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Abstract

In this work, we study strongly interacting quantum field theories using the functional renor-
malization group (FRG) as our primary computational method. The goal is to facilitate FRG
computations in the context of quantum chromodynamics (QCD) to study the phase structure
of dense strong-interaction matter. The main part of this work is split into three chapters,
differing in the space-time dimension of the theories under consideration.
We begin by studying zero-dimensional theories, which ultimately involves solving ordinary

integrals with complicated FRG flow equations. Initially, this might seem like an unnecessarily
convoluted way to solve a simple problem. However, it is this very fact – applying the FRG
to such simple theories – that allows us to gain enormous insights into the FRG in a rigorous
manner. Arguably, the most relevant development is the novel understanding of FRG flow
equations in a fluid-dynamic context. This allows for the application of methods and concepts
from the highly developed field of computational fluid dynamics (CFD) to the FRG. Two key
findings are the identification of bosonic (fermionic) fluctuations as convective (source- or
sink-like) contributions to the FRG flow and the resulting link between the CFD concept of
numerical entropy and the irreversibility of non-perturbative renormalization group (RG) flows.
These developments serve as a vital stepping stone facilitating the following applications.
We proceed with computations in the (1+1)-dimensional Gross-Neveu (GN) model. We

use it to study spontaneous chiral symmetry breaking (χSB) – a phenomenon vital to the
understanding of QCD. Using the previously established CFD methods for the FRG, we study
the effects of fermionic and crucially bosonic quantum and thermodynamic fluctuations on
spontaneous χSB. Themain result of this part of our research is that thermal bosonic fluctuations
prevent χSB in the (1+1)-dimensional GN model. We further study inhomogeneous χSB
indirectly using a stability analysis in mean-field (MF) approximation, i.e., considering only
fermionic fluctuations. Our research helps to establish this method as a robust tool for both
qualitative and quantitative statements about inhomogeneous χSB.
We conclude the main part of this thesis with our studies of the (3+1)-dimensional Quark-

Meson (QM) model, which we primarily consider as a low-energy effective theory of QCD.
We focus on inhomogeneous chiral condensates by studying the QM model within the FRG
framework, using a position-dependent ansatz for the chiral condensate, viz. the chiral density
wave (CDW) for which we have been able to derive explicit FRG flow equations. We again
investigate the effects of fluctuations on spontaneous χSB by solving those flow equations in
RG-consistent MF calculations. Thus establishing contact with existing literature results for
the QM model with CDW condensates. These computations – incorporating only fermionic
fluctuations – are a first step towards a complete solution of the derived flow equations using
our established CFD methods.
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Zusammenfassung

In dieser Arbeit untersuchen wir starkwechselwirkende Quantenfeldtheorien unter Verwendung
der funktionalen Renormierungsgruppe (FRG) als unsere primäre Rechenmethode. Das Ziel
ist es, FRG-Rechnungen im Kontext der Quantenchromodynamik (QCD) zu ermöglichen, um
die Phasenstruktur von dichter, stark wechselwirkender Materie zu studieren. Der Hauptteil
dieser Arbeit ist in drei Kapitel unterteilt, die sich in der Raumzeitdimension der betrachteten
Theorien unterscheiden.
Wir beginnen mit dem Studium von null-dimensionalen Theorien, was letztendlich bedeutet,

gewöhnliche Integrale mit komplizierten FRG-Flussgleichungen zu lösen. Dies mag zunächst
wie eine unnötig umständliche Methode erscheinen, um ein einfaches Problem zu lösen. Es
ist jedoch genau diese Tatsache – die Anwendung der FRG auf solch einfache Theorien – die
es uns auf rigorose Weise ermöglicht, enorme Einblicke in die FRG zu gewinnen. Die wohl
relevanteste Entwicklung ist das neuartige Verständnis der FRG-Flussgleichungen im Kontext
der Fluiddynamik. Dies ermöglicht die Anwendung von Methoden und Konzepten aus dem
hochentwickelten Bereich der numerischen Strömungsmechanik (CFD) auf die FRG. Zwei
Schlüsselerkenntnisse sind die Identifizierung von bosonischen (fermionischen) Fluktuationen
als konvektive (Quellen- oder Senken-artige) Beiträge zum FRG-Fluss und die daraus resultie-
rende Verknüpfung des CFD-Konzepts der numerischen Entropie und der Irreversibilität von
nicht-perturbativen Renormierungsgruppen (RG) Flüssen. Diese Entwicklungen stellen einen
entscheidenden Schritt zur Ermöglichung der folgenden Anwendungen dar.
Wir fahren fort mit Berechnungen im (1+1)-dimensionalen Gross-Neveu (GN) Modell. Wir

verwenden es, um spontane chirale Symmetriebrechung (χSB) zu untersuchen – ein Phä-
nomen, das für das Verständnis von QCD von entscheidender Bedeutung ist. Mit den zuvor
etablierten CFD-Methoden für die FRG untersuchen wir die Auswirkungen von fermionischen
und insbesondere bosonischen Quanten- und thermodynamischen Fluktuationen auf spontane
χSB. Das Hauptergebnis dieses Teils unserer Forschung ist, dass thermische bosonische Fluk-
tuationen χSB im (1+1)-dimensionalen GN Modell verhindern. Wir untersuchen des Weiteren
inhomogene χSB indirekt mittels einer Stabilitätsanalyse in Mean-Field (MF) Näherung, d.h.
nur unter Berücksichtigung fermionischer Fluktuationen. Mit unserer Forschung tragen wir
dazu bei, diese Methode als robustes Werkzeug für sowohl qualitative als auch quantitative
Aussagen über inhomogene χSB zu etablieren.
Wir schließen den Hauptteil dieser Arbeit mit unseren Studien zum (3+1)-dimensionalen

Quark-Meson (QM)Modell ab, welches wir hauptsächlich als eine effektive Niederenergietheorie
von QCD betrachten. Wir konzentrieren uns auf inhomogene chirale Kondensate, indem wir
das QM Modell im Rahmen der FRG untersuchen und dabei einen positionsabhängigen Ansatz
für das chirale Kondensat verwenden, namentlich die chirale Dichtewelle (CDW), für die wir
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explizite FRG-Flussgleichungen ableiten konnten. Wir untersuchen erneut die Auswirkungen
von Fluktuationen auf spontane χSB, indem wir diese Flussgleichungen im Rahmen von RG-
konsistenten MF Rechnungen lösen. Dadurch stellen wir eine Verbindung zu bestehenden
Literaturergebnissen für das QM Modell mit CDW Kondensaten her. Diese Berechnungen – die
derzeit nur fermionische Fluktuationen berücksichtigen – sind ein erster Schritt hin zu einer
vollständigen Lösung der abgeleiteten Flussgleichungen unter Verwendung unserer etablierten
CFD-Methoden.

Zusammenfassung vii
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1. Introduction

The strong interaction, one of the four established fundamental interactions and one of three
cornerstones of the Standard Model of particle physics, governs the confinement of quarks into
protons, neutrons, and other more exotic states of strongly interacting matter. Quarks are
fundamental, massive spin-12 particles [10–17], which carry color charge [18–20]. Colored
quarks are not directly observable but their bound states – most notably protons and neutrons –
are observable and form the building blocks of ordinary matter. The established fundamental
quantum field theory (QFT) describing the strong interaction is quantum chromodynamics
(QCD) [21], which describes the interaction of color-charged quarks and gluons. Gluons are the
color-charged gauge bosons of quantum chromodynamics (QCD) and mediate the strong force.
The strong interaction is crucial for the binding of protons and neutrons in atomic nuclei as it is
able to overcome the electrostatic repulsion between protons at short range. It is also important
for the understanding of matter at extreme conditions, i.e., at temperatures T ≳1010K ˆ︁≈ 1MeV
and densities n≳n0, above nuclear saturation density n0 = 1.6 · 1044m−3 = 0.16 fm−3 [22].
Such extreme conditions are expected in the early universe, see, e.g., Refs. [23, 24], studied in
experimental high-energy particle physics, see, e.g., Refs. [25–42], and are present in extreme
astrophysical environments like neutron stars, see, e.g., Refs. [43–46].
Computing observables of strongly interacting systems in QCD is technically extremely

challenging due to the complicated nature of QCD as a non-Abelian gauge theory [47], which
becomes non-perturbative, i.e., strongly coupled at low energies – atmacroscopic scales∼ 1GeV
in the context of high-energy physics. The phase structure and thermodynamics of QCD matter
at especially intermediate densities and temperatures (2n0≲n≲10n0 and T ≲150MeV) is still
very poorly understood both from experiment and theory. It is however of profound importance
especially in extreme astrophysical environments like isolated neutron stars, neutron star
mergers, and supernovae explosions, which are important sites of nucleosynthesis, see, e.g.,
Ref. [48]. We humans and nature surrounding us are truly made of “star dust” including the
“dust” of neutron stars.

The phase diagram of QCD – Here be dragons
In figure 1.1 we show a sketch of the conjectured phase diagram of QCD including information
from experiment and theory, see, e.g., Refs. [49, 50, 52, 58–63] for more details on the rich
phase structure of strongly interacting matter. At low temperatures and densities we encounter
nuclear matter where quarks and gluons are confined to baryons, e.g., protons and neutrons,
and the chiral symmetry of QCD is broken spontaneously [64, 65]. This chiral symmetry
breaking (χSB) is signaled by a non-zero expectation value ⟨q̄q⟩ ̸= 0 for the anti-quark-quark
condensate – the chiral condensate. The mechanism of spontaneous chiral symmetry breaking

1
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Figure 1.1.: Conjectured QCD phase diagram with various states of strongly interacting
matter including chiral symmetry breaking patterns in black and experimental laboratories,
cf. Refs. [23, 24, 37–46], in red. Note that both the T - and n-axis are cut and especially
the n-axes is non-linear. It should also be noted that a representation in n-T should include
mixed phases, i.e., regions with phase coexistence around first-order phase transitions, cf.
figure 4.7. This figure is meant to introduce the relevant phases and their rough location in
the phase diagram while the shapes and boundaries should not be interpreted literally. The
visualization of phase boundaries and shapes is reminiscent of a diagram in the temperature
and quark/baryon chemical potential plane, cf. figures 2.13 and 2.16b. We settled for a
presentation using net baryon number density instead for quark chemical potential in this
introduction since it is arguably more intelligible for non-experts. Based on Fig. 1. of Ref. [49]
and including information from Fig. 1 of Ref. [50], Fig I.8 of Ref. [51], and Fig. 2 of Ref. [52].
Elements of the background were generated using Axodraw version 2 [53, 54] and DALL-E [55].
The final figure has been composed by hand using Matplotlib [56] and Photoshop CS6 [57].

(χSB) [64, 65] plays a critical role for the generation of masses of QCD bound states, like
protons and neutrons. In fact about 99% of the proton’s (neutron’s) mass of 938.27MeV
(939.57MeV) is generated dynamically in QCD since the quarks themselves are incredibly light
(compared to typical scales in QCD) with mu ≈ 2MeV and md ≈ 5MeV in the MS-scheme at
a renormalization scale of 2GeV [36]. Throughout this work we focus on the dynamics of the
two light quark flavors – up and down – hence ⟨q̄q⟩ denotes the anti-quark-quark condensate
of the light quarks. Furthermore we limit most discussions to the chiral limit, i.e., neglecting
the small masses of the up and down quark: mu = md = 0.
At high temperatures and/or densities, i.e., high momenta, QCD becomes asymptotically

free [66–68]: the interaction strength between quarks and gluons decreases with increasing
momentum transfer allowing a perturbative treatment of QCD in this extreme high-energy
regime. The quarks and gluons at high temperatures are deconfined and present thermody-
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namically as a quasi-free, ultrarelativistic gas called the quark–gluon plasma (QGP). Chiral
symmetry is approximately restored in the QGP, ⟨q̄q⟩ ≈ 0, meaning that the only breaking of
χSB is due to quark masses. In the chiral limit mu = md = 0 chiral symmetry gets completely
restored ⟨q̄q⟩ = 0.
The existence of a (strongly coupled) QGP is established theoretically (experimentally) in

high-energy particle physics. The existence of nuclear matter – bound protons and neutrons –
is nowadays a well-established fact in physics, supported by extensive experimental evidence
and theoretical understanding. This poses an interesting question for the phase diagram of
QCD: how do we get from hadrons – bound states of confined quarks and gluons – to the QGP –
deconfined quarks and gluons – or in terms of chiral symmetry: how does chiral symmetry get
restored as temperature and density increase? This is one of the major open research questions
in both experimental and theoretical high-energy physics. The closely related and unsolved
Yang-Mills & The Mass Gap problem [69] was stated as a major mathematical challenge as one
of the seven Millennium Prize Problems. At low densities and quark chemical potentials existing
collider experiments, see, e.g., Refs. [70–75], and theoretical first principle computations in
QCD (especially but not exclusively from the field of lattice QCD, see, e.g., Refs. [49, 76–78])
have basically established that chiral symmetry gets approximately restored as temperature
increases in a smooth crossover, which in the chiral limit manifests as a second-order phase
transition.
At higher densities (n≳2n0) and associated quark chemical potentials the experimental

situation remains unclear since this region is notoriously difficult to probe in colliders. Indirect
experimental access to this region is provided by the study of isolated andmerging neutron stars.
With the recent advances in direct gravitational wave detection this experimental, astrophysical
laboratory is gaining more and more attention in high-energy physics. The established major
theoretical instrument of lattice QCD can not access the region of the QCD phase diagram at non-
vanishing chemical potential directly due to the notorious QCD sign-problem: a conceptual and
computational algorithmic limitation preventing simulation at µ > 0, see, e.g., the review [79].
Extrapolations of lattice QCD results to non-zero chemical potential start to become unreliable
at 3µ/T ≡ µB/T ≳2 [77, 78, 80]. Hence the phase structure at intermediate densities and
temperatures is not fully understood both from a theoretical and experimental perspective.
The center of figure 1.1 – the QCD phase diagram at intermediate temperatures and densities –
is still to an extent a terra incognita of challenges and mysteries: “Here be dragons” and maybe
even three-headed ones.
Accessing the QCD phase diagram at intermediate temperatures and densities to study chiral

symmetry restoration and the confinement-deconfined transition requires non-perturbative
methods for strongly-interacting QCD. Functional methods – like the functional renormaliza-
tion group (FRG) – and effective models – especially chiral low-energy effective theorys (LEFTs)
of QCD like the Nambu-Jona-Lasinio (NJL) model and related quark-meson (QM) model – are
important tools to theoretically study QCD in this regime. The functional renormalization group
(FRG) is a non-perturbative functional method, which implements Wilson’s non-perturbative
renormalization group (RG) approach exactly by introducing momentum and renormalization
group (RG)-scale-dependent regulator terms. It effectively maps the problem of solving compli-
cated functional integrals, which lattice QCD tackles directly by discretization in position space,
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onto the problem of solving complicated functional differential equations. Those so-called
RG-flow equations describe the evolution of microscopic theories defined at high momentum
scales – in the ultraviolet (UV) – towards macroscopic theories at low momentum scales – in
the infrared (IR). At its core the FRG is based on successively integrating out quantum and
thermodynamic fluctuations.
Those are the methods and the part of the QCD phase diagram relevant for our explicit

research.

Inhomogeneous chiral condensates – the quark-meson (QM) model in d=3+1
Several model calculations especially in the (3+1)-dimensional QM model with the FRG (in-
corporating both bosonic and fermionic quantum and thermodynamic fluctuations), see, e.g.,
Ref. [81], and in mean-field (MF)/large-Nc approximation (including only fermionic fluctua-
tions), see, e.g., Ref. [82], predict a first-order phase transition ending in a critical point (CP)
as the mechanism of chiral symmetry restoration. In figure 1.1 the possible location of the CP
is marked as a diffuse orange dot and the first-order phase transition (with the correspond-
ing phase coexistence region) would be located in the yellow band. This finding however is
based on the – often tacit – assumption of homogeneous chiral condensation. Allowing for
inhomogeneous, i.e., explicitly position-dependent, expectation values ⟨q̄q⟩(x⃗), computations
using mean-field (MF)/large-Nc approximation, see, e.g., Refs. [83–86], and to an extent also
existing FRG computations, see, e.g., Refs. [80, 87], predict that such an inhomogeneous phase
can be energetically favored over a homogeneous one. This preference typically occurs at or
around the previously predicted location of the homogeneous first-order phase transition.
One major research question regarding this exotic state of strongly interacting matter is its

stability against bosonic Quantum and thermodynamic fluctuations. Inhomogeneous phases
are established in MF/large-Nc approximation in (3+1)-dimensional chiral LEFTs of QCD like
the NJL model and QM model, see, e.g., the reviews [63, 88]. But those computations only
incorporate the effects of fermionic fluctuations. Using the FRG we originally set out to study
the effects of bosonic quantum and thermal fluctuations on inhomogeneous phases in the QM
model. Both a direct computation with explicitly position-dependent expectation values ⟨q̄q⟩(x⃗)
and an indirect approach using a stability analysis of the homogeneous ground state have been
planed. I have focused on the first while my colleague Adrian Koenigstein has focused on the
latter.
Using a specific ansatz for the expectation values ⟨q̄q⟩(x⃗), viz. the chiral density wave (CDW), I

have been able to derive FRG flow equations including this explicitly inhomogeneous condensate
using the established local potential approximation (LPA) as truncation [6]. As a first step we
have solved the derived FRG/LPA flow equations with CDW condensates neglecting bosonic
fluctuations. In the resulting RG-consistent MF computations we made contact with various
existing mean-field results in literature studying the QM model both as a renormalizable
quantum field theory (QFT) and as a chiral LEFT of QCD [6].

FRG flow equations as convection equations and computational fluid dynamics
At this point we turned our attention at the role of bosonic fluctuations and set out to solve our
derived flow equations without the simplifying assumption of neglecting bosonic contributions.
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The flow equations for the CDW in the QM model present as generalizations of the well known
FRG/LPA flow equations for homogeneous chiral condensates and include those in the limit
of vanishing position-dependence. Those flow equations are non-linear partial differential
equations (PDEs) for scale depended interaction potentials U(k, ϱ) in two variables: RG scale (k)
and the magnitude of the chiral condensate (∝ ϱ). The FRG community employs a multitude
of numerical methods to solve such PDEs which have been constructed for the problems at
hand by various authors with varying mathematical rigor – often based on a fair degree of a
posteriori insight. Those methods include

• local (Taylor) expansions, see, e.g., Refs. [80, 89–109],

• collocationmethods – which are often referred to in FRG literature as just “gridmethods” –
like finite difference (FD), see, e.g., Refs. [81, 87, 93, 100, 110–144], and related spline
methods, see, e.g., Refs. [145–152], and

• global pseudo-spectral methods like an expansion in Chebyshev polynomials, see, e.g.,
Refs. [109, 153–160].

For our studies involving spontaneous χSB and restoration including first- and second-order
phase transitions a local Taylor expansion of the potential is both a priori and a posteriori ill-
suited, so we focused on the established FD methods and on the less common pseudo-spectral
(Chebyshev) collocation methods.

However we – especially Adrian Koenigstein and I – soon had to realize that the seemingly
well established numerical methods in the FRG community to solve truncated flow equations,
i.e., PDEs, turned out to be numerically rather unstable. Varying just numerical discretization
parameters yielded qualitatively differing results all while being incredibly inefficient and
numerically unstable in terms of RG-scale evolution. With this came the realization that pub-
lished, peer-reviewed literature using and in some cases seemingly establishing those methods
included only sparse information about boundary conditions, subtleties in the implementation
of the numerical schemes, numerical parameters (number of discretization points, size of the
computational domain, etc.), numerical IR cutoffs of RG-scale evolution, and rigorous tests of
numerical convergence of the employed methods1. The problem with those schemes is that
they ultimately rely on smoothness or technically even analyticity of the underlying potentials.
The encountered PDEs however can include (e.g., caused by the quark chemical potential) and

1I have chosen not to highlight specific publications for criticism. The issue is, in my opinion, not confined to a few
isolated instances but is rather a somewhat systemic one. I must express concern regarding the wide spread use
of seemingly suboptimal numerical methods for PDEs, without sufficient exploration and reflection on their
limitations. I think the FRG community could benefit tremendously from a more judicious approach when it
comes to choosing, adapting, testing, and/or designing numerical methods. Although these issues are by no
means ubiquitous, their presence in the field should, in my opinion, warrant more attention. I will end this
remark on a more positive note by citing Max Planck: “Even a disappointment, if it is only thorough and final,
represents a step forward, and the sacrifices associated with resignation would be amply compensated by the
gain in treasures of new knowledge.” (translated from the original quote in German [161] which I saw first in a
talk of Dr. Johannes Weber).
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dynamically generate (e.g., due to dynamical, spontaneous symmetry breaking in the IR2)
discontinuities in the derivative of the studied potentials.
Eduardo Grossi and Nicolas Wink, two colleagues from Heidelberg encountered the same

problems with the established methods and were able to ultimately identify the root cause in a
mathematically and conceptually rigorous manner: the LPA flow equation/FRG flow equations
in general are convection/conservation equations [162] since the involved PDEs manifest
as advection-diffusion-(source/sink) equations. This is not a new concept in the context of
the RG – it originally informed the term “flow equations” when talking about RG evolution
equations – but the consequences of this connection were not realized in the broader FRG
community prior to Ref. [162] and our extensive follow up collaboration and research in
Refs. [1–4]. Adrian Koenigstein and I decided to apply finite volume (FV) methods from
computational fluid dynamics (CFD) to FRG flow equations, viz. as a first test to the LPA flow
equation of O(N) models. We reproduced the results from Ref. [162] and inspired by the
superb publication [163] of Jan Keitel and Lorenz Bartosch, started studying O(N) models in
zero dimensions with the FRG and our new CFD perspective on it.

Zero-dimensional field theories – A gift that keeps on giving in d=0
At the Mini-Workshop “QCD & beyond with the FRG” in Heidelberg (July 17, 2019), I presented
first results that Adrian Koenigstein and I obtained with the FV method for the LPA flow
equation of the three- and zero-dimensional O(N) model at infinite and finite N in a talk
titled “Solving���HHHQFTs convection–diffusion equations with finite volume methods Kurganov and
Tadmor (KT) O(x2) central scheme - An appetizer” [164], which sparked the collaboration of
Adrian Koenigstein and myself with Eduardo Grossi, Nicolas Wink, Jens Braun, Dirk Rischke
and Michael Buballa leading to the series of publications [1–3]. We decided to research the
implications of the identification of FRG flow equations as convection equations/conservation
laws in detail. Especially with regard to the application and adaptation of concepts and
numerical methods from the highly-developed field of CFD to the FRG, which at that point in
time was clearly lacking rigorously developed and tested numerical tools for PDEs. Particularly
Eduardo Grossi and Dirk Rischke with their background in relativistic hydrodynamics have
brought much needed CFD-expertise to the project.
Zero-dimensional O(N) models describe the interaction of N scalars in a single point in

space-time. Due to O(N) symmetry and the complete absence of a notion of space-time in zero
dimensions, such theories can be described using ordinary, one-dimensional integrals like the
one shown in Eq. (1.1). One might ask the question: how are there three publications [1–3],
two doctoral theses (Ref. [165] and this document), and ongoing research projects [7, 8]
studying one-dimensional integrals? One could make the completely valid argument that
computing numerical values for (converging) integrals like

ZS(J) ≡
∫︂ +∞

−∞
dϕ e−S(ϕ)+Jϕ (1.1)

2Symmetry breaking is signaled during FRG flow by a non-zero expectation value, i.e., non-trivial minimum
in ϱ of U(k, ϱ), but we know as we approach the physical IR limit k → 0, U(k, ϱ) has to turn convex
limk→0 ∂ϱU(k, ϱ) ≥ 0, which necessitates a kink at/around a non-trivial minimum.
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has been practically possible at the very least since the development of integral calculus by Isaac
Newton and Gottfried Wilhelm Leibniz in the late 17th century and Leonhard Euler’s work on
exponential functions in the 18th century. With the advent of computers (including here actually
the occupation computer – a person performing mathematical calculations) and numerical
methods over the centuries, computing the integral (1.1) numerically for a given real function S
and real number J – for which ZS(J) converges – is a simple exercise today. Especially modern
computer algebra systems capable of arbitrary precision arithmetic, like Mathematica [166],
can compute Eq. (1.1) to high numerical precession in literally milliseconds. So how did we go
from a Millennium Prize Problem, viz. the Yang-Mills & The Mass Gap problem of page 3, to the
integral (1.1) on page 6?

The answer is simple: one can learn an almost shocking amount about QFTs and more
precisely about methods used in the study of QFTs from simple integrals like (1.1). The
integral (1.1) is the zero-dimensional analogue of the partition function: replacing the ordinary
with a functional integral, identifying S with the action, ϕ with a fluctuating quantum field
ϕ(x), and J with a source J(x) (introduced to extract correlation functions from Z using
derivatives with respect to (w.r.t.) J(x)), we arrive at the text book expression for the partition
function of an O(1) model. Computing partition functions and related moments to gain access
to observables is at the very core of QFT and its methods. In “The zero-dimensional O(N)
vector model as a benchmark for perturbation theory, the large-N expansion and the functional
renormalization group” [163] Jan Keitel and Lorenz Bartosch illustrate beautifully and in a self-
contained manner how all three methods (perturbation theory, the large-N expansion, and the
FRG Taylor expansion) can be applied to zero-dimensional O(N) models. The mentioned QFT
methods – FRG among them – are by no means mathematically trivial in zero dimensions. The
concepts and diagrammatic techniques of all three methods can be studiedwithout encountering
diverging momentum integrals, complicated functional integrals and calculus of functionals.
Results and working principles can be visualized by just plotting the involved expressions. It is
truly a didactic dream: zero-dimensional applications of QFT techniques should be part of any
introductory lecture or at the very least of accompanying exercises.

Academic, didactic, and conceptual insight into the FRG framework can be gained by
extending the work in Ref. [163] to the study of the untruncated FRG flow equation in zero
dimensions. The governing equation of the FRG – the Wetterich equation – is for theories in non-
zero dimensions a functional differential equation. Tools for the direct solution of non-trivial,
functional differential equations are non-existent. Any practical FRG computation in non-zero
dimensions includes a truncation: a method to project from the Wetterich equation onto a finite
set of ordinary differential equations (ODEs) and PDEs. As a truly non-perturbative method
it is often a priori very difficult to construct a good truncation/projection strategy for a given
research problem. Established truncation schemes for certain classes of models/computations
are usually established a posteriori. In zero dimensions the FRG flow equation manifests directly
as a PDE which can be studied without the need for truncations.
Just as their higher-dimensional counter parts the flow equation encountered for the zero-

dimensional O(N) model are advection-diffusion equations, which can be conceptually and
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numerically treated with methods from CFD. Leveraging existing concepts of CFD we have been
able to identify pionic-contributions of massless modes in FRG flows as non-linear advective
contributions, while contributions frommassive radial σ-modes act as diffusive contributions [1].
The irreversibility of non-perturbative RG transformations – FRG flows from high to low
energies/RG scales – can be understood in this context and can be linked to the concept of
numerical entropy in CFD [2]. In the large-N limit of infinitely many scalars FRG flow equations
become purely advective with the absence of diffusion allowing for unique features clearly
distinguishing scenarios at finite and infinite N [3].
Extending the discussion from the O(N) model to an SU(2) model including Grassmann

numbers, we can identify fermionic contributions to FRG flows as source and sink terms [7].
Furthermore, such more involved zero-dimensional models allow interesting insights into
truncations and conservative formulations of more involved systems of FRG flow equations [7].

Numerical precision test andbenchmarks are especially easy to construct in zero-dimensional
models. The fact that we can compute integrals like (1.1) to arbitrary precision using just
numerical integration provides us with basically exact reference values. Any QFT method
applied to compute Eq. (1.1) can be benchmarked against the exact results: we do not have to
wonder if and/or when a perturbative series converges, whether a saddle-point expansion in the
spirit of the large-N limit makes sense for a theory at hand, talk about apparent convergence
of the FRG Taylor expansion, or wonder if our numerical scheme for the solution of the full
untruncated FRG flow equation produces a meaningful result – we have exact reference values
for all conceivable observables in zero dimensions for any action S to compare to. There are
only very few exact solutions for non-trivial, interacting QFTs in non-zero dimensions but
in zero dimensions we can study any action S we desire and just compute any observable
in milliseconds on a laptop. This allows us to construct a series of very illuminating and
challenging test cases in form of specific choices for S. There is no discussion to be had if a
truncation is valid, a simplification justified, or a numerical scheme suited: their quality can be
quantified by just comparing the results obtained from them with the exact reference values.
In zero dimensions there is no room to hide. We test the FV method of our choosing, viz. the
Kurganov-Tadmor (KT) scheme [167, 168], for the numerical solution of FRG flow equations
extensively with the zero-dimensional O(N) model and our set of test cases. We investigate the
role of boundary conditions, the spatial discretization, the size of the computational interval,
the role of UV and IR cutoffs, and limitations of the FRG Taylor expansion extensively [1–3].

The Gross-Neveu model – a testing ground in d=1+1
At this point we hope to have convinced the reader that studying zero-dimensional models is
worthwhile for didactic, conceptual, and methodological reasons. But the valid question arises:
can the developments in zero dimensions for the FRG be used in non-zero dimensions? We
argue and demonstrate in the following that our work in zero dimensions extends beyond mere
academic theory, having profound implications and applications beyond the realm of scalars
and Grassmann numbers.
Instead of applying our new found understanding of the FRG and our, at this point rigorously

tested adaptation of the KT scheme, directly to the QM model in 3 + 1 dimensions, we choose
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a more incremental approach. The QM model is a rather involved theory at the very least
when compared with the Gross-Neveu (GN) model [169] in 1+1 dimensions. The Gross-Neveu
(GN) model is a simple four-fermi theory of N chiral fermions in 1+1 space-time dimensions
which is frequently used as a toy model in the context of theoretical high-energy physics to
study spontaneous χSB. Like QCD the GN model is asymptotically free [169–179] and at the
classical level – at large RG scales in the UV – conformal. Notably, it exhibits dimensional
transmutation, a phenomenon where studying quantum fluctuations leads to the emergence
of a mass scale/gap in a theory initially free of dimensionful couplings, see, e.g., Refs. [176,
178]. The asymptotic freedom of the GN model makes constructing an explicit, initial action at
varying number of fermion flavor N rather simple. We study the GN model both at an infinite
number of fermion flavors (considering only fermionic fluctuations) and at a finite number
of flavors (considering both fermionic and bosonic fluctuations) at non-zero temperature and
chemical potential/density.
At infinite-N we study both homogeneous and inhomogeneous chiral condensates from

an FRG perspective. In the context of theoretical high-energy physics and inhomogeneous
chiral condensates the GN model is renowned for a dominant inhomogeneous phase in its
phase diagram in the infinite-N limit. The phase diagram allowing for inhomogeneous chiral
condensates in this limit has been computed by Micheal Thies and others [180–183] revising in
some cases longstanding homogeneous infinite-N results [184–192]. We use those literature
results for a qualitative and quantitative evaluation of the stability analysis of the homogeneous
phase [5, 80, 87, 180, 182, 193–208] as a tool to detect inhomogeneous condensation [5].
At finite-N we use the homogeneous infinite-N results to construct an appropriate initial

condition for FRG computations at varying N . We study the Gross-Neveu-Yukawa (GNY) model
as a variant of the GN model in the LPA truncation. The encountered flow equation falls directly
into the category of flow equations we studied extensively in zero dimensions. Employing
our adapted numerical methods from zero dimensions to this problem, we were able to study
the effect of bosonic fluctuations at finite N . In doing so we have been able to address a
long-standing question for the GN model: is there χSB in the GN model in 1+1 dimensions?
There are various – almost exclusively a priori arguments – which predict no χSB, i.e., the
complete disappearance of a broken phase at finite N . Using explicit FRG computations in
LPA we found no χSB at non-zero temperature, indications for χSB at zero temperature and a
quantum phase transition (chiral symmetry restoration driven by density fluctuations induced
by the chemical potential) at finite N in the GNY model [4].

A disclaimer about physics
The goal of physics is understanding nature and the laws that govern it. Theoretical physics, as
a branch of physics, is tasked with using mathematical models to describe nature, focusing on
identifying and theoretically understanding the governing laws and mechanisms of nature.
In the context of this work, this means using the microscopic theory of QCD to describe the
macroscopic phase structure of strongly interacting matter which our colleagues can probe using
collider experiments, astrophysical objects (like neutron stars), and indirect experiments aimed
at understanding the states of matter in the early universe. To compute macroscopic observables
from the microscopic theory of QCD, we have to employ non-perturbative techniques from
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the field of QFT. For us the non-perturbative tool of choice is the FRG. Of the many open
research questions regarding the phase diagram of strongly interacting matter at intermediate
temperatures and densities, we set out to focus on the question whether inhomogeneous chiral
condensates exist in this phase diagram. We are particularly interested in the role of bosonic
quantum and thermal fluctuations, which, so far, is poorly understood.
We will not provide an answer to this question in this work since the application of the

developed numerical methods to the relevant LEFT, viz. the QM model, is subject to further
research. In fact, throughout this entire thesis, we will not claim that our results have any
direct implications for nature as we observe it. Our zero-dimensional models have no real
tangible role in describing physical systems. The GN model in 1+1 dimensions has some
applications in solid-state physics, but frankly, we are not qualified to comment on the possible
implications of our results for physical systems in this context. We use the GN model in the
context of high-energy physics, i.e., purely as a toy model to study χSB and as a stepping stone
for computations in 3+1 dimensions. Our explicit results in the QM model in 3+1 dimensions
are not novel but rather a reproduction of mean-field literature results with the FRG framework.
Disregarding bosonic fluctuations in mean-field approximation or justifying this approximation
by considering an infinite number of colors in a large-Nc limit is a priori by no means a valid
approach to describe nature at Nc = 3.
Probably the closest we ever come to describing nature is our discussion of the heat equation

and classical Euler equations of ideal fluid dynamics in our methodological introduction of
CFD.

This work is therefore almost entirely focused on technical developments within the frame-
work of the FRG. With our research we aim at improving the conceptual understanding of FRG
flow equations and the role of inhomogeneous condensates in this context. Furthermore, we
aim to establish robust numerical methods within the FRG framework, methods which have
been rigorously developed and tested by the CFD community for the type of PDEs encountered.
All these incremental developments have the goal to help facilitate first principle FRG computa-
tions of QCD with qualitative and quantitative predictive power at intermediate temperatures
and quark chemical potentials, see, e.g., Refs. [80, 209, 210]. Such computations are currently
one of the most promising candidates to access these regimes of the phase diagram theoretically.

1.1. Outline

For this thesis we adopt a somewhat modified IMRaD (Introduction, Methods, Results, and
Discussion) structure to present our research. Chapter 1 serves as an overall introduction to
our research, which includes remarks about its chronological development in the context of
my PhD studies and thus also already includes some remarks about key findings which shaped
our research.

In chapter 2 we introduce overarching methods and concepts which are relevant for the
main part of this thesis. We introduce the FRG as the main method employed in our studies in
section 2.1. To discuss, study, and numerically solve FRG flow equations we employ the tools
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and language established in section 2.2 from the field of CFD. In section 2.3 we briefly introduce
QCD as the fundamental theory governing the strong force and motivate the LEFT, viz. the
QM model, we use in this work. The notion of inhomogeneous phases in strongly-interacting
matter and related computational challenges are discussed in section 2.4.

Chapters 3–5 constitute the main part of our research. Each chapter includes its own
introduction and conceptualization, our research, and concluding remarks – incorporating a
summary and outlook. For the presentation here I have chosen to order results by space-time
dimension rather than by their chronological development within my PhD studies.
In chapter 3 we present and discuss our extensive research of zero-dimensional theories

in the context of the FRG. This includes our studies of zero-dimensional O(N) models in
sections 3.1 and 3.2, which are already published in the series [1–3]. In section 3.3 we discuss
first steps of an extension of this work to fermionic, i.e., Grassmann-valued, degrees of freedom
in zero dimensions which is based on the manuscript and material surrounding Ref. [7].
Chapter 4 is based on our research of the GN model and its variants. This discussion includes

our study [5] of inhomogeneous phases in the GN model at infinite-N with a stability analysis in
subsection 4.4.2 and our FRG-based study [4] of homogeneous phases at finite N in section 4.5.
The latter is a direct application of our research and development in zero dimensions to a
model in non-zero, viz. 1+1 dimensions.
Chapter 5 is based on our research of the QM model in 3 + 1 dimensions surrounding the

draft [6]. The focus of this research is the novel and explicit study of inhomogeneous phases
within the FRG framework. We discuss the derivation of the novel LPA flow equation for
the CDW in the QM model in section 5.1 and related mean-field results in the subsequent
section 5.2.

We give a brief, final summary and outlook in chapter 6. Technical details, conventions,
and supplementary material can be found in the printed Appendices and in the accompanying
digital auxiliary files, see App. A.1. The following backmatter includes the Bibliography, a list
of Acronyms, my Curriculum vitae, and Acknowledgments.

The focus of our research on technical developments in the FRG might be off-putting to a
reader not familiar and not invested into the framework. For readers unfamiliar with the FRG,
I suggest a non-linear approach to reading this thesis to facilitate a more accessible entry into
the subject matter. The methodological introduction to the FRG in section 2.1 begins at, and
maintains, a very technical level, making it likely ill-suited for “first-contact” on its own.
I recommend initially skipping section 2.1 and, arguably, the entirety of chapter 2, and

instead start with sections 3.1 and 3.2, as these sections are more accessible and didactic in
nature. The reader then may use the included cross-references to jump back to relevant parts of
sections 2.1 and 2.2 as and when needed. The remainder of chapter 3 should become accessible
after that. Before continuing with chapter 4, I would advise reading section 2.4. For the study
of chapter 5, I recommend reading the last remaining part of chapter 2, viz. section 2.3, since
it is particularity relevant for the QM model.
I decided against structuring the thesis in this way to maintain a clearer split between

methods and our research (results/discussion).
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Figures and data taken or adapted from those joint publications are individually and explicitly
marked and declared as such, while adapted formulations and equations are not marked
individually.
Although I am not the sole author of the aforementioned material, I have been a major

contributor to all of it. Further details regarding the publications and the use of material from
them can be found in subsequent declarations – indented and typeset in italic, these disclaimers
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2. Theoretical background and methods

In this chapter we introduce the theoretical background and the methods used throughout this
work.
In section 2.1 we begin with a discussion and summary of the key concepts of the FRG3,

which we use as the main theoretical frame work to compute observables for the models and
theories studied in this thesis. The central equations of the FRG framework manifest as flow
(conservation) equations, which we will discuss in general in section 2.2 with a special focus
on CFD. In the subsequent section 2.3 we give a brief introduction of QCD as the fundamental
theory of the strong interaction, which includes a discussion of LEFTs and their emergence
from QCD in the FRG framework. We conclude this chapter with section 2.4, where we provide
a concise introduction to inhomogeneous phases (condensates), focusing on computational
challenges, employed methods, and selected literature results.

2.1. The functional renormalization group

The functional renormalization group (FRG) [211–216] and Dyson-Schwinger equations
(DSEs) [217–219] are two major functional methods used to study QFTs. Related two-particle
irreducible (2PI) and n-particle irreducible (nPI) techniques, see, e.g., Refs. [220–224] as
well as the lecture notes [225], are also popular for certain applications. Those functional
methods are used to compute correlation functions (or their generating functionals) using
non-perturbative loop equations.
Within this work we will primarily work with the FRG which we will introduce on a technical

level in the following subsections. For more details we refer the interested reader to the lecture
notes [93, 226–228] as well as to the following Refs. [95, 222, 229–231]. For details regarding
DSEs, see, e.g., Ref. [232] and references therein. The FRG was developed in the early 1990s
by Christof Wetterich [211, 212] and others, including notable early developments by Martin
Reuter, Tim R. Morris, Nikolaos Tetradis, and Ulrich Ellwanger [213–216].

Before a discussion of the FRG on a technical level (culminating in the derivation and dis-
cussion of the central Wetterich equation (2.37) in subsection 2.1.4), we will outline the idea
behind this powerful non-perturbative method. The FRG implements Kenneth G. Wilson’s
non-perturbative continuum RG approach [233–235] in momentum space and thus by ex-
tension the discrete equivalent – position space based – RG concept of Leo P. Kadanoff’s
3Sometimes also referred to as exact renormalization group (ERG) due to the fact that its central RG evolution
equation, viz. theWetterich Eq. (2.37), is formally an exact equation. This is in contrast to earlier non-perturbative
RG evolution equations, which often times included approximations.
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Γ1PI[χ] = Γ0[χ] ΓΛ[χ] = SΛ[χ]

Figure 2.1.: Sketch of the FRG flow of the EAA Γk[χ] from its initial condition SΛ[χ] in the
UV (k = Λ) towards the full quantum EA in the IR (k → 0).

block-spin transformations [236]. The conceptual idea behind the RG is the study of physical
systems/theories at different scales. The (functional) renormalization group ((F)RG)4 can
be used to study the scale evolution of a theory from a microscopic scale – where the theory
is initially defined using microscopic interactions – to a macroscopic scale – where we can
compute macroscopic observables and correlation functions of the physical system under con-
sideration. The changes during scale evolution in the correlation functions and observables of
a field theory are governed by quantum and/or thermodynamic fluctuations. Considering a
functional formulation of QFT based on a suitable functional integral, Wilson’s RG approach is
based on integrating out fluctuations step by step – momentum shell by momentum shell. This
incremental study of successive RG steps facilitates the practical computation of the underlying
functional integral, which is usually not possible when trying to incorporate all fluctuations at
once.
The FRG describes the RG-scale evolution of a scale-dependent effective average action (EAA)

Γk[χ] as a series of infinitesimal RG steps in form of a so-called RG flow. See figure 2.1 for
a pictographic sketch of this process. In the following we use k to denote the RG scale. The
starting point of the FRG flow is ΓΛ[χ] which is based on an Euclidean action SΛ[χ] at a RG
UV initial scale k = Λ. The action at this scale is considered “classical” in a sense that either
Λ is asymptotically large or SΛ[χ] includes all quantum fluctuations with momenta |p| > Λ.
Starting at the initial scale Λ the idea is to integrate out fluctuations successively in a Wilsonian
manner by splitting the quantum fields based on their momenta. In the FRG this is achieved by
introducing a suitable regulator which ultimately implements and facilitates this process. The
RG-scale evolution in the FRG is governed by one central non-perturbative one-loop equation –
the so-calledWetterich flow equation [211–216]. This non-linear functional differential equation
is exact given a suitable regulator choice and thus maps the problem of solving the functional
integral to solving a corresponding flow equation. Using this flow equation, one can track the
change of a microscopic theory with a given action ΓΛ[χ] = SΛ[χ] in the UV (k = Λ) towards
a macroscopic theory with a full quantum effective action Γ0[χ] = Γ1PI[χ] in the IR (k → 0).
The FRG is inherently non-perturbative and thus allows the study of both weakly and strongly
coupled systems. Using the scale-dependent EAA Γk[χ] it is in principle possible to study the
ground state, realized symmetries, thermodynamic properties, and correlation functions of a
theory at varying RG scales k. This makes the FRG an immensely powerful tool to study the
effect of quantum and/or thermodynamic fluctuations in a wide range of physical systems at
4We use (F)RG when making statements which apply for the functional renormalization group as well as for the
non-perturbative renormalization group in general.
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different scales in a controlled and unified framework.

2.1.1. Scale-dependent generating functionals

We begin our technical discussion of the FRG by introducing two auxiliary scale-dependent
generating functionals.
For the following discussion we consider a quantum field theory with the Euclidean action

SΛ[χ̃], where χ̃ is a multi component fundamental quantum field which includes the entire
field content of the theory under consideration in the field space (FS) notation of App. B.4. In
the subsequent derivation we consider a generic theory in which χ̃ collects scalar (mesonic)
fields φ̃ and Grassmann-valued (fermionic) fields ψ̃ and ˜̄ψ:

(χ̃a) ≡ (φ̃, ψ̃, ˜̄ψ) . (2.1)

We further introduce χ̂ as a RG-scale-dependent multi component composite field of the
fundamental fields

(χ̂a) ≡ (χ̂k;a[χ̃]) . (2.2)

For readability we will usually suppress the scale and functional dependency in the notation.
We introduce corresponding sources

(Ĵa) ≡ (Ĵφ, Ĵψ̄, Ĵψ) (2.3)

in the generating functional to extract correlation functions and to study condensation. Working
with such scale-dependent composite fields as degrees of freedom is more elegant and efficient
since the fundamental fields of a theory are not necessary suitable degrees of freedom at all
scales. A prime example for this is QCD, where the fundamental fields are quarks and gauge
fields which are excellent degrees of freedom in the UV (at some UV reference scale Λ) due to
asymptotic freedom. In the IR (k → 0) however – due to confinement and chiral symmetry
breaking – a description in terms of hadrons is desirable, since baryons and mesons are the
relevant degrees of freedom. Introducing those hadrons as composite fields of the fundamental
fields has proven highly effective and elegant in FRG studies of QCD, see, e.g., Refs. [80, 109,
237] and references therein and subsection 2.3.3.
To implement Wilson’s RG approach we introduce a RG-scale-dependent regulator term

∆Sk[χ̂] in the Euclidean generating functional of the theory under consideration

Zk[Ĵ ] = exp

(︃
−∆Sk

[︃
δ

δĴ

]︃)︃
Z[Ĵ ] =

∫︂
D[χ̃] exp

(︂
−SΛ[χ̃]−∆Sk[χ̂] + Ĵmχ̂m

)︂
, (2.4)

where SΛ[χ̃] is the Euclidean, classical action prescribing kinematics and interactions of the
fundamental fields χ̃. D[χ̃] is a suitable functional integral measure including a possible
normalization factor N and appropriate boundary conditions for the fields when working at
non-zero temperature, see App. C for details. Such a normalization factor N is arbitrary, since
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it does not affect observables and thus varies depending on the conventions used for Z[Ĵ ].
General expectation values in presence of Ĵ and ∆Sk[χ̂] are given by

⟨︁
O[χ̂]

⟩︁
k;Ĵ

=
1

Zk[Ĵ ]

∫︂
D[χ̃]O[χ̂] exp

(︂
−SΛ[χ̃]−∆Sk[χ̂] + Ĵmχ̂m

)︂
. (2.5)

From Eq. (2.5) one obtains the useful identity

δ

δĴa

⟨︁
O[χ̂]

⟩︁
k;Ĵ

= −
⟨︁
χ̂a
⟩︁
k;Ĵ

⟨︁
O[χ̂]

⟩︁
k;Ĵ

+
⟨︁
χ̂aO[χ̂]

⟩︁
k;Ĵ

. (2.6)

For practical computations in the scope of this work it is convenient to choose a regulator term
∆Sk[χ̂] which is quadratic in the fields

∆Sk[χ̂] ≡ ∆S[χ̂, Rk] ≡
1

2
R;mn
k

χ̂nχ̂m , (2.7)

where we introduced the regulator R;mn
k

5. ∆Sk[χ̂] should appear as a scalar in the exponent
under the functional integral. This implies a bilinear form of the regulator for Grassmann-valued
FS components with

R;mn
k = (−1)nmR;nm

k (2.8)

and a non-trivial structure in its internal spaces. A quadratic regulator leads to one-loop flow
equations for all n-point functions [222, 238]. Higher-order regulators are possible, see, e.g.,
Ref. [222], but will not be discussed in our work. With the definition (2.7) the second FS
derivative of the regulator term is given by

∆S[χ̂, Rk],ab =
1

2

δ

δχ̂a

δ

δχ̂b
R;mn
k

χ̂nχ̂m =
1

2

δ

δχ̂a

(︂
R;mb
k

χ̂m + (−1)bnR;bn
k
χ̂n

)︂
= R;ab

k . (2.9)

We will discuss further constraints on the regulator related to the proper implementation of
Wilson’s RG approach in subsubsection 2.1.4.1.
The scale-dependent Schwinger functionalWk[Ĵ ] is given by

Wk[Ĵ ] = lnZk[Ĵ ] . (2.10)

Considering functional derivatives of the Schwinger functional leads to connected n-point
functions, see, e.g., Refs. [177, 178, 226, 239, 240]. The one-point function – the expectation
value of χ̂ in presence of ∆Sk[χ̂] and Ĵ – is simply given by

δ

δĴa
Wk[Ĵ ] =

1

Zk[Ĵ ]

δZk[Ĵ ]

δĴa
=
⟨︁
χ̂a
⟩︁
k;Ĵ

. (2.11)

5We have chosen 1
2
R;mn

k
χ̂nχ̂m and not R;nm

k
χ̂nχ̂m like in Ref. [222] out of personal preference especially related

to the form of Eq. (2.9).
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To study the RG scale evolution ofWk[Ĵ ] and by extension Zk[Ĵ ] we consider the total RG-scale
derivative6 ofWk[Ĵ ]. It is convenient to study and discuss the scale evolution from k = Λ to
k → 0 using a dimensionless RG/flow time t which we define7 as

t ≡ − ln
(︁
k
Λ

)︁
= ln

(︁
Λ
k

)︁
, t ∈ [0,∞) . (2.12)

The evolution equation forWk[Ĵ ] is given by

dWk[Ĵ ]

dt
=

d

dt
lnZk[Ĵ ] =

1

Zk[Ĵ ]

dZk[Ĵ ]

dt
= (2.13a)

=
1

Zk[Ĵ ]

∫︂
D[χ̃] d

dt
exp

(︃
−SΛ[χ̃]−

1

2
R;mn
k

χ̂nχ̂m + Ĵmχ̂m

)︃
= (2.13b)

= Ĵm ⟨︁∂tχ̂m
⟩︁
k;Ĵ
− 1

2

(︁
∂tR

;mn
k

)︁ ⟨︁
χ̂nχ̂m

⟩︁
k;Ĵ
−R;mn

k

⟨︁
χ̂n∂tχ̂m

⟩︁
k;Ĵ

, (2.14)

where we considered k = k(t) ≡ Λe−t. Eq. (2.14) is the generalization of the Polchin-
ski equation [241] for composite fields with IR regularization [226]8. We will discuss the
scale-dependent Schwinger functional further in subsubsection 3.1.3.1 in the context of zero-
dimensional QFTs.

2.1.2. Scale-dependent effective average action

While working with RG equations (2.14) for the Schwinger functional is possible, it is more
convenient for most practical computations to work with the scale-dependent EAA Γk[χ] which
is given by the modified Legendre transform of the Schwinger functional

Γk[χ] ≡ Γk[χ]−∆Sk[χ] ≡ sup
Ĵ

(︂
Ĵmχm −Wk[Ĵ ]

)︂
−∆Sk[χ] , (2.15)

Γk[χ] + ∆Sk[χ] = Γk[χ] = Jmχm −Wk[J ] , (2.16)

where we denote Jm as the source Ĵm which realizes the supremum for a given so-called
mean-field χm and ∆Sk[χ] = R;mn

k
χnχm/2 in analogy to Eq. (2.7). The modification of the

Legendre transform with ∆Sk[χ] is necessary in order to implement Γk → SΛ in the UV limit
k → Λ, see subsubsection 3.1.3.2 for a detailed discussion of this subtle point. Γk[χ] is only

6Total derivatives w.r.t. the RG scale (RG time) will be frequently abbreviated by ∂k (∂t) in the following. We
denote RG scale-dependence with either k or t depending on the element and context. In terms of derivatives
both are always understood as k(t) and t(k). The reasoning behind this mixed use of k and t in formulas is that
for the discussion of flow/evolution we like t while for denoting IR and UV we prefer k.

7We adopt a sign convention for the RG flow time resulting in a positive time evolution from the UV (k = Λ ⇔ t = 0)
to the IR (k → 0 ⇔ t→ ∞).

8However, in the original work [241] an effective action L(Λ, ϕ) takes the role ofWk[Ĵ ] and it is formulated in
terms of the fields ϕ instead of the sources Ĵ . For relations between the original Polchinski equation and the
flow equations studied in this work and selected applications of the Polchinski equation, see, e.g., Refs. [109,
242–245].
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guaranteed to be convex in the IR (k → 0)9, where ∆Sk[χ]→ 0. In this limit the EAA reduces
to the canonically known effective action (EA) Γ0[χ] ≡ Γ1PI[χ], see, e.g., Ref. [177]. The EAA
Γk[χ] is the scale-dependent generating functional of scale-dependent one-particle irreducible
(1PI) correlation functions, see, e.g., Refs. [177, 178, 226, 239, 240], which in the IR limit
k → 0 reduce to the canonical 1PI correlation functions of the full quantum field theory. As such
Γk[χ] encodes the entire information of a theory without diagrammatic redundancies. In the
IR it also encodes the thermodynamic grand potential Ω̃, see App. C.1 and especially Eq. (C.7)
for details, and thus can be used to study thermodynamic properties, phase transitions, and
symmetry breaking, cf. chapters 4 and 5 for explicit applications.
By construction Eq. (2.16) implies

δ

δĴa

(︂
Γk[χ] + ∆Sk[χ]

)︂
= 0 =

δ

δĴa
sup
Ĵ

(︃
Ĵmχm −Wk[Ĵ ]

)︃
= sup

Ĵ

(︃
χa −

δWk[Ĵ ]

δĴa

)︃
, (2.17)

which at the supremum Ĵ = J is equivalent to

χa =
δWk[Ĵ ]

δĴa

⃓⃓
⃓⃓
Ĵ=J

≡ δWk[J ]

δJa (2.18)

in accordance to Eq. (2.11).
The source realizing the supremum in Eq. (2.15) is a scale-dependent functional of the

mean-field, Ja ≡ Ja
k [χ], and in turn the mean-field as the expectation value of χ̂a in presence

of ∆Sk[χ̂] and J is a scale-dependent functional of the source J: χa ≡ χk;a[J ] ≡
⟨︁
χ̂a
⟩︁
k;J
. We

suppress the scale and functional-dependencies of Ja and χa in our notation only for readability
while still considering them in our computations, if not stated explicitly otherwise. In the
following we will mainly work with the source J and expressions evaluated at it. Functionals
and functional derivatives of J are to be understood as functionals and functional derivatives
w.r.t. Ĵ evaluated at Ĵ = J like in Eq. (2.18).

2.1.3. Quantum equation of motion and propagator

Using the identity (2.18) together with Eq. (2.16) we derive the scale-dependent quantum
equation of motion (QEOM)

δ

δχa

(︂
Γk[χ] + ∆Sk[χ]

)︂
=

δ

δχa

(︂
Jmχm −Wk[J ]

)︂
= (2.19a)

=
δJm

δχa
χm + (−1)amJm δχm

δχa
− δJm

δχa
Wk,m[J ] = (2.19b)

= (−1)amδamJm = (2.19c)
= γamJ

m (2.20)

9For certain theories and initial conditions for the RG-scale evolution in a given truncation Γ0[χ] = Γ0[χ] is only
locally convex in the IR. For details, see, e.g., Refs. [246, 247]. In this work we only consider theories with a
convex effective action in the IR limit.

2.1. The functional renormalization group 19



relating sources Ja to their respective mean-fields χa.
Taking one additional derivative of χb =Wk,b[J ] w.r.t. Ja leads to the connected two-point

function – the full scale-dependent propagator – in presence of the source J and regulator
∆Sk:

Gk;ab[χ] ≡Wk,ab[J ] (2.21)

=
δ

δJaWk,b[J ] =
δ

δJa ⟨χb⟩k;J ≡ χb,a = (2.22a)

=

(︃
δ

δJa
1

Zk[J ]

)︃∫︂
D[χ̃] χ̂b exp (. . .) +

1

Zk[J ]

∫︂
D[χ̃] δ

δJa χ̂b exp (. . .) = (2.22b)

= −
⟨︁
χ̂a
⟩︁
k;J

⟨︁
χ̂b
⟩︁
k;J

+ (−1)ab
⟨︁
χ̂bχ̂a

⟩︁
k;J

= (2.22c)

=
⟨︁
χ̂aχ̂b

⟩︁
k;J [χ]

− χaχb. (2.23)

The scale-dependent propagator Gk;ab[χ] is a fundamental object in the FRG due to its relation
to the scale-dependent two-point function and since it connects functional derivatives w.r.t. J
to the ones w.r.t. χ via a chain rule

δ

δJa =
δχm
δJa

δ

δχm
= Gk;am[χ]

δ

δχm
, (2.24)

which, when applied to χa, yields
δχb
δJa = Gk;ab[χ] =

⟨︁
χ̂aχ̂b

⟩︁
k;J
− χaχb (2.25)

in accordance to Eq. (2.6).
Taking one additional J derivative of the QEOM (2.20) and using the chain rule (2.24) leads

to the following relations between the scale-dependent propagator and the EAA:

δ

δJa
δ
(︁
Γk[χ] + ∆Sk[χ]

)︁

δχb
= γbm

δJm

δJa , (2.26a)

Gk;am[χ]
δ

δχm

δ
(︁
Γk[χ] + ∆Sk[χ]

)︁

δχb
= γbmδ

m
a , (2.26b)

Gk;am[χ]
(︂
Γ
,mb
k [χ] +R;mb

k

)︂
= γba , (2.27)

Gk;ac[χ] = γna
(︁
Γk[χ] + ∆Sk[χ]

)︁−1

nc , (2.28a)

γnaGk;nc[χ] =
(︁
Γk[χ] + ∆Sk[χ]

)︁−1

ac , (2.28b)

with
(︁
Γ
,an
k [χ] +R;an

k

)︁ (︁
Γk[χ] + ∆Sk[χ]

)︁−1

nb ≡ δ
a
b. (2.29)

The relation between the full scale-dependent propagator and the inverse Hessian of Γk[χ] +
∆Sk[χ] includes a contraction with γna which results in a minus sign for the propagators of
Grassmann-valued fields10.
10It is very common in literature to absorb this minus sign in a so-called super-trace denoted by STr. We will retain
the minus sign for Grassmann-valued fields in their propagators.
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2.1.4. The Wetterich equation

Using the expressions derived in the previous subsections we are now able to derive the central
equation of the FRG – the Wetterich flow equation governing the RG-scale/RG-time evolution
of the EAA. The total RG time derivative of the EAA can be computed by combining Eqs. (2.14)
and (2.16):

d

dt
Γk[χ] =

d

dt

(︁
Jmχm −Wk[J ]−∆Sk[χ]

)︁
= (2.30a)

=
(︁
∂tJ

m)︁χm + Jm∂tχm − ∂t|JWk[J ]−
(︁
∂tJ

m)︁Wk,m[J ]−

− 1

2

(︁
∂tR

;mn
k

)︁
χnχm −R;mn

k
χn∂tχm = (2.30b)

=
(︁
∂tJ

m)︁ (︁χm −Wk,m[J ]
)︁
+ Jm∂tχm−

− Jm ⟨︁∂tχ̂m
⟩︁
k;J

+
1

2

(︁
∂tR

;mn
k

)︁ ⟨︁
χ̂nχ̂m

⟩︁
k;J

+R;mn
k

⟨︁
χ̂n∂tχ̂m

⟩︁
k;J
−

− 1

2

(︁
∂tR

;mn
k

)︁
χnχm −R;mn

k
χn∂tχm = (2.30c)

= Jm
(︂
∂tχm −

⟨︁
∂tχ̂m

⟩︁
k;J

)︂
+

1

2

(︁
∂tR

;mn
k

)︁
Gk;nm[χ] +

+R;mn
k

(︂⟨︁
χ̂n∂tχ̂m

⟩︁
k;J
− χn∂tχm

)︂
= (2.30d)

=
1

2

(︁
∂tR

;mn
k

)︁
Gk;nm[χ] + Jm

(︂
∂tχm −

⟨︁
∂tχ̂m

⟩︁
k;J

)︂
+

+R;mn
k

(︃
δ

δJn
⟨︁
∂tχ̂m

⟩︁
k;J

+ χn

(︂⟨︁
∂tχ̂m

⟩︁
k;J
− ∂tχm

)︂)︃
(2.30e)

d

dt
Γk[χ] =

1

2

(︁
∂tR

;mn
k

)︁
Gk;nm[χ] +

(︁
Jm +R;mn

k
χn
)︁ (︂
∂tχm −

⟨︁
∂tχ̂m

⟩︁
k;J

)︂
+

+R;mn
k Gk;nl[χ]

δ
⟨︁
∂tχ̂m

⟩︁
k;J

δχl
, (2.31)

where we used the identities (2.18) and (2.25) in Eq. (2.30d), the identity (2.6) in Eq. (2.30e),
and the chain rule (2.24) to ultimately obtain Eq. (2.31). Enforcing the constraint

⟨︁
∂tχ̂m

⟩︁
k;J

= ∂tχm (2.32)

on the composite field χ̂m simplifies the scale evolution equation for Γk significantly. Eq. (2.32)
introduces additional constraints which resolve the scale evolution of χ̂ in terms of the χ̃ [222].
Working with the evolution equation for Γk[χ] does not require an explicit resolution of the
evolution ∂tχ̂t;a[χ̃] of the composite quantum fields χ̂t;a[χ̃] in terms of the microscopic, fun-
damental fields χ̃, see Refs. [80, 109, 222, 226, 248] for more details. Therefore we encode
the theory in Γk[χ] completely in terms of mean-fields χ, consider Eq. (2.32) as the defining
property of χ̂k;a[χ̃], and eliminate all dependencies on ∂tχ̂m on the level of the EAA using
Eq. (2.32). Using the constraint (2.32) simplifies the scale evolution (2.31) for Γk to

d

dt
Γk[χ] = ∂t|χΓk[χ] + Γ

,m
k [χ] ∂tχm =

1

2

(︁
∂tR

;mn
k

)︁
Gk;nm[χ] +R;mn

k Gk;nl[χ]
δ∂tχm
δχl

. (2.33)
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This is the RG evolution/Wetterich equation of Γk[χ] for general scale-dependent mean-fields
χk, cf. Refs. [104, 227, 248], sometimes also referred to as Flow Equation with Dynamical
Hadronization [97, 226] in the context of QCD. To close the system (2.33) the (flow of)
the composite field (∂t)χm[χ] has to be specified. This generalized version of the Wetterich
equation for composite fields is an extremely powerful tool to study strongly interacting theories
with emerging, relevant degrees of freedom – like QCD – cf. Refs. [80, 109, 237, 249] and
subsection 2.3.3.
For our computational studies within this work, which do not include explicit composite fields,

this general equation can be simplified further by considering only linear scale-dependencies
in ∂tχk;m solely governed by an appropriate, field-independent wave-function renormalization:

χk;m =
(︁
Zχk;m

)︁1/2 χ0;m ⇒ ∂tχk;m = ηχk;mχk;m , (2.34)

with the anomalous dimension

ηχk;m ≡
1

2
∂t lnZ

χ
k;m =

1

2

∂tZ
χ
k;m

Zχk;m
. (2.35)

Using Eq. (2.34) the general evolution Eq. (2.33) simplifies to

d

dt
Γk[χ] = ∂t|χΓk[χ] + Γ

,m
k [χ] ηχk;mχm =

1

2

(︁
∂tR

;mn
k

)︁
Gk;nm[χ] +R;mn

k Gk;nl[χ]η
χ
k;l =

=

(︃
∂t|χ + ηχk;mχm

δ

δχm

)︃
Γk[χ] =

1

2
Gk;mn[χ]

(︃
∂t + 2ηχk;n

)︃
R;nm
k , (2.36)

which we refer to as the Wetterich equation for the scale-dependent mean-field χk;m. The
simple scale-dependence of Eq. (2.34) can be absorbed into the EAA by switching variables
from χk;m to χ0;m (which we will denote as χm in the following for simplicity/readability) thus
considering an EAA for the bare mean-fields with the wave-function renormalizations Zχk;m
absorbed into the couplings within Γk[χ0 ≡ χ]. This simplifies Eq. (2.36) even further to the
Wetterich equation [211–216] in its well known form

∂tΓk[χ] =
1

2
Gk;mn[χ]∂tR

;nm
k ≡ Fk[χ] =

1

2
, (2.37)

where we still use FS notation (instead of a super-trace) for a unified treatment of fermionic
(Grassmann-valued) and bosonic (non-Grassmann-valued) fields collected in χ as well as our
RG time derivative with k = k(t) ≡ Λe−t ⇒ ∂t → −k∂k.
Recalling Eq. (2.27) we note that the propagator Gk;ab[χ] on the right-hand side (r.h.s.) of

the Wetterich equation (2.37) depends on the inverse Hessian of Γk[χ] + ∆Sk[χ] and thus on
the second functional derivatives of Γk[χ]. Therefore the Wetterich equation manifests as a non-
linear functional differential equation for the EAA. The r.h.s. of Eq. (2.37) is a non-perturbative
one-loop equation since it involves the full scale-dependent propagator Gk;ab[χ] (solid black
line in diagrams) of the theory contracted with the regulator insertion ∂tR;ba

k (black cross
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within a circle in diagrams). In Eq. (2.37) we further introduced the symbolic abbreviation
Fk[χ]11 for the FRG flux on the r.h.s., which will be particularly useful in subsection 2.1.6. The
Wetterich equation (2.37) is the governing master equation of the FRG framework and it can
be used as a generating equation for explicit flow equations for higher-order n-point functions,
see subsection 2.1.5 for details.

2.1.4.1. Regulators, initial condition, and implementation of Wilson’s RG approach

For the subsequent discussions, regarding the regulator and initial condition (IC) for the
Wetterich equation, the following functional integral representation (2.39) for the EAA Γk[χ]
will be useful. Using Eq. (2.16) with the definitions (2.4) and (2.10) for Zk andWk respectively
we arrive at

e−Γk[χ] =

∫︂
D[χ̃] exp

(︂
− SΛ[χ̃] + Jm (χ̃m − χm)−

1

2
R;mn
k (χ̃nχ̃m − χnχm)

)︂
= (2.38a)

=

∫︂
D[χ̃] exp

(︂
− SΛ[χ+ χ̃] + Jmχ̃m −

1

2
R;mn
k

χ̃nχ̃m −R;mn
k

χ̃nχm

)︂
= (2.38b)

=

∫︂
D[χ̃] exp

(︂
− SΛ[χ+ χ̃] + Γ

,m
k [χ]χ̃m + χ̃m∆S

,m
k [χ]−

− 1

2
R;mn
k

χ̃nχ̃m −R;mn
k

χ̃nχm

)︂
(2.38c)

e−Γk[χ] =

∫︂
D[χ̃] exp

(︃
− SΛ[χ+ χ̃]−∆Sk[χ̃] +

δΓk[χ]

δχm
χ̃m

)︃
(2.39)

where we shifted the integration variable according to χ̃→ χ̃+χ in Eq. (2.38a) and eliminated
the source realizing the supremum J by means of the QEOM (2.20) in Eq. (2.38c).

In the following we will discuss the necessary properties of the regulator Rφφk (p2),

R
φ̂p,φ̂p′
k = Rφ̂φ̂k (p2)(2π)dδ(d)(p− p′) ≡ p2r(p2/k2)(2π)dδ(d)(p− p′), (2.40)

related to the implementation of Wilson’s RG approach for the bosonic FS components in d
dimensions, cf. App. B.5 for related conventions. Regulators related to Grassmann-valued
field components inherit similar properties modulo some modifications accounting for internal
structure. In the end we will always use a unified regulator scheme for all fields completely
specified by a regulator shape function r(y) with the dimensionless ratio

y ≡ p2

k2
, (2.41)

of the momentum squared to the RG scale squared.
11Note that through the propagator Fk[χ] is a non-linear functional of Γk[χ] – its matrix of second functional
derivatives/two-point functions to be precise – and of the regulator, i.e., Fk[χ] ≡ Fk[Γk, Rk;χ]. Symbolic
integration of the Wetterich equation (2.37) over the FRG flux Fk[χ] in RG time is to be understood as solving
the functional differential equation in RG time.

2.1. The functional renormalization group 23



Inserting regulator terms ∆S in the generating functionals of quantum field theories is
not unique to the FRG. Similar or in certain limits even equivalent flow equations to the
Wetterich equation in fact preceded it. Prominent examples are the Wegner-Houghton equation
of the seminal paper [250] or the functional variant [251–253] of the well known Callan-
Symanzik equation [254, 255]. The specific properties of the regulator insertion put forward
with the Wetterich equation [211–216] distinguishes the FRG from earlier (functional) RG
approaches. Certain constraints on Rk (or r(y) respectively) are imperative to the correct
and explicit implementation of Wilson’s non-perturbative continuum RG approach [233–235]
outlined in the introduction of this section 2.1. Only a suitable regulator choice enables sensible
computations in the FRG approach for a theory at hand.
The four major constraints on Rφ̂φ̂k (p2) are:

1. Infrared finiteness:

lim
p2/k2→0

Rφ̂φ̂k (p2) > 0 (typically ∼ k2). (2.42)

The quadratic ansatz (2.7) together with the requirement of Eq. (2.42) introduces a
mass term (typically ∼ k2) for the low momentum modes, p2 < k2, of φ̂. This additional
mass term suppresses fluctuations of those low momentum components in the functional
integral (2.4) and regularizes the theory in the IR.

2. Vanishing for high momentum modes: For fields with momenta larger than the current
scale, p2 > k2 the regulator has to vanish in the limit

lim
p2/k2→∞

Rφ̂φ̂k (p2) = 0 (2.43)

in d dimensions at least with (p2)(d−1)/2Rk(p
2)→ 0 [226, 256]. This property implies for

k → 0 – in the physical limit – that all regulator-dependencies drop out and all generating
functionals (Zk,Wk and Γk) include the full effect of all quantum fluctuations. In other
words, the introduction of a suitable regulator does not spoil the physical IR observables
extracted from these generating functionals at k → 0. The requirement of Eq. (2.43)
implies in the UV, p2/k2 ≫ 1, the vanishing of the RG scale derivative ∂kRφ̂φ̂k (p2), which
ensures UV finiteness. Regulators fulfilling Eqs. (2.42) and (2.43) typically have a RG-
scale derivative ∂kRφ̂φ̂k (p2) which peaks around the momentum shell p ∼ k and thus
the contributions from fields with momenta ∼ k dominate in the functional integral.
This notion of momentum locality of RG steps implements Wilson’s non-perturbative
RG approach [233–235] of integrating out fluctuations momentum shell by momentum
shell.

3. Diverging in the ultraviolet: For k → Λ, where Λ is an UV initial scale which should
be larger than all relevant physical scales of the problem at hand, the regulator should
diverge

lim
k→Λ

Rφ̂φ̂k (p2) =∞. (2.44)
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This can be discussed explicitly for the EAA Γk using its integral representation (2.39): the
regulator insertion∆Sk[χ̃] in (2.4) diverges for k → Λ and thus dominates the functional
integral on the r.h.s. In this limit ∆Sk[χ̃] acts as a functional delta distribution [227, 229]
and the functional integral on the r.h.s. of Eq. (2.39) can be evaluated to exp(−SΛ[χ]).
Subsequently the RG-scale-dependent EAA ΓΛ[χ] at the UV initial scale Λ reduces to the
classical action SΛ[χ].
Depending on the theory at hand, the explicit choice of regulator (shape function), and
the chosen UV initial scale Λ, the simple identification of a plain classical action S[χ]
as IC at k = Λ for Γk[χ] might be insufficient especially when working with a finite UV
initial scale Λ. Subtleties related to the chosen normalization of generating functionals,
renormalization procedure, and potentially gauge fixing might require the addition of
suitable (counter) terms at k = Λ and thus a modified IC SΛ[χ], see, e.g., Refs. [222, 226,
257]. The concept of renormalization group consistency discussed in subsection 2.1.6
is closely related to the proper choice of SΛ[χ]. We will discuss problem/theory specific
subtleties further when we introduce the ICs for the explicit FRG flows considered within
this work. See, e.g., subsubsection 3.2.3.1, subsection 4.5.2, and section 5.2.

4. Symmetry considerations: The regulator should not break any symmetries of the theory,
i.e., its functional integral. Prime examples of such symmetries are chiral or O(N)
symmetries and for the relativistic theories considered here Poincaré invariance. If a
regulator choice breaks such a symmetry computed observables might be spoiled by this
artificial, explicit symmetry breaking. This situation might be remedied by introducing
appropriate counter terms in SΛ[χ], cf. subsection 5.2.1, or in case of the breaking of
gauge symmetry by a more elaborate construction, cf. subsection 2.3.1.

The first three constraints related to the finiteness – proper regularization and IC for the
FRG flow – in practice often compete with symmetry considerations like Poincaré invariance
and related causality issues (unphysical poles in the complex frequency plane) arising during
analytical continuation to real time quantities, for details, see, e.g., Sec. II of Ref. [258] and
references therein. Furthermore, computational and numerical practicability considerations
can conflict with especially symmetry considerations. A prime example of the latter is the use of
purely spatial regulators in our computations of chapters 4 and 5 which introduces an explicit
breaking of Poincaré invariance. The use of purely spatial regulators is mainly motivated by
the facilitation or at least significant simplification of computations at non-zero temperature.

An explicit choice of regulator (shape function) is usually made weighing the different
constraints and practicability/feasibility considerations. Common and in some cases even
established regulator choices often strongly vary depending on the problem at hand, the
employed truncation, cf. subsubsection 2.1.4.2, and scope of the investigation. Further details
on the vast and important topic of adequate regulator choice in the FRG framework can be
found in Refs. [152, 210, 222, 230, 256, 258–265] and references therein.

In this work we will employ regulators related to three explicit regulator shape functions
(presented in the notation of Table 1 of Ref. [256]): the flat (LPA optimized Litim) regula-
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Figure 2.2.: Plots of selected – cf. Eqs. (2.45), (2.46), and (2.48) – regulator shape functions
on the left (a) and their derivatives on the right (b). In terms of its properties the exponential
regulator (shape function) rexp(y) may be considered as an archetypical FRG regulator imple-
menting Wilson’s RG approach with a smooth focusing around p = k and many sketches of
FRG regulators, see, e.g., Fig. 1 of Ref. [227], resemble its plot here.

tor [259, 260]

rflat(y) ≡
(︃
1

y
− 1

)︃
Θ(1− y) , (2.45)

the step-like sharp regulator

rsharp(y) ≡
c

y
Θ(1− y) , (2.46)

in the limit c→∞, and the exponential regulator

rexp(y) ≡
(︁
exp(y)− 1

)︁−1
. (2.47)

When working with these shape functions it is convenient to define

λ(y) ≡ r(y) + 1 (2.48)

as well as fermionic rf(y) and bosonic rb(y) shape functions related by

λ(y) ≡ r(y) + 1 ≡ rb(y) + 1 ≡ (rf(y) + 1)2 . (2.49)

The three shape functions and their derivatives are visualized in figure 2.2. The particular
choice of how the shape functions (2.45)–(2.47) and their derivatives are plotted in figure 2.2 is
based on their appearance in explicit expressions, cf. Eq. (5.13). This visualization complements
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the discussion of finiteness and the related first three constraints on Rφ̂φ̂k (p2) which can be
directly translated to constraints12 for the shape functions, cf. Ref. [256],

lim
y→0

y r(y) > 0 (typically 1) , (2.50a)

lim
y→∞, ϵ>0

y
d
2
+ϵr(y) = 0 , (2.50b)

lim
y→0

r(y) =∞ . (2.50c)

The flat regulator shape function is optimized [259, 260] for LPA computations, cf. subsubsec-
tion 2.1.4.2, in the sense that this regulator choice maximizes the gap in the inverse propagator
which according to Ref. [259] provides the greatest stability of the flow. For additional details
and a refined view of regulator optimization with a strong CFD perspective we refer the inter-
ested reader to Ref. [265]. Additionally the step function in Eq. (2.45) usually allows for a
symbolic evaluation of momentum integrals and thus much simpler flow equations. We will
employ the flat and the sharp regulator shape functions in chapter 4. The latter is particularly
useful in MF computations since it also allows for a symbolic evaluation of momentum integrals
and one usually recovers expressions known from conventional MF computations with a sharp
cutoff, cf. section 4.4 and, e.g., Ref. [257]. The exponential regulator shape function rexp(y) is
smooth and thus has certain advantages in explicit numerical computations, which we will
leverage in chapter 5.

2.1.4.2. Truncation and projection strategies

With a suitable regulator choice according to the previous subsubsection 2.1.4.1 the Wetterich
equation is exact, hence the synonym ERG for FRG. By construction the IR physics, i.e., physical
observables, are independent from the specific regulator choice as long as the regulator adheres
to the previously established constraints. Exact in this context means solving the evolution
equations (2.33) or (2.37) with a suitable IC and regulator choice from the UV down to the
IR amounts to solving the underlying functional integral without any approximations. The
blue lines in figure 2.3 represent two exact RG trajectories with different suitable regulators.
Using the full/untruncated Wetterich equation, the IR physics encoded in Γ0[χ] is indeed
regulator independent. The RG trajectories through theory space differ however for distinct
regulators. Flowing from ΓΛ[χ] to Γ0[χ], one gains access to the full quantum effective action
Γ0[χ] = Γ1PI[χ] and all related physical observables of the macroscopic theory prescribed by
the microscopic action under consideration.
The issue a FRG practitioner faces however is one of conservation of complexity: solving

the underlying functional integral for strongly interacting theories is at best an extremely
involved task and often practically impossible. The functional flow equation for Γk[χ] elegantly
eliminates the need for the computation of the complicated functional integral at the cost of
introducing a complicated functional differential equation to be solved. Solving such equations
12The constraints Eqs. (2.50a) and (2.50c) – infrared finiteness and diverging in the ultraviolet – are on the level of
the regulator shape function r(y) closely linked. Indeed considering limy→0 y r(y) = 1 entails r(y) → 1/y and
thus guarantees Eq. (2.50c) in the limit y → 0.
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Figure 2.3.: Schematic FRG flow – RG-scale evolution of the EAA in the space of its couplings
{λi} for different regulatorsR1 andR2 (solid and dashed lines) and assuming an exact solution
of the full Wetterich equation (blue lines) or solutions of the truncated Wetterich equation
using two truncations t1 and t2 (red and green lines). Truncation t2 is considered to be a
systematic improvement of truncation t1.

without truncations or simplifying approximations is usually not possible for interacting QFTs,
as there are no explicit numeric or symbolic methods to solve the arising non-linear functional
differential equations. One notable exception are applications of the FRG to models in zero
dimensions, which will be discussed at length in chapter 3. For theories in non-zero dimensions
truncation schemes for the Wetterich equation are required to project from the full/exact
functional differential equation onto a finite set of PDEs or even ODEs. For such differential
equations numeric and in some cases even symbolic/analytic solution methods exist, which both
facilitate practical computations in the FRG framework. However with a truncation to a finite set
of non-functional differential equations the FRG is no longer exact due to the simplifying steps
taken and furthermore results computed in a truncation may explicitly depend on the specific
regulator choice even for completely valid regulators. This situation is visualized in figure 2.3
together with the untruncated/exact solution. The red and green curves in figure 2.3 represent
the flow using two different truncations: the regulator-dependence and derivation from the
exact result for Γ0[χ] are clearly visualized in the IR at k = 0. The truncation t2 in figure 2.3 in
green represent a systematic improvement over the truncation t1 in red denoted by a weaker
regulator-dependence and better error in the IR. Specifying errors related to truncation and
regulator choice in the FRG can be extremely involved, especially when studying strongly
interacting theories. The process usually involves improving the truncation in a systematic
way and comparing results obtained at varying levels of improvement to check for an apparent
convergence of the chosen truncation and improvement scheme.
In the following we will briefly discuss four common truncation schemes. For details we

refer to literature [93, 95, 222, 226–231] and our applications in chapters 3–5.

Vertex expansion
Arguably the most natural truncation and expansion scheme for the Wetterich equation (2.37)
is the so-called vertex expansion. The idea is to expand the RG-scale-dependent EAA Γk[χ] in
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its moments – in correlation functions – Γ(n)
k (χ0) around the expansion point χ0 with

Γk[χ] ≡ lim
N→∞

Γ
N
k [χ] ≡ lim

N→∞

{N}∑︂

{n}={0}
Γ
(n)
k (χ0)

∏︂

i∈{n}
(χi − χ0,i) , (2.51)

where integration and summation over internal indices (position, flavor,. . .) is implied and all
1PI vertices of theory are summed up in ΓNk [χ] up to order N . Inserting the ansatz (2.51) into
the Wetterich equation (2.37) one can use functional derivatives in the spirit of subsection 2.1.5
to generate an infinite tower of coupled ODEs for all 1PI vertices

∂tΓ
{0}
k (χ0) =F{0}

k

(︂
Γ
{2}
k ;χ0

)︂
, (2.52a)

∂tΓ
{1}
k (χ0) =F{1}

k

(︂
Γ
{2}
k ,Γ

{3}
k ;χ0

)︂
, (2.52b)

∂tΓ
{2}
k (χ0) =F{2}

k

(︂
Γ
{2}
k ,Γ

{3}
k ,Γ

{4}
k ;χ0

)︂
, (2.52c)

...

The r.h.s. of the flow equation for a 1PI vertex of order n contains only the propagator Gk
(which non-linearly depends on the two-point functions), 1PI vertices up to order n+2, and the
regulator insertion while maintaining one-loop structure. We may also note that the zero-point
function Γ(0)

k (χ0) does not couple back into the system.
One may expect good convergence of the tower of equations (2.52), if the higher-order

n-point functions are suppressed. Such a suppression motivates a truncation of the infinite
tower up to order N considering only Γk[χ] = Γ

N
k [χ]. The infinite tower gets truncated up to

order N by either neglecting the flow of Γ{N+1}
k (χ0) and Γ

{N+2}
k (χ0) or approximating the

vertices, for the latter approach, see, e.g., Ref. [266]. When properly tracking the momentum
dependence of the involved 1PI vertices, cf. the works [267–269] of Jean-Paul Blaizot et al.
and Refs. [228, 270, 271] of Peter Kopietz et al., this approach provides excellent resolution in
momentum space while having limited resolution in field space due to the expansion of the EAA
in 1PI vertices. Due to the rapidly growing complexity of the flow equations when increasingN ,
practical computations are typically limited to a rather small order between N = 4 and N = 6.
The high resolution in momentum space and proper resolution of the momentum-dependence
of the involved 1PI vertices makes the vertex expansion a very attractive expansion scheme for
quantum many-particle systems in condensed matter physics, see, e.g., Refs. [270, 272–274],
high-energy physics and especially for Yang-Mills theories and QCD, see, e.g., Refs. [80, 97,
213, 237, 249, 275, 276], and quantum gravity, see, e.g., Refs. [109, 277–280]. An overview
and further relevant literature may be found in the Secs. 4, 5, and 6 of review [231]. When
studying symmetry breaking – especially around phase transitions – the vertex expansion is of
limited use since studies of such phenomena require a higher resolution in field space. Both
symmetry breaking and also bound states can enhance higher-order n-point functions limiting
or even destabilizing the vertex expansion, see also the discussion in the following paragraph
Taylor and other global expansions. In this work we are mainly interested in the study of
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strongly coupled theories in field space and symmetry breaking in those systems. Thus we do
not use the vertex expansion beyond the benchmark study of subsubsections 3.2.2.2 and 3.2.3.2
in zero dimensions.

Derivative expansion and the local potential approximation
The main FRG expansion scheme employed in this work is the derivative expansion (DE), which
is a well established expansion and truncation scheme for the Wetterich equation in applications
that require high resolution in field space, see, e.g., the review [231] and references therein.
Prime examples are the zero-dimensional theories we study in chapter 3 and the LEFTs we
discuss in chapters 4 and 5. The underlying idea behind the DE is to expand the RG-scale-
dependent EAA Γk[χ] in powers of momenta – i.e., derivatives in position space, hence the
name DE. Such an expansion is justified when studying long range physics at small momentum
scales p2 satisfying

p2

s2k
≪ 1 , (2.53)

where sk is a theory specific IR mass/momentum scale. Even in theories without a physical
mass gap mgap the regulators used in the FRG provide an IR regularization at finite k and the
characteristic scale sk is typically

s2k ≈ m2
gap + k2 . (2.54)

Considering the regulator properties discussed in subsubsection 2.1.4.1 we may indeed note
that the regulator insertion ∂tRk in the Wetterich equation (2.37) suppresses momenta p2≳k2
by focusing the integration over internal loop momenta around p = k, which is visualized
in figure 2.2b. The aforementioned suppression of high momentum modes renders the con-
dition p2/k2≲1 valid in the loop of the Wetterich equation. This in turn implies that the
condition (2.53) is indeed fulfilled – even for theories without a physical IR mass gap mgap,
cf. Eq. (2.54). A proper, i.e., for a given truncation optimized, regulator can greatly improve
the stability and apparent convergence of the DE [222, 259, 260]. For the lowest-order DE –
the so-called local potential approximation (LPA), which we will introduce in the following –
the flat regulator that we introduced via its shape function in Eq. (2.45) is such an optimized
regulator.
To illustrate the DE and related truncation strategies let us consider a theory ofN interacting

scalar fields ϕ⃗ with O(N) symmetry in d dimensions and corresponding mean-fields φ⃗ . To
lowest, zeroth-order DE – i.e., in LPA – the RG-scale-dependent EAA is simply given by

Γ
DE0

k [φ⃗ ] ≡ Γ
LPA
k [φ⃗ ] ≡

∫︂

x

(︃
1

2
∂µφi∂µφi + Uk(ϱ)

)︃
, (2.55)

with ϱ ≡ φiφi/2 and the RG-scale-dependent, O(N)-symmetric self-interaction potential
Uk(ϱ) as the only scale-dependent quantity. Quantum fluctuations at O(∂2) and above are
neglected and only the classical kinetic – without a running wave-function renormalization – is
included [281, 282].
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The RG-scale-dependent local potential can be evolved from the UV at k = Λ to the IR k → 0
using the Wetterich Eq. (2.37). In the IR Uk=0 (ϱ) can be identified with (contributes to) the
effective potential V [µ, T ;χ], see App. C.1 and Eq. (C.15), when considering homogeneous
(inhomogeneous) condensates. Thus Uk(ϱ) and especially Uk=0 (ϱ) play a critical role in the
study of symmetry breaking and thermodynamics. Further more the LPA can be used for
mean-field and large-N computations, see, e.g., subsection 3.2.3 and sections 4.3, 4.4, and 5.2.
The explicit flow equations for the local potential ∂tUk(ϱ) manifest in practice as PDEs,

see, e.g., Eqs. (3.37), (3.63), (3.221), (4.21), and (5.13) in the main parts 3, 4, and 5 of
this work. As alluded to in the introduction 1, various collocation methods, cf. Refs. [81, 87,
93, 100, 110–152] and also expansion schemes discussed in the next paragraph are common
and established in the FRG community to solve LPA flow equations – the explicit PDEs for
Uk(ϱ) . The FD and spline collocation methods used, are however based on the often tacit
assumption, that Uk(ϱ) is smooth. This is however, as we argue at length in chapter 3 and
demonstrate also in chapter 4, a priori and also in prominent scenarios a posteriori, in general
not a valid assumption. It has been established within the last few years by us and collaborators,
cf. Refs. [1–4, 162, 210, 247, 283, 284] and subsection 2.1.7 as well as chapters 3 and 4,
that the FRG flow equations – the LPA flow equation as a truncated one, most prominently
included – are non-linear conservation/convection equations. Their non-linearity as well as
explicit source/sink terms, cf. subsection 4.2.2, can lead to discontinuities in ∂ϱUk(ϱ) and
thus kinks in Uk(ϱ) which explains the poor (numerical) performance of the established “grid
methods”. The adaptation of more suited numerical methods from the field of CFD, see
section 2.2, is one major part of our research [1–4, 7] discussed in chapters 3 and 4.

The first systematic improvement DE2 in the DE to LPA

Γ
DE2

k [φ⃗ ] =

∫︂

x

(︃
1

2
Zk(ϱ)∂µφi∂µφi +

1

4
Yk(ϱ)∂µϱ∂µϱ+ Uk(ϱ)

)︃
, (2.56)

includesO(∂2) corrections in form of a field-dependent, running wave-function renormalization
Zk(ϱ) and for N > 1 an additional term Yk(ϱ)∂µϱ∂µϱ due to the difference in transverse and
longitudinal fluctuations of φ⃗ [106, 231]. A very common simplification to DE2 is called
local potential approximation prime (LPA’) which entails omitting the Yk(ϱ) contribution and
considering only a field-independent Zk. Given an ansatz for the EAA in DE one can proceed to
compute the propagators in the given truncation. The propagators and the ansatz for the EAA
can then be inserted into the Wetterich equation (2.37) and/or corresponding flow equations
for higher-order n-point functions to project out flow equations for the running couplings. Those
flow equations manifest as PDEs or ODEs allowing for a numerical solution of the Wetterich
equation. Further details will be discussed in this thesis in chapters 3–5 while additional details
and references can be found in, e.g., Sec. 2.3 of the review [231].

FRG Taylor and other global expansions
The so-called FRG Taylor expansion, see, e.g., Refs. [80, 89–109], is closely related to the vertex
expansion and the LPA of the derivative expansion. In the context of the LPA the FRG Taylor
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expansion is simply the expansion of the RG-scale-dependent local potential in a Taylor series

Uk(ϱ) =

Nν∑︂

n=0

λn,k
n!

(ϱ− κk)n , (2.57)

around a potentially scale-depended expansion point κk, with scale-dependedmoments λn,k and
an expansion order Nν , where we adopt the notation of Ref. [109]. Inserting the ansatz (2.57)
into the LPA flow equation one can project onto the moments λn,k and the expansion point κk
by taking derivatives w.r.t. ϱ. The FRG Taylor expansion includes the zeroth-order contributions
in momentum space to the vertex expansion. As such both FRG Taylor and vertex expansion are
completely equivalent in zero-dimensional space-time, cf. subsubsections 3.2.2.2 and 3.2.3.2.
With a well chosen, potentially scale depended expansion point and sometimes a rather low

number of expansion coefficients, the FRG Taylor expansion is an established method within
the FRG community, see, e.g., the certainly incomplete list of Refs. [80, 89–109]. However it
is also acknowledged, that such a local expansion is rather limited in scenarios where global
information about the potential is required, see, e.g., Refs. [96, 109, 226]. The study of
symmetry breaking and phase transitions, especially first-order phase transitions, is one notable
example. It should however be noted, that an expansion like Eq. (2.57) and the projection onto
its scale-dependent moments λn,k and expansion point κk, a priori assumes analyticity of Uk(ϱ)
around the expansion point κk. This is an incredibly restrictive and assumption that is just not
justified for certain applications. We will discuss this limitation further in subsubsections 3.2.2.2
and 3.2.3.2 in the context of our studies in zero dimensions.

