a function of x and u -
fh Activation function of the hidden layer -
fy Activation function of the output layer -
h(x, u) System measurement equations as a function of x and u -
∥M∥FN Frobenius Norm of matrixM -
max(x) Maximum value of signal x -
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Notation Description Unit

NRMSEx Normed Root Mean Squared Error of est. and act. signal x -
R(x) Variance of signal x -
randn() Generation of a set of random normally distributed numbers -
RMSEx Root Mean Squared Error of estimated and actual signal x -
σ(x) Standard deviation of signal x -
x̄ Arithmetic mean of signal x -
ẋ Time derivative of signal x -

Abbreviations

AC Alternate Current
ACoRUs Active fault-tolerant Control for Redundant UAV
ADB Air Data Boom
AGL Above Ground Level
AI Artificial Intelligence
AIAA American Institute of Aeronautics and Astronautics
AIDS Airbus Aircraft Integrated Data System
ANN Artificial Neural Network
AOA Angle Of Attack
BLDC Brushless Direct Current
CA Commanded Airspeed
CAD Computer-Aided Design
CBM Condition-Based Maintenance
CFD Computational Fluid Dynamics
CG Center of Gravity
CNN Convolutional Neural Network
CS Coordinate System
DC Direct Current
DL Deep Learning
DM Digital Model
DR Desirable Requirement
DS Digital Shadow
DT Digital Twin
EASA European Union Aviation Safety Agency
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ECM Engine Condition Monitoring
EKF Extended Kalman Filter
ESC Electronic Speed Controllers
FDIR Fault Detection Isolation and Recovery
FE Feature Engineering
FEM Filter Error Method
FM Flight Mission
FMU Flight Management Unit
FN Frobenius Norm
FNN Feed-forward Neural Network
FNO Fourier Neural Operator
FS Flight Simulation
FaS Fail-Safe
FSR Institute of Flight Systems and Automatic Control
FT Flight Test
FW Fixed Wing
GAN Generative Adversarial Network
GC Ground Course
GPS Global Positioning System
GS Ground Speed
H1 Hybrid Model 1 connecting experience-based and data-driven models
H2 Hybrid Model 2 connecting experience-based and physical models
H3 Hybrid Model 3 connecting different data-driven models
H4 Hybrid Model 4 connecting data-driven and physical models
H5 Hybrid Model 5 connecting experience-based, data-driven, and physical models
IAS Indicated Airspeed
IMU Inertial Measurement Unit
KF Kalman Filter
LHT Lufthansa Technik AG
LS Least Squares
LSTM Long Short-Term Memory neural network
MAC Mean Aerodynamic Chord
ML Machine Learning
MLi Maximum Likelihood
MR Mandatory Requirement
MRO Maintenance Repair and Overhaul
MSR Mean Sample Rate
MTOW Maximum Take-Off Weight
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mUKF modified Unscented Kalman Filter
NASA National Aeronautics and Space Administration
NeuralODE Neural Ordinary Differential Equations
NI Natural Intelligence
NRMSE Normalized Root Mean Squared Error
OEM Output Error Method
PENN Physical Encoded Neural Network
PeRCNN Physics-encoded Recurrent Convolutional Neural Network
PGNN Physical Guided Neural Network
PHM Prognostics and Health Management
PINN Physical Informed Neural Network
PLA Polylactide
PMB Power Management Board
PWM Pulse Width Modulated
QC Quadcopter
RLS Recursive Least Squares
RMSE Root Mean Squared Error
RMV Recursive Minimum Variance
RNN Recurrent Neural Network
RUL Remaining Useful Life
SC State Constraints
SCmUKF State Constraint modified Unscented Kalman Filter
SIL Software-in-the-Loop
SSA Side Slip Angle
TAS True Airspeed
TOW Take-Off Weight
TR Transition
TRL Technology Readiness Level
TS Test Series
TU Darmstadt Technical University of Darmstadt
UAS Unmanned Aircraft System
UAV Unmanned Aircraft Vehicles
UKF Unscented Kalman Filter
UT Unscented Transformation
VLOS Visual Line Of Side
VM Virtual Machine
VS Vertical Speed
VTOL Vertically Take-Off and Landing
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1. Introduction

With the increasing complexity of technical systems and the associated implementation
of sensor and information technologies, the interest in intelligent systems is growing,
especially in the aviation industry [AIA16]. The mechanical components of such
a technical system experience degradation and recovery in their life cycle. System
intelligence now manifests in the ability of diagnosis and prognosis to predict the
Remaining Useful Life (RUL) of the components and to enable intelligent maintenance.
[Meh22; Ang18; Käh17; Tch+14; Lei14]

Intelligent maintenance relies on finding an optimum between traditional corrective
and preventive maintenance procedures for monitoring and maintaining a system’s
health during operation. The optimization task incorporates information about the
system’s states and maintenance status to increase safety, cost efficiency, and sustain-
ability. In conclusion, the potential of intelligent maintenance relies on knowledge
about the system states in an accurate and physically consistent manner. [VDI22; LS19;
PK18]

Today, Machine Learning (ML) methods are used to develop Digital Twins (DTs) or
at least aspects of them for the diagnosis and prognosis task. ML has a wide scope of
applicability scaling with the considered system’s complexity and data access. Accurate
results are achieved without requiring certain domain knowledge. But especially for a
technical system, ML suffers from interpretability, consistency, and acceptability in a
“challenge of trust“ [Ful+20]. Based on these criteria, physical models are persuasive
but require elaborate modeling procedures enforcing the reduction of model complexity,
which results in a loss of accuracy and usability. [Ful+20]

Therefore, the development and use of hybrid models combining different model types
have been established as a branch of research in the scientific society [GLL19]. Various
hybrid model structures are discussed in the literature, emphasizing the connection
between data-driven and physical models. The connection between Artificial Neural
Networks (ANNs) and physical models is the most common. However, hybrid models
can lack physical consistency and interpretability, which lowers acceptance and usage.
[Cha+22; Mur+20; DR20; Hon+20; Jia+19; Cha+19; CPC19]
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1.1. Motivation

Adaptive, physically consistent, and reliable system models are required to enable
intelligent maintenance of aircraft systems. These models need to be accurate because
maintenance measures and aircraft retrofits exist that have a small impact on the
aircraft’s health state. Hybridmodels may address these needs by beneficially combining
a physical model and a data-driven approach.

However, current hybrid models are shown to be insufficient. In the literature, data-
driven models are focused on being extended by physics. Instead, the motivation in this
thesis is to extend physical knowledge by using ML. This way, the required consistency
and reliability shall be ensured and accuracy increased.

The research in this thesis contributes to safe, efficient, and sustainable aviation by
supporting aircraft maintenance. The intelligent use of maintenance measures and
retrofits is addressed in the context of digital platforms [Yan18]. These platforms
are fed with flight, maintenance, and operational data and are operated by aircraft
manufacturers and airlines today. [Luf21a; Ame21; Air21; Boe22]

1.2. Goals

The goal of the thesis is the development of a new approach to hybrid model building.
An extension of a physical model is targeted using an ANN. This provides access to
a comprehensible and interpretable model structure, which shall continuously adapt
through learning. Insufficient representation of the physical model is to be captured by
the ANN in a physically consistent manner.

In contrast to the most common hybrid models used in literature, the introduced
structure is intended to provide a deep connection between the physical model and
ANN using physical parameters as an interface1. Interpretability is desired, which
allows the system’s behavior to be studied and its understanding to be improved.
Including scheduling data, such as maintenance data, can improve state estimation
and prediction.
1Nells discusses this kind of model structure as a parameter scheduling model, which is rarely used
under the topic of Prognostics and Health Management (PHM). The parameter scheduling model
structure will be a key element in the design of a new hybrid model. [Nel20]
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Estimating states, including time-variant parameters, is essential to the method de-
velopment. The recursive filter model is chosen for research to handle nonlinearities,
stepwise adaption, and the mutual linking of the two model parts. In particular, the
Unscented Kalman Filter (UKF) is considered for joint estimation building on the liter-
ature from Julier, Uhlmann, Van der Merwe, Wan, Nelson, and Simon. [JUD95; vW03;
Sim06a; WN00; WMN00]

For evaluation, flight and maintenance data of aircraft are used. A flight test platform
is chosen to ensure knowledge about the aircraft system’s characteristics and health.
This also allows a retrofit to be applied independently from any other modification,
which may take effect in civil aircraft operations. With the ambition to use real flight
data acquired without constraints but according to its specifications, a Unmanned
Aircraft System (UAS) is used.

Besides flight testing, a Software-in-the-Loop (SIL) environment is developed for flight
simulations. Investigating simulated flight data enables the hybrid model to be assessed
in a fully observed simulation environment using true states and ideal measurements.
Further, time-variant parameters are integrated to be part of the estimation task. The
real flight test data is used for plausibility analysis, adjustment of the simulation
framework, and, finally, to evaluate the hybrid model when dealing with real sensors
and flight conditions.

1.3. Thesis structure

The structure of the thesis is described in the following and shown in Figure 1.1.

After the introduction, the state of the art is presented in Chapter 2. Discussing aspects
of aircraft maintenance, the idea of hybrid model building in aviation is derived.
Definitions in this field and current hybrid model implementations help clarify the
research gap.

The method development is considered in Chapter 3. In Chapter 4, experiments are
designed, introducing a flight test platform and a simulation environment to acquire
data. The hybrid model is applied and evaluated in Chapter 5. The system states of the
non-modified and modified UAS are estimated and predicted, including time-variant
parameters.

The thesis closes with a summary, conclusions, and an outlook for future research in
Chapter 6.
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• Summary & conclusions
• Outlook

• Aspects in aircraft maintenance
• Definitions & model classification
• Hybrid models using ANNs

• Motivation
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• Structure

How to extend physical knowledge using AI?

Hybrid model Database
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• Introduction of flight test platform
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flight simulations

• Idea & methodology
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• Application to simulated flight data
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including modifications

• Evaluation & discussion

Chapter 1: 
Introduction

Chapter 2: 
State of the art

Chapter 4: Experimental design, 
flight tests and simulations

Chapter 3: Concept and 
method development

Chapter 5: Application and evaluation
of the hybrid model

Chapter 6: 
Summary and conclusions

How to extend a physical with a data-driven model?

Figure 1.1.: Structure of the thesis

4



2. State of the art

This chapter presents a background of the considered use case in aviation and hybrid
model building. Starting with the aspects of aircraft maintenance in Section 2.1, a
deeper understanding of system models’ use and added value in aircraft maintenance is
provided. The conventional methods to identify aircraft system models and to evaluate
their quality are followed in Section 2.2. Introducing relevant definitions in hybrid
models allows the classification of different approaches to creating of hybrid models and
their placement in the context of artificial intelligence in Section 2.3. According to the
literature, the combination of physical and data-driven models using Artificial Neural
Networks (ANNs) is most promising. Therefore, Section 2.4 discusses recent hybrid
models using ANNs. This results in the research gap, which is clarified in Section 2.5.
The chapter closes with a summary in Section 2.6.

2.1. Aspects of aircraft maintenance

Aircraft system models play an important role in aircraft maintenance. They support
flight operations in increasing system safety and reliability. The effort depends on
the system’s complexity, the maintenance measure, the maintenance strategy, and the
quality of the system model used for description. To briefly build an understanding of
existing strategies and to emphasize the significance of aircraft system model building,
aspects of aircraft maintenance are discussed in the following. [Käh17; Lin05]

Maintenance is the “combination of all technical, administrative, and
managerial actions during the life cycle of an item aimed to retain it in or
restore it to a state, in which it can perform the required function.“ [Deu12]

In its life cycle, an aircraft experiences several maintenance measures, which cause
technical modification. In addition, the aircraft’s health state varies through the aircraft
system’s degradation during flight operation. Unless safety is the most striving factor in
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civil aviation, the health state is reliable for assessing airworthiness. [Meh22; Ang18;
Käh17]

However, besides the safety aspect stand different factors in aircraft maintenance
[Ang18; Deu12]:

• Safety and security

• Costs

• Availability

• Environmental protection

• Product quality

• Conservation of the item’s value

In particular, the cost factor implies an optimization task. It involves the availability of
the aircraft. Especially when the downtime of a component is not expected, unscheduled
maintenance and delays occur that cause costs [Ins00]. It further includes aspects
of environmental protection as the aircraft’s fuel efficiency and emissions can suffer
from a bad health state. This results in increased fuel costs and the need for additional
carbon dioxide certificates in aircraft operations [Das17]. These factors increase the
repair or breakdown costs with a decreasing degree of preventive actions (thin line),
as shown in Figure 2.1.

Degree of preventive actions

Costs

Optimum

Repair/breakdown costs

Prevention costs

Exemplary
initial state

Total costs

Corrective 
maintenance

Preventive 
maintenance

Intelligent
maintenance

Theoretical 
savings 

potential

Figure 2.1.: Impact of maintenance strategies on costs, illustrated by
[Käh17] and based on [Lei14; Tch+14]
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This is offset by the prevention costs (dashed line), which include the monitoring and
sensor effort and the unused lifetime of components replaced prior to failure. As a
result, an optimum exists, which may grant savings compared to the total costs (thick
line) of any exemplary initial state.

Therefore, different maintenance types and strategies exist. On the one hand, correc-
tive maintenance triggers maintenance action whenever a fault or failure is recognized.
On the other hand, preventive maintenance is employed to fix any problems in advance.
These maintenance types are considered traditional and are briefly discussed in Subsec-
tion 2.1.1. If a maintenance procedure enhances the system characteristics beyond its
nominal state, perfective maintenance is used [Deu12]. Technical enhancements and
modifications are considered retrofits to the aircraft, examples of which are provided
in Subsection 2.1.2. Suppose the cost-optimal use of an item is sought. In that case,
intelligent maintenance is followed. Here, model-based intelligence is incorporated
into the considered system, which is the focus of this thesis and further discussed in
Subsection 2.1.3.

2.1.1. Corrective and preventive maintenance

An aircraft system, subsystems, and components adopt different health states within
its life cycle. Following [Deu12] and [Ang18], health states are classified into four
classes:

• New state: the item completely fulfills the requirements, which may lie above the
predefined limits for the nominal state.

• Nominal state: the item completely fulfills the requirements.

• Degraded state: the fulfillment of the required functions is reduced but within
defined limits between the nominal and minimum states.

• Minimum state: the fulfillment of the required functions is only ensured; further
degradation will result in a fault.

Without any maintenance, the health of an item degrades in operation starting from
the new state, exceeding the nominal state, and adopting any degraded state until the
minimum state is passed, a fault occurs, and its required function can no longer be
performed. In this case, the reserve of wear-out is fully exhausted during the operating
time.
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Once a fault is discovered, corrective maintenance can be followed to restore the item
to its nominal state and, thus, its required function, see Figure 2.2. In this way, the
lifetime of an item is fully used. However, since the sudden failure of an item can cause
safety issues and unscheduled downtime of the aircraft, additional breakdown costs
are incurred, see Figure 2.1.

Time

Corrective
maintenance

Preventive
maintenance

Perfective
maintenance

Intelligent
maintenance

Reserve of
wear-out

New state

Nominal
state

Minimum
state Virtual wear-out progress

Figure 2.2.: Distinction between corrective, preventive, perfective, and intel-
ligent maintenance, based on [Ang18; Käh17; Deu12].

Preventive maintenance is chosen to avoid additional costs caused by sudden failure
of an item. Before the minimum state of an item, the degraded state of an item is
restored to its nominal state, see Figure 2.2. Based on the predefined values triggering
maintenance action, unused lifetime remains. Consequently, the item is inefficient,
and potential cost savings remain unused. This is the case for approximately 85 % of
preventive maintenance tasks [Lei14].

As preventive maintenance involves predetermined and condition-based maintenance,
values triggering maintenance action can be set differently [Deu10]. For predetermined
maintenance, fixed values of, e.g. time intervals, are set to prevent sudden failure
and retain required functionality. Maintenance action is triggered condition-based to
further approach to the minimum state and thus a longer use of an item without risking
failure.

Condition-Based Maintenance (CBM) involves monitoring, inspection, testing, and
analysis of an item [Deu10]. In particular, using sensor data and system models enables
the assessment of the system’s health state. The standard procedure is divided into data
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acquisition, manipulation, state detection, health assessment, prognostic assessment,
and advisory generation [Int03].

Various use cases have been elaborated over the past decades [Kar21]. In aircraft
maintenance, Engine Condition Monitoring (ECM) has emerged as an important
instance, along with various other monitored subsystems. Physical models and ECM
data1 are still preferred to diagnose engine conditions in terms of faults and the
ability to assess engine efficiency. Therefore, if declining efficiency is observed, engine
maintenance procedures such as overhaul, gas path cleaning, fan blade recontouring,
and software updates are considered. [Fen+19; Vol14; KSS14]

The introduction of CBM for aircraft has already prevented sudden failures and reduced
costs. Thus, aircraft operations are affected regarding safety and operational efficiency
[GSG16; WC11]. Further improvements of CBM are discussed by Chen et al. in the
real-time condition monitoring of aircraft in [CWZ12] and by Bernado, Simon, and
Schoenhof in the fusion of hardware and software information in [SS21; Ber14].

However, the potential cost savings are offset by the cost of the monitoring itself
[Käh17]. While sensor technology evolves and its share of costs decreases, the need
for costly expert knowledge remains. This encourages the operator to incorporate
Artificial Intelligence (AI) methods, which may reduce the need for expert knowledge.
Further, adapting through learning enables one to map any system change accurately.
Changes occur through the degradation of the system and the maintenance measures.
If maintenance measures enhance the system’s health beyond its nominal state, the
term perfective maintenance is used, which is discussed in the next Subsection.

2.1.2. Perfective maintenance and aircraft retrofits

Perfective maintenance is handled as optional. With the characteristic to enhance the
nominal state of an item, perfective maintenance may be combined with any other
maintenance type triggering maintenance action. Figure 2.2 shows the recovery of a
degraded state beyond the item’s nominal state, an example of preventive and perfective
maintenance. However, the perfective maintenance measure may permanently change
the item’s technical condition, so the nominal state must be adjusted. Such measures
involve software updates and technical modifications called retrofits when applied to
the item in operation. [Käh17; Deu12]
1ECM data is aggregated according to certain criteria for takeoff and cruise reports. These can be
defined by the operator, by the Maintenance Repair and Overhaul (MRO) supplier, or used as
suggested by the manufacturer. [Air02]
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Aircraft retrofits are carried out to increase system safety, operational efficiency, and
passenger comfort. Depending on the aircraft, retrofit, development, and employment
are associated with high costs. Therefore, determining the impact and evaluating
retrofit’s economic value is of great interest to the aircraft operator.

This thesis considers degradation, recovery, and permanent modification of aircraft
aerodynamics. Therefore, some aerodynamic retrofits in civil aviation are discussed in
the following.

Aerodynamic retrofits such as winglets, sharklets, and sharkskin are applied to reduce
induced, and friction drag. A reduction of drag lowers the fuel consumption. Thus,
cost savings arise, and environmentally harmful emissions decrease.

Winglets and sharklets are developed and distributed by the aircraft manufacturers
Boeing and Airbus. Historically, winglets were developed based on wind tunnel tests,
computer studies, and finally, flight tests by the National Aeronautics and Space
Administration (NASA) from 1979 to 1980 promising fuel savings of up to 7 % [Nat04].
Airbus questioned the benefit of winglets versus the weight increase of the aircraft and
thus started to develop their design based on the winglets far later in early 2000. They
introduced the concept of sharklets in 2012 and started a retrofit program, promising
fuel savings of up to 4 %. Today, modern civil transportation aircraft such as the A321
Neo are initially equipped or retrofitted with sharklets, see Figure 2.3a. [Air14; Air13]

(a) Sharklet of an A321 Neo aircraft,
with permission from [Deu19]

(b) Application of sharkskin on an air-
craft fuselage, with permission
from [Luf19]

Figure 2.3.: Aerodynamic retrofits of civil transportation aircraft in service.

Sharkskin is a development of the MRO company Lufthansa Technik AG (LHT) and the
chemical company BASF SE. In close cooperation with the Lufthansa Group, the effects
of sharkskin were researched through experimental and numerical investigations and
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flight tests. In addition to the laboratory examination by Leitl et al., flight test data
is taken into account utilizing the fuel efficiency analysis provided by the AVIATAR,
the digital asset analysis platform of LHT. It measured “variations in fuel consumption
before and after the modification“ [Luf21b]. A reduction in frictional drag of 0.8% is
determined, resulting in significant fuel savings in flight operations. This has encour-
aged the Lufthansa Group to equip the Lufthansa cargo fleet of Boeing 777 aircraft
with sharkskin, focusing on the aircraft fuselage, see Figure 2.3b. [Luf21b; Lei+19]

Aerodynamic retrofits are performed only once and rarely repeated during an aircraft’s
life cycle. Therefore, the aircraft and associated flight data are considered separately
before and after the retrofit to assess its impact today [Luf21b; Lei+19]. However,
when considering aircraft in service as well as flight and maintenance data, influences
such as maintenance measures, retrofits, damages, and operating conditions affect the
aircraft’s health state simultaneously. Their effects overlap in the time domain. To still
be able to determine accurate results in retrofit assessment, statistical methods are
used. Here, several aircraft of a fleet are considered rather than knowing the individual
effect on the efficiency of an aircraft. [EHH22; Luf21b; EHP20; Lei+19]

2.1.3. Intelligent maintenance of aircraft systems

Intelligent systems sense, interact, and communicate “in an environment
with other agents,“ where they “follow [. . . ] principles“ and “adapt through
learning.“ [Mol20]

Therefore, the intelligence of a technical system, such as an aircraft system, can be
assumed by sensors, physically meaningful behavior, and the ability to adapt the system
states continuously. However, the aircraft does not necessarily be intelligent in every
manner. Only some subsystems need to have AI technologies implemented to classify
the aircraft as intelligent, cf. Subsection 2.3.5 [Yin19]. From their employment, an
increase in manufacturing, operational efficiency, mission performance, and safety
of current and future aerospace systems is expected, following the roadmap of the
American Institute of Aeronautics and Astronautics (AIAA) [AIA16].

Intelligent maintenance may be a subdiscipline of AI. It involves CBM and Prognostics
and Health Management (PHM) to accurately find the cost optimum in maintaining
an ever-changing system, cf. Figure 2.1 [KAC17; AIA16; Joh11]. Consequently, the
minimum state of an affected item is found to advise maintenance action to restore its
nominal state, cf. Figure 2.2. If the nominal state has changed due to prior technical
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modifications, intelligent maintenance is set to learn and adjust the nominal state
during operation.

While the first implementations of AI for aircraft engine condition monitoring were
referred to in 1995, the tasks of AI have increased in trust and effort today [AIA16;
AJV95]. This occurs through the technological progress of sensor technology and data
acquisition and the implementation of physical, data-driven, and hybrid models using
state-of-the-art algorithms, see Section 2.3.

With the ability to adapt through learning, AI methods differ from conventional methods
used for CBM. It enables system models to adapt to new and unknown effects and
inputs, ensuring reliable mapping in operation. Thus, intelligent maintenance uses AI
technologies to take over CBM tasks, including on-condition maintenance, predictive
diagnostics, and predictive prognostics. Here begins the field of predictive maintenance,
where PHM algorithms settle. [KKH18; Deu12; Joh11]

Thus, diagnostics can be carried out to prognostics within the PHM topic, where
Lughofer et al., Pecht et al., and Johnson grant an overview [LS19; PK18; Joh11].
Johnson strictly defines prognosis as:

“Predicting the time at which a component will no longer perform its
intended function.“ [Joh11]

In this case, appropriate models predict the future health state until a failure occurs,
which is reflected in the Remaining Useful Life (RUL). The health state and its thresh-
old underlying the RUL are system-dependent values determined based on expert
knowledge. Knowledge about the degradation and failures of the system is mandatory.
[Lei+16; Li+15; Si+12]

In conclusion, a reliable estimation and prediction of system states is required for RUL
prediction. This allows variable future operating states to be considered for the RUL
prediction, as Mehringskötter studied. To perform such predictions, Mehringskötter
assumes the actual and future operating states to be given. Such data may be used to
assess of the aircraft’s health and efficiency using today’s data-driven models. [Meh22;
EHP20; Bau19; BK19]

Thus, “failure prognosis has been approached [. . . ] to artificial intelligence tools and
methodologies“ [Joh11]. Conversely, AI has acquired the ability to perform PHM tasks.
However, it is evident first to determine the system states correctly before predicting
them into the future and using them for PHM [Vac+06]. As the determination of aircraft
system states relies on the system model, the next Section discusses the fundamentals
of aircraft system identification.
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2.2. Fundamentals in aircraft system identification

The process of aircraft system identification is discussed by Klein, Morelli, Stevens,
Johnson, Lewis, Brockhaus, Alles, Luckner, Tischler, Remple, and Jategaonkar [KM16;
SJL16; Jat15; BAL11; TR06]. They employ the ability of system identification for
aircraft, which is considered in two parts. First, system identification consists of
a model concerning inputs, architecture, dynamics representation, order, structure,
parameters, and validation. Second, feedback to the model involves user interaction or
an automatic algorithm. At this point, using experiments overcomes the use of prior
knowledge. [Nel20]

The model structure and the algorithm used for identification will be part of the
development process in Chapter 3. In defining time-variant parameters to be part of
the hybrid model, mapped by a data-driven model, and identified using a recursive
filter method, some fundamentals are provided in the following. These involve an
overview of conservative aircraft system identification methods in Subsection 2.2.1,
focusing on the recursive filter method in Subsection 2.2.2. Since observability turns
out to be a key measure of control theory to be considered in hybrid model building,
Subsection 2.2.3 discusses its definitions. Finally, some model evaluation techniques
and metrics are given in Subsection 2.2.4 to be used later.

2.2.1. Overview of aircraft system identification methods

Physical models are preferred for aircraft system identification. The underlying algo-
rithms to optimize the models are classified and discussed in [Nel20; KM16; BAL11;
TR06], where a reduced representation based on the work by Nelles is given below:

• Linear optimization

– Least Squares (LS)

– Recursive Least Squares (RLS)

• Nonlinear local optimization

– Batch and sample adaption

– General gradient-based algorithms

– Nonlinear least squares problems
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• Nonlinear global optimization

– Evolutionary algorithms

• Unsupervised learning techniques

• Model complexity optimization

• Recursive Minimum Variance (RMV) algorithms

In the context of aircraft systems, Jategaonkar emphasizes optimizing algorithms
within the Output Error Method (OEM) or the Filter Error Method (FEM) for system
identification. In the case of the OEM, the LS, as well as the Maximum Likelihood (MLi)
method, are commonly used to determine the aircraft system parameters directly from
noisy measurements. At the same time, MLi is considered for both linear and nonlinear
optimization. [Jat15]

Alternatively, Jategaonkar proposes the FEM to identify the parameters inside a filter
structure with a Gauß-Newton optimization following a state update every time step
[Jat15]. Another example of using a filter structure is given by Curvo, implementing an
Extended Kalman Filter (EKF) to estimate aircraft aerodynamic derivatives in [Cur00].

Recursive filter methods such as the EKF are suitable for system identification. They
consider noise, handle nonlinear stochastic problems, and estimate bias-free parameter
values, which are discussed in more detail below. [BK94]

2.2.2. The recursive filter method

Recursive filter methods differ from optimization methods using batch and iterative
sample adaption. Most importantly, they minimize the variance of residuals recursively
(RMV) instead of minimizing a residual directly [BK94]. Filter methods can be used
online and enable adaption through learning, which is an important characteristic in
the context of intelligent systems, cf. Subsection 2.1.3. [Nel20]

The Kalman filter and its variants belong to the field of recursive filter methods. Giving
a brief introduction in the following, further reading of the literature by Gelb et al.,
Haykin, and Simon is recommended [Gel+06; Sim06a; Hay96]. Since the Unscented
Kalman Filter (UKF) will be chosen to identify a hybrid model of an aircraft system in
this thesis, more specific literature by Julier, Uhlmann et al., and Van Der Merwe and
Wan is recommended [vW03; JUD95]. They introduced the UKF in 1995 [JUD95].
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The following is based on their work, where the notation used is based on the work by
Krebs [Kre80].

Kalman filters consider a system with the system equation f(x, u), the estimated state,
x̂k|k, and the input uk providing the state prediction with x̂k+1|k, and the measurement
equation h(x, u) estimating the output ŷk|k−1. The measurementmk at timestep k and
the estimated model output ŷk|k−1 yield the residual êk, see Eq. 2.1.

êk = mk − ŷk|k−1, (2.1)

The structure of the nonlinear discrete-time Kalman filter is given in Figure 2.4. Variants
of the Kalman filter mainly differ in considering the Kalman gain Vk, see Eq. 2.2. Vk is
used to update the state to x̂k|k based on the residual êk, see Eq. 2.3.

x̂k|k−1x̂k+1|kx̂k|k

∆x̂k êk

mk

ŷk|k−1
f(x, u) z−1 h(x, u)

Vk

uk uk
−

Figure 2.4.: Structure of the nonlinear discrete-time Kalman filter, based on
[Hay96].

Vk = P̂xyk|k−1
× P̂−1

eek|k−1
(2.2)

x̂k|k = x̂k|k−1 + Vk × êk (2.3)

The Kalman gain is subject to an optimization problem concerning the covariance
estimations of the residual covariance P̂ee, output covariance P̂yy, state covariance
P̂xx, and cross-covariance P̂xy. The problem includes the assumed uncertainty of the
measurements with the measurement noise covariance matrix Ryy and the fictional
uncertainty of the system with the system noise covariance matrix Qxx:
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P̂eek|k−1 = P̂yyk|k−1
+Ryy. (2.4)

The state covariance updates follow by using Vk and P̂xy:

P̂xxk|k = P̂xxk|k−1 − Vk × P̂T
xyk|k−1

. (2.5)

Finally, the updated states x̂k|k are predicted into the next time step k + 1 based on
f(x, u), see Eq. 2.6.

x̂k+1|k = f(x̂k|k, u) (2.6)

The definition of the covariance matrices P̂xx, P̂yy, and P̂xy depend on the Kalman
filter variant chosen. The most common variants are the EKF, UKF, and particle filter
for nonlinear system equations. They differ due to the computational effort needed
and the accuracy of the covariance estimation, see Figure 2.5a.

Computational effort

In
cr

e
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in
g

ac
cu
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cy

EKF

UKF

Particle
filter

(a)

CovarianceSigma points

(b)

Figure 2.5.: The increasing accuracy and computational effort of the
EKF, UKF, and particle filter (a), based on [Sim06a] and the
Unscented Transformation (UT) of the sigma points with the
corresponding covariance (b), based on [vW03].

The EKF uses partial differentiation in each operating point to handle nonlinear systems.
The UKF uses so-called sigma points, which are chosen to represent the covariance of a
distribution. The UKF exceeds the accuracy of the EKF in terms of state and covariance
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estimation, while it can cause an increased computational effort on a reasonable order
of magnitude. The particle filter is not considered in this thesis because of a significant
increase in the computational effort, although increased accuracy is expected. [Sim06a;
vW03; JUD95]

As discussed in Chapter 3, the UKF is well suited for the nonlinear system identification
needed in the proposed hybrid model structure. The UKF is characterized by its
covariance calculation and state prediction using the UT. For the UT, the sigma points
are defined. They are adjusted according to the hyperparameters αUKF, κUKF and βUKF
to capture the covariance of the states. The hyperparameters, αUKF, and κUKF influence
the spread of the sigma points and thus filter performance. The hyperparameter βUKF
describes a shift of the mean value and is used to handle distributions different from
the normal distribution. With the number of states NUKF and the hyperparameter
λ = α2

UKF(NUKF + κUKF)−NUKF, the weighting of the sigma points is defined in Eq. 2.7.
[Hay04; vW03; JUD95]

w
(c)
i =

λ

2(NUKF + λ)
, i = 1, ..., 2NUKF (2.7)

Using w(c)
i and the sigma points X̂k|k−1 around x̂k|k−1, as well as their mapping using

Ŷ k|k−1 = f(X̂k|k−1, uk), the covariances P̂xyk|k−1
and P̂yyk|k−1

are calculated in Eq.
2.8 and in 2.9.

P̂xyk|k−1
=

2NUKF∑︂
i=1

w
(c)
i (X̂k|k−1 − x̂k|k−1)(Ŷk|k−1 − ŷk|k−1)

T (2.8)

P̂yyk|k−1
=

2NUKF∑︂
i=1

w
(c)
i (Ŷk|k−1 − ŷk|k−1)(Ŷk|k−1 − ŷk|k−1)

T (2.9)

The covariance prediction results from transforming the sigma points following X̂k+1|k =

f(X̂k|k, uk) used in Eq. 2.10.

P̂ ∗
xxk+1|k =

2NUKF∑︂
i=1

w
(c)
i (X̂k+1|k − x̂k+1|k)(X̂k+1|k − x̂k+1|k)

T (2.10)
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The prediction of P̂xxk+1|k finally considers Qxx in Eq. 2.11.

P̂xxk+1|k = P̂ ∗
xxk+1|k +Qxx (2.11)

Parameters are defined as parameter states, and the state vector is extended to enable
parameter estimation. The dual and joint estimation methods are suitable for state
estimation using the UKF. In the case of dual estimation, the covariance calculation
of the dynamical states, which describe the system dynamics, and of the parameters
states, which are typically set to be constant are separated.

For joint estimation, a combined covariance calculation takes place. Therefore, the
entries of the secondary diagonals connect the parameter states and the dynamical
states, which have a significant value for the state update. Further readings and the
mathematical background are provided in the literature. [ZLL17; MPA13; Sim06a;
WN00; WMN00; Nel00]

In this thesis, a modification of the UKF is used. The modification simplifies the
calculation of the mean value of the states and the covariances using sigma points2.
Also, the state and covariance estimation is separated, which improves filter stability.
The modified Unscented Kalman Filter (mUKF) is derived for state estimation within
the proposed hybrid model discussed in Chapter 3. A complete description of the filter
algorithm used is given in [EK22].

2.2.3. Observability of system states

In this thesis, a dynamic aircraft system is considered, which is nonlinear and stochastic.
It is characterized by the nonlinear dependencies between the system states and the
presence of noise, as expected for aircraft systems concerning noisy flight measurement
data.

The observability of such a system has to be treated differently compared to the linear
deterministic system. Therefore, state estimation and stability approval are more
challenging, while the separation theorem3 is no longer applicable. Thus, observability
is considered for evaluation and discussion of the hybrid model. This is new in building
hybrid models, which are otherwise treated as data-driven, see Section 2.3. [Ada14]
2Note that the covariance calculations in Eq. 2.8, Eq. 2.9 and, Eq. 2.10 already take into account the
sigma points without the mean state with index i = 0.

3The separation theorem claims that the states are independent of each other [Ada14].
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The two definitions follow from the mathematically shaped formulation given in the
literature to which reference is made accordingly:

Deterministic observability

A system is observable if the initial states are determinable using the
given in- and outputs of the system in a defined time interval. [Ada14;
LB11]

Stochastic observability

A system is stochastically observable if the solution for the initial states
converges with the given in- and outputs of the system in a defined time
interval or if the initial states lie in a defined solution space with the given
in- and outputs of the system in a defined time interval. [Ada14; Che80]

In literature, such criteria are also discussed as weak or local observability, understood
as stochastic observability [Ada14].

Observation of nonlinear stochastic systems opens another field of research, where
contributions are traced back to Chen, who defined stochastic observability and control-
lability in 1980 [Che80]. Further research is provided by van Handel, Liu, McDonald,
and Yuksel, who finally discuss stochastic observability in the context of filter stability
till 2018 [MY18; LB11; van09].

2.2.4. Evaluation techniques in model building

Within the hybrid model, an optimization method is considered for state estimation.
The performance of the hybrid model is characterized by the accuracy and reliability of
the estimated states, particularly the time-variant parameter states. The metrics used
to assess the model’s performance are given below. Qualitative studies can be added in
terms of plausibility and applicability to evaluate the development in Chapter 3.

According to Johnson, model performance is rated by:

• accuracy,

• precision,

• and convergence. [Joh11]
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Accuracy is described with an average bias. Precision describes the spread of an error,
which the standard deviation can capture. Convergence is the property of the learning
algorithm to sufficiently decrease the deviation from the objective function relative to
the prior estimates. [Joh11]

The proposed hybrid model is investigated in all three disciplines using observed signals
and objectives considering physical parameter states additionally. The consideration
of flight data allows for the evaluation of the applicability of the hybrid model and a
plausibility analysis. A defined simulation environment enables the acquisition of flight
simulation data, including the simulated system’s true states and ideal measurements.
These have a significant value for assessment.

Thus, quantifying the accuracy, precision, and convergence of both dynamical and
parameter states is enabled, which grants insight into the learning behavior of the
hidden states.

A metric to describe accuracy is the Root Mean Squared Error (RMSE):

RMSEx =

⌜⃓⃓⎷ 1

Ni

Ni∑︂
i

(xi − x̂i)2 (2.12)

Due to the squared error, deviations of greater magnitude are weighted higher. The
RMSE appears in the physical dimension of x resp. x̂. Thus, a normalization offers the
comparison of the RMSE of different magnitudes and resolves the dimensionality:

NRMSEx =
RMSEx
xrel

, with xrel ∈ [σ(x)xmax]. (2.13)

Typically normalized by the standard deviation σ(x), the relation by xrel can proceed
using the maximum value xmax [Oli12].

The standard deviation σ(x) can also be used to describe the precision of the model:

σ(x) =

⌜⃓⃓⎷ 1

Ni − 1

Ni∑︂
i

(xi − x̄)2. (2.14)
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Using the standard deviation is advantageous when using a Kalman filter method and
analyzing its covariance estimates4.

Examples of the applied UKF can be found in the literature analyzing convergence
criteria [DBA21; FFT07]. Visualization helps to examine convergence behavior, which
is performed for residuals and covariances of the measurements and states, respectively.

The number of dynamical and parameter states increases with systemmodel complexity,
which is expected to be in a manageable range. Instead, the number of ANN weight
states may greatly increase with the number of input, hidden layer, and output nodes.
Therefore, the Frobenius Norm (FN) is introduced to examine the convergence behavior
while estimating the ANN weight states. [DBA21; Tho+20; Gv96]

∥M∥FN :=

⌜⃓⃓⎷ Ni∑︂
i=1

Nj∑︂
j=1

|wij |2 (2.15)

The FN summarizes any change in a matrix M affected by its coefficients wij . It is
proposed for convergence analysis by Daid et. al in the context of the UKF and by
Thoiyab et al. in the context of the ANN. [DBA21; Tho+20]

2.3. Definitions in the field of hybrid models

A hybrid model involves the combination of two or more models of different types to
benefit from their advantages [GLL19; KAC17; LK14]. In literature, a wide range of
research, combinations, solutions, and implementations of hybrid models exist, partly
discussed in the following [Far+22; GLL19; LK14].

4Note, the variance ν depends on the standard deviation with ν = σ2
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According to Liao and Kottig, three model types provide coupling partners of a hybrid
model:

• the experience-based model5,

• the physical model, see Subsection 2.3.1,

• and the data-driven model, see Subsection 2.3.2.

Any combinations of these result in a hybrid model H1 to H5, see Figure 2.6.

