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ABSTRACT

Due to pervasive noise and ambiguity, our world is dominated by uncertainty. In order
to face uncertain perception, action, and decision making, humans have an internal rep-
resentation of their uncertainty and communicate it in interactions with other humans.
Furthermore, humans combine information from different information sources to reduce
their uncertainty about the world’s state. Specifically in perceptual tasks people have been
shown to integrate redundant sensory cues by weighting different cues according to their
uncertainty to maximally reduce the uncertainty of the integrated sensory estimate, as
described by Bayes’ theorem.

Like humans, Artificial Intelligence (AI) systems and robots as their embodied form should
represent, consider, reduce, and communicate uncertainty in order to cope with our uncer-
tain world. In particular, this can increase the safety of critical AI applications and improve
the quality of the interaction between human and AI, e.g., in AI-supported human deci-
sion making or human-robot collaboration in industry or caregiving settings. Quantifying
an AI system’s uncertainty can be realized with probabilistic methods, e.g., probabilistic
classifiers that output categorical distributions over all classes. Also, AI systems often
combine different information sources: Classifier ensembles, which combine multiple indi-
vidual classifiers in order to improve classification performance, are known to be the most
successful classification methods. However, classifier ensembles are usually optimized to
merely maximize the classification performance instead of reducing the uncertainty. Thus,
an open question is how to optimally combine probabilistic forecasts provided by classi-
fiers while explicitly considering and correctly reducing their uncertainty, similar to how
humans combine multiple cues in perception. Since the individual classifiers in an ensem-
ble are usually correlated, particular focus should be put on the combination of correlated
classifiers. This thesis investigates how to optimally combine the outputs of probabilistic
classifiers. It provides a normative Bayesian model that formalizes how to optimally fuse
individual classifiers according to their properties, such as uncertainty, bias, and variance,
given different assumptions. Moreover, our model explicitly considers the correlation of the
individual classifiers. It models the classifiers’ correlations with a newly introduced prob-
ability distribution, the correlated Dirichlet distribution. The resulting Correlated Fusion
Model quantifies how classification uncertainty should be reduced through Bayes optimal
classifier combination depending on the individual classifiers’ uncertainty, bias, variance,
and correlation and outperforms related Bayesian classifier fusion models on simulated
and real data sets.

A special case of the correlated Dirichlet distribution introduced for modeling correlated
probabilistic classifiers is the bivariate beta distribution. The bivariate beta distribution
models two beta-distributed random variables with a positive correlation. Thus, it is partic-
ularly interesting for modeling binary probabilistic classifiers but is also of general interest
in statistics. While the bivariate beta distribution has been proposed before, previous work
used an approximate and sometimes inaccurate method to compute the distribution’s co-
variance and correlation and estimate its parameters. Therefore, in this thesis, we derive
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all product moments and the exact covariance and introduce an algorithm for estimating
the bivariate beta distribution’s parameters using moment matching.

A promising application of Bayes optimal fusion of multiple probabilistic classifiers is mul-
timodal human-robot interaction. Since humans interact multimodally using modalities
such as speech, gestures, and gaze directions, an intuitive and natural interaction between
humans and robots requires robots to also interact multimodally. In particular, a robot
should be able to process people’s uncertain multimodal signals, e.g., about their inten-
tions, and correctly combine its uncertainties about them. However, present approaches
for multimodal intention recognition in human-robot interaction do not focus on how to
correctly consider individual modalities’ uncertainties and reduce uncertainty. Therefore,
in this thesis, we recognize human intentions from multimodal data using probabilistic
classifiers for each modality whose output distributions are combined Bayes optimally. We
present three applications of Bayes optimal classifier fusion to different human-robot inter-
action scenarios. We first detect human intentions from multimodal data including speech,
gestures, gaze directions, and scene objects. In an interaction task between a human and a
7-Degrees-of-Freedom robot arm, we show that adding more modalities contributes to in-
creased detection performance and reduced uncertainty. Second, we apply Bayesian fusion
to enable humans to teach a 7-Degrees-of-Freedom robot arm using multimodal action ad-
vice given by speech and gestures for interactive reinforcement learning. Evaluations with
human participants show that the learning speed can be improved significantly compared
to other methods. Third, we learn to detect humans’ intention to start an interaction
with a robot, the intention for interaction, from natural human behavior. We recorded
a multimodal data set including speech and body poses with human participants in a
collaborative task with a two-armed assistive robot. We compare different unimodal and
multimodal classifiers and show that the intention for interaction can be detected better
from multimodal data using Bayesian classifier fusion.

Bayes optimal fusion methods can not only be applied to combine classifiers but also to
combine subjective probability estimates provided by humans. Such probabilistic estimates
or forecasts, e.g., provided by experts, are of particular importance in many domains, such
as finance, politics, engineering, meteorology, and public health, and can further be used
to build rule-based AI systems. While combining forecasts is known to increase forecasting
performance, as for classifier fusion, there is a need for a normative model that defines
how to correctly combine human forecasts while explicitly considering their uncertainty.
In this thesis, we present a family of normative Bayesian models for the aggregation of sub-
jective probability estimates, which are closely related to our normative Bayesian model
for classifier fusion. We model the forecasting behavior of individual forecasters with beta
distributions, implicitly calibrate their probability estimates, and combine them accord-
ingly in order to obtain the Bayes optimal uncertainty of the fused forecast. However, the
proposed fusion models disregard the correlation between the forecasters, reduce too much
uncertainty, and are thus overconfident. Therefore, in a second step, we extend these mod-
els to a Bayesian model for the combination of correlated subjective probability estimates.
By explicitly representing the skills of the individual forecasters and the difficulties of in-
dividual queries for which forecasts are provided, this model can represent the correlation
between individual forecasters and can consider it when fusing forecasts. As a consequence,
its fusion performance is improved compared to our previous models and related fusion
models.
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In summary, this thesis investigates the fundamental computational problem of combin-
ing uncertain probabilistic forecasts that humans, robots, as well as AI systems in general
are facing. While human perception unconsciously integrates multiple sensory cues to pro-
vide an optimal percept, here we develop normative Bayesian fusion models for combining
probabilistic forecasts provided by classifiers or humans. The proposed models define how
probabilistic forecasts should be fused Bayes optimally, in particular if the forecasts are cor-
related. We demonstrate that the developed algorithms outperform related fusion methods
and successfully apply them in multimodal human-robot interaction.

Abstract ix





ZUSAMMENFASSUNG

Aufgrund von allgegenwärtigem Rauschen und Ambiguitäten wird unsere Welt von Unsi-
cherheit beherrscht. Um der Unsicherheit in Wahrnehmung, Handlungen und Entscheidun-
gen begegnen zu können, haben Menschen eine interne Repräsentation ihrer Unsicherheit
und kommunizieren diese in Interaktionen mit anderen Menschen. Darüber hinaus kombi-
nieren Menschen Informationen aus verschiedenen Informationsquellen, um ihre Unsicher-
heit über den Zustand der Welt zu verringern. Insbesondere bei Wahrnehmungsaufgaben
wurde gezeigt, dass Menschen redundante sensorische Hinweisreize integrieren, indem sie
verschiedene Hinweisreize entsprechend ihrer Unsicherheit gewichten. So reduzieren sie die
Unsicherheit der integrierten sensorischen Schätzung maximal, wie es der Satz von Bayes
beschreibt.

Ebenso wie Menschen sollten auch Systeme der künstlichen Intelligenz (KI) und Roboter
in ihrer verkörperten Form Unsicherheit repräsentieren, berücksichtigen, reduzieren und
kommunizieren, um mit unserer unsicheren Welt zurechtzukommen. Dies kann insbeson-
dere die Sicherheit kritischer KI-Anwendungen erhöhen und die Qualität der Interaktion
zwischen Mensch und KI verbessern, z.B. bei KI-gestützter menschlicher Entscheidungs-
findung oder Mensch-Roboter-Kollaboration in der Industrie oder im Pflegebereich. Die
Quantifizierung der Unsicherheit eines KI-Systems kann mit probabilistischen Methoden
erfolgen, z.B. mit probabilistischen Klassifizierern, die kategoriale Wahrscheinlichkeitsver-
teilungen über alle Klassen ausgeben. Außerdem kombinieren KI-Systeme oft verschiedene
Informationsquellen: Ensembles aus Klassifizierern, die mehrere einzelne Klassifizierer kom-
binieren, um die Performance der Klassifizierung zu verbessern, gelten als die erfolgreichs-
ten Klassifizierungsmethoden. Allerdings werden solche Ensembles in der Regel darauf
optimiert, lediglich die Performance der Klassifizierung zu maximieren, anstatt die Unsi-
cherheit zu reduzieren. Eine offene Frage ist daher, wie man probabilistische Vorhersagen
von Klassifizierern optimal kombinieren kann, wobei deren Unsicherheit explizit berück-
sichtigt und korrekt reduziert werden soll, ähnlich wie der Mensch bei der Wahrnehmung
mehrere Hinweisreize kombiniert. Da die einzelnen Klassifizierer in einem Ensemble in der
Regel korreliert sind, sollte dabei besonderes Augenmerk auf die Kombination von korre-
lierten Klassifizierern gelegt werden. In dieser Arbeit wird untersucht, wie die Ausgaben
probabilistischer Klassifizierer optimal kombiniert werden können. Es wird ein normati-
ves Bayesianisches Modell vorgestellt, das formalisiert, wie einzelne Klassifizierer entspre-
chend ihrer Eigenschaften wie Unsicherheit, Bias und Varianz unter verschiedenen An-
nahmen optimal kombiniert werden können. Außerdem berücksichtigt das vorgeschlagene
Modell ausdrücklich die Korrelation der einzelnen Klassifizierer, indem es deren Korrelatio-
nen mit einer neu eingeführten Wahrscheinlichkeitsverteilung modelliert, der korrelierten
Dirichlet-Verteilung. Das daraus resultierende Fusionsmodell quantifiziert, wie die Klassi-
fizierungsunsicherheit durch eine optimale Bayesianische Kombination von Klassifizierern
in Abhängigkeit von deren Unsicherheit, Bias und Varianz und der Korrelation der ein-
zelnen Klassifizierer reduziert werden sollte. Darüber hinaus übertrifft das vorgeschlagene
Modell verwandte Bayesianische Fusionsmodelle auf simulierten und realen Datensätzen.
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Ein Spezialfall der korrelierten Dirichlet-Verteilung, die zur Modellierung korrelierter pro-
babilistischer Klassifizierer eingeführt wurde, ist die bivariate Beta-Verteilung. Die biva-
riate Beta-Verteilung modelliert zwei Beta-verteilte Zufallsvariablen mit einer positiven
Korrelation. Sie ist daher besonders interessant für die Modellierung binärer probabilisti-
scher Klassifizierer, ist aber ebenso von allgemeinem Interesse in der Statistik. Die bivariate
Beta-Verteilung wurde bereits früher eingeführt. In früheren Arbeiten wurde jedoch eine
ungefähre und mitunter ungenaue Methode verwendet, um die Kovarianz und Korrelation
der Verteilung zu berechnen und ihre Parameter zu schätzen. In dieser Arbeit werden da-
her alle Produktmomente und die exakte Kovarianz hergeleitet. Basierend darauf wird ein
Algorithmus zur Schätzung der Parameter der bivariaten Beta-Verteilung mit Hilfe von
Moment-Matching vorgestellt.

Eine vielversprechende Anwendung der Bayes-optimalen Fusion mehrerer probabilistischer
Klassifizierer ist die multimodale Mensch-Roboter-Interaktion. Da Menschen multimodal
interagieren, indem sie Modalitäten wie Sprache, Gesten und Blickrichtungen verwenden,
erfordert eine intuitive und natürliche Interaktion zwischen Menschen und Robotern, dass
auch Roboter multimodal interagieren. Insbesondere sollte ein Roboter in der Lage sein,
die unsicheren multimodalen Signale des Menschen, z.B. über seine Intentionen, zu verar-
beiten und seine Unsicherheiten darüber korrekt zu kombinieren. Bisherige Ansätze zur
multimodalen Intentionserkennung in der Mensch-Roboter-Interaktion konzentrieren sich
jedoch nicht darauf, wie die Unsicherheiten der einzelnen Modalitäten korrekt berücksich-
tigt und die Unsicherheit reduziert werden kann. Daher werden in dieser Arbeit mensch-
liche Intentionen aus multimodalen Daten erkannt, indem probabilistische Klassifizierer
für die einzelnen Modalitäten gelernt und deren Ausgabeverteilungen optimal nach Bayes
kombiniert werden. Es werden drei Anwendungen der Bayes-optimalen Fusion von Klassifi-
zierern für verschiedene Mensch-Roboter-Interaktionsszenarien vorgestellt. Erstens werden
menschliche Intentionen aus multimodalen Daten wie Sprache, Gesten, Blickrichtungen
und Szenenobjekten erkannt. In einer Interaktionsaufgabe zwischen einem Menschen und
einem Roboterarm mit sieben Freiheitsgraden wird gezeigt, dass das Hinzufügen weiterer
Modalitäten zu einer verbesserten Erkennung von Intentionen und einer geringeren Unsi-
cherheit beiträgt. Zweitens wird die Bayesianische Fusion angewandt, um es Menschen zu
ermöglichen, einem Roboterarm mit sieben Freiheitsgraden multimodale Handlungsemp-
fehlungen in Form von Sprache und Gesten für interaktives Verstärkungslernen zu geben.
Auswertungen mit Versuchspersonen zeigen, dass die Lerngeschwindigkeit im Vergleich zu
anderen Methoden signifikant verbessert werden kann. Drittens wird die Intention des
Menschen, eine Interaktion mit einem Roboter zu beginnen, aus natürlichem menschli-
chem Verhalten erkannt. Ein multimodaler Datensatz wurde aufgezeichnet, der Sprache
und Körperhaltungen von Versuchspersonen in einer kollaborativen Aufgabe mit einem
zweiarmigen Assistenzroboter umfasst. Auf diesem Datensatz werden verschiedene unimo-
dale und multimodale Klassifizierer verglichen und es wird gezeigt, dass die Intention zur
Interaktion besser aus multimodalen Daten unter Verwendung der Bayesianischen Fusion
von Klassifizierern erkannt werden kann.

Bayes-optimale Fusionsmethoden können nicht nur für die Kombination von Klassifizie-
rern angewandt werden, sondern auch für die Kombination subjektiver Wahrscheinlich-
keitsschätzungen, die von Menschen stammen. Solche probabilistischen Schätzungen oder
Vorhersagen, z.B. von Experten, sind in vielen Bereichen von besonderer Bedeutung, un-
ter anderem im Finanzwesen, in der Politik, im Ingenieurwesen, in der Meteorologie und
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im Gesundheitswesen, und können darüber hinaus zum Aufbau regelbasierter KI-Systeme
verwendet werden. Obwohl bekannt ist, dass die Kombination einzelner Vorhersagen die
Vorhersage-Performance erhöht, besteht wie bei der Fusion von Klassifizierern ein Bedarf
an einem normativen Modell, das definiert, wie menschliche Vorhersagen unter expliziter
Berücksichtigung ihrer Unsicherheit korrekt kombiniert werden sollen. In dieser Arbeit
wird eine Familie von normativen Bayesianischen Modellen für die Kombination von sub-
jektiven Wahrscheinlichkeitsschätzungen vorgestellt, die eng mit dem vorgestellten norma-
tiven Bayesianischen Modell für die Fusion von Klassifizierern verwandt sind. Das Vorher-
sageverhalten der einzelnen menschlichen Experten wird mit Beta-Verteilungen modelliert
und ihre Wahrscheinlichkeitsschätzungen implizit kalibriert und entsprechend kombiniert,
um die Bayes-optimale Unsicherheit der fusionierten Vorhersage zu erhalten. Die vorge-
schlagenen Fusionsmodelle vernachlässigen jedoch die Korrelation zwischen den Experten
und reduzieren daher zu viel Unsicherheit. Aus diesem Grund werden diese Modelle in ei-
nem zweiten Schritt zu einem Bayesianischen Modell für die Kombination von korrelierten
subjektiven Wahrscheinlichkeitsschätzungen erweitert. Durch die explizite Repräsentation
der Fähigkeiten der einzelnen Experten und der Schwierigkeiten der einzelnen Fragestel-
lungen, für die Vorhersagen gemacht werden, kann dieses Modell die Korrelation zwischen
den einzelnen Experten repräsentieren und bei der Fusion von Vorhersagen berücksichti-
gen. Dies verbessert die Performance der fusionierten Vorhersage im Vergleich zu unserem
vorherigen Modell und anderen verwandten Fusionsmodellen.

Zusammenfassend untersucht diese Arbeit das grundlegende computationale Problem der
Kombination unsicherer probabilistischer Vorhersagen, mit dem Menschen, Roboter und
KI-Systeme im Allgemeinen konfrontiert sind. Während die menschliche Wahrnehmung
unbewusst verschiedene sensorische Hinweisreize integriert, um ein optimales Ergebnis
zu erhalten, werden hier normative Bayesianische Fusionsmodelle für die Kombination
probabilistischer Vorhersagen entwickelt, wobei die Vorhersagen sowohl von Klassifizie-
rern als auch von Menschen stammen können. Die vorgeschlagenen Modelle definieren,
wie probabilistische Vorhersagen Bayes-optimal fusioniert werden sollten, insbesondere
wenn die Vorhersagen korreliert sind. Außerdem wird gezeigt, dass die entwickelten Al-
gorithmen verwandte Fusionsmethoden übertreffen und erfolgreich in der multimodalen
Mensch-Roboter-Interaktion angewandt werden können.
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1
INTRODUCTION

Optimal behavior is always Bayesian.

Wei Ji Ma (2019)

Due to pervasive noise and ambiguity, everything in our world is uncertain (D. R. Bach
& Dolan, 2012; Lindley, 2013; Vilares & Kording, 2011). As a consequence, uncertainty
is inherent in human perception, thoughts, decisions, and actions (Dong & Hayes, 2012;
Harris & Wolpert, 1998; Knill & Pouget, 2004; Kochenderfer, 2015; Lindley, 2013). While
uncertainty can obstruct goal achievement, representing and quantifying it can improve
human decisions and actions accordingly (D. R. Bach & Dolan, 2012). Therefore, humans
have a representation of their uncertainty to handle sensory information, to choose their
actions accordingly, and to make judgments (Knill & Pouget, 2004; Koblinger et al., 2021;
W. J. Ma & Jazayeri, 2014). Also, they are used to expressing and perceiving uncertainties
in interactions with other humans (Krahmer & Swerts, 2005).

Furthermore, humans combine information from different sources in order to reduce their
uncertainty about the world’s state (Ernst & Bülthoff, 2004). By integrating redundant
sensory cues, e.g., from different modalities such as audition and vision, they reduce their
perceptual uncertainty. In particular, there is much evidence that humans optimally com-
bine sensory information from different cues according to Bayes’ rule (Alais & Burr, 2004;
Ernst & Banks, 2002; Gepshtein & Banks, 2003; Gepshtein et al., 2005; Girshick & Banks,
2009; Helbig & Ernst, 2007; Hillis et al., 2002; Hillis et al., 2004; Knill & Saunders, 2003;
Landy & Kojima, 2001; Saunders & Chen, 2015; Scarfe & Hibbard, 2011; Svarverud et al.,
2010; Watt et al., 2005). By this, they weight different sensory cues according to their un-
certainty and maximally reduce the uncertainty of the integrated sensory estimate (Ernst
& Bülthoff, 2004; Landy et al., 2011; Scarfe, 2022).

In order to cope with an uncertain world, like humans, Artificial Intelligence (AI) sys-
tems as well as robots as their embodied form should represent, consider, reduce, and
communicate uncertainty (Abdar et al., 2021; Baek et al., 2023; Z. Huang et al., 2021;
Kompa et al., 2021). This can particularly be crucial for critical applications, such as
autonomous driving or medical image analysis (Guo et al., 2017), but also for a success-
ful interaction between humans and AI, e.g., for AI-supported human decision making
or human-robot collaborations in industrial or caregiving settings. For such human-AI
interactions it has been shown that quantifying uncertainty and providing uncertainty in-
formation together with predictions avoids over- and under-relying in AI models (Bhatt
et al., 2021), increases trustworthiness (Bhatt et al., 2021; Kompa et al., 2021), and im-
proves the performance of human decision-makers (Bansal et al., 2021; Joslyn & LeClerc,
2013; Nadav-Greenberg & Joslyn, 2009; Roulston et al., 2006). Also, embodied human-AI
interaction, i.e., human-robot interaction, can be made safer if uncertainty is considered,
represented, and communicated (Baek & Kröger, 2023; Baek et al., 2023). However, the
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quantification, representation, and communication of uncertainty is not a matter of course
in AI systems. Particularly with recent non-probabilistic deep learning systems, uncer-
tainty quantification in Machine Learning and AI has declined, a fact that has been noted
because of its danger in critical applications (Guo et al., 2017; Kompa et al., 2021).

1.1 Uncertainty in Classifier Ensembles

AI systems can represent and communicate their uncertainty by outputting probability
distributions over the target variable. For example, probabilistic classifiers output cat-
egorical probability distributions over all classes instead of only the discrete predicted
labels (K. P. Murphy, 2022). Also, it is common practice to combine different information
sources to increase an AI system’s performance. For example, classifier ensembles combine
different individual classifiers to ensembles in order to improve classification performance
(Bishop, 2006; Dietterich, 2000; Hamed & Akbari, 2018; Kittler et al., 1998; Mohandes et
al., 2018; Pirs & Strumbelj, 2019). In fact, these classifier ensembles are the most success-
ful classification methods, e.g., in machine learning competitions (Kuncheva, 2014; Pirs &
Strumbelj, 2019). However, they only focus on improving the classification performance in
terms of, e.g., accuracy and do not explicitly consider normative uncertainty reduction. In
particular, it is not clear how to optimally combine the outputs of individual probabilistic
classifiers in order to correctly reduce their uncertainty, similar to how humans combine
multiple cues in perception. Therefore, a fundamental question in AI research is how to
optimally combine probabilistic classifiers while explicitly considering and reducing uncer-
tainty. Since classifiers trained on the same target are usually correlated (Jacobs, 1995;
Kim & Ghahramani, 2012), which can lead to overestimated uncertainty reduction if dis-
regarded (Wilson, 2017), particular focus should thereby be placed on the combination of
correlated classifiers. A solution to this problem has versatile applications in all domains
where classification is used.

In this thesis, we present a normative Bayesian model for combining the outputs of proba-
bilistic classifiers. Using this model, we formalize how to obtain the correct uncertainty of
ensembles of multiple classifiers given different assumptions. For Bayes optimal classifier
fusion, our model can consider the individual classifiers’ properties, such as uncertainty,
bias, and variance. In addition, we explicitly model the correlation between individual
classifiers. For modeling this correlation, we introduce a new probability distribution,
the correlated Dirichlet distribution. The resulting Correlated Fusion Model quantifies
how classification uncertainty should be reduced through Bayes optimal classifier fusion
depending on the individual classifiers’ uncertainty, bias, variance, and correlation. In
addition, it outperforms related Bayesian classifier fusion methods on simulated and real
data sets.

A special case of the correlated Dirichlet distribution that we introduce for modeling
correlated probabilistic classifiers is the bivariate beta distribution. It models two beta-
distributed random variables with a positive correlation and is therefore particularly in-
teresting for modeling binary correlated probabilistic classifiers. However, it is also of
general interest in statistics. While the bivariate beta distribution has already been pro-
posed previously, prior work used an approximate and inaccurate method to compute the
distribution’s covariance and correlation and estimated its parameters using these inaccu-
rate measures. In this thesis, we derive all product moments and the exact covariance and
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correlation of the bivariate beta distribution, which can be computed numerically. Using
these derivations, we propose an algorithm for estimating the distribution’s parameters
using moment matching.

1.2 Bayesian Classifier Fusion for Multimodal Human-
Robot Interaction

The correct fusion of multiple probabilistic classifiers that explicitly and optimally consid-
ers uncertainty can contribute to human-robot interaction, e.g., with collaborative robots
in industrial settings (L. Wang et al., 2020) or assistive robots in elderly assistance and care-
giving (Abbasi et al., 2019; Rodomagoulakis et al., 2016). Humans interact multimodally
in interactions with other humans (Bunt et al., 1998; Quek et al., 2002; Rodomagoulakis
et al., 2016; Turk, 2014). Specifically, they do not only perceive their environment by
integrating redundant cues from different modalities (Ernst & Bülthoff, 2004), but also
express themselves using multiple redundant modalities, such as speech, gestures, and
gaze directions (Barthelmess et al., 2006; Chandrasekaran et al., 2009; De Ruiter et al.,
2012; So et al., 2009; Todisco et al., 2021). In order to enable an intuitive and natural
interaction between humans and robots, we need to come up with algorithms that enable
robots to also interact multimodally (Goodrich & Schultz, 2008; Stiefelhagen et al., 2004).
While multimodal interaction between humans and robots can increase interaction perfor-
mance and robustness (Mollaret et al., 2016; Rodomagoulakis et al., 2016), here we strive
to also reduce uncertainty, similar to how human perception uses multimodal information
to reduce uncertainty. In particular, robots should be able to perceive humans’ uncer-
tain multimodal signals, expressing e.g., their intentions, and combine them in order to
reduce their uncertainty in the correct way. However, there is limited previous research on
multimodal intention recognition in human-robot interaction that considers the individual
modalities’ uncertainties in order to reduce the robot’s uncertainty in the Bayes optimal
way.

To close this gap, in this thesis we detect human intentions from multiple modalities by
training probabilistic classifiers for each modality and combining their output distribu-
tions Bayes optimally to a combined distribution representing the correct uncertainty. As
a consequence, the uncertainty of the robot about the humans’ expressed signals, e.g.,
their intentions, can be correctly reduced according to the individual modalities’ uncer-
tainties. We introduce three approaches that demonstrate how human-robot interaction
can benefit from Bayes optimal classifier fusion. First, we recognize human intentions
from multimodal data including speech, gestures, gaze directions, and scene objects. We
evaluate the proposed multimodal intention recognition system in an interaction task be-
tween a human and a 7-Degrees-of-Freedom (7-DoF) robot arm and show that adding
more modalities contributes to increased detection performance and reduced uncertainty.
Second, we enable humans to teach a 7-DoF robot arm using interactive reinforcement
learning. The human can provide multimodal advice using the modalities speech and
gestures, which are fused using Bayesian classifier fusion. We evaluate the approach with
10 human participants and show that the learning speed can be improved significantly
compared to alternative approaches that use different classifier fusion methods. Third, we
learn to recognize a special human intention from natural human behavior: people’s inten-
tion to start an interaction with a robot, which we call the intention for interaction. With
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21 human participants, we recorded multimodal data including speech and body poses in
a collaborative task with a two-armed assistive robot. On the resulting data set, we train
different unimodal and multimodal classifiers and show that the intention for interaction
can be detected better from multimodal data, using Bayesian classifier fusion.

1.3 Bayesian Combination of Subjective Probability Esti-
mates

Bayesian fusion methods that explicitly and correctly consider uncertainty can not only
be applied to fuse the outputs of probabilistic classifiers but also to combine subjective
probability estimates provided by humans. Human’s subjective probability estimates or
forecasts, especially those given by experts, are of particular importance in many different
domains, such as finance, business, marketing, politics, engineering, meteorological, ecolog-
ical, and environmental science, as well as public health (McAndrew et al., 2021), and can
be used to build rule-based AI systems (Masri et al., 2019). In contrast to classifiers, they
do not require large data sets but can rely on human experience and intuition for providing
information (McAndrew et al., 2021). Combining human forecasts usually increases the
prediction performance compared to single forecasts (Budescu & Chen, 2015; McAndrew
et al., 2021; Satopää, 2022; Turner et al., 2014). However, increased performance in terms
of correctly predicted events is not sufficient in many cases. For example, imagine multi-
ple doctors providing their estimate on the probability of a patient’s diagnosis. Knowing
the correct uncertainty of their combined probability estimate can be crucial for optimal
treatment of a patient. Thus, also in the field of human forecast aggregation the uncer-
tainty of individual forecasters should be explicitly modeled and correctly considered for
their combination. In fact, defining a normative model for combining human forecasts is
designated to be an open challenge in forecasting research (McAndrew et al., 2021).

As part of this thesis, we introduce a family of normative Bayesian models for the com-
bination of subjective probability estimates provided by human forecasters. The models,
which are closely related to our normative Bayesian model for classifier fusion, model the
forecasting behavior of individual forecasters with beta distributions, implicitly calibrate
them, and combine their forecasts accordingly in order to obtain the Bayes optimal un-
certainty of the fused forecast. However, since the proposed fusion models disregard the
correlation between the forecasters, they reduce too much uncertainty and are thus over-
confident. For this reason, in a second step, we extend these models to a Bayesian model
for the combination of correlated subjective probability estimates. This model explicitly
represents the skills of the individual forecasters as well as the difficulties of individual
queries for which forecasts are provided. By this, it can explicitly model the correlation be-
tween the individual forecasters and consider it when fusing forecasts, which improves the
model’s fusion performance compared to our previous model and related fusion models.

1.4 Outline

This thesis is structured as follows. In Chapter 2 we start by providing the background of
the works presented in the thesis, consisting of the most important concepts, definitions,
and mathematical foundations, as well as prior research findings. Chapter 3 introduces
our normative Bayesian framework for classifier fusion. Given sequentially more general
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assumptions, here we derive how probabilistic classifiers should be fused Bayes optimally
given their individual properties, i.e., their uncertainty, bias, and variance, as well as their
correlation. In Chapter 4 we propose an algorithm for parameter estimation for the bi-
variate beta distribution, which is a special case of the correlated Dirichlet distribution
introduced in Chapter 3 for classifier fusion. In Chapter 5 we apply the Bayesian fusion
method Independent Opinion Pool, which was derived in Chapter 3, to multimodal in-
tention recognition in human-robot interaction. Accordingly, Chapter 6 investigates how
Bayesian fusion with Independent Opinion Pool can improve interactive reinforcement
learning with multimodal human action advice in human-robot interaction. In Chapter 7
we recognize a specific human intention, i.e., the human intention to start an interaction
with a robot, from multimodal data. We show that fusing individual classifiers for the
respective modalities with the Bayesian fusion method Independent Opinion Pool results
in the best recognition performance. Instead of fusing classifiers, in Chapter 8 we fuse fore-
casts provided by humans. In particular, here we introduce a family of normative Bayesian
fusion models, which model human forecasts with beta distributions and implicitly cali-
brate them when fusing. While the Bayesian models in Chapter 8 assume independent
human forecasters, in Chapter 9 we extend these models to a Bayesian model for fusing
correlated human forecasts, which explicitly models the skills of the forecasters as well
as the difficulties of the queries the forecasts are provided for and by this the correlation
between forecasts. Finally, in Chapter 10 we discuss the methods and findings provided in
this thesis as well as their implications and limitations and suggest interesting directions
for future work.

1.5 Contributions

The chapters in this thesis are based on previous publications, i.e., Trick and Rothkopf
(2022), Trick, Rothkopf, and Jäkel (2023b), Trick et al. (2019), Trick et al. (2022), Trick,
Lott, et al. (2023), and Trick, Rothkopf, and Jäkel (2023a), and may contain previously
published text and figures.

− Chapter 3: Normative Bayesian Classifier Fusion

This work was published in
Trick, S., & Rothkopf, C. A. (2022). Bayesian classifier fusion with an explicit model
of correlation, In Proceedings of the 25th international conference on artificial intel-
ligence and statistics (AISTATS). PMLR. https://proceedings.mlr.press/v151/
trick22a.html.

− Chapter 4: Parameter Estimation for a Bivariate Beta Distribu-
tion

This work was published in
Trick, S., Rothkopf, C. A., & Jäkel, F. (2023b). Parameter estimation for a bivariate
beta distribution with arbitrary beta marginals and positive correlation. METRON,
1–18. https://doi.org/10.1007/s40300-023-00247-2.
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− Chapter 5: Bayesian Fusion for Intention Recognition in Human-
Robot Interaction

This work was published in
Trick, S., Koert, D., Peters, J., & Rothkopf, C. A. (2019). Multimodal uncertainty
reduction for intention recognition in human-robot interaction, In Proceedings of the
2019 IEEE/RSJ international conference on intelligent robots and systems (IROS).
IEEE. https://doi.org/10.1109/IROS40897.2019.8968171.
©2019 IEEE. All rights reserved. Reprinted with permission.1

− Chapter 6: Interactive Reinforcement Learning with Bayesian Fu-
sion of Multimodal Advice

This work was published in
Trick, S., Herbert, F., Rothkopf, C. A., & Koert, D. (2022). Interactive reinforcement
learning with Bayesian fusion of multimodal advice. IEEE Robotics and Automation
Letters, 7 (3), 7558–7565. https://doi.org/10.1109/LRA.2022.3182100.
©2022 IEEE. All rights reserved. Reprinted with permission.1

− Chapter 7: Multimodal Detection of the Intention for Interac-
tion in Human-Robot Interaction

This work was published in
Trick, S., Lott, V., Scherf, L., Rothkopf, C. A., & Koert, D. (2023). What can I help
you with: Towards task-independent detection of intentions for interaction in a human-
robot environment, In Proceedings of the 2023 32nd IEEE international conference on
robot and human interactive communication (RO-MAN). IEEE. https://doi.org/10.
1109/RO-MAN57019.2023.10309347.
©2023 IEEE. All rights reserved. Reprinted with permission.1

− Chapter 8: A Normative Model for Bayesian Combination of Sub-
jective Probability Estimates

This work was published in
Trick, S., Rothkopf, C. A., & Jäkel, F. (2023a). A normative model for Bayesian
combination of subjective probability estimates. Judgment and Decision Making, 18,
e40. https://doi.org/10.1017/jdm.2023.39.

− Chapter 9: Bayesian Combination of Correlated Subjective Prob-
ability Estimates

This work is in preparation for submission.

1 Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

6 Introduction

https://doi.org/10.1109/IROS40897.2019.8968171
https://doi.org/10.1109/LRA.2022.3182100
https://doi.org/10.1109/RO-MAN57019.2023.10309347
https://doi.org/10.1109/RO-MAN57019.2023.10309347
https://doi.org/10.1017/jdm.2023.39


2
BACKGROUND

This thesis examines how probabilistic forecasts provided by classifiers or humans should
be combined in order to deal with the ubiquitous uncertainty present in our world. We
propose a Bayesian model for the combination of probabilistic classifiers that normatively
specifies how to obtain the correct uncertainty of the ensemble. Furthermore, we show how
Bayesian fusion considering uncertainty can increase performance in relevant applications
in human-robot interaction scenarios and investigate Bayesian models for the aggregation
of subjective probability estimates provided by humans. In the following chapter, we
provide the most important concepts, definitions, mathematical foundations, and prior
research findings that form the basis of our work.

In Section 2.1, we start with discussing the ubiquitous uncertainty in our world and define
the two sources of uncertainty, aleatoric and epistemic uncertainty. Section 2.2 gives a
definition of probability as a quantification of uncertainty, followed by some mathemati-
cal foundations of probability theory in Section 2.3. Building upon these mathematical
foundations, Section 2.4 introduces Bayes’ theorem and Bayesian inference. The basics
of graphical models for visualizing probability distributions, and in particular generative
models, are presented in Section 2.5, while the subsequent Section 2.6 discusses the param-
eter estimation methods that are used for the Bayesian models in this thesis. In Section
2.7 we review prior work on how humans combine sensory cues in order to reduce their
uncertainty about their environment’s current state, which can be described with a gen-
erative model and Bayesian parameter inference. Finally, in Section 2.8 we provide some
definitions of classification and classifier fusion, which can also be formalized as parameter
estimation in a generative model.

2.1 Uncertainty

The world is full of uncertainty (Lindley, 2013). First and foremost, human perception
is uncertain (Fiser et al., 2010; Knill & Pouget, 2004; W. J. Ma et al., 2006; Vilares
& Kording, 2011). We can never be certain about the current state of our environment
because the sensory information we receive is noisy (Faisal et al., 2008; Fiser et al., 2010;
Kochenderfer, 2015; Vilares & Kording, 2011). In addition, the sensory input can be
ambiguous since different states of the world can generate the same input to our sensory
system (Fiser et al., 2010; Kersten & Yuille, 2003; Vilares & Kording, 2011) and the same
state can generate infinitely many inputs (Kersten & Yuille, 2003). For example, different
three-dimensional objects in the real world can cause the same two-dimensional image on
the human retina (Ernst & Bülthoff, 2004), and a bicycle seen from different perspectives
can cause different two-dimensional images on the human retina (Kersten & Yuille, 2003).
As a result, perception can be seen as unconscious inference, where the real state of the
world is constantly inferred from uncertain observations (Helmholtz, 1924). In the human
nervous system, uncertainty is even explicitly represented (Fiser et al., 2010). However,
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perceptual uncertainty is not only relevant for human perception but also for machine
perception. Just like humans, machines also need to deal with uncertain input due to
noisy and ambiguous observations.

In addition to perceptual uncertainty caused by imperfect observations, there is also un-
certainty that is caused by lack of knowledge. Factual statements can be known to be true
or false, but for a majority of statements we do not know the correct answer, so we are
uncertain (Lindley, 2013). For example, predictions of future states are always uncertain,
including weather forecasts and forecasts of outcomes of elections or the course of a pa-
tient’s disease. Again, uncertainty through imperfect knowledge affects both humans and
machines.

Perceptual uncertainty and lack of knowledge make us humans and also machines that
support us uncertain about the current and future state of the world, which in turn ren-
ders decision making uncertain (Dong & Hayes, 2012; Nadav-Greenberg & Joslyn, 2009).
This uncertainty in decision making is even amplified by the fact that the consequences of
decisions are not necessarily deterministic (Kochenderfer, 2015). Moreover, even human
motor action execution is uncertain since noise in the firing motor neurons causes devia-
tions of the executed trajectories from the desired trajectories (Faisal et al., 2008; Harris
& Wolpert, 1998).

The sources of the different uncertainties listed above can be divided into aleatoric uncer-
tainty and epistemic uncertainty (Bhatt et al., 2021; Der Kiureghian & Ditlevsen, 2009;
Hora, 1996; Hüllermeier & Waegeman, 2021; Kompa et al., 2021; K. P. Murphy, 2022).
Aleatoric or aleatory uncertainty describes the uncertainty that arises from the inherent
randomness and intrinsic variability of the data (Hüllermeier & Waegeman, 2021; K. P.
Murphy, 2022), or the natural, unpredictable variation of a system’s performance (Hora,
1996). The term aleatoric is derived from the Latin word alea, which translates to dice
(Der Kiureghian & Ditlevsen, 2009; K. P. Murphy, 2022). Aleatoric uncertainty is a prop-
erty of the data-generating process (Hüllermeier & Waegeman, 2021) or simply the data
and is therefore also termed data uncertainty (K. P. Murphy, 2022). Aleatoric uncertainty
is irreducible (Hora, 1996; Hüllermeier & Waegeman, 2021). In particular, it cannot be
reduced by collecting more data or additional information. A popular example of aleatoric
uncertainty is flipping a coin: We know that the probability for heads is 0.5, so we know
the data-generating model of the task, but we can never know the outcome of the next flip,
no matter how often we repeat flipping (Hüllermeier & Waegeman, 2021; K. P. Murphy,
2022). Other examples of aleatoric uncertainty are noisy data or a class overlap of data
when classifying (Bhatt et al., 2021). In particular, perceptual uncertainty caused by noisy
or ambiguous data or variability in motor action execution due to noise in the firing motor
cells can be considered aleatoric uncertainty.

Epistemic uncertainty is caused by a lack of data or knowledge (Hora, 1996). In particular,
it arises from our lack of knowledge about the underlying mechanisms generating our data
(K. P. Murphy, 2022), the correct model to select (e.g., a linear or polynomial curve to
fit) or the model’s parameters (Hüllermeier & Waegeman, 2021; Kompa et al., 2021).
While the term epistemic uncertainty is derived from the Greek word for knowledge (Der
Kiureghian & Ditlevsen, 2009), this kind of uncertainty is also called model uncertainty
(K. P. Murphy, 2022) since it is a property of the model (or the agent/human): The
model has not enough knowledge or has not seen enough data to be certain. In contrast
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to aleatoric uncertainty, epistemic uncertainty can be reduced by observing additional
data or getting new information (Hora, 1996; Hüllermeier & Waegeman, 2021). In the
coin-flipping example discussed above, there is epistemic uncertainty if we do not know if
the coin is fair. In this case, we are uncertain about the data-generating model and need
to collect more data, i.e., repeatedly flip the coin, to reduce our epistemic uncertainty.
The above-mentioned uncertainty about the correctness of factual statements because of
limited knowledge is another example of epistemic uncertainty.

2.2 Probability

Uncertainty can be quantified with probability (Bishop, 2006; Gelman et al., 2013; Lindley,
1987; K. P. Murphy, 2012, 2022). However, note that there are two different interpreta-
tions of the probability Pr(A) of an event A, the frequentist and the Bayesian interpreta-
tion. Frequentists interpret a probability as the relative frequency of event A’s occurrence
(Bishop, 2006; K. P. Murphy, 2022). If, e.g., we flip a fair coin and event A is “the coin
lands heads”, then the probability for this event is Pr(A) = 0.5. Given the frequentist
interpretation of probability, this means that if we repeatedly flip the coin, it will land
heads for about 50% of all flips, the more accurate, the more often we flip it (K. P. Murphy,
2022).

In contrast, according to the Bayesian interpretation of probability, Pr(A) is used to
quantify our uncertainty if event A will occur or not (Bishop, 2006; K. P. Murphy, 2012,
2022), it is a subjective belief rather than a frequency (Bertsekas & Tsitsiklis, 2008).
For the coin-flipping example from above, the Bayesian interpretation of the probability
Pr(A) = 0.5 is that for the next coin flip, it is equally likely that the coin will land heads
or tails (K. P. Murphy, 2022). Therefore, with Bayesian probabilities we can quantify
our uncertainty about the outcome of the next coin flip. In particular, one big strength
of the Bayesian as opposed to the frequentist view on probabilities is that it serves to
express uncertainties about events that cannot be repeated, e.g., if the polar ice caps will
be melted by the next 10 years (Bishop, 2006; K. P. Murphy, 2012, 2022). Thus, we can
use probability to quantify all uncertainties listed above in Section 2.1, i.e., perceptual
uncertainty, uncertainty due to imperfect knowledge, uncertainty in decision making and
action execution. In fact, Lindley (1987) even states that “the only satisfactory description
of uncertainty is probability” and other attempts to quantify uncertainty, e.g., fuzzy logic
(Zadeh, 1983) or Dempster-Shafer theory (Shafer, 1976) are unnecessary.

2.3 Probability Theory

In the following, we present the basic concepts and rules of probability that will be used
throughout this thesis. We mainly follow the presentation by K. P. Murphy (2022). A
random variable X represents a quantity of interest that is unknown and/or can change. If
X can only take a finite set of values, it is called a discrete random variable. Examples are
representing the outcome of flipping a coin or the class label of an image to be classified.
The probability of X taking value x is defined as Pr(X = x) and p(x) := Pr(X = x)
is the probability mass function (PMF) of X. The PMF assigns a probability to each
possible value x with 0 ≤ p(x) ≤ 1 and ∑ p(x) = 1. A discrete random variable can be
modeled with a discrete probability distribution, such as the Bernoulli distribution, the
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binomial distribution, the categorical distribution, or the Poisson distribution, which then
determines the shape of its PMF.

If X represents a real-valued quantity, it is called a continuous random variable. X could
for example represent a size, a temperature, or a duration. Since continuous random
variables can take all possible values on the continuous scale, the one specific predefined
value x will never occur. Therefore, for continuous random variables we do not assign
probabilities to single values but to intervals. In particular, we define the cumulative
distribution function (CDF) of X as P (x) := Pr(X ≤ x) and by this can compute the
probability that X is in the interval (a, b] as Pr(a < X ≤ b) = P (b)− P (a). If we derive
the CDF, we obtain the probability density function (PDF) as p(x) := d

dxP (x). Using
the PDF instead of the CDF, the probability of X being in the interval (a, b] can be
computed using a finite integral: Pr(a < X ≤ b) =

∫ b
a p(x) dx. For a very small interval

(a, a + δ] with δ > 0 the probability of X being in the interval can be approximated
by Pr(x < X ≤ x + δ) = δp(x). Thus, although not directly mapping probabilities to
values of X, the PDF provides an intuition of these probabilities. Continuous probability
distributions, such as the Gaussian distribution, the gamma distribution, or the beta
distribution, can be used to model a continuous random variable.

According to K. P. Murphy (2022), as above, random variables should be represented
with capital letters, e.g., X, while the values they can take on should be represented with
small letters, e.g., x. However, other notations also allow random variables to be directly
described with small letters (Bishop, 2006), which improves readability and is therefore
used for the following definitions.

Two (or more) random variables x and y can also be represented jointly as the joint
distribution p(x, y), which assigns a probability (density or mass) value to all possible
combinations of x and y. Given the joint distribution p(x, y), we can obtain the marginal
distribution of x by summing over all possible values of y for discrete random variables,

p(x) =
∑
y

p(x, y), (2.1)

or integrating over all possible values of y for continuous random variables respectively,

p(y) =
∫
p(x, y) dy. (2.2)

Summing or integrating over all possible values of y to obtain the marginal distribution
of x is also called marginalizing over y.

The conditional distribution of y given x is defined as

p(y|x) = p(x, y)
p(x) (2.3)

and represents the probability distribution of y given that the value of x is given. By
rewriting equation (2.3) we obtain the product rule:

p(x, y) = p(x)p(y|x), (2.4)

which can be extended to the chain rule of probability for n random variables x1, . . . , xn:

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xn|x1, . . . , xn−1). (2.5)
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The chain rule allows representing a complex joint distribution as a product of conditional
distributions.

If the joint distribution p(x, y) can be written as the product p(x)p(y), x and y are in-
dependent. If they are only independent given a third variable z, they are conditionally
independent given z, and it holds that p(x, y|z) = p(x|z)p(y|z). If x and y are not inde-
pendent, they might be correlated. The correlation between two random variables x and
y can be quantified with the Pearson correlation coefficient r, which is defined as

r := Cov(x, y)√
Var(x)Var(y)

(2.6)

with Var(x) as the variance of x. Cov(x, y) defines the covariance between x and y. It is
defined as

Cov(x, y) := E((x− E(x))(y − E(y))) = E(xy)− E(x)E(y), (2.7)

with E(x) as the expected value of x, and quantifies how strongly x and y are linearly
related. Covariance can take all values in R, while correlation is in [−1, 1]. If r = 1, x
and y show a perfect positive correlation, i.e., they form a line when plotted against each
other. If r = −1, x and y show a perfect negative correlation and if r = 0, x and y are
uncorrelated. A correlation of r = 0, however, does not necessarily mean that x and y are
independent. It just indicates that there is no linear relation between x and y.

2.4 Bayesian Inference

Combining equations (2.3) and (2.4) we obtain Bayes’ rule:

p(x|y) = p(y|x)p(x)
p(y) . (2.8)

It computes the probability distribution of x given y. y might be, e.g., some observed
data, while x is the latent or hidden variable of interest we want to infer. p(x) is called
the prior distribution, which represents the distribution of x we assume before knowing
anything about the value of y, i.e., before seeing any data. It might be learned from past
experience. p(y|x) is called the likelihood. It computes how likely the observed data y
are given different values of x and is therefore a function of x, while y is fixed. Note that
the likelihood does not necessarily sum or integrate to 1, so it is not a distribution. p(y)
is known as the marginal likelihood (K. P. Murphy, 2022) or the normalization constant
(Bishop, 2006). It can be obtained by marginalizing the joint distribution p(x, y) over x
and normalizes the term to a probability distribution. p(y) does not depend on x, so it
is a constant that in many cases does not need to be computed explicitly. The resulting
probability distribution p(x|y) is the posterior distribution of x given observed data y and
our prior information about x. If we see new data the next time, our posterior can serve
as prior. Thus, Bayes’ rule can be used to continuously update our belief about a random
variable x when we observe new data. Bayesian inference using Bayes’ rule is normative,
which means that it defines how a rational agent should change its posterior over x when
observing new data y (M. D. Lee & Wagenmakers, 2014). However, note that the inferred
posterior p(x|y) is only correct given that the likelihood p(y|x) and prior p(x) are good
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descriptions of the process that generated the data y, i.e., the data-generating process
(W. J. Ma, 2019).

In many cases, after inferring a posterior belief over x using Bayes’ rule, the agent is
required to take an action a according to this belief. This action can be a movement or an
answer to a question but also simply an estimate of the value of x. In order to choose an
action a, a cost function or objective function C(x, a) can be defined that quantifies the
cost of action a given the true value of x and should thus be minimized. Then, action a
can be chosen by minimizing the expected cost, for discrete x as

E(C(a)) =
∑
x

p(x|y)C(x, a) (2.9)

and for continuous x as

E(C(a)) =
∫
p(x|y)C(x, a) dx, (2.10)

with p(x|y) being the posterior distribution obtained using Bayes’ rule (W. J. Ma, 2019;
K. P. Murphy, 2022; Rothkopf et al., 2010). Since it minimizes the expected cost, the
action chosen in this way is the optimal, normative action (W. J. Ma, 2019; K. P. Murphy,
2022; Rothkopf et al., 2010). If a is just an estimate of the value of x, we can directly
specify the optimal estimate. If x is discrete and we aim to estimate its value correctly,
i.e., the cost function is C(x, a) = 0 if x = a and C(x, a) = 1 otherwise, the optimal
estimate is the mode of the posterior p(x|y). If x is continuous and we want to minimize
the squared error between our estimate and the true value of x, i.e., C(x, a) = (x−a)2, the
optimal estimate is the mean of the posterior p(x|y) (W. J. Ma, 2019; K. P. Murphy, 2022).
Designing appropriate cost functions for complex desired behavior can be challenging, e.g.,
in robotics (Englert et al., 2017). Inferring cost functions from observed behavior can be
realized using inverse reinforcement learning (Rothkopf & Dimitrakakis, 2011) or inverse
optimal control (Schultheis et al., 2021; Straub et al., 2023).

2.5 Graphical Models as Generative Models

Joint probability distributions can be illustrated as graphical models. For providing im-
portant foundations on graphical models needed in this thesis, we will mainly follow the
presentation of Bishop (2006) and M. D. Lee and Wagenmakers (2014). Graphical models
visualize the structure of a probabilistic model, i.e., how the different random variables in
a joint distribution are related to each other. They are composed of nodes, which represent
random variables, and edges between the nodes, which represent relations between these
variables.

If the edges are undirected links between nodes, the graphical model is called an undi-
rected graphical model or Markov random field. If, in contrast, the edges are directed and
visualized as arrows, we call the graphical model a directed graphical model. If it addi-
tionally does not include any cycles, it is a directed acyclic graph (DAG). In this thesis,
we refer to DAGs when we talk about graphical models.

DAGs represent dependence relationships between random variables with arrows between
their respective nodes. Nodes can be visualized differently, depending on the variable’s
properties. However, the notation is not completely standardized. Here, we just differen-
tiate between stochastic and deterministic nodes with single- and double-bordered nodes.
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x1 x2

x3 x4

x5 x6

Figure 2.1: An exemplary graphical model consisting of six stochastic variables x1, . . . , x6.

Variables that are just set to a fixed specified value are visualized without a surrounding
node. Plates around nodes represent repetitions, e.g., they define a probabilistic relation-
ship for every element xi of a vector x.

An edge pointing from variable x1 to variable x2 indicates that x1 is a parent node of x2
and x2 is a child node of x1 respectively. The parent-child relationships in a graphical
model are of particular importance for simplifying the joint distribution visualized with
the graphical model.

As we showed in (2.5), the joint distribution of n random variables x1, . . . , xn can be
represented as a product of conditional distributions, one for each variable conditioned on
all other variables with lower indices. This factorization is independent of how the specific
graphical model looks like. However, if we know the graphical model, the joint distribution
can be factorized as a product of conditional distributions, where the distribution for each
variable xi is just conditioned on its parent nodes pa(xi):

p(x1, . . . , xn) =
n∏
i=1

p(xi|pa(xi)). (2.11)

The factorization for the exemplary graphical model in Figure 2.1 is

p(x1, . . . , x6) = p(x1)p(x2)p(x3|x1, x2)p(x4|x2)p(x5|x3)p(x6|x3, x4). (2.12)

Random variables in probabilistic models can be observed or latent. The values of observed
variables are known, e.g., given as data. Latent variables’ values are unknown. Sometimes
we want to infer their values using the observed variables, sometimes their exact values
are irrelevant and they are just introduced to construct a complex joint distribution from
simple conditional distributions.

In most applications of graphical models, the random variables with lower indices represent
latent variables, and variables with higher indices are observed variables represented as
terminal nodes of the graphical model. These models are called generative models and
model the data-generating process.

Figure 2.2 shows different versions of an exemplary generative model of a simple coin-
flipping experiment. We flip I coins n times and observe ki heads for coin i. Having seen
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θi

ki n

I coins

θi ∼ Beta(1, 1)
ki ∼ Binomial(θi, n)

(a) uninformed prior

θi

ki n

I coins

θi ∼ Beta(10, 10)
ki ∼ Binomial(θi, n)

(b) informed prior

θi

ki n

α β

I coins

θi ∼ Beta(α, β)
ki ∼ Binomial(θi, n)
α ∼ Gamma(0.001, 0.001)
β ∼ Gamma(0.001, 0.001)

(c) hierarchical prior

θi ηi

ki n

α β

I coins

θi ∼ Beta(α, β)
ηi ← 1− θi
ki ∼ Binomial(θi, n)
α ∼ Gamma(0.001, 0.001)
β ∼ Gamma(0.001, 0.001)

(d) hierarchical prior & deterministic node

Figure 2.2: Different versions of an exemplary generative model of a simple coin-flipping exper-
iment. I coins are flipped n times, while ki heads are observed for coin i. ki is assumed to
be binomial-distributed with parameters θi and n. For the latent variable θi, the probability for
heads, different prior distributions can be assumed: an uninformed prior Beta(1,1) (a), an informed
prior Beta(10,10) (b), which assumes a fair coin with θi most likely close to 0.5, or a hierarchical
prior Beta(α, β) (c) with uninformed hyperpriors on the hyperparameters α and β. In (d), the
hierarchical model (c) additionally includes a deterministic variable ηi, the probability for tails.
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these data we now want to know if the coins are fair. We assume that the observed number
of heads ki is generated from a binomial distribution with parameters θi and the number
of total flips n. However, we do not know the value of θi, it is a latent parameter. Our
prior knowledge of θi before seeing any data ki is captured in its prior, for which we have
different options:

− If we expect all possible values for θi in the range [0, 1] to be equally likely, we set an
uninformative Beta(1, 1) prior on θi, which is the uniform distribution between 0 and
1 (Figure 2.2(a)).

− Since we know that usually coins are fair and their θi is thus close to 0.5, we can also
choose an informative prior Beta(10, 10), with its mode at 0.5 (Figure 2.2(b)).

