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Abstract

The present work provides insights into momentum, heat and species transport
phenomena occurring under highly anisotropic turbulent conditions, such as those
encountered in conventional, wall-parallel channel flows, variously designed wall-
perpendicular flow impingements, and complex internal combustion (IC) engine
intake flow configuration.
The main focus of the present thesis is to investigate the predictive performance of a
baseline second-moment closure Reynolds-Averaged Navier-Stokes Reynolds-Stress
Model (RANS-RSM) and its scale-resolving extension, the Improved Instability-
Sensitive Reynolds-Stress Model (IISRSM) (Jakirlić and Maduta, 2015), employed
within a sensitized RANS concept in conjunction with first- and second-order
modeling approaches for the turbulent heat and species flux.
A comparative assessment of the predictive performance of the two RANS-RSM
related models in terms of their ability to correctly predict coupled, simultaneously
occurring momentum, heat and species transport processes is performed for a
turbulent channel, slot-jet impingement, axisymmetric-jet impingement, double-slot-
jet impingement and IC intake flow configuration. As an important step in model
development, all respective flow configurations are compared with corresponding
reference Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES).
To evaluate the general physical realizability of the momentum transport, the
turbulence anisotropy is characterized by utilizing the invariant maps of Lumley
and Newman (1977) and Choi and Lumley (2001) as well as the related barycentric
map suggested by Banerjee, Krahl, Durst, and Zenger (2007). To further represent
the second-order Reynolds stress anisotropy tensor field within the computational
domain, a barycentric coloring approach (Emory and Iaccarino, 2014) is applied to
all numerical datasets.
The modeling of the turbulent heat and species flux within the corresponding
temperature and species transport equation is realized by the isotropic simple
gradient diffusion (SGDH) and anisotropic modeling approaches, such as the
generalized gradient diffusion (GGDH) or the higher order quadratic gradient
diffusion hypothesis (HOGGDH) originally proposed by Abe and Suga (2001). The
baseline RSM in combination with the considered heat flux models provided a
reasonable prediction for temperature and species transfer and the corresponding
distribution of some relevant integral properties, such as the Nusselt number.
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The scale-resolving IISRSM provided significantly better predictions for velocity,
Reynolds stress components as well as temperature and concentration profiles,
closely following the respective DNS and LES references.
To accurately predict the near-wall behavior of thermal and species fields, a
RANS-based model, whether in the conventional or sensitized RANS framework,
must not only correctly capture the velocity field but also the underlying
anisotropic Reynolds stress tensor field. Sensitizing a second-order Reynolds stress
model to adequately resolve the fluctuating turbulence can significantly improve
the prediction of the flow structure in terms of all dependent flow properties,
such as velocity, Reynolds stress, species and thermal fields, considering that a
significant fraction of the turbulent spectrum has been resolved.

Remark: Parts of the computational investigations within the present thesis
are published by the author of the present work (Bopp, Wegt, Krüger, Secchi,
Frohnapfel, and Jakirlić, 2024).
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Zusammenfassung

Die vorliegende Arbeit liefert Einblicke in die Quantifizierung von Impuls, Wärme
und Stofftransportprozessen unter stark anisotropen, turbulenten Strömungsbedin-
gungen, wie sie sowohl in generischen Strömungskonfigurationen als auch komplexen
Ansaugströmungen eines Verbrennungsmotors auftreten.
Der Schwerpunkt der vorliegenden Dissertation liegt auf der Untersuchung
der Vorhersagegenauigkeit eines Reynolds-Averaged Navier-Stokes Reynolds-
Spannungsmodells (RANS-RSM) und dessen skalenauflösenden Erweiterung, des
Improved-Instability-Sensitive Reynolds-Spannungsmodells (IISRSM) (Jakirlić und
Maduta, 2015), welches in Verbindung mit verschiedenen Modellansätzen zur
Erfassung des turbulenten Wärme- und Stofftransport untersucht wird.
Eine Bewertung der Vorhersagegenauigkeit beider RANS-
Reynoldsspannungsmodelle in Bezug auf ihre Fähigkeit, simultan auftretende
Transportprozesse von Impuls, Wärme und Stoff korrekt vorherzusagen, wird für
eine turbulente Kanalströmung, wandnormale Schachtprallströmung, achsensym-
metrische Prallströmung, Doppelschachtprallströmung sowie die Ansaugströmung
eines Verbrennungsmotors durchgeführt. Die Ergebnisse dieser numerischen Studien
werden zur genauen Quantifizierung mit entsprechenden Referenzdaten unterschied-
licher Direkter Numerischer Simulationen (DNS) und Grobstruktursimulationen
(LES) verglichen.
Um die allgemeine physikalische Realisierbarkeit des Impulstransports zu
bewerten, wird die Turbulenzanisotropie anhand der Invariantenkarten von
Lumley und Newman (1977) und Choi und Lumley (2001) sowie dem damit
zusammenhängenden baryzentrischen Turbulenzdreieck nach Banerjee, Krahl,
Durst und Zenger (2007) charakterisiert. Um den anisotropen Charakter des
Reynoldsspannungs-Tensorfelds zweiter Ordnung im Rechengebiet darzustellen,
wird ein baryzentrischer Färbungsansatz nach Emory und Iaccarino (2014) auf
alle numerischen Datensätze angewandt. Dies liefert eine klare und verständ-
liche Darstellung anisotroper Impulstransportprozesse. Die Modellierung des
turbulenten Wärme- und Stofftransports in der entsprechenden Temperatur- und
Stofftransportgleichung erfolgt sowohl durch einfache, isotrope Gradientendiffusion
(SGDH) als auch anisotrope Modellierungsansätze wie die generalisierte Gradien-
tendiffusion (GGDH) oder die Hypothese der quadratischen Gradientendiffusion
höherer Ordnung (HOGGDH) nach Abe und Suga (2001). Hierbei liefert das
Standard-RSM in Kombination mit den betrachteten turbulenten Flussmodellen
sinnvolle Vorhersagen für die Temperatur- und Stoffübertragung sowie die
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entsprechende Verteilung einiger relevanter integraler Eigenschaften wie der
Nusselt-Zahl. Das skalenauflösende IISRSM liefert hierbei jedoch im Vergleich
nochmals signifikant verbesserte Vorhersagen für Geschwindigkeit, Reynolds-
Spannungskomponenten sowie Temperatur- und Konzentrationsprofile, welche
in sehr guter Übereinstimmung mit den jeweiligen DNS- und LES-Referenzen liegen.

Zusammenfassend lässt sich erkennen, dass ein RANS-basiertes Modell, sei es im
Rahmen konventioneller oder sensibilisierter RANS-Modellierungsstrategien, nicht
nur das zugrunde liegende Geschwindigkeitsfeld, sondern auch den anisotropen
Reynolds-Spannungstensor korrekt erfassen muss um das wandnahe Verhalten der
Temperatur- und Stoffgrenzschichten genau vorherzusagen. Die Sensibilisierung
eines Reynolds-Spannungsmodells zweiter Ordnung zur angemessenen Auflösung
der fluktuierenden Turbulenz kann die Vorhersagegenauigkeit der Strömungsstruk-
tur in Bezug auf alle abhängigen Strömungseigenschaften erheblich verbessern.
Hierbei wird ein überwiegender Anteil der fluktuierenden Geschwindigkeits-,
Reynolds-Spannungs-, Stoff- und Temperaturfelder aufgelöst, was direkt zu einer
signifikaten Verbesserung der Vorhersagegenauigkeit führt.

Vermerk: Auszüge der numerischen Untersuchung sowie deren Auswertungen sind
durch den Autor der vorliegenden Thesis als wissenschaftiches Paper veröffentlicht
(Bopp, Wegt, Krüger, Secchi, Frohnapfel und Jakirlić, 2024).
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1. Introduction

1.1. Background and motivation
The flow pattern within internal combustion engines plays a critical role in the
internal combustion process and therefore, has a direct impact on engine efficiency
and emissions. Even in the absence of combustion or heat transfer processes, the
flow within a complex piston-cylinder assembly, as a part of an internal combustion
engine is significantly influenced by the interaction of various simultaneously
occurring flow phenomena. The flow complexity arises from phenomena such as
interacting injector jets, tumbling and swirling motion, wall shear stress variation
as well as stretching and squeezing effects on the working fluid during expansion
and compression modes of engine operation (Stone, 1999).An adequate description
of the flow characteristics include complex flow straining caused by the collision
of multiple intake jets and their subsequent impingement on the cylinder walls
and piston surface, as well as multiple wall-bounded and free separation events
(Ferguson and Kirkpatrick, 2015).

Furthermore, it is important to notice that the flow phenomena occurring within
an internal combustion engine, such as wall-perpendicular flow impingement
and the resulting convective heat and species transfer, are also critical for many
other industrial applications that require correspondingly high rates of heat and
species transfer (Bergman, 2011). Among further these applications include
film drying (Avcı, Can, and Etemoğlu, 2001), cooling of gas turbine blades
after combustion (Han, Dutta, and Ekkad, 2012) or injection processes within
combustion chambers. Various parameters exert influence on these flows and
their corresponding heat and species transfer rates. Prominent factors include
characteristic length of nozzle-to-wall distances, Reynolds number, Prandtl number
and Schmidt number. Many studies, both numerical and experimental, have delved
into these parameters’ effects on various wall-normal impingement processes onto
flat surfaces (Martin, 1977, Jambunathan, Lai, Moss, and Button, 1992, Ho and
Nosseir, 1981). Numerical investigations have particularly examined the impact
of turbulence models on the accuracy of momentum, heat and species transfer
predictions in wall-perpendicular flow configurations. Craft, Graham, and Launder
(1993) highlighted that Reynolds-averaged turbulence models struggle to provide
satisfactory results for wall-perpendicular impinging jet flows. Behnia, Parneix,
Shabany, and Durbin (1999) emphasized the significance of near-wall modeling for
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1. Introduction

achieving reasonable outcomes in turbulent jet impingement scenarios. However,
even simulative results obtained in conjunction with RANS models which account
for near-wall turbulence do not guarantee optimal results. Many heat transfer
models still fall short in accurately capturing heat and species transport across
diffusive sublayers, mixing layers, and associated buffer layers (Šarić and Basara,
2018). The interplay between the turbulence model and the model for turbulent
heat and species fluxes, denoted as u′jθ′ and u′jc′ in RANS simulations, remains
of great interest. Even in simpler flow configurations involving only gaseous
media, studies employing near-wall turbulence models often yield Nusselt number
predictions that diverge from corresponding experimental data (Chang and Shyu,
2000). Notably, a recurrent challenge in wall-perpendicular flow configurations is
the substantial overestimation of turbulence kinetic energy driven by streamline
curvature, as well as the resultant deviation in the turbulent Prandtl number Prt

in vicinity to the wall. These issues are closely linked to how turbulent momentum
and heat fluxes are modeled, as well as the chosen time-averaged or time-accurate
framework that underpins the numerical modeling approach.

A significant limitation of the traditional eddy viscosity modeling approach, em-
ployed for closing the turbulent momentum flux u′iu′j in the Reynolds-averaged
momentum equation, is its assumption of isotropic turbulence. This approach,
originally proposed by Boussinesq (1877), employs the anisotropy–blind scalar
turbulent viscosity νt to model additional turbulent momentum transfer:

u′iu′j = −2νtSij + 2
3kδij (1.1)

However, this isotropic assumption falls short for many turbulent flows where
momentum transport exhibits pronounced anisotropy. In contrast, second-moment
closure (SMC) models inherently consider the anisotropic nature of turbulent
fluctuations. By solving a transport equation for the second-order moments
of the Reynolds stress tensor u′iu′j , SMC models are capable of accounting
for fully-modelled i.e. unresolved turbulence anisotropy, depending on the
used computational framework. In this context, the present thesis utilizes a
second-moment RANS model and its sensitized, scale-resolving extension (Jakirlić
and Maduta, 2015) to achieve an enhanced prediction of turbulent momentum and
the subsequent heat and species transport. The corresponding model is further
described in chapter 2.

For typical heat and mass transfer problems additionally to the turbulent momen-
tum transport, a corresponding modeling of the respective turbulent heat and
species transport has to be introduced. The most-widely used model formulation
for the turbulent heat or species flux (u′jθ′ or u′jc′), the so-called simple gradi-
ent diffusion approach - representing the straightforward proportionality to the
mean scalar field (C, Θ) gradient - is formulated in analogy to the Boussinesq

2



1.2. Objectives and outline of this thesis

approximation:

−u′jθ′ = ΓΘ
∂Θ
∂xj

with ΓΘ = νt

Prt
(1.2)

−u′jc′ = ΓC
∂C

∂xj
with ΓC = νt

Sct
(1.3)

The eddy diffusivity ΓΘ,C of the respective scalar field is commonly expressed in
terms of the eddy viscosity νt and the constant turbulent Prandtl and Schmidt
numbers Sct, Prt (see Combest, Ramachandran, and Dudukovic, 2011). Simple
heat flux models of this type exhibit the major weakness that the scalar fluxes
are directly related to the mean scalar-field gradients through a simple scalar
turbulent diffusivity. These formulations are not capable of capturing turbulence
anisotropy residing in modeled diffusive fluxes due to the scalar nature of the eddy
viscosity. The present thesis therefor closely emphasizes the predictive capabilities
and usefulness of Second-moment RANS-based closure models in a classical, time-
averaged and time-accurate, scale-resolving framework in conjunction with higher
order modeling approaches for the corresponding turbulent heat and species flux.
Hereby the velocity and the underlying Reynolds stress components are closely
investigated by utilizing various techniques for the appropriate anisotropy-related
visualization of second order tensors fields.

1.2. Objectives and outline of this thesis
Jet impingement, wall-perpendicular and injection-related flows are significantly
contributing to industrial processes that require high heat and species transfer
rates. Factors like the characteristic length of the nozzle-to-wall distance, Reynolds,
Prandtl and Schmidt numbers crucially impact these flows. Multiple studies
explore wall-normal impingements on surfaces and additionally emphasize the
coupled heat and species transfer (Martin, 1977, Jambunathan, Lai, Moss, and
Button, 1992). Further, various numerical investigations examine the influence
of the applied turbulence model and its effects on heat/species predictions for
wall-perpendicular flows (Craft, Graham, and Launder, 1993). Subsequently,
near-wall turbulence modeling is isolated as an important factor for enhanced
predictive capabilities (Behnia, Parneix, Shabany, and Durbin, 1999), but even
with it, heat and species transfer modeling tend to fall short to experimental
or numerical reference data sets (Šarić and Basara, 2018). RANS models often
overestimate the production of turbulence kinetic energy in wall-perpendicular
flows due to intense streamline curvature. Since traditional RANS-related eddy
viscosity turbulence models assume isotropic turbulence (Boussinesq, 1877), they
are not capable of accounting for any modeled turbulence anisotropy. However,
within the present thesis two second-moment closure (SMC) Reynolds-stress
turbulence models originally suggested by Jakirlić and Maduta (2015) are applied
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1. Introduction

to address turbulence anisotropy and, in conjunction with higher order modeling
approaches for the corresponding turbulent heat and species flux, improve
momentum, heat and species transfer predictions.

After the previous chapter, which introduced the description of the physical
complexity of the flow configurations to be investigated and illustrated the
weaknesses of the existing computational models by citing relevant literature
references, chapter 2 delves into the theoretical foundations of simulating heat and
species transfer from a fluid mechanics perspective. The primary objective of this
chapter is to provide a short overview of the fundamental equations governing
fluid mechanics, with a specific emphasis on scalar heat and species transfer. The
computational framework assumes an incompressible Newtonian fluid, introducing
the conservation equations for momentum, energy, and species transfer essential
for the numerical simulation of turbulent flows. Various modeling approaches,
including time-averaged and scale-resolving Reynolds-Averaged Navier-Stokes
(RANS) closure models and Large Eddy Simulation (LES) closure models, are
introduced briefly, alongside corresponding concepts for closing the governing
equations. The chapter concludes by addressing the practical implementation
of these equations, along with the methodology for their spatial and temporal
discretization utilizing the Finite Volume Method (FVM).

Chapter 3 focuses on the methodology for adequate comparative assessment of
arbitrary anisotropic Reynolds stress tensor fields which is directly linked to
the corresponding overall predictive capabilities of the previously introduced
conventional and scale-resolving second moment closure Reynolds stress model
RSM and IISRSM (Section 2.4.2 & 2.4.2). This section especially introduces
analysis tools for anisotropy-reflecting closure approaches within the underlying
RANS and hybrid RANS/LES models.

Chapter 4 contains important preliminary investigations on generic flow con-
figurations, such as turbulent channel and impinging jet flows, in conjunction
with passive scalar temperature transport. Further, analytical methods for
quantification of anisotropic turbulent behavior are utilized for an extensive
evaluation of the predictive capabilities of the steady RANS-based RSM and its
scale-resolving extension IISRSM. Subsequently, the performance of the introduced
models for the scalar turbulent heat flux in conjunction with both second-moment
closure models is evaluated against various DNS reference data.

Chapter 5 contains the leading configurations of the present thesis. The first
configuration attends the complex, highly turbulent inflow into an internal
combustion engine, the so-called TUDa Flowbench (Sec. 5.1) with a bulk
Reynolds number of Re = 38000. The second configuration (Sec. 5.2) attends an
axisymmetric impinging jet onto a heated wall. The jet structure corresponds to a
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1.2. Objectives and outline of this thesis

fully-developed pipe flow at a diameter-based Reynolds number of Re = 10000
for which reference DNS data are made available by Secchi, Häber, Gatti, Schulz,
Trimis, Suntz, and Frohnapfel (2022) and Secchi, Gatti, and Frohnapfel (2023). The
considered round jet impinges perpendicularly on a partially heated wall located
at 2D distance from the pipe outlet, with boundary conditions corresponding to a
constant wall temperature. The third configuration (Sec. 5.3) addresses a parallel
double-slot impingement onto a smooth wall at a diameter-based Reynolds number
of Re = 10000, in conjunction with scalar species transport. The results obtained
by the baseline RANS-RSM and its scale-resolving extension, known as the
Improved Instability-Sensitive Reynolds-Stress Model (IISRSM) are held against
an additionally performed reference Large Eddy Simulation (LES). The focus
of the present leading investigations is the comparison the combined predictive
performances of higher order turbulent momentum and scalar flux modeling
approaches.

To make it easier to follow the predictive capabilities of the models, Appendix
A provides the detailed specification of the two presently used Reynolds Stress
models ’at a glance’.

The explicit contribution of the present work is reflected in the extension of the ap-
plication of the turbulence models used to flows whose complexity refers to a variety
of differently structured phenomena, including flows affected by strong streamline
curvature, characteristic of impinging flow events and subsequent recirculation
motion, thus contributing to the further development of the models. This was
followed by an appropriate adaptation of the implemented numerical algorithms.
The flow configurations treated include an annular jet formed inside the intake
manifold of an internal combustion engine and impinging on the cylinder and piston
walls, forming a tumbling vortex structure therein, as well as differently structured
jets emerging from round and slotted twin nozzles and impinging perpendicularly
on heated walls. In the latter case, species transport is also considered. The com-
parative evaluation of the results illustrates the correctly predicted instantaneous
character of the flow as well as its assembly-averaged pattern. Of particular note is
the highlighting of the Reynolds stress anisotropy characterization, which helps
to reveal and spatially track differently structured flow regions within the studied
flow configurations.
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2. Theoretical background

The forthcoming chapter provides a comprehensive insight into the theoretical
background of numerical simulations concerning heat and species transfer in
configurations relevant to internal combustion engines (IC engines) from a fluid
mechanics perspective. The objective of this chapter is to offer a focused yet
informative overview of key topics, refraining from elaborate explanations while
covering crucial aspects.

The discussion centers on the governing equations of fluid mechanics, tailored
to the specific context of wall parallel as well as wall-normal flow configurations
with relevance to IC engines. Emphasis is placed on heat and species transfer,
elucidating the assumptions applicable to incompressible Newtonian fluids and
introducing the conservation equations for momentum, energy, and species transfer.
Important dimensionless parameters such as the Reynolds number (Re), Prandtl
number (Pr), Schmidt number (Sc), and Nusselt number (Nu) are highlighted as
fundamental tools for characterizing momentum and heat transfer characteristics
across all considered flow configurations. Acknowledging the turbulent nature
of flow fields within the considered flow configurations, the chapter outlines the
essential principles of turbulence, encompassing the features of turbulent structures
and their consequential influence on heat and species transfer phenomena. Diverse
modeling strategies, including Reynolds-Averaged Navier-Stokes (RANS) and Large
Eddy Simulation (LES), are briefly introduced and accompanied by concepts
for closing the governing Reynolds-averaged or filtered equations. The chapter
further addresses the practical viability of the governing equations, outlining the
methodology for their spatial and temporal discretization within the Finite Volume
Method (FVM). Furthermore, it offers an overall view of relevant techniques aimed
at enhancing numerical precision and stabilizing the solution process of the FVM,
particularly in the context of simulating heat and species transfer.
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2. Theoretical background

2.1. Governing equations of continuum mechanics

Fluid mechanics problems are typically addressed through a set of partial
differential equations known as the Navier-Stokes equations (NSE). These
equations serve as the foundation for describing the behavior of fluids that adhere
to Newtonian behavior. They assume the fluid to be a continuous medium,
disregarding individual molecular motion. This permits the application of calculus
and mathematical methods to describe fluid behavior at a macroscopic scale.

The continuum hypothesis is central in this context, assuming that a fluid can be
treated as a seamless medium with smoothly varying properties in both space xi

and time t. This assumption is valid when the dimensions of the problem greatly
surpass the mean free path of fluid molecules, thereby neglecting discrete molecular
behavior.

Employing the Eulerian approach, fluid motion is depicted at a fixed spatial point
and instant in time. This approach employs field variables like velocity, pressure,
and density, which continuously fluctuate in both space and time. The Eulerian
approach sidesteps tracking individual fluid particle trajectories, focusing instead
on characterizing the fluid’s attributes at specific points in space and time.

By amalgamating the continuum hypothesis and the Eulerian approach, the
Navier-Stokes equations offer a mathematical framework to model and compu-
tationally solve diverse fluid mechanics dilemmas. This encompasses problems
ranging from basic flows in channels to more intricate scenarios involving heat
and species transport. These equations hold pivotal importance in computational
fluid dynamics (CFD), a potent tool used for simulating fluid flow in numerous
engineering and scientific contexts (Spurk and Aksel, 1989).

The focus of the present work is solely on fluids which display incompressible and
Newtonian behavior. The governing mathematical model employed to describe the
transport of mass and momentum is based on the incompressible Navier-Stokes
equations, expressed in tensor notation as follows:

∂Ui

∂xi
= 0 (2.1)

∂Ui

∂t
+ Uj

∂Ui

xj
= −1

ϱ

∂p

∂xi
+ ∂

∂xj

(︃
ν

∂Ui

∂xj

)︃
(2.2)
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2.1. Governing equations of continuum mechanics

Here, p(xi, t) and Ui(xi, t) denote the pressure and velocity at a specific spatial
location xi and time t. The fluid’s density is represented by ρ, and its kinematic
viscosity by ν.

The energy equation, representing the temporal change of internal energy in terms
of temperature, is introduced as:

∂Θ
∂t

+ Uj
∂Θ
∂xj

= τij

ρ

∂ui

∂xj
+ ∂

∂xj

(︃
ν

Pr

∂Θ
∂xj

)︃
(2.3)

Eqn. (2.3) shows the continuum mechanical equivalent of the First Law of classical
thermodynamics for an incompressible, low Reynolds number flow without the
consideration of radiation (Chang and Shyu, 2000). The given temperature
equation describes the evolution of a scalar temperature, denoted as Θ, with
respect to time t and spatial coordinates xj , where Uj represents the velocity
in Cartesian coordinates. The Prandtl number Pr describes the influence of
variable fluid properties and will be explained in the following section. The
left-hand side of the equation represents the temporal change and the convective
transport of the temperature field, whereas the right-hand side of the equation
represents the the viscous heating and diffusion of the scalar temperature. The
symmetric second-order stress tensor τij is a key parameter in the relation
between a fluid and the thermodynamics of the corresponding flow as its shear
components are strongly related to dissipative processes in fluids. The shear
components are related to internal friction and subsequently the conversion of
mechanical into internal energy. The magnitude of shear stresses and their rate of
deformation determine the amount of dissipation that occurs in a fluid. Higher
shear stresses or ultimately higher shear rates lead to higher dissipation, as more
mechanical energy is converted into internal energy through the process of viscous
dissipation. The ratio ν/Pr represents temperature diffusivity, which character-
izes the strength of molecular diffusion of the underlying thermal field within a fluid.

The final transport equation introduced in this work is the general passive scalar
transport equation, which governs the evolution of a scalar quantity denoted as C
within a fluid flow. The scalar transport equation describes the interaction between
convection and diffusion of a scalar quantity and can be expressed as:

∂C

∂t
+ Uj

∂C

∂xj
= ∂

∂xj

(︃
ν

Sc

∂C

∂xj

)︃
(2.4)

The convective term on the left-hand side represents the transport of the scalar
quantity C by the bulk motion of the velocity field Uj . This term captures how the
scalar quantity is advected by the fluid flow, leading to changes in its concentration
over time. On the right-hand side, the diffusive term accounts for molecular diffusion
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2. Theoretical background

processes. This term describes how the scalar quantity diffuses from regions of
high concentration to regions of low concentration, following the direction of the
gradient of the scalar field.

2.2. Reference dimensionless numbers
Dimensionless numbers play a crucial role in characterizing fluid flows by enabling
comparisons, simplifications, and identification of universal behaviors. They
provide a way to analyze and understand complex flow phenomena across different
systems, regardless of their size or absolute values.

The Reynolds number (Re) is a dimensionless parameter used to describe the flow
regime of a fluid. It compares the relative importance of inertial forces to viscous
forces in a fluid flow. Mathematically, it is defined as:

Re = UL
ν

(2.5)

The Reynolds number is defined as the ratio of the product of the characteristic
velocity U and the characteristic length L of the flow to the kinematic viscosity ν
of the fluid. The Reynolds number is a critical parameter in fluid mechanics as
it determines the type of flow that occurs in a given situation. It helps to iden-
tify whether the flow is laminar at relatively low values or turbulent at higher values.