The local nature of the FRG Taylor expansion (2.57) has, to an extent, motivated the adapta-
tion of global pseudo-spectral collocation methods in the FRG community for an expansion
of Uk(ϱ) in Chebyshev polynomials, see, e.g., Refs. [109, 153–160]. While this certainly
improves upon the FRG Taylor expansion by considering a global expansion of the potential
Uk(ϱ) , such collocation methods are still severely limited when non-analyticities come into play.
The application of plain global pseudo-spectral collocation methods to non-linear convection
equations including complicated source terms – like the LPA flow equation – should be seriously
reconsidered. This is not the personal opinion of my collaborators and me, but rather firmly
established knowledge in the field of such pseudo-spectral collocation methods. It is interesting
to note, that most of the aforementioned FRG Chebyshev literature references the excellent book
“Chebyshev and Fourier Spectral Methods” [285] of John P. Boyd, which in no uncertain terms
addresses the clear limitations of global-collocation methods when it comes to non-analyticities
and shocks. The praised exponential and geometric convergence of global-collocation methods
is lost in presence of shocks, corner singularities, or discontinuities [285]. Spectral filtering,
sequence acceleration, spectral reconstruction, or outright discontinuous Galerkin methods
(employing pseudo-spectral methods in control volumes, allowing for discontinuities) are
mentioned as necessary improvements when applying pseudo-spectral collocation methods
to problems involving non-analyticities [285]. In plain pseudo-spectral collocation methods
such non-analyticities manifest in the frequency spectrum as Wilbraham-Gibbs-type oscilla-
tions [286–288] which without the aforementioned improvements completely destabilize the
ODE system for the flow of the expansion coefficients.

32 2.1. The functional renormalization group



Perturbative loop expansion
We will conclude the discussion on truncation strategies for the Wetterich equation with a
short remark on the perturbative loop expansion following Refs. [226, 227, 238, 289, 290].
Conventional renormalized perturbation theory, see, e.g., Refs. [177, 178, 239], in form of
a loop expansion in terms of classical, tree-level propagators can be recovered from the FRG
in an iterative procedure. The (N + 1)-loop correction to the EA can be computed with the
Wetterich equation (2.37) by inserting the N -loop expression for the propagator Gk into the
r.h.s. of Eq. (2.37) and integrating the resulting equation from the UV k = Λ to the IR k = 0.
For the sake of simplicity we will consider a quantum field theory of a single scalar field ϕwith

the classical action S and corresponding mean-field φ in the following. Starting the iterative
procedure with the zeroth-order tree-level propagator Gk = (S(2) + Rk)

−1 and integrating
over the RG scale, one obtains the EA to one-loop order

Γ1−loop[φ] = S[φ] + ΓΛ,1[φ] +
1

2
Tr lnS(2)[φ]− 1

2
Tr ln

(︂
S(2)[φ] +RΛ

)︂
, (2.58)

with the classical action S[φ], a RG-scheme-/regulator-dependent one-loop counter term ΓΛ,1[φ],
the potentially divergent one-loop diagram 1

2 Tr lnS
(2)[φ], and the RG-scheme-/regulator-

dependent diagram 1
2 Tr ln

(︁
S(2)[φ] +RΛ

)︁
to cancel the potential divergences in the aforemen-

tioned diagram. Thus the difference 1
2 Tr lnS

(2)[φ]− 1
2 Tr ln

(︁
S(2)[φ] +RΛ

)︁
can be considered

as a regularized, finite loop diagram. The counter term ΓΛ,1[φ] can be determined by enforcing
renormalization group consistency, see subsection 2.1.6 for details, which in this context simply
entails the independence of the EA Γ[φ] in the IR of Λ. The sum of the classical action and the
counter term form the modified IC: SΛ[φ] = S[φ] + ΓΛ,1[φ].
The two-loop result can be obtained by computing the propagator from the one-loop re-

sult (2.58), inserting the result in the r.h.s. of the Wetterich equation (2.37) and again inte-
grating over the RG scale, see, e.g., Ref. [238].
Using the Wetterich equation as a master equation with the outlined iteration procedure

is a simple and robust way to compute expressions for regularized and renormalized 1PI
correlation functions to any desired perturbative loop-order. The generation and complete
resummation of the perturbative loop expansion also serves as further proof – beyond the
validity and exactness of its derivation – that the Wetterich equation (2.37) is indeed exact. A
perturbative approach/loop expansion has only very limited applicability in the context of our
work, since we are interested in strongly interacting systems which are notoriously elusive to
tackle with such perturbative techniques. For discussions of perturbative results in the FRG
context we refer the interested reader to, e.g., Refs. [289, 291–294].

2.1.5. Higher-order flow equations and their combinatorics in field space

Since practical computations of observables with the full Wetterich Eq. (2.37) are for most
theories impossible, truncations are employed to facilitate computations. As a result Γk[χ]
is usually not accessible in its full functional form. The study and practical computation of
moments of Γk[χ] – higher-order n-point functions – however is still possible within the FRG
framework. To this end flow equations for higher-order n-point functions can be derived using
the full Wetterich Eq. (2.37) as a master equation.
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Flow equations for higher-order n-point functions can be obtained by taking functional
derivatives of the Wetterich Eq. (2.37) w.r.t. external fields like χx

13. Besides the vertices of the
theory, the functional derivative of the propagator G,xk;ac is required. An expression for G

,x
k;ac is

obtained by computing the functional derivative of Eq. (2.27) explicitly:

δ

δχx

(︃
Gk;am[χ]

(︂
Γ
,mb
k [χ] +R;mb

k

)︂)︃
=

δ

δχx
γba = 0 (2.59)

G
,x
k;am[χ]

(︂
Γ
,mb
k [χ] +R;mb

k

)︂
= −(−1)xa(−1)xmGk;am[χ]Γ,xmb

k [χ] (2.60)

G
,x
k;am[χ]δ

c
m = −(−1)xaGk;am[χ]Γ,mxn

k [χ]
(︁
Γk[χ] + ∆Sk[χ]

)︁−1

nc (2.61)

G
,x
k;ac[χ] = −(−1)xaGk;am[χ]Γ

,mxn
k [χ]γlnGk;lc[χ] = (2.62a)

= −(−1)xa(−1)nnGk;am[χ]Γ,mxn
k [χ]Gk;nc[χ] . (2.62b)

Diagrammatically taking the functional derivative of a propagator amounts to inserting a three-
point vertex while accounting for potential sign changes due to the possible Grassmann-nature
of the involved field components. In a more compact form of our FS notation we summarize at
this point

δ

δχx
R;ab
k =

(︁
R;ab
k

)︁,x
= 0 , (2.63)

δ

δχx
Γ
,a...
k = Γ

,xa...
k = (−1)axΓ,ax...k , (2.64)

δ

δχx
Gk;ab =

(︁
Gk;ab

)︁,x
= −(−1)xa,nnGk;amΓ

,mxn
k Gk;nb . (2.65)

Within FS diagrams we use regular n-sided polygons with n legs/lines to represent FS vertices
Γ
,x1 ...xn
k . Diagrams can be translated into their corresponding explicit mathematical expres-
sions by reading off the involved elements – regulator insertion, propagators, and vertices –
following the loop and vertex legs counter-clockwise starting at the regulator insertion which
always includes the first and last FS summation indices, see, e.g., Eqs. (2.68a)–(2.68c) and
Eqs. (2.68a′)–(2.68c′).
With Eqs. (2.63)–(2.65) we are equipped to compute functional derivatives of the full

Wetterich Eq. (2.37)

2∂tΓk = Gk;ab∂tR
;ba
k = , (2.66)

starting with a FS derivative w.r.t. the external (mean) field χu we arrive at the flow equation
for the one-point function

2∂tΓ
,u
k = −(−1)ua,ccGk;abΓ

,buc
k Gk;cd∂tR

;da
k = −(−1)ua,cc u . (2.67)

13We highlight external, i.e., non-contracted, FS-indices with an underscore, e.g., x, in the context of higher-order
flow equations for a clear distinction between contracted and external indices.
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An additional FS derivative w.r.t. the external (mean) field χv of Eq. (2.67) leads to the flow
equation of the two-point function

2∂tΓ
,vu
k =≪T2,2≫ +≪T2,1≫=≪2≫ +≪1≫ (2.68)

= (−1)ua,va,cc,eeGk;abΓ
,bvc
k Gk;cdΓ

,due
k Gk;ef∂tR

;fa
k + (2.68a)

+ (−1)uv,ua,va,cc,eeGk;abΓ
,buc
k Gk;cdΓ

,dve
k Gk;ef∂tR

;fa
k − (2.68b)

− (−1)ua,va,ccGk;abΓ
,bvuc
k Gk;cd∂tR

;da
k (2.68c)

= (−1)ua,va,cc,ee u v + (2.68a′)

+ (−1)uv,ua,va,cc,ee u v − (2.68b′)

− (−1)ua,va,cc
v

u

. (2.68c′)

Computing flow equations for higher-order n-point functions beyond n = 2 is in principle
straight forward, but the number of involved diagrams grows rapidly making a computation
by hand error prone and at some point simply unfeasible. Packages like DoFun [295, 296] or
QMeS-Derivation [297, 298] can be used to automate this process using the computer algebra
system Mathematica [166]. We use our own Mathematica code [299] for such and related
diagrammatic computations. The expressions and diagrams in Eqs. (2.67)–(2.70) have been
programmatically generated with our Mathematica code [299] and exported to LATEX using
propose build export methods. The diagrams have been programmatically generated and
rendered using Axodraw Version 2 [53]. In the following Eqs. (2.69) and (2.70) we present
the flow equations for the three- and four-point functions in a skeletonized form14 presenting
mainly the classes of involved diagrams. The flow of the three-point function is governed by

2∂tΓ
,wvu
k =≪T3,3≫ +≪T3,2≫ +≪T3,1≫=≪6≫ +≪6≫ +≪1≫ (2.69)

= −(−1)≪6≫Gk;abΓ
,bwc
k Gk;cdΓ

,dve
k Gk;efΓ

,fug
k Gk;gh∂tR

;ha
k +≪5≫ + (2.69a)

+ (−1)≪5≫Gk;abΓ
,bwc
k Gk;cdΓ

,dvue
k Gk;ef∂tR

;fa
k +≪5≫ − (2.69b)

− (−1)≪4≫Gk;abΓ
,bwvuc
k Gk;cd∂tR

;da
k (2.69c)

14Following the convention introduced in App. B.1 we use≪n≫ to represent a sequence of n omitted elements.
(−1)≪n≫ are abbreviated FS sign factors, see Eqs. (B.33) and (B.34) and the related discussion in App. B.4.
≪Tn,k≫ represents the number of diagrams of a specific type, see table 2.1 and the related discussion.
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= −(−1)≪6≫

u w

v

+≪5≫ + (2.69a′)

+ (−1)≪5≫
v

u

w+≪5≫ − (2.69b′)

− (−1)≪4≫
w

v

u

, (2.69c′)

and the flow of the four-point function follows as

2∂tΓ
,xwvu
k =≪T4,4≫ +≪T4,3≫ +(≪T4,2≫)+≪T4,1≫=

=≪24≫ +≪36≫ +(≪8≫ +≪6≫)+≪1≫ (2.70)

= (−1)≪8≫Gk;abΓ
,bxc
k Gk;cdΓ

,dwe
k Gk;efΓ

,fvg
k Gk;ghΓ

,hui
k Gk;ij∂tR

;ja
k +≪23≫ −

(2.70a)

− (−1)≪7≫Gk;abΓ
,bxc
k Gk;cdΓ

,dwe
k Gk;efΓ

,fvug
k Gk;gh∂tR

;ha
k +≪35≫ +

(2.70b)

+
(︂
(−1)≪6≫Gk;abΓ

,bxc
k Gk;cdΓ

,dwvue
k Gk;ef∂tR

;fa
k +≪7≫ + (2.70c)

+ (−1)≪6≫Gk;abΓ
,bxwc
k Gk;cdΓ

,dvue
k Gk;ef∂tR

;fa
k +≪5≫

)︂
− (2.70d)

− (−1)≪5≫Gk;abΓ
,bxwvuc
k Gk;cd∂tR

;da
k (2.70e)

= (−1)≪8≫

u x

wv

+≪23≫ − (2.70a′)

− (−1)≪7≫ v

u
x

w

+≪35≫ + (2.70b′)

+
(︂
(−1)≪6≫

w

v

u

x +≪7≫ + (2.70c′)

+ (−1)≪6≫
v

u x

w

+≪5≫
)︂
− (2.70d′)
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− (−1)≪5≫
x
w
v

u

. (2.70e′)

A common way to reduce the number of diagrams, which only differ by the location of the
regulator insertion in the loop, is to introduce the RG time/scale derivative ∂̃t (∂̃k) which only
acts on the regulator, see, e.g., Ref. [296]. This allows for a unification of certain diagrams
using

∂̃tGk;ab[χ] = −(−1)bbGk;am[χ]∂tR;mn
k Gk;nb[χ] , (2.71)

which follows directly from the implicit definition (2.27) of the propagator. Using Eq. (2.71)
to simplify, i.e., reduce the number of diagrams, in the flow Eqs. (2.68)–(2.70) requires some
care w.r.t. the involved signs and sign factors (−1).... In the following we use ∂̃t (∂̃k) only for
schematic discussions and to simplify final expressions after all traces in field and internal
spaces have been performed.
We conclude this subsection with a remark on the involved combinatorics – diagrammatic

complexity when computing flow equations for higher-order n-point functions in FS. The
number of diagrams Bn involved on the r.h.s. of a FRG flow equation for the n-point function
Γ
,x1 ...xn
k grows faster than n!. It is given by the nth ordered Bell/Fubini number Bn [300]

Bn =
1

2
Φ(12 ,−n, 0) =

n∑︂

k=1

Tn,k =
1

2 lnn+1(2)
n! +O((n− 1)!) , (2.72)

where the Triangle numbers Tn,k [301] are given by

Tn,k = k!S(k)
n , (2.73)

with the Hurwitz-Lerch transcendentΦ and the Stirling number of the second kind S(k)
n , see, e.g.,

Ref. [302] Secs. 25.14 and 26.8. In a combinatorics context Bn is the “number of preferential
arrangements of n labeled elements; or number of weak orders on n labeled elements; or
number of ordered partitions of [n]” [300]. For a given n and k = n, . . . , 1, Tn,k represents the
number of diagrams with k vertices, which always have k+1 propagators, cf. Eqs. (2.68)–(2.70).
The asymptotic expansion in Eq. (2.72) can be found in Ref. [303]. The values of Bn and
Tn,k for k = 1, . . . , n and n = 1, . . . , 6 are displayed in table 2.1. For further details regarding
the underlying combinatorics/permutohedron, see, e.g., Ref. [304] p. 167ff and Ref. [305]
p. 18ff. Computing the full flow equations in FS becomes extremely expensive/infeasible for
larger n. In this work we mainly study the flow equation for Γk itself, with subsection 3.3.2
and section 4.4 as the most notable exceptions.
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Table 2.1.: Number of field space diagrams Bn on the r.h.s. of the flow equation ∂tΓ
,x1 ...xn
k

for n = 1, . . . , 6. Tn,k diagrams with k + 1 propagators for k = 1, . . . , n contribute to Bn for a
given n. Bn is given by Eq. (2.72) while Tn,k is given by Eq. (2.73). The factors for n = 2, . . . , 4
appear in Eqs. (2.68)–(2.70) as≪Tn,k≫ and≪Tn,k − 1≫ in respective subequations.

Tn,k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 Bn

n = 1 1 1

n = 2 1 2 3

n = 3 1 6 6 13

n = 4 1 14 36 24 75

n = 5 1 30 150 240 120 541

n = 6 1 62 540 1560 1800 720 4683

2.1.6. Renormalization group consistency

In this subsection we discuss the concept of renormalization group consistency with focus on the
FRG framework following the excellent discussion of Ref. [257]. Additional information can be
found in Refs. [148, 306–309]. In the context of the FRG the question of RG consistency is
closely related to the appropriate choice of UV initial scale Λ and corresponding initial action
SΛ, cf. subsubsection 2.1.4.1. For a given theory with classical action S the FRG provides both a
renormalization and regularization scheme based on the EAA Γk. The Wetterich equation can
be used to study the RG scale evolution of the EAA Γk connecting the microscopic action S of
the theory at hand to the full quantum EA Γ1PI. This process however requires an initialization
of the Wetterich equation at an UV initial scale Λ. The introduction of such a scale and
corresponding regularization, which the regulator provides in the EAA Γk, is a computational
necessity. Physical observables encoded in Γ0[χ] = Γ1PI[χ] ≡ Γ[χ] and its moments however
should not depend on the scale Λ:

Λ
dΓ[χ]

dΛ
≡ Λ

dΓ0[χ]

dΛ

!
= 0 . (2.74)

This seemingly simple requirement is the governing equation for a consistent regularization
and renormalization of a given theory [257]. Eq. (2.74) is called RG consistency condition
and a computation of Γ[χ] for a given theory is considered RG-consistent if and only if the
condition (2.74) is met. In the FRG framework we can translate this requirement for the IR
EAA Γ0[χ] to non-zero k by integrating the Wetterich equation (2.37) from the UV k = Λ down
to k < Λ15

Γk[χ] = ΓΛ[χ]−
∫︂ k

Λ

dk′

k′
Fk′ [χ] . (2.75)

15Due to our convention (2.12) for RG time, Eq. (2.75) and subsequent expressions differ from the corresponding
ones in Ref. [257], see, e.g., Eq. (11a) of Ref. [257], involving the FRG flux Fk[χ] by a sign.
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By taking a derivative of Eq. (2.75) w.r.t. Λ and evaluating the subsequent expression at k = 0
and an arbitrary k ̸= Λ we obtain

Λ
dΓ0[χ]

dΛ
= Λ

dΓΛ[χ]

dΛ
+ FΛ[χ] , (2.76a)

Λ
dΓk[χ]

dΛ
= Λ

dΓΛ[χ]

dΛ
+ FΛ[χ] . (2.76b)

Using the RG consistency condition (2.74) with Eq. (2.76a) and equating it with Eq. (2.76b),
we obtain a RG consistency condition for any k ̸= Λ

0
!
= Λ

dΓ0[χ]

dΛ
= Λ

dΓΛ[χ]

dΛ
+ FΛ[χ] = Λ

dΓk[χ]

dΛ
. (2.77)

The included statement 0 = Λ∂ΛΓΛ[χ] + FΛ[χ] in Eq. (2.77) dictates that RG consistency is
realized in the FRG approach if the IC ΓΛ[χ] changes with Λ according to the FRG flux FΛ[χ]
at the initial scale. The latter is an immensely powerful and practically useful statement and
merits further elaboration.

2.1.6.1. Construction of RG consistent initial conditions

Lets first consider a scenario where Λ can be chosen asymptotically large in the sense that

∀si ∈ s
si
Λ
≪ 1 , (2.78)

with the set s which includes all mass scales of the theory at hand. This set consists of all
intrinsic mass scales mphys, e.g., particle masses and decay widths, and external scales mext,
e.g., temperature T or chemical potential µ. If Λ is indeed asymptotically large compared to
those scales, the initial action ΓΛ[χ] = S[χ] can be considered classical in the sense that the
FRG flux FΛ[χ] at the initial scale vanishes since all fluctuations are included in ΓΛ[χ]. This
entails initial-scale-independence of the IC Λ∂ΛΓΛ[χ] = Λ∂ΛS[χ] = 0. Such situations with
asymptotically large initial scale in the sense of Eq. (2.78) will be studied in chapters 3 and 4.

In certain applications – prominently when working with LEFTs of QCD, cf. section 2.3
and chapter 5 – choosing an asymptotically large Λ for a given classical action S is conceptually
not feasible and in some cases even mathematically impossible. In those cases it is possible to
use RG consistency as a construction principle for a RG-scale-dependent IC ΓΛ[χ] = SΛ[χ] in
the following way.
Consider a LEFT for which we specify the action ΓΛ′ [χ;m0

ext] = S[χ] at an intermediate
scale Λ′ with/at a corresponding set of physical parameters m0

phys/ external scales m0
ext. Here

m0
ext is typically (but not necessarily) the vacuum, e.g., T = µ = 0, and m0

phys a set of IR
observables realized by properly chosen couplings in ΓΛ′ [χ]. In this scenario Λ′ can not be
considered as asymptotically large in the sense of Eq. (2.78) and thus ΓΛ′ [χ] does not include
all relevant fluctuations especially w.r.t. fluctuations related to external scalesmext beyondm0

ext,
e.g., thermal and density fluctuations beyond the vacuum. ΓΛ′ [χ;m0

ext] is therefore not suited
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Figure 2.4.: Schematic FRG flow – RG-scale evolution of the EAA in the space of its couplings
{λi} – (in blue and red) from the UV initial condition ΓΛ towards the IR at differing external
parameter sets m(0)

ext ̸= m
(1)
ext. The red-dashed line represents a RG inconsistent flow at m

(1)
ext

starting from Γ
(0)

Λ′ and not ending at the correct IR result Γ
(1)

0 . For readability in the figure
we abbreviated Γ(0)

k ≡ Γk[χ;m
0
ext] and Γ

(1)

k ≡ Γk[χ;m
1
ext].

for computations at m1
ext ̸= m0

ext. To remedy these situations and to enable RG-consistent
computations at differing external scalesm1

ext ̸= m0
ext one can use the Wetterich equation (2.75)

to reconstruct an UV initial action ΓΛ[χ;m
0
ext] at a higher, proper UV initial scale Λ > Λ′:

SΛ[χ] ≡ ΓΛ[χ;m
0
ext] = ΓΛ′ [χ;m0

ext] +

∫︂ Λ′

Λ

dk′

k′
Fk′ [χ;m0

ext] . (2.79)

SΛ[χ] includes RG-scale-dependent counter terms – corrections to S[χ] – generated by the FRG
flux Fk[χ;m0

ext] to ensure RG consistency Λ∂ΛΓ0[χ] = 0 by guaranteeing Λ∂ΛΓΛ[χ;m
0
ext] =

−FΛ[χ;m
0
ext] while maintaining ΓΛ′ [χ;m0

ext] = S[χ]. Therefore guaranteeing an unchanged
Γk[χ;m

0
ext] for k < Λ′ by construction, since Eq. (2.75) at m0

ext and Eq. (2.79) entail

Γk[χ;m
0
ext] = ΓΛ′ [χ;m0

ext]−
∫︂ k

Λ′

dk′

k′
Fk′ [χ;m0

ext] (2.80a)

= ΓΛ[χ;m
0
ext]−

∫︂ k

Λ

dk′

k′
Fk′ [χ;m0

ext] . (2.80b)

SΛ[χ] represents an UV completion of the LEFT specified at Λ′ with ΓΛ′ [χ;m0
ext] = S[χ]. This

construction is visualized in figure 2.4 in blue.
By reconstructing SΛ[χ] ≡ ΓΛ[χ;m

0
ext] up to a scale Λ, which can be considered as asymp-

totically large in the sense of Eq. (2.78), we can ensure that a change in external parameters
leaves the regularization and renormalization encoded in the running of SΛ[χ] unchanged:

d

dmext

[︃
Λ
dSΛ[χ]

dΛ

]︃
= 0 . (2.81)
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In otherwords SΛ[χ] is suited for computations atm1
ext ̸= m0

ext sinceΛ≫ mext andFΛ[χ;m
0
ext] =

FΛ[χ;m
1
ext]. Integrating Eq. (2.81) from m0

ext to m1
ext we obtain

Λ
dSΛ[χ]

dΛ
≡ Λ

dΓΛ[χ;m
0
ext]

dΛ
= Λ

dΓΛ[χ;m
1
ext]

dΛ
. (2.82)

Note that ΓΛ[χ;m
1
ext] = ΓΛ[χ;m

0
ext] is not necessary: an explicit dependence of SΛ[χ] on mext

is possible16 as long as Eq. (2.82) holds. In figure 2.4 and our applications in chapter 5 we
consider SΛ[χ] without an explicit dependence on mext. Using the Wetterich equation (2.75)
at m1

ext with Eq. (2.79), we can construct a RG consistency condition at m1
ext ̸= m0

ext:

0
!
= Λ

dΓ0[χ;m
1
ext]

dΛ
= Λ

dΓk[χ;m
1
ext]

dΛ
= Λ

dΓΛ[χ;m
1
ext]

dΛ
+ FΛ[χ;m

1
ext] , (2.83a)

0
!
= Λ

dΓ0[χ;m
1
ext]

dΛ
= FΛ[χ;m

1
ext]−FΛ[χ;m

0
ext] , (2.83b)

where we used Eq. (2.82) in Eq. (2.83a) to obtain Eq. (2.83b). The latter can be used to
conveniently define applicability ranges Λ[m1

ext], where Λ[m1
ext] is the range/scale for which

Eq. (2.83b) holds to a given accuracy [257]. Using SΛ[χ] as an IC for a large range of external
parameters mext by guaranteeing Eq. (2.83b) (to a chosen accuracy), we note that at k = Λ′

ΓΛ′ [χ;m1
ext] = ΓΛ′ [χ;m0

ext]−
∫︂ Λ′

Λ

dk′

k′

(︂
Fk′ [χ;m1

ext]−Fk′ [χ;m0
ext]
)︂
, (2.84)

where we again used the Wetterich equation (2.75) with Eq. (2.79). ΓΛ′ [χ;m1
ext] differs from

the specified action ΓΛ′ [χ;m0
ext] = S[χ] by the fluctuations associated withmext. The latter are

incorporated by integrating the difference of FRG fluxes Fk′ [χ;m1
ext]−Fk′ [χ;m0

ext] from Λ to
Λ′, cf. figure 2.4. It is imperative to include those fluctuations at k = Λ′ and ΓΛ′ [χ;m0

ext] = S[χ]
alone is not suited for a flow at m1

ext – a situation illustrated in figure 2.4 in red.

To conclude this section we want to comment on some practical limitations when leveraging
the concept of RG consistency. Throughout this section we frequently used the symbolically
integrated Wetterich equation (2.75) which is not a simple equation involving an ordinary
integral. The integrals in Eq. (2.75) and subsequent derived expressions are meant as solutions
of the Wetterich equation, which are obtained by solving the differential equations associated
with the FRG flux Fk[χ]. Depending on the theory and truncation at hand this might be a
rather involved process. Furthermore FRG time integration – evolving the Wetterich equation
in RG scale from the UV to the IR – is for many theories and truncations irreversible. This
irreversibility is formally mentioned in the next subsection 2.1.7 and discussed at length in
chapter 3 and especially in subsection 3.2.4. Irreversibility makes the construction (2.79) of
SΛ[χ] ≡ ΓΛ[χ;m

0
ext] in the context of LEFTs rather involved since a solution from the lower

scale Λ′ up to Λ > Λ′ is practically/computationally not possible and

ΓΛ[χ;m
0
ext]−

∫︂ Λ′

Λ

dk′

k′
Fk′ [χ;m0

ext] = ΓΛ′ [χ;m0
ext] (2.85)

16Certain LEFTs can require counter terms in SΛ[χ], which depend on mext explicitly, see, e.g., Sec. III.B of
Ref. [257] for an explicit example involving diquarks and chemical potential in the context of LEFTs for QCD.
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would be the practical form of (2.79): ΓΛ[χ;m
0
ext] has to be tuned such that ΓΛ′ [χ;m0

ext] is
recovered after flowing down from Λ to Λ′. This presents an extremely difficult optimization
problem, which might not even have (depending on the theory, truncation, and regulator
employed) a solution for some explicit choices of ΓΛ′ [χ;m0

ext] ≡ S[χ].
That being said for some theories and truncations FRG time integration is reversible, cf. our

large-N/mean-field studies in chapters 4 and 5, which simplifies the construction of suitable
initial conditions SΛ[χ] ≡ ΓΛ[χ;m

0
ext] immensely since direct computation of appropriate

counter terms from the Eq. (2.79) is possible and an optimization/tuning in the sense of
Eq. (2.85) is not required.

2.1.7. Renormalization group equations as functional flow equations

Parts of this subsection are based on the Secs. II.B–C and IV.A of Ref. [1].

In the following we want to comment on the structure of the renormalization group equation for
the RG-scale-dependent generating functionals Zk[J̃ ],Wk[J̃ ], and Γk[χ] for non-composite/non-
scale-dependent fundamental fields χ̂a ≡ χ̃a ⇔ ∂tχ̂a = 0 and corresponding sources Ĵa ≡ J̃a.
The evolution equation (2.14) simplifies in this context to

dWk[J̃ ]

dt
=

d

dt
lnZk[J̃ ] =

1

Zk[Ĵ ]

dZk[Ĵ ]

dt
= −1

2
∂tR

;mn
k ⟨χ̃nχ̃m⟩k;J̃ , (2.86)

from which we can deduce the following evolution equations

dZk[J̃ ]

dt
= −1

2

(︁
∂tR

;mn
k

)︁ δ

δJn
δ

δJmZk[J̃ ] = −
1

2

(︁
∂tR

;mn
k

)︁
Zk,nm[J̃ ] , (2.87)

dWk[J̃ ]

dt
= −1

2

(︁
∂tR

;mn
k

)︁(︃ δ

δJn
δ

δJmWk[J̃ ] +
δWk[J̃ ]

δJn
δWk[J̃ ]

δJm

)︃
=

= −1

2

(︁
∂tR

;mn
k

)︁(︃
Wk,nm[J̃ ] +Wk,n[J̃ ]Wk,m[J̃ ]

)︃
, (2.88)

by rewriting the expectation value using the generating functionals. The structure of Eq. (2.87)
is that of a linear functional diffusion equation (heat equation) [230, 310–314], where t
corresponds to an effective temporal direction, while J̃ corresponds to an effective spatial
direction. Sometimes Eq. (2.87) is even explicitly denoted as a (non-linear) heat equation, cf.
subsection 2.2.4. The regulator insertion −1

2∂tR
;mn
k acts as a diffusion coefficient contracted

with the Hessian Zk,nm[J̃ ]. The RG time evolution of the generating functionalZk[J̃ ] is governed
by the change – functional derivative δ/δJ̃n – of the functional gradient Zk,m[J̃ ] weighted by
the diffusion coefficient−1

2∂tR
;mn
k . The closely related evolution equation (2.88) forWk[J̃ ] has

a similar structure, but the HessianWk,nm[J̃ ] gets modified by the product of two functional
gradient termsWk,n[J̃ ]Wk,m[J̃ ]. The evolution equations for Zk[J̃ ] andWk[J̃ ] are due to their
nature as functional diffusion equations flow equations.
The Wetterich equation (2.37)

∂tΓk[χ] =
1

2
Gk;mn[χ]∂tR

;nm
k ≡ Fk

[︁
Γ
,mn
k [χ], χ

]︁
, (2.89)
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does not manifest itself as a diffusion or flow equation at first glance. The r.h.s. of Eq. (2.89)
depends non-linearly on the Hessian Γ

,mn
k [χ] through the propagator, cf. Eq. (2.27), which

prevents a direct interpretation as a linear functional diffusion equation. Noting however
that the r.h.s. of Eq. (2.89) does not depend on Γk[χ] itself, we may consider the functional
gradient Γ,ak [χ] as the fundamental variable and by taking a corresponding functional derivative
reformulate Eq. (2.89) as

∂tΓ
,a
k [χ] =

δ

δχa
Fk
[︁
Γ
,mn
k [χ], χ

]︁
≡ F ,ak

[︁
Γ
,mn
k [χ], χ

]︁
, (2.90)

which has the form of a functional convection17 equation [1, 247]. The RG time evolution
of the one-point function Γ,ak [χ] is governed by the change – functional derivative δ/δχa – of
the convection flux Fk

[︁
Γ
,mn
k [χ], χ

]︁
, which due to the non-linear dependence on Γ,mn

k [χ] can
include both advective and diffusive contributions [1, 247], cf. subsubsection 3.2.2.1.

The fact that the non-perturbative RG evolution equations manifest as flow equations in the
form of functional convection equations has many interesting and relevant consequences. We
will not go into detail at this point and reserve an in-depth discussion for the main part of this
thesis. The only aspect we want to mention at this point is the fact, that the manifestation as
functional convection equations is closely linked to the semigroup property – the irreversibility
of non-perturbative RG steps – of the (F)RG. The related loss ofmicro-physical information in the
(F)RG due to the successive integration over high-momentum modes, cf. subsubsection 2.1.4.1,
manifests on the level of the evolution Eqs. (2.87), (2.88), and (2.90) in their nature as
convection equations. Especially the diffusive nature of the equations seems rather intuitive
and natural in the context of non-perturbative implementations of the RG.
On the level of the RG-scale-dependent generating functionals Zk[J̃ ], Wk[J̃ ], and Γk[χ],

without specifying an explicit theory and truncation, it is difficult to discuss the implications of
this formulation and the understanding of RG evolution equations as flow equations explicitly.
We will do so in the main part of this thesis using zero-dimensional theories in chapter 3 and
the GN model in chapter 4. To facilitate this, we discuss flow equations/conservation laws
with advective, diffusive, and source terms in the following section 2.2.

2.2. Conservation laws, hydrodynamics, and the finite volume
method

Parts of this section are based on Secs. IV.B–C of Ref. [1] and on the Apps. B–E of Ref. [3].

In this section we discuss systems of PDEs in one effective temporal direction (t) and one
effective spatial direction (x) of the following generic form

dtui(t, x) + dxFi[t, x, {ui(t, x)}] = dxQi[t, x, {ui(t, x)}, {∂xui(t, x)}] +
+ Si[t, x, {ui(t, x)}] , (2.91)

17In the following we use the term convection in the fluid-dynamical sense as a phenomenon including both advection
and diffusion. For more details on those terms we refer to section 2.2.
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dtui(t, x) + dxCi[t, x, {ui(t, x)}, {∂xui(t, x)}] = Si[t, x, {ui(t, x)}] , (2.92)

where we distinguish between advective contributions dxFi[. . .], diffusive contributionsdxQi[. . .],
and source/sink contributions Si[. . .]. Whether Si acts as a source or sink in the dynamics of
{ui(t, x)} depends on its explicit form. Nevertheless we will usually refer to Si as a source
term. We also introduced the convective contribution dxCi[. . .] ≡ dxFi[. . .]− dxQi[. . .], which
incorporates both advective and diffusive contributions for the sake of discussion. In this section
we will explicitly distinguish between partial (∂x ≡ ∂/∂x) and total (dx≡d/dx) derivatives.
In the following, we occasionally suppress the t- and x-dependencies of ui, Ci, Fi, Qi, and Si
for the sake of simplicity. Equation (2.91) is a system of PDEs describing the evolution of m
conserved quantities {ui(t, x)} ≡ {ui} ≡ {u1, . . . , um} in t and x. Depending on the problem
at hand these two directions are not necessarily identical with physical spatial and temporal
dimensions, but for the following discussion we denote them as such. The functions

• Fi[{ui}] ≡ Fi[t, x, {ui(t, x)}] are components of a non-linear advection flux,
• Qi[{ui}, {∂xui}] ≡ Qi[t, x, {ui(t, x)}, {∂xui(t, x)}] are components of a non-linear diffu-
sion(dissipation) flux, and

• Si[{ui}] ≡ Si[t, x, {ui(t, x)}] are components of a source term.
The aforementioned fluxes are discussed in detail in subsections 2.2.3–2.2.5 respectively.
The concepts discussed in the following can be generalized beyond one spatial dimension to
(d = s+1)-dimensional space-time: (x, t)→ (x⃗, t) = (x1, . . . , xd, t). Equation systems similar
or even identical to Eq. (2.91) are often referred to as conservation laws and appear in many
areas of the natural sciences, engineering, and economics. They are extensively studied in the
field of computational fluid dynamics (CFD).
A complete and self-contained introduction to conservation laws in the context of CFD is

beyond the scope of this thesis. We rather focus on introducing the computational methods
we employ, establishing relevant nomenclature, and discussing selected properties of the
system (2.91). We will discuss the different contributions to Eq. (2.91) in subsections 2.2.3–
2.2.6 using explicit educational examples. The methodological introduction of subsections 2.2.1
and 2.2.2 is meant to facilitate the computations and discussions in the main part of this thesis,
i.e., chapters 3 and 4. For more details we refer the interested reader to the vast literature
discussing conservation laws, cf. Refs. [315–324].
This section has a corresponding digital auxiliary file [325], which includes our latest

Mathematica-implementation of the KT/KNP scheme discussed in subsection 2.2.2 and the
code to produce all the explicit (numerical) examples discussed in subsections 2.2.3–2.2.6.
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2.2.1. The finite volume method

This subsection follows the discussion in Sec. IV.B of Ref. [1] with slight modifications due
to the fact that we want to discuss a system of conservation laws for {ui(t, x)} instead of
a single conservation law for u(t, x).

In this section we discuss a numerical solution scheme for convection/advection-diffusion
equations18 with source terms of the generic type (2.92). Considering the convection equa-
tion (2.92) with specified terms Fi,Qi, and Si in a finite computational domain Ω = V×[t0, tN ],
where V ⊂ R1 denotes the spatial volume, with an IC ui(t0, x) and Dirichlet (Neumann) bound-
ary conditions (BCs) specifying (∂x)ui(t, x)|x∈∂V , the natural question arises how to evolve the
IC in time from t0 to tN > t0 to acquire a solution u(tN , x) respecting the specified BCs – i.e.,
how to explicitly solve the posed initial-value problem. For most problems of the type (2.92)
an analytic/symbolic explicit solution is not known or even considered to be non-existent.
Strategies for finding numerical (weak) solutions are required. Numerical schemes in the broad
class of so-called finite volume (FV) methods are very popular for the numerical solution of
PDEs describing the conservation or balance of quantities. For additional details regarding
especially the FV method we refer the interested reader to the textbooks [317, 322]. Alternative
high-resolution shock-capturing (HRSC) schemes in modern computational fluid dynamics
are among others: finite-difference schemes including flux limiters/numerical viscosity or
finite-element methods.
The concept that all numerical FV methods share is a discretization of the computational

domain into space-time control volumes Vj × [tl, tl+1], where the set of spatial control volumes
Vj covers the spatial computational domain V. Integrating Eq. (2.92) over such a control
volume centered at x, using the divergence theorem (Gauss-Ostrogradsky theorem) on the
convection flux, and introducing the sliding cell average

ūi(t, x) ≡
1

|Vj |

∫︂

Vj

dξ ui(ξ, t) (2.93)

⇒ ūi,j(t) ≡ ūi(t, xj) ≡
1

∆xj

∫︂ x
j+1

2

x
j− 1

2

dξ ui(ξ, t) , (2.94)

where Vj = {ξ : |ξ − xj | ≤ ∆xj/2}, we arrive at an equivalent integral form of Eq. (2.92),
ūi(t

l+1, x) = ūi(t
l, x)− C̄i[tl+1, tl, x, {ui}] + S̄i[t

l+1, tl, x, {ui}] , (2.95)

with the integral over the convection flux

C̄i[t
l+1, tl, x, {ui}] ≡ 1

∆xj

∫︂ tl+1

tl
dτ Ci

[︁
τ, x+

∆xj
2 , ui

{︁(︁
τ, x+

∆xj
2

)︁}︁]︁
−

− 1
∆xj

∫︂ tl+1

tl
dτ Ci

[︁
τ, x− ∆xj

2 ,
{︁
ui
(︁
τ, x− ∆xj

2

)︁}︁]︁
, (2.96)

18Oftentimes, such equations are also referred to as “convection-diffusion equations”. The semantically correct term
is nevertheless “advection-diffusion equation” because “convection” also includes diffusive processes besides the
transport by bulk motion (advection), see also Ref. [315].
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and the integral over the source term

S̄i[t
l+1, tl, x, {ui}] ≡

1

∆xj

∫︂ tl+1

tl
dτ

∫︂ x
j+1

2

x
j− 1

2

dξ Si[τ, ξ, {ui(τ, ξ)}] , (2.97)

with x ∈ Vj . Considering a system without explicit source terms (Si = 0), Eq. (2.95) with
Eq. (2.96) implies that the change in the cell average ūi(tl+1, x) − ū(tl, x) is given by the
time-integral over the convection flux (2.96) – i.e., the time-integral over the in- and out-flux
at the cell interfaces x± ∆xj

2 . Assuming appropriate closed BCs on the compact spatial volume
V , the spatial integral over the cell averages ūi(t, x) is conserved since change in the individual
control volumes is only possible due to in- or out-flux through the cell interfaces into the
neighboring control volumes – hence the name conservation laws. In a system with closed BCs
changes in the sum/integral over the cell averages ūi(t, x) are only possible due to source/sink
terms Si, which modify the conservation law according to Eq. (2.95) with Eq. (2.97). The
reformulation of Eq. (2.92) in terms of cell averages has several advantages which we will
discuss in the following. Arguably the most important one, which we want to mention right
away, is the fact, that the integral/weak formulation of Eq. (2.95) in terms of cell averages
allows for a proper treatment of discontinuous solutions ui(t, x), which are notorious in the
context of conservation laws.

The solution of Eq. (2.95) – i.e., the explicit computation of Eqs. (2.96) and (2.97) – presents
the central challenge for an explicit FV scheme. Details regarding the explicit resolution and
computation of Eqs. (2.96) and (2.97) are discussed in subsection 2.2.2 and specifically in
subsections 2.2.3–2.2.5 respectively.
A central aspect of each practical FV scheme is an appropriate and informed choice of the

space-time control volumes, which, depending on the scheme and problem at hand, might
change during the time evolution. Given a set of control volumes and a corresponding set of
cell averages ūi(tl, xj) ≡ ūli,j the time evolution to tl+1 ≡ tl +∆t requires the solution of the
Riemann problems at each cell interface. A Riemann problem in this CFD context is the initial
value problem (IVP) related to the time evolution of two initially spatially constant states left
and right of an initial interface, see, e.g., Refs. [315, 317–319, 322, 326–328] for details. Part
of these problems are the fluxes through the cell boundaries. The computation of those fluxes
requires a reconstruction of the values of ui on the cell interfaces located at xj+ 1

2
, which we

denote as uli,j+ 1
2
, from the given set of cell averages ūli,j . This is usually done by means of

a carefully constructed polynomial approximation respecting the given cell averages of the
neighboring cells. The order of the chosen approximation is one of the factors contributing to
the overall spatial order (of the error) of the scheme at hand.
Given the cell averages ūli,j and fluxes through the cell interfaces at t = tl it remains to

solve the Riemann problems at each cell interface. The solution of the Riemann problem
amounts to the exact evaluation of the flux integrals on the r.h.s. of Eq. (2.95). Depending
on the complexity of the underlying conservation equation an exact solution of the Riemann
problems at the cell boundaries might be either impossible or simply not feasible. Most explicit
FV schemes, especially those for general advection-diffusion equations, either use approximate
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Riemann solvers (e.g., the Roe [329] or the HLLE [330, 331] solver) or do not require Riemann
solvers at all (e.g., the KT [167] scheme). For a pedagogic introduction into the broad field
of FV methods and HRSC schemes in general we refer the interested reader to Refs. [315,
317–319, 322, 328] and references therein.
In the following subsection 2.2.2 we will introduce the particular FV scheme, which we have

chosen for its flexibility, efficiency, and relative simplicity.

2.2.2. The KT/KNP scheme and the MUSCL reconstruction

This subsection follows the discussion in Sec. IV.C of Ref. [1] and App. E.1 of Ref. [3] with
slight modifications due to the fact that we want to discuss a system of conservation laws
for {ui(t, x)} instead of a single conservation law for u(t, x).

In this subsection we will summarize the central scheme presented in Ref. [167] by A. Kurganov
and E. Tadmor, which we will refer to in the following as Kurganov-Tadmor (KT) scheme, and
a variant of it introduced in Ref. [168] by A. Kurganov, S. Noelle, and G. Petrova, which
we will refer to in the following as Kurganov-Noelle-Petrova (KNP) scheme. The KT and KNP
scheme differ only in their implementation of the advection flux and we will use the term KNP
scheme in the following only when discussing specifics of this variant. The KT scheme can be
implemented and applied as a black-box solver for systems of the type of Eq. (2.91). Apart from
the PDEs with their initial and boundary conditions the only additional information about the
system required for its solution using the KT scheme are selected eigenvalues of the Jacobian
of the advection term, see Eq. (2.103) and the related discussion. The scheme does not require
a Riemann solver of any kind and as such does not rely on a characteristic decomposition of
the advection flux.
The KT scheme provides a direct method for evaluating the flux integrals on the r.h.s. of

Eq. (2.95). The main focus lies on the treatment and implementation of the flux integrals for
the advection flux Fi[. . .] – specific applications will be discussed in subsection 2.2.3. A careful
treatment of the advection flux Fi[. . .] is imperative when dealing with (non-linear) advection
terms. The diffusion and source terms are treated separately and will be discussed at the end
of this subsection with specific applications in subsections 2.2.4 and 2.2.5.
The KT scheme admits a meaningful tl+1 − tl ≡ ∆t→ 0 limit in the context of Eq. (2.95)

and is thus an improvement on its predecessor: the Nessyahu-Tadmor (NT) scheme [332], with
which it shares its piecewise-linear Monotonic Upstream-centered Scheme for Conservation Laws
(MUSCL) reconstruction [333]. We will focus on the KT scheme in its so-called semi-discrete
from – i.e., in the limit ∆t → 0 – which involves only an explicit spatial discretization. The
KT scheme is formally second-order accurate in the spatial direction and as such an improved
version of the first-order accurate Lax–Friedrichs (LxF) scheme [334, 335]. A semi-discrete form
reduces the PDEs (2.92) or equivalently (2.95) to a set of coupled ODEs, which can be solved
by a large class of general-purpose ODE solvers. This is especially useful when working on stiff
problems or PDE systems coupled to additional ODEs. We will proceed with the introduction
of quantities involved in the semi-discrete form (2.113) of the KT scheme. The following
quantities are especially relevant for the numerical advection flux (2.108).
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Consider a set of volume averages ūli,j at tl based on an equidistant19 grid of volume cells
Vj ≡ [xj− 1

2
, xj+ 1

2
], with ∀j, xj+ 1

2
−xj− 1

2
= ∆x. At the initial time t0 an IC – i.e., the correspond-

ing set of volume averages ū0i,j – has to be provided to initialize the flow. If the IC is provided in
functional form ui(t0, x), the corresponding cell averages ū0i,j should be computed according to
Eq. (2.94). Approximating the averages at t0, e.g., using the midpoint values ū0i,j ≈ ui(t0, xj),
can introduce significant errors – especially when the volume grid is coarse (∆x is large) or
when the IC ui(t0, x) contains significant discontinuities. To prevent such errors we use the
proper cell averages according to Eq. (2.94) either by integrating/averaging the IC ui(t0, x)
symbolically or numerically. The implementation of BCs in the KT scheme will be discussed at
the end of this section after the introduction of some useful nomenclature.
The time evolution of the averages ūli,j at tl to averages at ū

l+1
i,j at tl+1 = tl +∆t on the same

volume grid is a three-step process:

1. The Reconstruction (piecewise-linear MUSCL) is computed from the cell averages:

ũi(t
l, x) =

n−1∑︂

j=0

{︁
ūli,j + (∂xu)

l
i,j (x− xj)

}︁
1[x

j− 1
2
,x

j+1
2
] , (2.98)

where the sum runs over all n volume cells and with the projection operator 1[x
j− 1

2
,x

j+1
2
],

which is one if xj− 1
2
≤ x ≤ xj+ 1

2
and zero otherwise. The reconstruction step is needed

to gain access to the function values ũi(tl, x) and it uses approximations to the exact
derivatives (∂xu)li,j by employing a scalar total variation non-increasing (TVNI)20 recon-
struction [315, 317, 339],

(∂xu)
l
i,j =

ūli,j+1 − ūli,j
∆x

ϕ

(︃
ūli,j − ūli,j−1

ūli,j+1 − ūli,j

)︃
, (2.99)

with a TVNI limiter ϕ(r). An overview of TVNI flux limiters can be found, e.g., on the
web page [340], in Refs. [315, 317], or in Sec. 9.3.1 of Ref. [319]. Here, we follow
Ref. [167] and use the so-called minmod limiter [341]21,

ϕ(r) = max[0,min(1, r)] . (2.100)

The limiter ϕ is used in Eq. (2.99) to limit the slopes during the reconstruction process.
This is crucial to prevent spurious oscillations around discontinuities, e.g., shocks, in

19The generalization of the KT scheme to non-uniform grids is on a conceptual level straightforward and especially
useful for higher-dimensional extensions and for adaptive or moving mesh variants, see, e.g., Ref. [336]. Such
generalizations require a more involved implementation and are not needed in this work. However, in the
context of FRG flow equations this might be relevant for models with multiple condensate directions, see, e.g.,
Refs. [99, 127, 145, 147, 337, 338].

20In literature total variation-diminishing (TVD) is often used as a less precise synonym for total variation non-
increasing (TVNI), cf. Sec. 9.2.2 of Ref. [319]. Throughout this work we will adopt the more precise term total
variation non-increasing (TVNI).

21We also implemented and tested other flux limiters, which however did not influence our numerical results in a
significant manner – thus we restrict our discussions to results obtained with the minmod limiter (2.100). A
problem specific optimization of the choice of flux limiters with regard to numerical performance could be part
of future work.
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high-resolution schemes like the KT scheme. The KT scheme can also be used with
higher-order reconstruction schemes22 to increase the spatial accuracy of the scheme.
When using a piecewise-constant or -linear reconstruction the cell averages ūli,j coincide
with the midpoint values uli,j . While we employ a piecewise-linear reconstruction, we still
maintain the distinction between averages and midpoint values for the sake of clarity.

2. The time step from tn to tl+1 is performed by computing the flux integrals on the r.h.s. of
Eq. (2.95) using the reconstruction ũi(tl, x) from Eq. (2.98) and carefully chosen control
volumes discussed below. In the limit tl+1 − tl ≡ ∆t→ 0 only the expressions for al,−j+ 1

2
,

al,+j+ 1
2
, ul,−i,j+ 1

2
, and ul,+i,j+ 1

2
from Eqs. (2.101) and (2.102) respectively are relevant for the

semi-discrete KT scheme. The other quantities discussed for this second step of the KT
scheme are however necessary to understand the underlying algorithm.
At each cell interface xj+ 1

2
the respective left- and right-sided local speed of propagation

al,∓j+ 1
2
is estimated in the KNP scheme using

al,−
j+ 1

2

≡ max

{︃
λm

[︂{︂
ul,−
i,j+ 1

2

}︂]︂
, λm

[︂{︂
ul,+
i,j+ 1

2

}︂]︂
, 0

}︃
(2.101a)

al,+
j+ 1

2

≡ min

{︃
λ1

[︂{︂
ul,−
i,j+ 1

2

}︂]︂
, λ1

[︂{︂
ul,+
i,j+ 1

2

}︂]︂
, 0

}︃
(2.101b)

with the left- and right-sided intermediate values ul,∓i,j+ 1
2
of ũi(tl, x) at the cell interface

xj+ 1
2
:

ul,−
i,j+ 1

2

= ūli,j +
∆x
2 (∂xu)

l
i,j , (2.102a)

ul,+
i,j+ 1

2

= ūli,j+1 − ∆x
2 (∂xu)

l
i,j+1 . (2.102b)

The original KT variant uses a simplified/balanced estimate for left- and right-sided local
speed of propagation:

al
j+ 1

2

≡ −al,−,KT

j+ 1
2

≡ +al,+,KT

j+ 1
2

≡ (2.103a)

≡ max

{︃
ρ

(︃
∂F

∂u

[︂{︂
ul,+
i,j+ 1

2

}︂]︂)︃
, ρ

(︃
∂F

∂u

[︂{︂
ul,−
i,j+ 1

2

}︂]︂)︃}︃
, (2.103b)

with the spectral radius ρ(M) ≡ maxi |λi(M)|. Eqs. (2.101) and (2.103) include infor-
mation from the eigenvalue spectrum λ1 < . . . < λm of the Jacobian ∂F

∂u . The KT and
KNP scheme are limited to systems with strictly hyperbolic advection fluxes signaled by a
non-degenerate eigenvalue spectrum λ1 < . . . < λm of the Jacobian ∂F

∂u for all x, t, and

22Examples for such improvements are the use of the third-order central weighted essentially non-oscillatory
(C-WENO) reconstruction [342–344] outlined in Ref. [345], the fifth-order WENO scheme (WENO5) [346,
347] employed in Ref. [348], or the fifth-order monotonicity-preserving (MP5) reconstruction [349] used in
Ref. [350].
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u [167, 168]23. For the numerical applications in this thesis, the simple balanced estimate
(2.103) – the KT scheme – has proven to be sufficient for most computations. The slightly
more involved KNP scheme with its more refined estimates (2.101a) and (2.101b) is
primarily used in subsubsection 3.2.5.3. For single-valued conserved quantities u ≡ {u1}
the expressions (2.101) and (2.103) for local speed of propagation simplify significantly.
Details regarding advection phenomena and (hyperbolicity) constraints on advection
fluxes are discussed in subsection 2.2.3.
Using the estimated local speed of propagation, a space-time control volume

[xl
j+ 1

2
,L
, xl

j+ 1
2
,R
]× [tl, tl +∆t] (2.104)

around each cell interface xj+ 1
2
is chosen. The spatial extent corresponds to the domain

which is causally affected by information propagating with the local velocities away
from the cell interface at xj+ 1

2
. The flux integrals of Eq. (2.95) are performed on these

space-time control volumes separately using the midpoint rule to approximate the flux
integrals and leading to averages ω̄l+1

i,j and ω̄
l+1
i,j+ 1

2
based on the new intermediate spatial

grid spanned by the points

xl
j+ 1

2
,L

=xj+ 1
2
+ al,−

j+ 1
2

∆t , (2.105a)

xl
j+ 1

2
,R

=xj+ 1
2
+ al,+

j+ 1
2

∆t . (2.105b)

In the regions [xlj− 1
2 ,R
, xlj+ 1

2 ,L
] the solutions underlying the computed averages ω̄l+1

i,j are
smooth. The solutions underlying the computed averages ω̄l+1

j+ 1
2
based on the regions

[xlj+ 1
2 ,L
, xlj+ 1

2 ,R
] are non-smooth. Details of this step can be found in Refs. [167, 168].

3. The projection: A MUSCL-type piecewise-linear reconstruction based on ω̄l+1
i,j+ 1

2
and ω̄l+1

i,j

is used to project these averages back onto the original uniform grid spanned by xj+ 1
2
.

This results in a fully discrete second-order central scheme, see Eq. (3.9) of Ref. [167]
and Eq. (3.7) of Ref. [168], which gives an algebraic expression for ūl+1

i,j in terms of the
averages

{︁
{ūli,j−2}, {ūli,j−1}, {ūli,j}, {ūli,j+1}, {uli,j+2}

}︁
(2.106)

and {al,±
j± 1

2

}. A pictographic representation of the multi-step evolution procedure with the
involved quantities and grids can be found in Fig. 3.2 of Ref. [167] and the corresponding
Fig. 3.1 of Ref. [168]. The numerical viscosity of this second-order scheme is O(∆x3)
and does not depend on ∆t, which represents the mentioned an improvement when
compared to the ∆t-dependent numerical viscosities O(∆x2/∆t) and O(∆x4/∆t) of the
LxF and NT schemes, respectively [167, 168].

23A further improvement in terms of estimates of local speeds of propagation engineered for non-convex hyperbolic
(systems of) conservation laws is presented in Ref. [348] using further information about the eigensystem of the
Jacobian ∂F

∂u
. When an explicit evaluation of the Jacobian is impossible or unfeasible numerical approximations

can be employed [167, 351, 352]. Throughout this work, however, we employ the exact or symbolic expressions
for the Jacobian.
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The ∆t-independent numerical viscosity allows for a controlled limit ∆t→ 0, in Eq. (2.95),
resulting in a reduction to a practical semi-discrete scheme in conservative form [167], which
can be implemented straightforwardly:

∂tūi,j = −
Hi,j+ 1

2
−Hi,j− 1

2

∆x
+≪2≫ , (2.107)

where≪2≫ denotes the sum of the diffusion and source fluxes. The numerical advection flux
Hi,j+ 1

2
is given by

HKT
i,j+ 1

2

≡
Fi

[︂
t, xj+ 1

2
,
{︁
u+
i,j+ 1

2

}︁]︂
+ Fi

[︂
t, xj+ 1

2
,
{︁
u−
i,j+ 1

2

}︁]︂

2
− aj+ 1

2

u+
i,j+ 1

2

− u−
i,j+ 1

2

2
, (2.108)

for the KT variant and by

HKNP
i,j+ 1

2

≡
a+
j+ 1

2

Fi

[︂
t, xj+ 1

2
,
{︁
u−
i,j+ 1

2

}︁]︂
− a−

j+ 1
2

Fi

[︂
t, xj+ 1

2
,
{︁
u+
i,j+ 1

2

}︁]︂

a+
j+ 1

2

− a−
j+ 1

2

+

+
a+
j+ 1

2

a+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

(︃
u+
i,j+ 1

2

− u−
i,j+ 1

2

)︃
, (2.109)

for the KNP variant. Note that Eq. (2.108) presents as a simplification of Eq. (2.109) when
using the balanced approximation (2.103a) for the left- and right-sided local speed of propa-
gation. This semi-discrete scheme is formally second-order accurate in ∆x and can be used
in conjunction with various ODE time-step algorithms. In this work, we use Mathematica’s
NDSolve [166, 353] and solve_ivp with the LSODA option using an Adams/BDF method with
automatic stiffness detection and switching from the SciPy 1.0 library [354], cf. chapters 3
and 4. Time-stepping has not been a focus of our work and we refer the interested reader to
the excellent Ref. [355] discussing the issue in the context of FRG in detail.
The KT/KNP scheme for a position-independent advection flux is conservative, meaning that

detailed balance at the cell interfaces is maintained. It is also TVNI [315, 317, 339] when used
with appropriate flux limiters like the minmod limiter (2.100). The total variation (TV) [339] –
which is simply the arc length – of the solution u(t, x) is given by

TVi[∂xui(t, x)] ≡
∫︂ x

n− 1
2

x− 1
2

dx |∂xui(t, x)| , (2.110)

on the (computational) interval [x− 1
2
, xn− 1

2
]. On a FV grid, a typical discretized version of

Eq. (2.110) is given by, cf. Refs. [315, 317, 319, 339],

TVi[{ūi,j(t)}] ≡
n−1∑︂

j=0

|ūi,j+1(t)− ūi,j(t)| , (2.111)
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where a first-order forward stencil is used to discretize the first derivative24. (Weak) solutions
of broad classes of hyperbolic and parabolic conservation laws – without source terms – are
TVNI during time evolution when considered on a finite interval, see, e.g., Refs. [315, 326,
339] and especially Ref. [356]: meaning their arc length only decreases. The differences
TV[{ūi(tm)}] − TV[{ūi(tm+1)}] on a discrete trajectory ūi(t) of an admissible solution at
different times separated by one time step ∆t, where tm+1 = tm +∆t, is greater or equal to
zero for all tm, i.e., TV is non-increasing. This TVNI property of discrete weak solutions is an
important guiding principle in the construction of numerical schemes in CFD meant to resolve
shocks and discontinuities, since TVNI schemes do not produce spurious oscillations around
discontinuities. Such spurious oscillations would violate the TVNI property since they would
increase arc-length. The TV will be important for our discussion of numerical entropy and
irreversibility of RG-flows in subsection 3.2.4 and we will also comment on it in subsection 2.2.3
in the context of backward time integration.

Diffusion and source/sink terms
So far we only considered the advection term dxF [. . .] in the discussion of the KT scheme. We
will now turn our attention to diffusion fluxes dxQ[. . .] completing our discussion of convective
contributions. When considering a non-linear diffusion flux dxQi[t, x, {ui(t, x)}, {∂xui(t, x)}]
Eq. (2.91) canmanifest as a strongly degenerate parabolic equation system admitting potentially
non-smooth solutions. In the KT scheme the hyperbolic and parabolic parts of the PDE (2.91)
are treated simultaneously based on the strict splitting between F and Q. Kurganov and
Tadmor [167] presented a discretization of the diffusion flux based on a central-difference
approximation,

Pi,j+ 1
2
= 1

2 Qi

[︂
t, xj ,

{︁
ūi,j
}︁
,
{︁ ūi,j+1−ūi,j

∆x

}︁]︂
+ 1

2 Qi

[︂
t, xj+1,

{︁
ūi,j+1

}︁
,
{︁ ūi,j+1−ūi,j

∆x

}︁]︂
. (2.112)

An alternative second-order discretization, like the one put forward in App. B of Ref. [357],
can also be successfully employed with the KT scheme, cf. Eq. (124) and (125) of Ref. [1]
and the corresponding discussion. We will limit our discussion to results obtained with the
diffusion flux (2.112). Improved KT-type schemes employing higher-order reconstructions
(like, e.g., C-WENO/WENO5 or MP5 [345, 348, 350]) also use higher-order discretizations for
the diffusion flux like the fourth-order one put forward in Eqs. (4.9) and (4.10) of Ref. [345].

The inclusion of source-/sink-terms in the semi-discrete KT scheme is rather simple, but
again relying on a strict separation from the convective terms, cf. Example 9 of Ref. [167]. In
the following we use Si,j as the source/sink contribution to the flow ∂tūi,j of the ith component
in the jth volume cell. The implementation of Si,j is rather problem specific depending on
the explicit structure of the source term Si[t, x, {ui(t, x)}]. For simple u-independent source
terms Si[t, x] symbolically evaluating Eq. (2.97) can be a good choice. For more complicated
u-dependent source terms an approximation based on the midpoint value Si,j = Si[t, xj , {ūi,j}]
can be beneficial. We reserve further discussion of source terms for our explicit application
involving sources/sinks in subsections 2.2.5 and 2.2.6 and especially in subsection 4.2.2.
24Please note that {ūi,j(t)} in the definition Eq. (2.111) of TVi refers to the set of all the ith component cell
averages and not the set of all components in the jth volume cell.
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Semi-discrete form and boundary conditions
To summarize: in full semi-discrete KT scheme the time evolution equation for the ith compo-
nent of the jth cell average is given by

∂tūi,j = −
Hi,j+ 1

2
−Hi,j− 1

2

∆x
+
Pi,j+ 1

2
− Pi,j− 1

2

∆x
+ Si,j , (2.113)

which includes advection, diffusion, and source fluxes. Eq. (2.113) is second-order accurate in
∆x and presents as a FV method-of-lines discretization of the original PDE system (2.91). The
initial cell averages ū0i,j provide the IC for the ODE system (2.113).
The adept reader might immediately point out that this system is underdetermined: at

the jth cell the convection flux depends on the five-point stencil (2.106), which in the first
cell (j = 0) includes {ūi,−2} and {ūi,−1}, while in the last cell j = n− 1 it involves {ūi,n} and
{ūi,n+1}. Those so-called ghost cells formally lie outside the computational spatial domain
V : x− 1

2
≤ x ≤ xn− 1

2
and are centered around x−2, x−1, xn, and xn+1, respectively. Specific

spatial BCs (∂x)ui(t, x)|x∈∂V can be implemented in the KT scheme by an appropriate choice
for the volume averages of those ghost cells. The implementation of BCs using ghost cells is
not unique to the KT scheme and in fact quite common in FV methods, see, e.g., Refs. [315,
317, 322] for a detailed discussion. Using ghost cells is a very flexible and programmatically
simple way to practically implement BCs.
Specific BCs for FRG flow equations are discussed at length in subsubsection 3.2.2.4 in

the main part of this thesis. Additionally we will discuss BCs for canonical examples in
subsections 2.2.3, 2.2.4, and 2.2.6 to conceptualize and facilitate the discussion of BCs for the
FRG flow equations.

Total variation and explicit position- and time-dependent fluxes
At this point we have to remark that the original KT numerical scheme presented in Ref. [167]
was constructed for position- and time-independent convection fluxes. Since we employ the
KT scheme in its semi-discrete form a resolution of potentially highly complicated and non-
linear dynamics in t is possible and ultimately outsourced to the ODE solver. Thus an explicit
t-dependence in Hi,j+ 1

2
and Pi,j+ 1

2
is expected to be unproblematic when using Eq. (2.113).

Explicitly position-dependent advection and diffusion terms on the other hand are more wor-
risome, since they spoil the proper split between advective, diffusive, and source contributions.
By performing the total derivatives in (2.91) to study the equation in its primitive form, cf.
subsections 2.2.3 and 2.2.4, we note that explicit x-dependencies in Fi[. . .] andQi[. . .]manifest
as internal source-/sink-like contributions, see explicitly Eqs. (2.116) and (2.137). Those
internal and also explicit source terms spoil the TVNI property, which will be especially relevant
for subsubsection 3.2.4.3. Defining or constructing an explicit numerical entropy functional
for general non-linear conservation laws is a difficult task, especially when source terms are
involved, see, e.g., Refs. [358–361] and references therein. Similarly explicit u-dependencies
Qi[. . .] lead to advective contributions in primitive form which are not treated on the same
level as the ones stemming from Fi[. . .], cf. again subsection 2.2.4 and Eq. (2.137).
In the scope of this work we could not trace any practical problems back to the explicit

position- and time-dependence of the advection and diffusion fluxes. The comparisons in
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chapter 3 between results obtained from a direct computation of correlation functions using
the generating functional and the results computed using FRG flow equations via the KT scheme
(with t and x-dependent fluxes) can be seen as hard tests for both – the FRG methodology as
well as the (slightly modified) KT scheme – depending on the respective perspective. In total,
the precision of our results for the non-trivial test cases gives us some confidence, that our
approach is generically justified and the KT scheme is suitable for our application throughout
the main part of this thesis.

First-order reduction
An in ∆x first-order accurate reduction of the semi-discrete KT/KNP scheme of Eq. (2.113)
can be obtained by switching from the piece-wise linear MUSCL reconstruction (2.98) to a
piecewise constant reconstruction with (∂xu)li,j = 0 in the numerical advection fluxes Hi,j+ 1

2
.

For explicit expressions we refer to Remark 3 in Sec. 3.1 of Ref. [168], Eq. (4.8) of Ref. [167],
and our explicit implementation in Ref. [325]. To have a consistent order in ∆x for the
convective contributions, the numerical diffusion flux Pi,j+ 1

2
has to be changed to a first-order

accurate one, i.e., for our purposes to the first-order upwind flux

P
O(1)

i,j+ 1
2

=Qi

[︂
t, xj ,

{︁
ūi,j
}︁
,
{︁ ūi,j+1−ūi,j

∆x

}︁]︂
. (2.114)

Implementation
The semi-discrete, method-of-lines FV discretization (2.113) of the KT scheme and the KNP
variant can be implemented in only a few lines of code in most modern programming languages
using list or vector based operations. Its relative simplicity however should not unsettle
the uninitiated: the scheme is almost shockingly powerful as a a black-box solver even for
complicated, non-linear systems (2.91) when paired with a robust ODE time-stepper. Such
time-steppers are available in libraries for most modern programming languages, i.e., NDSolve
for Mathematica [353], solve_ivp from SciPy 1.0 for Python [354], or SUNDIALS [362, 363]
for C++. With the auxiliary file [325] we provide the Mathematica notebook “Computational
fluid dynamic” which includes my latestMathematica-implementation of the KT/KNP scheme.
It includes a completely modular black box solver using compiled functions for performance25.
The auxiliary file [325] includes the numerical computations of the following subsections 2.2.3–
2.2.6. The numerical results in chapter 3 and selected results of chapter 4 were obtained with
older versions of this code [364–366].

2.2.3. Advection and shocks

In this subsection we will discuss the advective contributions to Eq. (2.91), viz. the ones
governed by the advection term dxFi[t, x, {ui(t, x)}]. Focusing on the latter, let us consider the
non-linear system of advection equations

dtui(t, x) + dxFi[t, x, {ui(t, x)}] = 0 , (2.115)
25The performance of a Mathematica implementation with proper low-level compiled functions is on a par with
implementations in C++ and Python using SUNDIALS [362, 363] and solve_ivp [354] respectively.
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which can be brought into primitive form26

∂tui(t, x) +
∂Fi[t, x, {ui(t, x)}]

∂ul(t, x)
∂xul(t, x) = −∂xFi[t, x, {ui(t, x)}] . (2.116)

Eq. (2.116) includes the Jacobian ∂F
∂u
– the matrix of advection speeds – in the actual advection

term ∂Fi
∂ul
∂xul and on the r.h.s. an internal source term −∂xFi[. . .] related to the explicit position

dependency of the advection flux F . In this sense position-dependence of the advection
flux can be understood in terms of additional/internal source terms. Eq. (2.116) or in our
context the flux F itself is understood to be hyperbolic, if the Jacobian/the matrix of advection
speeds ∂F

∂u
is diagonalizable with a set of real eigenvalues λ1 ≤ . . . ≤ λm for all t, x, and

ui(t, x) under consideration. The application of the KT/KNP numerical advection fluxes Hi,j+ 1
2

(2.108)/(2.109) requires strictly hyperbolic systems with a non-degenerate eigenvalue spectrum
λ1 < . . . < λm. When studying only one conserved quantity – not a system of m conserved
quantities {u1(t, x), . . . , um(t, x)} – its conservation equation is hyperbolic if the advection
speed ∂F

∂u
is real and finite for all t, x, and u(t, x) under consideration. For hyperbolic systems

IVPs are well posed [317, 319, 322]. Hyperbolic systems typically describe processes where
information or disturbance are propagated through space-time in a wave-like manner with a
finite advection speed [315, 317, 318, 322, 323], cf. subsubsection 2.2.3.2 for instructive and
canonical examples.
For the remainder of this subsection we will limit our discussion to the single conservation

law

∂tu(t, x) + dxF [t, x, u(t, x)] = 0 , (2.117)

∂tu(t, x) +
∂F [t, x, u(t, x)]

∂u(t, x)
∂xu(t, x) = −∂xF [t, x, u(t, x)] , (2.118)

for u(t, x), which is the relevant scenario for our numerical computations in chapters 3 and 4.
An application to a canonical system of conservation laws, i.e., the Euler equations of ideal
fluid dynamic, will be presented in subsection 2.2.6.

2.2.3.1. Method of characteristics and Rankine–Hugoniot (jump) condition

This subsubsection is based on the first parts of Apps. C and D of Ref. [3].

An important computational tool for quasilinear – i.e., linear in the derivatives ∂tu and ∂xu but
not necessarily linear in u – hyperbolic PDEs of the form (2.118) is the method of characteristics,
cf. Ref. [367] and Refs. [317, 323] for a general overview.
The method of characteristics states that a quasilinear hyperbolic PDE

a(t, x, u) ∂tu(t, x) + b(t, x, u) ∂xu(t, x) = c(t, x, u) (2.119)

26In the FV context the following equation should be understood in integral form (2.95) to avoid any conceptual
and mathematical problems especially when dealing with discontinuities [317, 319, 322].
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presents as a set of ODEs along so-called characteristic curves, which are given by the La-
grange–Charpit equations [367] (also called characteristic equations):

∂t(τ)

∂τ
= a(t(τ), x(τ), u(τ)) , (2.120a)

∂x(τ)

∂τ
= b(t(τ), x(τ), u(τ)) , (2.120b)

∂u(τ)

∂τ
= c(t(τ), x(τ), u(τ)) , (2.120c)

with the curve-parameter τ and ICs

t(τ = 0) = t0 , (2.121a)
x(τ = 0) =x0 , (2.121b)
u(τ = 0) =u0(t0, x0) , (2.121c)

related to the original PDE (2.119). Solving this ODE system yields the functions t(τ), x(τ) and
u(τ), which can be used to extract information about the actual solution of the PDE (2.119) in-
cluding, in some cases, the full solution itself. More details can be found in the textbooks [315,
317, 318, 322, 323, 328] and explicit applications follow in subsubsection 2.2.3.2 and subsec-
tion 3.2.5 as well as in subsubsection 3.2.5.4 and App. D.1.3.3.
Using t(τ), x(τ) and u(τ) one can reconstruct the solution u(t, x) as an implicit solution in

terms of τ . Such a reconstruction however is only valid as long as the characteristic curves t(τ)
and x(τ) do not intersect. If they do, the implicit solution u(t, x) becomes multivalued and the
PDE no longer has a solution in the classical sense [317, 319, 322]. The physical/weak-solution
develops a shock – a discontinuity in u(t, x) – which can only be treated properly using a weak
formulation, e.g., a FV discretization like Eq. (2.95). The speed ∂tξs(t) of such a shock can be
determined with the Rankine-Hugoniot condition [368, 369]

FR(t)− FL(t) = ∂tξs(t)(uR − uL) , (2.122)

where the subscripts R and L denote the state to the right and left of the shock ξs(t), see, e.g.,
Refs. [317, 318, 326, 328] for further details. The characteristic curves on both sides of the
shock run into the shock wave with λ(uL) > ∂tξs(t) > λ(uR).
An instructive example of shock formation is part of subsubsection 2.2.3.2 with our discus-

sion of the Bateman-Burgers equation (2.130) and the phenomenon is further discussed in
subsection 2.2.6 and chapters 3 and 4.

2.2.3.2. Linear and non-linear advection equations

The part of this subsubsection discussing the Bateman-Burgers equation (2.130) includes
material from Sec. III.A and App. A of Ref. [9].

Up to this point our discussion of CFD has been extremely technical with the goal to introduce
relevant nomenclature and the explicit FV method we use for numerical computation, viz. the
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Figure 2.5.: Analytical (solid lines) and numerical solution (dots) to the LAE (2.123) with
IC (2.125a) and open BC (2.126) at different times on the left (a) and relative error (2.127)
between the analytical and numerical solution on the right (b). The solution u−I (0.0, x) has
been computed by numerically evolving {ūI,j(t = 0.4)} back in time to t = 0. The numerical
solution has been computed with the KT scheme using n = 151 volume cells equidistantly
spaced in the interval x0 = 0 and x150 = 1, cf. subsection 2.1.1 of the auxiliary notebook [325].

KT scheme. It is high time to “show some pictures” – discuss and present some applications
of the framework to explicit problems. We will do so using two explicit examples: the linear
advection equation and the non-linear Bateman-Burgers equation.

The linear advection equation
We begin this discussion with an archetypical advection equation, viz. the linear advection
equation (LAE)

∂tu(t, x) + ∂xu(t, x) = 0 , (2.123)

u(t, x) = u(t = 0, x− t) , (2.124)

uI(t = 0, x) = Θ
(︁
x− 1

8

)︁
−Θ

(︁
x− 3

8

)︁
, (2.125a)

uII(t = 0, x) = 1
2
+ 1

2
sin
(︁
2πx

)︁
, (2.125b)

with the linear hyperbolic PDE (2.123), its analytic solution (2.124), and two explicit initial
conditions (2.125a) and (2.125b), which we will use in the following. With F = u(t, x) in the
LAE (2.123), the characteristic speed is constant: ∂F/∂u = 1. The LAE with an IC very similar
to Eq. (2.125a) is also discussed in Sec. 6.1 of Ref. [167] as a standard benchmark problem.
The analytic solution (2.124) follows directly from the method of characteristics, where the
Lagrange–Charpit Eqs. (2.120) can be integrated trivially for the LAE with a = b = 1 and
c = 0, cf. subsubsection 2.2.3.1. According to Eq. (2.124) the LAE simply transports/advects
the IC through the computational domain from left to right with a constant speed of 1 without
changing its initial shape.
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The analytical and numerical solution of the LAE (2.123) with the non-analytic IC (2.125a)
are visualized in figure 2.5a with open BCs implemented in the KT scheme by linear extrapola-
tion for the ghost cells [315, 317, 322], i.e.,

ū−2 = 3ū0 − 2ū1, ū−1 = 2ū0 − ū1 , (2.126a)
ūn = 2ūn−1 − ūn−2, ūn+1 = 3ūn−1 − 2ūn−2 . (2.126b)

From a numerical standpoint, discretizing and evolving the LAE (2.123), especially when
allowing for discontinuous IC like Eq. (2.125a), is quite challenging. Naive discretization
schemes, like FDs, and even more involved global collocation methods are notoriously ill-suited
to tackle this problem [315, 317, 318, 322, 323, 370]. The relative error in L1-norm, i.e., the
sum of all errors divided by the number of volume cells n:

ϵL1(t) =
1

n

n−1∑︂

j=0

|ūj(t)− u(t, xj)| (2.127)

using Eq. (2.124) as reference, is plotted in figure 2.5b. After the uncertainty due to the initial
discretization of the discontinuous IC (2.125a), the error starts to plateau, allowing for a stable
numerical evolution of the discretized initial condition.
The LAE is in theory time-reversible: switching the sign of the advection speed one can

evolve a solution u(t, x) backwards in time without any conceptual difficulties. The simple
linear advection of the IC prescribed by the LAE in an ideal case is free of numerical entropy
production. In practice time-reversal is studied in figure 2.5 by evolving the computed solution
{ūI,j(t = 0.4)} back in time to t = 0 by flowing with a reversed advection speed ∂F/∂u = −1
arriving at a numerical solution {ū−I,j(t = 0)} visualized in green in figure 2.5. We notice
that the relative L1 error grows slowly as we try to reconstruct the IC at t = 0. This is due
to inevitable inaccuracies in time integration and spatial discretion errors. Nevertheless we
recover a solution {ū−I,j(t = 0)} very close to the discretized version of the IC uI(t = 0, x).
The analytical and numerical solution of the LAE (2.123) with the analytic IC (2.125b) are

visualized in figure 2.6a with periodic BCs implemented in the KT scheme by mirroring the
opposite end of the computational interval in the ghost cells27 [315, 317, 322], i.e.,

ū−2 = ūn−3 , ū−1 = ūn−2 , ū0 = ūn−1 , ūn = ū1 , ūn+1 = ū2 . (2.128)

Discretizing the smooth IC (2.125b) even with slightly less volume cells (n = 101 instead of
n = 150 in figure 2.5) the overall error is around an order of magnitude lower when comparing
figures 2.5b and 2.6b. Forward and backward time integration with the KT scheme is possible,
but due to numerical errors we note a visible difference (most notable at x = 0.25 and x = 0.75
in figure 2.6a) between the initial set of volume averages {ūII,j(t = 0)} and the one computed
with backward time integration from t = 0.4 to {ū−II,j(t = 0)}.
27Whether or not to enforce ū0 = ūn−1 depends on the explicit choice of the location of the first and last volume
cell x0 and xn−1. We chose to center both on the respective boundaries of the computational domain and thus
enforce ū0 = ūn−1.
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Figure 2.6.: Analytical (solid lines) and numerical solution (dots) to the LAE (2.123) with
IC (2.125b) and periodic BC (2.128) at different times on the left (a) and relative error (2.127)
between the analytical and numerical solution on the right (b). The numerical solution has
been computed with the KT scheme using n = 101 volume cells equidistantly spaced in the
interval x0 = 0 and x100 = 1, cf. subsection 2.1.2 of the auxiliary notebook [325].

The relative errors in L1 norm, the rate of convergence in the scheme S

rS ≡ ln
(︁ ϵS,i
ϵS,i−1

)︁
/ ln

(︁ni−1

ni

)︁
, (2.129)

and the wall time in seconds for different number of volume cells n = {32, . . . , 1024} for the
first- and second-order KT scheme, cf. subsection 2.2.2, are shown in table 2.2 for the smooth
IC (2.125b). We observe a rather consistent rate of convergence of ∼ 0.97 for the formally
first-order accurate scheme and ∼ 1.89 for the formally second-order accurate scheme. For
this rather simple example we can numerically integrate up to t = 0.4 in under two seconds
using n = 1024 cells and a notebook CPU from 2018.

A non-linear advection equation
So far we discussed the arguably rather simple LAE (2.123). In the following we want to focus
on one particular non-linear but still quasilinear advection equation, viz. the Bateman-Burgers
equation (BBE) [371, 372]

∂tu(t, x) + ∂x
(︁
1
2
u(t, x)2

)︁
= ∂tu(t, x) + u(t, x)∂xu(t, x) = 0 , (2.130)

x(τ) = u(t = 0, τ)t+ τ , (2.131)
u(t, x) = u(t = 0, τ) = u(t = 0, x− u(t, x)t) , (2.132)

u(t = 0, x) = sin
(︁
2πx

)︁
, (2.133)

with the BBE (2.130) and an explicit IC (2.133), which we will use in the following. The BBE
with this IC (2.133) is also discussed in Sec. 6.2 of Ref. [167] as a standard benchmark problem.
Using the method of characteristics with the Eqs. (2.120) and (2.121) yields the non-trivial
characteristic curve (2.131) and in consequence the implicit symbolic solution (2.132) in terms
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Table 2.2.: Relative errors in L1-norm ϵ using Eqs. (2.124) and (2.125b) as reference in
Eq. (2.127), convergence rate r from Eq. (2.129), and wall time tw in seconds for first- and
second-order KT scheme numerical solutions at t = 0.4 of the LAE (2.123) with IC (2.125b)
and periodic BC (2.128) in the interval x0 = 0 and xn = 1 with varying number n of
equidistantly spaced volume cells, cf. subsection 2.1.3 of the auxiliary notebook [325]. The
wall time refers to a single run on an Intel© Core™ i7-8750H processor running up to 6 threads
simultaneously using the auxiliary notebook [325] with Mathematica 13.0.1.0 [166].

KT O(∆x1) KT O(∆x2)

n ϵKTO1 rKTO1 tW (s) ϵKTO2 rKTO2 tW (s)

32 1.43 · 10−1 - 3.96 · 10−3 3.12 · 10−2 - 7.70 · 10−2

64 7.51 · 10−2 0.93 4.96 · 10−3 8.67 · 10−3 1.85 1.48 · 10−1

128 3.84 · 10−2 0.97 1.50 · 10−2 2.38 · 10−3 1.87 1.79 · 10−1

256 1.94 · 10−2 0.98 4.00 · 10−2 6.36 · 10−4 1.90 1.77 · 10−1

512 9.76 · 10−3 0.99 1.60 · 10−1 1.69 · 10−4 1.91 3.81 · 10−1

1024 4.90 · 10−3 1.00 4.43 · 10−1 4.44 · 10−5 1.93 1.32 · 10+0

of the initial condition u(t = 0, x). The analytical and numerical solution of the BBE with
the IC (2.133) are visualized in figure 2.7 including the corresponding characteristic curves.
We observe that the first characteristic curves intersect at x = 1/2 ≡ ξs and t = 1/(2π) ≡ ts,
thus, according to subsubsection 2.2.3.1, a shock forms. Specifically, by means of the Rankine-
Hugoniot condition (2.122), we find a standing shock at ξs(t) = 1/2 for t ≥ 1/(2π). Since
the flow is exactly mirrored around x = 1/2, we observe that the opposing waves annihilate
since they travel at opposite velocity according to ∂F/∂u = u. For times t > ts – after the
shock formation – the implicit solution (2.132) becomes multi-valued, but due to the symmetry
of the problem and the fact that the shock is standing, it is not difficult to reconstruct the
solution for t > ts, cf. section 2.2 of the auxiliary notebook [325]. For 0 ≤ t ≤ ts we use
the implicit solution (2.132) and for t > ts we use the reconstructed solution as reference.
Intuitively (imaging the situation in terms of waves) and for the CFD initiated this example
of shock formation might seem rather natural, but let us make one important mathematical
observation: non-linear advection equations can develop shocks – even if the initial condition
is smooth and even if the advection flux is simple, i.e., for the BBE (2.130) F [u] = 1

2
u2. In turn,

any numerical scheme deployed in practice for non-linear advection equations or equations
involving such non-linear hyperbolic contributions should be able to handle discontinuities in
u(t, x). This simple statement outright disqualifies large classes of methods for PDEs for this
application. Such methods are for example naive finite differences (the large gradients induced
by the shock will destabilize the method-of-lines ODE system) and global collocation methods,
which in principle rely on analyticity or at least smoothness (the shock discontinuity will again
destabilize the ODE system in spectral space due to the Wilbraham-Gibbs phenomenon [286–
288], see, e.g., the textbook [285]). Recall the related discussion of such issues in the context
of truncated flow equations in subsubsection 2.1.4.2.
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Figure 2.7.: Analytical/reconstructed (solid lines) and numerical solution (dots) to the BBE
with IC (2.133) and periodic BC (2.128) at different times on the left (a) and corresponding
characteristic curves on the right (b). The shock position at ξs(t) = 1/2 for t ≥ 1/(2π) is
marked as a black line, the shock formation time is marked as a red-dashed line, and the
constant function value on the characteristics are color coded (yellow for +1, green for 0
and blue for −1) on the right (b). The numerical solution has been computed with the KT
scheme using n = 101 volume cells equidistantly spaced in the interval x0 = 0 and x100 = 1,
cf. section 2.2 of the auxiliary notebook [325].

The shock formation in this example also has implications for the reversibility of non-linear
advection equations. It is well known from the study of non-linear advection equations, see,
e.g., the textbooks [315, 317–319, 326–328], that there is a meaningful notion of numerical
entropy and that its increase is linked to the appearance and/or interaction of discontinuities
like shocks. An increase in numerical entropy signals the irreversibility of the underlying
flow, see, e.g., Refs. [317, 319] for this in the context of non-linear (especially hyperbolic)
conservation laws. It turns out that the TV – arc-length – from Eq. (2.111) can, due to the
TVNI property, be used to define a numeric entropy functional

CTV[{ūj(t)}] ≡ TV[{ūj(0)}]− TV[{ūj(t)}] , (2.134)

which is due to the chosen sign convention only increasing: ∂tCTV[{ūj(t)}] ≥ 0 during time
evolution. The notion of numerical entropy (and TV as a possible candidate for it) is very
important in the study, construction and numerical computation of physical weak solutions of
conservative equations, see, e.g., the textbooks [315, 317–319, 326–328] for further details.
We plot CTV for the current example in figure 2.8a and observe an increase of numerical entropy
in general as expected. However, after shock formation – if only delayed at t ∼ 1.5 – a massive
increase in numerical entropy can be observed, which we identify with a delayed signal of the
shock formation in CTV. Figure 2.8b includes the corresponding relative L1 errors, including
three attempts at backwards time integration. The first one starting exactly at t = 1/(2π) –
the point where the shock forms – and integrating back to t = 0 is comparable to the ones
in figures 2.5b and 2.6b and is successful in reproducing the IC up to an observed accuracy.
The two attempts of starting from t = 1.25/(2π) and t = 2/(2π) fail: the numerical error is
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Figure 2.8.: Numerical entropy CTV for the BBE with IC (2.133) and periodic BC (2.128)
at different times on the left (a) and related relative errors on the right (b). The solid line
corresponds to forward time integration and the three dashed lines in the right figure (b) are
errors of three attempts of backwards time integration starting from t = 1/(2π), t = 1.25/(2π),
and t = 2/(2π) respectively. The numerical solution has been computed with the KT scheme
using n = 101 volume cells equidistantly spaced in the interval x0 = 0 and x100 = 1, cf. section
2.1 of the auxiliary notebook [325].

significantly increased and even more severe since the qualitative features of the IC at t = 0
are not reproduced correctly.
We conclude the discussion of the BBE with remarks on the rate of convergence and errors,

cf. table 2.3. The wall time for the n = 1024 computation in table 2.3 is still below two seconds,
cf. table 2.2, even for this non-linear advection equation. Before the shock at t = 0.5/(2π) we
observe a rate of convergence of ∼ 1.9 for ϵL1 and ∼ 1.3 for ϵL∞ , which quantifies the largest
deviation in the FV grid from the reference solution:

ϵL∞(t) = sup
j
|ūj(t)− u(t, xj)| . (2.135)

After the shock at t = 1.5/(2π) we observe a reduced rate of convergence of ∼ 1.1 for ϵL1 and
no convergence in ϵL∞ , since there are always some outliers directly at the shock front. For a
more refined discussion of errors and scaling post-shock-formation in this scenario we refer the
interested reader to Refs. [167, 373].

2.2.4. Diffusion and the heat equation

Parts of this subsubsection include material from Sec. III.B and App. B of Ref. [9].

In this subsection we will discuss the diffusive contributions to Eq. (2.91), viz. the ones governed
by the diffusive term dxQi[t, x, {ui(t, x)}, {∂xui(t, x)}]. Focusing on the latter, let us consider
the non-linear system of equations

dtui(t, x) = dxQi[t, x, {ui(t, x)}, {∂xui(t, x)}] , (2.136)
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Table 2.3.: Relative errors in L1-norm ϵL1 using Eq. (2.127) and errors in L∞-norm ϵL∞ using
Eq. (2.135) and corresponding convergence rates at t = 0.5/(2π) < ts and t = 1.5/(2π) > ts –
before and after shock formation – between the constructed reference solution and the
numerical solutions obtained with the KT scheme for the BBE (2.130) with IC (2.133) and
periodic BC (2.128) in the interval x0 = 0 and xn = 1 with varying number n of equidistantly
spaced volume cells, cf. subsection 2.2.3 of the auxiliary notebook [325].

t = 0.5/(2π) < ts t = 2.0/(2π) > ts

n ϵL1 r ϵL∞ r ϵL1 r ϵL∞ r

32 6.50 · 10−3 - 2.42 · 10−2 - 2.01 · 10−2 - 2.68 · 10−1 -
64 1.75 · 10−3 1.89 1.04 · 10−2 1.22 9.02 · 10−3 1.16 2.64 · 10−1 +0.02

128 4.59 · 10−4 1.93 4.21 · 10−3 1.30 4.32 · 10−3 1.06 2.68 · 10−1 −0.02
256 1.20 · 10−4 1.93 1.70 · 10−3 1.31 2.16 · 10−3 1.00 2.68 · 10−1 −0.00
512 3.23 · 10−5 1.90 6.88 · 10−4 1.30 1.07 · 10−3 1.01 2.68 · 10−1 +0.00

1024 8.46 · 10−6 1.93 2.79 · 10−4 1.30 3.91 · 10−4 1.45 1.96 · 10−1 +0.46

which can be brought into primitive form

∂tui(t, x)−
∂Qi[. . .]

∂(∂xul)
∂2xul(t, x) =

∂Qi[. . .]