Experience-based
models

H1 H2 H3 H5

Prediction models

Data-driven
models

Physical
models

H4

Figure 2.6.: Possible combinations of the three major classes of prediction
models, based on [LK14]

The experience-based model occurs in H1 with the data-driven model, in H2 with
the physical models, and in H5 with both. These models rely on the capability of
the domain expert, who specifies rules for a system. As system complexity increases,
experience-based models suffer from applicability and consistency-checking problems.
[LK14]

Hybrid Model 3 connecting different data-driven models (H3) covers the combination
of two or more data-driven models. The broad availability of different data-driven
5“Experience-based models correlate expert knowledge and engineering experience (often documented
as IF-THEN rules directly from domain experts) with the observed situation to infer RUL from
historical measurements or events.“ [LK14]
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model types comes with various learning strategies that allow combinations with
themselves. For example, a decision tree may be combined with an ANN. [LK14]

Hybrid model 4 (H4) combines physical and data-driven models. This combination
represents the current understanding of hybrid models:

“Hybrid approaches are to integrate advantages of both physics-based
and data-driven methods to improve the prediction capability.“ [KAC17]

“Hybrid approaches are the integration of both data-driven and physics-
based prognostics. It is an intuitive idea to leverage the strength of [...]
data-driven and physics-based prognostics to improve the prediction perfor-
mance.“ [GLL19]

Therefore, this thesis focuses on hybrid models consisting of a physical and a data-
driven model. A uniform understanding is provided because various names are used in
the literature to describe such models. Consequently, some definitions of hybrid models
are given in the following. These are settled in the context of intelligence, machine
learning, and digital models. In the context of Natural Intelligence (NI) and AI, the
labels of physical, hybrid, and data-driven models are given in Figure 2.7.

Physical models
White-box models
Analytical models

Data-driven models
Black-box models

Hybrid models
Gray-box models

Structured models

Figure 2.7.: Nomenclature of physical, hybrid, and data-driven models

Hybrid, gray-box, and structured models are referred to as hybrid models. Physical,
white-box, and analytical models are called physical models, defined in Subsection 2.3.1.
Data-driven and black-box models are called data-driven models, as defined in Sub-
section 2.3.2. The combination of the physical and data-driven models results in the
hybrid model, which is explained in more detail in Subsection 2.3.3.

These models create a digital object that represents a physical object in a virtual
environment. Depending on their implementation and linking, they offer the design
of a Digital Model (DM), Digital Shadow (DS), or Digital Twin (DT), which are
defined in Subsection 2.3.4. Superior to this stands the use of NI and AI, defined in
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Subsection 2.3.5, followed by the definition of Machine Learning (ML), Deep Learning
(DL), and ANN in Subsection 2.3.6.

2.3.1. Physical models

Physical models are characterized by their model structure and parametrization, which
is based on physical laws, experimental work, and a historically grown fund of knowl-
edge. Their comprehensibility and interpretability are compelling. However, their
complexity can increase significantly, leading to laborious identification processes
and cost inefficiencies, both financial and computational. Reducing complexity can
lower costs but negatively impact model accuracy and informative value. As a result,
reliability suffers, requiring dexterity to find a reasonable complexity of a physical
model that can tolerate systematic errors up to a point. [GT21; Nel20; PLP20; Are+18;
Har+16; Ada14]

2.3.2. Data-driven models

The data-driven model structure is an open structure, which can vary through the
setting of hyperparameters or the chosen learning strategy. The training process, which
describes the learning phases of the algorithm, follows a defined objective. Formulated
as a mathematical function, a minimization problem is typically described in the case of
supervised learning. In addition to a classification learner used to predict discrete class
labels, the regression learner predicts continuous quantities such as the time series
data used in this thesis.

Thus, the data-driven model depends on the database provided and behaves according
to the objective function. A difficulty occurs when the chosen algorithm perfectly
reproduces the individual behavior of the training data, which is called overfitting.
Overfitting is avoided by setting termination criteria and data preprocessing.

Data-driven approaches are beneficial in their applicability, adaptability, implementa-
tion effort, and accuracy. Still, they can suffer from physical consistency, interpretability,
comprehensibility, and explainability because the inner mathematics does not provide
access to understanding the model behavior. [PLP20; PK18; Are+18; KAC17; Har+16;
Roj96]
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2.3.3. Hybrid models

In this thesis, a hybrid model is considered a combination of a physical and data-driven
model. Using a data-driven model within a hybrid model increases its scope and
accuracy. On the other hand, the reliability and interpretability may be increased
when incorporating a physical model. However, both data and domain knowledge are
required. [GLL19; LK14]

According to Guo et al. and Liao and Kottig, a hybrid model can be connected differently.
The connection of the model parts can be in series, in parallel, or in replacing the
physical with a data-driven model. [GLL19; LK14]

Nelles considers an additional type of connection: the parameter scheduling model
[Nel20]. He introduces the terms of the prior submodel and refinement submodel for
serial hybrid models, the supplementary model and prior model for parallel hybrid
models, and the parameter scheduling model and prior model for parameter scheduling
models, which are structured in Figure 2.8.

Refinement

submodel

u ŷPrior

submodel

x

(a) Serial model

Supplementary

model

Prior model

u

ŷprior

ŷsupplement

ŷ

(b) Parallel model

Parameter

scheduling

model

Prior model

u
p

ŷ

(c) Parameter scheduling model

Figure 2.8.: Structures of hybrid models: serial model (a), parallel model
(b), and parameter scheduling model (c), based on [Nel20]

Physical and data-driven models can be arbitrarily involved in the proposed hybrid
model structures, where transition values or states (x) are used to connect both models
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in the case of a serial structure in Figure 2.8a.

In the case of a parallel model structure, the estimated outputs (ŷ) of both models are
merged, while mergers can be realized additive, multiplicative, or by filtering methods,
see Figure 2.8b [Nel20; Sie+19].

In the case of a parameter scheduling model, the inner parameters (p) of the prior
model are provided by the parameter scheduling model sharing the input (u) in
Figure 2.8c [Nel20]. As discussed in Chapter 3, the parameter scheduling structure
has a significant advantage compared to serial and parallel model structures. This is
due to the parameters, which are not considered constant but can be variable. Thus,
both the data-driven and the physical model can adapt through learning, an important
property in AI and DTs discussed below.

2.3.4. Digital models, shadows, and twins

Briefly, definitions of the DM, DS, and DT are provided to guide the derivation of the
requirements for the hybrid model and its development in Chapter 3. This is also seen
as necessary because of misconceptions and misidentified DTs in the literature, which
should be avoided when using the terminology [Ful+20].

Physical Object

Digital Object

Physical Object

Digital Object

Physical Object

Digital Object

Manual dataflow Automatic dataflow

Digital Model Digital Shadow Digital Twin

Figure 2.9.: The digitalmodel, shadow, and twin, based on [Ful+20]. Note: In
the illustration above, the digital object feeds back the physical
object, which differs from the illustration in the literature and
reflects the understanding provided in this thesis.
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A DM is “described as a digital version of a pre-existing or planned physical object“
[Ful+20]. The DM is characterized by a manual data flow linking the physical and
digital objects and does not consider any changes to the physical or digital objects once
the learning process is terminated, see Figure 2.9. [Ful+20]

If an automatic dataflow is implemented that feeds the digital object, followed by
continuous updates, the criterion of a DS is met. Changes in the physical object
influence the digital object. [Ful+20]

A DT requires an automatic dataflow between the digital and physical object and
both models to be fully integrated in both directions. Changes in the physical object
automatically lead to changes in the digital object and vice versa. As a consequence,
learning algorithms that enable such automation are considered in this thesis. [Ful+20]

2.3.5. Natural and artificial intelligence

The development of the hybrid model in Chapter 3 aims to incorporate intelligence into
an aircraft system to enable intelligent maintenance. Therefore, the term intelligence
is defined and distinguished between NI and AI, which is helpful in the context of
hybrid models. This improves understanding of the proposed hybrid model and allows
the results to be discussed and placed into the bigger picture of intelligent systems.

In the literature, different definitions are given, which deal with different points of view
on the topic. This thesis considers the definitions of intelligence and its subcategories
by Wang, Weng, Joshi, and Chollet. [Jos20; Cho17; Wen12; Wan09]

The following definitions are given by Wang:

Intelligence

“Intelligence is a driving force or an ability to acquire and use knowledge
and skills, or to inference in problem solving.“ [Wan09]

Natural Intelligence (NI)

“Natural intelligence (NI) [. . . ] implements intelligent mechanisms and
behaviors by naturally grown biological and physiological organisms such
as human brains [. . . ].“ [Wan09]
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Artificial Intelligence (AI)

“Artificial intelligence (AI) [. . . ] implements intelligent mechanisms and
behaviors by cognitively-inspired artificial models and man-made systems
such as intelligent systems, knowledge systems, decision-making systems,
and distributed agent systems.“ [Wan09]

The consideration of NI and AI within this thesis is reduced to their subdiscipline of
intelligent maintenance and the topic of technical systems. Therefore it is important to
understand NI’s contribution to hybrid model building, which lies in the incorporation
of physical laws and physically experienced expertise.

In contrast, the expectation of AI is contextualized by Joshi: “AI does not mean building
an extraordinarily intelligent machine that can solve any problem in no time, but rather
it means to build a machine that is capable to human-like behavior.“ Instead, “whenever
we speak of AI, we mean machines that are capable of performing“ specific tasks such
as “solving computer-based complex problems possibly involving large data in very
short time [. . . ]“. [Jos20]

Consequently, AI does not necessarily imply a human-like robot but describes a machine
of far lower intelligence that is sufficient to take over a certain task to relieve the human.
[Cho17]

2.3.6. Machine learning, deep learning, and the Artificial Neural
Network

The intelligent maintenance of aircraft systems can involve AI, which requires the
ability to learn from data. This ability relies on ML theory, an essential AI subcategory,
see Figure 2.10. [Jos20]

Artificial 
Intelligence

Machine 
Learning

Deep 
Learning

Figure 2.10.: Staging of Artificial Intelligence, Machine Learning, and Deep
Learning, based on [Cho17]
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ML algorithms are classified according to the characteristics of the input features.
Supervised, unsupervised, and reinforcement learning describe the learning paradigm
according to labeled, unlabeled, and feedback data. Alternatively, a distinction is made
between static and dynamic learning. It builds on the temporal behavior of the system,
which is constant or time-variant. From these classes, various ML algorithms have been
developed to derive useful representations of data. [Cho17]

A specific subfield of ML is represented by DL, which “is a mathematical framework for
learning representations from data“ [Cho17] using ANNs typically.

The ANN is a purely data-driven approach, ideally suited to collaborate with physical
models, see Section 2.4. Therefore, the ANN is further described in the following.

In the DL domain, various trends and applications of ANNs and further developments
are found in the literature [GRD21]. Most common are the Feed-forward Neural
Network (FNN), the Recurrent Neural Network (RNN), the Convolutional Neural
Network (CNN), and the Long Short-Term Memory neural network (LSTM). The
Generative Adversarial Network (GAN) can be classified as a hybrid model combining
two data-driven models. [Jos20; Ras16; Roj96]

The hybrid model developed in Chapter 3 proposes using an ANN in general, such that
one of the above variants can be implemented, depending on the use case. To keep
the complexity concise and to investigate the interaction between the physical model
and the ANN in principle, only the FNN is used in this thesis. The following contents
and further readings are based on the literature provided by Joshi, Rashid, and Rojas.
[Jos20; Ras16; Roj96]

The FNN consists of different layers with a variable number of nodes, whose linkage is
inspired by the structure of human neurons, see Figure 2.11.

Input features u are fed into the input layer of the FNN. Processed in one or more
hidden layers, the input data finally maps the output y represented by the output layer:

y = fy(MOH × fh(MHI × u)). (2.16)

In Eq. 2.16, an FNN with one hidden layer is described, including the matricesMHI

andMOH . These carry the FNN weights describing the connection between the layers.
An activation function is applied within a node, which is fh for the hidden layer nodes
and fy for the output layer nodes. Activation functions are defined according to the
use case and data provided. Under a variety of possible activation functions, the linear
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Figure 2.11.: Structure of the FNN with an input, one hidden, and an output
layer, the input neurons ui, hidden neurons hj , and output
neurons yn connected through the weightswHIji andwOHnj with
the activation functions fh and fy.

and rectangular relu66 activation function scaled on y ∈ [0, 1] are given in Eq. 2.17
and Eq. 2.18.

flin : y = u, (2.17)

frelu : y = min(max(0, u), 1). (2.18)

The most common procedure to determine the FNN weights is the backpropagation
algorithm, which relies on the LS method and the redistribution of the resulting error
on the FNN weights. Alternatively, recursive filter methods, such as the EKF or UKF,
have successfully been used for weight state estimation of an ANN in the literature.
[Lim17; VV15; Oli12; WW12; Hay04]

This is important information to be used in developing the approach to hybrid model
building in Chapter 3. It is further shown that recursive filters have not been used
before in the context of hybrid models using ANNs, see Section 2.4.
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2.4. Hybrid models using ANNs

The state of the art in hybrid modeling focuses on the ANN, which is a popular choice
for the data-driven part [Far+22; Cha+22; GT21; Cha+19; Jia+19; LK14; And+90].
To address the lack of physical substance, a central question prevails:

“How to integrate different layers of physics into neural networks?“
[Far+22]

Therefore, different approaches to hybrid model building have been developed and
implemented. The most evident procedure is the physical-based reconfiguration of
the input layer, called Feature Engineering (FE). Further, three distinct frameworks
have emerged to enhance neural networks with physics, which have been reviewed by
Faroughi et al. in [Far+22] and are briefly introduced in the following:

• the Physical-based Feature Engineering (FE) [BKK23; Bau19; BK19; Hea16;
BCV13; CNL11], Subsection 2.4.1.

• the Physical Guided Neural Network (PGNN) [Mur+20; Jia+19; Daw+17;
And+90], Subsection 2.4.2.

• the Physical Informed Neural Network (PINN) [Law+22; VS21; Wol+21; DV20;
DV19; NV19; RPK17], Subsection 2.4.3.

• the Physical Encoded Neural Network (PENN) [RSL21; Inn+19], Subsection 2.4.4.

2.4.1. Physical-based Feature Engineering

“The performance of machine learning methods is heavily dependent on
the choice of data representation (or features) on which they are applied.“
[BCV13]

Therefore, input data is often transformed and preprocessed into subsets. FE can be
applied for unsupervised and supervised learning and can significantly influence the
model´s performance [CNL11]. In particular, the ANN profits from FE [Hea16].

Using FE enables system knowledge by physical laws and dependencies to be incorpo-
rated. [BKK23; Bau19; BK19; BCV13]. With a physically meaningful interpretation
and ranking of the features, FE is understood as a first step of hybrid modeling.
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In addition, FE provides standardization of data to increase convergence speed, which
can be realized by referring the data to their standard deviation, mean, or maximum
values [Bau19].

2.4.2. Physical Guided Neural Network

The core component of the PGNN consists of an ANN of any type, characterized by
two major steps. First, prior estimates of a physical model are added to the input layer
of the PGNN. Second, the objective function is extended by a physics-based penalty
term, êphy. The design of the PGNN is shown in Figure 2.12. [Far+22]

Input

ŷ

Physical output

ANN

êphyênn

+Feedback

Physical model

+

u

ŷphy

ê

Figure 2.12.: Design of the PGNN using physical-based features ŷphy in the
input layer of an ANN and adding a physical-based penalty
term êphy to the output error of the ANN ênn, based on
[Daw+17]

Following Faroughi et al., the first PGNN has been implemented by Andersen et al. in
1990 investigating solid mechanics through modeling an arc welding process using an
ANN [And+90]. Since then, the PGNN has been elaborated for different applications

32



in scientific computing, for which an overview can be found in [Far+22]. A simple
example exists for lake temperature modeling with an FNN in [Daw+17] or an RNN
in [Jia+19]. In this case, a penalty term is added if water density decreases with
increased water depth. In aviation, a more challenging application consists of the
prediction of drag force by Muralidhar et al. [Mur+20].

2.4.3. Physical Informed Neural Network

PINNs concentrate on physical phenomena, which differential equations can describe.
Again, the type of the ANN can be chosen arbitrarily, and outputs ŷnn are then differ-
entiated from the inputs u. The differentiations form the basis for further terms of the
total loss function, resulting in the error ê. Thus, “the underlying physics is incorpo-
rated outside the neural network architecture to constrain the model while training,
thereby ensuring outputs follow known physical laws“ [Far+22], see Figure 2.13.

Input
ŷnn

fANN

êphyênn

+Feedback

physics informed
δŷnn
δu

+

u

ê

Figure 2.13.: Design of the PINN using a physics-informed approach with a
selection of derivatives of the ANN output ŷnn according to
the input u to add a physical-based loss function to the output
error ênn, based on [Wol+21]

With the first publication of a PINN in 2017 by Raissi et al. about physics-informed
deep learning with nonlinear partial differential equations, the PINN framework found
a young research trend [RPK17]. The first applications are described for a corrosion-
fatigue prognosis for an aircraft by Dourado and Viana [DV20; DV19] and a fleet
prognosis by Nascimento and Viana [NV19]. Since then, publications in PINN research
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have been increasing significantly [Law+22]. An overview of the historical development
and further publications are given in [VS21] and [Law+22].

2.4.4. Physical Encoded Neural Network

PENN is the latest development in incorporating physics into ANNs. The nomen-
clature is “forcibly encoding the known physics knowledge“ [Far+22]. There are
different algorithms and their applications given in the literature. Three of them,
the Physics-encoded Recurrent Convolutional Neural Network (PeRCNN), the Fourier
Neural Operator (FNO), and the Neural Ordinary Differential Equations (NeuralODE),
are discussed by Faroughi et al. in [Far+22]. All of them “strive to hard-encode physics
(i.e., prior knowledge) into the core architecture of the neural networks“ [Far+22].

While the PeRCNN introduces the π-block, which allows for an elementwise product
and recursion inside the structure, physical knowledge can be integrated through
a convolutional layer [RSL21]. Innes et al. describe their algorithmic solution as
NeuralODE. They propose a serial hybrid model structure where the output of an ANN
is used as input to a physical model, and the output error relies on the physical output
exclusively [Inn+19]. Abstracted from the illustration in the literature, the concept is
shown in Figure 2.14.

Input
ŷnn

ANN

ê

Feedback

Physical model
u ŷ

Output

Figure 2.14.: Design of the PENN using the output of the ANN ŷnn as in-
put to the physical model. The output of the physical model
equals the final estimation ŷ and is considered for the feed-
back exclusively, based on[Inn+19]
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Innes et al. apply the PENN with an FNN to estimate the necessary settings of a
trebuchet (the mass of the counterweight and the angle of release) depending on
the wind velocity and the target location. The predicted distance is compared to the
commanded target location. The FNN weights are adjusted using backpropagation,
which runs through both the physical model and the ANN. [Inn+19]

Due to the incorporation of the NeuralODE, the convergence speed is increased, and
extrapolation capabilities are observed [Far+22]. Therefore, the PENN addresses the
generalization, interpretability, and computational efficiency of the PGNN and PINN
[Far+22; Inn+19].

However, two major flaws remain:

1. The parameters of the encoded physical model are assumed to be constant, which
assumes the described system to be physically not changing in its life cycle. This
is not the case when degradation and recovery of the system occur.

2. The considered backpropagation algorithm for weight adjustment concerns batch-
wise optimization. Therefore, adaptability is limited.

2.5. Research gap

As shown above, hybrid models are a couple of physical and data-driven models,
preferably using ANNs. The prevailing approaches to hybrid model building deal
exclusively with the increasing incorporation of physics into ANNs. In conclusion, a
data-driven model is currently preferred to be used as a basis and extended by physics.

However, aircraft systems demand a high safety standard and trust in new technologies
before taking effect on aircraft systems and operations. Therefore, the reliability of
an aircraft system and the interpretability and comprehensibility of a DM, DS, or DT
have a significant value to the operator. It is, therefore, not surprising that monitoring
systems still build on physical-based knowledge in the aviation industry, as discussed
in Section 2.1.

Instead, it is surprising that our physical knowledge about aircraft systems and their
components is considered an add-on rather than a basis to start with in hybrid model
building. Second, the physical-based aircraft model being part of the hybrid model is
considered fixed when using the approaches to hybrid model building discussed above.
This is not the case in the appearance of system degradation and recovery.
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Consequently, the model’s parameters must be considered time-variant and part of the
estimation problem rather than assumed to be constants. In the context of AI, such an
estimation must be highly adaptive and affect both model parts simultaneously.

In this field, the research gap is identified. Research is missing in hybrid model building
concerning:

1. the physical knowledge and model as a basis,

2. the physical model’s parameters as time-variant and subject to the data-driven
part,

3. and the learning method to be highly adaptive and effective for both model parts
simultaneously.

Further, the integrity of data-driven models is questioned, as well as the utilization of
AI to be used to enhance physical knowledge. The development and testing of such a
hybrid model and its discussion in the context of AI and control engineering is new to
the state of the art.

2.6. Summary

Aircraft systems experience degradation and recovery through maintenance measures
in their life cycle. Regarding system safety and operational costs, different types of
maintenance exist. When a recovery is triggered, it is crucial to operational efficiency
and, thus, maintenance costs. Consequently, intelligent maintenance is desirable,
searching for the item’s minimum state to trigger recovery. Such a task requires
intelligence to be incorporated into the system.

Intelligence requires a system model to adapt through learning. The data-driven ap-
proach to model building prevails in the context of AI but suffers from a lack of physical
substance and trust. On the other hand, conservative aircraft system identification
methods have proven reliable and provide insight into a physical model. The idea of
merging both sides leads to a hybrid model.

Hybrid model building has emerged as a valuable research branch over the past decade.
Three models can be combined, resulting in five possible hybrid model classes. One of
them, coupling physical and data-driven models, has emerged as the most promising
hybrid model class. The implementation is usually serial or parallel, with both parts
of the hybrid model connected in a cascaded structure. This implies physical system
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knowledge as input to the data-driven part or the assignment of a physically meaningful
model output that is merged with the output of a data-driven model.

Since ANNs are usually considered the data-driven part, three major frameworks are
discussed: the physical guided (PGNN), informed (PINN), and encoded (PENN) ANN.
Implementations in the literature have shown that model accuracy, computational
efficiency, and physical consistency can be increased, leading to greater applicabil-
ity and acceptance. The developments of the past decade show a trend. Physical
knowledge is needed to realize physically consistent, comprehensive, and interpretable
learning strategies. Thus, physical knowledge is increasingly important for hybrid
model building.

However, the current hybrid model structures struggle with interpretability and initial-
ization problems, as is the case for the structure of the PGNN and PINN. Their model
structures do not allow insight into the working principles as the open structure of the
ANN dominates the structural design. Physical knowledge is incorporated to guide or
inform the ANN by extending the input layer of the ANN with physical-based features
or the objective function with additional penalty terms. The PENN addresses some of
the shortcomings of the PGNN and PINN. It reverses the serial structure of the PGNN
and extends the idea of the PINN by encoding a physical model fed by an ANN. Thus,
the ANN outputs are physically interpretable and promise a generalizable behavior.

Consequently, current hybrid models rely on data-driven models to be extended by
physics. The parameters of the physical models used here are assumed to be constant
and are not the target of adaption. But when the degradation and recovery of an
aircraft system is considered, the system model parameters are assumed time-variant
rather than constant.

Therefore, research is needed to develop a hybrid model, which extends the physical
model using a data-driven model and enables the physical parameters to be part of
the learning process. Learning is required to be adaptive and affect both model parts
simultaneously. The learning strategies currently used for hybrid model building do
not fulfill this.
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3. Development of a new approach to
hybrid model building

The previous chapter has shown that hybrid models have promising characteristics
to represent complex systems physically consistent, and accurate. However, it has
also been shown that current approaches to hybrid model building do not favor physi-
cal knowledge as a basis to be extended. Nor do they implement methods enabling
step-wise and recursive learning. These properties are key to mapping reliable, compre-
hensive and interpretable aircraft systems that can adapt through learning and enable
intelligent maintenance.

Therefore, a new approach to hybrid model building is developed and organized in
the following Section.

3.1. Development methodology

The procedure of development orientates on the ISO/IEC/IEEE norm 15288:2015 for
“Systems and software engineering – System life cycle processes“ and on the VDI/VDE
norm 2206:2021-11 for the “Development of mechatronic and cyber-physical systems“
[VDI21; ISO15]. The main components are the requirements, the model design con-
sisting of the model structure and the identification method, and the implementation,
see Figure 3.1. The implementation is separated into preliminary studies to gain first
feedback on the model design and the evaluation following in Chapter 4 and Chapter 5.

The development of the hybrid model starts with the introduction of the approach
and the definition of requirements in Section 3.2. The requirements describe “the
overall objectives [. . . ], its target environment, [. . . ] constraints, assumptions and
non-functional requirements“ according to ISO/IEC/IEEE 29148:2018 [ISO18].

The model structure is the topic of Section 3.3. First, the conceptual design is presented
as the principle solution according to Pahl et al. [Pah+07]. Second, the hybrid model
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Figure 3.1.: Methodical procedure for the development of the approach to
hybrid model building, based on [ISO15].

structure is derived considering a physical model, an ANN, various inputs, and data
streams used for connectivity.

To finally identify the system using the derived hybrid model structure, an appropriate
estimation method is chosen in Section 3.4.

The implementation is first performed in preliminary studies discussed in Section 3.5
based on the publications [EK22] and [EHH22]. They provide relevant feedback on
the model design, which is to be considered in the evaluation. In the evaluation, the
complexity of the considered system is increased. A Unmanned Aircraft System (UAS)
is used as a flight test platform providing dynamic flight test and flight simulation data.

The development is summarized in Section 3.6.

3.2. Introduction of the approach and definition of
requirements

Physical knowledge is understood as the foundation of building physically consistent
models. Thus, the physical model forms the core structure of the hybrid model, which
is to be extended by data science using data-driven models in this thesis. Figure 3.2
illustrates the two approaches leading to a hybrid model based on a data-driven or a
physical model.

The common approach assumes a data-driven basis. It intends to incorporate physics
into the input features and into the output of the model to affect the learning algorithm,
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Figure 3.2.: The common (a) and proposed approach (b) to hybrid model
building based on a data-driven or physical model.

see Chapter 2. In contrast, the proposed approach utilizes the physical model as a
basis into which data-driven structures are to be integrated. This is innovative in
the literature, where methods and procedures are currently developed to incorporate
physics into data-driven designs, as shown in Section 2.4.

The development requirements are defined according to [ISO18]. They provide the
basic framework for the development process by specifying primary goals. First,
Subsection 3.2.1 describes needs related to the hybrid model design. Second, conditions
are placed in the context of aircraft systems and extended as needed in Subsection 3.2.2.
Finally, the needs are transformed into requirements in Subsection 3.2.3. For clarity,
the delimitation of the development is discussed in Subsection 3.2.4.

3.2.1. Needs related to the hybrid model design

Four significant problems with the hybrid model yield the needs for the development
of the proposed hybrid model that must be capable of:

• initialization,

• generalization,

• interpretation,

• and adaption.
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In detail, the initialization problem of hybrid models, especially of ANNs incorporating
physics, is still unsolved. Therefore, an alternative concept for a hybrid model must
consider the endowment of the learning algorithm with suitable initial conditions. In
this case, the physical model is understood to be helpful when used as the initial model
structure.

Even though recent research advances through the PENN contrast the PINN and PGNN
in addressing the issues of generalization and interpretability, potentials remain unused.
Generalization shall be maintained both in the definition of the model structure and in
the estimation method, whose design must allow extrapolation and prevent overfitting.
Generalization refers to a system and its operational history individually. Therefore,
the system states of the individual systems are to be extrapolated and thus predictable.

The interpretation of models enables comprehensive results and access to the insides
of the system behavior. It allows a substantial gain in knowledge and confidence in
the hybrid model. Moreover, the ability to interpret the inner states of the system is
assumed to be crucial to performance indicators that can be used for RUL prognosis
and fault detection and isolation. Therefore, it is surprising that interpretability has
been treated even poorly in current hybrid models. Consequently, the new hybrid
model must be interpretable and provide access to meaningful inner system states.

The last instance to be considered is the adaptability of the hybrid model, more
specifically, the learning algorithm. The ability to adapt through learning is essential for
employing an intelligent system (cf. Subsection 2.1.3) and for applying a DT. According
to its definition in Subsection 2.3.4, information must be processed continuously. Hence,
the learning algorithm of the hybrid model must have adaptive properties.

3.2.2. Needs related to the aircraft system

The four stated needs gain additional weight in the context of aircraft systems. The
well-known physical dependencies of the aircraft provide a solid basis to develop
and implement a physical model. The model includes flight dynamics, aerodynamics,
and aircraft propulsion. Such a model can be considered a core model structure
for initialization. Furthermore, the initial conditions of the hybrid model can be set
according to the physical model and physical-based assumptions about the initial states.
Thus, knowledge of aircraft physics offers an adequate basis to be used for initialization.

The need for a generalizable model is manifested through various of operating condi-
tions, mission requirements, and environmental disturbances that affect the aircraft.
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It is unlikely to cover all of the different operational needs within a database nor to
have access1 to it. The validity of data-driven models and most hybrid models, such as
the PGNN and the PINN, quickly come to limitations due to the database. Therefore,
generalization is fundamental when extrapolation and state prediction is required.

The interpretability of an aircraft system is considered one of the most desirable factors.
It enables comprehensive results and access to characteristic parameters. These param-
eters describe aerodynamic coefficients, thrust, efficiency, and other system-specific
states, allowing the behavior of the aircraft system to be analyzed. In addition, modifi-
cations can be assessed, and benchmarks can be used from the literature. Finally, the
aircraft system model can be evaluated in terms of physical consistency and robustness,
which plays a vital role in confidence and certification needs.

In the last step, an essential characteristic of the aircraft must be considered: the
aircraft system changes during operation. The degradation of the aerodynamic sur-
faces and the technical subsystems constantly infects the health of the aircraft system
over time. Maintenance measures are carried out to catch or at least weaken the
degradation mode, see Section 2.1. Retrofits are implied to enhance the aged aircraft
regarding safety, operational efficiency, and passenger comfort, see Subsection 2.1.2.
The maintenance measures and retrofits both modify the aircraft’s technical condition,
and modifications have a recurring character in the case of maintenance. Therefore,
adapting to degradation effects and maintenance measures must be enabled, which
suggests considering time-variant parameters and additional maintenance data.

3.2.3. Transformation of needs into requirements

The research conducted in this thesis is at an early stage of method development. Since
such a basic development is placed in the first two Technology Readiness Levels (TRLs)
according to [Nat23], fundamentals are explored.

Therefore, the following requirements are formulated as functional requirements ex-
clusively. They tackle the above-mentioned needs, addressed substantially in the body
of this thesis. However, the requirements provide a recent framework to study the fea-
sibility, advantages, and disadvantages of the new approach to hybrid model building,
1In the aviation industry, owners, operators, maintenance contractors, manufacturers, and researchers
deal with aircraft systems. However, sharing data is a barrier. It requires contractual effort or is
prohibited. This leads to a burden on research, since access is limited to both the characteristics of
the considered system and its operational data.
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as introduced above. Performance and system requirements are not specified. They
can potentially be included in future developments once feasibility is demonstrated.

Table 3.1.: Definition, classification, and description of requirements (A)
and (B) imposed on the new hybrid model

Group Sign Class Short Formulation

(A
)
In
iti
al
iz
at
io
n

(A1) (MR) Physical
model

Requirement: The hybrid model shall be
initialized using a physical model.
Indicator: The output of the hybrid model
initially equals the output of the physical
model (ŷhybini = ŷphyini).

(A2) (MR) Physical
conditions

Requirement: The hybrid model shall be
initialized based on physical conditions.
Indicator: The initial system states are
based on physical knowledge and expertise
(x̂hybini = x̂phyini).

(B
)
G
en
er
al
iz
at
io
n

(B1) (MR) Extra-
polation

Requirement: The hybrid model shall per-
form the estimation task based on existing
trends.
Indicator: The considered system states
are predictable (x̂∗ = f(x̂)).

(B2) (MR) Over-
fitting

Requirement: The implemented learning
algorithm shall prevent overfitting.
Indicator: Measurement noise is consid-
ered (Ryy ̸= 0).

(B3) (MR) Opera-
tional
data

Requirement: Only operational data shall
be used for learning.
Indicator: The database available for learn-
ing is limited. It involves standard oper-
ation of the system in service (u = uops,
m = mops).

Nevertheless, the requirements are formulated concerning [ISO18]. A description is
additionally given. Indicators are provided for later approval. The stated indicators
reflect the nomenclature of the recursive filter chosen for learning. In addition, the cal-
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culation time needed per time step k is defined tcalck , used in (D2). Further definitions
are given subsequently.

Furthermore, the requirements are classified into Mandatory Requirements (MRs) and
Desirable Requirements (DRs) to highlight their priority following [Kir20].

Table 3.2.: Definition, classification, and description of requirements (C)
and (D) imposed on the new hybrid model

Group Sign Class Short Formulation

(C
)
In
te
rp
re
ta
tio
n

(C1) (MR) Inner
states

Requirement: The hybrid model shall pro-
vide insight into its inner physical principles
of functionality.
Indicator: The (hidden) system states
are interpretable/ observable (cf. Subsec-
tion 2.2.3 and Section 4.5)

(C2) (DR) Bench-
marks

Requirement: The hybrid model estimates
shall correlate to specified benchmarks.
Indicator: Aerodynamic aircraft system
modification is to be assessed (∆CD0 ∈
[1, 6]%, ∆CL0 ∈ [3, 12]%)

(D
)
Ad
ap
tio
n

(D1) (MR) Adaption
through
learning

Requirement: The hybrid model shall con-
tinuously adapt through learning.
Indicator: Stepwise learning is enabled; cf.
Subsection 2.2.2 (Vk × êk ̸= 0)

(D2) (DR) Automated
information
flow

Requirement: The hybrid model shall pro-
cess information automatically in operation.
Indicator: In the context of DTs, the auto-
mated learning algorithm is real-time capa-
ble (tcalck < 1

fprediction
).

(D3) (MR) Addi-
tional
data

Requirement: The hybrid model shall con-
sider additional data beyond the scope of
the physical model.
Indicator: A database is provided to be
input to the data-driven part (unn ̸= 0)
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In conclusion, four major groups are defined in Table 3.1 and Table 3.2 with ten
subcategories to be addressed with the hybrid model.

3.2.4. Delimitations

The hybrid model is designed to describe any technical system individually. This means
that the derived hybrid model is not suitable for a general description of the type of a
system but for a specific2 system, including its operational history.

For the evaluation, the hybrid model considers a specific aircraft system. This results in
a description of an aircraft in operation, influenced by characteristic aging processes,
damage, maintenance measures, retrofits, and operating history. The operating history
includes maintenance, operational, and flight data, which are acquired according to
the functional usage and address degradation and recovery.

The scope of the acquired flight data is limited; therefore, maintenance measures
are not available in a long-term observation. To enrich the considered database,
abstract manipulations are performed. These represent degradation and recovery in
the following, affecting the time-variant parameters. Thus, modeling of the individual
aircraft is done using the available database. Operational flight data is addressed in
requirement (B3), and additional data, such as maintenance data, is addressed in
requirement (D3).

3.3. Design of the concept and model structure

According to the derived requirements, the importance of the physical model is dis-
cussed for initialization. It, therefore, forms the basis for the conceptual design.
Secondly, the need for interpretability and visualization of the inner states are essen-
tial features that shape the conceptual design through the need for a physical model
and parameters. However, as stated in Subsection 2.3.1, building a physical model
is elaborate and can lack accurate state estimation in the case of insufficient model
complexity. Therefore, the use of a data-driven model to compensate for such insuffi-
ciencies and further employ various databases is suggested. Consequently, the solution
space is limited to a hybrid model consisting of a physical and a data-driven model.
2Using the aircraft example, a technical aircraft system carries a specific tail-sign, while the type of a
aircraft system describes the aircraft family.
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The physical model is intended to incorporate a data-driven model as an extension, as
first introduced in Section 3.2.

3.3.1. Concept of integrating an ANN into a physical model

The ANN is a valuable coupling partner of the physical model in building hybrid models,
as introduced in Chapter 2. As a result, the ANN is chosen as the data-driven part
for the concept creation of the hybrid model in this thesis. The data-driven feature
enables adaptability concerning insufficiencies of the physical model and the inclusion
of additional data sources with little effort.

Even though the concept is intended to allow the implementation of any ANN, the
research within this thesis focuses on an FNN with an input, one hidden, and an output
layer to reduce model complexity. Despite its simplicity, the FNN can represent any
functional dependency (cf. Subsection 2.3.6) and is therefore considered suitable for
basic investigations. As a consequence, the following question is examined:

How do we integrate different layers of neural networks into physics?3

With the physical model as the core model structure and the requirement to maintain
access and visibility of the physical parameters, a parameter scheduling model (cf.
Subsection 2.3.3) is appropriate. The scheduling model structure considers varying
conditions of the prior model, represented by the physical model. It includes the inputs
u and the parameters p, which result from the parameter scheduling model represented
by the ANN. This is accompanied by the assumption that physical parameters are not
constant but change during operation due to degradation and technical modification
of the system. Consequently, physical parameters are considered time-variant. Unlike
previous parameter scheduling models, the ANN is chosen, which can involve additional
data in predicting the physical parameters, see Figure 3.3.

In addition, uncertainties of the physical model, such as unknown physical effects or
the intentional implementation of a less complex physical model, can potentially be
accounted for by the ANN. In this way, systematic deviations can be addressed in the
physical parameters to increase the value of the hybrid model.

Choosing a parameter scheduling model structure has advantages over serial and
parallel hybrid model concepts prevailing in the literature, see Chapter 2. It enables
3Instead of: “How to integrate different layers of physics into neural networks?“ (cf. Section 2.4)
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Figure 3.3.: Conceptual design of the hybrid model using an ANN to predict
the physical parameters of the physical model.

deep coupling of the physical model and the ANN using the physical parameters as an
interface.

The number of nodes in the different layers sets the size of the ANN. Choosing
the number of nodes is part of the initialization process. It depends on the system
complexity, the physical model used, and the selected physical parameters. Further,
the activation functions within the nodes have to be chosen according to the use case
in Chapter 5.

3.3.2. Development of the hybrid model structure

The hybrid model structure orientates on establishing a parameter scheduling model
as introduced in Subsection 2.3.3 and on the concept designed in the previous Section,
which results in the representation given in Figure 3.4.

The available data is divided into the input u, scheduling input unn, and measurement
datam. These are the starting points of the data flow inside the model structure. In the
considered case of an aircraft system, input data are commanded values of the flight
mission, the flight phase, and aircraft-specific information such as the aircraft weight,
which can change according to the flight mission. This data is necessarily input to the
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ê−
+

Figure 3.4.: The proposed hybrid model structure includes scheduling in-
puts unn, inputs u, and measurementsm to be processed by
an ANN and a physical model. The residual ê is based on the
estimated output ŷ andm. The ANN uses estimated states x̂
and the inputs unn and u to predict the physical parameters p.

physical model and can also be used as input to the ANN for the parameter scheduling
part.

Additional data that can be represented as time series data and affect the hybrid model
are defined as scheduling input unn for the parameter scheduling process of the ANN.
The data flow of unn is stated separately within the visualization of the model structure.
It can keep information about the history of flight cycles, the elapsed time since the
last maintenance measures, and the total operating time. The scheduling input data
can be considered maintenance data for the aircraft use case and is further described
in Subsection 4.4.4.

Measurement data contain the sensor measurements, which support state estimation
significantly but suffer characteristic sensor noise. Notice that the sensor measurements
do not serve as input to the physical model or the ANN but exclusively to calculate the
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residual. In this way, the influence of the sensor noise is prevented from affecting the
hidden states, including the parameter states [EHH22; BK94].

The physical model is located in the center of the hybrid model structure. Equipped
with the inputs u and the parameters p, the physical model estimates the output ŷ and
the hidden states x̂ using physical laws and dependencies. The states x̂ are fed back
into the ANN and physical model. They are provided for analysis, the estimated output
ŷ, and the residual ê.