− We can also consider the parameters of the beta prior as latent variables, put a prior on
them, and infer them. The parameters of the prior are hyperparameters. In the example
in Figure 2.2(c) the so-called hyperpriors on the hyperparameters α and β are unin-
formed gamma distributions with shape and rate set to 0.001, Gamma(0.001, 0.001). If
a model has a prior on hyperparameters, it is called a hierarchical generative model or
a hierarchical Bayesian model.

In Figure 2.2(d) we added a deterministic variable ηi to our generative model. It simply
represents the probability for tails, which is 1− θi, which does not add much value to our
exemplary model but nevertheless shows how we will represent deterministic variables in
the graphical models shown in this thesis.

2.6 Parameter Estimation

As discussed in Section 2.5, probabilistic models consist of observed and latent variables,
e.g., the number of observed heads ki and the unknown probability for heads θi of a
coin i. For inferring the value of the latent variable θi from the observed variable ki or,
more generally, for estimating some model parameters θ from observed data D, there are
different estimation methods.

A very popular parameter estimation method is Maximum-Likelihood Estimation (MLE),
which maximizes the likelihood p(D|θ) of the data D given θ (K. P. Murphy, 2022),

θMLE = arg max
θ

p(D|θ). (2.13)

For many models, it is computationally difficult to maximize the likelihood p(D|θ). How-
ever, if we are able to define the respective distribution’s moments in closed form or can at
least compute them efficiently, the simple and fast method moment matching can be used
as an alternative (K. P. Murphy, 2022). For moment matching, we set up K equations
with K as the number of parameters to be inferred, i.e., the size of parameter vector θ.
In each of them, we equate some theoretical moment µk with some empirical moment
µ̂k computed from observed data D. Solving these equations for θ, analytically or via
optimization, provides estimates for the K parameters in θ.

Both MLE and moment matching provide estimates for parameter values θ given observed
data D. However, they do not consider prior information that we might have about θ, and
they do only provide point estimates of θ. MLE and moment matching cannot provide the
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uncertainty over θ given data D. In contrast, by estimating the posterior distribution over
θ given data D, p(θ|D), Bayesian parameter inference considers prior distributions p(θ).
In addition, it provides a probability distribution over θ instead of a point estimate, which
shows how uncertain we are about the estimated value of θ given data D. Since Bayesian
inference is normative (M. D. Lee & Wagenmakers, 2014), Bayesian parameter inference
is also normative or optimal, meaning that the inferred posterior p(θ|D) defines a rational
agent’s belief about parameters θ given data D and the defined generative model.

If it is computationally difficult to compute the posterior distribution p(θ|D), we can resort
to Markov Chain Monte Carlo (MCMC) sampling. MCMC techniques draw samples
from a posterior distribution and by this allow characterizing it without being able to
compute it analytically (Van Ravenzwaaij et al., 2018). The drawn samples form a Markov
chain, which means that each sample is only dependent on the previous sample. If we
draw a sufficient number of samples, MCMC sampling is guaranteed to converge to the
desired posterior distribution, i.e., the distribution of the drawn samples is the posterior
distribution. Since the Markov chain has to first approach the region of high probability,
where it then converges, the first samples of the Markov chain are usually discarded as
burn-in (M. D. Lee & Wagenmakers, 2014; K. P. Murphy, 2012).

A special form of MCMC sampling is Gibbs sampling. Gibbs sampling samples from a
joint distribution, i.e., from an unnormalized posterior distribution, by iteratively sampling
from conditional distributions. For Gibbs sampling, we first initialize all latent variables
in our model, e.g., our parameter θ. Observed variables are set to the respective observed
values. Then, for N iterations we repeatedly sample the latent variables given all other (la-
tent and observed) variables’ current values from their respective conditional distribution
(Algorithm 2.1). Therefore, the applicability and efficiency of Gibbs sampling is deter-
mined by how readily samples can be drawn from the conditional distributions (Bishop,
2006). Note that in Algorithm 2.1 sampling can be skipped for observed variables since
their values are already known.

Algorithm 2.1 Gibbs Sampling
Initialize x(0) containing all M variables
for n = 1, . . . , N do
x

(n)
1 ∼ p(x1|x2 = x

(n−1)
2 , x3 = x

(n−1)
3 , . . . , xM = x

(n−1)
M )

x
(n)
2 ∼ p(x2|x1 = x

(n−1)
1 , x3 = x

(n−1)
3 , . . . , xM = x

(n−1)
M )

...
x

(n)
M ∼ p(xM |x1 = x

(n−1)
1 , x2 = x

(n−1)
2 , . . . , xM−1 = x

(n−1)
M−1 )

end for

While the required conditional distributions can be derived by hand to implement Gibbs
sampling according to Algorithm 2.1 (with a good manual provided by Yildirim (2012)),
there are also probabilistic programming libraries that perform Gibbs sampling automat-
ically. An example library is JAGS (Plummer, 2003), where we only have to specify our
model (as e.g., in the example in Figure 2.2) and define which variables are observed and
which are latent to sample from the posterior distribution of the latent ones.
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2.7 Cue Integration as Parameter Estimation

Bayes’ theory, probabilistic modeling, and the respective methods for parameter estimation
can be used to formally describe human behavior. A well-studied example of this is cue
integration. Our environment usually provides multiple redundant sources of information
that can be used to assess its properties (Landy et al., 2011). These information sources,
termed cues, are sensory information that cause specific sensory measurements (Ernst &
Bülthoff, 2004). Multiple cues can be different features from the same sense or modality or
information from different modalities such as vision, audition, or touch (Ernst & Bülthoff,
2004; Landy et al., 2011). For example, depth can be estimated from multiple visual cues,
such as texture, shading, or disparity (E. B. Johnston et al., 1993), whereas the position
of another person can be inferred using multimodal cues by seeing her and hearing her
talk. Likewise, we integrate auditory and visual cues when listening to other persons by
hearing what they say and reading their lips (W. J. Ma et al., 2009). Also, the size of
an object can be estimated using vision and touch cues (Ernst & Banks, 2002; Gepshtein
et al., 2005; Hillis et al., 2002).

Single cues provide uncertain information because sensory information is noisy (Faisal
et al., 2008; Fiser et al., 2010; Kochenderfer, 2015) and ambiguous (Fiser et al., 2010)
(Section 2.1). Thus, since one cannot perfectly estimate the environment’s properties using
one single cue, it is beneficial to integrate multiple cues. In particular, cue integration can
increase the reliability of an estimate and thus decrease its uncertainty if the cues are
integrated in a rational way (Landy et al., 2011).

The generative model of cue integration is illustrated in the graphical model in Figure
2.3(a). The state of the world s generates some cues c1, . . . , cn, which might depend on each
other in some way. Integrating the cues c1, . . . , cn is equivalent to estimating parameter
s, the unknown world state, from observed values of the cues c1, . . . , cn. Integrating the
cues in a rational or normative way is achieved with Bayesian parameter inference as in
Section 2.4. Thus, the model in Figure 2.3(a) is a normative model of cue integration.

Given multiple cues c1, . . . , cn, we obtain an estimate of the current state of the world s
by computing the posterior distribution

p(s|c1, . . . , cn) ∝ p(c1, . . . , cn|s)p(s) (2.14)

s

c1 c2 cn. . .

(a) dependent cues

s

c1 c2 cn. . .

(b) independent cues

Figure 2.3: Generative models of cue integration with dependent (a) and independent (b) cues
c1, . . . , cn generated from state s.
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from the joint likelihood p(c1, . . . , cn|s) and our prior on s p(s). If the cues are conditionally
independent given s, the generative model of cue integration simplifies to the graphical
model shown in Figure 2.3(b), and we can simplify the posterior to a product of the prior
p(s) and the likelihoods of individual cues ci p(ci|s)

p(s|c1, . . . , cn) ∝ p(s)
n∏
i=1

p(ci|s). (2.15)

If we assume conditionally independent unbiased cues given state s and a uniform prior
p(s) and further assume that the individual cues ci are Gaussian distributed with means
µi and variances σ2

i given state s, i.e., their likelihoods p(ci|s) are

p(ci|s) ∝ N (µi, σ2
i ), (2.16)

according to (2.15), the posterior over s is a product of the Gaussian likelihoods N (µi, σ2
i ),

which is proportional to a Gaussian distribution

p(s|c1, . . . , cn) ∝ N

∑n
i=1

µi
σ2
i∑n

i=1
1
σ2
i

,
1∑n

i=1
1
σ2
i

 (Bromiley, 2003). (2.17)

The above posterior can be rewritten as

p(s|c1, . . . , cn) ∝ N (µintegrated, σ
2
integrated) (2.18)

with mean

µintegrated =
n∑
i=1

wiµi (2.19)

with weights

wi =
1
σ2
i∑n

j=1
1
σ2
j

(Cochran, 1937) (2.20)

and variance

σ2
integrated = 1∑n

i=1
1
σ2
i

. (2.21)

Note that in this formulation with weights wi the posterior can be computed as a linear
combination of the individual estimates, which are the means µi of the Gaussian likelihoods
in (2.16).

If we soften our assumption of a uniform prior but instead assume a Gaussian prior on s,
the posterior p(s|c1, . . . , cn) is a product of Gaussian likelihoods and the Gaussian prior
and thus again a Gaussian with mean and variance according to (2.19) and (2.21). The
prior can be straightforwardly treated as an additional cue in this case. An example of
the integration of two cues c1 and c2 with a Gaussian prior on s is given in Figure 2.4.
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Figure 2.4: Exemplary Bayesian integration of two cues c1 and c2 in order to estimate the state
of the world s. c1 and c2 are Gaussian distributed given s with µ1 = 40, σ2

1 = 30 and µ2 = 70,
σ2

2 = 15. The prior on s is also Gaussian with µprior = 30 and σ2
prior = 200. The posterior on s

integrating cues c1 and c2, p(s|c1, c2), is also a Gaussian distribution with µintegrated = 58.571 and
σ2

integrated = 9.524, computed according to equations (2.19) and (2.21). The respective weights are
w1 = 0.317, w2 = 0.635, wprior = 0.048, showing that the more uncertain cue c1 has a lower impact
on the integrated estimate. Also, we see uncertainty reduction through cue integration since the
integrated variance σ2

integrated is lower than the individual cues’ variances.

The uncertainty of the individual cues can also be expressed as their reliability, which is
the inverse of their variance ri = 1

σ2
i
. Writing the weights wi using reliabilities instead of

variances as

wi = ri∑n
j=1 rj

(2.22)

shows that they are proportional to the cues’ reliabilities ri. Thus, a more reliable or
certain cue with lower variance has a higher impact on the integrated estimate. This is
also illustrated in the example in Figure 2.4.

The reliability of the integrated estimate is the sum of the individual cues’ reliabilities,

rintegrated =
n∑
i=1

ri. (2.23)

Consequently, the reliability of the integrated estimate is higher than the individual cues’
reliabilities, its variance and thus its uncertainty is reduced, which can also be seen in
Figure 2.4. In particular, integrating cues in this way minimizes the variance of the
integrated estimate (Ernst & Bülthoff, 2004; Landy et al., 2011; Scarfe, 2022) and is
known as minimum variance unbiased estimator (Landy et al., 2011; Scarfe, 2022).

Prior work has found much evidence that humans integrate cues in this statistically optimal
way according to a weighted linear combination of cues with weights proportional to the
cues’ reliabilities. Thus, human behavior in cue integration can be well described with
this computational normative model. Optimal integration of different modalities’ cues
has been shown for vision and touch for estimating size (Ernst & Banks, 2002; Gepshtein
et al., 2005; Hillis et al., 2002), the shape of real objects (Helbig & Ernst, 2007), or
distances (Gepshtein & Banks, 2003). Likewise, visual and audio cues are integrated
optimally for estimating the spatial localization of audio-visual stimuli (Alais & Burr,
2004). Optimal integration of different features of the same modality has been shown for
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various visual features. Multiple texture cues, i.e., frequency and orientation or contrast
and orientation, are integrated optimally for estimating the relative location of edges
(Landy & Kojima, 2001), texture and motion cues for estimating the three-dimensional
shape of objects (Scarfe & Hibbard, 2011), texture, stereo, and motion cues for estimating
the three-dimensional location of objects (Svarverud et al., 2010), and two focus cues, i.e.,
eye accommodation and the gradient of retinal blur, for estimating the slant of a surface
(Watt et al., 2005). In addition, much evidence for statistically optimal cue integration
according to weighted linear combinations was found for the integration of texture and
disparity cues for estimating surface slant (Girshick & Banks, 2009; Hillis et al., 2002;
Hillis et al., 2004; Knill & Saunders, 2003; Saunders & Chen, 2015). In contrast to all
other studies, Saunders and Chen (2015) also integrates an informative Gaussian prior,
treating it like an additional cue, as explained above.

Nearly all cue integration approaches assume conditionally independent cues or a very
small correlation that allows approximating cue integration with the independence as-
sumption (Scarfe, 2022). While assuming conditional independence of the cues given the
true state s as for the linear weighting above is mathematically convenient, it is not always
realistic. If the cues are information from different modalities or senses (such as vision and
touch in the work of Ernst and Banks (2002)), the independence assumption is plausible
(Ernst & Bülthoff, 2004; Oruç et al., 2003), but not if the cues are distinct features from
the same modality (Oruç et al., 2003). Oruç et al. (2003) showed how to correct the
weights in (2.19) for correlated cues. In particular, the weights should be computed as in
(2.22) but with corrected reliabilities. For two correlated cues, the corrected reliabilities
are reduced by a term proportional to their correlation ρ,

r′i = ri − ρ
√
r1r2, i = 1, 2. (2.24)

This linear weighting with corrected reliabilities still maximizes the integrated reliability.
However, this integrated reliability is lower than it would be for uncorrelated cues (Oruç et
al., 2003). For some human subjects, Oruç et al. (2003) showed that they integrate the two
cues texture gradient and linear perspective for estimating the slant of a plane according
to a linear combination with corrected weights as in (2.24). However, the respective
correlations were derived from the inferred weights of the subjects instead of estimated
separately. Other subjects’ behavior could not be described well with a linear combination
with weights as in (2.24). Future research may investigate more broadly how humans
integrate correlated cues.

While in multiple studies humans were shown to integrate cues according to a linear weight-
ing approach, note that for all those studies, it is not clear if humans internally perform
linear weighting while computing appropriate weights from some perceived stimulus prop-
erties that co-vary with cue uncertainty or if they represent and multiply the Gaussian
likelihoods’ densities in their brains (Knill & Pouget, 2004). However, a strong argument
for the latter are perceptual problems for which the assumptions given above are not met,
e.g., no Gaussian distributions can be assumed and thus the linear weighting approach is
not appropriate. Nonetheless, also for such problems, human behavior is well described
by the resulting normative models of cue integration.

A popular example of this is the work of Saunders and Knill (2001), who examine how
humans integrate stereo and skew symmetry cues for estimating the orientation of a sur-
face. While they assume stereo and skew symmetry cues to be conditionally independent,

20 Background



the likelihood for skew symmetry is strictly non-Gaussian. Therefore, they propose a
non-linear Bayesian model for cue integration according to (2.15) with the non-Gaussian
likelihood for skew symmetry and a Gaussian likelihood for stereo. Their model describes
human cue integration well, unlike the weighted linear combination approach in (2.19).

In any case, regardless of any assumptions on independence or special distributions for
the cues’ likelihoods, Bayes’ rule (2.14) with appropriate likelihood functions and prior
distributions is the rational choice for cue integration. The cues as well as the target
variable s might be continuous or discrete, and appropriate likelihood functions can model
the cues’ distributions conditioned on the state s. In particular, with a joint likelihood
for all cues, as in (2.14), independence as well as dependence between the cues can be
modeled.

Depending on the assumptions about the data-generating process, i.e., whether the state
s is discrete or continuous, how the cues are generated from s, and whether they are
independent or dependent, it can be difficult to define a normative model, i.e., to choose
appropriate likelihood functions and priors. Also, depending on this choice, inference in
the model and thus cue integration can be more difficult than with Gaussian likelihoods.
In particular, the posterior over s might not be available in closed form, in which case we
have to resort to approximate parameter estimation algorithms, such as Gibbs sampling
(Section 2.6).

2.8 Classifier Fusion as Parameter Estimation

Similarly to cue integration, classification can also be seen as parameter estimation in
a generative model. Here, the generative model consists of a discrete truth value y that
generates some features x1, . . . , xn, which might depend on each other in some way (Figure
2.5(a)). The truth value y can take on C different values, where C is the number of possible
classes to be distinguished. The task in classification is to estimate the latent truth value
y from observed features x1, . . . , xn.

As for cue integration, estimating the truth value y from features x1, . . . , xn in a normative
or optimal way is achieved by inferring the posterior distribution of y given x1, . . . , xn

p(y|x1, . . . , xn) ∝ p(x1, . . . , xn|y)p(y) (2.25)

y

x1 x2 xn. . .

(a) dependent features

y

x1 x2 xn. . .

(b) independent features

Figure 2.5: Generative models of classification with dependent (a) and independent (b) features
x1, . . . , xn generated from truth value y.
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from the joint likelihood p(x1, . . . , xn|y) and some prior on y p(y). If conditional inde-
pendence of the features given y can be assumed, the generative model of classification
reduces to the graphical model shown in Figure 2.5(b), and the posterior distribution is
proportional to a product of the prior p(y) and the likelihoods of individual features xi
p(xi|y)

p(y|x1, . . . , xn) ∝ p(y)
n∏
i=1

p(xi|y). (2.26)

Classifiers are algorithms to estimate the truth value y from observed features x1, . . . , xn.
In particular, they are functions f that map the input features x1, . . . , xn to a truth value
or class label y (K. P. Murphy, 2022),

f : x1, . . . , xn → y. (2.27)

To quantify the uncertainty of a classifier’s prediction y for specific features x1, . . . , xn,
probabilistic classifiers do not directly output a discrete truth value y but a categorical
probability distribution p(y|x1, . . . , xn) over all possible classes,

f : x1, . . . , xn → p(y|x1, . . . , xn), (2.28)

which is a vector of dimensionality C consisting of probabilities p1, . . . , pC (K. P. Murphy,
2022). pi represents the conditional probability that y is of value i given x1, . . . , xn, p(y =
i|x1, . . . , xn). Accordingly, all probabilities pi sum to 1. A discrete predicted label ŷ can
be obtained from the returned categorical distribution by selecting the most likely class,
ŷ = arg maxi p(y = i|x1, . . . , xn).

A training set of L labeled instances {xl, yl}Ll=1 with xl as the feature vector x = [x1, . . . , xn]
of instance l can serve to train the classifier. The trained classifier can then be used to
classify a test set of M unlabeled instances {xm}Mm=1, i.e., to return their predicted labels
ŷm or the respective categorical probability distributions p(y|xm).

Training and classification can be realized by defining a generative model as in Figure 2.5
with appropriate likelihood functions and priors, learning its parameters from observed
training data, and inferring the posterior p(y|x1, . . . , xn) of new unseen features x1, . . . , xn
according to (2.25) or (2.26) (Bishop, 2006). Examples of such generative classifiers are
the Naïve Bayes classifier and logistic regression as a special case of a Naïve Bayes classifier
(Bishop, 2006). However, sometimes it is hard to find and infer a generative model of the
data. In these cases, discriminative models can be used, which assume some functional
form of the probability p(y|x1, . . . , xn) and directly estimate its parameters from observed
training data (Bishop, 2006). Logistic Regression is usually used as a discriminative model,
where its functional form of p(y|x1, . . . , xn), which can also be derived with a generative
model, is directly fitted to the training data (K. P. Murphy, 2022). Other examples of
discriminative probabilistic classifiers are decision trees or Multilayer Perceptrons with a
logistic or softmax final layer (K. P. Murphy, 2022).

Individual classifiers can be fused to improve the classification performance (Bishop, 2006;
Dietterich, 2000; Hamed & Akbari, 2018; Kittler et al., 1998; Mohandes et al., 2018; Pirs
& Strumbelj, 2019). Classifier fusion methods combine individual classifiers either on the
data level, on the feature level, or on the decision level (Mohandes et al., 2018). For data
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fusion, the data used to train the individual classifiers, which might come from different
sensors or modalities, are combined. The combined collection of data can then be prepro-
cessed to features and used for training a classifier. In the generative model in Figure 2.5
the features x1, . . . , xn thus comprise the data used to train different individual classifiers.
For feature fusion, the feature vectors of the individual classifiers are concatenated and
then used to train a single classifier, so the features x1, . . . , xn in the generative model
in Figure 2.5 are features used to train different individual classifiers. The advantage of
data fusion and feature fusion is that by using raw data or features, interactions between
data or features of different individual classifiers can be considered for classification with
the fused classifiers (Tulyakov et al., 2008). However, the increased amount of data and
long feature vectors increase the complexity of training and classification (Tulyakov et al.,
2008). Also, if a new individual classifier is added to an existing ensemble of classifiers,
the complete ensemble has to be retrained (Schuldhaus et al., 2013). And finally, if the
individual classifiers all use the same data or features, data or feature fusion is useless.
In contrast, for decision fusion, the individual classifiers with their individual data and
features are trained, and their outputs on new, unseen data are fused using a specific
fusion method, which then returns the fused result. Thus, decision fusion can also be de-
scribed with the generative model of classification in Figure 2.5 if the features x1, . . . , xn
are the outputs of n individual classifiers, from which the truth value y needs to be in-
ferred. Decision fusion allows efficient training of individual classifiers of low complexity
which can then be combined to obtain a high-performing fused classifier. Decision fusion
is even possible without knowing the features and exact classification method used for the
individual classifiers (Tulyakov et al., 2008). The individual classifications can also be per-
formed by human forecasters. Moreover, additional classifiers can be sequentially added,
and others can be replaced without retraining the complete ensemble, allowing flexibility
and modularity.

Decision fusion can be performed on three levels. On the abstract level, discrete class
labels are combined, while on the rank level, a ranking of the different possible classes is
used as input for the fusion method. On the score level, the categorical probability distri-
butions returned by probabilistic classifiers are fused (Mohandes et al., 2018), which allows
considering the individual classifiers’ uncertainties quantified in their output distributions.
A fused classifier F that performs decision fusion on the score level can be formalized as

F : x1 = f1(z) = p1(y|z), . . . , xn = fn(z) = pn(y|z)→ y, (2.29)

It estimates the truth value of y given features x1, . . . , xn, where the features are the
categorical probability distributions over y given some feature vector z returned by each
individual classifier fj , pj(y|z), j = 1, . . . , n. In most cases, decision fusion on the score
level also returns a probability distribution over the truth value y given the individual
classifiers’ probabilistic outputs x1, . . . , xn, which results in a fused classifier

F : x1 = f1(z) = p1(y|z), . . . , xn = fn(z) = pn(y|z)→ p(y|x1, ..., xn), (2.30)

Note that the individual classifiers fj can also observe different feature vectors zj , e.g.,
from different modalities. While the performance of such a fused classifier F is of course
dependent on the performances of the individual classifiers fj , the fusion method used for
combining their outputs is of particular importance.
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Several fusion methods have been proposed. Among the most popular ensemble methods
are Bagging (Breiman, 1996) and Boosting (Freund & Schapire, 1996). However, they do
not only combine outputs of multiple individual classifiers as it is done for decision fusion
but also train them either with randomly generated training subsets for Bagging or with
iteratively changing weights on training examples depending on previous misclassifications
for Boosting.

In contrast, decision fusion methods assume the individual classifiers to be given and fixed.
The fusion methods can be seen as algorithms to approximate the truth value y from ob-
served outputs x1 = f1(z), . . . , xn = fn(z) of n individual classifiers fj given some feature
vector z. There is a large number of ad-hoc fusion rules that apply a specific function
to combine individual classifier outputs. On the abstract fusion level, majority voting or
weighted majority voting with weights reflecting the individual classifiers’ performance are
commonly used ad-hoc fusion rules (Mohandes et al., 2018). However, since we are par-
ticularly interested in the classifications’ uncertainties, here we focus on fusion methods
operating on the score level, i.e., fusing the categorical probability distributions returned
by the individual classifiers. The most common ad-hoc fusion methods on the score level
are the sum rule, the median rule, and the product rule, which combine the probability
distributions returned by the individual classifiers using a sum, a product, or the median
respectively, and the min and max rules, which use the minimum or maximum probability
for each class out of all returned individual probability distributions to build the fused
classifier output (Kittler et al., 1998; Mi et al., 2016). For all these rules, the final fused
output vector has to be normalized to sum to 1 to result in a probability distribution if
knowledge of the uncertainty of the fused output is required. The sum rule can also be
extended to weighted averages that assign different weights to different classifiers, e.g., ac-
cording to their performance or reliability. L. Xu and Amari (2009) provide some examples
of weighted averages for decision fusion on the score level.

In addition to these ad-hoc fusion rules, other approaches explicitly learn a mapping
between the n individual classifiers’ outputs x1 = f1(z), . . . , xn = fn(z) and the truth
label y. These approaches can be subsumed as stacking approaches. For stacking or
stacked generalization (Wolpert, 1992), the outputs of the individual base classifiers on
some (test) data set D are used to build a new data set D′, consisting of the base classifiers’
outputs and the respective truth values. Using this new data set D′, a meta classifier can
be trained, which classifies an example based on the outputs of the base classifiers for this
respective example. Thus, this meta classifier learns how the base classifiers behave for
different truth values. In particular, it can learn the base classifiers’ bias, which defines a
systematic deviation of their classifications from the truth value, and their variance, which
describes the variability of their classifications, and can also correct for a potential bias.
Stacking can be performed on all levels of decision fusion, the abstract, rank, and score
level. However, stacking works best on the score level using probabilistic base classifiers
(Ting & Witten, 1999). In this case, the meta classifier can also learn the base classifiers’
uncertainty in addition to bias and variance. While usually stacking is only done on two
levels, the base and the meta level, it can be extended to a stacking pipeline of multiple
levels. Likewise, stacking can also be performed with a single base classifier. In this
case, the respective meta classifier can improve the classification performance because it
learns the bias of the base classifier and can correct for it and can also use information on
variance and uncertainty to provide better classifications. In fact, Wolpert (1992) suggests
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using stacking in almost any classification problem in order to increase the classification
performance.

The actual classification method of the meta classifier can be chosen arbitrarily. There are
approaches that fuse probabilistic base classifiers but use non-probabilistic meta classifiers,
e.g., multi-response linear regression (Ting & Witten, 1999) or decision templates, which
learn the average outputs of all base classifiers for different classes and compute a distance
measure between the templates and a new unseen example for classification (Kuncheva
et al., 2001; Mi et al., 2016). However, although fusing probabilistic classifiers, these meta
classifiers do not provide the uncertainty of their final fused classification. Therefore, other
stacking approaches use probabilistic meta classifiers, such as Naïve Bayes (Ting & Witten,
1999), neural networks (D.-S. Lee & Srihari, 1995; Mohammed et al., 2021), or decision
trees (Elmannai et al., 2022; Ting & Witten, 1999), or meta classifiers that at least provide
estimates of probability, e.g., Support Vector Machines (Elmannai et al., 2022), nearest
neighbor classifiers (Elmannai et al., 2022; Ting & Witten, 1999), or Random Forests
(Elmannai et al., 2022). In addition, the meta classifiers can be Bayesian models, which
explicitly define and learn a generative model of the probabilistic classifier outputs, i.e.,
how the outputs x1 = f1(z), . . . , xn = fn(z) of n base classifiers are generated from the
truth value y according to Figure 2.5. Using this generative model, the posterior over y
given new unseen classifier outputs x1 = f1(z), . . . , xn = fn(z) can be estimated according
to (2.25) or (2.26). Given that the assumed model correctly describes the data-generating
process, fusing classifier outputs in this way is normative. Stacking approaches using
Bayesian models as meta classifiers are also called supra-Bayesian approaches for classi-
fier fusion. Examples of such approaches on the score level that are fusing probabilistic
classifiers are the works of Nazabal et al. (2016) and Pirs and Strumbelj (2019).

As can be seen, there are many different possible methods for fusing probabilistic classifier
outputs, including supra-Bayesian approaches that compute a posterior distribution over
the truth value y given individual classifiers’ outputs in a generative model. Still, an open
question is how to optimally combine probabilistic classifier outputs in order to correctly
consider their uncertainty and reduce the final fused classification’s uncertainty, as shown
by human participants in many experiments on cue integration in human perception (Sec-
tion 2.7). Whereas for many of these cue integration tasks performed by humans it has
been shown that the considered cues can be assumed to be conditionally independent
and Gaussian-distributed, this is not the case if we fuse categorical output distributions
of probabilistic classifiers. Here, different assumptions about the generative model need
to be made. In particular, different prior distributions and likelihood functions need to
be chosen to be able to fuse probabilistic classifiers in a normative way. Also, a potential
correlation between individual base classifiers should be considered since classifiers trained
on the same target are usually correlated (Jacobs, 1995; Kim & Ghahramani, 2012). This
dependence between individual classifiers’ outputs significantly complicates the definition
of a generative model for classifier fusion according to Figure 2.5(a).

Modeling probabilistic classifier outputs in such a generative model in order to optimally
combine them with Bayes’ rule will be discussed in the next chapter, with a special focus
on a potential correlation between the individual classifiers to be fused (Chapter 3). Chap-
ter 4 discusses the bivariate beta distribution, which can, e.g., be used to model correlated
outputs of binary classifiers, and provides a method for estimating its parameters. Chap-
ters 5 – 7 will subsequently present three applications of Bayes optimal classifier fusion in
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different human-robot interaction tasks. In addition, the idea of probabilistically modeling
classifiers is transferred to the combination of subjective probability estimates provided
by human forecasters in Chapters 8 and 9.
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3
NORMATIVE BAYES IAN CLASS IF IER FUS ION

Classification is one of the fundamental tasks in machine learning with broad applicability
in many domains. The most successful classification methods, e.g., in machine learning
competitions, have proven to be classifier ensembles, which combine different classifiers to
improve classification performance (Dietterich, 2000; Kittler et al., 1998; Kuncheva, 2014;
Mohandes et al., 2018; Pirs & Strumbelj, 2019). Apart from the selection and training
of individual classifiers, the fusion method used for classifier combination is of particu-
lar importance for the success of an ensemble, as individual classifiers can be biased or
highly variable. Such fusion methods can equivalently be applied for fusing human experts’
opinions. However, for convenience, most common fusion methods assume independent
classifiers (Mohandes et al., 2018; Schubert et al., 2004), although in practice, classifiers
trained on the same target as well as human experts are highly correlated (Jacobs, 1995;
Kim & Ghahramani, 2012; Winkler et al., 2019).

Different strategies for coping with correlated classifiers have been proposed, such as se-
lecting only those classifiers with the lowest correlation (Faria et al., 2013; Goebel & Yan,
2004; Petrakos et al., 2000; Prabhakar & Jain, 2002; Singh et al., 2018), explicitly decorre-
lating the classifiers before fusion (Ulaş et al., 2012), or weighting them according to their
correlation (Lacoste et al., 2014; Safont et al., 2019; Srinivas et al., 2009; Terrades et al.,
2009). While there are several non-Bayesian models of improved fusion of correlated clas-
sifiers (Baertlein et al., 2001; Drakopoulos & Lee, 1988; Kam et al., 1991; A. J. Ma et al.,
2013; Sundaresan et al., 2011; Veeramachaneni et al., 2008), Kim and Ghahramani (2012)
introduced a Bayesian model for fusing dependent discrete classifier outputs, albeit not
probabilistic outputs, thereby disregarding valuable information about the uncertainty of
decisions. Pirs and Strumbelj (2019) extend the work of Kim and Ghahramani (2012) by
allowing probabilistic classifier outputs. But, their focus is on outperforming related fusion
algorithms using an approximate model of dependent classifiers rather than developing a
theoretically justified normative model of how correlated classifier fusion should work. In
particular, Pirs and Strumbelj (2019) conclude that a fusion method should not outper-
form the base classifiers if these are highly correlated. However, while it is known that
there should be no fusion gain for a correlation of r = 1 between classifiers (Baertlein et al.,
2001; Drakopoulos & Lee, 1988; Kuncheva & Jain, 2000; Petrakos et al., 2000; Tumer &
Ghosh, 1995; Zhou, 2012), this has not been shown for probabilistic classifiers. Here, we
clarify how the correlation between classifiers affects uncertainty reduction through fusion
in general, which is well known in the case of fusing independent probabilistic classifier
outputs (Andriamahefa, 2017).

Therefore, in order to show how correlated probabilistic classifier outputs should be fused
Bayes optimally, in this work we introduce a hierarchical fully Bayesian normative model
of the fusion of correlated probabilistic classifiers. We model the classifiers to be fused
with a new correlated Dirichlet distribution, which is able to model Dirichlet-distributed
random vectors with positive correlation. We derive this model by progressively gener-
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alizing its assumptions and, in this course, also show how to fuse independent classifiers
Bayes optimally. Also, we show that existing fusion methods such as Independent Opinion
Pool are special cases of this model. Evaluations on simulated and real data reveal that
fusion should reduce uncertainty the less, the higher the classifiers are correlated. In par-
ticular, if the classifiers’ correlation is 1, there should be no uncertainty reduction through
fusion. Still, since we learn a model of each base classifier, this does not necessarily mean
that the fused distribution equals the base distributions. Empirical evaluations show the
approach’s superiority on real-world fusion problems.

The rest of the chapter is structured as follows. Section 3.1 discusses related work. In
Section 3.2 we derive Bayes optimal fusion behavior given successively more general as-
sumptions, including Independent Opinion Pool, a Bayesian model for fusing independent
classifiers, and the proposed Bayesian model for fusing correlated classifiers. These models
are evaluated on simulated and real data sets in Section 3.3. In Section 3.4 we conclude
and discuss limitations and future work.

3.1 Related Work

Bayesian models of classifier fusion are known as Supra-Bayesian fusion approaches (Ja-
cobs, 1995). For combining expert opinions, they have already been proposed before
machine learning methods emerged. Considering the opinions as data, a probability dis-
tribution is learned over them, conditional on the true outcome. From this expert model,
a decision maker can compute the likelihood of observed opinions and combine it with its
prior using Bayes’ rule. The resulting posterior distribution over the possible outcomes is
the fusion result (Genest, Zidek, et al., 1986). For instance, Lindley (1985), French (1980),
and Winkler (1981) modeled experts’ opinions using a multivariate normal distribution,
which enabled explicit modeling of their correlations, while Jouini and Clemen (1996) used
copulas to model experts’ correlations.

Such Supra-Bayesian approaches have also been proposed for classifier fusion. Kim and
Ghahramani (2012) model independent discrete classifier outputs by learning a multino-
mial distribution over each row of the classifiers’ confusion matrices, conditioned on the
true class label. This Independent Bayesian Classifier Combination Model (IBCC) is
additionally extended to a Dependent Bayesian Classifier Combination Model (DBCC),
which uses Markov networks to model correlations. Inference is realized with Gibbs sam-
pling, and training is unsupervised. Several authors have extended the work of Kim and
Ghahramani (2012). However, most of them extend the IBCC method, which assumes in-
dependent classifiers. For example, Simpson et al. (2013) infer the IBCC parameters with
variational inference instead of Gibbs sampling. Hamed and Akbari (2018) instead pre-
sented a supervised extension of IBCC. Ueda et al. (2014) additionally introduce another
latent variable into the original IBCC model that determines a classifier’s effectiveness,
i.e., whether it always outputs the same label for a class or varies considerably. Still, as
in the work of Kim and Ghahramani (2012), this line of work considers discrete classifier
outputs without utilizing classifiers’ uncertainties for fusion. Thus, Nazabal et al. (2016)
introduced a Bayesian model for fusing probabilistic classifiers that output categorical dis-
tributions instead of only discrete class labels. The output distributions of each classifier
are modeled with a Dirichlet distribution conditioned on the true class label. Parameter
inference is realized with Gibbs sampling on labeled training data. However, similar to the

28 Normative Bayesian Classifier Fusion



approaches above, the model assumes independent base classifiers and disregards potential
correlations.

In contrast, Pirs and Strumbelj (2019) explicitly model correlations between probabilistic
classifiers. They transform the classifiers’ categorical output distributions with the inverse
additive logistic transform and model the resulting real-valued vectors with mixtures of
multivariate normal distributions with means and covariances conditioned on the true class
labels. While Pirs and Strumbelj (2019) show that this model outperforms other Bayesian
fusion methods on most data sets, the model does not provide a normative account of how
fusion of correlated probabilistic classifiers should work Bayes optimally. In particular,
they conclude that a fused classifier cannot outperform the base classifiers if these are
highly correlated and provide empirical evidence for this conclusion based on one data set.
However, this has not been proven for probabilistic classifiers, where a special focus should
be on uncertainty reduction through fusion. To investigate how this uncertainty reduction
should be affected by correlation, we propose a normative hierarchical Bayesian generative
model of the fusion of correlated probabilistic classifiers. The model’s structure resembles
the structure presented by Pirs and Strumbelj (2019) up to a newly introduced conjugate
prior of the categorical distribution, a correlated Dirichlet distribution for jointly modeling
the classifier outputs. In contrast to Pirs and Strumbelj (2019), we do not require any
transformation of the classifier outputs or mixture distributions and show that the fused
classifier can outperform the base classifiers, even for highly correlated base classifiers.

3.2 Bayesian Models of Classifier Fusion

Throughout this work, we assume K base classifiers Ck, k = 1, . . . ,K to be given and
fixed. For a given example i, each base classifier Ck receives observation oki with cor-
responding true class label ti = 1, . . . , J . Based on observation oki , each classifier Ck
outputs the respective probability distribution p(ti|oki ), which is a J-dimensional categor-
ical distribution. The goal of the present work is to fuse these given classifier outputs
p(ti|oki ) in order to obtain p(ti|o1

i , . . . , o
K
i ). Accordingly, in the following we investigate

Bayes optimal fusion methods with successively more general assumptions. In Section
3.2.1 we start with assuming independent classifiers whose behavior is not known. In
Section 3.2.2 we proceed by modeling each individual classifier’s behavior while still as-
suming independence. The resulting Independent Fusion Model is finally extended to
the Correlated Fusion Model in Section 3.2.3, which explicitly models classifiers’ cor-
relations. Our implementation of the proposed fusion methods is publicly available at
https://github.com/RothkopfLab/Bayesian_Correlated_Classifier_Fusion.

3.2.1 Independent Opinion Pool

By applying Bayes’ rule we can transform the sought p(ti|o1
i , . . . , o

K
i ) to

p(ti|o1
i , . . . , o

K
i ) = p(o1

i , . . . , o
K
i |ti)p(ti)

p(o1
i , . . . , o

K
i )

. (3.1)
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If we assume conditional independence of the observation oki given the true class ti and
expand the fraction by p(ti)K−1, we can reformulate this to

p(ti|o1
i , . . . , o

K
i ) =

∏K
k=1 p(oki |ti)p(ti)K

p(o1
i , . . . , o

K
i )p(ti)K−1 . (3.2)

By again applying Bayes’ rule and commutativity we get

p(ti|o1
i , . . . , o

K
i ) =

∏K
k=1

(
p(ti|oki )p(oki )

��p(ti) �
��p(ti)
)

p(o1
i , . . . , o

K
i )p(ti)K−1

=
∏K
k=1 p(ti|oki )p(oki )

p(o1
i , . . . , o

K
i )p(ti)K−1

=
∏K
k=1 p(ti|oki )

∏K
k=1 p(oki )

p(o1
i , . . . , o

K
i )p(ti)K−1

=
∏K
k=1 p(oki )

p(o1
i , . . . , o

K
i )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
constant

∏K
k=1 p(ti|oki )
p(ti)K−1 ,

(3.3)

where the first fraction is constant, which allows us to rewrite the expression as

p(ti|o1
i , . . . , o

K
i ) ∝

∏K
k=1 p(ti|oki )
p(ti)K−1 . (3.4)

When assuming an uninformed prior on p(ti) this simplifies to a product of the categorical
probability distributions outputted by the individual base classifiers

p(ti|o1
i , . . . , o

K
i ) ∝

K∏
k=1

p(ti|oki ), (3.5)

which needs to be renormalized to sum to 1.

Thus, if we assume that the observations and with them the outputs of all base classifiers
are conditionally independent given ti with an uninformed prior on ti, the Bayes optimal
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Figure 3.1: Two examples of fusion with Independent Opinion Pool. In (a), fusing two non-
conflicting distributions leads to uncertainty reduction, while in (b) the fusion of two conflicting
distributions increases the uncertainty of the fused distribution. In addition, (b) shows that a base
distribution’s impact on the fused distribution is determined by its uncertainty. The less uncertain
first distribution p(ti|o1

i ) affects the fused distribution p(ti|o1
i , o

2
i ) more than the more uncertain

second distribution p(ti|o2
i ).

30 Normative Bayesian Classifier Fusion



fusion rule is a renormalized product of the individual base classifiers’ categorical output
distributions as in (3.5).

This fusion rule, known as Independent Opinion Pool (IOP) (Berger, 1985), leads to intu-
itive results regarding uncertainty. Non-conflicting base distributions reinforce each other
in a way that the fused categorical distribution’s uncertainty is reduced (Andriamahefa,
2017), which is shown in Figure 3.1(a). Equivalently, fusing conflicting distributions in-
creases the uncertainty of the fused distribution (Andriamahefa, 2017), which can be seen
in Figure 3.1(b). Moreover, a base distribution’s impact on the fused result distribution
depends on its uncertainty. In particular, the more uncertain a base distribution, the
less it affects the resulting fused distribution (Hayman & Eklundh, 2002), as also seen in
Figure 3.1(b).

3.2.2 Independent Fusion Model

Although IOP is Bayes optimal given that the prior over ti is uninformed and the base
classifiers’ observations and with them their output distributions are conditionally inde-
pendent given the true label ti, it is an ad-hoc method. Thus, only information given
by the current output distributions can be exploited for fusion. The individual classifiers’
properties, their bias, variance, and uncertainty, cannot be considered. Therefore, the
Independent Fusion Model (IFM) additionally models the behavior of the classifiers to
be fused. Since modeling each classifier’s behavior requires considering their categorical
output distributions as data, here we assume them as given and fixed and define them as
xki = p(ti|oki ) for base classifier Ck and example i. We still assume an uninformed prior
over ti and conditional independence of the classifiers’ output distributions xki .

By observing multiple training examples of classifier outputs xki , a probability distribution
over them conditional on the true class label ti can be learned, p(xki |ti). We set this
distribution to be a Dirichlet distribution, which is the conjugate prior of the categorical
distribution. Thus, if ti can take J different values, each base classifier’s outputs are
modeled by J Dirichlet distributions, p(xki |ti = 1), . . . , p(xki |ti = J). The graphical model
of the proposed IFM is shown in Figure 3.2. The true label ti of example i is modeled
with a categorical distribution with parameter p. If sufficient knowledge about the data
is available, the prior p over true labels ti can be chosen accordingly. For the subsequent
experiments we chose an uninformed prior with p = ( 1

J , . . . ,
1
J ). α holds the parameters

of the Dirichlet distributions that model the classifiers’ outputs. αkj with αkj l > 0 for
l = 1, . . . , J thereby contains the parameters of the Dirichlet distribution over the outputs
of classifier Ck if ti = j. Hence, the output xki of classifier Ck for example i with true label
ti = j is Dirichlet-distributed with parameter vector αkj .

A similar model was proposed by Nazabal et al. (2016). However, their model uses more
parameters since they chose the parameters of Dirichlet distributions to be a product of
two parameters.

3.2.2.1 Parameter Inference

For learning the classifier model parameters α, the posterior distribution over α condi-
tioned on observed classifier outputs x and the corresponding true labels t, p(α|x, t),
needs to be inferred. The training data x consist of I examples composed of K categorical
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Figure 3.2: Graphical model of the Independent Fusion Model (IFM).

output distributions xki , and t holds I true labels ti respectively. Inference is performed
with Gibbs sampling. As an uninformed prior for all elements of αkj we chose a vague
gamma prior with shape and rate set to 10−3. Of course, one could choose any other prior
given additional domain knowledge about the data.

We implement Gibbs sampling using the standard inference tool JAGS (Plummer, 2003),
which allows sampling given a definition of the generative model of the IFM (as shown
in Figure 3.2). In the following, we take the means of inferred posterior distributions as
point estimates for αkj .

3.2.2.2 Normative Fusion Behavior

For fusion, the posterior distribution over ti given all K classifier outputs xki and the
learned model parameters α, p(ti|x1

i , . . . ,x
K
i ,α), needs to be inferred. Since the IFM is a

generative model for independent categorical classifier outputs, performing fusion in this
way is Bayes optimal given the model assumptions. The posterior fused distribution can
be derived analytically:

The joint distribution of the Independent Fusion Model shown in Figure 3.2 is

p(xi,α, ti) = p(ti|p)p(α)
K∏
k=1

p(xki |αkj , ti). (3.6)

Since we observe α and assume the prior over ti, p(ti|p), to be uninformed, this can be
simplified to

p(xi,α, ti) ∝
K∏
k=1

p(xki |αkj , ti). (3.7)

The fusion rule can be obtained by computing the posterior probability of ti = j for
j = 1, . . . , J given the categorical distributions xi and the respective α learned before,
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p(ti = j|xi,αj) ∝ p(ti = j,xi,αj) (3.8)

∝
K∏
k=1

p(xki |αkj , ti = j) (3.9)

=
K∏
k=1

Dirichlet(xki ;αkj ) (3.10)

=
K∏
k=1

1
B(αkj )

J∏
l=1

(xki l)
αkj l
−1
. (3.11)

This unnormalized posterior probability can now be computed for all ti = j for j = 1, . . . , J ,
and normalizing these values to make them sum to 1 gives the posterior fused categorical
distribution.

As (3.10) and (3.11) show, using the IFM, we do not multiply the categorical output
distributions of the base classifiers, such as for IOP, but their probabilities conditioned
on the modeling Dirichlet distributions. Thus, fusion can take into account the variances
and uncertainties of the base classifiers as well as potential learned biases.

How variance and uncertainty are considered for fusion can be demonstrated with the
following example. If a classifier C1 is modeled by three Dirichlet distributions with
parameters α1

1 = (a+n, a, a) for ti = 1, α1
2 = (a, a+n, a) for ti = 2, α1

3 = (a, a, a+n) for
ti = 3, and a classifier C2 is modeled equivalently with α2

1 = (b+m, b, b), α2
2 = (b, b+m, b),

α2
3 = (b, b, b + m), with a, b, n,m > 0, we can reformulate the general fusion rule (3.11)

with K = 2 and J = 3 to

p(ti = j|xi,αj) ∝
2∏

k=1

1
B(αkj )

3∏
l=1

(xki l)
αkj l
−1 (3.12)

∝
2∏

k=1

3∏
l=1

(xki l)
αkj l
−1 (3.13)

= (x1
i 1)α

1
j1
−1(x1

i 2)α
1
j2
−1(x1

i 3)α
1
j3
−1(x2

i 1)α
2
j1
−1(x2

i 2)α
2
j2
−1(x2

i 3)α
2
j3
−1
. (3.14)

If we now exemplarily compute this for j = 1, we get

p(ti = 1|xi,α1) ∝ (x1
i 1)a+n−1(x1

i 2)a−1(x1
i 3)a−1(x2

i 1)b+m−1(x2
i 2)b−1(x2

i 3)b−1 (3.15)
= (x1

i 1)n(x2
i 1)m (x1

i 1x
1
i 2x

1
i 3)a−1(x2

i 1x
2
i 2x

2
i 3)b−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
constant

(3.16)

∝ (x1
i 1)n(x2

i 1)m. (3.17)

Equivalently, for j = 2 and j = 3 we get

p(ti = 2|xi,α2) ∝ (x1
i 2)n(x2

i 2)m (3.18)
p(ti = 3|xi,α3) ∝ (x1

i 3)n(x2
i 3)m (3.19)

and can thus simplify the general fusion rule in (3.11) to

p(ti = j|xi,αj) ∝ (x1
i j)n(x2

i j)m (3.20)
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for j = 1, 2, 3, while again, the resulting values must be normalized to sum to 1. This
case, which was not considered by Nazabal et al. (2016), is of particular interest, because
if we set parameters n = m = 1, the IFM reduces to IOP (Section 3.2.1). However,
increasing n and m results in lower uncertainty of the fused distribution if non-conflicting
base distributions are fused. In addition, if n > m, C1 has a higher impact on the fused
result than C2.

How n and m are related to variance and uncertainty of a classifier can be quantified
with two properties of the Dirichlet distribution, its precision and the entropy of its mean,
which is a categorical distribution. Classifier variance, which defines how concentrated
the classifier’s output distributions are around its average output distribution, can be
quantified with the precision of its corresponding Dirichlet distributions. The precision
of a Dirichlet distribution with parameter α is defined as s = ∑

j αj . It is higher, the
more concentrated the distribution is around the Dirichlet’s mean µ (J. Huang, 2005).
Accordingly, the precision skj of classifier k is the sum of all elements in αkj for each j =
1, . . . , 3. In general, of course, for different values of j the precision can differ. However, in
the example we consider here, for simplicity it is the same for all j = 1, . . . , 3 and therefore
can be regarded as a measure for the classifier’s variance. The higher the precision, the
closer the categorical samples, i.e., the classifier outputs, are to the mean and thus the
lower is the classifier’s variance.

Classifier uncertainty can be described by the entropies of the modeling Dirichlet distribu-
tions’ means. The mean of a J-dimensional Dirichlet distribution with parameterα is a cat-
egorical distribution defined as µ =

[
α1∑
l
αl
, . . . , αJ∑

l
αl

]
. Its entropy Hµ = −∑j µj log(µj)

is the higher, the more uncertain is the Dirichlet distribution’s mean. Accordingly, a
classifier’s uncertainty can be quantified by the entropies of its respective means µkj for
j = 1, . . . , 3. Again, in general the entropies of the means can be different for different
values of j, but due to the chosen example parameters the means’ entropies are equal for
j = 1, . . . , 3. Therefore, we can regard this mean entropy Hµk

j
as the mean entropy of the

modeled classifier. The lower it is, the lower is the average uncertainty of the respective
classifier.

If we increase n while a remains fixed, the precision of C1’s modeling Dirichlet distribu-
tions increases, implying a lower variance of classifier C1. In addition, its mean entropy
decreases, which we show in the following:
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The mean of classifier C1 for j = 1 is µ1
1 =

[
a+n
3a+n ,

a
3a+n ,

a
3a+n

]
. Thus, its entropy is

Hµ1
1

= −
(
a+ n

3a+ n
· log

(
a+ n

3a+ n

)
+ a

3a+ n
· log

(
a

3a+ n

)
+ a

3a+ n
· log

(
a

3a+ n

))
= − 1

3a+ n
((a+ n) · log (a+ n)− (a+ n) · log (3a+ n) + a · log (a)

− a · log (3a+ n) + a · log (a)− a · log (3a+ n))

= − 1
3a+ n

(a · log (a+ n) + n · log (a+ n)− a · log (3a+ n)− n · log (3a+ n)

+ a · log (a)− a · log (3a+ n) + a · log (a)− a · log (3a+ n))

= − 1
3a+ n

(a · (log (a+ n)− log (3a+ n) + log (a)− log (3a+ n) + log (a)

− log (3a+ n)) + n · (log (a+ n)− log (3a+ n)))

= − 1
3a+ n

(
a · log

(
a2(a+ n)
(3a+ n)3

)
+ n · log

(
a+ n

3a+ n

))
.

(3.21)

Differentiating Hµ1
1
w.r.t. n yields

H′µ1
1
(n) =

a
(
log

(
a2(a+n)
(3a+n)3

)
− 3 log

(
a+n
3a+n

))
(3a+ n)2 . (3.22)

The derivative H′
µ1
1
(n) is negative for all a, n > 0, since

H′µ1
1
(n) =

a
(
log

(
a2(a+n)
(3a+n)3

)
− 3 log

(
a+n
3a+n

))
(3a+ n)2 < 0

⇔ log
(
a2(a+ n)
(3a+ n)3

)
− 3 log

(
a+ n

3a+ n

)
< 0

⇔ log
(
a2(a+ n)
(3a+ n)3

)
− log

(
(a+ n)3

(3a+ n)3

)
< 0

⇔ log
(
a2(a+ n)
(3a+ n)3 ·

(3a+ n)3

(a+ n)3

)
< 0

⇔ log
(

a2

(a+ n)2

)
< 0

⇔ a2

(a+ n)2 < 1

⇔ a2 < (a+ n)2

⇔ a < a+ n

⇔ 0 < n.

(3.23)

Hence, Hµ1
1
is decreasing if n increases, which means that higher values for n decrease

the mean uncertainty of classifier C1. Since higher values for n lead to a higher fusion
impact of classifier C1 and higher uncertainty reduction of the fused distribution, this
means that a low variance and a low uncertainty of a classifier increase its fusion impact
and uncertainty reduction.
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If we instead increase a while n remains fixed, again the precision of C1’s modeling Dirichlet
distributions increases. The variance of classifier C1 thus decreases. In contrast, its mean
entropy increases, which can be shown if we differentiate the mean entropy w.r.t. a,

H′µ1
1
(a) =

−n
(
log

(
a2(a+n)
(3a+n)3

)
− 3 log

(
a+n
3a+n

))
(3a+ n)2 . (3.24)

The derivative H′
µ1
1
(a) is positive for all a, n > 0, since

H′µ1
1
(a) =

−n
(
log

(
a2(a+n)
(3a+n)3

)
− 3 log

(
a+n
3a+n

))
(3a+ n)2 > 0

⇔ log
(
a2(a+ n)
(3a+ n)3

)
− 3 log

(
a+ n

3a+ n

)
< 0

⇔ log
(
a2(a+ n)
(3a+ n)3

)
− log

(
(a+ n)3

(3a+ n)3

)
< 0

⇔ log
(
a2(a+ n)
(3a+ n)3 ·

(3a+ n)3

(a+ n)3

)
< 0

⇔ log
(

a2

(a+ n)2

)
< 0

⇔ a2

(a+ n)2 < 1

⇔ a2 < (a+ n)2

⇔ a < a+ n

⇔ 0 < n.

(3.25)

Consequently, in addition to a decreased variance, the mean entropy Hµ1
1
and with it the

classifier’s uncertainty increases if we increase a and keep n fixed. Accordingly, decreasing
a while n remains fixed leads to a decreased precision and hence an increased variance,
while the mean entropy and with it the classifier’s uncertainty decreases. Since according
to (3.20) a (and b for classifier C2) does not affect the fusion behavior, a classifier with a
low variance and a high uncertainty thus has the same fusion impact as a classifier with
a high variance and a low uncertainty. Regarding fusion, variance and uncertainty cancel
out each other.

The IFM does not only consider the individual classifiers’ variance and uncertainty for
fusion but also their potential biases. The bias of a classifier terms the extent to which
the average prediction of the classifier deviates from the true class label. A classifier Ck is
biased if for its Dirichlet parameters it applies that arg maxαkj 6= j for some class j. As
a consequence, also for the Dirichlet’s categorical mean µkj it applies that arg maxµkj 6= j.
Hence, on average, the classifier would misclassify class j as another class.