∂ul
∂xul(t, x) + ∂xQi[. . .] . (2.137)

Eq. (2.137) includes the matrix of diffusion coefficients ∂Qi
∂(∂xul)

on the left-hand side (l.h.s.)
in the actual diffusion term ∂Qi

∂(∂xul)
∂2xul and on the r.h.s. an advection term

∂Qi
∂ul

∂xul and an
internal source term ∂xQi related to the explicit u- and x-dependency of the diffusion flux
Q. In this sense position dependency of the diffusion flux can be understood in terms of
additional/internal source terms and dependency on the velocities u manifest as additional
advective contributions. Depending on the application it might be advantageous to separate
those out to integrate them properly in the (numerical) advection flux F (Hi,j+ 1

2
). Eq. (2.137),

or in our context the flux Q itself, is understood to be parabolic, if the matrix of diffusion
coefficients satisfies the (weak) parabolicity condition ∂Qi

∂(∂xul)
≥ 0 for all t, x, and ui(t, x) under

consideration [167]. In the following we will usually refer to this constraint using the more
descriptive term: positivity of diffusion coefficient(s). The numerical KT diffusion flux (2.112)
Pi,j+ 1

2
is applicable to such diffusion fluxes. Diffusive systems fulfilling the (weak) parabolicity

condition typically have well posed IVPs, if suitable boundary conditions are supplied [167,
320, 374, 375]. Parabolic systems typically describe diffusive/dissipative processes which
involve a smoothing of information through space-time with formally infinite propagation
speeds28 [319, 320, 324].
28This infinite speed of information propagation can be studied with the fundamental solution (heat kernel) of
the heat Eq. (2.138): a point-like heat source spreads out like a Gaussian function. This implies that, even
after an infinitesimal time-step, the effect of the heat source is felt in the entire computational domain. Albeit
only exponentially suppressed at large distances, this still formally constitutes a propagation of information at
infinite speed. For details, see, e.g., Chap. 5 of Ref. [320] and Sec. 6.5 of Ref. [319] for a comment on this in
the context of relativistic hydrodynamics.
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Parabolic PDEs describe inherently irreversible processes from a CFD point of view: time
reversal for a parabolic PDE amounts to forward time integration with a negative diffusion
coefficient. Such a process of reverse diffusion – transport towards regions of higher concentration
– amplifies existing gradients in u(t, x) without any limit. In a practical numerical computation
any discretization errors (to an extent present in all discretization schemes with a finite number
of cells) get amplified throughout the computational domain and introduce rapidly growing
spurious oscillations making time reversal practically impossible. This is again linked to the
aforementioned concept of numerical entropy, which in parabolic systems grows as the arc
length of solutions decreases. The latter can be intuitively linked to the dissipative nature of
parabolic systems: gradients get smoothed out resulting in a reduction of arc length.

The heat equation
In the following we will limit our discussion to one archetypical parabolic diffusion equation,
viz. the heat equation (HE) [376]

∂tu(t, x) = ∂2xu(t, x) (2.138)

in its mathematical form, see, e.g., the textbooks [314, 315, 317] for additional details. In
physics this equation can be used to study heat diffusion and goes back to Joseph J. B. Fourier’s
seminal work [376]: Théorie analytique de la chaleur on the topic from 1822. When using it in
this context u(t, x) would be a temperature distribution T (t, x) and the r.h.s. of Eq. (2.138)
would include a dimensionful, positive diffusion coefficient α, called the thermal diffusivity
of the medium, i.e., α = 111mm2/s for copper at 25°C [377]. In order to define a well-posed
IVP for the HE (2.138) it is imperative to specify BCs. In the following we will study the
HE (2.138) with two different boundary conditions (2.139b) and (2.140b) while using the
identical ICs (2.139a) and (2.140a).
Setting Dirichlet BCs by fixing the values of u(t, x) on the boundaries of the computational

domain (x−1/2 and xn−1/2) amounts to connecting the HE with a heath bath:

uI(t = 0, x) = 1 + 1
2
cos(π x) , (2.139a)

uI(t, x−1/2) =
3
2
, uI(t, xn−1/2) =

1
2
, (2.139b)

uI(t, x) =
3
2
− x+

∞∑︂

n=1

2 sin(2nπ x)

(2nπ) ((2n)2 + 1)
e−(2nπ)2 t , (2.139c)

⇒ uI,e(x) ≡ lim
t→∞

uI(t, x) =
3
2
− x . (2.139c′)

Choosing Neumann BCs by fixing the derivatives ∂xu(t, x) to zero on the boundaries of the
computational domain amounts to isolating BC – preventing any in- or out-flow of heat into or
out of the computational domain:

uII(t = 0, x) ≡ uI(t = 0, x) = 1 + 1
2
cos(π x) (2.140a)

∂xuII(t, x)|x=x−1/2
= ∂xuII(t, x)|x=xn−1/2

= 0 (2.140b)

uII(t, x) = 1 + 1
2
cos(π x) e−π2 t (2.140c)

⇒ uII,e(x) ≡ lim
t→∞

uII(t, x) = 1 . (2.140c′)
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Figure 2.9.: Semi-analytical (solid lines) and numerical solution (dots) to the HE (2.138)
with identical ICs (2.139a)/(2.140a), Dirichlet BC (2.139b) on the left (a), and Neumann
BC (2.140b) on the right (b) at different times. The numerical solution has been computed
with the KT scheme using n = 101 volume cells equidistantly spaced in the interval x0 = 0
and x100 = 1, cf. section 2.3 of the auxiliary notebook [325].

The specific Dirichlet BCs (2.139b) are readily implemented in our FV scheme by choosing

ū−2 =
3
2
, ū−1 =

3
2
, ūn = 1

2
, ūn+1 =

1
2
, (2.141)

for the ghost cells. While the Neumann BCs (2.140b) are realized by choosing

ū−2 = ū0 , ū−1 = ū0 , ūn = ūn−1 , ūn+1 = ūn−1 . (2.142)

The semi-analytical/symbolic solutions (2.139c) and (2.140c) can be computed using a sepa-
ration ansatz and employing a Fourier/heat kernel expansion [9, 376], see, e.g., Sec. 8.3 of
Ref. [324]. Resulting flows for both problems are visualized in figure 2.9. Using the numerical
diffusion flux (2.112) from subsection 2.2.2 we are able to reproduce the semi-analytical
reference solutions (2.139c) and (2.140c). We can observe how the flows approach their
respective equilibrium solutions (2.139c′) and (2.140c′) at late times. Eq. (2.139c′) describes
a constant temperature gradient between the two heat baths left and right of the computation
domain, while Eq. (2.140c′) describes a constant temperature distribution which is solely
determined by the heat/energy of the IC. Even though we study the same PDE with identical
ICs uI(t = 0, x) = uII(t = 0, x), we observe completely different behavior based on the two
distinct BCs. This highlights the imperative importance of BC for convection and especially
parabolic equations.
We conclude the discussion of the HE with remarks on the rate of convergence and errors, cf.

table 2.4. The wall time for the n = 1024 computation in table 2.4 is almost six seconds, cf.
table 2.2. Somewhat curiously we observe a convergence rate of basically 1, even though we
are technically using a four-point stencil based on Eq. (2.112), cf. subsection 2.2.2, for which
one would expect second-order accuracy. This highlights the fact that the practical rate of
convergence is rather problem specific in numerical applications of the KT scheme.
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Table 2.4.: Relative errors in L1-norm ϵL1 using Eq. (2.127) and errors in L∞-norm ϵL∞ using
Eq. (2.135) and corresponding convergence rates at t = 0.25 between the semi-analytical
solutions and the numerical solutions obtained with the KT scheme for the HE (2.138) with
BCs (2.139b) and (2.140b) in the interval x0 = 0 and xn = 1 with varying number n of
equidistantly spaced volume cells, cf. subsection 2.3.3 of the auxiliary notebook [325].

Dirichlet BC (2.139b) – Heat bath Neumann BC (2.140b) – Isolating

n ϵL1 r ϵL∞ r ϵL1 r ϵL∞ r

32 1.56 · 10−2 - 3.03 · 10−2 - 4.48 · 10−3 - 7.73 · 10−3 -
64 7.81 · 10−3 1.00 1.54 · 10−2 0.98 2.14 · 10−3 1.06 3.73 · 10−3 1.05

128 3.90 · 10−3 1.00 7.75 · 10−3 0.99 1.05 · 10−3 1.03 1.83 · 10−3 1.03

256 1.95 · 10−3 1.00 3.89 · 10−3 0.99 5.19 · 10−4 1.02 9.08 · 10−4 1.01

512 9.76 · 10−4 1.00 1.95 · 10−3 1.00 2.58 · 10−4 1.01 4.52 · 10−4 1.01

1024 4.88 · 10−4 1.00 9.76 · 10−4 1.00 1.29 · 10−4 1.00 2.26 · 10−4 1.00

2.2.5. Sources and the heat equation

At this point we only want to comment briefly on the inclusion of explicit source terms. We
will do so by including the explicit source term

S(x) = sin(πx) (2.143)

on the r.h.s. of the HE (2.138) and by studying the two examples introduced in the previous
subsection 2.2.4. In the case of Dirichlet BC (2.139b) it is possible to construct a semi-analytic
solution

uIS(t, x) =
3

2
− x+

1− e−π2 t

π2
sin(πx) +

∞∑︂

n=1

2 sin(2nπx)

(nπ) ((2n)2 − 1)
e−(2nπ)2 t , (2.144a)

⇒ uIS,e(t, x) ≡ lim
t→∞

uI(t, x) =
3

2
− x+

1

π2
sin(πx) , (2.144b)

by first computing an equilibrium solution uIS,e(t, x) ≡ limt→∞ uIS(t, x) and then solving
the homogeneous system with the established Fourier methods by considering perturbations
around uIS,e(t, x), cf. section 2.4 of the auxiliary notebook [325]. For the isolating Neumann
BC (2.140b) such a construction is not possible, since there is no equilibrium solution – the
continuous heating in the isolated computational interval leads to a steady increase in u(x, t).
Results from the KT scheme with the source term (2.143) naively discretized in the volume cells
by its midpoint value, cf. subsection 2.2.2, are shown in figure 2.10. Figure 2.10a also includes
the semi-analytical solution (2.144a), which we are able to reproduce with our numerical
scheme. For large times the equilibrium solution (2.144b) is approached in figure 2.10a, while
figure 2.10b displays a continuously rising but flattening temperature distribution.
A detailed discussion of sinks and sources in the context of our research can be found in

subsection 4.2.2.
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Figure 2.10.: Solutions to the HE (2.138) with ICs (2.139a),(2.140a), Dirichlet BC (2.139b)
on the left (a), and Neumann BC (2.140b) on the right (b) at different times including the
source (2.143). The numerical solution has been computed with the KT scheme using n = 101
volume cells equidistantly spaced in the interval x0 = 0 and x100 = 1, cf. section 2.4 of the
auxiliary notebook [325].

2.2.6. Euler equations – the KT scheme showing its MUSCLes

To conclude our discussion of CFD and the KT scheme we want to present one more involved
example of advection equations, viz. the system of Euler equations [378]

∂t

⎛
⎜⎝
ρ(t, x)
µ(t, x)
ϵ(t, x)

⎞
⎟⎠+ ∂x

⎛
⎜⎝

µ(t, x)
p(t, x) + ρ(t, x)v(t, x)2

v(t, x)(p(t, x) + ϵ(t, x))

⎞
⎟⎠ =

⎛
⎜⎝
0
0
0

⎞
⎟⎠ , (2.145)

including the derived quantities pressure p = (γ − 1)(ϵ− ρ
2
v2) = ρRsT and velocity v = µ/ρ.

The vector of conserved quantities u⃗ = (ρ, µ, ϵ)⊤ includes the mass density ρ, the momentum
density µ, and the energy density ϵ. The Euler Eqs. (2.145) describe the advective evolution
of an inviscid, compressible, adiabatic, i.e., ideal, fluid in one spatial x and one temporal t
dimension. They are based on the conservation of mass, momentum, and energy and are
frequently used in CFD to construct challenging benchmark problems for numerical schemes.
One established problem is the so-called Sod shock tube problem [380] which is a specific

Riemann problem for the Euler Eqs. (2.145): an as one-dimensional idealized tube is considered
with two constant states u⃗L and u⃗R, separated at initial time t0 = 0 by an diaphragm/burst-disc.
At the begin of the computation at t = 0+ this diaphragm is considered to be instantaneously
removed and a pure Riemann problem is simulated. The computational domain (time) typically
under consideration is large (short) enough such that explicit boundary conditions are not
required, since the dynamics do not reach the spatial computational boundary. Following
Example 5 of Sec. 6.3 of Ref. [167], we will consider a computational domain stretching from

2.2. Conservation laws, hydrodynamics, and the finite volume method 67



0.0 0.5 1.0

x (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

u
i(
t,
x

)

(a)

2.5 ρ(0 s, x)

2.5 ρ(0.1644 s, x)

0.0 0.5 1.0

x (m)

(b)

5µ(0 s, x)

5µ(0.1644 s, x)

0.0 0.5 1.0

x (m)

(c)

ε(0 s, x)

ε(0.1644 s, x)

Figure 2.11.: Semi-analytical (solid lines) and numerical solutions (dots) of the Sod shock
tube problem (2.146) for the Euler Eqs. (2.145), with density on the left (a), momentum
density in the middle (b), and energy density on the right (c) at t = 0.1644 s with the initial
condition at t = 0 as reference (dashed lines). The semi-analytical solution has been obtained
using an exact Riemann-Solver [326, 379]. The numerical solution has been computed with
the KT scheme using n = 201 volume cells equidistantly spaced in the interval x0 = 0 and
x200 = 1m, cf. subsection 2.5.2 of the auxiliary notebook [325].

x0 = 0 to xn−1 = 1m up to a time of t = 0.1644 s with the two constant initial states

u⃗L =

⎛
⎜⎝
1.0 kgm−3

0 kgms−1

2.5 Jm−3

⎞
⎟⎠ , u⃗R =

⎛
⎜⎝
0.125 kgm−3

0 kgms−1

0.25 Jm−3

⎞
⎟⎠ , (2.146)

separated at x = 0.5m and assuming an adiabatic index of γ = 1.4. A numerical solution
obtained with the KT scheme and the semi-analytical solution obtained using an exact Riemann-
Solver [326, 379] is shown in figure 2.11. We observe a shock wave traveling into the dilute
right half of the tube, which is followed by a contact discontinuity. A rarefaction fan is spreading
into the denser left half of the tube. We observe that the KT scheme is able to reproduce this
complicated dynamic with several extreme discontinuities perfectly (to given accuracy based
on the employed spatial discretization, i.e., number of volume cells) without any spurious
oscillations or under/over shooting around the discontinuities.

To illustrate the dynamic inside such a shock tube further we adapt a Sod shock tube
problem, in parts motivated by Ref. [381], to study a more realistic scenario. We consider
a tube of 20 meters, filled with dry air (adiabatic index γ = 1.4 and specific gas constant
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Rs = 0.287 · 103 Jkg−1K−1 [382]), and the two constant states

u⃗L =

⎛
⎜⎝

1.177 kgm−3

0 kgms−1

2.533 · 105 Jm−3

⎞
⎟⎠ , u⃗R = 0.1u⃗L =

⎛
⎜⎝
1.177 · 10−1 kgm−3

0 kgms−1

2.533 · 104 Jm−3

⎞
⎟⎠ , (2.147)

separated at x = 10m. The IC (2.147) is constructed to have a pressure of one standard
atmosphere pL = 101, 325Pa = 1 atm at room temperature of TL = 299.852K in the left half of
the tube. The pressure in the right half of the tube is decreased by 90% to pR = 0.1pL = 0.1 atm
while the temperature is still TR = TL = 299.852K. This amounts to an adiabatic speed of
sound of cs ≃ 347ms−1 in both halves. Overall we are considering a system which has units and
magnitudes which we are accustomed to in our day-to-day life – far away from the extremes of
high-energy physics with temperatures in excess of 1010 K and densities well above 1017 kgm−3.
We now want to study the time evolution with this IC from t = 0 up to t = 60ms assuming
reflective boundary conditions at the edges of the computational interval x− 1

2
= −0.025m and

xn− 1
2
= 20.025m, which for the Euler Eqs. (2.145) can be implemented by choosing

ūi,−2 = ciūi,1 , ūi,−1 = ciūi,0 , ūi,n = ciūi,n−1 , ūi,n+1 = ciūi,n−2 , (2.148)

for the ghost cells with ci = 1 for i = 1 and i = 3 (ρ and ϵ) and ci = −1 for i = 2 (µ) [383].
We visualize the solution of this physical shock tube problem in figure 2.12 as a set of six

density plots (including contour lines). We plot only two primitive, conserved quantities: ρ and
ϵ in figures 2.12a and 2.12f and four derived quantities. Note that the momentum density –
the missing primitive, conserved quantity – is simply given by the product of density and
velocity µ = ρv, the latter is plotted in figure 2.12c. Pressure and temperature in figures 2.12b
and 2.12d follow from the ideal gas law p = (γ − 1)(ϵ− ρ

2
v2) = ρRsT , while the (adiabatic)

speed of sound in figure 2.12e follows from c2s = (∂p/∂ρ)s = γp/ρ = γRsT . At the beginning
of time evolution we recognize the dynamics of the Sod shock tube problem: a rarefaction fan
travels to the left while a contact discontinuity and a shock wave travel to the right. Here the left
edge of the rarefaction fan travels into the denser left half with a velocity of vrl ≃ −347ms−1

at the speed of sound. The right edge of the rarefaction fan travels at only vrr ≃ −5ms−1. The
contact discontinuity is driven into the dilute right half with a substantial subsonic velocity
of vcd ≃ 285ms−1 while velocity and pressure stay constant across it. The shock travels at
a supersonic velocity of vs ≃ 558ms−1 towards the right wall. The dilution, i.e., adiabatic
expansion of the gas, due to the rarefaction fan, cools the left half. The gas in the region
between the contact discontinuity and the shock front gets compressed and heated by the
shock. The latter hits the right wall at t ≃ 17.9ms and the rarefaction fan hits the left wall at
t ≃ 28.8ms. They both get reflected leading to a complicated interaction between the shock
and the contact discontinuity at t ≃ 25.9ms and an interaction within the rarefaction fan at
t≳28.8ms. The computation with the KT scheme using n = 401 volume cells, hence solving a
method-of-lines ODE system of 401× 3 = 1203 equations, takes 24 seconds on a single thread
of an Intel© Core™ i7-8750H processor using our latest Mathematica code [325].
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Figure 2.12.: Numerical solution of the physical shock tube problem (2.147) for the Euler
Eqs. (2.145) with reflective BCs (2.148) from t = 0 to t = 60ms. For plotting the density ρ
in (a), the pressure p in (b), and the energy density ϵ in (f) we use the canonical ’jet’ color
map [56]. For plotting the velocity v in (c), the temperature T in (d), and the speed of sound
cs in (e) we use the ’coolwarm’ color map [56] diverging non-linearly around the respective
initial values. The rarefaction fan is marked with ➀, the contact discontinuity with ➁, the
shock wave with ➂, and the reflected shock wave with ➃. The numerical solution has been
computed with the KT scheme using n = 401 volume cells equidistantly spaced in the interval
x0 = 0 and x400 = 20m, cf. subsection 2.5.3 of the auxiliary notebook [325].
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Navier-Stokes equations and gravity
The Euler Eqs. (2.145) can be extended to include the effects of gravity by adding a simple
source term, see, e.g., Refs. [384–387]. A further extension to include viscous effects by means
of a diffusion term incorporating the effects of thermal conductivity and bulk viscosity29 leads
to a generalization of the Euler Eqs. (2.145) to the one-dimensional Navier-Stokes equations,
see, e.g., Refs. [388–390], which in a constant gravitational field read

∂t

⎛
⎜⎝
ρ
µ
ϵ

⎞
⎟⎠+ ∂x

⎛
⎜⎝

µ
p+ ρv2

v(p+ ϵ)

⎞
⎟⎠ = ∂x

⎛
⎜⎝

0
λ∂xv

λv∂xv + κ∂xT

⎞
⎟⎠+

⎛
⎜⎝

0
−gρ
−gµ

⎞
⎟⎠ , (2.149)

including the gravitational acceleration g, bulk viscosity coefficient λ, and thermal conductivity
coefficient κ. Eq. (2.149) is a system of non-linear advection-diffusion-source equations and
in this sense similar to the differential equations discussed in the main part of this thesis,
cf. chapters 3 and 4. While the Navier-Stokes equations (of course including the practically
relevant applications in three dimension) are numerically well under control in the field of CFD,
there are still open mathematical questions regarding their structure and solutions – notably
the unsolved Navier–Stokes existence and smoothness problem [391] stated as one of the seven
Millennium Prize Problems. This is the second, cf. chapter 1, time we reference one of these
problems. Explicit additional numerical computations with the KT scheme and Euler/Navier-
Stokes equations with and without gravitational sources can be found at the end of the auxiliary
notebook [325]. We will not discuss these here, apart from the note, that the shock tube
problems of this subsubsection are completely advection dominated: the relatively low bulk
viscosity λ = 1.846 · 10−5kgm−1s−1 and thermal conductivity κ = 2.624 · 10−2Jm−1s−1K−1 of
air [382] lead to diffusive contributions which are several orders of magnitude smaller than
the advective ones.

2.3. Quantum chromodynamics and low-energy effective theories

At his point we want to give a brief overview and introduction into quantum chromodynamics
(QCD) as the established fundamental, microscopic theory of the strong interaction. The
purpose of this introduction is to facilitate the introduction of the quark-meson (QM) model
as a natural LEFT of QCD, in subsection 2.3.3. In this work we are mainly focused on chiral
symmetry and its spontaneous breaking and subsequent restoration at non-zero temperature
and quark chemical potential by quantum and thermodynamic fluctuations.
A complete and self-contained introduction to QCD in general and in the context of FRG

is far beyond the scope of this work. For a more detailed discussion, we refer to, e.g., the
textbooks [177, 392–395] and Refs. [80, 97, 109, 209, 222, 226, 227, 230, 231, 237, 308,
396–398] in the context of FRG.
This section has a corresponding digital auxiliary file [399], which includes some compu-

tations and plots for the PCAC relation (2.168) and the running coupling in Eq. (2.160) of
29In this context also referred to as dynamic or absolute viscosity.
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Table 2.5.: Properties and quantum numbers of the quarks and gluons of QCD, see, e.g., Chap.
15. Quark Model of Ref. [36] for additional details. The values for the massesM with their
experimental uncertainties are from Ref. [36]. Details regarding the definition and potential
renormalization (mass-independent subtraction scheme, viz. MS) of the different masses are
included in Ref. [36]. The listed quantum numbers are spin S, baryon number B, electric
charge Q in units of the elementary charge e, the third-/z-component of the isospin I3, and
I(JP ) – isospin I, total angular momentum J (here for elementary particles equal to their
spin: J = S), and conventional, intrinsic parity P . The quarks have corresponding anti-quarks
with identical masses and spins but otherwise quantum numbers of opposite sign and they
carry anti-colors in 3̄. The gluons are considered to be massless in QCD but experimentally “A
mass as large as a few MeV may not be precluded” [36, 400].

Name Symbol M (MeV/c2) S B Q (e) I3 I(JP ) colors in

up u 2.16+0.49
−0.26

1
2

1
3

+ 2
3

+ 1
2

1
2

(︁
1
2

+)︁
3

down d 4.67+0.48
−0.17

1
2

1
3

− 1
3
− 1

2
1
2

(︁
1
2

+)︁
3

strange s 93.4+8.6
−3.4

1
2

1
3

− 1
3

0 0
(︁
1
2

+)︁
3

charm c 1270+20
−20

1
2

1
3

+ 2
3

0 0
(︁
1
2

+)︁
3

bottom b 4180+30
−20

1
2

1
3

− 1
3

0 0
(︁
1
2

+)︁
3

top t 172,690+300
−300

1
2

1
3

+ 2
3

0 0
(︁
1
2

+)︁
3

gluon g 0 1 0 0 0 0
(︁
1−
)︁

8

subsection 2.3.2. Furthermore it includes the diagrammatic expressions (2.172′), (2.174), and
(2.178) of subsection 2.3.3, making use of the functionalities of our Mathematica code [299].

2.3.1. Quantum chromodynamics

QCD is a non-Abelian gauge theory of massive, spin- 1
2
fermions called quarks, which exist in

Nf = 6 distinct flavors – up, down, strange, charm, bottom, and top – and each flavor can
come in one of Nc = 3 colors – refereed to as red, green, and blue in loose analogy to the colors
perceived by humans. In QCD, the gauge group SU(Nc) = SU(3) is obtained by promoting
the color charge to a local symmetry. The massless, spin-1 gauge bosons of QCD are called
gluons and mediate the strong interaction of quarks as color charged quanta of the gauge
field. A major difference between QCD, as a non-Abelian SU(3) gauge theory, and an Abelian
gauge theory, like quantum electrodynamics (QED), which has an U(1) gauge symmetry, is
that gluons in QCD carry color charge. This allows them to interact not only with quarks but
also among themselves, in stark contrast to photons in QED, which carry no electric charge
and hence cannot self-interact. Masses and quantum numbers for quarks and gluons can be
found in table 2.5 and will be explained further in the following.
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Quarks, gluons, six flavors, and three colors
Historically quarks as elementary particles were first introduced as part of the quark model
devised by Murray Gell-Mann [12] and George Zweig [13, 14], see, e.g., Chap. 15. Quark
Model of Ref. [36] for additional details, to explain the large number of diverse hadrons
being discovered in maturing collider experiments in the 1950s and continuing through the
1960s. The preceding organization scheme – the “Eightfold Way” – to classify hadrons by
Murray Gell-Mann [10] and Yuval Ne’eman [11] follows naturally from the quark model. The
original quark model introduces a SU(3) flavor symmetry by postulating that hadrons are
composed of three types – flavors – of quarks: up, down, and strange. Mesons are understood
as quark-anti-quark bound states by coupling quarks in the fundamental representation 3 of
flavor SU(3) with anti-quarks in the complex conjugate representation 3̄ to form a nonet of
meson. The latter can be decomposed into a singlet in trivial representation 1 and an octet in
adjoint representation 8, i.e., 3⊗ 3̄ = 8⊕ 1. Baryons are understood as bound states of three
quarks.
In the early days of the quark model it was soon realized, first by Oscar W. Greenberg [18],

that the construction of the antisymmetric wave function required by the Pauli exclusion
principle/spin-statistic theorem [401–403] was problematic for certain baryons, like the spin
S = 3

2
baryon ∆++. Nine months later, Moo-Young Han and Yoichiro Nambu suggested the

existence of a hidden degree of freedom [19], which they originally called SU(3)’ – from a
modern point of view the concept of three colors was born. It took a few years until 1972
when William Bardeen, Harald Fritzsch, and Murray Gell-Mann [20] established color as the
charge of the strong force, which completely commutes with all other charges. At this point it
was possible to understand and construct the antisymmetric wave function of baryons as fully
antisymmetric in color and symmetric in the combination of flavor, spin, and space, allowing for
a decomposition in flavor as 3⊗3⊗3 = 10S⊕8M ⊕8M ⊕1A. This allows for a classification of
spin- 3

2
baryons (like, e.g., Delta resonances∆++, . . . ,∆−) in the flavor symmetric decuplet 10S .

Light spin- 1
2
baryons (most notably protons and neutrons) and heavy spin- 1

2
baryons (excited

states or resonances, like, e.g., the Roper resonance N(1440)1/2+) are mixtures of both octets
8M with mixed flavour symmetry.
Those developments were driven and in some cases verified by a multitude of high-energy

particle physics experiments, see, e.g., Ref. [35] for a review of deep inelastic scattering
experiments and Refs. [30–34] for information on three-jet events, which in conjunction
with aforementioned theoretical advances established the up, down, and strange quark as
fundamental particles and the gluon as mediator of the strong force. Recent experimental
data [36] put the masses of the three “light” flavors up, down, and strange at mu ≈ 2MeV,
md ≈ 5MeV, and ms ≈ 93MeV, cf. table 2.5.
Today the quark model and QCD also include the three heavy quark flavors. The charm quark

(mc ≈ 1.27GeV [36]) was theorized by James Bjorken and Sheldon Glashow [15] (1964)
and Sheldon Glashow, John Iliopoulos, and Luciano Maiani [16] (1970) and experimentally
discovered with the J/ψ meson by Samuel Ting et al. [25] (1974) at BNL and Burton Richter
et al. [26] (1974) at SLAC. The third generation of bottom (mb ≈ 4.18GeV [36]) and top
(mt ≈ 172.69GeV [36]) heavy quark flavors was theorized by Makoto Kobayashi and Toshihide
Maskawa [17] (1973). The bottom quark was experimentally discovered by Leon M. Lederman
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et al. [27] (1977) at Fermilab and the top quark was experimentally discovered by the CDF [28]
and DØ [29] collaborations (1995). Quantum numbers for the heavy quarks are listed in
table 2.5.

The classical action of QCD
QCD as a QFT, as we would recognize it today, was developed by Harald Fritzsch, Heinrich
Leutwyler, and Murray Gell-Mann [21] in 1973 using the gauge theory developed by Chen
Ning Yang and Robert Mills [47] (1954) – the special case of a SU(3) Yang–Mills (YM) theory,
see also Ref. [404]. In the following we want to give a brief overview of QCD as a QFT.

The classical action of QCD in Euclidean space-time is given by

S0
QCD[Ã, ψ̃,

˜̄ψ] ≡
∫︂

x

(︃
1

4
F a
µνF

a
µν +

˜̄ψ(γµDµ + m̂− γ4µ̂)ψ̃
)︃
, (2.150)

using the conventions and compact notations of App. B. In the following we will use ψ̃(x) ≡ q(x)
and ˜̄ψ(x) ≡ q̄(x) to denote the fundamental quark fields and Ã(x) for the gauge fields. Equa-
tion (2.150) includes the mass matrix m̂ and the matrix of µ̂, which allow for different quark
masses mf and chemical potentials µf for each flavor. By construction the action (2.150) is
invariant under local SU(Nc) = SU(3) gauge transformations U(x) ∈ SU(Nc) with

U(x) = exp(iθa(x)T
a) , (2.151)

with theN2
c−1 = 8 generators of the Lie groupSU(Nc) = SU(3) in fundamental representation,

cf. App. B.3.
Quark (anti-quark) fields are in the (conjugate) fundamental representation of the gauge

group and thus transform as

ψ̃(x) ↦→ U(x)ψ̃(x) , (2.152a)
˜̄ψ(x) ↦→ ˜̄ψ(x)U †(x) . (2.152b)

The quarks are minimally coupled to the gluons, which are elements of the Lie algebra su(Nc)
of SU(Nc), by introducing the covariant derivative

Dµ(x) = ∂µ − igÃµ(x) , (2.153)

with the dimensionless gauge coupling g.
Gluons Ãµ(x) ≡ Ãaµ(x)T̃

a are in the adjoint representation of the gauge group and thus
transform as

Ãµ(x) ↦→ U(x)Ãµ(x)U †(x) +
i

g
U(x)

(︁
∂µU †(x)

)︁
, (2.154)

where the last term is crucial to maintain gauge invariance of the kinetic term of the quarks.
The field strength tensor F a

µν of Eq. (2.150) is given by and transforms as

F a
µν(x) = ∂µÃ

a
ν(x)− ∂νÃaµ(x) + gfabcÃbµ(x)Ã

c
ν(x) , (2.155a)

F a
µν(x) ↦→ U(x)F a

µν(x)U †(x) . (2.155b)
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Quantization, gauge fixing, and gauge invariance
In the spirit of section 2.1 we would now like to quantize the classical action (2.150) using the
functional integral, i.e., the partition function (2.4). Naively one would be tempted to make use
of the FS formalism and treat gauge fields as ordinary scalar fields. This leads to two problems.
The first one is that the regulators employed in the FRG break gauge invariance by construction,
since they enter as momentum-dependent mass terms, cf. Eq. (2.7) and subsubsection 2.1.4.1.
This issue is not inherent to the FRG: the underlying idea of Wilson’s RG approach is not gauge
invariant. Naively integrating out fluctuations momentum shell by momentum shell breaks
gauge invariance. The second, arguably even more pressing issue is, that it is impossible to
compute the propagator, cf. Eq. (2.27), for the gauge field Gk;AA, because the inversion of the
Γ,AAk – on a classical level/in the UV of S0,AA

QCD – is not possible due to the transverse nature of
the gluon two-point function. This again is not inherent to the FRG: this problem is a general
problem in the quantization of gauge theories using a functional integral.
The underlying technical issue is, that the functional integral includes contributions from an

infinite number of degenerate configurations due to the gauge invariance. It is necessary to
remove those redundant gauge configurations – called gauge orbits – to ensure a well-defined
integration over the gauge field space. This is usually realized by fixing a gauge to limit the
functional integral to physically differing gauge field configuration by means of the Faddeev-
Popov method, developed by Ludvig Faddeev and Victor Popov [405] (1967) in their study
of YM theories. Details regarding this procedure can be found in textbooks, e.g., Refs. [177,
392–395], and in the context of FRG in, e.g., Refs. [97, 222, 226, 227, 230, 231, 237, 396, 398]
and we do not want to go into further detail here, but rather present a resulting gauge-fixed
action for QCD. In covariant Lorenz gauge ∂µÃµ = 0 the gauge fixed action for QCD, including
scalar, Grassmann-valued Faddeev–Popov ghosts c̃ and ˜̄c, is given by

SQCD[Ã, c̃, ˜̄c, ψ̃,
˜̄ψ] ≡

∫︂

x

(︃
1

4
F a
µνF

a
µν +

˜̄ψ(γµDµ + m̂− γ4µ̂)ψ̃+

+ ˜̄ca(∂µD
ab
µ )c̃b +

1

2ξ
(∂µÃ

a
µ)(∂µÃ

a
µ)

)︃
, (2.156)

with

∂µD
ab
µ = ∂µ∂µδ

ab − igfabc∂µÃ
c
µ , (2.157)

and where the gauge fixing term 1
2ξ
(∂µÃ

a
µ)

2 can be used to realize different variants of covariant
Lorenz gauge, e.g., Landau gauge (ξ = 0) or Feynman gauge (ξ = 1). The ghost (anti-ghost)
fields are introduced during gauge fixing and are transforming under the adjoint representation
of SU(3) as

c̃a(x) ↦→ Uab(x)c̃b(x) , (2.158a)

˜̄ca(x) ↦→ ˜̄cb(x)
(︁
U †)︁ba(x) , (2.158b)

under gauge transformations Uab(x) = (exp(iθc(x)T̃
c))ab. The gauge fixed action (2.156) and

its field content is suited for studies using the perturbative RG and the non-perturbative FRG.
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We will discuss results and application of both in the following subsections 2.3.2 and 2.3.3, but
before that we have to comment on the issue of gauge invariance.

Ensuring gauge invariance, at the very least in the IR, is crucial in order to obtain meaningful
results for observables in QCD. In the context of the FRG, the topic is exceptionally complicated,
yet equally important. Since we will not perform computations within QCD itself, a detailed
discussion of the topic is beyond the scope of this work. We will only introduce the relevant
jargon and provide some exemplary references suited as sources for further relevant material.
The Becchi-Rouet-Stora-Tyutin (BRST) formalism can be used to extend the classical notion

of gauge invariance to the quantum level. BRST symmetry transformations combine gauge
transformations with transformations involving ghost fields leading to the notion of BRST
invariance as a quantum analog to classical gauge invariance. Slavnov-Taylor identities (STIs)
carry the information of BRST symmetry transformations on an infinitesimal level. They can be
seen as generalization of Ward-Takahashi identities, e.g., known from QED, and they are crucial
for ensuring the consistency/gauge invariance after renormalization. In the FRG approach,
the Slavnov-Taylor identities are modified (mSTI) to account for the scale-dependent terms
introduced by the FRG procedure. For details we refer to Sec. VII.B of Ref. [222] and Sec. 5.2.1
of the review [231]. Alternative approaches to ensure gauge invariance with gauge-invariant
flows in the background field formalism or using geometrical effective actions are discussed in
Secs. VII.C.1 and 2 of Ref. [222] and Sec. 5.2.3 of the review [231].

2.3.2. Asymptotic freedom, confinement, and chiral symmetry (breaking)

The gauge fixed action SQCD of Eq. (2.156) is suitable for direct computations and the first
theoretical result we want to discuss the now seminal perturbative computation [66, 67] of
the running coupling of QCD for which David J. Gross, H. David Politzer and Frank Wilczek
were awarded the Nobel Prize in Physics in 2004.

Asymptotic freedom
Using the Callan-Symanzik equations [252, 254, 255] and perturbation theory to one-loop
order, Gross, Politzer, and Wilczek computed the running coupling of QCD – i.e., the change of
the strong coupling g with RG scale µ and momentum transfer Q for massless quarks:

∂g

∂ ln(Q/µ)
≡ β(g) = − g3

(4π)2

(︃
11

3
Nc −

2

3
Nf

)︃
. (2.159)

Details regarding this computation can be found in the original publications [66, 67], the
textbooks [177, 392–395] and the review [406]. The first term in Eq. (2.159) proportional to
Nc is due to gluons, while the second term is associated with the quarks. Neglecting the first
term for a moment, the beta function turns positive and we encounter a situation reminiscent of
QED – β(e) = e3/(12π2), where the coupling strength increases for larger momentum transfers
and conversely the coupling strength decreases for larger distances. This can be understood by
a screening of electric charges due to the polarization of the vacuum by virtual electron-positron
pairs. The situation in QCD however is different: at the physical point (Nc = 3 and Nf = 6)
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the QCD beta function (2.159) is negative (for Nc = 3 this would be the case for Nf < 17).
This implies, that the coupling strength decreases for larger momentum transfers – conversely
the coupling strength increases for larger distances. The self-interacting gluons of QCD, as a
non-Abelian gauge theory, have an anti-screening effect: virtual gluons in vacuum augment
color charges at larger distances. For large momentum transfers g approaches zero and QCD
becomes a free/non-interacting theory, i.e., it is asymptotically free. Asymptotic freedom has
been identified as a prominent property of non-Abelian gauge theories in general [68].
Gross, Politzer, and Wilczek received their Nobel prize for “the discovery of asymptotic freedom

in the theory of the strong interaction”, which in the context of the running coupling of QCD, is
the very notion that its coupling strength decreases with increasing momentum transfer as

αs(Q) ≡ g(Q)2

4π
=

2π(︁
11
3
Nc − 2

3
Nf

)︁
ln(Q/ΛQCD)

, (2.160)

where we integrated Eq. (2.159) with g(µ) = g and introduced the characteristic scale ΛQCD,
which manifests in Eq. (2.160) as the position of the Landau pole of the running coupling. The
characteristic scale ΛQCD is RG-scheme-dependent, but a typical value is ΛMS

QCD ≈ 340MeV for
Nf = 3 [406]. Perturbative computations (today available to much higher-order in perturbation
theory, e.g., N3LO) are paired with experimental measurements to measure the running
coupling of QCD, see, e.g., Sec. 9.4 and Fig. 9.3 of Ref. [36] for an overview of recent
results. The latest final world average value for the strong coupling at Q = MZ ≈ 91GeV is
αs(MZ) = 0.1179(9) according to Eq. (9.25) of Ref. [36].
The running of the strong coupling in Eq. (2.160) predicts a weakly coupled (asymptotically

free) regime for large momentum transfers/energies – the aforementioned QGP – but also a
strongly coupled, non-perturbative regime with αs(Q) > 1 for Q≲680MeV from the running
coupling (2.160) with ΛMS

QCD = 340MeV for Nf = 3. The latter regime is not accessible with
perturbative methods.

Color confinement
The effect of confinement – the absence of color charged particles in vacuum and at low
temperatures and densities – has been mentioned a few times already. In its ground state QCD
only contains color neutral composites like mesons, baryons, or more exotic composites like
tetraquarks or glueballs. In this paragraph we want to briefly comment on order parameters
and measures for confinement.
In pure YM theory at non-zero temperature the Polyakov loop [407] can serve as an order

parameter for confinement. It is defined as the Wilson loop that winds around the compactified
Euclidean temporal extent

P (x⃗) ≡ 1

Nc
TrcP exp

(︃∫︂ β

0

dτ Ã4(x⃗, τ)

)︃
, (2.161)

with the path-ordering operatorP in terms of τ and the fluctuating quantum field Ã4(x⃗, τ).
The expectation value L(x⃗) of the Polyakov loop P (x⃗) is commonly used as an order parameter
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for confinement with

L(x⃗) ≡ ⟨P (x⃗)⟩
{︄
= 0 , in the confined phase,
> 0 , in the deconfined phase

. (2.162)

A non-zero expectation value L(x⃗) signals a spontaneous breaking of the center group Z3 of the
gauge group SU(3), implying confinement in the pure YM gauge theory. The expectation value
⟨P (x⃗)P †(y⃗)⟩ is proportional to exp(−βVqq̄(|x⃗− y⃗|)), with the static quark-anti-quark potential
Vqq̄(r), up to thermally suppressed corrections due to exited states. The expectation values in
Eq. (2.162) can be linked to the expectation values of the gauge field A4 = ⟨Ã4⟩ in a non-trivial
manner: L[A4]. As a consequence of confinement the transversal gluon propagator develops
a physical mass gap, explaining the name Yang-Mills & The Mass Gap problem [69], and the
ghost propagator gets enhanced [408–410]. Additional details can be found in Refs. [97, 98,
411–416] and in references therein.
The confinement of dynamical quarks in the FRG and model computations is usually modeled

by a statistical confinement in terms of a Polyakov loop potential, see, e.g., Refs. [80, 99,
109, 396, 417–421] and references therein. We will elaborate on this a bit further in the next
subsection 2.3.3.

Chiral symmetry (breaking)
In our discussion of QCD so far we focused on the field content and SU(Nc) gauge symmetry.
Assuming vanishing quark masses and zero temperature the Euclidean action of QCD, cf.
Eq. (2.156), has a multitude of additional symmetries:

• (Euclidean) Poincaré symmetry including rotations and translations,

• conformal symmetry, since the action SQCD of Eq. (2.156) is free of any scales,

• discrete symmetries – like charge conjugation C, parity P , (Euclidean) time reversal T
and the usual combined symmetries CP and CPT , and

• chiral symmetry.

Non-zero temperature breaks Euclidean Poincaré invariance down to spatial rotations and
translations and discrete translations in Euclidean time, due to the compactification of the
Euclidean time direction and the accompanying (anti-)periodic boundary conditions. Further
details, especially regarding the discrete symmetries in Euclidean space-time, can be found in
Ref. [422]. Quantum and thermodynamic fluctuations break conformal symmetry as scales
like µ, T , ΛQCD, and physical mass gaps enter the problem or dynamically emerge. We will
devote the rest of this paragraph to the chiral symmetry of QCD.

For massless quarks, i.e., in the chiral limit, the action/Lagrangian of QCD, cf. Eq. (2.156), is
invariant under global

U(Nf )L ⊗ U(Nf )R ≃ U(Nf )V ⊗ U(Nf )A (2.163)
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transformations, where L and R refer to left- and right-handed quark components ψ̃L/R (Weyl
spinors) which are defined as

ψ̃L ≡ ψ̃− = γ−ψ̃ =
1

2
(1− γch)ψ̃ , (2.164a)

ψ̃R ≡ ψ̃+ = γ+ψ̃ =
1

2
(1+ γch)ψ̃ , (2.164b)

cf. Eqs. (B.80) and (B.81) and the accompanying brief discussion of chirality in App. B.6. The
U(Nf )V transformation in Eq. (2.163) does not distinguish between quarks of differing chirality
(θV = θL = θR), while U(Nf )A acts oppositely (θA = θL = −θR) on left- and right-handed
quarks. Here θL/R/A/V refers to the parameters of the corresponding transformations

U(Nf )L : ψ̃L ↦→ eiθ
i
Ltiψ̃L, ψ̃R ↦→ ψ̃R,

˜̄ψL ↦→ ˜̄ψLe
−iθiLti , ˜̄ψR ↦→ ˜̄ψR , (2.165a)

U(Nf )R : ψ̃L ↦→ ψ̃L, ψ̃R ↦→ eiθ
i
Rtiψ̃R,

˜̄ψL ↦→ ˜̄ψL,
˜̄ψR ↦→ ˜̄ψRe

−iθiRti , (2.165b)

U(Nf )V : ψ̃L ↦→ eiθ
i
Vtiψ̃L, ψ̃R ↦→ eiθ

i
Vtiψ̃R,

˜̄ψL ↦→ ˜̄ψLe
−iθiVti , ˜̄ψR ↦→ ˜̄ψRe

−iθiVti , (2.165c)

U(Nf )A : ψ̃L ↦→ e−iθiAtiψ̃L, ψ̃R ↦→ eiθ
i
Atiψ̃R,

˜̄ψL ↦→ ˜̄ψLe
iθiAti , ˜̄ψR ↦→ ˜̄ψRe

−iθiAti , (2.165d)

with i ∈ {0, 1, 2, 3}. The transformations in Eq. (2.165) can be formulated on the level of the
Dirac spinors ψ̃ and ˜̄ψ using the projection operators γ± and γch in the exponents. Note that
U(Nf )A lacks closure and is thus not a group by itself, but the combination U(Nf )V ⊗ U(Nf )A
constitutes a group in the sense of Eq. (2.163).
In nature, i.e., at the physical point, the chiral symmetry (2.163) is only an approximate

symmetry for the light quark flavors and we will limit our discussion in the following to the
two light flavors up and down. Up to irrelevant Z2 phase factors the groups U(Nf = 2)A/V
may be decomposed further leading to

U(2)L ⊗ U(2)R ≃ U(2)V ⊗ U(2)A ≃ SU(2)V ⊗ SU(2)A ⊗ U(1)V ⊗ U(1)A . (2.166)

The U(1)V symmetry is, according to Noether’s theorem [423, 424], associated to the
conservation of baryon number

QV =

∫︂

V3

d3x
(︂
˜̄ψLγ4ψ̃R + ˜̄ψRγ4ψ̃L

)︂
, (2.167)

with the associated density n = QV/V3, cf. App. C.1. The quark chemical potential µ is
introduced as a Lagrange multiplier to study the physically relevant systems with quark-anti-
quark-asymmetry, i.e., non-zero quark number density n.
The U(1)A symmetry is anomalously broken on quantum level [425–428] by topologically

non-trivial gauge configurations, viz. instantons [429, 430]. On a technical level this anomalous
symmetry breaking is related to the fact, that the measure of the functional integral used for
quantization is not invariant under U(1)A transformations. For a discussion of this phenomenon
in the FRG context, see, e.g., Ref. [431]. The anomalous breaking ofU(1)A in QCD has important
phenomenological implications: it explains the η − η′ mixing [432–436] and is involved in the
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resolution of the partially conserved axial current (PCAC) puzzle of the electromagnetic decay
π0 → γγ [427], see, e.g., Secs. 8.3.6.2 and 9.3.4 of Ref. [393] for additional details.
The SU(2)V symmetry, i.e., the isospin symmetry, remains unbroken as long as one assumes

equal masses for the quarks. Since the difference in the masses of the up and down quark
is rather small with md − mu ≈ 2.5MeV when compared to typical scales of QCD, e.g.,
ΛMS

QCD ≈ 340MeV, SU(2)V isospin symmetry is an approximate symmetry at the physical point.

The SU(2)A symmetry, i.e., “the” chiral symmetry, is the part of chiral symmetry (2.166) we
are primarily focused on. When discussing chiral symmetry breaking (χSB) in the following we
are referring to the spontaneous breaking of the SU(2)A symmetry. The symmetry is explicitly
broken at the physical point by the non-vanishing masses of the up and down quark, but
since they are rather small, again when compared with other characteristic scales of QCD,
SU(2)A chiral symmetry is an approximate symmetry of QCD in the UV – on the classical
level. The slight, explicit breaking of SU(2)A chiral symmetry together with observations in
the electroweak sector of the standard model inform the PCAC hypothesis:

⟨0|∂µJach;µ(x)|πb(q)⟩ = −fπm2
πδ

abe−iq·x , (2.168)

with the axial current Jach;µ = ˜̄ψγµγ
chtaψ̃, the pion mass mπ and the pion decay constant

fπ ≈ 93MeV [36], see, e.g., Refs. [393, 437] for further details. These observations are
confronted with the experimental hadron spectrum of strongly interacting matter, which
does not reflect axial symmetry. The 1−(0−) isovector, pseudoscalar pions are significantly
lighter than their chiral partner the 0+(0+)30 isoscalar, scalar σ-meson f0(500)31 – 135MeV
compared to 400 − 550MeV [36]. The same holds for other chiral partners, e.g., for the
1−(1+) isovector, axialvector mesons a1(1260) and the 1+(1−) isovector, vector mesons ρ(700) –
1230MeV compared to 775MeV [36].
The resolution of this potentially rather serious tension in the standard model comes in the

form of spontaneous SU(2)A chiral symmetry breaking (χSB). This phenomenon is analogous
to magnetization and superconductivity in condensed matter physics and in the context of QCD,
or more precisely the nucleon model, it was introduced in 1961 by Yoichiro Nambu and Giovanni
Jona-Lasinio with their seminal works [64, 65] using their now famous Nambu-Jona-Lasinio
(NJL) model. Yoichiro Nambu was awarded the Nobel Prize in Physics in 2008 for “the discovery
of the mechanism of spontaneous broken symmetry in subatomic physics”32. While the action of
QCD and the NJL model exhibit SU(2)A chiral symmetry (in the chiral limit mu = md = 0),
their respective ground states do not. Quantum fluctuations lead to the dynamical formation
30In the following we will use the IG(JP )-notation for mesons with isospin I, G-parity, total angular momentum
J , and parity P , see, e.g., Ref. [36].

31The experimentally observed f0(500) 0+(0+) resonance is likely a superposition of multiple components, includ-
ing possible contribution from exotic states like tetraquarks and glueballs. However, recent research suggests,
that f0(500) is indeed primarily the scalar σ meson, see, e.g., the review [438].

32The 2008 Nobel prize committee denied Giovanni Jona-Lasinio the same recognition due to the limitation that a
maximum of three individuals can share a prize for not more than two discoveries or achievements [439]. The
other two recipients were Makoto Kobayashi and Toshihide Maskawa for their work on the CKM matrix, with
Nicola Cabbio suffering the same fate as Giovanni Jona-Lasinio. Giovanni Jona-Lasinio gave the Nobel lecture in
Yoichiro Nambu place upon Nambu’s request as a recognition of Jona-Lasinio’s contribution [440].
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of a chiral condensate ⟨q̄q⟩ ∝ ⟨σ⟩ ≠ 0 signaling a breaking of SU(2)A chiral symmetry with the
pions as corresponding Nambu-Goldstone bosons [441, 442] and σ as the massive radial mode.
Pions gain their small mass – become pseudo Nambu-Goldstone bosons – due to the small
explicit SU(2)A chiral symmetry breaking caused by the small light quark mass. This allows
for small pion masses and PCAC in accordance to Eq. (2.168), while providing an explanation
for the hadron spectrum of strongly interacting matter: the non-zero chiral condensate and
the related substantial spontaneous χSB is responsible for the higher masses of the σ meson,
a1(1260), and the nucleons for that matter.
We will discuss the mechanism of χSB and its restoration at higher temperatures due to

thermodynamic fluctuations further in chapter 5 and its analog in the (1+1)-dimensional GN
model in chapter 4.

2.3.3. χSB and the emergence of LEFTs from QCD

In this subsection we want to give a concise introduction of the emergence of low-energy
effective theories, viz. the QM model, from QCD within the framework of FRG, see, e.g.,
Refs. [80, 97, 109, 162, 209, 237, 249, 396, 397, 443] for further details. For the following
discussion we closely follow and summarize Refs. [80, 109] with small modifications to adapt
our notation and limitation to Nf = 2 in the chiral limit mu = md = 0.

In this subsection we will discuss the following EAA for gauge fixed QCD

Γ
QCD

k [χ] ≡
∫︂

x

(︃
LA[A, c, c̄] + L∆A[A] + Lψ̄ψ[A,ψ, ψ̄] +

+ L(ψ̄ψ)2 [ψ, ψ̄] + Lψ̄ψφ[φ,ψ, ψ̄] + Lφ[φ] + LV [A,φ]
)︃
, (2.169)

LA[A, c, c̄] ≡
1

4
F a
µνF

a
µν + Zc;kc̄

a(∂µD
ab
µ )cb +

1

2ξ
(∂µA

a
µ)(∂µA

a
µ) , (2.170a)

Lψ̄ψ[A,ψ, ψ̄] ≡ Zψ;kψ̄(γµDµ − γ4µ)ψ , (2.170b)

L(ψ̄ψ)2 [ψ, ψ̄] ≡ −λψ;k
(︂(︁
ψ̄t0ψ

)︁2
+
(︁
ψ̄ iγcht⃗ψ

)︁2)︂
, (2.170c)

Lψ̄ψφ[φ,ψ, ψ̄] ≡ hkψ̄
(︁
t0φ0 + iγchtaφa

)︁
ψ ≡ hkψ̄

(︁
φiτ

i
)︁
ψ , (2.170d)

Lφ[φ] ≡
1

2
Zφ;k

(︁
∂µφ

)︁2
, (2.170e)

LV [A,φ] ≡ Vk(ϱ,A4) ≡ Vglue;k(A4) + Vmat;k(ϱ,A4) , (2.170f)

with the running wave-function renormalizations Zc;k, Zψ;k, and Zφ;k, the running four-fermi
coupling λψ;k, the running Yukawa coupling hk, the effective self-interaction potential Vk(ϱ,A4),
and the RG-scale-dependent, non-classical contributions L∆A[A] to the gauge sector, viz. the
gluon two-point function, cf. Eq. (39) and Eq. (48) of Ref. [80] and Ref. [109] respectively for
Nf = 2 in the chiral limit. In Eq. (2.170c) we introduced the triple of SU(Nf = 2) generators
t⃗ ≡ (t1, t2, t3) and further the four-component array τ ≡ (1γt0, iγ

cht⃗ ) in Eq. (2.170d).
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The multi component composite mean-field χ contains the fundamental mean-fields χf :
A = ⟨Ã⟩, c = ⟨c̃⟩, c̄ = ⟨˜̄c⟩, ψ = ⟨ψ̃⟩, ψ̄ = ⟨ ˜̄ψ⟩ and the anti-quark-quark composite mean-field
φ = ⟨ϕ̂k[χ̃f ]⟩ ≡ (φ0, π1, π2, π3). The related O(4) invariant is ϱ ≡ 1

2
φ2. As composite mean-

fields the components of φ are generated via dynamical hadronization, as we will elaborate
later in this subsection.
LA[A, c, c̄] and Lψ̄ψ[A,ψ, ψ̄] include the classical contributions from the gauge-fixed action

SQCD of Eq. (2.156), while L∆A[A] incorporates non-classical contributions. For details regard-
ing the gauge sector we refer the interested reader to especially Secs. III.B, III.C, and IV.B of
Ref. [80], which includes the here omitted definitions in Eqs. (54)-(60) for the gauge sector
and the involved scale-dependent couplings.
LV [A,φ] includes the effective self-interaction potential Vk(ϱ,A4), which depends on the

O(4) invariant ϱ and the expectation value of the Euclidean temporal gauge field A4 = ⟨Ã4⟩,
which is closely related to the expectation value of the Polyakov loop L[A4], cf. subsection 2.3.2.
The expectation values ϱ = 1

2
φ2
0 and A4 (L[A4]) serve as order parameters for χSB and the

confinement-deconfinement phase transition respectively, cf. subsection 2.3.2 and Secs. III.F,
V.A., and V.D of Ref. [80].
Inserting the ansatz (2.169) into the Wetterich Eq. (2.33) for general scale-dependent mean-

fields yields

d

dt
Γk[χ] = ∂t|χΓk[χ] + Γ

,φ

k [χ] ∂tφ =
1

2

(︁
∂tR

;mn
k

)︁
Gk;nm[χ] +R;φφ

k Gk;φl[χ]
δ∂tφ

δχl
. (2.171)

The flow of the EAA of QCD includes contributions

1

2
Gk;nm[χ]∂tR

;mn
k =

1

2
Gk;φφ[χ]∂tR

;φφ
k +

1

2
Gk;AA[χ]∂tR

;AA
k −

−Gk;cc̄[χ]∂tR
;cc̄
k −Gk;ψψ̄[χ]∂tR

;ψψ̄
k , (2.172)

=
1

2
+

1

2
− − , (2.172′)

from fluctuating composites, gluons, ghosts, and quarks. Using various projections and evaluat-
ing Eq. (2.171) on the QEOM, it is possible to derive flow equations for all RG-scale-dependent
couplings of the ansatz (2.169), see Refs. [80, 109] for details and the corresponding flow
equations. Solutions to the QEOM

χEoM = χ ≡ (φ,A, c, c̄, ψ, ψ̄) (2.173a)
= ((σ, 0, 0, 0), (0, 0, 0, A4), 0, 0, 0, 0) , (2.173b)

withA4 and φ0
≡ σ as the only, homogeneous, non-vanishing expectation values are considered.

This allows a study of both the confinement-deconfinement and the chiral phase transition.
The flow is initialized at an UV initial scale of Λ = 20GeV with the only input being the strong
coupling constant αs,Λ and parameters for the explicit chiral symmetry breaking due to quark
masses, see Tab. I of Ref. [80] for details.
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Four-fermi couplings, dynamical hadronization, and χSB
During the RG-scale evolution from the UV to the IR, the four-fermi interactions of L(ψ̄ψ)2 [ψ, ψ̄]
in Eq. (2.170c) get generated by quark-gluon interactions λψ,k ∝ α2

s,k and get enhanced once
generated by mixed terms λψ,k ∝ λψ,kαs,k and λψ,k ∝ λ2ψ,k:

∂tλψ,k = ∂t = ∂̃t

(︄
1

2
+ . . .+

1

2
+ . . .+

1

2
+ . . .

)︄
, (2.174)

where we used the RG time derivative ∂̃t which acts only on regulators, cf. Eq. (2.71) and the
corresponding discussion.
In principle all four-fermi interaction channels with SU(Nc = 3)⊗SU(2)R⊗SU(2)L⊗U(1)V

symmetry are generated, which forNf = 2 corresponds to a Fierz-complete set of ten four-fermi
channels, see, e.g., Refs. [209, 249, 262, 444–446] and Sec. III.A and App. B of Ref. [109].
In this work we will focus solely on the σ − π (0+(0+) isoscalar, scalar − 1−(0−) isovector,
pseudoscalar) channel, which is crucial for the dynamics of χSB. Studies including the Fierz-
complete set of four-fermi couplings have shown, that the σ−π channel dominates the dynamics,
especially in the chiral limit for Nf = 2 and µB/T ≲6 [80, 209, 446]. It should be noted at this
point, that especially at high chemical potentials and low temperatures (µB/T ≳6) diquark and
vector-meson channels gain importance [80, 209, 262, 445, 446]. Diquark condensation and
color superconductivity, see, e.g., Refs. [59, 61] for details, become very relevant for the phase
structure of strongly interacting matter at high chemical potentials, cf. figure 1.1. The interplay
between inhomogeneous phases and color superconductivity might play an important role for
χSB, see, e.g., Refs. [337, 447–451]. That being said, we will focus solely on σ − π channel in
this work.
As the strong coupling increases towards lower RG-/momentum-scales, cf. Eq. (2.160), four-

fermi interactions become the dominant mode of interaction. Mainly diagrams λψ,k ∝ α2
s,k, cf.

the first diagram in Eq. (2.174), lead to a shift of the dynamics from quark-gluon interactions
towards quark-anti-quark scatterings. This will be discussed further in the next paragraph.
The σ − π channel eventually becomes resonant at kχ ≈ 500MeV, signaling condensation

and χSB in the σ−π channel. When considering a momentum-independent four-fermi coupling
λψ,k, this condensation is signaled by a diverging λψ,k as k → kχ. The formation of a chiral
condensate and χSB can be studied either by considering momentum-dependent four-fermi
couplings, see, e.g., Sec. III.A of Ref. [109] for an overview, or by bosonizing the channel.

In the latter approach the four-fermi channel gets bosonized by means of a Hubbard-
Stratonovich (HS) transformation [452, 453], replacing the four-fermi interaction on a technical
level by a Yukawa-type [454] interaction of the form (2.170d), cf. Eq. (4.3) ff. for an explicit
bosonization of the GN model. The complicated momentum-dependence of the resonant
higher-order quark-anti-quark scatterings gets resolved elegantly in terms of meson exchanges.
In the FRG such a bosonization can be implemented neatly and RG-scale-dependently by

means of dynamical hadronization [80, 237, 249]: dynamical meson fields ϕ̂k are introduced
as quark-anti-quark composites in the generating functional (2.4) with corresponding source
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terms Ĵϕϕ̂k. As such they are pure auxiliary fields and their introduction does not spoil any IR
observables: when evaluating the EAA in the IR on the QEOM, i.e., Ĵϕ = 0, one in fact recovers
the original EA of gauge fixed QCD

ΓQCD[χf ] = Γk=0[φEoM[χf ], χf ] . (2.175)

The composites are however extremely useful to study χSB and to elegantly extract related
correlation functions. The RG-scale-dependent hadronization relation, cf. Eq. (2.32), employed
for ϕ̂k:

⟨∂tϕ̂k⟩k;J = ∂tφk ≡ Ȧkψ̄τψ + Ḃkφ , (2.176)

can be considered as a successive bosonization of the quark-anti-quark channel, see Sec. II.A
of Ref. [80] for further details including subtleties regarding explicit chiral symmetry break-
ing. The so-called hadronization function Ȧk controls the overlap between the composites
and the quark-anti quark channel. The hadronization function Ḃk affects the wave-function
renormalization Zφ. Both Ȧk and Ḃk can be chosen freely to implement specific hadronization
prescriptions. In Ref. [80] Ḃk = 0 is chosen and the renormalized and rescaled hadronization
function ̇̄Ak ≡ Ȧkk2Z1/2

φ;k /Zψ;k is fixed by completely bosonizing the four-fermi interaction at
all scales by enforcing

∀k λ̄ψ;k ≡
k2

Z2
ψ;k

λψ;k
!
= 0 . (2.177)

Diagrammatically this choice entails for the flow of the four-fermi coupling

∂t = ∂̃t

(︄
1

2
+ . . .+

1

2
+ . . .+

1

2
+ . . .

)︄
, (2.178)

where the diagrams ∝ λ2ψ,k and ∝ λψ,kαs,k from Eq. (2.178) vanish due to the hadronization
constraint (2.177). Further details and explicit flow equations can be found in Sec. III.E and
the corresponding App. L of Ref. [80].
This complete bosonization of the four-fermi coupling entails, that the complete dynamics

of the σ − π channel is encoded using the effective hadronic composites. The emergent
four-fermi coupling is on a computational level completely replaced by the Yukawa-type
interaction of Lψ̄ψφ[φ,ψ, ψ̄] from Eq. (2.170d), with multi scatterings of the resonant channel
encoded in the effective potential Vk(ϱ,A4) of Eq. (2.170f). Vk(ϱ,A4) is directly related to
the equilibrium thermodynamic grand potential density Ω, see Eq. (C.8) of App. C.1 and
Sec. III.F of Ref. [80] for specifics. Vk(ϱ,A4) is the central quantity used to study χSB and the
confinement-deconfinement transition.

At this point we want to comment and present one of the central results of Ref. [80], the
phase diagram of Nf = 2 + 1 and Nf = 2 flavor QCD in figure 2.13 with realistic quark/pion
masses and decay constants fπ and fK . These phase diagrams must be considered seminal
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Figure 2.13.: Phase diagram of Nf = 2 + 1 flavor QCD including experimental freeze-out
data [70–75] on the left (a) and Nf = 2 and 2+ 1 flavor QCD phase diagram on the right (b).
Information about the resulting and underlying (physical) parameters can be found in Tab. I
of Ref. [80]. The red and blue regions on the left (a) are related to the possible emergence of
inhomogeneous phases and are discussed in detail in subsection 2.4.2. The bands and dotted
lines on the right (b) mark the crossover region on temperature for the chiral condensate.
An augmented version of the left figure (a) can be found in Fig. 13 of Ref. [397], including
lattice data [455, 456], DSEs results [457, 458], and of course the results of Ref. [397] itself.
Taken from the arXiv source for Fig. 21 and 20 of Ref. [80]. Publication under CC BY-SA 4.0
license with the permission of W.-j. Fu.

results and represent the culmination of a massive research effort by large parts of the FRG
community towards such first principle results for QCD.
The phase diagrams are computed up to µB/T ≈ 6 and include the chiral crossover transition

between a homogeneously broken phase (HBP) at low temperatures and an approximately
symmetric phase (SP) at high temperatures. The chiral crossover transition ends in a critical
endpoint (CEP). Note that due to non-vanishing quark masses chiral symmetry only gets
approximately restored and the transition is a smooth crossover instead of a second-order phase
transition, which is found in the chiral limit. The crossover temperatures at vanishing µB are
found to be

Tc,Nf=2 = 171MeV , Tc,Nf=2+1 = 156MeV , (2.179)

with a curvature κ of the phase boundary Tc(µB) of

κNf=2 = 0.0176(1) , κNf=2+1 = 0.0142(2) , (2.180)

as the quadratic expansion coefficient of Tc(µB) around µB = 0:

Tc(µB)

Tc
= 1− κ

(︃
µB
Tc

)︃2

+ · · · . (2.181)

The CEPs are located at

(T,µB)CEP,Nf=2 = (117, 630)MeV , (2.182a)
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Figure 2.14.: Dimensionless four-quark single gluon couplings (in black) and dimensionless
four-quark single meson exchange couplings (red) on the left (a) and dimensionless propagator
gaps for quarks (in black), mesons (in red), and a gluon dressing function for comparison (in
blue) on the right (b). Taken from the arXiv source for Fig. 18 and 19 of Ref. [80]. Publication
under CC BY-SA 4.0 license with the permission of W.-j. Fu.

(T,µB)CEP,Nf=2+1 = (107, 635)MeV , (2.182b)

which entails

(T/µB)CEP,Nf=2 = 5.38 , (2.183a)

(T/µB)CEP,Nf=2+1 = 5.93 . (2.183b)

A discussion of these results (and the values themselves) can be found in Sec. V.D – Eqs. (121)–
(127) – of Ref. [80]. Since we are primarily working with quark chemical potential µ: note
that µB = 3µ and thus κ → 9κ ≡ κ′, i.e., κ′Nf=2 = 0.1584(9) in terms of µ instead of µB in
Eq. (2.180).
The indication for inhomogeneous phases in figure 2.13a will be discussed in subsection 2.4.2.

The limitation of the results in Ref. [80] to µB/T ≲6 has several reasons. One is the inclusion
of only the scalar-pseudoscalar σ − π channel – a discussion with qualitative and quantitative
predictive power at µB/T ≳6 should include at least the dominant diquark and vector-meson
channels. Another technical limitation of Ref. [80] is the application of a FRG Taylor expansion,
cf. subsubsection 2.1.4.2, for the effective potential Vk(ϱ,A4). A study of non-smooth, potentially
first-order, chiral phase transitions requires – as we will argue throughout this work – proper
shock capturing schemes for the underlying PDEs, cf. Refs. [1–4, 162, 210, 247, 283, 284] and
subsection 2.1.7 as well as chapters 3 and 4. In the context of Ref. [80] especially the recent
work [210] represents significant progress in terms of an application of the recently developed
CFD perspective for FRG flow equations.

Sequential decoupling and the emergence of NJL-/QMM-type LEFTs from QCD
One extremely interesting and for our work relevant observation in Ref. [80] is the observed
sequential decoupling of dynamic, relevant degrees of freedom during RG scale-evolution from
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the UV towards the IR. The phenomenon is visualized in figure 2.14 and described at length in
Sec. V.D of Ref. [80]. We will give a concise summary here using figure 2.14.
Figure 2.14a includes dimensionless quark-gluon couplings and dimensionless quark-meson

couplings and we can observe, that the quark-gluon coupling dominates in the UV for scales
k≳1GeV. In turn, for scales k≲1GeV, the quark-meson couplings gain importance and
become dominant at k ≈ 0.6GeV, while the quark-gluon couplings decay rapidly – note the
logarithmic scale on the vertical axis of figure 2.14a. This observation is further supported by
considering the propagator gappings in figure 2.14b: the gluons decouple first only followed by
the quarks and mesons. First the gluonic dynamics decouples from the matter sector, followed
by the quark- and σ-modes and ultimately the pion decouples last. Note the dominance of
pions for the dynamics at low RG scales k ≈ 0.2GeV. The connection and emergence of
chiral perturbation theory in vacuum in this context is discussed in Refs. [105–107]. We will
discuss the dynamics of such pionic modes in comparison to radial σ-modes at length in our
study of zero-dimensional O(N) models in subsection 3.2.3. The discussion of the interplay of
bosonic and fermionic fluctuations is at the heart of our study of the GN model at finite N in
subsection 4.5.3 and we observe a similar decoupling hierarchy between fermionic and bosonic
modes in this low-dimensional model.
This sequential decoupling of dynamic/relevant degrees of freedom gives rise to an intriguing

and for the FRG practitioners extremely attractive point of view: first principle FRG QCD
computations [80] show, that the highly complicated and involved gauge-dynamics of QCD
decouples for low RG scales k ≈ 1GeV. Furthermore, by employing dynamic hadronization,
we observe the emergence of Polyakov loop enhanced LEFTs, see, e.g., Refs. [309, 417, 419].
With the currently discussed hadronization prescription, viz. the Polyakov loop enhanced
quark-meson model (PQM model) emerges. The relevant dynamic degrees of freedom, viz.
quarks and mesons (as quark-anti-quark composites), and their interactions at k≲1GeV are
properly captured by LEFTs like the PQM model. Studies like Ref. [80] allow for QCD-assisted
LEFTs: using full fledged, first principle FRG computations for QCD to initialize LEFTs like the
PQM model at scales k≲1GeV. Typically such theories have been used as low-energy effective
models by fitting vacuum observables to determine model parameters, cf. section 5.2 and, e.g.,
Ref. [417]. The maturing FRG computations for QCD can be used to eliminate the need for
such parameter fits by providing input for the model parameters from first principle QCD flows.
Thus promoting them from “mere effective models” to QCD-assisted LEFTs. First steps of such
improvements can be found in Refs. [148, 307, 309] and the more recent works [210, 459].

2.3.3.1. The quark-meson model

We want to conclude our introduction into QCD and LEFTs by actually introducing the LEFT
we will be using in chapter 5: the quark-meson (QM) model, sometimes also referred to as
linear-σ model. The QM model and variants/extensions of it – including the PQM model –
are incredibly popular in the field of theoretical high-energy physics. An extensive review of
the vast literature regarding the model is beyond the scope of the current work. At this point
we only want to reference the very incomplete list of QM model FRG literature [81, 87, 99,
105–107, 162, 210, 237, 421, 460]. For a review of primarily mean-field/large-Nc results we
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refer to Ref. [461] and for a review of FRG studies with the QM model we refer to Sec. III.B of
Ref. [109]. Additional/complementary references to the ones provided in Ref. [109] may be
found in the last line of the fourth-to-last paragraph of Sec. V.C of Ref. [80].

In this work we consider the Nf = 2 flavor QM model, which in the present context, emerges
as the part of Eq. (2.169) relevant for the dynamics at low RG scales k≲1GeV. The QM model
is formed by Lψ̄ψ[��@@A,ψ, ψ̄], Lψ̄ψφ[φ,ψ, ψ̄], Lφ[φ], and LV [��@@A,φ] from Eqs. (2.170b)–(2.170f).
We will consider it primarily in LPA, cf. subsubsection 2.1.4.2, and without considering the
statistical confinement provided by the Polyakov loop potential. To get specific, we study the
following EAA,

Γ
QMM

k [χ] ≡
∫︂

x

(︃
ψ̄(γµ∂µ − γ4µ+ hφiτ

i)ψ +
1

2

(︁
∂µφ

)︁2
+ Uk(ϱ)

)︃
, (2.184)

with the field-independent, constant Yukawa coupling h and the scale-dependent mesonic
self-interaction potential Uk(ϱ) as a function of the O(4) invariant ϱ ≡ 1

2
φ2. In χ ≡ (φ,ψ, ψ̄)

we consider four dynamic, on this level fundamental, mesons φ = ⟨ϕ⟩ ≡ (φ0, π1, π2, π3) and
Nc = 3 dynamic quarks ψ = ⟨ψ̃⟩ and ψ̄ = ⟨ ˜̄ψ⟩ with Nf = 2 flavors.
The QM model – its EAA (2.184) in LPA – shares the chiral symmetry

SU(2)L ⊗ SU(2)R ⊗ U(1)V ≃ SU(2)V ⊗ SU(2)A ⊗ U(1)V (2.185)

with QCD, see subsection 2.3.2. The model, especially in the context of a QCD-assisted LEFT, is
ideally suited to study the dynamics of χSB. For the mesons chiral symmetry manifests through
the equivalence SU(2)L ⊗ SU(2)R ≃ SO(4) as an SO(4) symmetry, which motivates the O(4)
vector

φ ≡ (φ0, π1, π2, π3) , (2.186)

with the 1−(0−) isovector, pseudoscalar pions33 and the 0+(0+) isoscalar, scalar φ0/σ34. The
pions are in the isospin triplet SU(2)V ≃ SO(3) and are the Nambu-Goldstone bosons of the
SU(2)A chiral symmetry breaking, which manifests in the mesonic sector as a breakdown of
SO(4) to SO(3) with the radial φ0 as massive σ-mode.
We will reserve further discussions for the applications in chapter 5 apart from one last

remark at this point regarding U(1)A symmetry in the Nf = 2 QM model. For Nf = 2 + 1
flavors the anomalous U(1)A symmetry breaking, mentioned in subsection 2.3.2, is usually
included in the three flavor QM model by means of a t’Hooft determinant [429], see, e.g.,
Refs. [99, 104, 445, 461, 462]. It is a determinant in flavor space resulting in a six-point
interaction and it is crucial to properly reproduce the aforementioned η− η′ mixing [432–436].
33Note that we are referring here to flavor eigenstates with (π1, π2, π3). The charge eigenstates π± and π0 can be
obtained in the usual manner π± = (π1 ∓ iπ2)/

√
2 and π0 = π3.

34We reserve the symbol σ in equations and expressions for the value we evaluate φ0 on, i.e., the possible solution
of φ0;EoM ≡ σ we probe for. This distinction will become clearer with the applications in the main part of this
thesis in chapters 3–5. In the text we will usually refer to the zeroth component of φ as radial, massive, or
σ-mode depending on the context.
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In the Nf = 2 case such a determinant manifests, in terms of quark-anti-quark bilinears, as an
ordinary four-fermi coupling

O(S+P )−
ijlm ψ̄iψjψ̄lψm =(ψ̄ t0ψ)2 + (ψ̄ γcht0ψ)2 − (ψ̄ taψ)2 − (ψ̄ γchtaψ)2 , (2.187)

where we adapted the notation of App. B of Ref. [109]. The Nf = 2 QM model is constructed
(in terms of Fierz-complete couplings) by the linear combination (sum) of Eq. (2.187) with the
U(1)A-symmetric channel

O(S−P )+
ijlm ψ̄iψjψ̄lψm =(ψ̄ t0ψ)2 − (ψ̄ γcht0ψ)2 + (ψ̄ taψ)2 − (ψ̄ γchtaψ)2 . (2.188)

Such a linear combination completely eliminates/decouples the three 1−(0+) isovector, scalars
ψ̄ taψ and the 0+(0−) isoscalar, pseudoscalar ψ̄ γcht0ψ as the chiral partners of the pions and
σ. In that sense U(1)A is “maximally broken” in the Nf = 2 flavor QM model [104]. Phe-
nomenologically these chiral partners correspond to the heavy a0 and ηN mesons – with
ma0 ≈ 980MeV [36] and ηN not really observable (only as a mixture/part of η/η′). For the
dynamics of Nf = 2 χSB those heavy partners are not relevant and are thus usually not
considered in the Nf = 2 QM model.

2.4. Inhomogeneous (chiral) condensates

With this section we will conclude the methodological introductions of this chapter, by providing
a concise introduction to inhomogeneous chiral condensates ⟨q̄q⟩(x⃗). We will mainly focus
on computational challenges, employed methods, and selected literature results of particular
relevance for this work, i.e., for chapters 4 and 5. This section is compiled from various Refs. [4,
5, 63, 208, 463–465], which informed our discussion here and have served as sources for most
of the referenced publications.

A lot of studies in the field of theoretical high-energy physics of the phase structure of strongly
interacting systems are based on the tacit assumption that the involved condensates – i.e.,
mean-fields, expectation values, solutions for the QEOM/gap equation – do not vary in space x⃗
and (Euclidean) time (τ) t.
Before continuing with our discussion of inhomogeneous condensates, viz. condensates that

vary only in space x⃗ and not in (Euclidean) time (τ) t, we want to comment on the explicit
assumption of (Euclidean) time-independent condensates. The possibility of time-dependent
condensates in the context of high-energy physics has been brought forward by Frank Wilczek
and Alfred Shapere with their proposition of quantum and classical time crystals [466, 467] in
2012. The proposition of such time-dependent ground states for time-independent systems has
sparked intensive research and scientific discourse, see, e.g., the review [468] for an overview.
Both real and imaginary time crystals have been considered and their relation and connection
at non-zero temperature has been explored. Through the years a consensus has been reached,
especially with important contributions in Refs. [469, 470], that such time crystals do not
appear as energetically favored ground states of time-independent systems, i.e., there is no
spontaneous breaking of (Euclidean) time-translation invariance [468]. There is however still
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quite intensive research, see, e.g., Refs. [471–474], into such states in exited and especially
externally driven systems. For our work however those scenarios are not relevant and we will
limit our discussion to only spatially varying inhomogeneous condensates.
The general phenomenon of inhomogeneous phases/condensates in dense and strongly

interacting systems is certainly not a new one. Especially in the field of solid-state physics
inhomogeneous condensates – charge density waves – in superconductors related to the
Peierls instability [475] are well know, with pioneering works by Peter Fulde and Richard A.
Ferrell [476] (1964) as well as by Anatoly Larkin and Yuri Ovchinnikov [477] (1965), see, e.g.,
the reviews [478–480] for further details on charge density waves. The idea of density waves
in nuclear matter and pion condensation was already discussed in the 1960s and 1970s by
Albert Overhauser, Arkadi B. Migdal, Francois Dautry, Ebbe M. Nyman, and others [481–484].
In the 1990s these concepts were first applied to quark matter by Wojciech Broniowski,

Andrzej Kotlorz, Marek Kutschera, and others [83, 84, 485, 486] in their studies of chiral
quark models. In the early 2000s there has been a lot of research of color superconducting
(CSC) phases, see, e.g., the reviews [59, 61], also including studies [487–492] of crystalline
CSC phases. These findings triggered a renewed interest, see, e.g., Refs. [193, 493–495], in
inhomogeneous chiral condensates [63]. Also the interplay between CSC and chiral phases
has been explored, see, e.g., Refs. [337, 447–451].
Parallel studies [180–182, 197, 201, 496–508] in (1+1)-dimensional chiralmodels, especially

in the GN model [169], have firmly established inhomogeneous chiral condensates in such
low-dimensional models in the mean-field/infinite-N limit. Inhomogeneous phases have also
been shown to appear in imbalanced Fermi gases [509–513].

The aforementioned research efforts lead to the realization, see, e.g., the review [63], that
inhomogeneous chiral condensates ⟨q̄q⟩(x⃗) are an important and rather robust feature in
chiral models like the Nambu-Jona-Lasinio (NJL) model and quark-meson (QM) model. The
predominantly mean-field and large-Nc computations and their findings in these models are in
parts supported by some (in this context exploratory) FRG, DSEs, and weak-coupling studies
of QCD and its LEFTs [80, 87, 485, 486, 514]. The phase structure of QCD – including the
question of inhomogeneous chiral condensation – is still not fully understood at intermediate
temperatures and densities, see chapter 1 and the previous section 2.3. We will present
and discus some of the relevant literature results for inhomogeneous chiral condensates in
subsection 2.4.2.
In general it can however be noted, that it is an open question whether inhomogeneous

chiral condensates exist beyond mean-field. It remains unclear whether, bosonic thermal and
quantum fluctuations – which are neglected in mean-field and large-Nc computations – could
destabilize inhomogeneous chiral condensates. These condensates are formed, in the first
place, by thermodynamic fermionic fluctuations, cf. chapters 4 and 5.
Another question that arose with Refs. [202, 206, 515, 516] and related earlier works [517,

518], is whether and to what extent the appearance of inhomogeneous chiral condensates
depends on regularization. In certain studies with a finite cutoff, the emergence of inho-
mogeneous chiral condensates has to be regarded as a cutoff artifact, rather than a physical
phenomenon [202, 206, 515, 516]. This is why we choose to investigate inhomogeneous
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phases in renormalizable models – GN model and QM model – in d = 1+1 and d = 3+1 in
chapters 4 and 5. Especially in our MF studies of the QM model we elaborate on the role of cut-
offs/UV initial scales and the importance of RG consistency in this context, cf. subsection 2.1.6
and section 5.2. Ultimately, the goal is to move away from model studies and instead focus on
QCD-assisted LEFTs [80, 210, 308], as discussed in subsection 2.3.3.

2.4.1. Technical challenges and methods

The main technical challenge arising when studying inhomogeneous chiral condensates ⟨q̄q⟩(x⃗),
is the fact that the involved two-point functions manifest with explicit position-dependencies.
In momentum space this translates to a non-diagonal, complicated coupling of different spatial
momenta. One such explicit situation is discussed in chapter 5 for the CDW condensate (5.3)
and the corresponding fermionic and bosonic two-point functions in Eqs. (5.7) and (5.8).
Computations within QFT (especially functional and related approaches) usually involve the
inversion of such two-point functions to compute propagators. This is simply not possible with
standard techniques when inhomogeneous phases are involved due to the complicated coupling
of different spatial momenta.

In the following we will list some of the methods that have been adapted or developed to
study inhomogeneous phases. We distinguish between direct methods, which involve explicit
computations with inhomogeneous condensates and indirect methods, which do not include
such explicit computations. Examples of direct methods are:

• Specialized analytic and semi-analytic methods exist for certain models, truncations
(usually large-N), and condensate shapes, allowing for direct computations. In the field of
high-energy physics the most prominent examples of such methods are the studies [180–
182, 197, 201, 496–508] in 1+1 dimensions and computations using the CDW, like, e.g.,
Refs. [83–86, 88, 193, 484–486, 514].

• Lattice simulations use a discretization of space-time in position space to tackle the
problem by discretization, see, e.g., Refs. [519–524] for recent results of this developing
field.

• Lattice field theory uses the same discretization in position space but does not consider
fluctuations beyond a saddle-point expansion, see, e.g., Refs. [182, 204, 205, 525] for
applications and details.

• Mode expansions are basically the momentum-space analog to lattice field theory, see,
e.g., Refs. [194, 463, 506] for applications and details.
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Examples for indirect methods are:

• A stability analysis of the homogeneous ground state against inhomogeneous fluctuations
is by far the most common indirect way to study inhomogeneous phases, see, e.g., Refs.
[5, 80, 87, 180, 182, 193–208].

• Generalized Ginzburg-Landau/Gradient expansions are closely related to the former
but usually employ a simpler expansion approach, see, e.g., Refs. [197, 493, 495, 526,
527].

We will comment and elaborate on these methods further especially in chapters 4 and 5. For a
comprehensive overview we again refer to literature: Refs. [193, 495, 497, 505, 528] and the
reviews [63, 88].

2.4.2. Literature results

In this subsection we want to present a very limited subset of the aforementioned results in
form of relevant figures for this thesis.

First we present the original version [180] of the inhomogeneous phase diagram of the GN
model in figure 2.15a. This result will be discussed at length in section 4.4 and has to be
considered one of the most influential direct results.
We continue with a series of phase diagrams for the QM model with CDW condensates at

infinite Nc. Figure 2.15b is the pioneering study [83] of Broniowski et al. and figures 2.16a
and 2.16b from [86] are basically the current reference values for the standard mean-field
diagram (disregarding vacuum fermionic vacuum fluctuation) and the completely renormalized
QM model phase diagram including fermionic fluctuations completely. Figures 2.16a and 2.16b
can at this point be considered conclusive results in the respective scenarios.
The last two sets of figures are the FRG results mentioned earlier which influenced the discus-

sion in this thesis immensely. The negative values for the bosonic wave-function renormalization
of figure 2.17, found in the phase diagram of QCD figure 2.13, signal the possibility for an
instability of the homogeneous ground state against inhomogeneous condensation. The role of
Z < 0 as an indicator for inhomogeneous phases is discussed in detail in subsection 4.4.2.
Figure 2.18 displays related results from a FRG based stability analysis of the QM model

in LPA, with figure 2.18a showing clear indications for an instability towards inhomogeneous
condensation during the FRG flow. Figure 2.18b marks a large region in the phase diagram
where the pion two-point function develops such instability towards inhomogeneous conden-
sation during the FRG flow. Whether or to what extent the instability at non-zero k persists or
manifests in the IR limit (k → 0) is not fully settled yet.
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Figure 2.15.: Exact/semi-analytic result [180] for the inhomogeneous phase diagram of the
GN model at infinite N in 1+1 dimensions on the left (a). Pioneering mean-field study [83]
of the QM model allowing for CDW-type condensates, considering only fermionic vacuum
fluctuations at large Nc on the right (b). The difference between this and the revised version
in figure 2.16a, is that in the original work no in amplitude and wave vector-independent
minimization was performed. Hence the correct inhomogeneous ground state is not found.
Nevertheless, the impact of Ref. [83] in the study of inhomogeneous phases with the CDW is
immense. Taken from the arXiv source for Fig. 8 of Ref. [180] and from the upper panel of Fig 8 of
Ref. [83] but for the presentation here we flipped the axes in the latter using Photoshop CS6 [57].
Publication under CC BY-SA 4.0 license with the permission of M. Thies and W. Broniowski.
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Figure 2.16.: Improved version [86] of figure 2.15b on the left (a): standardmean-field results
for the QM model disregarding vacuum fluctuations. Renormalized mean-field result for the
QM model on the right (b) including all fermionic fluctuations completely. The black lines
are the homogeneous reference results, the red lines are the inhomogeneous computations,
and the solid (dashed) lines mark first-(second-)order phase transitions. Taken from the arXiv
source for Figs. 2 and 3 of Ref. [86]. Publication under CC BY-SA 4.0 license with the permission
of J. O. Andersen.
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Figure 2.17.: Mesonic wave-function renormalization for the FRG QCD results discussed
in the previous section, cf. figure 2.13a. Regions with Zϕ < 0 signal the possibility for an
instability of the homogeneous ground state against inhomogeneous condensation. The peaks
around the roots of Zϕ clearly signal the boundaries of the corresponding (blue) region plotted
in the phase diagram in figure 2.13a. The red hatched area in the latter is the region where
“the inhomogeneous regime overlaps with a sizable homogeneous chiral condensate” Ref. [80].
Taken from the arXiv source for Fig. 12 of Ref. [80]. Publication under CC BY-SA 4.0 license with
the permission of W.-j. Fu.
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Figure 2.18.: Results [87] from an FRG stability analysis in LPA for the QM model. On the
left (a) the static pion two-point function is shown for µ = 400MeV and T = 15MeV at
various RG scales k. The zero crossings at k = 330MeV are attributed to an instability of the
homogeneous phase. On the right (b) the region in the µ-T -plane is marked where and when
during the FRG flow such an instability occurs. Taken from the arXiv sources for Fig. 5 and 6 of
Ref. [87] but for the presentation here we changed the location of the axes labels in the latter
using Photoshop CS6 [57]. Publication under CC BY-SA 4.0 license with the permission of R.-A.
Tripolt.
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3. Models in zero dimensions

Large parts of this chapter are based on Refs. [1–3, 7, 8]. The individual sections include
more detailed disclaimers. The involved collaborators are A. Koenigstein, N. Wink, E.
Grossi, J. Braun, M. Buballa, and D. H. Rischke.

Refs. [1–3] are published manuscripts and parts of a series discussing zero-dimensional
O(N) models in the context of the FRG. The discussed research is also part of the disser-
tation [165] of A. Koenigstein. Most symbolic calculations, all numerical computations,
and the majority of these manuscripts have been prepared by A. Koenigstein and me in
equal shares. The other co-authors have been primarily involved in the conceptualization,
discussion, and the finishing of the manuscripts.

Ref. [7] is an unpublished manuscript draft, which has been planed as a continuation
and supplement to the series on FRG in zero dimensions. Ref. [8] are unpublished notes
on fixed-point solutions in the context of Ref. [2].
The following introduction of this chapter has been compiled from the introductions

and abstracts of Refs. [1–3, 7].

We begin the main part of this thesis with the detailed discussion of our research regarding
theories in zero space-time dimensions. As demonstrated beautifully by Jan Keitel and Lorenz
Bartosch with their work [163] and by numerous other authors, see, e.g., Refs. [312, 529–549],
zero-dimensional theories are by no means trivial. While it is true that they are easily solvable
by just computing simple, ordinary integrals, their treatment within perturbative and non-
perturbative methods employed in QFT is non-trivial. Applying the FRG, DSEs, nPI techniques,
1
N
-expansion schemes, and/or perturbative methods to zero-dimensional theories can be very
illuminating. Not only academic and didactic insights can be gained, but also deep conceptual
and methodological developments are indeed possible with such studies.

As outlined in the introduction 1, the main purpose of the following discussions of this
chapter is twofold.

1. Using zero-dimensional theories, we want to gain academic, didactic, and conceptual
insight into the FRG framework.

2. Making use of the unique properties of QFTs in zero dimensions, we want to adapt and
benchmark numerically stable methods for the solution of FRG flow equations.

To achieve these goals we will apply and adapt methods from the field of CFD, which we
introduced in section 2.2, to the FRG, which we introduced in section 2.1.
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Zero-dimensional QFTs are uniquely well suited for such discussions, since the functional
flow equations encountered in the FRG manifest directly as PDEs in zero dimensions. It is
possible to study the Wetterich Eq. (2.37) and the related flow Eqs. (2.87) and (2.88) for
Wk[J̃ ] and Zk[J̃ ] directly, i.e., without the need of any truncations or approximations. The flow
equations can be readily expressed as conservation laws, allowing for a direct adaptation of
concepts and methods from the field of CFD to FRG. Applications in zero dimensions make the
somewhat vague notion of functional flow equations explicit as flow equations for functions.
This supports and extends on the findings [162] of Eduardo Grossi and Nicolas Wink and firmly
establishes the very explicit notion of FRG flow equations as flow equations in a fluid-dynamical
sense. The exact flow equations encountered in zero dimensions share many crucial qualitative
and, to an extent, even quantitative features with flow equations encountered in non-zero
dimensions. As such, our research and development in zero dimensions is far more than just
an academic exercise, since it is very relevant and to a significant extent directly applicable in
non-zero dimensions.