The Prandtl number, denoted as Pr, is a dimensionless number used in fluid
mechanics and heat transfer to characterize the relative importance of momentum
diffusion to thermal diffusion in a fluid. Mathematically, the Prandtl number is
defined as the ratio of the momentum diffusivity to the thermal diffusivity of a
fluid. It is given by the following formula:

Pr = cpµ

λ
(2.6)

In 2.6 the Prandtl number is expressed as the ratio of the product of specific heat
at constant pressure cp and dynamic viscosity µ to the thermal conductivity λ of
a fluid. A high Prandtl number indicates that momentum diffusion is relatively
slower compared to thermal diffusion, while a low Prandtl number indicates the
opposite. Different fluids have different Prandtl numbers which crucially affects
their behavior in terms of heat transfer in relation to the underlying fluid motion.

The Nusselt number Nu, is a dimensionless parameter characterizing the convective
heat transfer from a solid surface to a fluid flowing over it. It is defined as the ratio
of convective heat transfer to conductive heat transfer and can be determined by:

Nu = αL
λ

(2.7)
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2.3. Fundamental concepts of turbulence

Here, the heat transfer coefficient α(λ, η, ρ, cp, Θw/Θ∞, Geometry) describes the
capability of a fluid to dissipate energy from or to a solid surface. It is a function of
the material properties of the fluid, the flow condition and the geometric conditions
(Stephan and Mayinger, 2013).
Utilizing Newton’s law of cooling, q̇ = α(Θw − Θ∞) and the well known Fourier’s
approach for determination of the heat flux from the wall into the fluid q̇w =
−λ(dΘ/dy)|w the Nusselt number Nu can be rewritten as:

Nu = −
dΘ
dy

⃓⃓
w

L
Θw − Θ∞

(2.8)

This reformulation is especially important for the numerical calculation of the
Nusselt number as it is used in the present work. Since the wall and free stream
temperature Θw and Θ∞ as well as the corresponding temperature gradient dΘ/dy
at the wall is easily obtained in computational fluid dynamics simulations, it
is possible to determine the heat transfer coefficient at every position, even for
complex geometries.

The Schmidt number, denoted as Sc characterizes the ratio between momentum
diffusivity to mass diffusivity. It is defined as the ratio of kinematic viscosity ν to
mass diffusion coefficient D and is determined by:

Sc = ν

D
(2.9)

The Schmidt number is commonly used in the study of mass transfer as well as in
the analysis of species transport phenomena in fluid flows. The material dependent
diffusion coefficient D(Θ, p) is a measure of how quickly a specie diffuses through a
medium. It determines the rate at which a substance or specie diffuses from an
area of high concentration to an area of low concentration due to random molecular
motion.

2.3. Fundamental concepts of turbulence
The work of Richardson and Kolmogorov has had a profound impact on the
understanding of turbulence and its fundamental mechanisms. Their contributions
have laid the groundwork for the development of turbulence theories and models,
which are crucial for various fields of science and engineering. Richardson’s concept
of the energy cascade has provided a framework for understanding how energy is
transferred across different scales in turbulent flows. This cascade process is a
fundamental aspect of turbulence and is responsible for the dissipation of energy
into heat at small scales. Richardson’s ideas have been instrumental in shaping the
understanding of the dynamics of turbulent flows, and his work has influenced
subsequent studies on turbulence modeling and simulation. Kolmogorov’s scaling
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2. Theoretical background

laws, particularly the well-known Kolmogorov −5/3 energy spectrum power law,
have provided insights into the statistical properties of turbulent flows in the
inertial sub-range. These scaling laws have helped researchers develop turbulence
models and characterize the behavior of turbulence in a wide range of applications.
Kolmogorov’s work also introduced the concept of the Kolmogorov micro-scales,
which provide a way to describe the smallest eddies in a turbulent flow based on
viscosity and turbulence kinetic energy.

Together, the contributions of Richardson and Kolmogorov have paved the way for
the study of turbulence from both theoretical and empirical perspectives. Their
insights have been essential in developing models and simulations that enable
engineers and scientists to predict and analyze turbulent flows in various practical
scenarios, ranging from fluid dynamics and aerodynamics to meteorology and
oceanography.

E (κ)

κ

energy
containing

range
inertial range

E (κ) ∼ κ −5/3

dissipation
range

L0

η

Figure 2.1.: Schematic illustration of the turbulence energy spectrum and eddy
decay with the eddy energy E(κ) plotted over the eddy wavenumber
κ.

Figure 2.1 illustrates the concept of the energy cascade by displaying the energy
spectrum for exemplary spherical, isotropic turbulence. The turbulent energy
spectrum is displayed as the eddy containing energy E(κ) plotted against the
associated wavenumber κ = 2π/l. The energy spectrum is divided into three
turbulent states: the energy production process or energy-containing range, the
decay and energy transfer to smaller eddies or inertial subrange, and the dissipation
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2.4. Reynolds-Averaged equations

of the smallest eddies or dissipation range. Within the inertial range, the energy
transfer can be described by a power law E (κ) ∼ κ−5/3.

According to the explanations given by Kolmogorov (1941), the tiniest dissipative
eddies in a turbulent state are statistically isotropic. The smallest eddies have a
universal character, and their length, velocity, and time scale can be described by
the kinematic viscosity ν and the viscous dissipation ε. These properties are called
the Kolmogorov scales, which include the length scale η, velocity scale uη, and
time scale τη of the smallest eddies and are typically given by:

η =
(︁
ν3/ε

)︁1/4
uη = (εν)1/4

τη = (ν/ε)1/2 (2.10)
When modeling turbulent flows different modeling strategies, which can be
classified by the amount of modeled to total turbulent kinetic energy can be
considered. The most widely used modeling methodologies are DNS, LES
and RANS-based strategies. Within the DNS framework, the Navier-Stokes
equations are solved directly without any underlying turbulence model resulting in
disproportional computational costs.

Within a DNS all turbulent scales are fully resolved in space and time. It solves the
full Navier-Stokes equations without any modeling assumptions. However, DNS is
computationally expensive and is usually used only for generic, academic purposes
or in simple geometries with low Reynolds numbers. An LES model only resolves
the larger, energy-containing scales of turbulence directly and models the smaller,
dissipative scales. LES is computationally less expensive than DNS and its use
cases are flow configurations where the time accurate resolution of turbulent scales
are important, but the computational cost of DNS is prohibitive. RANS models
describe the turbulent flow in statistical manner. Since all turbulent fluctuations
are modeled RANS is computationally less expensive compared to both DNS and
LES and is the most commonly used modeling approach in industrial applications
( Pope, 2000). For the present work, only LES and RANS modeling approaches
are considered and will be described in the following section.

2.4. Reynolds-Averaged equations
The fundamental concept of Reynolds-Averaged Navier-Stokes (RANS) models is
to predict the mean flow behavior of a turbulent fluid flow using time-averaged
equations. Turbulent flows are characterized by chaotic and random fluctuations of
their velocity and pressure fields, which make it difficult to accurately predict the
flow behavior using the Navier-Stokes equations. Therefor Osborne Reynolds (1895)
suggested that the turbulent fluctuations of a quantity Φ(xi, t) can be decomposed
into mean and fluctuating components.

Φi(xi, t) = Φi(xi, t) + φ′i(xi, t) (2.11)
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2. Theoretical background

Applying the decomposition concept of eqn. 2.11 to the velocity Ui(xi, t), pressure
p(xi, t), temperature Θ(xi, t) and concentration C(xi, t) within the transport equa-
tions 2.1, 2.2, 2.3 & 2.4 and subsequent time-averaging results in a time-averaged
set of equations for mass, momentum, energy and scalar transport:

∂U i

∂xi
= 0 (2.12)

∂U i

∂t
+ U j

∂U i

xj
= −1

ϱ

∂p

∂xi
+ ∂

∂xj

(︁
2νSij − u′iu′j

)︁
(2.13)

∂Θ
∂t

+ Uj
∂Θ
∂xj

= ∂

∂xj

(︃
ν

Pr

∂Θ
∂xj

− u′jθ′
)︃

(2.14)

∂C

∂t
+ Uj

∂C

∂xj
= ∂

∂xj

(︃
ν

Sc

∂C

∂xj
− u′jc′

)︃
(2.15)

The time-, or Reynolds-averaged momentum, temperature and species transport
equations (Eqn.( 2.13), (2.14), (2.15)) account for the additional correlations u′iu′j ,
u′jθ′, u′jc′ on the right-hand side of the equations which arise as a result of
the time-averaging procedure. The so-called Reynolds stress tensor u′iu′j is a
symmetrical, second order tensor which represents the momentum transfer by
the fluctuating velocity field (Pope, 2000), the turbulent heat- and species flux
denoted as u′jθ′, u′jc′ represent the unresolved turbulence-related transport of
the scalar temperature Θ(xi, t) and species concentration C(xi, t). Since the set
of momentum, mass, temperature and specie transport equations 2.13 contain
the unknown mean pressure p(xi, t), the three unknown velocities U i(xi, t), the
six unknown Reynolds stress components u′iu′j and the three unknown heat and
species flux components respectively, the resulting system is under determined and
therefor not solvable without a closure approach. This famous problem is well
known as the closure problem of turbulence. The following sections will address
the closure problem for the momentum equation and relevant modeling strategies
for its closing. The closure of the turbulent heat and species flux u′jθ′ and u′jc′
will be further discussed in the methodology (Chapter 3).

2.4.1. Eddy viscosity models
Eddy viscosity models as a class of turbulence closure models are widely used in
CFD simulations. The approach is based on the assumption that the influence of
turbulent eddies can represented by a turbulent viscosity νt which acts as a turbulent
equivalent to the molecular viscosity ν. This approach assumes that the turbulent
eddies have a comparable increasing viscous effect on the fluid flow as molecular
viscosity does. A widely used eddy viscosity modeling approach for the closure of the
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2.4. Reynolds-Averaged equations

Reynolds-averaged momentum equations (2.13) was proposed by Boussinesq (1877).
The suggested approach models the additional turbulent momentum transfer by
utilizing the mean strain rate tensor Sij = 0.5

(︁
∂U i/∂xj + ∂U j/∂xi

)︁
in conjunction

with the turbulent viscosity νt:

u′iu′j = −2νtSij + 2
3kδij (2.16)

Here the Kronecker delta δij returns the value 1 for equal and 0 for unequal indices
i and j. Applying equation 2.16 to the Reynolds-averaged momentum equations,
the unclosed Reynolds stress tensor u′iu′j with its six unknown components is
reduced to just one unknown turbulent viscosity. Eddy viscosity models are simple
and computationally efficient, they are ideal for large-scale simulations of turbulent
flows but lack in accuracy for more specific use cases. Since the present work does
not consider eddy viscosity models, the corresponding closure approaches for the
turbulent viscosity νt will not be further illuminated.

2.4.2. Second moment closure (SMC) models
One of the most important downsides of eddy viscosity models is their assumption
that the modeled turbulence is isotropic. This assumption is not accurate for many
turbulent flows, where momentum transport is highly anisotropic. In contrast,
second moment closure (SMC) models explicitly model the anisotropic behavior of
the turbulent fluctuations by solving a transport equation for the second-order
moments of the corresponding Reynolds stress tensor u′iu′j .

The transport equation for the Reynolds stress tensor is derived by utilizing the
momentum balance of the Navier-Stokes equation Ii (Eqn. (2.2)) and the momentum
balance of the RANS equations Ii (Eqn. (2.13)). By inserting the momentum
balance of the fluctuations I′i = Ii − Ii into the expression uiI′j + ujI′i = 0 the
transport equation for the Reynolds stress tensor can be derived as:

∂u′iu′j
∂t

+ Uk
u′iu′j
∂xk

= −u′iu′k
∂U j

∂xk
− u′ju′k

∂U i

∂xk⏞ ⏟⏟ ⏞
production Pij

+Gij + Rij + 2ν
∂u′i
∂xk

∂u′j
∂xk⏞ ⏟⏟ ⏞

dissipation ϵij

+ p′
ϱ

(︃
∂u′i
∂xj

+ ∂u′j
∂xi

)︃
⏞ ⏟⏟ ⏞

pressure redistribution ΦR
ij

+ ∂

∂xk

⎡⎢⎢⎢⎢⎣−u′iu′ju′k⏞ ⏟⏟ ⏞
Du′

ij

+ ν
∂u′iu′j

∂xk⏞ ⏟⏟ ⏞
Dν

ij

− p′
ϱ

(δkiu′j + δkju′i)⏞ ⏟⏟ ⏞
Dp′

ij

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

diffusion Dij

(2.17)
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The Reynolds stress production term resulting from the deformation of the mean
flow field Pij and the production term related to molecular diffusion Dν

ij are exact
and do not need further modeling. Since it is important for the present thesis and
will be mentioned in the following, it is remarked that the production of turbulent
stress due to deformation of the mean flow Pij is closely linked to the mean stream
line curvature of the flow field. The production terms related to fluctuating volume
forces Gij and to a rotating coordinate system Rij are not taken into account for
the further modeling in present thesis. However the transport equation of the
Reynolds stress tensor also contains unclosed terms that require further modeling.
The four unclosed terms are the pressure redistribution term ΦR

ij , the dissipation
rate ϵij , the pressure diffusion Dp′

ij and the turbulent diffusion Du′
ij (Pope, 2000).

Reynolds stress model (RSM)
The considered conventional, baseline Reynolds stress model to close the
Reynolds-averaged momentum transport equation (Eqn. (2.13)), emerges from the
collaborative efforts of Jakirlić (1997), Jakirlić and Hanjalić (2002), Jakirlić and
Maduta (2015), and Maduta and Jakirlic (2017). For enhanced comprehension
of the present Reynolds stress model, this section will exclusively elucidate the
principal modeling approaches for each term. The comprehensive set of equations
along with numerical values of relevant model constants can be found in Appendix
A. In the following, the modeling of the four unclosed terms ΦR

ij , ϵij , Dp′
ij and Du′

ij

is illuminated.

The modeling of the turbulent diffusion Du′
ij and pressure diffusion Dp′

ij adheres to
the methodology outlined in Jakirlić (1997). Since a general understanding of the
redistribution processes and their modeling is from major importance for the present
thesis the modeling of the pressure redistribution term Φij is briefly explained in
the following. Modeling the redistribution process stands out as one of the most
intricate challenges in formulating a Reynolds stress model. This complexity arises
from both the intricate physical interpretation of this phenomenon and its strong
influence within the transport equations governing Reynolds stresses. Particularly,
the fluctuating pressure field plays a decisive role in the redistribution of Reynolds
stress components (Jakirlić, 1997). An important detail is that redistribution
processes represent only the exchange of turbulence energy among the individual
stress components, reducing the differences in the energy content of individual
stress components which ideally leads to a state of isotropic turbulence. This means
that the process does not affect the balance of the total kinetic energy.

ΦR
ij = ΦR

ij,1 + ΦR
ij,2 + ΦR

ij,3 + Φw
ij (2.18)

Since it is important for interpretation and analysis within the result section
of the present thesis the respective components of the modeling approach for
the redistribution term ΦR

ij are briefly introduced in the following. The first
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redistribution term ΦR
ij,1 in equation 2.18, the so-called slow term stands in close

relation to the fluctuating velocity field and acts into the direction of isotropic
turbulence. The rapid term ΦR

ij,2 defines the stress redistribution as a result
of the fluctuating pressure field in relation to the deformation of the mean
flow field. The third term ΦR

ij,3 describes the interplay between the fluctuating
pressure field and volume-related influences, like gravitation, or magnetic fields.
The fourth term, the so-called wall-reflection term takes the not yet considered
influence of the wall for the slow term ΦR

ij,1 and rapid term ΦR
ij,2 into account.

The wall-reflection term captures the phenomenon that unlike the velocity
fluctuations, pressure fluctuations do not vanish in immediate wall vicinity and
therefor have a significant anisotropic influence on near wall turbulence. A detailed
description of related modeling strategies can be found in the work of Jakirlić (1997).

To model the individual constituents of the dissipation rate ϵij , the approach
introduced by Hanjalić and Launder (1976) is employed. This approach combines
the isotropic axiatoric configuration of the dissipation rate tensor (ϵij = 2

3 ϵδij) and
the low Reynolds number (Re) limit (ϵij = (u′iu′j/k) ϵ) of the ensuing equation:

ϵij = ϵ

[︃
(1 − fs) 2

3δij + u′iu′j
k

fs

]︃
(2.19)

The function fs controls the respective influence of the individual components.
This shifts the modeling of the dissipation rate tensor ϵij to the modeling of the
weighting function fs. However, the introduction of the weighting function fs

leads to erroneous values for the tensor components ϵ12 and ϵ22 of the dissipation
rate tensor ϵij in the wall region. To avoid using correction approaches, the
Reynolds stress model according to Jakirlić and Hanjalić (2002) considers only the
homogeneous part ϵh

ij of the entire dissipation rate tensor instead of the whole tensor.
The use of the homogeneous part ϵh

ij significantly improves the near-wall behavior
of the components ϵ12 and ϵ22 of the dissipation rate tensor. The derivation of
the homogeneous part of the dissipation rate tensor is based on the two-point
correlation transport equation according to Hanjalić and Launder (1976).

ϵh
ij = ϵij − 1

2Dν
ij (2.20)

The homogeneous part of the dissipation rate tensor is composed of the difference
between the entire dissipation rate tensor ϵij and half of the viscous diffusion
of the Reynolds stress tensor Dν

ij/2 (see Eqn. (2.20)). The approach presented
in Equation (2.19) for modeling the dissipation rate tensor is transferred to the
homogeneous part of the dissipation rate tensor ϵh

ij (Eq. 2.21).

ϵh
ij = ϵh

[︃
(1 − fs) 2

3δij + u′iu′j
k

fs

]︃
(2.21)
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In Equation (2.21), the homogeneous dissipation rate ϵh appears, which must be
determined by a transport equation. To do this, Hanjalić and Launder (1976)
derived in his work the exact transport equation for the homogeneous dissipation
rate ϵh, which is composed of the transport equation for the dissipation rate ϵ and
half of the viscous diffusion of the dissipation rate Dν

ϵ (see Eqn. (2.22)).

Dϵh

Dt
= Dϵ

Dt
− 1

2
∂

∂xk

(︃
ν

∂k

∂xk

)︃
⏞ ⏟⏟ ⏞

Dν
ϵ

(2.22)

The resulting transport equation for ϵh contains several unclosed terms again. In
the work of Jakirlić and Hanjalić (2002), therefore, the transport equation for the
homogeneous dissipation rate is reformulated. With the background of a model
extension towards a scale-resolving turbulence model, the transport equation for
the homogeneous dissipation rate ϵh is transformed into the transport equation
for the specific homogeneous dissipation rate ωh. Here, ωh = ϵh/k applies. The
transport equation for the specific homogeneous dissipation rate can be formulated
according to Equation (2.23) from the transport equation for the homogeneous
dissipation rate and the turbulence kinetic energy.

Dωh

Dt
= 1

k

Dϵh

Dt
− ϵh

k2
Dk

Dt
(2.23)

Using the derived transport equation for ϵh according to Jakirlić and Hanjalić
(2002) and the equation for determining the specific homogeneous dissipation rate
(Eqn. (2.23)), the transport equation for the specific homogeneous dissipation rate
ωh is formulated (Eqn. (2.24)).

Dωh

Dt
= ∂

∂xk

[︃(︃
1
2ν + νt

σω

)︃
∂ωh

∂xk

]︃
+ Cω,1

ωh

k
Pk − Cω,2

(︁
ωh
)︁2

+ 2
k

(︃
Ccr,1

1
2ν + Ccr,2

νt

σω

)︃
∂ωh

∂xk

∂k

∂xk
+ 2

k
Cω,3ννt

∂2Ui

∂xj∂xl

∂2Ui

∂xj∂xl
+ Sl

(2.24)

Equation (2.24) contains several unchanged terms compared to the original trans-
port equation of the specific homogeneous dissipation rate ωh. Furthermore, the
eddy viscosity νt appears in the transport equation. This is represented by the
formulation of Basara and Jakirlic (2003) (Eqn. ((2.25))) .

νt = 0.144Ak1/2 max
[︄

10
(︃

ν3

kωh

)︃1/4

,
k1/2

ωh

]︄
(2.25)

To improve the numerical stability of the RSM, the coupling between the velocity
field and the Reynolds stress tensor is extended. In this case, the Reynolds stress
tensor that is used in the RANS equations is not set equal to the u′iu′jRSM
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calculated from the Reynolds stress transport equation, but combined with the
Reynolds stress tensor calculated by the Boussinesq hypothesis of eddy viscosity
(see Eqn. (2.16)).

u′iu′j = 0.7 u′iu′jRSM + 0.3 u′iu′jBoussinesq (2.26)

Improved Instability-Sensitive Reynolds stress model (IISRSM)
In the ensuing section, the Improved Instability-Sensitive Scale-Resolving Turbu-
lence Model (IISRSM), as formulated by Jakirlić and Maduta (2015), is presented.
The IISRSM stands as a scale-resolving turbulence model that roots itself in the
framework of the Reynolds stress model (RSM), as delineated in Chapter 2.4.2,
and takes shape building upon the principles of Menter and Egorov’s k-ω-SST-SAS
model. This extension is crafted following the methodology outlined by Jakirlić
and Maduta (2015). The requisite equations and constants that encapsulate the
intricacies of this turbulence model are itemized in Appendix A. The k-ω-SST-SAS
model’s distinguishing characteristic lies in its incorporation of an additional pro-
duction term denoted as PSAS within the ω-transport equation. This augmentation
effectively diminishes the proportion of modeled turbulent kinetic energy. Worth
noting is the redefined supplementary production term introduced by Maduta and
Jakirlic, which bears semblance to the PSAS term intrinsic to the k-ω-SST -SAS
model. (︃

Dωh

Dt

)︃
IISRSM

=
(︃

Dωh

Dt

)︃
RSM

+ PIISRSM (2.27)

PIISRSM = 0.12 max
[︄

1.755κ

⃓⃓⃓⃓
∂2ui

∂x2
j

⃓⃓⃓⃓√
k − T2, 0

]︄
(2.28)

Rather than employing the von-Kármán length scale Lvk, the modeling of the
supplementary production term PISRSM (as expressed in Eqn. (A.22)) within the
ωh transport equation (as delineated in Eqn. (2.27)) adopts the second derivative
of velocity. This choice eliminates any functional reliance on the grid dimensions
of the numerical scheme in the formulation of the PIISRSM term (Eqn. (A.22)).
This independence from the grid size stands as a marked advantage over most
hybrid LES/RANS models. The PIISRSM term itself engenders a localized increase
of the specific, homogeneous dissipation rate ωh. This phenomenon precipitates a
reduction in the modeled component of turbulent kinetic energy, thus giving way
to an augmented emphasis on turbulence resolution within this specified domain.
This characteristic imparts the capacity to resolve intricate vortex structures
inherent to turbulent flows.
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Analogous to the RSM (Sec. 2.4.2), the coupling of the velocity field and Reynolds
stress tensor is extended to improve the numerical robustness of the IISRSM, and
the combination described in Eqn. (2.26) is applied (Eqn. (2.29)).

u′iu′j = 0.7 u′iu′jRSM + 0.3 u′iu′jBoussinesq (2.29)

It is remarked that the scale resolving character of the IISRSM results in a major
improvement in the prediction of redistribution processes as both, velocity and
pressure fluctuations are partially resolved.

2.4.3. Modeling of turbulent scalar fluxes
Undoubtedly, a crucial aspect in achieving accurate modeling of convective
heat and species transfer lies not only in the chosen methodology for describing
turbulence but also in effectively modeling the turbulence-induced heat and
species flux, denoted as u′jθ′ and u′jc′ respectively. These fluxes arise in the
Reynolds-averaged scalar thermal energy and species transport equations, as
introduced in equations 2.14 and 2.15. Investigating the proper modeling of these
fluxes is of major importance for robust modeling of convective heat and species
transfer.

In the context of Reynolds-Averaged Navier-Stokes (RANS) models applied to high
molecular Prandtl number (Pr) transport scenarios, the accurate prediction of
near-wall heat and species transfer remains a substantial challenge. This issue arises
due to the limitations of such models in accurately capturing the intricate dynamics
near walls. Successfully characterizing the pressure and velocity fields, along with a
precise prediction of the modeled Reynolds stress tensor field, forms the foundational
basis for correctly representing convective thermal scalar transport processes. Even
numerical techniques that aim to resolve wall boundary layers and thus account
for near-wall turbulence often struggle to capture heat transport accurately within
the diffusive sub-layer and thermal buffer layer, as highlighted by Šarić and Basara
(2018). In the context of this thesis, the modeling of thermal sub-scale fluxes
u′jθ′ is accomplished through the utilization of a RANS-RSM framework and its
extended version, referred to as RSM (Section 2.4.2), and IIS-RSM (Section 2.4.2).
These models, distinct from eddy viscosity-based models, have the capacity to
capture unresolved anisotropic turbulent behavior. The utilization of a symmetrical
second-order expression for the Reynolds stress tensor facilitates the incorporation
of higher-order expressions for describing the turbulent heat flux u′jθ′ within the
temperature transport equation (Equation (2.14)). The significance of modeling
turbulent heat transport in conjunction with RANS simulations is substantial.
Even investigations of heat transfer in simpler flow configurations involving solely
gaseous media, using near-wall turbulence models, have been observed to yield
inaccurate Nusselt number predictions when compared to experimental data, as
highlighted by Chang and Morris (2000). A common underlying issue appears to
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2.4. Reynolds-Averaged equations

be the variation of the turbulent Prandtl number Prt near the wall, a phenomenon
that exists in reality but is often not considered. For instance, in widely used model
formulations for u′jθ′, such as the Simple Gradient Diffusion Hypothesis (SGDH),
which assumes a simple proportionality to the mean temperature gradient analogous
to the Boussinesq approximation, the effect of the varying turbulent Prandtl number
is not accounted for. In models of this type, the scalar fluxes are directly linked to
mean scalar-field gradients through a scalar turbulent diffusivity (ΓΘ). This points
to the critical need for refined modeling techniques that acknowledge the complex
interplay of turbulence and scalar transport near walls, especially when dealing
with high molecular Prandtl number transport scenarios.