Thus, the ANN receives the inputs u, the scheduling inputs unn, and the estimated
states x̂. With the system’s increasing complexity, the size of the vectors u, unn, and
x̂ can increase significantly. Therefore, a choice of input features is recommended to
reduce the size of the input layer to a physically reasonable subset. This improves
computational efficiency as described in Subsection 2.4.1 and further discussed in
Chapter 5. Including the feature selection, the ANN acts as a parameter scheduling
model and determines the physical parameters p used in the physical model.

The presented model structure prepares the implementation of a recursive filter method
for system identification and state estimation in the following Section. It attaches to
the representation of x̂, ŷ, and ê.

3.4. System identification and state estimation

The established structure of the proposed hybrid model defines the interaction of the
physical model, the ANN, and the considered data. In the next step, an adequate
identification procedure is required to allow a sufficient estimation of the system
states, physical parameters, and ANN weights. The residual vector ê shall provide the
information to adjust the weights of the ANN. Equipped with the updated weights, the
ANN is expected to predict the physical parameters more accurately.

Due to the requirement for adaption (D) and the claim for a deep coupling inside the
hybrid model, a recursive filter algorithm with a joint estimation approach is chosen, cf.
Subsection 2.2.2. The identification of ANN weight states (cf. Subsection 2.3.6), and
an aircraft system consisting of dynamical and parameter states (cf. Subsection 2.2.1)
was successfully performed in the literature using recursive filter methods.

A recursive filter method is introduced for the first time to build a hybrid model based
on a parameter scheduling structure. The mUKF extended by State Constraints (SC)
realizes the recursive filter algorithm. The filter variant is defined as the State Constraint
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modified Unscented Kalman Filter (SCmUKF), derived and discussed below. Joint
estimation allows deep and simultaneous coupling of the physical model and the ANN,
as mentioned in Subsection 3.4.2.

3.4.1. Choosing the UKF and filter modifications

The UKF, filter modifications, and SC are chosen according to the requirements defined
in Section 3.2. The choice is discussed below.

The recursive filter method
Recursions allow the model to adapt through learning (D1). An example is found in the
literature by Nascimento and Viana in [NV19], who consider cumulative degradation
of an aircraft fleet with using an RNN in the context of a PINN, cf. Subsection 2.4.3. In
the case of recursive filters, information can be obtained from new data samples. With
every new data sample, adaption and thus an online learning process can be enabled,
cf. Subsection 2.2.2.

Integrating new data samples plays a vital role in supplying an automatic data flow
(D2) and thus the definition of a DT, see Subsection 2.3.4. Note the online learning
process is enabled within the description of the system identification method but
roughly examined in terms of real-time capability.

The Unscented Kalman Filter (UKF)
Handling the measurement noise Ryy and the system noise Qxx of the Kalman Fil-
ter (KF) allows further integration of knowledge beyond the initialization of the hybrid
model using a physical model and its initial conditions (A1 and A2). These are distinc-
tive values to tune the filtering process, incorporate system characteristics, and avoid
overfitting (B2).

To encounter the expected high nonlinearities of the hybrid model, the UKF is chosen
[EK22]. High nonlinearities occur due to the extended state vector x⃗, which carries
states of the dynamical system model xd, the parameter states xp, and the ANN weight
states xnn. The extension of the state vector leads to the joint estimation mode of the
UKF discussed in Subsection 3.4.2. Unlike the EKF, the UKF has shown to be stable4
and thus applicable to the state estimation problem of the proposed hybrid model.
4Testing has shown that linearization of the coupled physical model and ANN can cause filter instability.
The linearization solved by numerical methods is mandatory for the use of the EKF in the context of
the proposed hybrid model.
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This agrees with the literature, which emphasizes the UKF in the case of increased
nonlinearities, cf. Subsection 2.2.2.

Moreover, the UKF is formulated as an RMV algorithm. Beyer and Klingauf have shown
that the RMV is superior to the LS algorithm because influences of the measurement
noise can be isolated from the system, and bias-free estimation is enabled [BK94].

In this thesis, the LS method, typically employed ML application training (see Subsec-
tion 2.3.6), is replaced by the RMV method. Any simplification of the KF formulation
leading back to an LS method, as proposed by Gäb for the identification of a UAS
[Gäb12], is refrained from. As shown in [EHH22], measurements used as inputs to
the ANN within the hybrid model insert measurement noise to the predicted physical
parameters and thus the system states. Therefore, the UKF formulation strictly follows
the RMV method.

Filter modifications
Based on [EK22; SGH19; Qi+18], a modification of the UKF is introduced to increase
robustness and stability and to decrease mathematical complexity and computational
effort.

The derived modification simplifies the consideration of the mean state value. This also
reduces the adjusting hyperparameters of the UKF by βUKF . The hyperparameters
αUKF and κUKF remain to adjust the spread of the sigma points. Sigma points are
now used for covariance calculation separately, while the mean value of the estimated
output and the estimated state are obtained directly from the measurement and state
equations. The separated analysis of the mean value and the covariance benefits the
challenging state estimation task of the hybrid model in increasing filter stability. The
mathematical formulation is given and discussed in [EK22].

State Constraints (SC)
The use of constraints limits the solution space of the states and can, therefore, increase
physical consistency and filter stability [EHH22]. For more complex systems such
as an aircraft engine circuit or a holistic aircraft system considering an increased
number of system states, SC can enrich and even enable filtering by binding the states
into a physically meaningful set (x ∈ R|xlb < x < xub). Setting the lower xlb and
upper boundary of states xub represents another opportunity to incorporate physical
knowledge and ensure applicability.

A broad variety of methods to implement SC exists, which is collected by Simon et
al. in [Sim10; Sim06b; SS05; SC02], discussed by Julier et al. for nonlinear equality
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constraints in [JL07] and by Teixeira et al. for interval-constrained nonlinear systems
in [Tei+08].

In the context of the proposed hybrid model, an implementation of SC based on the
method introduced by Kandepu et al. in [KIF08] is proceeded in [EHH22]. However,
with the increasing complexity of the considered system methods, implementing State
Constraints (SC) has to be chosen carefully.

In detail, shifting the sigma points back into its limits in case limits are violated, as
proposed by Kandepu et al. can lead to instability. A more elegant way to keep a state
in a defined set is using a “perfect measurement“ [Sim10]. In case of a violation, a
pseudo-measurement is set into service with x = xlb or x = xub and R = 0. Thus, SC
is implemented due to the adjustment of the filter gain. [Sim10]

Differing from the literature, the idea of the perfect measurement is extended for this
thesis. To facilitate the implementation, pseudo-measurements are implemented for
each parameter state xp. These are implemented by setting a mean value x̄ and a
standard deviation

√︁
R(x) spanning a range of values, equivalent to interval constraints,

see Eq. 3.1.

x ∈ [x̄−
√︁
R(x) x̄ +

√︁
R(x)] (3.1)

The implementation of SC using pseudo-measurements, as stated in Eq. 3.1, has a
significant advantage:

The SC is incorporated using the update step of the state covariance
matrix Pxx k|k, which ensures the positive definiteness of Pxx k|k to be
untouched and thus provides filter stability.

Parallels are seen in the truncated UKF, whose advantages are discussed in [Tei+08].

Note that a state value can leave the defined interval by the state prediction step of
the SCmUKF. Violation of the limits is corrected when a state update is accomplished
using the residuals. Consequently, the limitations must be carefully chosen to allow
stability close to and outside the constrained intervals.
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3.4.2. Joint estimation of the physical model and ANN

The SCmUKF has been derived for the state estimation of the hybrid model. As
introduced in the previous section, the extended state vector holds three different types
of states: xd, xp, and xnn. The estimation is considered with the SCmUKF regarding
nonlinearities and further considered against the joint and dual estimation background
in the following, cf. Subsection 2.2.2. The consideration is based on the work of Wan,
Merwe, and Nelson in [WN00; WMN00; Nel00], and the explicit formulation of the
joint UKF is given by Mahdianfar et al. [MPA13].

To correctly estimate the different types of states and enable the Kalman gain Vk
to take effect, the state covariance matrix P̂xx has to be evaluated sufficiently, cf.
Subsection 2.2.2. In the case of joint estimation, P̂xx establishes the connection
between the states and, thus, between the ANN and the physical model.

In the case of dual estimation, the secondary diagonals describing this connection are
not provided. Preliminary tests have shown that the design of the P̂xx matrix and the
aircraft system and measurement models are relevant to the desired use case. When
the creation of the aircraft models strictly follows the guidelines from the literature,
as is the case in this thesis, an absence of state updates occurs for some states using
dual estimation. Therefore, state estimation can be insufficient, which requires further
research in future work.

Consequently, the joint estimation approach is chosen, which enables the connection of
all states within P̂xx. The size of P̂xx is affected by the number of dynamical, parameter,
and ANN weight states. These are also considered in the state update and prediction.

Defining the parameters and ANN weights as additional states of the considered
system represents the first step of joint estimation. In detail, the time-discretized state
prediction equation at timestep k now involves the dynamical physical-based model fd
for the prediction of x̂d and the ANN with fnn for the prediction of x̂p, while the ANN
weight states x̂nn are held constant with x̂nnk+1|k = x̂nnk|k :

x̂k+1|k = fk(x̂k|k) =

⎡⎣ x̂dk+1|k

x̂pk+1|k

x̂nnk+1|k

⎤⎦ =

⎡⎣ fd(x̂dk|k , x̂pk+1|k , uk)
fnn(x̂dk|k , x̂nnk+1|k , uk, unnk)

x̂nnk|k

⎤⎦ . (3.2)

Eq. 3.2 is introduced in [EK22]. As stated in Subsection 3.4.1, the inputs of the
ANN consists of the states x̂dk|k , uk, and unnk , while the ANN structure is defined by
the weights x̂nnk|k . In addition, the parameter states x̂pk|k can be included by fnn.
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However, to enable the initialization in Chapter 5 and a reduction of the input layer
nodes and thus computational effort, x̂pk|k is suggested to be omitted as an input to the
ANN. The input vector can be further reduced and preprocessed to build significant
features to the ANN, see Subsection 2.4.1 and Chapter 5.

The joint estimation enables simultaneous adjustment of the states and, thus, of the
physical model and the ANN. It leads to an occupation of the secondary diagonals of
the state covariance P̂xx, which establishes the connection between all system states.
This connection finally couples the physical model with the ANN within the hybrid
model structure.

3.5. Preliminary studies

The usability and performance of the proposed hybrid model are first examined in two
preliminary studies. They provide significant insight into the initialization and model
performance. First, an oscillating system is considered using dynamic and simulated
data in Subsection 3.5.1. Second, the efficiency of an aircraft engine is considered with
aggregated flight data of a civil transportation A320 aircraft in Subsection 3.5.2.

3.5.1. A study on a basic mass-spring-damper model

A mass-spring-damper model is introduced in [EK22] as a primary simulation test
environment for applying recursive filters. It allows for comparing filter performance,
supervising the filter tuning, and investigating new developments in this field. The
simulation environment provides access to the true states of the system and allows
for modifications to the mass-spring-damper model. One modification is the artificial
degradation and overhaul of the spring, which is mathematically assumed by a sawtooth
trend of the spring eigenfrequency ω0.

The eigenfrequency is initially set to ω0ini = 2rad/s. It degrades over time and recovers
at certain events. The damper ratio is set toDr = 0.3. The input u represents a periodic
excitation. Additional data unn schedules for the overhaul events with the time since
the last recovery event to be considered by the ANN part. White noise is added to the
output yideal to obtain the noisy measurement m. A detailed description is found in
[EK22].
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In applying the hybrid model, the sawtooth trend of ω0 remains unknown to the
filter algorithm. Using m, u, and unn, the filter accurately estimates the time-variant
eigenfrequency ω0, see Figure 3.5a.

0

(a) (b)

Figure 3.5.: Selected representation of the hybrid model’s learning behavior
estimating the saw tooth trend of the fifth state, the parameter
state ω0 (a). The residual using the noisy simulation outputm
and the ideal output yideal is shown in (b). Note that the transi-
tion from training to validation data is marked a dashed line at
60 seconds in (a) and with the end of the residual covariance
estimation Pee in (b). [EK22]

In the training period of the first 60 seconds, the initial deviations of the states are
captured, and the hybrid model is identified. The dynamical and parameter states are
sufficiently estimated compared to the true states5. Furthermore, the identified model
can predict the states’ future course without any measurement updates in the period
t ∈ (60, 120]. [EK22]

The hybrid model has an RMSEtraining = 0.023 and an RMSEvalidation = 0.004 con-
cerning the output and measurements within the training and validation data. The
estimated output converges to the ideal output yideal after a few oscillations of the
system within the first 10 seconds, see Figure 3.5b. The values of the error metrics are
considered low, and the application of the hybrid model is successful. Therefore, the
subsequent study’s complexity is increased.

5A complete representation of states, the output, residuals and error metrics are given in [EK22]
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3.5.2. A study on the efficiency of an aircraft engine

In cooperation with LHT, the hybrid model is applied to ECM data of an A320 aircraft
of the Lufthansa fleet [EHH22]. Over 10 years into service, the conditions of the two
engines are investigated in terms of fuel efficiency. The investigation includes the use
of flight and maintenance data of the aircraft.

During the period considered, engine gas path cleaning events are performed. Engine
overhauls and changes do not occur and are therefore excluded. Other maintenance
events are neglected. Consequently, the maintenance events are reduced to engine gas
path cleaning events and converted to time-series data6, added to the aggregated data
pool of ECM data. ECM data is aggregated according to stable cruise conditions based
on the Airbus Aircraft Integrated Data System (AIDS) for A320 aircraft [Air02].

Since aggregated data are used, the design of the physical model describing the
thermodynamic engine circuit process is reduced to the creation of the measurement
equations exclusively. The definition of dynamical states and the corresponding state
prediction equations are omitted.

For the investigation of fuel efficiency, the fuel flow is used as the objective for the
training process. Additional input features extend the inputs to the ANN in three
steps, which results in three different hybrid models for comparison. Filter tuning
of the hybrid model is performed by using a genetic algorithm for hyperparameter
optimization.

The distinction of the models is given through:

• the constant parameter value for the physical model,

• the total operation time used as input feature for hybrid model 1,

• the added information about the maintenance events for hybrid model 2,

• and the added information about the operating point using aggregated sensor
measurements for hybrid model 3.

The fuel flow is mapped with increased accuracy, which is particularly visible for the vali-
dation and test data set compared to the results of the physical model, see Appendix C.1.
The training data set shows slight deviations initially due to the initialization by the
physical model and its assumed physical conditions.
6For the data conversion the time since the last event is used represented by the flown flight cycles and
the flight hours.
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Even though higher accuracy is observed in the objective mapping, the observability of
the inner states is not given. The inner states of the system consist of eight physical
meaningful parameters. While 7 of 8 parameters are shifted into the SC, the fan
pressure ratio remains interpretable, see Figure 3.6.

Figure 3.6.: Predicted fan pressure ratio of three hybrid models and the
physical model showing an excerpt of the processed test data.
[EHH22]

Within the represented section of flight cycles in Figure 3.6, a plausible degradation of
the fan pressure over time can be concluded from hybrid model 1 and hybrid model 3,
which includes the representation of the gas path cleaning events. Hybrid model 2, on
the other hand, does not consistently map the expected impact of gas path cleaning
events on the fan pressure ratio, which is related to an alternative initialization found
by the genetic algorithm. The alternative initialization includes a variation of the initial
covariance matrices. It leads to an estimation of the eight parameters being different
from the results provided by the hybrid models 1 and 3. In addition, incorporating
measurement data in hybrid model 3 inserts measurement noise into the ANN and
thus the state estimation.

Consequently, feedback on the model design is involved in the development process.
The conclusions are discussed below and further considered in applying the hybrid
model in Chapter 5.
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3.5.3. Feedback on the model design

The consideration of the oscillating mass-spring-damper system in Subsection 3.5.1
provides evidence that the concept is feasible for dynamic data of an oscillating system.
An aircraft system is such a system that is weakly and strongly damped and experiences
high- and low-frequency oscillations during operation. The characteristic movements of
the oscillating aircraft are attributable to eigenvalues [BAL11]. Therefore, an aircraft is
appropriate for further research, and the hybrid model can be applied to more complex
systems for investigation.

However, using the hybrid model for studying a more complex system in Subsec-
tion 3.5.2 has revealed issues. First, the use of aggregated event-based data limits the
use of the hybrid model. The description of the system is reduced by the loss of the
system dynamics and, consequently, by valuable physical dependencies.

Second, the observability of the physical parameters is a significant topic, cf. Subsec-
tion 2.2.3. The use of a physical model extended in the context of the hybrid model
privileges the use of physical knowledge, and tools and methods from the field of
control engineering. In this way a relationship between data-driven model building
and observability can be established, which is further explored in this thesis.

Third, the filter tuning process can implement adaptive methods, see [EK22], or
randomized optimization methods, see [EHH22]. Both reveal challenges. Adaptive
methods require laborious manual filter tuning and can cause filter instability, while
the effort can pay off in increased convergence speed. An optimization algorithm can
relieve the human, but it can lead to incomprehensible results.

Fourth, measurements used as input to the hybrid model incorporate measurement
noise into the state estimation of the system.

Therefore, the following feedback on the model design and its application is derived:

1. It is advantageous to consider dynamic systems with dynamic (non-aggregated)
data.

2. The observability of the hybrid model’s physical parameters must be considered.

3. The process of filter tuning suggests to be kept simple but physically based.

4. Measurement noise must be excluded from influencing the inner system states.
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3.6. Summary

The development of the hybrid model is organized following a methodology based on
ISO/IEC/IEEE 15288:2015 and VDI/VDE 2206:2021-11. The scope of this chapter
covers the introduction to the new approach, the definition of requirements, the design
of the hybrid model consisting of the hybrid model structure and the estimation method,
and the implementation using preliminary studies.

The new approach to building a hybrid model includes the available and affordable
physical-based knowledge, a data-driven open structure will extend. A derivation of
requirements follows, clarifying the research goals and delimiting the hybrid model’s
scope. The requirements are divided into four groups: initialization, generalization,
interpretation, and adaption, each containing specified requirements. The delimitation
concerns the usability of the hybrid model, which is designed to describe a particular
system, including its operational history.

A concept is designed to address the defined requirements and needs according to
the use case of an intelligent aircraft system. Systematic deviations such as system
degradation, technical modification, and uncertainties of the physical model are left
to be captured by a data-driven model, an ANN. The ANN is connected to a physical
model using interpretable physical parameters as an interface. Thus, the hybrid model
structure relies on a parameter scheduling model that uses input, scheduling input, and
measurement data. The output of the physical model is compared to the measurement
data, while the inner states of the system can be fed back to the physical model and
ANN. The system states provide insight for analysis.

A state estimation procedure is derived based on existing methods and extensions for
system identification. Along with the requirements and claims, arguments are settled
for choosing the joint state estimation with a modified Unscented Kalman Filter and
State Constraints: the joint SCmUKF.

The hybrid model is implemented and used in two preliminary studies. Based on this,
the use of dynamic system data, consideration of observability of states, conservative
filter tuning, and the exclusive use of measurement data for the creation of residuals
are recommended. These attributes are considered in evaluating the hybrid model
prepared in the next Chapter.
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4. Experimental design including flight
tests and simulation

An exemplary application to flight data of an aircraft system is provided to evaluate the
hybrid model. The application aims to provide accurate and physically consistent state
estimation and prediction to support future health state monitoring. Furthermore, the
applicability in the context of intelligent systems will be evaluated. The evaluation
procedures follow an experimental design developed in this Chapter. Part of the
experimental design is employing a flight test platform and creating a simulation
environment for data acquisition.

To guarantee the availability of dynamical, unprocessed data and to enable the incor-
poration of modifications, a flight test platform of the Institute of Flight Systems and
Automatic Control (FSR) is used and described in Section 4.1. Section 4.2 outlines the
experimental design, including the setup for flight tests and simulations.

The flight tests are accomplished for two reasons. First, developing a plausible sim-
ulation environment is addressed in supporting its growth using of flight test data.
Second, applying the hybrid model to real flight data can be examined. The flight test
environment of the Technical University of Darmstadt (TU Darmstadt), the executed
flight tests and the recorded data are described in Section 4.3.

Flight simulations are carried out to record flight simulation data containing the
system’s true states and ideal measurements. In addition, the modification of parameter
states is enabled, which is performed according to the planned experiments. The true
states and ideal measurements allow us to assess the state estimation accuracy using
error metrics. Thus, the hybridmodel can be evaluated in Chapter 5. Statemodifications
specify an abstracted behavior of system degradation and recovery, which is part of
Section 4.4.

Conclusions about observability follow in Section 4.5. Section 4.6 summarizes the
Chapter.
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4.1. The Unmanned Aircraft System (UAS) as a flight test
platform

UAS are becoming increasingly popular in research, which goes hand in hand with the
growing number of UAS use cases, especially in the commercial sector [Fed21; Chr+18;
SES17]. Examples of the use of UAS in system identification research are found in a
survey of Unmanned Aircraft Vehicles (UAV) system identification in [Hof+14]), the
estimation of the aerodynamics of a UAS in [SCJ13], real-time parameter estimation for
UAV in [Gäb12], for wind estimation [LAN11] and experimental validation [Che+09].
A common feature of all papers cited is using low-cost sensors and small UAS in
research.

The UAS offers the characteristics of an aircraft system. When using a UAS flight
test platform of the FSR, the aircraft’s characteristics are fully known, and flight
tests are executed independently at the flight test site of the TU Darmstadt. Flight
testing enables the acquisition of dynamic unprocessed data and the implementation of
technical modifications. Therefore, a UAS is evaluated as a flight test platform, assuming
transferability to civil aviation1. The chosen UAS is described in Subsection 4.1.1. In
addition, implemented aircraft modifications are described in Subsection 4.1.2.

4.1.1. Description of the UAS used

The hybrid UAS of the FSR is initially designed at the FSR by Prochazka and Krüger for
testing novel concepts for Active fault-tolerant Control for Redundant UAV (ACoRUs)
[Pro+21; PS20; PKR20; PRE19; PEK18]. Taking advantage of the payload to implement
additional sensors and modifications, the chosen UAS is suitable for flight testing and
data acquisition in this thesis. The configuration can be categorized as “Hover Plus
Cruise“ following [Sta+18], which is characterized by the implementation of static
lift motor positioning for the ability to Vertically Take-Off and Landing (VTOL), hover,
and Fixed Wing (FW) flight. With its combined skills, the hybrid UAS has become a

1Civil aircraft follow the same laws of flight dynamics but can offer more complex systems of aerody-
namics and propulsion. Sensors used in civil aviation provide more accurate measurements compared
to the low-cost sensors used in small UAS [BM12]. This makes the UAS a suitable candidate for
studying less complex flight systems while accounting for increased sensor noise.
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subject of research and industry2 [PRE19; Chr+18; Sta+18]. The configuration used
is shown in Figure 4.1.
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Figure 4.1.: Main components of the UAS used as a flight test platform

The UAS is based on the FW aircraft “Skyhunter“, commercially available from Son-
icModell. The configuration is also equipped with four lift motors, a high-mounted
H-tail, customized control surfaces, fiberglass reinforced wings, and implemented
sensor technology named the “Scihunter“ UAS. It is used for various research topics at
the FSR today3.

The Scihunter UAS counts two ailerons, left and right, two synchronous rudders, left
and right, and one elevator at the H-tail. Additional sensor equipment, such as the
air data boom with two wind vanes, measures the Angle Of Attack (AOA) and Side
Slip Angle (SSA). It is connected to the Flight Management Unit (FMU) directly or
to an additionally integrated Arduino microcontroller for data acquisition. Both are
positioned inside the fuselage next to the Power Management Board (PMB) and the
battery packs.

The following details about the system design, geometry, and sensors are needed to
derive and implement the experimental design and the physical model. Supplementary
information to fully describe the Scihunter UAS is given in Appendix A.
2Examples for industrial use of small hybrid UAS are: Wingcopter GmbH and Zipline International Inc.
in the civil sector.

3Research is contributed in the field of ACoRUs by Prochahzka, Fault Detection Isolation and Recovery
(FDIR) by Krüger, PHM by Dingeldein and Weigert, AI and hybrid modeling by Enkelmann
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Design of the UAS
The designed Take-Off Weight (TOW) of the Scihunter UAS is 4.39kg when fully
equipped and ready to fly. Payloads such as weight modules and aerodynamic modifi-
cations can be added up to a Maximum Take-Off Weight (MTOW) of 5kg. The allowed
maximum flight altitude of 120m can be reached, which is limited by the European
Union Aviation Safety Agency (EASA) [Eur22]. The True Airspeed (TAS) of the UAS
ranges from 0 to 20m/s. The different flight modes are divided into:

• Quadcopter (QC) flight with TAS ∈ [0, 8] in m/s,

• Transition (TR) flight with TAS ∈ [0, 11] in m/s,

• and FW flight with TAS ∈ [11, 20] in m/s.

Hovering is a particular case of QC flight with TAS = 0.

A Pixhawk 4 flight controller is used as the FMU for control, mission management, and
data acquisition, allowing for autonomous flight missions. The battery pack is located
in the front part of the fuselage. It consists of four 14.8V lithium-polymer cells with
a total capacity of 9Ah. Mainly, depending on the flight modes’ composition and the
battery’s defined capacity to be retained in the case of a Fail-Safe (FaS), the total flight
time varies between 5 and 20 minutes.

The Scihunter is equipped with Brushless Direct Current (BLDC) motors. The pusher
performs a nominal speed of 700KV and 850KV by the lift motor. With a power of
750W , a continuous current of 42A, and an operation voltage of 10− 20V at a weight
of 172g, the pusher motor is designed to be larger than the lift motor. The lift motor
is characterized by a power of 480W , a continuous current of 35A, and an operation
voltage of 7V to 15V at a weight of 130g. This results in a maximum rotation speed
of ωPmax = 10360rpm of the pusher and ωLimax = 12580rpm of the lift motor. An
overview of the motor characteristics is given in Appendix A.2.

Geometry of the UAS
The wingspan of the Scihunter UAS is b = 1.8m with a wing area of S = 0.4271m2 and
a Mean Aerodynamic Chord (MAC) of MAC = 0.2334m.

The lift motors are equidistant from the Center of Gravity (CG). The distance between
the motor position and the x-axis and y-axis in the body-fixed Coordinate System (CS)
is described by rxy = 0.32m. The origin of the body-fixed CS is nested in the CG of
the UAS. According to the UAS design, the CG is located in the middle of the fuselage,
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measured 0.44m from the aircraft nose. The deviation in the z-direction is neglected
as the impact on the balance of forces and moments is assumed to be small.

The geometry of the rotors is given by a diameter of dP = 0.3238m and dLi = 0.3048m,
as well as a rotor surface of AP = 0.0823m2 and ALi = 0.073m2 for the pusher and
lift rotors, respectively.

The moments of inertia are Jxx = 0.2508, Jyy = 0.2902, Jzz = 0.5055, and Jxz = 0.0308
in kg/m2. Jyz and Jxy are set to zero.

For further consideration, technical drawings are given in Appendix A.1.

Sensors of the UAS
The sensors are in the low-cost range, achieving proper measurements with sufficient
data quality. A short overview of the sensors and the measurements m used in this
thesis is given below and listed in Table 4.2.

The Inertial Measurement Unit (IMU) is part of the FMU. It measures the acceleration
and rotational rates in three axes. The IMU is located close to the CG4.

The pusher and lift motors’ Electronic Speed Controllers (ESC) convert Direct Current
(DC) to the three-phase Alternate Current (AC) for the BLDC motors according to the
Pulse Width Modulated (PWM) signal received. Acquired data are the rotational speed,
voltage, and current.

The airspeed sensor is realized by a pitot-static tube integrated into the Air Data
Boom (ADB). Both the dynamic pressure and the resulting IAS are available on the FMU.
Neglecting an installation error and assuming a constant air density of ρ0 = 1.225kg/m3

(cf. Subsection 4.4.2), the TAS directly follows from the IAS: TAS ≈ IAS. A constant air
density can be assumed in this thesis as the flight missions are planned with a maximum
of 95m Above Ground Level (AGL) and at stable weather conditions. Note the ADB is
in line with the body-fixed x-direction of the UAS, which has to be considered in the
measurement equations of the physical model. Additionally equipped with two wind
vanes, the ADB acquires data about the AOA and SSA.

The used servo motors are closed-loop controllers, which couple the electric motor and
position feedback. After their calibration, the deflections of the ailerons, the rudders,
and the elevator are obtained.
4Adjusting the measured accelerations according to the position of the CG is not performed as suggested
by Gäb in [Gäb12]. The effect is assumed to be negligible when using the Scihunter UAS.
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Table 4.1.: Sensors and measurements of the Scihunter UAS used

Source Symbols Description Unit MSR

IMU ax,ay,
az

Acceleration in x, y, z-direction m/s2 249.6

p, q, r Roll, pitch, and yaw rate rad/s
Pusher-ESC ωP Rotational speed pusher motor ESC rpm 62.83

UP Voltage pusher motor ESC V
IP Current pusher motor ESC A

Lift-ESC ωLi Rotational speed lift motor ESC rpm 62.83
ULi Voltage lift motor ESC V
ILi Current pusher motor ESC A

Pitot tube IAS Indicated Airspeed (IAS) m/s 62.83
Servo motors ξL Deflection of the left aileron actuator rad 62.83

ξR Deflection of the right aileron actuator rad
ηL Deflection of the elevator actuator rad
ζL Deflection of the left rudder actuator rad
ζR Deflection of the right rudder actuator rad

FMU ϕ, θ, ψ Roll, pitch, yaw angle (Euler angles)
from internal EKF

rad 20.43

Wind vanes α Angle Of Attack (AOA) rad 8.30
β Side Slip Angle (SSA) rad

PMB Ubat Battery voltage V 8.30
Ibat Battery current A

GPS-receiver plat Latitude position deg 4.17
plong Longitude position deg
alt Altitude above sea level m
GS Ground Speed (GS) m/s
V S Vertical Speed (VS) m/s
χ Ground Course (GC) rad
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The Global Positioning System (GPS) receiver measures the latitude and longitude posi-
tion and the altitude above sea level. Independently, the GS and VS are measured using
the Doppler evaluation of the carrier signal [NW94]. This thesis uses the integrated
magnetometer of the GPS receiver5, which delivers the ground course.

The PMB distributes the battery power to all electrical consumers. It measures the
battery voltage and current to check system’s energy consumption. The power of
the PMB and ESCs are directly obtained from the measured voltage and current with
P = UI. The resulting power signals are treated as measurements with a corresponding
noise in Chapter 4 and Chapter 5.

Pseudo measurements are introduced using the EKF running on the FMU to estimate
the attitude of the UAS. This way, reference values for the roll, pitch, and yaw angles
are obtained.

The sample rates of the sensors are different. In addition, the sample rate can vary due
to time delays and specific data errors, which is addressed in the acquisition of flight
data in Sections 4.3 and 4.4. The Mean Sample Rate (MSR) is additionally given in
Table 4.2 and sorts the sources in descending order.

4.1.2. Implemented modifications for flight testing

One of the advantages of choosing and operating a small UAS is the possibility to
integrate modifications under less stringent flight operational regulations; see Ap-
pendix A.4. They allow us to vary the operating points in the flight tests due to the
technical modification of the UAS and specific changes in the flight mission. Variations
are realized by adjusting the Commanded Airspeed (CA) in FW flight, the aircraft TOW,
and retrofitting aerodynamic modules to the wingtips. Specific technical solutions are
developed for the aerodynamic modification of the aircraft and the adjustment of the
TOW in [Enk21; Fic+20].

The additional weights are integrated into the hollow linkage carrying the lift motors
and the H-tail. The location of the implemented weight modules and the installation
space inside the fuselage are visualized using Computer-Aided Design (CAD), see
Figure 4.2.

5Located at the top of the fuselage disturbances have less effect on the GPS receiver. The integrated
magnetometer of the FMU is neglected.
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Figure 4.2.: Visualization of the integrated weight modules and the elec-
trical components nested in the fuselage, based on [Enk21;
Fic+20].

The electrical components and the battery pack, including access to the components
and battery changing, thoroughly use the installation space of the fuselage. Weight
modules outside the fuselage can be implemented independently. It allows a stepwise
weight increase and the adjustment of the CG weather in the body-fixed x or y direction.
The weight modules consist of a threaded rod, cylindrical weights (50g per part), and
mounting accessories. The weight modules can be prepared and changed for flight
testing.

An aerodynamic modification is integrated with lift modules mounted on the wing tips.
Continuing the aerodynamic profile, see Figure 4.3a, the wingspan is extended by an
additional 100mm, see Figure 4.3b.

The total wingspan is increased to bmod = 2m in the case of mounted aerodynamic
modules, which enlarges the wing surface area to about Smod = 0.475m2. The modules
weigh 82g each and are 3D-printed using Polylactide (PLA) material.

According to Ansys flow simulations, one module increases the lift force by L ∈
[1.4, 5.4]N and of the drag force by D ∈ [0.1, 0.9]N at a flow velocity of 15m/s and
when varying the AOA between α ∈ [0, 15]deg. This results in a total increase of the lift
force between 3 % to 12 % and the drag force from 1 % to 6 %. These values serve as
a reference for the abstracted degradation in the design of the simulation environment
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Figure 4.3.: An aerodynamic modification of the UAS wingtips continuing
the aerodynamic profile with a hollow 3D printed structure with
a chord of 220 mm (a) and increasing the wing length by 100
mm with an overlap of 30 mm for attachment [Enk21; Fic+20].

and as a benchmark for the results obtained from applying the hybrid model to flight
test data in Chapter 5. [Enk21]

4.2. Experimental design

For the application and evaluation of the hybrid model, the “true“ experimental design
is chosen [CS66]. The experimental design includes flight simulation and testing
in terms of computational and physical experiments [DVD17]. It is characterized by
manipulation, control, and randomization. Each attribute is considered in the following
design, based on the checklist proposed by Dean et al. in [DVD17].

(a) Objective
The objective of the experiments is to explore the proposed hybrid model in terms
of state estimation and prediction performance using the unmodified andmodified
UAS example. Further, interpretability, applicability, and learning behavior will
be investigated concerning the defined requirements.

(b) Sources of variation
The sources of variation are identified as follows:

(i) “Treatment factors“ [DVD17] are the modification of the simulation model
for flight simulation, the UAS for flight testing, and the filter model used for
estimation and prediction.
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(ii) “Experimental units“ [DVD17] are the variations of the TOW and CA within
a defined standard flight mission.

(iii) The limited use of operational data is considered a “blocking factor“ [DVD17],
which the standard flight mission abstracts. “Nuisance factors“ [DVD17]
are the additive white noise in the case of the simulated data. In the case of
flight test data, wind, atmospheric, and aircraft conditions as well as sensor
errors affecting the records of the sensors.

(c) Assigning the experimental units
The variation of experimental units is kept similar while varying the flight simu-
lations, flight testing, and the filter model. The TOW and CA in the FW flight are
set to be constant within a single flight mission, see Subsection 4.2.3.

(d) Specification of measurements
Measurements are made according to the sensors of the UAS introduced in Sub-
section 4.1.1 for both the flight simulation and testing. In the case of simulations,
the ideal measurements and true states are acquired additionally, which allows
for the true experimental design. The execution of flight tests is described in
Section 4.3, and flight simulations in Section 4.4.

(e) Pilot experiments
Several pilot experiments have been carried out, first of all concerning safety
within flight testing. Furthermore, the feasibility of the flight mission and the
completeness and the quality of the sensor measurements are successfully tested
considering the unmodified UAS.

(f) Specification of the model
The hybrid model is subject to experimental investigation. It considers fixed and
random effects and involves a data-driven structure, which is to be determined
for more reliable state estimation and prediction.

(g) Outline of the analysis
The analysis outlines the application of the hybrid model to flight data, focusing
on determining unknown modifications of the physical model (considering flight
simulation data in Section 5.2) or the physical substance (considering flight test
data in Section 5.3) of the UAS. The physical properties of the unmodified UAS
are assumed to be known or partly known by the filter model.

(h) Number of observations
Several flight tests are required to incorporate modifications between the flights
and perform flight tests with varying experimental units. The duration of a flight
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test is expected to be between 10 to 15 minutes with sample rates of up to 250
Hz, which intends a maximum volume of 2.25× 105 data points per flight and
sensor.

(i) Review
A review of the experimental design follows along with the evaluation and dis-
cussion of the results in Sections 5.4 and 5.5.

4.2.1. The architecture of the experimental setup for data generation

The flight tests are defined as physical experiments. Flights simulations are defined as
computational experiments that require an adequate simulation environment of the
chosen UAS. To simulate a UAS behavior similar to the behavior observed in flight
testing, a Software-in-the-Loop (SIL)6 simulation framework is designed. Consequently,
the same FMU characteristics are employed for flight tests and simulations. The physical
model used within the simulation framework is also adjusted to the acquired flight test
data.

In the following, the architecture of the experimental setup is defined, which organizes
the flight tests and flight simulations. The architecture describes the process of data
acquisition, see Figure 4.4.

Starting with the UAS used as a flight test platform, the flight test planning, and the
execution of flight tests, five links of information are generated:

1. The characteristics of the UAS are provided to the physical model, including the
ArduPilot firmware running on the FMU, which is also used in the SIL simulation
framework.

2. The operational conditions from the flight test planning are transmitted to the
physical model, including the trajectory processed by the FMU in the simulation
framework.

3. Selected flight test data is used to adjust the physical model of the simulation
framework.

4. The flight test data is fed into the database.
6SIL allows advanced and reviewed software to be integrated into the experimental framework. In
this way, elaborate processes can be outsourced, while maintaining confidence according to the
reviewed status of the used software. Furthermore, it can increase comparability between the real
and simulated system as is the case in this thesis.
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Figure 4.4.: Architecture of the experimental setup for generating flight test
and flight simulation data.

5. The flight simulation data is fed into the database.

Thus, the SIL simulation framework consists of two main parts: the FMU software and
the physical model describing the UAS flight dynamics and sensor model.

Due to the linkage between the real and the simulated system, especially the adjustment
of the physical model using flight test data, the validity of the physical model is limited
to the considered flight test data. This is intended for two reasons. On the one hand, a
specific system is described, including its operational history (cf. Subsection 3.2.4). On
the other hand, a physical model results for reference specifically for the considered
flight data. Finally, the SIL simulation framework enables flight simulations to be
performed and flight simulation data to be fed into the database.

4.2.2. Treatment factors of the experimental design

Four Test Series (TS) are planned, which successively increase the demands on the
hybrid model as the treatment factors are varied. These manipulate the experimental
data and hybrid model structure, which enables the exploration of the hybrid model
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within the defined test and simulation environments. Thus, by specifying the treat-
ment factors in the four TS, the use of the experimental setup for data generation
is predetermined. Manipulations within the TS concern the modification of the data
source and the hybrid model structure, see Table 4.3.

Table 4.3.: Assignment of the treatment factors, the data source, and the
hybridmodel structure in four TSwithin the experimental design.
Test series Data source Hybrid model structure
TS1 FS0 PM0 + ANN
TS2 FSmod PM0 + ANN
TS3 FSmod PMred + ANN
TS4 FT0 + FTmod PM0 + ANN

Concerning the data source, flight simulations are to be conducted without aerodynamic
modification and with aerodynamic modification of the UAS, resulting in FS0 (basic
Flight Simulation (FS) data) and FSmod (modified FS data). Flight tests are to be
conducted similarly, resulting in FT0 (basic Flight Test (FT) data) and FTmod (modified
FT data).

The hybrid model structure is to be equipped with a basic physical model PM0 and
a reduced physical model PMred, which are further considered in Section 4.4 and
Chapter 5.

The simulation framework incorporates a physical model for data generation. Con-
sequently, PM0 is used to generate FS0, while the modification of the physical model
leads to PMmod and FSmod.

In the case of TS3, the hybrid model structure is manipulated by changing PM0 and
incorporating PMred into the filter environment, see Figure 4.5.