We begin this chapter with a detailed discussion of zero-dimensional QFT using the O(1)
model of a single scalar as an instructive example in section 3.1. We discuss general peculiarities
of such QFTs in a single space-time point, but then shift focus especially on the manifestation of
FRG in zero dimensions. The FRG can be understood very intuitively as an integral deformation –
making the underlying idea of Wilson’s RG approach and the governing equations very tangible.
We retrace the general derivation of the Wetterich Eq. (2.37) of section 2.1 in zero-dimensions
commenting in detail on the involved subtleties. The fact that this discussion is based on
functions and integrals instead of functionals and functional integrals allows for a simpler, but
at the same time in many regards more concise discussion.

In section 3.2 we extend our discussion to zero-dimensional O(N) models, where we allow
for condensation in one radial direction leading to one massive σ-mode and (N − 1) π-modes.
We use this model to study O(N) symmetry restoration, by studying the FRG flow for various
initial conditions/actions. Basic symmetries of the underlying integrals prevent symmetry
breaking in the IR in zero dimensions. This can be seen as an extreme limiting case of the
Coleman-Mermin-Wagner-Hohenberg (CMWH) theorem [550–552], cf. App. B of Ref. [1].
We will discuss the FRG flow evolution equation for the zero-dimensional O(N) model at

length. Starting by casting it in conservative form, we continue to discuss initial conditions,
boundary conditions, RG consistency, and irreversibility at length. The conservative formulation
allows for an identification of the σ-mode as diffusive contribution and of the π-modes as
advective contributions.
In subsection 3.2.3 we construct a series of test cases (initial conditions/actions) in the

zero-dimensional O(N) model at finite N . For our explicit numerical computations with the
FRG flow equation, we adopt the KT scheme of subsection 2.2.2 as our finite volume method
of choice. We discuss the advective and diffusive nature of FRG flows in detail using explicit
numerical computations. The impact of initial scales in the context of RG consistency, boundary
conditions, and discretization in field space is discussed at length. We also discus the, as it
turns out rather limited, applicability of the FRG Taylor expansion as a possible truncation
scheme in zero dimensions.
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After our discussions of various finite N results, we focus on the limiting cases N = 1 and
N →∞ in subsection 3.2.4 and subsection 3.2.5 respectively. The focus of our discussion of
the purely diffusive system atN = 1 is the irreversibility of (F)RG flows from a CFD perspective
and the associated concept of (numerical) entropy. A connection between the later and the
concept of C-/A-functions is also discussed. At large N and ultimately in the limit N →∞ we
study advection dominated and in the limit ultimately purely advective systems. The focus
here are limitations of the large-N saddle-point approximation and related FRG/CFD concepts.
For our discussion we construct yet another test case, which we study using both numeric and
analytic methods. Shocks and rarefaction waves and their implications for the large-N limit
are discussed, including again comments on the irreversibility of (F)RG flows in such scenarios.

In the penultimate section 3.3 of this chapter we discuss Grassmann numbers as zero-
dimensional analogs to fermions. We present a SU(2) model including two pairs of associated
Grassmann numbers and three scalars, which we constructed as a zero-dimensional analog to
the QM model. We discuss the model and the involved flow equations and comment at length
on our plans for further research with such theories. Compared to our, for the most parts,
complete discussion of scalars in zero-dimensions, this work on Grassmann numbers is in a
very early state.

In section 3.4 we summarize our key research results of our extensive studies in zero
dimensions and give an outlook for even further researchwith zero-dimensional QFTs. Especially
zero-dimensional models involving Grassmann numbers are identified as a very interesting
and relevant area for further research.

3.1. Quantum����XXXXfield theory in zero dimensions

This section follows the discussion presented in Sec. II of Ref. [1].

This section provides an introduction to zero-dimensional QFT using the theory of a single scalar
as an instructive example. We will focus on details and structure of the flow equations and
the technical subtleties in their solution in zero dimensions thus without any direct reference
to regularization and renormalization. In addition we use this introduction to establish some
notation and special features of zero-dimensional field theory.

As already mentioned in the introduction to this chapter, the efficient and sufficiently precise
calculation of correlation functions is key to understanding the properties of a particular model
or theory. Usually this is done by introducing a partition function or functional integral that
provides a probability distribution for the microstates of the model and serves as a generating
functional for the n-point (correlation) functions [177, 178, 240, 553]. The partition function
is based on an energy function that can be a discrete or continuous Hamilton function or
an action, which determines the microscopic properties of the model, cf. Eq. (2.4). The FRG
provides an alternative to a direct computation using the functional integral. For generic QFTs
we introduced this approach in section 2.1 but in this section we want to focus on the special
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case of a zero-dimensional QFT of a single scalar. We will discuss the direct computation of
observables using the generating functional and the alternative approach using the FRG flow
equation.

3.1.1. The partition function

Consider a zero-dimensional QFT with a single real bosonic scalar field ϕ35. In zero dimensions
the “field” ϕ is due to the complete absence of a notion of space-time in zero dimensions
mathematically not a field but just a single scalar degree of freedom, i.e., a plain real number –
hence the typographic pun with striking out the word field in the title of this section. In our
following discussion we will however maintain the term field even though mathematically we
are just discussing numbers. Due to the absence of space-time in zero dimensions derivatives
and space-time integrals simply do not exist. This implies that the action S[ϕ] of the model
is identical to the Lagrangian L[ϕ]. The action, the Lagrangian, and also the Hamiltonian
H[ϕ] are simply functions of ϕ instead of functionals36. The complete absence of space-time
derivatives/integrals, fields, and functionals makes the following discussion mathematically
rather simple in stark contrast to the situation encountered by QFT practitioners in d > 0: where
dealing with potentially divergent space-time integrals and complicated functional integrals
is the norm. This simplicity is the beauty of zero-dimensional QFTs which are by no means
trivial: a lot can be learned from their study. Because of the absence of a space-time derivative
and thus of kinetic terms, S[ϕ] = L[ϕ] = H[ϕ] = U(ϕ), where U(ϕ) is the (effective) potential.
Therefore, the only requirement for these functions is that they must be bounded from below,
in order to exclude “negative-energy states”37 and to obtain positive normalizable probability
distributions. Apart from this requirement, for the moment we do not demand any additional
properties, like symmetries (e.g., Z2, ϕ→ −ϕ) or analyticity.
If we choose a specific model with action S[ϕ] all expectation values of arbitrary functions

f(ϕ) that do not grow exponentially in ϕ are defined and can be calculated via the following
expression

⟨f(ϕ)⟩ ≡
∫︁ +∞
−∞ dϕ f(ϕ) e−S[ϕ]
∫︁ +∞
−∞ dϕ e−S[ϕ]

, (3.1)

where e−S[ϕ] provides the partition of probabilities among the microstates. Note that due
to the zero-dimensional nature all expectation values for such a model reduce to indefinite
one-dimensional integrals over ϕ. Such integrals can be computed to extremely high precision
35Throughout this chapter we will use ϕ denote a fluctuating scalar (not ϕ̃) since we will use φ for the expectation
value ⟨ϕ⟩ = φ. Later in section 3.3, we will also introduce θ and θ̄ as fluctuating Grassmann numbers with the
corresponding expectation values ⟨θ⟩ = ϑ and ⟨θ̄⟩ = ϑ̄. Sadly variant versions are not available for all Greek
characters, which led us to introduce the tilde-overline in our general discussion of section 2.1.

36Nevertheless, we will stick to the notation of functionals using square brackets, to maintain a degree of consistency
with the corresponding expressions in non-zero space-time dimensions, as long as we do not focus on particular
zero-dimensional examples.

37We put “negative-energy states” in quotation marks, because all quantities in zero-dimensional field theory
are dimensionless, viz. bare numbers without physical dimensions. For convenience, we will still use the
well-established notions from higher-dimensional QFTs in our discussion.
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using standard techniques of numerical integration [554, 555]. It is worth emphasizing that
the current discussion holds also for non-analytic S[ϕ] and/or f(ϕ). Some specific choices of
S[ϕ] and f(ϕ) even allow for an analytic evaluation of Eq. (3.1), see, e.g., Ref. [163]. The
possibility to compute expectation values to high precision makes zero-dimensional field theory
of great interest as a testing ground for approximations and/or numerical methods.
Some explicit examples of zero-dimensional field theories used as a testing ground for

methods in statistical mechanics and QFT can be found in Refs. [163, 312, 529–549]. In
Ref. [538], for example, the asymptotic convergence and the vanishing convergence radius of
perturbation theory of ϕ4-theory is discussed. Approximation schemes such as the large-N ,
the FRG vertex expansion, or the FRG Taylor expansion were analyzed in Ref. [163]. Zero-
dimensional field theory was also used to study density-functional theory in Refs. [537, 540,
542] and applied to fermionic fields in Ref. [312]. Recently, it was used to study and visualize
2PI effective actions [544] – also in the FRG framework [545, 546, 549].
The calculation of expectation values is facilitated by a suitably defined generating functional

Z[J ] ≡ N
∫︂ +∞

−∞
dϕ e−S[ϕ]+J ϕ , (3.2)

from which one can derive all correlation functions by taking the corresponding number of
derivatives w.r.t. the external source J ,

⟨f(ϕ)⟩ = f( δ
δJ
)Z[J ]
Z[J ]

⃓⃓
⃓⃓
J=0

. (3.3)

One should note that if f(ϕ) is non-analytic, then Eq. (3.3) is to be understood symbolically.
Otherwise, it is defined through a Taylor series in δ

δJ
. Irrespective of that, Eq. (3.1) and (3.2)

are always well defined and Eq. (3.2) can be always calculated for arbitrary J . One can even
show in zero dimensions that Z[J ] ∈ C∞, hence, Z[J ] is a smooth function, see Ref. [536]
and App. B of Ref. [1].
The normalizationN is not an observable quantity and for our discussion here, it is convenient

to choose

Z[0] !
= 1 ←→ N−1 =

∫︂ +∞

−∞
dϕ e−S[ϕ] . (3.4)

As already mentioned above, calculating expectation values in a zero-dimensional QFT via
Eq. (3.1) is (at the very least numerically) rather straightforward. In contrast, for higher-
dimensional models or theories with non-trivial field content, calculating functional integrals
similar to Eq. (3.1), cf. Eq. (2.5), with sufficient precision is usually extremely challenging or
might even be impossible with limited computational resources. Therefore, alternative methods
like the FRG or approximation schemes apart from “direct numerical integration”, like in lattice
simulations, are of great interest.
In the following, we will again focus on the FRG as a specific method for calculating n-point

functions in zero-dimensional QFTs. In contrast to the usual motivation of the FRG, cf. the
introduction of section 2.1, we will use a different but as it turns out closely related approach

3.1. Quantum���HHHfield theory in zero dimensions 99



to motivate and ultimately arrive at the FRG flow equation (3.36) in zero-dimensions. To this
end, we will follow and extend the discussion in Refs. [163, 312, 535, 536, 539] and discuss
its technical properties as an alternative way of solving the integrals in Eq. (3.1) and (3.2).

3.1.2. Solving integrals with flow equations

The starting point of our following discussion, is the observation that there is one well-known
non-trivial class of actions S[ϕ] for which the calculation of integrals like Eq. (3.1) is straightfor-
ward, even in higher dimensions and even for more complicated field content. These actions are
QFTs for “(massive) free particles” and correspond to Gaussian-type integrals. In the present
case the Gaussian-type action takes the following simple form,

S[ϕ] = m2

2
ϕ2 . (3.5)

where m is called a “mass” for convenience, although it is actually a dimensionless quantity in
zero space-time dimensions.
For non-trivial actions S[ϕ], Eq. (3.1) can still be approximated by a Gaussian integral, as

long as S[ϕ] contains a mass term (3.5) with a coefficient m2 that is much larger than all
other scales contained in S[ϕ]. If this is the case, the Gaussian part of the integrand e−S[ϕ]

completely dominates the integrals in Eq. (3.1) and (3.2). The reason is that the mass term
∼ ϕ2 is dominant for small and moderate ϕ, and most of the area under the curve e−S[ϕ] lies
in the region of small ϕ, similar to a pure Gaussian integral. For very large values of ϕ other
terms in the action S[ϕ] may become more important. Nevertheless, if m2 is large enough,
the corresponding area under the curve e−S[ϕ] is completely negligible in regions where ϕ is
large, because S[ϕ] is bounded from below such that e−S[ϕ] tends to zero exponentially fast
for ϕ→∞. In summary, the Gaussian part with the huge mass term dominates the integral
and even integrals involving non-trivial actions can be approximated. This is illustrated in
figure 3.1.

3.1.2.1. The scale-dependent partition function

Based on the above observation, let us now (re)introduce the following quantity:

Zt[J ] ≡ N
∫︂ +∞

−∞
dϕ e−S[ϕ]−∆St[ϕ]+J ϕ , (3.6)

which is called the scale-dependent generating functional or scale-dependent partition function. It
differs from the usual partition function (3.2) only by a scale-dependent mass term

∆St[ϕ] ≡ 1
2
r(t)ϕ2 . (3.7)

We directly adopt the common notation from the FRG community and call r(t) the regulator
(shape) function, which depends on the RG scale (“time”) t ∈ [ 0,∞), see, e.g., Refs. [256, 259].
We have now constructed the zero-dimensional analog to the RG-scale-dependent generating
functional (2.4) purely based on the notion of an integral deformation. For now, we only
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demand that the function r(t) has such properties that Zt[J ] interpolates between an almost
Gaussian-type partition function38 with extremely massive free fields at t = 0 and the actual
partition function Z[J ] of interest at t→∞. In order to achieve this behavior, r(t) has to have
the following properties:

1. In the limit of t→ 0, r(t) (∆St[ϕ]) should behave like a mass (term), similar to what we
discussed at the beginning of this section, and be much larger than all other scales in
S[ϕ]. We will discuss this further in subsection 3.1.3.

2. For t → ∞, r(t) is supposed to vanish, such that limt→∞Zt[J ] = Z[J ]. The same
applies to expectation values calculated from Zt[J ], which become expectation values of
Z[J ]. For practical calculations it is sufficient to assume that, for t→∞, r(t) becomes
much smaller than all scales in S[ϕ], because then the contribution ∆St[ϕ] to the whole
integrand e−S[ϕ]−∆St[ϕ] is negligible and the integrand is almost identical to e−S[ϕ]. The
value limt→∞ r(t) = rIR≳0 is usually referred to as (numerical) IR cutoff.

3. The interpretation of r(t) (∆St[ϕ]) as a mass (term) is guaranteed by further demanding
monotonicity, ∀t, ∂tr(t) ≤ 0. We will provide additional arguments for monotonicity in
subsubsection 3.1.2.2.

4. In order to be able to smoothly deform the integral in Eq. (3.2) and for the following
derivation of evolution equations, we further require r(t) ∈ C1.

Apart from these four properties there are no further requirements on r(t) in zero dimensions
and ultimately the regulator choice in zero-dimensions manifests as simple reparametrizations
in the flow time t. The first (UV) property is the zero-dimensional realization of general
regulator property 3. Diverging in the Ultraviolet of subsubsection 2.1.4.1. The second (IR)
property is the zero-dimensional realization of general regulator property 2. Vanishing for high
momentum modes of subsubsection 2.1.4.1. Note that for higher-dimensional field theories the
fourth requirement turns into ∆St[ϕ] ∈ C1. A specific choice which is used in large parts of
our work is the zero-dimensional exponential regulator (shape) function

r(t) = Λ e−t , (3.8)

with an UV cutoff/scale Λ, which must be chosen much larger than all scales in S[ϕ].
In order to get a better intuition of the effect of r(t) on the integral (3.6), we show the

integrand at J = 0, e−S[ϕ]−∆St[ϕ], and the respective exponent for different values of t for the
analytic action

S(ϕ) = − 1
2
ϕ2 + 1

4!
ϕ4 , (3.9)

in figure 3.1a and in figure 3.1b the same quantities for the non-analytic action

S(ϕ) =

⎧
⎪⎪⎨
⎪⎪⎩

−ϕ2 , if |ϕ| ≤ 5
4
,

−
(︁
5
4

)︁2
, if 5

4
< |ϕ| ≤ 2 ,

1
48
,
(︁
ϕ4 − 91

)︁
if |ϕ| > 2 .

(3.10)

38This is also why the UV fixed point of (F)RG flows is denoted as the trivial or Gaussian fixed point.
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Figure 3.1.: The integrand (upper panel) and exponent (lower panel) from Eq. (3.6) (at
J = 0) as a function of the field variable ϕ for various RG times t = 0, 1, 2, . . . , 15 and for
different actions on the left (a) and on the right (b). We choose the exponential regulator (3.8)
with UV scale Λ = 103. The IR cutoff scale is chosen at rIR ≃ 3.06 · 10−4 which corresponds to
t = 15. The numerical value of rIR is significantly smaller than all scales in S[ϕ]. From Figs. 1
and 2 of Ref. [1].

The figures show how the integrands are deformed from Gaussian-shaped integrands to the
integrands e−S[ϕ]. One observes that, as long as r(t) is much larger than all other parameters in
S[ϕ], the Gaussian-like mass term dominates, while for increasing t the regulator r(t) becomes
negligible. The most interesting part, where the integrands change their shapes significantly, is
where r(t) is of the same order as the scales in S(ϕ).

3.1.2.2. A flow equation for the scale-dependent partition function

The change of the integrals with t between the two limiting cases at t = 0 and t→∞ is the in
section 2.1 established FRG flow from the UV to the IR. By knowing/mathematically prescribing
the integral deformation, we can obtain the function Z(J) ≡ limt→∞Zt[J ] = Z[J ] right from
the Gaussian-like partition function Zt=0[J ] without the need to calculate the ϕ-integral in the
partition function (3.2) directly. In zero dimensions this might arguably be one of the most
complicated ways to compute the partition function (3.2), because the integrals in field space
are (at least numerically) simple to compute. For higher dimensions, however, circumventing

102 3.1. Quantum���HHHfield theory in zero dimensions



the corresponding challenging functional integration is a tremendous benefit.

The FRG flow of Zt[J ], i.e., its deformation, is prescribed by a differential equation which
can be obtained by taking the derivative w.r.t. the RG time t of Eq. (3.6):

∂tZt[J ] = −
[︁
1
2
∂tr(t)

]︁
N
∫︂ +∞

−∞
dϕϕ2 e−S[ϕ]−∆S[ϕ]+J ϕ = (3.11a)

= −
[︁
1
2
∂tr(t)

]︁ δ2Zt[J ]
δJ δJ

≡ −
[︁
1
2
∂tr(t)

]︁
Z(2)
t,JJ [J ] , (3.11b)

which directly manifests as a simple PDE for the function Z(t, J) in the t-J -plane,

∂tZ(t, J) = −
[︁
1
2
∂tr(t)

]︁
∂2JZ(t, J) . (3.12)

Solving this equation with appropriate initial and boundary conditions results in a functionZ(J)
from which one can calculate expectation values by taking ordinary (numerical) derivatives
w.r.t. J at J = 0, cf. Eq. (3.3).
The higher-dimensional analog to Eq. (3.12) is Eq. (2.87) and thus we again recognize

Eq. (3.12) as a linear one-dimensional diffusion equation (heat equation) [230, 312–314],
where t corresponds to the temporal direction, while J corresponds to the spatial direction.
We discussed this type of conservation equation in detail in subsection 2.2.4. The term
− 1

2
∂tr(t) corresponds to a time-dependent (positive definite) diffusion coefficient39. This

further supports the notion of RG “time” for the parameter t. We will come back to the concept
of RG “time” in the true sense of the word and the diffusive, irreversible character of FRG flows
in subsubsection 3.2.2.3.

For the remainder of this subsection we will discuss properties and practical issues considering
the exact PDE (3.12). We will neither discuss any kind of expansions in J nor its application in
higher dimensions here. However, some of the issues and questions raised in the following are
also relevant for higher-dimensional theories.
Finding the correct initial and boundary conditions for numerical solutions of Eq. (3.12) as

an exact PDE is challenging. By construction Zt=0[J ] approaches a Gaussian integral,

Zt=0[J ] =N
∫︂ +∞

−∞
dϕ e−

1
2 r(0)ϕ

2+J ϕ e−S(ϕ) = (3.13a)

=N
∫︂ +∞

−∞

dϕ̃√︁
r(0)

e
− 1

2 ϕ̃
2+J ϕ̃√

r(0)

[︂
1−O

(︁
S
(︁
r(0)−

1
2
)︁)︁]︂

= (3.13b)

=N
√︂

2π
r(0)

e
J2

2r(0)

[︂
1−O

(︁
S
(︁
r(0)−

1
2
)︁)︁]︂

, (3.14)

39Note that in zero dimensions one can get rid of ∂tr(t) by an appropriate reparametrization of the time coordinate
t, which nevertheless keeps the structure of the equation unchanged. In higher dimensions this elimination
of r(t) is in general not possible. The positivity of the diffusion coefficient is directly related to the stability
of solutions of the heat equation [315, 317] and positivity – here guaranteed by the regulator properties – is
necessary for a stable solution [230, 261].
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with ϕ̃ ≡
√︁
r(0)ϕ and independent of the explicit shape of S[ϕ]. Considering different actions

S[ϕ] with couplings of the same order of magnitude we can choose the same regulator with
an r(0) larger than all internal scales involved in the different actions. The IC Z(0, J) is then
independent of the explicit action under consideration.
According to the integral formulation (3.6), Z(t, J) changes for different actions when t > 0.

In the differential formulation of the Eq. (3.12) those changes are generated by the diffusion
term on the r.h.s. However, we argued that it is permissible to use identical ICs Z(0, J) for
different actions involving similar scales (as long as these are much smaller than r(0)). This
then results in an identical diffusion on the r.h.s. of Eq. (3.12) when the latter is computed by
means of a second derivative of Z(0, J). If one uses identical large-J BCs for the solution of
the PDE (3.12) for different actions, this would imply that, despite different S[ϕ], the RG time
evolution leads to identical Z(J) for t→∞, which in general cannot be correct.
In order to resolve this problem, particular action-dependent spatial BCs seem to be necessary

for a direct numerical solution starting at t = 0 with a Gaussian for Z(0, J). It is not obvious
how to derive or formulate such BCs from the asymptotics of Eq. (3.12) alone. In light of
this, a numerical solution of Eq. (3.12) in the t-J-plane by means of a spatial discretization
in J-direction and an integration in t-direction in the spirit of subsection 2.2.4 appears to be
conceptually questionable.
However, this invalidates by no means the flow equation forZ(t, J) in general. Augmenting it

(at t = 0) with information from the integral formulation (3.6) or, equivalently, other additional
information, could enable practical computations using the PDE (3.12). But it is at this point
(at least to us) not obvious how one would implement a numerical solution strategy for the
PDE (3.12) avoiding integrals of the action.

There is another well-known drawback in using the partition function Z[J ] for calculating
n-point functions (or expectation values) ⟨ϕn⟩. The latter are rather inefficient in storing
information, because they contain redundant information in the form of disconnected and
reducible terms, see Refs. [177, 178, 239, 240] or the mathematical theory of moment- and
cumulant-generating functionals in statistics for details [556]. This is also discussed in Sec. II.E
of Ref. [1]. However, the redundant information in ⟨ϕn⟩ is not necessarily a strong argument
against the use of the flow equation (3.12) in practical computations, since the irreducible
information can be extracted from the correlation functions ⟨ϕn⟩.

3.1.3. The functional renormalization group equation

To resolve both the problem of initial and BCs for Z(t, J) as well as the issue of redundant
information in ⟨ϕn⟩, we now consider two different generating functionals the scale-dependent
Schwinger functional in subsubsection 3.1.3.1 and the scale-dependent effective action in sub-
subsection 3.1.3.2. Especially the latter will turn out to be much better suited for practical
calculations of correlation functions/expectation values. In this subsection we will derive and
discuss the FRG flow Eq. (3.36) for our zero-dimensional toy model QFT by subsequently
(re)discovering the zero-dimensional analogs to the general expressions of section 2.1.
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3.1.3.1. The scale-dependent Schwinger functional

We begin our journey towards the FRG flow Eq. (3.36) by introducing the scale-dependent
Schwinger functional starting from definition (3.6),

Wt[J ] ≡ lnZt[J ] , (3.15)

in direct analogy to Eq. (2.10). It follows from our previous discussion that for t → ∞ the
Schwinger functionalW[J ] ≡ lnZ[J ] withW[0] = 0 is recovered,

lim
t→∞
Wt[J ] =W[J ] , (3.16)

whileWt=0[J ] is given by the logarithm of Eq. (3.14).
In generalW[J ] is convex with a positive definite HessianW(2)

JJ [J ]. In the present case the
convexity ofW[J ] =W(J) becomes apparent considering its second derivative,

∂2JW(J) = ⟨ϕ2⟩J − ⟨ϕ⟩J⟨ϕ⟩J = ⟨(ϕ− ⟨ϕ⟩J)2⟩J , (3.17)

which, as the expectation value of a positive quantity, is always positive. Note that also Z[J ]
is convex, which can be seen by investigating its second derivative. In zero dimensions, also
smoothness, i.e., Z[J ] ∈ C∞, directly translates toW[J ] ∈ C∞, because all moments ofW[J ]
can be entirely expressed in terms of derivatives of Z[J ], see Sec. II.E of Ref. [1] for explicit
expressions. The insertion of the regulator (3.7) into Zt[J ] does not spoil the convexity and
smoothness (in zero dimensions) of the Schwinger functional: Wt[J ] and Zt[J ] are convex and
smooth for all t.
Completely analogous to Eq. (3.11) one can derive a PDE for Wt[J ] = W(t, J) in the

t-J -plane,

∂tW(t, J) = −
[︁
1
2
∂tr(t)

]︁ (︂
∂2JW(t, J) +

[︁
∂JW(t, J)

]︁2)︂
. (3.18)

which describes the flow of W(t, J) from t = 0 to t → ∞. We have recovered the zero-
dimensional analog to Eq. (2.88).
We could now repeat the discussion about the issues of initial and boundary conditions for the

solution of this PDE. However, the problems are almost identical to those of Eq. (3.12), because
on the level of the PDE, we only substituted the function Z(t, J) byW(t, J) via the logarithm,
which does not change the structure of the problem fundamentally. Formulating appropriate
initial and boundary conditions in the spatial J -direction therefore remains as complicated as
before. Note that the PDE (3.18) is even more complicated when compared to Eq. (3.12) due
to the non-linear term on the right-hand side. In summary, the scale-dependent Schwinger
functional is, from a practical point of view, as badly suited as Z(t, J) to perform the (numeric)
calculation of the functional integral via a flow equation starting from a Gaussian-type integral.

3.1.3.2. The scale-dependent effective action

In the following we will focus on the scale-dependent effective (average) action and its respective
flow equation. We define the scale-dependent effective action Γt[φ] via the Legendre transform
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of Eq. (3.15) w.r.t. the sources J at a RG time t,

Γt[φ] ≡ sup
J

(︁
J φ−Wt[J ]

)︁
, (3.19a)

≡ Jt(φ)φ−Wt[Jt(φ)] , (3.19b)

where we introduced the source Jt(φ) which realizes the supremum. Note that, analogous to
Zt[J ] and Wt[J ], the convexity and smoothness (in zero dimensions) of Γt[φ] is not spoiled
by the t-dependence, because the properties of the Legendre transformation still ensure both,
since the Legendre transform of the convex functionWt[J ] is convex by definition, see, e.g.,
Refs. [557, 558] for details.
To obtain an explicit relation for the scale-dependent source Jt(φ), which realizes the

supremum in Eq. (3.19a), we consider the functional derivative of Eq. (3.19a) at the supremum
to find the important relation

W(1)
t,J [Jt(φ)] ≡

δWt[J ]

δJ

⃓⃓
⃓⃓
J=Jt(φ)

= φ , (3.20)

which will be used frequently in the following. Taking the functional derivative of Eq. (3.19b)
w.r.t. φ and using Eq. (3.20) we ultimately rediscover the quantum equation of motion in
zero-dimensions:

Γ
(1)
t,φ[φ] ≡

δΓt[φ]

δφ
= Jt(φ) , (3.21)

as a special simplification of the general analog (2.20). Due to the strict convexity of Γt[φ] the
function Jt(φ) is bijective and as such can be inverted, which can be achieved by considering
Eq. (3.20) at fixed value J for Jt:

φt(J) ≡
δWt[J ]

δJ
, (3.22)

where φt(J) is the so-called scale-dependent classical field (sometimes also referred to as scale-
dependent mean-field), cf. Eq. (2.18).
The subtle relations between, and scale-dependencies of, φt(J) and Jt(φ) on this formal level

are rarely discussed in literature and usually suppressed in the notation. The relation between
φt and Jt is of particular importance for discussion and relations between of n-point correlation
functions, see, e.g., Sec. II.E of Ref. [1]. The scale-dependence of φt(J) from Eq. (3.22) is not
related to a rescaling (RG transformation) using, e.g., a wave-function renormalization for φ,
cf. Eq. (2.34) and the corresponding discussion.

IC and the UV limit t → 0
Before we reintroduce the Wetterich equation, which is the flow equation for Γt[φ] and a PDE
for the function Γ(t, φ) in the t-φ-plane, we check whether we will run into the same issues
(related to initial and boundary conditions) as before. Hence, first of all, we must derive
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the IC for the PDE for Γ(t, φ). To this end, we study the limit t → 0 of Γt[φ]. We use the
definitions (3.6), (3.15), (3.19a), and (3.19b) to obtain

e−Γt[φ] =e− supJ (J φ−Wt[J ]) = elnZt[Jt(φ)]−Jt(φ)φ = (3.23a)

=N
∫︂ +∞

−∞
dϕ e−S[ϕ]−∆St[ϕ]+Jt(φ) (ϕ−φ) . (3.23b)

We now shift the integration variable40 ϕ ↦→ ϕ′ = ϕ− φ. Using Eq. (3.7), we find

e−Γt[φ]+∆St[φ] =N
∫︂ +∞

−∞
dϕ′ e−S[ϕ′+φ]−∆St[ϕ′]−r(t)ϕ′ φ+Γ

(1)
t,φ[φ]ϕ′ . (3.24)

In the next step, we reintroduce the scale-dependent effective average action,

Γ̄t[φ] ≡ Γt[φ]−∆St[φ] , (3.25)

which also tends to the effective action Γ[φ] for t→∞, because the second term vanishes in
this limit, cf. Eq. (3.8).
At any finite value of t (including t = 0), Γ̄t[φ] differs from Γt[φ] and is no longer guaranteed

to be convex, which can be seen directly from the second term in Eq. (3.25). Convexity is only
recovered for t→∞. However, the second term in Eq. (3.25) does not violate the smoothness
of Γ̄t[φ] in zero dimensions for all t, because ∆St[φ] ≡ St(φ) ∈ C∞ in φ.
We express Eq. (3.24) in terms of the scale-dependent effective average action (3.25) and,

for the sake of convenience, revert the notation ϕ′ → ϕ,

e−Γ̄t[φ] = N
∫︂ +∞

−∞
dϕ e−S[ϕ+φ]−∆St[ϕ]+Γ̄

(1)
t,φ[φ]ϕ . (3.26)

We have arrived at the zero-dimensional analog of Eq. (2.39) which has already facilitated
our discussion in subsubsection 2.1.4.1 of ICs for general FRG flow equations. In the next step
one formally introduces the normalization of a Gaussian integral with mass r(t) and takes the
logarithm, which results in

Γ̄t[φ] = − ln

∫︂ +∞

−∞
dϕ

√︂
r(t)
2π e−S[ϕ+φ]− 1

2 r(t)ϕ
2+Γ̄

(1)
t,φ[φ]ϕ − ln

[︂
N
√︂

2π
r(t)

]︂
. (3.27)

We are now ready to study the limit t → 0, which corresponds to the IC for a possible flow
equation for Γt[φ] or Γ̄t[φ], respectively. Focusing on the ϕ integral in the first term on the r.h.s.
of Eq. (3.27), we leverage the fact that the regulator terms act like a Gaussian representation
of the Dirac delta distribution,

lim
t→0

√︂
r(t)
2π e−

1
2 r(t)ϕ

2 ≈ δ(ϕ) , (3.28)

40It is the same shift that is used in the background field formalism [559, 560], where the full fluctuating quantum
field ϕ is split into a background field configuration φ and additional fluctuations ϕ′ about the background field.
This is why φ in this cortex is referred to as the classical or mean field.
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as long as r(t) is much larger than all scales in S[ϕ]. Thus, denoting

c(t) ≡ − ln
[︂
N
√︂

2π
r(t)

]︂
, (3.29)

we find as

lim
t→0

Γ̄t[φ] = − ln

∫︂ +∞

−∞
dϕ δ(ϕ) e−S[ϕ+φ]+Γ̄

(1)
t,φ[φ]ϕ + c(t) = S[φ] + c(t). (3.30)

This means that the IC for a flow of Γ̄t[φ] is given by the classical action S evaluated for the
classical field φ and some additional t-dependent, but φ-independent term c(t). This choice for
an IC of a PDE for Γ̄t[φ] has subtle consequences:
Although c(t) does not depend on φ, it is large, c(t) ∼ 1

2
ln r(t). Consequently, as far as the

IC for the PDE for Γt[φ] or Γ̄t[φ] is concerned, it seems as if we run into the same problem as
before: The IC is dominated by the artificial mass of the regulator r(t), independent of the
specific action S[ϕ], and differences in the specific choice for S[ϕ] enter the IC only as small
deviations from the large term c(t). Furthermore, c(t) contains the normalization constant N ,
which was fixed according to Eq. (3.4).
However, precisely because c(t) appears like the normalization N , it should be irrelevant

for all physical observables. Indeed this is the case, because all φ-independent terms in Γt[φ]
do not enter the n-point functions, since the latter are calculated as derivatives of Γ[φ] w.r.t.
φ at t → ∞, see, e.g., Sec. II E of Ref. [1] for explicit expressions. This implies that an
additive, φ-independent term in the three effective actions Γ[φ], Γt[φ], and Γ̄t[φ] is irrelevant
and only relative differences in the effective actions are observable. Therefore, we can simply
omit c(t) and take S[φ] as IC for the PDE for Γ̄t[φ]. This is however only valid if the PDE for
Γ̄t[φ] is independent of its zeroth moment – viz. only derivatives δnφΓ̄t[φ] contribute to the flow
equation – otherwise c(t) would influence the flow in a time-dependent manner. Fortunately,
we know from our general discussion in subsection 2.1.4 that this is the case for the Wetterich
Eq. (2.37) and by extension its zero-dimensional analog (3.36).

We want to conclude this discussion regarding the IC Γ̄t[φ] = S[φ] with a discussion of
convexity, smoothness and RG consistency.
After Eq. (3.25) we argued that Γ̄t[φ] does not need to be convex, but must still be smooth

for all t. Let us for example consider the non-analytic action (3.10) as an IC, Γ̄t=0[φ] = S[φ],
which does not cause any problems for the convexity and the smoothness of Zt[J ] andWt[J ]
at arbitrary t, as discussed in App. B and especially with Fig. 36 of Ref. [1]. The non-convexity
of S[φ] is also not a problem for Γ̄t[φ], which does not necessarily need to be convex at finite
t. Nevertheless, the smoothness of Γ̄t[φ] is violated by this choice of S[φ] at t = 0. This issue
originates from relation (3.28), which is exactly fulfilled only in the limit Λ→∞ for the UV
scale. This, however, leads to a trivial theory of infinitely massive particles at t = 0, cf. Eq. (3.6).
If one chooses a reasonably large but finite Λ and does not use Eq. (3.28), one would ensure

that Γ̄t[φ] is also smooth at t = 0. However, then the IC is not exactly S[φ]. In consequence,
if we use the approximation (3.28) even for finite Λ, one has to pay the price of introducing
errors into the IC as well as violating the smoothness of Γ̄t[φ] at t = 0. But in return one has a
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well-defined IC S[φ] for the PDE for Γ̄t[φ]. However, if Λ is chosen to be much larger than all
scales in S[ϕ], the errors from the IC are minor and expected to be of magnitude

error ≈ largest scale in S
Λ

, (3.31)

We will come back to this issue in subsubsection 3.2.3.1 in the context of RG consistency, see
also subsection 2.1.6.
Additionally, we will find that also the smoothness of Γ̄t[φ] is recovered automatically for all

t > 0 by the structure of the PDE for Γ̄t[φ], because it always contains diffusive contributions
which immediately smear out kinks in the IC right in the first time step. We will also come
back to this issue later on, after we have derived the flow equation (3.36) in zero dimensions
and discussed its diffusive, irreversible character.

3.1.3.3. The exact renormalization group equation in zero dimensions

In analogy to the previous flow equations in zero dimensions, the flow equation for Γ̄t[φ] is
obtained by taking the derivative of Γ̄t[φ] w.r.t. t and using the definitions (3.19a) and (3.25)
to express the derivative of Γ̄t[φ] by the scale-dependent Schwinger functional,

∂tΓ̄t[φ] = ∂t
(︁
Γt[φ]−∆St[φ]

)︁
= ∂t

(︁
Jt(φ)φ−Wt[Jt(φ)]−∆St[φ]

)︁
= (3.32a)

= [∂tJt(φ)]φ− ∂tWt[Jt(φ)]− [∂tJt(φ)]W(1)
t,Jt

[Jt]−
[︁
1
2
∂tr(t)

]︁
φ2 = (3.32b)

= − ∂tWt[Jt(φ)]−
[︁
1
2
∂tr(t)

]︁
φ2 , (3.33)

where we used the chain rule and Eq. (3.20). Using the flow equation for the Schwinger
functional (3.18) to substitute the first term on the r.h.s. of Eq. (3.33) and again employing
the identity (3.20), we arrive at

∂tΓ̄t[φ] =
[︁
1
2
∂tr(t)

]︁
W(2)

t,JJ [Jt(φ)] . (3.34)

It remains to replace the second derivative of the scale-dependent Schwinger functional by a
corresponding derivative of Γ̄t[φ]. This is done via the identity

1 =
δJt(φ)

δφ

δφ

δJt(φ)
= Γ

(2)
t,φφ[φ]W(2)

t,JJ [Jt(φ)] , (3.35)

which follows from Eq. (3.20) and (3.21). Plugging this into Eq. (3.34) and using Eq. (3.25)
with Eq. (3.7) we rediscover the Exact Renormalization Group equation or Wetterich equa-
tion [212, 214, 216]

∂tΓ̄t[φ] =
[︁
1
2
∂tr(t)

]︁ [︁
Γ̄
(2)
t,φφ[φ] + r(t)

]︁−1
, (3.36)

as the application of the general Wetterich Eq. (2.37) to the zero-dimensional theory of a single
scalar ϕ with expectation value φ.
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Eq. (3.36) manifests as a PDE for the scale-dependent EAA Γ̄(t, φ) in the t-φ-plane,

∂tΓ̄(t, φ) =
1

2

1

∂2φΓ̄(t, φ) + r(t)
∂tr(t) , (3.37)

with the IC Γ̄(t = 0, φ) = S[φ]. Some remarks are in order:
1. In contrast to the PDEs for Z(t, J) andW(t, J) the Wetterich equation can be initialized
with a suitable IC at t = 0 that produces distinct flows for different actions S[ϕ], as was
discussed in the previous subsubsection 3.1.3.2.

2. The spatial BCs, i.e., for φ → ±∞ are provided by the asymptotics of the Wetterich
equation (3.37) itself and by the requirement that S[φ] must be bounded from below:
The action S[φ] of an (interacting) field theory must at least grow like φ2 for large |φ|
and the dominant contribution for large |φ| must be even in φ. For actions S[φ] that grow
asymptotically faster than φ2 the denominator on the r.h.s. of the PDE (3.37) already
diverges at t ≈ 0, such that

lim
|φ|→∞

∂tΓ̄(t, φ) ≈ 0 . (3.38)

It follows that for |φ| → ∞ the function Γ̄(t, φ) does not change at all, but keeps its
initial value S[φ]. These are perfectly valid BCs for a PDE. The scenario for ICs with
lim|φ|→∞ S[φ] ∼ φ2 is more delicate. We will return to this issue and a detailed discussion
of BCs, when we discuss the numerical implementation and solution of Eq. (3.37) in
subsubsection 3.2.2.4 in the context of numerical fluid dynamics.

3. The PDE (3.37) can be recast into a non-linear diffusion equation in the spirit of subsec-
tion 2.1.7, viz. Eq. (2.90) by considering the flow equation for ∂t(∂φΓ̄(t, φ)):

∂t
(︁
∂φΓ̄(t, φ)

)︁
= ∂φ

1
2
∂tr(t)

∂φ(∂φΓ̄(t, φ)) + r(t)
= − ∂tr(t)(︁

∂φ(∂φΓ̄(t, φ)) + r(t)
)︁2∂2φ

(︁
∂φΓ̄(t, φ)

)︁
.

(3.39)

In contrast to the PDEs (3.12) and (3.18) it is non-linear in the second-order spatial
derivatives of Γ(t, φ). Using the flow equation for Γ̄(t, φ) and its IC, a worthwhile subject
of future work could be a study of the resulting flows for Z(t, J) andW(t, J). By applying
the same formalism to models with different field content, the FRG flow equations can
also acquire convective/advective terms and source terms, see subsubsection 3.2.2.3
and subsection 3.3.2 for a detailed discussion.

4. In zero dimensions, similar to the flow equations for Z(t, J) andW(t, J), one can repa-
rameterize the flow time t in terms of r in Eq. (3.37) and get rid of the prefactor ∂tr(t).
Additionally, one could eliminate r(t) in the denominator in Eq. (3.37) by shifting
Γ̄(t, φ)→ Γ̄(r, φ)− 1

2
r φ2 and switching from t to r as flow parameter, which corresponds

to the zero-dimensional analogue of the rescaled “dimensionless” flow equation in fixed-
point form, but is not suited for most practical calculations in this work. The exception is
our discussion in subsubsection 3.2.4.3.
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This reparameterization effectively corresponds to different choices of regulator (shape)
functions in zero dimensions. However, for higher-dimensional problems, different choices
of regulators do not need to be related to each other via simple reparametrization of the
RG time. In any case, the effective dynamics in the PDE during the FRG flow strongly
depends on the parametrization of the RG scale as well as the explicit choice of regulator,
which has two direct consequences: First, although the dynamics and t-evolution of
observables (the n-point functions) during the FRG flow might be highly interesting and
must also be studied to ensure that the UV and IR cutoff scales are chosen appropriately,
one must clearly state that only the IR value of Γ[φ] is physically meaningful. This is
demonstrated and discussed again in the context of numerical precision tests of the O(N)
model in subsection 3.2.3. Second, from a numerical point of view, some parametrizations
or choices of regulators might be more challenging for the numerical integrators than
others and must be adopted to the specific problems at hand. On the level of the PDE this
corresponds to the time-dependent strength of the diffusion, cf. subsubsection 3.2.2.3.

Using a zero-dimensional field theory with one degree of freedom, we have therefore demon-
strated that it is possible to transform the problem of solving functional integrals like Eq. (3.1)
and (3.2) for a model with action S[ϕ] into solving the PDE (3.37) in t and φ with the IC S[φ].
The Wetterich Eq. (3.36) thus directly implements the idea of transforming Gaussian-type
functional integrals into arbitrary functional integrals, but on the level of the effective action
Γ[φ] rather than the partition function Z[J ]. Both formulations of the problem of calculating
n-point correlation functions – the functional-integral formulation and the FRG formulation –
are mathematically equivalent. This, however, is, as we have seen, a highly non-trivial statement
and demands for numerical precision tests, which are part of this work.
For our following discussions in section 3.2 we want to extent the current scope by including

additional scalars in our theory, respecting O(N) symmetry. On a conceptual level this is a
straight forward extension and its is of course possible to derive the generalization, cf. (3.63),
of the flow equation (3.37) to N scalars under O(N) symmetry by repeating the derivation
of this section. After having derived the Wetterich equation twice already, first resulting the
general Eq. (2.37) and then in this subsubsection resulting in Eq. (3.39), we will refrain from a
third derivation and make use the general expression (2.37) in subsubsection 3.2.2.1 instead.

3.2. The O(N) model – strongly interacting scalars

The introduction of this section follows the discussion presented in Sec. III.A of Ref. [1].

Zero-dimensional O(N) models – i.e., models of N scalars interacting in a point with O(N)
symmetry – are predominantly studied for pedagogical and conceptual purposes [163, 312,
529–539, 541, 543, 544, 546, 549]. The zero-dimensional O(N) model is also referred to as
O(N)-vector model and can be seen as the high-temperature limit of a quantum mechanical
system [536]. It was also considered as a statistical model for the formation of polymers [531].
In Ref. [163] the model was used to compare the quality of perturbation theory, the large-N
expansion, and the FRG vertex/Taylor expansion with the exact result. The primary focus of
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the present work is to push this analysis even further and to study the limits of untruncated
FRG flow equations as well as the FRG Taylor expansion.
O(N) models in higher dimensions play an important role in understanding spin systems,

like the Ising model [95, 561, 562], and magnetization phenomena. Furthermore, they are
often used as toy models and are of utmost importance for understanding the Anderson-Brout-
Englert-Guralnik-Hagen-Higgs-Kibble mechanism and the formation of a chiral condensate in
strong-interaction matter. In the context of numerical methods for the FRG the O(N) model in
three dimensions and in the large-N limit is discussed in detail in Ref. [247].
In the following we introduce the zero-dimensional O(N) model on the level of the classical

action and the functional integral and comment on the calculation of expectation values and
1PI vertex functions, which are our observables of interest.

Consider a zero-dimensional theory of N bosonic scalars ϕa, which transform according to

ϕa ↦→ ϕ′
a = Oab ϕb , (3.40)

where O ∈ O(N) and a, b ∈ {1, . . . , N}. In vector notation, this reads

ϕ⃗ ↦→ ϕ⃗ ′ = O ϕ⃗ , (3.41)

where ϕ⃗ ≡ (ϕ1, ϕ2, . . . , ϕN ). If the action S[ϕ⃗ ] of the model possesses an O(N) symmetry, it
can contain all possible terms that are functions of the O(N) invariant

ρ ≡ 1
2
ϕa ϕa ≡ 1

2
ϕ⃗ 2 (3.42)

This implies that the most general action obeying this symmetry is given by

S[ϕ⃗ ] = U(ϕ⃗ ) = U(ρ) , (3.43)

where U(ρ) is the effective potential, in analogy to models from higher-dimensional space-
times. This effective potential might for example include a bosonic “mass term” m2ρ as well as
other interaction terms containing arbitrary powers of ρ. Although one may now be tempted
to assume that the effective potential U(ρ) must be a power series or an analytic function of ρ,
as long as it fulfills all symmetries it can be any continuous function of ρ which is bounded
from below, cf. the discussion in section 3.1 for the special case of the O(1) model.
In the remainder of this section we will summarize relevant relations for the O(N) model.

For a more detailed discussion, we refer the interested reader to Ref. [163] and references
therein. All generating functionals of the theory retain the O(N) symmetry of the action, which
makes them functionals of the invariants 1

2
J⃗ 2 for Z andW and ϱ ≡ 1

2
φ⃗ 2 for Γ. This entails

that all n-point functions for odd n vanish by symmetry and all correlation functions of a given
order of even n are proportional to each other, e.g., for the four-point function we find

⟨ϕi ϕi ϕj ϕj⟩ = 1
3
⟨ϕi ϕi ϕi ϕi⟩ , (3.44)
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for i ̸= j and i, j ∈ {1, . . . , N} (no summation over repeated indices implied here). For the
proof, use that δ

δJi
Z
(︁
1
2
J⃗ 2
)︁
= JiZ ′(︁ 1

2
J⃗ 2
)︁
and set the source J⃗ = 0 at the end of the calculation.

Using the O(N) symmetry on the r.h.s. of

⟨ϕi1 · · · ϕin⟩ =
1

Z[0]

∫︂ +∞

−∞
dNϕϕi1 · · · ϕin e−U(ϕ⃗ 2/2) , (3.45)

one can relate correlation functions of even order 2n to the expectation value ⟨(ϕ⃗ 2)n⟩. For the
two-, four-, and six-point functions, which are studied in this work, we find

⟨ϕi ϕj ⟩ =
1

N
δi,j ⟨ϕ⃗ 2⟩ , (3.46)

⟨ϕi ϕj ϕk ϕl⟩ =
1

N(N + 2)
(δi,j δk,l + δi,k δj,l + δi,l δj,k) ⟨(ϕ⃗ 2)2⟩ , (3.47)

⟨ϕi ϕj ϕk ϕl ϕm ϕn⟩ =
1

N(N + 2)(N + 4)
(δi,j δk,l δm,n+≪14≫) ⟨(ϕ⃗ 2)3⟩ . (3.48)

Connected correlation functions and 1PI vertex functions are related to correlation functions in
the usual manner, cf. Sec. II.E of Ref. [1] or Ref. [163]. Using the fact that, for odd n, all n-point
correlation functions and all n-point 1PI vertex functions vanish by symmetry, the following
relations hold for the two-, four-, and six-point functions (no summation over repeated indices):

⟨ϕi ϕi⟩c = ⟨ϕi ϕi⟩ =
(︁
Γ(2)
φiφi

)︁−1
, (3.49)

⟨ϕi ϕi ϕi ϕi⟩c = ⟨ϕi ϕi ϕi ϕi⟩ − 3 ⟨ϕi ϕi⟩2 = −⟨ϕiϕi⟩4 Γ(4)
φiφiφiφi

, (3.50)

⟨ϕi ϕi ϕi ϕi ϕi ϕi⟩c = ⟨ϕi ϕi ϕi ϕi ϕi ϕi⟩ − 15 ⟨ϕi ϕi ϕi ϕi⟩ ⟨ϕi ϕi⟩+ 30 ⟨ϕi ϕi⟩3 =

= − ⟨ϕi ϕi⟩6 Γ(6)
φiφiφiφiφiφi

+ 10 ⟨ϕi ϕi⟩−1 (⟨ϕi ϕi ϕi ϕi⟩c)2 . (3.51)

Inserting Eq. (3.46) – (3.48) into Eq. (3.49) – (3.51) and solving for the 1PI vertex functions
yields

Γ(2) ≡Γ(2)
φiφi

= N
1

⟨ϕ⃗ 2⟩
, (3.52)

Γ(4) ≡Γ(4)
φiφiφiφi

= 3N2 1

⟨ϕ⃗ 2⟩2

[︃
1− N

N + 2

⟨(ϕ⃗ 2)2⟩
⟨ϕ⃗ 2⟩2

]︃
, (3.53)

Γ(6) ≡Γ(6)
φi...φi

= 60N3 1

⟨ϕ⃗ 2⟩3

[︃
1− 9N

4 (N + 2)

⟨(ϕ⃗ 2)2⟩
⟨ϕ⃗ 2⟩2

+
3N2

2 (N + 2)2
⟨(ϕ⃗ 2)2⟩2
⟨ϕ⃗ 2⟩4

−

− N2

4 (N + 2) (N + 4)

⟨(ϕ⃗ 2)3⟩
⟨ϕ⃗ 2⟩3

]︃
. (3.54)

In summary, computing arbitrary correlation functions (or 1PI vertex functions) of the zero-
dimensional O(N) model boils down to computing expectation values ⟨(ϕ⃗ 2)n⟩. The latter can
be computed using Eq. (3.45). Because of the O(N) symmetry of the integrand, this is most
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easily done in spherical coordinates. Performing the integration over spherical coordinates, we
have

∫︂ +∞

−∞
dϕ1 · · ·

∫︂ +∞

−∞
dϕN =

2 π
N
2

Γ
(︁
N
2

)︁
∫︂ ∞

0

dρ (2ρ)
N
2 −1 , (3.55)

Then the expectation value is a simple one-dimensional integral,

⟨(ϕ⃗ 2)n⟩ = 2n
∫︁∞
0

dρ ρ
N
2 −1 ρn e−U(ρ)

∫︁∞
0

dρ ρ
N
2 −1 e−U(ρ)

. (3.56)

For certain potentials U(ρ), the integral (3.56) can even be computed symbolically in terms
of known functions [3, 163, 537], whereas for general U(ρ) a numerical evaluation to high
precision is straightforward using standard methods [554, 555]. Thus, the zero-dimensional
O(N)model is an ideal testing ground for alternative methods to calculate correlation functions,
such as, e.g., the FRG.

3.2.1. Symmetry restoration during the FRG flow

This subsection follows the discussion presented in Sec. III.B of Ref. [1].

Besides being invariant underO(N) transformations the classical action (potential) S[ϕ⃗ ] = U(ϕ⃗ )
is also invariant under the discrete Z2 transformation

ϕa → −ϕa , (3.57)

which, as already mentioned, implies that all n-point functions with odd n vanish, e.g., the
one-point function φa = ⟨ϕa⟩ = 0.
However, it is possible to consider actions (potentials) S[ρ] = U(ρ) which possess non-trivial

minima ρ0 ̸= 0. This means that the FRG flow of Γ̄t[φ⃗ ] of such models is initialized in a
symmetry-broken regime in the UV, where the O(N) symmetry is broken to its O(N − 1)
subgroup for N > 1 and for N = 1 this reduces just to the breaking of the Z2 symmetry.
Following the discussion in App. B of Ref. [1], this property of the classical action neither
translates to the full quantum effective action Γ[φ⃗ ] in the IR nor to the n-point functions,
due to a limiting case of the CMWH theorem [550–552]. The theorem states that there is
no long-range order in d ≤ 2 dimensions if the interactions between the constituents are
sufficiently short of range. Therefore, there is no breaking of a (continuous) symmetry in such
systems in the IR, i.e., after integrating out all quantum fluctuations, even when starting with
a classical action in the UV that has non-trivial minima. This is the equivalent of the statement
that φa = ⟨ϕa⟩ = 0, which follows directly from the integral (3.45) in zero dimensions. The
“Nambu-Goldstone modes” [441, 442, 563]41, which we will also call pions42 π⃗ in the zero-
41We put the term “Nambu-Goldstone modes” in quotation marks, because in zero dimensions the concept of
“massless modes” can only refer to the curvature masses in the corresponding bosonic field direction, which
are obtained from the effective potential U(ρ). But the actual particle masses in a higher-dimensional QFT are
derived from the poles of the real-time propagators, which simply do not exist in zero dimensions.

42We adopt the high-energy terminology. Condensed-matter physicists associate the pions with quasiparticles – the
Anderson-Bogoliubov modes.
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dimensional O(N) model, and the radial σ-mode “vaporize" any condensate and smear out all
cusps in Γ̄t[φ⃗ ] during the FRG flow. In the IR all modes are then “massive” again.
There are two reasons, why this feature of symmetry restoration on the level of Γ̄t[φ⃗ ] is

desirable for our numerical tests:

1. Symmetry breaking/restoration associated with condensation/“vaporization" is an essen-
tial property of all kinds of QFTs [177, 178, 240] and we have to show that it is correctly
captured by our numerical tools. This is especially important, because it was shown in
Refs. [162, 247] that non-analytic behavior in the effective potentialU(t, φ⃗ ), cf. Refs. [564,
565], which is directly associated with dynamical symmetry breaking/restoration, is
realized as shock and rarefaction waves in field space during the FRG flow.

2. The possibility of dynamical symmetry restoration on the level of Γ̄t[φ⃗ ] is also a desired
feature in order to demonstrate that it is of utmost importance to choose the UV scale
Λ and the IR cutoff rIR as well as initial and BCs in numerical FRG flow calculations
carefully. For our example it is expected that if the IR cutoff time tIR is chosen too small,
such that the regulator r(t) is still too large, the system might still be in the symmetry-
broken phase (indicated by a non-trivial minimum). This means that the scale-dependent
effective average action Γ̄tIR [φ⃗ ] at this RG scale cannot be interpreted as the full quantum
effective action Γ[φ⃗ ], because the CMWH theorem is still violated. The same applies to a
problematic implementation BCs, especially at ϱ = 0, which can lead to a violation of the
CMWH theorem such that the system is not in the restored phase in the IR.
We will discuss subtleties in the dynamical symmetry restoration on the level of Γ̄t[φ⃗ ]
further especially in subsection 3.2.5 and section 3.3 and chapter 4.

3.2.2. Exact FRG flow equation of the zero-dimensional O(N) model

This subsection follows the discussion presented in Sec. III.C of Ref. [1].

This subsection is dedicated to the FRG formulation of the O(N) model introduced in this
section 3.2. To this end, we explicitly demonstrate how to arrive at the exact, untruncated FRG
flow equation of the O(N)model. Furthermore, we will comment on the FRG Taylor expansion,
introduced in subsubsection 2.1.4.2 in this context, as a truncation scheme for the exact flow
equation in zero dimensions.
In general zero-dimensional QFTs take up a very special place in the discussion of trunca-

tion schemes, cf. subsubsection 2.1.4.2. Due to the absence of space-time and momentum-
dependencies of the fields, the EAA Γ̄t[χ] = Γ̄t(χ) is merely a function (not a functional). As
such it can be parameterized by a finite set of χ- and of the t-dependent coupling functions. In
the general FRG context this simply means that the derivative expansion of subsubsection 2.1.4.2
is exact already at zeroth-order and the EAA is just given by (a set of) local potential(s). In
consequence, truncating the system is superfluous and the PDEs, which are derived via pro-
jections from the Wetterich equation, constitute an exact and complete system. Solving this
system must therefore lead to the exact effective action Γ[χ] in the IR and is therefore formally
equivalent to solving the functional integral. In other words, calculating n-point functions via
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the (functional) integral or via the Wetterich equation (if done properly) must yield identical
results without systematic truncation errors.
This feature makes zero-dimensional QFT particularly interesting for several reasons:

1. It can be used to test the quality of numerical schemes which are used to solve the flow
equations.

2. It can be used to estimate the errors resulting from the choices of various parameters
entering the FRG flow equations like UV and IR cutoff scales, etc.

3. It can be used to test commonly used truncation schemes by artificially truncating the
exact system of PDEs to a truncated set of ODEs.

All these tests can be performed on a quantitative level, by studying the relative errors of the
FRG results for n-point functions compared to the exact results from the functional integral.
We provide results for various precision tests in subsection 3.2.3.
For the remainder of this section, we will proceed as follows: First, we will derive the

untruncated exact FRG flow equation for the zero-dimensional O(N) model. Afterwards, we
introduce FRG Taylor expansion as a truncation of this system.

3.2.2.1. The exact FRG flow equation of the O(N) model in d = 0

For the special case of the zero-dimensional O(N) model, the most general ansatz for the EAA
is given by a scale-dependent effective potential

Γ̄t[φ⃗] = U(t, φ⃗) = U(t, ϱ) . (3.58)

This ansatz can describe arbitrary O(N) invariant effective actions and can include terms at all
orders of ϱ = 1

2
φ⃗ 2. However, it is in principle not restricted to analytic (Taylor-expandable)

functions. Truncations of Γ̄t[φ⃗ ] are not required to facilitate practical computations.
In order to arrive at the exact flow equation for U(t, φ⃗) one has to perform the following

steps:

1. Insert the function (3.58) into the Wetterich equation (2.37).

2. Invert the full field-dependent two-point function in field space
(︁
Γ̄
(2)
t,φφ[φ⃗] +Rt

)︁
ij
, (3.59)

to obtain the propagator Gt,φφ[φ⃗]i,j .

3. Take the trace in field space.

4. Remove the redundant N − 1 field space directions in φ⃗.

For the last step, the FRG flow equation can be evaluated on a constant background field
configuration43 φ1 = . . . = φN−1 = 0 and φN = φ

N
= σ ≡ √2ϱ. Without loss of generality

43Here we adopt terminology from higher-dimensional FRG: The word “constant” is therefore somewhat misleading
in a QFT which cannot vary in space-time, but it is used anyhow.
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(w.l.o.g.) the φN -direction is singled out as the direction of the radial σ-mode and the constant
background field.
The inversion of the full field-dependent two-point function (3.59) can be performed ana-

lytically [95, 211, 226, 566] by introducing the complete, orthogonal, and idempotent field
space projection operators

P⊥
ij (φ⃗ ) ≡ δi,j −

φi φj
φ⃗ 2

, P∥
ij(φ⃗ ) ≡ φi φj

φ⃗ 2
. (3.60)

The projection operators are used to decompose the full field-dependent two-point func-
tion (3.59) into components perpendicular (⊥) and parallel (∥) to φ⃗, which can be inverted
separately. The regulator Rt is matrix-valued but diagonal in field space,

(Rt)i,j = δi,j r(t) , (3.61)

where r(t) again is denoted as regulator shape function, cf. Eq. (3.7) and (3.8). One finds that

Gt,φiφj [φ⃗] =
(︁
Γ̄
(2)
t,φφ[φ⃗ ] +Rt

)︁−1

ij
=

= P∥
ij(φ⃗ )

1

r(t) + ∂ϱU(t, ϱ) + 2ϱ ∂2ϱU(t, ϱ)
+ P⊥

ij (φ⃗ )
1

r(t) + ∂ϱU(t, ϱ)
, (3.62)

which can be inserted directly into the Wetterich equation (2.37). A summary of these results,
“Feynman” rules to translate the following diagrams, and expressions for additional vertices
can be found in App. D.1.1.
After taking the field space trace in Eq. (2.37) and evaluating the resulting equation on the

constant background field configuration, we arrive at the FRG flow equation for the effective
potential

∂tU(t, σ) =
1

2

N − 1

r(t) + 1
σ
∂σU(t, σ)

∂tr(t) +
1

2

1

r(t) + ∂2σU(t, σ)
∂tr(t) (3.63)

=
1

2
+

1

2
. (3.63′)

This FRG flow equation is an exact non-linear PDE for the effective potential U(t, σ), which is
of first-order in RG time t and of first- and second-order in the field space direction σ. It also
includes an explicit σ-dependence. A detailed analysis of the structure of this PDE, including
its relation to the CFD systems, discussed in section 2.2, is provided in subsubsection 3.2.2.3.
For the special case N = 1, the O(N) model reduces to the O(1) model. Such a theory of a

single scalar field in zero dimensions, was used in the introductory section 3.1. In this limit,
the pion contributions to the flow equation vanish. As already hinted in subsubsection 3.1.3.3,
we find that for non-zero pion contributions (N > 1) the flow equation for U(t, σ) acquires
a term that is of first-order in the spatial derivative, ∂σU(t, σ), which no longer has diffusive
character, but corresponds to advection in field space.
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3.2.2.2. FRG Taylor (vertex) expansion

The FRG Taylor expansion is based on the assumption that the effective (average) action Γ̄t[φ⃗ ]
can be expanded in a series in field space with RG-time-dependent expansion coefficients [93].
Due to the absence of momenta in zero dimensions the FRG Taylor expansion and the Vertex
expansion of subsubsection 2.1.4.2 are identical and we will use both terms or the combined
term FRG Taylor (vertex) expansion for our discussion.
This expansion in zero dimensions effectively reduces to an expansion of the effective potential

U(t, ϱ), cf. Eq. (3.58). The RG-scale-dependent expansion coefficients Γ̄(2n)(t) correspond
directly to the scale-dependent vertex functions Γ̄(2n)

t,φi...φi
of the QFT. For d > 0, these expansion

coefficients are usually momentum-dependent in the vertex expansion, whereas in d = 0 the
coefficients depend only on the RG time t.
The assumption of expandability and thus differentiability significantly restricts the form

of the effective action Γ̄t[φ⃗ ] = U(t, φ⃗ ), cf. Refs. [567, 568]. In fact, it neither allows for the
formation of any non-analytic behavior throughout the FRG flow nor for any non-analytic
ICs. However, non-analytic ICs are by no means forbidden, as we will see in subsection 3.2.3.
Furthermore, it is well known that non-analyticities can (and in some models have to) form in
the effective potential during the FRG flow [155, 162, 247, 565] – especially in the context of
dynamic symmetry breaking. Considering these caveats, an expansion in vertices of a given
theory must a priori be approached with caution. Still, this expansion scheme is widely used in
certain applications, cf. subsubsection 2.1.4.2.
In our work, we restrict our analysis of the precision of this truncation scheme to FRG flows

with rather specific properties: We study ICs that are analytic. Furthermore, we know, cf. App. B
of Ref. [1], that the IR effective action is smooth for the special case of zero dimensions, which
is a necessary condition for the convergence of a (Taylor) series. It should, however, be noted
that smoothness is only a necessary but not a sufficient condition for the convergence of a
Taylor series44. Only analyticity would formally imply the convergence of a Taylor series at all
φ⃗. Additionally, we argue that for sufficiently small N , the diffusive contributions to the FRG
flow are important, which smear out any possible cusps. In summary, we expect that for these
extremely special scenarios it is unlikely that non-analyticities will form and disappear again
during the FRG flow. Nevertheless, we do not know if a limited number of expansion coefficients
is always enough to reach a reliable approximation of Γ̄t[φ⃗] during the FRG flow or if it is always
necessary to flow the effective potential as a PDE without additional assumptions. This (rather
limited) applicability of the FRG Taylor expansion to analytic ICs will be tested by calculating
the relative errors of 1PI n-point functions in the FRG Taylor expansion in comparison with the
exact results and the results from the flows of a full field-dependent U(t, σ) in subsection 3.2.3.

The FRG Taylor expansion of the zero-dimensional O(N) model is given by the following

44A textbook example for a smooth function which has a non-converging Taylor series around x = 0 is

f(x) =

{︄
e−1/x if x > 0,

0 else.
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ansatz [163, 536, 537, 539],

Γ̄t[φ⃗ ] =

m∑︂

n=0

Γ̄(2n)(t)

(2n− 1)!!

1

n!

(︃
φ⃗ 2

2

)︃n
= Γ̄(0)(t) + Γ̄(2)(t)

φ⃗ 2

2
+

Γ̄(4)(t)

3

1

2

(︃
φ⃗ 2

2

)︃2

+ . . . , (3.64)

where Γ̄(2n)(t) are t-dependent expansion coefficients andm is the truncation order. The factors
of (2n − 1)!! and n! were introduced in order to have Γ̄(2n)(tIR) = Γ

(2n)
φi...φi in the IR, where

Γ
(2n)
φi...φi are the 1PI 2n-point vertex functions in the IR, with all indices being identical (no
summation over i here), see also Eq. (3.52) – (3.54). In order to arrive at the corresponding
flow equations, we proceed in a similar manner as before in subsubsection 3.2.2.1: We insert
our ansatz (3.64) into the full field-dependent two-point function (3.59) and use the field
space projection operators (3.60) to invert the latter. We obtain

(︁
Γ̄
(2)
t,φφ[φ⃗ ] +Rt

)︁−1

ij
= P⊥

ij (φ⃗ )Gππ
t (φ⃗ ) + P∥

ij(φ⃗ )Gσσ
t (φ⃗ ) , (3.65)

where

Gππ
t (φ⃗ ) ≡

[︄
r(t) +

m+1∑︂

n=1

Γ̄(2n)(t)

(2n− 1)!!

1

(n− 1)!

(︃
φ⃗ 2

2

)︃n−1
]︄−1

, (3.66a)

Gσσ
t (φ⃗ ) ≡

[︄
r(t) +

m+1∑︂

n=1

Γ̄(2n)(t)

(2n− 3)!!

1

(n− 1)!

(︃
φ⃗ 2

2

)︃n−1
]︄−1

, (3.66b)

are the field-dependent propagators of the pion and sigma field in the Taylor expansion.
This result can be inserted into the Wetterich equation (2.37), where the trace in field space

is evaluated to

∂t Γ̄t[φ⃗ ] =
1

2

[︁
∂tr(t)

]︁ [︁
(N − 1)Gππ

t (φ⃗ ) +Gσσ
t (φ⃗ )

]︁
. (3.67)

Finally, we insert the ansatz (3.64) for the EAA into the l.h.s. of this equation and expand the
propagators G◦◦

t (φ⃗ ) up to order n = m in the expansion coefficients Γ̄(2n)(t). This can also be
achieved by successively taking derivatives w.r.t. the fields and setting φ⃗ = 0 afterwards. By
comparing the expansion coefficients on the left- and right-hand sides of the equation, one
arrives at a coupled set of ordinary differential equations for the Γ̄(2n)(t) with 0 ≤ n ≤ m. The
flow equation for Γ̄(2m)(t) contains Γ̄(2m+2)(t) on the right-hand side. We truncate the system
by neglecting the flow of Γ̄(2m+2)(t), i.e., assuming ∂tΓ̄(2m+2)(t) = 0.
For an automatization of the derivation of the flow equations (the system of ODEs) via

computer algebra routines such as Mathematica [166], it is advisable to formulate the FRG
Taylor expansion in the invariant ϱ = 1

2
φ⃗ 2,

Γ̄t[ϱ] =

m∑︂

n=0

Γ̄(2n)(t)

(2n− 1)!!

ϱn

n!
, (3.68)

for which Eq. (3.67) manifests as

∂t Γ̄t[ϱ] =
1

2

[︁
∂tr(t)

]︁ [︁
(N − 1)Gππ

t (ϱ) +Gσσ
t (ϱ)

]︁
, (3.69)
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while

Gππ
t (ϱ) ≡

[︃
r(t) +

m+1∑︂

n=1

Γ̄(2n)(t)

(2n− 1)!!

ϱn−1

(n− 1)!

]︃−1

, (3.70a)

Gσσ
t (ϱ) ≡

[︃
r(t) +

m+1∑︂

n=1

Γ̄(2n)(t)

(2n− 3)!!

ϱn−1

(n− 1)!

]︃−1

. (3.70b)

The coupled set of ODEs for the expansion coefficients Γ̄(2n)(t) is given by [163, 536],

∂tΓ̄
(0)(t) =

N

2

∂tr(t)

r(t) + Γ̄(2)(t)
, (3.71a)

∂tΓ̄
(2)(t) = − N + 2

6

∂tr(t)[︁
r(t) + Γ̄(2)(t)

]︁2 Γ̄(4)(t) , (3.71b)

∂tΓ̄
(4)(t) =

N + 8

3

∂tr(t)[︁
r(t) + Γ̄(2)(t)

]︁3
[︁
Γ̄(4)(t)

]︁2 − N + 4

10

∂tr(t)[︁
r(t) + Γ̄(2)(t)

]︁2 Γ̄(6)(t) , (3.71c)

...

with

∀n ≥ 2m+ 2 ∂tΓ̄
(n)(t) = 0 (3.72)

in this approximation. The system (3.71) is an explicit example for the tower of equations (2.52)
discussed in subsubsection 2.1.4.2. An alternative derivation to the explicit expansion discussed
here can be obtained by using the higher-order flow equations of subsection 2.1.5 for the the
expansion coefficients Γ̄(2n)(t).

3.2.2.3. Conservative form

This subsubsection follows the discussion presented in Sec. IV.A of Ref. [1].

In this subsubsection, we discuss the formulation of the FRG flow equation (3.63) as an
advection-diffusion equation, as well as its interpretation in the context of CFD, cf. section 2.2.
The fluid-dynamical formulation of the FRG flow equation for the effective potential U(t, ϱ) of
models of O(N)-type (in the large-N limit [566]) is also presented in recent publications [162,
247] by some of our collaborators. It was shown that the FRG flow equation can be recast in
the form of a pure advection equation (a hyperbolic conservation law) for the derivative of the
effective potential u(t, ϱ) = ∂ϱU(t, ϱ), where u(t, ϱ) serves as the conserved quantity (the fluid),
the RG time t as a temporal coordinate and ϱ as a spatial coordinate. In this subsubsection, we
generalize this result and discuss various consequences for the numerical implementation and
interpretation of FRG flow equations. Generalizations of the fluid-dynamical picture of FRG flow
equations from the large-N results of Ref. [247] to systems with finiteN as well as the inclusion
of fermions were initially presented in various talks, see, e.g., Refs. [569, 570]. Further early
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developments in this context are discussed in the master thesis [283] of Friederike Ihssen, the
PhD thesis [398] of Nicolas Wink, and also in Ref. [162]. Furthermore, Ref. [565] includes a
formulation of the flow equation as a conservation law and a discussion of shock waves based
on the characteristics is presented, however, without really elaborating on a fluid-dynamical
interpretation and its consequences.

The formulation of FRG flow equations in terms of a fluid-dynamical language has two major
advantages:

1. It provides an intuitive explanation for different kinds of phenomena observed in FRG flow
equations, e.g., the flattening of the effective potential for small σ in the IR, which occurs
in conjunction with a non-differentiable point of the effective potential at the ground state.
Such non-analytic behavior cannot be handled and systematically analyzed by commonly
used numerical schemes such as the Taylor expansion or related discretization schemes
for the effective potential, since the latter strongly rely on differentiability. However,
these phenomena have a direct impact on the physics, for instance on the occurrence
of phase transitions [162, 247, 558, 564, 565, 567, 568, 571], and therefore must be
resolved and analyzed accurately also on a numerical level.

2. The formulation of the FRG flow equations in terms of fluid-dynamical concepts provides
access to the highly developed and extremely powerful toolbox of CFD, cf. section 2.2,
which finds applications in a wide area of fields, ranging from the natural sciences and
engineering all the way to economics. Recasting FRG flow equations as conservation laws
allows a direct application of the numerical methods, viz. the KT scheme, and the related
CFD concepts established in section 2.2.

Interestingly, the idea of interpreting RG flow equations as “flow” equations in the true sense
of the word is not new and explains the term “RG flow equations”: A discussion of analogies
between “RG flow” and hydro-dynamical flow can be found in widely used textbooks [177,
572] and is discussed via the example of field-independent coupling constants in the context of
perturbative renormalization. Furthermore, the RG flow was already associated with gradient
flow and dissipative processes in Refs. [230, 311, 573–576], even though a stringent fluid-
dynamical interpretation and formulation was not presented.
It is therefore also not accidental that the (F)RG community has chosen the term “RG time”

for the logarithm of the RG scale k over the UV scale Λ, t̃ = ln
(︁
k
Λ

)︁
. In contrast, we find that

t = −t̃ ∈ [0, ∞) can be naturally identified as a temporal coordinate in the fluid-dynamical
picture of (F)RG flow equations, see below. Hence we outright adopted the latter convention
for this thesis, cf. Eq. (2.12). An interpretation of the scale-dependent generation functionals
Zt[J ] orWt[J ] as functional flow equations in subsection 2.1.7 was part of our methodological
introduction in chapter 2. We nowwant to discuss this explicitly in zero dimensions unburdened
by the functional nature of the general expressions.
Considering the obvious analogies between flow equations arising in the FRG framework

and fluid-dynamical equations, it is remarkable that the Wetterich Eq. (2.37) has not been
more systematically investigated and compared to well-known fluid-dynamic equations. For
the related RG flow equations the situation is slightly different and the mathematical analysis
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on the level of PDEs was more systematic, see, e.g., Refs. [230, 311, 576–578]. Furthermore,
certain phenomena well-known in fluid dynamics, such as discontinuities (shock waves),
rarefaction waves, or cusps, occur in the solution of such PDEs. These require a careful
numerical treatment to resolve them, but their occurrence was very often ignored by numerical
approaches to solve the Wetterich equation by erroneously assuming that the solution U(t, σ) is
continuous, smooth, and differentiable. Still, there are some publications which use numerical
schemes to systematically capture non-analytic behavior or discuss the limitations of numerical
methods in the presence of these effects, see, e.g., Refs. [155, 565].
In order to make the fluid-dynamical analogy apparent, we present a formulation of the

FRG flow equation (3.63) for the effective potential U(t, σ) in terms of a conservation law.
Furthermore, we discuss its fluid-dynamical interpretation on a qualitative level and classify
the various contributions to the PDE – the (F)RG flow – in the fluid-dynamical picture. This
sets the stage for an adequate qualitative interpretation of the FRG flow equation and a direct
application of the KT scheme established in subsection 2.2.2.

The conservative form of Eq. (3.63)
Starting from the FRG flow equation (3.63) of the effective potential U(t, σ), we have several
options to recast the flow equation in a conservative form, two of which are:

1. Following Refs. [162, 247, 283, 398, 565, 569], we can take an overall derivative of
Eq. (3.63) w.r.t. the O(N) invariant ϱ = 1

2
σ2 and express the resulting equation in terms

of ϱ and u(t, ϱ) ≡ ∂ϱU(t, ϱ),

∂tu(t, ϱ) =
d

dϱ

(︃
1

2

N − 1

r(t) + u(t, ϱ)
∂tr(t) +

1

2

1

r(t) + u(t, ϱ) + 2ϱ ∂ϱu(t, ϱ)
∂tr(t)

)︃
. (3.73)

2. Another option is to formulate the problem on the level of the background field σ it-
self [570] and by alternatively defining u(t, σ) ≡ ∂σU(t, σ). Taking an overall derivative
of Eq. (3.63) w.r.t. σ yields,

∂tu(t, σ) =
d

dσ

(︃
1

2

N − 1

r(t) + 1
σ
u(t, σ)

∂tr(t) +
1

2

1

r(t) + ∂σu(t, σ)
∂tr(t)

)︃
. (3.74)

In both cases one ends up with a one-dimensional conservation law, where u plays the role of
the conserved quantity (the fluid), t can be identified with the time variable and ϱ or σ are
identified as the spatial variable.
The conservative form of the FRG flow equation (3.63) for the effective potential U on the

level of its derivative u is not restricted to zero space-time dimensions or models with purely
bosonic field content, see also Refs. [162, 247, 283, 398, 565, 569, 570] and chapters 4 and 5.
As a matter of fact, this formulation generalizes to arbitrary dimensions and also to models
which include fermionic degrees of freedom on the level of the LPA. In particular, the flow
equation for the effective potential for models of strong-interaction matter, such as the quark-
meson, the Nambu-Jona-Lasinio, and the Gross-Neveu(-Yukawa) model can be formulated in
this fashion [4, 162, 210, 283, 284].
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In this context, it is also worthwhile to note that Eq. (3.74) can be derived not only by taking
a derivative of the FRG flow equation for the effective potential U(t, σ) w.r.t. the background
field σ. It is also possible to use the flow equation for the one-point function (2.67) directly and
hence deriving the flow equation for u(t, σ) via a projection on the one-point function Γ̄(1)

t (σ ),

∂tu(t, σ) =
(︁
∂tΓ̄

,σ
t [φ⃗ ]

)︁
φ1=...=φN−1=0, φN=σ

≡ ∂tΓ,σk (3.75)

= −1

2
σ − 1

2
σ (3.76)

= −1

2

N − 1
[︁
r(t) + 1

σ
u(t, σ)

]︁2 ∂σ
[︁
1
σ
u(t, σ)

]︁
∂tr(t)−

− 1

2

1
[︁
r(t) + ∂σu(t, σ)

]︁2 ∂2σu(t, σ) ∂tr(t) (3.77)

=
d

dσ

(︄
1

2
+

1

2

)︄
. (3.78)

This corresponds to an interchange in the order of operations (evaluating the Wetterich equation
on the background field configuration and taking derivatives w.r.t. the background field versus
taking functional derivatives of the FRG equation and afterwards evaluating on the background
field) and it is non-trivial (especially for flow equations for more complex models in higher
dimensions and with truncation beyond LPA) that the resulting equations are identical, cf.
App. B.3.1.
Before we turn to the fluid-dynamical interpretation of the conservation laws (3.73) and

(3.74), we comment on the question whether one of the two formulations (3.73) and (3.74) is
preferable or if even others should be considered. The answer to this question is not yet settled.
From our present understanding, a formulation of the conservation equation in terms of σ is
preferable, for reasons of numerical implementability in the FV scheme we use. This is discussed
at length in the context of the PDE BCs for the FRG flow equation in subsubsection 3.2.2.4.
Therefore, our discussion in the next sections is based on Eq. (3.74), and hence we identify σ
with the spatial coordinate x and u(t, σ) ≡ ∂σU(t, σ) as the conserved quantity.

The rest of this subsubsection is dedicated to the fluid-dynamical interpretation of the FRG
flow equation (3.74). To this end, we split the flux (current) on the r.h.s. of the conservation
law (3.74) and rewrite the whole equation in terms of an advection-diffusion equation, cf.
Eq. (2.91) and subsections 2.2.3 and 2.2.4, in one spatial dimension x = σ and one temporal
dimension t,

∂tu(t, x) +
d

dx
F [t, x, u(t, x)] =

d

dx
Q[t, ∂xu(t, x)] . (3.79)

The pionic contributions to the FRG flow,

F [t, x, u(t, x)] = − 1

2

N − 1

r(t) + 1
x
u(t, x)

∂tr(t) = −
1

2
, (3.80)

3.2. The O(N) model – strongly interacting scalars 123



are identified with a non-linear, position-dependent advection flux, while the contribution of
the radial σ-mode,

Q[t, ∂xu(t, x)] = +
1

2

1

r(t) + ∂xu(t, x)
∂tr(t) =

1

2
, (3.81)

corresponds to a non-linear diffusion flux. We discussed conservation equations like Eq. (3.79)
in a CFD context at length in our methodological introduction 2.2. In the following paragraphs
we want to comment on the nature of the pionic/advective and radial σ/diffusive contributions
using the established CFD terminology.

Advection
If we ignore the contribution of the σ-mode for a moment (which – after rescaling – corresponds
to the large-N limit of theO(N)model [3, 162, 247, 566]), we can rewrite the l.h.s. of Eq. (3.79)
as follows,

∂tu(t, x) +
d

dx
F [t, x, u(t, x)] = 0 (3.82)

∂tu(t, x) + ∂uF [t, x, u(t, x)] ∂xu(t, x) + ∂xF [t, x, u(t, x)] = 0 (3.83)

This is a hyperbolic, non-linear advection equation for u(t, x), cf. Eq. (2.115), and its accom-
panying primitive form, cf. Eq. (2.116), including an internal source term. ∂uF [t, x, u(t, x)] is
identified with the velocity of the characteristics (the local u-dependent flow velocity of the
quantity u) and ∂xF [t, x, u(t, x)] acts like an x- and u-dependent internal source term. Hence
F [t, x, u(t, x)] is not purely advective nevertheless we will continue to refer to it as advection
term.
The form of Eq. (3.82) motivated our discussion of linear and non-linear advection equations

in subsubsection 2.2.3.2 with the LAE (2.123) and BBE (2.130) as instructive examples. When
compared to the BBE (2.130) we notice that in our pionic FRG flow the local flow velocity is
highly non-linear in t, x and u and explicitly reads

∂uF [t, x, u(t, x)] =
1

2

N − 1

x
[︁
r(t) + 1

x
u(t, x)

]︁2 ∂tr(t) . (3.84)

Considering for example the exponential regulator shape function (3.8), one finds that the
advection velocity ∂uF [t, x, u(t, x)] is always negative (positive) for x > 0 (x < 0). In a fluid-
dynamical picture, this means that the conserved quantity u(t, x) is always propagated from
larger values of |x| towards the point x = 0 by advection. Furthermore, the closer the fluid
u(t, x) is to x = 0, the faster the fluid moves, due to the factor 1

x
. Since u(t, x) is antisymmetric

in x, because of the O(N) symmetry of U(t, φ⃗ ), this implies that “waves” of positive and
negative u(t, x) collide with huge velocity at x = 0 and annihilate. At large |x|, the fluid
velocity tends to zero.
We also observe that the advection velocity (3.84) is proportional to the number of pions,

N − 1. Hence, in the large-N limit the system, discussed at length in subsection 3.2.5, is
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completely advection driven, while for small N the diffusive contributions (3.81) gain in
importance. In the case N = 1, discussed at length in subsection 3.2.4, there is no advection
at all and the dynamics of the fluid u(t, x) is purely diffusive.
At this point we want to remind the reader of the general properties and features of non-linear

advection equations – like shock formation, (numerical) entropy production, and irreversibility –
discussed in general in subsection 2.2.3. Naturally those properties also play an important role
in the dynamics of FRG flows, which we will discuss in the following conceptually and also
using explicit examples.

Diffusion
Next, we turn to the contribution of the radial σ-mode to the FRG flow. We find that it enters
the conservation law (3.79) as a non-linear diffusion flux (3.81), because it is overall of second-
order in spatial derivatives of u(t, x). The characteristic property of diffusive processes is that
they transport a quantity, in this case u(t, x), from regions where its density or concentration
is high to regions where it is low [315, 317, 319, 328], cf. subsection 2.2.4. Diffusive processes
are therefore usually important in regions of high gradients and smear out cusps, shocks etc.,
which might form via advection. Besides this, diffusive processes are generically undirected,
which is also the case for the diffusion flux (3.81) which propagates the quantity u(t, x) in both
directions, depending on the local gradients of u(t, x), which is especially relevant for models
in their symmetry-broken phase with rather weak advection (small N). The effective transport
velocities via diffusion are usually much slower than those via advection, which is, due to the
non-linearity, not necessarily true for FRG flow equations. We discussed the HE (2.138) as an
archetypal linear diffusion equation at length in subsection 2.2.4. The diffusion flux (3.79) can
be formulated as a non-linear time-dependent realization of the heat equation. By performing
the spatial derivative in the advection-diffusion equation (3.79) for the purely diffusive (N = 1)
case, one finds

∂tu(t, x) =α[t, ∂xu(t, x)] ∂
2
xu(t, x) , (3.85)

where

α[t, ∂xu(t, x)] ≡ −
1
2
∂tr(t)

[r(t) + ∂xu(t, x)]2
, (3.86)

plays the role of a non-linear time-dependent, strictly positive – parabolic – diffusion coefficient.
The positivity of the diffusion coefficients ensures that u(t, x) is only dispersed and never
accumulates locally, i.e., that u(t, x) tends to equilibrate towards a linear function in space.
A positive diffusion coefficient also ensures stability and uniqueness of (numerical) weak
solutions, as discussed in the beginning of subsection 2.2.4.
Directly comparing these findings with the HE, we can already qualitatively predict the

behavior of the diffusion transport for the FRG flow of u(t, x), as long as N is small and the
system is diffusion-dominated. At a constant RG time t, we find that the diffusion coefficient is
much larger in regions where the gradient ∂xu(t, x) is negative with a large absolute value,
compared to regions where it is positive, because in the first case the denominator of Eq. (3.86)
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is smaller than in the second case. This plays a crucial role for systems that involve symmetry
breaking, where ∂xu(t, x) is negative for at least some small |x|, while asymptotically for
|x| → ∞ the sign of ∂xu(t, x) is always positive. Hence, for diffusion-dominated problems in
FRG flow equations (small number N of pions), the symmetry restoration is driven by the
negative gradients ∂xu(t, x) at small |x|. Furthermore, we find that for t→∞, the numerator
of the diffusion coefficient (3.86) tends to zero such that the diffusion stops, the system
equilibrates and the dynamics freezes, even though there are still gradients in u(t, x). This
would not happen for the linear HE with its constant diffusion coefficient. The same is true for
t = 0, where the diffusion coefficient is suppressed by 1/Λ.

Irreversibility and entropy production
In a fluid-dynamical setting, it is very easy to understand the role of the radial σ-mode: Due
to its diffusive character, it is directly responsible for the irreversibility of the (F)RG flow
and RG transformations in general. Diffusion is a particular example of a dissipative process,
which is irreversible and increases the entropy of the system45. The dissipative and irreversible
character can be seen as a “thermodynamic” version of the irreversible Kadanoff block-spin
transformations [95, 235, 236]. Hence, the dissipation clearly singles out the RG time t as a
temporal direction, because it introduces a “thermodynamic arrow of time” and “thermodynamic
time asymmetry” via entropy production [579]. This also explains why our definition (2.12):

t ≡ − ln
(︁
k
Λ

)︁
= ln

(︁
Λ
k

)︁
, t ∈ [0,∞) . (3.87)

is a natural choice for a temporal coordinate also in higher dimensions, see also Refs. [247,
311, 576, 578, 580].
Interestingly, the irreversibility and the dissipative character of the system is lost if one

does not include the full field-dependence of the effective potential in the flow equation, but
instead uses a truncated system like the Taylor expansion (3.71). Then, the system (3.71) of
coupled ODEs for the vertices can theoretically be integrated in either direction in RG time, as
long as it consists of a finite number of couplings46. The most extreme examples are the RG
flows of one single t-dependent coupling, e.g., the quartic coupling of ϕ4 theory or the QCD
beta function [66, 67, 581, 582], see also the textbooks [177, 178]. Here the integration to
both higher and smaller RG scales is possible, which is the well-known result for the universal
one-loop beta function and is an artifact of the restriction (truncation) to a finite number of
couplings [235]. However, this reversibility of RG transformations is not possible for the field-
dependent effective potential, which is obvious from the advection-diffusion equation (3.79),
45Interestingly, Ref. [575] comes to the same conclusion arguing in reverse order: “Some of the information on the
ultraviolet behavior of the field theory is lost under renormalization transformations with t > 0, since in the field
theory it is not legitimate to examine correlations at scales smaller than the cutoff. We would therefore expect
that a motion of the space Q [a change of the set of all couplings] under the influence of the renormalization
group would become an ‘irreversible’ process, similar to the time evolution of dissipative systems.” We remark
that also Ref. [576] stated that a term of second-order in field space derivatives in related RG flow equations
“[. . . ] corresponds to a dissipation in the flow and is responsible for the semi-group property of the RG”.