−u′jθ′ = ΓΘ
∂Θ
∂xj

with ΓΘ = νt

Prt
(2.30)

Here, the eddy-diffusivity of the temperature field Γθ is commonly expressed
in terms of the eddy viscosity νt and the constant turbulent Prandtl number
Prt. The major weakness of such simple heat flux models is the scalar nature
of the eddy-viscosity. Consequently, they are not capable of capturing the
turbulence anisotropy, inherently residing in the diffusion fluxes. Accordingly,
the proportionality coefficient ΓΘ formulated in this way does not depend on the
Reynolds stress components, whose individual energy content is selectively affected
by the proximity to the wall, but on their global intensity representative expressed
by the kinetic energy of the turbulence (k = 0.5u′iu′i) providing consequently less
satisfactory predictions than anisotropy-reflecting modeling strategies.

As it is well-known the models of this type, commonly applied in terms of
a constant Prandtl number, result in a poor outcome in even simple flow
configurations. The absence of an explicit dependence on the Reynolds stresses
u′iu′j makes these models incapable of dealing with turbulence anisotropy, which is
especially pronounced in the wall vicinity. Accordingly, the isotropic nature of the
turbulent diffusivity implies obvious alignment of the turbulent scalar flux and the
mean scalar gradient. This is clearly not the case in any complex flow configuration.

To address this issue a more extensive closure formulation was suggested by Daly and
Harlow (1970) representing the so-called generalized gradient–transport hypothesis
(GGDH) by using a second order turbulent diffusivity tensor Dij :

−u′iθ′ = Dij
∂Θ
∂xj

with Dij = kτθCθ
u′iu′j

k
(2.31)

Within this expression Cθ and τθ are representing a model coefficient and the
turbulent time scale respectively. As suggested in multiple works (e.g. Abe and
Suga, 2001) the model coefficient Cθ is set to 0.3 and the time scale τθ is given
by k/ϵh. With the consideration of the symmetric second order Reynolds Stress
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2. Theoretical background

tensor the above, algebraic model is anisotropy-reflecting and potentially more ca-
pable of dealing with complex flow straining when compared to the SGDH approach.

However, it is well known that the GGDH approach can also exhibit weaknesses in
the overall prediction of the streamwise heat flux component u′θ′ in comparison to
the wall-normal component v′θ′ (Launder, 1988). In order to sufficiently predict
each component of the scalar flux, the ratio v′θ′/u′θ′ has to be obtained correctly.
Which means, the direction of the scalar-flux vector has to be determined with
sufficient accuracy.

Therefore, Abe and Suga (2001) suggested a extension to the GGDH approach
which promises a more accurate prediction of the streamwise component and the
overall turbulent heat flux u′iθ′.

−u′iθ′ = kτθ

(︃
Cθ1

u′iu′j
k

+ Cθ2
u′iu′k u′ku′j

k2

)︃
∂Θ
∂xj

(2.32)

Equation (2.32) shows the higher order generalized-gradient diffusion hypothesis
(HOGGDH) approach as proposed by Abe and Suga (2001). Comparing the SGDH,
GGDH and HOGGDH approaches, the higher order formulation in conjunction
with a second moment closure RANS model promises to have the most accurate pre-
diction of the streamwise heat flux component and therefor seems to be empirically
suitable best for predicting complex thermal fields (Suga, 2003). For the present
work, the model coefficient for the first term of Eqn. (2.32) which corresponds to
the separately investigated model of Daly and Harlow (1970) is set to Cθ1 = 0.
This leads to the following algebraic for the here investigated higher order GGDH
model:

−u′iθ′ = kτθCθ2
u′iu′k u′ku′j

k2
∂Θ
∂xj

(2.33)

The model coefficient for the quadratic term (Eqn. (2.33)) can be obtained from
simple shear experiments and is set to Cθ = 0.575. Model validation results have
shown that the HOGGDH model is generally capable of improving the predictions
of the standard GGDH model for a variety of turbulent heat transfer applications
(Suga, Nagaoka, and Horinouchi, 2003 , Suga, 2004).

A further explicit algebraic relation for the turbulent heat flux is suggested by
Younis, Speziale, and Clark (2005). In this approach the turbulent heat flux u′θ′ is
constructed by utilizing various tensor quantities. The functional relationship is
modelled by the following expression:
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2.4. Reynolds-Averaged equations

−u′iθ′ = C1
k2

ϵ

∂Θ
∂xj

+ C2
k

ϵ
u′iu′j

∂Θ
∂xj

+C3
k3

ϵ2
∂Ui

∂xj

∂Θ
∂xj

+C4
k2

ϵ2

(︃
u′iu′k

∂Ui

∂xk
+ u′ju′k

∂Uj

∂xk

)︃
∂Θ
∂xj

(2.34)

The first term in the above expression corresponds to the SGDH model in
Eqn.(2.30) when the first model coefficient C1 is set equal to Cµ/Prt. The second
term corresponds to the model of Daly and Harlow (2.31). The third and fourth
terms are depending from products of the velocity gradient and the Reynolds stress
tensor. This combination was firstly suggested by Dakos and Gibson (1987). The

Coefficient Value
C1 −4.55 × 10−2

C2 +3.37 × 10−1

C2 −3.37 × 10−3

C4 −2.35 × 10−2

Table 2.1.: Model coefficients for an appropriate weighting of the contributing,
respective heat fluxes, determined by Younis, Speziale, and Clark (2005)
& Kaltenbach, Gerz, and Schumann (1994)

four model coefficients in table 2.1 are in reference to an LES of a basic turbulent
flow in conjunction with scalar transport; The LES was performed by Kaltenbach,
Gerz, and Schumann (1994) for a homogeneous shear flow with uniform scalar
field gradients Younis, Speziale, and Clark (2005).

Since in the present thesis, the Reynolds-averaged energy equation 2.14 is reduced
to a similar form as the Reynolds-averaged scalar transport equation 2.15 and there
is no considered temperature dependency of the underlying kinematic viscosity
ν and density ρ the modeling of a turbulent scalar heat and species transport
(v′θ′ = v′c′) can be considered equal. The assumption to treat all considered
transport phenomena as passive and scalar results in a greater set of data and
the possibility to validate the scalar transport models against fields with different
respective boundary conditions.
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2. Theoretical background

2.5. Large Eddy Simulation (LES)
Diverging from traditional Reynolds-Averaged Navier-Stokes (RANS) models,
but mirroring the characteristics of sensitized RANS models, Large Eddy
Simulation (LES) takes a different approach by directly resolving a large portion
of turbulent motion. These non-isotropic eddies, exert a significant influence on
flow dynamics, redistribution and transport processes. A thorough LES, in its
classical manifestation, can be distinguished by the portion of turbulent kinetic
energy attributed to the Sub-Grid Scale (SGS) model being less than 20% of the
total turbulent kinetic energy, as outlined by Pope (2000).

The identification of the largest eddies entails subjecting the flow variables to a
spatial low-pass filter, resulting in a partitioned representation of the variables: a
filtered component denoted as ˜︁Φi(xi, t), and a residual component Φ′

i(xi, t) that
corresponds to the Sub-Grid Scale (SGS) component. Equation (2.35) illustrates
the decomposition of an arbitrary flow quantity Φi(xi, t) using the filter-based
approach. In this equation, the filtered components are designated by ˜︂(·), while
the residual components are marked by (·)′.

Φi(xi, t) = ˜︁Φi(xi, t) + Φ′
i(xi, t) (2.35)

To establish the governing equations for the filtered flow variables, the procedure
outlined in Equation (2.35) is applied to the velocity field Ui(xi, t) and pressure field
p(xi, t) within the Navier-Stokes equations (Eqn. (2.1) and (2.2)). Subsequently,
the resulting equations undergo spatial filtering using a filter width ∆. This
sequence of steps yields the spatially filtered Navier-Stokes equations, represented
as follows:

∂ ˜︁Ui

∂xi
= 0 (2.36)

∂ ˜︁Ui

∂t
+ ∂ ˜︁Uj(˜︁Ui)

xj
= −1

ϱ

∂˜︁p
∂xi

+ 2ν
∂ ˜︁Sij

∂xj
− ∂τSGS,ij

∂xj
(2.37)

The filtered velocity and pressure fields in Eqn. (2.37) are denoted as ˜︁Ui(xi, t) and˜︁p(xi, t), respectively. The filter width ∆, also conceptualized as the representative
grid spacing within the implicit filtering paradigm, is determined as the cubic root of
the volume of a grid cell, i.e., ∆ = V

1/3
cell . The strain-rate tensor associated with the

filtered velocity is defined as ˜︁Sij = 0.5 (∂ ˜︁Ui/∂xj + ∂ ˜︁Uj/∂xi). The Sub-Grid Scale
(SGS) stress tensor τSGS characterizes the residual turbulent effects that remain
unresolved and necessitates an appropriate closure model to account for its influence.

24



2.5. Large Eddy Simulation (LES)

Analogous to the concept of turbulent viscosity, the Boussinesq correlation is
utilized to model the residual stress tensor τSGS :

τSGS,ij − 1
3δijτSGS,kk = −2νSGS ˜︁Sij (2.38)

In this present thesis, exclusively the well-established WALE model (Nicoud and
Ducros, 1999) was used for the calculation of the sub-grid turbulent viscosity νSGS .
A concise overview of the applied WALE model is provided in the following section.
Further, the performed LES studies within the present thesis rely on the extensive
preliminary work, additional modifications and findings of S. Wegt (2022).

2.5.1. Wall-Adapting Local Eddy-viscosity (WALE) Subgrid-Scale
(SGS) model

The WALE SGS model as firstly introduced by Nicoud and Ducros (1999) calculates
the subgrid turbulent viscosity νSGS as:

νSGS = (Cw∆)2 (Sd
ijSd

ij)3/2

(˜︁Sij
˜︁Sij)5/2 + (Sd

ijSd
ij)5/4

(2.39)

Sd
ij = ˜︁Sik

˜︁Skj + ˜︁ΩikΩ̃kj − 1
3δij [˜︁Smn

˜︁Smn + ˜︁Ωmn
˜︁Ωmn] (2.40)

The model involves the filtered vorticity-rate tensor ˜︁Ωij = 0.5(∂ ˜︁Ui/∂xj − ∂ ˜︁Uj/∂xi)
alongside the filtered strain-rate tensor ˜︁Sij . The critical operator (Sd

ijSd
ij)3/2 ~ y3

w

is used to achieve the desired near-wall behavior without relying on empirical
damping functions. Here, Sd

ij (as defined in Eqn.(2.40)) refers to the traceless
symmetric portion of the square of the velocity gradient tensor (Wegt, 2022).

To ensure nondimensionalization and enhance numerical stability, the operator
(Sd

ijSd
ij)3/2 is normalized by (˜︁Sij

˜︁Sij)5/2 + (Sd
ijSd

ij)5/4. The previously introduced
filter width ∆ is utilized as the characteristic length scale of the SGS. As suggest by
Wegt (2022) a specific value of Cw = 0.325 for the WALE-constant is recommended
when using the OpenFOAM® code.

The SGS kinetic energy kSGS and its dissipation rate ϵSGS can be calculated using
the following equations:

kSGS = ν2
SGS

∆2C2
k

(2.41)

ϵSGS = Cεk
3/2
SGS/∆ (2.42)

where the model constants are set to Ck = 0.094 and Cϵ = 1.048.
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2. Theoretical background

The workflow and models for all LES as well as further modifications for compre-
hensive investigations and grid studies used in the present work are based upon the
work of Wegt (2022). Further information may be extracted from the corresponding
literature.

2.6. Finite-Volume Method (FVM)
This present Chapter 2.6, is closely related to the combined explanations provided
by Schäfer (2006), Ferziger, Perić, and Street (2002) and Wegt (2022). The
methodology is reduced to a theoretical background indispensable for the present
thesis.

When including the previously presented governing differential equations of fluid
mechanics and turbulent closure (Sec. 2.1, 2.4) into the numerical framework of
the Finite Volume Method, spatial and temporal discretization becomes imperative.
This entails discretizing the differential equations to be applicable to the Control
Volume-based flow domain. For demonstrative purposes and for the sake of
simplicity, within this chapter, the spatial discretization is applied to a general
stationary transport equation governing a non-specific, time-independent scalar
field φ(xi, t) (Eqn. (2.43)).

∂

∂xi

(︃
ϱUiφ − ΓΦ

∂φ

∂xi

)︃
= f (2.43)

The spatial and temporal discretization process is explained using a simplified,
two-dimensional grid consisting of equilateral cells with a uniform distribution
and a node arrangement aligned with the cells, as shown in Fig. 2.2. The
checked cell area with its corresponding node P , and its surface area δSc and
volume V is located in the center of the schematic illustration. The nodes and
the midpoints of the faces around the control volume CV (node P ) are labeled
according to a compass with N , E, S, W and c = n, e, s, w. The normal vectors
on the faces of the CV are denoted by nc⃗, and the corresponding face lengths are δSc.

2.6.1. Spatial & Temporal Discretization
The integral form of Eqn. (2.43) is derived by applying the theorem of Gauss,
which leads to surface integrals being written as the sum over the surface Sc. The
derived integral form of the general stationary transport equation (Eqn. (2.44))

∑︂
c

∫︂
Sc

(︃
ϱUiφ − ΓΦ

∂φ

∂xi

)︃
n⃗i dSc =

∫︂∫︂
V

f dV (2.44)
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Figure 2.2.: Schematic illustration of a generic two-dimensional finite volume grid
with homogeneous control volume (CV) arrangement.

encompasses surface integrals that account for the convective and diffusive fluxes
across the boundaries of the control volume, in addition to volume integrals
addressing the source and sink terms within the volume. Both of these components
need to be numerically approximated in terms of the values at the control volume
nodes, denoted as φC , to facilitate spatial discretization.

Applying the well-known midpoint rule to Eqn. (2.44) leads to the spatialy dis-
cretized form:

∑︂
c

ṁcφc −
∑︂

c
ΓΦn⃗ci δSc

(︃
∂φ

∂xi

)︃
c

= fP δV, (2.45)

Since only the node values φC are known but the corresponding cell surface values
φc are needed, an explicit solution of Eqn. (2.45) can not be obtained. A solution
can only be obtained by establishing a relationship between the cell center values
φC and their respective surface center values φc.
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2. Theoretical background

Discretization of convective fluxes

The discretization of the convective fluxes is realized by approximation of the face
center value φc as a function of the control volume node value φC . There are several
methods for the approximation, which can be found in the corresponding liter-
ature (Schäfer, 2006), but in the following only the two most relevant are introduced.

The simplest approximation scheme is the so-called Upwind Differencing Scheme
(UDS) which describes the face center value φc as a mass flux dependent function
of the corresponding node value φC . For the simplest one dimensional transport
the following relationship can be established by applying the UDS approximation:

φe ≈ φP , if ṁe > 0 ; φe ≈ φE , if ṁe < 0 (2.46)
Since the functional relationship 2.46 is a very simple, explicit first order expression,
a first order error can be expected. The arising error is practically impairing the
accuracy of the corresponding numerical simulation as it numerically increases
diffusion.
The second well-known approximation technique is the second-order Central Dif-
ferencing Scheme (CDS). The corresponding approximation of the eastern face
center value φe is presented in Eqn. (2.47).

φe ≈ γeφE + (1 − γe) φP (2.47)
According to Fig. 2.2 the factor γe = (xe − xP )/(xE − xP ) describes the absolute
central difference of the surface center location xe and the node location xE and
xP on the x-axis.

Whereas CDS exhibits a high level of accuracy but also tends to be numerically
unstable the UDS is more robust but therefor exhibits increased numerical diffusion
and a subsequent loss of accuracy.

Discretized linear systems

When applying the above introduced numerical approximation approaches to
Eqn. (2.45), the cell node value ΦP is set into relation to its surrounding cell center
points φN, φE, φS, φW by the following expression (2.48).

aPφP = aNφN + aEφE + aSφS + aWφW + bP (2.48)
The corresponding prefactors aP , aN , aE , aS , aW and bP are hereby depend of the
applied approximation method.

When extending the numerical finite volume mesh into an accumulation of (N − 1)
CV a linear system of i = 1...N equations which are similar in form to Eqn. (2.48)
arises. The resulting linear system for c = N, E, S, W can be written as:
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ai
Pφi

P −
∑︂

c
ai

cφi
c = bi

P (2.49)

Since the numerical procedures to determine a solution of a linear equation system
is a well-known topic. More information about related techniques can be found in
e.g. Hirsch (1988) or Ferziger, Perić, and Street (2002). Therefor for the sake of
simplicity further explanation concerning the solution process is dispensed.

Temporal discretization

As fluid mechanical phenomena typically exhibit transient behavior, the priory
stationary transport equation Eq. (2.43) is now extended into a transient transport
equation described by Eq.(2.50).

∂ (ϱφ)
∂t

+ ∂

∂xi

(︃
ϱUiφ − ΓΦ

∂φ

∂xi

)︃
= f (2.50)

Since the temporal derivative of φ(xi, t) is a function of space xi and time t the
temporal discretization has to be preceded by the above spatial discretization. The
subsequently now time-dependent prefactors aP(t) have therefor also taken into
account when summarizing Eqn. (2.48), which ultimately leads to the following
ordinary differential equation:

∂φP

∂t
= 1

ϱ δV

[︄
−aP(t)φP +

∑︂
C

aC(t)φC + bP(t)
]︄

(2.51)

When again extending the numerical finite volume mesh into an accumulation of
(N − 1) CV a system of N , now ordinary differential equations arises. The system
can be written as:

∂φ⃗

∂t
= L⃗(φ⃗) (2.52)

with φ⃗ representing the sum of the N unknown functions and L⃗(φ⃗) representing
the right-hand side of Eqn. (2.51) (Wegt, 2022).

Relevant time discretization schemes can be subdivided in explicit and implicit
methods. Hereby explicit methods only take the preceding time steps in consid-
eration (φn+1 = F (φn, φn−1, ...)) whereas implicit methods, additionally utilize
the current time step (φn+1 = F (φn+1, φn, φn−1, ...)). Since the numerical time
integration procedures are also well-known in literature more information about
related techniques can be found in e.g. Hirsch (1988) or Ferziger, Perić, and Street
(2002). Therefor for the sake of simplicity further explanation concerning the
solution process is dispensed.
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3. Characterization of turbulence
anisotropy

The precise prediction of turbulence anisotropy holds significant importance
in advancing reliable turbulence models within numerical fluid mechanics
(Jovanovic, 2004). Within this context, accurately predicting turbulence anisotropy,
particularly in Reynolds-Averaged Navier-Stokes (RANS) simulations, remains an
intricate challenge. A primary hurdle in modeling turbulence anisotropy in RANS
simulations pertains to the absence of precise closure models capable of predicting
the complete symmetric Reynolds stress tensor u′iu′j . Effectively analyzing
turbulence anisotropy in RANS simulations is a pivotal step in formulating
novel second-moment closure approaches or developing scale-resolving hybrid
RANS/LES turbulence models (Banerjee, Krahl, Durst, and Zenger, 2007).
Consequently, the present chapter is dedicated to outlining a methodology for a
thorough comparative evaluation of the anisotropic Reynolds stress tensor. This
tensor’s accurate assessment is directly intertwined with the overall predictive
capacities of the previously introduced steady and scale-resolving second moment
closure Reynolds stress models, denoted as RSM and IISRSM respectively (Section
2.4.2 & 2.4.2).

Moving forward, the ensuing research detailed in chapters 4 and 5 encompasses the
comprehensive analysis and validation of corresponding closure models associated
with the Reynolds-averaged Navier-Stokes equations (2.13). This analysis leverages
a combination of experimental and numerical reference data to refine and validate
the proposed models.
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3. Characterization of turbulence anisotropy

3.1. Visualization of Turbulence Anisotropy
Within academic literature, numerous concepts have been put forth for representing
turbulence anisotropy within turbulent flows. To comprehensively dissect the phys-
ical domain in which turbulent structures manifest as chaotic, three-dimensional,
and transient occurrences with different length and time scales, it is from major
importance to depict the inherent anisotropic behavior within a confined space that
remains consistent across varying observers (Banerjee, Krahl, Durst, and Zenger,
2007). A key contribution for the analysis of turbulence anisotropy has been made
by Lumley (1979) by introducing the Reynolds stress anisotropy tensor Eq. (3.1)

aij = u′iu′j
k

− 2
3δij (3.1)

with the turbulence kinetic energy k = 0.5 u′iu′i and the Kronecker delta δij .
The anisotropy tensor aij can be utilized to quantify the anisotropic state of the
underlying Reynolds stress tensor u′iu′j . The two functional relationships given
by −IIa = A2/8 = aijaji/8, and IIIa = A3/24 = aijajkaki/24 can be employed to
study the anisotropy of the turbulent stresses in an observer-invariant domain.
Here A2 and A3 are the tensor invariants of the Reynolds stress anisotropy tensor
aij .

The first observer-invariant domain, known as the Anisotropy-Invariant Map (AIM)
(Fig. 3.1), was introduced by Lumley (1977). The AIM offers a visualization of
the relationship between the two invariant-related scalars IIa and IIIa, associated
with the Reynolds stress anisotropy tensor aij . This visualization is contained
within a confined domain, confined by three defining corners: Xc1, Xc2, and
Xc3. These corners represent the limits of one-componental (1-C), axisymmetric
two-componental (2-C), and isotropic three-componental (3-C) turbulent state,
respectively. The resultant boundaries of this domain, namely [Xc3Xc2], [Xc3Xc1],
and [Xc2Xc1], correspond to axisymmetric contraction and expansion, as well as
the two-component limit. The AIM’s significance lies in the fact that within its
confines, every conceivable turbulent state is viable and thus physically accurate.
This delineation of physical realizability imbues the AIM with practical utility,
rendering it a straightforward and applicable theoretical tool for scrutinizing the
predictive capabilities of any turbulence model. This applies across diverse flow
configurations and is independent of the specific Reynolds number in question.
Consequently, the analysis of functional relationships between IIa and IIIa has been
widely employed in diverse turbulence studies and model validations, particularly
in scenarios involving shear and wall-bounded flows. Notable references for this
include the works of (Jovanovic, 2004) and (Krogstad and Torbergsen, 2000).
For the present thesis, the wall-normal evolution of the turbulent stress tensor
u′iu′j of a fully developed channel flow at a friction Reynolds number Reτ = 180,
obtained by a DNS of Moser, Kim, and Mansour (1999) is used to discuss the
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Figure 3.1.: Anisotropy-Invariant Map (AIM) for the invariant-related functional
relationships IIa and IIIa of the Reynolds stress anisotropy tensor aij ,
as proposed by Lumley and Newman (1977).

strengths and weaknesses of different visualization techniques for the Reynolds
stress anisotopy tensor aij . In figure 3.2 (a) the trajectories of the invariant-related
functional relationships IIa and IIIa for the fully developed channel flow initiates at
the two-component limit [Xc2Xc1] at a corresponding dimensionless wall distance of
y+ = 0, marked in blue (■). After moving towards the 1-C limit Xc1 the trajectory
sharply changes direction at y+ = 7.67 (■) and closely follows the axisymmetric
expansion limit [Xc3Xc1] until ending in vicinity to the 3-C isotropic limit Xc3 at
y+ = 180 (■). It is important to notice that the trajectory seems to indicate an
almost isotropic state of turbulence when approaching the channel’s centerline at a
dimensionless wall distance y+ = 180.
In addition to the conventional AIM, an alternate depiction of the anisotropy
triangle has been proposed by Choi and Lumley (2001). This approach involves
transforming the second and third invariants A2 and A3 of the anisotropy tensor
aij into new variables, namely ξ = (IIIa/2)1/3 and η = (IIa/3)1/2. To facilitate
proper visualization, corresponding definitions for boundaries and limiting states
are provided in Table 3.1. Figure 3.2 b) showcases the trajectory of coordinates
η(IIa) and ξ(IIIa) for a fully developed channel flow at Reτ = 180, as studied by
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Figure 3.2.: Wall-normal evolution of the invariant tuples (IIa, IIIa) and (ξ, η) of

the Reynolds stress anisotropy tensor aij for a fully developed channel
flow at a friction Reynolds number Reτ = 180, obtained by a DNS of
Moser, Kim, and Mansour (1999).

Moser, Kim, and Mansour (1999). Upon visual inspection, the path [η, ξ] within
the adapted anisotropy map indicates a relatively consistent evolution across the
dimensionless wall distance range of y+ = 0 − 180. However, the corresponding
turbulent anisotropic state at y+ = 180 (■) notably diverges from the isotropic
state, in contrast to what the classical AIM would suggest. Both the conventional
AIM and the approach proposed by Choi exhibit inherent nonlinearities due to
their boundary definitions. This complexity renders it challenging to definitively
determine a superior analytical methodology.

A further technique to visualize turbulence anisotropy in a bounded domain,
also suggested by Lumley (1979), can be directly derived utilizing the functional
relationship between the second and third invariant A2, A3 and the eigenvalues
λ1 and λ2 of the anisotropy tensor aij . The functional relationship between the
invariants A2 & A3 and eigenvalues λi, of aij can be written as A2 = 2(λ2

1 +
λ1λ2 + λ2

2) and A3 = −3λ1λ2(λ1 + λ2). Since the Reynolds stress tensor u′iu′j
and its anisotropy tensor aij are symmetric second-order tensors (u′iu′j = u′ju′i,
aij = aji) their eigenvalues are exclusively real and they can therefor be displayed
in a two-dimensional domain. The boundary-defining definition and the respective
limiting states for visualization of the domain are given in table 3.1.
The resulting eigenvalue map with the corresponding eigenvalue trajectory
[λ2λ1] for the turbulent channel flow of Moser, Kim, and Mansour (1999) is
shown in figure 3.3 (a). Since the boundaries of the present eigenvalue map
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3.1. Visualization of Turbulence Anisotropy

Table 3.1.: Limiting states and boundaries of the η, ξ- and eigenvalue-related tur-
bulence anisotropy map, suggested by Lumley (1979).

Turbulent state Eigenvalues Invariants

1-C limit λ1 = 2/3, λ2 = −1/3 ξ = 1/3, η = 1/3
2-C axisym. limit λ1 = λ2 = 1/6 ξ = −1/6, η = 1/6
3-C isotropic limit λ1 = λ2 = 0 ξ = η = 0
Axisym. expansion λ1 = (3|λ2| − λ2)/2 η = ξ
Axissym. contraction λ1 = (3|λ2| − λ2)/2 η = −ξ
2-C limit λ1 = 1/3 − λ2 η = (1/27 + 2ξ3)1/2

are exclusively linear the analysis of anisotropic behavior is simplified due to
no hidden non-linearities within the trajectories between the limiting turbulent
states, the interpretation can be considered as simplified when compared to the
IIa,IIIa- & η, ξ-related anisotropy maps. However, since all three introduced
anisotropy maps show slightly different interpretations of anisotropic states for the
considered turbulent channel flow there is still no definite superior methodology
for visualization of turbulence anisotropy.