Within the first three TS, the hybrid model is trained using the simulation data. Due
to the design of the recursive filter algorithm, the usual separation into training,
validation, and test data for ML is not necessary [Arb+22]. Instead, the stepwise
update and prediction, the adjustment of the filter covariances, and the examination
of the convergence behavior are used to ensure the validity of the filter results, see
Chapter 5.
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Figure 4.5.: Computational experiments, including the simulation environ-
ment and the filter environment. Here, the hybrid model is
applied to flight simulation data. In TS1, no manipulation is
intended. In TS2, the physical model used for SIL flight sim-
ulations is manipulated. In TS3, the SIL simulation and the
physical model used within the hybrid model are manipulated.

The modifications emulate the degradation and recovery of the system as it is assumed
in operation, which is further described in the design of the simulation environment in
Subsection 4.4.4.

The performance in learning the unknown impact of the modification is rated using
the:

• true states,

• ideal measurements,

• and physical reference model.

These attributes are unique to the use of simulation environments and provide insight
into the behavior of the hybrid model when applied to flight simulation data.

A further step is using real flight test data, closing the gap between the digital object
(physical model used in a simulation environment) and the real object (UAS), cf.
Subsection 2.3.4. In this case, a deviation from the physical model is inherently
included, and the hybrid model is evaluated in applicability and plausibility. Remind
true states and ideal measurements are not available.
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4.2.3. Operational conditions for flight testing and simulation

In the next step, experimental units are defined according to [DVD17]. This results in
the specification and determination of operational conditions and manipulations for
flight testing and simulation. Setting the operational conditions is inspired by fight data
of commercial transport aircraft experienced in previous publications; see [EHH22;
EHP20]. The flight missions are mainly characterized by the predominant stable flight,
the airspeed, TOW, and periodically recurring maintenance events.

Consequently, airspeed and TOW vary, while manipulations are employed according
to the previous section. The adjustment of the CA realizes the variation in the airspeed
of the respective flight mission. The CA is planned for the FW flight as part of the
trajectory transmitted to the FMU.

Thus, the CA varies between 12m/s, 15m/s, and 18m/s in the respective flight mission.
The values are determined based on the designed airspeed range of the Scihunter UAS
in FW flight, cf. Subsection 4.1.1. In this way, the flight envelope is explored regarding
the UAS airspeed, which results in a variety of flight conditions.

To further affect the variety of flight conditions, the TOW of the aircraft is modified
with the integration of weight modules, cf. Subsection 4.1.2. Three stages of the TOW
are provided for the respective flight mission at 4.39kg, 4.616kg, and 4.824kg. This
means payloads of 226g and 434g increasing the TOW by 5% and 10%. The weight
increase considers the limitation of the MTOW of 5kg, cf. Subsection 4.1.1. The CG is
adjusted to stay unchanged for the flight missions, while effects on the moment inertia
are neglected.

Finally, one TS is characterized by nine flight missions resulting from three different
CA in FW flight and three different TOWs of the UAS. These characteristics of the flight
missions remain unchanged for each TS. Manipulations are performed by modification
using aerodynamic modules (cf. Subsection 4.1.2) for flight testing or aerodynamic
parameters within the simulation environment, see Subsection 4.4.4.

4.3. Flight testing

The chosen flight test platform allows flight tests, which are planned and executed
according to the experimental design derived in the previous Section. The flight test
data is used to evaluate the hybrid model, configure a physical-based reference model,
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and learn about actual sensor behavior in flight. The observed sensor behavior is
considered for filter tuning and acquiring of simulation data.

The flight tests with the UAS are planned in Subsection 4.3.1. A short overview of the
flight executions is given in Subsection 4.3.2. The collected flight data is analyzed in
Subsection 4.3.3 before being further used in this thesis.

4.3.1. Flight test planning

A standard flight mission of the UAS is defined according to the accessible flight test
environment. The flight test environment specifies a flight geography that is spatially
constrained and requires compliance with safety features, see Appendix A.4. The flight
mission is planned to be autonomous and inside the defined flight geography. VTOL
maneuvers are planned to reach and leave the flight geography. The flight path of the
standard flight mission resembles a figure-of-eight-profile consisting of a sequence of
different schemes, which are repeated according to the operational conditions planned
in Subsection 4.2.3, see Figure 4.6.

In this way, the flight path includes the maneuvers expected when operating a hybrid
UAS. In addition, the figure-of-eight profile uses the diagonals of the flight test site
used, increasing the distance traveled in horizontal FW flight, ascending or descending.
In the figure-of-eight profile of the flight path, two turns of 180 degrees result, which
are orientated in both directions, left and right. The turns within the flight path are
planned with several waypoints using the entire width of the flight geography volume.
This ensures the UAS maintains altitude and the remote pilot closely monitors the
trajectory. For visualization, a standard flight mission is given in Figure 4.7 as an
example.

Waypoints are used as the basis for planning the flight missions, with details of the
specified waypoints given in Appendix A.5 and Appendix A.6. They carry information
about GPS coordinates, the FM, CA, and jump commands, which initiate a repetition
of maneuvers. Thus, the figure-of-eight-profile can be flown through several times in a
loop, including ascent and descent between 75m and 95m AGL.

Following the experimental design, the flight test planning involves the variation of
the operational conditions, cf. Subsection 4.2.3. This includes the implementation of
the aerodynamic modifications introduced in Subsection 4.1.2. For the first nine FMs,
the UAS aerodynamics remain unmodified. Equipped with the aerodynamic modules
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Figure 4.6.: Sequence of maneuvers within the defined standard Flight Mis-
sion (FM).

introduced in Subsection 4.1.2, nine additional FMs are planned, bringing the total
number of planned FMs to 18.

The number of repetitions is set according to the increase of the CA and the TOW.
Since higher power demands are expected, the number of repetitions is adjusted and
the length of the scheduled flight path is shortened. This ensures a safe flight without
risking a FaS.

Remember for the final approach in the FW flight, and the airspeed is set to 12m/s
independently of the planned CA in the FW flight to relieve the UAS structure in the
backward transition.
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Figure 4.7.: Example of the standard flight mission with a CA of 15m/s and
a TOW of 4.39kg.

Starting with the design airspeed of 15m/s and without additional payload, the flight
tests are planned by setting the number of repetitions according to the operational
conditions proposed in Subsection 4.2.3, see Table 4.4.

Table 4.4.: Planned repetitions and distance to fly within the respective FM
using the aerodynamically unmodified UAS

FM 1 2 3 4 5 6 7 8 9
TOW in kg 4.39 4.62 4.82
CA in m/s 15 12 18 15 12 18 15 12 18
Repetitions at 75m AGL 4 5 3 5 5 3 4 4 2
Repetitions at 95m AGL 4 5 4 5 5 4 4 4 2
Distance in km 7.2 9.8 6.4 9.8 9.8 6.4 7.2 7.2 4

An overview of the flight missions with the implemented aerodynamic modules is given
in Appendix A.7.
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4.3.2. Flight test execution

The execution of the flight tests is successful, except for FM 8 at CA = 12m/s and
TOW = 4.824kg. The successful FMs add up to a total flight duration of 92 minutes
and a flight distance of 71km flown using the aerodynamically unmodified UAS. The
total flight distance and duration are distributed unevenly across the different FMs
according to the varying CA and TOW, see Table 4.5.

Table 4.5.: Flight distance and duration according to the CA and TOW using
the aerodynamically unmodified UAS

(a) Flown flight distance in km

CA in m/s
12 15 18

TO
W
in
k
g 4.39 10.30 10.37 -

4.62 8.63 11.05 8.80
4.82 8.23 8.25 5.23

(b) Duration of flights inmin

CA in m/s
12 15 18

TO
W
in
k
g 4.39 15:50 14:49 -

4.62 11:27 13:00 10:57
4.82 9:42 9:30 6:44

For a CA of 12m/s, a flight duration between 15 to 16 minutes is observed at a flight
distance of about 10.3km, while a flight mission at TOW = 4.824kg is missing. Flight
duration ranges from 11 to 13 minutes at a CA of 15m/s and about 7 to 10 minutes
at a CA of 18m/s. Equivalently, the distances flown lie between 8km and 11km. An
exception exists for a flight distance of about 5 km, which results from flight planning
in Subsection 4.3.1, according to the increased CA and TOW.

The imbalance of the recorded data occurs due to the increased airspeed in flight
trivially. Still, it is also favored by the increased power consumption and the shorter
flight path chosen according to Subsection 4.3.1.

In the case of the unsuccessful execution of FM 8, a significantly increased AOA and
pitch angle is observed, which led to a stall in stable flight. Consequently, a decrease
in maneuverability was observed. This resulted in hitting the geofence and triggering
a FaS after a short flight distance of about 1.5km and after a flight duration of about 2
minutes. In conclusion, the dataset from FM 8 contains less information and highly
dynamic states outside the considered flight conditions and, therefore, is neglected for
further consideration.
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4.3.3. Data acquisition and analysis

The recorded flight data is analyzed in terms of data quality, completeness, and
balance, as highlighted in the previous Section. A plausibility analysis follows in
Subsection 4.4.3, when using the acquired flight test data for the adjustment of the
physical model derived in Subsection 4.4.2.

In total, the FMU and the implemented Arduino microcontroller collect data of 788
attributes. A large part of the data describes binary processing values and parameter
settings of the FMU. For the adjustment of the physical model and the training of the
hybrid model, measurements and FMU commands are used. The sensor measurements
described in Subsection 4.1.1 and the FMU commands given as PWM signals are
therefore considered for analysis.

Themeasurements used include the 34 attributes of the different sensors with individual
time stamps, as introduced in Subsection 4.1.1. This allows the actual sampling rates
to be assessed.

The sampling rate of the IMU varies between 163.3Hz to 281.6Hz and between 2.7Hz
to 4.7Hz for the GPS receiver. As stated in Subsection 4.1.1, the ESC of the pusher
motor, the wind vanes, and the aerodynamic actuators (servo motors) are recorded
at a sampling rate of 62.83Hz on average. The attitude estimation and the command
signals of the FMU are available at 20.43Hz. The barometer, airspeed sensor, and PMB
values are provided at 8.30Hz. Measurements of the four ESCs of the lift motors are
recorded at 7.10Hz on average, with a minor variance in the sampling rates.

To simplify the handling of the database, preprocessing is introduced to align the
different sampling rates to a uniform and constant sampling rate of 100Hz. Even
though the chosen state estimation method of the hybrid model allows varying sampling
rates, a uniform, and steady sampling rate reduces the implementation effort, simplifies
comparisons, and enables the implementation of ML approaches examined in [Joe22].
Furthermore, the aligned sampling rate of 100Hz reduces the computational effort,
which is discussed in Chapter 5 in more detail.

The alignment is established by interpolation for all measurements except the yaw
angle ψ and the ground course χ, which retain the previous value until an update is
recorded7. Slight deviations that may occur due to interpolation are neglected and at
least taken into account when adjusting the covariance matrices for state estimation.
7The recorded values of yaw angle and ground course contain jumps of 360deg near the north
orientation of the UAS. In the case of an interpolation, physically meaningless values occur.
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Joest performs detailed data analysis in [Joe22]. Based on his work and this thesis’
data analysis, it is assumed that the described variations of the sampling rates and the
occurrence of data errors are within a manageable range.

The acquired database finally enables the balance of the data to be examined. In the
previous section, an imbalance of the considered flight data is found, mainly due to
the different TOW and CA in the executed TS. With the TAS recorded by the airspeed
sensor and the uniform and steady sampling rate of 100Hz, the balance is investigated,
and the data distribution is visualized in Figure 4.8.
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Figure 4.8.: Distribution of the considered flight data in FWflight concerning
the TOW and TAS by frequency of occurrence

The visualization highlights a high frequency of occurrence for the lower airspeeds from
12m/s to 14m/s and a TOW of 4.39kg and 4.62kg. The density of samples decreases
with increased TAS and TOW. Samples are rare at the edges of the considered envelope,
in the range of 16m/s to 17m/s at 4.39kg and around 17.5m/s at 4.82kg.

The missing flight at CA = 12m/s and TOW = 4.82kg is evident, but in addition, a
shift in the data is identified for a TOW of 4.62kg. In this case, the airspeed commands
of the FMU are not sufficiently met in the executed flight tests. The TAS appears to be
about 1m/s higher than planned, except for the flight data at CA = 18m/s, where the
TAS appears to be smaller.
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Finally, a sufficient representation of the airspeeds is concluded, while lower airspeeds
predominate. The physical model’s adjustment within the next Section and the evalua-
tion of the hybrid model, especially the underrepresentation of higher TOWs, has to
be considered.

Balancing of the data by a selective reorganization of the database is not considered.
With a total number of about 550.000 samples and the occurrence of one single flight
mission per CA and TOW, the database is considered minor, and the deletion of samples
is excluded.

The acquired database contains real sensor noise of the measurements. Using the flight
test data to adjust the physical model in Subsection 4.4.3, the sensor noise can be
estimated and used to design the simulation environment in the next Section.

4.4. Design of a simulation environment

A significant part of the experimental design is the simulation environment. It generates
flight simulation data consisting of true states and ideal measurements. The data
generation is based on the flight test platform, planning, and data introduced in
the previous Section. The design of the simulation environment is divided into the
design of the simulation framework in Subsection 4.4.1, the design of the physical
model in Subsection 4.4.2, the adjustment of the physical model using flight test
data in Subsection 4.4.3, the abstraction of aerodynamic degradation and recovery in
Subsection 4.4.4, and finally the execution of flight simulations in Subsection 4.4.5
with the analysis of the acquired data in Subsection 4.4.6.

4.4.1. Design of the simulation framework

The simulation framework is characterized by a SIL simulation framework based on
an implementation given by the ArduPilot Dev Team [Ard09], see Figure 4.9.

The components of the framework are the virtual FMU implemented with the ArduPilot
firmware8 (version 4.2.2) and the physical model of the UAS implemented in Mat-
lab (version 2022b). These two components interact in a loop representing the SIL
simulation environment.
8The open-source ArduPilot firmware for the Pixhawk 4 flight controller is widespread and recognized
in the scientific context. It is well documented and available at: https://ardupilot.org/.
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Figure 4.9.: SIL framework using Mavproxy and ArduPilot firmware in a
VirtualMachine (VM) environment formission and flight control
with a physical model of a UAS running onMatlab in aWindows
environment for data generation.

The framework is implemented on a computer system running Windows 11 and a
Linux VM using Ubuntu (version 20.04). In the VM environment, Mavproxy (version
1.8.50) is implemented to perform mission control according to the mission planning
by the user. The exact flight path is used for the flight tests (cf. Section 4.3) within the
simulation environment, corresponding to the mission commands transmitted to the
virtual FMU. The virtual FMU sends the actuator commands and receives the physical
states of the simulated UAS in return.

The states, commands, and measurements are saved in a database. It refers to the
true states and ideal measurements, which are the unaffected output of the model.
White noise is added to the ideal measurements for more realistic sensor behavior. The
magnitude of the respective sensor noise is adjusted according to the observations
done within the flight tests in the previous Section. Therefore, the numerical values of
the added white noise are based on the adjustment of the physical model using flight
test data in Subsection 4.4.3 and the physical model designed in the following Section.
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4.4.2. Design of the physical model

The design and implementation of the physical model rely on literature, prior develop-
ments of the FSR, and aerodynamic formulations suitable for the experimental design,
cf. Section 4.2.

Appropriate literature is selected for the implementation of the actuator equations, flight
dynamics, and sensor model according to Stevens et al., Beard et al., and Brockhaus
et al. [SJL16; BM12; BAL11]. In particular, Stevens, Lewis, and Johnson provide an
overview of the nonlinear aircraft model with six degrees of freedom (6DOF) and 12
dynamical states, which is used and extended in this thesis [SJL16].

The main components of the designed physical model are the actuators, the flight
dynamics, and the sensors, see Figure 4.10. Using the input u, the forces F and
momentsM from the actuators block. These affect the system state equations describing
the system dynamics. The state vector x is used by the sensor model, resulting in the
measurements m. The implemented Matlab code describing the particular algorithms
is given in Appendix B.

Appendix B.1 Appendix B.2 Appendix B.3

Actuators
System

dynamics
Sensors

F , M x mu

Figure 4.10.: Simplified structure of the physical model used

The design of the physical model of the Scihunter UAS is based on the work of Prochazka,
Krüger, and Ribnitzky [PKR20]. A significant number of student works supported the
development, implementation, and validation of the considered flight test platform
and its mathematical description [Joe22; Fic+20; Frö+19]. The initial parameters are
based on Computational Fluid Dynamics (CFD) analysis, wind tunnel tests, and flight
tests, see Appendix A.9.

The experimental design offers flight data of a standard FM, cf. Section 4.2. In the
FMs performed in Section 4.3, stable flight conditions at similar operating points result
in the FW flight of the UAS. Therefore, a simplified physical model is designed in the
following, which is shown to provide sufficient mapping.
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Actuators and the calculation of forces and moments
The calculation of the forces and moments is mainly considered in terms of aerody-
namics and thrust. The command inputs u affecting the actuators are calibrated. In
addition, they consider a time delay. The time delay is modeled using a PT1-element
and the time constant Tpwm, respectively. The actuator states of the previous time step
are considered for the time delay and, therefore, part of the system state equations
below9.

The calibrated input signals include the commands for the two ailerons (ξcL, ξcR), the
elevator (ηc), and the two rudder deflections (ζcL, ζcR). The calibrated power of the
pusher and lift motors10 are P cP , P c1 , P c2 , P c3 , and P c4 . In addition, u contains the TOW
of the UAS and the current flight phase.

To distinguish between the three flight phases (QC, TR, FW), P cP , P c1 , P c2 , P c3 , and P c4
are used11. Implemented with logical values in Matlab, two values are introduced:
The ΦP and the ΦLi logic. In the case the pusher motor is active (P cP > 0), ΦP = 1;
otherwise, ΦP = 0. In the case one lift motor is active (P c1,2,3,4 > 0), ΦLi = 1;
otherwise, ΦLi = 0. This results in the following assignments:

QC(ΦP == 0&ΦLi == 1) = ‘true′, (4.1)
TR(ΦP == 0&ΦLi == 0 ||ΦP == 1&ΦLi == 1) = ‘true′, (4.2)
FW (ΦP == 1&ΦLi == 0) = ‘true′. (4.3)

It follows that only one flight phase is active at a time.

The flight time in FW flight prevails, cf. Section 4.3. In contrast, the QC flight and,
in particular, the TR flight are underrepresented in the flight test data. Therefore,
descriptions of coupling effects in TR flight are neglected when considering UAS
aerodynamics.

Further, the modeled aerodynamics are valid for the FW flight exclusively and, therefore,
only used when the FW flight condition is fulfilled. Otherwise, the aerodynamic forces
9The actuator states of the previous time step are transmitted using the state vector. They are
defined constant for state prediction. This allows for modeling time-delayed behavior with reduced
implementation effort.

10The motor assignments are given in Appendix A.2.
11Different approaches have been tested against the background of state estimation of the hybrid UAS.
Using estimated or measured airspeeds for an abrupt or smooth transition between flight phases
lead to instability or unusable results. The flight phases must be specified using an a priori definition.
This avoids the state estimation algorithm from shifting its estimates into invalid aerodynamics.
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and moments are set to zero.

For the description of the aerodynamics in FW flight, the aerodynamic values are
represented as TAS = Va, AOA = α, SSA = β, and MAC = lµ. From u the deflections
ξL, ξR, η, ζL, and ζR are used. The rotational rates p, q, and r resulting from the state
equations are transformed into the experimental CS to be used in the following.

The drag12, side, and lift forces (D,Y ,L) are determined in the experimental CS with
index e. The corresponding coefficients CD, CY , and CL consist of the parameters
CD0 , CDα , CYβ , CYζ , CYp , CYr , CL0 , CLα , CLη , and CLq . Finally, the resulting forces
are transformed into the body-fixed CS with index b using the transformation matrix
M be, see Eq. 4.4.

F⃗Ab =

⎡⎣FxFy
Fz

⎤⎦A
b

=

⎡⎣−DY
−L

⎤⎦
e

=
ρ0
2
V 2
a SM be

⎡⎣CDCY
CL

⎤⎦
e

(4.4)

with

⎡⎣CDCY
CL

⎤⎦
e

=

⎡⎢⎣ CD0 + CDαα

CYββ + CYζ
ζL+ζR

2 + (CYppe + CYrre)
b

2Va

CL0 + CLαα + CLηη + CLqqe
lµ
2Va

⎤⎥⎦
e

The calculation of the aerodynamic roll, pitch, and yaw moments (ℓAb , mA
b , nAb ) is di-

vided into two components: the static (index s) and the dynamic (index d) coefficients,
which are defined in the body-fixed and the experimental CS. The static coefficients
consist of Cℓβ , Cℓξ , Cm0 , Cmα , Cmη , Cnβ , Cnζ and the dynamic coefficients consist of
Cℓp , Cℓr , Cmq , Cnp and Cnr . The resulting dynamic moments are transformed into the
body-fixed CS and added to the static moments to obtain the resulting aerodynamic
moments, see Eq. 4.5.

Q⃗Ab =

⎡⎣ ℓAmA

nA

⎤⎦
b

=
ρ0
2
V 2
a S

⎛⎝⎡⎣CℓsCms
Cns

⎤⎦
b

+M be

⎡⎣CℓdCmd
Cnd

⎤⎦
e

⎞⎠⎡⎣ b
2
MAC
b
2

⎤⎦ (4.5)

12The drag is assumed to increase linearly with the AOA. Using flight measurement data and an UKF,
model fitting has shown that the selected equation sufficiently represents the drag coefficient CD .
Within the considered range Va ∈ [11, 20]m/s, the linear mapping even performs better than a
quadratic mapping and simplifies the model. A quadratic dependence was therefore rejected.
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with

⎡⎣CℓsCms
Cns

⎤⎦
b

=

⎡⎣Cℓββ + Cℓξ (ξL + ξR)
Cm0 + Cmαα + Cmηη

Cnββ + Cnζ
ζL+ζR

2

⎤⎦
b

and

⎡⎣CℓdCmd
Cnd

⎤⎦
e

=

⎡⎣ (Cℓppe + Cℓrre)
b

2Va

Cmqqe
MAC
2Va

(Cnppe + Cnrre)
b

2Va

⎤⎦
e

The motor thrust depends on the rotation speed, which is calculated based on the
respective motor power, defined constants, and the parameters cp, which are available
for each of the fivemotors. For the calculation of themotor thrust, a squared dependency
to the rotation speed of the motor is assumed, represented by the parameter CTω2

for the lift motors and by the parameters CTω2P
for the pusher motor. In addition, a

dependence on the airspeed in the x-direction is specified for the thrust calculation of
the pusher motor described by CTu2ωP see Eq. 4.6.

F⃗ Tb =

⎡⎣F TxF Ty
F Tz

⎤⎦
b

=

⎡⎣ρ0π( dP2 )4(CTω2P
ω2
P + CTu2ωP u

2ωP )
0

−
∑︁4
i=1 Ti

⎤⎦
b

(4.6)

with Ti = ρ0π(
dLi
2

)
4CTω2ω

2
i

The motor thrust takes effect on the moment equations. Eq. 4.7 describes the effect on
the roll and pitch moment (ℓT and mT ). The yaw moment (nT ), which results from
the difference in rotational speed and direction of the lift motor, is considered with the
parameter CnT .

Q⃗Tb =

⎡⎣ ℓTmT

nT

⎤⎦
b

=

⎡⎣ rxy(T2 + T3 − T1 − T4)
rxy(T2 + T3 − T1 − T4)
CnT (ω

2
3 + ω2

4 − ω2
1 − ω2

2)

⎤⎦
b

(4.7)

The resulting forces and moments consist of an aerodynamic, a thrust, and a gravitation
term concerning the UAS attitude, which are additively merged, see Eq. 4.8.

F⃗b = F⃗Ab + F⃗ Tb + F⃗Gb (4.8)

with F⃗Gb =

⎡⎣ GWg sin θ
GWg cos θ sinϕ
GWg cos θ cosϕ

⎤⎦
b

(4.9)
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The resulting moments are given in Eq. 4.10.

Q⃗b = Q⃗Ab + Q⃗Tb (4.10)

The constants used describe the geometry and moments of inertia of the Scihunter
UAS, introduced in Section 4.1. The gravitation constant is defined by g = 9.81m/s2

and the air density by ρ0 = 1.225kg/m3. The calibration of the actuator command is
set to be constant and is specified in Appendix A.10.

System dynamics and the system state equations
The first 12 states describe the flight dynamics with the position s⃗g = [pN pE pD]Tg , the
body-fixed speed V⃗b = [u v w]Tb , the rotational rates Ω⃗b = [p q r]Tb , and the attitude Φ⃗b =
[ϕ θ ψ]Tb . Wind estimation is added to handle the real flight test data in Subsection 4.4.3
with V⃗w = [uw vw ww]

T. Five states describe the aileron deflections, the elevator
deflection, and the rudder deflections with δ⃗ = [ξL ξR η ζL ζR]

T. States 21 to 25
describe the power of the respective motors P⃗ = [PP P1 P2 P3 P4]

T.

The time derivation of the dynamical state vector
.
x⃗d represents the dynamical states

used in the physical model based on [SJL16; BAL11]; see Eq. 4.11.

.
x⃗d =

[︄
ds⃗g
dt

dV⃗b
dt

dΩ⃗b
dt

dΦ⃗b
dt

dV⃗w
dt

dδ⃗

dt

dP⃗

dt

]︄T
(4.11)

The change of position is given in the geodetic CS (index g). It results from V⃗b using
the transformation matrixMgb and the current wind field described by V⃗w given in
the geodetic CS, see Eq. 4.12.

ds⃗g
dt

=

⎡⎣ṗNṗE
ṗD

⎤⎦
g

=Mgb

⎡⎣uv
w

⎤⎦
b

+

⎡⎣uwvw
ww

⎤⎦
g

(4.12)

The accelerations affecting the aircraft system consider the Coriolis term and the total
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forces F⃗b = [Fx Fy Fz ]
T
b resulting from Eq. 4.8 in Eq. 4.13.

dV⃗b
dt

=

⎡⎣u̇v̇
ẇ

⎤⎦
b

=

⎡⎢⎣rv − qw

pw − ru

qu− pv

⎤⎥⎦
b

+
1

GW

⎡⎢⎣FxFy
Fz

⎤⎥⎦
b

(4.13)

The derivation of the rotational rates results from the moments taking effect on the
aircraft system, cf. Eq. 4.10. They consider the current rotational rates, the active
moments Q⃗b = [ℓmn]Tb , and the moments of inertia of the Scihunter UAS in Eq. 4.14.

dΩ⃗b
dt

=

⎡⎣ṗq̇
ṙ

⎤⎦
b

=

⎡⎢⎢⎣
Jxz(Jxx−Jyy+Jzz)

Γ pq − Jzz(Jzz−Jyy)+J2
xz

Γ qr + Jzz
Γ ℓ + Jxz

Γ n

(Jzz−Jxx)
Jyy

pr − Jxz
Jyy

(p2 − r2) + m
Jyy

(Jxx−Jyy)Jxx+Jxz2
Γ pq − Jxz(Jx−Jyy+Jzz)

Γ qr + Jxz
Γ ℓ + Jx

Γ n

⎤⎥⎥⎦
b

(4.14)

using Γ = JxJz − J2
xz ,

The change of attitude considers the rotational rates with the directional cosine matrix
given in Eq. 4.15.

dΦ⃗b
dt

=

⎡⎣ϕ̇θ̇
ψ̇

⎤⎦
b

=

⎡⎣p + tan θ(q sinϕ + r cosϕ)
q cos(ϕ)− r sinϕ

q sinϕ+r cosϕ
cos θ

⎤⎦
b

(4.15)

The wind velocities are assumed to stay constant within an FM. The deflections and
the power of the motors stay constant until new commands take effect, see Eq. 4.16:

dV⃗w
dt

= [0 0 0]
T ,

dδ⃗

dt
= [0 0 0 0 0]

T , and dP⃗

dt
= [0 0 0 0 0]

T . (4.16)

The flight dynamics are used to predict the states for the next time step when used by
a recursive filter algorithm. The resulting states are input to the sensor model, which
is defined below.

Sensors and the measurement equations
For the design of the sensor model, the representation of Brockhaus, Alles, and Luckner
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is used [BAL11]. The elaboration by Beard and McLain confirms the usability of the
flight mechanics and sensor models for small UAS [BM12].

The output of the sensor model y⃗ includes 34 values to be compared with the sensor
measurements introduced in Subsection 4.1.1; see Eq. 4.17.

y⃗ =
[︂
s⃗g a⃗b Ω⃗b Φ⃗b V⃗a δ⃗ P⃗ Pbat ω⃗n V⃗g

]︂T
(4.17)

The estimation of the current position s⃗g, the rotational rates Ω⃗b, and the aircraft
attitude Φ⃗b directly follow from x⃗d, cf. Eq. 4.11. The estimation of the measurements
of the accelerations a⃗Mb exclusively considers the aerodynamic forces and the thrust
taking effect on the aircraft system. Thus, the total forces given in Eq. 4.8 has to be
reduced by the gravitational effect, see Eq. 4.18.

a⃗Mb =

⎡⎣aMxaMy
aMz

⎤⎦
b

=
1

GW

⎡⎣FxFy
Fz

⎤⎦
b

−M bg

⎡⎣00
g

⎤⎦
g

(4.18)

The aircraft speed is measured by the ADB considering the aerodynamics in V⃗a and
using the GPS sensor, resulting in V⃗g. These measurements are represented by V⃗b using
the atan2 function from Matlab in Eq. 4.19 and the transformation matrixMgb from
the body-fixed into the geodetic CS in Eq. 4.20:

V⃗a =

⎡⎣Vaxα
β

⎤⎦
b

=

⎡⎢⎣ u

atan2(wu )

atan2( vu )

⎤⎥⎦
b

(4.19)

and V⃗g =MgbV⃗b =Mgb

⎡⎣uv
w

⎤⎦
b

. (4.20)

Remember, the pitot tube introduced in Subsection 4.1.1 measures the IAS in body-fixed
x-direction. Therefore, Vax = u is considered the output of the sensor model.

The deflections δ⃗ and motor power P⃗ result from the actual commands u⃗ and states
x⃗ of the respective value using a PT1-element. In addition, the measurements of the
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PMB can be used considering the total power consumption of the battery, see Eq. 4.21.

Pbat = PP +

4∑︂
i=1

Pi (4.21)

The angular velocities describe the motor rotation rate used in Eq. 4.6 for the calcu-
lation of the motor thrust. They are directly measured by the ESC as introduced in
Subsection 4.1.1 and, therefore, the functional output of the sensor model. Based on
[TR06], the following Eq. 4.22 has been derived. The Equation is used to calculate the
angular velocities of the pusher and lift motors. The rotor diameter di and the rotor
area Ai are chosen, respectively. For consistent units, vn = 1m/s is used.

ωin =
ωi
ωmax

with ωi =
(︂ Pi
ρ0Aicpi

)︂ 2
3 2

divn
and i ∈ [P, 1, 2, 3, 4] . (4.22)

The physical model uses inputs, states, parameters, and constants to estimate forces and
moments, states, and sensor signals. These are used for analysis and state estimation
in the following.

4.4.3. Plausibility analysis and adjustment of the physicalmodel using
flight test data

The derived physical model is adjusted using the acquired flight test data of the
unmodified UAS from Section 4.3. The resulting physical model is defined as the
standard physical model named PM0. It is used for flight simulation, reference, and
initialization of the hybrid model in Chapter 5. Further, PM0 serves as the basis for
manipulations and simplifications according to the experimental design.

Plausibility is inferred from three steps:

1. the physical model structure is usable to estimate parameter states,

2. the identified parameters are physically meaningful,

3. and PM0 (equipped with the identified parameters) is usable for SIL flight simu-
lations.
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To enable a high degree of adaption to the flight test data and to ensure convergence
of the parameter states, the bootstrapping method is chosen. It increases the value
of the reasonably small amount of flight test data and is a recent method to handle
less data in the context of machine learning [Arb+22]. The bootstrapping method
reschedules the flown FMs in an alternative order several times in a row. For the joint
state estimation, 100 bootstrap samples of the flight test data are processed. This
also allows investigation of the convergence behavior of the parameter states over an
increased period. A bootstrap sample includes the whole set of flight test data of the
unmodified UAS with a random order of the determined FMs (cf. Section 4.3).

The SCmUKF is used for state estimation. For every processing of a bootstrap sample,
the filter is equipped with the parameter states and state covariance matrix estimates
of the prior bootstrap sample, starting with initial values.

The filter tuning has been elaborated based on systematic testing and data analysis.
A list of the set values for the system noise covariance matrix Qxx, the measurement
noise covariance matrix Ryy, and the initial state covariance matrix Pxx is given in
Appendix A.7. The initial dynamical states are assumed and set at the beginning of
every flight, while the parameter states are initialized once and based on previous
work at the FSR given in Appendix A.9.

The system noise Qxx of the parameter states is set to be small (Qxx ij ∈ [10−5, 10−9]),
which enables a slow but meaningful convergence of the filter solution. The resulting
Ryy matrix contains significant information about the measurement noise of the used
sensors, which is also used for the data acquisition from the flight simulations in section
Subsection 4.4.6. Initialized with the sensor characteristics given in Subsection 4.1.1,
the entries of the Ryy matrix are tailored to the flight test data.

According to the flight phase, parameter states are selected from the parameter state
vector x⃗p for adjustment. Aerodynamic parameters and the pusher motor parameters
are estimated in FW flight exclusively. In QC flight, the lift motor parameters are
estimated. In TR flight, the parameters of the physical model are considered fixed13.

Thus, 25 parameters are subject to the parameter estimation in FW flight, see Eq. 4.23.

x⃗FWp = [CD0 CDα CYβ CYζ CYp CYr CL0 CLα CLη CLq

Cℓβ Cℓξ Cℓp Cℓr Cm0 Cmα Cmη Cmq Cnβ Cnζ Cnp Cnr

cpP CTω2P
CTu2ωP ]

T (4.23)

13In the case of simultaneously estimating all parameters in the TR flight, observability is not given.
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In QC flight the remaining 6 parameters are chosen for estimation, see Eq. 4.24

x⃗QCp = [cp1 cp2 cp3 cp4 CTω2 CnT ]
T (4.24)

The targeted parameter estimation is realized as a function of the flight phase by ad-
justing Qxxp and the pseudo measurements m⃗p of the parameters, cf. Subsection 3.4.1.
In the case of QC flight, the parameters concerning the FW flight (x⃗FWp ) are forced
to stay constant. This is achieved by setting the pseudo measurements m⃗FW

p equal to
the current parameter states x⃗FWp . In addition, the entries of QFWxxp , which correspond
to the parameters in Eq. 4.23, are set to be a zero matrix 0. In agreement, QQCxxp and
m⃗QC
p are set according to the respective flight phase, see Table 4.6.

Table 4.6.: Setting of the pseudo measurements m⃗p of the parameter SC
and the system noise covariance matrix Qxx according to the
current flight phase.

QC TR FW

x⃗FWp = const. x⃗p = const. x⃗QCp = const.

m⃗FW
p = x⃗FWp m⃗p = x⃗p m⃗QC

p = x⃗QCp

QFWxxp = 0 QFWxxp = 0 QFWxxp = QFWxxpini
QQCxxp = QQCxxpini QQCxxp = 0 QQCxxp = 0

The frequency of the state prediction is set to fprediction = 100Hz; The exact frequency
measurements are available after flight data preprocessing. The frequency of state
updates using the residuals is set to fupdate = 1Hz. In this way, the filter algorithm
uses a range of time steps to predict future states based on the physical model without
the support of the measurements, which enables further insight into the prediction
performance.

For the application of the SCmUKF, uncorrelated sensor measurements and the er-
godicity of the flight test data are assumed. Consequently, Ryy is a diagonal matrix.
Further, it is assumed that the order of flight missions is uncorrelated, and any aging
effects are negligible within the TS of the physical experiments.

This allows to change the order of the flight test data and to apply the bootstrap
method. The state estimation results in a fixed parameter set. To assess the validity of
the parameter set, the convergence behavior is analyzed. To represent the convergence
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behavior, the state estimation of the ANN weight states is evaluated using the FN (cf.
Subsection 2.2.4), see Figure 4.11.
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Figure 4.11.: Convergence behavior of the parameter states adjusting the
physical model and represented by the FN over 100 bootstrap
samples.

The state estimation slowly converges over the first 25 bootstrap samples. Since then,
the values of the parameter states have been established within a specific range. The
remaining uncertainty is assumed to be at an acceptable level. Thus, the criteria of a
stochastic nonlinear system are fulfilled, implying stochastic observability as defined
in Subsection 2.2.3.

The resulting parameter set is taken from the mean values of the last bootstrap sample
rounded to three significant digits. The parameter set concerning the FW flight is given
in Table 4.7.

Besides the TAS, the altitude h is used to constrain the validity of the parameter sets.
The altitude h describes AGL at the air density ρ0. The parameter set concerning the
QC flight is given in Table 4.8.

Compared to the initial set of parameters given in Appendix A.9, some of the initially
defined parameter values change. In particular, the damping coefficients CLq and CMq

significantly increase their absolute value.
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Table 4.7.: Adjusted parameters of PM0 using the acquired flight test data
in FW flight. The parameter set is valid for FW flight at Va ∈
[11, 20]m/s and h ∈ [75, 95]m.

CD0 0.132 CL0 0.614 Cℓp −4.32 Cnβ 0.125
CDα 0.451 CLα 3.68 Cℓr 0.794 Cnζ −0.151
CYβ −0.819 CLη 0.784 Cm0 −4.61 ∗ 10−3 Cnp −0.466
CYζ 0.485 CLq 25.4 Cmα −2.44 Cnr −0.358
CYp 0.210 Cℓβ −0.226 Cmη −2.81 cpP 2.49
CYr 1.05 Cℓξ −0.695 Cmq −74.7 CTω2P

2.15 ∗ 10−2

CTu2ωP −2.93 ∗ 10−2

Table 4.8.: Adjusted parameters of PM0 using the acquired flight test data
in QC flight. The parameter set is valid for QC flight at Va ∈
[0, 11]m/s and h ∈ [0, 75]m.
cp1 2.26 cp3 2.24 CTω2 1.33 ∗ 10−2

cp2 2.34 cp4 2.34 CnT −1.41 ∗ 10−6

In addition, the parameter values are compared to parameter sets of UAS given in the
literature. Scale and sign are concluded to be in a reasonable range considering the
work from Gäb, Beard et al. and previous publications [Enk19; Gäb12; BM12].

Strikingly, the coefficient CM0 is negative and small, leading to instability in stable FW
flight. Such a value is also found for the Aerosonde UAS in [BM12]. In this case, the
elevator deviation compensates for the resulting pitching moments, as was observed in
the flight tests and data considered in this thesis. However, the estimated parameter
set contains reasonable values and is therefore considered physically meaningful.

A detailed consideration of the observed flight dynamics and estimated states is con-
ducted in Subsection 4.4.6 when comparing the flight test data to the flight simulation
data using PM0. Before, modifications of the physical model are derived and discussed
below.
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4.4.4. Abstraction of aerodynamic degradation and recovery

The experimental design intends a systematic manipulation of the physical model
used for the generation of flight simulation data or within the filter environment, cf.
Subsection 4.2.2. In this Section, themanipulation of the physical model used within the
simulation environment is considered, leading to the modified physical model PMmod. It
provides the basis to explore the ability of the hybrid model to identify the manipulated
behavior of the system. Thus, the hybrid model is proven if it is able to learn and
predict the degradation of a system and the effects of recovery measures. Therefore,
degradation and recovery are abstracted by deriving mathematical formulations. These
are used to manipulate PM0.