46In momentum space this enables an integration to higher energy scales, which corresponds to a reversion of
the coarse-graining in position space. More generally speaking, this implies that it is possible to resolve the
microphysics from the macrophysics. Both are physically not possible and solely an artifact of the truncation.
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where entropy increases and the information about the IC in the UV cannot be recovered from
the IR anymore.
This point of viewwas already shared, presented, and discussed by K. G. Wilson: In Ref. [235]

he pointed out the differences between his “coarse-graining” version of the RG, which is also
applicable in highly non-perturbative regimes, and the RG flow equations used by C. Callan,
K. Symanzik, M. Gell-Mann, F. Low, G. t’Hooft, S. Weinberg, H. Georgi, D. Politzer and others
to calculate the running of a single (or small number of) coupling constants, which solely
describes a system correctly in a perturbative regime.
The irreversibility of the FRG flow and entropy production is also directly related to the

presence of discontinuities in the solution, which can arise from the advective contributions
to the flow. As shown in Refs. [3, 162, 247, 565] for the large-N limit, a shock wave arises
when the weak solution of the PDE is multi-valued. The correct solution is usually constructed
by means of the Rankine-Hugoniot condition [315, 317, 319, 328, 368, 369]. This would
lead to ambiguities when one tries to invert the flow (integrating backwards in time) in the
presence of a shock. Hence, shock formation is an irreversible process and produces entropy.
In summary, these are further strong arguments why the assumption of expandability of the
effective average action in terms of vertices as well as the truncation of the system should in
general be considered with care.
Therefore, it would be extremely interesting to explicitly construct an entropy function

for the flow equation, i.e., a quantity that is either non-decreasing or non-increasing under
the RG transformations during the FRG flow (depending on the sign convention), and that
is a functional of the quantity u(t, x). The entropy for the flow equation will be a helpful
instrument to design a stable numerical scheme for generic truncations [315, 317, 319] and
will also highlight general properties of the (F)RG flow. In this context we also have to mention
the recent publication [245] by J. Cotler and S. Rezchikov who were able to interpret the
Polchinski equation as an “optimal transport gradient flow of a field-theoretic relative entropy”
thus establishing a firm and explicit connection between an information-theoretic entropy and
(F)RG flows.
Additionally, a numeric entropy (function) might provide a direct link to C-/A-theorems [230,

575, 583–588], which state that in certain QFTs there exists some positive real function
C({gi}, t), which depends on all coupling constants of the QFT and which is monotonically
increasing47 during RG flows (transformations), while it stays constant at (critical) fixed points,

d

dt
C({gi}, t) ≥ 0 . (3.88)

Here, {gi} denotes the set of all (possibly infinitely many) dimensionless coupling constants. In
contrast to previous formulations [589–595], a non-local version, which is directly linked to the
numerical entropy function (similar to versions presented in Refs. [230, 576, 580] for related
field-dependent flow equations), would not rely on expandability in the couplings or vertices
and could naturally display the dissipative character of RG transformations, which was already
47It can also be defined as a monotonically decreasing function. This flip of sign corresponds to the difference
of the mathematicians’ and physicists’ definition of entropy. We chose to the “thermodynamic convention” of
increasing entropy for this and subsequent publications.
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described by Refs. [575, 576]. Fixed-point solutions of the FRG flow would directly correspond
to steady-state or thermal-equilibrium solutions [315] in the fluid-dynamical picture48. A
caveat at this point is that a C function is based on the rescaled dimensionless RG flow equations.
Hence, also a numerical entropy should be formulated in this framework, if one seeks a direct
link to a C function. The dimensionless flow equations in the LPA can be recast in terms of
conservation laws, which might be a good starting point.
An explicit discussion of (numerical) entropy for the zero-dimensional O(1) model as well as

possible links to C functions is discussed in great detail in subsection 3.2.4. The situation for
the O(N) model in the limit N →∞ is discussed in subsection 3.2.5. The construction of an
explicit (numerical) entropy has proven to be elusive in the case of finite N > 1 for the O(N)
model [2, 3] due to the explicit position-dependencies in Eq. (3.74) and (3.73) and the related
internal source terms, cf. Eq. (3.82).

Generalizations
At this point we want to briefly comment on the generalization of the fluid-dynamical picture to
FRG flow equations in higher-dimensional QFTs, systems withmore (field-dependent) couplings,
and FRG flow equations that involve fermions.
In higher-dimensional QFTs, the fluid-dynamical interpretation of the FRG flow of the effective

potential survives, see for example Refs. [4, 162, 210, 247, 284, 570] and especially chapter 4.
In zero dimensions, t merely parametrizes some dimensionless (mass-like) scale r(t), see
Eq. (3.8). In contrast, in higher dimensions, the RG time is defined as the negative logarithm
of the ratio between the RG momentum scale k and the UV reference scale Λ, see Eq. (3.87).
The fluxes gain further t-dependent prefactors via the momentum integrals of the trace in
the Wetterich equation. This leads to a different time scaling but does not affect the overall
discussion. The inclusion of further field-independent but scale-dependent couplings (such as
a scale-dependent Yukawa coupling) adds ODEs to the advection-diffusion equation for the
effective potential, which does not spoil its conservative fluid-dynamical character. It is currently
investigated by us and collaborators [162, 210, 248, 283, 284] whether the inclusion as well
as the conservative formulation of further field-dependent couplings (such as a field- and scale-
dependent wave-function renormalization Z(t, φ⃗ ) in higher-dimensional models) is possible.
In any case, simply adding fermions in the LPA does not destroy the fluid-dynamical character
of the FRG flow equation at all: On the level of the LPA for the FRG flow equation of the effective
potential, the contributions from fermion loops can be interpreted as a source/sink term, which
only depends on σ, i.e., the spatial position x. We discuss such fermionic source/sink terms
in zero dimensions in section 3.3 and in non-zero, i.e., 1+1 = 2 dimensions, at zero and
non-zero temperature and especially quark chemical potential in chapter 4. Another possible
generalization concerns models with more than one invariant of the underlying symmetry group
of the model and respective condensation directions in field space, see, e.g., Refs. [99, 127,
145, 147, 337, 338]. Here, the fluid-dynamical framework should still be applicable. However,
48This actually brings up the interesting question whether previous studies about global fixed-point solutions for
field-dependent flow equations, which seemed to deliver interesting results, e.g., Refs. [154, 243, 576], should
be reanalyzed from the fluid-dynamical steady-flow perspective, especially regarding their interpretation and
the spatial discretization methods [315].
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a suitable identification of a complete basis of field space directions with “spatial directions” of
the fluid-dynamical problem and a clear separation of the single contributions into advection,
diffusion, and source terms might be challenging and calls for future investigations – especially
when it comes to an actual numerical implementation. For first attempts of generalizing our
findings to a quark-meson-diquark model, we refer to Ref. [596].
Summarizing we find that the fluid-dynamical interpretation of flow equations has tremen-

dous benefits, because it allows for a rather intuitive understanding of the dynamics of the
system. Furthermore, it allows for a novel, physically intuitive interpretation of the FRG flow
and provides an understanding of its irreversibility. Finally, it opens up the opportunity to
employ extremely powerful numerical tools from CFD.

3.2.2.4. Boundary conditions and computational domain

This subsubsection follows the discussion presented in Sec. IV.D of Ref. [1].

In the form of the conservation laws (3.73) or (3.74), the FRG flow equation (3.63) is a
non-linear PDE which has contributions of parabolic (diffusion terms) as well as hyperbolic
(advection terms) nature. In this subsubsection, we specify the BCs for Eqs. (3.73) or (3.74) in
field space (the effective spatial x-direction).
For (non-linear) PDEs of hyperbolic and parabolic type, the spatial BCs are needed (in addition

to the IC) to make finding a (weak) solution a well-defined problem, cf. subsections 2.2.3
and 2.2.4. We are dealing with a Cauchy or to be even more specific an initial-boundary-value
problem. Thus, without explicitly specifying the BCs, e.g., of Neumann- or Dirichlet-type, as well
as the ICs, the problem of finding a unique (weak) solution is actually ill-posed and therefore
impossible to solve – a well-known mathematical fact with particular and severe implications in,
e.g., classical electrodynamics [597], fluid dynamics [598], soliton and instanton solutions of
classical field equations [599, 600], general relativity [601–603], and other fields of research.
This – unsurprisingly – also holds true for the FRG. However, explicit BCs and especially their
numerical implementation are rarely discussed in FRG literature, with, e.g., Refs. [567, 568,
592, 604] as notable exceptions before the advent of CFD methods for the FRG [1–4, 162, 210,
247, 248, 283, 284].
For the derivative of the effective potential u(t, σ), we find that the spatial BCs must be

imposed at σ = ±∞, because the field space domain of u(t, σ) is given by R. Thus, when
considering the flow equation on the non-compact domain (−∞,∞) the problem represents a
pure initial-value/Cauchy problem [315, 317, 328] and, given the asymptotics of the flow equa-
tion and the IC, explicit BCs at σ → ±∞ are not required. However, spanning a non-compact
computational interval from −∞ to +∞ is practically impossible on a finite computational
grid. A possible solution is a compactification [155] of R to the interval [−1,+1], via a suit-
able mapping σ ↦→ x(σ) usually supplemented with a mapping u ↦→ v(u) rendering v finite
on [−1,+1]. Another popular solution is a truncation of the computation interval at a large
value σmax ∼ xmax with a suitable BC [154, 155, 567, 604]. We will return to this issue below.
In any case, one of the boundaries at spatial infinity can already be replaced by a finite value

by making use of the O(N) symmetry of the potential U(t, φ⃗ ) and the flow equations, which
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implies a Z2 antisymmetry of u(t, σ) = ∂σU(t, σ),

U(t, σ) = U(t,−σ) ⇐⇒ u(t, σ) = −u(t,−σ) . (3.89)

This reduces the spatial domain to the half-open interval σ ∈ [0,+∞), but now we need an
additional artificial BC at σ = 0, see, e.g., Ref. [567]. In previous studies, the use of the O(N)
symmetry was usually implemented right from the beginning by replacing the variable φ⃗ by
the O(N) invariant ϱ = 1

2
φ⃗ 2, whose domain is already by definition [0,∞).49 In this case one

has to define

u(t, ϱ) ≡ ∂ϱU(t, ρ) = 1
σ
∂σU(t, σ) = 1

σ
u(t, σ) , (3.90)

to obtain a flow equation for u(t, ϱ) in a manifestly conservative form, see Eqs. (3.73) and (3.74).
Before returning to the remaining BC at +∞, we first consider the newly introduced artificial
BC at x = σ = 0 or, correspondingly, at ϱ = 0.

The boundary condition at σ = 0
At first sight it might be appealing to formulate the whole problem – the conservation equation
and the BC at σ = 0 – in the variable ϱ. However, we believe that a formulation in σ is more
suitable and easier to implement in our numerical FV setup.50 A key feature of (non-linear)
hyperbolic/parabolic conservation equations is that their weak solutions may exhibit non-
analyticities in the form of shock and rarefaction waves etc., which manifest themselves in the
solution in cusps or discontinuities in spatial direction during the time evolution, cf. subsec-
tion 2.2.6. These effects can develop during the time evolution even if the IC is smooth/analytic,
see, e.g., Refs. [155, 167, 315, 317, 371, 372, 609] and our discussion of the BBE (2.130)
in subsubsection 2.2.3.2. As demonstrated in Refs. [4, 162, 210, 247, 283, 284, 398, 565,
569] this also holds for FRG flow equations, where non-analyticities are inherent properties
of the effective IR potential U(tIR, σ). These statements are also true for the point σ = 0,
where U(t, σ) and u(t, σ) do not need to be analytic, see subsubsection 3.2.3.4. Hence, there
might be a scenario where the potential U(t, σ), although it is symmetric in σ, has a cusp at
σ = 0, which would correspond to a jump in a weak solution for u(t, σ) = ∂σU(t, σ) at σ = 0.
If formulated in ϱ, any scenario (analytic or non-analytic at σ = 0) merely corresponds to
49In any case, independent of the implementation of the BC itself, one should make use of symmetries of the flow
equations in numerical implementations. First of all, this leads to a reduction of the number of computational grid
points in spatial direction, while keeping the spatial resolution fixed, which significantly speeds up the calculations
(independently of the specific numerical method for spatial discretization). An additional consequence is the
reduction of numerical errors: It is highly unlikely that the numerical errors are symmetric in x, if a symmetric
interval around x = σ = 0 is used. This might lead to an artificial breaking of the Z2 antisymmetry by
unbalanced numerical errors. Although these errors might be tiny and almost negligible they can be easily
circumvented by exploiting the symmetries. Using the symmetries of a problem is a standard procedure in
practical computations and of particular importance in, e.g., numerical fluid dynamics and numerical (general)
relativity, see Refs. [605–608].

50We do not claim that it is impossible to formulate well-defined discrete BCs in ϱ at ϱ = 0, as can be seen for
example in Refs. [3, 162, 247] for the specific case of the large-N limit of the O(N) model and generalizations
to finite N [210, 284]. However, we were not able to provide a suitable discretization of the BC at ϱ = 0 in the
implementation of the FV method for flow equations that include diffusion via the radial σ-mode.
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some arbitrary value for u(t, ϱ) = ∂ϱU(t, ϱ) at ϱ = 0, which seems to be of great advantage,
because one does not have to deal with possible discontinuities in the conserved quantity u.
Furthermore, the problematic factors of 1

σ
in the pion propagator and the advection flux (3.80),

which are diverging at σ = 0, can be avoided when formulating the flow equations in ϱ.
Nevertheless, a problem with the variable ϱ becomes apparent when turning to the discretized

form of u within the FV scheme introduced in section 2.2 and specifically subsection 2.2.2: FV
methods (and also other discretization schemes) usually require ghost cells at the boundaries
of the computational domain, since the in- and out-flows for the ith cell are calculated from the
cell averages ū of its neighboring cells, cf. Eq. (2.106). However, initially these values are not
specified for the cells at the boundaries of the computational domain. Thus, artificial ghost cells
must be introduced and the numerical values for ū in these ghost cells have to be implemented
by hand or reconstructed from the cells within the computational domain in accordance with
the BCs [315, 317], cf. subsections 2.2.3 and 2.2.4 and Eqs. (2.126), (2.128), (2.141), (2.142),
and (2.148). In the second-order formulation of the one-dimensional KT scheme one needs
two ghost cells at each of the two spatial boundaries, cf. Eq. (2.106).
However, implementing ghost cells for u(t, ϱ) at ϱ = 0 is conceptually difficult, because these

ghost cells must be centered at negative values for ϱ outside the computational domain [0,∞),
which by definition do not exist due to the positivity of ϱ = 1

2
σ2. A priori, it is therefore not

clear how numerical values ū(t, ϱi) should be assigned to ghost cells at negative ϱi, because
symmetry arguments cannot be applied anymore.
Furthermore, it is also not a feasible option to move the ghost cells to positive values of

ϱi, such that the point ϱ = 0 is no longer part of the computational domain. Namely, having
ghost cells centered at small but positive ϱi implies that one has to extrapolate the numerical
values ū(t, ϱi) to these ghost cells and to the point ϱ = 0 from the other ordinary cells of the
computational domain. However, the functional behavior of u(t, ϱ) is unknown for small ϱ and
is actually exactly what we want to calculate in the first place by solving the PDE. Thus, any
extrapolation at small ϱ can only be considered an educated guess. It is especially dangerous,
because the physical point will be part of the extrapolated ghost cells if it is located at ϱ = 0,
which is the case for all models in their symmetric phase [4], irrespective of the dimensionality
of space-time. Consequently, extrapolation errors at the physical point have the potential to
spoil the numerical values of all n-point functions, which are calculated at the physical point
via derivatives of u and contain the physics of the model. Even if the physical point is at finite
non-zero ϱ far away from the ghost cells and the boundary at ϱ = 0, any kind of extrapolation
at small ϱ leads to numerical errors, because the diffusive contributions of the radial σ-mode
will propagate this information from smaller to larger ϱ and hence to the physical point. Similar
problems in formulating appropriate BCs at ϱ = 0 also exist in other discretization schemes
like finite-difference or finite-element methods.
There is one exception to this conclusion: In the large-N limit of the O(N) model the flow

equation for u reduces to a pure advection equation. Studying the characteristic velocities,
which are given by ∂F/∂u, respectively, see Eq. (3.84), we find that these cannot change their
sign, and information (or the conserved quantity u) is always propagated via advection in
the direction of smaller ϱ or |σ|. In this scenario, ghost cells can be positioned at negative ϱi
and the corresponding cell averages ūi in the ghost cells can take any numerical value since
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information from the ghost cells is never propagated back into the computational domain and
cannot cause any errors, cf. Refs. [3, 162, 247] and especially subsection 3.2.5. Shifting the
ghost cells into regions of positive ϱ is still not suitable for the reasons already discussed above.

In order to avoid all these difficulties when formulating the problem in the variable ϱ, we
suggest a formulation in σ and an implementation of the BC at σ = 0. The key argument for
using σ instead of ϱ is that positioning ghost cells at negative σ poses no problem at all, since
negative σ exist in the first place. Furthermore, it is clear how the cell averages ū(t, σi) in the
ghost cells have to be chosen: Using the antisymmetry (3.89), one merely has to mirror the
last physical cells of the computational domain at σ = 0 to the ghost cells (including a flip in
sign). The only issue that requires careful consideration is the choice of the position of the
first physical cell x0 next to σ = 0: The flux term of our PDE contains factors 1

σ
via the pion

propagators, which diverge if evaluated at σ = 0. Therefore, we must avoid evaluating the
fluxes F [t, x, u(t, x)] at x = σ = 0. However, inspecting the KT scheme, we find that the fluxes
as well as the Jacobian ∂F [u]

∂u
must only be evaluated at the cell boundaries xj± 1

2
, cf. Eq. (2.103)

and (2.108). Consequently, the natural choice for the position of the cell center x0 of the first
physical cell in the computational domain is at x = σ = 0, such that the in- and out-fluxes
of this cell are evaluated at x± 1

2
, which is not problematic. Incidentally, this automatically

cures the problem of the possibility of non-analyticities in u(t, σ) at σ = 0: Even if u(t, σ) is
discontinuous at σ = 0 we do not run into problems, because all numerical calculations are
performed on the level of cell averages ū(t, σi). The cell average of an antisymmetric function
in a cell that is centered at σ = 0 must always vanish identically, independent of all other
properties of the function, see also Refs. [567, 568].
In summary, we switch from the open computational interval (−∞,+∞) to the half-open

computational interval [0,+∞) by means of the Z2 (anti-)symmetry using

ū−2(t) = −ū2(t) , ū−1(t) = −ū1(t) , ū0(t) = 0 , (3.91)

for the cell averages in the ghost cells left of x0 = 0 and in the cell at x0 itself. This construction
is visualized in figure 3.2 for exemplary continuous and discontinuous initial conditions. It
effectively corresponds to reflective BCs frequently imposed in CFD [315, 317, 383], see, e.g.,
Eq. (2.148).

The boundary condition at σ → ∞
Now we return to the BC at σ → +∞. W.l.o.g. we discuss the interval σ ∈ [0,+∞) since the
situation in σ ∈ (−∞, 0] follows from Z2 antisymmetry of u(t, σ).
We have already argued that there are no real BCs at spatial infinity on a non-compact

domain. The behavior of u at σ → ∞ is rather given by the asymptotics of the Wetterich
equation, which makes the PDE an pure initial-value problem. The BC at spatial infinity is
actually fixed implicitly: As long as the initial potential U(t = 0, σ) is bounded from below and
grows faster than σ2 for σ →∞ both pion and sigma propagator tend to zero for sufficiently
large σ, such that the r.h.s. of the PDE (3.74) vanishes during the entire FRG flow. In the fluid-
dynamical picture this corresponds to vanishing advection (3.80) and diffusion fluxes (3.81)
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Figure 3.2.: Second-order accurate FV implementation of the spatial BC for u(t, x) or ūi(t),
respectively, at x = 0 using Eq. (3.91). We use the fact that u(t, x) is an odd function
in x by positioning the first computational cell x0 at x = 0, such that the cell average is
exactly zero, ū0 = 0, which is true for u(t, x) which are continuous (blue-dashed) as well
as discontinuous (green-solid) at x = 0. Corresponding cell averages ūi are depicted as
horizontal bars (magenta-dashed and yellow-solid). This BC can be generalized to lower- and
higher-order accurate FV schemes as well as finite-difference or finite-element schemes. From
Fig. 3 of Ref. [1].

at σ →∞, which is a zero-influx BC for u(t, σ). The derivative of the effective potential u(t, σ)
is therefore fixed to its initial value u(t = 0, σ) at σ →∞.
The limiting case, when the asymptotic behavior of the UV initial potential is quadratic,

lim
σ→∞

U(t = 0, σ) ∼ σ2 ⇐⇒ lim
σ→∞

u(t = 0, σ) ∼ σ , (3.92)

is more delicate. In this case, the advection and diffusion fluxes (3.80) and (3.81) do not
vanish for σ →∞ for all RG times. However, for small RG times t ≈ 0, the fluxes are actually
independent of σ at large σ due to the constant asymptotic slope of the IC u(t = 0, σ). This in
turn implies that the in- and out-flux for all volume cells at large σ only depend on t and must
cancel exactly, such that the net flux of these cells vanishes. Therefore, also in this scenario
u(t, σ) is fixed to its IC at σ → ∞ not only for small t, but rather for all RG times t. For late
RG times t→∞, the advection and diffusion fluxes (3.80) and (3.81) vanish anyhow, due to
the derivatives of the regulator shape functions in the numerators, i.e., ∂tr(t) = −Λe−t. In the
language of fluid dynamics, ICs with quadratic asymptotics can therefore be interpreted as BCs
with time-dependent but spatially constant influx, cf. Examples 7 and 9 in Ref. [167].
However, both cases cannot be implemented directly on a finite computational domain and

we basically have two options:

1. We could map the interval [0,∞) to a compact interval [0, 1] via a suitable map σ ↦→ x(σ).
This also includes a suitable mapping of u ↦→ v(u) to keep the values for the conserved
quantity finite on [0, 1]. This option has the advantage that the correct asymptotic behavior
u(t, σ) can be implemented as BCs for v(t, x) at x = 1. However, the same question then
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arises as before in the discussion of an appropriate choice of ghost cells for negative values
of ϱ: It is highly non-trivial how the cell averages v̄i should be fixed for ghost cells which
no longer belong to the physical values of x within the interval [0, 1]. Additionally, the two
mappings would introduce at least two new numerical functional-mapping parameters.
A suitable choice of these parameters is not obvious. Still, these mappings would have to
ensure dense grids and high resolution around the physical point and low resolution at
large field values. All this is extremely hard to achieve. Therefore, we propose and favor
another option.

2. The second option, which is our preferred choice, is to split the physical domain [0,∞) into
a compact domain [0, σmax] and a non-compact domain [σmax,∞). Here, σmax should be
chosen much larger than the physical scales of the problem and the position of the physical
point, see, e.g., Refs. [4, 154, 210, 247, 283, 284, 567, 604]. We will provide explicit
tests for an appropriate choice of σmax later on in subsection 3.2.3. For the compact
domain [0, σmax], we keep a direct identification of the field σ and the computational
spatial variable x, thus x = σ. For higher-dimensional models this might be replaced by a
linear map of σ to a dimensionless spatial variable x via appropriate rescaling with some
characteristic dimensionful quantity, e.g., the UV scale Λ or a non-vanishing condensate.
In the compact domain [0, σmax], we have to ensure a high spatial resolution via a
sufficiently large number of cells, in order to capture all aspects of the dynamics around
the physical point. Explicit tests to find an appropriate spatial resolution are also presented
in subsection 3.2.3.
For the non-compact domain [σmax,∞), instead of using a discretization scheme like
the FV method, we suggest an expansion or approximation of u(t, σ) via polynomials or
complete sets of functions with t-dependent expansion coefficients, which account for the
asymptotic behavior of the IC u(t = 0, σ) for large σ. As discussed before, it is expected
that for large σ the deviations of u(t, σ) from the IC u(t = 0, σ) are small during the FRG
flow, such that a finite amount of expansion coefficients should be satisfactory to capture
this minimal dynamics.
At the point σmax, the ghost cells for the FV method in [0, σmax] can therefore be fixed via
the values u(t, σ) from the asymptotic expansion in the non-compact interval [σmax,∞).

Interestingly, our numerical tests showed that, as long as σmax is chosen sufficiently large, the
fluxes at σmax are already negligibly small. As a consequence, the deviation of u(t, σ) from the
IC in the non-compact interval [σmax,∞) is extremely small and can be ignored. In this case,
the computational BCs for the ghost cells at σmax can be fixed via an extrapolation using the
asymptotics of the IC. For extremely high spatial resolution, hence rather small ∆x, even a
simple linear extrapolation might be sufficient:

ūn(t) = 2ūn−1(t)− ūn−2(t) , ūn+1(t) = 3ūn−1(t)− 2ūn−2(t) , (3.93)

cf. Eq. (2.126). On the other hand, choosing σmax rather large while keeping a high spatial
resolution in the compact computational domain [0, σmax] requires a large number of cells.
However, this slows down the computations drastically. For problems where this issue becomes
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relevant, we suggest to further divide the compact domain [0, σmax] into several smaller subdo-
mains. In each of these subdomains one can implement the FV method with different spatial
resolution ∆x for each domain. This ensures high resolution at small σ next to the physical
point and also allows to truncate the spatial interval at large σmax, while keeping a decent
and manageable total number of cells [162, 210, 247, 284]. An alternative approach would
be switching from equally sized volume cells on a uniform grid to a non-uniform (potentially
even moving/time-dependent) grid, see, e.g., Ref. [336]. Such numerical improvements over
our approach using just one uniform FV grid might become especially relevant in the context
of FRG flow equations for models with multiple condensate directions, see, e.g., Refs. [99,
145, 147, 337]. For our computations within this work a further subdivision of the compact
interval [0, σmax] or a formulation on non-uniform grids was, however, not necessary. Our
specific choice and implementation (3.93) might not be the best option at hand for arbitrary
(higher-dimensional) models and arbitrary ICs within the FRG framework. In the current
context of the zero-dimensional O(N) model ICs without a proper large-|ϕ⃗ | asymptotics, e.g.,
[2 − sin(ϕ⃗ 2)] ϕ⃗ 2 or even worse [2 − | sin(ϕ⃗ 2)|] ϕ⃗ 2, and/or periodic potentials could be a very
interesting topics for further research.

3.2.3. The O(N) model at finite N

In this subsection we follow the discussion of results presented in Sec. V of Ref. [1]. The
plots of Ref. [1] and the underlying numerical data were produced by A. Koenigstein and
numerically cross-checked by my own computations with the KT scheme.

Selected numerical results and accompanying symbolic computations are included in the
digital auxiliary file [364]. The single thread wall time on various consumer processors
for the numeric results of this subsection is of the order of several days.

After our general discussion of the theoretical basis for the solution of FRG flow equations,
it is again high time to “show some pictures”: we will discuss concrete applications of the
zero-dimensional O(N) at finite N in the following subsubsections. To this end, we study the
FRG flow of various zero-dimensional field theories – test cases – which differ by distinct initial
conditions. Our choices for the initial conditions range from smooth potentials to extreme
choices featuring non-analyticities. Note that such extreme choices are not only relevant
to demonstrate the numerical performance and stability of our implementation but also for
phenomenological reasons. In fact, in higher dimensions we expect non-analytic behavior to
build up, e.g., in the IR limit, as a consequence of spontaneous symmetry breaking and the
emergence of convexity of the effective action.
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Figure 3.3.: The plot shows the UV poten-
tial U(σ) (red-dashed) and its first derivative
u(σ) = ∂σU(σ) (blue, solid) of test case I from
Eq. (3.94). From Fig. 4 of Ref. [1].

Table 3.1.: Exact results forΓ(2n) of theO(N)
model with the UV initial potential (3.94) for
selected N . They are obtained by a high-
precision one-dimensional numerical integra-
tion of the expectation values ⟨(ϕ⃗ 2)n⟩ from
Eq. (3.56) using NIntegrate in Mathemat-
ica [353]. Here, we present the first six digits
only. From Tab. I of Ref. [1].

N Γ(2) Γ(4) Γ(6)

1 0.176813 0.052055 0.086573

3 0.397354 0.140864 0.224996

10 0.845144 0.151933 −0.069134

3.2.3.1. Test case I: Non-analytic initial condition

Consider the following UV initial potential,

U(φ⃗) =

⎧
⎪⎪⎨
⎪⎪⎩

− 1
2
φ⃗2 , if |φ⃗| ≤ 2 ,

−2 , if 2 < |φ⃗| ≤ 3 ,

+ 1
2
(φ⃗2 − 13) , if |φ⃗| > 3 ,

(3.94)

which is plotted in figure 3.3. This initial condition for the zero-dimensional O(N) model – in
the following sometimes just referred to as test case I – is designed this way for the following
reasons:

1. All parameters of the potential U(φ⃗) are by default dimensionless and chosen to be
approximately of order one, such that scales can easily be compared with each other.

2. The UV potential evaluated on the mean-field σ, U(σ), has non-analytical points at
σ = 2 and σ = 3, which correspond to discontinuities in its derivative u(σ). In the
fluid-dynamical context such discontinuities present a Riemann problem and result in
rarefaction waves, cf. subsection 2.2.6. In QFT and thermodynamics such discontinuities
can be associated with phase transitions, see App. B of Ref. [1]. The non-analytical
behavior of this potential makes commonly used techniques like the FRG Taylor expansion
inapplicable. Furthermore, naive discretizations that rely on smoothness are doomed to
fail. One has to choose numerical schemes that can handle this numerically challenging
dynamics.

3. The potential is initialized in the symmetry-broken phase, with infinitely many degenerate
minima at σ ∈ (2, 3]. Furthermore, the UV potential is neither convex nor smooth.
However, in the IR the O(N) symmetry has to be restored and there must only be one
minimum at σ = 0, due to the CMWH theorem, i.e., in zero-dimensions φa = ⟨ϕa⟩ = 0,
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which follows directly from the integral (3.45). Furthermore, for t→∞ the potential
has to be convex and smooth, see App. B of Ref. [1]. This non-trivial transition and
complicated dynamics from the UV to the IR is a numerically challenging test.

4. Furthermore, we choose a potential which is asymptotically quadratic in σ. This is to
ensure that the large-σ BC for u(t, σ) is fully under control and errors can be excluded,
see subsubsection 3.2.2.4. This allows for a high-precision analysis of all other sources of
numerical errors.

The reference values for the exact IR 1PI vertex functions Γ(2n) of theO(N)model are calculated
numerically from the UV potential (3.94) via the integral (3.56) using Eq. (3.52)–(3.54). They
are listed in table 3.1 for selected N which are relevant for the following discussions.
In the remainder of this subsubsection we will use test case I (3.94) to discuss

• Advection and diffusion in FRG flows,

• Tests of the spatial resolution,

• Tests of the size of the computational domain,

• Tests of the UV and IR scales,

in the corresponding paragraphs which are based on Secs. V. A.1–4 of Ref. [1].

Advection and diffusion in FRG flows
We start our analysis with a general discussion of the FRG flow with IC (3.94). To this end, we
fix O(N = 3) to include both diffusive and advective contributions via the radial σ-mode and
two pions. For N = 3 the number of pions is reasonably small and the (diffusive) effects of the
σ-mode remain visible. Furthermore, we choose [0, xmax = 10] as the spatial computational
domain with n = 800 volume cells and use the KT scheme from subsection 2.2.2 for spatial
discretization. The initial cell averages ūi(t = 0) are computed by exact averaging51

ūi(t = 0) =
1

∆σ

[︁
U
(︁
σi+ 1

2

)︁
− U

(︁
σi− 1

2

)︁]︁
, (3.95)

using the UV IC (3.94). We use linear extrapolation (2.126) as spatial BC at xmax as discussed
in subsubsection 3.2.2.4. The UV scale is set to Λ = 106 at t = 0. Time evolution of the semi-
discrete KT ODE system is performed with NDSolve of Mathematica [353] with a PrecisionGoal
and AccuracyGoal of 10 and stopped in the IR at r(tIR = 60) ≈ 10−20 using the exponential
regulator shape function (3.8). Time-stepping has not been a focus of our work and we refer
the interested reader to the excellent Ref. [355] discussing the issue in the context of FRG in
detail. We find that this choice of parameters suffices to produce decent results, as discussed in
the following. There, we quantitatively analyze sources and severity of possible errors related
to those (numerical) parameters.

51Using the exact averages for ūi(t = 0) has proven advantageous in terms of achievable numerical precision
in the IR compared to taking the mid-point values of the exact derivative of ūi(t = 0) = ∂σU(σ)|σ=σi

when
considering non-analytic ICs like Eq. (3.94) or (3.104).
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(a) Snapshots of the FRG flow at different times
t = 0, 2, 4, . . . , 60 (integer values for t were cho-
sen for convenience and readability).

(b) Three-dimensional rendering of the flow
U(t, σ) displayed on the left – Figure 3.4a (up-
per panel).

(c) Three-dimensional rendering of the flow u(t, σ)
displayed on the left – Figure 3.4a (lower panel).

Figure 3.4.: The FRG flow of the effective potential U(t, σ) – upper panel/figure on the left (a)
and on the right (b) – and its derivative u(t, σ) = ∂σU(t, σ) – lower panel/figure on the left (a)
and on the right (c) – for the zero-dimensional O(3) model with initial condition (3.94). The
blue curves correspond to the UV and the red curves to the IR. We used the exponential
regulator (3.8) with UV scale Λ = 106. For the sake of readability, the plots do not show the
region x ∈ [5, 10], because the tiny differences between u(t, σ) and u(0, σ) are not visible in
this region and vanish for large x = σ anyhow. From Figs. 5, 6, and 7 of Ref. [1].

We first provide qualitative results of our numerical methods in figure 3.4, where we show
the FRG flow of the effective potential U(t, σ) and its derivative u(t, σ) = ∂σU(t, σ) from the UV
(blue) to the IR (red). In the beginning, i.e., in the UV, the system is in the broken phase. This
changes only marginally until t ≈ 7, which indicates that the UV scale is chosen sufficiently
large with Λ = 106. When r(t) reaches the scales of the model at t≳11 most of the dynamics
takes place (symmetry restoration) and u(t, σ) changes rapidly and drastically until it freezes
out in the IR. In the IR the system is in the restored phase as expected a priori. After t ≈ 26
the potential does not change anymore, which indicates that one has reached a sufficiently
small IR scale to stop the integration. We render this statement more precise in the following
subsubsection 3.2.3.1. Note that the evolution in t is logarithmic and corresponds to a change in
scale over 25 orders of magnitude. At first glance this range sounds excessive, but its necessity
is explained in detail in subsubsection 3.2.3.1.
During the FRG evolution one observes that diffusive processes smear out the discontinuities
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at the non-analytic points at σ = 2 and σ = 3. We also find that the diffusion acts in both
directions – towards larger and smaller values of σ – as expected from our discussion in
subsubsection 3.2.2.3. Nevertheless, the diffusive effects do not reach the computational
boundary, which is outside the plot range at σmax = 10. This suggests that σmax = 10 is
sufficiently large. Additionally, we observe a propagation of the conserved quantity u towards
smaller values of σ via advection. Close to the initial discontinuities these advective processes
can be interpreted as rarefaction waves. In a more pictorial language, the advection and
diffusion “fill up the pit” in u(t, σ) at small values of σ by moving more and more of the quantity
u from larger values of σ to smaller σ (via advection and diffusion) as well as from small
negative σ to small positive σ (via diffusion). Eventually the symmetry is restored and u(t, σ)
is smoothed towards the IR by diffusion. Furthermore, the conserved quantity u does not “pile
up” at σ = 0 after symmetry restoration, because at negative σ exactly the opposite dynamics
happens, due to the Z2 antisymmetry of u(t, σ), which is encoded in the BC at σ = 0, see
subsubsection 3.2.2.4. The differences between advective and diffusive contributions become
apparent when comparing the same system for different N , cf. figure 3.5 and the surrounding
discussion.
From a numerical perspective, the KT scheme is able to handle the highly non-linear dynamics,

including the non-analyticities in u(t, σ), without any spurious oscillatory behavior (under-
/over-shooting) and allows for a stable t integration to extremely small IR scales.
For the sake of completeness and illustrative purposes, we also provide the FRG flow of

the integral of u(t, σ), i.e., the effective potential U(t, σ), in figure 3.4a (upper panel) and
figure 3.4b. Here, the integration constant was set to zero52 and the integration was performed
via Riemann summation53 of the discrete cell averages,

U(t, xi) = ∆x

i∑︂

j=0

ū(t, xj)

(1 + δj,0 + δj,i)
. (3.96)

Figure 3.4b perfectly illustrates the restoration of the O(3) symmetry of the potential U(t, σ)
during the FRG flow via “vaporization” of the infinitely many minima. Nevertheless, we find
that it is hardly possible to intuitively understand the contributions of the radial σ-mode and
the pions to the FRG flow on the level of U(t, σ) only. This complements the discussion in
subsubsection 3.2.2.3 and lends support to our claim that the fluid-dynamical interpretation
of the FRG flow in terms of u(t, σ) is superior to the canonical formulation in terms of U(t, σ)
commonly used in the FRG literature.
Before discussing quantitative results and sources of (numerical) errors in FRG flows, we

briefly return to the interpretation of the radial σ-mode as diffusion and the interpretation
of the pions as advection in the FRG flow along the field space direction. To this end, we
discuss FRG flows for the same UV initial potential (3.94) as before, but for different N . This
corresponds to a different number of pions in the flow and different advection velocities (3.84).
52U(t, 0) = 0 is dictated by our choice of normalization for the zero-point function(s), see Eq. (3.4).
53At this point we should mention that numerical results for U(t, σ) via Riemann summation should be treated
with great caution: Numerical errors in the cell averages ū(t, xj) which arise from the numerical FRG flow can
accumulate during integration (here summation) along σ = x. More precise quadrature methods should be
used if precise, quantitative values for U(t, σ) are needed.
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Figure 3.5.: The FRG flow of the derivative of
the effective potential u(t, σ) = ∂σU(t, σ) for
the zero-dimensional O(N) model for N =
1, 10, 100 with IC (3.94). All other parame-
ters are identical to those in figure 3.4. From
Fig. 8 of Ref. [1].
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Figure 3.6.: The relative error of the numeri-
cal results (blue dots) from the KT scheme for
the 1PI n-point functions Γ(2n) for n = 1, 2, 3
as a function of ∆x with IC (3.94). The nu-
merical derivatives at σ = 0 of u(tIR = 60, σ)
were calculated via the second-order accurate
central schemes (D.6), (D.9), and (D.12). The
plot was produced with xmax = 10, but could
have been calculated for any sufficiently large
xmax. We used the exponential regulator (3.8)
with UV scale Λ = 106. The yellow straight
lines ∝ ∆x2 are for optical guidance. From
Fig. 9 of Ref. [1].
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All other parameters remain unchanged. In addition to theN = 3 case in figure 3.4, we provide
the FRG flows of u(t, σ) for N = 1, 10, 100 in figure 3.5. The figure again demonstrates on a
qualitative level that the σ-mode enters the FRG as diffusion, while pions enter as advection:
Increasing the number of pions the problem becomes more advection-driven exhibiting more
pronounced waves and faster propagation. This can be seen by comparing the plots at equal
RG times. For N = 1, the problem reduces to the pure diffusion equation (3.37), where the
dynamics is slowest and the diffusion propagates the fluid from negative σ to small positive σ
close to σ = 0. Furthermore, one observes stronger smearing of the discontinuities at σ = 2 and
σ = 3. The N = 100 case is extremely advection-dominated. In the fluid-dynamical language,
this corresponds to a complete suppression of diffusion, which is clearly observed from the fast
propagation of the rarefaction waves and almost negligible smoothing of the discontinuities at
σ = 2 and σ = 3. We will discuss the qualitative and quantitative differences between FRG
flows at small N with flows large and even infinite N in subsection 3.2.5.

Tests of the spatial resolution
This paragraph is dedicated to quantifying numerical errors in the FRG flow arising from the
finite spatial resolution ∆x ≡ ∆σ of the cells in the KT scheme. Any spatial discretization
comes with a discretization error. The KT scheme, which is used throughout this thesis, is
formally of second-order accuracy in ∆x when employing the numerical fluxes of Eq. (2.113)
with the five-point stencil (2.106). Therefore, the numerical errors arising from the spatial
discretization should scale with ∆x2 when ∆x is decreased.
As test values (observables) we use the modulus of the relative errors of the 1PI n-point

functions Γ(2n) for n = 1, 2, 3,
⃓⃓
⃓⃓Γ

(2n)
KT

Γ(2n)
− 1

⃓⃓
⃓⃓ , (3.97)

where Γ(2n)
KT is calculated from the FRG (via the KT scheme) and Γ(2n) from the integral, see

table 3.1. In order to determine how much of the relative numerical error (3.97) is directly
related to the spatial discretization, we have to optimize all other parameters of the computation
in order to reduce other sources of errors. We basically choose the same parameter set – viz.
Λ = 106, xmax = 10 and tIR = 60 – and UV IC (3.94) which was also used for the qualitative
analysis in the previous paragraph and only vary the number of cells n to change the resolution
∆x. W.l.o.g. we keep N = 3.
Before we embark on our discussion, we remark that the spatial-discretization error enters

the relative errors (3.97) in a twofold way:

1. There is the discretization error which comes from the KT scheme during the FRG time
integration. This error shows up directly in the IR values u(tIR, xi) and should scale
according to ∆x2 for the chosen second-order KT scheme.

2. There is a discretization error which is related to the extraction of the 1PI n-point functions
from the discrete ū(tIR, xi). They have to be calculated at the physical point (the minimum
at x = σ = 0) via numerical differentiation, which also comes with a discretization error.

3.2. The O(N) model – strongly interacting scalars 141



The latter is also related to the spatial resolution ∆x. In general (especially in higher-
dimensional models) it is not clear whether these numerical derivatives at the physical
point are always well-defined. We argued before that u(t, σ) might exhibit non-analytical
behavior also at the physical point in the IR, cf. Refs. [4, 155, 162, 247], such that a naive
numerical differentiation is not allowed in general. In the special case of zero-dimensional
QFTs, we proved in App. B of Ref. [1] that the IR effective action and the IR potential
U(t → ∞, φ⃗ ) are smooth, which also translates to u(t → ∞, σ), such that numerical
differentiation (e.g., via finite-difference approximations) is well-defined.

However, even though finite-difference formulas are reliable approximations for derivatives
of a smooth function and have a well-defined truncation-error scaling in powers of ∆x, there
remains a well-known subtlety: While decreasing the resolution ∆x, one eventually will reach
a point where the error starts increasing again contrary to the formal truncation-error scaling.
This is related to the ill-conditioned nature of finite-difference formulas and to explicit rounding
errors in floating-point arithmetic, which increase the error of the numerical derivative below
a certain ∆x, see, e.g., Chap. 5.7 of Ref. [555]. Related spurious cancellations occur if the
discrete data of a smooth function include some sort of noise. In our case this “noise” is directly
related to the spatial-discretization errors from the KT scheme and the errors from RG time
integration using numerical ODE solvers. These errors might be tiny, but can easily inflate the
errors of the numerical derivatives, especially for higher-order derivatives.
In conclusion, while decreasing ∆x, we expect that long before the relative errors from the

KT scheme start increasing again (because the KT scheme begins operating close to machine
precision or because the error of the time stepping becomes relevant) the relative errors (3.97)
start increasing due to the numerical differentiation of slightly “noisy data”. This phenomenon
is expected to set in at larger ∆x for approximations for higher-order derivatives and long
before the formal error scaling of the KT scheme is no longer valid.
Our explicit results for the scaling of the relative errors with decreasing spatial resolution

are presented in figure 3.6, where we show the relative errors (3.97) for the two-, four-, and
six-point functions in a double-logarithmic plot over ∆x. For Γ(2) and Γ(4) we find that the
corresponding relative errors scale with ∆x2 (or even slightly better) as expected from the
error scaling of the KT scheme as well as the error scaling of the finite-difference stencils (D.6)
and (D.9). We observe two groups of points for Γ(2) (upper panel of figure 3.6), which are
related to discretization errors of the discontinuous IC (3.94) at x = 2 and x = 3. The error
scaling of 0.02∆x2 for Γ(2) is a conservative estimate for the observed errors, which are actually
lower for ∆x≳0.005. For ∆x≲0.005 we observe deviations from the conservative estimate
for the error scaling of Γ(2) related to other error sources. In the middle panel of figure 3.6,
we clearly see that there is an optimal minimal ∆x ≈ 0.02 where the correct formal scaling
of the numerical derivative breaks down and the relative error of Γ(4) increases again for
smaller ∆x. We can be sure that this breakdown of the error scaling is related to the numerical
differentiation and not the KT scheme because we observe scaling with at least ∆x2 for Γ(2) in
the upper panel of figure 3.6 well below ∆x ≈ 0.02. This is expected for lower-order numerical
derivatives. Furthermore, we find that for Γ(6) (lower panel of figure 3.6) the order of the
numerical derivative is already too large, such that the theoretical error scaling of the KT
scheme cannot be seen at all and is completely obscured by the errors from the numerical
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differentiation of ū(tIR, xi).
We conclude that the KT scheme is perfectly suited for the spatial discretization of the FRG

flow equation for u(t, σ) and shows correct scaling with decreasing spatial resolution ∆x. This
is also confirmed by tests with different ICs, see, e.g., figure 3.14.
In addition, we actually found that a more severe problem is the correct extraction of physical

observables from the IR values ū(tIR, xi), which are usually related to derivatives of u(tIR, σ).
We predict that this problem might even become more severe in higher dimensions, were the IR
potential is no longer guaranteed to be smooth. We therefore suggest to search for better ways
of calculating those derivatives as well as for careful analysis tools for numerically calculated
1PI n-point functions in the vicinity of non-analyticities in general. However, this is beyond the
scope of the present work.
We remark that our numerical findings indicate that – independent of the specific numerical

discretization scheme – the number of grid points or expansion coefficients might have been
chosen too small in previous FRG studies in literature to obtain a decent resolution. However,
other works, cf. Refs. [154, 155, 567, 568, 604, 610], which also discuss the limitations of
their numerical schemes in detail, have used a rather large number of discretization points – in
some cases to compensate the demand for continuity of the specific schemes.
In the following we will mostly use a spatial resolution of

∆x =
xmax

n− 1
≃ 0.025 , (3.98)

where we can trust the results for the two- and four-point functions. The relative errors for the
six-point function will only be plotted for the sake of completeness, but cannot be included
in any reasonable quantitative analysis of other sources of (numerical) errors in FRG flow
equations although they are still at a reasonably small level of ∼ 5% at ∆x ≃ 0.025.

Tests of the size of the computational domain
In this paragraph, we discuss the influence of the size of the computational domain [0, σmax]
on the relative errors of the IR observables (3.97). As discussed in subsubsection 3.2.2.4, we
expect that, if the spatial BCs are not implemented with great caution and the computational
domain is too small, one cannot trust the results from the numerical integration of the FRG
flow. If the computational domain is too small, we expect large errors, because the BCs at σmax

are no longer valid due to wrong extrapolation to the ghost cells and consequently wrongly
estimated influx.
In the case with UV IC (3.94), the BC at σmax is implemented as a linear extrapolation (2.126)

of u(t, σ) to the two ghost cells of the KT scheme to mimic the asymptotic behavior of u(t, σ).
As long as σmax is sufficiently large, we expect only tiny deviations of u(t, σ) from its initial
UV value u(tUV = 0, σ) around σmax. However, if σmax is too small and approaches the model
scales, we expect the diffusive effects to reach the boundary of the computational domain,
such that a linear extrapolation is no longer a good approximation in order to determine the
spatial BC.
To this end, we test the scaling of the relative errors (3.97) with decreasing computational

domain size xmax = σmax for N = 1 (purely diffusive) and N = 3. The results and (numerical)
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Figure 3.7.: The relative error for Γ(2m) for m = 1, 2, 3 for the UV potential (3.94) of the
O(1) model on the left (a) and of the O(3) model on the right (b) as a function of xmax, while
keeping the cell size constant, ∆x = 0.025. Γ(2m) are computed from the discrete values of
the derivative of the IR potential u(tIR = 60, σ) via the second-order accurate central finite-
difference stencils (D.6), (D.9), and (D.12) at σ = 0. We use the exponential regulator (3.8)
with UV scale Λ = 106. The yellow straight line ∝ exp−7xmax is for optical guidance. From
Figs. 10 and 11 of Ref. [1].

parameters are shown in figure 3.7. In both cases (N = 1 and N = 3 in figures 3.7a and 3.7b
respectively) we find that the relative errors are independent of σmax for sufficiently large σmax.
However, if the spatial cutoff σmax is approaching the model scales (here the discontinuity
in u(tUV = 0, σ) at σ = 3, see figure 3.3) the relative errors for Γ(2) and Γ(4) start rising
exponentially.
Contrary to our expectations, the results for N = 1 and N = 3 are very similar and the

exponential rise of the relative errors sets in at a similar σmax ≈ 4.2. A priori we expected
that for the purely diffusive scenario with N = 1, the diffusive effects arising from the large
gradients at σ = 3 might have more time to reach and influence the shape of u(t, σ) at larger
values of σ, which does not seem to be the case. Our employed monitors for numerical errors –
the 1PI n-point functions in the IR computed at σ = 0 and t = 0 – are rather intensive to such
changes. A possible explanation is the fact that observable errors from the boundary at σmax

propagate into the computational domain at a finite speed54, which is rather low in the purely
diffusive case and in general small at large σ, and thus do not influence the physical point at
t = 0 and σ = 0.
Nevertheless, we conclude from figures 3.7a and 3.7b that it is extremely important to use

sufficiently large computational domains to minimize numerical errors in field-dependent FRG
flows. This implies that σmax should be chosen much larger than all relevant scales of the
model.
From our findings, it is therefore expected that choosing a large σmax might even gain in

54In the context of “infinite propagation speeds” in parabolic PDEs, cf. the discussion and corresponding footnote 28
in subsection 2.2.4, we refer here to the fact that observable changes on the relevant scales of the problem
travel with apparently finite speed independent from some formal instantaneous, infinitesimal (exponentially
decaying) changes.
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Figure 3.8.: The relative error for Γ(2m), for m = 1, 2, 3, calculated with the KT scheme as a
function of the RG time t for the O(1) model on the left (a) and of the O(10) model on the
right (b). The UV initial potential is given by Eq. (3.94). We use the exponential regulator (3.8)
with UV scale Λ = 106. The computational grid has n = 400 cells and σmax = xmax = 10.
Γ(2m) are extracted from u(tIR = 60, σ) via the finite-difference stencils (D.6)–(D.13). From
Figs. 13 and 15 of Ref. [1].

importance in higher-dimensional models, where the physical point may be located at a non-
trivial minimum in the IR, like in the QM and GN(Y) model of chapters 4 and 5. If the physical
point is closer to the boundary of the computational domain the relative errors for observables
might even be larger than for our zero-dimensional model where the physical point moves
towards σ = 0 during the FRG flow. In terms of errors originating from the boundary at σmax,
the physical point at σ = 0 is ideal since it has the largest spatial and – in a sense causal, due
to the finite speed of propagation – distance to σmax.
Lastly, we have to warn that there is no panacea for the construction of a sufficiently large

computational domain and the choice of σmax has to be adjusted to the specific model and
specific IC under consideration. For some problems even more involved approaches (like using
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several computational grids of different resolution ∆x) might be needed or are at least highly
advantageous [162, 210, 247, 284]. In any case one has to check that the IR results do not
depend on the size of the computational domain (even if exact reference values for observables
are unknown), cf. Refs. [4, 567, 604]. This can be done by fixing appropriate values for the
spatial resolution∆x as well as for all other (numerical) parameters and successively increasing
σmax until the IR observables do not change anymore.

Tests of the UV and IR scales
We now turn to a long-standing discussion in the FRG community, namely the question: How
do we have to choose the initial UV and numerical IR cutoff scale for the calculation of the
FRG flow for a specific model?
A common argument is based on the energy scales of a given model. The UV IC is fixed at

UV scales Λ that are close to the largest energy scale of the model. Higher Λ are excluded by
arguing that at higher energy scales other physical degrees of freedom (e.g., other interaction
channels or new particles) are relevant and the model at hand is only valid within a certain
energy regime. On the other hand, the IR cutoff kIR scale is oftentimes fixed by arguing that if
it decreases below the lowest energy scale of the model, the FRG flow is effectively “frozen in”
and the effective potential no longer changes anyway. A relatively low UV initial scale and a
high IR cutoff lead to rather short flow times of only tUV − tIR ≈ 3− 4.
Another approach, which is sometimes employed in conjunction with the first strategy, is

guided by the principle of “numerical stability” of the FRG flow, where cutoffs are chosen in a
certain way to “improve performance and stability” during the numerical RG time integration.
In turn, in Refs. [155, 567, 568, 604, 610] relatively small IR cutoff scales are reached due
to the use of numerical stable schemes or the control of stability. Careful extrapolations into
the deep IR like the ones discussed in, e.g., Refs. [162, 247, 610] are another possibility to
achieve low IR cutoffs. Note that, for theories in d > 0 dimensions, numerical integration into
the (deep) IR becomes very demanding due to multiple reasons, see also Refs. [4, 162, 247,
610] and especially Ref. [355]. This is probably the main reason why often large numerical IR
cutoffs are used.
In general, however, there is a well-defined strategy for the choice of the UV scale scale:

the notion of renormalization group consistency introduced in subsection 2.1.6. Recalling the
central statement of Eq. (2.74):

Λ
dΓ[φ⃗]

dΛ
≡ Λ

dΓ0[φ⃗]

dΛ

!
= 0 , (3.99)

i.e., the full effective action Γ[φ⃗] in the IR must be independent of the UV initial scale [257].
In the context of FRG as an integral deformation in zero dimensions, see subsection 3.1.2,
the UV scale scale Λ has to be much larger than all scales in the model. Hence our zero-
dimensional models fall in the scenario discussed with Eq. (2.78) in the first paragraph of
subsubsection 2.1.6.1. In this sense, a high UV initial scale is necessary to include all fluctuations
– to guarantee Eq. (2.78). It was already demonstrated in Ref. [257] that if the UV initial
scale Λ is chosen too small and too close to the model scales or external scales, physical
results are spoiled drastically by slightly varying Λ and Eq. (3.99) is not fulfilled anymore,
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cf. Refs. [148, 306, 307, 309] for related discussions in the context of LEFTs of QCD and also
chapters 4 and 5 for further discussions of RG consistency in the context of this thesis.
A hard lower limit for Λ arises from the fact that for a given IC U(t = 0, σ)

Λ + 1
σ
∂σU(t = 0, σ) > 0 , (3.100a)

Λ + ∂2σU(t = 0, σ) > 0 , (3.100b)

must hold ∀σ to have a non-singular flow equation (3.74). This is discussed, e.g., in Refs. [124,
610] and represents a minimal requirement forΛwhen considering a given ICU(t = 0, σ). How-
ever, guaranteeing the inequalities (3.100) does by itself a priori not guarantee RG consistency
in the sense of Eq. (3.99).
For higher-dimensional QFTs it is actually complicated to quantify the relative error of

observables from violations of Eq. (3.99), because “exact” reference values, e.g., by numerical
calculation of expectation values from the functional integral, are rarely known, especially for
LEFTs. In zero-dimensional QFT this is different, because we can directly calculate the relative
errors for observables like 1PI n-point functions, cf. Eq. (3.97), for different values of Λ.
Similar arguments apply to the IR cutoff, where the numerical integration of the FRG flow

is stopped. Here, one must clearly state that the full effective average action Γ[χ] in the IR
is unambiguously defined via the limit t→∞↔ r(t)→ 0 of Γ̄t[χ], cf. Eq. (3.25). In practice,
a direct integration to t → ∞ is numerically impossible, which implies that one has at least
to make sure that the numerical RG time integration is stopped no earlier than when all
observables of interest do not change anymore, or one has to systematically extrapolate to
t → ∞, see, e.g., Refs. [162, 247]. It is worth mentioning that, depending on the specific
observable, these “freeze-out scales” can be extremely different, see figure 3.9.

In the following, we will therefore explicitly explore the influence of UV and IR cutoff scales
on the relative errors (3.97) for the Γ(2n). We start our discussion by providing results for the
relative errors (3.97) depending on the RG time t for different N of O(N) and UV IC (3.94).
In figure 3.8 we plot the relative errors of Γ(2n) for n ∈ {1, 2, 3} for N ∈ {1, 10}, which are
all extracted via various finite-difference stencils from u(t, σ) at the physical point σ = 0 and
different t during the FRG flow. A corresponding plot for N = 3 can be found in Fig. 14 of
Ref. [1]. All (numerical) parameters are mentioned in the figures or the respective captions.
In figure 3.8 (i.e., for N = 1 and 10) and independent of the choice of discretization of the

numerical derivatives, we observe plateaus for the relative errors for Γ(2n) at the beginning and
the end of the FRG time evolution. The plateau at small t corresponds to the UV regime and
indicates that the UV scale is chosen sufficiently large because no fluctuations are present at
the IR physical point until r(t) reaches the scales of the model. RG consistency (3.99), hence
UV-scale-independence should therefore be fulfilled, as long as we initialize our FRG flow at
some RG scale which is at the far left of this plateau. Such a plateau at small t is a sufficient
condition for RG consistency but not a necessary one, because quantum fluctuations could
already work at positions in field space away from the IR physical point and only influence
higher-order correlation functions. We will quantify this in the following. In the plots various
finite-difference stencils with distinct error scaling in ∆x are used to demonstrate that the
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Figure 3.9.: The FRG flow of the minimum
σmin(t) (blue) of the effective potentialU(t, σ)
and of the curvature mass m2

σ(t) of the σ-
mode (red-dashed) evaluated on the equa-
tions of motion (3.21), i.e., at the flowing min-
imum. The blue curve sets in after a unique
minimum at ±σmin(t) has formed. As UV IC
we use Eq. (3.94). We used the exponen-
tial regulator (3.8) with UV scale Λ = 106.
The curvature massm2

σ(t) was extracted from
u(t, σ) via Eq. (D.8) at the moving σmin(t).
The horizontal (yellow) line denotes the exact
IR result Γ(2) ≃ 0.397 at σ = 0, which must
agree with m2

σ in the IR, where σmin(t) = 0.
From Fig. 12 of Ref. [1].

0 10 20 30 40 50 60
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.10.: The rate of change in t of
Γ̄(2m)(t) at the IR minimum σ = 0 for n =
1, 2, 3 during the FRG flow. This rate of change
is defined as the numerical RG time deriva-
tive ∂tΓ̄(2m)(t) over the RG time. ∂tΓ̄(2m)(t)
are calculated via a finite-difference approxi-
mation [Γ̄(2m)(t)− Γ̄(2m)(t−∆t)]/∆t, where
∆t = 0.2. Γ̄(2m)(t) are obtained via numerical
derivatives (D.6), (D.9), and (D.12) of u(t, σ)
at x = σ = 0. For convenience, we added
1 and took the logarithm to highlight the re-
gions with high rates of change of the observ-
ables Γ̄(2m)(t) and to identify the freeze-out
plateau, where these rates vanish. We used
the exponential regulator (3.8) with UV scale
Λ = 106. From Fig. 17 of Ref. [1].

plateaus are independent of other sources of errors, like spatial discretization errors55.
For intermediate t, we observe strong dynamics and rapid changes in the relative errors

for the Γ(2n). The actual values of the relative errors for intermediate t are irrelevant for the
current discussion on UV and IR scales.
The plateau at late RG times t corresponds to the IR scale of the theory and indicates that

the physical observables are frozen and do not change anymore, such that the numerical time
integration can be stopped. As expected, we find that the explicit IR scale strongly depends on
the choice of N , thus the number of pions and the related strength of advection. The smaller
N and the more diffusive the system, the longer it takes to reach the IR56: For N = 10 the
freeze-out already sets in at t ≈ 26, while for N = 1 one has to wait until t ≈ 30 to find that
the dynamics ends. This is a difference of two orders of magnitude in the RG scale. In general,
our toy model tests indicate that rather small IR scales are needed to actually reach the regime
55Incidentally, figure 3.8 also underlines our statement that the spatial discretization errors stemming from the
numerical differentiation of u(t, σ) are much more severe than the discretization errors of the KT scheme.
Otherwise, the curves for the various finite-difference stencils would coincide in the IR.

56This is a well-known observation from all kinds of fluid-dynamical systems. It typically takes much longer to
reach thermal equilibrium via diffusion alone than when including advective processes.
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Figure 3.11.: The relative error for Γ(2m) for m = 1, 2, 3 from the KT scheme as a function of
the UV scale scale Λ for the initial potential (3.94). We use the exponential regulator (3.8)
and keep the IR cutoff scale constant at r(tIR) = 10−20. Furthermore, for all data points the
computational grid size is fixed at σmax = xmax = 10 and the number of volume cells is set to
n = 400. Γ(2m) are calculated from u(tIR = 60, σ) via the approximations (D.6), (D.9), and
(D.12) for the numerical derivatives. The yellow straight line ∝ Λ−1 is for optical guidance.
From Fig. 16 of Ref. [1].

where the observables are frozen. Still, for N = 10, r(t ≈ 26) ≈ 5 · 10−6, i.e., the IR regime
begins six orders of magnitude below the model scales.
This observation might also partially translate to higher-dimensional models, meaning that

commonly used IR cutoffs might be systematically chosen too large, such that predictive power
is lost. Nevertheless, we expect this problem to be the less severe the higher the space-time
dimensionality of a model under consideration, because of the larger phase-space (momentum
suppression). The smaller the space-time dimension of a model, the more important are
long-range interactions – quantum fluctuations at small RG scales k – for the macroscopic
observables, which is of course most extreme for d = 0.
Furthermore, we observe from figure 3.9 as well as figure 3.8 that the freeze-out scale is

slightly different for different observables, because higher 1PI n-point functions seem to be
more sensitive to tiny changes in u(t, σ). In particular, we observe from figure 3.9 that the
minimum σmin is already frozen at t ≈ 14, while the curvature massm2

σ still changes drastically
after t ≈ 14 over several orders of magnitude in RG scale. This is especially interesting for
higher-dimensional models: Oftentimes the freeze-out of the minimum is considered a suitable
IR scale to stop the FRG flow, which is definitely not justified, since the derivatives of the
potential – the curvature mass – at the physical point are usually still changing. Using the
changing rates of the curvature mass instead of the position of the minimum as a monitor for
the dynamic range – viable numerical IR cutoffs – has proven crucial in the FRG study [4] of
the GNY model in section 4.5.
Next, we explicitly quantify the relative errors of Γ(2n), which stem from too small UV scales
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Λ and the violation of RG consistency (3.99). To this end, we plot the relative errors (3.97)
as a function of the UV scale Λ, while keeping the IR cutoff scale fixed at extremely small
r(tIR) = 10−20. In figure 3.11 we observe that the IR observables become independent of Λ at
rather large Λ ≈ 106. This is several orders of magnitude above the model scales, contrary to
what is often used in FRG studies in higher dimensions. If the UV scale is chosen too small,
we find that the relative errors of Γ(2n) grow proportional to 1

Λ
, as estimated in Eq. (3.31).

Surprisingly, it turns out that the RG consistency condition (3.99) is already violated at rather
large UV scale scales Λ ≈ 105 and is only fulfilled for Λ≳105. We conclude that great care is
required when specifying the UV scale in a FRG calculation.
Before we close this discussion, we provide a natural measure to estimate the correct UV

and IR scales of a model or theory, even if there are no exact reference values for observables
that can be used for comparison with the FRG results. To this end, we plot in figure 3.10 the
shifted logarithm of the changing rates of the Γ̄(2n)(t) at the IR minimum σ = 0 over RG time t.
These quantities have to vanish in the UV and the IR, when the relative errors (3.97) are not
changing.
A similar investigation can be done for any other model or theory and can be used as an

indication to ensure sufficiently large UV and sufficiently small IR cutoffs: A first estimate may
be obtained by choosing Λ and tIR in a way that the plateaus (or scaling regimes) in figures
similar to figure 3.10 are of approximately equal RG time duration than the time interval
in which the actual dynamics takes place. In the absence of an explicit and accessible error
estimate, rates of change are a cheap and simple tool to study the UV and IR limits of RG time
evolution, cf. subsection 4.5.3.

3.2.3.2. Test case II: ϕ4 theory

The test case II is a zero-dimensional version of ϕ4 theory with the UV initial potential

U(φ⃗) = ∓ 1
2
φ⃗2 + 1

4!
(φ⃗2)2 , (3.101)

where a theory with negative mass term − 1
2
φ⃗2 has a “sombrero”-type (symmetric double-

well) potential well-known from standard textbook discussions of spontaneous symmetry
breaking [442, 563]. The corresponding IC with negative mass term for the FRG flow is
illustrated in figure 3.12. When not explicitly stated otherwise we will consider the IC (3.101)
with negative mass term. The reference values for the exact IR 1PI vertex functions Γ(2n) of the
O(N) model (3.52)–(3.54) are calculated numerically from the UV potential (3.101) and are
listed for selected values of N in table 3.2 both for positive and negative mass terms.
In the remainder of this subsubsection we will use test case II to discuss

• Results obtained using the KT scheme,

• FRG Taylor expansion: Flow of the n-point functions,

• FRG Taylor expansion: Truncation error,

• FRG Taylor expansion: ϕ4 potential with positive mass term,

• FRG Taylor expansion: Numerical irreversibility,
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Figure 3.12.: UV potential U(σ) (red-
dashed) and its first derivative u(σ) = ∂σU(σ)
(blue, solid) of test case II from Eq. (3.103)
with negative mass term. From Fig. 18 of
Ref. [1].

Table 3.2.: Exact results forΓ(2n) of theO(N)
model with the UV initial potential (3.101) for
selected N with negative and positive∗ mass
term. They are obtained by a high-precision
one-dimensional numerical integration of the
expectation values ⟨(ϕ⃗ 2)n⟩ from Eq. (3.56) us-
ing NIntegrate in Mathematica [353]. Here,
we present the first six digits only. In parts
from Tab. II of Ref. [1] and Tab. I of Ref. [2].

N Γ(2) Γ(4) Γ(6)

1 0.199510 0.062258 0.107744

4 0.506444 0.182415 0.280288

1∗ 1.332430 0.607899 0.771451

4∗ 1.580920 0.611848 0.568631

in the corresponding paragraphs which are based on Secs. V.B.1–2 of Ref. [1].

Results obtained using the KT scheme
In this paragraph we will discuss selected numerical results of the application of the KT scheme
for the analytic IC (3.101). We have performed the full set of numerical tests discussed in
subsubsection 3.2.3.1 for this IC and found results supporting the general statements made
there. For brevity, we will not repeat the complete discussion of that subsubsection. We will
limit our discussion to UV/IR scales, the computational domains size (xmax), and its resolution
(∆x).

UV and IR scales: In figure 3.13 we present the FRG flow of the derivative of the effective
potential u(t, σ) from the UV (blue) to the IR (red). For the smooth IC – in the absence of large
gradients – the highly non-linear advection and diffusion contribute almost an equal amount
to the dynamics. Between t ≈ 25 and t ≈ 30 we observe significant changes in the shape of the
potential: the non-trivial minimum moves towards σ = 0 and vanishes at t ≈ 28 resulting in
a convex potential with a trivial minimum at σ = 0 as expected and required. At small and
large t outside the apparent dynamic range between t ≈ 25 and t ≈ 30 we observe only very
marginal changes in figure 3.13.
A close inspection of the relative errors for the first three non-vanishing n-point functions in

figure 3.15 reveals that actually the relevant dynamics sets in much earlier at t ≈ 10 for the
six-point function. The values for the n-point functions freeze out at late times around t ≈ 40,
which is due to the diffusion close to σ = 0. On the level of u(t, σ) these subtle changes in the
n-point functions cannot be observed by a simple visual inspection of figure 3.13.
The plateaus in the UV (at small t) and the IR (at large t) support the choice of Λ = 1012

and tIR = 60 to be valid initial UV and IR cutoff scales in terms of RG consistency. The present
UV initial scale is larger when compared to Λ = 106, which corresponds to t ≈ 14 in the
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Figure 3.13.: The FRG flow of the effec-
tive potential U(t, σ) (upper panel) and its
derivative u(t, σ) = ∂σU(t, σ) (lower panel)
for the zero-dimensional O(4) model with
IC (3.101), evaluated at t = 0, 2, 4, . . . , 60
(integer values for t were chosen for conve-
nience and readability). The (overlapping)
blue and violet curves correspond to the UV
and the red curves to the IR. We used the
exponential regulator (3.8) with UV scale
Λ = 1012. The plot does not show the region
x ∈ [5, 10], because the tiny differences be-
tween u(t, σ) and u(tUV, σ) are not visible in
this region and vanish for large x = σ any-
how. From Fig. 19 of Ref. [1].
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Figure 3.14.: The relative error as a func-
tion of the cell size ∆x for the numerical
results (blue dots) from the KT scheme for
the coefficients Γ(2n) for n = 1, 2, 3 with ini-
tial potential (3.101). The numerical deriva-
tives at σ = 0 of u(tIR = 60, σ) were cal-
culated via the second-order accurate cen-
tral schemes (D.6), (D.9), and (D.12). Here,
xmax = 10, but we could have used any suffi-
ciently large xmax. We used the exponential
regulator (3.8) with UV scale Λ = 1012. The
yellow straight lines ∝ ∆x2 are for optical
guidance. From Fig. 21 of Ref. [1].

dynamic region in figure 3.15, used for most computations involving the non-analytic potential
considered in the previous subsubsection 3.2.3.1.
Hence, the inclusion of a quartic interaction term in Eq. (3.101) seems to require higher

UV initial scales to ensure RG consistency. This supports the statements made in subsubsec-
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Figure 3.15.: The relative error for Γ(2m), for
m = 1, 2, 3, calculated with the KT scheme
as a function of the RG time t for the O(4)
model. The UV initial potential is given by
Eq. (3.101). We use the exponential regu-
lator (3.8) with UV scale Λ = 1012. The
computational grid has n = 400 cells and
σmax = xmax = 10. Γ(2m) are extracted from
u(tIR = 60, σ) via the finite-difference sten-
cils (D.6), (D.9), and (D.12). From Fig. 20 of
Ref. [1].
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Figure 3.16.: The relative error for Γ(2m) for
m = 1, 2, 3 for the UV potential (3.101) of the
O(4)model as a function of xmax, keeping the
cell size ∆x = 0.025 constant. Γ(2m) are com-
puted from the discrete values of the deriva-
tive of the IR potential u(tIR = 60, σ) via the
second-order accurate central finite-difference
stencils (D.6), (D.9), and (D.12) at σ = 0.
We used the exponential regulator (3.8) with
UV scale Λ = 1012. The yellow straight line
∝ exp (−7xmax) is for optical guidance. From
Fig. 22 of Ref. [1].

tion 3.2.3.1: RG consistency and UV/IR scales have to be re-evaluated when changing the IC
in the UV, i.e., the model under consideration, since characteristic internal scales then also
change.

Size and resolution of the computational domain: We conclude this paragraph on the
KT scheme with a brief discussion regarding the computational domain. The relative error
for the first three non-vanishing n-point functions is shown as a function of the cell size ∆x
in figure 3.14. For the two-point function we recover a perfect error scaling with ∆x2 down
to extremely small ∆x. The last data point in figure 3.14 is at ∆x ≈ 3.3 · 10−3 corresponding
to n = 3000 cells. For the two-point function the rounding errors of the employed finite-
difference extraction (D.6) for Γ(2) and the finite precision of the ODE integrator (NDSolve
from Mathematica [353] with a PrecisionGoal and AccuracyGoal of 10) seem to be small for
all depicted ∆x in this scenario. A comparison with the present perfect error scaling for Γ(2)

supports the comments made about discretization errors for the discontinuous IC (3.94) in
figure 3.6. For the higher-order n-point functions Γ(4) and Γ(6), however, we find that rounding
errors related to the finite-difference extractions (D.9) and (D.12) limit the achievable precision.
Again, we identify ∆x ≈ 0.025 as an optimal cell size for the extraction of Γ(4) and Γ(6) but
note that typical relative errors for Γ(6) are at ≈ 4% around ∆x ≈ 0.025.
In figure 3.16, we study the effect of the size of the computational domain xmax on the

achievable relative errors for Γ(2), Γ(4), and Γ(6) at a constant∆x = 0.025. One major difference
between the ϕ4 potential (3.101) studied in this subsubsection and the non-analytic poten-
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tial (3.94) of the previous subsubsection 3.2.3.1 is their asymptotic behavior for large σ. For
large σ the leading-order term of the ϕ4 potential is – as the name suggests – quartic while the
non-analytic potential of test case I grows only quadratic. In terms of the conserved quantity
u = ∂σU one might expect problems when using a linear extrapolation for the ghost cells at
large σ as discussed in subsubsection 3.2.2.4 with a potential where u grows ∼ σ3 for large
σ. For the non-analytic IC (3.101) we avoided this possible source of error by construction.
However, considering the results plotted in figure 3.16 together with the perfect error scaling
displayed in the previous figure 3.14, we conclude that a linear extrapolation is not problematic
even in the case of cubic asymptotics for u. This might be again in part related to the large
spatial distance between the physical minimum in the IR and the upper boundary of the grid.
For xmax≳5 we find a complete insensitivity of the relative errors on the interval size.

FRG Taylor expansion: Flow of the n-point vertex functions
In this paragraphwe confront the theoretical results and concerns stated in subsubsection 2.1.4.2
and especially in subsubsection 3.2.2.2 for the zero-dimensionalO(N)model w.r.t. the Taylor ex-
pansion around the fixed expansion point φ⃗ = 0 with the exact results for the zero-dimensional
O(N) model. The ϕ4 potential of Eq. (3.101) with negative mass term is the, in terms of
ICs, simplest UV potential with a non-trivial minimum. At the end of this subsection we will
briefly discuss the Taylor expansion for the ϕ4 potential with positive mass term and therefore
a scenario without a non-trivial minimum, which has to be considered the simplest non-trivial,
i.e., interacting, UV IC in the context of the Taylor expansion for the zero-dimensional O(N)
model.
In the following we integrate the ODE system (3.71) truncated at m = 2ntrunc with the IC

Γ̄(2)(0) = −1 , Γ̄(4)(0) = +1 , ∀n > 2 Γ̄(2n)(0) = 0 , (3.102)

corresponding to the potential (3.101) numerically up to tIR = 60 employing the exponential
regulator (3.8) with Λ = 1012 and using the same ODE solver NDSolve from Mathemat-
ica [353] with a PrecisionGoal and AccuracyGoal of 10 as before. Using the n-point functions at
the physical minimum as the flow variables makes an additional extraction procedure (like
finite differences) obviously obsolete. The n-point functions in the IR can be directly obtained
from the values Γ̄(2n)(tIR) = Γ(2n).
In figure 3.17 we show the flow of the relative deviations for the first six non-vanishing

n-point functions towards the IR using m = 2ntrunc = 20 vertices in the expansion for the O(4)
model. We can identify a dynamic range between t ≈ 24 and t ≈ 38 in which the vertices vary
significantly and change their signs before they reach their respective IR values. This range is
substantially smaller than the dynamic range observed when solving the full PDE (3.74) using
the KT scheme, cf. figure 3.15. In the IR, the errors range from 2.3 · 10−3 for Γ(2) to 1.1 · 101
for Γ(12). However, the strict hierarchy observed in figure 3.17 for n = 1, . . . , 6 is not a general
feature of the Taylor expansion for this model. Using different ntrunc or including higher-order
vertices changes this hierarchy.

FRG Taylor expansion: Truncation error
The truncation error for the O(4) model is discussed using figure 3.19a, where we show the
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Figure 3.17.: The relative errors for Γ(2n) as
a function of the RG time t for n ∈ {1, . . . , 6}
for the O(4) model. Γ(2n) were calculated via
the FRG flow of the FRG Taylor expansion with
truncation order m = 2ntrunc = 20 using the
exponential regulator (3.8). As initial condi-
tion we use the UV potential (3.101). From
Fig. 23 of Ref. [1].
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Figure 3.18.: The relative errors for Γ(2n)

in the IR for n = 1, 2, 3 for the O(1) model,
calculated via the FRG flow of the FRG Tay-
lor expansion to order m = 2ntrunc with
ntrunc ∈ {3, . . . , 15} using the exponential
regulator (3.8). As initial condition we use
the UV potential (3.101). The discrete results
for integer ntrunc are connected by straight
lines to improve readability and for a better
trend analysis. From Fig. 25 of Ref. [1].

relative errors for Γ(2), Γ(4), and Γ(6) for the Taylor expansion using different truncation orders
m = 2ntrunc between ntrunc = 3 and ntrunc = 14. Beyond ntrunc = 10 the relative errors for the
n-point functions no longer decrease and we observe rather strong oscillations for different
ntrunc. The errors for the two and four-point function are with 2.3·10−3 and 9.8·10−3 larger than
the errors (4.2 ·10−5 and 1.8 ·10−4 respectively) obtained in the KT scheme, see, e.g., figure 3.16.
The relative error for the six-point function is with 4.7 · 10−2 comparable to the 3.7 · 10−2 error
obtained in the KT scheme. While the extraction of higher-order n-point functions beyond
n = 6 is in general possible in the Taylor expansion, their relative errors grow overall rapidly
with increasing n.
For the IC (3.101) we do not observe any meaningful error scaling in orders of ntrunc.

Furthermore a numerical solution at and beyond ntrunc = 15 has proven impossible with the
current set-up. At ntrunc = 15 an ODE integration to the IR at r(tIR = 60) ≈ 10−14 is impossible
due to an instability of the ODE system occurring at t ≈ 30 where all coefficients Γ(2n)(t) with
n > 1 start diverging. This divergence seems to be driven by Γ(30)(t) for ntrunc = 15. The
ODE system is in general poorly conditioned since the Γ(2n)(t) for different n vary vastly over
multiple orders of magnitude. The instability at t ≈ 30 cannot be overcome by increasing the
numerical precision of the employed ODE integrator (NDSolve from Mathematica [353]) and
seems to be an inherent problem of the ODE systems with ntrunc ≥ 15.
The Taylor expansion for Γ(2n)(t), with a fixed expansion point at φ⃗ = 0, for the zero-

dimensional O(4) model and the simple IC (3.101) with its non-trivial global minimum in
the UV is severely limited in its performance. The absence of a proper error scaling in orders
of ntrunc and the instability of the ODE system beyond ntrunc = 14 support the conceptual
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Figure 3.19.: The relative errors for Γ(2n) in the IR for n = 1, 2, 3 for the O(4) model,
calculated via the FRG flow of the Taylor (vertex) expansion to order m = 2ntrunc with
ntrunc ∈ {3, . . . , 14} using the exponential regulator (3.8). As initial condition we use the
UV potential (3.101) with negative mass term on the left (a) and positive mass term on the
right (b). The discrete results for integer ntrunc are connected by straight lines to improve
readability and for a better trend analysis. From Figs. 24 and 26 of Ref. [1].

reservations of subsubsection 2.1.4.2 and subsubsection 3.2.2.2. It seems that the expansion
around φ⃗ = 0 is either incapable of capturing the dynamics driven by the non-trivial minima
located at |φ⃗ | =

√
6 in the UV or the desired solution might be non-analytic in φ⃗ = 0.

The situation does not improve when considering the same IC in the purely diffusive O(1)
model. In figure 3.18 we display relative errors for the first three non-vanishing Γ(2n) as a
function of ntrunc for the IC (3.101) in the O(1) model. The overall errors are even worse when
compared to the O(4) results discussed previously. The ODE integration becomes impossible at
ntrunc = 16 where we encounter an instability at t ≈ 31.

FRG Taylor expansion: ϕ4 potential with positive mass term
We continue our discussion of the FRG Taylor expansion by considering the IC (3.101) with
a positive mass term + 1

2
φ⃗2 and therefore without a non-trivial minimum. In the context of

zero-dimensional O(N) models this IC is in the family of UV potentials discussed qualitatively
at length and to some extent even quantitatively in Refs. [163, 536, 541].
In figure 3.19b we show relative errors for the first three non-vanishing Γ(2n) as a function of

ntrunc for this IC for theO(4)model. These results where obtained using NDSolve of Mathemat-
ica [353] with an increased PrecisionGoal and AccuracyGoal of 12, which became necessary for
a proper truncation-error scaling beyond ntrunc = 15 for the two-point function. In figure 3.19b
we observe a truncation-error scaling following power laws in ntrunc with approximately n−8.2

trunc,
n−7.6
trunc, and n−7.3

trunc for the two-point, four-point, and six-point function respectively. For this IC
the expansion point φ⃗ = 0 is located at the global minimum of the potential and the potential
is also convex for all t. The dynamics of the FRG flow is rather unspectacular for this potential,
see Fig. 13 of Ref. [163] or figure 3.27a for a visualization. For the two- and four-point
functions, the numerical results at ntrunc = 3 (⇔ m = 6) have already acceptable relative errors
of ≈ 2.2 · 10−3 and ≈ 2.8 · 10−2, respectively, which was observed and discussed in Ref. [163],
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where results for the Taylor expansions were presented only up to ntrunc = 3.
The Taylor expansion outperforms the KT scheme in this setting in terms of relative errors.

The performance and practical applicability of the Taylor expansion seem to depend strongly
on the IC under consideration. We will discuss another analytic IC for the Taylor expansion
briefly in the next subsubsection 3.2.3.3.

FRG Taylor expansion: Numerical irreversibility
Before we conclude this subsubsection we will briefly comment on the irreversibility of (F)RG
flows when employing the FRG Taylor expansion. We discussed in subsubsection 3.2.2.3 that the
projection onto a finite set of couplings underlying the FRG Taylor expansion theoretically allows
for an unphysical reversibility of the (F)RG flow. The ODE systems for the running couplings of
the FRG Taylor expansion in principle allow for an integration both in positive and negative
RG time-direction. Thus an unphysical resolution of microphysics from macrophysics – an
inversion of the underlying RG transformations connecting them – is possible when considering
a finite set of couplings {Γ̄(2n)(t)}.
We performed practical test with the ϕ4 theory discussed in this subsubsection. For the

ϕ4 theory with positive mass term discussed in the previous paragraph a complete inversion
of the FRG flow (from t = 60 back to t = 0 using Λ = 1012) is numerically possible for
systems with ntrunc < 7 forN = 1. For larger systems the strong oscillations of the higher-order
couplings prevent a numerical integration from the IR back to the UV. The ODE system becomes
numerically unstable when approaching t ≈ 24 from above. The recovery of the exact UV IC
is very good for small ntrunc but deteriorates when approaching ntrunc = 7. For the ϕ4 theory
with positive mass term this situations remains qualitatively unchanged for higher N > 1.
For the ϕ4 theory with negative mass term an inversion of the FRG flow from the IR to the

UV is numerically impossible. We were not able to find a ntrunc and N in heuristic tests which
allowed for a numerical inversion of the FRG flow from t = 60 back to t = 0 using Λ = 1012. The
dynamics related to the vaporization of the non-trivial minimum seems to prevent a numerical
inversion. In our heuristic tests it has proven impossible to form back the non-trivial minimum
when approaching the UV from the IR. This is a rather interesting observation which might
warrant a detailed investigation of the ODE systems involved in the FRG Taylor expansion.
Further investigations in higher-dimensional models might be interesting in this context.

We will conclude our discussion of the FRG Taylor expansion in the next subsubsection with
the paragraph FRG Taylor expansion: Concluding remarks.

3.2.3.3. Test case III: ϕ6 potential

For the third test case we consider the potential

U(φ⃗) = 1
2
φ⃗2 − 1

20
(φ⃗2)2 + 1

6!
(φ⃗2)3 . (3.103)

This potential includes terms up to (φ⃗ 2)3 and has two local minima and one local maximum
and is therefore not convex. The global minimum is located at φ⃗ = 0 and the potential and
its derivative (evaluated on the constant field configuration σ) are depicted in figure 3.20.
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Figure 3.20.: UV potential U(σ) (red-
dashed) and its first derivative u(σ) = ∂σU(σ)
(blue, solid) of test case III from Eq. (3.103).
From Fig. 27 of Ref. [1].

Table 3.3.: Exact results forΓ(2n) of theO(N)
model with the UV initial potential (3.103)
for selected N . They are obtained by a high-
precision one-dimensional numerical integra-
tion of the expectation values ⟨(ϕ⃗ 2)n⟩ from
Eq. (3.56) using NIntegrate in Mathemat-
ica [353]. Here, we present the first six digits
only. In parts from Tab. III of Ref. [1] and Tab.
I of Ref. [2].

N Γ(2) Γ(4) Γ(6)

1 0.174051 0.015618 0.013440

4 0.250333 0.048131 0.043282

Selected reference values for the first three non-vanishing n-point functions can be found in
table 3.3.
We have again performed the full set of numerical tests of subsubsection 3.2.3.1 and found

results supporting the general statements made in that subsection. For brevity, we will not
repeat the complete discussion of that subsubsection but instead focus again on selected results.

Figure 3.21 shows the FRG flow with the initial condition (3.103) for the O(4) model
computed with the KT scheme again using NDSolve of Mathematica [353] with PrecisionGoal
and AccuracyGoal of 10 for the FRG time evolution. Both non-trivial local extrema fade away
during FRG time evolution towards the IR. At t ≈ 28 the potential U(t, σ) becomes convex as
u(t, σ) turns strictly positive for σ > 0. We again observe that the linear extrapolation used at
the right boundary xmax of the computational domain seems surprisingly efficient even for an
initial condition with quintic asymptotics. Studying figure 3.22 we observe that the relative
errors in the IR become independent of the size of the computational domain for xmax≳6.

FRG Taylor expansion: Concluding remarks
We were not able to evolve the ODE system of the Taylor expansion with the current initial
condition to the IR for any setup at all57. Independent of ntrunc and ODE integrator (NDSolve
of Mathematica [353]) settings we encounter a numerical instability of the ODE systems at
around t ≈ 28 preventing a complete integration to the IR. The expansion coefficients Γ̄(2n)(t)
simply diverge at t ≈ 28. From figure 3.21 we deduce that this is approximately the RG time
point at which the non-trivial extrema vanish and the potential turns convex. The precise
underlying dynamics generated by the full PDE and resolved by the KT scheme cannot be
captured by the Taylor expansion (at least not in our set-up). However, also switching to a set-up
57We thank J. Eser for discussions on this issue and a cross-check using his FRG Taylor expansion code [105–108],
which reproduced our findings.
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Figure 3.21.: The FRG flow of the effective po-
tentialU(t, σ) (upper panel) and its derivative
u(t, σ) = ∂σU(t, σ) (lower panel) for the zero-
dimensionalO(4)model with initial condition
Eq. (3.103), evaluated at t = 0, 2, 4, . . . , 60
(integer values for t were chosen for conve-
nience and readability). The (overlapping)
blue and violet curves correspond to the UV
and the red curves to the IR. We used the
exponential regulator (3.8) with UV scale
Λ = 1012. The plot does not show the re-
gion x ∈ [5, 10], because the tiny differences
between u(t, σ) and u(tUV, σ) are not visible
in this region and vanish for large x = σ any-
how. From Fig. 28 of Ref. [1].

2 4 6 8 10
10-6

10-5

10-4

0.001

0.010

0.100

1

Figure 3.22.: The relative error for Γ(2m) for
m = 1, 2, 3, for the O(4) model using the UV
potential (3.103), as a function of the size
of the computational interval xmax. The cell
size is ∆x = 0.025. Γ(2m) are computed from
the discrete values of the derivative of the
IR potential u(tIR = 60, σ) via the second-
order accurate central finite-difference sten-
cils (D.6), (D.9), and (D.12) at σ = 0. We
used the exponential regulator (3.8) with UV
scale Λ = 1012. The yellow straight line
∝ exp (−7xmax) is for optical guidance. From
Fig. 29 of Ref. [1].

with a t-dependent expansion point will not cure this problem, because the expansion point
(the global minimum) does not move for this initial potential – a conscious design decision for
test case III. The instability of the solution of the coupled system of ODEs might be explained
a posteriori by the formation of a non-analyticity at or around the RG time t ≈ 28 of the
collapse of the expansion. Inevitably, due to the non-analyticity of the potential, Wilbraham-
Gibbs-type [286–288] oscillations arise in the Taylor expansion, making the expansion scheme
unstable [285]. This phenomenon is also observed and discussed in detail in the context of
Fourier expansions of periodic potentials in the FRG in Sec. 2.2.2 of Ref. [568].
However, a vertex expansion for a convex sextic potential including only positive coefficients
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in the UV is possible, similar to ϕ4 theory with a positive mass term discussed at the end of
the previous subsubsection 3.2.3.2. A numerical inversion of the FRG flow is again possible for
systems with a small number of couplings.

At this point we have discussed numerical results for the FRG Taylor expansion for quartic
and sextic potentials. The numerical performance in terms of achievable relative errors for the
n-point functions in the IR is rather poor for the quartic potential (3.101) with the negative
mass term and very good for the potential with the positive mass term. A numerical solution of
ODE system of the Taylor expansion with the non-convex sextic potential (3.103) has proven
impossible
The zero-dimensional O(N) model has proven very challenging for the Taylor expansion.

It seems that only convex, analytic UV initial conditions and the resulting rather simple FRG
flows can be treated with a vertex expansion in Γ̄(2n)(t) around φ⃗ = 0 in the zero-dimensional
O(N) model.
At this point we also want to reference our comments in subsubsection 2.2.3.2: the treatment

of non-linear advection-diffusion equations requires a priori shock capturing schemes, capable
of handling non-analyticities and even discontinuities. An application of expansion schemes
relying on analyticity like the Taylor expansion is only possible in very special situations and
require an a posteriori case-by-case evaluation of the method. In scenarios where the FRG
flows are driven by an interplay of advection and diffusion around non-trivial minima and/or
large gradients of the conserved quantity u, the Taylor expansion is inevitably doomed to fail.
It is not possible to capture the dynamics of such equations reliably with the simple Taylor
expansion discussed here. A numerical inversion of the (F)RG flow is also impossible in those
scenarios. The appearance of a non-analytic behavior is also understood via a rise of entropy,
cf. subsubsections 3.2.4.2 and 3.2.5.4.
It should be noted that in this workwe discussed the simplest possible Taylor/vertex-expansion

scheme. Other versions of the FRG Taylor (vertex) expansion including a moving expansion
point or a rescaling of the expansion coefficients might improve the performance of the expan-
sion scheme in certain cases, cf. Refs. [104, 124, 611]. Implementing and testing different
approaches to the Taylor expansion for zero-dimensional O(N) models would certainly be an
interesting topic for further studies.

3.2.3.4. Test case IV: The σ=0 boundary

The last test case is again a non-analytic and discontinuous potential,

U(φ⃗) =

⎧
⎨
⎩
−(φ⃗2)

1
3 , if |φ⃗| ≤

√
8 ,

1
2
φ⃗2 − 6 , if |φ⃗| >

√
8 .

(3.104)

The numerically challenging features are the cusp at φ = 0 as well as a non-trivial minimum at
the kink at φ =

√
8. As displayed in figure 3.23 (evaluated on the constant field configuration),

the cusp58 at σ = 0 in U(σ) translates to a pole in ∂σU(σ) ≡ u(σ). This scenario was
58Potentials with cusps in field space are not just academic thought experiments. They are encountered in, e.g.,
theories in 2 + 1 space-time dimensions, such as the Gross-Neveu model [612].
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Figure 3.23.: UV potential U(σ) (red-
dashed) and its first derivative u(σ) = ∂σU(σ)
(blue, solid) of test case IV from Eq. (3.104).
From Fig. 30 of Ref. [1].

Table 3.4.: Exact results forΓ(2n) of theO(N)
model with the UV initial potential (3.104)
for selected N . They are obtained by a high-
precision one-dimensional numerical integra-
tion of the expectation values ⟨(ϕ⃗ 2)n⟩ from
Eq. (3.56) using NIntegrate in Mathemat-
ica [353]. Here, we present the first six digits
only. In parts from Tab. IV of Ref. [1] and Tab.
I of Ref. [2].