A major downside of the discussed anisotropy triangles (Fig. 3.2 a), b) & Fig.
3.3 a) is their incapability of defining a unique combination of all three turbulent
states. To solve this problem Banerjee, Krahl, Durst, and Zenger (2007) suggested
the utilization of a barycentric map within an euclidian domain, constructed
between the three limiting states at Xc1 = (1, 0) for 1-C, Xc2 = (0, 0) for 2-C and
Xc3 = (1/2,

√
3/2) for isotropic 3-C turbulence. The coordinates of the corner

points, representing the limiting turbulent states, are chosen in way that the domain
is defined through an equilateral triangle. This permits an equalized weighting of
all three limiting states which furthermore exactly defines their linear combination.
The barycentric coordinates within the equilateral triangle which are each assigned
to a certain unique anisotropic turbulent state are defined as:

xB = C1cx1c + C2cx2c + C3cx3c (3.2)
yB = C1cy1c + C2cy2c + C3cy3c (3.3)

The corresponding weights
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Figure 3.3.: Wall-normal evolution of the eigenvalue (λ1, λ2) and barycentric tuples

(xB , yB) of the Reynolds stress anisotopy tensor aij for a fully developed
channel flow at a friction Reynolds number Reτ = 180, obtained by a
DNS of Moser, Kim, and Mansour (1999).

C1c = λ1 − λ2 (3.4)
C2c = 2(λ2 − λ3) (3.5)
C3c = 2(3λ3 + 1) (3.6)

posses an important characteristic, as their sum is constrained to be Cic = 1. This
feature ensures a unique correlation between a turbulent state and its assigned
barycentric tuple (xB(λi), yB(λi)). Figure 3.3 b) shows the trajectory of [xByB]
for the turbulent channel flow by Moser, Kim, and Mansour (1999) within the
barycentric anisotropy map. As all other trajectories within the shown anisotropy
maps the evolution within the barycentric map initiates at the two-component
limit and evolve towards the 1-C limit. The most present difference between all
representations then occurs when approaching the 3-C limit, delivering a crucial
deviation in isotropic behaviour, as firstly noted by Banerjee, Krahl, Durst, and
Zenger (2007). The qualitative strength of the barycentric map is to linearly
and clearly define the states of componentality as it delivers unique correlation
between all three turbulent states at any point, which has been proven usefully
in turbulence analysis. However Emory and Iaccarino (2014) noted that there
are two notable drawbacks when analyzing turbulent flows utilizing the present
barycentric map. The mentioned drawbacks are the loss of physical context as
well as the difficulty to display large amounts of data. As visualized in figure
3.3 (b) the trajectory of the barycentric coordinates (xB(λi), yB(λi)) are only
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3.1. Visualization of Turbulence Anisotropy

depending on the eigenvalues λi of the anisotropy tensor aij and do not hold any
information about the corresponding coordinates xi within the original physical
domain they are linked to. In the present case of a generic channel flow the
information about the dimensionless wall distances y+ have to be added via an
additional colorbar or particular marks within the figures as it is realized in fig. 3.2
(a). Further, the simultaneous analysis of multiple data fields for more complex
turbulent flow fields is furthermore impaired as anisotropic states of aij at different
points xi within the physical domain can deliver the same barycentric coordinates
(xB(λi), yB(λi)). Even for two-dimensional slices of generic flow configuration the
clustering of certain turbulent states within the barycentric map can prevent a
clear interpretation of its trajectories. Therefore, for the analysis of larger more
complex flow configurations it is necessary to identify few important subsets of
points along a specific streamlines or a predefined arbitrary trajectories.

To resolve the problem of displaying large amounts of data Emory and Iaccarino
(2014) introduced a new visualization technique to transfer componentality
information to the physical domain by constructing a color map from the
barycentric coordinates to assign every calculated componentality state of aij

to a certain colour and then back to the original physical domain. Utilizing
this technique, any two dimensional slice of an arbitrary flow configuration can
be displayed without loosing spatial information. Emory and Iaccarino (2014)
suggest using the coefficients Cic of the barycentric map (Eq. 3.6) to implement
a color-mixing scheme of the three base colors red [1 0 0]T , green [0 1 0]T and
blue [0 0 1]T . Since the sum of all weights Cic is constrained to be one, the linear
combination

⎡⎣ R
G
B

⎤⎦ = C1c

⎡⎣ 1
0
0

⎤⎦+ C2c

⎡⎣ 0
1
0

⎤⎦+ C3c

⎡⎣ 0
0
1

⎤⎦ (3.7)

of these three base colors weighted by the barycentric weights Cic can be used to
construct colors in form of RGB triplets which then uniquely define the underlying
anisotropic states of turbulence.

As represented by the barycentric weights, the linear combination assigns
one-componental turbulence to the vector [1 0 0]T (red), two-componental
turbulence to the vector [0 1 0]T (green) and isotropic turbulence to the vector
[0 0 1]T (blue). All possible RGB triplets within the barycentric map are then linear
combinations of these base colors. Figure 3.4 (left) shows the barycentric color map
for the standard RGB colors with Xc1 (red) representing the 1-C limit, Xc2 (green)
representing the 2-C axisymmetric limit and Xc3 (blue) representing the isotropic,
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3. Characterization of turbulence anisotropy

Figure 3.4.: Barycentric color map for the standard Red-Green-Blue (RGB) color
model (left) and for the adapted Cyan-Magenta-Yellow-Black (CMYK)
color model (right).

3-C limit. In the present thesis, a further subtractive color mixing scheme with the
three base colors cyan [0 1 1]T , magenta [1 0 1]T and yellow [1 1 0]T known as
CMYK (Cyan Magenta Yellow Black) color model is introduced. With brighter
base colors and more distinguishable mixing behaviour the adapted CMYK color
model delivers an improved interpretation of anisotropic behavior further away
from the corners. The newly introduced CMYK coloring model is displayed in Fig.
3.4 (right) and later applied in the subsequent analysis of various flow configurations.

While the present standard RGB-related barycentric color map defined by Eq.
3.7 is capable of conveniently categorizing turbulent anisotropy in vicinity to its
corners Xci, the resulting gradients within the center and near the edges of the
domain are more difficult to interpret. In order to properly grade the mixing
regime Emory and Iaccarino (2014) further suggested a adapted formulation for
the construction of the RGB channel triplets.

Modifying the barycentric weights in equation 3.7 into C∗
ic = (Cic + Coff )Cexp

by adding an offset Coff and exponential coefficient Cexp to them, enables the
possibility of a proper adjustment of the barycentric color mixing. The modification
of Coff allows the manipulation of the transition layer thickness between all three
limiting states, whereas the smoothness of the color transition is controlled by the
exponential coefficient Cexp. Figure 3.5 shows the modified RGB color map for
Coff = 0.65 and Cexp = 5 as well as a modified version of the CYMK colormap
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3.1. Visualization of Turbulence Anisotropy

Figure 3.5.: Barycentric color map for the adjusted RGB (left) and CMYK color
model (right) with modified barycentric weights C∗

ic = (Cic+Coff )Cexp .

with Coff = 0 and Cexp = 1.5. Due to it’s clearly distinguishable color mixing and
proper saturation the adjusted RGB colormap, displayed in Fig. 3.5 (left) will be
utilized in the subsequent anisotropy study of shear and wall-normal flows.
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4. Preliminary investigations

The upcoming chapter encompasses significant preliminary investigations involving
fundamental flow configurations, such as turbulent channel and impinging jet
flows, coupled with passive scalar temperature transport. Furthermore, analytical
techniques designed to quantify anisotropic turbulent characteristics are employed to
extensively assess the predictive capabilities of the RANS-based RSM and its scale-
resolving extension, IISRSM. Subsequent to these evaluations, the performance
of the introduced models for scalar turbulent heat flux, in conjunction with both
the second-moment closure models, is held against diverse DNS reference data
sets. This extensive analysis serves to validate the models and provides insights
into their efficacy for capturing the complex interplay of turbulence and scalar
transport. Parts of the computational investigations within the present thesis are
published by the author (Bopp, Wegt, Krüger, Secchi, Frohnapfel, and Jakirlić,
2024).
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4. Preliminary investigations

4.1. Turbulent channel flow with heat transfer

Case setup and computational domain

The first preliminary flow configurations considered is a fully-developed turbulent
channel flow subjected to wall heating at a bulk Reynolds number of Re2h = 6490
(corresponding to the friction velocity-based Reynolds number of Reτ = 180) for
which the reference DNS database is available from Horiuti (1992) and Kasagi,
Tomita, and Kuroda (1992).

Ly = 2h

Lz
= πh

Lx = 2πh

x

y

z

∂ΘW

∂y = const

∂ΘW

∂y = const

Reτ = 180

Figure 4.1.: Schematic representation of the solution domain considered for the fully-
developed channel flow at a friction Reynolds number of Reτ = 180.

Figure 4.1 schematically shows the typical regular hexahedron shape, bounded by
lower and upper walls, and the dimensions of the computational domain of the
considered turbulent channel flow, as well as the defined reference system. The
dimensions of the three-dimensional solution domain adopted for the Sensitized
RANS simulations with the IISRSM correspond to Lx × Ly × Lz = 2πh × 2h × πh,
where h represents half the channel height. The corresponding numerical mesh
consists of Nx × Ny × Nz = 60 × 64 × 32 cells, resulting in a total of 122880 cells.
The height of the near-wall grid cell is ∆y+ ≈ 0.9. The resolution of the uniformly
distributed grid cells in the streamwise and spanwise directions corresponds to
∆x+ = 19.0 and ∆z+ = 18.0, respectively. The conventional RANS calculations
are performed in a two-dimensional flow domain (Lx × Ly = 2πh × 2h) consisting
of Nx × Ny = 60 × 64 cells. The fully-developed flow conditions are provided by
applying periodic inlet-outlet boundary conditions. The no-slip boundary condition
for the velocity field were set on all walls. An isoflux boundary condition with
negative (directed away from the wall) gradient is applied to the upper and lower
walls, implying that the time-averaged wall heat flux does not change in the flow
direction. The overall thermodynamic equilibrium within the flow is characterized
by the heat flux being continuously removed from the flow domain through the
walls at a constant rate, resulting in a constant temperature value at both walls.
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4.1. Turbulent channel flow with heat transfer

This thermal boundary condition leads to a linearly increasing mean and wall
temperature Θm and Θw in x-direction as well as a wall temperature gradient
∂Θw/∂x = const.

Results and Discussion
The following section addresses a preliminary, comparative assessment of the
modeling strategies for the scalar, turbulent heat flux u′

iθ
′ introduced in chapter

2.4.3 in conjunction with the RANS-RSM (Sec 2.4.2) and IISRSM (Sec. 2.4.2). To
get a first impression about the basic structural characteristics of the discussed
flow cases, Figures 4.2 visualize the instantaneous velocity and temperature fields.

Figure 4.2.: Instantaneous velocity and temperature fields in a fully developed
turbulent channel flow at a friction Reynolds number Reτ = 180 with
fixed iso-flux temperature boundary condition, obtained by the scale
resolving IISRSM.

The results presented illustrate clearly the scale resolving capability of the IISRSM
to resolve the turbulent fluctuations with respect to both velocity- and temperature
fields. Their dynamics are mainly governed by their resolved fractions, whose
generation is driven by the convective terms in the corresponding transport
equations. However, in vicinity of the wall, the sub-scale turbulent momentum and
heat fluxes are appropriately enhanced and are therefore crucial for the correct
capturing of the near-wall effects. In the following individual sections, some
time-averaged mean flow and turbulence characteristics are discussed along with
the DNS reference results.

Figure 4.3 displays the semi-logarithmic plots of the mean velocity over the
channel cross-section (left), and the profiles of all four non-zero Reynolds stress
components (right) - normalized by the viscosity-scaled wall units - U+ = U/Uτ ,
uiuj

+ = uiuj/Uτ and y+ = y/(ν/Uτ ) with the friction velocity Uτ =
√︁

ν(∂U/∂y)w,
obtained by the RANS-RSM and IISRSM. Apart from a slight under-prediction of
the peak value of the streamwise stress component u2+

, the both RSM-related
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Figure 4.3.: Mean velocity (left) and Reynolds-stress component profiles (right) of
the fully-developed channel flow of Horiuti (1992) and Kasagi, Tomita,
and Kuroda (1992).

result sets show very good agreement with the DNS database in all characteristic
boundary layer zones, viscous sublayer, buffer zone and the logarithmic region.
Considering a passive character of the temperature field, there is no relevant
influence on the mean velocity and turbulence field due to changes in the kinematic
viscosity ν or density ρ. Accordingly, the use of different heat flux models does not
influence the momentum transport and is therefore not illustrated.

Utilizing the nonlinear ξη-based anisotropy map, introduced in chapter 3.1 for
the visualization of the Invariants of the Reynolds-stress anisotropy tensor aij

obtained by the RSM and IISRSM and comparing it to the reference DNS data of
Kasagi, Tomita, and Kuroda (1992), three respective trajectories can be displayed
in figure 4.4. The trajectory of the DNS-related reference tuples (ηDNS, ξDNS)
starts at y+ = 0 (■) at the two-component limit and ends at y+ = 180 (■) in
vicinity to the 3-C limit at Xc3. The trajectories of both RANS-based models
show slight deviations when compared to the DNS data. Since the trajectories
within the ξη-based anisotropy invariant map can not clearly be differentiated,
and properly compared to each other due to possible hidden non-linearities the
previously, in chapter 3.1 introduced barycentric map is subsequently utilized for
further analysis. Figure 4.4 (right) shows the anisotropy trajectories (xB, yB) of the
DNS, RSM and IISRSM within the barycentric map. The trajectories displayed in
the barycentric map exhibit a more notable deviation of the RANS-based results
in comparison to the reference DNS data, clearly pointing out the analytical
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Figure 4.4.: Turbulent anisotropy trajectories calculated form the Reynolds-stress
tensor fields of the IISRSM (△), RSM (△) and reference DNS (□) of
Horiuti (1992) and Kasagi, Tomita, and Kuroda (1992), displayed in a
nonlinear ξη-based anisotropy invariant map (left) and a corresponding
barycentric map (right).

advantages of linear anisotropy maps. It is worth mentioning that, however the
Reynolds-stress components u′iu′j of both RANS models, displayed in figure
4.3 (right), are in good agreement with the DNS data, the derived anisotropic
state can differ significantly. Since the turbulent anisotropy tensor aij is a rather
sensitive measure for the predictive capability of the underlying turbulence models
it is further utilized for model analysis within the present thesis.

When further investigate the passive, scalar temperature transport upon the
previously analyzed flow field, good agreement with the DNS reference obtained
by Kasagi, Tomita, and Kuroda (1992) & Horiuti (1992) is reported for the mean
temperature profile across the half channel height, Fig. 4.5. Here, the mean
temperature Θ is normalized by the friction temperature Θτ = qw/(ρCpUτ ). The
influence of the different heat flux models SGDH (Eq. 2.30), GGDH (Eq. 2.31)
and HOGGDH (Eq. 2.32), as well as of the Bassam and Speziale model (BS,
Eq. 2.34), when applied in conjunction with the scale-resolving IISRSM, on the
temperature profile evolution is not noticeable. All heat-flux model expressions
result in the same temperature evolution over the channel domain, differing only
by a maximum of 0.2%. This result was to be expected for the IISRSM application
anyway, since the correspondingly high fraction of resolved turbulence leads to a
dominant thermal energy transport originating from the convective term in the
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temperature equation (2.14). In this case, the modeled turbulent heat flux u′iθ′
relates only to the residual subscale motion contained in the diffusive term of the
temperature transport equation under consideration. The results of the baseline
RANS-RSM agree well with the DNS data, as does its scale-resolving counterpart.
However, the steady RANS predictions for the temperature evolution over the
channel deviate somewhat more, by a maximum of 3.8%. Considering that even
in this case all heat flux formulations were applied in conjunction with a full
differential Reynolds stress RANS model, this still satisfactory result is not very
surprising. As shown in Fig. 4.3, the model is capable to correctly predict the
mean velocity and the redistribution among the Reynolds stress components, which
are directly incorporated into the algebraic expressions of the heat-flux models.
In addition, all model coefficients for the calculation of turbulent heat-flux were
previously calibrated with respect to wall-bounded channel-relevant generic flows
subjected to mean shear, as mentioned in section 2.4.3. In conclusion, all adopted
model formulations for the u′iθ′ correlation led to a comparable mutual result
between the two RANS-based models considered for turbulent plane channel flow
with heat transfer. The further investigation within the present thesis will now
focus on more complex flow configuration in conjunction with heat and species
transfer.
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4.2. Slot-jet impingement onto a heated wall
The next, more complex benchmark flow configuration investigated in the present
Thesis is a slot-jet impingement onto a flat heated wall. The planar T-shaped flow
geometry consists of an iso-thermal channel flow that vertically discharges into
a horizontal channel and impinges on the opposite heated bottom wall, Figure
4.6. The simulation domain and boundary conditions for this case are set in
accordance with the DNS study by Hattori and Nagano (2004). The reference
DNS addresses three configurations with different distances between the heated
bottom wall and the opposite adiabatic confinement wall. All simulations are
performed under inflow conditions corresponding to an effective Reynolds number
of Reb = UbD/ν = 4560, where Ub represents the inflow velocity, and a molecular
Prandtl number of Pr = 0.71. It is recalled that the DNS-related Reynolds number
corresponding to Re2D = 9120 is based on the hydraulic diameter of the three
dimensional inflow duct equal to 2D.

6D

Lz

2D

Ub, Θ0

Ly

Lz

Lx

x

y

z ∂Θ
∂y |W = const

Figure 4.6.: Schematic representation of the solution domain for the slot-jet impinge-
ment configuration with an inflow Reynolds number of Reb = 10000
and a heated bottom wall according to Hattori and Nagano (2004).

The fully-developed channel flow exiting into the impingement domain is realized by
a separate precursor computation of a channel segment using a periodic inlet/outlet
condition. The flow field thus generated is subsequently mapped to the main inlet
at the upper boundary of the horizontal channel. The boundary condition for
the velocity field at all walls is set to no-slip. A constant heat-flux ∂Θ/∂y = q/λ
is applied to the bottom wall at the impingement surface. An adiabatic wall
temperature condition is then applied to the enclosing top wall and all other walls
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within the inflow section. A cyclic condition is imposed on the span-wise boundary of
the computational domain, ultimately resulting in an infinite channel-impingement
configuration.

Height Cells Dimensions
H = 2D 560 × 150 × 1 26D × 2D × 1D
H = 1D 560 × 100 × 1 26D × 1D × 1D
H = 0.5D 560 × 50 × 1 26D × 0.5D × 1D

Table 4.1.: Arrangement of numerical cells and dimensions of the solution area for
three nozzle-to-plate distances for the calculations with the conventional
RSM.

Height Cells Dimensions
H = 2D 300 × 100 × 30 26D × 2D × 6D
H = 1D 300 × 60 × 30 26D × 1D × 3D
H = 0.5D 300 × 40 × 30 26D × 0.5D × 3D

Table 4.2.: Arrangement of numerical cells and dimensions of the solution area for
three nozzle-to-plate distances for the simulations with the IISRSM.

All three DNS-relevant cases differing in the nozzle-to-plate distances - H = 2.0D,
1.0D and 0.5D - are calculated by both RSM versions. The length of the flow
development region after impingement and the solution domain extension in the
span-wise direction, as well as the resulting grid sizes, are summarized in Tables 4.1
and 4.2 for the RSM and IISRSM calculations, respectively. The corresponding grid
spacings in wall units are in the range of ∆x+ = 0.91 − 113.44, ∆y+ = 0.012 − 0.79,
and ∆z+ = 36.31 − 53.92 for the IISRSM simulations and ∆x+ = 0.78 − 56.24,
∆y+ = 0.01 − 0.91 for the two-dimensional finite volume mesh associated with the
RSM calculations.
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4.2. Slot-jet impingement onto a heated wall

Results and Discussion

The outcomes of the comparative assessment of the previously introduced modeling
approaches are showcased, encompassing mean flow and thermal field properties,
the associated Reynolds stress tensor u′iu′j along with its anisotropic nature. These
results are presented for three distinct nozzle heights, namely H/D = 0.5, 1.0, and
2.0. For an initial overview of the fundamental structural features within the
examined flow cases, Figure 4.7 provides a visualization. This figure displays iso-
contours of instantaneous velocity and temperature fields, alongside representations
of vortical structures based on the Q-criterion. This visualization offers an insight
into the basic flow characteristics within the flow configuration for a nozzle-plate
distance of H/D = 2.0 .

Figure 4.7.: Flow visualization by the Q-criterion, colored by the non-
dimensionalized instantaneous temperature field (Θ/Θmax) obtained
by the IISRSM in slot-jet impingement configuration at a nozzle-height
of H/D = 2.0 with constant temperature gradient at the wall.

The results presented illustrate clearly the capability of the IISRSM to resolve the
turbulent fluctuations with respect to both velocity- and temperature fields. Their
dynamics are mainly governed by their resolved fractions, whose generation is
driven by the convective terms in the corresponding transport equations. However,
in the wall proximity, the sub-scale turbulent momentum and heat fluxes are
appropriately enhanced and are therefore crucial for the correct capturing of the
near-wall effects.

The flow impingement occurring under the influence of varying nozzle-to-target
distance is by far more complex than the previously considered wall-parallel
channel flow. This is furthermore enhanced by the simultaneously present thermal
field initiated by the heated wall which strongly modifies the near-wall flow
structure leading to an increased influence of the viscosity. The integration of the
governing equation down to the wall itself and application of the wall-boundary
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conditions relying on the asymptotic behavior of the turbulence quantities by
approaching the solid wall is therefore of particular importance.

Figure 4.8.: Iso-contours of the instantaneous velocity field, colored by its magni-
tude, and corresponding mean streamlines obtained by the baseline
RSM (left) and the scale-resolving IISRSM (right) at three nozzle-to-
wall distances H/D = 0.5, H/D = 1.0, H/D = 2.0.

The mean flow topology (Figures 4.8) reveals a flow pattern typically characterizing
impinging jet configurations featured by an intensive alternation in the velocity
gradient, from abrupt jet deceleration in the immediate impingement area toward
a prompt 90o flow skewing and transition into the wall-jet region followed by a
strong acceleration and subsequent flow relaxation. It is furthermore well known
that a streamline curvature-induced turbulence production takes place here, which
represents an inherent feature of Reynolds stress modeling techniques, but on the
other hand is beyond the reach of the eddy-viscosity modeling concept.

Figure 4.8 visualizes the iso-contours of the RANS-RSM-related time-averaged
(left) and IISRSM-related instantaneous velocity fields (right) colored by their
magnitudes (normalized by the bulk velocity of the incoming channel flow Ub),
respectively, illustrating the flow pattern variability as a function of the distance
between the channel-shaped nozzle and the bottom wall - H/D = 0.5, 1.0 and
2.0; it is recalled that the characteristics of the fully-developed channel flow
previously discussed correspond closely to those of the present inflow channel.
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The representation of the mean flow topology aims to identify the characteristic
flow localities within the impingement and wall-jet regions, enabling a more
focused assessment of the predictive capability of the turbulence models used. The
mean streamlines originating from the inlet channel enable a detailed insight into
the flow topology around the stagnation point region. The streamline pattern
indicates a right-angle bifurcation of the incoming flow characterized by a strong
local curvature, signifying a rapid transition from flow deceleration (associated
with impingement) to subsequent acceleration immediately downstream of the
stagnation point (x/D = 0). The deceleration of the vertical flow and the
subsequent acceleration of the horizontal flow after the impingement is closely
correlated with the pressure gradient alternation around the stagnation point. The
flow field consists of an inflowing vertically downward stream with a pronounced
velocity gradient in the discharge zone, as well as an outflowing wall-bounded
jet representing the consequence of the impingement occurrence. These two flow
regions interface with the remaining low-intensity velocity field near the upper wall.
Downstream of the impingement region, the wall jet exhibits significant spreading
due to streamline displacement and widening of the flow region near the wall. This
is accompanied by flow relaxation in the post-acceleration region. The presence of
the upper wall limits the relaxation process, affecting the spatial suppression of
the fast flow stream toward the lower wall, which was particularly noticeable in
Case 1 with the smallest gap height of H/D = 0.5. The blue colored area between
the wall jet and the upper wall, becoming gradually smaller as the distance
between the nozzle and the wall is reduced, represents a zone of weak backflow
intensity (in agreement with the negative axial velocities in Fig. 4.9). The velocity
gradient within the shear layer exhibits high variability in regions aligned with the
streamline separating the high velocity flow stream from the low velocity region
for both the outflowing free jet and the wall confined jet. These regions with steep
changes in the velocity field are identified as sources of increased turbulence activity.

In order to quantitatively evaluate the accuracy of the present computational
results, the profiles of the mean flow and thermal quantities and the corresponding
turbulence variables obtained by using both turbulence model formulations are
directly compared with the available Direct Numerical Simulation (DNS) data of
Hattori and Nagano (2004) at specific cross sections. These locations, indicated
by dashed lines in Figure 4.8 are situated within three distinct flow regions: the
immediate impingement region (x/D = 0.5), the region of alternating velocity
gradient (from deceleration to acceleration) and wall-jet formation (x/D = 1.0),
and the evolving wall-jet region (x/D = 2.0, 3.0 and 4.0). The analyzed
flow variables include the axial velocity component (U/Uτ ), the streamwise
and wall-normal Reynolds stress intensities (

√
u′u′/Uτ and

√
vv/Uτ , the mean

temperature (Θ), and two integral flow quantities: friction coefficient (Cf ) and
Nusselt number (Nu) at the heated bottom wall.
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Figure 4.9.: Profile development of the mean axial flow velocity in x direction in
the slot-jet impingement configuration for all three nozzle-to-plate
distances H/D = 0.5, 1.0, 2.0.