Based on the preliminary studies discussed in Section 3.5 and, in particular, the
consideration of commercial transport aircraft in [EHH22], three major influences
are assumed. They are classified as an abstract representation of first-degree rational
curves:

• the permanent degradation over time, → Random constant

• the reversible degradation over time, → Random ramp

• and the recovery effect at a particular time step. → Random jump

The three resulting mathematical abstractions are shown as ergodic sets of curves in
Figure 4.12.
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Figure 4.12.: Abstracted parameter behavior considering the set of curves
of the random constant (a), the random ramp (b), and the
random jump (c), based on [Gel+06].
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Concerning ergodicity, the abstracted parameter behaviors are represented as sets of
curves, which can be transferred into time behavior considering the total operation
time.

A sufficient magnitude of manipulation is defined to ensure visibility and enable the
exploration of the hybrid model. In contrast, the complexity of the modified physical
model is increased to a tolerable extent. Therefore, the magnitude of manipulation does
not necessarily meet the criteria of a realistic use case. A practical use case may involve
a slow degradation and less frequent recovery, which is not feasible using the acquired
database of nine or 18 FMs in this thesis. Thus, the application to flight data and
evaluation of the hybrid model in Chapter 5 are performed to explore the applicability
and usability of the approach based on the following abstracted modifications.

For manipulation, the parameters CD0 and CL0 are selected. They represent the
independent influences on the aerodynamic drag and lift forces, modified to include
the abstracted degradation and recovery effects. While drag increases, lift production
is assumed to decrease. To define the manipulation magnitude, the aerodynamic
modules introduced in Subsection 4.1.2 are concerned. The following definition is set,
including the expected nominal change of drag and lift forces and the flight duration
of the executed flight tests.

The degradation of the aircraft system aerodynamics is divided into a permanent
degradation with a nominal charge of 10 % (cperm = 0.1) over 100 minutes (cpermt =
6000s) and into a reversible degradation of 10 % (crev = 0.1) over 10 minutes (crevt =
600s). The reversible degradation will be fully recovered at the beginning of every
flight. The resulting equations of the modified parameter values CD0mod

and CL0mod

are defined in Eq. 4.25 and Eq. 4.26:

CD0mod
= CD0

(︄
1 +

cperm
cpermtttot +

crev
crevt

trev

)︄
, (4.25)

CL0mod
= CL0

(︄
1− cperm

cpermtttot − crev
crevt

trev

)︄
. (4.26)

For the implementation, two input values are used: The total time ttot of the flight oper-
ations within a TS and the time trev since the beginning of each TS. The characteristics
are represented in Figure 4.13, considering the total time in flight operation.

The aircraft-specific baseline (gray) is a constant value that experiences change through
permanent degradation (red) and reversible degradation (blue). The characteristic

97



(a)

(b)

(c)

Figure 4.13.: Reversible and permanent modification of the drag and lift
production in flight operation concerning the aerodynamic
coefficients CD0 in (a) and CA0 (b), and the time domain with
ttot and trev in (c).

sawtooth trend results from the occurrence of the recovery effects.

The time data ttot and trev is used as input data unn for the ANN being part of the hybrid
model, which is scaled with the maximum values max(ttot) and max(trev) within the
database. The recovery measures are handled as maintenance events, transcribed to
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time series data using trev. The representations in Eq. 4.25 and Eq. 4.26 replace CD0

and CL0 in PM0, leading to the definition of PMmod.

Simon does further research at the FSR, considering different transcriptions of event-
based data into time-series data and its effect on ML capabilities [SS21]. In this
thesis, the abstracted formulation above is used for the execution of flight simulations
concerning the aerodynamically modified UAS in the next Section.

4.4.5. Execution of flight simulations

For the execution of flight simulations, the simulation framework developed in Sub-
section 4.4.1, the characteristics of the UAS from Subsection 4.1.1, and the flight test
planning from Subsection 4.3.1 are used. This way, the same aircraft characteristics
and trajectory are implemented for the flight simulations.

The definition of an FaS and emergency procedures is neglected for flight simulations
because the safety criterion expires, cf. Appendix A.4. Therefore, the planned flight path
remains unchanged for the flight simulations and the variation of the TOW and CA in
the respective FM. Flight simulations are executed according to the experimental design
using PM0 (Subsection 4.2.2 and Subsection 4.4.3) and PMmod (Subsection 4.4.4).

Due to the increasing computational effort according to an increased model complexity
observed in [EHH22] and pilot experiments within this thesis, the simulation frequency
is set to 100Hz. Lowering the frequency is limited by the design of the SIL environment,
where a stimulation frequency of 100Hz is needed to maintain stable flight conditions
within the flight simulations. Consequently, simulation data appear as frequently as
the preprocessed flight test data.

The simulated flight durations and distances are given in Appendix A.8. Unlike the
executed flight test, the flight simulation is successfully conducted at a TOW of 4.82kg
and a CA of 12m/s. This is attributed to the absence of environmental disturbances
such as wind. Similar to the flight test data in Subsection 4.3.3, the flight duration of
the performed flight simulations decreases with increased CA, leading to an imbalance
of the acquired data analyzed in the next Section.
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4.4.6. Data acquisition and analysis

The acquired database contains true states and ideal measurements of the simulated
flight missions. The data does not lack information nor has varying sampling rates and
sensor errors, as noted in the flight test data in Subsection 4.3.3.

To pretend a slight approximation to reality and for the further use of the flight
simulation data, white noise is added to the Nm = 34 ideal measurements midealk at
timestep k. The standard deviation r⃗yy is set according to the observations made in
Subsection 4.4.3 listed in Appendix A.11. Using randn() from Matlab Eq. 4.27 results:

m⃗simk = m⃗idealk + randn(Nm)r⃗yy (4.27)

with r⃗yy = diag
(︂√︁

Ryy
)︂
. (4.28)

The resulting measurements m⃗simk are fed to the database, which finally fulfills the
randomization requirement of the simulation data within the experimental design.

The balance of the obtained flight simulation data is increased, cf. Subsection 4.3.3.
However, the data still suffers an uneven distribution of the TAS, see Figure 4.14.

The flight test and the flight simulation data provide a high level of agreement. For
comparison, an excerpt of flight and simulation data is chosen considering the design
airspeed of CA = 15m/s and the TOW = 4.39kg. The data excerpt includes QC, TR,
and FW flight covering the figure-of-eight profile without repetition.

Aligned at the beginning of the FW flight, the two resulting flight paths based on
the measurements of the flight test (a) and the flight simulation (b) are compared in
Figure 4.15.

The flown flight paths appear with high similarity in both the flight test and simula-
tion. Three significant differences are observed concerning the QC flight, the forward
transition, and the added noise of the simulation data:

• In the flight test, a higher QC flight speed is observed in horizontal flight, leading
to an increased representation of the flown QC flight path. The QC flight in the
flight simulation appears to be shorter.

• Based on a detailed examination of the flight altitude given in Appendix C.2, the
UAS behavior is compared in forward transition. While transitioning, the UAS
loses height in the flight test (from alt ≈ 75m to alt ≈ 65m) and in the flight
simulation (from alt ≈ 75m to alt ≈ 62m). This is attributed to the transition
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Figure 4.14.: Distribution of the considered flight simulation data in FW
flight concerning the take-off weight and true airspeed by
frequency of occurrence.

controller used by the FMU. The difference between flight test and simulation is
explained by the absence of aerodynamic forces in the simulation environment
during TR.

• The noise of the GPS signal observed in the flight test appears to be small. The
uncertainty addressed in the covarianceRyy in Subsection 4.4.3 and the resulting
white noise represented in Figure 4.15b appears to be higher.

The corresponding measurements beginning with tmission = 0 at the start of the
excerpt of the flight path are considered with the rotational rates and the accelerations
below. Starting with the rotational rates in Figure 4.16, similar characteristics within
the QC, TR, and FW flight, especially the right and left turn, are observed.

In QC and TR flight, the measurement data of the flight test slightly differ from the data
acquired in flight simulation. The flight simulation does not map aerodynamic forces
and moments in QC and TR flight nor the influence of environmental disturbances.
Thus, the simulation data are less noisy within the two flight phases. Within the
transition from TR to FW flight, the values show peaks within a short period before
aerodynamic forces and moments are considered.
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Figure 4.15.: Excerpt of the flight path flownwith a CA = 15m/s and TOW =

4.39kg based on flight test data (a) and flight simulation data
(b). In (b), ideal measurements are used to represent the flight
path, where the additional white noise is represented in light
gray.

In particular, the yaw rate r oscillates in QC flight in Figure 4.16f. This is explained
by the unstable lateral movement in QC flight and the limited control of the yaw rate
using different rotation speeds of the lift motors described by the parameter CnT , cf.
Subsection 4.4.2. In comparison, the oscillations in the flight test data in Figure 4.16e
occur with variable amplitude and phase. But especially in the left and right turn
within the FW flight, the yaw rate is higher, which affects the recorded accelerations
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within the flight simulation, see Figure 4.17.

The yaw rate of the simulated UAS leads to high accelerations in the direction of the
y-axis Figure 4.17d. Within the flight test data, the accelerations in the y-direction stay
in a particular range, see Figure 4.17c.

In the x- and z-direction, the accelerations appear similar in the considered excerpt
of flight test and simulation data. Strikingly different are the peaks, which occur
within the transition between TR and FW flight. Again, the abrupt transition from non-
aerodynamic to aerodynamic flight within the simulation environment is considered
for an explanation.

The simulation runs at 100Hz, which enables the data to be acquired at a sampling
rate of 100Hz as well. As shown, the chosen frequency is sufficient to represent the
flight dynamics in FW flight but is close to limits when representing the QC and TR
flight. Thus, the resulting flight conditions remain stable while flight simulation and
the low sampling rate favor the computational effort later on.

Remember the physical model used within the simulation environment considers wind
in estimating the wind speeds with uw, vw, and ww. Even though the variation of wind
is not subject to the performed flight simulations according to the experimental design,
wind is part of the state estimation14 in Chapter 5.

4.5. Conclusions in the field of observability

In conclusion, the implemented simulation environment is assumed to be plausible and
valuable for the application and evaluation of the hybrid model in Chapter 5. However,
the design of PM0 and the adjustment using flight test data offer insights into the
system behavior and the observability of the system states, including the parameter
states. These insights concern: the behavior of the dynamical states, the functionality
of the physical model implemented, and the state estimation with respect to the QC, TR,
and FW flight of the hybrid Scihunter UAS. The three aspects are discussed together
in terms of the joint estimation below.

However, the joint estimation of the dynamical and parameter states of the UAS has
revealed challenges. These are assigned to the topics of filter stability and robustness,
14The states of the wind speeds add additional degrees of freedom to the filter algorithm. Thus, the
success of the state estimation can be approved if the wind speeds are considered to be zero by the
filter algorithm.
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computational effort, and observability. The stability and robustness of the filter can be
ensured by filter tuning of the SCmUKF and the separation of the flight phases discussed
in Subsection 4.4.3. The computational effort has to be reduced by considering fewer
parameters when applying the hybrid model in Chapter 5.

A selection of parameters can favor their observability. Observability has emerged as a
critical factor in the interpretability of the physical model, as it is required by (C) in
Subsection 3.2.3. Transferred to the topic of hybrid model building, two expectations
are followed:

Expectation 1

In the case a state of a physical model is observable, it is also observable
in the hybrid model, built on the same physical model.

Expectation 2

In the case a state is observable, it is interpretable.

The joint estimation of the physical model discussed in Subsection 4.4.3 indicates a
nonlinear system that lacks deterministic observability. The observability problem is
solved assuming slight system noise of the parameter states (Qxxp ∈ [10−5, 10−9]),
which leads to slow but existing convergence of the parameter states. Furthermore,
the bootstrapping method is applied to determine a parameter set successfully.

Remind the standard procedure to identify one factor at a time is neglected as the sep-
aration theorem is no longer applicable [Ada14; Fis74]. The need for specific data and
to specify the procedures of data acquisition taking effect on flight operations contrast
requirement (B3) to use operational data exclusively. Therefore, the observability of
all dynamic and parameter states is considered at a time.

In the hybrid model, the nonlinearity of the system increases with additional states,
which are additively and multiplicatively connected. At the same time, a slight system
noiseQxx cannot be chosen since it leads to a slow convergence behavior and restricted
adaptability, which contradicts the adaptability requirement (D1).

Consequently, it is convenient to distinguish between deterministic and stochastic
observability, which opens the research field of “observability for stochastic nonlinear
systems“, as discussed by Chen et al. in [MY18; LB11; van09; Che80]. This topic
addresses the filter dilemma discussed by Beyer in [WB18], which is considered with
increased attention in the application of the hybrid model and within the discussion of
the results in Chapter 5.
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4.6. Summary

In this Chapter, a UAS is introduced to serve as a flight test platform. Therefore, the
UAS design, geometry, and sensors are stated. Included are the aircraft modifications,
which allow the change of the TOW to take effect on the aircraft’s aerodynamics. The
flight test platform, modifications, and knowledge about the aircraft characteristics
enable an experimental design, including flight tests and flight simulations.

The goal of the experimental design is to explore the applicability of the hybrid model
and its performance in state estimation when applied to flight data. The flight test
data covers an aerodynamic modification of the UAS by increasing the wing span and
area at the wingtips. The flight simulation data implements abstracted degradation
and recovery effects described by time-variant aircraft parameters in PMmod. Four TS
are provided with a systematic change of the data origin; the UAS used in the flight
tests and simulations. In addition, the initial hybrid model structure is planned to be
varied according to the TS conducted. Thus, there are systematic deviations specified
to be learned by the hybrid model.

The flight test and simulation data are obtained from flight tests and simulations at
three different TOWs (4.39kg, 4.62kg, 4.82kg) and three different CAs (12m/s, 15m/s,
18m/s). A standard flight path is defined for both the execution of the flight tests and
simulations.

For flight simulations, a simulation environment is developed. The simulation environ-
ment is based on a SIL framework, a physical model describing the UAS, an adjustment
using flight test data leading to PM0, and an abstraction of degradation and recovery
leading to PMmod. In the SIL framework, the virtual FMU is represented by the same
ArduPilot firmware, taking care of the flight controls in the flight tests.

The generated data of flight tests and simulations is considered usable for the application
and evaluation of the hybrid model. Furthermore, the use of knowledge about the
considered aircraft system is evident for the state estimation task and is taken into
account in Chapter 5.
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Figure 4.16.: Rotational rates recorded in the flight test (left) and the flight
simulation (right) with the roll rate p in (a) and (b), the pitch
rate q in (c) and (d), and the yaw rate r in (e) and (f).
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Figure 4.17.: Accelerations recorded in the flight test (left) and the flight sim-
ulation (right), in body-fixed x-direction (a) and (b), y-direction
(c) and (d), and z-direction (e) and (f).
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5. Application and evaluation of the
hybrid model, results and discussion

In this chapter, the new hybrid model from Chapter 3 and the experimental design
from Chapter 4 are merged. The four TS are conducted to apply and evaluate the
hybrid model, focusing on aerodynamic parameters in FW flight.

The initialization of the hybrid model is described in Section 5.1. First, the application
to simulated flight data is performed in Section 5.2, followed by the application to
flight test data in Section 5.3. Based on the results, the evaluation and discussion are
carried out in Section 5.4 and Section 5.5.

The investigation within a single TS is structured as follows:

• Objective
The objective of the TS is to highlight the focus of the investigation considering
the state estimation task and the capability of the hybrid model to be assessed.

• Expectation
To provide further background of the investigation, expectations are given that
involve results of previous work considering the hybrid model structure or bench-
marks from flow simulations.

• Initialization
According to the initialization procedure introduced in Section 5.1, an initializa-
tion is performed for the TS respectively with reference to the Appendix.

• Results
Within the results, the convergence behavior, the estimation of the model output,
dynamical states, and parameter states are considered in the learning process.

• Consistency
A consistency analysis is provided in addition to evaluating the prediction perfor-
mance of the converged hybrid model.
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5.1. Initialization procedure

The application of the hybrid model, in particular the hybrid model structure and the
state estimation algorithm, the SCmUKF, requires initialization, see Figure 5.1.
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Figure 5.1.: Initialization procedure of the hybrid model when applied to the
flight database. The initialization of the hybrid model structure
and the filter algorithm is stated on the left. The data of the
respective TS is chosen from flight simulations (FS0, FSmod)
and flight tests (FT0, FTmod) on the right.

First, a physical model is chosen to be part of the hybrid model structure. The two
choices consist of PM0, cf. Subsection 4.4.2, and of the reduced physical model PMred,
introduced in Subsection 5.2.3. The ANN1 is equipped with input, hidden, and output
layer nodes, including bias nodes, as well as activation functions for the hidden and
output layer (Nnodes, fh, fy), cf. Subsection 2.3.6.
1Remind, the FNN with one hidden layer is considered in this thesis.
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The SCmUKF is initialized with the hybrid model structure, the initial states x̂ini, SC of
the parameters, the covariance matrices Qxx, Ryy, and Pxx0 , and the filter frequencies
fprediction and fupdate2. Further, the SCmUKF is equipped with αUKF = 10−4 and
κUKF = 3−NUKF using the number of states NUKF based on [Hay04].

The SC referring to the parameter states and the covariance matrices are adjusted
according to the flight phase, see Appendix A.11. This enables the aerodynamic
parameter states to be solely estimated within the FW flight and to stay unchanged
within QC and TR flight, following the procedure used in Subsection 4.4.3.

The database is preprocessed by manually determining the airtime of the UAS based
on the recorded flight data when the UAS is detached from the ground. Thus, the
flight data maps in-flight conditions exclusively to avoid numerical issues when ground
contact affects the balance of forces3.

The covariance matrices of the prior FM, as well as the parameter and ANN weight
states, initialize the subsequent FM. The initial dynamical state vector x⃗dini is set at
the beginning of every flight, including deviations described in the respective TS.

The bootstrapping method is applied to investigate the convergence behavior over
a randomized repetition of the recorded flight data scheduled by flights. As will be
shown, bootstrapping further enables the ANN weight states to converge but increases
computational effort. A TS of 9 flights (or 8 flights in the case of flight test data) is
defined as a bootstrap sample based on Subsection 4.4.3.

The hybrid model is applied to the preprocessed and bootstrapped flight data, including
the inputs u⃗, u⃗nn, and measurements m⃗ in the respective TS.

Thus, in each TS, the approach to hybrid model building developed in Chapter 3 is used
to build a new hybrid model. The resulting hybrid models depend on the specifications
made according to the TS, where they are initialized and trained.

In the following, the ANN estimates selected parameter states as described in Sec-
tion 3.3. The physical models are implemented based on Subsection 4.4.2 and Sub-
section 4.4.3. The resulting state vector merges the dynamical x⃗d, parameter x⃗p, and

2Note, the update frequency fupdate is set for the FW flight. In QC and TR flight, fupdate = 100Hz is
fixed.

3To enable the flight simulations, ground contact is considered with an if condition and within the
balance of forces, see Appendix B. In case of ground contact during VTOL, inconsistencies occur in
the recorded data. These are attributed to numerical issues of the physical model that are considered
unrealistic and cause filter instability.
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ANN weight states x⃗nn as introduced in Eq. 3.2 in Subsection 3.4.2. The joint estima-
tion finally couples the physical model with the ANN, as discussed in Chapter 3 and
examined below.

5.2. Application to flight simulation data

The goal of the application of the hybrid model to flight simulation data is to investigate
the state estimation performance using the true states known from the simulation
environment. The estimation of the model output is additionally compared to the noisy
and ideal measurements.

In particular, the performance in estimating the hidden and time-variant parameter
states by using an ANN is examined. The parameter states used within the flight
simulations and the recorded dynamical states are considered true states and used for
comparison.

According to the experimental design in Section 4.2, the parameters are supposed to
be:

• constant, in TS1 (Subsection 5.2.1),

• manipulated in terms of degradation and recovery, in TS2 (Subsection 5.2.2),

• manipulated in terms of degradation and recovery, while the physical model is
reduced in describing the aircraft aerodynamics, in TS3 (Subsection 5.2.3).

5.2.1. Test series 1: Investigation of the unmodified UAS

In TS1, the constant parameters CD0 , CL0 , and CM0 are subject to the investigation,
while the other parameters introduced in Subsection 4.4.2 are considered fixed. Thus,
the longitudinal movement of the unmodified UAS is under consideration, with a small
subset of three parameters selected.

Objective
The objective is to investigate the hybrid model in estimating three constant parameters
initialized with a deviation from the actual value.
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Expectation
There is no structural discrepancy designed between the physical model used for
simulation and the physical model used within the hybrid model for state estimation.
However, compared to the reference physical model PM0, the hybrid model uses a
state vector, including ANN weight states. The additional degrees of freedom due
to the adjustment of the ANN weight states in the joint state estimation may cause
observability problems.

Initialization
Following the initialization procedure from Section 5.1 and the experimental design
from Section 4.2, the flight simulation data FS0 is used, which is based on PM0. For state
estimation, the hybrid model structure is equipped with the same physical model PM0.
Consequently, the dynamic states x⃗d equal the state vector derived in Subsection 4.4.2.
The parameter state vector contains x⃗p = [CD0 CL0 CM0 ]

T. These are subject to the
estimation using the ANN.

The ANN within the hybrid model is initialized with one input, one hidden, and one
output layer, and three input, two hidden, and three output layer nodes, including a
bias node in the input and output layer. A linear activation function is chosen to be used
in the hidden and the relu66 activation function in the output layer, cf. Subsection 2.3.6.
Relu66 is chosen to constrain the output between 0 and 1, which is scaled to the range
of parameter values, cf. Subsection 3.3.2. The range of the parameter values for scaling
and the implementation of state constraints of the SCmUKF is given in Table A.11.
Thus, the state vector x⃗nn = [xnn1 ... xnn9 ]

T contains 9 ANN weights.

The initial dynamical states x⃗dini are known from the SIL simulation environment.
They are set to be the true states at the defined starting point after data preprocessing.
The initial parameter states x⃗pini is set to be the parameters used in the simulation
environment, see Subsection 4.4.3. The initial ANN weight states x⃗nnini are set to be
small (xnninii = 10−4), except for the weights connecting the bias node of the hidden
layer and the parameter states. These are set to be xOHnn0

= 0.5 to make the ANN map
the mean parameter values using the SC initially, cf. Subsection 3.4.1. In this way, the
ANN is initialized to predict the physical parameters correctly.

Finally, the whole state vector x⃗ini = [x⃗dini x⃗pini x⃗nnini ]
T is initialized, and a deviation

of 20 % to the whole state vector is added. The initial position (pNini , pEini , pDini),
the initial body speeds (uini, vini, wini), and the initial attitude (ψ) are chosen to be
set individually, as given in Appendix A.11.

The measurement covariance matrix Ryy is used from Subsection 4.4.3. To account
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for numerical issues, an increase of 10 % is applied. The entries of the system noise
covariancematrixQxxd referring to the dynamical states are used from Subsection 4.4.3.
The entries of the main diagonal referring to the parameters and ANN weight states
are set to be small. The initial state covariance matrix Pxx0 is set according to the
defined deviations of the initial states. The initial covariance matrices used are given
in Appendix A.11.

The prediction frequency of the filter is set to fprediction = 100Hz, while measurement
updates are provided with fupdate = 1Hz. The maximum number of Bootstrap samples
is set to 30 following the convergence behavior observed in Subsection 4.4.3.

The input vector u⃗ includes the system inputs according to the virtual FMU commands
extended by the TOW and the flight phase as described in Subsection 4.4.2. The input
to the ANN unn covers the scaled flight time per mission trev and the total operation
time ttot using the respective maximum value, cf. Subsection 4.4.4.

The 34 measurements are used to create the residuals with the hybrid model estimates
and support the state update as introduced in Subsection 2.2.2.

Results
The hybrid model converges in the training process, see Figure 5.2. Within the 30
bootstrap samples, 270 flights are processed, including about 2.2× 107 data points.

The input layer weight states remain small, and the influence from the input layer
nodes is negligible. The hidden layer weight states are significantly adjusted within
the first bootstrap sample and slightly change in the further course. Thus, the hidden
layer is considered fully converged after about 1.5× 107 or 20 bootstrap samples.

While converging, both the estimated measurements and states show physically mean-
ingful behavior. Residuals of greater magnitude are observed at the beginning of the
learning process of the hybrid model. Since then, the measurement residuals mostly
stay in the range of the square root of the estimated covariance

√︁
P̂ee, the estimated

standard deviation defined in Subsection 2.2.2. The behavior of the measurement and
state residuals are considered at the beginning and the end of the learning process
with the examination of the 9 FMs within one TS.

The second flight of the 30th Bootstrap sample is retrieved for analysis, showing the
example of the acceleration in the x-direction in Figure 5.3.

The magnitude of the measurement residuals ê is similar in QC and TR flight. The
residuals are in the range of the estimated covariance. In FW flight, the residuals
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Figure 5.2.: Convergence behavior of the ANNweight states in TS1 showing
the FN of the input and hidden layer weights over the processed
data points, flights, and bootstrap samples.

slightly increase.
√︁
P̂ee also increases in FW flight and decreases before the backward

transition enclosing the residuals in FW flight.

The rotational rates behave similarly. Considering the pitch rate q, the residuals are
small within a range of q ∈ [−0.02, 0.02] in rad/s compared to the estimated standard
deviation, see Figure 5.4.

Peaks of deviations are observed during the initialization of every FM and in the
transition between TR and FW flights, which are captured after a short time. In the
FW flight, the residuals of q increase compared to the QC and TR flight.

The estimation of the covariance P̂ee appears to be conservative, which is attributed to
the following:
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Figure 5.3.: Measurement residuals of the acceleration in the x-direction of
flight nF = 263, the second flight of the 30th Bootstrap sample
in TS1.

• The physical model within the filter equals the model used for acquired flight
simulation data.

• The system noise covariance matrix Qxx remains unchanged according to its use
with flight test data in Subsection 4.4.3.

Further examination of the innovation covariance is performed with a numerical
analysis of the estimated (P̂ee) and actual (P̃ee) covariances, introduced and discussed
in Appendix C.3. In addition, the simulation data allows for assuming the actual output
covariance P̃yy, using the ideal measurements yideal. This provides insight into the
filter performance, detached from the measurement noise according to Eq. 2.4. A
comparison of the estimated and actual covariances yields correlation for most of the
signals considered. In some cases, the bias between the estimated covariances appear
to be more significant than the actual covariances. This ensures filter stability but
offers potential for improvement.
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Figure 5.4.: Measurement residuals of the pitch rate of flight nF = 263, the
second flight of the 30th Bootstrap sample in TS1.

Thus, the model output, dynamical states, and covariances are sufficiently estimated
with further examinations given in Appendix C.3. So far, an increase in filter perfor-
mance can be expected when adjusting the initial covariance matrices due to filter
tuning.

The estimated parameter states show high agreement with the true values, as shown in
the example of the drag coefficient CD0 in Figure 5.5. While the parameter states CD0

and CL0 are well estimated within the first data points of the first bootstrap sample,
the estimation of CM0 converges more slowly. Consequently, the slow convergence of
the FN observed in Figure 5.2 can be attributed to the estimation of CM0 .

Consistency
The hybrid model provides a converged and physically meaningful solution in accu-
rately estimating measurements, dynamical states, and parameter states, based on the
adjusted ANN weight states. To investigate the consistency of the resolution, the hybrid
model, including the ANN, and its prediction of the parameters is considered fixed in
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Figure 5.5.: Comparison of the true and estimated parameter state CD0

considering the first three flights in the first and the last Boot-
strap sample in the case of constant parameters.

the following. Consequently, state updates concern the dynamical states exclusively:
x⃗ = x⃗d.

Thus, the known flight simulation data of the first bootstrap sample of TS1 is processed
a second time. For consistency analysis, the initial dynamical states without deviation
are considered. The adjusted ANN weight states are considered fixed.

The Normalized Root Mean Squared Error (NRMSE) is used to evaluate the perfor-
mance of the hybrid model considering the measurements, dynamical states, and
predicted parameters normed by the respective maximum value, see Appendix C.3.
The normalization of the output measure RMSEy by the respective standard deviation√︁
Ryy is given in the Appendix. Further, the NRMSE metric is exclusively considered

in FW flight building a mean value of the 34 measurements, the 25 dynamical states,
and the three parameters predicted, see Table 5.1.

The predicted parameters stay in a specific range of the actual values and do not diverge.
The error metrics are considered small with NRMSExp = 0.29e-2. Thus, the hybrid
model can accurately estimate the measurements and dynamical states. Moreover, the
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Table 5.1.: Mean NRMSE of the outputs y, dynamical states xd, and pa-
rameters xp in FW flight resulting from using the hybrid model,
including parameter prediction and from the physical reference
model in TS1.
Model NRMSEy NRMSExd NRMSExp
Hybrid 3.21e−2 0.53e−2 0.29e−2

Physical 3.21e−2 0.53e−2 0

prediction of the parameters by the ANN using the adjusted and fixed ANN weights is
considered sufficient.

NRMSE metrics are obtained using the physical model PM0 for the same estimation
task for reference. In conclusion, the results of the hybrid model are similar to those
of the physical model. A physical model is sufficient for constant parameters and
even outperforms the hybrid model in terms of simplicity, convergence speed, and
adaptability, cf. Subsection 4.4.3).

5.2.2. Test series 2: Investigation of the modified UAS

In TS2, CD0 , CL0 , and CM0 are considered time-variant, while the other parameters
introduced in Subsection 4.4.2 are fixed. Similar to the investigation in TS1, the
longitudinal movement is investigated while the modified UAS is under consideration.

Objective
The objective is to investigate the hybrid model in estimating three time-variant pa-
rameters initialized with a deviation from the actual value.

Expectation
In this TS, a structural discrepancy between the physical model used for simulation
and the physical model used within the hybrid model occurs for state estimation. The
distinction is expected to be learned and mapped by the hybrid model.

Initialization
The flight simulation data FSmod based on PMmod is used to initialize the structural
discrepancy, while the physical model within the hybrid model remains PM0.
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Further, the initialization of TS2 remains unchanged compared to the initialization of
TS1. Consequently, the system noise covariance matrix Qxx is intentionally kept to
discuss the performance of the hybrid model independently from filter tuning.

Results
The hybrid model converges in estimating time-variant parameters, see Figure 5.6.
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Figure 5.6.: Convergence behavior of the ANN weights in TS2 showing the
FN of the input and hidden layer weights over the processed
data points.

After the second bootstrap sample, the input layer weight states are adjusted to be
completed after 0.2× 107 data points. Minor adjustments follow, which form a trend
of the FN having a low gradient in an acceptable range. The hidden layer weight
states remain in a specific range of FN ∈ [0.9, 0.93] after about 0.5× 107 data points.
According to the stochastic nature of the estimation problem, the solution is considered
converged.

In the case of a converged solution, the measurement and state residuals and their
associated covariances show a similar behavior compared to the results provided in
Subsection 5.2.1.

The hybrid model estimates the modified parameter states accurately, see Figure 5.7.

Both the increasing drag in Figure 5.7a and decreasing lift coefficients in Figure 5.7b
and their recovery recurring every FM can be determined. At the beginning of the
learning process, the estimated states roughly map the behavior of the true states
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Figure 5.7.: Comparison of the true and estimated parameter states CD0

(a) and CL0 (b) considering the first three flights of the first and
the last bootstrap sample in the case of modified parameters
in TS2.

without capturing the recovery (within the first Bootstrap sample). The recovery can
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be assessed accurately after the input layer weight states converge, see Figure 5.6. At
the same time, CM0 provides a constant estimate, with a negligible influence coming
from the input layer of the ANN.

Consistency
Finally, the learned behavior of the time-variant parameters is investigated in terms
of consistency. The following investigation further approves the ability of the hybrid
model to predict the future impact of degradation and recovery in the considered use
case. Based on the procedure in TS1, the ANN weights are considered fixed. These and
the parameters, predicted by the ANN, are not part of the state vector that undergoes
state updates.

Based on an initialization without state deviation and the normalization provided
in Subsection 5.2.1, the mean NRMSE of the measurements, dynamical states, and
parameters are given below, see Table 5.2.

Table 5.2.: Mean NRMSE of the outputs y, dynamical states xd, and pa-
rameters xp in FW flight resulting from using the hybrid model,
including parameter prediction and from the physical reference
model in TS2.
Model NRMSEy NRMSExd NRMSExp
Hybrid 3.21e−2 0.52e−2 0.34e−2

Physical 3.98e−2 2.05e−2 9.41e−2

In conclusion, the hybrid model can accurately predict the hidden, modified, and
time-variant parameters by successfully combining the physical model and the ANN.
Regarding time-variant parameters or modifications of the UAS at hand, the hybrid
model outperforms the physical model in accuracy and interpretability. The physical pa-
rameters are sufficiently predicted. Measurements and dynamical states are estimated
more accurately than the physical model.

5.2.3. Test series 3: Investigation of the modified UAS with a reduced
filter model

In TS3, the six coefficients CD, CY , CL, Cℓ, Cm, and Cn are initialized as constant
parameter states and without the derivatives describing a dependency on AOA, SSA,
deflections, or rotational rates. Consequently, the complexity of the physical model is
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reduced in describing the aerodynamics of the UAS, leading to the definition of PMred
below.

Objective
The objective of the hybrid model is to describe and learn the aerodynamics of the UAS,
including the abstracted degradation and recovery. The resulting model is examined
in estimating the measurements, dynamical states, and parameters of the reduced
physical model. The investigation includes the recursion of dynamical states and virtual
FMU inputs to be part of the input layer of the ANN, as intended in Chapter 3.

Expectation
A decreased accuracy in state estimation is expected when using the reduced physical
model PMred, while it offers less insight into the physics of aerodynamic flight. However,
with an increased learning rate of fupdate, the hybrid model is expected to learn the
aerodynamic behavior of the UAS in FW flight using relevant inputs and dynamical
states.

Initialization
The initialization is based on TS1 and TS2. Similar to TS2, the flight simulation data of
the modified UAS FSmod is chosen, while a reduced physical model PMred is considered
within the hybrid model. In PMred, Eq. 4.4 and Eq. 4.5 are considered simplified.

Consequently, the state vector x⃗d still describes the aircraft system dynamics as de-
scribed by PM0. However, the parameter state vector considers the aerodynamic
coefficients constant: x⃗p = [CD CY CL Cℓ Cm Cn]

T. These are subject to the ANN.

To compensate for the lack of aerodynamic description in FW flight, the scope of the
ANN is increased. Including bias nodes, the ANN holds 22 input, 16 hidden, and 6
output layer nodes, resulting in 426 ANN weight states. The linear activation function
within the hidden and the relu66 activation function within the output layer are
maintained.

The input vector to the ANN contains u⃗nn = [trev ttot nFM u⃗cnn u⃗
(x)
nn ]

T with the number
of the respective FM nFM , the commanded deflections u⃗cnn = [ξcL ξ

c
R η

c ζcL ζ
c
R]

T, and
the system states of the previous time step u⃗(x)nn = [u v w p q r ϕ θ ξL ξR η ζL ζR]

T. These
are selected to support the ANN in estimating the UAS aerodynamics. In addition, the
dynamical states are scaled within the input layer of the ANN using the respective
maximum value for reference, see Appendix C.5.

The initial states are set similarly to TS2 except for the parameter states. The parameter
states of the reduced model are initially set to be constant and based on the observation
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of the aerodynamic coefficients made in TS2. They equal the reference values given in
Appendix C.5.

The covariance matrices correspond to those chosen for TS1 and TS2, except forQxxnn .
Entries of the system noise covariance corresponding to the ANN weight states are
increased to a value of Qxxnnij = 2.5e-7 in FW flight. In addition, the prediction and
update frequencies of the filter are set to fprediction = 100Hz and fupdate = 100Hz to
allow a stable filtering process4.

The 34 measurements of the sensor model described in Subsection 4.4.2 are still used.
Based on the measurements, the residuals are created to support the state update
within the hybrid model.

Results
The hybrid model approximates the UAS aerodynamics in FW flight. With the increased
learning rate, the training process finally converges. In the training process the hybrid
model sufficiently estimates measurements and states including parameter states’
prediction. Convergence is achieved after about 2.1× 107 data points, corresponding
to 252 flights and 28 bootstrap samples, see Figure 5.8. Thus, the time the algorithm
needs to converge increases compared to TS1 and TS2.
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Figure 5.8.: Convergence behavior of the ANN weights in TS3 showing the
FN of the input and hidden layer weights over the processed
data points.

4Note, the reduced physical model is not capable of sufficient state estimation. Therefore an increased
update frequency is necessary.
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The converged solution includes a population of the weighting matrices with non-zero
weight states connecting the input and hidden and the hidden and output layers.
Consequently, dependencies between the full order of the input and the output of the
ANN exist. In addition, the training process revealed some instability as the FN of the
hidden layer weight states peaks after about 1.7× 107 data points, which is considered
detailed in the following.

While learning, estimates of the measurements are adjusted with a frequency of
fupdate = 100Hz, which results in small residuals and adequate estimation of the
measurement covariance matrix P̂ee, see Figure 5.9.
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Figure 5.9.: Measurement residuals of the acceleration in the x-direction of
flight nF = 263, the second flight of the 30th Bootstrap sample
in TS3.

The magnified view of the transition between TR and FW flight shows an issue that
occurs frequently during the transition into FW flight. At the beginning of the FW flight,
the aerodynamics start to take a sudden effect on calculating the balance of forces
and moments. As a result, the estimation of the measurements and states significantly
diverge, which is captured in the further course.
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The ANN within the hybrid model does not allow for a differentiated view of the
influences on the six coefficients CD, CY , CL, Cℓ, Cm, and Cn. Therefore, the effects
on the parameters describing aerodynamic drag, side, and lift forces and aerodynamic
roll, pitch, and yaw moments can not be interpreted further. Dependencies occur
between the input layer nodes and the parameter states, which are not intended to
exist. These are excluded within the simulation data based on the modified physical
model PMmod. However, as an example, rotational rates now have an impact on the
drag coefficient.

Therefore, the validity of the converged solution has to be considered critically. To
visualize and possibly prevent such unexpected dependencies in future work, alternative
ways must be found, which may involve the definition of subnets5.

However, a single ANN is considered in this thesis to describe the full aerodynamics in
both longitudinal and lateral motion. Based on the used simulation data, the predicted
parameter states correspond to the true parameter values. Similar to TS2, the absolute
values of the parameter states are considered to visualize and assess the effect of
degradation and recovery, see Figure 5.10.

The increased learning rate and the adjustment of Qxx increase the adaptability of the
hybrid model. As a result, the model adapts the coefficients CD, CY , and CL in the
first bootstrap sample. More minor deviations occur in the first bootstrap sample at
the beginning of every flight, which happens to be fully captured in bootstrap sample
30. While Figure 5.10 represents the drag coefficient CD as an example, similar CY
and CL behavior is observed.

In TR and QC flight, the parameter state estimation is paused. Here, the ANN still
delivers estimates that drift into the SC and are assumed invalid. The deviations are
captured at the beginning of the FW flight.

Besides the coefficients of the translational motion, the coefficients Cℓ, Cm, and Cn
describing the rotational movement caused by aerodynamic moments are accurately
estimated. For example, the coefficient of the pitching moment Cm is shown in Fig-
ure 5.11.

The rotational coefficients adapt more slowly than the translational coefficients but
finally agree with the true values in bootstrap sample 30.

5The definition of multiple coexisting ANNs describing selected subsets of parameters allows an explicit
assignment of input layer nodes to the corresponding parameter subsets. The applicability of such a
model structure is successfully tested in preliminary experiments and requires further research.
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Figure 5.10.: Comparison of the true and estimated parameter states of
CD considering translational motion in the first three flights of
the first and the last Bootstrap sample in the case of modified
parameters in TS3.