N Γ(2) Γ(4) Γ(6)

1 0.204698 0.064682 0.112849

3 0.421674 0.153559 0.249252

engineered as an extreme test case for the boundary condition at σ = 0 discussed at length in
subsubsection 3.2.2.4.
We have again performed the full set of numerical tests of subsubsection 3.2.3.1 and found

results supporting the general statements made in subsubsection 3.2.3.1. For brevity, we will
not repeat the complete discussion of that subsubsection but instead focus again on selected
results.

Figure 3.24a depicts the FRG flow for the O(3) model computed with the KT scheme for the
UV initial condition (3.104). Figure 3.24b displays the corresponding flow of the first three
non-vanishing n-point functions. With our implementation of the KT scheme using NDSolve
of Mathematica [353] with a PrecisionGoal and AccuracyGoal of 10 we are able to compute
precise solutions, where the achievable precision for Γ(4) and Γ(6) is, as discussed in the previous
subsubsections, limited by the finite-difference rounding errors. The discretization-error scaling
shows the same peculiarities as the test case I of subsubsection 3.2.3.1 due to the discontinuities
in the initial conditions. The corresponding reference values for the O(3) model are listed
in table 3.4. The dynamics during the FRG flow is dominated by the pole at σ = 0 and the
discontinuity at σ =

√
8 in u(σ). The diffusion smears out the discontinuity and advection

transports it towards σ = 0 “filling up the well” at σ = 0. Considering the corresponding values
for u(σ) for σ < 0 using the antisymmetry of u(σ), the boundary at σ = 0 can be seen as a point
where waves of opposite amplitude annihilate – a situation very reminiscent of our discussion
of the BBE (2.130) in subsubsection 2.2.3.2.
Only the carefully engineered boundary condition at σ = 0 together with corresponding

ghost cells allows for practical computations with the present initial condition. The pole at
σ = 0 presents no problem in practical computations because the boundary condition at σ = 0
makes use of the antisymmetry of u(t, σ). The first cell containing the pole is centered at σ = 0
and due to the antisymmetry, the corresponding cell average ū0(t) vanishes by construction.
Enforcing ū0(t) = 0 and for the two ghost cells ū−2(t) = −ū2(t) and ū−1(t) = −ū1(t) at each
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(a) The FRG flow of the effective potential
U(t, σ) (upper panel) and its derivative u(t, σ) =
∂σU(t, σ) (lower panel) evaluated at t =
0, 2, 4, . . . , 60 (integer values for t were chosen
for convenience and readability). The (overlap-
ping) blue and violet curves correspond to the UV
and the red curves to the IR. We used the expo-
nential regulator (3.8) with UV scale Λ = 108 and
n = 800 volume cells. The plot does not show the
region x ∈ [5, 10], because the tiny differences be-
tween u(t, σ) and u(tUV, σ) are not visible in this
region and vanish for large x = σ anyhow.
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(b) The relative error for Γ(2m)(t), for m = 1, 2,
calculated with the KT scheme as a function of
the RG time t for the O(3) model. We used the
exponential regulator (3.8) with UV scale Λ = 108

and n = 400 volume cells.
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(c) The relative error for Γ(2m)(tIR) form = 1, 2, 3
from the KT scheme as a function of the UV scale
scale Λ. We use the exponential regulator (3.8)
and keep the IR cutoff scale constant at r(tIR) =
10−15 for all runs. The number of volume cells is
n = 400. The straight yellow line ∝ Λ−1 is for
optical guidance.

Figure 3.24.: FRG flow on the left (a), relative errors over RG time on the top right (b),
and relative errors in the IR as function of the UV cutoff Λ on the bottom right (c) for the
zero-dimensional O(3) model with initial condition Eq. (3.104). The computational grid size
is σmax = xmax = 10 and Γ(2m)(t) are calculated from u(t, σ) via the approximations (D.6),
(D.9), and (D.12) for the numerical derivatives. From Figs. 31, 32, and 33 of Ref. [1].

time step allows for a stable and accurate FRG time evolution even for such extreme initial
conditions like the one of Eq. (3.104).
Treating this initial condition using a formulation in the invariant ϱ = 1

2
σ2 with some

naive boundary conditions without strict mathematical justification is hazardous, because
u(t, ϱ) = ∂ϱU(t, ϱ) diverges as ϱ−2/3 as ϱ → 0. As mentioned in subsubsection 3.2.2.4, it is
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unclear to us how to deal with the ϱ = 0 boundary especially in a case like the one discussed
in this subsubsection.

We conclude this subsection with a short discussion of RG consistency. The plateaus in
figure 3.24b in the UV (at small t) and the IR (at large t) are again a strong indication for
appropriately chosen UV and IR scales. From figure 3.24c, showing the Λ-dependence of Γ(2),
Γ(4), and Γ(6), one observes that, even in the presence of the pole at σ = 0 in u(t = 0, σ), an
initial UV scale of Λ = 108 is sufficient to realize RG consistency. Arguably even Λ = 106 – the
scale used in subsubsection 3.2.3.1 – would suffice, suggesting that in the current case the scale
is primarily set by the discontinuity and linear asymptotics at and beyond σ =

√
8, which both

are also present (with very similar values) in the initial condition (3.94) of subsubsection 3.2.3.1.
However, decreasing ∆x would lead to larger numerical gradients for the initial condition

at σ = 0 due to the discretization of the pole in u(σ), which in turn implies that Λ has to be
simultaneously increased in order to keep the propagators (3.80) and (3.81) dominated by Λ
in the UV.
Also, if the cusp at σ = 0 in the UV initial potential U(t = 0, σ) in figure 3.23 pointed

downwards and u(0, x) had negative gradients on both sides of the corresponding pole, it
would formally be extremely hard to guarantee the inequalities (3.100) and to have a non-
singular flow equation in the UV, because the giant negative gradients would not be restricted
to the cell at σ = 0. In a discretized version with non-zero ∆x a calculation is still possible, as
long as Λ is chosen extremely large, much larger than the huge, but finite negative gradient of
u(σ). Hence, RG consistency is not only a physical requirement, but also sets strict limits on
the choice of numerical parameters, respectively. We observe similar effects in subsection 4.2.2,
where the chemical potential enters as a shock wave in field space with (at T = 0) infinite
negative slope in u(t, σ) at positive σ.

3.2.4. The O(1) model – entropy production and irreversibility of RG flows

This subsection is based on Ref. [2] and contains parts of the unpublished notes [8]. The
plots of Ref. [2] and the underlying numerical data were produced by A. Koenigstein and
numerically cross-checked by my own computations with the KT scheme.
Selected numerical results and accompanying symbolic computations are included in

the digital auxiliary file [365]. The single thread wall time on an Intel© Core™ i7-8750H
processor for the numeric results of this subsection is only around eight minutes, since we
only discuss five FRG trajectories.
The introduction of this subsection follows Secs. I and II of Ref. [2].

In this subsection we will focus on O(N = 1) models, i.e., a zero-dimensional Z2-symmetric
model of a single scalar, as discussed especially at the beginning of this chapter in section 3.1.
In the spirit of subsubsection 3.2.2.3, the limitation to N = 1 entails, that the flow equation
gets purely diffusive as the advective contributions ∝ (N − 1) vanish. We are left with the
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scalar parabolic conservation law,

∂tU(t, σ) =
1

2

1

r(t) + ∂2σU(t, σ)
∂tr(t) =

1

2
, (3.105)

which in primitive form reads

∂tu(t, x) =α[t, ∂xu(t, x)] ∂
2
xu(t, x) , (3.106)

with the non-linear, strictly positive diffusion coefficient

α[t, ∂xu(t, x)] ≡ −
1
2
∂tr(t)

[r(t) + ∂xu(t, x)]2
, (3.107)

cf. Eqs. (3.85) and (3.86). We can identify Eq. (3.106) as a heat equation with non-linear
diffusion coefficient (3.107), cf. subsection 2.2.4. The present discussion makes our general
remarks about functional flow/heat equations in subsection 2.1.7 explicit. The conservative
formulation (3.105) and interpretation in terms of (numerical) fluid dynamics has tremendous
benefits and consequences for understanding and solving this FRG flow equation:

1. The explicit identification of the FRG flow Eq. (3.105) as a heat equation allows us to
directly apply the CFD methods of section 2.2 and especially subsection 2.2.4.

2. An interpretation of FRG flow equations as flow equations in the narrow sense of the word
makes the dynamics during the flow intuitively understandable. The non-linear diffusive
contribution (the radial σ-mode) smears out cusps and jumps in u(t, x) and corresponds
to undirected movement of u(t, x), depending on the local “concentration differences”,
the gradient ∂xu(t, x), via the highly non-linear diffusion coefficient (3.107).

3. The described dissipative dynamics goes hand in hand with entropy production and
irreversibility as discussed in the CFD context in subsection 2.2.4. We can therefore
conclude that the irreversibility of the RG transformations during the FRG flow is hard
coded in the diffusive character of the flow Eq. (3.105), not only in zero space-time
dimensions, but for any dimension and any QFT, cf. Refs. [311, 576, 580]. Hence, the
rise of entropy during the FRG flow might therefore be directly linked to C-/A-theorems.
This is explained in detail in this subsection in the context of our minimalistic toy model
QFT.

To be specific, we shall show that the numerical entropy, which is of utmost importance in
the theoretical treatment of PDEs, as outlined in section 2.2 and especially subsection 2.2.2,
has a very close connection to an entropy in the (F)RG flow59 and further possible connections
to the so-called C-/A-functions, cf. Refs. [230, 575, 583–595] and subsubsection 3.2.4.3 for
more details on C-/A-functions.
59In this context we also have to mention the publication [245] by J. Cotler and S. Rezchikov, who were able to
interpret the Polchinski equation as an “optimal transport gradient flow of a field-theoretic relative entropy”,
thus establishing a firm and explicit connection between an information-theoretic entropy and (F)RG flows.
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One of the most important direct consequences of this is, that the same “(thermodynamic)
arrow of time” or “thermodynamic time asymmetry” [579] identified by the entropy of a PDE,
is also present from a FRG perspective.
In nature as well as in the PDEs that describe our physical world, entropy is produced by

diffusion (dissipation) as well as discontinuities of different kinds. Consequently the evolution
of such systems and also their numerical solutions are irreversible and usually only weak
solutions are accessible numerically [315, 317–319, 326–328]. As we will demonstrate in this
subsection, the total variation non-increasing (TVNI) property and related numerical entropy,
cf. Eq. (2.110) and the subsequent discussions of section 2.2, used to guarantee the stability
of numeric solution schemes, can be promoted to a “physical” entropy function. This entropy
function shares characteristics with a C-function and its properties transfer from the PDE to
the QFT and vice versa. Therefore, (F)RG flows are also not reversible.60 This makes the
semi-group character of the RG, see, e.g., Ref. [613], explicit. This semi-group character
manifests very explicitly in Kadanoff’s block-spin picture [233–236] – it is intuitively obvious
that the averaging over a set of spins is an irreversible process. The irreversibility of (F)RG flows
is not just an abstract concept, but is present on a practical level in rather simple truncations of
the Wetterich equation.
These statements may have no severe practical implications for studies of, e.g., QCD and

condensed-matter systems, where the (F)RG flow is in general followed from small (UV limit) to
large length scales (IR limit). In these cases, the dynamics in the long-range limit is predicted
from a given known UV action by integrating out high momentum modes along the “natural”
RG time-direction. However, in situations where (F)RG flows are followed from large to small
length scales, such as studies of the asymptotic safety scenario in QFTs (see Refs. [230, 614–
617] in general, Refs. [618, 619] for a recent review in the context of (quantum) gravity, and
Refs. [612, 620] for applications in condensed-matter physics), the question of irreversibility
of (F)RG flows and the associated production of entropy may indeed be very relevant.
Whereas FRG flows are indeed reversible for certain classes of truncations (of the underlying

effective action), we shall demonstrate in the present work – with the aid of simple models –
that it becomes formally impossible to reverse FRG flows in cases where no truncations of the
effective action are made. Even more, already for often employed truncation schemes (e.g.,
LPA), we shall see that irreversibility associated with numerical entropy production can already
be a manifest feature of FRG flows. Of course, irreversibility of FRG flows does not imply, that it
is not possible to construct theories, which are valid on all scales. It only implies, that the search
for such theories may in general be more complicated. We already mentioned in our discussion
of RG consistency of subsection 2.1.6, that irreversibility of (F)RG flows might complicate
RG-consistent reconstructions significantly, cf. Eq. (2.85) and the corresponding discussion. In
any case, generalizations of the arguments presented in our present work may help to provide
a fresh view on these aspects (and/or revive some already existing discussions [230, 311,
575–578, 580]).
As we shall discuss below, fixed points still play an important role within the fluid-dynamic

60Note that similar arguments, which link the dissipative character of RG flow equations to the irreversibility of
the RG flow, were already brought up in Refs. [575, 576] already before or parallel to the development of the
functional RG framework pioneered in Ref. [212].
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interpretation of FRG flows. In fact, fixed points can be identified with steady-flow solu-
tions and/or (thermal) equilibrium situations on the level of the rescaled dimensionless flow
equations, which have advective and diffusive character.
One major benefit of the connection revealed in this work is that a measure for the irre-

versibility of the FRG flow is explicitly provided via the identification with numerical entropy
and especially total variation [167, 315, 317, 319, 339]. Hence, the construction and analysis
of such a measure, at least in certain truncations, might be greatly simplified. In the future,
this might also help to single out adequate truncation schemes for FRG flow equations as those
truncations, which maintain the inherently irreversible character of the flow. We note that
observations similar to ours have already been pointed out in Refs. [230, 311, 576, 580] for
related (partially linearized) flow equations.
The rest of this subsection is organized as follows: Numerical entropy and the TVNI property

are discussed in detail in subsubsection 3.2.4.1. Explicit computations and a detailed analysis
of numerical entropy production for our test cases are presented in subsubsection 3.2.4.2. In
subsubsection 3.2.4.3, we discuss the manifestation of a C-theorem for the zero-dimensional
O(1) model, challenges for the generalization to finite N > 1 in zero dimensions, and we
briefly comment on possible generalizations of our findings to higher-dimensional theories.

3.2.4.1. (Numerical) entropy and the total variation

This subsubsection is based on Sec. III of Ref. [2].

The first part of this subsubsection deals with the explicit construction of a (numerical) entropy
for the conservation law (3.105). This entropy has to be a functional of the conserved quantity
u(t, x) and/or its derivatives61 that is monotonically rising during the FRG flow. Monotonicity is
explicitly proven for valid initial conditions U(t = 0, x). Since u(t, x) is by definition a function
of all couplings of the theory, the (numerical) entropy function might therefore be linked to a
zero-dimensional version of C-/A-function. In fact it might have some practical advantages
compared to other approaches toward C-/A-functions studied in literature, since u(t, x) does
not even need to be expandable in explicit couplings at all, but still contains all degrees of
freedom.
In the second part of this subsubsection, we derive a discrete formulation of this entropy

functional and demonstrate that it can be directly related to the total variation (TV), i.e., the
arc-length, of u(t, x). Thus providing a link between the total TVD/TVNI property – commonly
used in numeric schemes for conservation laws [167, 327, 339] – and our field theoretical
notion of entropy here.

Construction of the (numerical) entropy
The construction of our (numerical) entropy function is directly inspired by the construction
61The purely diffusive character of Eq. (3.105) is expected to smoothen u(t, x) during the FRG flow which renders
u(t, x) differentiable (but not necessarily analytic) at least for 0 < t <∞. This does not need to be the case for
hyperbolic conservation laws where taking derivatives of u(t, x) has to be handled with great care, e.g., around
shocks, i.e., in a proper weak formulation, see section 2.2.
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of entropy/energy functionals for the BBE (2.130) [371, 372] or the HE (2.138) [314] of
subsubsection 2.2.3.2 and subsection 2.2.4.
Let y ∈ R and

s : R→ R , y ↦→ s(y) , (3.108)

be a continuously twice differentiable convex function on R, hence

s(y) ∈ C2(R) , s′′(y) ≥ 0 , (3.109)

for all y ∈ R. Furthermore, we require that s(y) shall not grow faster than y2 for |y| → ∞,
which is explained below. Using s(y) we define the functional

S[f(x)] ≡ −
∫︂ +∞

−∞
dx s(f(x)) , (3.110)

which we shall refer to as entropy functional. In general, the bounds of integration are chosen
according to the domain of our problem at hand. Next, we prove that, choosing f(x) = ∂xu(t, x),
Eq. (3.110) indeed plays the role of an (numerical) entropy for the PDE (3.105). Hence, it
measures, similarly to C-/A-functions for RG flows, the degrees of freedom and irreversibility.
To this end, we explicitly demonstrate that S[∂xu(t, x)] is monotonically increasing during the
FRG flow, thus being a monotonic function on t ∈ [0,∞):

d

dt
S[∂xu(t, x)] ≥ 0 . (3.111)

The only further ingredient, which is needed for the proof is the spatial derivative of the
flow-equation (3.105):

∂t[∂xu(t, x)] =−
d

dx

(︃
1

2

∂2xu(t, x)

[r(t) + ∂xu(t, x)]2
∂tr(t)

)︃
. (3.112)

Taking spatial derivatives of u(t, σ) should be allowed at any t ∈ (0,∞) because of the smoothen-
ing character of the diffusion – at least in zero space-time dimensions62. Only for t = 0 the
initial condition may violate smoothness, see subsubsection 3.1.3.2 for details. In the following,
we normalize the entropy and subtract the entropy of the initial condition S[∂xu(t = 0, x)],
such that this should not spoil any of our subsequent arguments.

62The generalization of this argument to higher-dimensional O(N)-type models might be delicate, because the
non-linear diffusion can also cause non-analyticities in potentials in the IR if these end up in the symmetry
broken phase. In that case it might be unavoidable to base and repeat the entire discussion using a rigorous
weak/integral formulation of the PDEs under consideration.
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Let us now prove Eq. (3.111):

d

dt
S[∂xu(t, x)] = −

d

dt

∫︂ +∞

−∞
dx s(∂xu(t, x)) = (3.113a)

= −
∫︂ +∞

−∞
dx
(︁
∂t[∂xu(t, x)]

)︁
s′(∂xu(t, x)) = (3.113b)

=

∫︂ +∞

−∞
dx

[︃
d

dx

(︃
1

2

∂2xu(t, x)

[r(t) + ∂xu(t, x)]2
∂tr(t)

)︃]︃
s′(∂xu(t, x)) = (3.113c)

=

∫︂ +∞

−∞
dx
[︁
− 1

2
∂tr(t)

]︁ [∂2xu(t, x)]
2

[r(t) + ∂xu(t, x)]2
s′′(∂xu(t, x))+

+

[︃
1

2

∂2xu(t, x)

[r(t) + ∂xu(t, x)]2
∂tr(t) s

′(∂xu(t, x))

]︃+∞

−∞
(3.113d)

=

∫︂ +∞

−∞
dx
[︁
− 1

2
∂tr(t)

]︁ [∂2xu(t, x)]
2

[r(t) + ∂xu(t, x)]2
s′′(∂xu(t, x)) ≥ 0 □. (3.113e)

where the sought after inequality in Eq. (3.113e) follows from the facts, that the first term in
Eq. (3.113d) is positive and the surface term in Eq. (3.113d) vanishes. This can be reasoned
by analyzing both terms in Eq. (3.113d) separately.

1. We note that all factors in the integrand of the first term are greater or equal to zero: For
the regulator insertion, we have

− 1
2
∂tr(t) ≥ 0 , (3.114)

because r(t) is a monotonically decreasing function. The numerator and the denominator
are obviously positive. In fact, for the denominator of the fraction

r(t) > ∂xu(t, x) , (3.115)

for all t anyhow, as long as the initial condition u(t = 0, x) and the UV scale Λ are chosen
accordingly, cf. Eq. (3.100b) of subsubsection 3.2.3.1. Finally,

s′′(∂xu(t, x)) ≥ 0 , (3.116)

holds by construction according to Eq. (3.109).
In total, we find that the integrand of the first term is always greater or equal to zero,
which directly transfers to the integral itself.

2. For the second term, we first use that, for large |x|, the potential U(t, x) and all its
derivatives do not change during the FRG flow, as we have elaborated and demonstrated
at length in the previous subsection 3.2.3. Furthermore, we use that s(y) maximally
grows like y2 for |y| → ∞ by definition. This implies that its derivative s′(y) increases
asymptotically as y1 at most. Additionally, we use that U(t, x) is at least proportional to
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x2 for |x| → ∞ in order to have well-defined expectation values (3.56). Consequently,
we have to distinguish two scenarios.
If U(t, x) ∼ x2 for large |x|, the second term vanishes identically, due to the third spatial
derivative of U(t, x), namely ∂2xu(t, x), in the numerator.
Otherwise, if U(t, x) grows faster than x2 for large |x|, the denominator [r(t)+∂xu(t, x)]2
will always grow faster than the product [∂2xu(t, x)] s′(∂xu(t, x)) for |x| → ∞.
Hence we ultimately conclude that the second term always vanishes, provided that the
initial conditions come with the assumed large-|x|-asymptotic behavior.

In summary, we have shown that the statement of Eq. (3.111) holds on account of the
proof (3.113), which promotes S to an entropy (functional) of our system that can only
increase.

For what follows, we choose the twice differentiable convex function s(y) = y2. This implies

S[∂xu(t, x)] = −
∫︂ +∞

−∞
dx [∂xu(t, x)]

2 . (3.117)

S can be viewed as measure for the richness of structure of the potential – the information
encoded in the potential – by integrating the square of the gradient of u(t, x) over all positions
x in field space.
With the definition (3.117) the following practical problem arises: For practical purposes

S[∂xu(t, x)] formally diverges at any time t because ∂xu(t, x) is at least constant for |x| → ∞.
This problem can be cured, by subtracting the entropy S[∂xu(t = 0, x)] of the initial condition.
Since u(t, x) does not change for large |x| during the entire FRG flow, the infinite but constant
contributions cancel and we can observe the relative rise in entropy. This should be a valid
approach, since we are only interested in these relative changes anyhow. We therefore define
and consider the normalized entropy

C[∂xu(t, x)] = S[∂xu(t, x)]− S[∂xu(t = 0, x)] , (3.118)

which is finite. Potential subtleties regarding the finiteness of S and C will be discussed in
subsubsection 3.2.4.2. The alphabetic character “C” is chosen because this function quantifies
irreversibility similarly to C-/A-functions. We are aware of the fact that a real C-/A-function
should be based on the dimensionless rescaled flow equation. This issue is discussed in
subsubsection 3.2.4.3.
Eq. (3.118) for the C-function makes the loss of information/richness of structure of the

effective potential u(t, x) during FRG time evolution explicit. C monotonically increases with
FRG time t because the richness of structure/information decreases with t. A loss of information
about a system (effective potential u(t, x)) during RG time evolution goes hand in hand with the
impossibility to reconstruct/recover earlier states of the system (which had more information)
and thus the RG time evolution is irreversible. In the present setup the purely diffusive flow
equation of the zero-dimensional O(1) model is responsible for this loss of information as large
gradients are smeared out by diffusion during RG time evolution, cf. subsubsection 3.2.4.2 for
explicit numerical examples.
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Discrete formulation and relation to the TVNI property
In this paragraph we discuss a discretized version of Eq. (3.118), which is suited for practical
computations. In the following and w.l.o.g. we consider a FV discretization of u(t, x) in x with
n volume cells of constant width ∆x, centered at xi, i ∈ {0, 1, . . . , n− 1}, see subsection 2.2.1
for details. Recall that the FRG flow in this setup is described by the temporal evolution of
the n volume averages ūi(t), which are formally defined as the spatial averages of u(t, x) over
[xi− 1

2
, xi+ 1

2
], where xi± 1

2
≡ xi ± ∆x

2
. For the purpose of calculating C[∂xu(t, x)], we reconstruct

the first derivatives from the set of volume averages {ūi(t)} by a first-order FD forward stencil,

∂xu(t, xi) =
ūi+1(t)− ūi(t)

∆x
+O(∆x) . (3.119)

For the scope of this work this has proven sufficient since the purely diffusive character of
the PDE smoothens u(t, x). However, for non-smooth/non-differentiable initial conditions at
t = 0, such as Eq. (3.94) and (3.104) of our numeric examples, a naive FD stencil is of course
generically ill-conditioned at the discontinuities63. As a direct consequence, the absolute value
of S[∂xu(t = 0, x)] strongly depends on the explicit discretization points and the “capturing of
the discontinuity” in the respective volume cells. For t→∞ (as a direct consequence of the
CMWH theorem [550–552], cf. App. B of Ref. [1]), u(t, x) is smooth and the FD approximation
is well-behaved as long as ∆x is not too small. We conclude that the absolute values of our
entropy function (3.118) will strongly depend on ∆x for non-differentiable initial conditions
in the IR because we use S[∂xu(t = 0, x)] as normalization, while the qualitative behavior
(monotonic rise) is independent of the discretization, which is also true for the discrete total
variation (2.111). For the smooth initial conditions (3.101) and (3.103), we observed little
dependence of the absolute values of the C[∂xu(t, x)] on ∆x, as expected.
We use a grid with the first volume cell of the computational domain centered at zero,

x0 = 0, and the last centered at a finite xmax, hence xn−1 = xmax. xmax is chosen large enough,
such that u(t, xmax) = u(t = 0, xmax) holds to a sufficient level for all t, cf. our discussion
in subsection 3.2.3 as well as Refs. [154, 247, 567, 604]. This enables a computation of
C[∂xu(t, x)] considering only x ∈ [−xmax,+xmax] since the difference

S[∂xu(t, x)]− S[∂xu(t = 0, x)] (3.120)

practically vanishes for |x| ≥ xmax. We therefore study the following quantity:

C[∂xu(t, x)] = − 2

∫︂ xmax

0

dx
[︁
∂xu(t, x)

]︁2
+ 2

∫︂ xmax

0

dx
[︁
∂xu(t = 0, x)

]︁2
, (3.121)

leveraging the Z2 symmetry of the problem at hand. Inserting Eq. (3.119) and performing the
integrals over the constant segments in the volume cells leads to our semi-discrete formulation

C[{ūj(t)}] = −
2

∆x

(︄
n−1∑︂

j=0

[ūj+1(t)− ūj(t)]2
(1 + δj,0 + δj,n−1)

−
n−1∑︂

j=0

[ūj+1(0)− ūj(0)]2
(1 + δj,0 + δj,n−1)

)︄
, (3.122)

63Similar discussions will arise in higher space-time dimensions, e.g., in models where the FRG flows ends in
a symmetry broken phase with a non-analytic IR-potential. Coming back to a related comment made in an
earlier footnote 62: such generalizations might require a retracing of the current discussion using a proper weak
formulation and in context of Eq. (3.119) probably a limiting procedure like the MUSCL reconstruction (2.99).
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where the factor (1 + δj,0 + δj,n−1) accounts for the fact that we only integrate over the right
half of the first and the left half of the last volume cell.
Recall that practical computations of solutions to the PDE (3.105) on the compact interval

x ∈ [0, xmax] require carefully chosen boundary conditions [1, 3] to be consistent with solutions
of the pure initial value problem posed by Eq. (3.105) on the interval x ∈ (−∞,+∞) [154, 155].
In the present FV setup we implement boundary conditions with ghost cells, see Eqs. (3.91)
and (3.93) of subsubsection 3.2.2.4 for details. For the computation of C[{ūi(t)}] we require
only the ghost-cell average ūn(t) = 2ūn−1(t) − ūn−2(t) as well as the cell averages at xi for
i ∈ {0, 1, . . . , n− 1}.

The entropy functional S[∂xu(t, x)] of Eq. (3.117) discussed in this subsection is closely
related to the total variation (TV) [339] – the arc length – of the solution u(t, x), which we
introduced in the context of FV methods and CFD in subsection 2.2.2, viz. in Eqs. (2.110)
and (2.111). For a single component system on the (computational) interval [0, xmax] Eq. (2.110)
reads

TV[∂xu(t, x)] ≡
∫︂ xmax

0

dx |∂xu(t, x)| . (3.123)

The TV qualitatively differs only by a global sign from the entropy functional S, where the sign
used for the TV is compatible with the mathematical convention for (numerical) entropy. The
use of the absolute value |∂xu(t, x)| in Eq. (3.123) instead of the square [∂xu(t, x)]2 used for S
presents only as quantitative difference, which is not of any practical relevance in this work.
On a FV grid, a discretized version of Eq. (3.123) is given by

TV[{ūj(t)}] ≡
n−1∑︂

j=0

|ūj+1(t)− ūj(t)| , (3.124)

where a first-order forward FD stencil is used to discretize the first derivative, cf. Eq. (2.111).
We discussed the TV and the TVNI property of conservation laws in subsections 2.2.2–

2.2.4 and discussed CTV of Eq. (2.134) as a numerical entropy and measure linked to the
irreversibility of non-linear convection equations. The flow Eq. (3.105) under consideration
in this subsubsection is a non-linear, parabolic pure diffusion equation and the construction
of the normalized entropy functional C of Eq. (3.118) can be adapted to prove directly that
solutions of the flow Eq. (3.105) are in fact TVNI.
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Table 3.5.: The table lists the “exact” results for Γ(2) of the O(1) model (second column)
for the various UV initial potentials of our test cases (first column), which are calculated
by a brute-force, high-precision one-dimensional numerical integration of the expectation
value ⟨ϕ⃗ 2⟩ from Eq. (3.56) using NIntegrate in Mathematica [353] with a PrecisionGoal
and AccuracyGoal of 10, cf. tables 3.1–3.4. Here, we shall present the first ten digits. The
last column lists the relative errors of the numerical solution of the purely diffusive FRG flow
equation obtained with the second-order accurate KT scheme using the parameters listed in
the corresponding figures 3.25a, 3.26a, 3.27a, 3.28a, and 3.29a, see also subsection 3.2.3 for
a detailed discussion of such errors.

UV potential Γ(2) |Γ(2)
FRG/Γ

(2) − 1|

Eq. (3.94) 0.1768130358 6.0 · 10−6

Eq. (3.101) (negative mass) 0.1995098930 1.1 · 10−5

Eq. (3.101) (positive mass) 1.3324252475 1.4 · 10−5

Eq. (3.103) 0.1740508127 2.5 · 10−5

Eq. (3.104) 0.2046977422 5.8 · 10−6

3.2.4.2. Numerical entropy production in zero-dimensional models

This subsubsection is based on Sec. IV of Ref. [2].

In this subsubsection we present explicit numerical results for the FRG flows of the (numerical)
entropy function (3.118) for some selected zero-dimensional O(1) models differing by their
action – UV initial condition for the FRG flow. As explicit examples, we choose the test cases
from subsection 3.2.3 with their established numerical and model parameters. The following
paragraphs

• Test case I: Non-analytic initial condition,

• Test case II: ϕ4 potential,

• Test case III: ϕ6 potential,

• Test case IV: The σ = 0 boundary,

contain discussions for the zero-dimensionalO(1)model with the respective ICs (3.94), (3.101),
(3.103), and (3.104) and are based on Secs. IV. A–D of Ref. [2]. For the sake of completeness
and as proof of reliability of our numerical scheme and the choice of our numerical parameters,
we provide a comparison in table 3.1 between numerical results for the 1PI two-point-function
Γ(2) calculated via the solution of the flow equation (3.105) with the KT scheme and “exact”
results calculated via expectation values (3.56) from the partition function. Note that all plots
of the entropy in this subsubsection are based on a direct implementation of Eq. (3.122).
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(a) FRG flow of the effective potential U(t, σ) (up-
per panel) and its derivative u(t, σ) = ∂σU(t, σ)
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(b) FRG flow of the numerical entropy C[∂xu(t, x)]

Figure 3.25.: FRG flow of the effective potential and its derivative on the top (a) and
corresponding flow of the numerical entropy below (b) for the zero-dimensional O(1) model
with initial condition Eq. (3.94). Blue color is associated to the UV and red color to the IR.
We used the exponential regulator Eq. (3.8) with UV scale Λ = 106. The lower panel in (a) is
identical to the upper panel in figure 3.5. From Figs. 1 and 2 of Ref. [2].
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Test case I: Non-analytic initial condition
We begin our discussion ofO(1)models with test case I (3.94), recall figure 3.3 for a visualization
of this IC. The FRG flow of u(t, x) for N = 1 is presented in figure 3.25a.
The diffusive character of the σ-mode is clearly visible from the fact that it smoothens the

discontinuities at x = 2 and x = 3, without any directed propagation (advection) of the
conserved quantity u(t, x). Recall that the system has to restore the Z2 symmetry in the ground
state as dictated the CMWH theorem [550–552]. In particular, the potential has to become
convex [557, 558]. This can be directly observed in the plot of the FRG flow and read off from
table 3.5 – the two-point function is positive at σ = 0.

In figure 3.25b we present the FRG flow of the (discretized numerical) entropy function for
our first test case.
As expected from our discussion in subsubsection 3.2.4.1, the entropy grows monotonically.

It increases by two orders of magnitude starting at zero in the UV until it reaches (again) a
plateau in the IR. We find that the entropy grows most when the regulator (3.8) reaches the
model scales. Loosely speaking, this is where most of the dynamics takes place, see figure 3.25a
(approximately between t ≈ 4 and t ≈ 8). This is the RG time frame in which the diffusion
smears out the discontinuities. From a fluid- and thermodynamic perspective and directly on the
level of the PDE, the whole process is intuitively understandable: Diffusion goes hand in hand
with strong dissipation and a loss of information about the initial state of the system – the UV, cf.
Refs. [575, 576]. This is directly comparable to heat conduction, where the information about
the initial temperature distribution gets lost during the flow toward “thermal” equilibrium [314,
315, 579] as discussed in our introduction of the linear HE (2.138) in subsection 2.2.4.
In the FRG framework, this translates to integrating out degrees of freedom from the UV to

the IR and a growth in the number of coupling constants in U(t, σ), which is directly related
to the growth of entropy. The entropy plateau in the IR is identified with the interacting IR
regime and an “thermal” equilibrium on the level of the diffusive PDE, whereas a plateau in
the UV is associated with a Gaussian UV fixed point [178, 621]. As expected the entropy stops
changing at these points. IR solutions therefore correspond either to steady-flow solutions (in
advection dominated systems for a large number of “Goldstone” modes [441, 442, 563]) or
to (thermal) equilibrium solutions (in diffusion dominated O(1)-symmetric systems) in the
fluid-dynamical picture [1].
Note that t ∈ [0, 60] corresponds to an integration over 26 orders of magnitude in r(t),

starting 6 orders of magnitude above the model scales (which are of order one) and ending
up 20 orders of magnitude below the model scales. Interestingly, we find that the almost total
absence of a plateau in the entropy in the UV for our first test case implies that we almost
violated RG consistency. The absence of the zero-entropy plateau can also be seen by closer
inspection of figure 3.11, where Λ = 106 is barely on the plateau of RG-consistent UV scales.
Before we continuewith our next test case, we again note that the absolute value of C[∂xu(t, x)]

in the IR in figure 3.25b has no quantitative meaning, due to the ill-conditioned behavior
when applied to the discontinuous initial condition (3.94) of the numerical derivative (3.119).
However, this does not spoil our qualitative arguments at all.
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per panel) and its derivative u(t, σ) = ∂σU(t, σ)
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Figure 3.26.: FRG flow of the effective poten-
tial and its derivative on the top (a) and cor-
responding flow of the numerical entropy be-
low (b) for the zero-dimensional O(1) model
with initial condition (3.101) with negative
mass term. Blue color is associated to the
UV and red color to the IR. We used the ex-
ponential regulator Eq. (3.8) with UV scale
Λ = 1012. From Figs. 3 and 5 of Ref. [2].
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(a) FRG flow of the effective potential U(t, σ) (up-
per panel) and its derivative u(t, σ) = ∂σU(t, σ)
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Figure 3.27.: FRG flow of the effective poten-
tial and its derivative on the top (a) and cor-
responding flow of the numerical entropy be-
low (b) for the zero-dimensional O(1) model
with initial condition (3.101) with positive
mass term. Blue color is associated to the
UV and red color to the IR. We used the ex-
ponential regulator Eq. (3.8) with UV scale
Λ = 1012. From Figs. 4 and 6 of Ref. [2].
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Test case II: ϕ4 potential
We continue our discussion of O(1) models with test case II (3.101) with positive and negative
mass term, recall figure 3.12 for a visualization of this IC with a negative mass term. Depending
on the sign of the mass term, we either start the FRG flow with a broken or restored Z2

symmetry.
When considering Eq. (3.101) with negative mass term, we argued in subsubsection 3.2.3.2

that during the FRG flow, while the physical point moves from σ = ±
√
6 to σ = 0, presumably

an excessively large or even infinitely many new couplings are generated in U(t, σ). This
renders FRG Taylor expansion discussed in subsubsection 3.2.3.2 at a finite order a potentially
problematic approximation scheme for the evolution of non-convex potentials, see also sub-
subsection 3.2.3.3. In this paragraph, we reinforce our findings about the non-convergence of
(Taylor) expansions of the potential during the FRG flow by studying the (numerical) entropy
production during the FRG flows.
The FRG flows of u(t, x) for the IC (3.101) with negative mass term is depicted in figure 3.26a

and figure 3.27a shows the corresponding FRG flow64 for positive mass term. Both FRG flows
are by visual inspection not really spectacular: For the “negative mass”-case, we find that,
according to the CMWH theorem [550–552], the diffusion via the σ-mode again restores the
Z2 symmetry and drives the potential convex during the RG flow before the system equilibrates
in the IR. For the FRG flow of the “positive mass”-case we only find minimal changes in the
shape of u(t, x) also originating from the non-linear diffusion during the FRG flow. Hence, the
equilibrated solution in the IR is relatively close to the UV initial potential.

The plots of the corresponding entropies in figure 3.26b (for negative mass term) and
figure 3.27b (for positive mass term) are more instructive. In both cases we find a clear
monotonic rise of the (numerical) entropy exactly in the FRG time period, in which most of
the dynamics takes place. Furthermore, we clearly find plateaus in the UV and the IR, which
correspond to the trivial UV regime and the non-trivial interacting IR regime. This plateau-like
behavior signals RG consistency. In comparison with our first test case (3.94), where we used
exactly the same discretization points (volume cells), the monotonic growth of entropy is less
drastic and significantly smaller. This is expected because the jumps in u(t = 0, x) at x = 2
and x = 3 in the first test case (3.94) lead to greater changes in the discrete total variation –
the arc length in x of u(t, x) – than the rather small changes of the profiles of u(t, x) for the
ϕ4-models, cf. subsubsection 3.2.4.1. Also from a fluid-dynamic perspective, this is intuitively
understandable because the smoothening of huge gradients is a substantial source of entropy
and obviously an irreversible process, whereas only a small transport of a fluid is not a source
of excessive but rather small entropy production, even though it is diffusion driven. Still, also
for both ϕ4-cases the entropy increases during the FRG flow, which first signals an increasing
number of coupling constants generated during the FRG flow, and second also renders the
flows irreversible.
The second observation has severe consequences: Any FRG flow in a FRG Taylor expansion

64Note that the plot range x ∈ [0, 3] for the “positive mass”-case differs from the one (x ∈ [0, 5]) used in all other
plots of FRG flows of u(t, x) in this subsubsection. This is necessary to make the tiny changes during the FRG
flow at least somewhat visible.
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employs a finite set of coupled ODEs for the couplings (vertices). Since the system is finite, it
seems to be theoretically possible integrate in either RG time-direction. In higher dimensions,
one can formally integrate to larger scales when considering the perturbative beta functions
of QCD, QED, etc. [66, 67, 581, 582], cf. subsection 2.3.2. However, this is in principle not
compatible with the irreversibility of (F)RG flows as shown in our present work (as, e.g., signaled
by the rise of entropy) and may only be reliable within small subspaces of the theory space
associated with a given theory. In fact, the computation of fundamental couplings at small
scales (high energies) from effective couplings at large scales (low energies) is in general not
possible, cf. Ref. [235]. We conclude that the increase of entropy, which we also observe during
the FRG flow of our analytic initial conditions (3.101) reveals potential limitations of Taylor
expansion of effective actions because most likely an extremely large (or even infinite) number
of couplings is generated in the FRG flow and would be required to correctly describe the FRG
flow 65.
When considering an expansion in vertices (especially in higher/non-zero dimensions), it

might be possible that higher-order couplings/vertices are strongly suppressed (especially when
considering higher-dimensional QFTs), such that an expansion of the Wetterich equation (2.37)
in vertices is applicable and meaningful in practice, see, e.g., Refs. [105–108]. This should
go hand in hand with only a small growth of an entropy for the exact FRG flow. Exactly this
seems to be the case for our “positive mass” case (3.101), which shows almost no dynamics
at all and yields the smallest increase in entropy of all our test cases. A reason, why here a
rather small number of couplings might be sufficient to describe the entire FRG flow is that
the potential is convex during the entire flow and has a single unique non-moving minimum.
Hence, the UV regime of this model and the IR regime do not differ much and, as long as the
quartic coupling is extremely small, also perturbation theory [538] leads to results which are
consistent with the exact values for the lowest 1PI n-point functions [163].

65At this point, one might be tempted to apply our definition of the normalized (numerical) entropy directly to
some ∂xu(t, x) that is reconstructed from the flow of the coefficients of a Taylor expansion of the potential to
study the validity of the expansion. However, this is not possible, because the FRG Taylor expansion in general
provides only an adequate local description of the potential, while our (numerical) entropy or the TV requires
knowledge about the global shape of the potential or its derivatives.
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per panel) and its derivative u(t, σ) = ∂σU(t, σ)
(lower panel).

0 10 20 30 40 50 60
-100

0

100

200

300

400

500

600

(b) FRG flow of the numerical entropy C[∂xu(t, x)]

Figure 3.28.: FRG flow of the effective poten-
tial and its derivative on the top (a) and cor-
responding flow of the numerical entropy be-
low (b) for the zero-dimensional O(1) model
with initial condition (3.103). Blue color is
associated to the UV and red color to the IR.
We used the exponential regulator Eq. (3.8)
with UV scale Λ = 1012. From Figs. 7 and 8 of
Ref. [2].

-2

0

2

4

6

0 1 2 3 4 5

-2

0

2

4
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Figure 3.29.: FRG flow of the effective poten-
tial and its derivative on the top (a) and cor-
responding flow of the numerical entropy be-
low (b) for the zero-dimensional O(1) model
with initial condition (3.104). Blue color is
associated to the UV and red color to the IR.
We used the exponential regulator Eq. (3.8)
with UV scale Λ = 108. From Figs. 9 and 10
of Ref. [2].
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Test case III: ϕ6 potential
We continue our discussion of O(1) models with test case III (3.103), recall figure 3.20 for a
visualization of this IC. In subsubsection 3.2.3.3, we came to the conclusion that there has
to be a time interval during the FRG flow, where u(t, x) exhibits highly non-local dynamics –
preventing the applicability of a Taylor expansion, even though the expansion point is unique
and does not move. The FRG flows of u(t, x) for (3.103) with negative mass term is depicted
in figure 3.28a.
At t ≈ 27 the local minimum (the second non-trivial zero-crossing) vaporizes via the diffusion

and merges with the local maximum. It is this dynamics which triggers the breakdown of
the Taylor expansion manifesting as strongly oscillating and ultimately diverging couplings at
t ≈ 27.

Interestingly, also the (numerical) entropy function signals exactly the discussed non-local
behavior at t ≈ 27. At that point in time, when the local minimum vaporizes, we observe the
strongest increase of entropy, see figure 3.28b. We also find that by absolute measures, the
entropy production for the ϕ6-initial potential (3.103) is greater than the entropy production
observed for both quartic initial conditions (3.101). Nevertheless, the entropy production
for the non-analytic initial condition (3.94) is still greater than the one in the ϕ6-case. This
can be understood from the relation of the numerical entropy to the TV, i.e., the arc length
of u(t, x) which even formally diverges for Eq. (3.94) in the UV, keeping in mind that a
comparison of absolute values of the numerical entropy should be considered with some care,
cf. subsubsection 3.2.4.1.
We conclude this paragraph noting that that the (numerical) entropy might be a useful

measure for deciding whether a system at a given RG scale/time is in a perturbative or non-
perturbative regime. In other words, it is a tool to discuss whether the FRG flow is governed by
strong (non-perturbative) dynamics or by weak (perturbative) dynamics. The CFD analogy to
this situation would be the difference between a fluid evolving through an out-of-equilibrium
state, before finally equilibrating or showing steady-flow behavior, in contrast to a fluid that is
already close to its equilibrium state.

Test case IV: The σ = 0 boundary
We conclude our discussion of explicit numerical results for the O(1) model with test case
IV (3.104), recall figure 3.23 for a visualization of this IC. The test case (3.104) turns out to
be a highly interesting almost pathological example in this context. The FRG flow of u(t, x) is
shown in figure 3.29a.
Of specific interest regarding the (numeric) entropy is of course the pole of u(t = 0, x) at

x = 0. Formally, the arc length of u(t, x), which is directly related to our entropy function,
diverges due to the pole at x = 0 for all t > 0. This divergence is of different nature than
the divergence caused by integrating from x = −∞ to x = +∞ in Eq. (3.117). Whereas the
latter can be cured by normalizing the entropy w.r.t. the entropy of u(t = 0, x), the present
divergence also occurs on the level of the “normalized” entropy function (3.118) similar to the
other non-analytic jumps in the UV. The reason for the infinite entropy production while going
from t = 0 to t > 0 is exactly that the total variation between −xmax and +xmax turns finite for
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u(t, x) during the flow because the potential turns convex and smooth. Moreover, symmetry
restoration in the ground state sets in for t→∞. However, it is still normalized against the
infinite total variation of u(t = 0, x). Interestingly, this problem can be traced back to the
initialization of the FRG flow equations at t = 0 with the classical UV action Γ̄t=0(φ) = S(φ),
which is actually not totally exact but rather an almost perfect approximation for sufficiently
large Λ, see also our discussion in subsubsection 3.1.3.2. However both the inherent diffusive
nature of the FRG flow equation and the employed finite-volume discretization render the pole
at σ = 0 a huge but already finite jump captured in three volume cells on the level of the cell
averages ūi(t) at t = 0. Therefore, we can use u(t = 0, x) as our reference entropy for the
normalization of Eq. (3.118) as it is numerically finite right from the beginning of the flow.

The explicit result for the FRG flow of our (numerical) entropy is shown in figure 3.29b. Irre-
spective of the subtleties of the preceding discussion, we find a rather large entropy production
at exactly those times when the pole vanishes and the jumps at x = ±

√
8 are smeared out via

the diffusion.
Additionally, we find that the total entropy production is much larger for this test case than

for the previous ones. Again, this is of course directly related to the huge gradients in the initial
condition, which are tremendous sources of entropy via dissipation, directly analogous to the
HE discussed in subsection 2.2.4.

In this subsubsection, we confronted our theoretical findings of subsubsection 3.2.4.1 with
direct numerical computations using the KT scheme. We verified the behavior of the function
C[∂xu(t, x)] from Eq. (3.118) by means of its discretized version in Eq. (3.122) as a valid numer-
ical entropy measure in four test cases. Using the numerical entropy and the Wetterich equation
in the form (3.105), we made several, at this point almost intuitive, connections between
phenomena known in fluid- and thermodynamic processes and directly related processes and
aspects of (F)RG flows. Most notable, the diffusive character of the flow equation (3.105)
results directly in irreversible FRG flows. This also establishes a connection between steady-
state/(thermal) equilibrium solutions and the UV and IR regime. Moreover, the application of
the numerical entropy and total variation appears to be an attractive monitor for RG consistency
and the origin of an “thermodynamic” time asymmetry.

3.2.4.3. Irreversibility of the RG flow, entropy, and the C-theorem

This subsubsection summarizes and references the findings of Sec. V of Ref. [2]. The first
paragraph of this subsubsection includes material for the Virasoro algebra and fixed-point
solutions for the zero-dimensional O(1) from the unpublished notes [8].

The (re)discoveries within this work unravel the connection between the (numerical) entropy
and total variation, employed in applied mathematics, and the irreversibility inherent to (F)RG
flows. Furthermore, they might even provide some connections to C-/A-theorems within the
framework of truncated FRG flow equations.
The original formulation of Zamolodchikov’s C-theorem [575] states that for a two-dimensional

field theory the following properties hold:
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1. There exists a positive function

C({gi}, t) ≥ 0 , (3.125)

of all (possibly infinitely many) dimensionless couplings {gi} of the theory and RG time
t, with the additional property

+
d

dt
C({gi}, t) ≥ 0 , (3.126)

where the choice of sign in front of the derivative is convention.

2. The C-function takes a fixed value at (critical) fixed points g∗i of the theory:

C({g∗i }, t) = ci , (3.127)

where the fixed value ci can be identified with the central charge c (giving the C-theorem
its name) of a Virasoro algebra [622]

[︁
Lm, Ln

]︁
= LmLn − LnLm =(m− n)Lm+n +

c

12
(m3 −m) δm+n,0 , (3.128)

with the generators Ln of the infinite conformal group. The central charge is different
for different fixed points.

C-theorems and their generalizations especially from two to four dimensions A-theorems [584]
are still under active research, see, e.g., Refs. [230, 575, 583–595]. A-theorems get their name
from anomaly coefficients which are proposed to take the role of the central charge in four
dimensions. A general overview of this field is beyond the scope of the current work and we
will focus in the following paragraphs on specific aspects relevant to this work and the FRG.
One other interesting aspect, related to the introduction of a numeric entropy for FRG flows,

was pointed out by the referee of Ref. [2]: the present formulation based on the effective
potential shares some similarities with the macroscopic description of systems in statistical
mechanics. Instead of working with an infinite set of couplings (microstates in statistical me-
chanics) we switch to a description in terms of an effective potential (a macroscopic formulation
in statistical mechanics). The inability (of a macroscopic observer) to track the dynamics of an
infinite set of couplings (microstates in statistical mechanics) leads to a macroscopic entropy
production/information loss and irreversible processes. An approach to formalize this notion in
statistical mechanics was made by Ludwig Boltzmann [623] and later Josiah W. Gibbs [624]
with the introduction of H-theorems, see, e.g., Chap. VI and XII of the textbook [625] for fur-
ther details. Exploring this connection and possible relations between C-/A- and H-theorems
further could be a very interesting prospect for further research.

The C-theorem of the zero-dimensional O(1) model
In this paragraph we will argue that our numerical entropy (3.118) for the zero-dimensional
O(1) model is in fact a direct analogon to Zamolodchikov’s C-function in zero dimensions. Our
numerical entropy (3.118) fulfills the first two defining properties (3.125) and (3.126) by con-
struction. C[∂xu(t, x)] and its FV equivalent C[{ūj(t)}] are also functions of all (infinitely many)
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coupling constants which are dimensionless in d = 0 and encoded via u(t, x) or equivalently in
FV discretization in the set of volume averages {ūj(t)}.
The only open question regarding the interpretation of our numerical entropy (3.118) as

a C-theorem is related to the question of fixed points and the central charge. A priori it is
difficult to just imagine a meaningful zero-dimensional analog of central charge and conformal
symmetry. A posteriori – after an extensive review of the literature of zero-dimensional QFTs
and specifically zero-dimensional O(N) models – there might be a meaningful analogon for
the central charge, i.e., the absence of such charges, in zero dimension. S. Nishigaki and T.
Yoneya in Ref. [531] and P. Di Vecchia, M. Kato, and N. Ohta in Ref. [532] observe, that it
is possible to derive DSEs for the zero-dimensional O(N) model which can be recast into a
Virasoro algebra. Following Ref. [531] we consider the partition function Z as a function of
all, infinitely many couplings {λj} of a zero-dimensional O(N) model

Z({λj}) ≡
∫︂

dNϕ exp

[︃
−

∞∑︂

j=1

λj (ϕ⃗
2 )j
]︃
. (3.129)

From the divergence theorem, we find for n ∈ N0

0 =

∫︂
dNϕ

∂

∂ϕi

(︃
ϕi (ϕ⃗ 2)n exp

[︃
−

∞∑︂

j=1

λj (ϕ⃗
2 )j
]︃)︃

, (3.130)

which when evaluated for n = 0 and n ≥ 1 allow for the definition of

Ln ≡ −
(︁
N
2
+ n

)︁ ∂

∂λn
+

∞∑︂

j=1

j λj
∂

∂λj+n
(3.131)

such that

0 = LnZ({λj}) . (3.132)

These operators Ln form an algebra

[︁
Lm, Ln

]︁
=(m− n)

[︃
−
(︁
N
2
+m

)︁ ∂

∂λm+n
+

∞∑︂

i=1

i λi
∂

∂λi+m+n

]︃
= (m− n)Lm+n , (3.133)

which is a Virasoro algebra (3.128) with vanishing central charge c, i.e., a so-called Witt
algebra [626]. The DSEs (3.132) for Z({λj}) inform and establish the Witt algebra (3.133),
i.e., a Virasoro algebra with vanishing central charge, for the zero-dimensional O(N) model.
Following Zamolodchikov and assuming that the operators for the DSEs Ln from Eq. (3.131)
are a meaningful zero-dimensional analogon to the generators Ln of the infinite conformal
group in two dimensions, one would assume that Eq. (3.133) implies an absence of fixed-point
solutions in zero-dimensional O(N) models.
We will prove the latter for the zero-dimensional O(1) model explicitly. We start from the

FRG flow equation (3.105) by reformulating the equation at finite RG time in terms of the
regulator itself

∂ru(r, x) =
1

2

d

dx

1

r + ∂xu(r, x)
, (3.134)
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which in turn may be rewritten using the substitution u(r, x) ≡ w(r, x)− r x:

∂rw(r, x)− x =
1

2

d

dx

1

∂xw(r, x)
. (3.135)

Hence, the global fixed-point equation (with ∂rw(r, x) = 0) reads

−x =
1

2

d

dx

1

∂xw(r, x)
, (3.136)

which can be integrated to

x20 − x2 =
1

∂xw(r, x)
− 1

∂x0w(r, x0)
(3.137)

The potential U(r, x) has to be Z2-symmetric and convex for all r, if it is supposed to be an
admissible global fixed-point solution. Thus, ∂xw(r, x) has to be positive for all x0 ̸= 0. As long
as we choose x0 ∈ (0,±∞), explicitly excluding x0 = 0 and x0 = ±∞, we can absorb both
integration constants in a non-zero, positive integration constant, which we set w.l.o.g. to unity
in the following, and derive

∂xw(r, x) =
1

1− x2 . (3.138)

This equation can be integrated to obtain

w(r, x) =

{︄
artanh(x) , |x| < 1 ,

arcoth(x) , |x| > 1 ,
(3.139)

which however implies, that there is only a convex solution to the fixed-point equation for
x ∈ (−1,+1). In conclusion, a global convex fixed-point solution does not exist. We may also
note that the partition function (3.2) for the potential U(r, x) = W (r, x) − 1

2
r x2 with the

integral of Eq. (3.139) does not converge since limx→±∞W (r, x) = 1 + 1
2
ln(x2) +O(x−2).

In summary we note that our numerical entropy (3.118) for the zero-dimensional O(1)
model is a proper analogon to Zamolodchikov’s C-function. The following C-theorem holds for
the zero-dimensional O(1) model: C[∂xu(t, x)] from Eq. (3.118) and its discrete FV equivalent
C[{ūj(t)}] from Eq. (3.122) are positive andmonotonically increasing during FRG flow and there
are no global, convex fixed-point solutions with the Witt algebra (3.133) for the DSEs (3.132)
as analogon to the Virasoro algebra (3.128).

The challenges of a generalization to finite N > 1 in zero dimensions
To discuss the construction of a C-function for N > 1 we recall the FRG flow Eq. (3.79)

∂tu+
d

dx
F [t, x, u] =

d

dx
Q[t, ∂xu] , (3.140)
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and its primitive form

∂tu+
∂F [t, x, u]

∂u
∂xu−

∂Q[t, ∂xu]

∂(∂xu)
∂2xu(t, x) = −∂xF [t, x, u] . (3.141)

Eq. (3.141) includes convective contributions on the l.h.s. but also an internal source term,
stemming from the position-dependence of the advection flux, on the r.h.s. We discussed
such a situation in the general CFD context in subsection 2.2.3 and implications for the TV in
subsection 2.2.2: (internal) source terms lead to a loss of the TVNI property – they change and
crucially increase TV/arc length during time evolution. Hence TV is no longer a valid candidate
for a numerical entropy functional, which in presence of sources is notoriously difficult to
construct in a CFD context, see, e.g., Refs. [358–361] and references therein.
The explicit position-dependence of the advection flux prevented us from formulating a

numerical entropy for the zero-dimensional O(N) model for finite N > 1. The corresponding
contribution to the entropy function (3.118) allows for d

dt
C[∂xu(t, x)] < 0 during FRG flow for

certain initial conditions and N in the case of N > 1. For the zero-dimensional cases (3.101)
and (3.103) discussed, we find d

dt
C[∂xu(t, x)] < 0 during the RG evolutions for N ≥ 8. For the

cases (3.94) and (3.104) with their σ2 asymptotics for large σ the inequality d
dt
C[∂xu(t, x)] ≥ 0

seems to hold for all N and t.
Reformulating the FRG flow Eq. (3.74) in the invariant y ≡ 1

2
x2, cf. Eq. (3.73), does not

solve the issue of internal source terms at finite N . While the advection flux in Eq. (3.73) loses
its explicit position-dependence the diffusion flux gains both a dependence on u(t, y) and y
which does not improve our situation at finite N . In the infinite-N limit however diffusive
contributions vanish after rescaling with N − 1 and a formulation in y with a y-independent
advection flux allows for an identification of the TV as an entropy functional. We will discuss
this in subsubsection 3.2.5.4.

Comments on a generalization to (higher-dimensional) O(N) models
A direct generalization of our findings regarding numerical entropy measures for the FRG flow
from zero to non-zero dimensions is hindered by two new conceptual issues:

1. The LPA as part of the leading-order of a DE is in general only a truncation in d >
0, cf. subsubsection 2.1.4.2. This makes very general statements for the QFT under
consideration a priori impossible when just discussing the FRG flow of the potential. That
being said the established concept of numerical entropy might still be of some use in
higher-dimensional O(1) models.

2. In contrast to the zero-dimensional model, the couplings in d > 0 can have non-zero
energy dimensions. Thus, our numerical entropy (3.118) cannot adequately describe
the second property of the C-theorem (3.127) – namely capturing the properties of
fixed points, which are defined via the zeroes of the beta functions of all dimensionless
couplings and additionally a constant C-/A-function. To resolve the fixed-point structure,
one has to consider the flow equation for rescaled quantities which gains additional
internal source terms due to the rescaling, cf. Eq. (37) of Ref. [2]. Such source terms
make TV-like entropy measures unviable.

Further details can be found in Sec. V of Ref. [2].
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3.2.5. The O(N) model in the large-N limit

This subsection is based on Ref. [3]. The plots of Ref. [3] and the underlying numerical
data were produced by myself and numerically cross-checked by A. Koenigstein.

The plots, numerical results, and accompanying symbolic computations are included in
the digital auxiliary file [366]. The single thread wall time on an Intel© Core™ i7-8750H
processor for the numeric results of Ref. [3] is around three days.
The introduction of this subsection follows Sec. I of Ref. [3].

After focusing on the limiting case of O(N = 1) models in the previous subsection 3.2.4, we
now want to focus on the other extreme: large and even infinite N . In this subsection we set
out to study zero-dimensional O(N) models at large and infinite N with three computational
approaches: direct computation of the underlying integrals (3.56), 1

N
-expansion, and the FRG

in our newly developed CFD perspective.

The 1
N
-expansion is an established “non-perturbative” approach to compute observables in

QFT. Depending on the context, author, and explicit implementation it is also referred to as
large-N expansion, the ’t Hooft limit, or just mean-field approximation. This method relies
on a systematic expansion of characteristic quantities of the theory, like expectation values,
correlation functions, and observables, in powers of 1

N
. Here, N is the number of different

kinds of interacting degrees of freedom of the theory (particle or field types, spins, molecules,
color charges etc.), which is considered to be large in this context (1 ≪ N). Hence, extensive
quantities need to be rescaled by appropriate powers of N in advance to allow for a meaningful
1
N
-expansion. Although involving an expansion in a small, dimensionless parameter, namely 1

N
,

the method is considered to be non-perturbative, because it is also applicable to systems with
strong interactions, where an expansion in couplings is doomed to fail. In consequence, various
great successes and precise predictions trace back to this method, see, e.g., Refs. [163, 169, 247,
627–632] or the review [633] – in some cases maintaining predictive power even for systems,
where N is surprisingly small. However, the large-N expansion and especially retaining only
its zeroth-order contribution – the infinite-N limit – also comes with some limitations and
certain fundamental characteristics of a (quantum) field theoretical or statistical models, like
the convexity of the 1

N
-rescaled effective action may be altered.

In order to elucidate some of these aspects and interesting consequences, we study the
large-N expansion and the infinite-N limit within two totally different setups. On the one
hand, we perform a conventional saddle-point expansion of the functional integral (partition
function) by assuming that N is large (or even infinite) [163, 634]. On the other hand, we
study the same problem within the FRG approach, also considering large and/or (in)finite N ,
see, e.g., Refs. [162, 243, 247, 566, 611, 632, 635–639] for material regarding the infinite-N
limit in the FRG framework.
To keep our discussion as simple as possible we limit our discussion to the sober and exactly

solvable zero-dimensional O(N) model – the gift that keeps on giving. A lot of aspects of the
large-/infinite-N limit have been discussed already within this setup, cf. Refs. [163, 529–534] –
especially for quartic actions (potentials).
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Within this work we use the zero-dimensional O(N) model at large N to highlight the
following aspects:

1. Considering a rather simple – but non-analytic – one-parameter family of classical actions
(potentials) as a new purpose-build test case, we demonstrate that there is a narrow line
between a straightforward applicability of the large-N saddle-point expansion and a total
failure of this method. In our zero-dimensional pedagogical and tailor made example,
this point of failure is easy to detect. However, it may serve as a warning for applications
of the large-N limit and the corresponding saddle-point expansion of the functional
integral in higher-dimensional scenarios, where it is not necessarily easy to judge, if
all requirements for a meaningful 1

N
-expansion are fulfilled. Note that in our large-N

applications of chapters 4 and 5 we use this limit – the mean-field – approximation as
a technical simplification to study fermionic fluctuations. We do not assess or discuss
whether or when such a limit is justified when describing physical systems, since we are
not interested in describing physical systems in this limit.

2. Switching perspectives to the FRG formalism, we make use of the fact that the corre-
sponding FRG flow equation is exact for the zero-dimensional O(N) model. Being “exact”
in this context means, that truncating the flow equation is not necessary (for finite and
infinite N), since the involved PDEs, can be solved numerically, with our at this point
firmly established methods of subsections 3.2.2 and 3.2.3. Within our fluid-dynamic
framework, we show that the FRG flow in the infinite-N limit is purely advection driven,
while diffusive contributions enter only at finite N . This also generalizes to higher
space-time dimensions.
As a direct consequence, depending on the classical action (potential) – UV IC, the
infinite-N FRG flows tend to form or sustain non-analyticities of different kinds, e.g.,
shock and rarefaction waves or jump discontinuities, cf. subsections 2.2.3 and 2.2.6 and
Refs. [162, 247].
We find that for our toy model with non-analytic classical action, shock and rarefaction
waves are present and the problem encountered at the UV initial scale involves two Rie-
mann problems. But we do not stop by turning the calculation of ordinaryN -dimensional
integrals with spherical symmetry for expectation values into a fluid-dynamical problem.
We also demonstrate that the (non-)applicability of the large-N saddle-point expansion
translates into the (collision) freezing of interacting shock waves in these fluid-dynamic
FRG flows.

3. Still working in the FRG fluid-dynamic framework, we also demonstrate that the inclusion
of the radial σ-mode, thus switching from infinite-N to arbitrary but finite N , totally
changes the physics of the system. In the infinite-N limit, we explicitly show by numerical
calculations that convexity and smoothness are not necessarily realized for 1

N
-rescaled

IR potentials, which effectively violates the CMWH theorem [550–552], i.e., a special
zero-dimensional version of the theorem [1, 536]. Interestingly, as soon as N is finite,
the highly non-linear diffusive contribution of the radial σ-mode unavoidably restores
convexity and smoothness of the 1

N
-rescaled IR potentials. Hence, the large-N expansion
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with finiteN and the infinite-N limit (only retaining the zeroth-order of the 1
N
-expansion)

may lead to two fundamentally different results. We will encounter a qualitatively similar
situation in subsubsection 4.5.3.3 for the GNY model.

4. As a last aspect, we also highlight further direct consequences of our fluid-dynamic
interpretation of FRG flows. Utilizing the method of characteristics [317, 323, 367]
and the Rankine-Hugoniot condition [368, 369], see also subsubsection 2.2.3.1, we
directly track the locations of shock and rarefaction waves in the field space derivative of
the scale-dependent potential during the RG flows. Applications of the aforementioned
methods in (F)RG studies can be found in, e.g., Refs. [247, 565, 566, 635, 640].
Interacting shock and rarefaction waves, but also diffusive processes – as discussed at
length in the previous subsection 3.2.4 – go hand in hand with the rise of entropy in
fluid-dynamic problems, cf. subsection 2.2.3. Using the CFD framework and the TVNI
property, we are able to provide an entropy function in the N →∞ limit.

At this point, we remark that our research in this subsection was partially influenced by the
excellent publication [247] on the infinite-N limit of the FRG flow equations of the O(N)model
in three Euclidean space-time dimensions and the interpretation of these FRG flows as advection
equations, which can develop different kinds of discontinuities [247]. The application of the
method of characteristics in the large-N limit of FRG flow equation predates the explicit identi-
fication and detailed understanding of infinite-N FRG flow equations as advection equations
and goes back (to the best of our knowledge) to Refs. [566, 635]. The authors of Ref. [247],
E. Grossi and N. Wink, were involved in the first two parts of our series of publications [1, 2]
and also worked together with F. Ihssen and J. M. Pawlowski on calculations in the QM model
in the infinite-N limit [162, 210, 283], which was also based on a fluid dynamic interpretation
of FRG flows.
In addition, we thank the referee of Ref. [3] for pointing out that there are recent works,

which also deal with the shortcomings of the standard infinite-N limit in the context of FRG
and link this to non-analytic structures in the fixed-point potential [243, 639]. An interesting
future prospect is certainly to draw a connection between our works in the fluid-dynamic
framework and these results.

The remainder of this subsection is structured as follows. In subsubsection 3.2.5.1 we discuss
the zero-dimensional O(N)model at large N and in the paragraph An instructive toy model we
introduce the test case/action we will consider thereafter. In subsubsection 3.2.5.2 we discuss
the 1

N
-saddle-point-expansion for this test case and in subsubsection 3.2.5.3 we discuss the

corresponding FRG flows.
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3.2.5.1. The zero-dimensional O(N) model at large N

This subsubsection follows Sec. II of Ref. [3].

Free theory
For later reference, we recapitulate some results for the massive non-interacting free theory.
The action of the corresponding O(N) model is given by

Ufree(ρ) ≡ m2ρ , (3.142)

with the positive non-zero “mass” m. The expectation values (3.56) can be computed analyti-
cally in terms of Gamma functions resulting in

⟨︁
(ϕ⃗ 2)0

⟩︁
=
⟨︁
1
⟩︁
= 1 , (3.143)

⟨︁
(ϕ⃗ 2)n

⟩︁
=
N + 2n− 2

m2

⟨︁
(ϕ⃗ 2)n−1

⟩︁
, for n > 1 . (3.144)

For the 1PI correlation functions this result implies

Γ(2) = m2 , and ∀n ̸= 2 Γ(n) = 0 , (3.145)

where we used the short-hand notation Γ(n) ≡ Γ
(n)
φi...φi from section 3.2. In their interpretation

as interaction vertices these results for Γ(n) are rather intuitive for a “massive non-interacting”
theory, which has only a non-vanishing 1PI two-point function, because the underlying proba-
bility distribution is Gaussian.

Reformulation for large-N
For computations at large N and in the limit N →∞ the rescaling

ρ ↦→ y = 1
N
ρ , U(ρ) ↦→ V (y) = 1

N
U(ρ) , (3.146)

has proven particularly useful, see, e.g., Refs. [163, 247], because both y and V (y) are of
O(N0). The expression (3.56) for ⟨(ϕ⃗ 2)n⟩ reads

⟨(ϕ⃗ 2)n⟩ = 2nNn
∫︁∞
0

dy y
(N−2)

2 yn e−NV (y)

∫︁∞
0

dy y
(N−2)

2 e−NV (ρ)
=

2nNn
∫︁∞
0

dy yn−1 e−N [V (y)− 1
2 ln(y)]

∫︁∞
0

dy y−1 e−N [V (y)− 1
2 ln(y)]

, (3.147)

in terms of y and V (y) and we note ⟨(ϕ⃗ 2)n⟩ = O(Nn). For certain potentials V (y) the involved
integrals

INn [V ] ≡
∫︂ ∞

0

dy yn−1 e−N [V (y)− 1
2 ln(y)] (3.148)

can be solved in terms of known functions, see, e.g., Refs. [1, 163] as well as subsubsec-
tion 3.2.5.1, and/or they can be computed in the limit N →∞ by means of a saddle-point
expansion, see subsubsection 3.2.5.2 and App. D.1.3.2.
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Figure 3.30.: The potential V (y) from Eq. (3.149) in the upper, left panel (a) and its
y-derivative v(y) = ∂yV (y) from Eq. (3.150) in the lower, left panel (b) as well as the
corresponding potential V (x) from Eq. (3.177) in the upper, right panel (c) and its x-derivative
v(x) = ∂xV (x) from Eq. (3.178) in the lower, right panel (d) for selected values of the
parameter a – with ac ≃ 0.018951 from Eq. (3.151). From Figs. 1 and 3 of Ref. [3].

An instructive toy model
In this paragraph we present an explicitO(N)model, respectively its 1

N
-rescaled self-interaction

potential V (y), which turns out to be a rather instructive toy model when studied at large and
infinite N . We consider a family of piecewise linear potentials

V (y) =

⎧
⎪⎪⎨
⎪⎪⎩

y for 0 ≤ y ≤ 2 ,

−a y + 2 (a+ 1) for 2 < y ≤ 8 ,

y − 6 (a+ 1) for y > 8 ,

(3.149)

with a parameter a ≥ 0. The first derivative of V (y) presents as a simple piecewise constant
function in the 1

N
-rescaled invariant y

v(y) = ∂yV (y) =

⎧
⎪⎪⎨
⎪⎪⎩

1 for 0 ≤ y ≤ 2 ,

−a for 2 < y ≤ 8 ,

1 for y > 8 ,

(3.150)

which is very similar to the IC (32) studied in Ref. [247]. The potential (3.149) and its
y-derivative (3.150) are plotted in figures 3.30a and 3.30b for illustrative purposes. In fig-
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ures 3.30c and 3.30d, we also plot the potential and its derivative as functions of the rescaled
field x, where 1

2
x2 ≡ y ≡ 1

2N
ϕ⃗ 2, which might be more familiar after the preceding discussions

of section 3.2. We recognize such an initial value problem with piecewise constant ICs involving
a set of contact discontinuities as a series of Riemann problem in the context of conservation
equations and CFD, cf. section 2.2. When considering Eq. (3.150) as the IC of a conservation
equation in y, cf. subsubsection 3.2.5.4, we are faced with two Riemann problems (one at y = 2
and one at y = 8) at the UV initial scale.
This model has several interesting properties:

1. The expectation values of Eq. (3.147) can be evaluated in terms of known functions. In
the limit N →∞ the 1PI correlation functions can be computed analytically for all a ≥ 0.
We will discover within this subsection that there are two distinct parameter regimes,
which are particularly interesting when studying this problem within the saddle-point
and FRG frameworks.

2. For certain parameters a, which are smaller than some critical value ac, the 1PI correlation
functions Γ(n) – the underlying expectation values (3.147) – can be computed by means
of a saddle-point expansion. For a ≥ ac the saddle-point expansion is not applicable. This
is discussed in detail in the following subsubsection 3.2.5.2.

3. The model under consideration presents initially as two Riemann problems in the FRG
(fluid-dynamic) framework. The distinct parameter regimes, 0 ≤ a ≤ ac and a > ac,
present with qualitatively different FRG flows. The interpretation involving Riemann
problems, its numerical solution, and its consequences are discussed in detail in subsub-
section 3.2.5.3. At this point we also want to remind the reader of the methodological
introduction of subsections 2.2.3 and 2.2.6 which will be of great relevance for this
subsection – the discussion of FRG flows at large and infinite N .

For now, we turn to the computation of the correlation functions of the model under con-
sideration. Solutions in terms of known functions for the necessary integrals (3.148) for the
potential (3.149) are presented in App. D.1.3.1. In the limit N →∞ the direct computations
of App. D.1.3.1 revealed two distinct regimes in parameter space separated by

ac =
1
4
− 1

3
ln(2) ≃ 0.018951 . (3.151)

For the infinite-N limit of the expectation values (3.56) we find,

lim
N→∞

1
Nn

⟨︁
(ϕ⃗ 2)n

⟩︁
=

{︄
1 , for 0 ≤ a ≤ ac ,
16n , for a > ac ,

(3.152)

For the corresponding 1PI correlation functions this implies in the limit N →∞

Γ(2) =

{︄
1 , for 0 ≤ a ≤ ac ,
1
16
, for a > ac ,

(3.153)
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Figure 3.31.: Plot of f(y) = V (y)− 1
2 ln(y)

for the potential (3.149) for selected val-
ues of the parameter a – with ac ≃ 0.018951
from Eq. (3.151). The local minima of f(y)
are located at y0 = 1

2 and y0,2 = 8, where y0
(y0,2) presents as the unique global minimum
for 0 ≤ a < ac (a > ac). At a = ac both
minima coincide and present both as global
minima of f(y). The non-analyticity of f(y)
in y0,2 = 8 inherited from the piecewise def-
inition of V (y) is clearly visible in the plot.
From Fig. 2 of Ref. [3].

Table 3.6.: Reference values for selected N
and a ofΓ(2) = N(⟨ϕ⃗ 2⟩)−1 computedwith the
expressions (D.14) and (D.15) as well as their
large N asymptotics. The exact analytical re-
sults are in some cases rather lengthy and
therefore we present in those cases only six
decimal digits for readability. From Tab. I of
Ref. [3].

N a = 0 a = ac a = 2 ac

2 0.356907 0.327332 0.299162

32 0.962306 0.475285 0.087158

∞ 1 1 0.0625

as well as for all a ≥ 0

∀n ̸= 2 Γ(n) = 0 . (3.154)

Thus, in the limit N →∞ and in terms of 1PI vertices the current model under consideration
presents as a massive non-interacting theory for all a ≥ 0, cf. Eq. (3.145). The situation
for 0 ≤ a < ac and the corresponding “mass” as well as the origin of the critical value
ac can be understood intuitively in the context of the saddle-point expansion discussed in
subsubsection 3.2.5.2. The situations for a = ac and a > ac are more involved and not
accessible with a saddle-point expansion. However, a study in the FRG framework is possible
and rather instructive as we will demonstrate in subsubsection 3.2.5.3. In terms of correlation
functions the theory undergoes a first-order phase transition at ac when varying the external
parameter a, cf. Sec. III.C of Ref. [247] and references therein.
For finite N higher-order n-point functions do not vanish and the theory is of “interactive

type”, but in the scope of this subsection we nevertheless mainly focus on Γ(2) – especially
when it comes to numerical computations. In table 3.6 we summarize several (exact) reference
values for Γ(2) for later use.

3.2.5.2. The saddle-point expansion at large N

This subsubsection follows Sec. III of Ref. [3].
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In this subsubsection we will analyze the instructive toy model of subsubsection 3.2.5.1 within
a saddle-point approximation for large N . In App. D.1.3.2 we discuss the large-N saddle-point
expansion of integrals like (3.148) concluding in the asymptotic series (D.24) for ⟨(ϕ⃗ 2)n⟩. To
apply the series (D.24) to the interaction potential (3.149) of the model under consideration, we
first have to compute the global minimum y0 of the exponents of the integrands in Eq. (3.147),

f(y) = V (y)− 1
2
ln(y) , (3.155)

and check for analyticity of f(y) and g(y) = yn−1 around y0. The function f(y) for the model
under consideration is plotted in figure 3.31 for different parameters a.
There is always a minimum on the first section (0 ≤ y ≤ 2) of the piecewise linear potential

0
!
= ∂yf(y)

⃓⃓
y=y0

=

[︃
∂yV (y)− 1

2y

]︃

y=y0

= 1− 1

2y0
. (3.156)

It follows that

y0 =
1
2
, V (y0) =

1
2
, f(y0) =

1
2

[︁
1− ln

(︁
1
2

)︁]︁
, (3.157)

and for the second and third derivatives, we find

∂2yV (y)
⃓⃓
y=y0

= 0 , ∂2yf(y)
⃓⃓
y=y0

= 2 , (3.158)

∂3yV (y)
⃓⃓
y=y0

= 0 , ∂3yf(y)
⃓⃓
y=y0

= −8 . (3.159)

We note that V (y) and therefore also f(y) are smooth, thus C∞, and analytic around y0 = 1
2
.

Also g(y) = yn−1 is analytic and C∞ around y0 = 1
2
. We can therefore use the asymptotic series

(D.24) to compute the non-vanishing expectation values,

1
N
⟨ϕ⃗ 2⟩ =1 , (3.160a)

1
N2 ⟨(ϕ⃗ 2)2⟩ =1 + 2

N
, (3.160b)

1
N3 ⟨(ϕ⃗ 2)3⟩ =1 + 6

N
+ 8

N2 , (3.160c)
...

and the corresponding 1PI correlation functions

Γ(2) = 1 , ∀n ̸= 2 Γ(n) = 0 . (3.161)

Both are exact results (without taking any limits) and we find that 1
Nn ⟨(ϕ⃗ 2)n⟩ = 1 +O(N−1),

while the maximal correction to 1 is always of O(N−(n−1)). Considering the corresponding
Γ(2n) we recover the 1PI correlation functions of a free massive theory, see Eq. (3.145) with
m2 = 1, which – as an exact and N -independent result – also holds trivially in leading order
in the limit N →∞. This is a rather unsurprising result since the 1

N
-rescaled potential V (y)

192 3.2. The O(N) model – strongly interacting scalars



manifests as a linear potential with slope 1 – corresponding to a non-interacting theory with
m2 = 1 – for 0 ≤ y ≤ 2.

The previous large-N saddle-point approximation is however limited to potentials (3.149)
with 0 ≤ a < ac. For a ≥ ac the function f(y) = V (y)− 1

2
ln(y) develops a global minimum at

y0,2 = 8, which becomes the unique global minimum for a > ac while at a = ac both y0 and
y0,2 are global minima, see figure 3.31. For a ≥ ac the saddle-point expansion breaks down
since at a = ac the function f(y) has no unique minimum and for a > ac the function f(y)
is non-analytic in its global minimum (the “expansion point”) y0,2 = 8. The value of ac and
the related qualitatively distinct scenarios were established in subsubsection 3.2.5.1. In the
corresponding exact computations of App. D.1.3.1 the threshold ac = 1

4
− 1

3
ln(2) ≃ 0.018951

appears when considering the limit N →∞ of rather complicated symbolic expressions. On
the other hand, within the framework of the saddle-point expansion the value of ac can be
derived and understood in a very instructive way as the breakdown point of the saddle-point
expansion,

f
(︁
y0 =

1
2

)︁ !
= f(y0,2 = 8) (3.162a)

1
2
− 1

2
ln
(︁
1
2

)︁
=8− 6 (ac + 1)− 1

2
ln(8) , (3.162b)

which is solved again by

ac =
1
4
− 1

3
ln(2) ≃ 0.018951 . (3.163)

For a < ac the model presents as a free massive theory in its saddle-point and the analytical
results in the limit N →∞ of subsubsection 3.2.5.1 make perfect sense.
In this subsection we are not interested in a quantitative review of the large-N saddle-point

expansion beyond the limit N →∞. For such a discussion in the context of zero-dimensional
O(N) models we refer the interested reader to the excellent and pedagogical Ref. [163].
At and beyond the critical value ac – at and beyond the corresponding first-order phase

transition – the saddle-point expansion is no longer applicable and alternative methods are
required for the computation of correlation functions. Apart from the direct symbolic com-
putations of subsubsection 3.2.5.1 the FRG has proven to be a potent tool for computations
in zero dimensions at finite N , cf. subsections 3.2.3 and 3.2.4, and as we will demonstrate
in subsubsection 3.2.5.3 it loses none of its potency in the infinite-N limit when employing
proper numerical schemes, like the KT and KNP scheme.

3.2.5.3. FRG flow equations at large and infinite N

This subsubsection follows Sec. IV and App. E of Ref. [3].

We proceed with our FRG studies at large and infinite N using our established CFD methods
and concepts.
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The 1
N

-rescaled FRG flow equation
To facilitate the studies at large N and in the limit N → ∞, we have to rescale the flow
Eqs. (3.73) and (3.74) according to subsubsection 3.2.5.1.
To this end, we make use of the rescalings (3.146) of extensive quantities,

σ ↦→ x = 1√
N
σ , U(t, σ) ↦→ V (t, x) = 1

N
U(t, σ) . (3.164)

and additionally introduce v(t, x) ≡ ∂xV (t, x),

u(t, σ) ↦→ v(t, x) = 1√
N
u(t, σ) . (3.165)

On the level of the FRG flow equation, this results in a slight modification of the prefactors of
the fluxes (3.80) and (3.81). The rescaled flow equation in x follows as

∂tv(t, x) =
d

dx

[︃
N − 1

N

1
2
∂tr(t)

r(t) + 1
x
v(t, x)

+
1

N

1
2
∂tr(t)

r(t) + ∂xv(t, x)

]︃
, (3.166)

which makes it easily possible to take the infinite-N limit and to compare FRG flows for infinite
and finite values of N . Already at this point we find that increasing N makes the problem more
and more advection driven. In the limit N →∞ the diffusion flux vanishes completely and we
are left over with the infinite-N flow equation,

∂tv(t, x) =
d

dx

[︃ 1
2
∂tr(t)

r(t) + 1
x
v(t, x)

]︃
. (3.167)

This PDE presents as an advective hyperbolic conservation law, cf. subsection 2.2.3, and is very
similar to its higher-dimensional counterpart [247, 566, 635].
Of course, we can also formulate the FRG flow equation (3.166) as a fluid-dynamic problem

in the 1
N
-rescaled invariant y = 1

2
x2,

∂tv(t, y) =
d

dy

[︃
N − 1

N

1
2
∂tr(t)

r(t) + v(t, y)
+

1

N

1
2
∂tr(t)

r(t) + v(t, y) + 2y ∂yv(t, y)

]︃
, (3.168)

as is done in Refs. [162, 247]. Overall the structure of the equation keeps its conservative form
in terms of an advection-diffusion equation66.
The main difference is that the advective contribution lost its unpleasant position-dependence,

which is now found in the second (formerly purely diffusive) contribution. The diffusive term
has changed drastically and can no longer be exclusively interpreted as a non-linear diffusion
flux, cf. the related discussion in subsection 2.2.4.
In subsubsections 3.2.2.3 and 3.2.2.4 we argued at length, that, due to several reasons,

we currently believe that a formulation in x instead of y is favorable as soon as we allow for
diffusive contributions to the FRG flow – hence at finite N . In subsubsection 3.2.2.4 we discuss
66This generalizes in x and y to arbitrary dimensions and also to the fixed-point form of the FRG flow equation [1, 2,
4]. Regarding fixed points in the infinite-N limit for the O(N) model in the FRG context we refer the interested
reader to Refs. [244, 637] for a detailed discussion of the situation in d = 3 dimensions.
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the difficulties arising when attempting to formulate the inevitable spatial boundary condition
at y = 0, when using the (rescaled) invariant y. An oversimplified argument is that there is no
physical meaning of negative values of y, which makes a correct formulation of a boundary
condition, that correctly captures possible influx due to diffusion, extremely challenging – if
not impossible. In a formulation in x, this is not a problem at all, since negative x formally
exist and antisymmetric boundary conditions can be used for u(t, x) at x = 0. Additionally, it is
understandable that a sober split of advection and diffusion fluxes is no longer possible in y, by
simply executing the total y-derivative on the r.h.s. of Eq. (3.168) for the last term. Hence, as
long as N is finite, one has to live with the challenging x-dependence in the advection flux of
the PDE (3.166), which can however be handled by suitable discretizations, as demonstrated
at length in subsections 3.2.2 and 3.2.3.
However, in the infinite-N limit the second term of the PDE (3.168) vanishes and the

problem again reduces to a hyperbolic non-linear advection equation – without any explicit
position-dependencies,

∂tv(t, y) =
d

dy

[︃ 1
2
∂tr(t)

r(t) + v(t, y)

]︃
≡ − d

dy
G[t, v] = −(∂vG[t, v])∂yv(t, y) . (3.169)

Because the newly defined advection flux ∂vG[t, v] has manifestly negative sign – cf. Eq. (3.170),
there can not be any influx at y = 0 into the spatial domain y ∈ [0,∞) of the problem resolving
the conceptual issues with the y = 0 boundary and allowing practical computations in the
rescaled invariant y. Note that the computations of Refs. [162, 210, 247] use this zero influx
argument for their computations with discontinuous Galerkin methods in the invariant ϱ/y.

The KNP scheme can be used to solve the flow equation in the invariant y in the infinite
N -limit. For the problematic left boundary we consider the primitive form in Eq. (3.169) using

∂G

∂v
= −1

2

Λe−t

(Λe−t + v)2
. (3.170)

For all y ∈ R+ and t ∈ R+ ∂vG[t, v] < 0, holds for all well-defined initial conditions, which
realize r(t) + v(t, y) > 0 at t = 0.
Eq. (3.170) is manifest negative and finite for all y ∈ R+ and t ∈ R+ for all valid initial

conditions/UV initial scales realizing Λe−t+v > 0 in the UV. The latter inequality is guaranteed
dynamically at t > 0 by the flow equation as long as it is realized in the UV at the initial scale
t = 0, cf. Eq. (3.100) and the related discussion of RG consistency subsubsection 3.2.3.1. This
however implies in Eq. (2.101b) a vanishing right-sided local speed a+

j+ 1
2
= 0. Physically this

means that the fluid is only propagated to the left which simplifies the expression (2.109) for
the numerical flux of the KNP scheme immensely

HKNP
j+ 1

2

⃓⃓
a+
j+1

2

=0
= G[t, v+

j+ 1
2

] (3.171)

resulting in the numerical upwind advection flux for the KNP scheme

∂tv̄j =
1
∆y

(︁
G[t, v+

j− 1
2

]−G[t, v+
j+ 1

2

]
)︁
. (3.172)
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It is this reduction to an upwind scheme in regions with directed local speeds equivalent to
monotonic advection fluxes with either a+

j+ 1
2
= 0 or a−

j+ 1
2
= 0, which has led the authors of

Ref. [168] to call their scheme a central-upwind scheme. Note that Eq. (3.172) does no
longer include the left-sided local speed a−

j+ 1
2
and only contains advection terms evaluated

at v+
j± 1

2
involving the reconstructions from the cells to the right, cf. Eq. (2.102b) and (2.99).

As a result the numerical flux of Eq. (3.172) is based on a right-leaning four-point stencil
{v̄j−1, v̄j , v̄j+1, v̄j+2}, where v̄j−1 is required together with v̄j and v̄j+1 to compute (∂yv)j . For
the numerical flux of the first volume cell j = 0 which we choose to span over y− 1

2
= 0 to

y 1
2
= ∆y we require {v̄−1, v̄0, v̄1, v̄2}, where only v̄−1 is a ghost cell. Since it only appears in the

flux limiting procedure, see (2.99), it is arguably not a ghost point related to physical boundary
conditions but rather a computational one necessary to ensure formal second-order accuracy
of the MUSCL reconstruction while preventing spurious oscillations around discontinuities –
TVD time steps.
Two naive strategies for a practical choice of v̄−1 come to mind. The first one would be

switching from a central reconstruction to a right-sided reconstruction. Constructing a right-
sided TVD reconstruction or searching for one in literature seemed unappealing for our limited
discussion of this subsection. The second option is much simpler and related to the fact, that the
KNP scheme with the position-independent advection flux G of Eq. (3.169) has a meaningful
first-order reduction. Switching from a piecewise linear to a piecewise constant reconstruction
in Eq. (2.102):

v−
j+ 1

2

= v̄j +O(∆y) , (3.173a)

v+
j+ 1

2

= v̄j+1 +O(∆y) , (3.173b)

results in a first-order accurate (in ∆y) semi-discrete upwind scheme [168, 330, 331]

∂tv̄j =
1
∆y

(︁
G[t, v̄j ]−G[t, v̄j+1]

)︁
, (3.174)

valid for monotone advection fluxes with ∂uG < 0. The first-order accurate KNP scheme is in
this context equivalent to the so-called Godunov upwind scheme [330, 331]. Application of
such first-order upwind-schemes within the FRG framework are discussed and presented in
Refs. [398, 569]. To avoid the ghost cell v̄−1 altogether we always use the first-order accurate
KNP scheme (3.174) for the explicit results discussed in the following. Selected results with
the second-order accurate KNP scheme can be found in App. F of Ref. [3].
We conclude this paragraph with a brief remark on the KT scheme. Using the conservative,

equal sided estimate a+
j+ 1

2
= −a−

j+ 1
2
= aj+ 1

2
for the right- and left-sided local speeds a±

j+ 1
2
, the

numerical advection flux (2.109) of the KNP scheme reduces to the advection flux the KT
scheme

HKT
j+ 1

2
≡
G
[︁
t, v+

j+ 1
2

]︁
+G

[︁
t, v−

j+ 1
2

]︁

2
− aj+ 1

2

v+
j+ 1

2

− v−
j+ 1

2

2
, (3.175)

with

aj+ 1
2
≡ max

{︃⃓⃓
⃓⃓∂G
∂v

[︂
t, v+

j+ 1
2

]︂⃓⃓
⃓⃓,
⃓⃓
⃓⃓∂G
∂v

[︂
t, v−

j+ 1
2

]︂⃓⃓
⃓⃓
}︃
. (3.176)
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In the first volume cell v̄−1 appears outside of the flux limiting procedure and is also present in
the first-order accurate reduction of the KT scheme (3.175) using Eqs. (3.173a) and (3.173b)
since the latter is based on a central scheme based on the stencil {v̄j−1, v̄j , v̄j+1}. Lacking the
more refined estimates for the right- and left-sided local speeds a±

j+ 1
2
of the KNP scheme it is

not obvious how to deal with the ghost cell at v̄−1. This is, why we chose the KNP scheme for
our numerical computations in y. The advection flux of the KNP scheme is also suited for the
position depended advection flux F of the flow equation (3.167) in x. We have performed
some heuristic tests with the KNP scheme and the flow equation (3.167) in x and we come to
the preliminary conclusion that it is in terms of accuracy and performance on par with the KT
scheme in this scenario. Nevertheless, further detailed tests might be of interest for upcoming
challenges in the context of FRG problems in d > 0 with more sophisticated truncations.