Figure 4.9 shows the velocity profile development in main outflow direction
(x-direction). As mentioned earlier, the axial velocity profiles in the upper part
of the flow zone (colored blue in Figures 4.8) have low values that undergo
a gradual flow reversal with slightly increasing intensity as the distance H
increases, as indicated by the negative velocity values. This trend is statistically
quantified by the continuous expansion of the recirculation zone with respect to
distance H. The intensification of the negative velocity values, although still
relatively small compared to the highly accelerated wall jet region, is consistent
with this behavior. The velocity plots demonstrate a high level of agreement,
both qualitatively and quantitatively, between the present computational model
results and the DNS data for all three configurations considered. This is
especially true for the IISRSM-related profiles, which finally indicate a correctly
predicted size of the recirculation zone at the upper wall for all three cases.
Considering the lower flow intensity in this region correlated with weak turbulence
activity, representing generally a dominant driving force within turbulence
transport dynamics, this is certainly a noteworthy outcome. The velocity profiles
exhibit strong gradients in both the wall-normal and wall-parallel directions,
indicating varying intensities of flow acceleration within the wall-jet region as
the nozzle-to-wall distance increases. The largest relative acceleration within
the wall-jet region, in relation to the friction velocity Uτ (with Uτ =

√︁
τw/ρ),

is observed at location x/D = 2.0, corresponding to case 1 with the smallest
gap (H/D = 0.5), while case 3 with the largest gap (H/D = 2.0) exhibits the
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4.2. Slot-jet impingement onto a heated wall

least intense acceleration. These velocity field variations follow closely the DNS
database. As expected, the IISRSM-related results are superior to those obtained
by RANS-RSM. However, the latter velocity profiles show good agreement with
the DNS results at the first three streamline locations up to x/D = 2.0, with
some noticeable deviations visible further downstream at the locations x/D = 3.0
and 4.0. Nevertheless, the mutual comparison between the profiles considering
different gap heights H is consistent with the IISRSM results and the DNS database.
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Figure 4.10.: Distribution of surface friction coefficient at lower wall Cf determined
by RSM and IISRSM compared to DNS data for all three nozzle-to-
plate distances H/D = 0.5, 1.0, 2.0.

The variation of the velocity profiles for all three nozzle-plate spacings are
reflected in a significant difference in the evolution of the friction coefficient at
the bottom wall. Fig. 4.10 shows a comparison between the friction coefficients
(Cf = τw/(0.5ρU2

b )) calculated with the turbulence models employed for all three
flow configurations. The friction coefficient distributions are characterized by
a distinctly pronounced peak near the center of the impingement point and a
flattened evolution in the wall jet region downstream. For all three configurations,
the computational model results are in good overall quantitative agreement with
the DNS data. However, the RSM-related results show a slight overprediction
of the peak value in the cases with a nozzle-to-plate distance of H/D = 1.0
and 2.0. Another significant discrepancy is observed downstream of the impact
point for case 1 (H/D = 0.5). Both the IISRSM and the RSM significantly
underpredict the second maximum of the friction coefficient at the dimensionless
distance x/D ≈ 3 from the impact point, characterizing primarily the case with
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the smallest gap. This underprediction is considered reasonable for inherently
steady RANS turbulence models, since they are known to be incapable to capture
the spectral turbulence dynamics of an impinging jet. The latter is particularly
important because, according to Hadžiabdić and Hanjalić (2008), the phenomenon
of this second maximum is related to the redirection of the fluctuating velocity
component at this locality. On the other hand, the IISRSM is the model that
can capture the spectral dynamics to an extent governed by the solution of the
relevant turbulence quantity equations and the underlying spatial and temporal
resolutions. The latter numerical grid-related parameters, employed presently,
are obviously insufficiently fine. A similar behavior can be observed in the
distribution of the Nusselt number (Fig. 4.15, 4.16, 4.17). Accordingly, the
discussion of the possible reasons for this deviation will be continued in this context.
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Figure 4.11.: Profile development of the streamwise (
√

u′u′/Uτ ) Reynolds stress
intensity in the slot-jet impingement configuration for all three nozzle-
to-plate distances H/D = 0.5, 1.0, 2.0.

The assessment of the predictive capabilities of both turbulence models employed,
RSM and IISRSM, with respect to the turbulence fields is interpreted below.
In this regard, the streamwise and wall normal Reynolds stress intensity
components (

√
u′u′/Uτ ) (Fig. 4.11) and (

√
v′v′/Uτ ) (Fig. 4.12), normalized

by friction velocity, are shown at the axial positions x/D = 0.5, 1.0, 2.0, 3.0
and 4.0 from the point of impact. It is recalled that the Reynolds stress
distribution in the corresponding channel-shaped inflow (not presented here)
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Figure 4.12.: Profile development of the normal-to-wall (
√

v′v′/Uτ ) Reynolds stress
intensity in the slot-jet impingement configuration for all three nozzle-
to-plate distances H/D = 0.5, 1.0, 2.0, 3.0, 4.0.

shows very good agreement for both RANS models in comparison with the
relevant DNS data, similar as in the fully-developed channel flow studied previously.

The Reynolds stress profile development demonstrates, especially around and
downstream of the sharp edge of the inlet channel, increased turbulence production
due to the rapidly developing free shear layer between the fully-developed inflow
and the low-velocity region. The zone bordering the wall-bounded jet and the
low-velocity flow region exhibited even more pronounced turbulence production.
The wall jet extends over the entire height of the confinement (Fig. 4.8) within
the Case 1 showing the highest turbulence activity within the flow impingement
configuration up to x/D = 2.0. The development of both sets of profiles exhibits
similar behavior, with one notable difference. The lower peak observed near
the bottom wall corresponds to the streamwise stress component and correlates
directly with the axial velocity gradient near the wall. However, this peak is not
present in the normal-to-wall stress component. The maximum values of both
stress components in all three cases and at all five selected streamwise positions
coincide with the shear layer zone aligned with the streamline bordering the
wall-jet region. In the horizontal duct, both Reynolds stress components show a
gradual increase in turbulence intensity towards the outlet, particularly in case
3, which has the largest distance to the bottom wall (H/D = 2). It is important
to exercise caution when drawing conclusions based on these findings since the
Reynolds stress component intensities are normalized by Uτ = Ub

√︁
Cf /2 (Fig.
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4.10), where the largest Cf values at the locations x/D = 0.5 and 1.0 have the
most significant impact on the lowest normalized turbulence level in this flow
region. In the remaining part of the duct, the development of Cf values shows
only minor variations, suggesting their proximity across all three cases. In any
case, the largest relative increase in turbulence intensity is observed in case
2, which has a gap height of H/D = 1.0. Conversely, case 1, with the small-
est gap height of H/D = 1.0, exhibits a decay in cross-sectional turbulence intensity.

The predicted axial stress components (
√

u′u′/Uτ ) for both RANS-based models
agree well overall with the compared DNS data. However, the scale-resolved
IISRSM shows higher agreement with the reference DNS data compared to the
baseline RSM, as expected. For impinging jet configurations, and especially in the
wall jet region, the wall normal stress component (

√
v′v′/Uτ ) plays a dominant

role in the model formulation when a gradient approach is used to describe the
turbulent heat flux, with the normal-to-wall temperature gradient overweighting
the gradients in other coordinate directions. Accordingly, its correct prediction is
of crucial importance. The corresponding RSM-related profiles of the two Reynolds
stress intensity components at H/D = 0.5 show a significant overestimation of the
near-wall peak, which is not visible in the present DNS data. This overestimation
is a direct consequence of a local overestimation of turbulent production near the
central impingement locality when the fully-developed channel flow impinges on
the bottom wall. In the subsequent wall-jet region, a systematic relaxation in the
form of a significant underestimation of both stress components is observed for
all three cases, which correlates with the flow acceleration within the developing
wall-jet region; some enhancement of the turbulence field, which agrees well with
the DNS data and the IISRSM results, is evident at the H/D = 4.0 location
corresponding to the fully developed wall-jet region. Contrary, the profiles of the
wall parallel as well as the wall normal Reynolds stress intensity components
predicted by the IISRSM show a steady increase of the respective turbulence
intensity, following closely the DNS reference.

The last two last plots displaying the quantities of the thermal field induced
by the constant wall heating, the mean temperature Θ (Fig. 4.13 & 4.14),
normalized by the difference between temperatures at the inlet (Θinlet) and at
the wall (Θwall), and the distribution of the Nusselt number (Fig. 4.15, 4.16,
4.17), allow a discussion of the predictive performance of the heat-flux models
adopted. The computational RSM-related results shown in Fig. 4.13 are obtained
by applying the SGDH model (Eq. 2.30), analogous to the IISRSM. The results
obtained with other investigated model formulations differ only slightly. A more
distinct mutual deviations, although also noticeably small, can be seen in the
Nusselt number distribution (Fig.4.15, 4.16, 4.17). The significant variations
in the temperature profiles are primarily observed in the immediate vicinity
of the bottom wall. As a result, the main focus of this investigation is on
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Figure 4.13.: Profile development of the temperature Θ in x direction in the slot-jet
impingement configuration obtained by the steady RSM for all three
nozzle-to-plate distances H/D = 0.5, 1.0 and 2.0.

the spatial evolution of the near-wall temperature fields along the axial direc-
tion. Specifically, the analysis covers a dimensionless wall distance up to y/D ≤ 0.2.

From the moment of impact at x/D = 0.0, the heated lower wall consistently
affects the temperature field formation and its thermal boundary layer. Fig. 4.13
& Fig. 4.14 shows the spatial progression of the temperature profiles in the axial
x direction, which points to a steadily thickening thermal boundary layer as a
result of the constant heat flux at the bottom surface. The near-wall temperature
gradient (∂Θ/∂y) has its maximum near the point of impact (x/D ≈ 0.0 − 0.5)
and decreases gradually from there toward the outlet of the horizontal channel.
This phenomenon is manifested through an enhanced heat propagation from the
boundary layer into the flow core, which is accompanied by the weakening of
the temperature gradient mentioned above. This indicates that the convective
transport of the induced thermal energy is strongest at the immediate impingement
region and weakens in the axial direction thereafter. Both the RSM and IISRSM
are capable to qualitatively reproduce the overall evolution of the temperature
profile compared to the DNS data. The temperature profiles in the case of the
configurations with larger heights of the horizontal channel - H/D = 1.0 and 2.0 -
are correctly reproduced in its entirety. The corresponding profiles also show very
good mutual agreement, indicating the weak influence of the distance between the
channel-like nozzle outlet and the impact plate on the thermal field (this is also
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Figure 4.14.: Profile development of the temperature Θ in x direction in the slot-jet
impingement configuration obtained by the scale resolving IISRSM
for all three nozzle-to-plate distances H/D = 0.5, 1.0 and 2.0.

visible in the case of the Nusselt number distribution, Fig. 4.15, 4.16, 4.17. This
finding is fully consistent with the study of Behnia, Parneix, Shabany, and Durbin
(1999), which confirms that the influence of nozzle-to-impingement-plate distance
is noticeable only at the gap heights H/D smaller than unity. On the other
hand, the temperature profiles corresponding to the narrowest gap (H/D = 0.5)
predicted by both RANS-based models in the vicinity of the wall differ from the
DNS data; this deviation becomes more pronounced with increasing distance from
the impact region. The IISRSM-related results still follow the DNS data somewhat
more closely. Nevertheless, for all three configurations, the results show that the
corresponding wall temperature values are correctly predicted by both RSM and
IISRSM calculations. A notable shift in the temperature profiles is observed in
terms of the intensity of the corresponding gradient at x/D ≥ 2.0. In contrast
to locations where x/D < 2.0, the temperature gradient in Case 2 (H/D = 1.0)
exhibits a more significant weakening compared to Case 3 (H/D = 2.0). This
specific observation has been adequately reflected in the present simulation results.

The distribution of the Nusselt number Nu, representing a dimensionless parameter
used to quantify convective heat transfer, is depicted in Fig. 4.15, 4.16, 4.17. It is
presently determined as the difference between the temperature at a given point
(Θ) and the inlet temperature (Θinlet), divided by the difference between the
wall temperature (Θwall) and the inlet temperature: (Θ − Θinlet)/(Θwall − Θinlet).
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4.2. Slot-jet impingement onto a heated wall

Accordingly, the Nusselt number progression is strongly influenced by the tempera-
ture field near the wall, as it is directly affected by its gradient. Consequently, the
disparity in convective heat transfer mentioned earlier is reflected in the evolution
of the Nusselt number with respect to all three nozzle-to-plate distances. The
results obtained by applying different heat flux models (Equations 2.30, 2.31, 2.32,
2.34) in conjunction with the baseline Reynolds Stress Model (RSM) exhibit a
significant overestimation of convective heat transfer, especially in the vicinity of
the impingement center at x/D = 0, extending up to 2.0. However, when applied
in the context of the Sensitized RANS-RSM framework, the IISRSM-related
Nusselt number distribution shows a significantly better agreement with the
reference DNS database. This improvement can be attributed to the superior
prediction capabilities of IISRSM for the underlying Reynolds stress field compared
to its baseline RSM counterpart. In particular, the accurate prediction of the
wall-normal stress component (

√
v′v′/Uτ ) by IISRSM, as shown in Figure 4.12,

has a significant impact on the accurate determination of the turbulent heat flux
and the resulting near-wall thermal field.
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Figure 4.15.: Distribution of the Nusselt number Nu at the bottom impingement
wall for the nozzle-to-plate distance H/D = 0.5 for the single-slot-jet
impingement configuration at a bulk Reynolds number of Reb =
10000.

A notable characteristic of impinging jet configurations is the occurrence of a
secondary peak in the Nusselt number downstream of the impingement point.
At a certain distance from the high pressure stagnation point, the flow suddenly
slows down. Structurally, according to Hadžiabdić and Hanjalić (2008), a local
recirculation zone corresponding to a shear-layer vortex aligned with the wall jet
boundary is formed, which then causes its global deceleration. The substantial
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Figure 4.16.: Distribution of the Nusselt number Nu at the bottom impingement
wall for the nozzle-to-plate distance H/D = 1.0 for the single-slot-jet
impingement configuration at a bulk Reynolds number of Reb =
10000.

relative decrease in the bulk value of the axial velocity component is evident in
Fig. 4.9, observed especially between the axial positions x/D = 2.0 and 3.0 for a
nozzle-to-plate distance of H/D = 0.5. A similar, but clearly weaker deceleration
is observed for the nozzle-outlet-wall spacings of H/D = 1.0 and H/D = 2.0,
but is shifted downstream between the streamwise locations x/D = 3.0 and 4.0.
Therefore, the second Nusselt number peak is most pronounced for the smallest
nozzle-to-plate distance of H/D = 0.5 and gradually decreases as the gap height
increases, reaching a significantly lower value, resulting finally in its complete
absence for the largest spacing of H/D = 2.0. The observed delays in the bulk
flow, coupled with an accompanying thickening of the boundary layer, are also
associated with an asymmetry in the velocity and Reynolds stress profiles and
their intensified gradients near the wall. This behavior is illustrated by the
analogous abrupt change in the distribution of the friction coefficient shown in Fig.
4.10, which directly corresponds to the behavior of the Nusselt number, whose
distribution follows a similar pattern.

These intricate relationships pose a significant challenge to the inherently steady
Reynolds-Averaged Navier-Stokes (RANS)-based turbulence models. Presently,
both RANS-based models, including the Sensitized RANS model, could not
accurately reproduce the second Nusselt number peak at a nozzle-to-plate distance
of H/D = 0.5. Nevertheless, the scale-resolving IISRSM exhibits a tendency to
provide notably improved predictions, especially for the Nusselt number evolutions
for the impinging jet configurations with the gap heights of H/D = 1.0 and
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Figure 4.17.: Distribution of the Nusselt number Nu at the bottom impingement
wall for the nozzle-to-plate distance H/D = 2.0 for the single-slot-jet
impingement configuration at a bulk Reynolds number of Reb =
10000.

H/D = 2.0. According to Hadžiabdić and Hanjalić (2008), the distinctive second
peak within the Nusselt number distribution, characteristic of the narrowest gap of
H/D = 0.5, can be interpreted as a direct outcome of a low intensity wall-bounded
detachment of the fluctuating flow field at this specific position. Capture of these
flow phenomena exceeds the predictive capabilities of the currently employed
steady RANS-RSM model, but can be partially predicted using the scale-resolving
IISRSM. Addressing this underprediction may require a more detailed analysis,
also with respect to the grid resolution requirements, especially at this locality,
considering that the standard grid resolution constraints are primarily derived for
wall-parallel flows (see e.g., Hadžiabdić and Hanjalić (2008)).

Concluding, simulations of three different slot-jet impingement configurations
at nozzle-to-wall distances of H/D = 0.5, 1.0, and 2.0 on a heated wall were
performed to further validate the predictive capabilities of a baseline RANS-RSM
model and its Sensitized-RANS extension (IISRSM) under conditions of much
more complex flow deformation, considering higher-order modeling for turbulent
heat flux. The results show qualitative consistency between the RANS-based
models in reproducing the velocity fields and the evolution of the friction
coefficients compared to the DNS reference data. However, the scale-resolving
IISRSM demonstrated significantly better predictive performance. The IISRSM
improved the prediction of turbulent stresses in the central impingement region
compared to the RSM, which resulted in too high a turbulence level, indicating its
improved capability to account for turbulence unsteadiness. The differences in
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the thermal fields obtained by applying different heat flux models in conjunction
with the IISRSM are not as pronounced. Both gradient-diffusion approaches
tested provide qualitatively valuable coefficient predictions when combined with
the scale-resolving Reynolds-Stress model. The use of various heat-flux models
in conjunction with the baseline RSM led to obvious differences in the thermal
field determination, mostly in the immediate impingement region, with all model
combinations yielding excessive heat transfer intensity as indicated by a too high
Nusselt number.

Concluding the present section concerning important preliminary investigations, a
numerical simulation was performed of a turbulent axisymmetric jet with twice the
momentum impinging on a heated wall. The baseline RSM in combination with
the considered heat flow models yielded a reasonable distribution of the Nusselt
number for radial distances x/D ≥ 2 where a mean shear induced flow behavior
dominates. However, similar to the previous configuration, within and around the
immediate impingement region up to x/D ≤ 2, significant overprediction occurred
due to more intense turbulence activity, exceeding by far the DNS-related results.
In contrast, the scale-resolving IISRSM provided better predictions for velocity,
Reynolds stress, and temperature profiles, closely following the DNS database.
An exception is the resulting Nusselt number distribution, which showed a slight
underprediction compared to the DNS reference data. A well-known feature of
the latter global thermal field property, its second maximum characterizing the
wall-jet development at higher impinging jet momentum (as specific to the round
jet impingement considered here) and smaller nozzle-to-wall distances (relevant to
the slot-jet impingement with H/D = 0.5), requires further analysis with respect
to spatial and temporal resolution criteria in such wall-perpendicular flows.
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5.1. TUDa Flowbench - IC engine intake flow
The flow pattern in internal combustion engines plays a critical role in the
combustion process and has a direct impact on engine efficiency and emissions. The
flow within the relevant piston-cylinder assembly, the so-called TUDa Flowbench
is significantly influenced by the interaction of various phenomena occurring
simultaneously, even in the absence of combustion or heat transfer processes.
The flow complexity arises from phenomena such as interacting injector jets,
tumbling and swirling motion, wall shear stress variation and stretching as well as
squeezing effects on the working fluid during expansion and compression modes of
engine operation. Accordingly, the flow characteristics to be adequately described
include complex flow straining caused by the collision of multiple intake jets and
their subsequent impingement on the cylinder walls and piston surface, as well
as multiple wall-bounded and free separation events. These phenomena lead
to a complex, transient and recirculating flow topology with cyclic large-scale
movements characterized by high-intensity anisotropic turbulence. Today, the
design and optimization of internal combustion engines benefit greatly from
Computational Fluid Dynamics (CFD) packages. In the past, the prediction of
engine flow relied heavily on conventional Reynolds-Averaged Navier-Stokes (RANS)
models. However, these RANS models, which use single-point closures based
on a characteristic length scale related to large-scale motion, fail to capture an
important part of the turbulence spectrum. As a result, they cannot satisfactorily
capture the physics of flows dominated by organized, large-scale coherent structures.
Recognizing this limitation, the engineering community has realized that advanced
turbulence models capable of reproducing the fluctuating flow field are required
to accurately predict the aforementioned flow phenomena. Studies by Rutland
(2011) and Hasse (2016)), in their reviews on the feasibility of eddy-resolving
turbulence models such as Large Eddy Simulation (LES) and hybrid RANS/LES,
confirmed the need for such models in the calculation of combustion engine flows.
Recently, Schmitt, Frouzakis, Wright, A. G. Tomboulides, and Boulouchos (2015)
Schmitt et al. and Schmitt, Frouzakis, Wright, A. Tomboulides, and Boulouchos
(2016) enriched the computational database by performing high-quality direct
numerical simulations (DNS) of cylinder-piston assemblies operating under
compression conditions, including the representation of the associated thermal field.
Subsequently,Keskinen, Koch, Wright, Schmitt, Nuutinen, Kaario, Vuorinen, Larmi,
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and Boulouchos (2018) simulated the above-mentioned DNS-related configurations
using a wall-modeled LES approach. Haussmann, Ries, Jeppener-Haltenhoff,
Li, Schmidt, Welch, Illmann, Böhm, Nirschl, Krause, et al. (2020) evaluated
different wall-modeling treatments in an LES of an engine intake flow. The main
objective of this section is to validate the recently developed eddy resolving
RANS model IISRSM (Sec. 2.4.2), whose subscale model considers the dynamics
of the entire fine structure tensor under conditions of coarser grid resolutions.
In addition, a complementary LES using an appropriately fine grid is also performed.

Case setup and computational domain
The design of the TUDa Flowbench setup, considered presently, corresponds to the
geometry of the spray-guided engine, representing a single-cylinder direct-injection
engine. The configuration mimics the flow conditions when both valves are fully
opened and the piston acceleration is zero. The configuration is experimentally
investigated using the Magnetic Resonance Velocimetry (MRV) measurement
technique at the Technical University of Darmstadt by Freudenhammer, Baum,
Peterson, Böhm, Jung, and Grundmann (2014).

Figure 5.1.: Stereolithography of the considered TU Da Flowbench configuration
for the reference experimental investigation of Freudenhammer, Baum,
Peterson, Böhm, Jung, and Grundmann (2014) and all numerical LES-
and scale resolving RANS-based computational simulations.

Accordingly, the flow configuration considered resembles an annular jet formed
inside the intake-manifold at a Reynolds number of 38000, impinging on the cylinder
liner and piston walls and forms complex vortical structures. The flowbench is
a single-cylinder direct injection engine. It includes a twin-cam, overhead-valve
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pent roof engine. Bore and stroke of the engine is 86 mm and it is operated at
800 RPM. The intake valves are fixed to a lift of 9.21 mm, that corresponds to
a CA of 270◦bTDC. The inlet mass flow rate is equivalent to 66 L/min, working
fluid is water heated up to 40◦C. The inlet diameter of the engine is 56.3 mm,
just upstream the bifurcation of the manifold. The equivalent Reynolds number at
inlet is equivalent to 38000. In the real engine at a CA of 270◦ bTDC the valve
velocity is 0.01 m/s and piston acceleration is near zero. Under these conditions, a
quasi steady state flow is established. Inlet Flow complexity refers to a variety of
differently structured phenomena, including, among other things, strong streamline
curvature, characteristic of impinging flow events and intensified tumbling motion.
The so-called ‘piston’ actually represents an endplate with a centrally positioned
opening used to discharge the fluid.

Figure 5.2.: Preprocessed 8 million cells finite-volume mesh of the considered TUDa
Flowbench configuration for the numerical LES- and scale resolving
RANS-based computational simulations.

The TUDa Flowbench configuration is meshed using the ANSA preprocessing
software by BETA CAE Systems International AG. For the scale resolving
RANS-RSM-based IISRSM two meshes are generated containing 2.3 and 4 million
polyhedral cells. For the reference LES one mesh with 8 millon finite volume mesh
cells, seen in figure 5.2, is generated. The finite volume meshes are constructed
in a way that the performed numerical simulations resolve the near-wall region
with the wall-next cells situated well within the viscous sub-layer. To capture the
flow behaviour of the viscous sub-layer correctly the wall-nearest cell centers of
all considered finite volume meshes are situated at a dimensionless distance of
y+ < 1 throughout the flow domain. Additionally, for comparative assessment,
the reference LES was performed using the σ-subgrid-scale model of Nicoud and
Ducros (1999) on a grid of 8 million cells.
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Figure 5.3.: Comparison of the computational grid around the inlet valve for the
IISRSM (a) 2.3m cells & (b) 4m cells as well as for the reference LES
(a) calculations.

Figure 5.3 shows a comparison of the computational grid around the inlet valve
of the TUDa Flowbench for the IISRSM (a) 2.3m cells & (b) 4m cells as well
as for the reference LES (a) simulations. The corresponding grid spacings in
wall units for the coarsest, 2.3 millon cells finite volume mesh are in the range
of ∆x+ = 0.41 − 198.19, ∆y+ = 0.79 − 245.91, and ∆z+ = 0.81 − 229.64. The
grid spacings in wall units for the 4 millon cells finite volume mesh are in the
range of ∆x+ = 0.36 − 103.82, ∆y+ = 0.58 − 116.38, and ∆z+ = 0.89 − 131.84.
The grid spacings for the corresponding reference LES are in the range of
∆x+ = 0.27 − 57.63, ∆y+ = 0.63 − 84.33, and ∆z+ = 0.23 − 73.28 within the
refined region around the inlet and the valves. To reduce the computational effort,
the LES mesh is coarsened in vicinity to the outlet of the flow domain.

To provide an additional baseline for the validation of the URANS-based IIS-RSM
a reference LES is carried out. Due to lack of experimental turbulence data, the
LES is applied to enrich the reference database in addition to the experimental
MRV measurements. The MRV measurements for this particular study provide
exclusively time-averaged volumetric velocity fields without any further information
of turbulence. The TUDa Flowbench is a highly turbulent flow configuration with
turbulent eddies of various time and length scales. An LES approach reduces the
computational costs by filtering out only the smallest scales of motion which then
have to be modelled, while larger scales are fully resolved. When using proven and
simple SGS models within an LES framework, a large range of turbulent scales
has to be resolved. This directly results in the present, well-resolved 8 million
cells finite-volume mesh. However, it is not straight forward to define a sufficient
grid resolution for an LES of a complex flow setup like the present Flowbench.
To ensure this sufficient grid resolution, multiple corresponding mesh quality
parameters will be evaluated in the following.