The example classifiers introduced above can be modified in order to show how biased
classifiers are fused. Accordingly, in the following we derive the fusion rule for classifiers
C1 and C2 with parameters α1

1 = (a + n, a, a) for ti = 1, α1
2 = (a, a + n, a) for ti = 2,

and α1
3 = (a, a, a + n) for ti = 3 for C1 and α2

1 = (b, b + m, b), α2
2 = (b + m, b, b), and

α2
3 = (b, b, b+m) for C2 with a, b, n,m > 0. C2 is a biased classifier; on average it predicts

class 2 if the true label is ti = 1 and class 1 if ti = 2.
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Given these model parameters, for ti = 1 (3.20) can be transformed to

p(ti = 1|xi,α1) ∝ (x1
i 1)a+n−1(x1

i 2)a−1(x1
i 3)a−1(x2

i 1)b−1(x2
i 2)b+m−1(x2

i 3)b−1 (3.26)
= (x1

i 1)n(x2
i 2)m (x1

i 1x
1
i 2x

1
i 3)a−1(x2

i 1x
2
i 2x

2
i 3)b−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
constant

(3.27)

∝ (x1
i 1)n(x2

i 2)m (3.28)

Equivalently, for ti = 2 and ti = 3 we get

p(ti = 2|xi,α2) ∝ (x1
i 2)n(x2

i 1)m (3.29)
p(ti = 3|xi,α3) ∝ (x1

i 3)n(x2
i 3)m (3.30)

As can be seen, if classifier C2 assigns a high probability to class 1, i.e., x2
i 1 is high, our

model interprets this as evidence for ti = 2. Without having learned the classifier’s bias
inherent in the learned Dirichlet parameters, high values for x2

i 1 would, however, be evi-
dence for ti = 1. In particular, this would be the case if Independent Opinion Pool (Section
3.2.1) was used.

Note that if we set K = 1 in (3.11), the IFM can also be used as a meta classifier
for a single classifier C1. This meta classifier classifies a given example i based on C1’s
output distribution x1

i . Thus, we only learn a Dirichlet model of classifier C1 instead of
multiple classifiers. Conditioned on the learned model parameters α1 and the single base
classifier’s output distribution x1

i , then the posterior distribution over all possible class
labels, p(ti = j|x1

i ,α
1
j ), is computed, which is the meta classifier’s result.

3.2.3 Correlated Fusion Model

The IFM introduced in Section 3.2.2 enables optimal fusion of categorical output dis-
tributions of conditionally independent base classifiers, considering the base classifiers’
uncertainty, bias, and variance. However, in practice most classifiers trained on the same
target are highly correlated (Jacobs, 1995; Kim & Ghahramani, 2012). Therefore, we
extend the IFM to a Correlated Fusion Model (CFM) to explicitly model the correlations
between different classifiers’ outputs. As in the IFM, we also model the categorical clas-
sifier outputs xki given the true label ti as a probability distribution. However, instead
of modeling all classifiers independently with individual Dirichlet distributions, we model
the joint distribution p(x1

i , . . . ,x
K
i |ti) with a new correlated Dirichlet distribution that

can express correlations between the classifiers’ outputs.

3.2.3.1 Correlated Dirichlet Distribution

For modeling correlated classifiers’ categorical output distributions with their conjugate
prior, a distribution is required that can model correlations between marginally Dirichlet-
distributed random variables. While previous generalizations of the Dirichlet distribution
focused on more flexible correlations between individual random vector entries x1, . . . , xJ
of a Dirichlet variate x (Connor & Mosimann, 1969; Linderman et al., 2015; Wong, 1998),
here we introduce a correlated Dirichlet distribution that models correlations between two
random vectors x1 = (x1

1, . . . , x
1
J) and x2 = (x2

1, . . . , x
2
J) with arbitrary marginal Dirichlet

distributions.
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A J-dimensional correlated Dirichlet distribution is thereby constructed from 3J inde-
pendent gamma variates A1

1, . . . , A
1
J , A

2
1, . . . , A

2
J , D1, . . . , DJ with shape parameters α1

1 −
δ1, . . . , α

1
J − δJ , α2

1 − δ1, . . . , α
2
J − δJ , δ1, . . . , δJ with α1

l , α
2
l , δl > 0, α1

l , α
2
l > δl, and equal

rate parameter 1. x1 = (x1
1, . . . , x

1
J) and x2 = (x2

1, . . . , x
2
J) with:

xkl = Akl +Dl∑J
n=1A

k
n +Dn

, l = 1, . . . , J, k = 1, 2, (3.31)

are marginally Dirichlet-distributed with Dirichlet(x1;α1
1, . . . , α

1
J) and Dirichlet(x2;α2

1,

. . . , α2
J). Their positive correlation, i.e., positive correlations between x1

l and x2
l for l =

1, . . . , J , is generated by the shared variables D1, . . . , DJ with the correlation parameters
δ1, . . . , δJ . If δl tends to zero for l = 1, . . . , J , x1 and x2 are independent and each follow
a standard Dirichlet distribution. If x1 and x2 have the same marginal distributions with
α1 = α2, their correlation tends to 1 if δ tends to α1 = α2. Thus, if x1 and x2 have
different marginal distributions, the correlation is limited below 1.

The correlated Dirichlet distribution can also be constructed as a pairwise combination of
three independent Dirichlet distributions, which might serve as a more intuitive interpre-
tation of the correlated Dirichlet distribution and its correlations.

To show this we transform the 3J independent gamma-distributed random variables
A1

1, . . . , A
1
J , A2

1, . . . , A
2
J , D1, . . . , DJ into three independent gamma- and three indepen-

dent Dirichlet-distributed random variables U1, U2, U3,W1,W2,W3 with

U1 =
J∑
l=1

A1
l , U1 ∼ Gamma(υ1, 1)

U2 =
J∑
l=1

A2
l , U2 ∼ Gamma(υ2, 1)

U3 =
J∑
l=1

Dl, U3 ∼ Gamma(υ3, 1)

W1l = A1
l∑J

j=1A
1
j

, l = 1, . . . , J, W1 ∼ Dirichlet(α1
1 − δ1, . . . , α

1
J − δJ)

W2l = A2
l∑J

j=1A
2
j

, l = 1, . . . , J, W2 ∼ Dirichlet(α2
1 − δ1, . . . , α

2
J − δJ)

W3l = Dl∑J
j=1Dj

, l = 1, . . . , J, W3 ∼ Dirichlet(δ1, . . . , δJ)

(3.32)

with

υ1 =
J∑
i=1

α1
i − δi, υ2 =

J∑
i=1

α2
i − δi υ3 =

J∑
i=1

δi. (3.33)

With these definitions we can then rewrite construction (3.31) as

x1 = U1
U1 + U3

·W1 + U3
U1 + U3

·W3 = X ′W1 + (1−X ′)W3

x2 = U2
U2 + U3

·W2 + U3
U2 + U3

·W3 = Y ′W2 + (1− Y ′)W3.

(3.34)
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Thus, the correlated Dirichlet distribution can be constructed as a pairwise combination of
the three Dirichlet distributions Dirichlet(α1

1−δ1, . . . , α
1
J−δJ), Dirichlet(α2

1−δ1, . . . , α
2
J−

δJ), and Dirichlet(δ1, . . . , δJ). If the correlation parameters δ1, . . . , δJ tend to 0, weights
X ′ and Y ′ tend to 1 and we obtain two independent Dirichlet distributions for x1 and
x2, Dirichlet(α1

1 − δ1, . . . , α
1
J − δJ) and Dirichlet(α2

1 − δ1, . . . , α
2
J − δJ), which is then

Dirichlet(α1
1, . . . , α

1
J) and Dirichlet(α2

1, . . . , α
2
J). If instead the correlation parameters tend

to the marginal parameters, weights X ′ and Y ′ tend to 0 and x1 and x2 follow the same
marginal Dirichlet distribution and have a correlation close to 1.

Figures 3.3 and 3.4 show four examples of correlated Dirichlet distributions with differ-
ent marginal distributions and correlations. The shown examples demonstrate that the
correlated Dirichlet can model different or equal marginal Dirichlet distributions for x1

and x2 and correlations between 0 (Figure 3.3(a)) and 1 (Figure 3.4(b)). As Figure 3.4(a)
shows, the correlation can also differ for different dimensions of the correlated Dirichlet
distribution.

While no closed-form solution for the correlated Dirichlet distribution is available, sampling
from it is straightforward so that it can be applied to the CFM. Figure 3.5 shows the
CFM’s general graphical model. The only difference to the IFM in Figure 3.2 is that
classifier outputs x1

i , . . . ,x
K
i are jointly correlated-Dirichlet-distributed with parameters

αkj and δj if ti = j. As in the IFM, αkj with αkj l > 0 holds the parameter vector
of the marginal Dirichlet distribution of classifier Ck if ti = j. The new parameter δj
is responsible for the pairwise correlation between the classifier outputs if ti = j. Its
dimensionality is 1× J for K = 2 and (

(K
2
)

+ 1)× J for K > 2 classifiers. For the reduced
case of K = 2 classifiers, Figure 3.6 additionally shows a more detailed graphical model of
the CFM including the latent variables of the correlated Dirichlet distribution. For K = 2,
it must hold that δj l > 0 and δj l < αkj l for l = 1, . . . , J, k = 1, . . . ,K. Figure 3.7 shows the
detailed graphical model of the CFM given in Figure 3.6 forK > 2 classifiers. αkj holds the
marginal parameters of classifier Ck’s Dirichlet model if ti = j. δkm

j holds the correlation
parameters that determine the pairwise correlations between classifier Ck and all other
classifiers Cm, m = 1, . . . ,K,m 6= k if ti = j. Therefore, it applies that δkmj l

= δmkj l
and

equivalently Dkm
j il

= Dmk
j il

. δaj holds the common correlation parameters between all
classifiers C1, . . . , CK if ti = j. Thus, note that for the special case of K = 2 classifiers δj
only consists of δaj .

3.2.3.2 Parameter Inference

We learn the joint classifier model by inferring the posterior distribution over parameters
α and δ given observed classifier outputs x and their true labels t, p(α, δ|x, t), using
Gibbs sampling. For all elements of αkj and δj , we chose a vague gamma prior with shape
and rate set to 10−3, which, however, can be set differently according to prior knowledge
about the data. To increase robustness, inference can also be split up in two steps by
first inferring the marginal Dirichlet parameters α as described in Section 3.2.2.1 and
subsequently inferring the posterior distribution over the correlation parameters given the
inferred marginal parameters, p(δ|x, t,α). This step-wise inference gives the same results
as full inference on data generated from the CFM, but was observed to be more robust
empirically on real data since it guarantees correctly inferred marginal distributions.
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(a) α1 = (2, 5, 2), α2 = (2, 7, 2), δ = (0.01, 0.01, 0.01) → r11 = 0.0, r22 = 0.0, r33 = 0.0
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(b) α1 = (2, 2, 3), α2 = (1, 1, 2), δ = (0.4, 0.4, 0.9) → r11 = 0.26, r22 = 0.24, r33 = 0.29

Figure 3.3: Marginal and joint densities of correlated Dirichlet distributions with selected parameter
values leading to low correlations. The simplexes display the marginal Dirichlet distributions of
x1 and x2, while the joint densities of x1

l and x2
l , l = 1, . . . , 3, are shown for each dimension

of the correlated Dirichlet distribution. In (a) x1 and x2 are independent with dimension-wise
correlations r11 = r22 = r33 = 0.0 between x1

l and x2
l , l = 1, . . . , 3, and different marginals. (b)

shows different marginals with low correlations r11 = 0.26, r22 = 0.24, r33 = 0.29. The joint density
plots were created with kernel density estimation based on 107 samples.
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(a) α1=(10, 50, 20), α2=(5, 25, 20), δ=(0.01, 15, 19.9) → r11=0.07, r22=0.59, r33=0.78
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(b) α1 = (3, 7, 5), α2 = (3, 7, 5), δ = (2.9, 6.9, 4.9) → r11 = 0.97, r22 = 0.98, r33 = 0.98

Figure 3.4: Marginal and joint densities of correlated Dirichlet distributions with selected parameter
values leading to varying and high correlations. The simplexes display the marginal Dirichlet
distributions of x1 and x2, while the joint densities of x1

l and x2
l , l = 1, . . . , 3, are shown for each

dimension of the correlated Dirichlet distribution. (a) shows different marginals with different
dimension-wise correlations r11 = 0.07, r22 = 0.59, r33 = 0.78 between x1

l and x2
l , l = 1, . . . , 3. (b)

shows equal marginals with correlations close to 1, r11 = 0.97, r22 = 0.98, r33 = 0.98. The joint
density plots were created with kernel density estimation based on 107 samples.
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Figure 3.5: Graphical model of the Correlated Fusion Model (CFM).
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Figure 3.6: Detailed graphical model of the Correlated Fusion Model (CFM) for K = 2 classifiers
including all latent variables of the correlated Dirichlet distribution.

As for the IFM, we implement Gibbs sampling using the standard inference tool JAGS
(Plummer, 2003). Since xki l in the CFM is a deterministic variable, and inference tools
such as JAGS do not allow deterministic variables to be observed, as commonly done, we
inserted another random variable into the CFM. This additional variable xki

∗
l is normally

distributed with xki
∗
l ∼ N (xki l, ε) and ε = 10−4. In the following, as for the IFM, we use

the means of the posterior distributions inferred with Gibbs sampling as point estimates
for αkj and δj .

3.2.3.3 Normative Fusion Behavior

The fusion of K categorical base distributions x1
i , . . . ,x

K
i is performed by inferring the

posterior distribution over the true label ti conditioned on the base distributions xki and
the learned model parameters α and δ, p(ti|x1

i , . . . ,x
K
i ,α, δ). Different from the IFM,

here we cannot derive the fused distribution analytically because we do not have a closed-
form solution for the probability density function of the correlated Dirichlet distribution.
However, by assuming α, δ, and x1

i , . . . ,x
K
i to be observed, inference of latent ti can be

performed with Gibbs sampling using JAGS (Plummer, 2003). From a sufficient number
of samples of ti we can infer the categorical distribution over ti, which is the fused result.
Alternatively inferring ti with variational methods in order to speed up fusion is left for
future work.

Note that if we let all correlation parameters δj tend to zero, the CFM reduces to the
IFM, and its fusion behavior coincides with the one we derived analytically for the IFM
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Figure 3.7: Detailed graphical model of the proposed Correlated Fusion Model for K > 2 classifiers.
αk

j holds the marginal parameters of classifier Ck’s Dirichlet model if ti = j. δkm
j holds the

correlation parameters that determine the pairwise correlations between classifier Ck and all other
classifiers Cm, m = 1, . . . ,K,m 6= k if ti = j. Thus, δkmj l

= δmkj l
and equivalently Dkm

j il
= Dmk

j il
.

δaj holds the common correlation parameters between all classifiers C1, . . . , CK if ti = j.
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in Section 3.2.2.2. Thus, variance, uncertainty, and bias of individual classifiers similarly
influence the fusion when fusing with the CFM. Additionally, in contrast to previous
fusion algorithms, our model can be used to investigate how uncertainty reduction through
fusion should be affected by the correlation of the fused classifiers in a normative way. We
examine this in detail with the two examples in the following.

Specifically, we compare the fusion behavior of the CFM for systematically varied corre-
lations between two base classifiers. The blue bars in Figure 3.8 show an example where
the marginal parameters of the correlated Dirichlet distributions are chosen to replicate
IOP fusion behavior for zero correlation (n = m = 1 in (3.20)). The higher the correlation
between the two classifiers, the smaller is the uncertainty reduction through fusion. In
particular, there is no uncertainty reduction if the correlation is r = 1. In this case, the
fused distribution equals the two base distributions.

The orange bars in Figure 3.8 show the fusion results given different correlation levels for
marginal parameters that imply increased uncertainty reduction compared to IOP (n =
m = 2 in (3.20)) for zero correlation because of lower classifier variance and uncertainty.
As can be seen, there is also less uncertainty reduction, the higher the correlation between
both classifiers. However, for r = 1, the fused distribution is not identical to the two base
distributions; its uncertainty is reduced despite the high correlation. Yet, the reason for
this is not fusion but the Dirichlet models we learned for each individual classifier. The
resulting fused distribution for r = 1 is similar to the resulting distributions we get if we
use the IFM as a meta classifier individually for each base distribution (see end of Section
3.2.2.2). Hence, the fusion of two highly correlated classifiers does not additionally reduce
the uncertainty. This also applies to the first example. However, in this case, due to the
chosen marginal distributions, the meta classifier results are equal to the base distributions.

Both examples reveal that the uncertainty reduction through fusion should decrease pro-
gressively if the base classifiers’ correlation increases. For a correlation of r = 1, fusion
should not reduce the uncertainty at all. Still, the fused distribution might be less uncer-
tain than the base distributions since uncertainty cannot only be reduced by fusion but
also as a result of modeling each individual classifier’s behavior, i.e., bias, variance, and
uncertainty.

3.3 Evaluation

We evaluate our model on simulated and real data sets. The fused distributions returned
by the CFM are compared to those of the IFM and IOP and the base distributions. In
addition, we compare the fusion performances to the performances of each classifier’s
meta classifier and the related method proposed by Pirs and Strumbelj (2019). As per-
formance measures, we consider entropy for quantifying uncertainty reduction through
fusion and log-loss for quantifying correctness of classifications. The log-loss, which is a
standard measure for the performance of probabilistic classifiers (Vovk, 2015), penalizes
wrong classifications according to their uncertainty, thus considering both correctness and
uncertainty of a classifier.
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Figure 3.8: Fusion of the base distributions x1
i =x2

i =(0.6, 0.2, 0.2) using the CFM assuming different
marginal parameters and correlations. Each bar represents a categorical distribution consisting of
the probabilities for p(ti = 1), p(ti = 2), p(ti = 3). For the blue bars we assume IOP marginal
parameters, for the orange bars we assume marginals that imply stronger uncertainty reduction.
We progressively increase the assumed correlation between classifiers from 0.0 to 1.0 and show the
corresponding fused distributions as well as the results of the meta classifiers m1

i and m2
i .

3.3.1 Simulated Data Sets

We created different simulated data sets by generating random samples of output distribu-
tions x1

i and x2
i of K = 2 classifiers for different given marginal parameters α, correlation

parameters δ, and true class labels ti with J = 3 possible outcomes according to the gen-
erative model of the CFM (Figure 3.6). To show the normative fusion behavior depending
on the base classifiers’ correlation, for three sets of marginal parameters α, we chose differ-
ent correlation parameters δ respectively that correspond to the correlations 0.0, 0.25, 0.5,
0.75, 1.0 between the two classifiers’ outputs. For all five correlation levels, we generated
25 simulated random test sets on which we evaluate, each consisting of 60 test examples
(20 per class) composed of two categorical distributions and their corresponding class label.
Since the true parameters of the data were known, no training data were required. We
chose the marginal parameters to represent three prototype cases of classifier models in
order to demonstrate that the effect of correlation on the fusion behavior also depends
on the individual classifiers’ marginal Dirichlet models. One of the chosen classifier mod-
els leads to IOP fusion for zero correlation (SIM 1), one represents two classifiers with
decreased variance (SIM 2), and one represents two biased classifiers (SIM 3).

For the first simulated data set SIM 1, we determine the marginal parameters α of the
CFM such that it reduces to IOP if r = 0. As shown in Figure 3.9(a), therefore, the results
of IOP and the IFM are equal regarding entropy and log-loss. The shown entropies reveal
that the higher the correlation between the classifiers is, the more uncertainty is reduced
by fusing with IOP or the IFM. In contrast, when fusing with the CFM, we see less
uncertainty reduction through fusion for higher correlations. Particularly, for r = 1, there
is no uncertainty reduction. The mean entropy is the same as for the two meta classifiers.
Also, the CFM’s mean log-loss is equal to the meta classifiers’ log-loss if r = 1. Thus, as
expected, we see no change in performance through fusion for highly correlated classifiers
when using the CFM. Since we chose the marginals according to IOP fusion, the CFM’s
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performance also equals the performances of the base classifiers. In general, the CFM
performs best at all correlation levels. Particularly for high correlations, it outperforms
the other fusion methods, which assume independence, overestimate uncertainty reduction,
and therefore perform even worse than the base classifiers.

The second simulated data set SIM 2 was generated setting the CFM’s marginal param-
eters α according to the example in (3.20) with n = m = 4, which leads to increased
uncertainty reduction through fusion in comparison to IOP for independent classifiers,
since the modeled base classifiers’ variance is decreased. Accordingly, Figure 3.9(b) shows
significantly lower mean entropies for the IFM than for IOP for all correlation levels. In
contrast, for the CFM, the fused distributions’ mean entropy increases with the correla-
tion such as for SIM 1. If r = 1, the CFM again shows the same entropy as the two meta
classifiers. Hence, the fusion of two highly correlated base classifiers does not reduce the
uncertainty. This is confirmed by the log-loss (Figure 3.9(b)). However, in contrast to SIM
1, here, the meta classifiers’ performances are increased compared to the base classifiers,
and uncertainty is reduced. Therefore, the CFM outperforms the base classifiers also for
a correlation of r = 1. Note that, again, the CFM achieves the lowest log-loss and thus
the best performance for all correlation levels.

For the third simulated data set SIM 3 we generated classifier outputs of two biased
classifiers, which on average predict class 3 if ti = 2 and vice versa. In Figure 3.9(c) we see
similar fusion results for SIM 3 as for the other simulated data sets SIM 1 and SIM 2 in
Figure 3.9(a) and (b): less uncertainty reduction for higher correlations, no fusion gain for
r = 1, and best performance of the CFM compared to other fusion methods. In addition,
for the biased data set SIM 3, we observe a performance decline of IOP compared to the
base classifiers according to log-loss, since IOP reinforces the mainly wrong classifications.
In contrast, the IFM and CFM have learned the bias and thus compensate for it. This
demonstrates the superiority of learning classifier models over ad-hoc methods.

3.3.2 Real Data Sets

In addition to simulated data sets, we also evaluated the CFM on 6 real data sets, Bookies
A, Bookies B, DNA A, DNA B, DNA C, and Bookies C. Bookies A and Bookies B are each
constructed from the odds of two bookmakers for football matches. The target variable
has three possible outcomes (home, draw, away), and for each match, the odds were
transformed to a 3-dimensional categorical probability distribution by normalizing their
reciprocals. Thus, each bookie is considered as a base classifier and each example in the
data sets is composed of two categorical distributions and a true class label. Bookmakers’
predictions were also used for evaluations in the related work by Pirs and Strumbelj (2019).

Bookies A contains predictions of two bookmakers (B365 and BW) for football matches
of the English Premier League1 from 14 seasons from 2005 to 2019. Excluding matches
with missing odds, the data set comprises 5317 examples in total. The correlation between
the bookmakers’ predictions is approximately 1; it ranges from 0.955 to 0.993 in different
dimensions and for different values of ti.

1 https://www.football-data.co.uk/englandm.php
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Figure 3.9: Fusion performances on simulated data in terms of mean entropy and log-loss. We
compare the performances of base classifiers C1, C2, the three fusion methods IOP, IFM, and
CFM, and the meta classifiers M1, M2. We show the fusion behavior for five levels of correlation
between the base classifiers and different marginal model parameters, implying IOP fusion (a),
higher reinforcement due to decreased classifier variance and uncertainty (b), and the fusion of
two biased classifiers (c). Standard deviations are shown as error bars. Note that we connect the
means for better readability, although there are no evaluated points in between them.
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Bookies B consists of the predictions of two bookmakers (B365 and BW) for matches of
the German Bundesliga2 from 14 seasons from 2005 to 2019. Similar to the Bookies A data
set, we excluded matches with missing odds, totaling to 4278 matches. The correlation
between the bookmakers’ predictions is approximately 1; it ranges from 0.955 to 0.996 in
different dimensions and for different values of ti.

The DNA data set from the StatLog project3, which was also chosen for evaluations in
the related work by Pirs and Strumbelj (2019) and Kim and Ghahramani (2012), was
used to construct three more data sets for evaluating the CFM. The original DNA data
set contains DNA sequences in which splice junctions are detected. It consists of 3188
examples with 60 attributes and a target variable with J = 3 possible outcomes. For each
data set DNA A, DNA B, DNA C, we trained K = 2 different classifiers on this data
set. Their categorical output distributions on the corresponding test data set form the
respective data set DNA A, DNA B, DNA C.

For DNA A, we trained two highly correlated classifiers by using the same classification
method (kNN) and the same training data but different hyperparameters (k = 120 and
k = 150). For training we used 10-fold cross-validation. The output distributions in
the 10 test splits form the DNA A data set, totaling to 3188 examples. The correlation
between both base classifiers is approximately 1; it ranges from 0.962 to 0.986 for different
dimensions and values for ti.

For DNA B, we trained two classifiers by using the same classification method (kNN,
k = 50) but different training data. Each classifier was trained on 5% of the DNA data
set, their classifications on the remaining 90% of the data (2869 examples) formed the
DNA B data set. The correlation between both base classifiers ranges from 0.463 to 0.709
for different dimensions and values for ti.

DNA C was created by training two different classifiers, one kNN classifier (k = 50)
and one Random Forest classifier, on the same training set composed of 5% of the DNA
data set. The classifiers’ output distributions on the remaining 95% of the data (3030
examples) construct the DNA C data set. The correlation between the base classifiers’
output distributions ranges from 0.5 to 0.693 in different dimensions and for different
values of ti.

While all of the above data sets consist of the output distributions of only K = 2 classifiers,
we additionally evaluate the CFM on a data set consisting of K = 3 classifiers, Bookies C.
Bookies C is equivalent to Bookies A but additionally includes a third bookmaker’s (IW)
predictions. Thus, it contains the predictions of three bookmakers (B365, BW, IW) for
football matches of the English Premier League4 from 14 seasons from 2005 to 2019. As
Bookies A, excluding matches with missing odds, the data set comprises 5317 examples in
total. Also, the correlation between all three bookmakers’ predictions is approximately 1.

We randomly split each real data set into test and training set, while the test set contains
60 examples (20 per class) and the training set all remaining ones. On each random
training split the model parameters α and δ were inferred, which were then used to fuse
the distributions in the test set. The random splitting was repeated five times with different

2 https://www.football-data.co.uk/germanym.php
3 https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+Sequences)
4 https://www.football-data.co.uk/englandm.php
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random seeds, and means and standard deviations of the resulting performance measures
were computed. For all real data sets, the performances of base classifiers, different fusion
methods, and meta classifiers in terms of entropy and log-loss are shown in Figure 3.10.
Figure 3.10(a) shows the results for all data sets with K = 2 base classifiers, while Figure
3.10(b) shows the results for the Bookies C data set with K = 3 base classifiers.

For the three highly correlated data sets with K = 2 base classifiers, Bookies A, Bookies B,
and DNA A, the CFM’s performance is equal to the performances of the meta classifiers,
both regarding entropy and log-loss. Thus, also on real data we confirm that fusion causes
no uncertainty reduction and no change in performance if the base classifiers are highly
correlated. However, this does not necessarily result in equal performances of the CFM
and the base classifiers. Depending on the Dirichlet models learned for the individual
classifiers, the CFM can still outperform highly correlated base classifiers, which we see
for DNA A. Also, the CFM can perform worse than the base classifiers, e.g., for Bookies
B, which is an effect of too similar Dirichlet models for different class labels ti.

For the less correlated data sets with K = 2 base classifiers, DNA B and C, we see
that the CFM reduces less uncertainty than the IFM but is more certain than the meta
classifiers. Also, the CFM performs best of all fusion methods and better than base and
meta classifiers.

For the Bookies C data set, which consists of K = 3 highly correlated base classifiers,
Figure 3.10(b) shows the same behavior as for the data sets Bookies A and Bookies B
in Figure 3.10(a). The CFM’s performance is equal to the performance of all three meta
classifiers. Thus, also when fusing three highly correlated classifiers fusion with the CFM
causes no uncertainty reduction and no change in performance. Moreover, also for three
classifiers, the IFM and IOP perform worse than the CFM since they assume independence
and overestimate uncertainty reduction.

3.3.3 Comparison to the Model by Pirs and Strumbelj (2019)

The model introduced by Pirs and Strumbelj (2019), which relies on modeling transformed
classifier outputs with a multivariate normal mixture, is the only comparable Bayesian
method for fusing correlated probabilistic classifiers. Contrary to Pirs and Strumbelj
(2019), on simulated and real data we show that although fusion should not reduce the
uncertainty if r = 1, in a normative framework fused classifiers can outperform highly
correlated base classifiers due to the models learned for the individual classifiers. Moreover,
we additionally compared the performances of the CFM and Pirs’ model in terms of log-
loss. As can be seen in Table 3.1, the CFM outperforms on all tested simulated and real
data sets.

A limitation of the proposed algorithm for inference in the CFM is slow fusion as a result of
Gibbs sampling. Therefore, in addition to their performance we also compared the CFM
and the model by Pirs and Strumbelj (2019) in terms of required time for fusion. Fusing
all 60 base distributions in the first random test split of data set DNA B requires 940.92
seconds when using the CFM with 120 parallel chains with 175.000 burn-in samples and
175.000 samples each. Fusing the same test split with the model by Pirs and Strumbelj
(2019) takes only 3.53 seconds. However, note that we intentionally decided to use a large
number of samples to guarantee correctness of the fusion results, whereas time efficiency
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Figure 3.10: Fusion performances on real data in terms of mean entropy and log-loss. For real data
sets with K = 2 (a) or K = 3 (b) base classifiers we compare the performances of base classifiers
C1, . . . , CK , the fusion methods IOP, IFM, and CFM, and the meta classifiers M1, . . . ,MK . Stan-
dard deviations are shown as error bars. Note that we connect the means for better readability,
although there are no evaluated points in between them.
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Table 3.1: Comparison of the performances of the CFM and the model proposed by Pirs and
Strumbelj (2019). We compared performances in terms of log-loss on the simulated data sets SIM
1, SIM 2, SIM 3 with different correlation levels r and the six real data sets Bookies A, Bookies B,
DNA A, DNA B, DNA C, and Bookies C. The table shows means µ and standard deviations σ of
the models’ achieved log-losses.

data set CFM (µ± σ) Pirs & Strumbelj’s
model (µ± σ)

SIM 1 r=0.0 0.834± 0.067 0.915± 0.03
SIM 1 r=0.25 0.867± 0.07 0.925± 0.041
SIM 1 r=0.5 0.89± 0.065 0.938± 0.039
SIM 1 r=0.75 0.94± 0.066 0.955± 0.043
SIM 1 r=1.0 0.944± 0.065 0.96± 0.056
SIM 2 r=0.0 0.412± 0.085 0.582± 0.048
SIM 2 r=0.25 0.489± 0.076 0.607± 0.051
SIM 2 r=0.5 0.583± 0.092 0.66± 0.065
SIM 2 r=0.75 0.604± 0.082 0.687± 0.048
SIM 2 r=1.0 0.672± 0.058 0.717± 0.041
SIM 3 r=0.0 0.701± 0.098 0.836± 0.047
SIM 3 r=0.25 0.782± 0.073 0.869± 0.039
SIM 3 r=0.5 0.836± 0.074 0.887± 0.04
SIM 3 r=0.75 0.844± 0.082 0.901± 0.057
SIM 3 r=1.0 0.865± 0.063 0.893± 0.043
Bookies A 1.056± 0.067 1.165± 0.035
Bookies B 1.108± 0.085 1.176± 0.052
DNA A 0.169± 0.078 0.177± 0.021
DNA B 0.301± 0.067 0.421± 0.043
DNA C 0.298± 0.178 0.351± 0.092
Bookies C 1.056± 0.056 1.297± 0.046

is not in the scope of this work but left for future investigations. We conclude that the
CFM should be chosen if correct fusion is the goal. If instead fast fusion is the goal the
method by Pirs and Strumbelj (2019) can be selected with the risk of incorrect fusion and
performance losses.

3.4 Discussion and Conclusion

In this work, we derived Bayes optimal fusion behavior for probabilistic classifiers, which
explicitly considers the classifiers’ uncertainty, bias, variance, and correlation. The re-
sulting Correlated Fusion Model (CFM) is derived assuming successively more general as-
sumptions. In particular, it subsumes known independent fusion models as special cases,
which are each optimal given their specific assumptions.
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Independent Opinion Pool (IOP) is the Bayes optimal fusion model if the base classifiers’
observations and with them their output distributions are conditionally independent and
we assume an uninformed prior. It considers the uncertainty of individual base classifiers
for fusion and reduces uncertainty in the correct way. Moreover, since it is an ad-hoc
method, IOP does not require any further information about the base classifiers expect
from their current output distribution at hand. In particular, no training data are required
to apply IOP, which makes it suitable for applications with sparse data.

The Independent Fusion Model (IFM) is the Bayes optimal fusion model if we assume
independent base classifiers and an uninformed prior over classes, but, in contrast to IOP,
have some knowledge about the base classifiers’ properties, i.e., their bias, variance, and
uncertainty, from observed training data. The IFM models these properties with Dirichlet
distributions conditioned on the true class label. Thus, for fusion, it can not only consider
the uncertainty of the base classifiers for the current example at hand, but also their
general uncertainty, bias, and variance.

Compared to IOP and the IFM, the Correlated Fusion Model (CFM) is the most general
fusion model. While also assuming an uninformed prior, the CFM does not assume inde-
pendent base classifiers and can explicitly model their correlation using a new correlated
Dirichlet distribution. Thus, it can not only learn the classifiers’ individual properties from
training data, but also the correlations between different classifiers. By this, the CFM nor-
matively specifies how to fuse classifiers considering their bias, variance, uncertainty, and
correlation. In particular, with the CFM we showed that uncertainty reduction through
fusion should be the lower, the higher the correlation between the classifiers is, resulting
in no uncertainty reduction through fusion if r = 1. However, this does not necessarily
lead to equal performances of the fused classifier and the base classifiers if a model for
each classifier is learned.

A limitation of the proposed Correlated Fusion Model is that the improvements in handling
uncertainties come at the price of a high number of required parameters. Additionally, the
inference algorithm proposed in this work, which uses Gibbs sampling, is computationally
expensive and therefore slower compared to alternative previous models and their inference
algorithms. For future work, we thus plan to investigate alternatives to inference via Gibbs
sampling to speed up the inference for fusion.

Still, the proposed normative fusion model offers a new perspective on Bayesian combina-
tion of probabilistic classifiers, thereby clarifying how the correlation between classifiers
affects uncertainty reduction through fusion and subsuming well known pioneering expert
opinion aggregation techniques. Since it additionally outperforms the only comparable
model on all tested data sets, it should be the method of choice if correct Bayes optimal
fusion is the goal. However, as classification could potentially be used in conjunction with
data and tasks with negative societal impact, we encourage responsible deployment of the
proposed approach.
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3.5 Appendix

3.5.1 Model Parameters Used for Evaluation

We evaluated the Correlated Fusion Model on simulated as well as on real data sets. In
the following, we present the model parameters that we chose for generating the simulated
data sets (Section 3.5.1.1) and that were inferred for the real data sets (Section 3.5.1.2).

3.5.1.1 Parameters for the Simulated Data Sets

The parameters we used for generating the simulated data sets used for evaluation in
Section 4.1 are presented in Table 3.2 for the first simulated data set (SIM 1), Table 3.3
for the second simulated data set (SIM 2), and Table 3.4 for the third simulated data set
(SIM 3). Note that the shown correlations can only be generated approximately with the
presented parameters.

3.5.1.2 Parameters for the Real Data Sets

The parameters of the Correlated Fusion Model that we inferred for the five real data
sets with K = 2 base classifiers Bookies A, Bookies B, DNA A, DNA B, and DNA C are
presented in Table 3.5.

For the three data sets Bookies A, Bookies B, and DNA A, the correlation parameters
δ are very close to the marginal parameters α1 and α2, modeling a correlation close to
r = 1 between the two classifiers.

In contrast, for the data sets DNA B and DNA C, we see that the correlation parameters
δ differ more from the marginal parameters α1 and α2. This reflects the lower correlation
between the corresponding base classifiers in these data sets.

Table 3.6 shows the parameters of the real data set Bookies C, which consists of the
predictions of K = 3 bookmakers. Since all three are highly correlated, the common
correlation parameters δa are close to the marginal parameters in α1, α2, α3, while the
pairwise correlation parameters are close to 0.
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Table 3.2: Model parameters of the Correlated Fusion Model that we used to generate the first
simulated data set (SIM 1) for five correlation levels from r ≈ 0 to r ≈ 1. α1 holds the marginal
Dirichlet parameters of classifier C1, α2 the ones of C2, and δ the correlation parameters of the
correlated Dirichlet distribution. The j-th row of each parameter matrix holds the parameters
modeling the classifier outputs of examples with true label ti = j.

correlation α1 α2 δ

r ≈ 0.0


3 2 2

2 3 2

2 2 3




3 2 2

2 3 2

2 2 3




0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1



r ≈ 0.25


3 2 2

2 3 2

2 2 3




3 2 2

2 3 2

2 2 3




0.75 0.5 0.5

0.5 0.75 0.5

0.5 0.5 0.75



r ≈ 0.5


3 2 2

2 3 2

2 2 3




3 2 2

2 3 2

2 2 3




1.5 1 1

1 1.5 1

1 1 1.5



r ≈ 0.75


3 2 2

2 3 2

2 2 3




3 2 2

2 3 2

2 2 3




2.25 1.5 1.5

1.5 2.25 1.5

1.5 1.5 2.25



r ≈ 1.0


3 2 2

2 3 2

2 2 3




3 2 2

2 3 2

2 2 3




2.9 1.9 1.9

1.9 2.9 1.9

1.9 1.9 2.9
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Table 3.3: Model parameters of the Correlated Fusion Model that we used to generate the second
simulated data set (SIM 2) for five correlation levels from r ≈ 0 to r ≈ 1. α1 holds the marginal
Dirichlet parameters of classifier C1, α2 the ones of C2, and δ the correlation parameters of the
correlated Dirichlet distribution. The j-th row of each parameter matrix holds the parameters
modeling the classifier outputs of examples with true label ti = j.

correlation α1 α2 δ

r ≈ 0.0


12 8 8

8 12 8

8 8 12




12 8 8

8 12 8

8 8 12




0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1



r ≈ 0.25


12 8 8

8 12 8

8 8 12




12 8 8

8 12 8

8 8 12




3 2 2

2 3 2

2 2 3



r ≈ 0.5


12 8 8

8 12 8

8 8 12




12 8 8

8 12 8

8 8 12




6 4 4

4 6 4

4 4 6



r ≈ 0.75


12 8 8

8 12 8

8 8 12




12 8 8

8 12 8

8 8 12




9 6 6

6 9 6

6 6 9



r ≈ 1.0


12 8 8

8 12 8

8 8 12




12 8 8

8 12 8

8 8 12




11.9 7.9 7.9

7.9 11.9 7.9

7.9 7.9 11.9
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Table 3.4: Model parameters of the Correlated Fusion Model that we used to generate the third
simulated data set (SIM 3) for five correlation levels from r ≈ 0 to r ≈ 1. α1 holds the marginal
Dirichlet parameters of classifier C1, α2 the ones of C2, and δ the correlation parameters of the
correlated Dirichlet distribution. The j-th row of each parameter matrix holds the parameters
modeling the classifier outputs of examples with true label ti = j.

correlation α1 α2 δ

r ≈ 0.0


7 5 5

5 5 7

5 7 5




7 5 5

5 5 7

5 7 5




0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1



r ≈ 0.25


7 5 5

5 5 7

5 7 5




7 5 5

5 5 7

5 7 5




1.75 1.25 1.25

1.25 1.25 1.75

1.25 1.75 1.25



r ≈ 0.5


7 5 5

5 5 7

5 7 5




7 5 5

5 5 7

5 7 5




3.5 2.5 2.5

2.5 2.5 3.5

2.5 3.5 2.5



r ≈ 0.75


7 5 5

5 5 7

5 7 5




7 5 5

5 5 7

5 7 5




5.25 3.75 3.75

3.75 3.75 5.25

3.75 5.25 3.75



r ≈ 1.0


7 5 5

5 5 7

5 7 5




7 5 5

5 5 7

5 7 5




6.9 4.9 4.9

4.9 4.9 6.9

4.9 6.9 4.9
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Table 3.5: Model parameters of the Correlated Fusion Model that we inferred for the real data
sets with K = 2 base classifiers. α1 holds the marginal Dirichlet parameters of classifier C1, α2

the ones of C2, and δ the correlation parameters of the correlated Dirichlet distribution. The j-th
row of each parameter matrix holds the parameters modeling the classifier outputs of examples
with true label ti = j. Since for different train/test set splits, the inferred parameters are slightly
different, here we show the mean parameters over all five splits for all real data sets.

data
set α1 α2 δ

Bookies
A


6.460 3.365 2.847

5.860 4.018 4.149

3.877 3.459 4.638




7.150 3.781 3.262

6.706 4.572 4.801

4.464 3.922 5.281




6.426 3.343 2.823

5.833 3.993 4.123

3.853 3.435 4.612



Bookies
B


7.239 3.853 3.459

7.087 4.670 4.923

4.788 3.784 4.773




7.673 4.086 3.786

7.409 4.880 5.251

5.112 4.009 5.127




7.210 3.832 3.437

7.058 4.647 4.898

4.765 3.763 4.748



DNA
A


9.655 2.564 3.59

3.585 12.398 4.153

3.432 3.123 7.743




10.301 2.955 4.108

4.177 13.527 4.899

3.848 3.544 8.645




9.616 2.543 3.564

3.558 12.345 4.125

3.409 3.1 7.712



DNA
B


13.176 9.762 12.408

9.235 20.014 14.673

7.141 8.442 16.428




16.403 9.584 14.081

11.073 21.295 16.027

7.840 8.335 16.226




9.004 6.664 7.163

5.838 13.53 8.122

4.968 5.453 10.163



DNA
C


17.313 10.022 19.258

12.478 20.759 22.879

8.517 7.881 21.761




10.359 4.097 9.337

4.335 9.307 9.938

5.528 4.838 19.167




8.014 4.000 8.936

4.237 7.569 8.836

4.989 3.790 14.264
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Table 3.6: Model parameters of the Correlated Fusion Model that we inferred for the real data
set with K = 3 classifiers, Bookies C. α1 holds the marginal Dirichlet parameters of classifier C1,
α2 the ones of C2, and α3 the ones of C3. The δ parameters hold the correlation parameters of
the correlated Dirichlet distribution. δ12 defines the pairwise correlation between C1 and C2, δ13

between C1 and C3, and δ23 between C2 and C3. δa holds the common correlation parameters
for all three classifiers. The j-th row of each parameter matrix holds the parameters modeling the
classifier outputs of examples with true label ti = j. Since for different train/test set splits, the
inferred parameters are slightly different, here we show the mean parameters over all five splits.

data
set α1 α2 α3

Bookies
C


6.456 3.363 2.845

5.856 4.016 4.148

3.872 3.455 4.631




7.14 3.775 3.258

6.694 4.564 4.792

4.456 3.914 5.27




6.033 3.343 2.573

5.484 3.757 3.814

3.594 3.235 4.329


δ12 δ13 δ23

0.448 0.260 0.288

0.394 0.277 0.349

0.298 0.234 0.319




0.037 0.024 0.025

0.031 0.025 0.03

0.027 0.025 0.031




0.034 0.025 0.026

0.031 0.026 0.027

0.028 0.023 0.027


δa

5.931 3.049 2.5

5.392 3.681 3.731

3.514 3.166 4.245
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4
PARAMETER EST IMATION FOR A BIVARIATE BETA
DISTRIBUTION

A special case of the correlated Dirichlet distribution introduced in the previous Chapter
3 is the bivariate beta distribution. Instead of two marginally Dirichlet-distributed ran-
dom vectors, it models two marginally beta-distributed random variables with a positive
correlation. Those beta-distributed random variables can be proportions or probabilities,
e.g., probabilistic forecasts from human experts or classifiers, such as in Chapter 3, but
only for binary problems. Such forecasts, either provided by humans or machine learning
algorithms, are important in many domains, among them finance and economics, business
and marketing, politics, public health, engineering, and meteorological, ecological, and
environmental science (McAndrew et al., 2021).

In theory, these probability estimates can be modeled with an arbitrary distribution on
the interval [0, 1], such as the beta distribution, beta-generated distributions, the Ku-
maraswamy distribution, or any distribution on the real numbers transformed through
the logistic function. However, in many cases the probabilities provided by different ex-
perts or classifiers will be correlated (Jacobs, 1995), e.g., because classifiers have been
trained on the same data or experts have similar knowledge. In order to be able to model
such correlated probabilities, therefore, a bivariate distribution is needed. For example,
one can use bivariate generalizations of the Kumaraswamy distribution (Arnold & Ghosh,
2017), bivariate beta-generated distributions (Samanthi & Sepanski, 2019), or a multi-
variate Gaussian with logistic transformations (Pirs & Strumbelj, 2019). However, the
most common choice for modeling such probabilities is the beta distribution, since it is
the standard distribution for probabilities in Bayesian statistics and is simply more famil-
iar to practitioners than the other distributions (Johnson et al., 1995; Magnussen, 2004).
Therefore, in this work we focus on bivariate beta distributions.

While a multitude of constructions for bivariate beta distributions have been proposed,
they have different constraints and properties, which limit their applicability. We will first
review previous constructions of bivariate beta distributions together with their respective
properties and then examine the most promising construction that can model arbitrary
beta marginals with a positive correlation (Magnussen, 2004), which is a special case of
the correlated Dirichlet distribution introduced in Chapter 3. For this construction of
modeling arbitrary beta marginals with positive correlation, so far, there has not been an
exact method for parameter inference and it has thus rarely been used. Here, we therefore
introduce a new estimation method for this bivariate beta distribution with arbitrary beta
marginals and positive correlation.

Many bivariate beta distributions have been proposed in the literature (Arnold & Ghosh,
2017; Arnold & Ng, 2011; Bran-Cardona et al., 2011; David Sam Jayakumar et al.,
2019; El-Bassiouny & Jones, 2009; Gupta et al., 2011; Gupta & Wong, 1985; Jones,
2002; Koutoumanou et al., 2017; Libby & Novick, 1982; Magnussen, 2004; Nadarajah &
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Kotz, 2005; Nadarajah et al., 2017; Olkin & Liu, 2003; Olkin & Trikalinos, 2015; Orozco-
Castañeda et al., 2012; Samanthi & Sepanski, 2019; Sarabia & Castillo, 2006; Ting Lee,
1996). Among them, some approaches have been derived from general families of bi-
variate distributions, such as the Farlie-Gumbel-Morgenstern family of distributions (e.g.
Gupta & Wong, 1985) and the Sarmanov family of distributions (e.g. Ting Lee, 1996).
Others derived a bivariate beta distribution from a bivariate extension of the F distri-
bution (El-Bassiouny & Jones, 2009; Jones, 2002), whereas Nadarajah and Kotz (2005)
proposed different bivariate beta distributions constructed from products of univariate
beta-distributed random variables. In general, using different copulas one can construct
different bivariate distributions with the same beta marginals (Koutoumanou et al., 2017;
Samanthi & Sepanski, 2019). However, as beta-distributed random variables can easily
be constructed from normalized gamma-distributed random variables, it is natural to try
and generalize this construction to the bivariate case. In this vein, several authors have
introduced correlations through shared gamma-distributed random variables (Arnold &
Ghosh, 2017; Arnold & Ng, 2011; Magnussen, 2004; Olkin & Liu, 2003; Olkin & Trikali-
nos, 2015). The most straightforward case of this construction has been studied by Olkin
and Liu (2003), building on the work of Libby and Novick (1982). They use three inde-
pendent gamma-distributed random variables U1, U2, U3 with respective shape parameters
υ1, υ2, υ3 and same scale parameter to construct

X ′ = U1
U1 + U3

and Y ′ = U2
U2 + U3

. (4.1)

Using the standard construction of beta variates from gamma variates, the joint distri-
bution of the random variables X ′ and Y ′ is a bivariate beta distribution with marginal
distributions Beta(υ1, υ3) for X ′ and Beta(υ2, υ3) for Y ′. The correlation between X ′ and
Y ′, which is obtained through the shared latent variable U3 and its parameter υ3, is in
the range [0,1]. For high values of υ3, the correlation tends to 0 whereas for low values
of υ3, it tends to 1. However, if υ3 is high, the values of X ′ and Y ′ also tend to 0 and if
υ3 is low they tend to 1 accordingly. This behavior severely limits the usefulness of the
distribution for most applications. A further limitation is the constraint that the marginal
distributions share the same second parameter υ3. Thus, the bivariate beta distribution
proposed by Olkin and Liu does not allow for arbitrary beta marginals, which limits its
flexibility in modeling probability forecasts.

Arnold and Ng (2011) proposed a more flexible construction for a bivariate beta distri-
bution. They use five independent gamma-distributed random variables U1, . . . , U5 with
shape parameters υ1, . . . , υ5 and scale parameter 1 to define two correlated random vari-
ables

X = U1 + U3
U1 + U3 + U4 + U5

and Y = U2 + U4
U2 + U3 + U4 + U5

(4.2)

with marginal distributions Beta(υ1 + υ3, υ4 + υ5) for X and Beta(υ2 + υ4, υ3 + υ5) for
Y . Compared to Olkin and Liu (2003), this construction of a bivariate beta distribution
can generate all correlations in the range [-1,1] and marginal distributions with differing
second parameters. Nevertheless, because of how the two marginals share parameters,
not all combinations of parameters of the marginal beta distributions are possible. For
example, the marginals Beta(10, 4) for X and Beta(1, 1) for Y cannot be obtained.
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Olkin and Trikalinos (2015) base their construction of a bivariate beta distribution on the
Dirichlet distribution. U = (U00, U01, U10, U11) is drawn from a 4-dimensional Dirichlet dis-
tribution with parameters υ1, . . . , υ4. By just using three of its components, U00, U01, U10,
new random variables

X = U00 + U10 and Y = U01 + U10 (4.3)

are constructed, with marginal distributions Beta(υ1 + υ3, υ2 + υ4) for X and Beta(υ2 +
υ3, υ1 +υ4) for Y . As Dirichlet-distributed random variables can also be constructed from
gamma random variables, we can equivalently construct X and Y in equation (4.3) from
four independent gamma-distributed random variables U1, . . . , U4 with shape parameters
υ1, . . . , υ4 and equal scale parameter 1, with

X = U1 + U3
U1 + U2 + U3 + U4

and Y = U2 + U3
U1 + U2 + U3 + U4

. (4.4)

As can easily be seen from this construction, all correlations in the range [-1,1] can be
generated. In particular, the correlation tends to -1 if υ3 and υ4 tend to 0 and U3 and U4
will be negligible compared to U1 and U2. In this case X ≈ U1

U1+U2
≈ 1− Y . Similarly, the

higher the values of υ3 and υ4 relative to υ1 and υ2, the more negligible U1 and U2 will be
and the correlation increases to 1 until X ≈ U3

U3+U4
≈ Y . Less obviously, a correlation of 0

is obtained in case υ1 · υ2 = υ3 · υ4 (Olkin & Trikalinos, 2015). Still, this construction of
a bivariate beta distribution does not allow arbitrary beta marginal distributions. Since
all υi are constrained to be positive, for some combinations of marginal distributions the
resulting system of linear equations for the parameters υi has no solution. For example,
the two marginals Beta(2, 2) for X and Beta(1, 1) for Y cannot be generated, regardless
of their correlation.

Magnussen (2004) introduced yet another construction based on six gamma variates.
While all the constructions thus far constrain the parameters of the marginal beta dis-
tributions, this construction does allow for arbitrary beta marginals with positive correla-
tion, thus providing the necessary flexibility to model probability forecasts. Magnussen’s
distribution is a special case of a more general 8-parameter bivariate beta distribution
introduced by Arnold and Ng (2011) and reviewed in Arnold and Ghosh (2017), which
even allows for positive and negative correlations. However, in many applications, it is
enough to model positive correlations, for which the less complex 6-parameter distribu-
tion is sufficient. For example, if X and Y are probability estimates elicited from two
skilled forecasters, we do not expect negative correlations. But we do want to allow for
the possibility that their marginal forecasts have different distributions that should not
be tied together by parameter constraints on the marginals. Hence, the bivariate beta
distribution proposed by Magnussen (2004), which can model arbitrary beta-distributed
marginals with a positive correlation, is an appropriate distribution for modeling correlated
probability forecasts.

However, just like any other distribution, the bivariate beta distribution can only be used
if its parameters can be estimated correctly. While Magnussen (2004) proposes a moment
matching approach for fitting the distribution’s parameters, this approach relies on a rough
and sometimes inaccurate approximation for the covariance. Also, Magnussen (2004) did
not discuss the fact that very similar data can be generated with different parameter values,
which makes it hard to statistically infer the parameters of the bivariate beta distribution
from data without constraining the distribution.
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Therefore, in this work we introduce an alternative approach for estimating this bivariate
beta distribution’s parameters. First, we will derive the full joint distribution, which is
missing in the work of Magnussen (2004), probably because it is intractable. We will then
clarify the relationship between Magnussen’s distribution and the Olkin-Liu distribution
(Olkin & Liu, 2003). Using this relationship with the Olkin-Liu distribution we derive
all product moments and in particular the exact covariance function (and in passing we
correct a small mistake in the product moments from Olkin and Liu (2003)). For parameter
inference, we propose to match moments numerically using the exact covariance we derived.
While other estimation methods such as Bayesian inference could be used (Crackel &
Flegal, 2017), here we focus on moment matching due to its simplicity and efficiency. In
order to make parameter inference unambiguous, we additionally show how to reasonably
constrain the distribution’s parameters. We evaluate the proposed parameter estimation
method in a simulation study and demonstrate its practical use on a real data set consisting
of predictions from two correlated forecasters. In addition, we discuss the relationship
between the distribution’s parameters and the correlation. Finally, we show how to extend
the bivariate beta distribution to the Dirichlet distribution introduced in Chapter 3, for
which the parameter estimation method proposed in this work can also be applied.

The remainder of the chapter is structured as follows. In Section 4.1 we show how to
construct the bivariate beta distribution with arbitrary beta marginals. We continue with
deriving its joint distribution in Section 4.2, its moments in Section 4.3, and correlation
and covariance in Section 4.4. In Section 4.5, we propose and evaluate our approach
for parameter inference. Finally, Section 4.6 shows how to generalize the bivariate beta
distribution to a correlated Dirichlet distribution.