The representation of the absolute values does not provide insight into the degradation
and recovery of the system as intended. Compared to TS2, where the impact of
degradation and recovery is sufficiently estimated, and the hybrid model provides
access to the modified parameters, the influences of degradation and recovery are not
observed in TS3.

The parameters CD, CY , CL, Cℓ, Cm, and Cn significantly change according to the
various flight conditions in the standard FM. Thus, the operation data and modification
effect cannot be identified within the learning process.

Consistency
To further investigate the performance of the hybrid model in TS3, the converged
solution of the ANN weight states and the usability in assessing modifications are
analyzed. Based on the procedure used in TS1 and TS2, the ANN weights are fixed in
delivering the parameter predictions. The dynamical states are subject to state updates
through the filter algorithm exclusively.

For comparison, the PMred is used. With the initialization used in TS1 and TS2, PMred
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Figure 5.11.: Comparison of the true and estimated parameter states of
Cm considering rotational motion in the first three flights of
the first and the last Bootstrap sample in the case of modified
parameters in TS3.

leads to filter instability, which cancels the state estimation. Therefore, the frequency
of the state updates fupdate = 100Hz is adjusted using PMred.

With the application of the converged hybrid model, the state update frequency of
fupdate = 100Hz is also required to maintain filter stability. Instabilities are attributed
to physically inconsistent state prediction. In conclusion, the hybrid model cannot
intercept the insufficiency of PMred.

Even though the hybrid model approximates the physical parameters, resulting in a
4-times lower NRMSE than PMred using constant parameters; the performance is rated
low. Consequently, the estimation of the dynamical states and measurements suffers,
see Table 5.3.

However, the performance in estimating the output and dynamical states using the
hybrid model is lower than the performance of the physical model.

When examining the individual error metrics of the parameters, higher deviations of
the parameter value CD and CL appear, describing an inadequate representation of
the aerodynamic drag and lift forces, see Appendix C.5. The coefficients CY , Cℓ, Cm,
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Table 5.3.: Mean NRMSE of the outputs y, dynamical states xd, and pa-
rameters xp in FW flight resulting from using the hybrid model,
including parameter prediction and from the physical reference
model in TS3.
Model NRMSEy NRMSExd NRMSExp
Hybrid 7.25e−2 21.84e−2 69.97e−2

Physical 4.60e−2 7.71e−2 272.77e−2

and Cn are predicted more accurately compared to PMred leading to an error metric
of NRMSExp ≈ 0.7 given in Table 5.3. However, the prediction of CD and CL appears
insufficient and is therefore considered responsible for the limited estimation quality
of the hybrid model.

Contrary to the expectation, the hybrid model insufficiently learns the aerodynamic
behavior of the UAS in FW flight. One reason for the discrepancies is the choice of the
system noise covariance matrix Qxx, leading to poor estimations of CD and CL. The
entries of Qxx concerning the ANN weight states are increased in value compared to
TS1 and TS2 to enable an increased adaption speed and convergence within the 30
bootstrap samples. However, the increase in adaptability results from a decrease in
filter quality. The rise in the value of Qxx seems to correspond with a loss of stochastic
observability as the uncertainty of the system state prediction is too to high.

In return, using the ANN with the increased number of nodes in TS3 significantly
increases the computational effort. Therefore, the database provided for learning
cannot arbitrarily be increased to account for less adaptability. Compared to TS1 and
TS2, where the time to compute the 2.23× 107 data points of the database is about
3 hours, the computational time in TS3 is increased to about 6 days using the same
computer system. The reason is the high number of states, which ranks N = 457 states
in the case of TS3, compared to N = 37 states in TS1 and TS2.

In conclusion, the choice of the system noise covariance matrix, the scope of the
database, and the computational efficiency affect the hybrid model. Further research is
required to fully discover the influence of filter tuning on the hybrid model. However,
using the hybrid model in TS3 revealed the significance of a sufficient physical model
initializing the hybrid model structure, which is subject to the evaluation performed in
Section 5.4.
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5.3. Application to flight test data

Applying the hybrid model to flight simulation data delivered insights into estimating
the actual system behavior. Accurate flight test data further elaborates on the real
object to be mapped by a digital object. The definition of the experimental design in
Section 4.2 provides flight test data using the same FMU algorithm for flight controls
and the exact flight path. Therefore, the following considerations are not affected by
differences in the flight operations compared to the flight simulations.

The flight test data involves the UAS behavior recorded by sensors and influenced by
environmental disturbances in the real world. In addition to the unmodified UAS used
in Subsection 4.4.3, the modified UAS is part of the consideration. Finally, applying the
hybrid model to flight test data allows the investigation of the proposed hybrid model’s
applicability, usability, and limits. These attributes are subject to the evaluation in
Section 5.4.

5.3.1. Test series 4: Investigation of the unmodified and modified
UAS

In TS4, the flight test data concerning the unmodified UAS, FT0, and the modified
UAS, FTmod, are merged using a binary attribute to decide whether a modification is
applied (unn = 1) or not (unn = 0). Such a behavior corresponds to a random jump
discussed in Subsection 4.4.4.

Based on the results obtained in the previous Section, the PM0 is used in this TS to
describe the UAS aerodynamics sufficiently. The aerodynamic modification of the wing
tips introduced in Subsection 4.1.2 is expected to impact the UAS drag and lift in FW
flight [Enk21]. Therefore, the parameters CD0 and CL0 are selected for investigation
below. Consequently, the hybrid model trained in TS4 considers the fully available
physical knowledge extended by an ANN concerning flight test data.

Objective
The objective is to identify a dependency ofCD0 andCL0 on the employed aerodynamic
modification by using a binary attribute to inform the ANN of the current modification.
Thus, the ability to continuously adapt to upcoming technical modifications is to be
investigated.

130



Expectation
A physically meaningful adaptation of the drag and lift coefficient is expected accord-
ing to the employed aerodynamic modification. CD0 and CL0 are expected to stay
unchanged in the unmodified case and slightly increase by 1-6 % in drag and 3-12 % in
lift production in the modified case, based on flow simulations in [Enk21] introduced
in Subsection 4.1.2.

Initialization
The considered flight test data consists of FT0 and FTmod describing flight tests with
the unmodified and modified UAS. The data include different CAs ∈ [12, 15, 18]m/s,
TOWs ∈ [4.39, 4.55, 4.62, 4.78, 4.82, 4.99] kg, and flight data concerning aerodynamic
modifications with a weight of 0.16kg. In total, 16 flight tests are considered, 8 with
and 8 without aerodynamic modification. Flights at a CA of 12m/s and a TOW of
4.82kg or 4.99kg with modification are unavailable, as discussed in Section 4.3.

Based on the first three TS, using flight simulation data, the hybrid model is initially
equipped with the basic physical model PM0. The dynamical state vector is therefore
given in Subsection 5.2.1. The parameter state vector involves x⃗p = [CD0 CL0 ]

T,
estimated by the ANN.

The ANN is kept small with 2 input, 2 hidden, and 2 output layer nodes, including a
bias node in the input and hidden layer each. The chosen activation functions equal the
setup used previously in Section 5.2. The state vector x⃗nn = [xnn1 ... xnn6 ]

T contains 6
ANN weights.

The initial states are based on measurement data and assumptions without considering
the additional deviations, cf. Subsection 5.2.1. The measurement covariance matrix
Ryy, the system noise covariance matrix Qxx, and the initial state covariance matrix
Pxxini equal the setup used with simulation data in Section 5.2 as described in the
initialization of TS1, see Appendix A.11.

The prediction frequency of the filter is set to fprediction = 100Hz, while measurement
updates are provided with fupdate = 1Hz. The number of bootstrap samples is set to
30.

The input vector u⃗ includes the system inputs according to the FMU commands ex-
tended by the TOW and the FM described in Subsection 4.4.2. The input to the ANN,
u⃗nn, consists of the binary attribute describing the unmodified or modified state of the
UAS. Additional inputs to the ANN within the hybrid model structure are not provided.

The measurements of the 34 sensor signals are used for training, cf. Subsection 4.1.1.
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Results
The hybrid model produces comparable results to PM0 used in Subsection 4.4.3. This
is traced back to the initialization using PM0 and the flight test data of the unmodified
UAS. Differences consist in the employment of FTmod, including unn, which is used
to address the impact of the aerodynamic modification of the UAS on the selected
parameters CD0 and CL0 .

Data analysis reveals divergence of ANN weight states during learning, see Figure 5.12.
The filter algorithm continuously increases ANN weighs in value affecting the hidden
layer (x̂HInn ). In the same time, the hidden layer weights affecting the output layer
(x̂OHnn ) converge. A behavior that has not been observed using simulated flight data.
Using the real flight test data eventually requires an adjustment of the initial covariance
matrices but is not considered the only reason.

In fact, the structure of the ANN can potentially cause divergence. In particular, the
bias nodes in both the input and hidden layers are connected to the output layer via
the respective states xnni . Consequently, the observability of the ANN weight states
can be negatively affected, resulting in the divergence observed in Figure 5.12.
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Figure 5.12.: Convergence behavior of the ANNweights in TS4 showing the
FN of the input and hidden layer weights over the processed
data points.

However, the resulting parameters estimated by the ANN converge within the first
bootstrap sample. To further explore their convergence behavior, the mean value of the
two parameters, and their standard deviation (uncertainty) according to the respective
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bootstrap sample are given in Figure 5.13. The uncertainty of the parameter estimation
is attributed to the stochastic nature of the estimation problem. With CD0 ∈ [0.1, 0.2]
in Figure 5.13a and CL0 ∈ [0.55, 0.75] in Figure 5.13b, significant uncertainty is
considered. The mean value instead retains its value once it has converged.
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Figure 5.13.: The sharklet of a A321 Neo civil transportation aircraft (a) and
the application of sharkskin on an aircraft fuselage (b).

Therefore, the lack of convergence is attributed to the unobservable ANN weight states.
Further research is required to identify the impact of the initialization and the ANN
structure on the hybrid model and its convergence behavior.

Nevertheless, the hybrid model provides a sufficient estimation of the measurements.
Compared to the investigation of flight simulation data in Section 5.2, the residuals of
the flight test data appear to be slightly higher; see Appendix C.6.

However, the estimation of P̂ee corresponds to P̃ee; see Appendix C.6. Consequently,
innovation and output covariance are also sufficiently estimated.

Considering the measured acceleration of the UAS in body-fixed x-direction, a bias in
QC flight is observed, recovered in TR flight, see Figure 5.14. The residuals recorded in
FW flight show a slight influence of the flown trajectory but are overall characterized
by Gaussian noise.

Similarly, the rotational rate q is estimated in FW flight while the estimation perfor-
mance in QC and TR flight allows minor residuals without bias, see Figure 5.15.
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Figure 5.14.: Measurement residuals of the acceleration in the x-direction
of flight nF = 263, the second flight of the 30th Bootstrap
sample in TS4.

The accelerations and rotational rates, especially in longitudinal motion, are sufficiently
estimated concerning the aerodynamic modification with the parameter states CD0

and CL0 . The presented data of flight nF = 263 considers a CA = 12m/s and a
TOW = 4.62kg without aerodynamic modification. Measurement residuals resulting
from flights with aerodynamic modification do not differ significantly. Instead, the effect
of the conducted change is small and difficult to identify, which is further discussed
below.

Consistency
As in Section 5.2, the ANN weight states resulting from the training of the hybrid model
above are considered fixed. This allows for the investigation of the modification’s impact
on CD0 and CL0 . Consequently, the final estimate of the ANN is used, cf. Figure 5.13.

Due to the use of real flight test data, true states are not available for analysis. Therefore,
comparing the hybrid and physical model’s state estimation performance is omitted.
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Figure 5.15.: Measurement residuals of the pitch rate of flight nF = 263,
the second flight of the 30th Bootstrap sample in TS4.

Further, the physical model cannot learn the modification’s effect depending on unn.
The only variables that can be used for comparison are the estimated outputs. Based
on the observations made in Section 5.2 and with flight test data analysis, the measure-
ments are assumed to be too noisy. Consequently, considering the measurements is
assumed to be insufficient for assessing the aerodynamic modification and is therefore
neglected.

Instead, the parameter states are considered. In addition, benchmarks are provided,
introduced in Subsection 4.1.2, and used in the following.

The hybrid model attributes a parameter states’ dependency on unn. The simple design
of the ANN allows a distinction between the unmodified and modified UAS, as shown
in Figure 5.16.

Despite noisy measurements reflected by the residuals and estimated covariances, the
hybrid model identifies an increase in the lift coefficient CL0 . The last update of the
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Figure 5.16.: Comparison of the unmodified and modified UAS concerning
the parameter states CD0 and CL0 in TS4.

ANN weight states determines an increase of the lift coefficient by 6 %. In the same
time, no increase in drag results from the final estimate.

However, the parameter estimation involves uncertainty, cf. Figure 5.13. Both the lift
and drag coefficients vary during learning. They take an average value of a bootstrap
sample that lies above the final estimate. The mean values of the last bootstrap sample
are C̄D0 = 0.145 for the drag and C̄L0 = 0.642 for the lift coefficient.

According to the benchmarks and the prevailing flight conditions, the results mainly
correspond to the expected values based on flow simulations. In the case of the expected
drag increase, the effect of the aerodynamic modification is too small and estimation
uncertainty too high to be determined within the range of 1 to 6 %. Thus, the impact
on CD0 can not be determined sufficiently using the provided UAS sensors, and the
flight test procedure in Section 4.3. The increase of the lift coefficient CL0 by 6 % lies
in the expected range of 3 to 12 %.

Therefore, the results are physically meaningful, and the hybrid model successfully
applies to real flight test data. However, using the flight test data also reveals issues in
the convergence behavior of the implemented ANN and the state estimation within QC
and TR flight. In addition, the consideration of a binary attribute to inform an ANN
about a modification requires further research. This may also involve the consideration
of multiple amendments of different kinds in future work.
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5.4. Evaluation of the approach to hybrid model building

Based on the approach to hybrid model building developed in Chapter 3, four hybrid
models are successfully initialized and trained. They extend the physical model in
the presence of time-variant physical parameters and insufficiencies of the physical
model to a tolerable extent. The physical models implemented in the hybrid model
structures enable physical consistency according to the validity of the physical model
used. Accurate state estimation is provided even in the hybrid models’ early learning
phase, including the prediction of hidden states such as time-variant parameter states.
The estimated measurements, hidden states, and corresponding covariances provide
insight into the hybrid models’ inner working principles, respectively.

Systematic deviations between the real and digital object can be addressed within
the data-driven structure, the ANN, being part of the hybrid models. Because the
ANN alone cannot predict hidden states nor allow and prove physical consistency,
a comparison to a data-driven model using an ANN exclusively is not part of the
evaluation.

Four main groups of requirements are defined for the development in Chapter 3.
Each of the requirements is addressed in the development process. The successful
application and training of the hybrid models using flight simulation and test data
enables an evaluation of aircraft systems. It further allows an outlook for verification
and validation or improvements in future work.

As the requirements definition is based on the identified research gap, a linkage exists
to the state of the art in hybrid model building. The linkage is used to elaborate on the
novelty of the proposed approach to hybrid model building and the contributions in
the field of AI and NI. The fulfillment of the requirements is considered below.

5.4.1. Fulfillment of the initialization requirements (A)

The first two requirements consider the initialization of the new hybrid model (A): the
implementation of a physical model (A1) and the use of physical-based conditions or
assumptions (A2).

It has been shown that a physical model can initialize the hybrid model. In this case,
the physical model does not solely improve physical consistency as it appears in the
literature but builds the starting point of state estimation (ŷhybini = ŷphyini), which
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experiences extension in a learning process. Knowledge about the considered system in
terms of the physical model structure, sensor noise, and assumptions about the system
noise or confidence in the physical model can, therefore, be fully incorporated into the
hybrid model. Furthermore, the dynamical and parameter states of the system can be
initially set according to prior measurements and research results or physical-based
assumptions (x̂hybini = x̂phyini). The hybrid model captures deviations of the initial
states, while evidence is provided for a variation of 20 % within the TS concerning
flight simulation data.

In addition, SC can be initially provided, which limits the solution space of the selected
states and improves filter stability. The sharp limits of the chosen relu66 output
activation function further improve filter stability by limiting the prediction horizon of
the ANN and supporting the filtering process6.

The TS shows the closer the implemented physical model is to the described system,
the better the hybrid model performs initially. Starting with TS1, the hybrid model
has no structural discrepancy to be learned and thus obtains good results since the
early phase of state estimation. The hybrid model still performs well if a structural
discrepancy between the model and the described system is added in TS2. It separates
the learning of the manipulated parameter states CD0 and CL0 , which converge within
20 flights toward the actual values. The dynamical states find sufficient estimates since
initialization.

In the case of TS3, the stated discrepancy is increased, resulting in an insufficient
mapping due to a reduced physical model PMred. Consequently, the hybrid model
initialized with the reduced physical model loses the ability of sufficient state estimation
and prediction compared to TS1 and TS2. The hybrid model’s learning rate, manifested
in fupdate, is therefore increased to provide applicability.

Finally, the initialization requirement (A) and its sub-requirements (A1) and (A2) are
fulfilled with the limitation of the learning rate fupdate, which needs to be adjusted in
the case an insufficient physical model is used for initialization.

5.4.2. Fulfillment of the generalization requirements (B)

The generalization requirement (B) is evaluated in terms of the hybridmodel´s ability to
extrapolate (B1) and to avoid overfitting (B2) using a limited database with operational
6Preliminary tests have shown that the choice of sigmoid or tangent hyperbolic functions can lead to
instability. They do not provide sharp limits leading to divergent behavior at their edges.
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data exclusively (B3).

An extrapolation is performed when predicting the system states concerning new
operational conditions, which are unknown to the hybrid model. The operational
conditions change with the TOW, and CA included in the operational data. However,
as the hybrid model is designed to adapt to such changes, the effect on the prediction
performance is automatically captured within the state estimation process. Remind the
state update frequency in TS1 and TS2 is set fupdate = 1Hz with minor adjustments
of the ANN weight states (Qxxnnij = 10−8). This enables state prediction and thus
extrapolation for 99 time steps without a state correction (x̂∗ = f(x̂)). Therefore, a
statement of extrapolation and generalization is possible to a limited extent. TS that
allow further investigation of extrapolation are not performed.

To the extent of the changing operational conditions within the considered database and
the slow adaption speed of the ANN within the hybrid model, the performance in state
estimation and prediction is sufficient. In both the learning phase and the consistency
analysis handling a converged solution of the hybrid model, the estimation of states,
measurements, and covariances showminor residuals and physically meaningful values.
Thus, the extrapolation requirement (B1) is fulfilled according to the use case.

In particular, the measurement residuals and the corresponding covariance estimation
reflect the initially set sensor noise (Ryy ̸= 0). Therefore, overfitting is successfully
avoided as required with (B2) and intended in the design of the hybrid model.

Operational data are exclusively considered using the acquired flight simulation and
flight test data, which reflect standard FMs as expected in operation. Thus, the
application of the hybrid model is successfully performed concerning (B1) and (B2)
with a limited database of operational flight data (u = uops, m = mops) as required in
(B3).

For future work, some conclusions in extrapolation and PENN are given in the following.
The proposed hybrid model enables a data-driven structure to take effect on the
parameters of a physical model. Consequently, the hybrid model can potentially
unlearn the ability to extrapolate when modifying the physical model with which it
is initialized. On the other hand, learning the PENN does not affect the physically
encoded model and thus extrapolation. However, it limits the adaptability of the hybrid
structure, a dilemma discussed further in Section 5.5 and should be addressed in future
work.
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5.4.3. Fulfillment of the interpretation requirements (C)

For the hybrid model’s interpretability (C), access to inner system states is required
(C1) and consistency with benchmarks of system properties is desired (C2).

The hybrid model design enables access to hidden states, including dynamical and pa-
rameter states, as intended in Chapter 3. Implementing a parameter scheduling model
structure combining the physical model with an ANN provides sufficient estimates
of the parameters observed in TS1 and TS2. Using a reduced physical model in TS3
lowers the validity of state estimation and limits insight into the system to visualize
and prove the impact of modifications. In the case of TS4, the true states of the system
are unknown for comparison, but the results are considered physically meaningful and
in agreement with the provided benchmarks.

Concerning the use of a sufficient physical model for initialization, the parameter state
prediction by the ANN provides physically consistent results compared to the true
parameter states contained in the flight simulation data. In conclusion, the hybrid
model offers insight into the system states while learning and delivers a sufficient
prediction of states once converged. Prediction results can potentially be used to
simulate the further development of system degradation and recovery measures in
operation and before FMs, including the effect on system dynamics and energy demand
in future work.

The hybrid model is, therefore, interpretable (C), provides access to the inner states
(C1), and allows the use of benchmarks (C2) according to the formulation of the
physical model and the selected parameter states.

However, as already concluded from using the physical reference model in Section 4.6,
the observability of states of a complex system such as the UAS under consideration is
essential. Such a system meets the criteria of a stochastic nonlinear system and suffers
from a lack of deterministic observability, as shown in Subsection 4.4.3. Therefore, the
dynamical states, particularly the parameter states, must be chosen wisely to allow at
least stochastic observation.

In this thesis, a selection of parameter states is considered, enabling sufficient estimates
of the parameters and, thus, interpretability. In TS1 and TS2, the longitudinal motion
of the UAS is regarded with the parameters CD0 , CL0 , and CM0 . In TS3, both the
longitudinal and lateral movement are described using CD, CY , CL, Cℓ, Cm, and Cn
within a reduced physical model PMred. In TS4, CD0 and CL0 are exclusively estimated
using an ANN.
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Consequently, the selected aerodynamic parameters can be distinguished by describing
each translational and rotational motion in one axis direction. Therefore, a translational
or rotational motion in the three directions is uniquely assigned to a parameter state,
allowing stochastic observability and state prediction, as shown in Section 5.2.

Assignments to multiple parameters are handled with the adjustment of the physical
model in Subsection 4.4.3. The sufficient estimation of the 31 parameters is achieved
with a loss of adaptability. Further research is needed to explore the behavior of the
hybrid model with an increased parameter state vector describing similar motion and
axis.

So far, the following findings can be stated to be further examined in future work:

• The hybrid model assumes the observability of the physical model used for
initialization, as expected in Section 4.6 (Expectation 1).

• The interpretability of states is linked to their observability, as expected in Sec-
tion 4.6 (Expectation 2).

However, observability and, thus, interpretability are related to adaptability, resulting
in a filter dilemma discussed in Section 5.5.

5.4.4. Fulfillment of the adaption requirements (D)

The adaption requirements (D) are the ability to adapt through learning (D1), to
process automated information flow (D2), and to concern additional data (D3) using
the hybrid model.

The hybrid model uses a recursive filter method for state estimation. The state vector
contains dynamical, parameter, and ANN weight states, which are jointly estimated.
Within the joint estimation process, the filter algorithm continuously adjusts the state
vector and the covariance estimation to minimize the variance of the measurement
residuals (Vk × êk ̸= 0). Consequently, the hybrid model continuously adapts through
learning (D1), saves knowledge about prior estimates, and updates the state covariance
matrix Pxx, cf. Eq. 2.5.

Restrictions appear in TS1 and TS2, considering fupdate = 1Hz. In this case, adaption
is paused for a specific period so that the hybrid model’s extrapolation can be studied,
cf. Subsection 5.4.2.
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The adaptability of the approach can be influenced by the learning rate fupdate and the
choice of the system noise covariance matrix Qxx. In particular, setting Qxx initially
small increases the filter quality but decreases adaptability. A dilemma has been
observed in adjusting the physical model in Subsection 4.4.3 and in applying the hybrid
model in Sections 5.2 and 5.3. The application to flight simulation and test data is
performed with small values of Qxx that allow the parameter states to be sufficiently
estimated. However, it increased the time to learn and converge to the set of ANN
weight states. In the case of TS3, the values of Qxx concerning the ANN weight states
are increased to allow adaptability and enable the hybrid model’s applicability. However,
the results are reported to be poor due to decreased filter quality.

The dilemma is addressed by applying the bootstrap method to allow convergence
and functional predictions of the parameter states in stochastic observability. Thus,
concerning stochastic systems and stochastically observable states, sufficient filter
quality is required for which losses in adaptability must be accepted. Even though
bootstrapping is implemented in TS3, adjustment of Qxx is needed as the number of
bootstrap samples is limited and increases computational time7. Therefore, the aspect
of the computational effort has to be considered in the context of adaptability and
filter quality.

Processing automated information flow is not explicitly tested within the provided TS.
However, based on the designed filter algorithm and its application, statements towards
applicability and real-time capability are made to guide future work on automated
information flow.

The design of the filter method includes time-discretized steps, which contain:

• input data u shared by the physical model and the ANN,

• additional data unn feeding the ANN exclusively,

• and the prior state estimates x̂k|k−1, which are used within the filter algorithm
and also provided the ANN input layer.

Therefore, new information about the real object can be automatically linked to the
hybrid model so that estimates and predictions can be exchanged with the digital
object and vice versa (D2).
7Remind, in TS3 an ANN is used covering 426 weights, which causes the hybrid model to process the
flight simulation data with 30 bootstrap samples in 6 days. In comparison, TS1, TS2, and TS4 are
conducted in approximately 3 hours using the same computer system.
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The real-time capability must be enabled to allow automated information flow and
testing in future work. The chosen filter algorithm enables new information to be
processed when available but suffers from the high computational effort corresponding
to the size of the state vector. The computational time of learning the hybrid model
exceeds the frequencies of the filter used for predictions and updates (tcalck >>

1
fprediction

. This falls short of the desired real-time capability for automating information
flow in flight operations (D2).

Therefore, the approach to hybrid model building must be revised or extended to
decrease computational effort. Possible solutions consist of adapting the methodology
and modifying the implementation besides upgrading the computing hardware, which
is detailed in the outlook of this thesis.

Lastly, the hybrid model involves additional data unn into the input layer of the ANN.
The additional data describes the total operation time and the time since the recovery in
TS1, TS2, and TS3 or the binary information whether a modification is active or not in
TS4. The data supplies significant information to the hybrid model to sufficiently learn
and predict the parameter states. Therefore, the hybrid model enables the inclusion of
additional data (unn ̸= 0) and benefits from using such data (D3).

In conclusion, the resulting hybrid models are adaptive and satisfy requirements (D1)
and (D3), while requirement (D2) needs further research to enable real-time capability
and testing of automated information flow.

5.5. Discussion of the results

The developed approach to hybrid model building addresses some shortcomings of the
prevailing concepts in the literature. These concern model structure and optimization.
The evaluation is valid for the considered use case and the database used but serves as
an outlook for further verification and validation in future work.

The innovation of the resulting hybrid model lies in its parameter scheduling structure,
combining a physical model and an ANN paired with a recursive optimal filter method,
enabling continuous adaption through learning and recursions that emphasize a deep
coupling of the two model parts.

Requirements include the hybrid model’s initialization, generalization, interpretation,
and adaption. A initialization issue occurs when the complexity of the initial phys-
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ical model is insufficient. In this case, the learning rate can be increased to ensure
adaptability and filter stability.

In terms of generalization, interpretation, and adaption, the hybrid model runs into a
structural and a filter dilemma. Both are discussed in detail in the next Section.

5.5.1. The structural dilemma and the filter dilemma

The structural dilemma occurs due to the parameter scheduling structure of the pro-
posed hybrid model and is first mentioned in Subsection 5.4.2. The ANN within the
hybrid model is a data-driven open structure attached to the physical parameters
used as an interface between the data-driven and physical models. While the ANN
enables the hybrid model´s system to be adapted to the provided data, the physical
parameters adjust and may distance from their general meaning initially given. For
example, aerodynamic derivatives, which flow simulations, wind tunnel, and flight
tests have elaborated, may be used for initialization. These are adjusted in the learning
process of the hybrid model according to the operational data used.

Consequently, the hybrid model structure is adapted to increase the accuracy and
precision of mapping the data used for learning. However, it can unlearn the mapping of
the whole envelope as it may be initially granted. Thus, the adaptability of the structure
of the proposed hybrid model is provided to the extent that a loss of generalizability is
tolerated. This forces the need for expert knowledge to sufficiently design the hybrid
model structure initially and use the results later on.

The filter dilemma is part of the evaluation in Subsection 5.4.4 and addresses adapt-
ability in compared to filter quality. While adaptability is affected by filter properties
(fupdate and Qxx), these also affect filter quality. In detail, an increase of Qxx increases
the ability to adapt to anomalies within the provided data. Still, if needed, it decreases
the filter’s effect to compensate for such aberrations. Consequently, the hybrid model
is challenged to distinguish anomalies as they occur due to technical modification on
the one hand or environmental or sensor disturbances on the other hand.

In particular, the presence of stochastically observable states requires a sufficient filter
effect, typically provided by using a physical model. Whether the corresponding set of
physical parameters is considered fixed or slightly adjustable to a tolerable extent, the
physical model affords the required filter effect.
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It is obvious to solve both the structural and filter dilemmas described above by
replacing the data-driven model structure within the hybrid model with physical-
based dependencies. The data-driven model consequently provides analysis of the
model´s behavior to finally conduct physical laws to be used instead of the ANN.

In conclusion, replacing data-driven structures with a physical model is suggested
for future work, eventually transforming the hybrid model into a physical one. In
this case, the new approach to hybrid model building is not only used to expand a
physical model by a data-driven model as intended but also extends physical-based
knowledge. This procedure finally offers an alternative view of the use of AI and NI in
modeling technical systems and intelligent maintenance, where the following thoughts
and conclusions are contributed.

5.5.2. Contributions in the context of artificial intelligence

At the beginning of the thesis, the topic of AI is introduced, where ML and DL settle
with the use of data-driven models such as the ANN. In the literature, replacing physical
models with data-driven models has become popular. A need for implementing physics
has been recognized against the background of technical systems following rules
based on natural phenomena. But still, the development of AI focuses on data-driven
modeling, which eventually involves physical-based features or a modification of the
optimization algorithm as discussed in Chapter 2.

In contrast, this thesis questions how modeling of physically experienceable and experi-
enced systems can and should be based on physical models in the context of AI. It has
been shown that physical model building does not exclude the use of AI. Instead, AI
can be used to extend a physical model or find physical laws and dependencies. In this
case, AI is considered a tool. Such an approach to using AI is a young research trend8,
a promising research field to settle the developed technique for hybrid model building.

Furthermore, the increased use of physical models in the context of AI opens up access
to several methods and considerations that have already been successfully used in
system identification. One of these, the observability of states, whether deterministic
or stochastic, is placed for the first time in hybrid model building using ANNs. It
questions the integrity of data-driven approaches in technical systems when physical
interpretability and consistency are required.
8Contributions are made by Cornelio et al. in 2023. They successfully derive physical laws explaining
natural phenomena “by combining logical reasoning with symbolic regression“ [Cor+23].
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In conclusion, the research within this thesis contributes to the field of AI and NI,
where the use of AI argues for using the NI term in the mechanical engineering domain
as defined in Subsection 2.3.5. In the sense of NI, knowledge can be gained due to AI’s
use. Therefore, AI has to rely on existing knowledge, which implies that AI should be
knowledge-based rather than data-driven. Consequently, the proposed approach to
hybrid model building finds a basis to use available knowledge and to explore new
knowledge in future work.

5.5.3. Contributions in the field of aircraft maintenance

The motivation for this thesis lies in extending physical knowledge using aspects of AI.
However, the use case is considered in the field of aircraft maintenance. Consequently,
the contributions of the developed hybrid model in the field of aircraft maintenance
will be discussed in the following.

The application and evaluation of the hybrid model have shown that its initialization us-
ing a sufficient physical model and valuable assumptions of the aircraft states contribute
significantly to the model performance. Further, describing the physics of the aircraft
and its states cannot easily be replaced by data-driven models. Conversely, knowledge
about the aircraft system is fundamental to the creation of hybrid models. Success in
intelligent maintenance of aircraft, which depends on modeling performance, therefore
builds on the understanding of the aircraft physics.

In terms of extrapolation, the hybrid model has shown accurate predictions of states,
which are either supported by measurements or hidden. In particular, the prediction of
the aerodynamic coefficients of the aircraft can have a useful value for the evaluation
of the aircraft’s health and its evolution in future operations. Due to the structure
of the hybrid model, these parameters are available for interpretation and thus for
understanding and explaining the digital model and its real counterpart. This attribute
is crucial for the safety criticality of aircraft maintenance and thus operations (cf.
Section 2.1).

Lastly, the integration of a data-driven model part and the use of a time-discrete Kalman
filter variant enables a higher adaptivity of the hybrid model. New information can be
used incrementally to update the model, while additional data, such as maintenance
data, can be utilized. Secondly, the aircraft parameters can be considered non-constant
allowing degradation and maintenance effects to be mapped. Consequently, the use of
a data-driven part within the hybrid model makes a valuable contribution when used
in dosed quantities.
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6. Summary and conclusions

This thesis develops and applies a new approach to hybrid model building to flight test
and simulation data of an Unmanned Aircraft System (UAS). The goal is the estimation
of time-variant aircraft parameters to account for degradation and recovery effects
and to support intelligent maintenance. Intelligent maintenance requires optimization,
which has to account for physical consistency and interpretability as well as accuracy
and adaptability in the aviation domain. Consequently, a hybrid model promising such
characteristics is appropriate.

The first chapter introduces aspects of aircraft maintenance and its contribution to
aviation safety, efficiency, and sustainability. Intelligent maintenance turns out to be
the most promising in the respective areas. It can rely on system models, which result
from system identification. Therefore, fundamentals in aircraft system identification
are given, including the recursive filter method and the definition of observability.

If a physical model describing an aircraft system is insufficient and fails to map time-
variant parameters, data-driven models should be coupled. This requires an approach
to hybrid model building. Definitions in the hybrid model building field deliver a basic
understanding of the model parts and the different classes where they are coupled.
In addition, the Digital Twin (DT), Artificial Intelligence (AI), and, in particular, the
Artificial Neural Network (ANN) are discussed to address requirements on the hybrid
model later. The combination of a physical model and an ANN is emphasized in
the literature with four prevailing concepts. These are the physical-based Feature
Engineering (FE), the physical guided (PGNN), informed (PINN), and encoded neural
network (PENN). They address the need for physical consistency.

However, these concepts argue for integrating physics into neural networks rather
than vice versa. They struggle with initialization, generalization, interpretation, and
adaption, leading to identifying the research gap. The research gap concerns the hybrid
model structure and the learning method. Therefore, an alternative to the prevailing
parallel and serial model structures and the batch-wise and least-squares learning
strategies is offered.
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Three primary goals are specified and achieved:

• the extension of a physical model using an ANN,

• the access to an interpretable model structure,

• and the adaption through learning.

Chapter 3 introduces a development methodology that defines requirements, the
conceptual design, the determination of a model structure, and the implementation
of a state estimation algorithm for system identification. Based on the research gap
and in the context of intelligent aircraft systems, requirements are defined in terms
of initialization, generalization, interpretation, and adaption. The requirements and
defined subcategories are addressed within the conceptual design of the new hybrid
model. The concept considers the physical parameters as time-variant and as the
interface between the physical model and an ANN. Systematic deviations, which occur
due to insufficient mapping by the physical model are accounted for when using the
ANN.

Based on the concept, a parameter scheduling model structure is chosen to combine the
physical model and the ANN, which enables the learning of time-variant parameters.
The parameter scheduling structure defines parameters as the output of the ANN and
input to the physical model. Further, the input layer of the ANN can include additional
data, such as maintenance data and recursions of system states.

A joint state estimation procedure is derived to allow for deep coupling of the hybrid
model structure, adaptive optimization, and the incorporation of further a priori knowl-
edge. Based on a recursive filter method, adaption is enabled as soon as information
about a new time step is available while considering sensor noise. The joint estimation
of states considers both models simultaneously. To address nonlinearities and filter
instabilities in state estimation, a modified Unscented Kalman Filter is chosen and
extended by State Constraints (SCmUKF). Preliminary studies confirm the applicability
and usability of the resulting hybrid model in the case of less complex systems.

In this thesis, the complexity of the use case is increased by considering the flight data
of a UAS. The UAS is introduced as a flight test platform in Chapter 4. It is employed
within an experimental design involving flight tests and simulation data. Flight tests
are executed to acquire data for the application of the hybrid model and to support
the development of an SIL simulation environment.

The choice of the UAS used as a flight test platform enables the integration of aircraft
modifications into the real and simulated system. These modifications are subject
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to time-variant aircraft parameters to be learned by the hybrid model in Chapter 5.
Four Test Series (TS) are executed to apply and evaluate the hybrid model. The state
estimation task involves the consideration of the unmodified and modified UAS and
different physical models.

Using flight simulation data, the hybrid model converges. Noisy measurements, dy-
namical states, and parameter states are sufficiently estimated. In particular, the ANN
learns to predict the parameter states in FW flight in the case of constant (TS1) and
time-variant parameters (TS2). In the case of using a reduced physical model for
initialization (TS3), limitations are uncovered in terms of adaptability versus filter
quality.

The application to flight test data confirms the applicability and usability of the hybrid
model concerning flight behavior and environmental and sensor disturbances in the
real world. Unless convergence of some ANN weights states has not been observed, the
ANN offered a physically meaningful prediction of the parameters compared to the
provided benchmarks. However, the convergence issues indicate a lack of observability
concerning the ANN.

In the evaluation, the requirements from Chapter 3 and the results from Chapter 5 are
merged, followed by the discussion and the main conclusions summarized below.

6.1. Conclusions

The developed approach to hybrid model building fulfills the defined requirements
primarily. Physical knowledge can be fully used for initialization, extrapolation granted,
and overfitting prevented using operational data exclusively. The hybridmodel structure
is interpretable under the restriction of stochastic observability. Adaptability is provided
due to the ability to learn and to account for additional data but lacks the real-time
capability to enable automated information flow in operation.

A dilemma in the structural design and the applied filter method is observed. While
the parameter scheduling structure can increase adaptability, the initially provided
system of the physical model can be affected and thus lose generalizability. Second,
a filter dilemma occurs due to the balancing act between adaptability and the filter
effect concerning any anomalies.
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It is therefore discussed to enhance physical knowledge by using AI to infer physical
dependencies replacing data-driven structures. Consequently, the hybrid model should
consider Natural Intelligence (NI) to be supported by AI in knowledge gain.

Consequently, the use of physical models in the context of intelligent maintenance of
aircraft is suggested. They can form the basis of hybrid model, which is to be extended
with a data-driven part, if the inclusion of maintenance data and increased adaptability
is required. This can increase model performance, which finally contributes to safe and
more efficient aircraft operations.

6.2. Outlook

For future work, improvements of the recursive filter algorithm used within the hybrid
model are recommended before verification and validation can be achieved. Whether
the hybrid model is used to extend a physical model as intended or to infer physical
dependencies, finally, learning is based on the recursive filter method. The filter
algorithm can be further developed regarding adaptability and computational efficiency.

Adaptability can be addressed by examining the covariancesQxx andRyy to understand
their effect within the hybrid model fully. Furthermore, the use of adaptive covariance
algorithms and hyperparameter optimization can be proven, which are promising
features [EK22; EHH22].

The computational efficiency is affected by the joint estimation procedure used, where
the computational time scales with the size of the system states vector. Therefore,
merging the Unscented Kalman Filter (UKF) and the Extended Kalman Filter (EKF)
and implementing dual estimation can reduce the computational time by simplifying
the state prediction task of the constant ANN weights states.