Due to its dependency of the corresponding numerical discretization and SGS
modeling the mesh-related assessment of the uncertainty in an LES is not
trivial as mentioned by Celik (2005). It is further important to remark that no
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grid-independent solution for LES can be obtained. An overly resolved LES is
essentially a DNS where all the turbulence scales are resolved (Speziale, 1998).
Therefore different parameters have been proposed to identify an high-quality
LES. Two different approaches can be used to test the performance of a SGS
model in a priori and a posteriori manner ( Vreman, Geurts, and Kuerten,
1997). However, both approaches have their own weaknesses to consider. A
priori tests can be too pessimistic, while a posteriori tests can show difficulties
distinguishing between discretization and modeling error. Therefore, it is important
to adopt both methodology to properly validate an LES. In the present thesis,
the performed reference LES as well as the scale-resolving RANS-RSM setup
is first verified a priori and then a posteriori against the experimental MRV
results. The a posteriori comparison is realized by a comparison of the numerical
results against the experimental measurement of the volumetric, time-averaged
velocity field of the TUDa Flowbench obtained with the previously described MRV
procedure (Freudenhammer, Baum, Peterson, Böhm, Jung, and Grundmann, 2014).

For the a priori analysis, different quality indices are defined by various sources.
These quality indexes can be classified according to the analysed parameter, where
the SGS viscosity, the grid resolution compared to the Kolmogorov scale and the
turbulence kinetic energy are suggested. The LES reference data originates from
the work of Pati (2022) and is further applied to all following LES mesh studies
within the present thesis.

The, for this work considered LES quality index is derived from the comparison
between grid size and the Kolmogorov scale. This quality index compares the
length scale of a finite-volume mesh cell with the length scale of the smallest,
dissipative eddies within the considered flow.

LES_IQη = 1

1 + αη

(︂
h
ηk

)︂m (5.1)

The quality index LES_IQη is shown in Eq. 5.1. Here h is the length scale of the
finite volume mesh and ηk the Kolmogorov length scale. The Kolmogorov length
scale can be estimated by:

ηk = (ν3/ϵeff)0.25 with ϵeff = ν + νsgs + νnum˜︁S2
(5.2)

with ϵeff representing the effective dissipation rate. In this context ϵeff accounts for
the effects of numerical dissipation. Setting αη = 0.05 and m = 0.5 according to
Celik (2005), a value of LES_IQη > 0.8 is indicating a qualitatively sufficiently
resolved LES.
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Figure 5.4.: Kolmogorov Scale LES Quality Index field LES_IQη withing the valve
plane (left), the vertical and horizontal and collision plane (middle
& right) of the TUDa Flowbench configuration for the corresponding
reference LES at its 8 million finite volume cells mesh.

Figure 5.4 shows the Kolmogorov Scale LES Quality Index LES_IQη on the valve
plane of the corresponding 8 million cells LES simulation. The mesh quality index
clearly indicates a sufficiently resolved finite volume mesh around the intake valves
of the present TUDa Flowbench configuration. It is remarked that, since the
evaluation of the present quality index requires information of the overall flow
conditions within the analyzed finite volume mesh, an additional grid study was
performed. Hereby, the present 8 million cells grid was identified as a suitable
solution domain for the reference LES.

As previously mentioned, the quality of a numerical solution in conjunction with
its underlying domain can be investigated a priori and a posteriori. The following
section contains an a priori analysis of the different URANS setups. A further
way to determine the resolved fraction within LES and scale-resolving (U)RANS
simulations is to evaluate the ratio of modeled and total turbulence kinetic energy:

kmod/ktotal = kmod

kres + kmod
(5.3)

The modeled turbulence kinetic energy can be determined by kmod = 0.5uiuimod,
where uiuimod describes the modeled part of the total RST. Consequently the total
turbulence kinetic energy ktotal comprises the modeled and the resolved turbulence
kinetic energy kmod and kres.
Applying Eq. 5.3 to previously described polyhedral 2.3 and 4 million meshes for
the scale-resolving URANS simulations, provides insight to the mesh-dependent
modeling percentage of turbulence for each case respectively. For an LES a ratio
of 20% modeled and 80% resolved turbulent kinetic energy indicates a sufficiently
resolved finite volume mesh. Fig. 5.5 shows the indicator kmod/ktotal applied to
the 2 and 4 millon cells URANS meshes. The evaluation shows that the percentage
of modeled turbulence kinetic energy within the combustion chamber and under
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Figure 5.5.: Ratio between the modeled and total turbulence kinetic energy
kmod/ktotal for the scale-resolving, RANS-RSM-related IISRSM simu-
lations on the underlying 2.3 and 4 million cells finite volume meshes.

the valves is constantly smaller then 20% for both meshes. However it is important
to notice that the modelled part of the turbulence kinetic energy is significantly
higher at the intake and above the valves of the combustion chamber. Within
these areas, the advanced modelling of the RANS-RSM-based IISRSM should
clearly come into effect. The subsequent analysis of the RANS-RSM-related results
in comparison to the reference LES and experimental MRV measurements is
illustrated within the following section.

Results and Discussion

The following section contains a posteriori validations of the considered numerical
simulations against the experimental MRV data and further turbulence analysis
between the scale-resolving, RANS-RSM-related simulations and the corresponding
reference LES. The present work especially emphasizes the validation of the
anisotropic modeling for the RST within the scale-resolving URANS framework by
comparing its results against the reference LES.

A first impression of the gerneal flow structure and their corresponding length
scales can be obtained by analyzing the instantaneous velocity fields of the
scale-resolving IISRSM simulation results on its corresponding 4 million cells
mesh in Fig. 5.6. The present section mainly focuses on the evaluation of the
tumbling motion within the so called valve plane of the TUDa Flowbench, as seen
in Fig. 5.6. The strong velocity gradients and complex geometry as well as the
depicted formation of wall-perpendicular jets above the valves provide an excellent
opportunity for the a posteriori validation of the considered scale-resolving IISRSM.
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Figure 5.6.: Instantaneous velocity field on the valve plane of the TUDa Flowbench
configuration obtained by the scale-resolving IISRSM on the corre-
sponding 4 million cells finite volume mesh.

Therefor, the further analysis of the present internal combustion engine flow is
carried out within the previously introduced valve plane.

Figure 5.7.: Instantaneous, time-resolved velocity field on the valve plane of the
TUDa Flowbench configuration obtained by the scale-resolving IISRSM
and LES on the corresponding 2.3, 4 and 8 million cells finite volume
mesh.
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in Fig. 5.7 the LES and both scale-resolving URANS simulations on the
corresponding 2.3 and 4 million cells grid show similar behaviour in jet forming
and eddy decay within valve proximity. All simulations show similar velocity
magnitudes over the complex valve plane within the Flowbench domain. Due to
different numerical grid sizes, there are still minor differences in the diffusivity of
the resolved velocity fluctuations between the present calculations respectively.
However, these inevitable differences do not impair the overall good agreement of
all simulations.

However, instantaneous flow fields are not a suitable option for an a posteriori
analysis. The following a posteriori validations of the LES and URANS simulations
are performed using time-averaged fields. Therefore, in the first place, all numeri-
cally obtained mean velocity fields are directly compared to the experimental MRV
data provided by Freudenhammer, Baum, Peterson, Böhm, Jung, and Grundmann
(2014).

Figure 5.8.: Time-averaged velocity field on the valve plane of the TUDa Flowbench
configuration obtained by the scale-resolving IISRSM and LES on
the corresponding 2.3, 4 and 8 million cells finite volume mesh in
comparison with the experimentally obtained MRV velocity field.

Fig. 5.8 contains the time-averaged velocity fields sampled from the MRV experi-
ment, the corresponding LES and both scale-resolving URANS simulations with 2.3
and 4 million cells. The velocity field data is extracted at the previously mentioned
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valve plane, cutting through the center point of the respective valve. All simulations
are able to qualitatively and quantitatively reproduce the important large scale flow
structures seen in the MRV measurements. The simulations correctly predict the
re-circulation vertices beneath the valve plate which are commonly known as the
tumble motion of an IC engine intake flow (Hill and Zhang, 1994). Compared to the
time-averaged flow structure of the LES and scale-resolving URANS simulations,
it is possible to observe higher velocities and a less diffusive valve jet stream for
the MRV experiment when compared to the numerical simulations. However, the
experimental MRV data shows local fluctuations which can be an indication that
the time-averaging process of the magnetic resonance velocimetry averaging is not
fully completed. Beside that, all simulations are capable of capturing even smaller
flow phenomena like e.g. the impingement’s of the valve jets onto the cylinder walls.

A more detailed analysis of time-averaged flow quantities is additionally performed
by utilizing the so-called valve curtain. The valve curtain is an annular, closed
lateral surface which originates on top of the valve with a height of the opened
valve distance. All mass entering the combustion chamber is passing through this
projected area. Analysing the valve curtain makes it possible to capture the whole
complex flow field into the combustion chamber and its corresponding flow features
at once.

Figure 5.9.: Mean velocity field on the valve curtain obtained by the MRV, LES
and scale-resolving IISRSM.

Fig. 5.9 shows the experimental and numerical plane-normal, mean velocity
magnitude through the valve curtain. The LES and both eddy-resolving URANS
simulations show high levels of similarity over the projected area. However, the
MRV differs significantly from all simulations in terms of smoothness and still shows
signs of turbulent fluctuation. The experimental data therefore again indicates a
not fully completed time-averaging process within this highly turbulent flow regime.

For a better qualitatively comparison, Fig. 5.10 shows the different experimentally
and numerically obtained velocity magnitudes along two orthogonal lines directly
beneath the valves within the local, cartesian x and z direction. The LES and both
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Figure 5.10.: Time-averaged profiles of the velocity components Ux and Uy parallel
to the x and z axis at the absolute position of 10 mm below the valve
indicated by the white dashed line in Fig. 5.6, evaluated along the
red marked lines 1 and 2.

scale-resolving URANS simulations show similar results along all directions and
are also closely following the noisier MRV data. It is especially notable that both
URANS simulations, performed on significantly differing grid sizes are in quantita-
tively close agreement to each other and the corresponding LES respectively. The
grid spacing free model formulation of the IISRSM enables the usage of coarse
numerical grids when compared to an LES but still maintain its eddy-resolving
properties. However, the experimental MRV data once again exhibits signs of
turbulent fluctuations which indicates a not fully completed time-averaging process.

The next step within the validation process is the comparison of the corresponding
turbulent quantities. The experimental data in this case is limited to the previously
analyzed time-averaged velocity fields and does not contain further turbulent
information. Therefore, the upcoming comparisons are only performed between
the numerical results of the reference LES and the corresponding scale-resolving
URANS simulations, respectively.
Fig. 5.11 shows the turbulence kinetic energy k = 0.5u′iu′i normalized by
the squared mean bulk inlet velocity at the valve plane for the LES and the
scale-resolving URANS simulations. The URANS simulations exhibit a slightly
higher turbulent activity around the valve jets and the corresponding impingement
regions in comparison to the LES results. Its also noticeable that both URANS
simulations are more diffuse around the valve jets due to their coarser numerical
grids. The difference in grid size can especially be noticed when comparing the
center region of the upper right valve jet. The LES shows a sharp separation
of the upper and lower shear layer whereas the URANS simulations predict a
more diffuse and higher momentum transport in this regions. When comparing
the URANS simulations performed on the 2 million and 4 million cells meshes,
the only significant difference occurs within the forming of the upper right shear
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Figure 5.11.: Total turbulence kinetic energy ktot normalized by the bulk inlet
velocity Ub for the LES and IISRSM simulations within the valve
plane of the TUDa Flowbench configuration.

layer of the bigger valve jet. The results obtained on the 2 million cells mesh
show higher levels of turbulence directly originating form the separation point.
Subsequently, all numerical results are, despite the discussed minor differences, in
outstandingly good agreement and show high levels of similarity.

As previously mentioned, a further characteristic of turbulent flows is the turbulence
anisotropy, which can be directly visualized. In the present work, a proper prediction
of the turbulence anisotropy is essential for an accurate numerical prediction of
the internal flow within the complex Flowbench geometry. Various properties of
the Reynolds stress anisotropy tensor can be utilized to later enhance modeling
strategies. The present work focuses on the visualization of the Reynolds stress
anisotropy tensor as introduced in section 3.1. There are only a few visualization
techniques for second-order tensor fields, like glyphs or hyperstreamlines (see
Hashash, Yao, and Wotring (2003)). Due to their complex construction and
difficult interpretation, none of these techniques has been established for broad
use. Instead derived quantities according to Emory and Iaccarino (2014) are used
to investigate anisotropic behavior of the flow, which compresses the contained
information of a second-order tensor to either scalar or vector metrics.
Figure 5.12 presents the time-averaged two componentality parameter within
the valve plane of the TUDa Flowbench configuration obtained by the LES and
scale-resolving IISRSM. The two componentality parameter A = 1 − 9/8(A2 − A3),
as a well known approach for visualizing turbulence anisotropy in a spatial
domain, gives information about the general anisotropic turbulent state within
a physical domain. If A = 1 the turbulent state can be considered isotropic, if
A < 1 it anisotropic. Therefore the two componentality parameter only provides
information about the level of anisotropy of a given Reynolds stress field but
does not contain information about the exact anisotropic turbulent state. The
comparison between the LES- and RANS-RSM-related two componentality
parameter fields in 5.12 reveals a fundamentally equal anisotropic state between
the LES and scale-resolving RANS simulations. All simulations indicate a highly
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Figure 5.12.: Comparative assesment of the time-averaged two componentality
parameter A = 1 − 9/8(A2 − A3) within the valve plane of the TUDa
Flowbench configuration obtained by the LES and scale-resolving
IISRSM.

anisotropic turbulent state within the intake and above, but a nearly isotropic
state beneath the valves. Since the intake design of an internal combustion engine
is heavily motivated by achieving a homogeneous mixing of fresh air and the
injected gasoline spray, the underlying turbulent transport processes should also
exhibit an almost isotropic character. All respective simulations clearly show this
intended isotropic turbulent state within the combustion chamber.

A further more advanced technique which is also based on the eigenvalues λi and
has been previously introduced is Sec. 3.1 utilizes the barycentric map of Banerjee,
Krahl, Durst, and Zenger (2007). The Barycentric map shown in Fig. 3.5 uses
the fact that any turbulent state can be described as a combination of the three
limiting turbulent states (corners). The tree limiting turbulent states are one-,two-
and three-componental marked as x1C , x2C , and x3C .

Figure 5.13.: LES- (left) and the IISRSM-related cell coloring of the time-averaged
barycentric coloring for the corresponding 4m (middle) and 2.3m
(right) cells finite volume meshes in the valve plane of the TUDa
Flowbench configuration.
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Leveraging the characteristics of the barycentric anisotropy map and convey its
information back to the real computational domain by color-coding the turbulent
states as previously introduced in chapter 3.1 the so generated cell coloring
of figure 5.13 provides a profound insight into the anisotropic turbulent states
within the valve plane of the Flowbench configuration. When comparing the two
componentality parameter, depicted in Fig. 5.12 and the barycentric color-coded
fields of figure 5.13 it is important to notice that the dark red regimes within
the two-componentality fields are perfectly correlating with the corresponding
dark blue regimes within the barycentric color-coded field plots. This shows that
both methods reliably identify regimes of three componental isotropic turbulence.
By further utilizing the barycentric color-coded visualization technique, several
characteristic flow phenomena can be identified within the present valve cutting
plane. Following the inflow over the valve, a collision of the fluid flowing around
the valve stem can be detected by a characteristic color shift from pure blue
(isotropic three componental turbulence Xc3) or magenta before the valve stem
to green (axisymmetric two componental turbulence Xc2) after the valve stem.
It is important to notice that the scale-resolving IISRSM correctly predicts the
anisotropic turbulent state around the valve stem when compared to the reference
LES. Further, the scale-resolving RANS-RSM based IISRSM correctly predicts
the turbulent state within the flow regime of strong acceleration at the edge of
the valves, which is characterized by a color shift into magenta and subsequent
also dark red (One componental turbulence - Xc1). When evaluating the highly
sensitive barycentric coloring of the underlying anisotropic turbulent states, the
overall accordance of the scale-resolving IISRSM with the corresponding reference
LES is remarkable.

In summary, the present section addresses the validation of the eddy-resolving
Improved Instability Sensitive Reynolds Stress Model (IISRSM) on a complex
Internal Combustion engine intake flow. The IISRSM turbulence model is
presented as a second-moment closure Reynolds stress model with a sensitivation
towards LES-like fluctuation. The turbulence model and its corresponding
framework is implemented in the Finite-Volume-Method open-source toolbox
OpenFOAM version 2.4.x. The meshing of the Flowbench geometry for all
numerical simulations is realized by the pre-processing software ANSA. Two
different grid sizes with 2.3 and 4 million finite volume cells for the scale-resolving
URANS simulations and 8 million cells for the Large Eddy Simulation are
presented. To ensure a sufficient mesh quality, a priori analyses are performed
to every numerical grid. The resulting URANS simulations are held against
a Magnetic Resonance Velocimetry (MRV) and the corresponding LES. The
comparison shows that the URANS simulations on both grids correctly predict the
general structure of the intake flow, especially in term of flow detachment from
the valve and the subsequently developing tumble motion within the combustion
chamber. The instantaneous flow fields of both URANS simulations show similar
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eddy-resolving characteristic according to the baseline LES. This indicates that
the IISRSM model is capable of correctly capturing the unsteady nature of
the complex flow within the investigated Flowbench geometry, but with up to
60% less computational cost compared to an LES. Further comparisons of the
total Reynolds stress fields and the corresponding Reynolds stress anisotropy
also showing similar behaviour over the whole flow domain. Concluding all
comparisons the eddy-resolving IISRSM is capable of correctly reproducing the
complex flow within the Flowbench geometry in comparison to the baseline LES
and the experimental MRV data by reducing the necessary computing effort by 60%.

Figure 5.14.: Full rendering (left) of the TUDa Flowbench, its collision plane
(bottom right) and its top plane (top right) colored by the time-
resolved, fluctuating, instantaneous velocity field of the reference
LES.

Based of the results of the stationary Flowbench with its fixed valve and piston
positions addressed in the current section, the scale-resolving IISRSM will, from
here on be further investigated in two derived generic flow configurations. The
first further generic flow configuration is focusing the impingement processes of
the previously shown valve jets (See Fig. 5.14) with inclusion of a passive, scalar
temperature transport equation into the numerical setup (Sec. 5.2). An additional
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focus to in this investigation is the modeling of the turbulent heat flux uiθj (See,
Sec. 2.4.3) which additionally appears within the Reynolds-averaged temperature
equation (Eqn. 2.14) similarly to the Reynolds stress tensor uiuj in the Reynolds-
averaged momentum equation (Eqn. 2.13) . The second generic flow configuration,
derived from the present Flowbench setup addresses the jets collision and wall-
perpendicular mixing, seen in the additional slices of Fig. 5.14 within a double-slot
jet impingement configuration (Sec. 5.3).
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5.2. Axis-symmetric Impining Jet (ASIJ)

Case setup
The flow configuration considered within the present section resembles a circular
jet impinging perpendicularly onto a heated wall. The jet structure corresponds to
a fully-developed pipe flow at a diameter-based Reynolds number of Re = 10000.
Reference DNS data are made available by Secchi, Häber, Gatti, Schulz, Trimis,
Suntz, and Frohnapfel (2022) and Secchi, Gatti, and Frohnapfel (2023). The
turbulent round jet entering the flow domain is realized by a separate calculation of
a pipe segment using the periodic inlet/outlet conditions. The flow field generated in
this way is then mapped onto the domain inlet. The jet impinges perpendicularly on
a partially heated wall located at 2D distance from the pipe outlet, with boundary
conditions corresponding to a constant wall temperature.

3D

D

2D
12D

r
z

Θw = const

Ub Θ0

Figure 5.15.: Schematic representation of the solution domain for the round-jet
impingement at a bulk Reynolds number Reb = 10000 onto a heated
wall with a nozzle-plate distance of H/D = 2.

Figure 5.15 shows the schematic of the solution domain accommodating the round
impinging jet configuration. Its cylindrical shape is bounded by the lower impinge-
ment wall and an upper bounding plate in the normal direction and extends in the
radial direction to 12D . The number of cells in the radial plane of Nr = 46400
multiplied by the number of cells in the normal z-direction Nz = 138 gives a total
of 6.4 million cells. The height of the grid cells adjacent to the wall over the entire
simulation domain is ∆z+ = 0.06 − 0.94. The lower values refer to the immediate
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impinging area and the higher values to the region near the configuration outlet.
The grid resolution in the radial direction corresponds to ∆r+ = 4.76 − 139.54,
following the analogous grading from the impinging center to the configuration
outlet. The same three-dimensional solution region and grid resolution were used
for both the steady conventional RANS and the time-accurate sensitized RANS
simulations.

Results and Discussion
In this section, results of the comparative evaluation of the different modeling
approaches introduced in section 2.4.3 for the mean flow and thermal field properties
and associated Reynolds stress tensor u′iu′j and the turbulent heat flux u′iθ′ are
presented for the introduced axisymmetric impinging jet flow configurations. To
get a first impression about the basic structural characteristics of the discussed
flow case, Figure 5.16 visualizes the instantaneous velocity and temperature fields
by showing their iso-contours as well as the vortical structures represented in
accordance with the Q-criterion.

Figure 5.16.: Flow visualization by the Q-criterion, colored by the non-
dimensionalized instantaneous temperature field (Θ/Θmax) obtained
by the IISRSM in a round impinging jet with fixed wall temperature.

The results presented illustrate clearly the capability of the IISRSM to resolve the
turbulent fluctuations with respect to both velocity- and temperature fields. Their
dynamics are mainly governed by their resolved fractions, whose generation is
driven by the convective terms in the corresponding transport equations (Eqn 2.13
& 2.14). However, in the wall proximity, the sub-scale turbulent momentum and
heat fluxes are appropriately enhanced and are therefore crucial for the correct
capturing of the near-wall effects. In the following, some time-averaged mean flow
and turbulence characteristics are discussed along with the DNS reference results.
This section in particular examines the outcomes derived from the computation of
a round jet, which exhibits structural characteristics similar to a fully-developed
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Figure 5.17.: Time-averaged DNS- (top) and RANS-RSM-related (middle) iso-
contours and instantaneous IISRSM-related (bottom) velocity fields
with their respective corresponding mean streamlines (right) and the
corresponding time-averaged turbulence kinetic energy (left) in the
central (r − z) vertical plane of the round-jet impingement configura-
tion.

pipe flow, impinging on a heated surface. The analysis compares the results
obtained using the baseline RSM (Eqn. 2.4.2) and its eddy-resolving version,
the IISRSM (Eqn. 2.4.2), in combination with closures for heat-flux modeling
introduced in section 2.4.3. The analysis is made with reference to the DNS
database provided by Secchi, Gatti, and Frohnapfel (2023).

The global flow topology visualized in Figure 5.17 (left) is qualitatively similar to
that studied in the previously discussed slot-jet impingement (Sec. 4.2). Accord-
ingly, the description of the flow characteristics provided with reference to Figure
4.8 can be applied here as well. Compared to the planar slot-jet impingement, the
present round-jet impingement takes place at a twice higher Reynolds number of
ReD = 10000 (based on pipe diameter and bulk velocity). The round jet deflects
radially at the bottom wall after impingement. Spreading radially over the heated
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wall, in addition to all the flow strains discussed previously for the slot-jet impinge-
ment, the flow in the impingement region experiences a transverse shear of a certain
intensity in the azimuthal direction, which varies slightly with increasing distance
from the impingement center. This feature represents an additional difficulty for
RANS-related modeling strategies in comparison with the planar impinging jet.
Another important difference corresponds to the abruptly decelerated jet stream
at the point of impingement. The area of confined low-velocity backflow is much
smaller for the round impinging jet (Fig. 5.17) compared to a correspondingly
extended region observed for the planar slot-jet impingement (Fig. 4.8). As a
consequence of the circular propagation of the flow after impact, the mass flow
of the incoming jet is distributed over the entire plate, which results in a thin
wall-jet with low velocity, Fig. 5.17. On the other hand, the shear layer aligned
with the mean streamline bounding the wall-jet is somewhat wider than for planar
impingement (about twice the wall-jet width). With increasing radial distance,
the axial wall-parallel momentum of the wall jet weakens and consequently more
momentum is transported into the upper part of the flow domain.
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Figure 5.18.: Profile development of the horizontal velocity component (Ur/Ub) in
the radial direction in the round-jet impingement configuration.

Fig. 5.18 shows the profile development of the radial mean velocity Ur/Ub at five
selected positions r/D = 0.5, 1.0, 2.0, 3.0 and 4.0. The wall-normal dimensionless
coordinate z/D is plotted on a logarithmic scale to emphasize the near-wall behavior.
The corresponding velocity profiles are characterized by an intensification of the
flow momentum that occurs during the impingement event (at r/D = 0.5 − 1.0)
and the subsequent transition (at r/D ≥ 1.0) to the wall jet. Thereafter, the
flow momentum decreases. Immediately after the impingement at r/D = 1, the
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5.2. Axis-symmetric Impining Jet (ASIJ)

experimental and both computational results are in good agreement. In particular,
the agreement of the results obtained by the scale-resolving IISRSM with the DNS
database at the central area of impingement is remarkable. The RSM-related
results also show a physically reasonable level of agreement with DNS. Further
downstream, at the radial positions r/D ≥ 1, the RSM results exhibit more
pronounced deviations from the DNS database then the results determined by
the scale-resolving IISRSM. It is noticeable that the boundary layer formation
shows significant differences between the two RANS-based models. Due to the
upper confinement plane, a weak intensity back flow is generated above the wall jet
region, similar to the flow configuration previously investigated, which is indicated
by negative velocity values.
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Figure 5.19.: Profile development of the turbulence kinetic energy (k/U2
b ) in the

radial direction in the round-jet impingement configuration.

Analogous observations are presented in Fig. 5.19, showing the turbulence kinetic
energy non-dimensionalized by the inlet bulk velocity k/U2

b . As before, the
dimensionless wall-normal coordinate z/D is plotted on a logarithmic scale to
provide better insight into the the near-wall behavior. The agreement in profile
shape and its magnitude between the turbulence kinetic energy predicted by the
IISRSM in comparison with the DNS data is very good at all radial positions,
except for the slight enhancement in the far wall-jet region. When comparing the
RSM-related predictions to the reference DNS data, an enhanced, disproportionate
production of turbulence kinetic energy can be observed in the vicinity of the
impingement point at r/D = 0.5 and 1.0.
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Figure 5.20.: Profile development of the radial (u′ru′r) and shear (u′ru′z) Reynolds
stress components in the radial direction in the round-jet impingement
configuration.