4.1 Construction of a Bivariate Beta Distribution with
Arbitrary Beta Marginals

Magnussen (2004) uses six independent gamma-distributed random variables A1, A2, B1,
B2, D1, D2 that are distributed according to

Ai ∼ Gamma(αi, 1) i = 1, 2
Bi ∼ Gamma(βi, 1) i = 1, 2
Di ∼ Gamma(δi, 1) i = 1, 2,

(4.5)

to construct two bivariate-beta-distributed random variables

X = A1 +D1
A1 +A2 +D1 +D2

and Y = B1 +D1
B1 +B2 +D1 +D2

. (4.6)

The resulting marginal distributions of X and Y are Beta(a1, a2) and Beta(b1, b2) with

a1 = α1 + δ1 a2 = α2 + δ2 b1 = β1 + δ1 b2 = β2 + δ2. (4.7)

The marginals follow immediately from the definition because the sum of gamma random
variables of the same scale is gamma-distributed with the same scale but with the original
shape parameters summed. In contrast to other constructions that were discussed above
(Arnold & Ng, 2011; Olkin & Liu, 2003; Olkin & Trikalinos, 2015), this construction allows
for arbitrary marginal distributions. In particular, when δ1 and δ2 tend to zero, we can
model arbitrary independent marginal distributions Beta(α1, α2) and Beta(β1, β2).
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Since all parameters α1, α2, β1, β2, δ1, δ2 need to be positive by definition, for fixed marginal
distributions Beta(a1, a2) for X and Beta(b1, b2) for Y it must hold that δ1 < δmax

1 =
min(a1, b1) and δ2 < δmax

2 = min(a2, b2). Therefore, for most marginal distributions
the maximum correlation that can be generated is below 1. The higher the difference
between two marginal distributions, the lower the possible maximum correlation. A perfect
correlation approaching 1 can, of course, only be generated for equal marginal distributions,
i.e., if a1 = b1 and a2 = b2 and α1, α2, β1, and β2 tend to 0, as also noted by Magnussen
(2004). Note that this limitation applies to other bivariate distributions that do not allow
for arbitrary marginal beta distributions as well (e.g., Olkin & Trikalinos, 2015).

The construction of this bivariate beta distribution can also be seen as a pairwise combi-
nation of three beta distributions. First transform the six independent gamma-distributed
random variables (4.5) into three independent gamma- and three independent beta-distributed
random variables,

U1 = A1 +A2, U1 ∼ Gamma(υ1, 1)
U2 = B1 +B2, U2 ∼ Gamma(υ2, 1)
U3 = D1 +D2, U3 ∼ Gamma(υ3, 1)

W1 = A1
A1 +A2

, W1 ∼ Beta(α1, α2)

W2 = B1
B1 +B2

, W2 ∼ Beta(β1, β2)

W3 = D1
D1 +D2

, W3 ∼ Beta(δ1, δ2)

(4.8)

with

υ1 = α1 + α2 υ2 = β1 + β2 υ3 = δ1 + δ2. (4.9)

With these definitions we can then rewrite construction (4.6) as

X = U1
U1 + U3

·W1 + U3
U1 + U3

·W3 = X ′W1 + (1−X ′)W3

Y = U2
U2 + U3

·W2 + U3
U2 + U3

·W3 = Y ′W2 + (1− Y ′)W3,

(4.10)

where X ′ and Y ′ are defined as in (4.1) but with υ1, υ2, and υ3 as in (4.9). Furthermore,
X ′ and Y ′ are independent ofW1,W2,W3. If parameters δ1 and δ2 and with them U3 tend
to 0, X ≈ W1 and Y ≈ W2 are independent with marginal distributions Beta(α1, α2) for
X and Beta(β1, β2) for Y . Mixing in the shared component W3 by increasing the values
of parameters δ1 and δ2 increases the correlation between X and Y . If U1 and U2 are
negligible compared to U3 because δ1 and δ2 dominate the parameters, the correlation will
be close to 1 with X ≈W3 ≈ Y and hence X and Y have the same marginal distribution
Beta(δ1, δ2), as mentioned before.
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4.2 Joint Distribution

X and Y in (4.10) are linear transformations of X ′ and Y ′. Given W1,W2,W3 it is easy
to recover X ′ and Y ′ from observed X and Y ,

X ′ = X −W3
W1 −W3

= |X −W3|
|W1 −W3|

= f1(X)

Y ′ = Y −W3
W2 −W3

= |Y −W3|
|W2 −W3|

= f2(Y ).
(4.11)

Note that we can ignore the sign because according to (4.10) X is always between W1 and
W3 and Y between W2 and W3, so that the numerator and denominator always have the
same sign.

As X ′ and Y ′ jointly follow the Olkin-Liu distribution (Olkin & Liu, 2003),

p′(x′, y′) = (x′)υ1−1 (1− x′)υ2+υ3−1 (y′)υ2−1 (1− y′)υ1+υ3−1

B(υ1, υ2, υ3) (1− x′y′)υ1+υ2+υ3
, (4.12)

where B(υ1, υ2, υ3) = Γ(υ1)Γ(υ2)Γ(υ3)
Γ(υ1+υ2+υ3) , the joint distribution of X and Y given W1,W2,W3

is

p(x, y | w1, w2, w3) =
∣∣∣∣df1(x)
dx

df2(y)
dy

∣∣∣∣ p′ (f1(x), f2(y))

= 1
|w1 − w3||w2 − w3|(
|x−w3|
|w1−w3|

)υ1−1 (
1− |x−w3|

|w1−w3|

)υ2+υ3−1 ( |y−w3|
|w2−w3|

)υ2−1 (
1− |y−w3|

|w2−w3|

)υ1+υ3−1

B(υ1, υ2, υ3)
(
1− |x−w3|

|w1−w3|
|y−w3|
|w2−w3|

)υ1+υ2+υ3

= |w1 − w3||w2 − w3|
B(υ1, υ2, υ3)

· |x− w3|υ1−1|x− w1|υ2+υ3−1|y − w3|υ2−1|y − w2|υ1+υ3−1

(|w1 − w3||w2 − w3| − |x− w3||y − w3|)υ1+υ2+υ3

(4.13)

with x between w1 and w3 and y between w2 and w3 according to (4.10). We have not
been able to integrate out w1, w2, w3 from their joint distribution with x and y. However,
we suspect that even if the joint density for X and Y could be expressed in terms of
special functions, computing those might not be efficient enough for parameter inference
for which we will resort to moment matching. Example plots with smoothed samples for
the joint density are shown in Figure 4.1 for several parameter settings showing different
marginal distributions for X and Y and different correlations between X and Y . Sampling
from the bivariate beta distribution is realized with JAGS (Plummer, 2003).

4.3 Moments

As the marginal distributions for X and Y are beta-distributed, their moments are readily
available, even in closed form. Computation of the product moments E(XkY l) is more
challenging but can be realized with help of the work of Olkin and Liu (2003). Looking
at construction (4.10), X and Y are a linear combination of independent beta-distributed
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Figure 4.1: Joint densities of bivariate beta distributions with selected parameter values. The
plots were created with kernel density estimation based on 10 million samples of the respective
distributions. Note that the smoothing is inaccurate at the borders and produces artifacts close to
zero and one as a consequence of smoothing with a symmetric kernel.

Parameter Estimation for a Bivariate Beta Distribution 65



random variables W1,W2,W3 with weights X ′ and Y ′. Thus, we can express the product
moments as

E(XkY l) = E
((
X ′W1 + (1−X ′)W3

)k (
Y ′W2 + (1− Y ′)W3

)l)
. (4.14)

Since X ′ and Y ′ are independent of W1,W2,W3, it is possible to compute the expectation
if the moments of W1,W2,W3, X

′, Y ′ and the product moments of X ′ and Y ′ are known.
W1,W2,W3 as well as the marginals of X ′ and Y ′ are beta-distributed, so their moments
can be computed straightforwardly in closed form. Furthermore, X ′ and Y ′ are jointly
Olkin-Liu distributed according to (4.12), and Olkin and Liu (2003) have shown how to
compute their product moments. However, note that the derivation of E((X ′)k(Y ′)l) in
equation (2.2) in the work of Olkin and Liu (2003) is incorrect and should read

E
(
(X ′)k(Y ′)l

)
=
∞∑
j=0

dA(j)B(υ1 + k + j, υ2 + υ3)
B(υ1 + j, υ2 + υ3)

B(υ2 + l + j, υ1 + υ3)
B(υ2 + j, υ1 + υ3) (4.15)

= Γ(υ1 + υ3)Γ(υ2 + υ3)Γ(υ1 + k)Γ(υ2 + l)Γ(Υ)
Γ(υ1)Γ(υ2)Γ(υ3)Γ(Υ + k)Γ(Υ + l)

∞∑
j=0

(υ1 + k)j(υ2 + l)j(Υ)j
(Υ + k)j(Υ + l)j

1
j! (4.16)

= h · 3F2(υ1 + k, υ2 + l,Υ; Υ + k,Υ + l; 1), (4.17)

with

d = Γ(υ1 + υ3)Γ(υ2 + υ3)
Γ(υ3)Γ(Υ) (4.18)

A(j) = Γ(υ1 + j)
Γ(υ1)

Γ(υ2 + j)
Γ(υ2)

Γ(Υ)
Γ(Υ + j)

1
j! (4.19)

h = Γ(υ1 + υ3)Γ(υ2 + υ3)Γ(υ1 + k)Γ(υ2 + l)Γ(Υ)
Γ(υ1)Γ(υ2)Γ(υ3)Γ(Υ + k)Γ(Υ + l) , (4.20)

where Υ = υ1 + υ2 + υ3 and pFq is the generalized hypergeometric function. Equations
(4.15), (4.18), and (4.19) are taken directly from Olkin and Liu (2003) with a = υ1, b =
υ2, c = υ3. Equations (4.16), (4.17), and (4.20) are our corrections of their equations.

4.4 Correlation and Covariance

The correlation r between X and Y is

r = Cov(X,Y )√
Var(X)Var(Y )

(4.21)

with the known variances of the beta marginals

Var(X) = a1a2
(a1 + a2)2(a1 + a2 + 1)

= (α1 + δ1)(α2 + δ2)
(α1 + δ1 + α2 + δ2)2(α1 + δ1 + α2 + δ2 + 1)

Var(Y ) = b1b2
(b1 + b2)2(b1 + b2 + 1)

= (β1 + δ1)(β2 + δ2)
(β1 + δ1 + β2 + δ2)2(β1 + δ1 + β2 + δ2 + 1) .

(4.22)
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For the covariance of X and Y Magnussen (2004) gives an approximate solution, namely

Cov(X,Y ) ≈ a1a2δ2 + (1 + b1)(1 + b2)δ1
(a1 + b1)(a2 + b2)(1 + a1 + b1)(1 + a2 + b2) , (4.23)

where a1, a2, b1, and b2 are defined based on α1, α2, β1, β2, δ1, δ2 as in (4.7). This approx-
imation is inaccurate for small values of these parameters, e.g., for a1 = a2 = b1 = b2 =
4, δ1 = δ2 = 3, the approximated covariance is Cov(X,Y ) = 0.024, while the true covari-
ance computed from 106 samples of the bivariate beta distribution is Cov(X,Y ) = 0.020.
This might seem like a small difference but it results in an overestimated correlation of
r = 0.854 as opposed to the true correlation of r = 0.730. Even more worryingly, for
a1 = a2 = b1 = b2 = 1, δ1 = δ2 = 4

5 , the approximated covariance is Cov(X,Y ) = 1
9 , which

results in an estimated correlation of r = 4
3 , which is greater than 1 and therefore wrong

by definition.

Given the connection to the Olkin-Liu distribution (Olkin & Liu, 2003), which we derived
in Section 4.3, we therefore proceed to compute the exact covariance between X and Y :

Cov(X,Y ) = E(XY )− E(X)E(Y ) (4.24)

where

E(X) = a1
a1 + a2

= α1 + δ1
α1 + δ1 + α2 + δ2

E(Y ) = b1
b1 + b2

= β1 + δ1
β1 + δ1 + β2 + δ2

(4.25)

are readily available as the means of the beta marginals. We can compute E(XY ) from
(4.14) with k = l = 1, which results in

E(XY ) = E
(
(X ′W1 + (1−X ′)W3)(Y ′W2 + (1− Y ′)W3)

)
= E(X ′Y ′)E(W1)E(W2) +

(
E(X ′)− E(X ′Y ′)

)
E(W1)E(W3)

+
(
E(Y ′)− E(X ′Y ′)

)
E(W2)E(W3)

+
(
1− E(Y ′)− E(X ′) + E(X ′Y ′)

)
E(W 2

3 )

(4.26)

with the moments of the beta marginals from (4.8)

E(W1) = α1
α1 + α2

E(W2) = β1
β1 + β2

E(W3) = δ1
δ1 + δ2

E(W 2
3 ) = δ1(δ1 + 1)

(δ1 + δ2 + 1)(δ1 + δ2)

(4.27)

and (4.10)

E(X ′) = υ1
υ1 + υ3

E(Y ′) = υ2
υ2 + υ3

(4.28)
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with υ1, υ2, and υ3 as defined in (4.9). E(X ′Y ′) can be specialized from the moments
(4.17) above with k = l = 1:

E(X ′Y ′) = h 3F2(υ1 + 1, υ2 + 1,Υ; Υ + 1,Υ + 1; 1) with

h = Γ(υ1 + υ3)Γ(υ2 + υ3)
Γ(υ3)Γ(Υ + 1) · υ1υ2

Υ
(4.29)

and Υ = υ1 +υ2 +υ3 as before. According to Olkin and Liu (2003) there is no closed-form
solution for (4.17) and (4.29). However, using the generalized hypergeometric function the
product moments and thus the covariance between X and Y can be computed numerically
(e.g., by using the hyper function in sympy or the HypergeometricPFQ function in Math-
ematica). Note that with Raabe’s test one can show that the generalized hypergeometric
function 3F2 in (4.29) converges. According to Raabe’s test the series converges if

lim
j→∞

ρj > 1 with ρj = j

(
cj
cj+1

− 1
)
, (4.30)

where cj is the j-th element of the series described by the generalized hypergeometric
function 3F2 in (4.29), which is

cj = (υ1 + 1)j(υ2 + 1)j(Υ)j
(Υ + 1)j(Υ + 1)j

1
j! . (4.31)

Since limj→∞ ρj = 1 + υ3 > 1, the generalized hypergeometric function 3F2 in (4.29)
converges. However, this analysis also suggests that convergence of the series might be
very slow for small υ3 = δ1 + δ2.

4.5 Parameter Inference

Magnussen (2004) used the method of moments to infer the parameters a1, a2, b1, b2
for the marginal distributions. Given these parameters he then matched the empirical
correlation to the correlation for the parameters δ1, δ2 (given marginal parameters a1, a2,
b1, b2) using the approximate solution for the covariance given in (4.23). However, as
shown in Section 4.4 this approximation can lead to very inaccurate correlation estimates.
An additional problem with the distribution is that very similar data can be generated
with different parameter values, as one can see in Figure 4.2(a) and (b). Increasing δ1 and
simultaneously decreasing δ2 or vice versa while keeping the marginal parameters a1, a2
and b1, b2 fixed, can result in very similar correlations, which is shown in Figure 4.2(c).
Since two distributions with very different parameters can lead to extremely similar data, it
is hard to statistically infer the parameters δ1 and δ2 from data: The empirical correlation
alone does not provide enough constraints and differences in higher moments can be subtle.

Therefore, in order to make parameter inference unambiguous, we decided to constrain
the 6-parameter bivariate beta distribution to five parameters: two for each marginal and
one parameter to control the correlation. A reasonable way to constrain δ1 and δ2 is to
set

δ2 = δmax
2
δmax

1
δ1 (4.32)
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Figure 4.2: Different parameters can generate similar data. (a) and (b) show samples generated
from two bivariate beta distributions with the same marginal parameters a = (8, 6), b = (6, 5)
and correlation parameters δ = (3.28, 2.73) for (a) and δ = (5, 1.6) for (b). Both, the data in (a)
and (b) show a correlation of r = 0.47. Correspondingly, (c) shows the correlations generated by
different combinations of δ1 and δ2 given marginal parameters a = (8, 6) and b = (6, 5). Different
combinations of δ1 and δ2 can lead to very similar correlations.

with δmax
1 = min(a1, b1), δmax

2 = min(a2, b2), because this enables the maximum possible
correlation between X and Y when the maximum values for δ1 and δ2 are attained and the
shared component between X and Y is as big as it can be without violating the marginal
constraints.

4.5.1 Moment Matching

Using this constraint (4.32), the model-inherent constraints δ1 < δmax
1 , δ2 < δmax

2 , and the
formula for the correlation derived in Section 4.4, we can now optimize the parameters
numerically to match the empirical moments. First, the marginal parameters a1, a2, b1, b2
are obtained using the standard procedure of moment matching for the beta distribu-
tion. Given the estimated marginal parameters, an estimate of δ1 (and with it δ2) can be
obtained numerically by minimizing the quadratic deviation between the theoretical cor-
relation and the empirical correlation. To avoid the undefined cases δ1 ≤ 0 and δ1 ≥ δmax

1
we bound the optimization between ε and δmax

1 − ε with ε = 0.001. Unless the empirical
correlation is bigger than the maximum correlation that can be attained with the matched
marginals or smaller than 0, it can be matched exactly for some δ1. Otherwise δ1 will take
on its maximum value δmax

1 − ε or its minimal value ε. We implement inference in Python
using the package mpmath (Johansson et al., 2013) for the numerical computation of
the generalized hypergeometric function and the package scipy (Virtanen et al., 2020) for
optimization.

As an example we used this numerical moment matching approach on 5000 data points
generated with parameters a1 = 8, a2 = 6, b1 = 6, b2 = 5, δ1 = 3.28, δ2 = 2.73, equivalent
to the data shown in Figure 4.2(a). We inferred the parameter values â1 = 8.143, â2 =
6.193, b̂1 = 5.882, b̂2 = 4.931, δ̂1 = 3.286, δ̂2 = 2.754. Figure 4.3(a) shows the correlations
implied by different values for parameter δ1 compared to the desired correlation of r̂ = 0.47.
As one can see, the difference between r and r̂ is zero for the inferred δ̂1 = 3.286. Due to
our constraint (4.32), δ̂2 = 2.754 can be computed from δ1. In this case there is an almost
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Figure 4.3: The correlations r implied by different values of correlation parameter δ1 compared to
the desired correlation r̂ given estimates of the marginal parameters a1, a2, b1, b2. δ2 is not displayed
since it can be computed from δ1 using constraint (4.32). rmax is the maximum correlation that
can be reached for the given marginal parameters. (a) shows the first inference example with
a1 = 8.143, a2 = 6.193, b1 = 5.882, b2 = 4.931, r̂ = 0.47, and rmax = 0.864. The difference
between r and r̂ is zero for δ1 = 3.286. In (b) we show the second inference example with
a1 = 0.197, a2 = 0.903, b1 = 0.403, b2 = 1.017, r̂ = 0.314, and rmax = 0.707. The difference
between r and r̂ is zero for δ1 = 0.101. The dotted linear reference line additionally shows that
the relationship between the correlation and δ1 is non-linear.

linear relationship between δ1 and r but this is not true in general, especially for smaller
parameter values.

This can be seen in a second example where we applied our moment matching approach
on 5000 data points generated with parameters a1 = 0.2, a2 = 0.9, b1 = 0.4, b2 =
1, δ1 = 0.1, δ2 = 0.45 and received the inferred parameter values â1 = 0.197, â2 =
0.903, b̂1 = 0.403, b̂2 = 1.017, δ̂1 = 0.101, δ̂2 = 0.462. As seen in Figure 4.3(b), for this
second example the relationship between δ1 and the correlation is not well approximated
by a linear function, in contrast to the first example in Figure 4.3(a). Still, inference works
as for the first example shown above.

4.5.2 Simulation Study

The performance of the proposed approach for parameter inference was evaluated in a
simulation study. We generated data from a bivariate beta distribution using different
marginal parameters, correlation parameters, and different numbers of generated sam-
ples N and inferred δ1 from these data using the proposed moment matching approach.
For half of all considered simulations, X and Y were chosen to have the same marginal
parameters to be able to generate the full range of correlations from 0 to 1, hence
a1 = b1, a2 = b2. All possible combinations of the values in [0.5, 1, 2, 3, 4, 5] for a1 and
a2 were tested while omitting symmetric cases with a1 ≤ a2, resulting in 21 different
marginal distributions. For the remaining simulations we considered differing marginal
distributions. We chose a subset of 7 marginal distributions from the set of marginals
above as [[0.5, 0.5], [1, 1], [1, 4], [2, 2], [2, 4], [3, 3], [4, 5]] and tested inference for all

(7
2
)

= 21
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Figure 4.4: Results of a simulation study for evaluating the proposed moment matching approach
for parameter inference. We generated data from a bivariate beta distribution using different
marginal distributions with different correlations and different numbers of generated samples N
and inferred δ1 from these data. We show inferred δ̂1 against true δ1 for N = 100 samples (a),
N = 500 samples (b), and N = 1000 samples (c). δ̂1 matches δ1, the better the higher the number
of available data samples N .

combinations of different marginals in this set. Thus, in total we inferred parameters for
42 combinations of marginals. The correlation parameters δ1 were chosen as p · δmax

1 with
p = 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99 respectively, in order to show how inference works
for data with different correlations between 0 and the maximum possible correlation for
the respective marginals. δ2 was obtained using the constraint in (4.32). To test the effect
of the number of samples N on the accuracy of parameter inference we evaluated with
N = 100, 500, 1000. For each of the 42 · 7 · 3 = 882 parameter settings, we repeated the
data simulation and inference process 50 times, resulting in 44100 inference results. These
results are displayed in Figure 4.4, for N = 100, 500, 1000 in (a), (b), (c) respectively. We
can see that the inferred δ̂1 match the true value of δ1, the better the higher the number of
available data samples N . The average standard deviations of all inferred δ̂1 are 0.171 for
N = 100, 0.078 for N = 500, and 0.055 for N = 1000. Note that although the generalized
hypergeometric function 3F2 in (4.29) is guaranteed to converge, as we showed in Section
4.4, it can happen that its numerical computation fails due to very slow convergence. In
our simulation study, this error occurred for 2.5% of all inference computations, only for
low values of δ1.

4.5.3 Application on a Real Data Set of Correlated Forecasts

The bivariate beta distribution has broad applicability in many fields as diverse as Bayesian
analysis, where it can model the correlation among priors for Binomial distributions
(Arnold & Ng, 2011), the modeling of proportions of hardwood forests over time, where it
serves to estimate decadal changes in the relative land use of a region (Magnussen, 2004),
the modeling of proportions of electorate voting in a two candidate election, proportions of
substances in mixtures, or brand shares (Gupta et al., 2011), and utility assessment (Libby
& Novick, 1982). Furthermore, the bivariate beta distribution can be used for modeling
probabilities produced by two correlated forecasters. Correlations between forecasters are
quite common, e.g., two bookmakers who base their odds on common information will pro-
duce correlated odds. For the same reason experts in risk assessment will often produce
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Figure 4.5: The predicted probabilities from the chess classifier data set and the inferred bivariate
beta distribution. (a) and (b) show the marginal distributions of X representing classifier 1 (Bayes
Net), and Y representing classifier 2 (Random Forest). For both marginal distributions we show the
relative frequencies of the predictions as well as the beta densities inferred with moment matching.
(c) jointly shows X and Y , which are correlated with approximately r̂ = 0.483. (d) shows a
simulated data set consisting of 1527 samples of a bivariate beta distribution with the parameters
inferred for the chess classifier data set.
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correlated forecasts. Similarly, different machine classifiers produce correlated predictions
when trained on the same data (Jacobs, 1995; Kim & Ghahramani, 2012). These correla-
tions should be taken into account when their predictions are combined, e.g., in different
techniques for classifier fusion (Trick & Rothkopf, 2022, see Chapter 3), since combining
correlated classifiers can otherwise lead to overconfidence and high generalization error
(Ueda & Nakano, 1996). Here, we use such a data set consisting of the predictions of two
classifiers as an illustrative example of the application of the proposed inference method.
Two classifiers, a Bayes Net and a Random Forest, were trained on Alen Shapiro’s chess
(King-Rook vs. King-Pawn) data set (Dua & Graff, 2017; Shapiro, 1987).1 The task is
to predict if King+Pawn will achieve a draw or win in a chess match against King+Rook
based on 36 categorical features of a chess position. For training both classifiers, we
used 10-fold cross-validation. The two classifiers’ predictions on the respective 10 test
sets form the data set we evaluate on. We only considered the predicted probabilities
of winning King+Pawn or draw for all 1527 match instances that ended either with a
win of King+Pawn or a draw. The predicted probabilities of winning King+Rook for the
matches actually won by King+Rook might follow a different distribution and are there-
fore excluded in our example. With the bivariate beta distribution we now model the
probabilities the two classifiers predicted for a win of King+Pawn or a draw.

Figure 4.5 shows the data and the inferred distribution. X is the predicted probability
for King+Pawn winning or a draw of classifier 1, a Bayes Net, and Y the predicted
probability of classifier 2, a Random Forest. In Figure 4.5(a) and (b) we show histograms
of the predictions ofX and Y together with marginal beta densities that were inferred with
moment matching: The parameters are â1 = 2.094, â2 = 0.64 for (a) and b̂1 = 4.44, b̂2 =
0.288 for (b). Figure 4.5(c) jointly shows X and Y with a correlation of approximately r̂ =
0.483. Matching this correlation, too, as described in Section 4.5.1, we obtain δ̂1 = 1.723
and δ̂2 = 0.237. The corresponding correlation is r = 0.483, which matches the data’s
empirical correlation up to numerical precision. Figure 4.5(d) shows a simulated data
set consisting of 1527 samples drawn from a bivariate beta distribution with the inferred
parameters, â1 = 2.094, â2 = 0.64, b̂1 = 4.44, b̂2 = 0.288, δ̂1 = 1.723 and δ̂2 = 0.237. As
can be seen, the generated data set is similar to the real data set in Figure 4.5(c) and
the classifiers’ predictions can thus be modeled reasonably well with this bivariate beta
distribution.

4.5.4 Relationship Between δ1 and the Correlation

We found empirically that over a large range of parameters the following approximate
relationship holds:

r ≈ δ1
δmax

1
rmax, (4.33)

while δmax
1 = min(a1, b1) and rmax is the maximum possible correlation for the given

marginals. While this relationship could be used for approximate inference of δ1, we still
recommend the moment matching approach proposed in Section 4.5.1 that gives exact
results. However, the shown relationship allows interpreting the correlation parameter
δ1. Particularly for equal marginal distribution with a1 = b1 and a2 = b2, for which

1 https://archive.ics.uci.edu/ml/datasets/Chess+%28King-Rook+vs.+King-Pawn%29
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Figure 4.6: The exact correlation computed as in Section 4.4 compared to the approximate correla-
tion computed with equation (4.33) for all parameter configurations used in the simulation study
in Section 4.5.2.

rmax = 1, this interpretation of δ1 is very simple: The fraction of δ1
δmax

1
approximately

matches the generated correlation. For example, if a1 = b1 = 2 and a2 = b2 = 4, for
δ1 = 1 we generate a correlation of r = 0.468 ≈ 1

2rmax = 0.5 with rmax = 1. For differing
marginal distributions, interpreting δ1 is more difficult because rmax must be computed
numerically using the formulas given above. If, e.g., a1 = a2 = 2 and b1 = 1, b2 = 4, with
δ1 = 0.5, we generate a correlation of 0.3 ≈ 0.5

1 rmax = 0.313 with rmax = 0.627. In Figure
4.6, we plot the exact correlation and the approximated correlation computed with (4.33)
for all parameter configurations used in the simulation study in Section 4.5.2. As can
be seen, the relationship in (4.33) holds for all parameter values. The plateaus seen for
approximate correlations of 0.25, 0.5, and 0.75 are a consequence of choosing δ1 = p · δmax

1
with p = 0.25, 0.5, 0.75 in the simulation study (Section 4.5.2) leading to approximate
correlations of 0.25, 0.5, 0.75 for all simulations with equal marginals. We leave it as an
open problem to show when approximation (4.33) holds to what accuracy.

4.6 Generalization to the Correlated Dirichlet Distribu-
tion

The bivariate beta distribution can be generalized to a correlated Dirichlet distribution
(Trick & Rothkopf, 2022, see Chapter 3) in order to model two positively correlated random
vectors X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) with the two marginal vectors being
Dirichlet-distributed. A k-dimensional correlated Dirichlet distribution can be constructed
from 3k gamma-distributed random variables A1, . . . , Ak, B1, . . . , Bk, D1, . . . , Dk with 3k
parameters α1, . . . , αk, β1, . . . βk, δ1, . . . δk distributed according to

Ai ∼ Gamma(αi, 1) i = 1, . . . , k
Bi ∼ Gamma(βi, 1) i = 1, . . . , k
Di ∼ Gamma(δi, 1) i = 1, . . . , k.

(4.34)

These random variables are used to construct the correlated Dirichlet-distributed random
variables X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) with
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Xi = Ai +Di∑k
i=1Ai +∑k

i=1Di

and Yi = Bi +Di∑k
i=1Bi +∑k

i=1Di

. (4.35)

The two resulting marginal distributions are Dirichlet(X;α1 + δ1, . . . , αk + δk) and
Dirichlet(Y ;β1 + δ1, . . . , βk + δk).

Analogous to the example of the bivariate beta distribution in Section 4.5.3, this corre-
lated Dirichlet distribution can be used for modeling non-binary probabilistic predictions
of experts, sensors, or classifiers. This is particularly useful for Bayesian approaches to
classifier or expert fusion, which are the reason why we started working on this distribution
in the first place. For example, in Chapter 3 we apply it to classifier fusion, but instead
of using moment matching – as developed here – we use rather inefficient Markov chain
methods to sample from the posterior distribution over the parameters (Trick & Rothkopf,
2022, see Chapter 3). Being able to explicitly model the correlation between probabilistic
classifiers or probability estimates given by human experts with the correlated Dirichlet
distribution allows Bayes optimal fusion of classifiers or experts, avoids overconfidence of
the ensemble and thereby improves its performance. Another application of the corre-
lated Dirichlet distribution is the generation of stochastic matrices with individual rows
or columns being Dirichlet-distributed and correlated, which can be beneficial for Markov
processes, in optimal control, or reinforcement learning.

The derivations of the product moments and the exact covariance of the correlated Dirich-
let distribution are analogous to the derivations for the bivariate beta distribution shown
in this work. Thus, the parameters of the correlated Dirichlet distribution can also be
estimated using the proposed moment matching approach, extended to the higher dimen-
sionality of the Dirichlet distribution.

4.7 Conclusion

In this work, we discussed a bivariate beta distribution that can model arbitrary beta-
distributed marginals with a positive correlation, which is constructed from six indepen-
dent gamma-distributed random variates. While previous work used an approximate and
sometimes inaccurate method to compute the distribution’s covariance and estimate its
parameters, here, we derived all product moments and the exact covariance, which can be
computed numerically. Based on this analysis we presented an algorithm for estimating
the parameters of the distribution using moment matching and additionally constrained
the distribution’s parameters in order to make parameter inference unambiguous. We
evaluated the proposed inference method in a simulation study, demonstrated its practical
use on a data set consisting of predictions from two correlated forecasters, and discussed
the relationship between the distribution’s parameters and the correlation. Furthermore,
we generalized the bivariate beta distribution to a correlated Dirichlet distribution, for
which the proposed parameter estimation method can be used analogously.
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5
BAYES IAN FUS ION FOR INTENTION RECOGNIT ION IN
HUMAN-ROBOT INTERACTION

A prevalent challenge for our society is an increasing number of elderly people in need
of care while facing a shortage of nursing staff (Kochskaemper, 2018). A promising so-
lution may come from investigating technical solutions such as assistive robots that can
improve the quality of life of elderly people, not just by supporting caregivers but also by
directly providing assistance to affected elderly people. In particular, such assistive robots
can potentially enable even physically handicapped people to stay in their own habitual
environments for a longer time by facilitating harmful or arduous everyday life tasks.

In order to guarantee trouble-free cooperation between human and robot, it is necessary
that the robot recognizes human intentions (Hofmann & Williams, 2007). As humans
exploit multiple modalities such as speech, body language, and situational cues for un-
derstanding intentions (Schrempf et al., 2007), it is reasonable to also take advantage of
multimodal data in automatic intention recognition.

Multimodal intention recognition is beneficial in two kinds of ways. On the one hand,
it offers the possibility to compensate for limited or missing modalities, e.g., a speech
disorder as a consequence of a stroke. On the other hand, through the integration of
information of several modalities the uncertainty about the true intention to be recognized
can be decreased (Ernst & Banks, 2002). This is particularly important in the interaction
between elderly and potentially vulnerable people and robotic systems to ensure safety.
However, the reduction of uncertainty through the use of multiple modalities for intention
recognition was not the focus of previous works.

In order to explicitly consider and appropriately reduce uncertainty, Bayesian classifier
fusion as derived in Chapter 3 can be applied to multimodal intention recognition in human-
robot interaction. Since in human-robot interaction tasks it is difficult to obtain large
training data sets, the ad-hoc fusion rule Independent Opinion Pool, which we discussed in
Section 3.2.1, is of particular interest for human-robot interaction scenarios. In particular,
its conditional independence assumption is plausible for data from different modalities, at
least shown in the context of human perception (Oruç et al., 2003).

Accordingly, here, we propose a multimodal intention recognition system that reduces
uncertainty using classifier fusion with the Bayesian fusion method Independent Opinion
Pool (Berger, 1985) (Figure 5.1). Thereby, we consider the four modalities speech, gestures,
gaze directions and scene objects. For all modalities an individual classifier is trained that
returns a categorical probability distribution over all possible intentions. The resulting
distributions are then fused with Independent Opinion Pool (Berger, 1985). Through the
application of this method for classifier fusion the uncertainty about the intention to be
predicted can be lowered even if the classifiers for the single modalities are individually
inaccurate or uncertain. This is shown in a collaborative task where the human is sup-
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Figure 5.1: An overview over the proposed multimodal intention recognition system, which fuses
the modalities speech, gestures, gaze directions, and scene objects. For all modalities individual
classifiers are learned. Their output distributions are fused with the Bayesian fusion method
Independent Opinion Pool (Berger, 1985) in order to reduce the overall system’s uncertainty.

ported by a 7-DoF robot arm in preparing some food in a kitchen scenario while human
intentions are recognized online using the four considered modalities.

The rest of the chapter is structured as follows. In Section 5.1 related work is discussed.
Section 5.2 explains the chosen approach including methods for classifier fusion and in-
tention recognition from the four considered modalities. In Section 5.3 we evaluate this
approach in a collaborative task with a 7-DoF robot and present corresponding results.
Finally, we conclude with Section 5.4 and discuss possible future work.

5.1 Related Work

Since the combined utilization of multiple modalities can improve the performance and
robustness of a system (Nweke et al., 2019; Rodomagoulakis et al., 2016), there are several
approaches that have already dealt with multimodal intention recognition in human-robot
interaction. The most popular combination of modalities in these works is the use of
speech commands together with gestures (Mollaret et al., 2016; Rodomagoulakis et al.,
2016; Stiefelhagen et al., 2004; Vaufreydaz et al., 2016; Zlatintsi et al., 2018), sometimes
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additionally combined with head poses (Mollaret et al., 2016; Stiefelhagen et al., 2004)
or otherwise face information and movement speed of the respective person (Vaufreydaz
et al., 2016). Gaze was considered as a modality for intention recognition in two previous
approaches, used either in combination with body pose (Yu et al., 2015) or with speech
and button presses (Bannat et al., 2009). Scene objects were only considered in relation
to the human, not as passive parts of the scene (Dutta & Zielinska, 2018; Kelley, Browne,
et al., 2012; Kelley, Tavakkoli, et al., 2012). They were additionally combined with body
poses (Dutta & Zielinska, 2018) or with the considered objects’ states (Kelley, Browne, et
al., 2012; Kelley, Tavakkoli, et al., 2012). Two further proposed systems that considered
completely different modalities are the work of W. Xu et al. (2015), which combined
force sensor and laser rangefinder data for recognizing motion intentions, and the work
of Kulic and Croft (2003), which employed multiple physiological signals such as blood
volume pressure for the automatic recognition of human approval of a robot’s actions.
As can be seen, there are several systems that consider multiple modalities for intention
recognition. However, none of the works has combined the four modalities speech, gestures,
gaze directions, and scene objects as it is done in this work.

Among all the approaches discussed so far, there are some that not only deal with intention
recognition in human-robot interaction but especially address elderly assistance, which is of
particular interest in this work. Vaufreydaz et al. (2016) worked on the automatic detection
of the intention to interact with a robot. Considered data were face size and position,
speech, shoulder pose rotation, and movement speed. These data were concatenated to
form a single feature vector which was classified either by a Support Vector Machine or
a Neural Network. Thus, feature fusion was conducted instead of classifier fusion, which
would fuse the outputs of individual classifiers. Mollaret et al. (2016) also dealt with the
recognition of an intention for interaction with an assistive robot. Using head and shoulder
orientation and voice activity the corresponding intention could be inferred with a Hidden
Markov Model. Here, raw data instead of features were used for fusion but again not the
outputs of individual classifiers.

W. Xu et al. (2015) proposed a walking-aid robot and in this context focused on recognizing
human intentions in terms of intended walking velocities. Data were captured from force
sensors and a laser rangefinder and the estimated velocities were fused with a Kalman
filter. Even though here, outputs of individual estimators were fused, the study only dealt
with a continuous size instead of category labels.

Rodomagoulakis et al. (2016), on the other hand, fused outputs of classifiers working
on discrete categories. In order to enable people with limited mobility to interact with
a robotic rollator, they recognized intentions considering speech and gestures. The re-
spective classifiers’ output scores for all possible intentions were fused by a weighted linear
combination with tunable weights while the intention with the highest fused score was pre-
dicted. Another work operating on classifier outputs for fusion by Zlatintsi et al. (2018)
proposed an intention recognition system for an assistive bathing robot based on speech
and gestures. They applied a late fusion scheme meaning that an intention was chosen
as the detected one if it was ranked highest by the speech classifier and among the two
highest ranked intentions according to observed gestures. Although these two works fuse
discrete classifiers’ outputs, these outputs are not treated probabilistically, so uncertainty
reduction is not possible.
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In fact, all approaches regarded so far perform modality fusion for intention recognition.
Some even do so by fusing outputs of individual classifiers. However, none of them con-
siders uncertainty for fusion or attempts to reduce the uncertainty of the final decision.
Instead, they are exclusively concerned with improving the system’s accuracy and robust-
ness. This is also the case for works about multimodal intention recognition in other
contexts than elderly assistance (Yu et al., 2015).

Some specialized approaches for audio-visual speech recognition (Gurban & Thiran, 2008;
H. Liu et al., 2014) considered uncertainty by performing uncertainty-based weighting for
the fusion of multiple classifiers’ outputs. In these works, the respective two categorical
probability distributions returned by two individual classifiers for audio and visual input
were combined by a weighted sum. The respective weights were computed from the indi-
vidual distributions’ uncertainties, quantified e.g., with entropy (Gurban & Thiran, 2008).
Consequently, the more uncertain distribution got the lower weight and by this had a
lower influence on the fused distribution. Whereas it is desirable to consider uncertainty
for determining the individual distributions’ impact on the fusion result, a weighted sum
of categorical distributions does not necessarily reduce uncertainty, because it results in an
average of the distributions which is less or equally certain by definition. However, uncer-
tainty reduction is one of the biggest advantages of fusing different classifiers’ distributions
(Nweke et al., 2019).

Consequently, another method is needed that not only determines each distribution’s im-
pact on the fused resulting distribution based on its uncertainty but also reduces the
uncertainty of this fused distribution. A suitable method that meets this requirement
is the Bayesian fusion method Independent Opinion Pool (Andriamahefa, 2017; Berger,
1985), which we use in our approach (Section 5.2.1). It basically multiplies the individual
probability distributions for fusion. The method has already been applied for different fu-
sion tasks, among them the fusion of geological data from different measurement locations
(Elsaesser, 2007), of laser rangefinder data for semantic labeling of places (L. Shi et al.,
2010), and of camera data for robust robot navigation (Stepan et al., 2005). However,
Independent Opinion Pool has not been used for multimodal intention recognition so far
in order to explicitly reduce uncertainty. All in all, to the best of our knowledge there is
no work that uses the four modalities we consider for intention recognition together with
a method that targets uncertainty reduction.

5.2 Multimodal Intention Recognition

In this work, an approach for multimodal intention recognition is introduced which focuses
on reducing the uncertainty about the intention to be recognized. As intentions we define
atomic action intents for predefined tasks such as the intention for a handover of an object.
Since we represent these intentions as discrete categories, recognizing them can be seen
as a classification problem. Our approach applies classifier fusion which fuses the outputs
of individual and independent base classifiers instead of e.g., fusing directly the raw data
or respective feature vectors. For this reason, for each of the four considered modalities,
a classifier was trained on its own data from the respective modality. Each individual
classifier returns a categorical probability distribution over all possible intentions as output,
which contains a probability for each possible intention. All of these base classifiers could
perform intention recognition on their own. However, their output distributions are fused
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in order to decrease uncertainty and improve performance. An overview of the proposed
approach is shown in Figure 5.1.

5.2.1 Classifier Fusion with Independent Opinion Pool

Our principal motivation for combining multiple modalities is uncertainty reduction. First,
the fusion of two non-conflicting distributions, in the most extreme case two equal distribu-
tions, should result in a fused distribution with a lower entropy than those of the respective
base distributions. Second, the uncertainty of each base distribution, e.g., in terms of its
entropy, should determine the influence of the distribution on the fused result in a way
that an uncertain distribution’s influence is lower.

In order to achieve uncertainty reduction as it is described above, we apply the Bayesian
fusion method Independent Opinion Pool (Berger, 1985) for fusion of the n categorical
probability distributions p(y|xi) over intentions y given modality data xi. This method
assumes that the base classifiers’ modality data xi and with them their output distributions
are conditionally independent given the true class label, which is the true underlying
intention y in our case. Furthermore, a uniform distribution over all possible classes p(y)
is assumed a priori. By applying Bayes’ rule with these assumptions, the fusion can
be conducted by simply multiplying the underlying base distributions returned by each
classifier and renormalizing the resulting categorical distribution so that it sums to 1,

p(y|x1, . . . , xn) ∝
∏n
i=1 p(y|xi)
p(y)n−1

uniform
prior∝

n∏
i=1

p(y|xi). (5.1)

Given the two assumptions conditional independence and an uninformed prior, fusing clas-
sifiers in this way is Bayes optimal, meaning that the resulting posterior fused distribution
is the correct fusion result.

Two advantages of Independent Opinion Pool for fusion are reinforcement and mitigation
(Andriamahefa, 2017). Reinforcement describes the first criterion for uncertainty reduction
we set in the previous paragraph. In case the distributions returned by the individual base
classifiers are non-conflicting and thus predict the same class, the uncertainty and with it
the entropy of the resulting fused distribution is reduced compared to those of the base
distributions (Figure 5.2(a)). Mitigation means that conflicting base distributions cause
a fused distribution with a higher uncertainty (Figure 5.2(b)). This might seem to be a
contradiction to this work’s goal of uncertainty reduction but is indeed desirable as in case
that cues from different modalities are conflicting the resulting fused distribution should
reflect this.

The second criterion for uncertainty reduction is also accomplished. Using Independent
Opinion Pool for fusion, each base distribution’s uncertainty determines its impact on the
fusion result. The fusion impact of an uncertain base distribution is lower than that of
a more certain one (Figure 5.2(b)). Hereby, the fusion impact of each base distribution
is only dependent on its current uncertainty and is thus recomputed online for every new
multimodal data example.
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Figure 5.2: Examples of classifier fusion with Independent Opinion Pool (Berger, 1985). When
used for classifier fusion, Independent Opinion Pool leads to reinforcement, which means that
two non-conflicting distributions result in a more certain fused distribution (a). It also leads to
mitigation, meaning that the fusion of two conflicting distributions causes an increased uncertainty.
Meanwhile, the more certain distribution has a higher impact on the fused distribution and is thus
decisive (b).

5.2.2 Classifiers for Single Modalities

The individual classification methods we use for intention recognition from the four modal-
ities speech, gestures, gaze directions, and scene objects are presented in the following.
However, it is not the focus of this work to develop new methods for classifying inten-
tions from the different single modalities’ data. Instead, the power of multimodality for
uncertainty reduction is demonstrated. Thus, the base classifiers for the considered modal-
ities are designed as simple as possible and build upon existing methods. In fact, they
can be easily replaced by any other classifiers which output categorical distributions, and
additional classifiers might be added sequentially in order to further improve the system.

5.2.2.1 Speech

Speech is a meaningful modality for intention recognition as it is effortless and intuitive
for humans (X. Liu et al., 2016). For intention recognition from speech, keyword spotting
is applied. This enables the recognition of simple keywords that are related to intentions
while simultaneously allowing humans to flexibly formulate the command sentences. Since
a probability distribution over all keywords is required as output, which in many popular
frameworks is not available, an open-source framework called Honk (Tang & Lin, 2017) is
used. Honk builds upon a Convolutional Neural Network proposed in the work of Sainath
and Parada (2015) that consists of two convolutional layers and one final softmax layer.
As input for the network, Mel-Frequency Cepstrum Coefficient features are used. Its
implementation is realized with PyTorch.

For training, we recorded keyword utterances from 16 people (8 female, 8 male), while
each keyword, e.g., “bowl” for the intention to get a bowl, was repeated ten times. In
addition to recordings of the keywords of interest also eleven other words were recorded
that are likely to be part of possible command sentences in order to reduce false alarms.
15% of the training data were taken from these unknown words, another 15% were taken
from example recordings of noise sounds. To increase robustness, with a probability of 0.8
these noise sounds were also added to the training examples. 80% of all data were taken
for training and 10% each for testing and validation.
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Since the network is trained on single keywords but keywords need to be detected within
complete command sentences, multiple probability distributions are obtained for one query
sentence. To combine them, for each intention the maximal probability value in all distri-
butions is taken to constitute the final probability distribution. This is motivated by the
assumption that each sentence contains only one keyword to which the highest probability
should be assigned.

The device for recording speech is a USB microphone (Klim) that captures mono sound
with a sample rate of 16000 Hz.

5.2.2.2 Gestures

Since a majority of human communication is nonverbal, gestures provide valuable infor-
mation about intentions, especially when referring to objects (Canal et al., 2015). Here,
we realize intention recognition from gestures based on the method Mixture of Interaction
Primitives (Ewerton et al., 2015). In this method, gesture trajectories are represented
with Probabilistic Movement Primitives (ProMPs) (Paraschos et al., 2013) which approx-
imate each trajectory position by a linear combination of Gaussian basis functions and
weights w. Using this representation one can learn a probability distribution over mul-
tiple demonstrated trajectories. Mixture of Interaction Primitives (Ewerton et al., 2015)
extends ProMPs to be usable with multiple gestures and two interacting agents, e.g., a
human and a robot. For this, a Gaussian Mixture Model (GMM) over human and robot
trajectories represented as ProMPs is learned, in which each mixture component repre-
sents one interaction pattern between human and robot. In addition to inferring a learned
gesture from an observed human trajectory, the method is also able to estimate the most
likely response trajectory of the robot conditioned on an observed human trajectory. By
this, the robot’s movement can be adapted to the actually shown human gesture, e.g.,
with respect to a common end position in a handover task. For more details on the used
approach the interested reader is referred to (Ewerton et al., 2015).

We apply Mixture of Interaction Primitives for intention recognition by representing ges-
tures together with corresponding robot reaction trajectories as ProMPs and learning a
respective GMM with one mixture component for every intention. Thus, in addition to
recognizing intentions from human gestures, we can also generate a corresponding robot
trajectory as a reaction to the intention recognized by the fused classifier considering all
four modalities.

The parameters of the GMM are originally learned from unlabeled data with the Expec-
tation Maximization algorithm (Ewerton et al., 2015). However, as we work with labeled
data, we estimate the GMM’s parameters with Maximum Likelihood Estimation. In addi-
tion, just the last point of the observed trajectory is taken for gesture classification which
is sufficient for differentiating the gestures in our experiment. For training of the gesture
classifier, 30 examples of reaching motions were demonstrated by one human subject. The
resulting trajectories were captured with the motion tracking system Optitrack which uses
cameras and passive reflective markers attached to the human wrist. For training of the
robot reaction movements, kinesthetic teaching was applied.
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5.2.2.3 Gaze Directions

Previous studies revealed fixations to be strongly task-dependent and predictive for fu-
ture actions and intentions (Admoni & Srinivasa, 2016; C.-M. Huang et al., 2015; Mennie
et al., 2007; Rothkopf et al., 2007), which motivates us to infer human intentions from
gaze directions. For this, we apply a Support Vector Machine (SVM) that is inspired by
two existing approaches about intention recognition from gaze (Admoni & Srinivasa, 2016;
C.-M. Huang et al., 2015). Considered features are the distances between the human’s
3D gaze vector and all locations of interest in the scene, which are mainly object loca-
tions. The mean gaze vector is computed from the last 900 samples of the recorded gaze
directions during a trial. The motivation for working with this mean is that it indirectly
includes information about the most recently fixated location and the number and dura-
tion of fixations towards this location, which were all stated to be important features for
intention recognition in the work of C.-M. Huang et al. (2015). Additionally considering
the distances between locations of interest and the gaze vector is an idea presented in the
work of Admoni and Srinivasa (2016). Using the described features, a multiclass SVM
with linear kernel was trained using the package sklearn. In contrast to just the predicted
class label, which is the usual output of an SVM, this package also provides a probability
distribution over all possible labels as output.

The used training data included 30 labeled examples per intention, each with a duration of
five seconds with sample rate 250Hz. For recording, one person was seated in the evaluation
scenario (Section 5.3) and asked for several robot assists, e.g., an object handover, while
shifting its gaze towards the location of interest, i.e., the object itself. Gaze direction
is recorded by a monocular head-mounted eye tracker (Pupil Labs) which uses infrared
lights and eye cameras for inferring the gaze vector. The device is additionally equipped
with reflective markers in order to be trackable by the Optitrack system also used for
gesture tracking, because we need the gaze vector in scene coordinates rather than just
related to the eye tracker itself. For integration of the eye tracker in the overall system an
open-source ROS plugin is used (Qian, 2016).

5.2.2.4 Scene Objects

Scene objects are objects that are passive parts of the scene but can still give hints about
possible human intentions (P. Bach et al., 2014). For estimating intentions from such ob-
jects we build upon an approach that deals with scene classification from observed objects
(Luo & Xu, 2016). The reason for this choice is that other approaches which directly
address intention recognition only consider objects manipulated by a human (Dutta &
Zielinska, 2018; Kelley, Browne, et al., 2012) rather than passive scene objects. Thus,
an SVM was chosen as classifier with input feature vectors containing the horizontal dis-
tances of all available scene objects to a pre-defined center point on a working area in
front of the human. Objects that are positioned outside this working area are set to the
same pre-defined value. Other possible features, such as the raw positions of objects or
just Boolean values indicating whether an object is in the working area or not, performed
worse than the chosen approach. The multiclass SVM is again implemented using the
package sklearn and again a probability distribution over all intentions is returned instead
of just one predicted intention.
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Figure 5.3: The experiment setup in which the fusion system was evaluated. In a kitchen scenario,
the human can request different actions from the robot by displaying intentions through the four
considered modalities. For capturing gestures and scene objects the human’s hand (1) and the
scene objects (e.g., 4) are equipped with markers. Speech is captured with a microphone (2) and
gaze with a head-mounted eye tracker (3). The ten recognizable intentions are the handover of
the board (A), tomato (B), potato (C), roll (D), bowl (E), dressing (F), coke (G), or towel (H).
Additionally, there is the intention to stand up for which location (J) is fixated.

Training was conducted on 50 recordings of different scene object placements for each
intention, e.g., a glass for the intention to get some coke. Object positions are gathered
with the motion tracking system Optitrack. For this, each object is equipped with four
markers in a unique geometric pattern that enables the system to distinguish between
objects. Used scene objects in our interaction scenario are a cutting board, a tomato, a
bowl, a bottle of each coke and water, a sponge, a glass, and a knife.

5.3 Experimental Evaluation

For evaluation of the proposed multimodal intention recognition system we chose a kitchen
scenario in which a 7-DoF robot arm assists a human in preparing some food, e.g., a salad
(Figure 5.3). The human sits at a table with several task-relevant objects placed around
him that are not easily reachable from a seated position. The robot can assist by handing
over requested objects or helping to stand up by reaching out its arm as a prop. The nine
recognizable intentions are to receive a cutting board, a tomato, a potato, a roll, a bowl, a
bottle of dressing or coke, or a towel, and to get support for standing up. These intentions
are deliberately chosen to be ambiguous, e.g., with respect to their positioning or sound,
in order to obtain uncertain results when using the individual base classifiers only. For all
intentions ten example data sets were recorded, each consisting of a speech recording, the
last point of the shown hand gesture, a list of the shown gaze directions and the positions
of the scene objects of interest. Consequently, 90 multimodal examples from one human
subject are available for evaluating the proposed intention recognition system.
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Two measures are chosen to quantify the uncertainty of a categorical distribution. First,
Shannon entropy is used, which is a well-known measure for the uncertainty entailed in a
distribution. It is maximal for a maximally uncertain distribution, that is uniform over all
intentions, and minimal for a maximally certain distribution that assigns all probability
mass to one intention. Second, a measure called score difference (Potamianos & Neti,
2000) is applied for measuring uncertainty. It computes the difference between the two
highest probabilities in the distribution. Thus, unlike entropy, score difference does not
consider the complete distribution’s uncertainty but quantifies the actual uncertainty in
making a hard decision for one intention. Thereby, a low score difference indicates a high
uncertainty.

Although uncertainty reduction is the focus of our approach, it is also essential to guarantee
correct classification. Thus, in addition to entropy and score difference also the accuracy of
the multimodal and unimodal classifiers is evaluated. Figure 5.4 shows accuracy, entropy,
and score difference of the underlying fused distributions for all possible combinations of
base classifiers as well as for the four single base classifiers. As can be seen, the accuracy of
the fused result combining all modalities (0.94) is higher than that of the single classifiers
(speech: 0.63, gesture: 0.86, gaze: 0.59, objects: 0.79). Only one other combination of
base classifiers, namely gesture-gaze-objects, has a slightly higher accuracy. In general,
eight out of eleven combinations of base classifiers result in a higher accuracy than all of
the base classifiers do. This already indicates the superiority of multimodal over unimodal
intention recognition.

If additionally considering uncertainty, both entropy and score difference show the lowest
mean uncertainty for the fusion of all four modalities compared to all other possible com-
binations. Two other combinations of base classifiers, namely speech-gesture-objects and
gesture-gaze-objects, show a similarly low uncertainty which is nevertheless higher than
that resulting from fusing all modalities. In general, it can be seen that except from one
classifier combination the uncertainties of the fused distributions are considerably lower
than that of all single base classifiers. The only exception is the fusion of speech and
gaze classifiers, which is slightly more uncertain than the most certain base classifier, the
gesture classifier. Yet, its uncertainty is reduced in comparison to the two actually fused
individual classifiers for speech and gaze. Note that these two classifiers are the least
accurate and most uncertain of all four classifiers. This demonstrates the power of mul-
timodal classifier fusion for intention recognition as proposed here. Even inaccurate and
uncertain classifiers such as speech and gaze classifiers contribute to uncertainty reduction
and better performance if added to a multimodal intention recognition system. Moreover,
also combinations of less than all four base classifiers already improve performance and
reduce uncertainty.