Finally, improving the convergence behavior and robustness and enabling the real-
time capability of the hybrid model form the basis for verification, validation, and
the implementation of a DT. In perspective, the DT can visualize degradation and
recovery effects in future aircraft operations based on time-variant parameters. Their
supporting role in predicting any technical system’s Remaining Useful Life (RUL) and
gaining knowledge is subject to future research.
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A. Supplementary information to the
UAS flight test platform

A.1. Technical drawing of the hybrid Scihunter UAS
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P

Figure A.1.: Technical drawing of the hybrid Scihunter UAS, top view
[Frö+19]
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Figure A.2.: Technical drawing of the hybrid Scihunter UAS, side view
[Frö+19]
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Figure A.3.: Technical drawing of the hybrid Scihunter UAS, rear view
[Frö+19]

A.2. Motorization of the hybrid Scihunter UAS

1

3

4

2

5

Figure A.4.: Illustration of motor assignments and direction of rotation
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Table A.1.: Motor assignments and direction of rotation
Motor position motor type direction of rotation

1 lift motor clockwise (viewed from top)
2 lift motor clockwise (viewed from top)
3 lift motor counter clockwise (viewed from top)
4 lift motor counter clockwise (viewed from top)
5 pusher motor clockwise (viewed from rear)

Table A.2.: Technical description of the lift and pusher motors used
Pusher motor Lift motor

Description Roxxy BL Outrunner
C35-48-06 (700KV)

Roxxy BL Outrunner
C42-40-12 (850KV)

Manufacturer Multiplex Multiplex
Nominal rotation speed 850kV 700kV
Operating voltage 7V - 15V 10V - 20V
Continuous current 35A 42A
Power 480W 750W
Mass 130g 172g
Max. rotation speed 12580rpm 10360rpm
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A.3. Mounting the technical modifications of the UAS

(a) (b)

Figure A.5.: Mounting of weight modules on the right wing of the UAS (a)
and the mounted lift module on the right wing tip (b) [Fic+20].

A.4. Flight test environment

A designated flight test site at the TU Darmstadt is used as flight test environment. It is
located at Campus Lichtwiese in Darmstadt, near the university building L1|05, where
the FSR operates its test facilities and a workshop for various flight test platforms.
The close logistical connection allows flight testing including the recharging of battery
packs, the implementation of modifications, repairs, and access to the power supply
for operating a ground station.

The UAS weights less than 5kg and is operated in a Visual Line Of Side (VLOS), in a
“controlled ground area that might be located in a sparsely populated area“ and “[. . . ]
with low risk to encounter with manned aircraft“ [Eur22].

The flight test site is limited in length and width to about 410m× 115m, describing the
dimensions of the flight geography area on the ground; see Figure A.6a. The meadow
on the ground is surrounded by woods up to 35m high, leading to the decision to
operate the UAS at a minimum of 75m AGL in FW flight; see Figure A.6b. The upper
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(a) (b)

Figure A.6.: Location of the flight test site of the TU Darmstadt, based on
openaip1(a) and implemented geofence to control the opera-
tional volume, based on [Joe22] and google earth2(b)

limit is set by a maximum AGL of 95m for the planned flight operations following the
rules defined by TU Darmstadt and EASA [Eur22].

The contingency volume is set, considering the flight test environment and the EASA
rules. When leaving the planned flight path3, the UAS returns to the flight path,
using contingency volume and increasing alertness. To ensure the UAS not leaving
the contingency and thus the operational volume in flight operations, emergency
procedures have to be defined.

The emergency procedures implement FaSs of the FMU using the ArduPilot Mission
Planner software. A FaS is triggered when leaving the operational volume, realized by
implementing a geofence4. The defined geofence describes an operational volume of
about 480m in length, 215m in width, and from 65m AGL to 100m AGL in height, see
Figure A.6b.

1https://www.openaip.net/map#15.15/49.857512/8.694495
2Map basis: Darmstadt Lichtwiese [online], 49°51‘35“N 8°41‘06“E, Altitude 178m, Google Earthfor
Chrome, GeoBasis-DE/BKG (©2009), URL: http://www.google.com/earth

3Planning the flight path inside the flight geography volume is seen as a contingency procedure as it is
suggested by EASA [Eur22].

4A geofence defines the measured GPS position to be in a certain space. In case of leaving
the defined space specific procedures are triggered to return into the defined space, based on
https://ardupilot.org/.
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A.5. Specification of the flight path using waypoints

Figure A.7.: Specified flight path using waypoints in ardupilot mission plan-
ner [Joe22]
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A.6. Definition of the waypoints used in ardupilot mission
planner

The waypoints describe the planned trajectory of the UAS. The standard FM covers 10
repetitions of the figure-of-eight-profile. The .waypoints-file is given below to reproduce
flight tests and simulations if needed.

QGC WPL 110

0 1 0 16 0 0 0 0 49.860388 8.686638 176.060000 1

1 0 3 84 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 75.000000 1

2 0 0 3000 3.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.000000 1

3 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.86015630 8.68682470 75.000000 1

4 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.86003010 8.68690790 75.000000 1

5 0 0 3000 4.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.000000 1

6 0 0 178 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.000000 1

7 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85962550 8.68719220 75.000000 1

8 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85843240 8.68797530 75.000000 1

9 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85812110 8.68807200 75.000000 1

10 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85791360 8.68797530 75.000000 1

11 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85773380 8.68771790 75.000000 1

12 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85763010 8.68726730 75.000000 1

13 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85769920 8.68679520 75.000000 1

14 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85785820 8.68646260 75.000000 1

15 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85807270 8.68631240 75.000000 1

16 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85827330 8.68625340 75.000000 1

17 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85982260 8.68754630 75.000000 1

18 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.86003010 8.68754630 75.000000 1

19 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.86018920 8.68739600 75.000000 1

20 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.86028080 8.68702040 75.000000 1

21 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.86027220 8.68661280 75.000000 1

22 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.86017540 8.68621590 75.000000 1

23 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85995400 8.68602280 75.000000 1

24 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85971890 8.68610860 75.000000 1

25 0 0 177 8.00000000 2.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.000000 1

26 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85843070 8.68797530 95.000000 1

27 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85811770 8.68807200 95.000000 1
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28 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85791020 8.68798080 95.000000 1

29 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85773210 8.68771790 95.000000 1

30 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85763180 8.68726460 95.000000 1

31 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85769920 8.68679790 95.000000 1

32 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85786180 8.68646260 95.000000 1

33 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85807450 8.68631780 95.000000 1

34 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85827680 8.68625340 95.000000 1

35 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85982260 8.68754090 95.000000 1

36 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.86003010 8.68754630 95.000000 1

37 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.86019260 8.68740140 95.000000 1

38 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.86027910 8.68701520 95.000000 1

39 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.86027050 8.68661020 95.000000 1

40 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.86017710 8.68621310 95.000000 1

41 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85995580 8.68602010 95.000000 1

42 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85971540 8.68610050 95.000000 1

43 0 0 177 26.00000000 2.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.000000 1

44 0 0 177 8.00000000 2.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.000000 1

45 0 0 178 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.000000 1

46 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85843240 8.68797530 75.000000 1

47 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85811770 8.68806660 75.000000 1

48 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85790670 8.68797530 75.000000 1

49 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85773380 8.68772860 75.000000 1

50 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85763690 8.68727270 75.000000 1

51 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85769920 8.68679790 75.000000 1

52 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85785480 8.68646260 75.000000 1

53 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85807620 8.68631240 75.000000 1

54 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.85826990 8.68626420 75.000000 1

55 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 49.86002670 8.68680060 75.000000 1

56 0 3 85 0.00000000 0.00000000 0.00000000 0.00000000 49.86039150 8.68660740 0.000000 1
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A.7. Flight tests using the aerodynamically modified UAS

Table A.3.: Planned repetitions and distance to fly within the respective FM
using the aerodynamically modified UAS

FM 1 2 3 4 5 6 7 8 9
TOW in kg 4.55 4.78 4.99
CA in m/s 15 12 18 15 12 18 15 12 18
Repetitions at 75m AGL 5 5 5 5 5 3 4 - 3
Repetitions at 95m AGL 5 5 5 5 5 3 4 - 3
Planned distance in km 9.8 9.8 9.8 9.8 9.8 5.6 7.2 - 5.6

Table A.4.: Flight distance and duration according to the CA and TOW using
the aerodynamically modified UAS

(a) Flown flight distance in km

CA in m/s
12 15 18

TO
W
in
kg 4.55 10.67 10.88 10.78

4.78 10.24 11.26 7.27
4.99 - 8.96 7.14

(b) Duration of flights inmin

CA in m/s
12 15 18

TO
W
in
k
g 4.55 14:59 12:54 11:10
4.78 15:41 12:26 8:11
4.99 - 11:06 8:42

A.8. Flight simulations using the aerodynamically modi-
fied and unmodified UAS

Within the simulation environment safety measures are discarded. In conclusion, all
flight simulations were planned and executed with 5 repetitions at both 75m AGL
and 95m AGL with a flight distance of 9.8km per mission. Since the recorded flight
distance and duration of the aerodynamically modified and unmodified UAS are com-
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parable, only the values for the flight simulations performed with the aerodynamically
unmodified UAS are given in Tab. A.5.

Table A.5.: Flight distance and duration according to the CA and TOW us-
ing the aerodynamically unmodified UAS within the simulation
environment

(a) Flown flight distance in km

CA in m/s
12 15 18

TO
W
in
kg 4.39 9.85 10.10 10.54

4.62 9.84 10.10 10.53
4.82 9.84 10.10 10.50

(b) Duration of flights inmin

CA in m/s
12 15 18

TO
W
in
k
g 4.39 15:17 13:40 12:31

4.62 15:14 13:39 12:31
4.82 15:11 13:37 12:28

A.9. Initial parameter set describing the Scihunter UAS

The initial parameter set given in Table A.6 involves the parameters based on prior
flight testing and wind tunnel tests. They are used in the respective flight phase. The
parameter set is valid for the physical model introduced and used by Prochazka, Krüger,
and Ribnitzky in [PKR20]. As the physical model used in this thesis has been changed
by neglecting some minor influences on the aircraft dynamics, the number of physical
parameters reduces and the validity of the initial parameter set below is limited.

However, the initial parameters serve as a starting point for parameter estimation. The
parameters concerning the FW flight are valid in Va ∈ [11, 20]m/s and h ∈ [0, 100]m.
Besides the TAS, the altitude h is used to constrain the validity of the parameter
sets. The altitude h describes AGL at an air density of about ρ0 = 1.225kg/m3. The
parameters concerning the QC flight are valid at Va ∈ [0, 11]m/s and h ∈ [0, 100]m.
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Table A.6.: Initial parameter set used for the adjustment of the physical
model of the UAS, based on [PKR20]

CD0 0.0754 CLη 0.2693 Cmη −1.2955 cp3 2.3478
CDα 0.1719 CLq 11.3302 Cmq −22.110 cp4 2.4074
CYβ −0.6337 Cℓβ −0.0688 Cnβ 0.2939 CTω2 0.41 ∗ 10−2

CYζ 0.1799 Cℓξ −0.4085 Cnζ −0.1564 CnT −5.47 ∗ 10−7

CYp 0.0813 Cℓp −2.0780 Cnp −0.1649 cpP 2.3987
CYr 0.3700 Cℓr 0.3242 Cnr −0.1550 CTω2P

1.37 ∗ 10−2

CL0 0.4075 Cm0 −4.9 ∗ 10−2 cp1 2.3480 CTu2ωP −1.29 ∗ 10−2

CLα 5.4889 Cmα −1.3573 cp2 2.4738

A.10. Calibration of the aerodynamic control surfaces of
the Scihunter UAS

Table A.7.: Calibrated control surfaces of the UAS using linear regression
functions

Control surface Calibration of the deflection related to the PWM signal

Aileron left ξl = 0.0669 °µsupwm − 97.78 deg

Aileron right ξr = 0.0688 °µs upwm − 105.6 deg

Rudder left ζl = −0.0666 °µs upwm − 98.64 deg

Rudder right ζr = −0.0646 °µs upwm − 97.58 deg

Elevator η = 0.0473 °µs upwm − 67.98 deg
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A.11. Additional information on the initialization of the
SCmUKF

Table A.8.: Additional deviation of selected dynamical states used for ini-
tialization
Description Sign Value Unit
Position north xpN xpNini + 1 m
Position east xpE xpEini + 1 m
Position down xpD xpDini + 0.5 m

Body speed in x-direction xu xuini + 0.1 m/s
Body speed in y-direction xv xvini + 0.1 m/s
Body speed in z-direction xw xwini + 0.1 m/s

Yaw angle xψ xψini + 5e-2 rad

Table A.9.: Standard deviation ryy of the UAS aerodynamic sensor mea-
surements related to the flight phase

Description Sign Value in flight phase Unit
QC TR FW

Flow velocity in x-dir. ryyu 15 2.5 5e-1 m/s
Angle of attack ryyα 360 4π π/180 rad
Sideslip angle ryyβ 360 4π π/180 rad
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Table A.10.: Standard deviation ryy of the Scihunter UAS sensor measure-
ments based on sensor specifics and flight data analysis

Description Sign Value Unit
Position north ryypN 2 m

Position east ryypE 2 m

Position down ryypD 5 m

Acceleration in x-direction ryyaccx 5e-2 m/s2

Acceleration in y-direction ryyaccy 5e-2 m/s2

Acceleration in z-direction ryyaccz 5e-2 m/s2

Roll rate ryyp 4e-4 rad/s
Pitch rate ryyq 4e-4 rad/s
Yaw rate ryyr 4e-4 rad/s

Roll angle ryyϕ 1e-1 rad
Pitch angle ryyθ 1e-1 rad
Yaw angle ryyψ 1e-1 rad

Flow velocity in x-direction ryyu 5e-1 m/s
Angle of attack ryyα π/180 rad
Sideslip angle ryyβ π/180 rad

Aileron deflection left ryyξl 5e-2 rad

Aileron deflection right ryyξr 5e-2 rad

Elevator deflection ryyη 5e-2 rad
Rudder deflection left ryyζl 5e-2 rad

Rudder deflection right ryyζr 5e-2 rad

Power pusher motor ryyP P 5e-2 kW
Power lift motor 1 ryyP 1

4e-2 kW
Power lift motor 2 ryyP 2

4e-2 kW
Power lift motor 3 ryyP 3

4e-2 kW
Power lift motor 4 ryyP 4

4e-2 kW
Power overall ryyP bat 4e-2 kW

Rotational rate pusher motor (normed) ryyωP 1e-2 −
Rotational rate lift motor 1 (normed) ryyω1

1e-2 −
Rotational rate lift motor 2 (normed) ryyω2

1e-2 −
Rotational rate lift motor 3 (normed) ryyω3

1e-2 −
Rotational rate lift motor 4 (normed) ryyω4

1e-2 −
GPS speed in x-direction ryyug 0.5 m/s

GPS speed in y-direction ryyvg 0.5 m/s

GPS speed in z-direction ryywg 1 m/s

187



Three parameter states are considered with SC. The mean value equals the initially
used parameter value and is considered a pseudo measurement. The noise of the
pseudo measurement is set to be ryy = 2 as shown in Table A.11. In addition, the
resulting lower and upper limit of the parameter SC are given.

Table A.11.: State constraints (SC) of the parameter states
Parameter state Mean Lower limit Upper limit ryy

CD0 0.132 −0.132 0.396 2

CL0 0.614 −0.614 1.842 2

CM0 −4.61e-3 −13.83e-3 4.61e-3 2

Table A.12.: Main diagonal of the system noise Pxxini of the parameter
states of the physical model of the Scihunter UAS
Description Sign Value Unit
Parameter CD0 PxxCD0 7e-4 −
Parameter CL0 PxxCL0 1.5e-2 −
Parameter CM0 PxxCM0 1e-4 −

The noise concerning the system’s dynamical states is set based on filter tuning and
flight data analysis, see Table A.13. The system noise of the parameter states depends
on the initial parameters:

qxxp =
⃓⃓
x̂pini

⃓⃓
1e-2. (A.1)

The system noise of the ANN weight states is set to be small with qxxnn = 5e-3. In
summary, the system noise covariance matrix is defined Qxx = q2xx1e-2, considering
entries of the main diagonals exclusively.
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Table A.13.: Main diagonal of the system noise qxx of the dynamical states
of the Scihunter UAS based on flight data analysis

Description Sign Value Unit
Position north qxxpN 1 m
Position east qxxpE 1 m
Position down qxxpD 3 m

Body speed in x-direction qxxu 0.5 m/s
Body speed in y-direction qxxv 0.5 m/s
Body speed in z-direction qxxw 0.5 m/s

Roll rate qxxp 0.5 rad/s
Pitch rate qxxq 0.5 rad/s
Yaw rate qxxr 0.5 rad/s

Roll angle qxxϕ 1e-3 rad
Pitch angle qxxθ 1e-3 rad
Yaw angle qxxψ 1e-3 rad

Wind speed in geo x-direction qxxuw 1e-3 m/s
Wind speed in geo y-direction qxxvw 1e-3 m/s
Wind speed in geo z-direction qxxww 1e-3 m/s

Aileron deflection left qxxξl 1e-9 rad
Aileron deflection right qxxξr 1e-9 rad
Elevator deflection qxxη 1e-9 rad
Rudder deflection left qxxζl 1e-9 rad
Rudder deflection right qxxζr 1e-9 rad

Power pusher motor qxxP P 1e-9 kW
Power lift motor 1 qxxP 1

1e-9 kW
Power lift motor 2 qxxP 2

1e-9 kW
Power lift motor 3 qxxP 3

1e-9 kW
Power lift motor 4 qxxP 4

1e-9 kW
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Table A.14.: Main diagonal of the system noise Pxxini of the dynamical
states of the Scihunter UAS

Description Sign Value Unit
Position north PxxpN 3 m2

Position east PxxpE 3 m2

Position down PxxpD 9 m2

Body speed in x-direction Pxxu 1 (m/s)2

Body speed in y-direction Pxxv 1 (m/s)2

Body speed in z-direction Pxxw 1 (m/s)2

Roll rate Pxxp 0.25 (rad/s)2

Pitch rate Pxxq 0.25 (rad/s)2

Yaw rate Pxxr 0.25 (rad/s)2

Roll angle Pxxϕ 1e-6 rad
Pitch angle Pxxθ 6.5e-5 rad
Yaw angle Pxxψ 2.5e-3 rad

Wind speed in geo x-direction Pxxuw 1e-6 m/s
Wind speed in geo y-direction Pxxvw 1e-6 m/s
Wind speed in geo z-direction Pxxww 1e-6 m/s

Aileron deflection left Pxxxil 7.2e-3 rad
Aileron deflection right Pxxξr 2.0e-3 rad
Elevator deflection Pxxη 3.4e-3 rad
Rudder deflection left Pxxζl 3.9e-3 rad
Rudder deflection right Pxxζr 12.2e-3 rad

Power pusher motor PxxP P 6.4e-4 kW
Power lift motor 1 PxxP 1

1.6e-6 kW
Power lift motor 2 PxxP 2

3.6e-4 kW
Power lift motor 3 PxxP 3

6.2e-5 kW
Power lift motor 4 PxxP 4

2.1e-2 kW
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B. Matlab code of the physical model
implemented

The physical model of the hybrid Scihunter UAS is implemented in Matlab environment.
The Matlab code is optimized to efficiently process the SCmUKF using the functions
of the forces and moments (B.1), the flight dynamics (B.2), and the sensor model
(B.3) by implementing the sigma points as a vector. The Euler discretization used for
the state prediction, the transformations between the CSs used, the direction cosine
matrix, and the implementation of the mUKF are given in the literature and are not
included in the Matlab code below [EK22; SJL16; BAL11]. The structure of the code
connecting the different Matlab functions is shown in Figure B.1.

Forces and

moments

Initialization k+1
u

Sensor

model

Flight

dynamics

xk+1|k

xk|k−1

y

Ftot,Mtot, xk|k−1

Figure B.1.: Structure of the Matlab code of the physical model using Euler
time discretization at timestep k.
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In the initialization block constants, physical parameters and initial state conditions are
defined. In total 46 constants, 31 parameters, 25 states, 12 inputs, 34 measurements,
and the resulting forces and moments are considered. Parts of the the forces and
moments block are used in both the calculation of the flight dynamics and the sensor
model.

In the Matlab code a calibration value of the pusher motor is considered an additional
input. The calibration value had to be adjusted in the FMU during flight testing in
order to proceed safely.

B.1. Forces and moments

1 function [F_Total, M_Total, Omega_speeds, u_k1_calb] = ...
2 HybUAS_forces_moments_simple5_rad_fct(x_k,Parameters_k, u_k, ...
3 delta_t, constants,eq,n_sigma)
4 % The calculation of the forces and moments of the hybrid UAS
5
6 Parameters_k = [Parameters_k ones(size(Parameters_k,1),1).*...
7 constants(sum(constants(end-2:end-1))+1:sum(constants(end-2:end)))];
8
9 %% Constants
10
11 % S = 0.41; % m^2 Reference wing area
12 % b = 0.9135; % m Half wingspan
13 % mac = 0.23; % m Mean Aerodynamic chord
14 % r_xy = 0.32; % m x and y distance to rotors from CG
15 % r_z = 0.0872; % m z distance to rotors from CG
16 % d_pusher = 0.3302; % m diameter of pusher rotor
17 % d_liftr = 0.3048; % m diameter of lift rotors
18 % A_R_pusher= 0.0823; % m^2
19 % A_R_liftr = 0.073; % m^2
20
21 % Moments of Inertia (UAS without payload)
22 % (constants(19:24))
23 % J_x_ini = 0.2508; % Moment of Inertia in x-direction in kg/m^2
24 % J_y_ini = 0.2902; % Moment of Inertia in y-direction in kg/m^2
25 % J_z_ini = 0.5055; % Moment of Inertia in z-direction in kg/m^2
26 % J_xz_ini = 0.0308; % Moment of Inertia in xz-direction in kg/m^2
27 % J_yz_ini = 0; % Moment of Inertia in yz-direction in kg/m^2
28 % J_xy_ini = 0; % Moment of Inertia in xy-direction in kg/m^2
29
30 % omega_Puhser_max = 1085; % max. rot. speed of pusher motor in rad/s
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31 % (10360 rpm *pi/30)
32 % omega_Liftr_max = 1317; % max. rot. speed for lift motor in rad/s
33 % (12580 rpm *pi/30)
34
35 S = constants(1); % m^2 Reference wing area
36 b = constants(2); % m d(1) Half wingspan
37 mac = constants(3); % m Mean Aerodynamic chord
38 r_xy = constants(4); % m d(3) x and y distance to rotors from CG
39 % r_z = constants(5); % m d(4) z distance to rotors from CG
40 d_pusher = constants(6); % m d(5) diameter of pusher rotor
41 d_liftr = constants(7); % m d(5) diameter of pusher rotor
42 A_R_pusher = constants(8); % m^2 rotor surface
43 A_R_liftr = constants(9); % m^2 rotor surface
44 g = constants(10); % m/s^2 gravitation constant
45 rho = constants(11); % kg/m^3 air density at sea level
46
47 % Input u_pwm coefficients
48 % gradient, u_calb_base, K_pwm, T_pwm parameters
49 % for calibration and PT1 correction
50
51 parameters_xi_L_pwm = constants(28:30); % Aileron left pwm signal
52 parameters_xi_R_pwm = constants(31:33); % Aileron right pwm signal
53 parameters_eta_pwm = constants(34:36); % Elevator pwm signal
54 parameters_zeta_L_pwm = constants(37:39); % Rudder left pwm signal
55 parameters_zeta_R_pwm = constants(40:42); % Rudder right pwm signal
56
57 parameters_P_P_pwm = constants(43:45); % Pusher motor
58 parameters_P1_pwm = constants(46:48); % Front right lift rotor pwm
59 parameters_P2_pwm = constants(49:51); % Back left lift rotor pwm
60 parameters_P3_pwm = constants(52:54); % Front left lift rotor pwm
61 parameters_P4_pwm = constants(55:57); % Back right lift rotor pwm
62
63 %% Input u
64
65 % pwm signals
66 xi_L_pwm = u_k(1); % aileron left pwm
67 xi_R_pwm = u_k(2); % aileron right pwm
68 eta_pwm = u_k(3); % elevator pwm
69 zeta_L_pwm = u_k(4); % rudder left pwm
70 zeta_R_pwm = u_k(5); % rudder right pwm
71
72 P_P_pwm = u_k(6); % target power value pusher pwm
73 P1_pwm = u_k(7); % target power value front right lift rotor pwm
74 P2_pwm = u_k(8); % target power value back left lift rotor pwm
75 P3_pwm = u_k(9); % target power value front left lift rotor pwm
76 P4_pwm = u_k(10); % target power value back right lift rotor pwm
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77
78 GW = u_k(11); % mass of the UAS in kg
79 fm = u_k(12); % flightmode: 0 = QC, 1 = TR, 2 = FW
80
81 pwm_Pusher_min = u_k(13); % pusher pwm lower limit
82
83 %% States
84
85 % p_N = x_k(:,1); % longitude in deg
86 % p_E = x_k(:,2); % latitude in deg
87 % p_D = x_k(:,3); % position down, neg. altitude in m
88
89 u = x_k(:,4); % velocity in x direction in m/s
90 v = x_k(:,5); % velocity in y direction in m/s
91 w = x_k(:,6); % velocity in z direction in m/s
92
93 p = x_k(:,7); % rollrate in x direction in rad/s
94 q = x_k(:,8); % pitchrate in y direction in rad/s
95 r = x_k(:,9); % yawrate in z direction in rad/s
96
97 phi = x_k(:,10); % roll angle, Euler angle in rad
98 theta = x_k(:,11); % pitch angle, Euler angle in rad
99 % psi = x_k(:,12); % yaw angle, Euler angle in rad
100
101 % u_w_nav = x_k(:,13); % wind velocity in x direction in m/s in nav CS
102 % v_w_nav = x_k(:,14); % wind velocity in y direction in m/s in nav CS
103 % w_w_nav = x_k(:,15); % wind velocity in z direction in m/s in nav CS
104
105 %% Coefficients
106
107 % Drag coefficients
108 C_D0 = Parameters_k(:,1); % -
109 C_Dalpha = Parameters_k(:,2); % 1/rad
110
111 % Sideforce coefficients
112 C_Ybeta = Parameters_k(:,3); % 1/rad
113 C_Yzeta = Parameters_k(:,4); % 1/rad
114 C_Yp = Parameters_k(:,5); % s/rad
115 C_Yr = Parameters_k(:,6); % s/rad
116
117 % Lift coefficients
118 C_L0 = Parameters_k(:,7); % -
119 C_Lalpha = Parameters_k(:,8); % 1/rad
120 C_Leta = Parameters_k(:,9); % 1/rad
121 C_Lq = Parameters_k(:,10); % s/rad
122
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123 switch eq
124 case ’fstate’ % moment coefficients used for state prediction
125 % Roll Moment coefficient
126 C_Lmbeta = Parameters_k(:,11); % 1/rad
127 C_Lmxi = Parameters_k(:,12); % 1/rad
128 C_Lmp = Parameters_k(:,13); % s/rad
129 C_Lmr = Parameters_k(:,14); % s/rad
130
131 % Pitch Moment coefficient
132 C_M0 = Parameters_k(:,15); % -
133 C_Malpha = Parameters_k(:,16); % 1/rad
134 C_Meta = Parameters_k(:,17); % 1/rad
135 C_Mq = Parameters_k(:,18); % s/rad
136
137 % Yaw Moment coefficient
138 C_Nbeta = Parameters_k(:,19); % 1/rad
139 C_Nzeta = Parameters_k(:,20); % 1/rad
140 C_Np = Parameters_k(:,21); % s/rad
141 C_Nr = Parameters_k(:,22); % s/rad
142 end
143
144 % Thrust Coefficients Lift Rotors
145 C_Tomega2 = Parameters_k(:,23); % Thrust Coefficient, omega squared
146
147 % Moment coeffients due to rotor rotation
148 C_Nmt = Parameters_k(:,24); % Yaw coeffient, lift rotors
149
150 % Lift Power efficiency coefficients
151 c_p1 = Parameters_k(:,25); % Lift rotor 1 propulsion
152 c_p2 = Parameters_k(:,26); % Lift rotor 2 propulsion
153 c_p3 = Parameters_k(:,27); % Lift rotor 3 propulsion
154 c_p4 = Parameters_k(:,28); % Lift rotor 4 propulsion
155
156 % Thrust Coefficients Pusher Rotor
157 C_T_omega2_push = Parameters_k(:,29); % in N/(rad/sec)^2
158 C_T_u2_omega_push = Parameters_k(:,30); % in N/((rad/sec) * (m/s)^2)
159
160 % Pusher Power efficiency coefficients
161 c_p_P = Parameters_k(:,31); % Pusher rotor propulsion
162
163 % Quadcopter and Transition aerodynamics forces and moments
164 % (Parameters initialized to zero and may be learned
165 % using the hybrid model approach)
166 C_Xa_qc = Parameters_k(:,32); % force coefficient in x-body CS
167 C_Ya_qc = Parameters_k(:,33); % force coefficient in y-body CS
168 C_Za_qc = Parameters_k(:,34); % force coefficient in z-body CS
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169
170 C_La_qc = Parameters_k(:,35); % moment coefficient in x-body CS
171 C_Ma_qc = Parameters_k(:,36); % moment coefficient in y-body CS
172 C_Na_qc = Parameters_k(:,37); % moment coefficient in z-body CS
173
174 %% Precalculations aerodynamics
175
176 u_a = u; % aerodynamic flow velocity in x-direction in body CS in m/s
177 v_a = v; % aerodynamic flow velocity in y-direction in body CS in m/s
178 w_a = w; % aerodynamic flow velocity in z-direction in body CS in m/s
179
180 % True airspeed
181 TAS = sqrt(u_a.^2 + v_a.^2 + w_a.^2); % aerodynamic flow velocity in m/s
182
183 alpha = atan2(w_a,u_a); % AOA in rad
184 beta = atan2(v_a,u_a); % SSA in rad
185
186 %% Calibration and PT1 correction of input pwm signals
187
188 % previous calibrated input signal
189 % previous deflection of aerodynamical control surface (k-1)
190 xi_L_k0 = x_k(:,16); % previous aileron left deflection in rad
191 xi_R_k0 = x_k(:,17); % estimated aileron right deflection in rad
192 eta_k0 = x_k(:,18); % estimated elevator deflection in rad
193 zeta_L_k0 = x_k(:,19); % estimated rudder left deflection in rad
194 zeta_R_k0 = x_k(:,20); % estimated rudder right deflection in rad
195
196 % previous motor power (k-1)
197 P_P_k0 = x_k(:,21); % estimated pusher motor power in kW
198 P1_k0 = x_k(:,22); % estimated lift motor 1 power in kW
199 P2_k0 = x_k(:,23); % estimated lift motor 2 power in kW
200 P3_k0 = x_k(:,24); % estimated lift motor 3 power in kW
201 P4_k0 = x_k(:,25); % estimated lift motor 4 power in kW
202
203 % calibrate input signal and estimate actual actuator deflections
204 xi_L = input_calibration_fct(xi_L_pwm, xi_L_k0,parameters_xi_L_pwm, ...
205 delta_t, 1500); % aileron left in rad
206 xi_R = input_calibration_fct(xi_R_pwm, xi_R_k0, parameters_xi_R_pwm, ...
207 delta_t, 1500); % aileron right in rad
208 eta = input_calibration_fct(eta_pwm, eta_k0, parameters_eta_pwm, ...
209 delta_t, 1500); % elevator in rad
210 zeta_L = input_calibration_fct(zeta_L_pwm, zeta_L_k0,...
211 parameters_zeta_L_pwm, delta_t, 1500); % rudder left in rad
212 zeta_R = input_calibration_fct(zeta_R_pwm, zeta_R_k0,...
213 parameters_zeta_R_pwm, delta_t, 1500); % rudder right in rad
214
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215 % calibrate input signal and estimate actual motor power
216 P_P = input_calibration_fct(P_P_pwm, P_P_k0, parameters_P_P_pwm, ...
217 delta_t, pwm_Pusher_min); % pusher power consumption in kW
218 P1 = input_calibration_fct(P1_pwm, P1_k0,parameters_P1_pwm, ...
219 delta_t, 1000); % power consumption front right lift motor in kW
220 P2 = input_calibration_fct(P2_pwm, P2_k0,parameters_P2_pwm, ...
221 delta_t, 1000); % power consumption back left lift motor in kW
222 P3 = input_calibration_fct(P3_pwm, P3_k0,parameters_P3_pwm, ...
223 delta_t, 1000); % power consumption front left lift motor in kW
224 P4 = input_calibration_fct(P4_pwm, P4_k0,parameters_P4_pwm, ...
225 delta_t, 1000); % power consumption back right lift motor in kW
226
227 % ensure motor power to be greater zero
228 P_P(P_P<0) = 0;
229 P1(P1<0) = 0;
230 P2(P2<0) = 0;
231 P3(P3<0) = 0;
232 P4(P4<0) = 0;
233
234 % new calibrated input signal array
235 u_k1_calb = [xi_L, xi_R, eta, zeta_L, zeta_R, P_P, P1, P2, P3, P4];
236
237 %% Rotational rates and motor speeds
238
239 % rotational rates p,q,r in experimental frame (alpha rotated)
240 [p_e, q_e, r_e] = Transformation_ef_rad_fct(p,q,r,alpha);
241
242 % motor angular velocities
243 omega_P = motor_rotational_speed_fct(d_pusher,A_R_pusher,c_p_P,P_P,...
244 rho); % rotationrate pusher in rad/s
245 omega1 = motor_rotational_speed_fct(d_liftr,A_R_liftr,c_p1,P1,...
246 rho); % rotationrate front right lift rotor in rad/s
247 omega2 = motor_rotational_speed_fct(d_liftr,A_R_liftr,c_p2,P2,...
248 rho); % rotationrate back left lift rotor in rad/s
249 omega3 = motor_rotational_speed_fct(d_liftr,A_R_liftr,c_p3,P3,...
250 rho); % rotationrate front left lift rotor in rad/s
251 omega4 = motor_rotational_speed_fct(d_liftr,A_R_liftr,c_p4,P4,...
252 rho); % rotationrate pusher back right lift rotor in rad/s
253
254 %% Aerodynamic Forces and Moments
255
256 switch fm
257 case 2 % flightmode = ’fw’
258 % dynamic pressure
259 q_press = rho/2*TAS.^2;
260
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261 % Calculation of forces in experimental coordinate system
262
263 % Drag
264 C_D = C_D0 + C_Dalpha.*alpha;
265
266 % Sideforce
267 C_Y = C_Ybeta.*beta +...
268 C_Yzeta .* (zeta_L + zeta_R)/2 + ...
269 C_Yp.*b./(2*TAS+1e-3).*p_e + C_Yr.*b./(2*TAS+1e-3) .* r_e;
270
271 % Lift
272 C_L = C_L0 + C_Lalpha.*alpha + C_Leta.*eta + C_Lq .* mac./(TAS+1e-3) .*...
273 q_e /2; % /2 coming from StephenLewis (difference to Brockhaus)
274
275 % Aerodynamic Forces (in experimental frame)
276 F_D = -q_press.*S.*C_D;
277 F_Y = q_press.*S.*C_Y;
278 F_L = -q_press.*S.*C_L;
279
280 % Transformation from experimental to body frame
281 [F_Ax, F_Ay, F_Az] = Transformation_fe_rad_fct(F_D,F_Y,F_L,alpha);
282
283 switch eq
284 case ’fstate’ % moments only calculated for state prediction
285 % Calculation of moments
286 % static derivatives in body coordinate system
287 % dynamic derivatives in experimental coordinate system
288
289 % static Roll moment coefficient in body frame
290 C_Lm_static_f = C_Lmbeta .* beta + ...
291 C_Lmxi .*(xi_R + xi_L);
292
293 % dynamic roll moment coefficient in experimental frame
294 C_Lm_dynamic_e = C_Lmp.*b./(2*TAS+1e-3) .* p_e + ...
295 C_Lmr.*b./(2*TAS+1e-3).* r_e;
296
297 % static pitch moment coefficient in body frame
298 C_M_static_f = C_M0 + C_Malpha.*alpha + C_Meta .*eta;
299
300 % dynamic pitch moment coefficient in experimental frame
301 C_M_dynamic_e = C_Mq.*mac./(TAS+1e-3) .* q_e /2;
302 % /2 coming from Stephen and Lewis (difference to Brockhaus)
303
304 % static yaw moment coefficient in body frame
305 C_N_static_f = C_Nbeta .* beta + C_Nzeta .* (zeta_L + zeta_R)/2;
306
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307 % dynamic yaw moment coefficient in experimental frame
308 C_N_dynamic_e = C_Np.*b./(2*TAS+1e-3) .* p_e + C_Nr.*b./(2*TAS+1e-3).* r_e;
309
310 % Aerodynamic moments in experimental frame
311 M_L_dynamic_e = q_press * S .* C_Lm_dynamic_e *b/2;
312 M_M_dynamic_e = q_press * S .* C_M_dynamic_e *mac;
313 M_N_dynamic_e = q_press * S .* C_N_dynamic_e *b/2;
314
315 % Transformation from experimental to body frame
316 [M_L_dynamic_f, M_M_dynamic_f , M_N_dynamic_f] = ...
317 Transformation_fe_rad_fct(M_L_dynamic_e, M_M_dynamic_e, ...
318 M_N_dynamic_e,alpha);
319
320 % Aerodynamic Moments with static derivatives (in body frame)
321 M_L_static_f = q_press*S.*C_Lm_static_f*b/2;
322 M_M_static_f = q_press*S.*C_M_static_f*mac;
323 M_N_static_f = q_press*S.*C_N_static_f*b/2;
324
325 % Sum up static and dynamic moments
326 M_Ax = M_L_static_f + M_L_dynamic_f;
327 M_Ay = M_M_static_f + M_M_dynamic_f;
328 M_Az = M_N_static_f + M_N_dynamic_f;
329
330 case ’hmeas’ % Set moments to zero when using measurement equations
331 M_Ax = 0;
332 M_Ay = 0;
333 M_Az = 0;
334 end
335 end
336
337 %% Propulsion Forces and Moments + Gravitation
338
339 % Gravitation Force
340 F_G = GW * g;
341
342 % Motor set-up, view from above
343 % front
344 % T3 T1
345 % | |
346 % | |
347 % T2 T4
348 % rear
349
350 % Motor thrust, forces and moments
351 switch fm % flight mode
352 case {0,1} % QC or TR
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353 % Thrust of lift motors
354 T = rho .* pi*(d_liftr/2)^4 .* C_Tomega2.*[omega1 omega2 omega3 omega4].^2;
355
356 % Yaw moment of lift motors
357 Nmt = C_Nmt.*(omega3.^2+omega4.^2-omega1.^2-omega2.^2);
358
359 % Resulting moments of lift motors
360 M_Hx = r_xy*(T(:,2) + T(:,3) - T(:,1) - T(:,4));
361 M_Hy = r_xy*(T(:,1) + T(:,3) - T(:,2) - T(:,4));
362 M_Hz = Nmt;
363
364 % Quadcopter aerodynamics, related to gravitation force
365 % (initialized to be zero, buy may be learned by ANN)
366 F_Ax = C_Xa_qc.*F_G; % Aerodynamic force in x-direction in QC flight
367 F_Ay = C_Ya_qc.*F_G; % Aerodynamic force in y-direction in QC flight
368 F_Az = C_Za_qc.*F_G; % Aerodynamic force in z-direction in QC flight
369
370 M_Ax = C_La_qc.*F_G*b/2; % Aerodynamic moment in x-direction in QC flight
371 M_Ay = C_Ma_qc.*F_G*mac; % Aerodynamic moment in y-direction in QC flight
372 M_Az = C_Na_qc.*F_G*b/2; % Aerodynamic moment in z-direction in QC flight
373 end
374
375 switch fm % flight mode
376 case 0
377 % Resulting forces of lift motors
378 F_Tx = 0;
379 F_Ty = 0;
380 F_Tz = - sum(T,2);
381
382 case 1 % ’transition’
383 % Thrust of pusher motor
384 T_P = rho*pi*(d_pusher/2)^4 * omega_P .* ...
385 (C_T_omega2_push .* omega_P + C_T_u2_omega_push .* u_a.^2);
386
387 % Resulting forces of pusher and lift motors
388 F_Tx = T_P;
389 F_Ty = 0;
390 F_Tz = -sum(T,2);
391
392 case 2 % ’fw’
393 % Resulting moments of lift motors
394 M_Hx = 0;
395 M_Hy = 0;
396 M_Hz = 0;
397
398 % Thrust of pusher motor
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399 T_P = rho*pi*(d_pusher/2)^4 * omega_P .* ...
400 (C_T_omega2_push .* omega_P + C_T_u2_omega_push .* u_a.^2);
401
402 % Resulting forces of pusher motor
403 F_Tx = T_P;
404 F_Ty = 0;
405 F_Tz = 0;
406 end
407
408 %% Gravity
409
410 F_Gx = - F_G * sin(theta);
411 F_Gy = F_G * cos(theta) .* sin(phi);
412 F_Gz = F_G * cos(theta) .* cos(phi);
413
414 %% Total Forces and Moments in Body Frame
415
416 F_Total = [F_Ax + F_Tx + F_Gx, ...
417 F_Ay + F_Ty + F_Gy, ...
418 F_Az + F_Tz + F_Gz];
419 switch eq
420 case ’fstate’ % Calculated moments for state prediction
421 M_Total = [M_Ax + M_Hx, M_Ay + M_Hy, M_Az + M_Hz];
422 case ’hmeas’ % Set moments to zero when using measurement equations
423 M_Total = zeros(n_sigma,3);
424 end
425
426 % array of angular velocities of all motors
427 Omega_speeds = [omega_P, omega1, omega2, omega3, omega4];
428 end
429
430 function omega = motor_rotational_speed_fct(d_rotor,A_rotor,c_p,P,rho)
431 % Motor angular velocity related to the motor power
432 c_p(c_p<1e-6) = 1e-6; % ensure c_p to be greater 0 (numerical stability)
433 omega = ((P*1000./ (rho * A_rotor .* c_p)).^(2/3))./(d_rotor/2); % in rad/s
434 end
435
436 function u_calb_k1 = input_calibration_fct(u_pwm_k1, u_calb_k0, ...
437 parameters_pwm_k , delta_t,pwm_base)
438 % PT1 correction of input value for approximation of current value
439 u_calb_k1 = (parameters_pwm_k(:,1) .* (u_pwm_k1 - pwm_base) .* ...
440 parameters_pwm_k(:,2)./ parameters_pwm_k(:,3) * delta_t + ...
441 u_calb_k0)./ (1 + delta_t./ parameters_pwm_k(:,3));
442 end
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B.2. System state equations (Flight dynamics)