The radial (parallel to the impinging plate) u′ru′r and shear u′ru′z Reynolds stress
components returned by the IISRSM closely follow the DNS database, Figures 5.20
and 5.21. At the cross-section r/D = 0.5, which coincides with the pipe outlet, the
maxima of the turbulence kinetic energy and both stress components originate
from the near wall region within the inflow pipe. The correctly predicted double
maximum of the u′ru′r component and the turbulence kinetic energy, visible at
r/D = 0.5 − 2.0, coincides with the wall-jet boundary, which is characterized by
a velocity maximum at z/D = 0.1 and the strong mean shear in the immediate
vicinity of the wall at z/D = 0.01. Additionally, the characteristic sign change
of the shear stress component u′ru′z can be correctly captured in terms of both
the location of this change and the corresponding magnitude. However, the
baseline RSM substantially overestimates the turbulence production within the
impingement region, resulting in the significantly overpredicted turbulence level
seen at all Reynolds stress components. An analogous outcome can also be seen at
the Reynolds stress profiles in the previous slot-related impingement configuration
in section 4.2. This can be partially explained by the ’standard’ expression of the
so-called wall-reflection redistribution term withing the transport equation of the
present RSM, which was originally formulated for wall-parallel flows as suggested
in Craft, Graham, and Launder (1993). Moreover, the RSM-related results suggest
that an excessive streamline curvature-induced turbulence production takes place
here, inherently present in the Reynolds stress modeling concept. The strong local
streamline curvature presently acts in a destabilizing manner, thus contributing
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Figure 5.21.: Profile development of the wall-normal (u′zu′z) Reynolds stress com-
ponent in the radial direction in the round-jet impingement configu-
ration.

to the turbulence level increase. On the other hand, it is worth noting that,
considering the large deviation of the RSM-related turbulent kinetic energy, the
overall good agreement of the mean flow velocity is mainly due to the role of the
mean pressure gradient, which dominates the balance in the equation of motion,
significantly overcoming the Reynolds stress gradients.

The evaluation of the Reynolds stress anisotropy tensor aij and its capability to
further depict anisotropic momentum and temperature transport is, in the following
analyzed by various comparative techniques for the present flow configuration. As
introduced in section 3.1, the anisotropy triangle of Lumley and Newman (1977)
firstly gives the important information about the general realizability of numerically
predicted Reynolds stress fields. Figure 5.22 shows a comparative assessment of
the anisotropy tensors second and third invariant (A2 & A3) for every underlying
Reynolds stress tensor data point within the physical, computational domain of all
respective numerical procedures and models. As expected the general realizability
of all turbulent states of any considered numerical approach is given without
exception. Its important to notice that the overall anisotropic states, predicted
by the scale resolving IISRSM (blue) (chap. 2.4.2) seem to be in reasonable
accordance to the reference DNS data, whereas the baseline RSM (red) suggests
slightly differing results. Since the present, classical anisotropy triangle, originally
suggested by Lumley and Newman (1977), delivers a narrow and non-linear
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Figure 5.22.: Comparative assessment of the anisotropy tensors second and third
invariant (IIa & IIIa) for every data point of the computational
axisymmetric impinging jet configuration domain obtained by the
reference DNS, scale-resolving IISRSM and baseline RSM.

domain it is worth considering the linear barycentric anisotropy triangle for further
analysis of the general anisotropic turbulent states across the entire physical domain.
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Figure 5.23.: Comparative assessment of the barycentric coordinated xB(aij) and
yB(aij) for every data point of the computational axisymmetric im-
pinging jet configuration domain obtained by the reference DNS,
scale-resolving IISRSM and baseline RSM.

The turbulent anisotropic states of the IISRSM, RSM and reference DNS, displayed
within the previously introduced linear barycentric map (Chap. 3.1) are shown
in Figure 5.23. The linear barycentric domain clearly enhances the analytical
capabilities compared to the nonlinear domains of figure 5.22. As suggested in
advance, the general anisotropic turbulent state predicted by the scale resolving
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Figure 5.24.: DNS- (top) and RANS-RSM-related (middle) and IISRSM-related
(bottom) iso-contours of the time-averaged two componentality pa-
rameter A (left) and time averaged barycentric coloring (right) in the
central (r − z) vertical plane in the round-jet impingement configura-
tion.

IISRSM is in overall good agreement with the DNS data, clustering between two-
and three-dimensional turbulence states whereas the baseline RSM exhibits a more
pronounced overall deviation, extending more towards 1D turbulence states.

Since the evaluation of anisotropy-related point clouds of an entire physical domain
as seen in Figs. 5.22 and 5.23, with no further information about the actual
corresponding physical locations does not reveal enough detail to elaborate a
proper comparative assessment, the barycentric coordinates of figure 5.23 can be
utilized to remap the anisotropic turbulent state contained in the corresponding
coordinates xB and yB to the actual physical domain. The applied visualization
method for the barycentric coordinates is found in section 3.1.
Figure 5.24 presents the time-averaged two componentality parameter (left) and
the Reynolds stress anisotropy componentality contours (right) of the round-jet
impingement configuration obtained by the DNS, IISRSM and RSM. The two
componentality parameter A = 1 − 9/8(A2 − A3), as a well known approach for
visualizing turbulence anisotropy in a spatial domain, gives information about
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the general anisotropic turbulent state within a physical domain. If A = 1 the
turbulent state can be considered isotropic, if A < 1 it is non-isotropic. Therefore
the two componentality parameter only provides information about the level
of unisotropy of a given Reynolds stress field but does not contain information
about the exact unisotropic turbulent state. It is however clearly visible that the
unisotropic state, depicted by the two componentality parameter in Fig. 5.24(left)
varies between DNS, RSM and IISRSM predictions. While the scale resolving
IISRSM is capable to properly predict the unisotropic state in comparison to the
reference DNS data, the RANS-based RSM shows significant deviation within
vicinity to the impingement point at r/D = 0 up to r/D = 2. Hereby the most
notable differences are found in immediate wall vicinity around the impingement
point and the shear layers of the wall perpendicular as well as the wall parallel
jets. The RANS-RSM related predictions suggest a highly anisotropic turbulent
state at the central high pressure stagnation point which is a subsequent result
of the overestimation of the wall normal Reynolds stress component seen in
figure 5.21. The pronounced near wall peak of the u′zu′z stress component
directly leads to a significantly distorted two componentality at the stagnation
point. Leveraging the characteristics of the barycentric anisotropy map in figure
5.23 and transfer its information back to the physical domain by color-coding
the turbulent states as previously introduced in chapter 3.1 the so generated
iso-contours of figure 5.24 (right) provides an enhanced insight into the unisotropic
turbulent state of the round jet impingement. By directly comparing the two
componentality and color-coded barycentric coordinate fields of figure 5.24 it is
important to notice that the dark red regimes within the two-componentality
fields (left) are perfectly correlating with the corresponding dark blue regimes
within the barycentric color-coded field plots (right); which shows that both
methods reliably identify regimes of three componental isotropic turbulence.
By further utilizing the barycentic color-coded visualization technique, several
characteristic flow phenomena can be identified within the round-jet impingement.
Following the stagnation streamline on the center line of the impinging jet, a
flow deceleration characterized by a color shift from pure blue (isotropic three
componental turbulence Xc3) to cyan and a subsequent axisymmetric compression
in immediate wall vicinity, characterized by a color shift from blue (Xc3) to green
(axisymmetric two componental turbulence Xc2) are correctly predicted by the
scale resolving IISRSM when compared to the reference DNS data. An additional,
by both RANS-realted models, correctly predicted flow feature, is the strong
acceleration at the edge of the nozzle exit at (r/D = 0.5 and z/D = 2.0), which
is characterized by a color shift into dark red (One componental turbulence -
Xc1). When evaluating the highly sensitive barycentric coloring of the underlying
anisotropic turbulent states, the overall accordance of the scale-resolving IISRSM
with the corresponding reference DNS is remarkable.
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To facilitate a more detailed evaluation of the above discussed two-componentality
parameter A as well as the color-coded barycentric coordinates xB and yB, both
methods are evaluated along the previously utilized vertical lines at the dimen-
sionless radial positions r/D = 0.5, 1.0, 2.0, 3.0 and 4.0 in the r-z plane of the
impinging round-jet configuration.
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Figure 5.25.: Profile evolution of the 1-A (two-componantality parameter) in dif-
ferent radial positions r/D = 0.5, 1.0, 2.0, 3.0 and 4.0 within the
r-z-plane of the round-jet impingement configuration.

As suggested by the field evaluation of the two-componentality parameter in Fig.
5.24 the profile evolution of 1-A, shown in Fig. 5.25, indicates a significantly
better predicting capability in terms of general Reynolds stress anisotropy for the
scale-resolving IISRSM, when compared to the baseline RSM. It is worth noticing
that the predicted radial evolution of A obtained by the IISRSM almost perfectly
matches the reference DNS data.

The most detailed comparative assessment addressing the predictive capabilities in
terms of anisotropic turbulent behaviour across the radial direction of the round-jet
impingement, utilizing the barycentric map is shown in Figure 5.26. Here the
trajectory evolution of the barycentric coordinates obtained by the reference DNS,
IISRSM and RSM is evaluated at the radial positions r/D = 0.5, 1.0, 2.0, 3.0 and
4.0. An interesting special feature of all trajectories obtained by the DNS and
IISRSM is that they start and end in vicinity to the two-component axisymmetric
limit Xc2 as the wall normal Reynolds stress component u′zu′z drops to zero in
immediate wall vicinity (Figure 5.21). While the scale-resolving IISRSM shows a
high level of accordance to the DNS data at all five evaluated radial positions,
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Figure 5.26.: Trajectory evolution of the barycentric coordinates obtained by the
reference DNS, IISRSM and RSM at the radial positions r/D = 0.5,
1.0, 2.0, 3.0 and 4.0 within the r-z-plane of the round-jet impingement
configuration.

the baseline RSM exhibits significant deviations. On the other hand, it is again
worth noting that, considering the large deviation of the RSM-related turbulent
kinetic energy in Fig. 5.19 and the subsequent significantly deviating anisotropy of
turbulent states, the overall mean flow velocity is in good accordance to the DNS
data. This circumstance mainly originates from the substantial role of the mean
pressure gradient dominating the momentum transport in the equation of motion
and significantly overcoming the influence of gradients of the resulting turbulent
stresses u′iu′j .

Since the velocity field obtained by both RANS-based Reynolds stress models
demonstrates a high level of agreement, the evolution of the friction coefficient
at the bottom wall, as depicted in Figure 5.27 is subsequently almost iden-
tical. When comparing the numerically determined friction coefficients, it is
observed that both models are capable of accurately predicting the maximum
value of the friction coefficient at the impingement region. This peak value
is associated with the intense local flow acceleration at the transition onset
toward the wall-jet. However, there are notable differences in the predicted
downstream evolution compared to the DNS reference data. Neither the RSM
nor the IISRSM adequately capture the characteristic wave-like progression
observed at a dimensionless distance of x/D = 2, although a slight tendency to-
ward this elevated behavior can be recognized on the IISRSM-relevant Cf evolution.

Fig. 5.28 illustrates the non-dimensional temperature profiles obtained by
performing the RSM and IISRSM-related simulations. The performance difference
among the tested heat-flux models is clearly visible in these profiles. Specifically,
the temperature profiles obtained from the IISRSM-GGDH simulation closely
match the data from DNS (a similarly good agreement was achieved when
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Figure 5.27.: Friction coefficient Cf (left) and Nusselt number distribution (right)
at the impingement wall over the dimensionless radius r/D within
the r-z-plane of the round-jet impingement configuration.

using the SGDH model for the heat flux). It is noteworthy that the IISRSM
exhibits a significantly better capability to reproduce the near-wall temperature
gradient compared to the baseline RSM model. The difference between the
scale-resolving and the baseline RANS models becomes particularly pronounced
near the impact point at x/D = 0.5. While analyzing the temperature profiles, no
clear superiority of any specific heat-flux model emerges. However, it is crucial to
accurately capture the temperature gradient in the vicinity of the bottom wall for
an accurate estimation of convective heat transfer. The near-wall temperature
gradients obtained with the IISRSM align very well with the DNS-related
gradients. This alignment holds significance as even slight differences in the wall
temperature gradients directly impact the distribution of the Nusselt number and
can significantly influence near-wall heat transfer phenomena.

Fig. 5.27 (right) shows the Nusselt number distribution at the heated bottom
wall (z/D = 0) over the dimensionless radius r/D. Considering its direct
proportionality to the dimensionless temperature gradient, it is clear that the
accurate IISRSM-related prediction for the temperature field is directly transferred
to the corresponding Nusselt number prediction. The results obtained from
various heat flux models (formulated in Eqs. 2.30, 2.31, 2.32 and 2.34) applied
to the Reynolds stress model (RSM) again exhibit a significant overprediction
of the Nusselt number near the impingement center at x/D = 0.0 − 1.5. This
discrepancy in magnitude between the Nusselt number peaks from the RSM and
IISRSM simulations is attributed to the IISRSM’s more accurate prediction of the
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Figure 5.28.: Profile development of the temperature Θ non-dimensionalized by
the inlet and wall temperature Θinlet and Θwall in radial direction of
the round-jet impingement configuration.

turbulent fields, as shown in Figures 5.20 and 5.21. It is important to note that
the IISRSM in combination with the GGDH modeling approach for the turbulent
heat-flux (similar outcome is detected when using the SGDH model) is capable to
reproduce the characteristic second Nusselt number peak at x/D = 2.0, although
exhibiting a slightly flattened behavior and a somewhat lower value compared to
the reference DNS. Nevertheless, the IISRSM-specific underprediction requires
a more detailed analysis, also in terms the grid resolution requirements. The
RSM-relevant result obtained in conjunction with the GGDH (2.31), HOGGDH
(2.32), and BS (2.34) models shows a corresponding reduction in the values of
the Nusselt number, starting at the very elevated value at the impact center,
until the value corresponding to the second peak of the Nusselt number was
approximately reproduced. It is worth mentioning that the second Nusselt number
peak phenomenon is somewhat less pronounced in the case of the axisymmetric
impinging jet configuration (Numax(x/D = 0.0) − Nu2nd = 120 − 80) compared
to the previously studied slot-jet impingement with a nozzle-to-plate distance of
H/D = 0.5 (140 − 70).

Concluding the present chapter, the objective of the present study was to examine
the predictive performance of the baseline Reynolds-Averaged Navier-Stokes
Reynolds-Stress Model (RANS-RSM) and its eddy-resolving counterpart, referred
to as Improved Instability-Sensitive Reynolds-Stress Model (IISRSM), employed
within the Sensitized-RANS concept in comparison to a reference DNS database.
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The numerical simulation of a turbulent axisymmetric jet impinging on a heated
wall was evaluated by comparative assesments of the predictive performances of
both RANS-RSM-related models with respect to their capabilities to correctly
predict anisotropic momentum and heat transport processes. The baseline RSM in
combination with the considered heat flow models yielded a reasonable distribution
of the Nusselt number for radial distances x/D ≥ 2 where a mean shear induced
flow behavior dominates. However, similar to the previous configuration, within
and around the immediate impingement region up to x/D ≤ 2, significant
over-prediction of the Nusselt number occurred due to more intense turbulence
activity, exceeding by far the DNS-related results. In contrast, the scale-resolving
IISRSM provided better predictions for velocity, Reynolds stress, and temperature
profiles, closely following the DNS database. An exception is the resulting Nusselt
number distribution, which showed a slight underprediction compared to the DNS
reference data. A well-known feature of the latter global thermal field property, its
second maximum characterizing the wall-jet development at higher impinging jet
momentum (as specific to the round jet impingement considered here) and smaller
nozzle-to-wall distances (relevant to the slot-jet impingement with H/D = 0.5),
requires further analysis with respect to spatial and temporal resolution criteria in
such wall-perpendicular flows.

In summary, this chapter provided the following important insights. In order to
accurately predict the near-wall thermal field, a RANS-based model, whether in the
conventional or sensitized RANS framework, must capture not only the velocity field
but also the anisotropic turbulent stress tensor, especially within the impingement
region and subsequently generated wall-jet characterized by variably oriented flow
straining. Concerning a correspondingly enhanced turbulence level in this region
pertinent to the baseline RANS-RSM, all tested heat-flux model formulations
resulted in an excessive temperature gradient at the wall and a subsequently
overestimated Nusselt number. However, further downstream in the region of
the developed wall-jet, all models resulted in a reasonably well predicted thermal
field. Accordingly, except for minor differences in model performance, no model
emerged as significantly superior to the others. On the other hand, sensitizing a
second-order Reynolds stress model to adequately resolve the fluctuating turbulence
unsteadiness can significantly improve the prediction of the flow structure in terms
of all dependent flow properties - velocity, Reynolds stress, and thermal fields -
considering that a significant fraction of the turbulence has been resolved in this
inherently highly unsteady flow region.
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5.3. Double-Slot Impinging Jet (DSIJ)

Within the framework of the Simple-Gradient Diffusion Hypothesis (SGDH)
paradigm (as shown in Equation 2.30), the eddy diffusivity ΓΘ for modeling
turbulent species transport is commonly represented in relation to the eddy
viscosity νt and the constant turbulent Schmidt number Sct. However, the
simplicity of eddy diffusivity models like ΓΘ in Equation 2.30 is tied to a significant
drawback. These scalar models primarily depend on scalar-field gradients, which
poses a notable limitation. These models fail to consider unresolved turbulence
anisotropy, inevitably leading to less accurate numerical predictions compared to
more advanced modeling techniques.

This chapter aims to address this issue by focusing on second-moment Reynolds-
Averaged Navier-Stokes (RANS) models and scale-resolving RANS models, coupled
with various algebraic expressions for the correlation of turbulent species flux
−u′jc′. The objective of this chapter is to perform a comprehensive evaluation of
the combined predictive capabilities concerning near-wall velocity, Reynolds stress,
species fields, and their impacts on associated mixing processes.
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Figure 5.29.: Schematic drawing of the solution domain for the double slot impinge-
ment configuration with species transfer at a bulk Reynolds number
of Reb = 10000.
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The flow configuration under investigation involves a double-slot impingement
onto a planar wall. The geometry relevant to this study comprises two parallel,
infinite channels that discharge perpendicularly into a horizontal confined space.
All numerical simulations are conducted using an inflow condition characterized
by Reb = UbD/ν = 10000, where Ub represents the inlet bulk velocity, and a
general Schmidt number of Sc = 1. The jet structure corresponds to two identical
fully-developed channel flows operating at a diameter-based Reynolds number of
Re = 10000.

In addition to the baseline Reynolds Stress Model (RSM) (Eqn. 2.4.2) and the
scale-resolving Improved Instability Sensitive Reynolds Stress Model (IISRSM)
(Eqn. 2.4.2), a reference Large Eddy Simulation (LES) is performed to provide
suitable reference data. The introduction of the channel jets into the computational
domain is achieved through separate calculations of channel segments, utilizing
periodic inlet/outlet conditions. Subsequently, the resulting flow fields are mapped
onto the domain inlets. The resulting slot jets impinge perpendicularly onto a
smooth wall positioned at a distance of 2D from the corresponding channel outlets.

In Figure 5.29, the schematic representation illustrates the setup for the double-slot
impinging jet configuration in this study. The implementation of the two channel
flows entering the computational domain involves conducting separate precursor
computations for each individual channel segment. By applying cyclic boundary
conditions to the streamwise boundaries, two statistically independent, fully
developed channel flows are generated. Subsequently, these fully developed and
separate flow fields are mapped onto their corresponding primary inlets. To
analyze scalar species transport and mixing phenomena, one of the channels
contains a passive specie C1 = 1 that is numerically fully dissolved, while the
other channel lacks this additional specie, signified by C0 = 0. Moreover, the
boundary conditions for velocity fields at all walls are set to no-slip conditions. A
zeroGradient boundary condition is applied to the specie C along the confining
walls and all outlet boundaries.

Model Dimensions Cells Mesh size
RSM 30D × 2D × 3D 1000 × 150 × 1 150k
IISRSM 30D × 2D × 3D 1000 × 150 × 50 7.5mio
LES 30D × 2D × 3D 1500 × 225 × 105 35mio

Table 5.1.: Dimensions, segmentation, numerical cells and resulting mesh size for
the solution domain of the RSM, IISRSM and LES for the DSIJ config-
uration.
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The dimensions of the flow development region post-impingement, the extent of
the solution domain in the spanwise direction, and the resulting grid sizes are
summarized in Tables 5.1 for the RSM and IISRSM as well as the LES calculations.
The corresponding grid spacings expressed in wall units fall within the range of
∆x+ = 2.31 − 115.92, ∆y+ = 0.92 − 231.43, and ∆z+ = 81.14 for the IISRSM
simulations. To ensure a sufficient domain length in the cartesian z-direction,
preliminary results of the resolved flow field are utilized for a test of statistical
independence. The domain length in z-direction is sufficient if the velocities at
two different points P (x, y, z0) and P (x, y, z1) are not correlated. The corrected
covariance of the two velocities Ui(z0) and Ui(z1) at P (x, y, z0) and P (x, y, z1)

Cov(Ui(z0), Ui(z1)) =
∑︁nt

i=1(U(z0) − Ui(z0))(Ui(z1) − Ui(z1))
nt − 1 (5.4)

and the respective corrected variances

Var(Ui(zj)) =
∑︁nt

i=1(U(zj) − Ui(zj))2

nt − 1 (5.5)

are utilized to determine the direct correlation

ρp(Ui(z0), Ui(z1)) = Cov(Ui(z0), Ui(z1))√︁
V ar(Ui(z0))V ar(Ui(z1))

(5.6)

which results in ρp = −1 for a full negative, ρp = 0 for no and ρp = 1 for a full
positive correlation of the respective velocity components (Ui(z0), Ui(z1)). Since
the depth of the geometry in set to z/D = 3 and the respective boundaries are
coupled by a cyclic boundary condition the evaluated points are P (x, y, z/D = 0)
and P (x, y, z/D = 1.5). For a sample size of nt = 1000 time steps the correlation
results in ρp(Ui(z/D = 0), Ui(z/D = 1.5)) = −2.4 ∗ 10−7 which does not
indicate any significant correlation of velocity fluctuations and a sufficiently deep
computational domain.

For the two-dimensional finite volume mesh associated with the RSM calculations,
the grid spacings are ∆x+ = 1.57 − 122.40 and ∆y+ = 0.47 − 239.97. Given that
the Reynolds-averaged energy equation (Equation 2.14), previously utilized in the
investigation of heat transfer in round jet impingement, is reduced to a form similar
to the Reynolds-averaged scalar transport equation (Equation 2.15), and there exists
no temperature dependency of the underlying kinematic viscosity ν and density
ρ, the modeling of turbulent scalar heat and species transport can be regarded as
analogous (v′θ′ = v′c′). This assumption facilitates treating all analyzed transport
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phenomena as passive and scalar, leading to a more comprehensive dataset and
an improved opportunity to validate scalar transport models against fields with
diverse boundary conditions.
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Results and Discussion

In this section, the outcomes of the comparative analysis of the baseline RSM
(2.4.2) and its scale-resolving extension IISRSM (2.4.2) in conjuction with various
modeling approaches for the turbulent species fluxes (Chap. 2.4.3) for a double-slot
impinging jet (DSIJ) are presented. The assessment is conducted for mean flow
field and species dispensation properties, along with the associated Reynolds stress
tensor u′iuj ′ and turbulent species flux u′ic′, within a double slot-jet impingement
configuration. To initially grasp the fundamental structural features of the discussed
flow scenario, Figure 5.30 illustrates the instantaneous velocity, pressure, and species
fields through their iso-contours. Additionally, the representation incorporates the
vortical structures, which are delineated based on the Q-criterion.

Figure 5.30.: Flow visualization by the Q-criterion, colored by the non-
dimensionalized instantaneous velocity (U/U b), pressure (p/pinlet)
and species field (C/C1) obtained by the IISRSM in a double slot
impingement configuration.

The results presented illustrate the scale resolving capabilities of the IISRSM
to resolve turbulent fluctuations with respect to the corresponding velocity-,
pressure and species fields. Their dynamics are mainly governed by their resolved
fractions, whose generation is driven by the convective terms in the corresponding
transport equations (Eqn. 2.13 & 2.15). However, in wall proximity and within the
mixing layer in between both channel jets the sub-scale turbulent momentum and
species fluxes are appropriately enhanced and are therefore crucial for the correct
capturing of the near-wall and mixing effects. In the following, instantaneous and
time-averaged mean flow and turbulence characteristics are discussed along in
comparison with reference LES results. This section comparatively examines the
computational results obtained by the RANS-related RSM (Eqn. 2.4.2), its scale
resolving extension IISRSM (Eqn. 2.4.2) and a corresponding reference LES.

98



5.3. Double-Slot Impinging Jet (DSIJ)

Figure 5.31.: Instantaneous and mean velocity fields normalized by the bulk velocity
Ub with its corresponding stream lines obtained by the IISRSM for
the present double-slot impingement configuration.

The overall flow structure depicted in Figure 5.31 bears qualitative resemblance
to those observed in the previously discussed slot-jet and round jet impingement
scenarios (Sections 4.2, 5.2). The instantaneous velocity field obtained from the
IISRSM illustrates the model’s ability to effectively capture the LES-like spectral
dynamics of the flow. However, notable differences exist when compared to the
planar slot-jet and round-jet impingement, where in the case of double slot-jet
impingement, a significantly more pronounced high-pressure stagnation region is
evident around the center of the impingement point at y/D = 0. This region
is mainly characterized by a secondary, large-scale, low-velocity structures not
commonly observed in the classical slot and round-jet impingement scenarios (Figs.
4.8 and 5.17). Another contrast lies in the deceleration of the jet stream upon impact.
Comparing the confined low-velocity region at the stagnation point, the forming
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flow structures within this high-pressure region are considerably larger than those
observed in the single-slot and round jet impingements. Furthermore, a significant
distinction from the previously investigated impingement configurations is the
behavior of the streamlines exiting the channel nozzle at y/D = 2.0 in the double
slot-jet configuration. In contrast to the abrupt and strong streamline curvature
observed in the previously investigated cases (Sec. 5.2 and 5.2), the streamlines
in the double slot-jet configuration exhibit a steadier and weaker curvature. This
difference arises due to the quasi-doubled mass flux and dimensionless diameter
associated with the combined two inlets in the double slot-jet configuration. This
alteration significantly influences species transfer within the mixing plane.