To further quantify the reduction in uncertainty through fusion of multiple modalities we
compared our approach to the weighted sum approach. In this alternative method moti-
vated by Rodomagoulakis et al. (2016) and Gurban and Thiran (2008), each distribution’s
weight is its inverse entropy. Thus, the higher a distribution’s uncertainty, the lower is its
impact on the fused result. Figure 5.5 shows the entropies of all possible combinations of
base classifiers when fused with a weighted sum approach instead of Independent Opinion
Pool. Although uncertainty is considered for fusion, there is no reduction of uncertainty
compared to the base classifiers. In addition, the fused result combining all four classifiers
is much more uncertain than with the proposed Independent Opinion Pool approach.
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Figure 5.4: Comparison of all possible combinations of base classifiers regarding accuracy, mean
entropy, and score difference. Corresponding variances are plotted as error bars. It is seen that
uncertainty is reduced through classifier fusion, in particular it is lowest for the fusion of all four
modalities, according to both measures entropy and score difference. Accuracy is also increased
through fusion compared to the single classifiers.
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Figure 5.5: Mean entropies resulting from fusing all different combinations of base classifiers with a
weighted sum. In comparison to fusing with Independent Opinion Pool (Figure 5.4), the weighted
sum approach reduces less uncertainty.
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So far, the results imply that the proposed multimodal approach for intention recognition
reduces the uncertainty of the overall system, even better than the weighted sum approach.
However, just means and variances of entropy and score difference over all test examples
were taken into consideration. We additionally need to analyze whether uncertainty reduc-
tion is also accomplished for individual fusion examples. For speech and gesture classifiers,
Figure 5.6 shows the uncertainties in terms of entropy of the generated categorical distri-
butions of all 90 test examples, differentiated according to whether they are generated by
just the single classifier or by fusion of multiple classifiers.

One can see that for the most uncertain classifier, the speech classifier, the fused distri-
butions are always less uncertain than the single base distribution for all recorded test
examples, no matter how many of the three other modalities are added for fusion. In par-
ticular, the entropy of the distribution fused from all four modalities is lowest for nearly all
examples. The only exceptions are examples from the intentions tomato and roll. Yet, this
is easily explainable as these two intentions are often confounded by the base classifiers,
which leads to conflicting base distributions. This in turn results in a higher uncertainty
of the fused distribution which is desirable as different opinions of base classifiers should
be reflected in the resulting fused distribution.
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Figure 5.6: Entropies of all distributions resulting from classifier combinations including the speech
(top) or gesture (bottom) classifier over all 90 test examples of the nine intentions. We see that for
a large majority of examples already combinations of two or three classifiers reduce the uncertainty
compared to the uncertainty of the single speech or gesture classifier. The fusion of all four
modalities causes the strongest uncertainty reduction. The intentions tomato and roll show higher
uncertainties since the base classifiers often confound them.
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For the most certain one of the base classifiers, the gesture classifier, similar results can
be shown, but not as strong as for the speech classifier. The gesture classifier is already
quite certain on its own, which is demonstrated by the much smaller overall entropy values.
Apart from some exceptions, again, the fused distributions from all possible combinations
with the other three modalities are less uncertain than the single gesture classifier, and
in the majority of cases the fusion of all four modalities results in the lowest entropies
near to 0. In contrast to the speech classifier seen before, for the gesture classifier there
are some examples with higher entropies for the distribution resulting from the fusion
of four modalities compared to the single classifier’s distribution, but all these examples
repeatedly come from the two ambiguous intentions tomato and roll.

These cases are especially interesting as the examples that are classified incorrectly by the
fused distribution combining all possible modalities mostly are examples of the intention
roll. Consequently, the intention with the most uncertain fused distributions is also the
intention with the most incorrect classifications. As an uncertain misclassification is more
desirable than a certain one, this is desirable behavior.

Our proposed intention recognition approach was not just evaluated quantitatively on
recorded multimodal data but also online in a real interaction with the 7-DoF robot arm.
For this, the kitchen task was performed cooperatively by a human and a robot. This
means that in order to prepare a salad the human expresses the different intentions using
the four modalities and after having recognized the correct intention the robot reacts
accordingly. As a reaction, the robot moves to the respective location for this intention,
e.g., the position of a requested object, and grasps it. Subsequently, it executes a trajectory
in order to hand over the respective object or help the human to stand up. This trajectory
was learned from demonstrations and is conditioned on the last point of the shown human
movement as was explained in Section 5.2.2.2. This means that the most likely robot
movement given the last point of the observed human trajectory is executed, which leads
to an adaptation of the robot movement to the human. This is especially beneficial for
our handover tasks. The complete interaction process is shown exemplarily in Figure 5.7
for the intention to get a roll. The human expresses this intention by uttering a command
containing the word “roll”, reaching out its arm in the roll’s direction, fixating it and
having placed the scene objects board and knife in the working area. The robot recognizes
the correct intention and subsequently moves towards the roll, grasps it and hands it over
to the human by executing the inferred trajectory. As well as on prerecorded data, the
proposed intention recognition system using speech, gestures, gaze directions, and scene

(a) (b) (c) (d) (e) (f)

Figure 5.7: An exemplary interaction between human and robot. The human shows the intention
roll by uttering a command containing the word “roll”, reaching out its arm for the roll, fixating
the roll and having placed the scene objects board and knife in the working area (b). As soon as
this intention is recognized, the robot moves towards the roll (c), grasps it (d), and subsequently
executes the inferred trajectory (e) to hand it over to the human (f).
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objects was shown to work well also in online interaction with a real robot for all considered
intentions.

5.4 Conclusions

In this work, we introduce a multimodal approach for intention recognition to be applicable
in elderly assistance. In contrast to existing works, we focus on uncertainty reduction in a
way that the combination of modalities makes the system more certain about the intention
to be recognized. For this, the categorical output distributions of individual classifiers for
the four different modalities speech, gestures, gaze directions, and scene objects are fused
using the Bayesian fusion method Independent Opinion Pool. We evaluate our approach in
a cooperative kitchen task between a human and a 7-DoF robot arm. The results show that
uncertainty can be reduced through the use of multiple modalities. Even very inaccurate
and uncertain classifiers can contribute to uncertainty reduction, better performance, and
robustness when added to a multimodal system.

This shows that the proposed approach allows well-performing and more certain intention
recognition using simple and easily trained base classifiers that only require little training
data. Additionally, it is particularly important for elderly assistance since even if complex
classifiers are available they might be challenged by data from elderly people, which can
increase their uncertainty and error rate.

Although the proposed intention recognition system considers the uncertainty of the in-
dividual modalities’ classifiers, it is limited to the information provided by the classifiers’
current output distributions and has no further knowledge of the classifiers’ general per-
formance, e.g., their bias, variance, and uncertainty. Therefore, an interesting line for
future work is to extend the proposed approach to also consider the individual classifiers’
general behavior for fusion, which can be learned from training data if available. Also, the
assumption that the individual modalities’ classifiers are conditionally independent given
the true intention should be investigated carefully in future work. Another limitation is
that although the uncertainty over the intention to be recognized is explicitly represented
and reduced in a Bayes optimal way, it is not exploited for the robot’s reaction. The inten-
tion with the highest probability is recognized and the corresponding action is executed
accordingly. However, a reaction according to the actual uncertainty of the recognition
could further improve the quality of interaction between human and robot. Therefore, for
future work we plan to exploit the knowledge of the decision uncertainty in a way that
the robot reacts according to its uncertainty about the situation.

90 Bayesian Fusion for Intention Recognition in HRI



6
INTERACTIVE RE INFORCEMENT LEARNING WITH
BAYES IAN FUS ION OF MULTIMODAL ADVICE

Classical industrial robots are typically designed to perform very specific and mostly repet-
itive tasks. In contrast, future assistive robots, which are intended to support humans in
their daily lives, will be challenged by a multitude of different tasks. Since usually not all
of these tasks may be known explicitly beforehand, a key component for such robots is
the ability for self-improvement at runtime and adaptation to human preferences and new
situations at hand.

Even though Reinforcement Learning (RL) (Kormushev et al., 2013; Sutton & Barto,
2018) offers a powerful methodology for robots to learn from direct interaction with their
environment, in many practical robotic applications large state and action spaces as well as
costly sample collection prevent the use of RL algorithms. This is where the novel research
field of interactive RL (IRL) (Knox & Stone, 2008; Thomaz et al., 2005) aims to improve
learning speed and convergence of RL algorithms by incorporating human feedback (Knox
& Stone, 2008) or advice (Cruz et al., 2015) into the learning process.

To facilitate a beneficial interaction of everyday users with such IRL systems it is partic-
ularly important to enable ways for more natural and intuitive communication of human
advice during the learning process (Lin et al., 2020). Since humans are used to teaching
other humans using natural cues such as speech, gestures, body language, gaze, or facial
expressions (Song et al., 2012), it is a central question how to best integrate such natural
interaction channels into IRL algorithms. In particular, as we showed in Chapter 5 for hu-
man intention recognition, exploiting all available multimodal data can in general increase
a decision’s accuracy and decrease its uncertainty (Trick et al., 2019, see Chapter 5).

Accordingly, Cruz et al. (2018) introduced an IRL approach (termed C-IRL hereafter)
which allows humans to give advice using the modalities speech and gestures. For C-IRL
the authors trained an individual probabilistic classifier for each of the two advice modal-
ities and then fused the resulting output distributions. The used fusion method reduces
the decision’s uncertainty if both modalities’ classifiers detect non-conflicting advice and
increases the uncertainty otherwise.

However, C-IRL only considers the confidence values of the predicted most likely class
label and only utilizes probabilities above a certain threshold, thereby discarding valuable
information of the single base classifiers’ distributions. Additionally, in C-IRL the com-
putation of the fused confidences is not theoretically founded but based on a heuristic
tailored to exactly two modalities, and it is not discussed how to extend this computation
to more modalities.

The Bayesian fusion method Independent Opinion Pool (Andriamahefa, 2017; Berger,
1985), which we derived in Chapter 3, can overcome these limitations. While we success-
fully applied it for human intention recognition in Chapter 5, Independent Opinion Pool
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Figure 6.1: An overview of the proposed approach Multimodal IOP-Based Advice for Interactive
Reinforcement Learning (MIA-IRL). MIA-IRL uses the Bayesian method Independent Opinion
Pool (IOP) to combine the output distributions of the single modalities’ base classifiers mi. From
the fused distribution we sample an estimated human action advice âH to execute on the robot.
When no human advice is given we use the action aRL suggested by the base policy of our RL-
Module.

can also be used to fuse action advice from different modalities in order to improve mul-
timodal IRL. Accordingly, the main contribution of this work is a new multimodal IRL
algorithm that uses Independent Opinion Pool (IOP) for combining the advice modali-
ties’ classifiers’ output distributions (Figure 6.1). As IOP combines individual classifiers’
output distributions Bayes optimally, it reduces uncertainty correctly. Additionally, the
proposed method allows straightforward generalization to more than two modalities, which
is not clear in C-IRL. Because our method takes advantage of all available information of
the base classifiers’ distributions and computes the Bayes optimal uncertainty in the fused
distribution, the action selection can be done probabilistically instead of just executing the
most likely action. We evaluate our method in direct comparison to C-IRL in a simulated
grid world scenario and on a real-world human-robot interaction (HRI) task, in which hu-
man participants teach a 7-DoF robot arm. The experimental evaluations show that our
method clearly outperforms C-IRL, particularly in the case of partially wrong outputs of
the modalities’ base classifiers. Thus, we show that Bayesian fusion of modalities increases
the robustness of multimodal IRL.

The rest of the chapter is structured as follows. In Section 6.1 we discuss related work.
Section 6.2 introduces our novel IRL approach using Bayesian fusion of multiple input
modalities. In Section 6.3 we present the experimental evaluation on theoretical corner
cases, in a simulated grid world, and in a real HRI scenario. Finally, we summarize our
findings and discuss future research directions in Section 6.4.
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6.1 Related Work

Traditionally, Interactive Reinforcement Learning allows a human trainer to give feedback
on the action a robot just performed (Blumberg et al., 2002; Kaplan et al., 2002; Knox &
Stone, 2008). In contrast to this feedback-driven approach, humans also try to guide the
robot on future actions by giving advice (Thomaz et al., 2005). Accordingly, several IRL
approaches were proposed that include human advice instead of or in addition to feedback
(Cruz et al., 2015; Knox et al., 2013; Koert et al., 2020; Kuhlmann et al., 2004; Maclin &
Shavlik, 1996; Thomaz et al., 2006). However, in many approaches the human advisors
are not able to communicate their advice over natural interaction channels. In the work
of Maclin and Shavlik (1996) the human teacher needs to use a specific programming
language to interact with the learning agent. Thomaz et al. (2006) proposed a computer
mouse as input device for human advice, while Knox et al. (2013) instead uses a remote
control. Koert et al. (2020) chose a graphical user interface provided on a tablet computer
as input modality for advice.

More intuitive modalities for interacting with the learning agent were proposed by Kuhlmann
et al. (2004) and Cruz et al. (2015), who used speech as input source, or Veeriah et al.
(2016) and Gordon et al. (2016), who used facial feedback. However, humans use multiple
modalities to express their intentions (Schrempf & Hanebeck, 2005) and also their advice
(Cruz et al., 2018). Accordingly, several approaches exploit multimodal input data for
IRL (Cruz et al., 2016; Cruz et al., 2018; Leite et al., 2011; Qureshi et al., 2016; We-
ber, Ritschel, Aslan, et al., 2018; Weber, Ritschel, Lingenfelser, et al., 2018). In order
to teach an empathic chess partner for children, Leite et al. (2011) combine human facial
features with task-related features, e.g., if the human is winning or losing. The modalities
are fused at the feature level, which, however, impedes generalization by exchanging or
adding modalities.

In contrast, Qureshi et al. (2016) propose combining the data from depth and grayscale
images for a robot to learn social behavior. For both modalities, two individual Q-functions
are learned, which are averaged for fusion. Weber, Ritschel, Lingenfelser, et al. (2018)
and Weber, Ritschel, Aslan, et al. (2018) combine facial and audio features in order to
learn how to entertain people. The probability for laughing is computed individually
from visual and audio cues, and the resulting probabilities are averaged for fusion. While
these approaches can be straightforwardly generalized by exchanging the modalities or
their respective classifiers, or by adding additional modalities, by averaging individual
modalities’ results, they cannot account for the uncertainty of the individual modalities’
classifiers. For instance, a less certain modality has the same impact on the fused result
as a more certain one and a decision’s uncertainty cannot be reduced through fusion.

Cruz et al. (2018) also use multimodal input channels for IRL, however, they explicitly
consider the individual modalities’ uncertainties. In their framework C-IRL, a human
teacher can give advice using the two modalities speech and gestures. For each modality
a separate probabilistic classifier was trained, which outputs the predicted label of the
detected advice and a corresponding confidence value. The individual classifiers’ outputs
are combined by a heuristic fusion rule that chooses the label with the higher confidence
value if the classifiers are conflicting. Furthermore, they compute a fused confidence to
decrease a decision’s uncertainty in case both classifiers are non-conflicting and increase
it otherwise (Cruz et al., 2016; Cruz et al., 2018).
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Although this seems to be a reasonable fusion behavior, Cruz et al. (2018) do not provide
any mathematical foundation for their fusion rule, it is not sufficiently motivated why one
should use exactly this function for updating the fused confidence. Moreover, their method
discards valuable information by only considering the confidence values of the most likely
classes instead of entire probability distributions and by not utilizing probabilities below
a manually set threshold. Additionally, their fusion method, in particular their function
for updating the fused confidence, is explicitly designed for fusing two modalities and does
not straightforwardly transfer to more modalities.

In contrast to Cruz et al. (2018), we propose to use a Bayesian fusion approach. Bayesian
inference was already used for inferring reward functions in inverse reinforcement learn-
ing from successive feedback (Jeon et al., 2020), but not for fusing multimodal action
advice for IRL. Here, we propose to use the Bayesian fusion method Independent Opinion
Pool (IOP) (Andriamahefa, 2017; Berger, 1985). IOP provides uncertainty reduction for
non-conflicting output distributions, is theoretically founded on Bayes’ rule, exploits all
classifier information by considering entire probability distributions, allows sampling from
the fused distribution for action selection, and is applicable to an arbitrary number of
additional modalities. IOP has already been successfully applied for multimodal human
intention recognition (Trick et al., 2019, see Chapter 5), and in this work we leverage its
advantages for multimodal IRL.

6.2 Multimodal IOP-Based Advice For Interactive Rein-
forcement Learning

In this work, we propose a new approach for Interactive Reinforcement Learning with
multiple input modalities. Specifically, our novel method Multimodal IOP-Based Advice
for Interactive Reinforcement Learning (MIA-IRL) uses the Bayesian fusion method Inde-
pendent Opinion Pool (IOP) (Andriamahefa, 2017; Berger, 1985) to incorporate multiple
probabilistic base classifiers’ distributions over human advice into an RL algorithm. In
this section, we explain the main components of our approach, which are also illustrated in
Figure 6.1. We describe the agent’s interaction with its environment as a Markov Decision
Process (MDP) and as a core deploy a standard RL algorithm, such as Q-Learning, in our
RL Module (Section 6.2.1). We then assume a human teacher that wants to communicate
intended action advice aH to suggest to the robot which action should be performed next.
The human’s action advice is recognized using multiple modalities. For each modality mi

an individual base classifier is trained, which is assumed to output a categorical distri-
bution over all possible actions p(aH |mi) (Section 6.2.2). Subsequently, the categorical
distributions returned by all D base classifiers are fused within the Fusion Module using
IOP (Section 6.2.3). By sampling from the fused categorical distribution p(aH |m1, . . . ,mD)
we obtain an estimate for the action proposed by the human âH , which the RL agent then
executes (Section 6.2.4). If no advice is given, the action proposed by the RL Module aRL
is chosen (Section 6.2.1). For the experiments in this work, human advice was provided in
the first N episodes of learning. However, MIA-IRL could straightforwardly also incorpo-
rate distributed advice if an advisor is available over the complete learning process. Our
MIA-IRL approach is summarized in Algorithm 6.1. An implementation of the proposed
approach is publicly available at https://github.com/RothkopfLab/MIA-IRL.
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Algorithm 6.1 MIA-IRL
Require: max number of steps per episode M
1: init Q-table Q[s, a]=0 ∀s, a if a possible in s, else −∞
2: init visits per state v[s] = 0 ∀s
3: init discount factor γ and exploration rate ε
4: init episode counter e = 0
5: while Q not converged do
6: init steps per episode counter j = 0
7: s = random init state
8: while episode not finished and j < M do
9: v[s] = v[s] + 1

10: α = 1/v[s]
11: if human advice provided then
12: for modalities mi = m1,m2, . . . ,mD do
13: p(aH |mi) = ModalityClassifier(mi)
14: end for
15: p(aH |m1, . . . ,mD) = FusionModule(p(aH |m1), . . . , p(aH |mD), Q[s])
16: a = sample from distribution p(aH |m1, . . . ,mD)
17: else
18: a = choose ε-greedy action a from Q[s, a]
19: end if
20: execute action a, get reward r and next state s′
21: Q[s, a] = Q[s, a] + α(r + γmaxa′Q[s′, a′]−Q[s, a])
22: s = s′

23: j = j + 1
24: end while
25: e = e+ 1
26: end while
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6.2.1 RL Module

The learning agent’s interaction with its environment is represented as a Markov Decision
Process (MDP). Thus, in a state s it takes an action a, gets a reward r, and transits to
the next state s′. The agent’s goal is to learn an optimal policy π(s) in order to receive
the expected maximum discounted total future reward. For the experiments in this work,
we used tabular Q-learning, which, however, could be replaced by other RL algorithms for
different applications. The Q-function is updated according to

Q(s, a)← Q(s, a)+α(s)(r+γmax
a′

Q(s′, a′)−Q(s, a)) (6.1)

and we chose a hand-tuned discount factor γ = 0.98 and an adaptive learning rate α(s) =
1/v(s), which is common in literature (Koert et al., 2020; Sutton & Barto, 2018), where
v(s) is the number of times the learning agent has visited state s so far. If no human
advice is given, during learning the agent chooses actions according to an ε-greedy policy
with ε set to 0.1 for our experiments.

6.2.2 Classifiers for Individual Modalities

For MIA-IRL we assume base classifiers for each modality mi that output a categorical
distribution p(aH |mi) over all possible actions aH . For the HRI experiments in this work,
we exemplarily used two classifiers for the modalities speech and gestures. Since this
work’s focus is on demonstrating the benefits of applying the Bayesian fusion method
IOP to IRL, these classifiers are based on off-the-shelf existing approaches. They can
be straightforwardly replaced by other classifiers that return categorical distributions. In
particular, adding more modalities is also possible from the mathematical formulations of
the fusion method in MIA-IRL.

6.2.2.1 Speech

In our experiments, we chose speech as one of our modalities since it is mostly effortless
and intuitive for humans to use for communicating their intentions (X. Liu et al., 2016).
In particular, we use keyword spotting where each keyword is assigned to an action; e.g.,
“milk” is the keyword for getting some milk. We use the framework Honk (Tang & Lin,
2017), which returns a categorical distribution over all keywords, also including the cate-
gories “silence” and “unknown”. Honk is based on a Convolutional Neural Network (CNN)
with two convolutional layers, one softmax layer, and Mel-Cepstrum Coefficient features
as input and is implemented in Pytorch. For training, we recorded 10 keyword utterances
per word from 13 people. In addition to the 7 intended keywords (milk, flour, flower, bowl,
roll, shelf, pour) we also recorded some unknown words, such as “please” or “give”, that
are likely to be used if people formulate their advice as a sentence. Also, noise and silence
sounds were used for training. An amount of 20% of the training data for all keywords
was added to the training set from the unknown words, correspondingly also 30% from the
silence recordings. With a probability of 0.8, noise was added to training samples. 80%
of all recorded data were taken for training, 10% each for testing and validation. Since
in our experiments subjects were briefed to only use the defined keywords, before fusing
the speech classifier into MIA-IRL we exclude the categories “silence” and “unknown”
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from the output distribution and renormalize to obtain a categorical distribution over all
possible actions.

6.2.2.2 Gestures

Besides speech commands, humans also use nonverbal cues to communicate intentions, in
particular when they refer to objects (Canal et al., 2015). Therefore we also chose arm
gestures as an advice modality. The gestures are predefined, namely pointing gestures
for objects and a 2-arm symbolic gesture for the action pour. Using an RGB-D camera
(Intel Realsense D435), the human skeleton is tracked based on Openpose (Cao et al.,
2021). Missing skeleton frames are interpolated using univariate splines. The tracked joint
positions of arms and shoulders are aligned with the neck joint and scaled to uniform length
in order to become invariant to the human-camera distance. Since we assume a gesture
duration of 1 second with a skeleton tracking frame rate of 30Hz, the resulting 30 samples
of respective upper body joint positions for a gesture are transformed into a single vector
as features for classification. As a classification method we chose a multiclass Support
Vector Machine (SVM) with a polynomial kernel of degree 2 (C=1, γ=0.1), implemented
using the machine learning framework Sklearn in Python. As class labels, we provide the
possible actions. The trained SVM does not only return the predicted advised action but
also provides a categorical probability distribution as output.

6.2.3 Fusion Module

The categorical output distributions returned by the base classifiers are fused using In-
dependent Opinion Pool (IOP) (Andriamahefa, 2017; Berger, 1985). IOP fuses D cate-
gorical probability distributions p(aH |mi) over advised actions aH given modality data
mi, i = 1, . . . , D by multiplying them and renormalizing the resulting vector to sum to 1
in order to obtain a categorical distribution. Thus, the resulting fused distribution is

p(aH |m1, . . . ,mD) ∝
D∏
i=1

p(aH |mi). (6.2)

Assuming conditional independence of observations from different modalities mi and with
them the categorical output distributions p(aH |mi) returned by each modality’s classifier
and an uninformed prior p(aH) over actions aH , this fusion method can be derived as
probabilistically optimal by applying Bayes’ rule. Its advantages are uncertainty reduction
through fusion and uncertainty-dependent fusion impact (Andriamahefa, 2017; Hayman
& Eklundh, 2002). If the categorical base distributions to be fused are non-conflicting, the
fused distribution is less uncertain than the base distributions, i.e., its entropy is lower. If
instead the base distributions are conflicting, the resulting fused distribution’s uncertainty
is increased. Moreover, the less uncertain base distribution has a higher impact on the
fused distribution than the more uncertain base distribution.

Since in the defined MDP some actions are impossible in specific states, in addition to
multiplying the base distributions according to IOP, the fusion module additionally ex-
cludes the probabilities of these impossible actions from the fused distribution. Then the
remaining probabilities are renormalized to sum to 1. Algorithm 6.2 shows the complete
functionality of the proposed fusion module.
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Algorithm 6.2 Fusion Module
Require: classifiers’ output distributions p(aH |mi), Q[s, :]
1: // multiply distributions
2: p(aH |m1, . . . ,mD) = ∏D

i=1 p(aH |mi)
3: // remove unavailable actions
4: for actions a = 0, 1, . . . do
5: if Q[s, a] == −∞ then
6: remove entry p(aH |m1, . . . ,mD)[a]
7: end if
8: end for
9: renormalize p(aH |m1, . . . ,mD) to sum to 1

10: return p(aH |m1, . . . ,mD)

6.2.4 Action Selection Module

While the proposed fusion module outputs a categorical probability distribution over all
possible actions, the RL algorithm requires a discrete action to be executed. If we just
chose the action with the highest probability, we would discard valuable information about
the decision’s uncertainty, which we intentionally wanted to consider by using probabilis-
tic classifiers. Therefore, we propose sampling from the fused categorical distribution
p(aH |m1, . . . ,mD) to obtain a probabilistically selected action âH to be executed by the
RL agent. If two actions’ probabilities are quite similar after fusion, by sampling, each of
them could be chosen to be executed instead of only the one with the slightly higher prob-
ability. Thus, we account for the system’s uncertainty about the human’s advice. Also,
this action selection allows additional exploration, which is particularly helpful in case of
imperfect base classifiers.

6.3 Experimental Evaluation

In this section, we present the results of the experimental evaluation of our approach
involving Bayesian fusion of multimodal advice. In Section 6.3.1 we show the main ad-
vantages of our fusion method IOP in MIA-IRL in comparison to the fusion method in
the related approach C-IRL (Cruz et al., 2018) on artificial base distributions. Next, we
compare the performances of MIA-IRL, non-interactive RL, and C-IRL in a simulated
grid world environment (Section 6.3.2) and in an HRI task with a 7-DoF robot arm and
10 human subjects (Section 6.3.3). For all comparisons between MIA-IRL and C-IRL we
replaced the fusion module and the action selection module accordingly, while using the
same RL module and base classifiers.

6.3.1 Advantages of Bayesian Fusion

As mentioned in Section 6.1, the fusion method proposed in C-IRL (Cruz et al., 2018)
shares some desirable properties with our method MIA-IRL such as uncertainty reduction
and uncertainty-dependent fusion impact. However, because C-IRL does not consider the
complete base classifier distributions and does not fuse according to Bayes’ rule, there
exist particular situations in which the IOP fusion, which we propose for MIA-IRL, shows
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Figure 6.2: Comparison of IOP in MIA-IRL and the fusion method in C-IRL (Cruz et al., 2018)
on exemplary base distributions d1 and d2. C-IRL disregards information by discarding all proba-
bilities but the highest one (a), returns no information about which class to choose for conflicting
distributions (b), or even chooses a different class than Bayes optimal IOP (c).

clear advantages. Three exemplary cases for such situations are shown in Figure 6.2. In
Figure 6.2(a) C-IRL reduces uncertainty such as MIA-IRL but discards all probabilities
apart from the highest one. However, MIA-IRL, which is Bayes optimal, assigns non-
zero probabilities to all possible actions. Therefore, C-IRL’s fusion method neglects the
uncertainty that should be reflected in the fused distribution. It would never choose classes
0, 2, or 3, although there is a small probability that one of these classes is the correct one.
Figure 6.2(b) shows two conflicting base distributions. Fusion with IOP in MIA-IRL
results in a distribution that assigns the same probability to classes 1 and 2. However,
when fused with C-IRL all classes have a probability of 0. Thus, C-IRL disregards the
fact that only classes 1 and 2 should be considered and classes 0 and 3 can be neglected.
In Figure 6.2(c), fusing two conflicting base distributions, the fusion rule in C-IRL would
even choose a different action than the one selected by Bayes optimal IOP in MIA-IRL.
Most likely, this would lead to a misclassification by C-IRL.

These three examples highlight the theoretical advantages of the IOP fusion used in
MIA-IRL compared to the fusion method in C-IRL (Cruz et al., 2018). We argue here,
that these advantages lead to an increase in learning speed for IRL in particular in cases,
where base classifiers may partially output wrong distributions, which we demonstrate in
the following sections for a simulated grid world and a real HRI task.

6.3.2 Grid World

We first evaluate MIA-IRL in a simulated 4 × 4 grid world environment (Figure 6.3(a))
where an agent is supposed to reach a goal while avoiding falling into one of two fires.
If the agent falls into a fire, the episode ends and the agent receives a negative reward
of −100. Otherwise, if the agent reaches the goal marked by the green flag, it receives
a positive reward of 100. An episode may also end with a zero reward if the number of
required steps in one episode exceeds 15 steps.
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Figure 6.3: Learning curves of non-interactive Q-learning, C-IRL (Cruz et al., 2018), and MIA-IRL
for the grid world in (a) with simulated advice in the first 10 episodes. Mean rewards (lines)
and standard deviations (shaded areas) over 50 runs are shown. In (b) both classifiers C1 and C2
advise correct actions. (c) shows the results for a correct C1 and a C2 confusing actions “right” and
“left”. In (d) C2 additionally confuses actions “up” and “down”, and in (e) in 20% of cases both
classifiers fail. As (c) – (e) show, MIA-IRL clearly outperforms C-IRL if the individual modalities’
classifiers partially fail. The additional curve in (e) (MIA-IRL-3) shows how performance improves
by including a third classifier to MIA-IRL.

We provide simulated advice in the form of two randomly generated categorical distribu-
tions, which simulate two individual modalities’ classifier outputs. This simulated advice
is given during the first 10 episodes of learning.

First, we simulate correct non-conflicting categorical distributions as advice, i.e., we ran-
domly generate two categorical distributions in which the probability for the correct action
is always above 0.5. The resulting learning curves for non-interactive Q-learning, C-IRL,
and MIA-IRL are shown in Figure 6.3(b). Here, we plot the mean and standard devia-
tion for the reward per episode averaged over 50 repeated runs, while for each episode
we evaluate the policy 100 times and average the obtained rewards. MIA-IRL (red) as
well as C-IRL (green) converge faster than standard non-interactive Q-learning (blue). A
Kruskal-Wallis-Test on the convergence times of the three compared approaches showed
a significant difference (p<0.001). The Conover-Posthoc-Test additionally provided ev-
idence that MIA-IRL converges significantly faster than standard Q-learning (p<0.001).
However, the convergence times of MIA-IRL and C-IRL do not differ significantly. Thus, in
the case of non-conflicting correct outputs of both modalities’ individual classifiers human
advice speeds up learning compared to non-interactive RL, but the particular IRL ap-
proach, either C-IRL or MIA-IRL using IOP, does not significantly influence the learning
speed.

However, as real-world classifiers for human advice cannot be assumed to be always cor-
rect, next we simulate a case where one base classifier C1 always outputs a correct dis-
tribution, while the second classifier C2 confuses the actions “right” and “left”. If the
correct action is “right”, for C2 a distribution with a probability above 0.5 for action “left”
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is randomly generated and vice versa. Figure 6.3(c) shows that in this case MIA-IRL
(red) converges faster than both non-interactive Q-learning (blue) and C-IRL (green). A
Kruskal-Wallis significance test showed a significant difference between the convergence
times of the three compared approaches (p<0.001). The Conover-Posthoc-Test revealed
a significant difference between MIA-IRL and non-interactive Q-learning, C-IRL and non-
interactive Q-learning, and MIA-IRL and C-IRL (p<0.001). Accordingly, MIA-IRL is
more robust against partially incorrect classifier output in this case.

This effect is even stronger in a third simulated experiment, where C2 is assumed to also
confuse actions “up” and “down” in addition to “left” and “right”, while C1 is still assumed
correct. Figure 6.3(d) shows the corresponding learning curves. The convergence times
of all approaches are significantly different (Kruskal-Wallis-Test, p<0.001). According to
a Conover-Posthoc-Test, there is no significant difference between the convergence times
of non-interactive Q-learning and C-IRL (p=0.34), but a significant difference between
MIA-IRL and non-interactive Q-learning (p<0.001) and MIA-IRL and C-IRL (p<0.001).

If we further modify the third simulated experiment in a way that in 20% of cases both
classifiers fail, MIA-IRL still outperforms C-IRL and Q-learning significantly (p<0.001),
as shown in Figure 6.3(e). Also, since MIA-IRL is straightforwardly extendable to more
than two classifiers, we can easily add a third classifier, which is correct in 60% of cases.
MIA-IRL-3 using 3 advice classifiers significantly outperforms MIA-IRL and C-IRL with
2 classifiers (p<0.001). We expect that adding more classifiers to MIA-IRL can further
increase the robustness of advice detection and by this the learning speed, depending on
the quality of individual classifiers.

We conclude from the simulated experiments that if individual classifiers partially fail in
detecting the correct human advice, MIA-IRL clearly outperforms C-IRL.

6.3.3 Pancake Scenario

In addition to the simulated grid world scenario, we also evaluated our approach in a
real HRI scenario where human subjects can advise a 7-DoF robot arm using speech and
gestures. Here, the goal of the task is that the robot should learn to assist a human in
preparing a pancake batter. The task is solved successfully once the robot gets flour and
milk from a nearby shelf and pours them into a bowl. The state of the robot is defined
by the position of the arm, which can be AT-BOWL or AT-SHELF, the current object in
the robot’s hand (or the hand being empty), the positions of the objects and the current
state of the bowl, which indicates if ingredients have already been poured inside. In our
experiments, the objects flour, flower, and roll are always placed on the shelf, whereas the
position of the milk changes between the shelf and the table between different episodes. In
total, this results in 320 possible states. There are 7 actions, i.e., GO-SHELF, GET-MILK,
GET-FLOUR, GO-BOWL, POUR, GET-FLOWER, GET-ROLL. The robot receives a
reward of 100 if the task is solved successfully and a negative reward of −100 in case of a
failure, which happens when the robot pours wrong ingredients such as flowers or the roll
into the bowl or if the robot tries to get objects when already having another object in
its hand. The action POUR does not only include pouring the respective ingredient into
the bowl but also placing it close to the bowl on the table afterward. If the maximum
number of 20 steps per episode is exceeded the episode ends with zero reward. Figure
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Figure 6.4: The experimental setup used for evaluating MIA-IRL. A human is seated at a table
to teach a 7-DoF robot arm to prepare pancake batter. The robot’s task is to pour the required
ingredients milk (A) and flour (B) into a bowl (C). Flowers (D) and a roll (E, not visible from
shown perspective) should not be picked by the robot. The human can give advice by speech
commands recorded with a microphone (1) and gestures recorded by a depth camera (2).

6.4 shows the full task setup. For each of the 7 actions, a speech classifier is trained to
recognize a corresponding keyword and a gesture classifier to recognize a corresponding
gesture. Details on the classifiers used for the experiments of this work can be found in
Section 6.2.2.1 and Section 6.2.2.2 respectively. The experimental setup was designed in a
particular way to evaluate IRL in cases where classifiers may confuse intended actions. For
instance, some objects are placed close to each other to cause similar pointing gestures,
e.g., flour and flower, as can be seen in Figure 6.4. Moreover, we chose actions with
similar-sounding keywords, i.e., the keyword “roll” to get a roll (similar to “bowl”) and
the keyword “flower” to get a flower (similar to “flour”).

In the described experimental setup, we conducted experiments with 10 human partici-
pants (4 female, 6 male, 3 aged 18-25, 7 aged 26-35), who advised the robot in preparing
pancake batter.1 After a short briefing, during which the participants got familiar with
the required gestures and keywords as well as the robot’s movements, they carried out
two experiment blocks, interrupted by a short break. In each block, the participant gave
advice over the first 20 episodes, using gestures and speech commands. This choice of
20 episodes of human advice was made after preliminary experiments, and is a trade-off
between performance increase and time required for each participant. In one of the blocks,
MIA-IRL was used for learning and in the other block, the related method C-IRL (Cruz et
al., 2018) was applied. To eliminate sequence effects, 5 participants started with MIA-IRL,
5 with C-IRL.

For each method, after the 20 initial episodes with human advice, we let the RL agent
finish the learning until convergence of the average rewards per episode. Here, we average
over 50 individual runs of learning to cancel out randomness. In each episode the learned
policy is evaluated 100 times, and the resulting learning curves are compared between
MIA-IRL and C-IRL. In addition, we also evaluated standard non-interactive Q-learning
as a baseline.

1 The experiments were approved by the ethics committee of TU Darmstadt on September 21, 2021 (approval
code EK44/2021).
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Figure 6.5: Learning curves of non-interactive Q-learning, C-IRL (Cruz et al., 2018), and MIA-IRL
individually for all 10 participants of the pancake experiment. Each plot is labeled with the
respective participant’s code. Mean rewards (lines) and the corresponding standard deviations
(shaded areas) over 50 runs of learning with human advice given in the first 20 episodes are shown.

The individual resulting learning curves of all participants for MIA-IRL, C-IRL, and non-
interactive Q-learning are shown in Figure 6.5. For all participants MIA-IRL converges
faster than non-interactive Q-learning. For 4 participants MIA-IRL and C-IRL perform
similarly, while for the remaining 6 participants MIA-IRL outperforms C-IRL. The dif-
ferences between participants are caused by subject-dependent variation of base classifier
distributions. Particularly classifications of flour are crucial since flour is necessary for
success but ambiguous for speech (similar sound flower) and pointing gestures (located
next to flower). For AKAW30, LTEI06, OBMW01, and UNSK01, MIA-IRL and C-IRL
perform similarly, since for all of them one classifier detects flour accurately and with
high certainty, while the other one is uncertain. Thus, for both methods the certain base
classifier is decisive, while the fusion method, either MIA-IRL or C-IRL, has only little
impact. In contrast, e.g., for ITMB22, MIA-IRL performs best, since the gesture classifier
is uncertain between flour and flower with flower more likely and the speech classifier is
even more uncertain with flour more likely. C-IRL favors the more certain gesture classi-
fier and thus fails often, while MIA-IRL’s fusion more often correctly chooses flour. For
ARGF01 C-IRL suddenly diverges, since it only learned to solve the task from one of two
starting states (milk on table). Thus, at an average reward of 50 only MIA-IRL, which
learned more also for the other starting state, continues its steep increase. The base classi-
fiers’ output distributions here often match the example in Figure 6.2(b), where MIA-IRL
outperforms C-IRL.

In addition to the learning curves of individual participants, Figure 6.6 shows the mean
learning curves over all 10 participants for MIA-IRL (red), C-IRL (green), and non-
interactive Q-learning (blue). MIA-IRL converges faster than both C-IRL and standard
Q-learning. The Mann-Whitney-U-Test for independent samples showed a significant dif-
ference between the convergence times of MIA-IRL and standard Q-learning (p<0.001)
and between C-IRL and standard Q-learning (p<0.001). The Wilcoxon-Signed-Rank-Test
for dependent samples confirmed a significant difference between the convergence times of
MIA-IRL and C-IRL (p<0.001). Thus, MIA-IRL clearly outperforms C-IRL also in real
experiments with human advisors and real classifiers. In particular, the experiments show
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Figure 6.6: Learning curves of non-interactive Q-learning, C-IRL (Cruz et al., 2018), and MIA-IRL
averaged over all 10 participants of the pancake experiment. Both mean rewards (lines) and the
corresponding standard deviations (shaded areas) over 50 runs of all 10 participants are shown.
MIA-IRL converges significantly faster than standard Q-learning and C-IRL.

again that MIA-IRL is more robust against misclassifications of given human advice and
conflicting outputs of the individual modalities’ classifiers.

6.4 Conclusion

In this work, we proposed MIA-IRL, a novel Interactive Reinforcement Learning approach
that enables humans to advise a robot via multiple modalities, such as speech and ges-
tures. In contrast to previous work, we fuse the modalities’ classifiers’ output distributions
with the method Independent Opinion Pool, which can be derived as Bayes optimal and
explicitly considers the individual modalities’ uncertainties correctly. Importantly, this
also allows probabilistic action selection through sampling from the resulting fused distri-
bution, instead of just choosing the most probable action, and straightforward integration
of more than two modalities. In a simulated grid world scenario as well as in an HRI ex-
periment with human participants and a real robot we showed that our approach clearly
outperforms the closest related state-of-the-art approach (Cruz et al., 2018). In particular,
MIA-IRL is more robust against misclassifications of the modalities’ individual classifiers.
Thus, MIA-IRL lays an improved solid foundation for future development of multimodal
IRL.

A limitation of MIA-IRL is that although it exploits the uncertainty represented by the
fused distribution by selecting the executed action by sampling from it, it always selects
an action, no matter how uncertain the fused distribution is. Therefore, for future work,
we want to further exploit the uncertainty represented by the fused distribution. For in-
stance, one could include an active request for additional information if the given advice
is too uncertain in order to reduce the risk for catastrophic failures. Additionally, since
MIA-IRL is limited to the uncertainty of the current output distributions of each modal-
ity’s classifier, we plan to extend our fusion module to explicitly consider the properties
of the individual base classifiers, such as their bias, variance, and uncertainty, as well as
potential correlations between them. Another promising line for future work is to eval-
uate MIA-IRL with additional modalities such as gaze or facial expressions, and add an
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additional module that learns and preserves human advice over time to enable reusing the
given advice during the entire learning process.
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7
MULTIMODAL DETECTION OF THE INTENTION FOR
INTERACTION IN HUMAN-ROBOT INTERACTION

In the previous chapters 5 and 6, we recognized human intentions for intuitive human-
robot interaction or suggestions of actions for interactive reinforcement learning. In these
two approaches, the respective intentions or suggestions are specific for the particular task
at hand. For example, the intention to get a bowl from a robot is specifically defined for
the task to prepare a salad together with a robot. It is not necessarily transferable to
other human-robot interaction tasks. Moreover, the human signals such as their gestures
or speech commands for the respective intentions or action suggestions are predefined for
the specific task at hand instead of being learned from natural human behavior.

However, future assistive robots will face interactions with humans in various different
scenarios, such as support in household tasks (Graf et al., 2004), elderly caregiving (San-
thanaraj & MM, 2021), or shared workspaces in industry (Vojić, 2020). In these different
application scenarios a wide range of possible interactions between human and robot might
occur, including a large number of task-specific intentions not all of which can be prede-
fined.

Nonetheless, there are intentions that re-occur in different potential interactions. In par-
ticular, many interactions between human and robot have in common that they should be
started on request of the human, i.e., once the human shows an Intention for Interaction
(Mollaret et al., 2015). Accordingly, here we propose an approach for detecting this human
Intention for Interaction (IFI) from natural human behavior.

As we already noted in the previous chapters 5 and 6 for task-specific intentions, humans
naturally communicate their intentions using multiple modalities (Jaimes & Sebe, 2007).
From a young age, humans attribute intentions to specific motions (Blakemore & Decety,
2001) and communicate their intentions using body language (Gaschler et al., 2012). Ad-
ditionally, speech is a common channel for communicating intentions since it is common
between humans (Frydrychowicz & Matejczuk, 2006). Thus, using multimodal data such
as body poses and speech can enable automatic detection of a human’s Intention for In-
teraction (Foster et al., 2017; Mollaret et al., 2015; Mollaret et al., 2016; Vaufreydaz et
al., 2016). Moreover, combining multimodal data from speech and body movements can
increase the accuracy and robustness of intention recognition (Jaimes & Sebe, 2007) and
reduce its uncertainty (Trick et al., 2019, see Chapter 5).

Previous approaches for detecting the Intention for Interaction from multimodal data such
as body poses and speech (Bohus & Horvitz, 2009; Foster et al., 2017; Mollaret et al., 2015;
Mollaret et al., 2016; Vaufreydaz et al., 2016; Q. Xu et al., 2013) focused on specific tasks
done by the humans (Bohus & Horvitz, 2009; Foster et al., 2017; Q. Xu et al., 2013),
considered only one interaction type between human and robot (Bohus & Horvitz, 2009;
Foster et al., 2017; Vaufreydaz et al., 2016; Q. Xu et al., 2013), or assumed invariability
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Figure 7.1: An overview of the proposed approach for automatically detecting a human Intention for
Interaction (IFI). We designed a human-robot interaction experiment that elicits human behavior
communicating IFI over varying tasks, interaction types, and positions and orientations towards
the robot. We collected multimodal data including speech and body poses of 21 human subjects,
on which we trained probabilistic multimodal classifiers that detect task-independent IFIs.

of the human’s position (Foster et al., 2017; Mollaret et al., 2015; Mollaret et al., 2016),
which might limit their generalizability.

Here, instead, we investigate how humans show their Intention for Interaction towards a
robot in a more versatile experimental setup. Specifically, we recorded the natural behavior
of 21 human subjects that were asked to perform different kinds of tasks and interactions
with the robot, including sitting and standing positions as well as different orientations
towards the robot. On the recorded data we trained different multimodal classifier models
(Figure 7.1).

Overall, the main contributions of this work are the following. First, we designed a human-
robot interaction experiment that elicits human behavior communicating IFI over varying
tasks, interaction types, and positions. Second, in this setup we collected a new data set
of natural human behavior while interacting with the robot and analyzed the occurrences
of human IFIs. Finally, we trained task-, interaction-, and position-independent classifiers
for IFI detection on the collected data. In particular, we systematically compare and
quantitatively evaluate unimodal and multimodal classifiers that are able to detect IFIs
from natural human behavior. For multimodal classification, we compare feature fusion
and decision fusion using the Bayesian fusion method Independent Opinion Pool (Berger,
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1985), which we applied for multimodal intention recognition and interactive reinforcement
learning in Chapters 5 and 6.

The rest of this chapter is structured as follows. Section 7.1 discusses related work. In
Section 7.2, we describe our proposed experiment, the collected data, and the trained IFI
classification models. In Section 7.3, we present the evaluation of our data set and the
trained classifiers’ performances. Finally, we conclude and outline future work in Section
7.4.

7.1 Related Work

Various approaches deal with the detection of engagement in human-robot interaction,
which terms how interactors begin, continue, and end their connection with each other
while interacting (Sidner et al., 2005). Some of these approaches try to detect human
engagement during an ongoing interaction with a robot to adapt their interaction strategy
accordingly (Ishii et al., 2013; Nakano & Ishii, 2010; Ooko et al., 2011; Rossi et al., 2021;
Z. Zhang et al., 2022). Others explicitly deal with the start of an interaction, but with
the robot instead of the human as the initiator. In the works of Satake et al. (2009), C.
Shi et al. (2015), Z. Zhang et al. (2021), and Ito et al. (2020) the appropriate time and
position for the robot to start a conversation with a human is detected, e.g., from human
walking patterns (Satake et al., 2009) or nonverbal signs and face information (Ito et al.,
2020; Z. Zhang et al., 2021).

For detecting an Intention for Interaction actively expressed by the human, Cesta et al.
(2007) rely on explicit vocal commands, i.e., questions, which the humans need to utter
to signalize their IFI to a robot. Similarly, Burger et al. (2012) use explicit gestures
and language commands to detect an IFI. However, predefined commands for starting an
interaction require precise instructions and render the interaction less natural and intuitive
(Li et al., 2012).

Therefore, several approaches investigate how to detect a human’s Intention for Interaction
from their natural behavior, without giving any instructions on how to signal the IFI
(Bohus & Horvitz, 2009; Foster et al., 2017; Mollaret et al., 2015; Mollaret et al., 2016;
Vaufreydaz et al., 2016; Q. Xu et al., 2013). Some of them only use body poses (Q. Xu
et al., 2013) or face information (Bohus & Horvitz, 2009), others use multimodal data
consisting of body poses, such as the human’s torso angle or head position, and speech
(Foster et al., 2017; Mollaret et al., 2015; Mollaret et al., 2016; Vaufreydaz et al., 2016).

Q. Xu et al. (2013) performed a Wizard-of-Oz study in a reception desk scenario. They
recorded visual cues, e.g., distance, upper body pose, and face direction, and trained
two SVM classifiers to detect the intention to start a conversation (=IFI) and to end a
conversation. IFI could be detected with precision 0.83 and recall 0.72. However, they only
considered one situation, i.e., people at a reception desk, with no other specific tasks than
showing an IFI and only one interaction type, i.e., information consultation. Moreover,
people were always standing when showing an IFI.

Foster et al. (2017) also collected data to automatically detect an IFI. In a bar scenario, a
human could order a drink after expressing an IFI towards the robot bartender. Recorded
data were head position and rotation, the torso angle towards the robot, and speech. As
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Q. Xu et al. (2013), they considered only one situation with the only task to show an IFI
and only one possible interaction type, i.e., ordering a drink at a bar. Also, there was
not much variability in the location of the human during shown IFIs, since he or she was
always starting the interaction at the bar in front of the robot bartender.

This invariability of the human’s positions during data collection can also be found in the
works of Mollaret et al. (2015) and Mollaret et al. (2016). They recorded humans’ head
and shoulder orientation and vocal activity while showing an IFI with the goal of receiving
help from the robot, e.g., to find some missing items. Human subjects were seated at a
predefined distance to the robot.

In contrast, Bohus and Horvitz (2009) collected data with more variability in the human’s
location. While recording face position, rotation, width, and height, the human was
allowed to move freely in the experiment space and could approach a Kiosk-like robot
avatar. Still, the only interaction type possible for the human was to play a game on the
robot. This game required the humans to closely approach the robot, making it difficult
to generalize to IFIs expressed for different interaction types (e.g., conversation) from
different positions in the experiment space and distances to the robot.

Similarly, Vaufreydaz et al. (2016) collected data in a home-like environment, where people
could do different tasks, either freely walk around or sit and play cards, while their speech,
body pose, and face were recorded. However, as in the work of Bohus and Horvitz (2009)
humans could also only interact with the robot by playing a game on the robot’s tablet.
Therefore, they only recorded data for the intention for an interaction, for which the human
needs to closely approach the robot. This might not generalize well to IFIs expressed for
other interactions such as conversations and from a further distance.

All related approaches presented above base their IFI detection on data sets that are either
limited in the variability of the human’s positions towards the robot or were devised for
single tasks and interactions between human and robot.

7.2 Task-Independent IFI Detection

We introduce a new versatile data set for detecting human IFIs when interacting with
a robot. We carefully designed our experimental setup for data collection to include
different tasks, and elicited various types of interactions. The human subjects expressed
the provoked IFIs from different positions towards the robot, sitting and standing, and
acted in a natural way.1 Based on this data set we classify IFIs from multimodal speech
and body pose data. In the following, we describe our data collection (Section 7.2.1), the
preprocessing of the recorded data set (Section 7.2.2), and the classifiers trained for IFI
detection (Section 7.2.3).

7.2.1 Data Collection

To collect data about how humans initiate an interaction with a robot, we conducted
a Wizard-of-Oz experiment. Human subjects were instructed to build a tower made of
building blocks following step-by-step instructions. If they needed help, they could ask

1 The recorded data set is available at https://osf.io/mvzsa/.
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Figure 7.2: The experimental setup, in which we collected our IFI data set. The subjects worked at
four different workspaces (WS1-WS4) on a standard and a standing table, i.e., sitting and standing,
facing or not facing the robot. Using instruction cards (C), the subjects built a tower of building
blocks. If they needed help, the robot Kobo (D) supported them, e.g., by handing over items from
its shelves (B). In addition, subjects could get required items from the self-service shelf (A). We
recorded body poses with an RGB-D camera mounted above a tablet showing Kobo’s face (1) and
speech via a Microphone (2).

the two-armed robot Kobo for help, which was covertly controlled by the experimenter.
The subjects did not know the goal of the experiment, i.e., collecting IFI data. They were
free to act completely natural – standing, sitting, or walking – and interacted with the
robot in different ways, either talking or handing over objects.

7.2.1.1 Experimental Setup

The experiment was performed in a lab environment with two tables as the subjects’
workspaces, three shelves, and the robot Kobo (Figure 7.2). Kobo is equipped with two
7-DoF Panda arms (Franka Emika) and a tablet (Samsung Galaxy S6) mounted between
the arms that displayed a smiling face. Additionally, an RGB-D camera (Azure Kinect)
was installed above the tablet, covering the experimental space from Kobo’s perspective.
Next to Kobo, we placed two shelves with containers holding items that Kobo could hand
to the subjects, e.g., additional building blocks. Opposite of the robot, a self-service shelf
was placed where subjects could take required items such as building blocks or boxes by
themselves.

A standing table and a standard table were placed between the self-service shelf and Kobo
(Figure 7.2). Each table provided two workspaces for the subjects, two standing and
two sitting, two facing the robot and two facing away from it. The order of workspaces
for different subjects was changed to increase variability of the data. On all workspaces,
numbered instruction cards were placed that helped the subjects with subtasks for building
the tower. On the standard table, a microphone was placed to record audio data.

Throughout the experiment, the experimenter was not visible to the subjects, so they could
only interact with Kobo. Through Kobo’s RGB-D camera, the experimenter watched the
experiment and triggered Kobo’s reactions accordingly.
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7.2.1.2 Experimental Procedure

After a short briefing and informed consent, the experiment started with a familiarization
phase with the robot Kobo. The subjects were shown how Kobo speaks and moves. They
were guided through a demonstration interaction with Kobo and instructed that the robot
senses their movements and speech.

Within the experiment, the subjects had to build a tower out of building blocks. This task
consisted of 10 subtasks that the subjects had to complete in a specific order. The subtasks
were explained on instruction cards lying on the workspaces (see Figure 7.2, red C). After
completing a subtask, subjects had to get in touch with Kobo, which then told them at
which workspace they should continue with which instruction card. The subtasks were
designed to be versatile and included labeling containers, sorting blocks into containers,
moving required items, and assembling building blocks. After successfully building the
tower, which was checked by Kobo, they tidied up the workspaces. In order to increase
the variability of our data and thus the generalizability of IFI detection, we carefully
designed the experiment’s subtasks to include tasks that were done sitting or standing,
either facing the robot or not facing it, or required walking around.

We are particularly interested in the situations in which the subjects contacted Kobo and
thus showed IFIs. Such IFIs could be caused by 4 different situations: 1) the subject
wanted to know the next instruction from Kobo, 2) the subject was explicitly asked to
interact with Kobo in their instruction card, e.g., ask Kobo for a special building block,
3) some instructions were intentionally wrong to make the subject ask Kobo, e.g., the
instructions included building blocks that were not provided, 4) required materials were
missing, e.g., the provided pen was out of ink, or 5) the subject had spontaneous questions
we did not anticipate.