TheUV initial condition for the flows in v(y) and v(x) are visualized in figures 3.30b and 3.30d.
For the FRG flow equations (3.166) and (3.167) the initial conditions (3.149) and (3.150)
have to be transformed to the variable x. For the one parameter family of UV potentials, this
reads

V (x) =

⎧
⎪⎪⎨
⎪⎪⎩

1
2
x2 for |x| ≤ 2 ,

−a 1
2
x2 + 2 (a+ 1) for 2 < |x| ≤ 4 ,

1
2
x2 − 6 (a+ 1) for |x| > 4 .

(3.177)

Hence, our UV potential is actually a piecewise quadratic function of x = 1√
N
σ, while its

x-derivative is given by the piecewise linear function

v(x) = ∂xV (x) =

⎧
⎪⎪⎨
⎪⎪⎩

x for |x| ≤ 2 ,

−a x for 2 < |x| ≤ 4 ,

x for |x| > 4 .

(3.178)

3.2.5.4. FRG flows at infinite N – shocks and rarefaction waves in advective flows

This subsubsection follows Sec. IV.E and App. E of Ref. [3].

Next, we turn to the results for the FRG flows for Eq. (3.178) in the limit N → ∞. Before
presenting the numerical results, which are obtained by a numerical solution of the PDE (3.167)
with the KT/KNP scheme [167, 168], we use the method of characteristics to discuss analytic
results for solutions of the purely hyperbolic conservation law (3.167). This helps to better
understand the underlying processes in the fluid-dynamical framework and the results of our
numeric calculations.
In the FRG framework the method of characteristics was used by N. Tetradis and D. Litim

in Refs. [566, 635] to obtain analytical solutions to FRG flow equations of the O(N) model
in dimensions d > 0 in the infinite-N limit. K.-I. Aoki, S.-I. Kumamoto, D. Sato, and M.
Yamada also used the method of characteristics and the Rankine-Hugoniot condition in their
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Figure 3.32.: Selected characteristic curves (t, x(t)), see Eq. (D.30), for a = 0 and Λ = 1010

in blue, green and yellow, shock position ξs(t), see Eq. (D.41), as solid black line, and the
tips of the rarefaction fan ξ∓r (t), see Eq. (3.179) and (3.181) originating at (t = 0, ξ∓r (0) = 4)
as dashed black lines. The changing color on the characteristic curves indicates the change
of v(t, x(t)) along them, see Eq. (D.31), where blue corresponds to v(t, x(t)) = 0 and yellow
corresponds to v(t, x(t)) = 4.5. The shock wave and the rarefaction fan collide at (t, x) ≈
(25.718, 1.115) (the time is marked with the red-dashed line) rendering the expressions ξ±r (t)
and ξs(t) as well as the characteristics that intersect with the shock and rarefaction wave
invalid for later times. From Fig. 4 of Ref. [3].

studies [565, 640] of weak solutions and dynamical symmetry breaking. Unfortunately (or
luckily for my collaborators and me and our works [1, 2, 4, 7, 162, 247]), their otherwise
remarkable work lacks the fluid-dynamical interpretation and with it an instructive way to
understand characteristic curves in this context. The latter was put forward in the context of
the FRG for the first time in Ref. [247].

Characteristic curves
The characteristic curves of the fluid are visualized in figure 3.32. These are defined as those
(parametric) curves (t, x(t)) in the domain [0,∞) × (−∞,+∞) of the problem, where the
ratio v(t,x(t))

x(t)
stays constant67. In App. D.1.3.3 we derive these implicit analytic solutions for

the PDE (3.167) with initial condition (3.178) in great detail and the explicit solutions for
x(t) and v(t, x(t)) are given by Eq. (D.30) and (D.31). If needed, x(t) and v(t, x(t)) can be
used to reconstruct the full solution of the PDE, v(t, x), for t ∈ [0,∞) and x ∈ (−∞,+∞),
which usually needs to be done numerically since the involved expressions can usually not
67If formulated in terms of the 1

N -rescaled invariant y, these are the (parametric) curves (t, y(t)) on [0,∞)× [0,∞),
where v(t, y(t)) is constant, see, e.g., Ref. [247]. Both formulations can be transformed into each other by
simple coordinate transformations, see App. D.1.3.3.
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be inverted analytically. Though, this method only works as long as the solution v(t, x) is not
multi-valued, which means that it is valid until any characteristics intersect at some point
x in position space (here field space). Once the analytical solution becomes multi-valued,
the physical solution exists only in a weak sense, see, e.g., Refs. [315, 317–319, 328] or
section 2.2 for details. Intersecting characteristics correspond to the formation of a shock wave,
since several fluid elements are approaching the same point in the spatial domain at different
velocities [315, 317–319, 328]. The movement of this shock wave, its (parametric) curve
(t, ξs(t)), is described by the Rankine-Hugoniot shock condition [368, 369]. A derivation is
presented in App. D.1.3.4. On the other hand, there might also be positions in field space that
“separate” the characteristic curves into distinct regimes and that are the origin of infinitely
many characteristic curves. These are so-called rarefaction waves, which each cause a rarefaction
fan of infinitely many characteristic curves. As their name suggests, they are associated to
points x (in field space), where fluid elements are moving apart from each other and cause a
rarefaction of the fluid (in physical fluids corresponding to a reduction of density as a direct
opposite of a compression wave), cf. subsection 2.2.6. A rarefaction fan can be described by
the spatially closest characteristic curves (t, ξ∓r (t)) that are moving to the left (−) and right
(+) apart from each other.
Now we are equipped with the vocabulary to efficiently interpret and analyze figure 3.32.

W.l.o.g. we choose the initial condition (3.178) with a = 0 – the plots and the discussion for
different choices of a are qualitatively very similar. Furthermore, we only restrict our plot of
the characteristics and parts of the discussion to positive x. For negative x the dynamics is
perfectly mirrored about the t axis in figure 3.32.
The initial condition v(t = 0, x) = v(x) corresponds to the initial values of v(t, x(t)) on the

characteristic curves at t = 0 along the x-axis. The color-coding indicates the value of v(t, x(t))
according to Eq. (D.31) along the curves (t, x(t)), where blue corresponds to v(t, x(t)) = 0 and
yellow corresponds to v(t, x(t)) = 4.5.
Firstly and in general, we observe that all characteristic curves only move towards smaller |x|,

while v(t, x(t)) only decreases (increases) along each characteristic curve at positive (negative)
x. This implies that the fluid v(t, x) only moves towards x = 0. This can already be seen
from the manifestly (positive) negative sign of the local fluid velocity ∂vF [t, x, v] for (negative)
positive x, cf. Eq. (3.80) and Eq. (3.169). Hence, we find that right-moving waves of the fluid
from negative x and left-moving waves of the fluid from positive x annihilate in x = 0, which
is also manifestly encoded in the antisymmetry v(t, x) = −v(t,−x).
Secondly we observe that the fluid elements, which start off in the interval 2 < |x| < 4,

move faster towards x = 0 than the fluid elements, that start at |x| < 2. As soon as the former
try to overtake the latter, the solution gets multi-valued and a shock forms. Actually, this
happens already at t = 0, but we can also see how more and more characteristics “join” and
“accelerate” the shock wave. The movement of the shock wave,(t, ξs(t)) is described analytically
by Eq. (D.41) and depicted as a black solid line in figure 3.32.
Thirdly, there is another important phenomenon going on around |x| = 4. We find that fluid

elements at |x| < 4 are traveling fast towards x = 0, while the characteristic curves that start
at |x| > 4 move slower towards x = 0 and that only for a very short period of (RG) time, before
the characteristic curve closest to |x| = 4 freezes at |x| ≃

√
15 ≃ 3.873. This effectively causes
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a rarefaction wave in v(t, x), which is described analytically by

ξ−r (t) = ±
√︃
16− 1

Λ e−t − a +
1

Λ− a , (3.179)

v−r (t) = − a ξ−r (t) , (3.180)

ξ+r (t) = ±
√︃

16− 1

Λ e−t + 1
+

1

Λ + 1
, (3.181)

v+r (t) = ξ+r (t) , (3.182)

where v∓r (t) are the values of of the fluid at the edges of the rarefaction fan. The rarefaction
fan is marked in figure 3.32 by black-dashed lines that are analytically described by Eq. (3.179)
and (3.181). The rarefaction wave also forms already at t = 0.

Interestingly, there is a (RG) time and field space position (t, x) ≃ (25.718, 1.115), where
the rarefaction fan catches up the shock wave (indicated by the red-dashed horizontal line).
Up to this point, our analytical solutions for the shock ξs(t) and the left tip of the rarefaction
wave ξ−r (t) are valid and we could in principle even integrate backwards in (RG) time and
reconstruct the UV potential. However, when the shock and the rarefaction wave meet and
interact, some highly non-linear dynamics is going on and we can no longer trust our analytical
solutions. At later (RG) times, we have to rely on adequate numerical solutions.
Interestingly, it is exactly this complicated non-analytic dynamics, which makes the FRG flow

manifestly irreversible and produces some abstract form of entropy, see subsubsection 3.2.5.4
and especially figure 3.35 as well as Refs. [1, 2], because information about the UV initial
potential is unavoidably lost. Actually, this is the dynamics that fundamentally encodes the
irreversibility of RG transformations on the level of the PDE, cf. also Refs. [235, 575, 576] for
similar discussions.
However, most remarkably in the context of the infinite-N limit: We find numerically that

it is the complicated interplay between the shock and rarefaction waves (at positive and
negative x), which either causes the shock waves to freeze at some non-zero |x| or to crash
into each other and annihilate in x = 0, depending on the choice of a – smaller, equal, or
greater than ac. This means that the (non-)applicability of the large-N saddle-point expansion of
subsubsection 3.2.5.2, which was caused by a (non-)analytic “expansion point” – the underlying
first-order phase transition, translates into the freezing or the annihilation of shock waves in
field space in FRG flow equations. For further details on the relation between first-order phase
transitions and the interaction/freezing of shock and rarefaction waves we refer the interested
reader to Sec. III.C of Ref. [247]. However, to proceed with this discussion and to understand
this interrelation, we have to leave the sure ground of analytical solutions and turn to high
precision numerical computations of this challenging dynamics.

Numerical results at infinite N in x
Next, we apply the KT scheme [167] from numerical fluid dynamics to the problem posed by
the PDE (3.167) with initial condition (3.178). The corresponding (numerical) parameters
are either incorporated in the figures or their corresponding captions. Additionally, we discuss

200 3.2. The O(N) model – strongly interacting scalars



0

1

2

3

4

5

0

1

2

3

4

0 1 2 3 4 5

0

1

2

3

4
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(b) FRG flow of the derivative of the rescaled effective
potential v(t, y). We choose a logarithmic scale for
the y-axis for better visibility around y = 0 which is
particularly useful for the visualization of the freezing
shocks in the IR for a = 0 and a = ac.

Figure 3.33.: FRG flows for the zero-dimensional O(N) model in x on the left (a) and in
the 1

N -rescaled invariant y ≡ 1
2 x

2 on the right (b) in the limit N → ∞ for the IC (3.178)
with a = 0, a = ac, and a = 2ac in the upper, middle, and lower panel respectively. Blue
curves represent the UV initial conditions at t = 0, red curves correspond to the IR potentials
at t = 60 and the violet curves are at intermediate, selected RG times t chosen around
the respective collision of the shock ξs(t) with the left tip of the rarefaction fan ξ−r (t). The
squares mark the shock (ξs(t), v(t, ξs(t)±)), while the disks mark the tips of the rarefaction fan
(ξ±r (t), v(t, ξ±r (t))). The left tip of the rarefaction fan and the shock are only marked up to the
RG time when they meet since the underlying analysis based on the method of characteristics
and Rankine-Hugoniot condition breaks down after their collision. From Figs. 5 and 10 of
Ref. [3].
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the choice of some of our (numeric) parameters and some aspects of the implementation in
App. F of Ref. [3].
We obtain the following numeric results for the FRG flows of v(t, x): In figure 3.33a we plot

the FRG flow of v(t, x) from the UV initial condition (3.178) (see figure 3.30c) at t = 0 to the
IR at t→∞. Of course, for practical (numerical) calculations one has to stop the integration at
some finite t in the IR. Here we chose t = 60, which corresponds to an IR cutoff rIR ≈ 10−18,
which is 18 orders of magnitude below model scales (which are considered to be of order
one in 1

N
-rescaled quantities). Our UV scale Λ was chosen to be ten orders of magnitude

above model scales to guarantee RG consistency [1, 257] to a sufficient level. In total, we are
integrating over 28 orders of magnitude in the regulator scale and corresponding tests for
UV-scale-independence are presented in App. F of Ref. [3].
Figure 3.33a shows FRG flows for v(t, x) for different values of a. In the upper panel a = 0

and therefore clearly below ac, such that this FRG flow corresponds to the situation, where
the 1

N
-expansion is applicable. The middle panel shows the FRG flow exactly at the threshold

a = ac, where the exponent (3.155) has two degenerate minima (3.162), with one being
a non-analytic point, preventing a saddle-point expansion. The bottom panel in figure 3.33
corresponds to a situation, where a > ac and the saddle-point expansion again fails as it is not
applicable to this initial condition.
As already mentioned at the end of the previous subsubsection, we find that the different

situations within the saddle-point expansion are realized by freezing or colliding and anni-
hilating shock waves, caused by the interplay with the rarefaction fan. This is clearly seen
in figure 3.33a, where the position ξs(t) of the shock wave is marked with squares and the
positions ξ−r (t) and ξ+r (t) of the tips of the rarefaction fan are marked with disks – up to the
RG time, where they meet and interact rendering the analytic expressions invalid.
Explicitly, we find that for a = 0 (upper panel figure 3.33a) the opposing shock waves

ultimately freeze at |x| = |ξs(t = 60)| ≈ 0.496. We obtained this value using computations
at different numerical spatial resolutions ∆x by varying the number of volume cells n while
keeping the computational extent fixed to x ∈ [0, 5]. The explicit value of |x| ≈ 0.496 has been
extracted from the fit

|ξs(t→∞)| ≈ |ξs(t = 60)| = 0.496 + 0.788∆x0.869 . (3.183)

obtained from 41 data points with n varying between 64 and 2048. The non-vanishing value
of |ξs(t→∞)| ≈ 0.496 has the effect that the x-derivatives of v(t, x) at x = 0 never change
during the FRG flow and ∂xv(t, x)

⃓⃓
x=0

= 1 for all times t, while all higher x-derivatives vanish.
Yet, these derivatives are in direct correspondence to the 1PI correlation functions Γ(n), which
are extracted from v(t, x) in the IR at the physical point x = 0 by differentiation w.r.t. x,

N
n−1
2 Γ(n+1) = ∂nxv(t, x)

⃓⃓
t→∞,x=0

. (3.184)

Hence, although having highly non-linear dynamics involving the interaction shocks and rar-
efaction waves for |x|≳0.496, the function v(t, x) never changed its shape for −0.496≲x≲0.496
and always resembles a massive free QFT in this part of field space. Metaphorically speaking
and to stay in the fluid-dynamic picture: It is as if the physical point x = 0 in field space is
“sitting in the eye of a cyclone”.
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Increasing a towards the critical threshold ac one observes that the shock waves freeze closer
and closer to x = 0. Considering the metaphor of the previous paragraph, as a approaches ac
from below the radius of the eye of the cyclone vanishes. At a = ac (middle panel figure 3.33a)
one still observes a freezing of the shock wave in the IR at |x| ≈ 0.095, which however is an
artifact of the finite spatial resolution ∆x of the numerical scheme. This effect can be removed
by successively decreasing the FV computational cells ∆x. We find that for a = ac the shock
freezes at x = 0, because the shock position in the IR scales as follows with∆x for this situation,

|ξs(t→∞)| ≈ |ξs(t = 60)| = 0.983∆x0.413 , (3.185)

again obtained from a fit to 41 data points with the number of volume cells n varying between
64 and 2048 while keeping xmax fixed.
However, as soon as a > ac (middle panel figure 3.33a) the interplay of the rarefaction

waves and the shock waves no longer hinders the shock waves to collide and annihilate at
x = 0. In turn, this has two direct consequences: Firstly, in the hydrodynamic language,
the additional interaction of two discontinuities (the annihilation of the shock waves) again
unavoidably leads to a loss of information and an abstract production of entropy on the level of
the PDE. This is discussed in more detail in the next paragraph. Secondly, in the quantum field
theoretical picture the annihilation of the shock waves caused a change in the slope of v(t, x)
at the physical point x = 0. This directly affects the 1PI correlation functions, which are again
extracted in the IR via Eq. (3.184). Indeed, we find that our numeric calculations reproduce
the exact results (3.153) and (3.154).
In summary and again metaphorically speaking, the slight change in the slope a of the

initial condition (3.178) at t = 0 on the interval x ∈ [2, 4] causes a tremendous change of
the non-linear dynamics of the fluid v(t, x), also at other positions in field space and later RG
times, which can be seen as a “butterfly effect” in a QFT. The small deviations in the initial
condition in the UV – in the metaphor the minor perturbations caused by a distant butterfly
flapping its wings – have tremendous impact on the solution in the IR at the physical point –
whether or not the formed cyclone has an eye or not. This further supports the notion of a
first-order phase transition at ac and the corresponding mechanism discussed in Ref. [247].

For a better/alternative visualization of this dynamics, we present two supplemental 3D-plots
for the FRG flows of the upper and bottom panel of figure 3.33a. The curves from figure 3.33a
are slices of constant intermediate times of the 3D-plots in figure 3.34. The color coding of all
figures is identical. The attentive reader might recognize figure 3.34a (without its axes) as the
cover picture of this thesis.
In addition to this rather qualitative discussion, we also provide explicit numerical errors,

which can be used to judge to quality of the KT scheme [167] and our implementation in the
context of FRG flows. In table 3.7 we list the relative errors of the 1PI two-point function Γ(2)

extracted from the numerical FRG flows of v(t, x) using Eq. (D.6) and the exact results (3.153)
with (3.154) as reference values.
We close our discussion on the analysis of the infinite-N FRG flows by noting that, in

contrast to the 1
N
-saddle point expansion or perturbative methods, the FRG in its fluid-dynamic

framework is applicable and also produces reliable results in a highly non-perturbative regime.
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(a) FRG flow of v(t, x) for a = 0 as 3D-plot corre-
sponding to the flow displayed in the upper panel
of figure 3.33

(b) FRG flow of v(t, x) for a = 2ac as 3D-plot
corresponding to the flow displayed in the lower
panel of figure 3.33

Figure 3.34.: FRG flows of v(t, x) for a = 0 on the left (a) and a = 2ac on the right (b). The left
and right tips (ξ∓r (t), t, v(t, ξ∓r (t))) of the rarefaction fan are plotted as yellow lines while the
the shock (ξs(t), t, v(t, ξs(t))±) is marked with green lines. The left tip of the rarefaction fan
and the shock are only marked up to (t, x) ≈ (25.718, 1.115) and (t, x) ≈ (25.270, 1.146) in (a)
and (b) respectively, where they meet and the analysis based on the method of characteristics
and Rankine-Hugoniot condition breaks down. From Figs. 6 and 7 of Ref. [3].

Furthermore, the FRG-fluid-dynamic framework, naturally copes with different kinds of non-
analyticities, while all kind of “expansion-type” methods tend to collapse in the vicinity of
relevant non-analytical physics that is only correctly described by fully fledged non-perturbative
setups, cf. subsubsections 3.2.3.2 and 3.2.3.3.

Numerical results at infinite N in y
In figure 3.33b we present numerical results for the FRG flow in the rescaled invariant y using
the flow equation (3.169) with the piecewise constant initial condition of Eq. (3.150) obtained
with the KNP O(∆y1) scheme discussed in the previous paragraph. The flow equation (3.169)
with the piecewise constant initial condition of Eq. (3.150) constitutes two Riemann problems
as outlined in subsubsection 3.2.5.1. The FRG flows in y displayed in figure 3.33b are equivalent
to the ones in x presented in figure 3.33a hence we will not repeat the preceding qualitative
discussion. In the following we will instead focus on certain aspects and problems inherent to
the formulation and solution in the rescaled invariant y.

For small RG times t≲25 the FRG flows present as typical Riemann problems with a moving
shock wave and a rarefaction fan, cf. our discussion of Euler equations in subsection 2.2.6. In
figure 3.33b the evolution for t≲25 is for all a under consideration similar to the dynamics
studied in Fig. 2 (a) of Ref. [247], which originally motivated the chosen initial condition in
this work. Beyond t ≈ 25 the shock wave and the left tip of the rarefaction fan start interacting
leading to a freeze-out of the shock wave for a = 0with v(t = 0, y = 0) = 1 = ∂xv(t = 0, x)

⃓⃓
x=0
.
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For a = 2ac the shock moves out of the computational domain at y = 0 and we recover
v(t = 0, y = 0) = 1

16
= ∂xv(t = 0, x)

⃓⃓
x=0
. So far in complete agreement with the corresponding

results in x of subsubsection 3.2.5.4.
For a = ac we observe the remnant of the shock wave in the computational interval but

the shock is strongly deformed by numerical(!) diffusion/the finite resolution of the com-
putation. The situation at a = ac can be understood quite easily. The presented numerical
computations use n = 1500 volume cells equidistantly distributed in the interval y ∈ [0, 12.5]
resulting in ∆y = 1

120
≃ 8.33 · 10−3. Consequently the first two volume cells are centered

at y0 = 1
240
≃ 4.17 · 10−3 and y1 = 1

80
= 1.25 · 10−2. Those two volume cells are clearly vis-

ible in the middle panel of figure 3.33b and contain the frozen shock for a = ac. From
our computation in x we found with the fit (3.185) that the shock for a = ac approaches
x = 0 with 0.983∆x0.413. For n = 1500 volume cell this amounts to a numerical shock posi-
tion of |x| ≈ 0.095 and consequently y ≈ 4.513 · 10−3, which is for a computation in y with
n = 1500 retaining xmax = 5⇔ ymax = 12.5 approximately at the center of the first volume
cell. Having no volume cell to the right of the shock makes it numerically impossible to resolve
v(t = 0, y = 0) = 1 = ∂xv(t = 0, x)

⃓⃓
x=0
accurately. Using the fit (3.185) we can extrapolate

that having the shock centered in the second or third cell would already require an extensive
amount of volume cells namely n = 3.7 · 105 or n = 6.4 · 106 respectively while maintaining
ymax = 12.5. Computations with 105 and more volume cells overtax our current implementation
and computational capacities, see App. F of Ref. [3] for details. Resolving dynamics at small x
with an equidistant grid of volume cells in y = 1

2
x2 is in general difficult because equidistant

cells in y have a poor resolution around x =
√
2y = 0. A drastic example is the freezing shock

for a = ac at x = 0, where the scaling ∝ ∆x0.413 is already challenging. A situation with a
scaling ∝ ∆xp with p ≥ 1

2
is also conceivable. Such a scenario would be impossible to resolve

with an equidistant grid in the rescaled invariant y = 1
2
x2. To improve or in some cases even

facilitate computations at all around x = 0 in the rescaled invariant y a non-uniform mesh
in y seems necessary. The generalization of the KT and KNP scheme to non-uniform grids is
straightforward in one spatial dimension, see, e.g., Ref. [641], but will not be discussed in this
work.

Entropy and irreversibility at infinite N
We now turn to the discussion of the (numerical) entropy associated with the purely advective
FRG flows in the rescaled invariant y at infiniteN . In subsection 3.2.4 we discussed the concept
of (numerical) entropy of FRG flows and its relation to the inherent irreversibility of (F)RG
flows in detail. We further argued for a connection between the (numerical) entropy of FRG
flows and Zamolodchikov’s [575] or more recent [592, 593] formulations of the C−function.
In subsection 3.2.4 we focused on the limiting case N = 1 of the purely diffusive zero-

dimensional O(1) model. The focus of this paragraph is the opposite limit of N →∞ yielding
purely advective flow equations. While a (numerical) entropy production is almost intuitively
understood for diffusive problems the present situation might seem less obvious for a non-
expert reader. In our introduction of non-linear advection equations in subsubsection 2.2.3.2 we
discussed, that the appearance and/or interaction of discontinuities like shocks and rarefaction
waves can be linked to an increase in numerical entropy. Which in turn signals the irreversibility
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Figure 3.35.: The FRG flow of the C-function,
see Eq. (2.134), for the zero-dimensional
O(N) model in the limit N →∞ for the Rie-
mann problem of Eq. (3.150) with a = 0,
a = ac, and a = 2ac obtained with the KNP
scheme of O(∆y1). We observe plateaus in
the UV and IR. The IR plateaus end for the in-
dividual values of a = 0, a = ac, and a = 2ac
at the RG times when the shock wave and rar-
efaction fan intersect namely at t ≈ 25.718,
25.469, and 25.270 respectively. The second
jump in the curves for a ≥ ac is due to the
collision of the shock waves at x = 0. From
Fig. 11 of Ref. [3].

Table 3.7.: Relative numerical errors for the
1PI two-point function Γ(2), see Eq. (D.6), for
the results plotted in figures 3.33a, 3.36a,
and 3.36b, with corresponding exact refer-
ence values from the last row of table 3.6.
The scaling of these errors with the number
of volume cells can be found in Tabs. V, VIII,
and IX of Ref. [3] for N → ∞, N = 2, and
N = 32 for a = 2 ac. From Tabs. II and III of
Ref. [3].

N a = 0 a = ac a = 2 ac

∞ 8.0 · 10−15 1.2 · 10−14 3.3 · 10−3

2 6.4 · 10−5 5.5 · 10−5 4.5 · 10−5

32 4.2 · 10−3 6.4 · 10−4 8.5 · 10−3

of the underlying flow. Defining or constructing an explicit numerical entropy functional for
general non-linear conservation laws is a difficult task especially when source terms are involved,
cf. Refs. [358–361] and references therein.
When considering the flow equations (3.166) and (3.168) in x or y respectively, we note that

the formulation in x (y) involves a position-dependent advection term (diffusion term). When
executing the x-derivative in Eq. (3.166) we can differentiate between three contributions
in the resulting flow equation in primitive form: a parabolic diffusion term ∝ ∂2xv(t, x) with
a non-linear diffusion coefficient, a hyperbolic advection term ∝ ∂xv(t, x) with a non-linear,
position-dependent advection velocity ∂vF and a non-linear, position-dependent internal source
term ∝ v(t, x) stemming from the product rule. As a consequence of the latter term the r.h.s.
of the flow Eq. (3.166) and hence ∂tv(t, x) is non-vanishing for v(t, x) constant in x. Similarly
the flow Eq. (3.168) in y contains such a non-linear, position-dependent internal source term
∝ v(t, y) arising from the derivative of the explicitly y-dependent second term in Eq. (3.168).
Those internal source terms, explicit x- or y-dependencies before executing the derivatives,
in the flow equations in primitive form make the construction of explicit numerical entropy
functionals at finite N > 1 challenging.
In subsection 3.2.4 we discussed (numerical) entropy functions at length for the purely

diffusive system at N = 1. The TV had been identified as one suitable entropy functional.
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Incidentally in the opposite limit N → ∞ but using the flow Eq. (3.169) in the rescaled
invariant y the TV/arc-length is again a viable entropy functional. This goes back to general
properties of (weak) solutions of purely hyperbolic non-linear advection equations – like our
N → ∞ flow Eq. (3.169). Among other general qualitative statements about monotonicity
and convexity (weak) solutions of hyperbolic non-linear advection equations like Eq. (3.169)
have a decreasing arc length – they are total variation non-increasing (TVNI) as discussed in
subsection 2.2.2. Since solutions of the underlying flowEq. (3.169) are TVNI (∂tTV[v(t, y)] ≤ 0)
the entropy functional C is non-decreasing (∂tC ≥ 0).
Solutions of the flow Eq. (3.166) in x at N > 1 are in general not TVNI. A fact we tested

in numerical experiments with several initial conditions at various N > 1 [1, 2, 365, 366].
The loss of the TVNI property is directly linked to the explicit position-dependencies in the
flow equation manifesting as source terms when executing the x-derivatives of the r.h.s. of
Eq. (3.166). Formal results supporting this can be found in Ref. [356]: non-linear parabolic
differential equations of the type 0 = ∂tv − f(t, z, v, ∂zv, ∂2zv) have TVNI solutions if (among
some other restrictions) the flux f vanishes, i.e., 0 = f(t, z, v, 0, 0) on constant solutions
0 = ∂zv = ∂2zv. The latter is not the case for flow equations in x at N > 1 and in y for finite N
as discussed earlier in this subsection. It is intuitively obvious that source terms can increase the
arc length of a (weak) solution and implications in the context of TVNI schemes are discussed
in, e.g., Refs. [358–361].
For N →∞ solutions in x are still not TVNI but a reformulation in y eliminates the explicit

position-dependence in the advection flux and the resulting source term. The solutions of
the flow Eq. (3.169) in y are TVNI. A fact we tested numerically, see figure 3.35, for the
Riemann problems posed by the initial condition (3.150) with the flow Eq. (3.169) and which
is theoretically well established cf. Refs. [327, 339].

We conclude this subsubsection with a qualitative discussion of the numerical entropy for the
Riemann problems posed by the initial condition (3.150) with the flow Eq. (3.169) for different
a. The numerical entropies associated to the flows presented in figure 3.33b are plotted in
figure 3.35.
The numerical entropy stays constant in the UV up until the point where the shock wave

and rarefaction fan intersect namely at t ≈ 25.718, 25.469, and 25.270 for a = 0, a = ac,
and a = 2ac respectively. Since both shock and rarefaction wave are already present in the
initial condition v(t = 0, y) their simple advection does not increase the numerical entropy
of Eq. (2.134). The flow in the UV is therefore arguable reversible, which can be seen from
the analytic solutions via the method of characteristics, but practical computations involving a
finite resolution ∆y and finite precision during time evolution prevent an accurate reversion
by numerically integrating up in time t.
Between t ≈ 25 and t ≈ 35 we observe an increase in numerical entropy related to the

interaction of the shock and the rarefaction fan. For a ≤ ac the rise in entropy is rather small
related to only marginal changes in arc length/TV during the flow, see upper and middle panel
of figure 3.33b. For a > ac namely a = 2ac we observe a steep rise in entropy at t ≈ 27.275,
which is the RG time at which the shock leaves the computational domain for a = 2ac. Without
the shock the arc length/TV decreases dramatically leading to the observed rise in numerical
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entropy.
In the IR for t≳35 we again observe a plateau in the numerical entropy, related to the

fact, that k(t) for t≳35 is sufficiently below the internal model scales of the problem under
consideration meaning that all relevant fluctuations are already included. The plateaus in the
numerical entropy in the UV and IR are indicators of RG consistency and sufficiently small
numerical IR cutoffs respectively.

3.2.5.5. FRG flows at finite N – diffusion as a game changer

This subsubsection follows Sec. IV.F of Ref. [3].

Next, we turn to the FRG flows of our initial potential (3.149) at finite N . To this end, we use
the fluid-dynamic FRG flow equation (3.166) including advective and diffusive contributions
by the pions and the σ-mode. As explained above, we cannot use Eq. (3.168) in the presence
of diffusion, because the problem of diffusive influx at the (y = 0)-boundary, if formulated
in y, is not settled yet to our satisfaction, cf. again subsubsection 3.2.2.4. For the following
discussions at finite N we hence use Eq. (3.166) in x and the robust KT scheme.
The main scope of this subsubsection is to demonstrate the astonishing role of the radial

σ-mode in terms of highly non-linear and unconventional diffusion in FRG flows of scale-
dependent effective potentials V (t, x) or rather their derivatives v(t, x) = ∂xV (t, x). To this
end, let us again focus solely on the purely diffusive contribution of the FRG flow equation
(3.166) and rewrite it in terms of a non-linear heat equation by executing the σ-derivative on
the r.h.s.,

∂tv(t, x) =
d

dx

[︃
. . .+

1

N

1
2
∂tr(t)

r(t) + ∂xv(t, x)

]︃
= . . .+ α[t, ∂xv] ∂

2
xv(t, x) ,

where we again recovered the manifestly positive diffusion coefficient (note the definition (3.8)
of the regulator r(t) and the rescalings),

α[t, ∂xv] ≡ −
1

N

1
2
∂tr(t)

[r(t) + ∂xv(t, x)]2
, (3.186)

cf. Eq. (3.86) for the unrescaled/original diffusion coefficient. The identification of the sigma
loop as a parabolic, diffusive contribution has severe conceptual implications. The diffusive
contribution to the flow of v(t, x) clearly introduces a dissipative process into the FRG flow and
renders it manifestly irreversible, see again subsection 3.2.4 for further details.
In the context of this work, however, we are mainly interested in the influence of the non-

linear diffusion on the explicit shape of v(t, x) and its drastic consequences for the reliability
of 1

N
-expansions and the infinite-N limit. To this end, we present our numerical solutions of

Eq. (3.166) with initial condition (3.178) (see figure 3.30c) for two choices of N . W.l.o.g. we
choose N = 2 and N = 32 and present respective FRG flows for a = 0, a = ac, and a = 2ac in
figure 3.36. The figures 3.36a and 3.36b are structured analogously to figure 3.33a (for infinite
N). For our numerical computations we used the same UV and IR cutoffs as for the infinite-N
case. Nevertheless, we had to change the size of the computational interval from [0, 5] to [0, 10]
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(a) FRG flow with N = 32 for the IC (3.178) with
a = 0, a = ac, and a = 2ac in the upper, middle,
and lower panel respectively.
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(b) FRG flow with N = 2 for the IC (3.178) with
a = 0, a = ac, and a = 2ac in the upper, middle,
and lower panel respectively.

Figure 3.36.: The FRG flow of the derivative of the rescaled effective potential v(t, x) for the
zero-dimensional O(N) model for N = 32 on the left (a) and N = 2 on the right (b). Blue
curves represent the UV initial conditions at t = 0, red curves correspond to the IR potentials
at t = 60 and the violet curves are at intermediate, selected RG times t. From Figs. 8 and 9 of
Ref. [3].

in order to exclude boundary effects due to the diffusion. Furthermore, it suffices to use
n = 1000 volume cells on this interval, because it is no longer necessary to resolve the sharp
shock fronts at extremely high resolution to obtain small numerical errors. For details on these
two aspects, we refer to our detailed discussion of subsection 3.2.3.
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Qualitatively, we observe the following: Even though N = 32 seems to be rather large68
the FRG flow of the 1

N
-rescaled v(t, x) entirely changes, if one compares corresponding panels

of figures 3.33a and 3.36a directly. Although the underlying shock, stemming from the still
rather strong advective π-modes, dominates the overall shape of v(t, x) in figure 3.36a for all
three choices of a, the diffusive character sets in rather early during the beginning of the FRG
flow and smears out the infinite negative slope of v(t, x) at the shock front. Inspecting the
non-linear diffusion coefficient (3.186) this is expected for all finiteN . Huge negative gradients
∂xv(t, x) lower the difference r(t) + ∂xv(t, x), which in turn drastically increases the diffusion
coefficient leading, in combination with large ∂2xv(t, x), to strong diffusion in regions where
v(t, x) has large negative slopes, e.g., next to the shock front. On the other hand, if ∂xv(t, x)
has large positive slope, as is the case close to the rarefaction fan, the diffusion coefficient is
drastically suppressed, even if ∂2xv(t, x) is large, such that the advection still dominates close
to the rarefaction wave. For large x ≫ 5 both, α[t, ∂xv] and ∂2xv(t, x) tend to zero (as is the
case for 1

x
v(t, x) for the advection). For all other regions in x we find complicated variations of

these conceptual behaviors.
Concerning the freezing or colliding of the shock wave, which was observed for infinite-N in

figure 3.33, we find that remnants of the freezing shocks are still visible in Figs. 3.36a (upper
and middle panel). However, the gradient ∂xv(t, x) no longer changes its sign at the right of
the remnants of the freezing shock waves, such that overall the potential V (t, x) turns convex
in the IR.

Turning to figure 3.36b for the N = 2 scenario, where only one π- and one σ-mode are
included in the calculation, we find that the overall the dynamics is very similar to the N = 32,
but even more dominated by the diffusive contribution to the FRG flow. The freezing shock
waves are no longer visible in the IR for a = 0 and a = ac and the rarefaction wave is totally
washed out. The latter effect is the reason, why the computational interval had to be increased.
Before we turn to the overall interpretation of these findings, we remark that we also

compared our numerical results for the 1PI two-point functions for all three choices of a and
N = 2 and N = 32 against exact results. In table 3.7 we present the corresponding relative
errors which are discussed further in App. F of Ref. [3].

In summary, we find that the radial σ-mode and the corresponding diffusion is a game
changer in a QFT when switching from infinite to finiteN . By directly comparing the infinite-N
and finite-N results of the FRG flows, we observe that for infinite-N the 1

N
-rescaled potential

V (t, x) does not turn convex in the IR and may still involve non-analyticities in terms of cusps.
This is in direct opposition to the zero-dimensional version of the CMWH theorem [550–552],
which states that the zero-dimensional IR potential has to be convex and smooth. On the
other hand, we find that independent of the specific choice of N – as long as N is finite – the
highly non-linear diffusion of the σ-mode restores convexity and smoothness of the IR potential.
Depending on the specific choice of N this may however happen at later times in the FRG
flow, respectively at lower RG scales, thus deeper in the IR. This situation is very similar to the
68Especially in the context of the large-Ncolor/Nflavor discussions in the context of QCD, QCD-inspired models, or
holographic methods, where N is typically between 1 and 6.
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one we encounter in our studies in the GNY model at finite N , see subsubsection 4.5.3.3 for
details. We conclude from these non-perturbative FRG studies, that calculations at infinite-N
and large-N , may lead to totally different results for certain aspects of a QFT. This can by no
means be considered a novel insight – however the FRG CFD aspects in this context are.

3.3. A SU(2) model – strongly interacting Grassmann numbers

This section is based on the draft [7] and related ongoing work. So far the main contribu-
tions to this work have come from Adrian Koenigstein and Jens Braun. The complete set
of flow equations for the field-dependent couplings is original to this thesis.
The automated symbolic computations, full expressions, and the code for diagram

generation and export are included in the digital auxiliary file [642] which relies heavily
on our Mathematica code [299] for flow equations. These symbolic computations,
including the export of diagrams and LATEX expressions, take a few minutes on an Intel©
Core™ i7-8750H processor running multi-threaded on up to six cores.

So far in our studies of theories in zero dimensions we have only considered scalar degrees
of freedom. Fermionic and Fermion-Boson models and theories, like the QM model and GN
model, including Grassmann-valued fields are at the core of our research in chapters 4 and 5.
This is why the wish to study fermions in zero dimensions, i.e., just Grassmann numbers, arose
very early in our research project in zero dimensions.
Early on in our work on the manuscript for Ref. [1], we considered an extension of the

O(N = 3)model by coupling it with four Grassmann numbers – an associated pair of Grassmann
numbers with two flavors. The idea was to construct a simple SU(2)-symmetric model as a
zero-dimensional analog to a Yukawa theory/QM-like model. We will present the construction
of such a theory in subsection 3.3.1. The corresponding FRG flow equations will be discussed
in subsection 3.3.2. The hope is, that such a more involved zero-dimensional theory would
be suited to study more interesting symmetry breaking and restoration patterns than the one
realized in the zero-dimensional O(N) model. In the zero-dimensional O(N) model one can
only study symmetry restoration by specifying an initial condition for the FRG flow which has a
non-trivial minimum and study its evaporation during the FRG flow, see, e.g., subsection 3.2.3.
The Grassmann-numbers of our SU(2) model manifest as a source/sink-term in the flow
equation for the RG-scale-dependent potential, as we will demonstrate in subsection 3.3.2. This
is a feature they share with fermionic contributions in higher dimensions, which also manifest
as source/sink-like contributions in LPA flow equations, cf. subsection 4.2.2. The hope is that
such a source term would allow for a dynamically generated breaking of SU(2) invariance in
form of a precondensation effect, see also subsection 4.5.3. While we still ultimately expect
SU(2) symmetry restoration in the IR in zero-dimensions – due to the limiting case of the
CMWH theorem [550–552], i.e., basic symmetry-properties of the involved integrals – dynamic
symmetry breaking and subsequent restoration during the FRG flow might be possible with a
carefully constructed test cases.

The work on this zero-dimensional SU(2) model is still ongoing and we will only present
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some symbolic results, conceptual ideas and challenges in the following. We have made only
limited progress on this part of our research in zero dimensions from its conception in the early
days of the manuscript for Ref. [1] (in the fall of 2020) until now (fall of 2023) for various
reasons:

• We decided to work and publish our results for the O(N) model as a “first step”. During
our work on the O(N) model in d = 0 it turned out that this scalar theory alone is
incredibly rich and the “first step” turned into a series of three publications [1–3] covered
in around 100 pages in this thesis, with still some open questions left.

• Applications of our results from this series [1–3] to d > 0, cf. chapter 4 and the corre-
sponding preprint [4], took precedence over further work in d = 0.

• The constructed SU(2) model in its non-bosonized, completely field-dependent form
turned out to be diagrammatically rather complex. This complexity also manifests at
the level of the flow equations, which presents an ambivalence. On the one hand, a
conservative formulation (and related robust numerical implementation) of the involved
flow equation has proven challenging and is still a work in progress. But on the other hand,
this challenge in zero dimensions might be able to provide important insight into the
conservative formulation of the FRG flow equation in general. The latter is very relevant
for studies in higher dimensions, e.g., in with the QM model, where a conservative
formulation for the field-dependent Yukawa coupling is also still elusive [162, 210].

We spent a lot of time developing code [299, 642] to derive, manipulate, and visualize diagram-
matic flow equations. We hope to use these tools in the future to gain further insight into the
zero-dimensional SU(2) model, or a simplified version of it. We firmly believe that developing
a better (or, in the best case, complete) understanding of zero-dimensional theories involving
Grassmann numbers within the FRG-CFD framework is a very promising research direction,
with possibly significant implications beyond zero dimensions. A part of the outlook 3.4 for
this chapter will be dedicated to discussing our plans and hopes for this research.

3.3.1. Construction of the SU(2) Grassmann-scalar theory

This subsection is based on Sec. II.A of the draft [7]. The main conceptual work in the
explicit construction of the discussed model, based on symmetry considerations, has been
done by Adrian Koenigstein.

The aim of this subsection is to construct a preferably simple toy model for a consistent QFT
in zero space-time dimensions, that contains bosonic and fermionic degrees of freedom, i.e.,
scalars and Grassmann-numbers. We are interested in a theory, that has more than one
scalar and more than one Grassmann-valued degree of freedom, to generate different types
of contributions to the FRG flow equations. We want a theory with convection-, diffusion-,
and source/sink-like contributions in its FRG flow equations to mimic the situation found in
the LPA/DE of higher-dimensional theories, like the GN model and QM model, discussed in
chapters 4 and 5.
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In addition, the model should allow for the possibility of the breakdown/restoration of a
continuous symmetry and the formation of a condensate on the level of the EAA Γt[χ]. Such a
dynamic symmetry breaking could be induced by attractive Grassmann-valued interactions
during the FRG flow from t = 0 to t→∞. The bosonic scalar degrees of freedom are however
expected to restore the full symmetry and vaporize the condensate for the full quantum effective
theory Γ[χ] in the deep infrared at t→∞, due to a limiting case of the CMWH theorem [550–
552], cf. App. B of Ref. [1]. To allow for all these phenomena and to use them as testing tools,
the action S of the theory, to be constructed, has to be invariant under transformations of a
continuous symmetry-group. To have a non-trivial���XXXfield theory, we include (self-)interaction
terms in the action. To enable interactions between scalar and Grassmann-valued degrees
of freedom, we include a Yukawa-like coupling. This inclusion also allows for the possibility
of condensate formation and symmetry-breaking in Γt[χ] during the RG-flow. All fermion
self-interactions beyond a specific order must vanish due to the limited amount of distinct
Grassmann numbers.

Grassmann numbers – the fermions in d = 0
We consider two anticommuting Grassmann numbers θ = (θ1, θ2) and two associated anticom-
muting Grassmann numbers θ̄ = (θ̄1, θ̄2). These tuples shall transform under the fundamental
representation of a global SU(N = 2) symmetry group,

θ ↦→ θ′ = U θ , θ̄ ↦→ θ̄′ = θ̄ U † , (3.187)

where

U = e+iωata , U † = e−iωata , (3.188)

with a = 1, 2, 3, the generators ta of the group SU(2) in fundamental representation forming
the su(2)-algebra

[︁
ta, tb

]︁
= i εabctc , (3.189)

cf. App. B.3.1 for further details and explicit expressions. Using these Grassmann numbers, we
can construct all contributions formed by θ and θ̄ to the action S, which are invariant under
SU(2) symmetry. From the transformation laws (3.187) we directly read off that there can
not be any SU(2)-invariant terms involving only odd powers fermion flavors. Furthermore, we
find that there can only be a single term of fourth-order in fermion fields ∼ θ̄1 θ̄2 θ1 θ2, because
there are simply just four distinct Grassmann numbers available. All higher-order terms vanish.
Conventionally, we write the fourth-order term as

1

2
g
(︁
θ̄ 1

2
12 θ

)︁2
=

1

8
g (θ̄ θ)2 =

1

4
g θ̄1 θ

1 θ̄2 θ
2 , (3.190)

with a four-Grassmann coupling constant g.
It remains to study the quadratic order terms: All possible terms are of the following form,

θ̄ M θ , (3.191)
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whereM is a 2× 2 complex matrix. If this term is supposed to be invariant under the SU(2)
symmetry transformations (3.187), assuming that M does not transform itself under these
symmetry transformations, thenM has to commutate with all fundamental generators (B.17).
This implies thatM must be proportional to the only Casimir-operator of SU(2), which is in
turn proportional to the identity matrix:

M = 1
2
m12 (3.192)

with the coupling constant m, which we will typically refer to as “mass function“ even though
there is no notion of physical mass in d = 0. Of course there is also the option that M does
not transform trivially under SU(2), which we will discuss in the next-to-next paragraph after
discussing scalars first.

Scalars – the bosons in d = 0
We consider three scalars which are supposed to transform under the adjoint representation
of SU(2), thus forming a SU(2)-triplet. We consider the components (ϕa) = (ϕ1, ϕ2, ϕ3) of a
vector ϕ = t̃a ϕa, that transforms according to

ϕa ↦→ ϕ′
a = Uab ϕb , (3.193)

where

Uab ≡ (exp(iωct̃
c))ab , (3.194)

with a = 1, 2, 3 and ωa being the same group parameters as in Eq. (3.188). The generators
of SU(2) in the adjoint representation t̃c, cf. Eq. (B.25), are given by the structure constant,
(t̃a)bc = −iεabc, which also form a basis of the Lie-algebra (3.189). However, due to the double
cover of SU(2)→ SO(3), the adjoint representation maps elements of SU(2) to the real vector
representation of SO(3). Thus Eq. (3.193) can also be written as the transformation of the
components ϕa of an Euclidean vector ϕ under SO(3)-rotations

ϕa ↦→ ϕ′
a = Oab ϕb , (3.195)

with

O = eiωaLa ∈ SO(3) , (3.196)

where (Lb)ac = −iεabc are the generators of three-dimensional rotations that coincide with t̃c.
From this, we can start to construct all scalar contributions to the action S, which are invariant

under SU(2) transformations, or the corresponding SO(3) rotations respectively. Naturally, all
terms that are functions of the SO(3) invariant

ρ ≡ 1
2
ϕaϕ

a (3.197)

must be included in the action of the theory. This implies that for the purely scalar part of the
action S, the only term that contributes and can be included in S, is the effective self-interaction
potential U(ρ), which we are familiar with from section 3.2.
It remains to study all SU(2)-invariant mixed interaction terms.
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Grassmann-scalar interaction – the Yukawa coupling in d = 0
To construct all possible SU(2)-invariant Grassmann-scalar interaction terms, we come back to
the crucial observation, that all terms that are functions of ρ are invariant under the SO(3)
symmetry transformations of the model. This implies that the first step is, to promote the two
couplings m and g to field-dependent couplings m(ρ) and g(ρ), which maximally generalizes
both terms, while keeping their symmetry untouched.
In the last step, it is sufficient to go back to the quadratic fermion interaction (3.191). This

time, however, we allow for a non-trivial transformation behavior ofM under SU(2),

θ̄ M θ ↦→ θ̄′M ′ θ′ = θ̄ U †M ′ U θ . (3.198)

If we demand that the whole term should be invariant under SU(2) transformations it follows
thatM has to transform as ,

M ↦→M ′ = UM U † . (3.199)

This can of course be fulfilled trivially by a field-dependent mass-termM ∼ m(ρ) θ̄ 1
2
12 θ, which

we already included in the action S. Additionally, Eq. (3.199) is exactly the transformation
law that defines the adjoint representation. We can therefore include another SU(2)-invariant
term in the action S that is quadratic in the fermion flavors,

ih(ρ) θ̄ T (f)
a ϕa θ , (3.200)

where h(ρ) is a field-dependent Yukawa-coupling. The complex factor i is introduced for later
convenience.

In total, the most general action of the zero-dimensional SU(2) model reads

S[ϕ⃗, θ, θ̄] =U(ρ) + θ̄
(︁m(ρ)

2
12 + ih(ρ) ta ϕa

)︁
θ + g(ρ)

2

(︁
θ̄ 1

2
12 θ

)︁2
. (3.201)

At this point, we remark, that in addition to the SU(2) symmetry, the model exhibits a com-
pletely independent U(1) symmetry, which manifests itself as pure phase-transformations of
the fermion-fields, while the bosonic degrees of freedom stay unchanged,

θ̄ ↦→ θ̄′ = θ̄ e+iω , θ ↦→ θ′ = e−iω θ , ϕa ↦→ ϕ′
a = ϕa . (3.202)

This is the zero-dimensional analog to the conservation of baryon number, cf. subsection 2.3.2.
Regarding the action (3.202) two issues remain to be discussed: Firstly, we have to discuss

the symmetry breaking/restoration pattern, which can emerge dynamically during the FRG
flow in Γ̄t[χ]. Secondly, we have to discuss the restrictions on the functions m(ρ), h(ρ), g(ρ),
and U(ρ) and if they have to be chosen real or complex valued. The action S of our model
should be real-valued, to allow for an interpretation as a probability distribution.
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Symmetry breaking/restoration pattern
The possible symmetry breaking/restoration pattern at finite RG time t comprises: The SU(2)
symmetry can only break down to one of its U(1)subgroups, if we want to end up in a continuous
subgroup with “Goldstone-modes”, cf. subsection 3.2.1, because there are no other continuous
subgroups of SU(2). In the bosonic sector, this SU(2) symmetry breaking corresponds to
a symmetry breaking of SO(3) to one of its continuous SO(2) subgroups, thus it total, the
breaking pattern is given by

U(1)⊗ SU(2)→U(1)⊗ U(1) , (3.203)
SO(3)→SO(2) . (3.204)

On the level of the EAA Γt[χ] this is realized as follows: During the dynamical symmetry
breaking, a condensate σ and two “Goldstone-modes” π1 and π2 are formed. The number of
“Goldstone-modes” is given by the number of broken generators of the symmetry group SO(3),
which is two, if we end up with a SO(2) symmetry, that has only one remaining generator.
Because there is no external parameter that distinguishes a single field space direction in ϕ from
the other directions (because we do not consider explicit symmetry breaking), we can choose
any of the field directions as the direction of the condensate σ. Without loss of generality, we
choose ϕ3 as the direction of condensation and ϕ1 and ϕ2 as the pion directions π1 and π2. This
implies that the remainder SO(2) symmetry corresponds to rotations in the ϕ1-ϕ2-plane in field
space, which leaves the condensate ϕ3 = σ invariant. This is obtained by setting ω1 = ω2 = 0
in Eq. (3.196),

ϕa ↦→ ϕ′
a = Oab ϕb , O = eiω3L3 , (3.205)

and explicitly reads
⎛
⎜⎝
ϕ1

ϕ2

ϕ3

⎞
⎟⎠ ↦→

⎛
⎜⎝
ϕ′
1

ϕ′
2

ϕ′
3

⎞
⎟⎠ =

⎛
⎜⎝

cos(ω3) sin(ω3) 0
− sin(ω3) cos(ω3) 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝
ϕ1

ϕ2

ϕ3

⎞
⎟⎠ .

Thus, we find that the SO(3) → SO(2) symmetry breaking is realized as a non-vanishing
condensate σ in one of the field space directions, which corresponds to a non-trivial minimum
ρ = ρ = 1

2
σ2 > 0 in at least one of the field-dependent couplings m(ρ), g(ρ), h(ρ) or the

effective potential U(ρ).
In the fermionic sector, the condensate σ can be interpreted as a condensation of associated

Grassmann pairs in one of the channels, here, w.l.o.g. it is the channel θ̄ t3 θ, because we
chose ϕ3 as the direction of the condensate σ in the bosonic field space. This implies that the
elements of the remainder U(1)-subgroup of SU(2) must be generated by t3, such that the
condensation channel θ̄ t3 θ stays invariant under the remaining U(1) symmetry. Formally this
is again achieved by setting ω1 = ω2 = 0 in Eq. (3.188), such that the U(1) transformations of
the subgroup are given by

θ ↦→ θ′ = U3 θ , θ̄ ↦→ θ̄′ = θ̄ U †
3 , (3.206)

with

U3 = eiω3t3 , U †
3 = eiω3t3 . (3.207)
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3.3.1.1. The scale-depended generating functional Zt[J̃ ] and the EAA Γt[χ]

In analogy to subsection 2.1.1 and subsection 3.1.1 we may now use the action Eq. (3.201) to
define a scale-dependent generating functional. To this end we want to make use of the FS
formalism of App. B.4 and introduce the fundamental multi-field

χ̃ = (ϕ⃗, θ, θ̄) (3.208)

with the associated mean-field

χ = (φ⃗, ϑ, ϑ̄) , (3.209)

where ⟨ϕ⃗⟩ ≡ φ⃗, ⟨θ⟩ ≡ ϑ, and ⟨θ̄⟩ ≡ ϑ̄. The FRG regulator term, cf. Eqs. (2.7) and (3.7), reads

∆St[χ̃] =
1

2
R;ϕiϕi
t ϕiϕi +

1

2
R

;θα θ̄β
t θ̄βθ

α +
1

2
R;θ̄αθβ

t θβ θ̄α (3.210a)

=
1

2
R;ϕiϕi
t ϕiϕi +R

;θα θ̄β
t θ̄βθ

α (3.210b)

=
1

2
rb(t)ϕiϕi + rf (t)(1)

α
β θ̄αθ

β (3.210c)

and may be used to define the RG-scale-dependent generating functional

Zt[J̃ ] = exp

(︄
−∆St

[︃
δ

δJ̃

]︃)︄
Z[J̃ ] =

∫︂
d[χ̃] exp

(︂
−S[χ̃]−∆St[χ̃] + J̃mχ̃m

)︂
, (3.211)

cf. Eqs. (2.4) and (3.6). Note that for the SU(2) model in d = 0, we truly have a regulator
choice since we can introduce different regulator terms for Grassmann numbers and scalars.
The regulator is no longer just a parametrization of RG time, like it is in the O(N) model of
the previous section 3.2. A natural choice, following Eq. (3.8), seems

rb(t) = Λ e−t , (3.212a)
rf (t) = Λf e

−γf t , (3.212b)

where the scale Λf and scaling factor γf for the fermionic shape function are not necessarily
equal to the ones implied for rb(t). It might be very interesting to study how such shifts in RG
scales between Grassmann numbers and scalars manifest in FRG flows in zero dimensions,
especially since similar shifts have recently gained some attention in the context of the QM
model as LEFT [210].
The measure d[χ̃] in Eq. (3.211) is given by

d[χ̃] ≡ dϕ1 dϕ2 dϕ3 dθ̄1 dθ
1 dθ̄2 dθ

2 , (3.213)

assuming the usual conventions, see, e.g., the textbooks [177, 643, 644], for Berezin integra-
tion [643] over Grassmann-variables, e.g.:
∫︂

dθ1 1 = 0 ,

∫︂
dθ1 θ1 = +1, . . .

∫︂
dθ̄1

∫︂
dθ1

∫︂
dθ̄2

∫︂
dθ2 θ2 θ̄2 θ

1 θ̄1 = +1 . (3.214)
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For the computation of the Berezin integrals, the exponential in Eq. (3.211) is only required
up to at most e−S = 1 + S + 1

2
S2, where the Berezin integral over 1 vanishes, the term S leads

to the contributions from the four-Grassmann number coupling, and the term S2 generates the
non-vanishing contributions stemming from the bilinear terms in S. The resulting expressions
can be expressed using determinants in flavor space or evaluated directly.
We do not want to go into more details, but ultimately all expectation values as moments

of Zt[J̃ ] and Zt[J̃ ] itself can be computed with only the integral over ϕ⃗ or alternatively ρ
remaining for numerical integration or symbolical evaluation for specific actions. One interesting
observation is that at vanishing Grassmann-valued sources the generating functional evaluates
to

Zt[J⃗, 0, 0] =N
∫︂

dϕ⃗ exp
(︁
− U(ρ) + J⃗ · ϕ⃗+ ln

(︁
1
4

[︁
m2(ρ) + 2ρ h2(ρ)− g(ρ)

]︁)︁)︁
, (3.215)

with the Grassmann-valued components completely integrated out. This allows for the definition
of a new effective potential

Ũ(ρ) = U(ρ)− ln
(︁
1
4

[︁
m2(ρ) + 2ρ h2(ρ)− g(ρ)

]︁)︁
, (3.216)

which can be used to derive restrictions on valid initial conditions for U(ρ), m(ρ), h(ρ), and
g(ρ). Furthermore Ũ(ρ) could be used to study observables for the SU(2) model using a
completely bosonic flow. The latter could be very instructive to the study of the role of fermionic
regulators in the zero-dimensional RG-scale-dependent generating functionals. A complete
bosonization in the spirit of Eq. (3.216) shares some resemblance with the treatment of fermions
in lattice (Monte Carlo) simulations and lattice field theory, see, e.g., Refs. [79, 645–647] for an
introduction. In these approaches the fermions/quarks are usually integrated out in the same
fashion and appear as a shift of the action in a ln det(M)-term. It is this term which causes
the aforementioned, notorious QCD-sign-problem as real, non-zero quark chemical potentials
render this determinant term complex. With such complex terms the action can no longer be
considered as a probability distribution rendering the highly developed sampling algorithms
of lattice QCD algorithmically completely ineffective. In FRG and large-N/MF fermions are
usually not integrated out completely, beyond a HS transformation [452, 453] or dynamical
hadronization of fermionic couplings, cf. subsections 2.3.3 and 4.1.1. The reason for this is
that dealing with fermionic fluctuations – especially when considering bilinear actions – is
comparatively simple and bosonic fluctuations are usually the harder problem to tackle.

Using Zt[J̃ ] from Eq. (3.211) we can define the corresponding EAA in the usual manner,
cf. subsection 2.1.2 and subsubsection 3.1.3.2. The most general EAA, including all possible
couplings/terms for the SU(2) model reads

Γt[χ] =
(︁
mt(ϱ)(t0)

α
β + iht(ϱ)(ti)

α
βφi
)︁
ϑ̄αϑ

β + 1
2
gt(ϱ)(t0)

α
β(t0)

δ
γϑ̄αϑ

βϑ̄δϑ
γ + Ut(ϱ) .

(3.217)

To derive explicit flow equation in the flowing subsection 3.3.2 it is necessary to evaluate the
Wetterich Eq. (2.66) and its FS derivatives (2.68) and (2.70) on the QEOM, viz. projecting
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on to χEoM = χ. This means we have to decide on which field configuration χ we want to
compute the EAA, which in zero dimensions is again comparatively simple since we only need
to consider Grassmann numbers and scalars. The issue of possible inhomogeneous phases, cf.
subsection 2.4.1 and section 5.1, with their explicitly position-dependent condensates/mean-
fields χEoM = ∼χ(x⃗) does not arise without the notion of space-time. Expectation values for an
odd number of Grassmann numbers vanish, due to the rules (3.214) of Berezin integration,
when evaluating the expectation values at vanishing sources J̃θ = J̃ θ̄, i.e., on the QEOM. This
means, following the discussion of the symmetry breaking pattern of subsection 3.3.1, that the
only non-vanishing expectation value to consider is ⟨ϕ⃗⟩ = φ⃗ = (0, 0, σ), while ⟨θ⟩ = ϑ = 0 and
⟨θ̄⟩ = ϑ̄ = 0. For the multi-field this entails

χEoM = χ ≡ (φ⃗, ϑ, ϑ̄) = ((0, 0, σ), 0, 0) . (3.218)

3.3.2. System of FRG flow equations

This subsection contains some material from Apps. B–D of the draft [7] but the complete
set of flow equations in the form presented here is original to this work.

In this subsection we will derive flow equations for all four field and RG-scale-dependent
couplings, ut(σ), mt(σ), ht(σ), and gt(σ). In the spirit of our computations for the zero-
dimensional O(N) model of subsection 3.2.2 we will reformulate the resulting flow equations
in σ instead of the invariant ϱ = 1

2
σ, which for a coupling Ct(ϱ) entails

Ct(ϱ) → Ct(σ) , (3.219a)

∂ϱCt(ϱ) ≡ C(1)
t (ϱ) → ∂σCt(σ)

σ
≡ C

(1)
t (σ)

σ
, (3.219b)

∂2ϱCt(ϱ) ≡ C(2)
t (ϱ) → ∂2σCt(σ)

σ2
− ∂σCt(σ)

σ3
≡ C

(2)
t (σ)

σ2
− C

(1)
t (σ)

σ3
. (3.219c)

Furthermore, we use the so-called (fermionic) mass term

Y t(σ) ≡
1

2
σht(ϱ) (3.220)

instead of the Yukawa coupling ht(σ) in expressions.
The expressions for the vertices, propagators, and regulator insertions of App. D.2.1, have

been computed programmatically, using our Mathematica codes [299, 642]. Using them and
the flow equations from subsection 2.1.5, the subsequent derivations reduce to straightforward
computations involving just sums/traces.

Flow equation for the self-interaction potential Ut(σ)
We derive the following flow equation for the self-interaction potential by tracing over the
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Wetterich Eq. (2.66) and evaluating on χ from Eq. (3.218). The result of this computation is

∂tUt(σ) = ∂tΓt = FUt
[︁
σ;U

(1,2)
t (σ),mt(σ), Y t(σ)

]︁
(3.221)

= +
1

2
Gt;ϑαϑβ

∂tR
;ϑβϑ

α

t +
1

2
Gt;ϑαϑβ

∂tR
;ϑβϑα
t +

1

2
Gt;πiπi

∂tR
;πiπi
t +

1

2
Gt;σσ∂tR

;σσ
t

(3.222)

= −1

2
− 1

2
+

1

2
+

1

2
, (3.222′)

= −Gt;ϑαϑβ
∂tR

;ϑαϑβ
t +

1

2
Gt;πiπi

∂tR
;πiπi
t +

1

2
Gt;σσ∂tR

;σσ
t (3.223)

= − +
1

2
+

1

2
, (3.223′)

= − (mt(σ) + 2rf (t))∂trf (t)

Y t(σ)
2 + (rf (t) +mt(σ)/2)2

+ 2
1
2
∂trb(t)

rb(t) + u(t, σ)/σ
+

1
2
∂trb(t)

rb(t) + ∂σu(t, σ)
, (3.224)

where we unified the fermionic contributions using a transposition in the second fermionic
loop of Eq. (3.222) to obtain Eq. (3.223), in which we used

Gt;ϑαϑβ
∂tR

;ϑβϑ
α

t = −Gt;ϑαϑβ
∂tR

;ϑαϑβ
t . (3.225)

The involved regulator insertions and propagators can be found in App. D.2.1. In the following
we will frequently flip Grassmann-valued regulator insertion indices in the spirit of Eq. (3.225)
to have a consistent sign between the expressions for fermionic contributions and their diagrams,
cf. Eqs. (3.223) and (3.223′). In the field space formalism of App. B.4 Grassmann-valued and
ordinary field components are treated on equal footing and necessary sign factors are included
in the propagators, see Eqs. (2.27) and (D.45). That being said however, in final expressions
like Eq. (3.224), Grassmann-valued and scalar contributions manifest with different signs,
which we already want to highlight on the diagrammatic level, cf. Eqs. (3.222′) and (3.223′),
motivating our sign convention for Grassmann-valued regulator insertions in Eqs. (D.44a)
and (D.44b).
The flow Eq. (3.221) is derived in detail in Sec. 2.2 of our auxiliary notebook [642].

The flow equation for the RG-scale-dependent self-interaction potential ∂tUt(σ) can, like in
the O(N) model, cf. subsubsection 3.2.2.3 and Eqs. (3.63), (3.74), and (3.75), be recast in a
conservative form for ∂σUt(σ) ≡ ut(σ) ≡ u(t, σ)

∂tut(σ) = ∂σFUt
[︁
. . .] ≡ Fut

[︁
σ;u

(0,1)
t (σ),mt(σ), Y t(σ)

]︁
(3.226)

by taking a derivative w.r.t. σ. This is possible since the the FRG flux FUt [. . .] from Eq. (3.221)
and explicitly (3.224), does not depend on U t(σ) but only, through the scalar propagators,
on U (1)

t (σ) ≡ ∂σUt(σ) ≡ ut(σ) and U (2)
t (σ) ≡ ∂2σUt(σ) ≡ ∂σut(σ), indicated in Eq. (3.221) by

FUt [. . . , U (1,2)
t (σ), . . .] in a compact notation we will adopt throughout this subsection.
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The contribution to Fut
[︁
. . .] from the Grassmann-valued components enters as a complicated

source term – first term in Eq. (3.224) – which depends on the Grassmann-valued regulator
(insertion), the mass term Y t(σ), and mass function mt(σ). As such the source term carries a
complicate t- and σ-dependence. We mentioned the inclusion of such sources in conservation
laws in our methodological introduction of CFD specifically in subsections 2.2.2 and 2.2.5.
We will discuss fermionic source terms/contributions to LPA-flows in much more detail in
subsection 4.2.2.

Flow equation for the mass term Yt(σ) and mass function mt(σ)
The flow equations for the mass term Yt(σ) and mass function mt(σ) can be obtained from the
flow equation for the Grassmann-valued two-point function

∂tΓ
,ϑ̄αϑ

β

t = − ϑα ϑβ − ϑα ϑβ−

− ϑα ϑβ − ϑα ϑβ−

−
ϑα

ϑβ

− 1

2
ϑα

ϑβ

− 1

2
ϑα

ϑβ

, (3.227)

by means of appropriate contractions:

∂tY t(σ) = i(t3)
β
α∂tΓ

,ϑ̄αϑβ

t = FYt
[︁
σ;u

(0,1)
t (σ),m

(0,1)
t (σ), Y

(0,1,2)
t (σ), gt(σ)

]︁
, (3.228)

∂tmt(σ) = −2(t0)β α∂tΓ,ϑ̄αϑ
β

t = Fm
t

[︁
σ;u

(0,1)
t (σ),m

(0,1,2)
t (σ), Y

(0,1)
t (σ), gt(σ)

]︁
. (3.229)

The flow Eq. (3.227) follows directly from traces over Eq. (2.68). The resulting expressions for
FYt and Fmt are rather lengthy and can be found in Sec. 2.4 of our auxiliary notebook [642].

An important structural difference between the FRG flows FYt [. . .] and Fm
t [. . .] for the

Grassmann-valued couplings and the one for the scalar self-interaction potential FUt [. . .] is, that
FYt [. . .] (Fm

t [. . .]) includes a dependence on Y t(σ) (mt(σ)) primarily – but not exclusively –
due to the Grassmann-valued propagators, cf. App. D.2.1. This makes a naive conservation
reformulation impossible.
The (re)formulation of conservative flow equations for field-dependent couplings like the

Yukawa coupling ht(σ) and the associated mass term Y t(σ) is an open problem [162, 210].
We hope to gain new insights into the issue by further considering and massaging the the flow
equations of zero-dimensional Grassmann-scalar models, like the SU(2) model discussed here.
A rather interesting prospect in this context are alternative projections onto Y (1)

t (σ) and
m

(1)
t (σ). Using the flow for the corresponding three-point function ∂tΓ

,ϑ̄αϑ
βσ

t from Eq. (2.69)
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with appropriate contractions yields:

∂tY
(1)
t (σ) = i(t3)

β
α∂tΓ

,ϑ̄αϑβσ
t =

= F ∂σY
t

[︁
σ;u

(0,1)
t (σ),m

(0,1,2)
t (σ), Y

(0,1,2,3)
t (σ), g

(0,1)
t (σ)

]︁
, (3.230)

∂tm
(1)
t (σ) = −2(t0)β α∂tΓ,ϑ̄αϑ

βσ
t =

= F ∂σm
t

[︁
σ;u

(0,1)
t (σ),m

(0,1,2,3)
t (σ), Y

(0,1,2)
t (σ), g

(0,1)
t (σ)

]︁
. (3.231)

These flow equations might contain additional constraints since

∂σFYt [. . .] ̸= F ∂σY
t [. . .] , (3.232)

∂σFm
t [. . .] ̸= F ∂σm

t [. . .] , (3.233)

which one might be able to use to facilitate the construction of conservative flow equations for
Y

(1)
t (σ) and m(1)

t (σ). This is however still subject of ongoing research and development.

Flow equation for the four-Grassmann coupling gt(σ)
The flow equations for the four-Grassmann coupling gt(σ) can be obtained from the flow
Eq. (2.70) for the corresponding four-point function by means of appropriate contractions:

∂tgt(σ) = −8(t0)γ β(t0)δ αΓ
,ϑδϑ

γϑβϑ
α

t =

= Fgt
[︁
σ;u

(0,1)
t (σ),m

(0,1,2)
t (σ), Y

(0,1,2)
t (σ), g

(0,1,2)
t (σ)

]︁
(3.234)

= −4
ϑα ϑβ

ϑβϑα

+≪1≫ −4
ϑα ϑβ

ϑβϑα

+≪3≫ −4
ϑα ϑβ

ϑβϑα

+≪1≫ −

− 4

ϑα ϑα

ϑβϑβ

+≪1≫ −4
ϑα ϑα

ϑβϑβ

+≪3≫ −4
ϑα ϑα

ϑβϑβ

+≪1≫ −

− 4

ϑα ϑβ

ϑβϑα

+≪1≫ −4
ϑα ϑβ

ϑβϑα

+≪1≫ −4
ϑα ϑβ

ϑβϑα

+≪1≫ −

− 4

ϑα ϑβ

ϑβϑα

+≪1≫ −2
ϑα ϑβ

ϑβϑα

+≪3≫ −2
ϑα ϑβ

ϑβϑα

+≪3≫ −
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− 2

ϑα ϑβ

ϑβϑα

+≪3≫ −2
ϑα ϑβ

ϑβϑα

+≪3≫ −2
ϑα

ϑβ

ϑβ

ϑα

+≪5≫ −

− 2

ϑα
ϑβ

ϑβ

ϑα

+≪5≫ −2 ϑα

ϑβ
ϑα

ϑβ

+≪3≫ −2 ϑα

ϑβ
ϑα

ϑβ

+≪3≫ −

− 4 ϑα

ϑβ
ϑβ

ϑα

+≪2≫ −2
ϑα

ϑβ

ϑβ

ϑα

+≪2≫ −4 ϑα

ϑβ
ϑβ

ϑα

+≪5≫ −

− 4 ϑα

ϑβ
ϑβ

ϑα

+≪2≫ −2
ϑα

ϑβ

ϑβ

ϑα

+≪2≫ − ϑβ

ϑα
ϑβ

ϑα

+≪3≫ −

− ϑβ

ϑα
ϑβ

ϑα

+≪3≫ −4
ϑα ϑβ

ϑβϑα

+≪5≫ −4
ϑα ϑβ

ϑβϑα

+≪5≫ −

− 4

ϑα ϑβ

ϑβϑα

+≪5≫ −4
ϑα ϑβ

ϑβϑα

+≪5≫ +2

ϑα

ϑα ϑβ

ϑβ

+≪2≫ −

− 2

ϑβ

ϑα ϑα

ϑβ

+ 2

ϑα

ϑβ

ϑβ

ϑα+≪3≫ +2

ϑα

ϑβ

ϑβ

ϑα+≪3≫ +

+ 2 ϑα

ϑβ

ϑα
ϑβ

+≪3≫ +2 ϑα

ϑβ

ϑα
ϑβ

+≪3≫ −
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− 2

ϑα

ϑβ ϑβ

ϑα

+≪2≫ −2
ϑα

ϑβ ϑβ

ϑα

+≪2≫ +

ϑα
ϑβ
ϑβ

ϑα

−

− 2

ϑα

ϑβ ϑβ

ϑα

+≪2≫ −2
ϑα

ϑβ ϑβ

ϑα

+≪2≫ +

ϑα
ϑβ
ϑβ

ϑα

, (3.234′)

where the following six classes of diagrams vanish,

0 = −4
ϑα ϑβ

ϑβϑα

+≪1≫= −4
ϑα ϑβ

ϑβϑα

+≪1≫=

= −2
ϑα

ϑβ

ϑβ

ϑα

+≪5≫= −2
ϑα

ϑβ

ϑβ

ϑα

+≪2≫=

= +2

ϑα

ϑβ

ϑβ

ϑα+≪3≫= +2 ϑα

ϑβ

ϑα
ϑβ

+≪3≫ , (3.235)

after tracing in flavor space. Thus from the 41 classes of diagrams in Eq. (3.234), 35 have
non-vanishing contributions. The resulting expression for Fgt is very lengthy and can be found
in Sec. 2.5 of our auxiliary notebook [642].

As for the flow Eqs. (3.228) and (3.229) a conservative formulation for the flow equation
for the field-dependent four-Grassmann coupling ∂tgt(σ) is also not obvious due to the depen-
dence Fgt [. . . , gt(σ), . . .]. An alternative projection onto g(1)t (σ) by means of the flow for the
corresponding five-point function with an appropriate contraction

∂tgt(σ) = −8(t1)γ β(t0)δ αΓ
,ϑδϑ

γϑβϑ
ασ

t =

= Fgt
[︁
σ;u

(0,1)
t (σ),m

(0,1,2,3)
t (σ), Y

(0,1,2,3)
t (σ), g

(0,1,2,3)
t (σ)

]︁
, (3.236)

might again be worthwhile to consider, since

∂σFgt [. . .] ̸= F ∂σg
t [. . .] . (3.237)

We will refrain from further discussions at this point and refer to the following outlook 3.4.
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3.4. Conclusion and outlook

This section has been compiled from Secs. VI, VI, and V of our series [1–3] respectively.
The following discussion also includes conceptual ideas developed in the drafts [7, 8].

The time has come to conclude our discussions of zero-dimensional QFTs, by providing a concise
summary and conclusion of our results so far and by giving an outlook into further research
prospects in zero dimensions. After more than 130 pages of discussions regarding ordinary
and Berezin integrals, we have to report that our research into this vast field is not concluded,
especially with regard to Grassmann numbers in zero dimensions.

The functional renormalization group and (numerical) fluid dynamics
We set out to study zero-dimensional theories, predominantly within the FRG, to firmly develop
an understanding of FRG flow equations in a robust CFD framework, i.e., as flow equations in
the true sense of the word. In a way this work is a rediscovery of well known concepts of the
(F)RG: it is no accident that the evolution equations are called “flow equations”. Motivated
by the work [163] of Jan Keitel and Lorenz Bartosch and triggered by the publication [162]
of Eduardo Grossi and Nicolas Wink, we developed a detailed understanding of FRG flow
equations for zero-dimensional O(N) models as highly non-linear convection equations [1–3].

In section 3.1 we rigorously and didactically developed the FRG framework in the interesting
limiting case of vanishing space-time dimensions for a theory of a single scalar, viz. theO(N = 1)
a simple Z2-symmetric integral at its core. The fact that the theories under consideration are
just theories of scalars, with ordinary integrals as their generating functionals, allows for a
mathematically comparatively simple (but by no means trivial) development of the FRG as an
integral deformation. The governing equation of this deformation – the Wetterich equation in
zero dimensions – manifests directly as a PDE without the need for any truncations. Solving this
equation in the following with the FRG and comparing to exact reference results has provided
us with a vast testing ground.
After generalizing our earlier discussion to a model including N scalars and O(N) symmetry,

we discuss the conservative formulation of the FRG flow equation for scalar theories in zero
dimensions in subsection 3.2.2. The absence of any truncation and the underlying integral
expressions allow for a detailed discussion of initial and boundary conditions also in the
context of RG consistency. The underlying problem – N -dimensional ordinary integrals with
O(N) symmetry, viz. effectively still one-dimensional integrals, manifests on the level of the
FRG flow equation for the underlying integral transformation as a highly non-trivial task.
For the accurate and explicit numerical solution of the involved convection equations, we
employ the well established Kurganov-Tadmor (KT) finite volume (FV) scheme [167, 168]. The
flow equations manifest as non-linear advection-diffusion equations, where we can attribute
advective contributions ∝ (N − 1) to π-modes and diffusive contributions are directly linked
to the radial σ-mode. This formal observation already allows for a refined understanding of
bosonic fluctuations in the FRG framework.
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The test cases I–IV: precision tests and fluid dynamics for the O(N) model in d = 0
The underlying nature of the generating functionals as simple integrals in zero dimensions
allows us to construct an infinite amount of solvable theories in form of integrals. We limit our
discussion in subsection 3.2.3 to four families of test cases, viz. UV initial conditions/classical
actions, chosen to study different aspects of the resulting explicit FRG flows.
We have demonstrated the applicability of the implemented KT scheme for FRG flow equations

by comparing the results against exact solutions for the n-point functions of the O(N) model
as obtained from a direct integration of the partition function. We have performed several
precision tests by quantifying discretization and boundary effects.
We have also discussed the advective and diffusive contributions to the FRG flow on a

qualitative level by varying the number of scalars N in the O(N) model. As expected from the
general discussion of the flow equations, the system becomes advection-dominated for large
N . Pionic modes dominate the flow through their non-linear, hyperbolic advection term in
the flow equation. For small N the diffusive contribution of the radial σ-mode becomes the
dominant (in the case N = 1 the system is purely diffusive) driving force.
The study of discontinuous ICs (test cases I and IV) in this context highlights the capability of

our chosen numerics. This comes as no surprise to the CFD initiated since, FV volume methods
like the KT scheme, are purpose-build as shock-capturing and flexible black-box solvers for large
classes of complicated non-linear convection equations. The proper resolution of non-linear
advective contributions is at the core of the construction of such schemes. This makes FV
methods, like the KT, scheme extremely attractive for FRG studies of highly non-perturbative
phenomena and phase transitions in the FRG framework, cf. Refs. [4, 162, 210, 247, 284, 355,
648] for recent work leveraging the newly developed CFD-perspective for FRG flow equations.
In all test cases, we do not observe a violation of the CMWH theorem [550–552], i.e., we find
that there is no spontaneous symmetry breaking in d = 0 in the IR limit.
We have also performed quantitative studies of the dependence on the value of the IR cutoff

rIR. Moreover, we have discussed RG consistency, which is related to the proper choice of UV
initial scale Λ for a given initial action S. We find that computations in the FRG framework
require sufficiently low IR cutoffs and sufficiently large UV initial scales in order to recover
the exact n-point functions. As demonstrated by our results, the explicit values for kIR and Λ
depend on the initial action under consideration.
Discussing the FRG Taylor (vertex) expansion as a possible truncation scheme for theWetterich

equation in the context of zero-dimensional models, we have observed that the absence of
momentum suppression in d = 0 leads to an extremely strong coupling in field space. In
turn, this greatly limits the applicability of such local expansion schemes. These findings
are supported by and directly related to our novel findings (rediscoveries) regarding the
irreversibility of the (F)RG flows, which we will discuss in the next two paragraphs.

Irreversibility of of FRG flows, (numerical) entropy, and a C-theorem for the O(1) model in
d = 0
In subsection 3.2.4 we mainly focus on the purely diffusive case N = 1, viz. studying zero-
dimensional O(1) models, which are ultimately the Z2-symmetric integrals, we discussed at
the beginning of this chapter.
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Based on the formulation of FRG flows as advection and diffusion driven dissipative flows in
the field space along RG scale, we argued already in subsubsection 3.2.2.3 on general ground
that (F)RG flows “produce" entropy. The RG scale/time defines a rather natural “thermodynamic”
arrow of time in this respect. We concluded that this dissipative character of the (F)RG, which
causes irreversibility of FRG flows, is hard coded in the Wetterich equation. This implies
that the irreversibility of Kadanoff’s block-spin picture is directly encoded in the PDEs (the
field-dependent beta functions), which describe the FRG flows. Hereby, the IR solutions of
FRG flows represent equilibrium solutions of fluid-dynamic equations. The impossibility of
an unambiguous resolution of the microphysics (UV) from the macrophysics (IR) becomes
apparent from this standpoint.
We make these general arguments specific in subsection 3.2.4 by studying zero-dimensional

O(1) models. Using such theories, we explicitly demonstrated that the entropy production and
the irreversibility during the FRG flow from the UV to the IR are not only of abstract manner,
but can be quantified for O(1) models in d = 0. Our discussion is based on the manifestation
of the flow equation as a non-linear diffusion/heat equation, which allows us to leverage CFD
techniques and concepts developed for such parabolic systems. Thereby, we directly related
the field theoretical entropy production to the numerical entropy production from the research
field of PDEs and numerical fluid dynamics, viz. to the CFD notion of total variation (TV) and
its non-increasing property (TVNI).
Making use of our established set of test cases from subsection 3.2.3, we demonstrate how

numerical entropy is produced by diffusion in FRG flows and non-analyticities in the UV initial
conditions. Furthermore, we related certain aspects of the (numeric) entropy production in
FRG flows to the concept of C-/A-theorems in RG theory since both manifestly encode the
irreversible character of FRG flows. For the zero-dimensional O(1) model we argue that the
numerical entropy discussed and derived in this work is in fact a valid C-/A-function. In the
sense of a meaningful zero dimension analog fulfilling all properties of C-/A-function, which
in the zero-dimensional O(1) model is also directly related to absence of admissible global
fixed-point solutions [3, 8].
A generalization of this notion to N > 1 and especially d > 0 still eludes us but is a very

interesting direction for further research. Although certain aspects of our discussion are still
on an abstract level and could not yet be formalized in terms of explicit equations, we believe
that our present work provides a fresh view on certain aspects of (F)RG theory, embellished
with at at least a few new insights.

Particularities of the 1
N

-expansion and advection-dominated FRG flows for theO(N)model
at large N in d = 0
In the last subsection 3.2.5 of this chapter dealing exclusively with scalar zero-dimensional
theories, we study the O(N) model at large and even infinite N . This study of advection
dominated – in the limit N →∞ purely advective – FRG flow completes our studies at variable
(but mainly low) N of subsection 3.2.3 and our discussion of the opposite – purely diffusive
limit – N = 1 of subsection 3.2.4
For our studies at large N we construct a new “test case” in the spirit of subsection 3.2.3,

which we have coined an instructive toy model. By inspecting this non-analytic piece-wise
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quadratic potential, we elucidated on the restricted applicability and validity of the large-N
expansion as well as the infinite-N limit. Thereby we approached the task of calculating
expectation values ⟨(ϕ⃗ 2)n⟩ and the respective 1PI correlation functions Γ(n) with different
methods.
On the one hand, we studied the large-N and infinite-N limit within a saddle-point expansion

of the partition function. On the other hand, we used the FRG and analyzed the same problem
in terms of an exact untruncated FRG flow equation. The capabilities of our KT FV numerics to
handle FRG flows involving different non-analyticities, like shock and rarefaction waves, was
crucial to facilitate this study of advection dominated systems at large N .
We identified two main pitfalls when it comes to the applicability of the large-N expansion or

large-N limit. The first pitfall is the drastically limited applicability of the large-N approximation
within certain methods, like the saddle-point expansion, where analyticity of the expansion
point needs to be guaranteed (which is a priori hardly ensured in higher-dimensional systems).
The second pitfall is, that the infinite-N limit (only retaining the zeroth-order of the large-N
expansion) may alter fundamental aspects of a QFT, like the convexity of (effective) potentials,
while other observables, like specific correlation functions, might not be totally off the exact
results. Both effects as well as the exact results can be adequately resolved within our maturing
fluid-dynamic formulation of the FRG.
Interestingly we additional found, that a formulation purely advective flow equation in the

limit N → ∞, in the invariant ϱ ≡ 1
2
σ2, has the TV as a – in the field of CFD established –

numerical entropy function. In comparison with our results in the opposite (N = 1)-limit, we
have been able to link irreversibility of purely advective FRG flows with the interaction of shock-
and rarefaction waves. This is a well known observation for non-linear advection equations,
which in absence of internal source terms, i.e., explicit position-dependencies, are TVNI and
can become irreversible, see, e.g., our discussion of the BBE (2.130) in subsubsection 2.2.3.2.

Grassmann numbers as fermionic contributions in d = 0
In section 3.3 we presented our very much ongoing research of zero-dimensional theories
involving scalars and pairs of Grassmann numbers. We discuss the explicit construction of
an SU(2)-symmetric zero-dimensional theory including four Grassmann numbers and three
scalars, which we constructed to study dynamic symmetry/breaking and restoration, i.e.,
precondensation – the formation of a non-persistent, non-trivial minimum of the EAA or other
involved couplings in zero dimensions. As a theory including a four-Grassmann-coupling and a
Yukawa-type interaction, the model can in a sense be considered a zero-dimensional analog to
NJL- and QM-type models. In terms of field content, couplings and a treatment within the FRG
the model turned out to be surprisingly complicated. Nevertheless, it is completely solvable by
means of ordinary and Berezin integration.
The derivation of the complete set of field-dependent FRG flow equations is rather lengthy.

This promoted us to improve our existing Mathematica code [299] for computations in field
space by extending its capabilities. The Mathematica code/notebook [642] used for the
SU(2) model has a very diverse set of capabilities (derivation, manipulation, and diagrammatic
visualization – both in Mathematica and LATEX).
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On the level of the flow equation for the scalar-self-interaction potential Ut(σ) can be recast
in conservative form using the same simple derivative used for the O(N)model. A conservative
formulation for the flow equations of the couplings associated to Grassmann numbers is still
work in progress. We encounter the same difficulties, presenting in studies of the QM model
with field-dependent Yukawa coupling ht(σ), cf. Refs. [162, 210]. The goal would be to find a
formulation which allows a treatment of all field-dependent couplings on equal footing, i.e.,
to derive a system of conservation laws like, e.g., the Euler-Equations, cf. subsection 2.2.6.
Grassmann-scalar models, like the SU(2) model considered here could help to gain insight
into the open problem of conservative systems of flow equations in higher truncations beyond
the LPA. Further interesting, and as far as we know never addressed, topics are:

• Regulator choice, i.e., non-unified regulator schemes for scalars and Grassmann numbers,

• The role of the Grassmann-valued regulator as a modification/deformation of the under-
lying theory,

• The aforementioned conservative formulation of systems of flow equations,

• Dynamical hadronization for zero-dimensional theories,

to name a few highly interesting open questions.
In summary we identify Grassmann-scalar models, like our SU(2) model, a vast and very

promising field.

Outlook and future research projects
So far, throughout this chapter, we have commented at several points on the implications and
impact of our zero-dimensional studies for applications in non-vanishing space-time dimensions.
We will reserve a summary of these comments and findings for the general summary and outlook
of this thesis in chapter 6, following our explicit application in chapter 4. In chapter 4 we will
apply the developed frame work of our zero-dimensional studies to the (1+1)-dimensional
Gross-Neveu(-Yukawa) model, focusing on the question of symmetry-breaking and restoration
at a finite number of fermion flavors N .
Regarding further applications in d = 0 we want to formulate two projects, which we are

interested in

• Construction of a (numeric) entropy functional for the zero-dimensional O(N)
model at finite N > 1:
This is closely related to the discussion of fixed-point solutions and zero-dimensional
variants of C-/A-functions.

• Study of a GN-type two-Grassmann-one-scalar model:
The SU(2) model considered so far might be too complicated as a first approach towards
interacting Grassmann numbers in d = 0. It might therefore be a good idea to take a
step back and consider the simplest (yet as we expect still non-trivial) theory involving
just two Grassmann numbers and a single scalar. Such a model might be sufficient to
study a lot of the questions raised in the last paragraph.
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4. Gross-Neveu model in two dimensions

Large parts of this chapter are based on Refs. [4, 5]. The individual sections include more
detailed disclaimers. The involved collaborators are J. Stoll, N. Zorbach, A. Koenigstein,
and S. Rechenberger as well as L. Pannullo and M. Winstel.

Ref. [4] contains results from the Master’s theses [649, 650] of J. Stoll and N. Zorbach
and is also discussed in A. Koenigstein’s dissertation [165]. J. Stoll, N. Zorbach, A.
Koenigstein, and me contributed in equal shares to this work. S. Rechenberger was involved
in early stages of this project before leaving academia and contributed to the final draft.
Preliminary analytical and numerical computations for Ref. [5] were performed by S.

Rechenberger (see, e.g., Ref. [651]) before he left academia but prior to Ref. [5] they were
not published. The authors of Ref. [5] completed the computations and wrote Ref. [5]
as a “pedagogical and detailed supplement, and completion of existing literature”. All
authors contributed in equal shares to this work.
The following introduction of this chapter has been compiled from the introductions

and abstracts of Refs. [4, 5].

After our lengthy discussion of theories in zero space-time dimensions the time has finally come
to discuss “real” QFT, i.e., theories which have a notion of space-time and actually deal with
fluctuating quantum fields rather than scalars and Grassmann numbers. We have chosen to
study the (1+1)-dimensional Gross-Neveu (GN) model [169] for its relative simplicity, at least
when compared with QCD or even the QM model.
In theoretical high-energy physics the GN model has been studied extensively as a toy model

or testing ground to study effects like asymptotic freedom, (chiral) symmetry breaking and
restoration, and inhomogeneous phases. In this chapter we will study the GN model and its
variants with the FRG in LPA within our developed CFD framework for FRG flow equations.
We study the model at finite N , exploring the role of bosonic fluctuations, and at infinite N ,
where bosonic fluctuations are completely suppressed.