1 function [x_dot] = HybUAS_dynamic_states_dot_simple5_rad_fct(x_k, ...
2 Parameters_k, u_k, ~, delta_t, constants)
3 % HybUAS_dynamic_states_step_fct desribes the state (propagation) equations
4 % of the hybrid Scihunter UAS from FSR TUDa
5
6 % Get number of sigma points to accelerate state prediction using UKF
7 [n_sigma_dyn, ~] = size(x_k);
8 [n_sigma,~] = max([n_sigma_dyn,size(Parameters_k,1)]);
9
10 %% Input u
11
12 GW = u_k(11); % mass of the UAS in kg
13
14 %% Constants
15
16 J = constants(19:24); % Moments of Inertia
17
18 %% States:
19
20 u = x_k(:,4); % body CS speed (x_axis) in m/s
21 v = x_k(:,5); % body CS speed (y_axis) in m/s
22 w = x_k(:,6); % body CS speed (z_axis) in m/s
23
24 p = x_k(:,7); % rotational speed (roll rate) in rad/sec
25 q = x_k(:,8); % rotational speed (ptich rate) in rad/sec
26 r = x_k(:,9); % rotational speed (yaw rate) in rad/sec
27
28 phi = x_k(:,10); % attitude angle (roll angle) in rad
29 theta = x_k(:,11); % attitude angle (pitch angle) in rad
30 psi = x_k(:,12); % attitude angle (yaw angle) in rad
31
32 u_w_nav = x_k(:,13); % wind velocity in x direction in m/s in geo CS
33 v_w_nav = x_k(:,14); % wind velocity in y direction in m/s in geo CS
34 w_w_nav = x_k(:,15); % wind velocity in z direction in m/s in geo CS
35
36 %% Forces and moments in body CS
37
38 [F_Total, M_Total,~, u_k1_calb] = HybUAS_forces_moments_simple5_rad_fct(...
39 x_k,Parameters_k, u_k, delta_t, constants,’fstate’,n_sigma);
40
41 %% Moment of inertia
42
43 Gamma0 = J(1)*J(3)-J(4)^2;
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44 Gamma = [(J(4)*(J(1)-J(2)+J(3)))/(Gamma0);
45 (J(3)*(J(3)-J(2))+J(4)^2)/(Gamma0);
46 J(3)/(Gamma0);...
47 J(4)/Gamma0;...
48 (J(3)-J(1))/J(2);...
49 J(4)/J(2);...
50 ((J(1)-J(2))*J(1)+J(4)^2)/Gamma0;...
51 J(1)/Gamma0];
52
53 %% Accelerations in body CS
54
55 acc_x_body = r.*v - q.*w + F_Total(:,1) /GW;
56 acc_y_body = p.*w - r.*u + F_Total(:,2) /GW;
57 acc_z_body = q.*u - p.*v + F_Total(:,3) /GW;
58
59 %% State prediction
60
61 x_dot = zeros(size(x_k)); % initialization
62
63 % Position change (north, south, down) transforming body speeds into geo CS
64 [u_g, v_g, w_g] = Transformation_gf_rad_fct(u, v, w, phi, theta, psi);
65
66 % Chaonge of position adding wind in geo CS
67 x_dot(:,1) = u_g + u_w_nav; % Change of position North in m/s
68 x_dot(:,2) = v_g + v_w_nav; % Change of position East in m/s
69 x_dot(:,3) = w_g + w_w_nav; % Change of position Down in m/s
70
71 % Change of speeds
72 % Activate for SITL simulation
73 % (check ground contact condition)
74 % [acc_x_earth, acc_y_earth, acc_z_earth] = Transformation_gf_rad_fct(...
75 % acc_x_body,acc_y_body,acc_z_body,phi,theta,psi);
76 % acc_z_earth(p_D >= -1e-4 & acc_z_earth > 0) = 0;
77 % [u_dot, v_dot, w_dot] = Transformation_fg_rad_fct(acc_x_earth,...
78 % acc_y_earth,acc_z_earth,phi,theta,psi);
79 % x_dot(:,4) = u_dot; % body fixed speed (x_axis) in m/s
80 % x_dot(:,5) = v_dot; % body fixed speed (y_axis) in m/s
81 % x_dot(:,6) = w_dot; % body fixed speed (z_axis) in m/s
82
83 % Comment out for SITL simulation (see above)
84 x_dot(:,4) = acc_x_body; % Change of body fixed speed (x_axis) in m/s^2
85 x_dot(:,5) = acc_y_body; % Change of body fixed speed (y_axis) in m/s^2
86 x_dot(:,6) = acc_z_body; % Change of body fixed speed (z_axis) in m/s^2
87
88 % Change of rotational speed
89 x_dot(:,7) = Gamma(1)*p.*q - Gamma(2)*q.*r + Gamma(3)*M_Total(:,1) ...
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90 + Gamma(4)*M_Total(:,3); % dot p roll acc in rad/s^2
91 x_dot(:,8) = Gamma(5)*p.*r - Gamma(6)*(p.^2-r.^2) + M_Total(:,2)/J(2);
92 % dot q pitch acc in rad/s^2
93 x_dot(:,9) = Gamma(7)*p.*q - Gamma(1)*q.*r + Gamma(4)*M_Total(:,1) ...
94 + Gamma(8)*M_Total(:,3); % dot r yaw acc in rad/s^2
95
96 % Change of attitude (using direction cosine matrix)
97 [phi_dot, theta_dot, psi_dot] = Transformation_Eulerpqr_rad_fct(p,q,r,...
98 phi,theta); % with p,q,r in rad/s
99
100 x_dot(:,10) = phi_dot; % change of attitude angle (roll angle) in rad/s
101 x_dot(:,11) = theta_dot; % change of attitude angle (pitch angle) in rad/s
102 x_dot(:,12) = psi_dot; % change of attitude angle (yaw angle) in rad/s
103
104 % Change of wind speeds (Wind assumed to be constant)
105 x_dot(:,13:15) = zeros(n_sigma,3); % change of wind speeds in m/s^2
106
107 % Actuator deflections
108 % (preprocessed to tansmit acutal state, no prediction)
109 x_dot(:,16:20) = (u_k1_calb(:,1:5) - x_k(:,16:20))./delta_t;
110 % change of deflections of ailerons, elevator, rudders in rad/s
111
112 % Motor power (preprocessed to tansmit acutal state, no prediction)
113 x_dot(:,21:25) = (u_k1_calb(:,6:10) - x_k(:,21:25))./delta_t;
114 % change of motor power in kW/s
115 end

B.3. Measurement equations (Sensor model)

1 function [y_k] = HybUAS_measurement_model_simple5_rad_fct(x_k, ...
2 Parameters_k, u_k, delta_t, constants)
3 % Desribes the sensor model with measurement equations of the
4 % hybird Scihunter UAS from FSR TUDa
5
6 % Get number of sigma points to accelerate state prediction using UKF
7 [n_sigma_dyn, ~] = size(x_k);
8 [n_sigma,~] = max([n_sigma_dyn,size(Parameters_k,1)]);
9
10 %% Input u
11
12 GW = u_k(11);
13
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14 %% States
15
16 p_N = x_k(:,1); % postion north in m
17 p_E = x_k(:,2); % postion east in m
18 p_D = x_k(:,3); % postion down in m (from sea level)
19
20 u = x_k(:,4); % body fixed speed (x_axis) in m/sec
21 v = x_k(:,5); % body fixed speed (y_axis) in m/sec
22 w = x_k(:,6); % body fixed speed (z_axis) in m/sec
23
24 p = x_k(:,7); % rotational speed (roll rate) in rad/sec
25 q = x_k(:,8); % rotational speed (ptich rate) in rad/sec
26 r = x_k(:,9); % rotational speed (yaw rate) in rad/sec
27
28 phi = x_k(:,10); % attitude angle (roll angle) in rad
29 theta = x_k(:,11); % attitude angle (pitch angle) in rad
30 psi = x_k(:,12); % attitude angle (yaw angle) in rad
31
32 u_w_nav = x_k(:,13); % wind velocity in x direction in m/s in geo CS
33 v_w_nav = x_k(:,14); % wind velocity in y direction in m/s in geo CS
34 w_w_nav = x_k(:,15); % wind velocity in z direction in m/s in geo CS
35
36 %% Constants
37
38 g = constants(10); % Graviation constant m/s^2
39 omega_Puhser_max = constants(26); % maximum rotational speed for pusher
40 % in rad/s, (10360 rpm *pi/30)
41 omega_Liftr_max = constants(27); % maximum rotational speed for lift
42 % motor in rad/s (12580 rpm *pi/30)
43
44 %% Forces, motor speeds, motor power and deflections
45
46 [F_Total, ~, Omega_speeds, u_k1_calb] = ...
47 HybUAS_forces_moments_simple5_rad_fct(x_k,Parameters_k, ...
48 u_k, delta_t, constants,’hmeas’,n_sigma);
49
50 %% Calculations
51
52 u_a = u; % aerodynmic speeds in body fixed KOS (x-axis)
53 v_a = v; % aerodynmic speeds in body fixed KOS (y-axis)
54 w_a = w; % aerodynmic speeds in body fixed KOS (z-axis)
55
56 % Coriolis acceleration in m/s^2
57 acc_coriolis = [r.*v - q.*w,...
58 p.*w - r.*u,...
59 q.*u - p.*v];
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60
61 % Body acceleration in m/s^2
62 acc_x_body = acc_coriolis(:,1) + F_Total(:,1) / GW;
63 acc_y_body = acc_coriolis(:,2) + F_Total(:,2) / GW;
64 acc_z_body = acc_coriolis(:,3) + F_Total(:,3) / GW;
65
66 % Transform body acceleration into geo CS
67 [acc_x_earth, acc_y_earth, acc_z_earth] = Transformation_gf_rad_fct(...
68 acc_x_body,acc_y_body,acc_z_body,phi,theta,psi);
69
70 % Activate for SITL simulation
71 % Check ground condition
72 % acc_z_earth(p_D >= -1e-4 & acc_z_earth > 0) = 0;
73
74 % Transform geo acceleration into body CS substracting graviation in z-dir.
75 [acc_meas_x_body, acc_meas_y_body, acc_meas_z_body] = ...
76 Transformation_fg_rad_fct(acc_x_earth,acc_y_earth,acc_z_earth-g,phi,...
77 theta,psi);
78
79 % Substracting coriolis accelertion
80 acc_meas_x_body = acc_meas_x_body - acc_coriolis(:,1);
81 acc_meas_y_body = acc_meas_y_body - acc_coriolis(:,2);
82 acc_meas_z_body = acc_meas_z_body - acc_coriolis(:,3);
83
84 % Geo (GPS) speeds, transform body fixed speeds in geo CS
85 [u_g, v_g, w_g] = Transformation_gf_rad_fct(u,v,w,phi,theta,psi);
86
87 % Add wind in geo CS
88 u_g = u_g + u_w_nav; % Geo (GPS) speeds in x-direction in m/s
89 v_g = v_g + v_w_nav; % Geo (GPS) speeds in y-direction in m/s
90 w_g = w_g + w_w_nav; % Geo (GPS) speeds in z-direction in m/s
91
92 % Aerodynamic angles
93 alpha = atan2(w_a,u_a); % AOA in rad
94 beta = atan2(v_a,u_a); % SSA in rad
95
96 % Total power consumption
97 P_ges = sum(u_k1_calb(:,6:10),2); % Overall energy power consumption in kW
98
99 % Normed rotational speed of the pusher motor
100 omega_Pn_est = Omega_speeds(:,1)/omega_Puhser_max;
101
102 % Normed rotational speed of the lift motors
103 omega1234n_est = Omega_speeds(:,2:end)/omega_Liftr_max;
104
105 %% Output vector
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106 y_k = [ p_N, p_E, p_D, ...
107 acc_meas_x_body, acc_meas_y_body, acc_meas_z_body, ...
108 p, q, r, ...
109 phi, theta, psi, ...
110 u_a, alpha, beta,...
111 u_k1_calb, P_ges,...
112 omega_Pn_est, omega1234n_est,...
113 u_g, v_g, w_g];
114 end
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C. Supplementary data analysis

C.1. Additional data analysis of the commercial transport
aircraft flight data

Figure C.1.: Estimation and prediction of the fuel flow compared to the
measured fuel flow of the considered A320 aircraft engine
using ECM data. Data is split into training, validation, and test
data. For the estimation hybrid model 3 is used. [EHH22]
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C.2. Comparison of the flight test and simulation data
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Figure C.2.: Comparison of the flight altitude pD of the UAS in TR flight,
considering an excerpt of flight test and simulation data
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C.3. Additional data analysis in TS1

The additional data analysis in TS1 considers the innovation covariance Pee and the
output covariance Pyy observed in the last bootstrap sample of the training process. A
visualization of the measurement residuals and the estimated P̂ee of the first flight in
the last bootstrap sample is given in Figure C.4. In addition, the resulting error metrics
concerning the measurements, dynamical states, and parameter states are given for
consistency analysis. They provide the evaluation of the accuracy using the converged
hybrid model with fixed ANN weights. Similar analyses are performed for TS2, TS3,
and TS4 on a reduced scale.

The covariance of the innovation P̂ee is introduced in Eq. 2.4 in Subsection 2.2.2. Thus,
it directly depends on P̂yy and the noise Ryy. Within the TS both P̂ee and P̂yy depend
on the flight trajectory and the respective FM, see Figure C.3. However, the effect
of the noise Ryy on P̂ee complicates its analysis. Therefore, the mean value of P̂ee is
considered in the following.

To still enable a distinction according to the flight trajectory, a mean value for the
straight flight (Sf) and the curve flight (Cf) are considered. These describe data in
the FW flight exclusively. The separation is performed by using the roll angle ϕ. The
straight forward flight (Sf) is defined within the limits: ϕ ∈ [−5 5]deg. The curve flight
(Cf) lies outside these limits.

The mean value of the estimated 1
N

N∑︁
P̂ee and of the actual 1

N

N∑︁
P̃ee are finally

compared using ∆∗P̄ee. The actual P̃ee is assumed by:

P̃ee = êêT. (C.1)

For comparison, ∆∗P̄ee is introduced:

∆
∗P̄ee =

1
N

N∑︁
P̂ee − 1

N

N∑︁
P̃ee

1
N

N∑︁
P̃ee

. (C.2)

The dependence of P̂ee and P̃ee on the trajectory and their correlation can be seen
primarily from RMSEPee given below.
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Equivalent to the assumption made in Eq. C.1 and to Eq. 2.4, the actual output
covariance P̃yy is defined in Eq. C.3 and analyzed in Figure C.3.

P̃yy = (yideal − ŷ)(yideal − ŷ)T (C.3)

Table C.1.: Mean main diagonals of Pee in straight FW flight (Sf) in TS1.

Sign 1
N

N∑︁
P̂

(Sf)
ee

1
N

N∑︁
P̃

(Sf)
ee ∆∗P̄

(Sf)
ee in [%] RMSEPee Units of Pee

pN 7.88 5.05 56.2 7.66 m2

pE 8.02 5.17 55.1 7.81 m2

pD 52.2 31.9 63.9 49.4 m2

ax 0.0708 5.0e-3 1320 0.078 (m/s2)2

ay 0.285 3.06e-3 9230 0.291 (m/s2)2

az 0.412 7.25e-3 5590 0.408 (m/s2)2

p 5.30e-3 4.41e-6 120e3 5.3e-3 (rad/s)2

q 7.06e-3 2.34e-5 30e3 7.1e-3 (rad/s)2

r 4.06e-3 1.07e-4 37.7e3 0.0408 (rad/s)2

ϕ 0.0136 0.0101 34.4 0.0148 rad2

θ 0.0133 0.0102 30.2 0.0148 rad2

ψ 0.0177 0.0106 66.6 0.0167 rad2

Vax 0.491 0.257 91 0.435 (m/s)2

α 1.0e-3 3.05e-4 228 0.0113 rad2

β 2.69e-3 3.14e-4 756 0.0115 rad2

ξL 3.03e-3 2.47e-3 22.4 3.55e-3 rad2

ξR 3.03e-3 2.50e-3 21.2 3.55e-3 rad2

η 3.03e-3 2.49e-3 21.5 3.59e-3 rad2

ζL 3.03e-3 2.51e-3 20.5 3.58e-3 rad2

ζR 3.03e-3 2.50e-3 21 3.58e-3 rad2

PP 3.03e-3 2.51e-3 20.7 3.58e-3 kW 2

Pbat 1.94e-3 1.60e-3 21 2.29e-3 kW 2

ωPn 1.21e-4 9.98e-5 21.2 1.43e-3 −
ug 0.68 0.315 116 0.584 (m/s)2

vg 0.801 0.354 126 0.679 (m/s)2

wg 1.48 1.04 42 1.54 (m/s)2
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Table C.2.: Mean main diagonals of Pee in curve flight (Cf) in TS1.

Sign 1
N

N∑︁
P̂

(Cf)
ee

1
N

N∑︁
P̃

(Cf)
ee ∆∗P̄

(Cf)
ee in [%] RMSEPee Units of Pee

pN 7.92 5.03 57.4 7.71 m2

pE 7.99 5.09 56.8 7.76 m2

pD 52.4 32.2 62.7 49.3 m2

ax 0.0849 5.12e-3 1560 0.109 (m/s2)2

ay 0.285 3.10e-3 9090 0.30 (m/s2)2

az 0.45 8.63e-3 5110 0.452 (m/s2)2

p 5.04e-3 5.39e-6 93.5e3 5.3e-3 (rad/s)2

q 7.09e-3 2.75e-5 25.7e3 7.2e-3 (rad/s)2

r 0.0408 1.06e-4 38.3e3 0.0408 (rad/s)2

ϕ 0.0136 0.0102 33.8 0.0147 rad2

θ 0.0136 0.0102 33.3 0.0148 rad2

ψ 0.0174 0.0107 62.4 0.0166 rad2

Vax 0.492 0.257 91.4 0.438 (m/s)2

α 6.42e-4 3.06e-4 110 7.22e-3 rad2

β 2.3e-3 3.13e-4 635 7.49e-3 rad2

ξL 3.03e-3 2.50e-3 21.2 3.58e-3 rad2

ξR 3.03e-3 2.49e-3 21.3 3.58e-3 rad2

η 3.03e-3 2.50e-3 21.2 3.56e-3 rad2

ζL 3.03e-3 2.49e-3 21.6 3.57e-3 rad2

ζR 3.03e-3 2.50e-3 21 3.58e-3 rad2

PP 3.03e-3 2.5e-3 20.9 3.57e-3 kW 2

Pbat 1.94e-3 1.6e-3 21 2.27e-3 kW 2

ωPn 1.21e-4 1.0e-4 20.8 1.43e-4 −
ug 0.697 0.321 117 0.612 (m/s)2

vg 0.742 0.338 120 0.644 (m/s)2

wg 1.51 1.05 43.7 1.55 (m/s)2

213



(a) Acceleration in body x-dir. (b) Acceleration in body y-dir.

(c) Acceleration in body z-dir. (d) Roll rate

(e) Pitch rate (f) Yaw rate

Figure C.3.: Estimated (P̂yy) and actual (P̃yy) output covariance recorded
in the last bootstrap sample of TS1.
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(g) Roll angle (h) Pitch angle

(i) Yaw angle (j) True airspeed in x-dir.

(k) Angle Of Attack (AOA) (l) Side Slip Angle (SSA)

Figure C.3.: Estimated (P̂yy) and actual (P̃yy) output covariance recorded
in the last bootstrap sample of TS1.
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Table C.3.: Error metrics of the hybrid and physical model outputs in TS1.
Sign RMSEyhyb RMSEyphy NRMSEyhyb NRMSEyphy Reference Unit

pN 2.242 2.231 0.006 0.006 350 m
pE 2.263 2.244 0.019 0.019 120 m
pD 5.619 5.674 0.051 0.052 110 m

ax 0.070 0.071 0.001 0.001 75 m/s2

ay 0.056 0.056 0.006 0.006 10 m/s2

az 0.092 0.093 0.001 0.001 95 m/s2

p 0.002 0.002 0.002 0.002 1 rad/s
q 0.005 0.005 0.005 0.005 1 rad/s
r 0.010 0.01 0.01 0.01 1 rad/s
ϕ 0.101 0.101 0.101 0.101 1 rad
θ 0.101 0.101 0.101 0.101 1 rad
ψ 0.103 0.103 0.016 0.016 2π rad
Vax 0.508 0.507 0.023 0.023 22 m/s
α 0.017 0.017 0.017 0.017 1 rad
β 0.018 0.018 0.018 0.018 1 rad
ξL 0.05 0.05 0.05 0.05 1 rad
ξR 0.05 0.05 0.05 0.05 1 rad
η 0.05 0.05 0.05 0.05 1 rad
ζL 0.05 0.05 0.05 0.05 1 rad
ζR 0.05 0.05 0.05 0.05 1 rad
PP 0.05 0.05 0.05 0.05 1 kW
P1 0.04 0.04 0.04 0.04 1 kW
P2 0.04 0.04 0.04 0.04 1 kW
P3 0.04 0.04 0.04 0.04 1 kW
P4 0.04 0.04 0.04 0.04 1 kW
Pbat 0.04 0.04 0.04 0.04 1 kW
ωPn 0.01 0.01 0.01 0.01 1 −
ω1n 0.01 0.01 0.01 0.01 1 −
ω2n 0.01 0.01 0.01 0.01 1 −
ω3n 0.01 0.01 0.01 0.01 1 −
ω4n 0.01 0.01 0.01 0.01 1 −
ug 0.567 0.566 0.026 0.026 22 m/s
vg 0.585 0.587 0.073 0.073 8 m/s
wg 1.023 1.023 0.064 0.064 16 m/s
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Table C.4.: Error metrics of the hybrid and physical model dynamical states
in TS1.

Sign RMSExdhyp
RMSExdphy

NRMSExdhyp
NRMSExdphy

Reference Unit

pN 1.013 0.995 0.003 0.003 350 m
pE 1.058 1.018 0.009 0.008 120 m
pD 2.567 2.677 0.023 0.024 110 m
ub 0.084 0.083 0.004 0.004 22 m/s
vb 0.041 0.04 0.005 0.005 8 m/s
wb 0.014 0.014 0.001 0.001 16 m/s
p 0.002 0.002 0.002 0.002 1 rad/s
q 0.005 0.005 0.005 0.005 1 rad/s
r 0.01 0.01 0.01 0.01 1 rad/s
ϕ 0.014 0.014 0.014 0.014 1 rad
θ 0.014 0.014 0.014 0.014 1 rad
ψ 0.027 0.026 0.004 0.004 2π rad
uw 0.013 0.014 0.013 0.014 1 m/s
vw 0.012 0.011 0.012 0.011 1 m/s
ww 0.013 0.012 0.013 0.012 1 m/s
ξL 0 0 0 0 1 rad
ξR 0 0 0 0 1 rad
η 0 0 0 0 1 rad
ζL 0 0 0 0 1 rad
ζR 0 0 0 0 1 rad
PP 0 0 0 0 1 kW
P1 0 0 0 0 1 kW
P2 0 0 0 0 1 kW
P3 0 0 0 0 1 kW
P4 0 0 0 0 1 kW

Table C.5.: Error metrics of the hybrid and physical model parameter states
in TS1.

Sign RMSExphyp
RMSExpphy

NRMSExphyp
NRMSExpphy

Reference

CD0
0.0007 0 0.0052 0 0.132

CL0
0.0022 0 0.0035 0 0.616

CM0
0 0 0 0 0.0063
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Figure C.4.: Residuals of measurements and selected states of FM1 in the
last bootstrap sample of TS1 with σee or σxx (dashed).
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Figure C.4.: Residuals of measurements and selected states of FM1 in the
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Figure C.4.: Residuals of measurements and selected states of FM1 in the
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Figure C.4.: Residuals of measurements and selected states of FM1 in the
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C.4. Additional data analysis in TS2

Table C.6.: Error metrics of the hybrid and physical model outputs in TS2.
Sign RMSEyhyb RMSEyphy NRMSEyhyb NRMSEyphy Reference Unit

pN 2.252 2.285 0.006 0.007 350 m
pE 2.254 2.281 0.019 0.019 120 m
pD 5.646 5.930 0.051 0.054 110 m

ax 0.071 0.346 0.001 0.005 75 m/s2

ay 0.056 0.128 0.006 0.013 10 m/s2

az 0.091 0.462 0.001 0.005 95 m/s2

p 0.002 0.007 0.002 0.007 1 rad/s
q 0.005 0.059 0.005 0.059 1 rad/s
r 0.010 0.029 0.01 0.029 1 rad/s
ϕ 0.101 0.114 0.101 0.114 1 rad
θ 0.101 0.140 0.101 0.140 1 rad
ψ 0.103 0.111 0.016 0.018 2π rad
Vax 0.506 0.562 0.023 0.026 22 m/s
α 0.018 0.022 0.018 0.022 1 rad
β 0.018 0.020 0.018 0.020 1 rad
ξL 0.05 0.05 0.05 0.05 1 rad
ξR 0.05 0.05 0.05 0.05 1 rad
η 0.05 0.05 0.05 0.05 1 rad
ζL 0.05 0.05 0.05 0.05 1 rad
ζR 0.05 0.05 0.05 0.05 1 rad
PP 0.05 0.05 0.05 0.05 1 kW
P1 0.04 0.04 0.04 0.04 1 kW
P2 0.04 0.04 0.04 0.04 1 kW
P3 0.04 0.04 0.04 0.04 1 kW
P4 0.04 0.04 0.04 0.04 1 kW
Pbat 0.04 0.04 0.04 0.04 1 kW
ωPn 0.01 0.01 0.01 0.01 1 −
ω1n 0.01 0.01 0.01 0.01 1 −
ω2n 0.01 0.01 0.01 0.01 1 −
ω3n 0.01 0.01 0.01 0.01 1 −
ω4n 0.01 0.01 0.01 0.01 1 −
ug 0.568 0.82 0.026 0.037 22 m/s
vg 0.583 0.852 0.073 0.107 8 m/s
wg 1.020 1.924 0.064 0.120 16 m/s
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Table C.7.: Error metrics of the hybrid and physical model dynamical states
in TS2.

Sign RMSExdhyp
RMSExdphy

NRMSExdhyp
NRMSExdphy

Reference Unit

pN 1.032 1.108 0.003 0.003 350 m
pE 1.049 1.111 0.009 0.009 120 m
pD 2.621 3.173 0.024 0.029 110 m
ub 0.080 0.259 0.004 0.012 22 m/s
vb 0.040 0.153 0.005 0.019 8 m/s
wb 0.012 0.223 0.001 0.014 16 m/s
p 0.002 0.007 0.002 0.007 1 rad/s
q 0.005 0.059 0.005 0.059 1 rad/s
r 0.010 0.029 0.01 0.029 1 rad/s
ϕ 0.014 0.056 0.014 0.056 1 rad
θ 0.014 0.098 0.014 0.098 1 rad
ψ 0.026 0.049 0.004 0.008 2π rad
uw 0.010 0.009 0.010 0.009 1 m/s
vw 0.012 0.050 0.012 0.050 1 m/s
ww 0.012 0.114 0.012 0.114 1 m/s
ξL 0 0 0 0 1 rad
ξR 0 0 0 0 1 rad
η 0 0 0 0 1 rad
ζL 0 0 0 0 1 rad
ζR 0 0 0 0 1 rad
PP 0 0 0 0 1 kW
P1 0 0 0 0 1 kW
P2 0 0 0 0 1 kW
P3 0 0 0 0 1 kW
P4 0 0 0 0 1 kW

Table C.8.: Error metrics of the hybrid and physical model parameter states
in TS2.

Sign RMSExphyp
RMSExpphy

NRMSExphyp
NRMSExpphy

Reference

CD0
0.0001 0.0186 0.0008 0.1412 0.132

CL0
0.0004 0.0867 0.0008 0.1412 0.614

CM0
0 0 0.0086 0 0.00461
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C.5. Additional data analysis in TS3

Table C.9.: Error metrics of the hybrid and physical model outputs in TS3.
Sign RMSEyhyb RMSEyphy NRMSEyhyb NRMSEyphy Reference Unit

pN 2.05 2.047 0.006 0.006 350 m
pE 2.045 2.043 0.017 0.017 120 m
pD 5.097 5.073 0.046 0.046 110 m

ax 3.228 0.429 0.043 0.006 75 m/s2

ay 2.486 1.346 0.249 0.135 10 m/s2

az 0.744 0.396 0.008 0.004 95 m/s2

p 0.065 0.027 0.065 0.027 1 rad/s
q 0.027 0.017 0.027 0.017 1 rad/s
r 0.061 0.018 0.061 0.018 1 rad/s
ϕ 0.338 0.104 0.338 0.104 1 rad
θ 0.294 0.105 0.294 0.105 1 rad
ψ 0.131 0.101 0.021 0.016 2π rad
Vax 1.492 1.917 0.068 0.087 22 m/s
α 0.079 0.084 0.079 0.084 1 rad
β 0.118 0.022 0.118 0.022 1 rad
ξL 0.05 0.05 0.05 0.05 1 rad
ξR 0.05 0.05 0.05 0.05 1 rad
η 0.05 0.05 0.05 0.05 1 rad
ζL 0.05 0.05 0.05 0.05 1 rad
ζR 0.05 0.05 0.05 0.05 1 rad
PP 0.05 0.05 0.05 0.05 1 kW
P1 0.04 0.04 0.04 0.04 1 kW
P2 0.04 0.04 0.04 0.04 1 kW
P3 0.04 0.04 0.04 0.04 1 kW
P4 0.04 0.04 0.04 0.04 1 kW
Pbat 0.04 0.04 0.04 0.04 1 kW
ωPn 0.01 0.01 0.01 0.01 1 −
ω1n 0.01 0.01 0.01 0.01 1 −
ω2n 0.01 0.01 0.01 0.01 1 −
ω3n 0.01 0.01 0.01 0.01 1 −
ω4n 0.01 0.01 0.01 0.01 1 −
ug 1.713 1.511 0.078 0.069 22 m/s
vg 1.553 1.419 0.194 0.177 8 m/s
wg 3.258 1.206 0.204 0.075 16 m/s
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Table C.10.: Error metrics of the hybrid and physical model dynamical
states in TS3.

Sign RMSExdhyp
RMSExdphy

NRMSExdhyp
NRMSExdphy

Reference Unit

pN 0.458 0.436 0.001 0.001 350 m
pE 0.425 0.417 0.004 0.003 120 m
pD 0.999 0.836 0.009 0.008 110 m
ub 1.406 1.849 0.064 0.084 22 m/s
vb 2.171 0.422 0.271 0.053 8 m/s
wb 1.467 1.405 0.092 0.088 16 m/s
p 0.065 0.027 0.065 0.027 1 rad/s
q 0.027 0.017 0.027 0.017 1 rad/s
r 0.061 0.018 0.061 0.018 1 rad/s
ϕ 0.323 0.027 0.323 0.027 1 rad
θ 0.277 0.032 0.277 0.032 1 rad
ψ 0.085 0.014 0.014 0.002 2π rad
uw 0.434 0.291 0.434 0.291 1 m/s
vw 0.232 0.244 0.232 0.244 1 m/s
ww 3.587 1.032 3.587 1.032 1 m/s
ξL 0 0 0 0 1 rad
ξR 0 0 0 0 1 rad
η 0 0 0 0 1 rad
ζL 0 0 0 0 1 rad
ζR 0 0 0 0 1 rad
PP 0 0 0 0 1 kW
P1 0 0 0 0 1 kW
P2 0 0 0 0 1 kW
P3 0 0 0 0 1 kW
P4 0 0 0 0 1 kW

Table C.11.: Errormetrics of the hybrid and physicalmodel parameter states
in TS3.

Sign RMSExphyp
RMSExpphy

NRMSExphyp
NRMSExpphy

Reference

CD 0.0759 0.0378 0.2168 0.1889 0.20
CY 0.0491 0.1129 1.9419 11.2924 0.01
CL 0.2210 0.2168 0.1793 0.2891 0.75
Cℓ 0.0092 0.0111 1.0063 1.1070 0.01
Cm 0.0470 0.0191 0.5219 1.9078 0.01
Cn 0.0336 0.0158 0.3323 1.5807 0.01
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C.6. Additional data analysis in TS4

Table C.12.: Mean main diagonals of Pee in straight FW flight (Sf) in TS4.

Sign 1
N

N∑︁
P̂

(Sf)
ee

1
N

N∑︁
P̃

(Sf)
ee ∆∗P̄

(Sf)
ee in [%] RMSEPee Units of Pee

pN 7.99 12.3 −35.3 17.3 m2

pE 7.95 8.82 −9.85 10.2 m2

pD 52.3 4.88 973 47.9 m2

ax 0.078 0.14 −44.1 0.682 (m/s2)2

ay 0.292 0.126 131 0.303 (m/s2)2

az 0.413 1.22 −66.1 5.17 (m/s2)2

p 5.42e-3 0.0226 −76 0.0522 (rad/s)2

q 6.98e-3 3.90e-3 78.9 0.0105 (rad/s)2

r 0.0405 0.0107 279 0.0369 (rad/s)2

ϕ 0.0138 0.023 −40.1 0.0343 rad2

θ 0.0134 0.0107 25.9 0.0118 rad2

ψ 0.0178 0.038 −53.1 0.0465 rad2

Vax 0.497 0.94 −47.2 1.39 (m/s)2

α 8.99e-4 5.12e-3 −82.4 0.0122 rad2

β 2.59e-3 4.83e-3 −46.3 0.0141 rad2

ξL 3.03e-3 1.19e-3 155 2.72e-3 rad2

ξR 3.03e-3 8.95e-4 238 2.68e-3 rad2

η 3.03e-3 3.15e-4 860 2.65e-3 rad2

ζL 3.03e-3 5.87e-4 415 2.62e-3 rad2

ζR 3.03e-3 4.84e-4 525 2.74e-3 rad2

PP 3.03e-3 6.10e-3 −50.4 0.0101 kW 2

Pbat 1.94e-3 6.95e-3 −72.2 0.0119 kW 2

ωPn 1.21e-4 7.99e-4 −84.9 1.29e-3 −
ug 0.783 2.74 −71.4 4.94 (m/s)2

vg 0.746 2.91 −74.4 3.91 (m/s)2

wg 1.53 1.3 17.1 1.75 (m/s)2
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Table C.13.: Mean main diagonals of Pee in curve flight (Cf) in TS4.

Sign 1
N

N∑︁
P̂

(Cf)
ee

1
N

N∑︁
P̃

(Cf)
ee ∆∗P̄

(Cf)
ee in [%] RMSEPee Units of Pee

pN 7.94 16.6 −52.2 23.1 m2

pE 8.02 7.26 10.6 10.3 m2

pD 52.5 4.59 1040 48.3 m2

ax 0.0797 0.124 −35.7 0.442 (m/s2)2

ay 0.32 0.134 138 0.334 (m/s2)2

az 0.429 1.60 −73.1 7.19 (m/s2)2

p 5.41e-3 0.0317 −82.9 0.0662 (rad/s)2

q 6.62e-3 6.10e-3 8.52 0.0138 (rad/s)2

r 0.0384 0.0131 194 0.0343 (rad/s)2

ϕ 0.0137 0.0318 −57 0.0485 rad2

θ 0.0136 0.0101 33.9 0.0131 rad2

ψ 0.0169 0.0299 −43.5 0.0417 rad2

Vax 0.496 1.13 −56.2 1.66 (m/s)2

α 6.16e-4 3.90e-3 8.06e-3 −84.2 rad2

β 2.10e-3 4.27e-3 9.77e-3 −50.8 rad2

ξL 3.03e-3 1.39e-3 118 2.78e-3 rad2

ξR 3.03e-3 1.06e-3 185 2.77e-3 rad2

η 3.03e-3 3.26e-4 827 2.74e-3 rad2

ζL 3.03e-3 7.0e-4 332 2.57e-3 rad2

ζR 3.03e-3 5.98e-4 406 2.73e-3 rad2

PP 3.03e-3 6.37e-3 −52.5 0.011 kW 2

Pbat 1.94e-3 7.10e-3 −72.7 0.0127 kW 2

ωPn 1.21e-4 7.47e-4 −83.8 1.29e-3 −
ug 0.719 4.62 −84.5 7.23 (m/s)2

vg 0.795 3.13 −74.6 4.84 (m/s)2

wg 1.58 1.68 −6.17 2.33 (m/s)2
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Figure C.5.: Residuals of measurements of FM1 in the last bootstrap sam-
ple of TS4 with σee (dashed).
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Figure C.5.: Residuals of measurements of FM1 in the last bootstrap sam-
ple of TS4 with σee (dashed).
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Figure C.5.: Residuals of measurements of FM1 in the last bootstrap sam-
ple of TS4 with σee (dashed).
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Figure C.5.: Residuals of measurements of FM1 in the last bootstrap sam-
ple of TS4 with σee (dashed).
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Figure C.5.: Residuals of measurements of FM1 in the last bootstrap sam-
ple of TS4 with σee (dashed).
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Figure C.5.: Residuals of measurements of FM1 in the last bootstrap sam-
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