Also, the interactions initiated by the shown IFIs varied. Some were pure conversations,
which could be performed from anywhere in the experiment space, others required han-
dovers of items such as building blocks and thus required close interaction.

7.2.1.3 Recorded Data

We collected data from 22 participants (12 male, 10 female), aged between 18 and 35.2
Each participant received a 6-digit subject code to anonymously refer to in this work.
Most participants (12) had no experience with robots, 9 had only some prior contact with
robots (1-10 times), and one participant was experienced with robots. The time required
for the experiment varied between 18 and 27 minutes. All participants talked German to
Kobo and were naive about the experiment’s objective of collecting IFI data.

The complete system, including the control of all sensors and the teleoperation of the
robot, was realized using ROS. We recorded an RGB video from Kobo’s perspective using
the Kinect Azure RGB-D camera with the corresponding ROS timestamp for each video
frame. The video was later used to label the data (Section 7.2.1.4). Using the Azure
Kinect camera and the Body Tracking SDK of the Azure Kinect DK we also recorded
positions (x, y, z) of 5 upper body parts of the participants in relation to the robot: their
neck, both eyes, and both shoulders. We recorded the body position data at a frame rate

2 The experiments were approved by the ethics committee of TU Darmstadt on October 28, 2020 (approval
code EK39/2020).
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of 30Hz and saved the corresponding ROS timestamp for each frame. For recording sound,
we used a USB Microphone (Klim) that captured Mono sound with 48000Hz and stored
a ROS timestamp for every 100 frames.

7.2.1.4 Labeling

We labeled the recorded data watching the video along with the synchronized audio data.
After labeling, we subtracted 1 second of all label timestamps in order to take into account
the labeling person’s reaction time, which resulted in a precise mapping between label
timestamps and shown IFIs. We distinguished between three labels: IFI-Start, Interaction-
Start, and Interaction-End. IFI-Start labels the moment in which the IFI can be first
noticed, either based on the body pose or because the subject starts talking to Kobo.
Interaction-Start labels the end of the IFI and the start of the interaction between the
subject and Kobo, which is marked by Kobo’s first response to the subject’s request.
Accordingly, Interaction-End labels the end of the interaction, after which the subject
starts working on its own again. The order of labels is always IFI-Start, Interaction-Start,
Interaction-End. We decided to use these three labels in order to separate IFIs from the
actual interaction. We only wanted to learn the subjects’ behavior when they show an
IFI, independent of which concrete interaction follows. Therefore, using these labels we
exclude all interactions (from labels Interaction-Start to Interaction-End) from the data.

7.2.2 Data Preprocessing

The recorded multimodal data were synchronized and preprocessed into features. For
body poses, we chose three features, i.e., the distance between the human and Kobo and
the human’s head and shoulder orientation with respect to Kobo (Section 7.2.2.1). For
speech, two features were considered: speech activity recognition and hotword detection
for the robot’s name “Kobo” (Section 7.2.2.2). An overview of the used features is given
in Figure 7.3.

7.2.2.1 Body Poses

The recorded body pose data were resampled to a framerate of 30Hz, missing frames,
which could be caused by sporadic failures of the skeleton tracking, were interpolated.
The label timestamps were matched to the body pose data frames, and all frames be-
tween Interaction-End (or experiment’s start) to IFI-Start were labeled as non-IFI, all
frames between IFI-Start and Interaction-Start as IFI and between Interaction-Start and
Interaction-End as Interaction. In order to take into account that there might be some
movements that express an IFI even before the labeler reacted, we used an intention buffer
k as a global hyperparameter and also labeled the k frames before IFI-Start as IFI. In
our evaluations we tested k ∈ {0, 5}.

From the synchronized body pose data we extract the three features distance, shoulder
orientation, and head orientation with respect to Kobo. The distance is computed as the
euclidean distance between the subject’s neck and Kobo in the x-y plane. For computing
the shoulder orientation with respect to the robot in degrees, an auxiliary line connecting
both shoulders is constructed. The normal vector in the middle of this line is calculated
in the x-y plane. Additionally, the vector between Kobo and the middle of the shoulder-
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Figure 7.3: The features and classifiers used for IFI detection. From skeleton tracking data provided
by an RGB-D camera we extracted the three body pose features distance, shoulder orientation,
and head orientation. For speech, we extracted speech activity detection and hotword detection.
We trained unimodal classifiers for each body poses and speech and multimodal classifiers, either
using feature fusion or decision fusion of the unimodal classifiers’ outputs with the Bayesian fusion
method Independent Opinion Pool (IOP).

connecting line is determined. The angle between those two vectors in degrees represents
the shoulder orientation. The values range from 0◦ to 180◦, where for 0◦ the human directly
faces Kobo and for 180◦ the human is facing away from Kobo. The head orientation is
computed similarly to the shoulder orientation, but with eye instead of shoulder positions.

We used a sliding window approach for classification. For each subject we first obtained
all sequences from Interaction-End (or the start of the experiment) to Interaction-Start in
order to exclude all sequences labeled as Interaction. For each frame in those sequences,
we created a window of the last n frames with window sizes n ∈ {30, 60}, corresponding
to 1 or 2 seconds respectively. The features distance, shoulder orientation, and head
orientation were additionally smoothed with a median filter with size 5 and standardized
by subtracting the mean and scaling to unit variance. These windows formed the data to
be classified.

7.2.2.2 Speech

To synchronize the speech data with the body pose data, we mapped speech windows to
the body pose windows described in Section 7.2.2.1 using the saved speech timestamps
and the timestamps of the body pose windows. As for the body pose windows, this was
done for intention buffers k ∈ {0, 5} and window sizes n ∈ {30, 60}. As features we used
speech activity detection, as in the works of Mollaret et al. (2015), Mollaret et al. (2016),
Vaufreydaz et al. (2016), and Foster et al. (2017), and hotword detection with hotword
“Kobo”. Thus, for each speech window, we checked if speech could be recognized and if
the speech contained the word “Kobo”. Speech activity detection was realized using the
Python package SpeechRecognition with the Google Speech Recognition API for German
language. If speech is recognized in a window, its value is 1, else 0. Additionally, we detect
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the hotword “Kobo” as a second feature. If the recognized text or one of the provided
alternatives for a window contained the hotword, the value was set to 1, else to 0.

7.2.3 IFI Classification

Using the data and features specified above, for detecting IFIs we compare different clas-
sifiers using body pose and speech data. We trained body pose-only and speech-only
classifiers as well as multimodal classifiers considering both body pose and speech data.
For multimodal classification, we compare feature fusion and decision fusion using the
Bayesian fusion method Independent Opinion Pool (IOP) (Berger, 1985). Figure 7.3 gives
an overview of the considered classifiers.

We only use probabilistic classifiers that map the input data to probabilities for IFI since
this allows quantification of uncertainty, which can be useful particularly in intention
recognition for human-robot interaction (Trick et al., 2019, see Chapter 5). Also, using
probabilistic classifiers maximizes the flexibility in choosing methods for decision fusion
since probabilistic outputs can be mapped to discrete outputs but not vice versa.

In this work, we evaluate three probabilistic classification methods: Logistic Regression,
Multilayer Perceptron (MLP), and Decision Tree. All classifiers are implemented using
the Python package sklearn.

For all classifiers hyperparameters had to be set. As explained in Section 7.2.2, we vary
intention buffer k ∈ {0, 5}, which determines how many frames before each IFI-Start label
are regarded as IFI, and window size of the sliding windows n ∈ {30, 60}. The two-layer
MLP classifier has two additional hyperparameters, the number of neurons in the first
layer s ∈ {4, 6, 8} and in the second layer t ∈ {4, 6, 8}. The Decision Tree classifier has
one additional hyperparameter d ∈ {3, 5, 7}, determining the tree’s maximum depth. The
best hyperparameters for each classifier were found using an exhaustive grid search.

We train the classifiers using leave-one-out cross-validation, i.e., a classifier is repeatedly
trained on the data of all but one subject and evaluated on the remaining subject. By
this, we investigate the IFI detection performance for new, unseen subjects and thus the
generalizability of our approach.

7.2.3.1 Body Pose Classifier

The body pose classifier Cbody maps body pose features to the probability for IFI,

Cbody : xbody → p(IFI|xbody), (7.1)

where xbody is the body pose feature vector with dimensionality I × n · 3 for I windows
of window size n and three body pose features distance, shoulder orientation, and head
orientation, as described in Section 7.2.2.1.

7.2.3.2 Speech Classifier

The speech classifier Cspeech, which maps speech features to IFI probabilities, is defined as

Cspeech : xspeech → p(IFI|xspeech), (7.2)
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where xspeech is the speech feature vector with dimensionality I × 2 for I windows and 2
speech features, speech activity and hotword detection, as described in Section 7.2.2.2.

7.2.3.3 Multimodal Classifiers

Besides training individual classifiers for the modalities body poses and speech, we also
consider multimodal classifiers that return the probability for IFI given speech and body
pose data. We compare feature fusion and decision fusion using the Bayesian fusion
method Independent Opinion Pool (IOP).

Feature Fusion of Body Poses and Speech

For multimodal IFI classification using feature fusion we concatenate the body pose fea-
tures xbody and the speech features xspeech to one feature vector xbody+speech with dimen-
sionality I×n ·3+2 for I windows of window size n with three body pose features and two
speech features. The multimodal feature fusion classifier CFF maps this combined feature
vector to the probability for IFI,

CFF : xbody+speech → p(IFI|xbody+speech). (7.3)

IOP Fusion of Body Poses and Speech

In contrast to feature fusion, where different modalities’ data are fused at the feature
level, multimodal data can also be fused by decision fusion, i.e., by combining the outputs
of individual classifiers using a specific fusion rule. The advantage of decision fusion is
high modularity since the individual classifiers can be replaced and additional classifiers
can be added straightforwardly. Here, we fuse an individual body pose classifier with
an individual speech classifier using the fusion method Independent Opinion Pool (IOP)
(Berger, 1985). Thus, the multimodal IOP classifier CIOP maps two IFI probabilities given
by body pose and speech classifier to the probability for IFI given body pose and speech
features,

CIOP : p(IFI|xbody), p(IFI|xspeech)→ p(IFI|xbody, xspeech). (7.4)

IOP fusesM categorical distributions p(IFI|xmod1), . . . , p(IFI|xmodM ) returned by different
modalities’ IFI classifiers by multiplying them and renormalizing the resulting vector.
Thus, the resulting fused distribution is

p(IFI|xmod1 , . . . , xmodM ) ∝
M∏
m=1

p(IFI|xmodm). (7.5)

For our classifiers, this simplifies to

p(IFI|xbody, xspeech) ∝ p(IFI|xbody) · p(IFI|xspeech). (7.6)

Assuming conditional independence of the modality data xspeech and xbody given IFI and
thus of the returned probability distributions p(IFI|xmodm) and an uninformed prior over
classes IFI and non-IFI, IOP is the probabilistically optimal fusion method according to
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Bayes’ rule. Thus, given the assumptions, it correctly reduces the decision’s uncertainty
if the body pose and speech classifier predict the same class and correctly increases the
decision’s uncertainty if they are conflicting. In previous works on multimodal intention
recognition, we already showed that fusing individual modalities with IOP can increase
recognition performance (Trick et al., 2022, see Chapter 6; Trick et al., 2019, see Chapter
5).

7.3 Experimental Evaluation

We analyze the recorded data set (Section 7.3.1) and evaluate the performances of the
IFI classifiers we trained on this data set (Section 7.3.3) regarding F1 score, recall, and
precision (Section 7.3.2). Furthermore, we discuss the behavior of different characteristic
human subjects and its impact on the IFI models’ performances (Section 7.3.4).

7.3.1 IFI Data Set

The recorded IFI data set consists of 21 subjects since we excluded one subject due to
mislabeling. In total, the data set contains 405 IFIs. On average, a subject showed 19
IFIs, minimally 13 and maximally 25. Different subjects showed different numbers of
IFIs because some had more questions about the tasks, while others needed less support.
For instance, subject ARBN30 somehow managed to use the pen out of ink that we
intentionally provided to make the subjects ask for another pen.

Figure 7.4 shows all subjects’ positions during IFIs, blue if they were standing or walking,
red if they were sitting. As intended with our experiment setup and design, subjects
showed IFIs from very different positions in the experiment space, including close IFIs
from about 1m to the robot and IFIs further away from about 3m. From the subjects’
neck heights we inferred that 18.7% of all IFIs were shown sitting. As we designed half of
the tasks at the two sitting workspaces, this is less than we expected. The reason is that
some subjects did not take a seat while working at the standard table and some stood up
for IFIs. At workspaces WS2 and WS3 subjects are facing Kobo while doing their tasks,
while at workspaces WS1 and WS4 they are not. Thus, the data set includes IFIs with
different orientations towards the robot.

7.3.2 Performance Measures

For evaluating the proposed IFI classifiers’ performances we report recall, precision, and
F1 score. Accuracy is not reported, since the data set is imbalanced in favor of non-IFI
examples, leading to high accuracy if always predicting non-IFI. For computing recall,
precision, and F1 score, the classifiers’ probabilistic predictions are discretized with a
threshold of 0.5. Recall and precision are not computed based on the number of frames
labeled as IFI but on the number of IFIs. Since it is not required that every single frame
of an IFI is detected for the robot to react appropriately, an IFI is considered as detected
if at least one frame of it is detected as IFI. Also, a predicted IFI is only considered a
false positive if none of its frames is labeled as IFI. Thus, we do not penalize IFIs detected
a little earlier than they were labeled. Also, when computing the precision, two detected
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Figure 7.4: The neck positions of all subjects in the experiment space while showing an IFI. As can
be seen, subjects showed IFIs from very different positions, close to the robot and further away,
standing or walking (blue) and sitting (red). We only plotted every fifth data point to increase
readability.

IFIs that are less than 1 second apart are merged and treated as one detected IFI. By this,
we avoid counting a just shortly interrupted false IFI detection as multiple false positives.

7.3.3 Classification Performances

Table 7.1 shows mean F1 scores, recalls, and precisions of the best performing IFI classifiers
according to F1 score for the body pose, speech, and multimodal classifiers using feature
fusion or decision fusion with IOP, and compares the different tested classification methods
Logistic Regression, MLP, and Decision Tree. The best-performing body pose classifier is
an MLP with window size n=60, intention buffer k=0, and s=t=6 neurons in both layers
(F1=0.638, recall=0.671, precision=0.67). Logistic Regression and Decision Tree perform
slightly worse, Logistic Regression with a lower recall of 0.593 and Decision Tree with a
lower precision of 0.584. For the modality speech the results are similar for all classifica-
tion methods. Logistic Regression, MLP, and Decision Tree classifiers all achieve the same
maximum scores, F1=0.772, recall=0.698, precision=0.919. These scores are also constant
over different hyperparameters of the classifiers as long as the hyperparameter window size
is set to n=60. This is because the speech classifiers detect an IFI as soon as speech is rec-
ognized, and speech recognition works better for n=60 than for n=30. Of course, this can
cause problems if more than one human is present in the experiment setup, as we also dis-
cuss in Section 7.4. Among the multimodal classifiers that fuse body pose and speech data
using feature fusion, the highest mean F1 score (F1=0.794, recall=0.876, precision=0.74)
is achieved by Logistic Regression with hyperparameters window size n=60 and intention
buffer k=0. For fusing the two modalities with decision fusion using IOP, we compare
two different combinations of classifiers. First, we fuse the two best-performing individual
classifiers for body poses and speech, thus the MLP classifier with window size n=60,
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Table 7.1: Mean F1 scores, recalls, and precisions of the best performing IFI classifiers for different
modalities.

Body Pose Only
Logistic Regression MLP Decision Tree

F1 0.609 0.638 0.593
Recall 0.593 0.671 0.647
Precision 0.661 0.67 0.584

Speech Only
Logistic Regression MLP Decision Tree

F1 0.772 0.772 0.772
Recall 0.698 0.698 0.698
Precision 0.919 0.919 0.919

Multimodal Feature Fusion
Logistic Regression MLP Decision Tree

F1 0.794 0.789 0.76
Recall 0.876 0.887 0.898
Precision 0.74 0.729 0.686

Multimodal IOP Fusion
IOP (2 Best Classifiers) IOP Best

F1 0.788 0.811
Recall 0.723 0.778
Precision 0.895 0.88

intention buffer k=0, and s=t=6 neurons in both layers for body poses and one of the
speech classifiers with window size n=60. The best resulting fused IFI classifier achieves
F1=0.788, recall=0.723, and precision=0.895. This performance is achieved when fusing
the body pose MLP with one of the following four speech classifiers: a Logistic Regression
classifier with window size n=60 and intention buffer k=0, or a Decision Tree with window
size n=60, intention buffer k=0 and a maximum depth of d ∈ {3, 5, 7}. However, testing
all possible combinations of individual classifiers for body poses and speech, we found com-
binations that outperform the combination of the two best individual classifiers resulting
in F1=0.811, recall=0.778, and precision=0.88. To achieve these scores, we combined a
body pose MLP with window size n=60, intention buffer k=5, and s=t=8 neurons in both
layers with one of the following four speech classifiers: a Logistic Regression classifier with
window size n=60 and intention buffer k=5, or a Decision Tree with window size n=60,
intention buffer k=5, and a maximum depth of d ∈ {3, 5, 7}.
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Figure 7.5: Boxplots of the individual subjects’ F1 scores for the four best models of each body pose-
only, speech-only, feature fusion, and IOP fusion classifiers. All subjects’ F1 scores are visualized
(blue dots), and some characteristic subjects are highlighted: LZBB10 (red triangle left), EKOK04
(yellow star), RNZA17 (pink square), IEBD07 (cyan triangle right).

7.3.4 Detailed Analysis of Human Behavior and IFI Models

The F1 scores of the best body pose-only, speech-only, and multimodal feature fusion and
IOP fusion classifiers are visualized for all 21 subjects in Figure 7.5. Some characteristic
subjects’ scores are highlighted in order to explain their behavior and the behavior of the
different IFI models.

For subject LZBB10 (red triangle left), the body pose classifier shows very poor perfor-
mance, while the speech classifier achieves F1=1. The reason for this is that LZBB10 did
not express his IFIs using body poses but kept looking at what he was doing. Instead,
LZBB10 expressed all IFIs using speech, while uttering the hotword “Kobo” for 11 of in
total 20 IFIs. Interestingly, he was thereby not only using “Kobo” to start his speech
commands – as people are doing when controlling smart devices such as Alexa – but in
a more natural way. Despite the body pose classifier’s poor performance, since LZBB10
always talked to the robot to start an interaction, the multimodal classifiers perform above
average.

In contrast, EKOK04 (yellow star) expressed IFIs very clearly using body poses. To
start an interaction, he walked straight to the robot and addressed it head on. Therefore,
the body pose classifier performs best for EKOK04 (F1=0.894). In addition to showing
body poses, EKOK04 also talked when expressing IFIs. However, unlike LZBB10, he
never uttered the hotword “Kobo”. Although EKOK04 talked as other subjects did, the
speech classifier performs worst for EKOK04. The reason for this is suboptimal speech
recognition. While for all other subjects, the speech activity recognition mostly correctly
detected speech, for EKOK04 it often missed or incorrectly detected speech. Due to this
poor speech recognition, also the multimodal classifiers perform poorly for EKOK04.
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Subject RNZA17 (pink square) is not clear in expressing IFIs using body poses or speech.
For example, for some IFIs she just looked at the robot without talking or turning to it.
This behavior is reflected in the poor performances of all classifiers.

Finally, the IFIs of IEBD07 (cyan triangle right) can be classified well by all classifiers.
The body pose classifier does not perform as well as for other participants (F1=0.71),
since IEBD07 expresses IFIs by turning to the robot but not walking towards it as e.g.,
EKOK04. The speech classifier performs perfectly with F1=1 since IEBD07 talks to Kobo
for signaling IFIs, while using the hotword “Kobo” for 11 of 18 IFIs. Combining body pose
and speech data, the multimodal classifiers also perform very well for IEBD07.

The above analysis of the behavior of different IFI models and human subjects shows that
humans express IFIs in various ways. Some are very clear in characteristic body poses,
others rely more on speech, some use the hotword “Kobo” frequently, others never use
it. Despite this variability in behavior, we could learn models for classifying IFIs. In
particular, multimodal models, which perform best on our data set, achieve promising
results. Although the speech-only classifier already performs quite well, additionally con-
sidering body poses increases the performance and in particular reduces the number of
poor-performing outliers. While decision fusion using the fusion method IOP achieves
the highest mean F1 score (F1=0.811), the difference to feature fusion (F1=0.794) is not
significant (p=0.22, Wilcoxon-Signed-Rank-Test). However, besides performance, decision
fusion using IOP is also more flexible in adding or exchanging individual classifiers than
feature fusion.

7.4 Conclusion

In this work, we proposed an experimental setup where we investigate natural human
behavior when expressing an Intention for Interaction towards a robot. We recorded body
poses from RGB-D data and audio data and obtained a data set with in total 405 IFIs
from 21 human subjects. In contrast to related approaches, our data set is not limited to
a specific task or interaction type and includes standing and sitting IFIs as well as IFIs
in different distances and orientations to the robot. Using the recorded data, we trained
unimodal and multimodal probabilistic classifiers and compared different approaches for
multimodal fusion, i.e., feature fusion and decision fusion. We showed that IFIs can be
automatically detected from natural human behavior across different tasks and interaction
types, while the best performance could be achieved with a multimodal classifier based on
decision fusion with the Bayesian fusion method Independent Opinion Pool.

While working with the data, we noticed some limitations in our data collection: The
microphone should have been placed close to the robot to avoid volume differences at
different workspaces, and the data should have been labeled by more than one person to
measure the labels’ quality. Another limitation of the current data set is that only one
human is present in the scene. For future work, we consider it interesting to also analyze
data of scenarios with multiple humans present, who might also start interactions with
each other and thus make it more challenging to detect IFIs towards the robot. Besides,
a more advanced speech classifier could consider semantic meaning and prosodic speech
features in addition to speech activity and hotword detection, and additionally tracking the
human’s gaze direction could make it possible to accurately detect if the human is looking
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at the robot. Another promising line for future work is to validate our IFI classifiers
on interactions completely outside of our data set. Further, in future work it should
be investigated how the IFI classifiers’ uncertainty can be exploited for an appropriate
reaction of the robot.
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8
A NORMATIVE MODEL FOR BAYES IAN COMBINATION
OF SUBJECT IVE PROBABIL ITY EST IMATES

So far, in this thesis we proposed a normative Bayesian framework for fusing the prob-
abilistic outputs of classifiers while explicitly considering their uncertainty. This is a
fundamental task in machine learning and can be applied in various different domains,
e.g., for intuitive human-robot interaction, as we showed in Chapters 5 to 7. However, in
addition to classifiers, also humans can provide probabilistic forecasts in order to provide
their uncertainty, e.g., as a subjective probability estimate of an event’s occurrence or the
correctness of a statement.

Such subjective probability estimates provided by human experts are of particular impor-
tance in many different domains such as finance, business, marketing, politics, engineering,
meteorological, ecological, and environmental science, and public health (McAndrew et al.,
2021). While statistical models are usually limited in applicability by requiring sufficiently
large and complete data sets, human forecasts can overcome this limitation taking advan-
tage of human experience and intuition (McAndrew et al., 2021). The probability esti-
mates can be given either as forecasts of events, e.g., rain probabilities in meteorological
science or probabilities for the outcomes of geopolitical events such as elections (Graefe,
2018; Turner et al., 2014), other binary classifications, or the quantification of the experts’
confidence on a prediction or the answer to a specific question (Karvetski et al., 2013;
Prelec et al., 2017).

We assume humans to have internal beliefs, which are expressed as the subjective probabil-
ity estimates they provide. However, we do not necessarily assume that they compute their
beliefs by doing Bayesian inference in their heads (Griffiths & Tenenbaum, 2006; M. D.
Lee, 2018a). Subjective probability estimates provided by humans are often miscalibrated
meaning that they are overconfident or underconfident (Morgan, 2014). A well-calibrated
forecaster’s probability estimates match the respective relative frequency of occurrence,
i.e., 100x% of the answers for which the forecaster predicts probability x are correct
(Brenner et al., 1996). In contrast, a miscalibrated forecaster’s probability estimate is
more (overconfidence) or less (underconfidence) extreme (Morgan, 2014). Measuring the
calibration of forecasters, quantifying it with a calibration function, and recalibrating their
given probabilities using this calibration function can improve forecasts (Graham, 1996).

Compared to individual forecasts, combining forecasts usually increases performance (Bude-
scu & Chen, 2015; McAndrew et al., 2021; Satopää, 2022; Turner et al., 2014), since a
group of forecasters provides more information than a single forecaster (Clemen &Winkler,
1999). A distinction is made between behavioral and mathematical aggregation of fore-
casts. While behavioral aggregation can be subsumed as a process in which the forecasters
negotiate a consensus (Minson et al., 2018; Silver et al., 2021), mathematical aggregation
involves mathematical rules or models to combine individual forecasts to an aggregated
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forecast (Clemen & Winkler, 1999; Hanea et al., 2021; Wilson, 2017). In this work, we
focus on mathematical aggregation.

A popular choice for mathematical aggregation of probability estimates are linear opin-
ion pools. While unweighted linear opinion pools, i.e., simple averages, often perform
surprisingly well (Turner et al., 2014), numerous weighted linear opinion pools have been
designed, because not all opinions are necessarily of the same value. The weights can be se-
lected based on the forecasters’ performance (Budescu & Chen, 2015; Cooke, 1991; Hanea
et al., 2021), the coherence of their answers (Karvetski et al., 2013), or by the number
of cues available to them (Budescu & Rantilla, 2000), or can be optimized for maximum
performance (Ranjan & Gneiting, 2010). In the latter approach by Ranjan and Gneiting
(2010) they additionally calibrate the weighted linear opinion pool by transforming it with
the cumulative distribution function of the beta distribution. To deal with under- and
overconfidence of linear opinion pools, also trimmed opinion pools (Grushka-Cockayne
et al., 2017) or methods for (anti-) extremizing linear opinion pools (Baron et al., 2014;
Lichtendahl Jr et al., 2022) have been introduced. In addition to linear pooling, there are
also multiplicative pooling methods, e.g., Independent Opinion Pool (Berger, 1985), which
is a renormalized product of the forecasts, or logarithmic or geometric pooling (Berger,
1985; Dietrich & List, 2016), which is a weighted product of forecasts. Both, linear and
multiplicative pooling methods can also be used with transformations of the forecasts, e.g.,
as a probit average (Satopää et al., 2023) or a geometric mean of odds (Satopää et al.,
2014).

Although, as seen above, there are already many different methods for combining proba-
bility forecasts, according to the review by McAndrew et al. (2021) an open challenge is
a “normative theory for how to combine expert opinions into a single consensus distribu-
tion” (McAndrew et al., 2021). Therefore, in this work we propose a normative model
for combining probability forecasts that models the behavior of individual forecasters and
fuses them accordingly.

Several Bayesian statistical models for combining subjective probability estimates have
recently been introduced (Hanea et al., 2021; M. D. Lee & Danileiko, 2014; Satopää, 2022;
Turner et al., 2014). M. D. Lee and Danileiko (2014) ask the forecasters for percentages
or probabilities (e.g., ‘What percentage of the world’s water is not freshwater?’) and thus
consider probabilities as ground truth. Their model is unsupervised, so they do not use
any historical seed queries from which the forecasters’ behavior can be learned. Hanea
et al. (2021) and Satopää (2022) consider binary truth values as ground truth, but also
work with unsupervised models. In contrast, Turner et al. (2014), who also assume binary
ground truth values, propose supervised models for combining probability forecasts. In
particular, they investigate whether it is better first to calibrate the given probabilities and
then average the recalibrated probability estimates or first to average them and recalibrate
the resulting average. For calibration they use the Linear-in-Log-Odds (LLO) calibration
function. Turner et al. (2014) compare non-hierarchical models and hierarchical models
and models based on probability or log-odds. They evaluated all of these models on one
data set consisting of a total of 11551 answers to 176 geopolitical questions, and conclude
that first recalibrating and then combining the recalibrated probability estimates results
in the best performance. Although their approach uses Bayesian inference to infer the
best parameters for different combination rules, the combination rules themselves are not
motivated normatively. In Figure 8.1(a) we show a simplified graphical model of one of the
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Figure 8.1: Graphical models of one of the models proposed by Turner et al. (2014), Calibrate
Then Average, (a) and an exemplary normative fusion model (b). The models are simplified to the
forecasts xk of K forecasters to only one query with truth value t.

fusion models presented by Turner et al. (2014), Calibrate Then Average. In this model
the forecasts xk of K forecasters are calibrated using a deterministic calibration function
with parameters θ (which is the LLO function in their model) to obtain the calibrated
forecasts pk. These calibrated forecasts pk are then fused to the fused forecast µ using a
deterministic fusion method, i.e., averaging. The truth value t is drawn from a Bernoulli
distribution with parameter µ. Note that Turner’s approach thus models how the truth
value t is generated from the forecast data xk, as it is usually done in a discriminative
model.

In contrast, a normative fusion model as we propose it in this work (Figure 8.1(b)) ex-
presses how the true value t generates the forecasts xk, i.e., the data-generating process,
in a generative model. The forecasts xk are generated from some probability distribution
conditioned on the true label t with the respective distribution parameters θ. Thus, after
learning the parameters θ from labeled training data, the model represents the forecasting
behavior of the forecasters conditioned on t. In particular, as was shown for a model com-
bining classifier outputs (Trick & Rothkopf, 2022, see Chapter 3), it models the forecasters’
bias, variance, and uncertainty. In addition, the normative fusion model implicitly cali-
brates the forecasts without the need for an explicit calibration function. New forecasts xk
are fused using Bayes’ rule by inferring the posterior probability of t given the forecasts xk
and the learned model parameters θ. This is normative fusion behavior, because Bayesian
inference is normative. Of course, the parameters θ can also be modeled for each forecaster
individually as θk, which allows modeling each forecaster’s individual forecasting behavior
conditioned on t.

Lindley (1985) proposed such a normative model for combining probability estimates
(nicely explained by Jacobs, 1995). He transforms the probabilities to log-odds and models
these log-odds with Gaussian distributions conditioned on the truth value t that indicates
whether the respective event occurred or not. For fusing the predictions, the posterior
probability of t given the learned Gaussian models and the predictions to be fused needs
to be inferred using Bayes’ rule.
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Another natural way to model the combination of probability estimates normatively is to
model the probabilities directly with a beta distribution without the need for any transfor-
mation. As far as we know, a Bayesian model for combining human probability estimates
using beta distributions has not been worked out in detail yet, but it has been mentioned
in an example in the book of Berger (1985). Steyvers et al. (2014) modeled probability
forecasts with beta distributions, however, not for fusion or calibration of probability es-
timates but for evaluating forecast performances using ROC curves. Here, we propose a
normative model for combining probability estimates that models the probabilities with a
beta distribution conditioned on the true label t of each forecast.

In this vein, we will show that modeling probabilistic forecasts with beta distributions
conditioned on the true label t implicitly calibrates them. This calibration function named
beta calibration has recently been introduced in a machine learning context (Ji et al., 2020;
Kull et al., 2017). The LLO calibration function, used by Turner et al. (2014) and M. D.
Lee and Danileiko (2014), can be shown to be a special case of the beta calibration function.

Turner et al. (2014) evaluate their Bayesian fusion models on the The Good Judgment data
set by the IARPA Aggregative Contingency Estimation (ACE) System, which is the most
popular data set for evaluating forecast aggregation methods and is used for evaluation
in many approaches on forecast aggregation (Budescu & Chen, 2015; Hanea et al., 2021;
Satopää, 2022; Steyvers et al., 2014; Turner et al., 2014; J. Wang et al., 2021). It includes
questions on the probability of future geopolitical events, such as the outcome of elections.
Turner et al. (2014) only evaluated on a subset of this data set including only binary events
and only similarly framed questions.

This data set used by Turner et al. (2014) consists of 176 events or questions, which are
answered by 1290 forecasters. While the high number of events seems to be beneficial
for modeling the forecasters’ behavior, all forecasters only provided forecasts for a subset
of these 176 questions. On average, a forecaster provides only 8.25 answers and 221
(169/122) forecasters only provide 1 (2/3) answer. These low numbers of forecasts per
person is unfavorable for modeling the behavior of individual forecasters. Also, modeling
their behavior conditioned on whether the event has occurred or not is difficult with this
data set since only 37 out of 176 events are positive events that actually occurred.

Several other data sets consisting of probability estimates of multiple forecasters also show
similar drawbacks. The ACE-IDEA data set (Hanea et al., 2021) includes forecasts on
155 events, but on average each forecaster only replied to about 19 queries. Other data
sets consist of less queries to be predicted or answered (Graefe, 2018; Hanea et al., 2021;
Karvetski et al., 2013; Prelec et al., 2017), of which the highest number of queries is about
80 (Prelec et al., 2017). However, 80 answers per forecaster is still a small number for
modeling the forecasters’ behavior, particularly if we divide the data into training and
test sets and model the answers to true/false queries separately. Also, this data set is not
publicly available.

Since the available data sets do not provide much information about single forecasters, in
this work we publish a new data set consisting of 180 true and false statements, for each
of which 85 forecasters provide their confidence on the statement’s correctness.

Thus, the contribution of this work is four-fold: First, we present a family of natural nor-
mative models for aggregating probability forecasts based on the beta distribution. Second,
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we introduce beta calibration in expert fusion contexts and show the connection between
the widely-used LLO calibration function and the beta distribution. Third, for evaluating
our normative models, we provide a new data set consisting of subjective probability fore-
casts that includes a sufficient number of data points to model the behavior of individual
forecasters. Fourth, we systematically evaluate the proposed normative beta fusion models
on a data set by Turner et al. (2014) and our new data set, compare them to the models
proposed in the work of Turner et al. (2014), and provide some general findings about the
respective performance of the considered models regarding several different scores.

The remainder of this chapter is structured as follows. In Section 8.1 we systematically
derive different variants of the normative beta fusion model, including hierarchical and
non-hierarchical as well as asymmetric and symmetric beta fusion models, and show how
the beta calibration function naturally arises in this framework. Section 8.2 presents the
new Knowledge Test Confidence data set and an evaluation of the proposed models on
this and another data set. In addition, the beta calibration function is evaluated. Finally,
in Section 8.3 we discuss the results and outline our model’s limitations and possible
directions for future work.

8.1 Modeling Probability Estimates with Beta Distribu-
tions

In the following, we assume that K human subjects (forecasters) provide probability es-
timates (forecasts) on N binary queries. These queries can be questions about future
events, e.g., ‘Will XY happen?’, factual statements, or other binary classifications, and
must have in common that they can be answered with ‘true’ or ‘false’. The forecasters
provide a probability for each item, which can be interpreted as either their belief that the
respective event will occur or their confidence in their answer’s correctness. In the latter
case, a probability of 0 means that the forecaster is 100% certain that the correct answer
is ‘false’, while a probability of 1 indicates that the forecaster is 100% certain the answer
is ‘true’.

The forecast given by forecaster k for query n is formalized as xkn with n = 1, . . . , N ,
k = 1, . . . ,K. The true label tn for query n, which is the ground truth, can take values 0
or 1, where 0 indicates truth value ‘false’ and 1 indicates truth value ‘true’. We assume
the forecasts xkn to be conditionally independent given the true label tn. For a discussion
of this assumption, which does not hold in general, we refer to Section 8.3.

The beta distribution is the natural choice for modeling proportions and probabilities,
because it is the standard distribution for probabilities in Bayesian statistics and the
conjugate prior of the Bernoulli distribution. Therefore, here we model the forecasts xkn
with a beta distribution conditioned on the true label tn = j, j ∈ {0, 1}. We thus assume
that humans have some skill to differentiate between true and false queries.

Whereas usually the beta distribution is parameterized with two shape parameters α and
β, in the following we will parameterize it alternatively with mean µ and the proportion
ρ of the maximum possible variance given µ, which is µ(1 − µ). This reparametrization
increases the parameters’ interpretability and computationally improves the performance
of Gibbs sampling by reducing correlations between the variables. Thus, the forecasts xkn
are modeled with a beta distribution conditioned on the true label tn = j, j ∈ {0, 1}, with
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parameter µkj as the beta distribution’s mean and parameter ρkj as the proportion of the
beta distribution’s maximum variance,

xkn|tn = j ∼ Beta′(µkj , ρkj ), (8.1)

where Beta′(µkj , ρkj ) is identical to Beta(αkj , βkj ) with

αkj = µkj η
k
j

βkj = (1− µkj )ηkj

ηkj =
µkj (1− µkj )

νkj
− 1

νkj = ρkjµ
k
j (1− µkj ),

(8.2)

and νkj is the beta distribution’s variance. The true label tn is modeled with a Bernoulli
distribution with parameter π.

8.1.1 Hierarchical Beta Fusion Model

In many cases, forecasters provide their forecasts to only a subset of the available queries.
In order to also be able to accurately model the forecasting behavior of forecasters who
only provided a small number of forecasts, we propose the Hierarchical Beta Fusion Model.
This allows taking advantage of the statistical properties of hierarchical models and their
psychological interpretations. Their statistical properties are increased statistical power
since parameter inference is based on more data that share information across groups,
and reduced variance of parameter estimates, known as shrinkage (Britten et al., 2021).
In addition, they allow modeling of individual differences between forecasters, make it
possible to model forecasters who only provided few forecasts, and provide information on
the distribution of the forecasters’ individual parameters (M. D. Lee, 2018b). In particular,
the model’s hyperparameters indicate how the forecasters behave on average, how variable
their behavior is, and the associated hyperpriors make assumptions about the forecasters’
average behavior and variability explicit.

In the Hierarchical Beta Fusion Model, we use a beta prior on the model parameter µkj ,
parameterized with mean uµj and maximum variance proportion pµj . The proportion of
the maximum variance ρkj is also modeled with a beta distribution with mean uρj and
maximum variance proportion pρj . To avoid values of ρkj too close to 0 or 1 that may
get the Gibbs sampler in trouble, we constrained this beta distribution and all other
beta priors on maximum variance proportions ρ, p between 0.001 and 0.999. As prior
distribution for the proportion π of true queries we chose a uniform beta distribution
Beta(1,1). The graphical model of the Hierarchical Beta Fusion Model is shown in Figure
8.2(a). A complete overview over the corresponding modeling distributions and priors,
also including the priors of the hyperparameters uµj , p

µ
j , u

ρ
j , p

ρ
j , is given as
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Figure 8.2: Graphical models of the hierarchical (a) and non-hierarchical (b) beta fusion models.

tn ∼ Bernoulli(π)
xkn|tn = j ∼ Beta′(µkj , ρkj )

µkj ∼ Beta′(uµj , p
µ
j )

ρkj ∼ Beta′(uρj , p
ρ
j )

π ∼ Beta(1, 1)
uµj ∼ Beta(1, 1)
pµj ∼ Beta(1, 1)
uρj ∼ Beta(1, 1)
pρj ∼ Beta(1, 1).

(8.3)

Based on labeled training data, the model parameters µkj , ρkj , and π can be inferred using
Gibbs sampling (e.g., by specifying this model in JAGS (Plummer, 2003)). Since we
assume that human forecasters are on average consistent between different queries, we can
use the learned parameters to infer the posterior probability of the true label tn of new
unseen forecasts xkn as the fusion result. Inference of tn can either also be realized using
Gibbs sampling, or the posterior probability of tn can be computed analytically using the
closed-form probability density function of the beta distribution:

p(tn = j|xn,µj ,ρj , π) ∝ πj(1− π)1−j
K∏
k=1

Beta′(xkn;µkj , ρkj ). (8.4)

8.1.2 Non-Hierarchical Beta Fusion Model

The normative Hierarchical Beta Fusion model represents the forecasting behavior of each
forecaster individually, i.e., for each forecaster an individual set of beta parameters µkj ,
ρkj is learned. In this way, we can model interindividual differences between forecasters,
e.g., different levels of expertise, and can exploit these learned properties for fusion by
giving more weight to a better-performing forecaster. However, since the related approach
by Turner et al. (2014) also compared hierarchical and non-hierarchical versions of their
fusion models, we also compare our normative Hierarchical Beta Fusion Model to a non-
hierarchical version of the model, which assumes exchangeable forecasters that behave
similarly. In this non-hierarchical Beta Fusion Model, we model the forecasts xkn with
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the same beta distributions for all forecasters with shared parameters µj and ρj for k =
1, . . . ,K and j ∈ {0, 1}. Thus, we learn only two beta distributions for all forecasters:
The beta distribution with mean µ0 and maximum variance proportion ρ0 models the
forecasting behavior of all forecasters for false queries, the beta distribution with mean µ1
and maximum variance proportion ρ1 models their forecasting behavior for true queries.
The priors on µj and ρj are uniform distributions Beta(1,1). As for the Hierarchical Beta
Fusion Model in Section 8.1.1 the prior for proportion π is an uninformative beta prior
Beta(1,1). We illustrate the graphical model of the non-hierarchical Beta Fusion Model in
Figure 8.2(b). All corresponding modeling distributions and priors can be summarized as

tn ∼ Bernoulli(π)
xkn|tn = j ∼ Beta′(µj , ρj)

µj ∼ Beta(1, 1)
ρj ∼ Beta(1, 1)
π ∼ Beta(1, 1).

(8.5)

Again, given labeled training data we can infer the model parameters µj , ρj , and π using
Gibbs sampling, and the fused result for some unseen forecasts xkn of multiple forecasters
is the posterior probability over tn given the learned model parameters and forecasts xkn.
Using equation (8.4) as for the Hierarchical Beta Fusion Model and dropping index k for
µ and ρ allows the analytical computation of the posterior over tn.

8.1.3 Beta Calibration

A forecaster is well-calibrated if their probability estimate matches the respective relative
frequency of occurrence, i.e., if 100x% of the statements to which the forecaster assigns a
probability of x are true or 100x% of the events to which the forecaster assigns a probability
of x occur (Brenner et al., 1996). The calibration of a human forecaster can be measured
empirically by binning the provided probability estimates and computing the proportions
of true events for each bin. It is customary to illustrate this relationship with the so-
called calibration curve, which plots the proportions of true events as a function of the
human forecast probabilities. If the resulting calibration curve is the identity function, the
forecaster is perfectly calibrated. If not, a function can be fitted to the empirical calibration
curve. This calibration function can then also be used to recalibrate probability estimates,
i.e., to correct for overconfident or underconfident judgments (Turner et al., 2014).

While various different functions can serve as calibration functions, the Linear-in-Log-
Odds (LLO) function is frequently used. For example, M. D. Lee and Danileiko (2014)
and Turner et al. (2014) explicitly include the LLO function in their Bayesian fusion models
for calibrating the provided forecasts. However, by modeling the provided forecasts with
a probability distribution, one can also calibrate them implicitly. This means that given a
probabilistic generative fusion model, as we provide in this work, the calibration function
is not chosen empirically, but instead the normative calibration function for the respective
model can be derived.
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With the Hierarchical Beta Fusion Model we model forecasts xkn of forecaster k conditioned
on the true label tn with a beta distribution

p(xkn = x|tn = j) = xα
k
j−1(1− x)β

k
j−1

B(αkj , βkj )
. (8.6)

The corresponding calibration function, which is called the beta calibration function, can
be derived using Bayes’ rule

BC(x) = p(tn = 1|xkn = x) =
xα
k
1−1(1−x)β

k
1−1

B(αk1 ,βk1 ) π

x
αk1−1(1−x)β

k
1−1

B(αk1 ,βk1 ) π + x
αk0−1(1−x)β

k
0−1

B(αk0 ,βk0 ) (1− π)

= 1

1 + B(αk1 ,βk1 )
B(αk0 ,βk0 )

(1−x)β
k
0−β

k
1

x
αk1−α

k
0

1−π
π

(8.7)

with π = p(tn = 1) as introduced above. The function in (8.7) has been first introduced
by Kull et al. (2017) in the context of machine learning for calibrating the probabilistic
outputs of classification algorithms.

Interestingly, the Linear-in-Log-Odds (LLO) calibration function used by Turner et al.
(2014) and M. D. Lee and Danileiko (2014) can be derived as a special case of the beta
calibration function (Kull et al., 2017). If we constrain the beta distributions to be sym-
metric around 1

2 , i.e., α = αk0 = βk1 and β = βk0 = αk1 , the resulting calibration function
is

LLO(x) = p(tn = 1|xkn = x) =
π

1−πx
β−α

π
1−πx

β−α + (1− x)β−α

= δxγ

δxγ + (1− x)γ

(8.8)

with δ = π
1−π and γ = β − α. Beta calibration in (8.7) is more flexible than LLO

calibration in (8.8) because it does not assume symmetric beta distributions for tn = 0
and tn = 1. Thus, beta calibration can consider that the forecasters’ behavior might be
different for different truth values tn. In contrast, LLO calibration assumes symmetric
beta distributions for tn = 0 and tn = 1 and therefore symmetric forecasting behavior for
true and false queries, which might not hold for real forecasts. A more detailed comparison
of beta calibration and LLO calibration including example calibration functions can be
found in Section 8.2.5.

8.1.4 Hierarchical Symmetric Beta Fusion Model

Since modeling the forecasts with symmetric beta distributions results in calibrating them
with the LLO calibration function (see Section 8.1.3), we are interested in comparing the
original beta fusion model using asymmetric beta distributions to a symmetric beta fusion
model using symmetric beta distributions, which assumes humans to show symmetric
forecasting behavior given true or false queries. In the Hierarchical Symmetric Beta Fusion
Model we thus model forecasts xkn with two symmetric beta distributions with parameters
µk0 = µk, ρk0 = ρk and µk1 = 1 − µk, ρk1 = ρk. We set a beta prior on µk with mean uµ
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Figure 8.3: Graphical models of the hierarchical (a) and non-hierarchical (b) symmetric beta fusion
models.

and maximum variance proportion pµ and model ρk with a beta distribution with mean
uρ and maximum variance proportion pρ. Similar to the asymmetric beta fusion models,
the proportion π of true queries is modeled with an uninformed prior Beta(1,1). Figure
8.3(a) shows the graphical model of the Hierarchical Symmetric Beta Fusion Model. All
modeling distributions and priors are given as

tn ∼ Bernoulli(π)
xkn|tn = 0 ∼ Beta′(µk, ρk)
xkn|tn = 1 ∼ Beta′(1− µk, ρk)

µk ∼ Beta′(uµ, pµ)
ρk ∼ Beta′(uρ, pρ)

π ∼ Beta(1, 1)
uµ ∼ Beta(1, 1)
pµ ∼ Beta(1, 1)
uρ ∼ Beta(1, 1)
pρ ∼ Beta(1, 1).

(8.9)

The model parameters µk, ρk, and π are estimated from labeled training data using Gibbs
sampling. For fusing unseen forecasts xkn the posterior probability of their true label tn
can be computed analytically given the learned model parameters:

p(tn = 0|xn,µ,ρ, π) ∝ (1− π)
K∏
k=1

Beta′(xkn;µk, ρk) (8.10)

p(tn = 1|xn,µ,ρ, π) ∝ π
K∏
k=1

Beta′(xkn; 1− µk, ρk). (8.11)

8.1.5 Non-Hierarchical Symmetric Beta Fusion Model

As for the asymmetric beta fusion model, we also examine a non-hierarchical version of the
symmetric beta fusion model. In the non-hierarchical Symmetric Beta Fusion Model all
forecasters’ forecasts xkn are modeled with the same two symmetric beta distributions for
tn = 0 and tn = 1 with parameters µ0 = µ, ρ0 = ρ and µ1 = 1−µ, ρ1 = ρ. The priors for µ
and ρ are uniform distributions Beta(1,1). As in all models, we set an uninformative prior
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Beta(1,1) on the proportion of true queries π. The graphical model of the non-hierarchical
Symmetric Beta Fusion Model is presented in Figure 8.3(b). An overview of all modeling
distributions and priors is given as

tn ∼ Bernoulli(π)
xkn|tn = 0 ∼ Beta′(µ, ρ)
xkn|tn = 1 ∼ Beta′(1− µ, ρ)

µ ∼ Beta(1, 1)
ρ ∼ Beta(1, 1)
π ∼ Beta(1, 1).

(8.12)

The model parameters µ, ρ, and π are estimated from labeled training data using Gibbs
sampling. For fusing unseen forecasts xkn the posterior probability of their true label tn
can be computed analytically using equations (8.10) and (8.11) with dropping index k for
parameters µ, ρ.

8.2 Evaluation

We evaluated the four proposed Bayesian models on two data sets consisting of forecasts
provided by human subjects, the Turner data set and a new data set that we collected
(Section 8.2.1). Using leave-one-out cross-validation (Section 8.2.2) we compare their Brier
scores, 0-1 losses, and mean absolute errors as performance measures (Section 8.2.3). In
addition, we also compared the performances of the proposed fusion models to the fusion
models presented by Turner et al. (2014). For implementing them, we adopted the JAGS
code they provided for their models and all specifications given with respect to sampling,
e.g., the number of samples and initial values. Motivated by the results of the models’
comparison presented in Section 8.2.4, we compare beta calibration and LLO calibration
in Section 8.2.5.

8.2.1 Data Sets

We evaluated the performances of the proposed Bayesian fusion models and the reference
models by Turner et al. (2014) on two data sets, namely the Turner data set (Section
8.2.1.1), which is the data set Turner et al. (2014) used for evaluating their fusion models,
and our new data set (Section 8.2.1.2).

8.2.1.1 Turner Data Set

The Turner data set1 is a subset of the The Good Judgment data set,2 containing 176
geopolitical statements in the form of ‘Will event X happen by date Y?’, e.g., ‘There will
be a military coup in Venezuela in 2011’. All statements are binary, so they are either true
or false, but at the time of data collection, all events were unresolved, so their outcome
could not be known yet. After completion of the study, 37 of 176 statements turned out
to be true, while the remaining 139 statements resolved as false.

Human subjects could reply to the given items through a web page. They provided their
estimate of the probability that the respective statement will resolve to true for as many

1 https://webfiles.uci.edu/msteyver/codeanddata/forecastingdata.csv
2 https://dataverse.harvard.edu/dataverse/gjp
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statements as they wanted. The provided probabilities are between 0 and 1, accurate to 2
decimal places. To avoid problems with estimates of exactly 0 or 1, we preprocessed these
estimates and changed them to 0.001 and 0.999 respectively, as also done in the work of
Turner et al. (2014).3 1290 subjects provided a total number of 11551 probability estimates.
The maximum number of replies per subject is 127, on average a subject provided 8.25
probability estimates.

8.2.1.2 Knowledge Test Confidence Data Set

In this work, we publish a new data set called the Knowledge Test Confidence (KTeC) data
set.4 It consists of the confidence judgments of 85 forecasters to 180 knowledge statements
of which 90 statements are true and 90 statements are false. There are easy statements,
e.g., ‘Elephants are mammals’, and hard statements, at least for our participant pool, e.g.,
‘Port Moresby is the capital of Papua New Guinea’.

The data were collected in a probabilistic modeling class at the University of Osnabrück
and were part of the lessons on proper scoring rules. The students attending this class
were asked to generate statements that are easy to understand, do not contain negations,
and cover the whole range from easy to hard statements. They were told that for an easy
query 80-90% of their peers should know the statement’s truth value, for hard queries
only 60-70%. Most of the resulting statements test general knowledge, some are specific
to student life in Osnabrück, and some were deliberately designed as trick questions (e.g.,
‘The official language of the United States is English’). The students who provided the
statements and other students in a couple of following years voluntarily and completely
anonymously provided their confidence on the truth of each statement through an online
questionnaire. A confidence of 0 indicates that a subject is convinced that the statement
is wrong, whereas a confidence of 1 indicates a strong belief that the statement is correct.
Subjects could provide their confidences not on a continuous scale, but in 11 steps of 0.1.
As for the Turner data set, for the following evaluations we again preprocessed 0 to 0.001
and 1 to 0.999.5

85 students provided a total number of 15300 probability estimates. Thus, each subject
replied to all 180 statements.

8.2.2 Cross-Validation

In order to evaluate the different models on the data sets described above (Section 8.2.1)
we split the data into training and test sets using leave-one-out (LOO) cross-validation.
While Turner et al. (2014) evaluated with 10-fold cross-validation, we preferred leave-
one-out cross-validation over k-fold cross-validation since it allows training the model on
almost the entire data set, which reduces the evaluation bias. Also, it comes with zero
randomness in the partitioning of the data and is therefore straightforwardly reproducible.

3 We also evaluated different score corrections, namely (0.01,0.99) and (0.025,0.975), which did not change
the results significantly.

4 The data set is provided at https://osf.io/ae25w/.
5 We also evaluated different score corrections, namely (0.01,0.99) and (0.025,0.975), which did not change
the results significantly.
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If a data set consists of M queries, we obtain M LOO training sets, each including M − 1
data points. For each of the resultingM training sets, we inferred the posterior distribution
of each model’s parameters using Gibbs sampling. We implement Gibbs Sampling for
inference using JAGS (Plummer, 2003). For fitting the model parameters given labeled
training data we ran two parallel chains, each consisting of 1000 samples with a burn-in
of 1000 samples.

For fusing the one example in the test set, one could now use the means of the obtained
posterior distributions as point estimates for the parameters and compute the posterior
over the true label tn analytically given these point estimates. However, in order to consider
the uncertainty of our parameter estimates, we computed the posterior over tn analytically
for each sample of the model parameters’ posterior distribution, as for example in (8.4),
and averaged all obtained posteriors to the final fused forecast.

8.2.3 Performance Measures

As performance measures, we consider Brier score, 0-1 loss, and mean absolute error.
The Brier score (Brier et al., 1950) is a popular metric for quantifying human forecast
performance, used by e.g., Karvetski et al. (2013), Turner et al. (2014), Hanea et al. (2021),
and Satopää (2022). It is a strictly proper scoring rule (A. H. Murphy, 1973), meaning
that it is optimized when people report their true beliefs of the probability instead of
intentionally providing more or less extreme probabilities. The Brier score is defined as
the mean squared error between the predicted probabilities xn and the true labels tn,

BS = 1
N

N∑
n=1

(xn − tn)2. (8.13)

Thus, the best attainable Brier score is 0 and the worst is 1. Interestingly, if a forecaster
always provides 0.5 as her estimate, the resulting Brier score will be 0.25. Thus, a model
should at least achieve a Brier score below 0.25.

It is controversial whether the Brier score is a suitable metric for comparing the per-
formances of different forecasting systems, since as a strictly proper scoring rule it was
originally developed in order to measure if forecasters report their true beliefs, not to
compare different forecasters (Steyvers et al., 2014). Also, it can be dominated by outliers
(Canbek et al., 2022), though not as much as e.g., the log-loss. Still, it is commonly used
for comparing forecasters’ performances (Baron et al., 2014; Hanea et al., 2021; Karvetski
et al., 2013; Ranjan & Gneiting, 2010; Satopää, 2022; Turner et al., 2014), so we report it
here, too.