Figure 5.32.: Mean velocity field (U/U b) around the stagnation point −1 ≤ x/D ≤
1 and 0 ≤ y/D ≤ 2 of the double slot-jet impingement configuration
obtained by LES, IISRSM and RSM.

All time-averaged mean velocity fields within the region −1 ≤ x/D ≤ 1 and
0 ≤ y/D ≤ 2, as depicted in Fig. 5.32, exhibit remarkably similar qualitative
outcomes. The time-averaged mean velocity fields obtained from RANS-RSM
exhibit a significant level of agreement with the reference LES data. Notably,
they accurately capture the secondary flow structure within the stagnation region.
This achievement is particularly notable, given that RANS-related models often
struggle to correctly predict the secondary double vortex, its separation, and the
reattachment points. The primary distinction between the baseline RSM results
and the scale-resolving approaches (IISRSM and LES) in the time-averaged velocity
field is relatively minor. It manifests as a slightly more diffused secondary flow
structure, particularly in the region between the two incoming slot jets (indicated
by the blue flow regime), characterized by the separating streamline at the outer
boundary of the stagnation region. Overall, the agreement between the RSM results
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and the scale-resolving methods (IISRSM and LES) in terms of the time-averaged
velocity field is quite remarkable, especially in capturing the complex secondary
flow patterns.

Figure 5.33.: Mean turbulence kinetic energy (k/U
2
b) around the stagnation point

−1 ≤ x/D ≤ 1 and 0 ≤ y/D ≤ 2 of the double slot-jet impingement
configuration obtained by LES, IISRSM and RSM.

Figure 5.33 shows the turbulence kinetic energy within the impingement region
of the DSIJ configuration obtained by the baseline RSM, the scale resolving
IISRSM and the reference LES. The topology of the turbulence kinetic energy
evolution unveils a flow pattern that is not typical for impinging jet configurations
with a nozzle-plate distance of H/D = 2, with a significantly more pronounced
stagnation region and inner shear layer that is almost reaching into the inlet
channels. The inner shear layers, characterized by enhanced turbulent activity
and the resulting stagnation region in between these shear layers, cannot be
seen in any previously investigated impingement configuration. Therefore, all
further comparative evaluations are focusing on the flow area directly beneath
the two inlet channels at −1 ≤ x/D ≤ 1 and 0 ≤ y/D ≤ 2 as seen in figure 5.33.
The qualitative topology of the turbulent kinetic energy evolution around the
impingement region of both RANS-related models is in good accordance to the
comparative LES data. The absolute values however, are significantly differing
between the baseline and scale-resolving RANS model. Since the streamline
curvature around the impingement area of the DSIJ configuration is not as
intense as it is for the single-slot and round jet impingement, the resulting
turbulence kinetic energy obtained by the baseline RSM does not deliver an
unreasonable over-prediction, but rather an under prediction of turbulent activity
when compared to the reference LES data. The corresponding results obtained by
the scale-resolving IISRSM are in significantly better accordance when compared
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to the LES data. However the notably coarser grid arrangement of the IISRSM
in comparison to the reference LES case setup is leading to a slightly thickened
inner shear layer at the inner wall of the nozzle exit when compared to the LES data.
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Figure 5.34.: Vertical, wall-normal profile development of the mean velocity mag-
nitude U , the wall normal Reynolds stress component u′u′ and the
wall parallel Reynolds stress component v′v′ normalized by the mean
bulk velocity Ub of the the double-slot-jet impingement configuration
at −1 ≤ x/D ≤ 1 and 0 ≤ y/D ≤ 2.

Fig. 5.34 provides insight into the wall-normal profile development of various flow
parameters within the double-slot-jet impingement configuration, specifically the
mean velocity magnitude U , the wall-normal Reynolds stress component u′u′, and
the wall-parallel Reynolds stress component v′v′. These profiles are normalized
by the mean bulk velocity Ub and are presented within the dimensionless region
−1 ≤ x/D ≤ 1 and 0 ≤ y/D ≤ 2. The velocity profiles (U/Ub) exhibit a typical
deceleration phenomenon associated with impingement flows, resulting in a loss
of momentum through the forming high-pressure stagnation region. The flow’s
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5.3. Double-Slot Impinging Jet (DSIJ)

momentum is deflected during the impingement process (at x/D = −1.0 − 1.0)
and is subsequently transferred into wall jets at x/D ≥ ||1|| (see fig. 5.31).
Both RANS-related results show strong agreement with the reference LES data.
However, there is a slight deviation in the RANS-RSM-related results within the
stagnation region near the bottom wall at y/D ≤ 1.0. The presence of a relatively
large high-pressure region makes it more challenging to capture secondary flow
structures within the stagnation region. This challenge arises because the influence
of pressure gradient-related momentum transport decreases compared to the
previously investigated slot-jet and round-jet impingement scenarios (Sections 4.2
and 5.2). Consequently, the diminishing influence of the non-modeled pressure
gradient-related momentum transport leads to a higher contribution from viscous
and turbulent diffusion in terms of momentum transport. Given that the viscous
diffusion term within the Reynolds-averaged momentum equation (Equation
2.13) plays a smaller role compared to the turbulent momentum flux (Reynolds
stress tensor u′iu′i), accurately predicting the Reynolds stress tensor is crucial
for correctly capturing low-velocity flow patterns within the double-slot-jet
configuration.

While the non-dimensionalized vertical (normal to the impinging wall) and wall
normal v′v′/U2

b Reynolds stress components predicted by the IISRSM closely
follow the reference LES database (Fig. 5.34), the RANS-RSM-related stress
components exhibit a significant under prediction at all vertical distances from
the bottom wall (z/D = 2.0, 1.5, 1.0, 0.5). The influence of the extended high
pressure stagnation regime into the inlet channel (z/D = 2.0) is clearly visible
as the relative to the bottom wall, vertical Reynolds stress component u′u′/U2

b
is fully asymmetric and only exhibits a pronounced peak close to the inner wall
at x/D = 0. Its important to recall that the extended high pressure stagnation
region significantly reduces the maximum streamline curvature of the mean flow in
comparison to the single slot- and round jet impingement (Sec. 4.2, 5.2), as the
flow is almost immediately deflected at the respective nozzle outlets (y/D = 2.0).
This constant, but not as intense streamline curvature does not lead to an over
prediction of turbulent stresses by the RANS-RSM, as it has been observed in the
previous stagnation flow configurations. The basic expression of the wall-reflection
redistribution term within the Reynolds stress transport equation of the present
baseline RSM, has shown difficulties in dealing with wall normal flows as it was
originally formulated for wall-parallel flows (Craft, Graham, and Launder, 1993).
On the other hand, considering the significant under-prediction of the RSM-related
turbulent kinetic energy, the overall good agreement of the mean velocity field is
mainly due to the dominating influence of the mean pressure gradient within the
equation of motion, still significantly overcoming the Reynolds stress gradients.
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Figure 5.35.: Point cloud of the barycentric coordinates (xB(aij), yB(aij)) at
−1 ≤ x/D ≤ 1 and 0 ≤ y/D ≤ 2 obtained by the LES, scale-resolving
IISRSM and baseline RSM for the double slot-jet impingement con-
figuration.

The evaluation of the Reynolds stress anisotropy tensor aij and its capability to
depict anisotropic momentum and temperature transport is utilized for various
comparative techniques within the current flow configuration. As introduced in
Sec. 3.1, the barycentric anisotropy map is a crucial tool that offers important
information about the general realizability of numerically predicted Reynolds stress
fields for each computed data point within the physical computational domain
of all respective numerical approaches and models. This analysis confirms the
general realizability of all turbulent states for every considered numerical approach.
Notably, the barycentric anisotropy map in Fig. 5.35, representing the entire
physical domain, demonstrates that the scale-resolving IISRSM’s anisotropic states
(blue) (Chapter 2.4.2) closely align with the reference LES data (black), while
the baseline RSM’s (red) results exhibit slight differences. Given that analyzing
anisotropy-related point clouds of the physical domain, as seen in Figure 5.35,
without further information about their corresponding physical locations lacks the
granularity needed for a comprehensive comparative assessment, the barycentric
coordinates from Figure 5.23 can be utilized to map the anisotropic turbulent
states represented by the coordinates xB and yB back to the actual physical
domain. The visualization method applied for these barycentric coordinates has
been previously utilized in Sec. 5.2 in conjunction with the round-jet impingement
and can be found in section 3.1.

Drawing upon the attributes of the barycentric anisotropy map presented in
Fig. 5.36, and transferring its insights back to the physical domain through
color-coding, as previously introduced in Chap. 3.1, the depicted resulting
iso-contours provide a deeper understanding of the anisotropic turbulent state
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5.3. Double-Slot Impinging Jet (DSIJ)

Figure 5.36.: Coloring of the barycentric coordinates xB(aij) and yB(aij) for every
data point (−1 ≤ x/D ≤ 1 and 0 ≤ y/D ≤ 2) of the computational
double-slot impinging jet configuration domain obtained by the LES,
scale-resolving IISRSM and baseline RSM.

within the double slot jet impingement configuration. Following the vertical mixing
layer at x/D = 0 from the separating wall of the two incoming channels at y/D = 2
to the bottom wall, the mixing layer undergoes a deceleration, characterized by
an axisymmetric near-wall compression, characterized by a color shift from blue
(indicative of three componental isotropic turbulence Xc3) to green (indicative of
axisymmetric two-componental turbulence Xc2). These features are accurately
captured by the scale-resolving IISRSM when compared to the reference LES data.
Another noteworthy flow characteristic, correctly predicted by the scale-resolving
RANS-related IISRSM, is the intense acceleration at the inner wall edge of the
nozzle exit at y/D = 2 and x/D = 0, which is characterized by a color shift
into dark red (indicative of one-componental turbulence - Xc1). Evaluating the
intricate barycentric coloring of the underlying anisotropic turbulent states, an
convincing agreement between the scale-resolving IISRSM and the corresponding
reference DNS results is evident.

To perform a comprehensive evaluation of the color-coded barycentric coordinates
xB and yB, the corresponding method is applied along the previously selected
horizontal lines at the dimensionless positions y/D = 2.0, 1.5, 1.0, and 0.5 within
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Figure 5.37.: Trajectories of the barycentric coordinates (xB(aij), yB(aij)) at
z/D = 2.0, 1.5, 1.0, 0.5 obtained by the LES, scale-resolving IISRSM
and baseline RSM for the double slot-jet impingement configuration
at 0 ≤ x/D ≤ 1.

the impinging double-slot-jet configuration. The comparative assessment aims to
quantify the predictive capabilities in terms of anisotropic turbulent behavior along
the horizontal (parallel to the wall) direction of the double-slot jet impingement
(DSIJ), employing the barycentric map as a tool. The results of this evaluation
are illustrated in Figure 5.37, showcasing the evolution of barycentric coordinates
as obtained from the reference LES, IISRSM, and RSM. In this assessment, the
scale-resolving IISRSM demonstrates a high degree of agreement with the LES
data across all four vertical positions evaluated. However, the baseline RSM
exhibits considerable deviations from the reference LES results. It’s important to
note that despite the significant discrepancy between the RSM-related turbulent
kinetic energy and the associated Reynolds stress components, as observed in
Figures 5.33 and 5.34, the mean flow velocity closely matches the LES data. This
discrepancy arises mainly due to the substantial influence of the mean pressure
gradient within the deflected jets, which here dominates the momentum transport
equation and significantly outweighs the impact of gradients of turbulent stresses
u′iu′j .

Figure 5.38 portrays the mean species field normalized by the maximum species
fraction (C/C1) around the stagnation point within the region −1 ≤ x/D ≤ 1 and
0 ≤ y/D ≤ 2 of the double slot-jet impingement configuration. The portrayed data
is obtained using LES, IISRSM, and RSM along with the Simple Gradient Diffusion
Hypothesis (SGDH) for modeling the turbulent species flux u′iθ′, as introduced in
Sec. 2.4.3. The differences in performance among the tested turbulence models
are evident within the resulting species fields. Notably, the species distribution
obtained from the baseline RSM and IISRSM combined with the SGDH model
closely matches the corresponding distribution obtained from LES. However, the
scale-resolving and baseline RANS models become do show a slight difference
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Figure 5.38.: Mean species field (C/C1) around the stagnation point −1 ≤ x/D ≤ 1
and 0 ≤ y/D ≤ 2 of the double slot-jet impingement configuration
obtained by LES, IISRSM and RSM in conjunction with the simple
gradient diffusion hypothesis (Sec. 2.4.3) for the modeling of the
turbulent species flux u′iθ′.

within the upper shear layer located at x/D = 0 and y/D = 1.5 and in the outer
region around x/D = ||1||. In this region, the RSM-derived results exhibit an
enhanced and more diffuse mixing process compared to the scale-resolving IISRSM
and LES outcomes. This difference underscores the ability of the scale-resolving
IISRSM to capture finer details in the mixing process, particularly in comparison
to the fully time-averaged RSM.

Since the above qualitative comparison does not provide detailed insight into
the predicted mixing processes, Fig. 5.39 portrays the normalized mean species
concentration C/C1 in horizontal, wall-parallel x-direction at different characteristic
distances to the inlet nozzles (y/D = 2.0, 1.5, 1.0, 0.5). The comparative assessment
contains the numerically predicted dimensionless species concentration C/C1,
obtained by the time-accurate, scale-resolving LES and IISRSM in conjunction
with the SGDH modeling approach for the turbulent species flux uiθ plotted
against the RANS-RSM-related, predicted species concentration in conjunction
with the SGDH (Sec. 2.30), GGDH (Sec. 2.31) and HOGGDH (Sec. 2.32)
modeling approach. To emphasize mixing processes within the vicinity of the main
mixing shear layer at x/D = 0 The non-dimensionalized y-axis y/D is plotted
semilogarithmically. Since the evaluated, IISRSM-related species concentrations are
in almost perfect agreement with the reference LES data, the further comparative
assessment emphasizes the predictive capabilities of the RSM-related results. The
performance difference among the tested species-flux models is clearly visible for
the comparative evaluation at y/D = 2.0, as the mixing processes in the wall-
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normal mixing layer predicted by RSM-related GGDH and HOGGDH modeling
approaches show a slightly better accordance to the reference LES data. However,
the enhancing influence of the strengthened species transport, which is beneficial
in the direct mixing layer, leads to an overestimation of species transport at the
outer, evaluated regions around x/D = ||1||.
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Figure 5.39.: Mean species concentration C/C1 in x-direction (0 ≤ x/D ≤ 1 ) at
four characteristic distances to the inlet nozzles (y/D = 2.0, 1.5, 1.0,
0.5), obtained by LES, IISRSM and RSM in conjunction with the
SGDH, GGDH and HOGGDH species flux modeling approach for
the double slot-jet impingement configuration.

Concluding this chapter, the primary goal was to assess the predictive performance
of the baseline Reynolds-Averaged Navier-Stokes Reynolds-Stress Model (RANS-
RSM) and its scale-resolving extension, known as the Improved Instability-Sensitive
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Reynolds-Stress Model (IISRSM), within the Sensitized-RANS concept. This
assessment was carried out by comparing these models against a reference LES
database in the context of a turbulent double-slot jet impinging on a smooth
wall. The focus of the comparison was on evaluating the models’ abilities to
accurately predict anisotropic momentum and heat transport processes. Both
RANS-related modeling approaches demonstrated strong agreement with LES
data when predicting the mean velocity field. However, the scale-resolving IISRSM
displayed a notably higher level of agreement with LES when it came to predicting
Reynolds stress components compared to the baseline RSM. Additionally, while the
baseline RSM, in combination with the considered SGDH, GGDH, and HOGGDH
species flux models, showed reasonable alignment with the reference LES data, it
tended to over-predict turbulent species transport while under-predicting turbulent
stress components. In contrast, the scale-resolving IISRSM provided improved
predictions for velocity, Reynolds stress, and species profiles, closely matching the
LES database.

In summary, several important insights were gained from this chapter. To accurately
predict near-wall species fields using RANS-based models, whether in conventional
or sensitized RANS frameworks, it’s essential not only to capture the velocity
field but also to accurately model the anisotropic turbulent stress tensor. This is
particularly crucial within the impingement region and the subsequently generated
wall-jet, which is characterized by flow straining in varying directions. On the
other hand, sensitizing a second-order Reynolds stress model to effectively resolve
unsteady turbulence fluctuations can significantly enhance the prediction of flow
structure across various dependent flow properties, including velocity, Reynolds
stress, and species fields. This improvement is particularly pronounced in inherently
highly unsteady flow regions where a significant portion of turbulence is resolved.
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The main objective of the present work was to evaluate the predictive performance
of the basic RANS-Reynolds-Averaged Navier-Stokes Reynolds stress model
(RANS-RSM) (Sec. 2.4.2) and its scale-resolved extension, the Improved
Instability-Sensitive Reynolds stress model (IISRSM) (Sec. 2.4.2), in the context of
the Sensitized RANS concept in conjunction with various closure approaches for the
turbulent heat and species flux. In this context, the presently simulated flow cases
represent configurations that are outside the flow classes computed in the original
model development. The assessments were carried out by comparing the predictive
capabilities of the RANS-RSM-based models against reference DNS of a turbulent
channel flow, slot-jet impingement, asymmetric jet impingement subjected to heat
transfer and a reference LES of double-slot jet impingement in conjunction with
species transport, with the latter LES database contributing to the present work.
Finally, a highly turbulent inflow into a complex IC engine geometry was used to
help critically evaluate the model. The focus of the comparison was on evaluating
the models’ abilities to accurately predict anisotropic momentum and heat and
species transport processes in wall-parallel and more importantly, wall-normal flow
configurations. A key contribution for an improved assessment of RANS-related as
well as DNS-/LES-related computational results was the utilization of barycentric
coloring, transferring information about Reynolds stress anisotropy directly back
to the physical domain and therefore, drastically improve the understanding of its
evolution in immediate wall vicinity. Both RANS-related modeling approaches
demonstrated strong agreement with the respective reference DNS and LES data
when predicting the mean velocity field. However, the scale-resolving IISRSM
displayed a notably higher level of agreement with corresponding reference data
sets when it came to predicting Reynolds stress components and their combined
anisotropic behaviour, compared to the baseline RSM. In addition, the baseline
RSM in combination with the considered SGDH (Sec. 2.30), GGDH (Sec. 2.31),
and HOGGDH (Sec. 2.32) species flux models showed a significant deviation from
the reference DNS/LES data, as it significantly over-predicted the turbulent heat
and species transport. In contrast, the scale-resolving IISRSM provided improved
predictions for velocity, Reynolds stress, and species profiles, closely matching the
respective corresponding reference databases.
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In summary, several important insights were gained from this thesis. To accurately
predict near-wall species fields using RANS-based models, whether in conventional
or sensitized RANS frameworks, it is essential not only to capture the velocity
field but also to accurately model the anisotropic turbulent stress tensor. This is
particularly important in the region of impact and the resulting wall jet in flows
perpendicular to the wall, which is characterized by variably oriented flow straining
with respect to a fully populated deformation velocity tensor. On the other hand,
sensitizing a second-order Reynolds stress model to effectively resolve unsteady
turbulence fluctuations can significantly enhance the prediction of flow structure
across various dependent flow properties, including velocity, Reynolds stress, and
species fields. The resolution of fluctuating pressure and velocity fields which can
be obtained by the scale-resolving IISRSM significantly improves the numerical
prediction of redistribution and transport processes in immediate wall-vicinity.
This improvement is particularly pronounced in inherently highly unsteady flow
regions where a significant portion of turbulence is resolved.

New specific contributions of the present thesis

The numerical investigation and anisotropy characterization of the IC engine intake
flow into the TUDa Flowbench utilizing an, in this scope newly generated reference
LES database expands the understanding of critical mesh and simulation parameter
when applying time-accurate scale-resolving RANS-based Reynolds-stress models
in highly complex geometries. The present IC intake flow analysis further
proves the validity of scale-resolving RANS-based Reynolds-stress models for the
simulation of future application-oriented non-generic flow configurations.

A new generic double-slot impinging jet (DSIJ) flow configuration in conjunction
with a novel corresponding LES database has been created. The present simulations
of the DSIJ configuration serves as a comprehensive preliminary investigation for
an intended experimental investigation and DNS analysis as a part of collaborative
work within the DFG CRC TRR 150 of the German Research Foundation.

An extensive elaboration and extended application of characterization techniques
for anisotropy of the second-order Reynolds-stress tensor delivers a full insight into
the advantages and disadvantages of well-established, common and recently devel-
oped methodologies. The corresponding, in scope of this work developed routines
can be utilized for equal anisotropy visualization of steady and scale-resolving
numerical simulations as well as appropriate experimental data sets.

Last but foremost an extensive investigation of first- and second-order closure-
approaches for the turbulent heat and species flux in conjunction with conventional
and scale-resolving second-moment RANS models has been created for a variety
of wall-parallel, wall-perpendicular, as well as complex IC-engine-related flow
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conditions. The present thesis demonstrates that the predictive accuracy of heat,
species and mass transfer in turbulent flows can be significantly and reliably
enhanced through the sensitivation of second-moment RANS models.
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A. Appendix

A.1. Reynolds stress model
Transport equation for the Reynolds stress tensor u′

iu
′
j :

Du′
iu

′
j

Dt
= ∂

∂xk

[︄(︄
1
2ν + νt

σ
u′

i
u′

j

)︄
∂u′

iu
′
j

∂xk

]︄
−
(︃

u′
iu

′
k

∂uj

∂xk
− u′

ju′
k

∂ui

∂xk

)︃
−ϵh

ij +Φij +Φw
ij

(A.1)
Modelling of the homogeneous dissipation rate ϵh

ij in transport equation of Reynolds
Stress:

ϵh
ij = ϵh

[︄
(1 − fs) 2

3δij +
u′

iu
′
j

k
fs

]︄
with fs = 1−E2

√
A and ϵh = ωhk

(A.2)
Modelling of the redistribution term Φij in the transport equation of the Reynolds
Stress:

Φij = −ϵhC1aij + C3kSij + C4k

(︃
aipSpj + ajpSpi − 2

3apqSpqδij

)︃
−C5k (aipWjp + ajpWip)

(A.3)

Representation of the Reynolds stress aij and dissipation anisotropy tensor eij

from the modelling of the redistribution term Φij :

A = 1 − 9
8 (A2 − A3) (A.4)

with A2 = aijaji and A3 = aijajkaki and aij =
u′

iu
′
j

k
− 2

3δij

(A.5)

E = 1 − 9
8 (E2 − E3) (A.6)
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with E2 = eijeji and E3 = eijejkeki and eij =
ϵh

ij

ϵh
− 2

3δij

(A.7)
Modelling of the wall reflection term Φw

ij in transport equation of Reynolds Stress:

Φh
ij = Cw

1 fw
ϵh

k

(︃
u′

ku′
mnknmδij − 3

2u′
iu

′
knknj − 3

2u′
ku′

jnkni

)︃
+Cw

2 fw

(︃
ΦIP

km,2nknmδij − 3
2ΦIP

ik,2nknj − 3
2ΦIP

kj,2nkni

)︃ (A.8)

with ΦIP
ij,2 = −C2

(︃
Pij − 2

3δijPk

)︃
(A.9)

with Sij = 1
2

(︃
∂ui

∂xj
+ ∂uj

∂xi

)︃
(A.10)

with Wij = 1
2

(︃
∂ui

∂xj
− uj

∂xi

)︃
(A.11)

Transport equation of the homogenius, specific dissipation rate ωh:

Dωh

Dt
= ∂

∂xk

[︃(︃
1
2ν + νt

σω

)︃
∂ωh

∂xk

]︃
+ Cω,1

ωh

k
Pk − Cω,2

(︁
ωh
)︁2 +

2
k

(︃
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1
2ν + Ccr,2

νt

σω
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∂ωh

∂xk

∂k

∂xk
+ 2

k
Cω,3ννt

∂2Ui

∂xj∂xl

∂2Ui

∂xj∂xl
+ Sl

(A.12)

Production of the kinetic turbulent energy k in transport equation of the homoop-
posite, specific dissipation rate:

Pk = −u′
iu

′
j

∂ui

∂xj
(A.13)

Modelling of the turbulent viscosity transport equation in the homo counter, specific
dissipation rate:

νt = 0.144Ak1/2 max
[︄

10
(︃

ν3

kωh

)︃1/4

,
k1/2

ωh

]︄
(A.14)

Length scale correction term Sl:

Sl = max

{︄[︄(︃
1
Cl

∂L

∂xn

)︃2
− 1
]︄(︃

1
Cl

∂L

∂xn

)︃2
, 0
}︄

Aωhωh (A.15)
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A.2. Improved-Instability-Sensitive-Reynolds stress model

Model functions, coefficients and constants:

C1 = 2.5AF 1/4f +
√

AE2, C2 = 0.8A1/2,

C3 = 4
3C2, C4 = C2, C5 = C2

(A.16)

F = min [0.6, A2] , f = min
[︄(︃

Ret

150

)︃3/2
, 1
]︄

, Ret = k2

νϵh
(A.17)

Cw
1 = max

[︂
1.0 − 1.75AF 1/4f, 0.3

]︂
, Cw

2 = min [A, 0.3] (A.18)

fw = max
[︃

k3/2

Clϵhxn
, 1.4

]︃
, Cl = 2.5 (A.19)

Cω,1 = 0.44, Cω,2 = 0.8, Cω,3 = 1.0, σω = 1.1, σ
u′

i
u′

j

= 1.1 (A.20)

A.2. Improved-Instability-Sensitive-Reynolds stress
model

The equations required to describe the IISRSM are largely identical. In the
following, only the deviating modelling approaches are listed.

The transport equation of the specific, homogeneous dissipation rate ωh:(︃
Dωh

Dt

)︃
IISRSM

=
(︃

Dωh

Dt

)︃
RSM

+ PIISRSM (A.21)

Additional production term PIISRSM:

PISRSM = 0.12 max

[︄
1.755κ|∂

2Ui

∂x2
j

|
√

k − T2, 0
]︄

(A.22)

with T2 = 3kmax

[︃
1
k2

∂k

∂xj

∂k

∂xj
,

1
ωhωh

∂ωh

∂xj

∂ωh

∂xj

]︃
(A.23)
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