0-1 loss describes the proportion of incorrect forecasts to the total number of all forecasts,

L01 = 1
N

N∑
n=1

 1 if |tn − xn| ≥ 0.5
0 else

, (8.14)

and thus ranges between 0 and 1, with lower values indicating better performances. In com-
parison to the Brier score, the 0-1 loss is more easily interpretable and directly compares
the forecasters’ performances. However, it disregards their uncertainty by considering a
forecast as correct, if its corresponding probability is closer to the true label tn of the
respective query.

Bayesian Combination of Subjective Probability Estimates 135



To overcome the limitations of Brier score and 0-1 loss, we additionally evaluate the
different fusion methods in terms of mean absolute error (Canbek et al., 2022; Ferri et
al., 2009). Mean absolute error (MAE) measures the absolute difference between the
forecasted probability and the true label:

MAE = 1
N

N∑
n=1
|xn − tn|. (8.15)

Similar to the Brier score (mean squared error) and 0-1 loss it ranges between 0 and 1, with
lower values indicating higher performance. However, in contrast to the Brier score, which
can be dominated by outliers, MAE is more robust to outliers (Canbek et al., 2022). Also,
it is straightforwardly interpretable and a more natural and intuitive metric for comparing
different fusion models without disregarding their uncertainty. However, note that MAE
is an improper scoring rule (Buja et al., 2005), so it incentivizes overconfident forecasts.

8.2.4 Model Performances

On both data sets described in Section 8.2.1 we evaluate the four Bayesian fusion models
introduced in Section 8.1 in terms of Brier score, 0-1 loss, and mean absolute error (MAE).
In addition, we compare our fusion methods’ performances to the models by Turner et
al. (2014). Turner et al. (2014) present several Bayesian fusion models, which explicitly
consider the calibration of forecasts with the LLO calibration function. Their key question
is whether it is better first to average the forecasts or first to calibrate them. Hence,
the proposed models are three non-hierarchical models, Average Then Calibrate (ATC),
Calibrate Then Average (CTA), Calibrate Then Average using Log-Odds (CTALO), and
two hierarchical models, Hierarchical Calibrate Then Average (HCTA), and Hierarchical
Calibrate Then Average on Log-Odds (HCTALO).6 For reference, they also evaluate the
performance of Unweighted Linear Opinion Pool (ULINOP) as a baseline. Since ULINOP
is known to be biased towards 0.5 (Baron et al., 2014), we additionally evaluate the
performance of Probit Average (PAVG) (Satopää et al., 2023) as another benchmark. For
PAVG we first transform all forecasts with probit, then average the transformed forecasts,
and finally transform this average back to probability score. Here, we investigate how
a normative model that implicitly calibrates the forecasts by modeling them with beta
distributions will perform relative to all these models. In particular, we investigate whether
the normative approach increases the performance of the fused forecast.

Figure 8.4 shows the means and standard errors of the mean of Brier score, 0-1 loss,
and mean absolute error (MAE) on the Turner data set (Section 8.2.1.1). The beta fusion
models introduced in this work are abbreviated as HB (Hierarchical Beta Fusion Model), B
(non-hierarchical Beta Fusion Model), HSB (Hierarchical Symmetric Beta Fusion Model),
and SB (non-hierarchical Symmetric Beta Fusion Model). According to Brier score, the
three non-hierarchical Turner models ATC, CTA, and CTALO perform best with BS ≈
0.125. These results are different to the results reported by Turner et al. (2014), which were
obtained using 10-fold cross-validation and favored the HCTALO model. The best beta
model is HSB with BS = 0.151, which performs comparably to HB and the hierarchical

6 In our evaluations, we used the JAGS code provided in the work of Turner et al. (2014). However, note
that in their work the implementation of HCTALO is significantly different from the implementation of
HCTA.
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Figure 8.4: Model performances on the Turner data set according to Brier score, 0-1 loss, and mean
absolute error. We compare the scores’ means and standard errors of the mean of our beta fusion
models, the Hierarchical Beta Fusion Model (HB), the non-hierarchical Beta Fusion Model (B),
the Hierarchical Symmetric Beta Fusion Model (HSB), and the non-hierarchical Symmetric Beta
Fusion Model (SB), the models by Turner et al. (2014), Average Then Calibrate (ATC), Calibrate
Then Average (CTA), Calibrate Then Average using Log-Odds (CTALO), Hierarchical Calibrate
Then Average (HCTA), and Hierarchical Calibrate Then Average on Log-Odds (HCTALO), and the
two baseline methods Unweighted Linear Opinion Pool (ULINOP) and Probit Average (PAVG).

Turner models HCTA and HCTALO. The non-hierarchical beta models B and SB perform
worst with Brier scores of about 0.25, which is close to the performance of a forecaster that
always forecasts 0.5. As per 0-1 loss, the ranking of the models is different. HSB performs
similarly to ATC, CTA, CTALO, and HCTA with L01 = 0.176, HB is approaching (L01 =
0.21). The hierarchical Turner model HCTALO (L01 = 0.267) performs clearly worse
than both hierarchical beta models. According to MAE, both hierarchical beta models
HB (MAE = 0.219) and HSB (MAE = 0.185) perform best. All non-hierarchical models,
Turner and beta models, perform similarly (MAE ≈ 0.25), while the hierarchical Turner
models perform worst, similarly to ULINOP and PAVG with MAE ≈ 0.4. Consistently
over all performance measures, HSB outperforms HB. Also, the hierarchical beta models
outperform the non-hierarchical beta models, while the non-hierarchical Turner models
outperform the hierarchical Turner models.

In Figure 8.5 we compare the performances of beta and Turner fusion models on the
newly introduced Knowledge Test Confidence (KTeC) data set. Compared to the results
on the Turner data set, the differences between the models’ performances are generally
smaller over all three performance measures Brier score, 0-1 loss, and MAE. Based on
Brier score HCTALO performs best with BS = 0.125, but CTALO, ATC, HSB, and PAVG
perform quite similarly. HB and HCTA perform worst with Brier scores of BS = 0.179
and BS = 0.185. However, as per 0-1 loss CTA performs worst, and HSB and HCTALO
are performing best with L01 = 0.156 and L01 = 0.15. According to MAE, all beta fusion
models clearly outperform the Turner models and perform quite comparably. Still, HSB
is again the best performing beta fusion model with an MAE of 0.153.

In the evaluations shown so far we combine the forecasts of 1290 forecasters for the Turner
data set and 85 forecasters for the KTeC data set. For both data sets the Hierarchical
Symmetric Beta Fusion model (HSB) is best or among the best models according to 0-1 loss
or MAE. However, according to Brier score some Turner models outperform HSB on both
data sets, which might indicate that HSB or the beta models in general are overconfident.
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Figure 8.5: Model performances on the Knowledge Test Confidence (KTeC) data set according
to Brier score, 0-1 loss, and mean absolute error. We compare the scores’ means and standard
errors of the mean of our beta fusion models, the Hierarchical Beta Fusion Model (HB), the
non-hierarchical Beta Fusion Model (B), the Hierarchical Symmetric Beta Fusion Model (HSB),
and the non-hierarchical Symmetric Beta Fusion Model (SB), the models by Turner et al. (2014),
Average Then Calibrate (ATC), Calibrate Then Average (CTA), Calibrate Then Average using Log-
Odds (CTALO), Hierarchical Calibrate Then Average (HCTA), and Hierarchical Calibrate Then
Average on Log-Odds (HCTALO), and the two baseline methods Unweighted Linear Opinion Pool
(ULINOP) and Probit Average (PAVG).

To investigate this, we also consider two subsets of the two data sets that contain fewer
forecasters since fusing a lower number of forecasters should attenuate overconfidence. For
the Turner data set the subset of forecasters must be chosen with care, since all forecasters
only provided forecasts for only a subset of queries. To be able to evaluate fusion methods,
we must guarantee that all queries are answered by at least two forecasters, which we can
then fuse. In order to do so, we selected the 20 forecasters providing the most forecasts.
The results on the reduced Turner data set are shown in Figure 8.6. As for the full
Turner data set, the hierarchical beta fusion models outperform the non-hierarchical ones,
achieve a 0-1 loss (L01 = 0.171 for HB and L01 = 0.165 for HSB) comparable to the best
Turner model ATC (L01 = 0.176), and outperform all other models clearly according to
MAE with MAE ≈ 0.2. In addition, and in contrast to the full Turner data set, here
HB (BS = 0.129) and HSB (BS = 0.128) also perform comparably to the best Turner
model ATC (BS = 0.132) regarding Brier score. Thus, for the reduced Turner data set
the hierarchical beta fusion models HB and HSB are among the best fusion models for all
performance measures.

For the KTeC data set it is more straightforward to create a reduced data set since all
forecasters replied to all queries. Therefore, we simply selected the first 10 forecasters
as a subset. In Figure 8.7 we see that similar to the reduced Turner data set, on the
reduced KTeC data set HSB is the best model according to all three performance measures
(BS = 0.124,L01 = 0.15,MAE = 0.192). As per Brier score and 0-1 loss, HCTALO
(BS = 0.132,L01 = 0.156) performs comparably, but regarding MAE, again all beta fusion
models clearly outperform all Turner models. Similar to the full KTeC data set, the
hierarchical symmetric beta model (HSB) generally outperforms the asymmetric one (HB)
and the hierarchical beta models achieve better scores than the non-hierarchical ones.
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Figure 8.6: Model performances on the reduced Turner data set consisting of a subset of the 20
forecasters of the Turner data set that provided the most forecasts. We compare the means and
standard errors of the mean of Brier scores, 0-1 losses, and mean absolute errors of our beta fusion
models, the Hierarchical Beta Fusion Model (HB), the non-hierarchical Beta Fusion Model (B),
the Hierarchical Symmetric Beta Fusion Model (HSB), and the non-hierarchical Symmetric Beta
Fusion Model (SB), the models by Turner et al. (2014), Average Then Calibrate (ATC), Calibrate
Then Average (CTA), Calibrate Then Average using Log-Odds (CTALO), Hierarchical Calibrate
Then Average (HCTA), and Hierarchical Calibrate Then Average on Log-Odds (HCTALO), and the
two baseline methods Unweighted Linear Opinion Pool (ULINOP) and Probit Average (PAVG).
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Figure 8.7: Model performances on the reduced Knowledge Test Confidence (KTeC) data set con-
sisting of a subset of the first 10 forecasters of KTeC data set. We compare the means and standard
errors of the mean of Brier scores, 0-1 losses, and mean absolute errors of our beta fusion models,
the Hierarchical Beta Fusion Model (HB), the non-hierarchical Beta Fusion Model (B), the Hier-
archical Symmetric Beta Fusion Model (HSB), and the non-hierarchical Symmetric Beta Fusion
Model (SB), the models by Turner et al. (2014), Average Then Calibrate (ATC), Calibrate Then
Average (CTA), Calibrate Then Average using Log-Odds (CTALO), Hierarchical Calibrate Then
Average (HCTA), and Hierarchical Calibrate Then Average on Log-Odds (HCTALO), and the two
baseline methods Unweighted Linear Opinion Pool (ULINOP) and Probit Average (PAVG).
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8.2.5 Beta Calibration vs LLO

The results presented in Section 8.2.4 show that the Hierarchical Symmetric Beta Fusion
Model (HSB) outperforms the Hierarchical Beta Fusion Model (HB). While this outcome
is rather unexpected, since HSB constrains the modeling beta distributions to be sym-
metric and is therefore less expressive than HB, we can explain it with the calibration
functions that are implied by modeling the forecasts with symmetric or asymmetric beta
distributions. As shown in Section 8.1.3, by modeling the forecasts with beta distributions
conditioned on the true label, we implicitly calibrate them using the beta calibration func-
tion (8.7). If the beta distributions are symmetric, the beta calibration function reduces
to the LLO calibration function (8.8).

In most cases the LLO and beta calibration function do not differ significantly. However,
there are special cases, in which the beta calibration deviates drastically from the LLO
calibration function. From (8.8) we can directly see that LLO(0) = 0 and LLO(1) = 1 if
γ = β − α > 0 with α = αk0 = βk1 and β = βk0 = αk1 . The latter condition should hold for
the most forecasters, since otherwise they would be biased towards always predicting the
wrong answer.

In contrast, also for such unbiased forecasters, for which αk0 < βk0 and αk1 > βk1 , the beta
calibration function BC(x) is not always defined at x = 0 and x = 1, depending on the
beta parameters. In particular, looking at (8.7) we see that

lim
x→0

BC(x) = 1 if αk1 − αk0 < 0 and

lim
x→1

BC(x) = 0 if βk0 − βk1 < 0.
(8.16)

In Figure 8.8 we show the calibration curves of two exemplary forecasters from the Knowl-
edge Test Confidence (KTeC) data set (top row) together with the densities of the re-
spective beta distributions for t = 0 and t = 1 when assuming asymmetric or symmetric
beta distributions (bottom row). The respective parameters of the beta distributions that
model their forecasts and define their calibration curves are taken from training split 1
of the cross-validation done for HB and HSB described in Section 8.2.2. Figure 8.8(a)
shows the calibration curves and corresponding beta distributions of forecaster 57 with
parameters α57

0 = 0.41, β57
0 = 0.65, α57

1 = 0.67, β57
1 = 0.47 for the asymmetric Hierarchi-

cal Beta Fusion Model (HB) or the beta calibration function respectively and parameters
α57

0 = β57
1 = 0.44, β57

0 = α57
1 = 0.65 for the Hierarchical Symmetric Beta Fusion Model

(HSB) and the LLO calibration function. We can see that the learned beta distributions for
HB (asymmetric) and HSB (symmetric) look very similar. Also, LLO and beta calibration
curves look very similar since α57

1 − α57
0 > 0 and β57

0 − β57
1 > 0.

In contrast, in Figure 8.8(b) we see that for forecaster 46, the beta calibration curve
looks very different from the LLO curve. Since the forecaster is modeled with parameters
α46

0 = 0.73, β46
0 = 1.16, α46

1 = 2.81, β46
1 = 1.73 for HB or beta calibration and α46

0 = β46
1 =

1.07, β46
0 = α46

1 = 1.72 for HSB or LLO, β46
0 − β46

1 < 0 and BC(x) tends to 0 for x → 1.
This can also be seen in the corresponding beta distributions in the bottom of Figure
8.8(b). If we assume asymmetric beta distributions, at x = 1 the probability density
for t = 0 is higher than the probability density for t = 1, leading to a beta calibration
function that tends to 0 for x→ 1. If we assume symmetric beta distributions, this does
not happen. In this case, fusing with HB and thereby calibrating with beta calibration
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Figure 8.8: The empirical, beta calibration (BC), and LLO curves of two exemplary forecasters from
the Knowledge Test Confidence data set (top row) together with the respective asymmetric and
symmetric beta distributions (bottom row). (a) shows the calibration curves and respective beta
distributions of forecaster 57, where LLO and beta calibration curves are similar. (b) shows the
calibration curves and beta distributions of forecaster 46, for which the beta calibration function
tends to 0 for x→ 1 causing miscalibrations.
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can induce miscalibration of forecasts close to 1 that lead to forecasting the opposite of
the forecast that was originally provided. This can result in worse performance of the HB
fusion model in comparison to the HSB fusion model, which we see in the results presented
in Section 8.2.4.

8.3 Discussion and Conclusion

In this work, we presented a family of normative generative models for fusing probability
forecasts. Since uncertainty over probabilities is commonly modeled with the beta distri-
bution, in our normative fusion models we model each forecaster’s probability forecasts
with beta distributions conditioned on their true label. We compare different variants
of this model including hierarchical and non-hierarchical as well as asymmetric and sym-
metric beta fusion models. Given the respective model, new unseen probability estimates
can be fused by inferring their true label. The obtained fused forecast is Bayes optimal
given the model’s assumptions. While previous approaches explicitly calibrate the con-
sidered forecasts using the Linear-in-Log-Odds (LLO) calibration function (M. D. Lee &
Danileiko, 2014; Turner et al., 2014), the proposed beta fusion models implicitly calibrate
the probability estimates provided by the forecasters with the beta calibration function,
which accommodates the LLO calibration function as a special case.

We evaluated the proposed models on a data set by Turner et al. (2014) and the newly
introduced Knowledge Test Confidence (KTeC) data set, also including two smaller subsets
of these two data sets. In this vein, we also compared the proposed beta fusion models
to the models by Turner et al. (2014), which fuse forecasts by averaging and calibrating
them using the LLO calibration function. Looking at the results of all four data sets, i.e.,
the two full data sets and their respective reduced subsets, we can observe some general
findings.

The hierarchical beta models generally outperform the non-hierarchical beta models. This
is expected behavior because the hierarchical models are able to model each individual
forecaster’s behavior, which can be different, while the non-hierarchical models assume
exchangeable forecasters, model all forecasters’ collective behavior, and therefore discard
valuable information. However, the Turner and KTeC data set differ in the magnitude of
the difference between the performances of non-hierarchical and hierarchical beta fusion
models. For the Turner data this difference is greater than for the KTeC data set since
in the Turner data set the beta parameters of different forecasters are more variable than
in the KTeC data set. Therefore, modeling all forecasters in the Turner data set with the
same beta parameters causes comparably inferior performance.

Among the beta fusion models, the Hierarchical Symmetric Beta Fusion Model (HSB)
shows the best performance. In particular, it outperforms the (asymmetric) Hierarchical
Beta Fusion Model (HB), although HB does not constrain the modeling beta distributions
to be symmetric and is therefore more expressive than HSB. As we discussed in Section
8.2.5, the reason for this is the calibration functions implied by the beta distributions,
beta calibration for HB and LLO for HSB. Depending on the parameters learned for HB,
beta calibration can lead to miscalibration of forecasts which causes worse performance
of HB compared to HSB. Therefore, and in line with the results presented in Section
8.2.4, we recommend using the Hierarchical Symmetric Beta Fusion Model (HSB) instead
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of the Hierarchical Beta Fusion Model, and LLO calibration instead of beta calibration
accordingly.

The conclusions discussed above are all consistent for the three performance measures Brier
score, 0-1 loss, and MAE. However, as we report in Section 3.4, different measures suggest
different models as the best-performing model. As we mentioned in Section 3.3 it is not
clear which measure should be preferred. Brier score is commonly used (Baron et al., 2014;
Hanea et al., 2021; Karvetski et al., 2013; Ranjan & Gneiting, 2010; Satopää, 2022; Turner
et al., 2014), but criticized for not being appropriate for comparing forecasters, because
it was developed for measuring whether forecasters report their true beliefs (Steyvers et
al., 2014). Also, Brier score can be dominated by outliers (Canbek et al., 2022). On
the other hand, the 0-1 loss directly compares the forecasters’ performances and is easily
interpretable but disregards their uncertainty. MAE considers the forecasters’ uncertainty,
is straightforwardly interpretable, and is robust to outliers (Canbek et al., 2022). However,
it is an improper scoring rule (Buja et al., 2005) and incentivizes overconfident forecasts.

Since Brier score, 0-1 loss, and MAE have different strengths and weaknesses, we reported
all three measures in our work. Interestingly, the differences between the results according
to different measures reveal something about the models’ properties. The hierarchical beta
fusion models always outperform all other models regarding MAE. Thus, at least according
to this measure, the normative models outperform the models proposed by Turner et al.
(2014). On the two full data sets, some Turner models achieve lower, i.e., better Brier
scores than the HSB, but these are different models depending on the respective data set,
ATC, CTA, CTALO, and HCTA on the Turner data set, HCTALO on the KTeC data set.
Still, according to 0-1 loss HSB is always competing with these best Turner models and
outperforms them in terms of MAE. On the reduced data sets, also HSB’s Brier score is
better or competing to all other models.

The main reason why the hierarchical beta models (HB and HSB) achieve better MAE
scores but worse Brier scores than some of Turner’s models on the full data sets is their
overconfidence. This overconfidence is a direct result of the conditional independence as-
sumption of our beta fusion models (given the label, each subject provides independent
probabilistic forecasts). This assumption is not met in the data. Since the forecasters
respond to the same questions and share information and knowledge, their forecasts are
not independent but tend to increase when other forecasters’ forecasts increase. For ex-
ample, the forecasters in our participant pool for the KTeC data set did not know the
capital of Papua New Guinea but knew the answers to questions related to their univer-
sity. Since they were students from Osnabrück in Germany, they shared knowledge about
their university but consistently had little geographic knowledge about Papua New Guinea.
If forecasts are combined assuming conditional independence, the fused forecast’s uncer-
tainty is usually reduced. This effect becomes stronger when more forecasts are fused.
Unfortunately, if forecasts that are not actually independent are fused in this way, the
fused forecast can be more confident than it should be (Trick & Rothkopf, 2022, see Chap-
ter 3). Those overconfident forecasts can lead to high Brier scores, because the Brier score
drastically punishes wrong forecasts with high confidence. If fewer forecasts are combined,
the fused forecast is less overconfident, which is why the hierarchical beta models achieve
better Brier scores than Turner’s models on the two reduced data sets. The beta fusion
models’ overconfidence is also the reason why the standard errors of the mean, shown as
error bars in the figures, are larger for the beta fusion models than for Turner’s models
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regarding Brier score and MAE. More confident fusion models lead to higher variability
in the Brier and MAE scores of different splits of LOO cross-validation and thus to higher
standard errors in these measures.

Since the forecasts of multiple human experts are rarely independent (Winkler et al., 2019;
Wiper & French, 1995), future work on combining forecasts should include the possibility
to model correlations between forecasters to take into account the shared questions and
knowledge of the forecasters, which will further increase the performance of the fused
forecast. This could be realized, for example, using correlated beta distributions (Arnold
& Ghosh, 2017; Moschen & Carvalho, 2023; Trick, Rothkopf, & Jäkel, 2023b, see Chapter
4).
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9
BAYES IAN COMBINATION OF CORRELATED
SUBJECT IVE PROBABIL ITY EST IMATES

As we already stated in Chapter 8, subjective probability estimates provided by human
experts play an important role in many different domains, among them finance, politics,
engineering, meteorology, environmental science, and public health (McAndrew et al.,
2021). In contrast to machine learning algorithms, they provide knowledge based on
human intuition and experience without access to large data sets (McAndrew et al., 2021).
In this way, they can steer decisions and facilitate planning and dealing with risks. The
subjective probability estimates can be either predictions for future events (Graefe, 2018;
Turner et al., 2014), e.g., election outcomes or weather phenomena, a quantification of an
expert’s belief in the truth of a statement (Karvetski et al., 2013; Prelec et al., 2017), or
any other binary classifications. Consistent with Chapter 8, in the following, we will refer
to these probability estimates as forecasts. Accordingly, the human subjects providing
them will be termed forecasters. The subject of the forecast, e.g., an event to be predicted
or a statement to be judged, will be referred to as a query.

It is well known that if multiple forecasts from different forecasters are available for the
query at hand, combining these individual forecasts usually increases performance (Ben-
nett et al., 2018; Budescu & Chen, 2015; McAndrew et al., 2021; Satopää, 2022; Satopää
et al., 2023; Turner et al., 2014), known as the wisdom-of-the-crowds effect (Surowiecki,
2005). Multiple different mathematical fusion rules exist, which can result in different
performances of the fused forecast (Satopää et al., 2016). Many of them assume the
individual forecasters to be independent (Wilson, 2017) or at least do not explicitly con-
sider a possible correlation between the provided probability estimates. Popular examples
of such methods are linear opinion pools, i.e., unweighted or weighted averages. While
unweighted linear opinion pools, i.e., standard averages, can already achieve solid perfor-
mance (Clemen, 1989; Turner et al., 2014), weighted linear opinion pools try to increase
fusion performance by giving each forecaster a different weight. The weights can be de-
termined by the forecasters’ individual performance (Cooke, 1991; Hanea et al., 2021),
their forecasts’ coherence (Karvetski et al., 2013), or the number of cues available to
them (Budescu & Rantilla, 2000), or can be optimized for maximum performance (Ran-
jan & Gneiting, 2010). Because linear opinion pools can be over- or underconfident, also
trimmed (Grushka-Cockayne et al., 2017) and extremized (Baron et al., 2014) linear opin-
ion pools have been proposed. Besides linear opinion pools there are also multiplicative
opinion pools, which combine forecasts using a product instead of a sum. Examples are
Independent Opinion Pool (Berger, 1985), which explicitly assumes independent forecasts
and multiplies the individual forecasts (see Chapter 3), or geometric (logarithmic) pooling
(Berger, 1985; Dietrich & List, 2016), which is a weighted product of the forecasts. Linear
as well as multiplicative opinion pools can also be used with transformations of the prob-
ability forecasts. Examples are the probit average (Satopää et al., 2023), which avoids a
bias of the simple average towards 0.5, or a geometric mean of odds (Satopää et al., 2014).
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In addition to the linear and multiplicative pooling methods listed above, also Bayesian
models for forecast aggregation have been proposed that do not consider correlations be-
tween forecasters or explicitly assume independent forecasters (Hanea et al., 2021; Trick,
Rothkopf, & Jäkel, 2023a, see Chapter 8; Turner et al., 2014). Hanea et al. (2021) propose
an unsupervised Bayesian model that does not rely on historical seed questions to learn
the forecasters’ behavior. In contrast, Turner et al. (2014) introduces a family of different
supervised Bayesian models, which either first calibrate the forecasts and then fuse them
using an unweighted linear opinion pool or vice versa. Finally, our work proposed in the
previous Chapter 8 explicitly assumes independent forecasts and models them with beta
distributions conditioned on the truth value (Trick, Rothkopf, & Jäkel, 2023a, see Chapter
8).

However, human forecasters are usually correlated (Berger, 1985; Hogarth, 1978; Lichten-
dahl Jr et al., 2022; Wilson & Farrow, 2018; Winkler et al., 2019; Wiper & French, 1995).
The correlation between forecasters can be attributed to similar data seen (Morris, 1986;
Winkler, 1981; Winkler et al., 2019), similar training (Lichtendahl Jr et al., 2022; Winkler,
1981; Winkler et al., 2019), and/or similar methodology, such as statistical procedures as
an aid for forecasting (Lichtendahl Jr et al., 2022; Morris, 1986; Winkler, 1981; Winkler
et al., 2019).

If the provided forecasts are correlated but the used fusion method assumes independence,
the fused forecast might be overconfident, because the amount of unique information is
overestimated and thus uncertainty is reduced too much (Trick & Rothkopf, 2022, see
Chapter 3; Trick, Rothkopf, & Jäkel, 2023a, see Chapter 8; Wilson, 2017). Therefore,
forecast aggregation methods should explicitly consider the forecasters’ correlation to avoid
overconfidence and improve the fused forecast’s performance (Wilson, 2017). In fact,
considering the correlation of forecasters has been declared as one of the major challenges
in forecast aggregation according to the review by McAndrew et al. (2021).

There are already several approaches that explicitly propose fusion methods for correlated
forecasts. Budescu and Chen (2015) introduced a weighted linear opinion pool with higher
weights for forecasters that are less correlated to the other forecasters. Satopää (2022)
and J. Wang et al. (2021) propose Bayesian models for combining correlated forecasts.
However, their models are unsupervised, so they cannot learn the individual behavior of
the forecasters, including their correlation, from historical seed questions. In contrast, the
model by Babic et al. (2022) relies on historical data but assumes the complete evidence
that caused the forecasts to be known, which includes the amount of shared information
that caused the correlation between the forecasters.

Since the concrete evidence underlying the provided forecasts is difficult to come by in
practice, some Bayesian approaches model the unknown information that caused the fore-
casts as latent variables (Di Bacco et al., 2003; Lichtendahl Jr et al., 2022; Satopää et al.,
2016). Di Bacco et al. (2003) consider two forecasters that provide their probabilistic
forecasts for an event H. Their model assumes some knowledge that both forecasters
share and some knowledge that only specific forecasters have, represented as events F , G1,
and G2. The provided forecasts are transformed to odds and modeled with a log-normal
distribution, jointly with the ratios of the posterior distributions of H given F , H given
G1, and H given G2. However, their approach is rather theoretical. It remains unclear
how to get the model parameters from prior experience. Satopää et al. (2016) propose a
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partial information framework for the aggregation of K forecasters. They model the infor-
mation underlying the forecasts as particles of information, either positive or negative. If
the sum of all particles XS is positive, the event happens. Each forecaster observes some
particle subset Bi, and the subsets of different forecasters can overlap, which generates
a correlation between their forecasts. The sums of particles XS , XB1 , . . . , XBK are mod-
eled with a multivariate normal distribution with mean 0 and covariances equal to the
number of shared particles in different subsets. The sum of particles XBi is transformed
to a probability forecast with probit transformation. With their model, Satopää et al.
(2016) show when averages of forecasts should be extremized, i.e., shifted towards 0 or
1, and how this is dependent on how much information the forecasters share. With a
similar goal, Lichtendahl Jr et al. (2022) also model the information causing the forecasts
as information particles xi. Some information particles are private for individual forecast-
ers, some are shared between all forecasters. All information particles xi as well as the
target variable xt, whose value determines the truth value t, are distributed under the
same distribution with a conjugate prior on its parameters. By applying Bayes’ rule, the
posterior probability of the target variable xt is computed as the fusion result given some
sufficient statistics of observed information particles xi, which are in turn computed from
the observed probabilistic forecasts provided by the forecasters. The unknown sufficient
statistics from the shared information particles are integrated out. Two specific conjugate
models are discussed, Beta-Bernoulli and Normal-Normal. However, to be applicable to
real data the model is simplified: It is assumed that the probability of the truth value t
given all provided forecasts is a generalized linear model.

In contrast to the models presented above, which explicitly model the latent information
causing the provided forecasts, other Bayesian models only model the provided probability
forecasts as data (Bordley, 1982; Clemen & Winkler, 1987; French, 1980). French (1980)
as well as Clemen and Winkler (1987) transfer the probability estimates to log-odds and
model them with a multivariate Gaussian distribution conditioned on the truth value t.
With their model and some historical training data, they can learn how individual fore-
casters behave for true and false queries, i.e., their bias, variance, and uncertainty. Also,
using the Gaussian distribution they can model pairwise correlation between individual
forecasters. Bordley (1982) uses the same multivariate Gaussian model approach in or-
der to derive the weights for a multiplicative fusion rule considering the correlation of
forecasters.

While transforming the probability forecasts to log-odds and modeling them with a mul-
tivariate Gaussian distribution is mathematically convenient and enables straightforward
representation of correlations between forecasts, another possibility is to model them di-
rectly with a beta distribution without any transformation. The beta distribution is com-
monly used to model probabilities since it is the standard distribution over probabilities
in Bayesian statistics and the conjugate prior of the Bernoulli distribution. Accordingly,
in the previous Chapter 8 we modeled probabilistic forecasts with a beta distribution con-
ditioned on the truth value t (Trick, Rothkopf, & Jäkel, 2023a, see Chapter 8) and used
this model for normative aggregation of probability forecasts. However, in that model, we
assumed the forecasts provided by different forecasters to be conditionally independent
given the truth value t. This assumption, which usually does not hold in reality, caused
our beta fusion model to be overconfident on two real-world data sets. Thus, for correlated

Bayesian Combination of Correlated Subjective Probabilities 147



forecasts this model is not normative. It does not formalize how to obtain the correct fused
uncertainty.

Therefore, in the present work, we introduce a Bayesian model for combining probabilistic
forecasts that considers the correlation between forecasts. The new model also represents
the forecasts with a beta distribution conditioned on the truth value t. However, in our
model, we additionally assume that the forecast provided by a forecaster for a query
depends on an interplay of the forecaster’s skill and the query’s difficulty. Moreover, we
assume that the correlation between forecasts provided by different forecasters can be
attributed to the fact that they answer to the same queries since for all forecasters some
queries are easy and others are hard. The resulting Skill-Difficulty Correlated Fusion
Model explicitly models the forecasters’ skills and the queries’ difficulties and thereby
models the correlation between forecasts, which can then be considered for fusion. Fusing
forecasts according to the Skill-Difficulty Correlated Fusion Model is normative, given
that the model assumptions are correct. In particular, correlated forecasts can be fused
normatively.

The remainder of the chapter is structured as follows. Section 9.1 introduces our new
Skill-Difficulty Correlated Fusion Model, including its generative model and a discussion
of its parameters, the correlations that can be represented, as well as parameter inference
and fusion. In Section 9.2 we present our evaluations of the model, including a detailed
description of the used data set and cross-validation, an evaluation of how the estimated
model parameters can be interpreted and how our model fits the data, and a comparison
of the Skill-Difficulty Correlated Fusion Model’s fusion performance to related Bayesian
models. Finally, we discuss our results and outline conclusions, limitations, and ideas for
future work in Section 9.3.

9.1 The Skill-Difficulty Correlated Fusion Model

We propose the Skill-Difficulty Correlated Fusion Model, a Bayesian generative model for
combining probabilistic forecasts provided by human forecasters, which explicitly models
the forecasters’ skills and the queries’ difficulties in order to model the correlation between
forecasts. After introducing the generative model in Section 9.1.1, we discuss the model
parameters’ interpretation in Section 9.1.2 and the correlations that can be represented
using the model in Section 9.1.3. In Section 9.1.4 we outline parameter inference and
fusion with the model.

9.1.1 Generative Model

We assume K human forecasters to provide subjective probability estimates, i.e., forecasts,
on N binary queries. The queries can be factual statements that are either true or false,
questions that can be answered with yes or no, or any other binary classification task
with a truth value of either 1 or 0. For each query, the probability estimates provided
by the forecasters quantify their belief in their answer’s correctness. A probability of 0
indicates that the forecaster is completely certain that the query’s truth value is 0 (e.g.,
false/no), whereas a probability of 1 means that the forecaster assumes a truth value of 1
(e.g., true/yes) with full certainty.
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We formalize the forecast provided by forecaster k for query n as xkn ∈ [0, 1] with n =
1, . . . , N , k = 1, . . . ,K. The truth value of query n is formalized as tn ∈ {0, 1} for n =
1, . . . , N . Since the beta distribution is the natural choice for modeling probabilities, our
previous model introduced in Chapter 8 (Trick, Rothkopf, & Jäkel, 2023a, see Chapter 8)
assumes the forecasts xkn to be beta-distributed conditioned on the truth value tn ∈ {0, 1},
as

xkn|tn = j ∼ Beta(αkj , βkj ), j = 0, 1. (9.1)

After learning the parameters αkj and βkj from labeled training data, this model represents
the forecasting behavior of each forecaster conditioned on the truth value tn, including
their bias, uncertainty, and variance. In particular, forecaster k’s bias can be expressed
with the beta distribution’s mean µkj = αkj /(αkj + βkj ). If µk0 < 0.5 and µk1 > 0.5, we define
forecaster k to be unbiased since he on average provides correct forecasts. The mean
forecast µkj can also quantify the uncertainty of forecaster k: The closer it is to 0 or 1, the
less uncertain the forecaster is on average. However, the uncertainty of the actual forecasts
provided by forecaster k is also dependent on his variance, which determines his forecasts’
concentration around the mean µkj . This variance can be expressed with the modeling
beta distribution’s precision pkj = αkj + βkj , also known as its concentration parameter
(J. Huang, 2005). This precision is the higher, the lower the beta distribution’s variance
is. Still, note that it is not the inverse of the distribution’s variance. While explicitly
considering the learned behavior of the forecasts, i.e., their bias, uncertainty, and variance,
new forecasts xku for a previously unseen query u can be fused by inferring the truth value
tu given the forecasts xku and the learned parameters αkj and βkj using Bayes’ rule. Note
that by modeling bias, variance, and uncertainty with a beta distribution conditioned on
the truth value tn, the forecasters are also implicitly calibrated when they are fused. This
means that they are corrected for over- or underconfident forecasts, which do not match
the relative frequency of occurrence, e.g., of a predicted event or a judged true statement
(Trick, Rothkopf, & Jäkel, 2023a, see Chapter 8).

In previous work, four variants of this beta fusion model were compared (Trick, Rothkopf,
& Jäkel, 2023a, see Chapter 8). While in (9.1) the forecasts are modeled with two com-
pletely different beta distributions for tn = 0 and tn = 1, the symmetric variant of the
model represents the forecasts with symmetric beta distributions for tn = 0 and tn = 1,
i.e., as

xkn|tn = 0 ∼ Beta(αk, βk)
xkn|tn = 1 ∼ Beta(βk, αk).

(9.2)

Thus, it assumes the forecasts provided for queries with truth values tn = 0 and the ones for
queries with truth values tn = 1 to be symmetric around 0.5. This symmetric beta fusion
model is of special interest because it implicitly calibrates the forecasts according to a well-
known calibration function, the Linear-in-Log-Odds calibration function (Trick, Rothkopf,
& Jäkel, 2023a, see Chapter 8). For both the asymmetric (9.1) and the symmetric (9.2)
variant of the model, which model each forecaster k separately with hierarchical models,
we also investigated non-hierarchical model variants, which consider the forecasters as
exchangeable and only learn one parameter set for all of them.

All variants of the beta fusion model shown above assume the forecasts xkn provided by
different forecasters k to be conditionally independent given the truth value tn. However,
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for real-world forecasting data, this assumption is usually not met (Berger, 1985; Hogarth,
1978; Lichtendahl Jr et al., 2022; Wilson & Farrow, 2018; Winkler et al., 2019; Wiper &
French, 1995). Accordingly, our evaluations on two data sets also showed that the beta
fusion models are overconfident, which deteriorates their performance. Therefore, in this
work we extend the beta fusion model to consider correlations between forecasters.

In line with the previous beta fusion models, in our new Skill-Difficulty Correlated Fusion
Model we also model the forecasts xkn with a beta distribution conditioned on the truth
value tn. Likewise, we also assume symmetric beta distributions for modeling forecasts
with truth value tn = 0 and tn = 1 as in (9.2), because previous evaluations showed that
symmetric beta modeling leads to more robust calibration and higher fusion performance
(Trick, Rothkopf, & Jäkel, 2023a, see Chapter 8). However, we do not assume that forecast
xkn by forecaster k for query n is generated merely by the forecaster’s behavior and can thus
be modeled with a beta distribution with parameters αk, βk specific for this forecaster k.
Instead, here we assume that forecast xkn by forecaster k for query n is generated by both
forecaster k’s properties, which we call his skill, and query n’s properties, which we call
its difficulty. Accordingly, we model xkn with a beta distribution with parameters αk and
βk, specific for forecaster k, and parameters γn and δn, specific for query n. In particular,
if tn = 0, xkn is modeled with a beta distribution with parameters αk + γn and βk + δn. If
tn = 1 the parameters are interchanged to βk + δn and αk + γn,

xkn|tn = 0 ∼ Beta(αk + γn, βk + δn)
xkn|tn = 1 ∼ Beta(βk + δn, αk + γn).

(9.3)

As priors for the parameters αk, βk, γn, δn we chose gamma distributions with hyperpa-
rameters a1, a2, b1, b2, c1, c2, d1, d2 respectively. Their uninformed hyperpriors are vague
gamma distributions with shape and rate set to 0.001. The prior distribution on the truth
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tn ∼ Bernoulli(π)

xkn|tn = 0 ∼ Beta(αk + γn, βk + δn)

xkn|tn = 1 ∼ Beta(βk + δn, αk + γn)

αk ∼ Gamma(a1, a2)
βk ∼ Gamma(b1, b2)
γn ∼ Gamma(c1, c2)
δn ∼ Gamma(d1, d2)
a1 ∼ Gamma(0.001, 0.001)
a2 ∼ Gamma(0.001, 0.001)
b1 ∼ Gamma(0.001, 0.001)
b2 ∼ Gamma(0.001, 0.001)
c1 ∼ Gamma(0.001, 0.001)
c2 ∼ Gamma(0.001, 0.001)
d1 ∼ Gamma(0.001, 0.001)
d2 ∼ Gamma(0.001, 0.001)
π ∼ Beta(1, 1)

Figure 9.1: The graphical model of the Skill-Difficulty Correlated Fusion Model.
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value tn is a Bernoulli distribution with parameter π, which is the proportion of true
queries with truth value 1. The hyperprior on π is a uniform beta distribution Beta(1,1).
The graphical model of the Skill-Difficulty Correlated Fusion Model is shown in Figure
9.1.

9.1.2 Interpretation of the Model’s Parameters as Skill and Difficulty

The parameters αk and βk represent something akin to the skill of forecaster k in the sense
that they determine the bias, variance, and uncertainty of forecasts provided by forecaster
k independently of the query at hand n. Therefore, in the following, αk and βk will be
termed skill parameters. Equivalently, the parameters γn and δn represent the difficulty
of query n since they determine the bias, variance, and uncertainty of forecasts provided
for query n independently of the specific forecasters providing them. Accordingly, we call
γn and δn difficulty parameters.

For interpreting the skill parameters αk and βk isolated from the difficulty parameters
γn and δn, we can set the difficulty parameters γn and δn close to 0, meaning that only
the forecasters’ properties are determining the forecasts. In this case, forecasts xkn are
distributed according to Beta(αk, βk) for tn = 0 and Beta(βk, αk) for tn = 1. Note
that with this parametrization our Skill-Difficulty Correlated Fusion Model equals the
symmetric variant of the previously proposed independent beta fusion model in (9.2). If
for real data the difficulty parameters γn and δn are not equal to 0, the distributions
Beta(αk, βk) for tn = 0 and Beta(βk, αk) for tn = 1 do not describe the forecasts xkn.
However, they describe the forecasts we would assume if the queries’ difficulties had no
influence on forecaster k’s forecasts. Forecaster k’s bias, which in part defines his skill, is
determined by the mean of this beta distribution for tn = 0, which is µαβk = αk/(αk + βk).
This skill mean describes the average forecast we would expect if the queries’ difficulties
had no influence on forecaster k’s forecasts. If µαβk < 0.5, we define forecaster k to be
unbiased because his mean forecast is closer to the truth value tn. Thus, if βk > αk, then
forecaster k is unbiased. Forecaster k’s skill is also determined by his uncertainty, which
is also quantified by the skill mean µαβk . The more uncertain, i.e., the closer to 0.5 it
is, the more uncertain is forecaster k on average. However, the skill mean µαβk can only
provide information on the average uncertainty, not on the actual uncertainties of different
forecasts provided, since there might be variance in the provided forecasts. The variance
or variability of forecaster k around his skill mean, which is also part of his skill, can
be straightforwardly quantified with the beta distribution’s skill precision pαβk = αk + βk.
Thereby, lower precisions indicate higher variance around the mean.

The skill parameters αk and βk and the derived skill mean µαβk and skill precision pαβk can
identify prototypical forecasters. Given that we assume the queries’ difficulties to have no
impact on his forecasts, a highly skilled forecaster provides unbiased and certain forecasts
with low variance and will thus show a skill mean µαβk close to 0 with high skill precision.
An uncertain forecaster provides forecasts close to 0.5 with low variance with µαβk close
to 0.5 and a high skill precision. If µαβk is close to 1 with high skill precision, forecaster k
is a wrong forecaster with a strong bias and thus always provides incorrect forecasts with
low uncertainty and low variance and might not have understood the task correctly or is
malingering.
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The difficulty parameters γn and δn can be interpreted when setting the skill parameters
αk and βk close to 0. As a consequence, xkn are distributed according to Beta(γn, δn) for
tn = 0 and Beta(δn, γn) for tn = 1. Although these distributions might not model real
forecasts, which are also determined by the skills of the forecasters providing them, they
describe the forecasts we would assume to be provided for query n if the forecasters’ skills
had no impact on the forecasts. The mean of this distribution for tn = 0, the difficulty
mean µγδn = γn/(γn + δn), quantifies the average forecast for query n if the forecasters’
skills had no impact on the forecasts provided for query n. It determines the bias of the
forecasts provided for query n, which partly defines its difficulty. If the difficulty mean
µγδn < 0.5, hence if δn > γn, the forecasts for query n are unbiased. Thus, the forecasters on
average provide correct answers for the query, so it is rather easy. Its difficulty is, however,
also determined by the uncertainty of the forecasts provided. The average uncertainty of
the forecasts provided for query n is quantified by the uncertainty of the difficulty mean
µγδn . More extreme difficulty means closer to 0 or 1 show lower average uncertainty of
the forecasts provided for a query. The difficulty precision pγδn = γn + δn quantifies how
concentrated the forecasts provided for query n are around the difficulty mean µγδn , i.e.,
their variance.

Given difficulty mean µγδn and difficulty precision pγδn we can identify special queries. If
µγδn is close to 0 with high difficulty precision, query n is a very easy query, for which
forecasters provide unbiased and certain forecasts with low variance, given that we assume
the forecasters’ skills to have no impact on the forecasts provided for it. For difficult queries
we distinguish between two types of queries, unknown and trick queries. For unknown
queries, µγδn is close to 0.5 with high difficulty precision, so the forecasters do not know
the answer to the query and therefore provide uncertain forecasts close to 0.5 with low
variance. In contrast, for trick queries they provide certain but biased forecasts with low
variance because they think they know the correct answer but do not. In this case, µγδn is
close to 1 with high difficulty precision.

9.1.3 Correlations in the Model

The Skill-Difficulty Correlated Fusion Model can model positive correlations between fore-
casts. On the one hand, it can model the correlation between forecasts provided by two
forecasters l and m for different queries, xl and xm, with fixed skill parameters αl and
βl for forecaster l and αm and βm for forecaster m but variable difficulty parameters
γn and δn. This correlation is caused by the forecasters seeing the same queries, e.g.,
easy queries, unknown queries, or trick queries. On the other hand, the Skill-Difficulty
Correlated Fusion Model can represent the correlation between the forecasts provided by
multiple forecasters for two queries p and q, xp and xq, with fixed difficulty parameters
γp and δp for query p and γq and δq for query q but variable skill parameters αk and
βk. These forecasts for queries p and q might be correlated because they come from the
same forecasters. In this work, we will use the Skill-Difficulty Correlated Fusion Model to
combine forecasts provided by different forecasters for the same query while considering
the potential correlation between these forecasters over different queries. Therefore, here
we focus on the first kind of correlation mentioned above: the correlation between the
forecasts provided by two forecasters l and m for different queries, xl and xm.
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Figure 9.2: Simulated forecasts of two forecasters, x1 and x2, for 20000 queries, 10000 of which with
truth value t = 0 (a) and 10000 with truth value t = 1 (b). The two forecasters are equally skilled
with skill parameters α1 = α2 = 3 and β1 = β2 = 10. The difficulty parameters γn and δn for
different n are drawn from a gamma distribution with parameters c1 = 2, c2 = 0.5, d1 = 3, d2 = 0.5.
The resulting correlation between x1 and x2 is 0.47 for t = 0 and t = 1.

As shown in (9.3), the forecasts of two forecasters l and m for a query n, xln and xmn
are conditionally independent given γn and δn by definition, because they are independent
draws from a beta distribution. Accordingly, if all modeled queries have the same difficulty,
so γn and δn are the same for all n, there is no correlation between the forecasts provided
by different forecasters. If additionally γn = δn = 0 for all n, our model equals the
independent beta fusion model with symmetric beta distributions shown in (9.2). While
xln and xmn are conditionally independent given γn and δn, multiple forecasts provided by
forecasters l and m for different queries, xl and xm, are, however, not unconditionally
independent. If the queries have different difficulties, as we expect in reality, xl and xm
are positively correlated. An example of such a model parametrization is shown in Figure
9.2.

The correlation between two forecasters is modulated by how much the forecasts provided
by these forecasters are determined by their individual skills in comparison to the shared
queries’ difficulties. This trade-off between the influence of individual forecasters’ skills
and the queries’ difficulties is quantified by the relation between skill parameters αk, βk
and difficulty parameters γn, δn. Higher difficulty parameters γn and δn compared to
αk and βk lead to higher influence of the shared queries’ difficulties on the provided
forecasts compared to the forecasters’ individual skills. Thus, the correlation between
different forecasters’ provided forecasts increases. If in contrast γn and δn stay the same,
so the difficulties of the queries remain unchanged, but the skill parameters αk and βk are
increased, meaning that the forecasts are more determined by the forecasters’ individual
skills and less dependent on the difficulty of shared queries, the correlation between the
forecasters is decreased.
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The correlation rlm between the forecasts of two forecasters l and m for different queries,
xl and xm, can be derived mathematically. It is defined as

rlm = Cov(xl, xm)√
Var(xl)Var(xm)

(9.4)

with

Cov(xl, xm) = E(xlxm)− E(xl)E(xm). (9.5)

The expected values, variances, as well as the product moments need to be computed
separately for tn = 0 and tn = 1. However, as we assume our model to be symmetric for
tn = 0 and tn = 1 and the correlation is thus the same for tn = 0 and tn = 1, we will
only show the derivations for tn = 0 in the following. Since in the following derivations
we marginalize over all queries, we omit the index n for t, γ, and δ. The expected value
and variance of xl and the product moment of xl and xm given t = 0 are

E(xl|t = 0) =
∫ ∫

αl + γ

αl + βl + γ + δ

cc1
2

Γ(c1)γ
c1−1
n

dd1
2

Γ(d1)δ
d1−1e−c2γ−d2δ dγ dδ, (9.6)

Var(xl|t = 0) =
∫ ∫ B(αl + γ + 2, βl + δ)

B(αl + γ, βl + δ)
cc1

2
Γ(c1)γ

c1−1 dd1
2

Γ(d1)δ
d1−1e−c2γ−d2δ dγ dδ

− E(xl|t = 0)2,

(9.7)

E(xlxm|t = 0) =
∫ ∫

αl + γ

αl + βl + γ + δ

αm + γ

αm + βm + γ + δ

· cc1
2

Γ(c1)γ
c1−1 dd1

2
Γ(d1)δ

d1−1e−c2γ−d2δ dγ dδ.
(9.8)

We were not able to solve the integrals above but can compute them (and with them the
correlation) numerically using the Python package mpmath (Johansson et al., 2013).

9.1.4 Parameter Inference and Fusion

From labeled training data the posterior distribution over the parameters αk, βk, γn, δn as
well as the hyperparameters a1, a2, b1, b2, c1, c2, d1, d2 and the proportion of true queries π
can be inferred using Gibbs sampling.

For fusing the forecasts of K forecasters x1
u, . . . , x

K
u for a new unseen query u, we infer

the posterior distribution over its truth value tu given the forecasts to be fused and the
previously learned posterior distributions over the model parameters. Since we do not
know the difficulty of the new query u and thus its difficulty parameters γu and δu, we can
only condition on the learned hyperparameters c1, c2, d1, d2 together with the learned skill
parameters α and β of all forecasters and the proportion of true queries π. The resulting
posterior fused forecast p(tu|x1

u, . . . , x
K
u ,α,β, c1, c2, d1, d2, π) can be inferred using Gibbs

sampling. Note that by fusing the forecasts in this way, the individual forecasters’ skills
as well as their correlation are considered for fusion.

9.2 Evaluation

We evaluate the proposed Skill-Difficulty Correlated Fusion Model on the Knowledge Test
Confidence data set (Section 9.2.1) using leave-one-out cross-validation (Section 9.2.2). For
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exemplary forecasters and queries we show how our model’s parameters can be interpreted
and how the model fits the data (Section 9.2.3). In addition, we evaluate the fusion
performance of the Skill-Difficulty Correlated Fusion Model in comparison to previously
proposed Bayesian fusion models in terms of Brier score, mean absolute error, and entropy
(Section 9.2.4).

9.2.1 Knowledge Test Confidence Data Set

The Knowledge Test Confidence (KTeC) data set1 (Trick, Rothkopf, & Jäkel, 2023a, see
Chapter 8) includes subjective probability estimates of 85 human forecasters on 180 queries.
Each forecaster provided a forecast to all 180 queries, resulting in a total number of 15300
subjective probability estimates.

The queries are knowledge statements that are either false (tn = 0) or true (tn = 1), while
the number of false and true statements is balanced. There are easy queries known to the
majority of forecasters, such as ‘Elephants are mammals’ (tn = 1), and hard queries. Hard
queries are either unknown to most forecasters, e.g., ‘Being and Nothingness was written
in 1943’ (tn = 1), or are trick questions that most forecasters judge incorrectly, e.g., ‘The
official language of the United States is English’ (tn = 0).

The forecasters were students from University of Osnabrück. Their probabilistic forecasts
are their confidence judgments on the given statements. A confidence of 0 indicates that
the forecaster is 100% certain that the statement is wrong, whereas a confidence of 1
indicates that the forecaster is 100% certain that the statement is correct. The forecasts
could be provided in 11 discrete steps of 0.1 between 0 and 1. For the following evaluations
we preprocessed forecasts of 0 and 1 to 0.001 and 0.999 to avoid computational problems.
Note that in previous work, we showed that this score correction has no significant influence
on the fusion results (Trick, Rothkopf, & Jäkel, 2023a, see Chapter 8). In the KTeC data
set, the forecasts provided by different forecasters are correlated. For queries with truth
value 0 the pairwise correlation between two forecasters is on average 0.293, for queries
with truth value 1 it is on average 0.333. More details on the data set, e.g., how the query
statements were designed, can be found in the work of Trick, Rothkopf, and Jäkel (2023a,
see Chapter 8).

9.2.2 Cross-Validation

We evaluate the Skill-Difficulty Correlated Fusion Model on the KTeC data set described
above using leave-one-out (LOO) cross-validation. Accordingly, we split the data set,
consisting of 180 queries, into 180 training and test sets. Each training set is composed of
the forecasts of all 85 forecasters on 179 queries, while the forecasts on the one remaining
query build the respective test sets.

On each training set we inferred the posterior distributions of the model parameters αk,
βk, γn, δn, a1, a2, b1, b2, c1, c2, d1, d2, π using Gibbs sampling. For our evaluations, we
implemented Gibbs sampling using JAGS (Plummer, 2003) and ran one chain with 1000
samples and a burn-in of 1000 samples.

1 The KTeC data set is available at https://osf.io/ae25w/.
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Given the model parameters estimated on the training set, the forecasts x1
u, . . . , x

K
u on

the one remaining query u in the respective test set are fused by inferring the posterior
distribution of its truth value tu, p(tu|x1

u, . . . , x
K
u ,α,β, c1, c2, d1, d2, π). As for parameter

inference, inference is realized using Gibbs sampling in JAGS. In order to consider the
uncertainty of the previously inferred parameters, here, we do not consider their point
estimates as observed variables but uniformly sample from their posterior distributions’
samples. We ran 100 parallel chains with 800 samples and a burn-in of 800 samples each.

9.2.3 Parameter Interpretation and Model Fit

In Section 9.1.2 we outlined how the skill parameters αk, βk and the difficulty parameters
γn, δn can be interpreted in theory. In the following, we will analyze and interpret the
parameters inferred for training split 1 of LOO cross-validation on the KTeC data set.
We discuss what the inferred parameters reveal about our data set and show how the
parameters and with them the Skill-Difficulty Correlated Fusion Model fit the data. The
parameter values specified in the following are the means of the posterior distributions
inferred with Gibbs Sampling.

The skill hyperparameters inferred for our model, a1, a2, b1, b2, show that the forecasters
in the KTeC data set are on average unbiased and provide more certain than uncertain
forecasts. From the estimated values a1 = 2.74, a2 = 10.98, b1 = 1.86, b2 = 6.46 we can
infer mean αk = 0.25 and mean βk = 0.29, leading to an unbiased and uncertain skill mean
µαβk = 0.46 < 0.5. Because of the low skill precision pαβk = 0.54, the average provided
forecasts are, however, not concentrated at the uncertain skill mean but are more certain,
tending towards 0 and 1. The variances of αk and βk are low with Var(αk) = 0.02 and
Var(βk) = 0.04, so the different forecasters perform similarly.

A more precise picture of the forecasters’ skills in the KTeC data set can be obtained by
looking at Figure 9.3(a), which shows the skill means µαβk and the skill precisions pαβk of
all 85 forecasters in training split 1, computed from their individual skill parameters αk
and βk. As can be seen, there are unbiased (µαβk < 0.5) and biased (µαβk > 0.5) forecasters
and forecasters with low and high skill precision pαβk . However, the forecasters’ skills are
fairly similar, as indicated by the low variance of αk and βk reported above.

The inferred difficulty hyperparameters c1, c2, d1, d2 with values c1 = 0.83, c2 = 1.85,
d1 = 1.37, d2 = 1.29 reveal that the mean difficulty parameters are γn = 0.45 and δn = 1.06.
Thus, on average the difficulty mean is µγδn = 0.3 < 0.5 with a rather high average difficulty
precision of pγδn = 1.51, showing that the forecasts provided for the queries in the KTeC
data set are on average unbiased with medium uncertainty and rather low variance. Thus,
the queries are on average rather easy. The variances of γn and δn are higher than those
of αk and βk with Var(γn) = 0.24 and Var(δn) = 0.82, so the queries’ difficulties in the
KTeC data set are more variable than the forecasters’ skills.

This can also be seen in Figure 9.3(b), which shows the difficulty means µγδn and difficulty
precisions pγδn of all 179 queries in training split 1, computed from their difficulty param-
eters γn and δn. Compared to the skills in Figure 9.3(a), the difficulties are more diverse.
Still, there are much more rather easy queries than hard queries, indicated by more low
difficulty means. These findings are consistent with the interpretations of the inferred
difficulty hyperparameters above.
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Figure 9.3: A comparison of the skills of different forecasters and the difficulties of different queries
from the KTeC data set. We show the skill means µαβk (blue) and skill precisions pαβk (orange) of
all 85 forecasters (a) and the difficulty means µγδn (blue) and difficulty precisions pγδn (orange) of
queries 2-180 (b) in training split 1 of LOO cross-validation. Low means indicate unbiased forecasts
provided by forecaster k or for query n, high means indicate biased forecasts. Low precisions
indicate high variability in forecasts provided by forecaster k or for query n, high precisions indicate
low variability in forecasts.

In order to analyze individual forecasters’ skills and queries’ difficulties, in the following,
we will show the provided forecasts by exemplary forecasters (Section 9.2.3.1) and for
prototypical queries (Section 9.2.3.2) from training split 1 of LOO cross-validation and
explain how the respective inferred skill or difficulty parameters and with them our Skill-
Difficulty Correlated Fusion Model fit the shown data.

9.2.3.1 Forecasters’ Skills

Figure 9.4 shows the provided forecasts of three exemplary forecasters, forecaster 11, fore-
caster 63, and forecaster 10, for the 179 queries in training split 1. To be able to show
their skill without distinguishing queries with truth label tn = 0 and tn = 1, we inverted
all forecasts given for queries with truth value tn = 1. Thus, a forecast xkn < 0.5 can be
considered a correct forecast, the lower, the more certain. We plot the relative frequency
of the forecasts provided by forecaster k for all queries in a histogram. The curves plot-
ted over the data show the learned distributions according to our model in (9.3) over all
forecasts provided by forecaster k. While the skill parameters αk and βk are thus fixed,
for each single forecast in the shown data the difficulty parameters γn and δn in (9.3) are
different because they are provided for different queries. Therefore, the shown distribution
is a mixture of beta distribution, whose mixture components are 179 beta distributions
according to (9.3) with skill parameters αk and βk for the respective forecaster k and
the difficulty parameters γn and δn of all 179 queries in the training split. All mixture
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weights are equal because all queries have the same impact on the distribution. Since we
inverted all forecasts for queries with truth value tn = 1 in order to show a forecaster’s
skill regardless of the respective queries’ truth values, in the mixture of beta distribution
we use the parametrization for tn = 0 in (9.3) for all mixture components.

Note that the shown data and distributions for the exemplary forecasters in Figure 9.4
are a result of both forecasters’ skills and queries’ difficulties. They would have looked
different if the shown forecasters had provided forecasts for different queries. In particu-
lar, as the inferred hyperparameters c1, c2, d1, d2 show, the queries are on average rather
easy. Therefore, the forecasters provide better forecasts than they would for more difficult
queries, given their skill.

Forecaster 11 shown in Figure 9.4(a) is a skilled forecaster, who judges most of the given
queries correctly and with high confidence. Matching the data, the corresponding esti-
mated skill parameters generating the shown mixture of beta distribution are α11 = 0.05
and β11 = 0.12. Thus, the corresponding skill mean is µαβ11 = 0.294 < 0.5, showing that on
average forecaster 11 provides unbiased forecasts. While the mean uncertainty of forecasts
x11 is medium, due to the low values of α11 and β11, the corresponding skill precision is
low with pαβ11 = 0.17. Accordingly, the forecasts are not concentrated around the skill
mean, so forecaster 11 provides certain forecasts, most of which close to 1.

Forecaster 63 in Figure 9.4(b) is a very uncertain forecaster with parameters α63 = 1.33
and β63 = 1.37. On average, forecaster 63 also provides unbiased forecasts with skill
mean µαβ63 = 0.49. However, his skill mean is very close to 0.5. Together with the high
skill precision pαβ63 = 2.7, the skill parameters reflect that forecaster 63 provides rather
uncertain forecasts.
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Figure 9.4: The forecasts provided by three exemplary forecasters along with their estimated distri-
bution according to our Skill-Difficulty Correlated Fusion Model. We show the relative frequency
of the forecasts provided by forecaster 11 (a), 63 (b), and 10 (c) on the 179 queries in training split
1 as histograms. Forecasts for queries with truth value tn = 1 are inverted in order to display a
forecaster’s skill regardless of the queries’ truth values. Thus, a forecast is correct if xkn < 0.5. The
curves plotted over the data illustrate the estimated distributions over all forecasts provided by
forecaster k according to our model in (9.3). Since the difficulty parameters γn, δn are different for
every single forecast in the shown data, the shown distributions are equally-weighted mixture of
beta distributions consisting of 179 components according to (9.3) for tn = 0 with skill parameters
αk, βk for the respective forecaster k and the difficulty parameters γn, δn of the 179 queries in the
training split.
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For forecaster 10 shown in Figure 9.4(c) we inferred the skill parameters α10 = 0.19
and β10 = 0.08. Thus, forecaster 10’s skill mean is µαβ10 = 0.7 with a skill precision of
pαβ10 = 0.27. The high skill mean above 0.5 indicates that forecaster 10 is on average
biased and provides incorrect forecasts, given that we assume the queries’ difficulties to
have no impact on his forecasts. Interestingly, this cannot be seen when only looking at
the data. The provided forecasts and the inferred distribution over them shown in Figure
9.4(c) suggest that forecaster 10 provides more correct forecasts than incorrect forecasts.
The reason for this discrepancy is that there are more easy than hard queries in the KTeC
data set, as noted above. Thus, an advantage of the proposed Skill-Difficulty Correlated
Fusion Model is that it quantifies the forecasters’ skills independently of the queries, so we
can identify a biased forecaster even though the forecasts he provided do not look biased.

For all three forecasters shown in Figure 9.4 we see that the learned distributions over the
forecasts provided by the specific forecasters, illustrated by the blue curves, fit the data
visualized by the histograms well.

9.2.3.2 Queries’ Difficulties

In Figure 9.5 we show the forecasts provided by all 85 forecasters for six specific queries
in training split 1 of LOO cross-validation. As for the forecasters in Figure 9.4 we also
inverted the forecasts for queries with truth value tn = 1 in order to be able to illustrate the
difficulty of the query regardless of its truth value tn. Accordingly, forecasts xkn < 0.5 are
correct forecasts. We plot the relative frequency of the respective forecasts provided by all
forecasters for the specific query as histograms. The curves plotted over the histograms are
the distributions according to our model in (9.3) over all forecasts provided for the specific
query. While here, the difficulty parameters γn and δn are fixed for the specific query n,
the skill parameters αk and βk are different for different forecasts since they are provided
by different forecasters. Thus, the shown distributions are equally-weighted mixture of
beta distributions. Their 85 mixture components are beta distributions according to (9.3)
for tn = 0 with difficulty parameters γn and δn for the respective query n and the skill
parameters αk and βk of all 85 forecasters in the training split.

As for the forecasters in Figure 9.4, the data and distributions shown in Figure 9.5 would
have looked different if the shown queries had been forecasted by different forecasters.
Since the forecasters are more skilled than unskilled according to the estimated hyper-
parameters a1, a2, b1, b2, the forecasts for the shown queries are slightly better than they
would be with less skilled forecasters, given their difficulty.

Query 51 (‘Elephants are mammals’, t51 = 1) shown in Figure 9.5(a) is a prototypical
easy query. Almost all forecasters provided unbiased and certain forecasts. This is also
reflected in the query’s parameters γ51 = 0.02 and δ51 = 2.03. Its corresponding difficulty
mean µγδ51 = 0.01 is very close to 0 with a high difficulty precision pγδ51 = 2.05, implying
unbiased, i.e., correct, and certain forecasts with low variance.

In contrast, query 164 (‘The official language of the United States is English’, t164 = 0) in
Figure 9.5(b) is a trick query, which is answered incorrectly, i.e., with a strong bias, and
with high certainty by the majority of forecasters. Its difficulty parameters are γ164 = 0.77
and δ164 = 0.03. Thus, its difficulty mean is µγδ164 = 0.96, close to 1, showing that the
forecasts for query 164 are strongly biased and on average very certain. Since the difficulty
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(f) Query 2: Rum Jamaica

Figure 9.5: The forecasts provided for six exemplary queries along with their estimated distribution
according to our Skill-Difficulty Correlated Fusion Model. We show the relative frequency of the
forecasts provided by all 85 forecasters for queries 51 (a), 164 (b), 123 (c), 6 (d), 72 (e), and 2 (f)
in training split 1 as histograms. Forecasts for queries with truth value tn = 1 are inverted in order
to display a query’s difficulty regardless of its truth value. Thus, a forecast xkn < 0.5 is a correct
forecast. The curves plotted over the data are the distributions over the forecasts provided for the
respective query according to our model in (9.3). Since the skill parameters αk, βk are different
for every single forecast in the shown data, the shown distributions are equally-weighted mixture
of beta distributions consisting of 85 components according to (9.3) for tn = 0 with difficulty
parameters γn, δn for the respective query n and the skill parameters αk, βk of the 85 forecasters.
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precision pγδ164 = 0.8 is additionally below 1, the forecasts are concentrated at 1, while some
forecasters also provided correct forecasts close to 0.

Query 123 (‘Being and Nothingness was written in 1943’, t123 = 1) in Figure 9.5(c) is an
unknown query for which most forecasters provide a forecast of 0.5. The corresponding
difficulty parameters γ123 = 3.27, δ123 = 3.65 reflect this. They result in an uncertain
difficulty mean of µγδ123 = 0.47 with a high difficulty precision of pγδ123 = 6.92, leading to
mostly uncertain forecasts concentrated around 0.5.

For query 6 (‘The national flag of the United States of America consists of thirteen horizon-
tal stripes and fifty small five-pointed stars’, t6 = 1) in Figure 9.5(d) more variable forecasts
are provided. The query can be regarded as a rather easy query with forecasts being on av-
erage correct, i.e., unbiased, reflected in the difficulty parameters γ6 = 0.14, δ6 = 0.24 with
a difficulty mean of µγδ6 = 0.37, lower than 0.5. Since the difficulty precision pγδ6 = 0.38 is
below one, the forecasts are not concentrated around the mean but tend toward 0 and 1,
resulting in variable forecasts, many of which uncertain.

Similar to query 6, query 72 (‘South Africa is the world’s largest diamond producing
country’, t72 = 1) shown in Figure 9.5(e) is also an uncertain unbiased query, which is
on average forecasted correctly. Its difficulty parameters γ72 = 0.98, δ72 = 2.14 result in
a difficulty mean µγδ72 = 0.31, similar to that of query 6. However, the difficulty precision
pγδ72 = 3.12 is much higher, so the forecasts are more concentrated around the difficulty
mean µγδ72 = 0.31.

Query 2 (‘Rum is Jamaica’s principal export’, t2 = 0) in Figure 9.5(f) is an example
of a trick query, for which uncertain forecasts are provided. Accordingly, its difficulty
parameters are γ2 = 1.35 and δ2 = 1.12, with a difficulty mean µγδ2 = 0.55 > 0.5, showing
a bias and high average uncertainty, and a high difficulty precision pγδ2 = 2.47, leading to
uncertain forecasts concentrated around the uncertain difficulty mean.

For all six shown queries in Figure 9.5 we see that the estimated distributions over the
forecasts provided for the specific queries, shown with the blue curves drawn over the data,
fit the data well.

9.2.4 Fusion Performance

To evaluate the fusion performance, we compare the Skill-Difficulty Correlated Fusion
Model to the independent beta fusion models we proposed in previous work (Trick, Rothkopf,
& Jäkel, 2023a, see Chapter 8) and the related fusion models by Turner et al. (2014) on
the KTeC data set.

The independent beta fusion model represents the forecasts xkn with a beta distribution
with parameters αkj , βkj conditioned on the truth value tn = j according to (9.1). Different
variants of this model are either hierarchical or non-hierarchical and model the forecasts
with either asymmetric or symmetric beta distributions for tn = 0 and tn = 1. The
resulting four beta fusion models are the Hierarchical Beta Fusion Model (HB), the non-
hierarchical Beta Fusion Model (B), the Hierarchical Symmetric Beta Fusion Model (HSB),
and the non-hierarchical Symmetric Beta Fusion Model (SB).
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In our previous work (Trick, Rothkopf, & Jäkel, 2023a, see Chapter 8), we also compared
the performances of our independent beta fusion models against the fusion models pro-
posed by Turner et al. (2014). Their approach compares different Bayesian models that
either first calibrate the provided forecasts and then fuse them or first fuse the forecasts
and then calibrate the fused forecast. Fusion is realized with averaging. Hierarchical and
non-hierarchical models as well as fusion of log-odds or probabilities are compared. The
resulting models are Average Then Calibrate (ATC), Calibrate Then Average (CTA), Cali-
brate Then Average on Log-Odds (CTALO), Hierarchical Calibrate Then Average (HCTA),
and Hierarchical Calibrate Then Average on Log-Odds (HCTALO). Turner et al. (2014)
additionally compared their models to the baseline method Unweighted Linear Opinion
Pool (ULINOP). ULINOP can be augmented with the baseline method Probit Average
(PAVG) (Satopää et al., 2023), which transforms the forecasts with probit transformation
before averaging them. Details on the implementation and evaluation of the independent
beta fusion models, the Turner fusion models, and the two baseline methods can be found
in the work of Trick, Rothkopf, and Jäkel (2023a, see Chapter 8).

Since the forecasts provided by different forecasters in the KTeC data set are correlated,
in our comparison we do not only consider mere forecasting performance but put a special
focus on the forecasts’ uncertainty and potential overconfidence. In order to do this, we
quantify fusion performance with the performance measures Brier score, mean absolute
error, and entropy.

The Brier score (Brier et al., 1950) is commonly used for measuring the performance of
human forecasters (Baron et al., 2014; Hanea et al., 2021; Karvetski et al., 2013; Ranjan
& Gneiting, 2010; Satopää, 2022; Turner et al., 2014). It describes the mean squared error
between the provided probability forecasts xn and the corresponding truth values tn,

BS = 1
N

N∑
n=1

(xn − tn)2. (9.9)

A lower Brier score indicates a better performance, with BS = 0 being the best and BS = 1
being the worst attainable score. The Brier score is a strictly proper scoring rule (A. H.
Murphy, 1973) and is thus optimized if the forecasters provide their true beliefs of the
probability instead of deliberately making them more or less extreme. Thus, it punishes
over- and underconfident forecasts.

Mean absolute error (MAE) (Canbek et al., 2022; Ferri et al., 2009) quantifies the absolute
difference between the provided forecast xn and the truth value tn,

MAE = 1
N

N∑
n=1
|xn − tn|. (9.10)

Accordingly, it also ranges between 0 and 1, with MAE = 0 being the best and MAE = 1
being the worst possible score. Compared to the Brier score, MAE is more straightfor-
wardly interpretable and more robust to outliers (Canbek et al., 2022). However, unlike
Brier score, it is not a proper scoring rule (Buja et al., 2005) and thus rewards overconfident
forecasts.

In contrast to Brier score and MAE, (Shannon) entropy does not directly measure the
forecasting performance but only the uncertainty of the forecasts, independent of their
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correctness. It is defined for a single binary forecast as h(xn) = −xn log(xn) − (1 −
xn) log(1− xn), so for N considered queries we compute the mean entropy H as

H = 1
N

N∑
n=1
−xn log(xn)− (1− xn) log(1− xn). (9.11)

The minimum mean entropy is 0 and indicates fully certain forecasts being either 0 or 1.
The maximum mean entropy for binary forecasts is approximately 0.7 and is obtained if all
forecasts are 0.5 and thus fully uncertain. Since entropy explicitly quantifies uncertainty,
it is well-suited to check for overconfident forecasts.

Figure 9.6 shows the means and standard errors of the mean of Brier score, mean abso-
lute error, and entropy on the KTeC data set for all considered fusion models, i.e., the
Skill-Difficulty Correlated Fusion Model, the independent beta fusion models, the models
proposed by Turner et al. (2014), and the baseline methods ULINOP and PAVG. The
main result from evaluating the independent beta fusion models is that the Hierarchical
Symmetric Beta Fusion Model performs best of all beta fusion models. This is also shown
in Figure 9.6 for Brier score and MAE. However, while in terms of MAE it also clearly
outperforms the models by Turner et al. (2014), its Brier score (BS = 0.141) is worse than
that of the best Turner model HCTALO (BS = 0.125). Since MAE rewards overconfi-
dence and Brier score punishes it, these results are a clear indication of overconfidence.
The entropy plot in Figure 9.6 further strengthens this conclusion because all beta fusion
models show entropies close to 0, indicating very certain fused forecasts. In contrast, the
fusion models by Turner et al. (2014) show higher entropies between 0.4 and 0.7 and thus
result in more uncertain fused forecasts.

Our Skill-Difficulty Correlated Fusion Model, which models the correlations between fore-
casters, performs comparably to all independent beta fusion models and better than the
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Figure 9.6: Fusion performance of the Skill-Difficulty Correlated Fusion Model in comparison to
related Bayesian fusion models on the KTeC data set. We compare the means and standard errors
of the mean of Brier score, mean absolute error, and entropy of the Skill-Difficulty Correlated Fusion
Model (SDCFM), the four independent beta fusion models including the Hierarchical Beta Fusion
Model (HB), the non-hierarchical Beta Fusion Model (B), the Hierarchical Symmetric Beta Fusion
Model (HSB), and the non-hierarchical Symmetric Beta Fusion Model (SB), the models by Turner
et al. (2014), Average Then Calibrate (ATC), Calibrate Then Average (CTA), Calibrate Then
Average using Log-Odds (CTALO), Hierarchical Calibrate Then Average (HCTA), and Hierarchical
Calibrate Then Average on Log-Odds (HCTALO), and the two baseline methods Unweighted Linear
Opinion Pool (ULINOP) and Probit Average (PAVG).
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Turner models according to MAE, with MAE = 0.161. However, while the independent
beta fusion models cannot outperform the Turner models in terms of Brier score, the Skill-
Difficulty Correlated Fusion Model performs best of all considered fusion models with a
Brier score of BS = 0.105, compared to BS = 0.125 for the second best model HCTALO
by Turner et al. (2014). Looking at entropy, we also see that the Skill-Difficulty Corre-
lated Fusion Model is less uncertain than the Turner models, but more uncertain than the
independent beta fusion models with an entropy of H = 0.176.

9.3 Discussion and Conclusion

In this work, we introduced a Bayesian model for combining correlated human forecasts.
The model assumes that a forecast provided by a forecaster for some query is dependent on
both the forecaster’s properties, which we call his skill, and the query’s properties, which
we call its difficulty. Further, we assume that the forecasts provided by different forecast-
ers are correlated because they provide forecasts for the same queries. Accordingly, the
proposed Skill-Difficulty Correlated Fusion Model represents the forecasts with a beta dis-
tribution conditioned on their truth value with skill parameters specific for each forecaster
and difficulty parameters specific for each query. By explicitly modeling the forecasters’
skills as well as the queries’ difficulties, the Skill-Difficulty Correlated Fusion Model can
model the correlation between the forecasts provided by different forecasters. Thus, com-
pared to previous models that assume independence, the new model can better represent
human forecasts, which are often correlated (Berger, 1985; Hogarth, 1978; Lichtendahl Jr
et al., 2022; Wilson & Farrow, 2018; Winkler et al., 2019; Wiper & French, 1995). Also,
it explicitly quantifies the skills of individual forecasters and the difficulties of individual
queries and thus allows analyzing and comparing different forecasters independently of the
queries their forecasts are provided for or different queries independently of the forecasters
who provide their respective forecasts. After learning the model parameters from observed
training data, the Skill-Difficulty Correlated Fusion Model can be used to combine new
unseen forecasts provided by different forecasters by inferring the posterior distribution
over their truth value. Given that the model assumptions are correct, fusion with the
Skill-Difficulty Correlated Fusion Model is normative. Thus, the forecasters’ skills as well
as their correlation can be normatively considered for fusion.

We evaluated the Skill-Difficulty Correlated Fusion Model on a data set consisting of 85
forecasters who each provided forecasts for 180 queries. We compared our model’s fusion
performance in terms of Brier score, mean absolute error, and entropy to related Bayesian
fusion models, which do not consider correlation (Trick, Rothkopf, & Jäkel, 2023a, see
Chapter 8; Turner et al., 2014). While the previously proposed independent beta fusion
models (Trick, Rothkopf, & Jäkel, 2023a, see Chapter 8) turned out to be overconfident
and therefore outperformed the models proposed by Turner et al. (2014) in terms of mean
absolute error but could not outperform them in terms of Brier score, the Skill-Difficulty
Correlated Fusion Model performs best of all compared fusion models according to both
mean absolute error and Brier score. In addition, it leads to more uncertain fused forecasts
than the independent beta fusion models, shown by a higher entropy. Thus, modeling
correlations between forecasters in our Skill-Difficulty Correlated Fusion Model fixes the
overconfidence problem of the independent beta fusion models.
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For exemplary forecasters and queries we showed how the Skill-Difficulty Correlated Fusion
Model quantifies the forecasters’ and queries’ properties, i.e., their skills and difficulties,
and how it fits the forecasting data. However, as seen for example in Figure 9.4(c), our
model cannot represent a peak at 0.5 in the histogram of provided forecasts, unless all
forecasts are concentrated around 0.5 anyway. This peak or blip in the histogram is
called the 50-50 blip and is caused by the forecasters’ high epistemic uncertainty (Bruine
de Bruin et al., 2002; Fischhoff & Bruine De Bruin, 1999; Karvetski et al., 2013). If
the forecasters have absolutely no knowledge about the truth value of a query, i.e., they
have high epistemic uncertainty, they choose 0.5. Even for skilled forecasters this will
happen for quite a few queries, at least if the queries’ topics differ from each other. If
the forecasts are predictions of the occurrence of future events, whose outcomes cannot be
known yet, the 50-50 blip can even be amplified, because it comprises both the forecasts
of people that have absolutely no knowledge, i.e., with high epistemic uncertainty, and
the predictions that are explicitly intended to express a probability of 0.5, i.e., with high
aleatoric uncertainty (Karvetski et al., 2013). Thus, future work should extend the Skill-
Difficulty Correlated Fusion Model to explicitly represent a potential peak of forecasts at
0.5, i.e., the 50-50 blip. This might not only improve the model’s fit to real forecasting data
but also further improve the fusion performance due to better modeling of the forecasts.
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10
GENERAL DISCUSS ION

This thesis provides a normative framework for Bayesian fusion of probabilistic forecasts,
either provided by classifiers or humans. First, we introduced a Bayesian model of classi-
fier fusion that formalizes how to optimally combine the categorical output distributions
returned by probabilistic classifiers and, in particular, how to optimally reduce their un-
certainty. Given progressively more general assumptions, we derived the optimal fusion
behavior of classifiers according to their individual properties, i.e., their uncertainty, bias,
and variance. In addition, we explicitly modeled the correlation between individual classi-
fiers with a newly introduced probability distribution, the correlated Dirichlet distribution.
With the proposed framework we could specify how uncertainty should be reduced depend-
ing on the individual classifiers’ uncertainty, bias, variance, and correlation. Moreover, our
model outperformed the closest related Bayesian fusion model on simulated as well as real
data sets.

Second, we proposed a parameter estimation method for the bivariate beta distribution,
which is a special case of the correlated Dirichlet distribution that we introduced for repre-
senting correlated classifiers. Instead of correlated categorical distributions, the bivariate
beta distribution models simple probabilities with a potential correlation, thus e.g., the
outputs of binary probabilistic classifiers. While this distribution has already been intro-
duced in previous work, the proposed parameter estimation method is only approximate
and inaccurate. Therefore, in this thesis, we derived the bivariate beta distribution’s prod-
uct moments and exact covariance, which can be computed numerically. Using the derived
covariance, we proposed parameter inference using moment matching.

Third, we applied the Bayesian classifier fusion method Independent Opinion Pool, which
is a special case of the normative Bayesian classifier fusion model derived in this thesis,
to multimodal intention recognition in human-robot interaction. We trained individual
probabilistic intention classifiers for four different modalities, i.e., speech, gestures, gaze
directions, and scene objects, and fused them Bayes optimally using Independent Opinion
Pool. By this, we enabled a 7-DoF robot arm to recognize intentions from multimodal
data while explicitly considering each modality’s uncertainty and reducing the uncertainty
over the intention to be recognized.

Fourth, we investigated if Bayes optimal classifier fusion using Independent Opinion Pool
can also improve interactive reinforcement learning using multimodal human advice. We
combined individual probabilistic action advice classifiers for the two modalities speech
and gestures and fused them in a Bayes optimal way using Independent Opinion Pool. In
order to exploit the uncertainty of the resulting fused distribution, instead of choosing
the action with the highest probability, we chose the action to be executed by sampling
from it. In a simulated grid-world scenario as well as a real-world interactive task between
a human and a 7-DoF robot arm with 10 human participants, we could show that the
proposed approach outperforms the closest related approach in terms of learning speed.
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Fifth, we learned to recognize a specific human intention from natural human behavior,
which frequently occurs in interactions between human and robot: the intention to start an
interaction with a robot, or in short, the intention for interaction. In an experiment with
21 human subjects we collected natural human behavior data while the human subjects
repeatedly showed an intention for interaction towards a two-armed robot. In contrast
to previous approaches, we included different tasks and interactions and different human
positions and orientations towards the robot in our data set in order to be able to gen-
eralize the detection to different situations. We recorded multimodal data from the two
modalities speech and body poses and compared different unimodal and multimodal prob-
abilistic classifiers. Bayesian fusion of the unimodal speech and body pose classifiers using
Independent Opinion Pool resulted in the best detection performance.

Sixth, we applied Bayesian fusion to subjective probability estimates provided by humans.
In a normative generative model we represented the human forecasts with beta distri-
butions conditioned on their truth value. We compared different variants of this model,
i.e., hierarchical and non-hierarchical models as well as models that assume symmetric
or asymmetric beta distributions. While previous approaches explicitly calibrate given
human forecasts using specific calibration functions, we show that our model implicitly
calibrates forecasts with the beta calibration function, which accommodates commonly
used calibration functions as a special case. For evaluating the proposed family of nor-
mative models, we introduced a new forecasting data set. On this and another data set,
we showed that the best of our normative models, a hierarchical model that assumes
symmetric beta distributions, performs comparably to related Bayesian models. However,
because our models mistakenly assume conditional independence of the forecasts provided
by different forecasters given the truth value, they reduce too much uncertainty and are
thus overconfident.

Therefore, seventh, we proposed a Bayesian model for combining correlated subjective
probability estimates. This model also represents the forecasts with beta distributions
conditioned on their truth value, but with special parameters representing the skill of
each forecaster as well as the difficulty of each query for which forecasts are provided.
By explicitly modeling the forecasters’ skills and the queries’ difficulties, the correlation
between forecasts provided by different forecasters can be modeled and considered for
fusion respectively. Evaluations on a data set consisting of human forecasts showed that
our model can quantify the forecasters’ skills and the queries’ difficulties. Moreover, its
fusion performance is improved compared to our previous models for fusing independent
forecasts and other related models.

10.1 General Findings

In general, this thesis’s starting point is the fundamental computational problem of com-
bining uncertainties in the form of probabilistic forecasts. Humans, robots, as well as
other AI systems and agents are constantly facing uncertainty in our world (D. R. Bach
& Dolan, 2012; Lindley, 2013; Russell & Norvig, 2010; Vilares & Kording, 2011), e.g., in
their perception, decision making, or when receiving estimates provided by other systems
or humans. This uncertainty can be reduced by combining multiple sources of informa-
tion. In this thesis, we used human perception, which can be conceptualized as reducing
uncertainty in a rational way, as an inspiration for improving artificial information pro-
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cessing systems including AI systems. In particular, we developed rational, i.e., Bayesian,
computational models and inference algorithms for AI systems in order to enable them to
combine uncertain information in a rational way.

We proposed normative Bayes optimal fusion of probabilistic forecasts either provided by
classifiers or humans using Bayesian methods and models. For this, we built on existing
methods, e.g., the Bayesian fusion method Independent Opinion Pool, and introduced
new Bayesian models, for which we also proposed a new probability distribution. While
these models quantify how the forecasts should be fused, i.e., how uncertainty should
be reduced correctly, the works included in this thesis demonstrate that Bayes optimal
fusion also improves performance compared to other fusion methods. It is correct, and it
performs well.

In particular, our proposed Bayesian fusion model that explicitly models the correlation
between different individual classifiers with a correlated Dirichlet distribution outperforms
the related model by Pirs and Strumbelj (2019) (Chapter 3). Further, Bayesian fusion
using Independent Opinion Pool increases the learning speed of multimodal interactive
reinforcement learning in human-robot interaction compared to the related heuristic fusion
approach used by Cruz et al. (2018) (Chapter 6). When detecting a human intention
for interaction in human-robot interaction from multimodal data, decision fusion of the
unimodal intention classifiers using the Bayesian Independent Opinion Pool is better suited
than feature fusion (Chapter 7). Finally, our Bayesian model for combining correlated
human forecasts also outperforms all related models proposed by Turner et al. (2014)
(Chapter 9).

While we showed that fusion assuming independence can already produce good results
(Chapter 5-7), this thesis particularly revealed that considering the correlation between
probabilistic forecasts is crucial because it avoids overestimating uncertainty reduction,
which leads to overconfidence (Chapter 3, 8, 9). While this was already known previously
(Wilson, 2017), the models presented in this thesis also explicitly provide normative solu-
tions to this problem (Chapter 3, 9). In particular, we quantify how correlated probabilistic
forecasts should be fused and how this fusion affects uncertainty reduction (Chapter 3).

10.2 Implications

The works presented in this thesis contributed to multiple research fields, among them
mathematics, artificial intelligence, robotics, and cognitive science. This is not only re-
flected in the different conference proceedings and journals our works are published in,
i.e., METRON journal for mathematics, AISTATS conference for artificial intelligence,
IROS conference, Robotics and Automation Letters journal, and RO-MAN conference for
robotics, and Judgment and Decision Making journal for cognitive science. The implica-
tions of our work for the different research fields are outlined below.

10.2.1 Mathematics

Within mathematics, a large number of different probability distributions have been de-
veloped to quantify uncertainty over probability estimates that might be correlated. In
addition to bivariate generalizations of the Kumaraswamy distribution (Arnold & Ghosh,
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2017), bivariate beta-generated distributions (Samanthi & Sepanski, 2019), or multivariate
Gaussian distributions with logistic transformations (Bordley, 1982; Clemen & Winkler,
1987; French, 1980; Pirs & Strumbelj, 2019), many previous approaches deal with dif-
ferent kinds of bivariate beta distributions (Arnold & Ghosh, 2017; Arnold & Ng, 2011;
Bran-Cardona et al., 2011; David Sam Jayakumar et al., 2019; El-Bassiouny & Jones,
2009; Gupta et al., 2011; Gupta & Wong, 1985; Jones, 2002; Koutoumanou et al., 2017;
Libby & Novick, 1982; Magnussen, 2004; Nadarajah & Kotz, 2005; Nadarajah et al., 2017;
Olkin & Liu, 2003; Olkin & Trikalinos, 2015; Orozco-Castañeda et al., 2012; Samanthi
& Sepanski, 2019; Sarabia & Castillo, 2006; Ting Lee, 1996). In the present thesis, we
have contributed an algorithm for exact parameter estimation for one of these bivariate
beta distributions, which can model random variables with arbitrary beta marginals and
positive correlation (Magnussen, 2004).

Furthermore, we have extended this bivariate beta distribution to a new probability
distribution for representing the uncertainty over correlated probability estimates with
higher dimensionality, i.e., over correlated categorical probability distributions. The new
correlated Dirichlet distribution models positive correlations between random vectors
x1 = (x1

1, . . . , x
1
J) and x2 = (x2

1, . . . , x
2
J) with arbitrary marginal Dirichlet distributions.

Previous generalizations of the Dirichlet distribution only focused on more flexible cor-
relations between random vector entries x1, . . . , xJ of a Dirichlet variable x (Connor &
Mosimann, 1969; Linderman et al., 2015; Wong, 1998).

The bivariate beta and the correlated Dirichlet distribution are not only interesting from a
theoretical point of view but can also be applied to solve problems besides modeling proba-
bilistic forecasts. For instance, the correlated Dirichlet distribution can generate stochastic
matrices with different rows or columns being Dirichlet-distributed and correlated, which
can be useful for Markov processes, optimal control, or reinforcement learning.

10.2.2 Artificial Intelligence

Classification is fundamental in Artificial Intelligence (AI) (Sharma & Singh, 2023). En-
sembles of classifiers, which fuse individual classifiers in order to improve classification
performance (Bishop, 2006; Dietterich, 2000; Hamed & Akbari, 2018; Kittler et al., 1998;
Mohandes et al., 2018; Pirs & Strumbelj, 2019), are known to be the most successful
classification systems (Kuncheva, 2014; Pirs & Strumbelj, 2019).

Due to partial observability and nondeterminism, uncertainty is also a fundamental chal-
lenge in AI (Abdar et al., 2021; Bhatt et al., 2021; Kompa et al., 2021; Russell & Norvig,
2010). In particular, classifier fusion methods have to fuse uncertain outputs of proba-
bilistic classifiers while avoiding overconfidence caused by the usual correlation between
individual classifiers to be fused (Jacobs, 1995; Kim & Ghahramani, 2012; Wilson, 2017).

In addition to a variety of different algorithms for fusing correlated probabilistic classifiers
(e.g., Petrakos et al., 2000; Prabhakar & Jain, 2002; Safont et al., 2019; Srinivas et al., 2009;
Ulaş et al., 2012), previous work proposed Bayesian generative models for classifier fusion,
which can potentially formalize how to combine classifier outputs in a normative or Bayes
optimal way (Kim & Ghahramani, 2012; Nazabal et al., 2016; Pirs & Strumbelj, 2019).
In particular, Pirs and Strumbelj (2019) propose a Bayesian model for fusing probabilistic
classifiers that models their correlation. However, the model requires transformations and
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mixture distributions to represent the correlated categorical output distributions. Most
importantly, a normative description of how to combine correlated probabilistic classifiers
and how to reduce uncertainty depending on the correlation is not provided in their ap-
proach. The present thesis closed this gap with the proposed normative Bayesian model of
correlated probabilistic classifier fusion, which represents the classifiers’ categorical output
distributions with the correlated Dirichlet distribution, a conjugate prior of the categorical
distribution that allows representing correlations between categorical distributions. This
model explicitly quantifies how probabilistic classifiers should be fused Bayes optimally
depending on their correlation as well as their individual uncertainty, bias, and variance
and additionally outperforms the related fusion model by Pirs and Strumbelj (2019).

The proposed normative model of classifier fusion can be applied to any conceivable classi-
fication problem. Furthermore, it can serve as an orientation for future fusion methods on
how uncertainty should normatively be considered for fusion, in particular if the individual
classifiers are correlated.

In this way, it can affect a multitude of potential applications of classification, among them
image classification, text classification, email spam filtering, object recognition, face de-
tection, speaker identification, handwriting recognition, and medical diagnosis (Almazroi
et al., 2020). Classifier fusion is of particular interest for critical applications of classifi-
cation where a misclassification can be very costly, such as medical diagnosis or person
recognition in autonomous driving (Mohandes et al., 2018). Especially in such critical
applications, knowing the correct uncertainty of a classifier fusion system is crucial since
overconfidence resulting from incorrect uncertainty reduction could cause wrong decisions
and actions that might harm people (Guo et al., 2017; Kompa et al., 2021).

10.2.3 Robotics

The research field of Human-Robot Interaction (HRI) is a subdiscipline of robotics that
aims to understand, design, and evaluate robotic systems in interactions and communi-
cations with humans (Goodrich & Schultz, 2008). Successful human-robot interaction re-
quires robots with the ability to recognize human intentions (Hofmann & Williams, 2007).
Since humans communicate their intentions using multiple modalities, such as speech and
gestures (Barthelmess et al., 2006; Chandrasekaran et al., 2009; De Ruiter et al., 2012; So
et al., 2009; Todisco et al., 2021), an intuitive and natural interaction between humans
and robots requires also robots to recognize intentions from multimodal data (Goodrich
& Schultz, 2008; Stiefelhagen et al., 2004).

Several approaches for multimodal intention recognition in HRI have been proposed (Cruz
et al., 2016; Cruz et al., 2018; Foster et al., 2017; Mollaret et al., 2015; Mollaret et al.,
2016; Rodomagoulakis et al., 2016; Vaufreydaz et al., 2016; W. Xu et al., 2015; Yu et al.,
2015; Zlatintsi et al., 2018). Among these approaches, some even perform decision fusion
by combining the outputs of individual classifiers (Cruz et al., 2016; Cruz et al., 2018;
Rodomagoulakis et al., 2016; Yu et al., 2015; Zlatintsi et al., 2018). However, they ei-
ther do not consider uncertainty reduction at all (Rodomagoulakis et al., 2016; Yu et al.,
2015; Zlatintsi et al., 2018) or apply heuristic rules in order to reduce uncertainty through
multimodal fusion (Cruz et al., 2016; Cruz et al., 2018). In human-robot interaction, dis-
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regarding uncertainty about the human’s intentions and reducing it incorrectly could lead
to inappropriate robot reactions, which in the worst case can cause dangerous situations.

In order to reduce uncertainty correctly, in this thesis, we have applied Bayesian classifier
fusion to multimodal human-robot interaction. We have shown that Bayesian fusion with
the method Independent Opinion Pool improves the recognition of human intentions from
multimodal data in human-robot interaction and increases the learning speed in interactive
reinforcement learning with multimodal detection of human action advice. Furthermore,
a newly introduced data set for multimodal recognition of the intention for interaction
from natural human behavior can serve for future investigations in intention recognition.

The proposed approaches for multimodal human-robot interaction lower the barriers for
people to interact with robots by allowing them to interact multimodally as they are
accustomed to doing (Barthelmess et al., 2006; Chandrasekaran et al., 2009; De Ruiter
et al., 2012; Ernst & Bülthoff, 2004; So et al., 2009; Todisco et al., 2021). Moreover,
correctly considering uncertainty in this multimodal interaction leads to more safe human-
robot interaction (Baek & Kröger, 2023; Baek et al., 2023).

As outlined in Chapter 5, a promising application of Bayesian fusion in multimodal human-
robot interaction is elderly assistance. Globally, societies are aging (Christoforou et al.,
2020; Grinin et al., 2023; C. Johnston, 2022). This severely challenges traditional health-
care and elderly care (Dino et al., 2022). One possible solution to this problem is the use of
assistive robots. On the one hand, they can support elderly people in their homes in order
to help them remain independent and stay in their own homes for a longer time (Graf
et al., 2004; Martinez-Martin & Costa, 2021). In addition to improving the quality of life
of affected elderly people who do not want to move to an elderly home, assistive robots at
home also save money since a costly treatment in an elderly home can be avoided (Graf
et al., 2004). Potential support tasks for such assistive robots are, among others, fetching
and carrying things for the elderly users, serving drinks, managing their daytime, or sup-
porting them in standing up or walking (Graf et al., 2004). On the other hand, assistant
robots can potentially support caregivers in elderly homes (C. Johnston, 2022; Niemelä &
Melkas, 2019), e.g., by fetching and bringing required items (Niemelä & Melkas, 2019). In
the best case, this relieves the human caregivers, gives them more time to devote to the
elderly people, and improves their working conditions.

In the caregiving context, intuitive and natural communication as enabled by multimodal
interaction is of particular interest since potential users, i.e., the caregivers and in par-
ticular the elderly people themselves, cannot be assumed to be technically minded. The
explicit consideration and reduction of uncertainty is even more important because high
uncertainty can lead to wrong actions, which can irritate and in the worst case harm the
possibly vulnerable elderly users.

However, note that in addition to elderly assistance, the proposed methods for multimodal
human-robot interaction using Bayesian fusion are also applicable to industry settings,
where humans and robots collaborate as coworkers (Vojić, 2020), as well as to all other
conceivable applications of human-robot interaction.
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10.2.4 Cognitive Science

Cognitive and psychological research aims to understand what is happening inside the
mind of individuals in judgment and decision making tasks and how optimal performance
of the collective intelligence of a group of individuals can be achieved (Steyvers & Miller,
2015). In particular, the aggregation of judgments can be treated as a cognitive modeling
problem (M. D. Lee & Danileiko, 2014).

When aggregating probabilistic judgments, the calibration of individual forecasters is of
particular importance: Most people are miscalibrated (Morgan, 2014), but their miscali-
bration should not affect the combination of the combination of their judgments (M. D.
Lee & Danileiko, 2014). In addition, similar to classifiers, human forecasts are usually
correlated (Berger, 1985; Hogarth, 1978; Lichtendahl Jr et al., 2022; Wilson & Farrow,
2018; Winkler et al., 2019; Wiper & French, 1995), which can lead to overconfidence if
it is ignored when combining the forecasts (Wilson, 2017). The correlation of forecasts is
one of the major challenges in forecast aggregation (McAndrew et al., 2021).

While there are many ad-hoc rules for the aggregation of probability estimates, e.g.,
weighted linear opinion pools (Budescu & Chen, 2015; Budescu & Rantilla, 2000; Cooke,
1991; Hanea et al., 2021; Karvetski et al., 2013; Ranjan & Gneiting, 2010) and multiplica-
tive pooling methods (Berger, 1985; Dietrich & List, 2016), also a multitude of Bayesian
models for combining subjective probability estimates have been proposed (Babic et al.,
2022; Bordley, 1982; Clemen & Winkler, 1987; Di Bacco et al., 2003; French, 1980; Hanea
et al., 2021; M. D. Lee & Danileiko, 2014; Lichtendahl Jr et al., 2022; Lindley, 1985;
Satopää, 2022; Satopää et al., 2016; Turner et al., 2014; J. Wang et al., 2021). Among
these models, there are models that do not consider a potential correlation between fore-
casts (Hanea et al., 2021; M. D. Lee & Danileiko, 2014; Lindley, 1985; Turner et al., 2014)
and others that explicitly model this correlation (Babic et al., 2022; Bordley, 1982; Clemen
& Winkler, 1987; Di Bacco et al., 2003; French, 1980; Lichtendahl Jr et al., 2022; Satopää,
2022; Satopää et al., 2016; J. Wang et al., 2021).

In particular, Turner et al. (2014) proposed some supervised Bayesian models for combin-
ing probabilistic forecasts with discrete truth values that combine the forecast by averaging
them and calibrate them using the Linear-in-Log-Odds (LLO) calibration function. How-
ever, these fusion models are not motivated normatively, i.e., with a generative model of
how the truth value generated the human forecasts. Also note that this model does not
represent correlations between forecasts. An example of a normative generative model of
forecast aggregation is a model proposed by Lindley (1985), which transforms the proba-
bility estimates to log-odds and represents them with a Gaussian distribution given the
truth value. This approach can also be extended to model the log-odds with multivariate
Gaussian distributions, which enables modeling the correlation between forecasts (Bordley,
1982; Clemen & Winkler, 1987; French, 1980).

In the present thesis, we have contributed a normative model for combining independent
subjective probability estimates that directly models the probabilities with a beta distri-
bution conditioned on their truth value without the need for any transformation. We
show that this model implicitly calibrates the forecasts with the beta calibration function,
which accommodates the LLO calibration function as a special case. In a second step, we
have extended this normative model of forecast combination in order to also model the
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correlation between forecasts. The proposed model explicitly represents the skills of indi-
vidual forecasters in terms of their bias, variance, and uncertainty as well as the difficulty
of the queries for which forecasts are provided. In this way, correlations between forecasts
provided by different forecasters can be modeled and considered for fusion respectively.

The forecast aggregation models introduced in this thesis allow drawing conclusions about
human forecasting behavior, about the considered forecasters’ calibration, their skill in
terms of bias, variance, and uncertainty, and the correlation between different human
forecasters. In particular, the skills and calibrations of individual forecasters can provide
useful insights about the cognitive characteristics of individuals (M. D. Lee & Danileiko,
2014). Combining new unseen human forecasts using the proposed models is Bayes optimal
given the assumptions of the models and can consider the forecasters’ properties, such as
their skill or correlation, for fusion. In addition, our model for Bayesian combination
of correlated forecasts outperforms alternative models on a data set consisting of human
subjective probability estimates.

We provided this forecasting data set as another contribution of this thesis. It can serve
for future investigations of human forecasting behavior and for the evaluation of other
fusion models that might be proposed in the future. In contrast to previous forecasting
data sets (Graefe, 2018; Hanea et al., 2021; Karvetski et al., 2013; Prelec et al., 2017;
Turner et al., 2014), which are limited in the number of forecasts per forecaster, the new
data set includes the forecasts of 85 forecasters on 180 queries.

Since human probabilistic forecasts provided by domain experts are crucial in many dif-
ferent fields, among them finance, business, marketing, engineering, meteorology, environ-
mental science, public health, and politics (McAndrew et al., 2021), the proposed fusion
models are also applicable in all these domains. Combining the experts’ forecasts Bayes
optimally while explicitly considering their individual properties as well as their correla-
tion can improve investing, planning, risk management and safety, and decision making.
In addition, the fused forecasts can be used to build rule-based AI systems (Masri et
al., 2019). Another interesting potential future application of forecast aggregation might
be to combine peoples’ confidence ratings on statements on social media platforms (N.
Kriegeskorte & P. Stinson, personal communication, August 10, 2023). Social media en-
ables users to connect with each other and to share and receive information (X. Zhang
& Ghorbani, 2020). However, a significant portion of the information shared on social
media is fake news (X. Zhang & Ghorbani, 2020), which is a substantial threat to our
society (Qu et al., 2024; Soga et al., 2024; X. Zhang & Ghorbani, 2020). On the one
hand, fake news can be automatically detected using classifiers (e.g., Qu et al., 2024; Soga
et al., 2024), which are, however, challenged by the large amount of news and the high
diversity of information (Qu et al., 2024). On the other hand, peoples’ confidence ratings
on the correctness of statements could easily be collected in large numbers on social media
platforms, while fact-checking systems could provide corresponding truth values. Based
on these data our models could learn the users’ calibration, skills, and correlations and
exploit them to normatively fuse their confidence ratings. The resulting fused confidence
rating might then serve as an orientation for other users to detect fake news.
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10.3 Limitations and Future Work

The methods and findings presented in this thesis, along with their limitations, suggest
multiple interesting ideas for future research. In the following, we will discuss the main
limitations of the present thesis and explore promising directions for future work respec-
tively.

The proposed Bayesian fusion models in Chapters 3, 8, and 9 explicitly model the behavior
of individual classifiers or humans in terms of their bias, variance, and uncertainty. By this,
as we showed in Chapter 8, they implicitly calibrate the forecasts when fusing them. Thus,
given correct model assumptions, the fused forecast according to these Bayesian models
should be correct, i.e., calibrated (Satopää, 2022). However, for the ad-hoc Bayesian fusion
method Independent Opinion Pool in Chapter 3 and the robotic applications in Chapters 5-
7, which rely on Independent Opinion Pool for fusion, we do not learn a model of the base
classifiers’ output distributions and thus cannot calibrate them. Thus, for these works
it has to be taken in mind that the fused uncertainty is only correct given the output
distributions provided by the individual modalities’ base classifiers. Future work could
explicitly calibrate the individual base classifiers for different modalities in Chapters 5-7
before fusing them or directly model them in order to implicitly calibrate them while fusing.
The latter could be realized with the Independent Fusion Model discussed in Chapter
3, which models independent classifier outputs with Dirichlet distributions. It remains
an interesting open question for future investigations how the use of this fusion model
could further improve the performance of fusion in human-robot interaction applications.
However, note that modeling the classifiers with the Independent Fusion Model requires
training data to learn the model. Such training data are not always available, particularly
in the context of human-robot interaction.

The classifiers for different modalities in multimodal human-robot interaction in Chapters
5-7 are assumed to be conditionally independent given the truth value, e.g., the true
intention to be recognized. While this independence assumption for different modalities
was claimed to be plausible in the context of human perception (Ernst & Bülthoff, 2004;
Oruç et al., 2003), it is not entirely certain if this also holds for the classifiers for different
modalities used in our human-robot interaction studies. Falsely assumed independence of
actually correlated classifiers could lead to an overconfident fused forecast (Wilson, 2017),
which could have dangerous consequences in human-robot interaction, in particular in
the context of robotic elderly assistance. Therefore, in future work, the independence
assumption of the individual modalities’ classifiers in Chapters 5-7 should be checked
carefully. Another promising line for future work is to apply a fusion model that explicitly
considers potential correlations between the individual modalities’ classifiers, e.g., the
Correlated Fusion Model introduced in Chapter 3.

However, a limitation of the Correlated Fusion Model impedes its application to human-
robot interaction: We did not find an analytical solution for the probability density func-
tion of the correlated Dirichlet distribution and thus could not derive the fused forecast
in closed form. Therefore, for fusion we have to rely on slow Gibbs sampling, which does
not allow applying the fusion model in applications where fusion has to be performed in
real-time, as for example in multimodal human-robot interaction. Future work should
investigate alternative inference methods that allow faster inference of the fused forecast.
This can equivalently be done for the fusion model in Chapter 9, which fuses correlated
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probabilistic forecasts provided by humans, since this model also relies on slow Gibbs
sampling for fusion. However, fusing human forecasts, e.g., provided by domain experts,
is usually less time-critical than classifier fusion.

In this thesis, we fused probabilistic forecasts provided by AI systems in the form of
classifiers (Chapters 3, 5, 6, 7) as well as probabilistic forecasts provided by humans
(Chapters 8, 9). However, the models introduced in this thesis can also potentially be
applied to combine probabilistic forecasts provided by both humans and AI systems. Thus,
an interesting line of future work would be to combine forecasts provided by humans and
AI systems, as done, e.g., in the work of Steyvers et al. (2022). While our correlated fusion
models in Chapters 3 and 9 can only model positive correlations, in this case, we should
potentially also consider negative correlations since humans and AI systems might be more
likely to be negatively correlated. In fact, it is an open question to be investigated in the
future how negative correlations of forecasts should impact the resulting fused forecast.

Finally, another important question that should be addressed in future work is what to do
with the posterior fused forecast, regardless of whether it is obtained from fusing classifiers’
forecasts or human forecasts, or even both. On the one hand, we can provide the fused
forecast to a human, who can use it as a support for decision making. While in this case it
is on the human to exploit the fused forecast’s uncertainty, future work should investigate
how humans can make best use of the provided uncertainty for making good decisions. An
example of such an attempt for AI support in decision making is, e.g., the work of Benz
and Rodriguez (2023). If, on the other hand, the fused forecast is used to automatically
execute actions, it has to be investigated how to choose an action based on the fused
forecasts while explicitly considering its uncertainty. In decision theory, every decision for
an action implies some cost function that assigns costs to actions that are executed in
a specific state. Given this cost function and a posterior distribution over the state, the
optimal action can be computed (see Section 2.4). For example, if a robot should correctly
estimate a discrete human intention from multimodal data, the appropriate cost function is
0-1 loss, and the resulting optimal intention to choose is the one with the highest posterior
probability given the data, i.e., the highest probability in the fused categorical distribution.
If the robot should also react to the recognized intention with a predefined action, such as
a handover of a specific object, this can be realized by choosing the most likely intention
from the fused forecast and reacting with the action assigned to this intention, e.g., by
handing over the intended object to the human. In this case, the robot’s reaction is the
same for a fused forecast, in which the probabilities for all intentions are approximately
the same, but one has a slightly higher probability, and for a fused forecast, in which the
probability for the chosen intention is 1 and all other probabilities are 0. However, due
to their different uncertainties these two prototypical fused forecasts indicate completely
different situations, which should have an effect on action execution. Several options for
action execution considering uncertainty are conceivable. On the one hand, other cost
functions can be defined, which can, however, be difficult for robot actions and does
not necessarily lead to an effect of the robot’s uncertainty on its reaction. Likewise, a
threshold can be set that only allows a reaction above a predefined uncertainty level, as
done e.g., in the works of Cruz et al. (2016) and Cruz et al. (2018). However, such a
threshold discretizes uncertainty in an arbitrary way, and it is not clear how to best set
it. Another option to exploit uncertainty for action selection is sampling according to
the fused forecast, as we did in Chapter 6 for action selection in interactive reinforcement
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learning. By sampling, the actions are selected according to the uncertainty of the fused
forecast. However, this can easily lead to wrong actions because also low probability
actions could be executed. In future work, it should be investigated if there is a better
possibility to exploit uncertainty in action selection, for example by modifying the action
execution depending on the uncertainty (Kanazawa et al., 2019). This investigation of
how to exploit the uncertainty of the fused forecast is beyond the topic of this thesis,
which focused on how to obtain a correct, i.e., Bayes optimal, fused forecast. However, it
is a fundamental research topic for the continuation of the work presented in this thesis
because a correctly reduced uncertainty should also be correctly exploited.
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