In section 4.1 we introduce the GN model and the GNY model as a partially bosonized
variant, which we will study with the FRG. In section 4.2 we adapt the CFD methods, which
we developed in chapter 3, to the LPA flow equation of the GNY model.
To set up our FRG study of the GNY model at finite N in section 4.5, we first study the model

in the infinite-N/mean-field limit. We use the FRG in LPA to recover the well known results for
the homogeneous phase diagram at infinite N in section 4.3. Renormalization and asymptotic
freedom are discussed as important aspects for the subsequent analysis at finite N .
At infinite N the GN model is renowned for its robust inhomogeneous phase, cf. subsec-

tion 2.4.2 and figure 2.15a. We will use the established explicit, literature results of Michael
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Thies et al. to study inhomogeneous phases indirectly in section 4.4 using a stability analysis
of the homogeneous phase. Using the literature results as reference we assess the stability
analysis and the related generalized Ginzburg-Landau (gGL) analysis both qualitatively and
quantitatively.
We finish the discussions in this chapter with our FRG study of the GNY model at finite N in

section 4.5. We employ our CFD numerics and perspective to discuss the role of fermionic and
bosonic fluctuations in FRG flows at zero and non-zero temperature and chemical potential.
With this explicit LPA study we address the long standing open research question: whether
there is symmetry breaking at finite N in the GN model or not. There are a lot of literature
results on this topic including, heuristic arguments, large-N studies, and even lattice results
but the situation remained unclear. The main result of our explicit computations is that bosonic
thermal fluctuations vaporize the chiral condensate at any finite N : we do not find symmetry
breaking at non-zero temperature and arbitrary chemical potential.
In section 4.6 we summarize our key research results of our studies with the GN(Y) model.

Extending the present discussion beyond the LPA is identified as the logical and necessary next
step.
This chapter has two primary digital auxiliary files [652, 653]. The Mathematica note-

book [652] includes some of the symbolic and (semi-)analytic computations of this chapter,
while the C++ code [653] was used for numerical computations in the infinite-N limit.

4.1. The Gross-Neveu(-Yukawa) model

This section follows the discussion presented in Secs. I and II of Ref. [4].

Since its original publication in 1974, the Gross-Neveu (GN) model [169] – a relativistic QFT
of N massless Dirac fermions that are self-interacting via the scalar channel of the four-Fermi
interaction – was subject of intensive research w.r.t. various aspects of strongly interacting
systems. In 1 + 1 space-time dimensions it was studied as a (perturbatively) renormalizable
prototype model for asymptotic freedom [169–179], while for 2 + 1 space-time dimensions
it served as a toy model for asymptotically safe QFTs [612] and is renormalizable with non-
perurbative methods [654–657]. In 3 + 1 dimensions it mimics the dynamics of the important
scalar channel of the NJL model [64, 65] and is non-renormalizable, but can be seen as being
part of a low-energy effective model of QCD, cf. subsection 2.3.3. However, for the rest of this
chapter, we exclusively focus on its formulation in 1 + 1 space-time dimensions.
We will use the model as a testing ground to study the stability and generalized Ginzburg-

Landau (gGL) analysis for inhomogeneous phases at largeN and to apply our FRG CFDmethods,
developed so far in zero dimensions only, to a real QFT. As such we consider the GN model as a
toy model in the context of theoretical high-energy physics but it has a multitude of applications
beyond such a purely theoretical scope. We will briefly comment on some applications of the
GN model in the next paragraph but as mentioned in A disclaimer about physics in chapter 1, we
will not attempt to comment on the possible implications of our results for physical systems in
this context. While certainly interesting and relevant, such a discussion is beyond the scope of
the current work, since we are ultimately interested in studies in 3+1 dimensions, cf. chapter 5,

4.1. The Gross-Neveu(-Yukawa) model 231



and we consider the results of this chapter as a stepping stone towards applications in 3 + 1
dimensions.

Applications of the GN model for physical systems
The GN has various connections to non-relativistic models in solid-state physics, see, e.g.,
Refs. [181, 658]. GN-type four-fermi models can arise in the continuum limit (describing large
distance physics) of one-dimensional solid-state systems. Examples of such one-dimensional
systems are quantum antiferromagnets (described by spin- 1

2
Heisenberg models [659]), in-

teracting electrons in a one-dimensional conductor (described by a Tomonaga–Luttinger liq-
uid [660, 661]), and polyacetylene polymer chains [505, 662] – (CH)x – (described in the limit
x→∞ with the Su-Schrieffer-Heeger model [663] or the subsequent Takayama-Lin-Liu-Maki
model [664]). Recently, a one-dimensional probabilistic cellular automaton, where classical
bits can be interpreted as Ising spins, was shown to be equivalent to a relativistic fermionic
quantum field theory [665]. A central concept behind the emergence of fermionic QFTs in two
dimensions from spin-systems in one dimension is the mapping of spin operators onto fermionic
creation and annihilation operators by means of the Jordan–Wigner transformation [666], for
a pedagogic discussion see Ref. [658]. GN-type models also arise naturally in the continuum
limit of two-dimensional spin-systems like the Ashkin-Teller model [667], which is related to
the well-known Potts model [668] and as such used to study various phenomena of solid-state
physics, see, e.g., Ref. [669] for a general overview. In the following, we will list some explicit
connections between the GN model and models used in solid-state physics.
The lattice field theoretical formulation of the GN model in the limit N →∞ is equivalent

to an Ising model [670].
At finite N the GN model can be considered as the continuum limit of the N -color (N

Ising spin) Ashkin-Teller model [667, 671, 672], which describes N coupled Ising spins on a
two-dimensional lattice [672].
ForN = 1 the GNmodel is equivalent to the Thirring model [673, 674] due to Fierz identities,

cf. Refs. [177, 178, 658]. In the continuum limit the one-dimensional spin- 1
2
Heisenberg model

is equivalent to a N = 1 GN (Thirring) model [658]. The Thirring model also arises in the
infinite volume limit of the Luttinger model [661] with strictly local interactions [675], see
Ref. [658] for further details. The massive Thirring model is equivalent to the sine-Gordon
model [676, 677], which in turn is (among its other application in mathematical physics) the
continuum-limit of the Frenkel–Kontorova model [678]. The latter is a simple model of a
harmonic chain in a periodic potential known from solid-sate physics [679]. The equivalence of
the Thirring model and sine-Gordon model is based on an Abelian bosonization transformation,
see Refs. [658, 677] and references therein, which connects equivalent bosonic and fermionic
two-dimensional quantum field theories.
Apart from research efforts in high-energy and solid-state physics the GN model is also

of interest in the context of holographic methods [631, 680] especially in the study of the
AdS/CFT correspondence involving higher-spin fields, see Ref. [681] for a recent review.

Phenomenology of the Gross-Neveu model
A peculiar feature of the massless GN model is, that at leading order of an 1

N
-expansion,
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thus in the infinite-N limit (sometimes also referred to as ’t Hooft limit), the GN model
dynamically develops a mass gap for the fermions, which is associated with an anti-fermion-
fermion condensate ⟨ ˜̄ψ ψ̃⟩ ̸= 0. In turn, this results in the breakdown of the discrete chiral
symmetry of the initial microscopic UV theory. The formation of a mass gap is a purely non-
perturbative effect, see, e.g., the Refs. [176, 178] for details, and is a prime example for
dimensional transmutation – the emergence of a dimensionful scale in a theory which has only
dimensionless couplings in its UV classical action, see, e.g., Refs. [177, 178, 682]. Hence, by
summing up loop-contributions of all orders in the four-Fermi coupling in a 1

N
-expansion the

discrete chiral symmetry spontaneously breaks down and is absent in the macroscopic theory
in the IR. In the partially bosonized version, this amounts to integrating out the fermion-loop
contribution to the bosonic effective potential, which develops a non-trivial minimum in the
IR – the condensate [171, 175, 176, 178, 179].
Shortly after D. J. Gross and A. Neveu had published their results [169] on χSB, the question

arose, to what extent condensate formation is stable against thermal effects due to non-zero
temperature T or an increase in density, induced by a non-zero quark chemical potential µ.
Within the infinite-N limit and allowing only for spatially homogeneous condensates, the
answer to these questions was quickly settled and is remarkable [183–192]: The homogeneous
phase diagram of the GN model consists of a region, where the discrete chiral symmetry is
broken and a region of vanishing chiral condensate, cf. figure 4.2. The phase-transition line
between these regions splits up into a second-order phase transition (starting at µ = 0 and
some critical temperature TC ̸= 0 and ending in a CP with µCP ̸= 0 and TCP ̸= 0) and a
first-order phase transition (starting at the critical point and ending on the T = 0 axis and
some non-zero chemical potential µ1). The entire phase diagram solely depends on a single
dimensionful parameter, which is related to a renormalization condition, and can be chosen
freely. All other dimensionful quantities are fixed multiples of this parameter and choosing
a different renormalization condition (fixing some other parameter) corresponds to simple
rescalings of all dimensionful quantities, but does not change their ratios, the phenomenology
and the phase diagram.

Notwithstanding these early successes, the discussion on the physics of the GN model did not
stop. One of the assumptions, which has led to the above results, is the assumption of a spatially
homogeneous condensation of the fermions. Relaxing this assumption, but retaining the
N →∞ limit, it was shown in Refs. [180–182] that there are regions in the µ-T -plane, where
a spatially inhomogeneous but static condensate ⟨ ˜̄ψ ψ̃⟩(x) ̸= const. is energetically favored over
homogeneous condensation including a vanishing of the condensate, cf. subsection 2.4.2 and
figure 2.15a. We will discuss those inhomogeneous condensates in more detail in section 4.3.

4.1.1. The models in vacuum and at non-zero T and µ

This subsection is compiled from Secs. II.A and B and App. B of Ref. [4] and Sec. II.A of
Ref. [5].

In this subsection, we introduce the GN model, its bosonized counterpart and the GNY model
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in Euclidean space-time. We comment on its symmetries and its in-medium generalization for
non-zero chemical potentials µ and temperatures T .

In vacuum
The GN model in one spatial and one temporal dimension in Euclidean space-time is defined
by its classical action, cf. Ref. [169],

SGN[ψ̃,
˜̄ψ] =

∫︂
d2x

(︁ ˜̄ψ γν∂ν ψ̃ − g2

2N
( ˜̄ψ ψ̃)2

)︁
, (4.1)

where ψ̃ is a N -component object in flavor space (f = 1, 2, . . . , N and N > 1)69 and a two-
component spinor in Dirac space. Our conventions for spinors in d = 1+1 can be found in
App. B.6.1. The action (4.1) involves a kinetic term and a four-fermion-interaction term with
the dimensionless positive coupling constant g ∈ R+.
Apart from the usual Euclidean space-time symmetries (translations and a rotation), the ac-

tion (4.1) is invariant under transformations of the symmetry group G = U(1)× SU(N)×Z2.
The group acts on the fermion fields as follows

G× C2N →C2N , (4.2a)

((α, θ, n), ψ̃) ↦→α (θ γ+ + n θ γ−) ψ̃ , (4.2b)

with n ∈ {−1,+1}, left- and right-handed chiral projection operators γ∓ from Eq. (B.80), and
α ∈ U(1) and θ ∈ SU(N). The full group G is defined as the direct product of the groups
U(1), SU(N), and Z2. Hereby, the SU(N) symmetry is usually called flavor or color symmetry
and causes, according to Noether’s theorem, the conservation of a vector current. The Z2

symmetry is called discrete chiral symmetry. The U(1) symmetry is called phase symmetry
and leads to a conserved Noether-charge density ˜̄ψ γ2 ψ̃/N , which is usually called baryon
number density, which is tuned by the chemical potential µ for the fermions [522, 683–685],
see also App. C.1. It is also worth mentioning, that the SU(N) symmetry group of the GN
model in 1 + 1 space-time dimensions is an O(N) symmetry, which is why it is sometimes
also denoted as an O(N)-symmetric model [178, 187]. Furthermore the GN model in two
dimensions has an additional hidden O(2N) symmetry between Majorana components of
the fermion fields [189] which prevents the appearance of different four-fermion interaction
channels during renormalization [175].

The partition function of the GN model is equivalent to the partition function of a bosonized
Gross-Neveu (bGN), which can be derived by means of a Hubbard-Stratonovich (HS) trans-
formation [452, 453]. One introduces a Gaussian integral over a bosonic auxiliary field ξ̃
using

1 = N
∫︂
D[ξ̃ ] e−

∫︁
d2x ξ̃2

2g2 , (4.3)

69We explicitly exclude N = 1, where the GN model is identical to the Thirring model [673, 674], which has a
vanishing perturbative one-loop beta function and different phenomenology than the GN model at N > 1 [177,
178]. Some details and References concerning the Thirring model can be found in the previous paragraph.
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with a normalization factor N . Combining this with the purely fermionic grand-canonical
partition function, based on the action (4.1), cf. App. C.1, we find

Z ∝
∫︂
D[ξ̃, ψ̃, ˜̄ψ ] e−

∫︁
d2x [ ˜̄ψ γν∂ν ψ̃− g2

2N ( ˜̄ψ ψ̃)2+ ξ̃2

2g2
]
. (4.4)

Next, we shift the bosonic field integration variable

ξ̃ = hϕ+ g2√
N

˜̄ψ ψ̃ , (4.5)

where we introduced the Yukawa coupling constant h in order to have bosonic fields ϕ70 with
zero energy dimension, which is natural in two dimensions. The real scalar field ϕ usually
called “auxiliary” or “constraint” field [175, 186, 187, 686]. Using

1
2g2

ξ̃2 = h2

2g2
ϕ2 + h√

N
˜̄ψ ϕ ψ̃ + g2

2N
( ˜̄ψ ψ̃)2 , (4.6)

we can completely eliminate the four-Fermi interaction term in favor of a Yukawa interaction
term,

Z ∝
∫︂
D[ϕ, ψ̃, ˜̄ψ ] e−

∫︁
d2x [ ˜̄ψ (γν∂ν+

h√
N
ϕ) ψ̃+ h2

2g2
ϕ2]
. (4.7)

This complete bosonization of the four-fermi interaction channel is reminiscent to the construc-
tion discussed in subsection 2.3.3 in the context of dynamical hadronization in composite FRG
flows of QCD.
Using Eq. (4.7), we define the action of the bGN as

SbGN[ϕ, ψ̃,
˜̄ψ] =

∫︂
d2x

[︁ ˜̄ψ
(︁
γν∂ν +

h√
N
ϕ
)︁
ψ̃ + h2

2g2
ϕ2
]︁
, (4.8)

which is equivalent to the action Eq. (4.1) of the original GN model. Equivalent in this context
means, that both theories share the same correlation functions, see the discussion at the
beginning of subsection 4.2.1 or the textbooks [177, 178] for additional details.
In the bosonized version (4.8), the four-Fermi interaction is replaced by a Yukawa interaction

term with coupling constant h as well as a quadratic (mass) term h2/g2 for the auxiliary field
ϕ. If we postulate

G×R→R , (4.9a)
((α, θ, n), ϕ) ↦→nϕ , (4.9b)

then the action (4.8) is invariant under the same symmetry groupG as the original action (4.1).
Within this work, we are especially interested in the discrete chiral symmetry transformation,
which we understand as the group element (α, θ, n) = (1,1N ,−1) ∈ G, i.e.,

ψ̃ ↦→ ψ̃′ = γch ψ̃ ,
˜̄ψ ↦→ ψ̄′ = − ˜̄ψ γch , ϕ ↦→ ϕ′ = −ϕ . (4.10)

70Following the convention used throughout chapter 3 we use ϕ to denote a fluctuating field (not ϕ̃) since we use
φ for the expectation value ⟨ϕ⟩ = φ.
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It is this symmetry which prevents the GN model from perturbatively generating a mass gap,
see, e.g., Refs. [169, 178].
Correlation functions of the GN and bGN are linked through Ward-Takahashi identities. Most

notably among them: the expectation value of the scalar field can be related to the fermionic
expectation value ⟨ψ̄ ψ⟩,

⟨ϕ⟩ ≡ φ = − g2

hN
⟨ ˜̄ψ ψ̃⟩ , (4.11)

see, e.g., Ref. [687] for a derivation of this well known identity. For this expectation value the
discrete symmetry transformation (4.10) is realized as follows,

⟨ ˜̄ψ ψ̃⟩ ↦→ −⟨ ˜̄ψ ψ̃⟩ ⇔ φ ↦→ −φ . (4.12)

Since the expectation value of ⟨ϕ⟩ ≡ φ is directly proportional to this condensate, a non-
vanishing φ implies a spontaneous breaking of the discrete chiral symmetry.

By including an additional kinetic term for the bosonic field we obtain the Gross-Neveu-
Yukawa (GNY) model [176, 178, 656]

S[ϕ, ψ̃, ˜̄ψ] =

∫︂
d2x

[︁ ˜̄ψ
(︁
γν∂ν +

h√
N
ϕ
)︁
ψ̃ − ϕ (□ϕ) + h2

2g2
ϕ2
]︁
, (4.13)

which we will use for practical computations in the FRG framework. We elaborate on the
specific model choice and differences between the (b)GN and GNY model in subsection 4.2.1.

In medium
In this work, we are mainly interested in the in-medium properties of the GNY model. To
work at non-zero baryon density, we fix the net baryon number density by introducing a quark
chemical potential µ in the usual manner, cf. App. C.1, viz. by subtracting

µN ≡ µ
∫︂

dx

∫︂ β

0

dτ ˜̄ψ γ2 ψ̃ (4.14)

from the classical UV action, which yields the grand canonical partition function

Z ∝
∫︂
D[ϕ, ψ̃, ˜̄ψ ] e−S[ϕ,ψ̃, ˜̄ψ]+µN . (4.15)

Furthermore, we introduce non-zero temperature via a compactification of the Euclidean
time-direction in the usual manner, cf. Apps. C.1 and C.2 and specifically in this context App. C
of Ref. [4].
The aforementioned steps lead us to the in-medium or thermal GNY model,

S[ϕ, ψ̃, ˜̄ψ] =

∫︂
dx

∫︂ β

0

dτ
[︁ ˜̄ψ
(︁
γν∂ν − µγ2 + h√

N
ϕ
)︁
ψ̃ − ϕ (□ϕ) + h2

2g2
ϕ2
]︁
. (4.16)
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4.2. The FRG in LPA for the Gross-Neveu-Yukawa model

This section follows the discussion presented in Secs. III and IV and App. G of Ref. [4].

After the introduction of the GN(Y) model on the level of the classical action, we will now focus
on the application of the FRG to this model. We will use the FRG to investigate the research
questions outlined in the introduction. The goals are to use the FRG to study the GN(Y) model
both at finite and infinite N . Especially our study at finite N will serve as the first application
of our developments of chapter 3 to higher-dimensional models. This study will be focused
on developing a detailed understanding of both fermionic and bosonic quantum and thermal
fluctuations in our CFD framework for the FRG.

We have introduced the FRG on a formal level in section 2.1 and we have discussed its
application to zero-dimensional theories at length in the previous chapter 3. The major
conceptual and practical challenge arising in FRG studies in non-zero dimensions is the fact
that the Wetterich Eq. (2.37) manifests as a functional differential equation which can not be
solved directly. As discussed in subsubsection 2.1.4.2, truncations are necessary to project from
the functional flow equation onto a finite set of ODEs and/or PDEs.
We are aware that the FRG (at least in simple truncations like the LPA) is usually not the

method of choice for quantitative high precision predictions. But it has several advantages when
it comes to the research questions addressed in this work. The FRG naturally resolves fluctuation
effects – including fermionic and bosonic quantum and thermal fluctuations – at different
energy scales and provides direct access to our observables of interest (the condensate, the
curvature masses and the effective potential) at all scales k(t). The FRG as a continuum method
can be used for direct computations in infinite volumes, incorporating quantum and thermal
fluctuations non-perturbatively over a huge range of energies (wavelengths). Computations
in finite volumes are also possible within the FRG framework. Actually, we plan to repeat the
analysis of this work for the GNY model in a finite spatial volume along the lines of Refs. [688–
692] elsewhere, in order to directly analyze the effects of a finite sized spatial volume and
to compare our results to the ones obtained with lattice Monte-Carlo simulations [519–522,
693–695].
The advantages and shortcomings of our FRG setup for the GNY model will become clear

within the following elaborations, where we introduce our truncation scheme and the explicit
FRG flow equation. We will comment on the limitations of our approach, and discuss symmetry
restoration/breaking within the FRG approach.

4.2.1. The GNY model in LPA truncation

In the context of this work, we use the local potential approximation (LPA), introduced in
subsubsection 2.1.4.2, as a truncation for the Wetterich Eq. (2.37). For the GNY model this
means that the EAA is approximated as

Γ̄t[φ,ψ, ψ̄] =

∫︂
dx

∫︂ β

0

dτ
[︁
ψ̄
(︁
γν∂ν − µγ2 + h√

N
φ
)︁
ψ − 1

2
φ (□φ) + U(t, φ)

]︁
. (4.17)

4.2. The FRG in LPA for the Gross-Neveu-Yukawa model 237



In this ansatz exclusively the RG-scale-dependent effective potential U(t, φ) is evolving with
RG time t (along RG scale k(t)), while all other couplings (e.g., the Yukawa coupling h) are
kept constant.
Although being a rather simplistic ansatz, the LPA is established as a common and powerful

truncation scheme and is widely – arguably sometimes wildly – used in the FRG community,
especially in the context of strongly interacting systems, e.g., low-energy effective models, cf.
Ref. [231] and references therein. In the absence of fermions, the LPA can be viewed as the
lowest-order contribution of a derivative expansion, cf. subsubsection 2.1.4.2 and references
therein. The LPA is assumed to be (and is for certain setups proven to be [1–3, 162, 163, 247,
632]) a good option for systems that are strongly coupled in field space and systems, where
interactions with low-momentum transfer dominate the dynamics. For further discussions on
the quality or the comparison of truncation schemes, see, subsubsection 2.1.4.2 and in this
context also Refs. [105–108, 696].
When dealing with the effects of long-range interactions (lowmomenta) in a low-dimensional

model at non-zero µ and T (strong coupling and complicated dynamics in field space), that
we are heading at, the LPA presents as a natural starting point for an analysis beyond the
mean-field approximation. We are aware, that the inclusion of scale-dependent and potentially
even field-dependent wave-function renormalizations and couplings (especially a scale- and
potentially field-dependent Yukawa coupling h(t, φ)) would result in a significantly improved
truncation. We will come back to this in subsection 4.2.1. For the moment we will just start off
with the LPA, which is already an improvement compared to the commonly used mean-field
approximations for the GN(Y) model, where the effects of bosonic quantum fluctuations are
usually completely ignored or compared to “improved” mean-field approximations, see, e.g.,
Ref. [188], which include only specific (effects of) bosonic modes.

The FRG flow equation for the effective potential in the LPA is obtained, by inserting the
ansatz (4.17) for Γ̄t[φ,ψ, ψ̄] into the Wetterich Eq. (2.37) followed by a projection onto a suited
(here constant) background field configuration

χEoM = χ ≡ (φ,ψ, ψ̄) = (σ, 0, 0) , (4.18)

analogous to our discussion in subsubsection 3.3.1.1 of the zero-dimensional SU(2) model,
see also Chap. 23 of Ref. [682]. Additionally one has to specify proper, explicit regulators.
For a discussion on suitable choice and influences of different regulators on the FRG flow and
the IR results within a truncation, we refer to Refs. [256, 259, 260, 263] and the discussion
in the next paragraph. In the context of our work, we use a one-dimensional LPA-optimized
momentum-space regulator for fermions and bosons [259, 260], see subsubsection 2.1.4.1 for
general remarks and App. E.1 for specifics.
Additionally and analogously to mean-field studies, we perform a rescaling of the bosonic

(background) field and the scale-dependent effective potential,

φ ↦→ φ̃ = 1√
N
φ , (4.19a)

U(t, φ) ↦→ Ũ(t, φ̃) = 1
N
U(t, φ) . (4.19b)
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This rescaling allows for a comparison of calculations at different finite values of N and the
infinite-N limit. In the following we are exclusively working in rescaled quantities φ̃ and
Ũ(t, φ̃), such that we do not maintain the “tilde” in our notation.
Using the propagators and regulator insertions of App. E.1, we obtain the LPA flow equation

for the scale-dependent effective potential U(t, σ) in rescaled quantities, by performing all
traces in field and internal spaces:

∂tU(t, σ) =
1

N

(︄
1

2
−

)︄
(4.20)

= − 1

πN

k3(t)

2Eb(t, ∂2σU)

[︁
1 + 2nb(βEb(t, ∂

2
σU))

]︁
+

+
dγ
π

k3(t)

2Ef(t, σ)

[︁
1− nf(β[Ef(t, σ) + µ])− nf(β[Ef(t, σ)− µ])

]︁
, (4.21)

with dγ ≡ 2, cf. App. B.6, and where we introduced the abbreviations

Eb(t, ∂
2
σU) ≡

√︁
k2(t) + ∂2σU(t, σ) , (4.22a)

Ef(t, σ) ≡
√︁
k2(t) + (hσ)2 , (4.22b)

for the Euclidean bosonic and fermionic “energies” (dispersion relations) and used the distribu-
tion functions of App. C.2. Note that the prefactor 1/N of the bosonic contributions (the first
term on the r.h.s. of Eq. (4.21)) realizes the aforementioned suppression of bosonic fluctuations
in the large-N limit. For the sake of completeness, all further details on the derivation of the
flow equation are provided in App. E.2. Structurally this equation is (apart from the missing
pionic contribution) reminiscent of the flow Eq. (3.224) for the self-interaction potential of the
zero-dimensional SU(2) model. We will comment on this further in subsection 4.2.2.

Before we continue our main discussion, we present the zero-temperature limit of the FRG
flow equation (4.21),

∂tU(t, σ) = − 1

πN

k3(t)

2Eb(t, σ)
+
dγ
π

k3(t)

2Ef(t, σ)
Θ
(︂
1− µ2

E2
f
(t,σ)

)︂
(4.23)

as well as the vacuum limit for T → 0 and µ→ 0,

∂tU(t, σ) = − 1

πN

k3(t)

2Eb(t, σ)
+
dγ
π

k3(t)

2Ef(t, σ)
. (4.24)

The FRG flow equation in vacuum is needed to fix the IC.
Note that Eq. (4.24) differs from the popular LPA flow equation of the effective potential for

the d = 2 GNY model in vacuum, cf. Refs. [612, 656],

∂tU(t, σ) = − 1

4πN

k4(t)

2E2
b(t, σ)

+
dγ
4π

k4(t)

2E2
f (t, σ)

, (4.25)
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due to the fact that we are using one-dimensional purely spatial LPA-optimized regulators
in Eq. (4.24). Whereas Eq. (4.25) is the flow equation for two-dimensional LPA-optimized
regulators. We will comment on possible implications of this difference and the explicit breaking
of Euclidean Poincaré invariance in the next paragraph, subsubsection 4.5.3.6 and App. F of
Ref. [4].

Comment on regulators
At this point we ought to comment on the choice of our regulators and the caveats that go
hand in hand with this choice. The regulator shape functions (E.8) which parametrize the
employed regulators, cf. Eq. (E.3), only regulate the spatial momentum (direction). Hence, if
the spatial (loop) momenta are smaller than the RG scale k, they are suppressed. However,
the Matsubara sums are not affected by the regulator at all and frequencies of all orders of
magnitude enter the FRG flow at all scales k(t). This has several direct consequences.
Although regulators should in principle be in accordance with the symmetries of the theory,

the employed regulators explicitly break (Euclidean) Poincaré invariance. Hence, we cannot
expect to recover full (Euclidean) Poincaré symmetry in the limits µ→ 0 and T → 0, without the
introduction of counter-terms (Ward identities) to account for this discrepancy, e.g., Refs. [102,
262] and subsection 5.2.1. This means that the IR results of the FRG flow equation (4.24)
do not necessarily coincide with IR results of the vacuum LPA flow equation (4.25) that can
be derived with two-dimensional LPA optimized regulators, if one uses exactly the same UV
IC. Whether or not these differences manifest in physical observables in vacuum or even
medium, since computations at non-zero T and µ usually use an UV IC fixated in vacuum,
depends on the observable, model, and truncation under consideration, see, e.g., Refs. [102,
262] and subsection 5.2.1. Within the scope of this work we performed some test comparing
results obtained with a two-dimensional LPA-optimized regulator to results obtained using the
one-dimensional LPA-optimized regulator in vacuum using identical ICs. For a brief discussion
see App. E of Ref. [4]. The situation for the GN(Y) model might be discussed elsewhere in
more detail especially regarding regulator-dependencies at non-zero temperature [650].

One might ask now, why we are – regardless of these facts – using one-dimensional LPA-
optimized regulators? The answer to this question has several aspects:
A first drawback of using two-dimensional regulators is that large classes of those regulators

cause problems in the presence of chemical potentials and violate the so-called Silver-Blaze
property [308, 697–699]. However, we are especially interested in calculations at non-zero µ.
Coping with this challenge is part of state of the art research, see, e.g., Refs. [262, 263, 445],
and we do not want to enter this discussion within this work.
Secondly, the analytic evaluation of the Matsubara sums or the loop-momentum integrals

in Eq. (E.7) might become impossible or at least extremely challenging, which drastically
complicates numerical computations. The presence of numerical sums and integrals in the flow
equation would significantly increase computation time and hinder an in-depth discussion at
variable T , µ and N .
Note that for non-zero temperature and chemical potential (Euclidean) Poincaré invariance

is broken anyhow, such that explicitly breaking this symmetry via the regulators might not
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spoil the results too drastically.
Mainly to facilitate, speed up numerical computations, and to avoid any conceptual issues at

µ > 0 we decided to use one-dimensional, spatial Litim regulators within this work as a first
significant step beyond mean-field computations.
Interestingly, the approach of exclusively regulating spatial momenta is similar to the com-

mon strategy employed in conventional mean-field studies at non-zero temperature including
the mean-field computations for the GN(Y) model [184, 186–190]. There Matsubara sum-
mations are usually executed analytically before momentum integrals are regulated at all.
Divergent contributions (usually associated with vacuum quantum fluctuations) to expressions
are separated from convergent (usually thermal) contributions and only the divergent parts
are regulated. Both approaches include all thermal/Matsubara modes independent of RG scale
or in case of mean-field studies of the chosen regularization scheme.

Truncations and ICs – Differences and similarities of GN, bGN and GNY models
In section 4.1 we introduced three distinct models by specifying their actions: the GN model
defined by SGN in Eq. (4.1), the bGN model defined by SbGN in Eq. (4.8) and ultimately the
GNY model defined by S in Eq. (4.13). In this paragraph we will elaborate on their differences
and similarities in the FRG framework with special focus on the, in this context, central issues
of truncations and ICs for their respective EAAs Γ̄t[φ,ψ, ψ̄]. As for all FRG flows (and PDEs in
general) their respective solutions depend on the corresponding initial and possible BC(s). We
discuss the (numerical) BCs in field space at length in subsubsection 3.2.2.4 and solely focus
on the IC for the moment.
The GN model and its bosonized version – the bGN model – have an identical partition

function and are thus physically equivalent. The bosonization procedure/HS transformation
is merely a technical reformulation with the goal to eliminate the four-Fermi coupling term
∝ ( ˜̄ψψ̃)2 of the GN model by introducing the auxiliary field ϕ with a mass term ∝ ϕ2 and a
Yukawa-Coupling term ∝ ϕ ˜̄ψψ̃. This reformulation facilitates computations especially for non-
vanishing condensates φ ≡ ⟨ϕ⟩ ∝ ⟨ ˜̄ψψ̃⟩, as discussed in the context of dynamical hadronization
in composite FRG flows for QCD in subsection 2.3.3. The IC for Γ̄t[χ] for the Wetterich Eq. (2.37)
is the classical action S[χ]. Within the LPA truncation the only scale-dependent quantity is the
potential U(t, σ) for which an appropriate IC at k(t = 0) = Λ can be read off directly from the
classical action,

U(0, σ) = h2

2g2
σ2 , (4.26)

while the Yukawa coupling h keeps its initial value throughout the FRG flow in the LPA. Note that
the two rescalings in Eq. (4.19) cancel for the rescaled initial potential (4.26). This IC U(0, σ)
is valid both for the bGN and GNY model and will be discussed further in subsection 4.5.2.
The only difference between the bGN (and by proxy the GN) model and the GNY model

is the kinetic term −ϕ (□ϕ) in the latter. A corresponding contribution −φ (□φ) (in terms of
classical/mean-fields φ = ⟨ϕ⟩) is of course also present in the LPA ansatz (4.17) for Γ̄t[φ,ψ, ψ̄]
of the GNY model to establish the proper IC Γ̄t=0 = S. Such a kinetic term is needed in the FRG
framework to study the effect of bosonic quantum fluctuations of ϕ at finite N . In consequence,
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the LPA to the GNY model for Γ̄t[φ,ψ, ψ̄] seems incapable of resembling the bGN model (GN
model by proxy) in the UV. One might argue that the results, which are obtained from the
FRG flow equation (4.21) with IC (4.26), are consequently not directly transferable to the GN
model. It seems, as if bosonic quantum fluctuations, which are linked to the kinetic term, are
artificially enhanced already at the beginning of the FRG flow, while they should actually be
strongly suppressed (strictly speaking vanishing directly in the UV when considering the limit
Λ→∞) in the bGN model (4.8), which starts without the kinetic term in the UV and generates
the term and bosonic fluctuations dynamically during the FRG flow.
From the FRG perspective, the intuitive way to cure this problem is the introduction of a

bosonic wave-function renormalization in the kinetic term,

−φ (□φ)→ −Zφ(t)φ (□φ) , (4.27)

and initializing 1 ≫ Zφ(0) > 0 in the UV to make direct contact with the action (4.8) of
the bGN model. Initializing Zφ(0) at exactly zero in the UV would lead to complications in
practical computation since, e.g., the renormalized mass term 1

Zφ(t)
∂2σU(t, σ) in the dispersion

relation (4.22a) would diverge. Besides technical problems Zφ(0) = 0 at a finite UV initial
scale Λ would also weakly violate RG-consistency, cf. subsection 2.1.7, since fluctuations
(especially fermionic ones) at scales k > Λ would have already generated a small wave-function
renormalization. Initializing the wave-function renormalization with 1 ≫ Zφ(0) > 0 in the
UV at a sufficiently large UV initial scale Λ – large enough at the initial scale and in doing so
realizing RG consistency – leads to a direct suppression of bosonic fluctuations at the beginning
of the FRG flow. This is directly seen on the level of Γ̄t[φ,ψ, ψ̄], where the bosonic kinetic term
is suppressed by its small prefactor Zφ(t = 0) in the UV. During the FRG flow Zφ(t) will turn
non-zero already by its fermionic loop contribution, cf. Refs. [612, 686] and especially the
corresponding discussion in subsection 4.4.2.
Hence, we already conclude at this point that a natural generalization of the LPA truncation

in this work is the inclusion of a bosonic wave-function renormalization, such that the UV IC
for Γ̄t[φ,ψ, ψ̄] in the GNY model really resembles the bGN and GN model. First steps of such a
generalization/improvement are discussed in Ref. [165].
Finally, we have to briefly comment on another issue, which also stems from the truncation

scheme and the mismatch of the ICs for the bGN and GNY models. The original GN action (4.1)
as well as its bosonized counterpart in Eq. (4.8) without the kinetic term −ϕ (□ϕ) have only a
single coupling constant g2. The artificial Yukawa coupling h introduced during the bosonization
procedure can actually be absorbed in the bosonic field. In mean-field calculations, see below,
this is evident, because all observables can be fixed via a single dimensionful parameter (e.g.,
the IR bosonic curvature mass, the IR fermion mass, the critical temperature etc.) for Λ→∞
and can be mapped into each other, if different renormalization schemes were chosen. Including
bosonic fluctuations, i.e. the kinetic term for the bosons, the Yukawa coupling h can no longer
be completely absorbed via appropriate substitutions. Hence, the model involves an additional
parameter that needs to be fixed via some renormalization condition [178] – even if we stick
to quadratic initial potentials (4.26).
Wewill comment on our specific choice of initial condition and implications on the suppression

of bosonic fluctuations in the UV in subsection 4.5.2 after our discussions at infinite-N .
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Dynamical symmetry breaking in FRG flows
Since the FRG is formulated in terms of the effective (average) action, we set the following
criteria for (spontaneous) symmetry breaking.
The vacuum/ground state of a QFT is defined as the field configuration with least energy,

which has to be a field configuration that minimizes the IR effective action Γ[χ], cf. Refs. [229,
240]. Hence it has to be a solution to the QEOM (2.20) for the mean-fields χ ≡ (φ,ψ, ψ̄),

0
!
=
δΓ[χ]

δφ

⃓⃓
⃓⃓
χ=χEoM=χ

, (4.28a)

0
!
=
δΓ[χ]

δψ

⃓⃓
⃓⃓
χ=χEoM=χ

, (4.28b)

0
!
=
δΓ[χ]

δψ̄

⃓⃓
⃓⃓
χ=χEoM=χ

, (4.28c)

Within our truncation (4.17), these equations reduce to the following three PDEs

0 =□φ− ∂φU(tIR, φ)− h
N
ψ̄ ψ . (4.29a)

0 = (γν∂ν − µγ2 + hφ)ψ , (4.29b)

0 = (∂νψ̄)γ
ν + ψ̄ (µγ2 − hφ) , (4.29c)

Given their nature as Grassmann-valued, fermionic fields it is natural to consider the trivial so-
lutions ψ(x, τ) = 0 and ψ̄(x, τ) = 0. In this chapter we do not consider explicit inhomogeneous
condensation and hence assume φ(x, τ) = const. ≡ σ such that Eq. (4.29a) simply reduces to

0
!
= ∂σU(tIR, σ) . (4.30)

In order to ensure that this extremum condition defines a minimum and not a maximum, we
need the additional sufficient condition ∂2σU(tIR, σ) > 0 at the extremum, viz. a positive IR
curvature mass for σ.
Consequently, in the FRG framework a minimum σmin of the scale-dependent effective

potential U(t, σ) in the IR (for t→∞) is considered to be a (translational invariant) ground
state of our system. The system is said to be in the symmetry broken phase, if σmin ̸= 0, and
in the symmetric phase if σmin = 0, because non-trivial σmin break the Z2 symmetry of the
vacuum as discussed in subsection 4.1.1.

4.2.2. LPA flow equation as non-linear diffusion-source/sink equation

In this subsection we discuss the numerical implementation and manifestation in a CFD context
of the LPA flow Eq. (4.21) of the GNY model. We already noted a striking resemblance between
the LPA flow Eq. (4.21) of the GNY model in d = 1+1 and the flow Eq. (3.224) of the SU(2)
model in d = 0. In this regard the bosonic contributions in Eq. (4.21) are structurally similar
to the ones encountered in the flow Eqs. (3.36) and (3.105) for the zero-dimensional O(1)/Z2
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model. Informed by our studies in d = 0 of chapter 3 we take a derivative w.r.t. σ to arrive at a
conservative form for the flow equation of ∂t∂σU(t, σ) ≡ ∂tu(t, σ):

∂tu(t, σ) =
d

dσ
Q(t, ∂σu) + S(t, σ) , (4.31)

where we introduced the non-linear diffusion flux

Q(t, ∂σu) ≡ −
1

πN

k3(t)

2Eb(t, ∂σu)

[︁
1 + 2nb(βEb(t, ∂σu))

]︁
, (4.32)

and the non-linear source/sink term

S(t, σ) ≡ d

dσ

(︃
dγ
π

k3(t)

2Ef(t, σ)

[︁
1− nf(β[Ef(t, σ) + µ])− nf(β[Ef(t, σ)− µ])

]︁)︃
. (4.33)

In primitive form the parabolic diffusive contribution in Eq. (4.31) reads

d

dσ
Q(t, ∂σu) = α(t, ∂σu) ∂

2
σu(t, σ) , (4.34)

We have arrived at a non-linear heat equation with a complicated source term. This formu-
lation allows for a direct application of our CFD framework of chapter 3 and section 2.2. We
have discussed diffusive contributions of the kind of Eq. (4.32) at length in subsection 3.2.4
and in our methodological introduction of diffusion equations in subsection 2.2.4. It turns
out that we can apply the numerical tools and the CFD framework developed in d = 0 directly
to the LPA flow equation in d = 1+1. Therefore we completely refrain from commenting on
boundary conditions, spatial discretization, and a discussion of numerical entropy at this point
since we have already discussed those aspects at length in subsubsections 3.2.2.3 and 3.2.2.4
and subsection 3.2.4. The only novel aspect, compared to the numerical studies in section 3.2,
is the interesting source/sink term (4.33) on which we will comment in the next paragraph.

Fermionic (thermodynamic) fluctuations as sinks and sources
Formulating the FRG flow equation on the level of the derivative of the scale-dependent effective
potential u(t, σ) = ∂σU(t, σ) allows for a refined understanding of the dynamics induced by a
non-vanishing chemical potential µ and fermionic fluctuations in general. The interpretation
of the purely fermionic contribution S(t, σ) in terms of a time-dependent source/sink term
emerges naturally in the CFD framework. From Eq. (4.33) we find that the “fluid” u(t, σ)
does not explicitly enter S(t, σ) and the contribution to the flow of u(t, σ) solely depends on
the time t and position in the spatial direction σ. Actually it presents on a formal level in
our flow equation as a classical potential (similar to a Newtonian gravitational potential) of
a conservative (external) force field acting on the fluid, cf. subsection 2.2.5 and Ref. [167].
Executing the σ-derivative in Eq. (4.33) one finds that the term enters the flow equation (4.31)
for u(t, σ) with negative sign for µ = 0, which explains the denotation as a “sink” for σ > 0 and
“source” for σ < 0 and is responsible for symmetry breaking during the flow at µ = 0. Note that
the dynamics of u(t, σ) is antisymmetric in σ. Due to this antisymmetry and w.l.o.g., we focus
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Figure 4.1.: Source/sink term of Eq. (4.33) at zero (solid lines) and small temperature
T = 0.01 (dashed lines) at various RG scales k (close to and below the model scales) between
k = 1.25 in blue and k = 0 in red at µ = 0 (upper panel), µ = 0.5 (middle panel) and µ = 1.0
(lower panel). All dimensionful quantities are measured in multiples of the Yukawa coupling
h. From Fig. 1 of Ref. [4].

our discussion on σ ∈ [0,∞), where the “sink” interpretation is more natural. For negative σ
the dynamics has of course opposite sign. The bosonic contributions in terms of non-linear
diffusion tend to fill the “sink” or distribute the “source” that is caused by the fermions and work
against symmetry breaking. At non-zero µ the sink/source term (4.33) is not always manifest
negative/positive: it has a rather intricate dynamic (especially at low and zero temperature)
and manifests as either source or sink depending on the value for σ at a given µ and t for both –
negative and positive σ. We will spend the rest of this paragraph illuminating this interesting
manifestation of chemical potential as externally induced shock waves/discontinuities in field
space.
It turns out that the chemical potential induces discontinuities in u(t, σ) in field space. For

the sake of simplicity, we analyze the FRG flow Eq. (4.21) at vanishing (and small) temperature,
viz. Eqs. (4.24) and (4.23), but on the level of u(t, σ), cf. Eq. (4.31). We find that the difference
between the T = 0 flow equations for u(t, σ) at vanishing and non-vanishing chemical potential
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is the contributions stemming from the derivative of the Heaviside function Θ(1− µ2/E2
f (t, σ))

in the source/sink term. The sink/source term at different RG scales and chemical potentials is
plotted in figure 4.1 for T = 0 and also small T = 0.01 to support and illustrate the following
discussion. The approximate signs in the rest of this subsection hold at small temperatures and
become exact for T = 0.
As long as E2

f ≳µ
2, effects due the chemical potential do not manifest in the FRG flow, because

µ does not show up in the source/sink term, see figure 4.1. However, when E2
f ≈ µ2, the

chemical potential becomes relevant and distinguishes FRG flows with µ = 0 and µ ̸= 0.
Therefore, it is important to understand when (in terms of RG time t), where (in field space
σ), and how this is going to happen. This can be done by analyzing the estimate

E2
f = k2 + (hσ)2 ≈ µ2 (4.35)

for different positions in field space.
The first time during the FRG flow, at which µ is going to influence the dynamics is, when

k2(t) ≈ µ2, cf. figure 4.1 at k = 0.99 and k = 0.49 in the middle and lower panel. At this RG
scale, we find that the chemical potential will influence the dynamics at positions in field space
close to σ = 0. At slightly later RG times, when t is larger and the RG scale k(t) is lowered a
little, also field space positions at slightly larger |σ| will be influenced by µ. The largest |σ| that
are directly affected by µ in the PDE are of the order h2σ2 ≈ µ2. This is the case when t→∞
and k(t)→ 0 in Eq. (4.35), cf. figure 4.1 at k = 0.0 in the middle and lower panel. The peaks
induced by the chemical potential are located at σ ≈ ± 1

h

√︁
µ2 − k(t)2 for µ≳k(t) and change

the character of the sink/source term around their respective position. For σ > 0 (σ < 0) the
peak presents as a source (sink).
Of course, the diffusive character of the σ-loop contribution will transport the effects of and

the information about the chemical potential via diffusion also to larger |σ|. The same holds
true for the non-zero temperature version of the FRG flow Eq. (4.31), where the Heaviside
function is smeared out in terms of a Fermi-Dirac distribution function (C.18). However, overall
the RG time t and scale k(t) as well as the relevant positions in field space σ for the dynamics
induced by the chemical potential are very similar at low temperatures where the dynamics is
dominated by the chemical potential, cf. figure 4.1 for T = 0.01.
The remaining question, that needs to be answered is, how the chemical potential µ – through

the source term S(t, σ) – influences the dynamics of the FRG flow. We have argued before,
that the fermionic contributions to the FRG flow of u(t, σ) enter as local time-dependent sink
terms. Now we found that the “sinking” stops suddenly at certain positions in field space and at
certain RG times during the FRG flow due to the chemical potential. Hence, we expect that the
chemical potential introduces a sharp edge in u(t, σ) at σ ≈ 0, when k2(t) ≈ µ2. This edge will
“move” in field space like a shock wave towards larger |σ| until it reaches |σ| ≈ |µ/h|, where it
comes to a halt. This dynamics is imprinted by the underlying dynamics of the sink/source
term (4.33) visualized and discussed earlier.
As already said before, this discontinuity is smeared by the diffusion an washed out right from

the beginning at non-zero temperatures. However, its dynamics is clearly underlying all diffusive
processes. In order to visualize the drastic effects of this discontinuity, we plot and contrast
mean-field FRG flows with FRG flows involving bosonic fluctuations in subsubsection 4.5.3.2.

246 4.2. The FRG in LPA for the Gross-Neveu-Yukawa model



In mean-field, only the fermions are active (the sink term), such that the induced shock wave
is not subject to diffusive effects and thus clearly visible.

In fact, it is the chemical potential that introduces a jump (mean-field) or cusp (finite N)
discontinuity in u(t, σ), which seems to render practical calculations at zero temperature in-
volving bosonic fluctuations of the σ-mode impossible: The discontinuity in u(t, σ) corresponds
to a large jump in the derivative ∂σu(t, σ) with negative sign. However, this happens at rather
small k2(t) ≈ µ2, such that the bosonic energy function,

E2
b(t, ∂σu(t, σ)) = k2(t) + ∂σu(t, σ) , (4.36)

turns negative and one overshoots the pole of the bosonic propagator 1
Eb
in the FRG flow

equations. Preventing further numerical evolution towards the IR.
When considering a model involving also Goldstone modes, which enter the FRG flow as

advective contributions, cf. subsections 3.2.3 and 3.2.5 and Refs. [1, 3, 162, 247], the huge
gradients introduced via the chemical potential induce a shock wave that propagates towards
smaller |σ|.
A possible reason, why this subtle dynamics in field space was not discussed in detail in

the past within FRG studies might be that it is hardly visible and understandable on the level
of the scale-dependent effective potential U(t, σ) itself, because it is the integral of u(t, σ),
where jumps might only show up as tiny cusps, cf. subsubsection 4.5.3.2. Additionally, a lot of
previous studies did not perform calculations at sufficiently low temperatures, where this effect
is not completely washed out by the thermal distribution functions (C.18). At this point the
underlying reason for and resolution of this practical problem are not clear to the author. The
disconnection between the fermionic sector and the dynamics of u(t, σ) in LPA, the regulator
choice or the formulation71 of the flow equation could be possible reasons for this intricate
problem. Solving this problem is beyond the scope of the current work. Consequently, we claim
that understanding and/or capturing this effect correctly will be one of the central challenges
in FRG at non-zero µ within the next years – independent of the specific models. For related
discussions on these novel findings, we also refer to Refs. [162, 210, 284].

Numerical implementation within our CFD framework
In this paragraph we present the explicit numeric implementation of the FRG flow equa-
tion (4.31). To this end we adapt our developed and tested methods from sections 2.2 and 3.2.
To adequately capture highly non-linear diffusive effects as well as the position-dependent

source/sink terms, we adapt our implementation of the KT scheme. We use the scheme in its
semi-discrete from (2.113) and for this chapter without the advective numerical fluxes, since
we do not have advective contributions in the flow Eq. (4.31). Within this chapter, we use the
time-stepper solve_ivp with the LSODA option using an Adams/BDF method with automatic
stiffness detection and switching from the SciPy 1.0 library [354]. For further details, see App. F
of Ref. [4]. We also cross-checked selected results with the Mathematica codebase [325,
364–366] of chapter 3.
71A formal classification and proper weak formulation of the PDEs (4.21) and (4.31) might be paramount to
understand the nature of the arising discontinuities and weak/physical solutions in their presence.
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The explicit discretization of Eq. (4.31), i.e., the diffusion flux (4.32) and sink term (4.33) is
as follows. We consider a compact computational domain [0, σmax], with boundary conditions
according to subsubsection 3.2.2.4, subdivided into n ∈ N equally sized (finite) volume cells
of size ∆σ centered at positions σi, i = 0, 1, . . . , n− 1. The zeroth volume cell is centered at
σ = σ0 = 0, while the last cell is centered at σn−1 = σmax. Within a single volume cell σi, the
cell average of the “fluid” u(t, σ) is denoted as ūi(t). The actual computation and scheme is
entirely formulated via these cell averages as discussed in sections 2.2 and 3.2. For the explicit
implementation of boundary conditions one ghost cell is required at each interval boundary
when considering a problem involving solely diffusive contributions in the semi-discrete KT-
scheme. The ghost cells are of size ∆σ and centered at σ−1 = −∆σ and σn = σmax +∆σ. As
described in subsubsection 3.2.2.4 we use the antisymmetry of u(t, σ) as boundary condition
to fix the cell averages of the zeroth cell and first ghost cell to ū0(t) = 0 and ū−1(t) = −ū1(t)
for all times t respectively. For the ghost cell at σn we use linear extrapolation, thus for the cell
average ūn(t) = 2 ūn−1(t)− ūn−2(t) for all t. Additionally, we consider as usual the grid of cell
interfaces, which are positioned at σi+ 1

2
≡ σi + ∆σ

2
.

Within this setup, the semi-discrete scheme for the non-linear diffusion-sink equation (4.31)
and the evolution of the cell averages ūi(t) reads [167]

∂tūi =
1
∆σ

(︁
Pi+ 1

2
− Pi− 1

2

)︁
+ Si , (4.37)

with the sink/source term Si = S(t, σi) from Eq. (4.33) and the numerical diffusion flux (2.112)
for the parabolic GNY model diffusion term (4.32).

We conclude this brief discussion of the numerical implementation of Eq. (4.31) with a
comment on different discretization schemes for the sink/source term (4.33).

We want to put forward two possible discretization schemes for the source/sink term. To
arrive at these schemes, we return to the initial idea of the finite volume discretization outlined
in subsection 2.2.1. Consider the integral form (2.95) of the flow equation (4.31) for the ith
cell

∫︂ σi+
∆σ
2

σi−∆σ
2

dσ ∂tu(t, σ) =

∫︂ σi+
∆σ
2

σi−∆σ
2

dσ
[︁ d

dσ
Q(t, ∂σu) + S(t, σ)

]︁
. (4.38)

Keeping the control volumes fixed, one identifies the integral on the l.h.s. with the t-derivative
of the cell averages of the fluid ∂tūi(t) times ∆σ. The integral over the σ-derivative of the
diffusion flux on the r.h.s. is approximated using the numerical diffusion flux of the KT scheme,
cf. subsection 2.2.2. For the integral over the source/sink term S(t, σ) we basically consider
two options.

1. The first option is an approximation. One approximates the source/sink term with S(t, σi)
at the cell center times the cell-volume ∆σ. Omitting the diffusive contribution, the
semi-discrete flow equation for the cell averages ūi(t) reads,

∂tūi(t) = S(t, σi) , (4.39)

where we divided by ∆σ.
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2. The second option, which is due to a special feature of our FRG flow equation, is, to
make use of the fact that the source/sink term in the flow Eq. (4.31) presents as a spatial
derivative of some function s(t, σ), which solely depends on t and σ,

S(t, σ) =
d

dσ
s(t, σ) . (4.40)

This means that the integral on the r.h.s. of Eq. (4.38) can be calculated exactly, by
evaluating s(t, σ) on the cell surfaces σi+ 1

2
. This results in,

∂tūi(t) =
1
∆σ

[︁
s
(︁
t, σi+ 1

2

)︁
− s
(︁
t, σi− 1

2

)︁]︁
, (4.41)

where we again omitted the diffusion flux for the sake of the present discussion and
divided by ∆σ.

At first sight, it seems better to use the second exact version. However, during our calculations,
we did not experience any differences in precision between both versions for T ̸= 0, as long as
∆σ is not too large. Nevertheless, concerning the runtime, the first version turned out preferable
in practical computations. Eventually, this might be related to the fact, that, ignoring bosonic
fluctuations (no diffusion), the first version reduces exactly to the mean-field calculation for
u(t, σ) at positions σi, which can be directly seen from Eq. (4.39), where the PDE reduces into
decoupled differential equations at the σi.
Though, for T = 0 the analytic evaluation of the σ-derivative would produce Dirac-delta

distributions through the derivative of the Heaviside function, see Eq. (4.23). Delta-peaks are
extremely complicated to implement in a numerical setup, but they are important at T = 0 and
should not be disregarded. We therefore suggest to use the second version (4.41) (although it
can only be used for FRG-mean-field calculations at T = 0 for u(t, σ), which do not suffer from
the problems described in subsection 4.2.2 and eluded to earlier in this paragraph).
We believe that there is some need for further investigations on the best discretization

schemes for such fermionic contributions, see also Refs. [162, 210, 284].

4.3. Infinite-N analysis of homogeneous phases

This section follows the discussion presented in Sec. V of Ref. [4].
The results for the homogeneous phase diagram in figure 4.2 were obtained with my

C++ code [653], computing 39887 points in the µ-T -plane in about an hour CPU time
on an AMD Ryzen© 9 3900X processor (6 minutes wall time on 12 cores). The results
of the Ginzburg–Landau analysis of the homogeneous phase diagram took only a few
minutes to compute on an Intel© Core™ i7-8750H processor with the Mathematica
notebook [652].

In this section, we will rediscover some of the well-known results for the infinite-N (mean-field)
limit of the GN(Y) model. We will demonstrate that the FRG in LPA is capable of reproducing
the latter results analytically and numerically. Additionally, these mean-field calculations are
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used to motivate a proper UV IC for the flow equation (4.21) in subsection 4.5.2, but also serve
as a consistency check of our numerical implementation in the limitN →∞ in subsection 4.5.2.
Within subsection 4.3.1 we will discuss the effective potential of the GN(Y) model in vacuum

and the related notion of asymptotic freedom in this context. In subsection 4.3.2 we present
results for the homogeneous phase diagram at infinite N . We conclude this section with
subsection 4.3.3, discussing the Ginzburg–Landau (GL) analysis for the GN(Y) model and
Landau’s theory of phase transitions.

Mean-field, infinite-N , and FRG
Within the FRG framework (arguably even in general), the term “mean-field approximation”
has no universal, agreed upon formal definition. Usually performing calculations on “mean-field
level” in the context of fermionic models refers to computations including only fermionic fluctu-
ations, while disregarding bosonic ones. Whether this includes fermionic vacuum fluctuations
and/or fermionic contributions beyond the effective potential usually depends on the work
under consideration. In the FRG one way to define a mean-field approximation is the usage of
a LPA truncation disregarding the bosonic fluctuations. This can be formally achieved by taking
the infinite-N limit for the LPA flow equation under consideration, in this chapter Eq. (4.21),
after appropriate rescalings, like the ones introduced in Eq. (4.19).
However, it can be shown that in general the infinite-N limit and “ignoring the bosonic

loop in a LPA truncation” is not the same procedure. In fact, if starting with a more advanced
FRG truncation scheme, like LPA’, which also includes wave-function renormalizations, one
finds, that even in the infinite-N limit, there are fermionic loop contributions to the bosonic
wave-function renormalization, see, e.g., Refs. [612, 686] and especially the corresponding
discussion in subsection 4.4.2. Hence, in general the order of “limits” plays a crucial role and
“choosing a truncation scheme in FRG” and “taking the infinite-N limit” do not necessarily
commute. We will also mention some subtleties when it comes to variants of the mean-field
approximation in section 5.2. Furthermore in models including Goldstone bosons/pions a
large-N limit for fermions, e.g., in the large-Nf limit for chiral fermion flavors, does not lead
to the desired suppression of bosonic modes, because the Goldstone modes/pions do not form
as flavor singlets – pionic contributions to the LPA flow equation are usually proportional to
N2
f − 1, cf. Eq. (3.63). Another degree of freedom, e.g., the number of colors Nc, has to be used
to facilitate the large-N limit and the desired suppression of bosonic fluctuations.
For our purposes in this chapter, we simply start by definition on the level of the LPA and

take all limits like the infinite-N limit or the zero-T and zero-µ limit afterwards. Hence, within
our truncation, the mean-field limit and the infinite-N limit are considered to be identical,
which simplifies the discussion and allows to make direct contact with established conventional
mean-field computations for the GN model, cf. Refs. [190, 505], which consider only fermionic
fluctuations on the level of the effective potential.

Performing the large-N limit for the flow equation (4.21), yields

lim
N→∞

∂tU(t, σ) =
dγ
π

k3(t)

2Ef(t, σ)

(︁
1− nf [β(Ef(t, σ) + µ)]− nf [β(Ef(t, σ)− µ)]

)︁
. (4.42)
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We find that the former PDE decouples in field space and reduces to a first-order ODE in t
at each point in σ-direction. In the fluid-dynamic picture, on the level of u(t, σ) = ∂σU(t, σ),
this is rather intuitive, since the fermionic contribution to the flow equation (4.31) presents
as a local time-dependent source/sink term (4.33) and the spatial movement of the fluid (via
diffusion in field space) is totally suppressed. On a mathematical and also technical level this
changes and in fact simplifies the flow equation drastically. We are no longer dealing with a
non-linear parabolic PDE including a sink/source term, we are just left with a comparatively
simple ODE which can be integrated directly. The notion of irreversibility of FRG flows is
completely lost in this limit.
When disregarding bosonic fluctuations completely in mean-field approximation all three

model variants – GN, bGN and GNY model – introduced in subsection 4.1.1 are equivalent.
The bGN and GNY model are identical in mean-field approximation and the bGN model as the
bosonized version of the GN model is in general physically equivalent to the latter as already
discussed in subsection 4.1.1. This is the reason for us using the collective term GN(Y) model
so far in this section but for the remainder of the section we will just use the term GN model.

4.3.1. The mean-field vacuum potential and asymptotic freedom

Due to the decoupling in field space, the differential equation (4.42) can be integrated analyt-
ically in k(t). Using the definition of the RG time (2.12), which implies ∂t = −k ∂k, we find

Uk=0(σ) =Uk=Λ(σ) +
dγ
π

∫︂ Λ

0

dk
k2

2Ef

(︁
1− nf [β(Ef + µ)]− nf [β(Ef − µ)]

)︁
≡ (4.43a)

U0(σ) =UΛ(σ) +
dγ
π

[︃
k

2

(︁
Ef +

1
β
ln
[︁
1 + e−β(Ef+µ)

]︁
+ 1

β
ln
[︁
1 + e−β(Ef−µ)

]︁)︁]︃Λ

0

−

− dγ
2π

∫︂ Λ

0

dk
(︁
Ef +

1
β
ln
[︁
1 + e−β(Ef+µ)

]︁
+ 1

β
ln
[︁
1 + e−β(Ef−µ)

]︁)︁
, (4.43b)

where the UV IC for this trivial integrable “FRG-flow” is given by the classical UV potential, see
subsection 4.1.1,

UΛ(σ) ≡ U(t = 0, σ) = 1
2g2

(hσ)2 (4.44)

and where we introduced the notation72

Uk(σ) ≡ Uk(t)(σ) ≡ U(t, σ) (4.45)

for the potential at a given RG scale k and the corresponding RG time t.
In the second line of Eq. (4.43) we integrated by parts in order to recover the usual expression

for the grand canonical potential density for Λ→∞ (up to an infinite constant ∼ k Ef

⃓⃓
k=Λ
), cf.

72This chapter does not share the at times lenient approach of section 2.1 and chapter 3 when it comes to when,
where, and how to denote RG-scale- and -time-dependencies. We will consistently use Uk(σ) and U(t, σ) – i.e.,
the given notation of Ref. [4].
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Refs. [186, 187, 190, 505]. The first terms of the integrands of Eq. (4.43) lead to divergences.
These divergences have to be canceled by “renormalizing” the coupling g2 such that the IR
observables are finite and could in principle be matched with experimental observations. The
renormalized version of this so-called vacuum contribution (the only contribution, that does
not depend on µ and T ) is directly linked to the IC of our FRG-flows, when solving the PDE
(4.21) and ODE (4.42) (numerically), see subsection 4.5.2 and subsection 4.5.2.
For renormalization, we turn to the (µ = 0)- and (β →∞⇔ T → 0)-limit of Eq. (4.43),

U0;vac(σ) ≡ lim
µ,T→0

U0(σ) =
h2σ2

2g2
+
dγ
2π

∫︂ Λ

0

dk
k2√

k2 + h2σ2
, (4.46)

and study the corresponding gap equation

0
!
=

1

h2σ0
∂σU0;vac(σ)

⃓⃓
σ=σ0

=
1

g2
− dγ

2π

∫︂ Λ

0

dk
k2

(k2 + h2σ2
0)

3
2

(4.47a)

=
1

g2
+
dγ
2π

[︃
k√︁

k2 + h2σ2
0

⃓⃓
⃓⃓
Λ

0

−
∫︂ Λ

0

dk
1√︁

k2 + h2σ2
0

]︃
(4.47b)

=
1

g2
+
dγ
2π

[︃[︂
1 +

(︁
hσ0
Λ

)︁2]︂− 1
2 − artanh

(︃[︂
1 +

(︁
hσ0
Λ

)︁2]︂− 1
2

)︃]︃
. (4.47c)

at possible non-trivial minima σ0 ̸= 0, cf. Refs. [171, 190, 505]. Hence, as a first result,
assuming that σ0 is non-zero and finite, we can study the asymptotic behavior of Eq. (4.47) for
Λ ≫ h,

1
g2

=
dγ
2π

[︁
− 1 + 1

2
ln
(︁(︁

2Λ
hσ0

)︁2)︁]︁
+O

(︁(︁
hσ0
Λ

)︁2)︁
. (4.48)

This reflects the asymptotically free behavior of the four-Fermi coupling [169, 177, 178] of the
original Gross-Neveu model (4.1), since

lim
Λ
h→∞

g2 = 0 . (4.49)

Furthermore, we can use (4.48) and solve for σ0,

σ0 = ± 2Λ
h
e
− 4π

dγg2
− 1

2 . (4.50)

Hence, due to the asymptotic free behavior of g2, there isZ2 (discrete chiral) symmetry breaking
via two non-trivial minima for all non-zero g2 in vacuum and for infinite-N – a central result
for the GN model [169].
Furthermore, we can insert the results from the gap equation (4.47) in Eq. (4.44) and solve

for the UV potential

UΛ(σ) =
dγ
4π (hσ)2

[︃
artanh

(︃[︂
1 +

(︁
hσ0
Λ

)︁2]︂− 1
2

)︃
−
[︂
1 +

(︁
hσ0
Λ

)︁2]︂− 1
2

]︃
. (4.51)
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In the limit Λ
h
→ ∞ we approach the Gaussian fixed point (UV fixed point) for the bGN

model (4.8), which becomes clear when considering dimensionless quantities

h̃ = 1
Λ
h , ŨΛ(σ) =

1
Λ2 UΛ(σ) . (4.52)

Both, h̃ and ŨΛ(σ), vanish in the limit Λ
h
→ ∞. This implies – as expected – that the bGN

model (4.8) in vacuum in the infinite-N limit, is also asymptotically free.

Turning now to the IR mean-field potential (4.46) and using the previous results, we find

U0;vac(σ) =
dγ
4π (hσ)2

[︃
artanh

(︃[︂
1 +

(︁
hσ0
Λ

)︁2]︂− 1
2

)︃
−
[︂
1 +

(︁
hσ0
Λ

)︁2]︂− 1
2 −

− artanh

(︃[︂
1 +

(︁
hσ
Λ

)︁2]︂− 1
2

)︃]︃
+

dγ
4π Λ2

√︂
1 +

(︁
hσ
Λ

)︁2
. (4.53)

Considering the first derivative of Eq. (4.53) one can verify 0 = ∂σU0;vac(σ)|σ0 which has to
hold by construction and we note that

∂2σU0;vac(σ)|σ0 =
dγ
2π

Λ3

[Λ2 + (hσ0)2]3/2
h2, (4.54)

which is manifest positive – again consistent with the notion of σ0 as a non-trivial minimum by
construction – and corresponds to the squared curvature mass m2

σ of the σ-mode in vacuum.
Considering the limit Λ

h
→∞ in Eq. (4.53), the divergent contributions of the two artanh

cancel exactly. For the last term, we use

Λ2

√︂
1 +

(︁
hσ
Λ

)︁2
= Λ2 + 1

2
(hσ)2 +O

(︁(︁
hσ
Λ

)︁2)︁
, (4.55)

which results in an unobservable infinite constant and a finite contribution. In total we find
the well-known renormalized vacuum IR effective potential, cf. Refs. [190, 505],

U0;vac(σ) =
dγ
8π (hσ)2

(︁
ln
(︁
hσ
hσ0

)︁2 − 1
)︁
+

dγ
4π Λ2 +O

(︁(︁
hσ
Λ

)︁2)︁
, (4.56)

with its global minimum at ±σ0 and with a corresponding squared curvature mass of
m2
σ =

dγ
2π h

2 , (4.57)

cf. Ref. [169].
Finally, the result (4.56) can be used to also simplify the full IR potential in medium (4.43)

by replacing the vacuum contributions,

U0(σ) =
dγ
8π (hσ)2

(︁[︁
ln
(︁
hσ
hσ0

)︁2]︁− 1
)︁
+

dγ
4π Λ2 +O

(︁(︁
hσ
Λ

)︁2)︁−

− dγ
2π

∫︂ Λ

0

dp
(︁
1
β
ln
[︁
1 + e−β(Ef+µ)

]︁
+ 1

β
ln
[︁
1 + e−β(Ef−µ)

]︁)︁
. (4.58)

For Λ → ∞ we can read off from Eq. (4.56) that the model contains only a single internal
dimensionful parameter, for instance h, because the bosonic field σ is dimensionless and h and
σ only appear in combination. All other dimensionful quantities (µ, T , Λ, U) can be expressed
via this single parameter and results for different specifications of the reference parameter
can be mapped into each other via simple rescaling. A direct consequence is that also the
mean-field phase diagram is unique, as is discussed in the next subsection 4.3.2.
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4.3.2. The mean-field phase diagram in the renormalized limit Λ → ∞

In this subsection we will discuss the mean-field potential U0(σ) of Eq. (4.58) in the limit
Λ→∞. We will compare our analytical results of this subsection with the existing renormalized
mean-field results of specifically Refs. [190, 505] for the Gross-Neveu model at vanishing bare
fermion mass. Of special interest is the phase-diagram (see Figure 1 of Ref. [505] or Fig. 3 of
the preceding publication [190]) and the underlying renormalized grand canonical potential
density, see, e.g., Eq. (4) of Ref. [505]. The results of this section will serve as a reference in
the consistence check of our numerical implementation in subsection 4.5.2.

Consider the mean-field potential U0(σ) of Eq. (4.58) in the renormalized limit Λ→∞,

lim
Λ→∞

U0(σ)− dγ
4π Λ2 =

dγ
8π (hσ)2

(︁
ln
[︁(︁

hσ
hσ0

)︁2]︁− 1
)︁
−

− dγ
4π

∫︂ +∞

−∞
dk
(︁
1
β
ln
[︁
1 + e−β(Ef+µ)

]︁
+ 1

β
ln
[︁
1 + e−β(Ef−µ)

]︁)︁
, (4.59)

where we used the symmetry (k → −k) of the remaining integral. We identify several
noteworthy terms in Eq. (4.59):

• the remaining integral is the canonical one-loop, convergent medium contribution of
fermions in 1+1 dimensions, cf. Eq. (C.56),

• the vacuum contribution carries a, for 1 + 1 dimensions typical [700–702], term propor-
tional to (hσ)2 ln(hσ),

• and we subtracted a (in σ, µ and β) constant but otherwise divergent contribution
proportional Λ2 to perform the limit Λ→∞. In observables this divergent but constant
contribution cancels (since U0(σ) is only defined up to a constant) and therefore it can
be subtracted from U0(σ) without further consequences.

For the following we therefore consider the effective potential

V (µ, T ;σ) ≡ lim
Λ→∞

U0(σ)− dγ
4π Λ2 = 1

4π σ
2
[︂
ln(σ2)− 1

]︂
+ Vf;med(µ, T ;σ) (4.60)

where we used dγ = 2 as well as w.l.o.g. h = 1 and σ0 = 1 and abbreviate the medium
contribution with

Vf;med(µ, T ;σ) ≡ − T
2π

∫︂ +∞

−∞
dk ln

[︁
1 + e−

1
T
(Ef+µ)

]︁
− T

2π

∫︂ +∞

−∞
dk ln

[︁
1 + e−

1
T
(Ef−µ)]︁ . (4.61)

For a given µ and T the physical value of the condensate σ is found by minimization of
V (µ, T ;σ), according to subsection 4.2.1, App. C.1, and especially the discussion surrounding
Eq. (C.15). When evaluated at its global minimum V (µ, T ;σ) is the renormalized grand
canonical potential per spatial volume Ω, cf. Eq. (C.8). The renormalized (FRG) mean-field
result of Eq. (4.60) for V (µ, T ;σ) obtained in the infinite-N limit of the LPA flow equation with
a one-dimensional LPA-optimized regulator (4.42) coincides with the renormalized mean-field
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Figure 4.2.: Phase diagram of the renormalized GN model in the infinite-N limit. The critical
point (red star) separates the second-order phase boundary (red-dashed line) from the first-
order phase boundary (solid green line). The red-dotted line and the green-dotted line are
the left and right spinodal lines. The blue (α4 = 0) and red (α2 = 0) lines are obtained from
the Ginzburg-Landau expansion of subsection 4.3.3. The critical temperature TC is marked on
the T -axis with a red disk, while the end points at µL and µR of the spinodal lines are marked
on the µ-axis with red and green disks respectively. The first-order phase transition at zero
temperature is marked with a green square at µ1. From Fig. 2 of Ref. [4].

results in literature, see, e.g., Refs. [190, 505], and explicitly Eq. (4) of Ref. [505]. In the rest
of this subsection we derive and recapitulate known MF results for the homogeneous phase
diagram of the GN model, see, e.g., Refs. [190, 505].

The phase diagram of figure 4.2 identical to the one presented in Fig. 1 of Ref. [505]. The
first-order phase boundary and the right spinodal have been obtained by explicit numerical
integration [703] and subsequent repeated, local, numerical minimization [704] of the renor-
malized grand canonical potential per spatial volume (4.60) using my C++ code [653]. The
phase boundaries and the spinodal region have been obtainedwith the help of a block-structured
adaptive mesh refinement algorithm, which I implemented for the efficient computation of
phase diagrams and the precise detection of lines of interest, without the need of explicit
bisection. Details can be found in the C++ code [653] and its documentation – including a
very instructive example using the Mandelbrot set – and in my group seminar talk [705].
By construction – due to the renormalization condition of Eq. (4.47) – discrete chiral symmetry

is broken with σ = σ0 = 1 in the vacuum at T = µ = 0. At high chemical potentials and
temperatures the discrete chiral symmetries is restored and therefore σ = 0. At intermediate
temperatures and chemical potentials one observes a first-order phase transition line starting at
zero temperature and non-zero chemical potential µ1 and ending in a critical point at (µCP, TCP).
Above TCP discrete chiral symmetry is restored across a second-order phase transition line
starting at the critical point and ending on the (µ = 0)-axis at a non-zero temperature TC.
The position of the critical point (µCP, TCP) as well as µL, µ1, µR, and TC can be computed

with the help of known functions without the need of numerical minimization of the potential
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V (µ, T ;σ). The determination of the location of the critical point and the value for the critical
temperature will be discussed in the next subsection 4.3.3. We devote the remainder of this
subsection to considerations at zero temperature.
For T → 0 the integral in Vf;med(µ, T ; ∆) can be performed analytically – as discussed in

App. C.5 – with the result

Vf;med(µ, 0;σ) =
1
2π

(︂
σ2 arsinh

[︂√︂(︁
µ
σ

)︁2 − 1
]︂
− µ2

√︂
1−

(︁
σ
µ

)︁2 )︂
Θ
[︁(︁

µ
σ

)︁2 − 1
]︁
, (4.62)

cf. Eq. (C.77), with ∆ ≡ hσ and h = 1 in the present setting. We note Vf;med(0, 0;σ) = 0 as all
vacuum contributions are already integrated out and included in Eq. (4.60). An analysis of
Eq. (4.62) reveals, that the extremum at σ = 0 becomes a local minimum for µ > µL = 1

2
. The

potential has only a trivial minimum at σ = 0 for µ > µR = 1. For µ ∈ [µL, µR] the potential has
three minima (one at σ = 0 and two at σ = ±1) and at µ1 =

1√
2
≃ 0.707107 all local minima

become global minima signaling a first-order phase transition at µ1. The notable chemical
potentials µL, µ1 and µR are marked on the (T = 0)-axis in figure 4.2.

4.3.3. Ginzburg-Landau analysis and Landau’s theory of phase transitions

We will conclude our discussion of the homogeneous phase diagram of the GN model in the
infinite-N limit by considering a Ginzburg–Landau (GL) expansion/analysis of the effective
potential V (µ, T ;σ) of Eq. (4.60). A GL analysis in this context is an expansion of V (µ, T ;σ)
around σ = 0, resulting in a Ginzburg–Landau type theory/potential [706]. Details on such
expansions in the context of theoretical physics can be found in, e.g., Refs. [63, 198, 495, 702,
707–711]. We will use this expansion to comment on first and second-order phase transitions
in the spirit of Landau’s theory of phase transitions [712]. A discussion of the latter in the
context of the zero-dimensional theories of chapter 3 can be fund in App. B of Ref. [1]. We
have decided to not include this part of our studies in zero dimensions in favor of the present
discussion, which is much more illuminating for the applications of this chapter and the next
chapter 5.

For the medium part Vf;med(µ, T ;σ) of Eq. (4.62) a GL analysis is discussed in App. C.4 with
the relevant results in one spatial dimensions listed in App. C.4.1 and specifically Eqs. (C.64)–
(C.67). Note that these results are also included and in fact derived in the digital auxiliary
Mathematica notebook [713], which also includes the code employed in chapter 2 of the
Mathematica notebook [652], used to create the plots and results of this subsection. For the
discussion in this subsection we will adopt the notation of App. C.4 and discuss the effective
potential as a function of the fermion mass term ∆ = σh. For the remainder of this subsection
all dimensionful quantities are assumed to be expressed in multiples of the fermion mass term
in vacuum ∆0 ≡ hσ0 which has dimensions of energy. We consider an expansion up to at most
order six, viz.

V(6)[µ, T ; ∆] =
3∑︂

m=0

α2m(µ, T )∆
2m , (4.63)
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withα2m(µ, T ) = αs=1
2m (µ, T ). For 2m ∈ {0, 4, 6} explicit expressions can be found in Eqs. (C.64),

(C.66), and (C.67). α2(µ, T ) gains a vacuum contribution from Eq. (4.56) additional to the
medium contribution α(s=1)

2 (µ, T ) from Eq. (C.65) and thus reads

α2(µ, T ) = −
1

4π
+

1

2π
ln∆ + α

(s=1)
2 (µ, T ) , (4.64)

where the (ln∆)-term of the vacuum contribution cancels with the potential IR divergence –
in form of exactly such a (ln∆)-term – in α(s=1)

2 (µ, T ).
The expansion (4.63) around σ = 0 can be used to compute the second-order phase-boundary

in terms of known functions including the critical point. The second-order phase transition
between the restored and a broken phase with small σ > 0 occurs at α2 = 0 while α4 > 0. In
the vicinity of a second-order phase transition one finds α2 > 0 and α4 > 0 in the restored
phase while α2 < 0 and α4 > 0 holds in the broken phase in this context. Using Eqs. (4.64)
and (C.65) we find the transition temperature at µ = 0

TC =
eγ

π
≃ 0.566933 . (4.65)

The curvature κ of the second-order phase boundary TC
(︁
µ
T

)︁
= TC

[︁
1− κ

(︁
µ
T

)︁2
+ . . .

]︁
at µ = 0

can be computed using Eq. (C.65) and is given by κ = 7ζ(3)

4π2 ≃ 0.213139. For comparison recall
κ′ = 0.1584(9) from Eq. (2.180) for Nf = 2 QCD.
The critical point is located at the intersection of the α2 = 0 and α4 = 0 lines, see, e.g.,

Refs. [63, 198].
Using Eq. (C.66), we determine µCP

TCP
≃ 1.910669 from the only root z2,1 of DLi2(z) from

Eq. (C.60). Having the ratio µCP
TCP
fixed, we determine

(µCP, TCP) ≃ (0.608221, 0.318329) , (4.66)

using Eq. (4.64). Above TCP we have the second-order phase transition with α4 > 0, while
below TCP we have the spinodal region with α4 < 0 and α6 > 0 in the vicinity of the critical
point. α2 > 0, α4 < 0, and α6 > 0 allows for three local minima in the Ginzburg-Landau
potential (4.63) when considered up to m = 3, which indicates a first-order phase transition
below TCP. At the critical point (α2 = α4 = 0 and α6 > 0) the non-trivial minima from the
(α2 > 0, α4 < 0)-scenario and (α2 < 0, α4 > 0)-scenario merge in σ = 0. The α2 = 0 line
below TCP signals the appearance of a local minimum at σ = 0 and is called the left spinodal
line ending in µL at T = 0, in accordance with the results at T = 0 discussed earlier in the
previous subsection 4.3.2. The α2 = 0 and α4 = 0 lines are displayed in figure 4.2.
Before discussing Landau’s theory of phase transitions in the present context in the next

paragraph, we will comment on the GL expansion up to order m = 3 and the corresponding
results for the first-order phase-boundary and the right spinodal line. In the following discussion
the dimensionless ratio

η2 ≡
α2 α6

α2
4

, (4.67)
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Figure 4.3.: Phase diagram of the renormalized GN model in the infinite-N limit based on the
GL expansion with the right figure (b) being just a zoom-in (marked on the left (a) with a gray
rectangle) around the CP. The black lines are the numerical reference lines from figure 4.2
with the finite resolution of 0.1 · 2−7 = 7.8125 · 10−4 in both µ and T visible on the right.
The GL phase boundaries and lines are marked in the figure caption including their defining
equation in the GL expansion. The transparent purple dots are relevant for the following
discussion of phase transitions.

will be particularly useful. A simple curve discussion of V(6)(µ, T ; ∆) of Eq. (4.63), see sub-
section 5.1 of Ref. [713], reveals a spinodal region for 1 − 3η2 > 0, i.e., V(6) develops five
extrema in ∆. η2 = 1

3
marks the right spinodal line. Further analysis reveals that at η2 = 1

4
the

non-trivial minima at ∆ = ± |α4|
2α6
become global minima, signaling a first-order phase transition

at that point.
We are now in a position to compute the full GL-based phase diagram by means of simple

contour plots [713]. In figure 4.3 we confront the results of the GL expansion with the numerical
results of figure 4.2. Unsurprisingly we find a perfect agreement for the second-order phase
boundary, the left spinodal line, and the critical point, since for those the GL expansion is
perfectly justified. For the first-order phase transition and right spinodal line we find a good
agreement in the immediate vicinity around the critical point and quickly loose predictive
power as we approach µ/T = z4,2 ≃ 4.359, where α6 becomes negative and the expansion
based on V(6) breaks down. It should however be stressed that around the critical point the GL
expansion has booth qualitative and also quantitative power for both first- and second-order
phase transitions.

Landau’s theory of phase transitions
In the following we will discuss second- and first-order phase transitions using the GL effective
potentials to fourth- and sixth-order (V(4)(µ, T ; ∆) and V(6)(µ, T ; ∆)) respectively. This discus-
sion is based on the websites [710, 711], which not only provide an excellent explanation of
Landau’s theory of phase transitions but also interactive tools to study them. We adapted the
discussion of Refs. [710, 711] to the GN model at infinite N . To discuss second-order phase
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Figure 4.4.: V(4)(0, T ; ∆) in (a) and corresponding evolution of its minima in temperature in
(c). V(6)(µ, 0.25;∆) in (b) and corresponding evolution of its minima in chemical potential in
(d). The extrema of the potentials are marked as dots in (a) and (b). The colors change from
lower temperatures/chemical potentials in blue to higher ones in red.

transitions we follow the phase diagram at µ = 0 across the second-order phase transition.
To discuss first-order phase transitions we track through the spinodal region at a constant
temperature T = 0.25. The respective relevant points for the following discussion are marked
in figure 4.3 in purple.
In figures 4.4a and 4.4c we can observe symmetry restoration across a second-order phase

transition, where the order parameter changes smoothly from ∆2 > 0 to ∆2 = 0. As we
approach TC from below, the non-trivial minima located at ∆2 = − α2

2α4
(note that α2 < 0 in

the broken phase) melt away, i.e., they continuously merge into ∆ = 0 as we approach α2 = 0
at the second-order phase boundary.
In figures 4.4b and 4.4d we can observe symmetry restoration across a first-order phase

transition, where the order parameter changes discontinuously from ∆2 > 0 to ∆2 = 0. The
spinodal region, where five extrema and three minima coexist, is clearly visible in figure 4.4b.
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Figure 4.5.: Landau free energy density f , the entropy density s, and volumetric heat capacity
cv across the second-order (first-order) phase transition in (a), (c), and (e) ((b), (d), and (f))
respectively plotted over temperature T at µ = 0 (chemical potential µ at T = 0.25).

At the first-order phase boundary the three minima (at ∆ = 0 and ∆ = ± |α4|
2α6
) become

degenerate and a discontinuous jump in ∆ from the broken to the restored phase takes place.

This dynamics in the effective potential also imprints itself into thermodynamic observables.
Using the expressions provided in App. C.1, i.e., Eqs. (C.9), (C.11), and (C.12), we can compute
the Landau free energy density f , the entropy density s, and the mean quark number density
n with

f = V (µ, T ; ∆min) , s = −
(︃
∂f

∂T

)︃

µ

, n = −
(︃
∂f

∂µ

)︃

T

. (4.68)

Additionally we consider the first moments of entropy and mean quark number-density, viz.
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Figure 4.6.: Mean quark number-density n and quark number susceptibility χq across the
second-order (first-order) phase transition in (a) and (c) ((b) and (d)) respectively plotted
over temperature T at µ = 0 (chemical potential µ at T = 0.25). Note that χq is not the slope
of n in the T direction but in µ direction.

the volumetric heat capacity73 cv and quark number susceptibility χq with

cv = T

(︃
∂s

∂T

)︃

µ

, χq =

(︃
∂n

∂µ

)︃

T

. (4.69)

Note that the absolute value of the Landau free energy density f computed with Eq. (4.63)
is not meaning full since we have not subtracted/accounted for the vacuum contribution, cf.
Eq. (C.14). This is simply not possible using just the GL expansion, since the vacuum is too
far out of the range of validity of the expansion for a meaningful subtraction in the sense of
Eq. (C.14). That being said, the changes/differences in f(µ, T ) and the derived quantities are
meaningful.
We plotted the aforementioned thermodynamic quantities in figures 4.5 and 4.6 across the

second- and first-order phase transition. The Landau free energy stays constant at the phase

73Strictly speaking the expression (4.69) for the volumetric heat capacity is incomplete, see footnote 38 and
Eq. (4.97) of Ref. [59] for details (I thank Michael Buballa for pointing this out – who in turn thanks Igor
Shovkovy, who alerted him to this subtlety some time ago). The physical volumetric heat capacity is defined as
the temperature dependence of the internal energy, cf. Eq. (C.13), at fixed spatial volume and fixed particle
number. In the expression (4.69) we evaluate at fixed spatial volume and fixed chemical potential – not at fixed
particle number. When working with the chemical potential the expression (4.69) would have to include a
correction

(︂
∂2f
∂µ2

)︂−1(︂
∂2f

∂T∂µ

)︂2
to be equivalent to the physical volumetric heat capacity. This subtlety/correction

has no impact on the brief discussion of cv in this subsection.
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Figure 4.7.: Phase diagram in the n-T -plane of the renormalized GN model in the infinite-N
limit based on the GL expansion. With BP marking the symmetry-broken phase, SP marking
the symmetry-restored phase, and C marking the region of phase coexistence associated with
the first-order phase transition. Note that we have plotted only down to T = 0.25 since the GL
expansion only gives meaningful results for the first-order phase transition in the vicinity of
the critical point, cf. figure 4.3b for a detailed plot of the analogous situation in the µ-T -plane.

transitions, cf. figures 4.5a and 4.5b, since the point at which the phase transitions occur is
given by the point at which the energies of the trivial and non-trivial minima are degenerate.
The entropy and number density across the second-order phase transition remain constant,

cf. figures 4.5c and 4.6a. The first discontinuity of thermodynamic variables manifests in the
volumetric heat capacity, cf. figure 4.5e. This is consistent with the Ehrenfest classification of
phase transitions [571].
For the first-order phase transition on the other hand, discontinuities arise already in first

derivatives, viz. in the entropy and number density, cf. figures 4.5d and 4.6b, again in accordance
with the Ehrenfest classification. This particular first-order phase transition has a latent heat per
unit volume of L = T∆s ≃ 7.2 · 10−3. The discontinuities in entropy and number density are
clear signals for a disorder-broadened first-order transition exhibiting phase coexistence. Wewill
close this subsection with figure 4.7 – the phase diagram in the n-T -plane of the renormalized
GN model in the infinite-N limit based on the GL expansion. The phase coexistence region
below the critical point is clearly visible.

4.4. Infinite-N analysis of inhomogeneous phases

This section follows in large parts the discussion presented in Ref. [5]. The plots of Ref. [5]
were produced by L. Pannullo.
The following introduction of this section is based on Sec. I of Ref. [5].
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In this section we examine and cross-check the functionality of a stability analysis [5, 80, 87,
180, 182, 193–208] of a spatially homogeneous ground state and the closely related generalized
Ginzburg-Landau (gGL) analysis [197, 493, 495, 526, 527], cf. our introductory remarks of
subsection 2.4.1. Both present as very appealing indirect methods to study inhomogeneous
phases without the need to explicitly compute with inhomogeneous condensates, thus avoiding
the related major technical challenges commented on in subsection 2.4.1.
Arguably the most prominent examples for spatially inhomogeneous condensation in rel-

ativistic QFTs are observed in 1+1 dimensions. In the (1+1)-dimensional GN model in MF
spatially oscillating condensates have been proven to be the true absolute ground states in some
regions of the phase diagram [180, 181, 500–505], as already mentioned in our introduction
of literature results in subsection 2.4.2. In this section we will examine the results, shown and
discussed around figure 2.15a in detail. In the (1+1)-dimensional GN model at infinite N the
exact spatial modulation of the inhomogeneous condensate was derived analytically in terms
of known functions [181, 504] deploying in parts semi-analytic techniques of supersymmetric
quantum mechanics [496, 499]. Also more involved (1+1)-dimensional models with more
complicated symmetry breaking patterns exhibit an inhomogeneous phase (IP) [201, 497, 498,
506, 507]. For a general review regarding IPs in the context of high-energy physics, we refer
again to Ref. [63] and our overview in the introduction of section 2.4.
In subsection 2.4.1 we commented on the various direct and indirect methods to study

inhomogeneous phases. The stability analysis and the closely related gGL analysis as indirect
methods are based on the idea to determine the ground state assuming a spatially homogeneous
condensate and to study position-dependent perturbations of this state in a second step. Hence,
one expands the full quantum effective action in the IR in powers of the perturbation in a
functional series. By inspecting the two-point function, which is basically the curvature of the
action at its homogeneous minimum (the homogeneous ground state), one can classify stable
and unstable directions in field space from the sign of the two-point function. Thus, one is
performing a functional curve sketching and searches for expansion points that are saddle-
points of the action. A non-trivial minimum of the two-point function at non-zero external
spatial momentum q signals the instability of the homogeneous phase against inhomogeneous
condensation, since the ground state energy can be lowered by forming an inhomogeneous
condensate with relative momentum q.
This relatively simple concept allows to examine a sufficient, but not necessary condition for

an IP, i.e., if the homogeneous ground state is unstable w.r.t. inhomogeneous perturbations, the
ground state must be inhomogeneous. In simple terms, stability of the homogeneous condensate
can be found, but the true global minimum of the action can still be an inhomogeneous
field configuration located outside the range of validity of the stability analysis around the
homogeneous ground state – which is of course a limitation of this approach. We discuss this
limitation at length in subsubsection 4.4.2.2.
The gGL analysis can be seen as a variant of the stability analysis since it is basically an

expansion of the stability analysis in powers of the homogeneous condensate and external
momentum q. It manifests as a gradient expansion of the effective action and as such is more
limited when it comes to qualitative and especially quantitative predictive power as we will
discuss in subsection 4.4.3.
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Howsoever, the great advantage of theses techniques is, that they are basically applicable
to all kinds of models and theories. They work independent of the technical method and
approximation that is used to compute the underlying “expansion coefficients”.
For example, the stability analysis has been applied in mean-field studies of a broad range

of models but is also used in FRG calculations or in the context of lattice field theory. There
are multiple studies, see, e.g., Refs. [87, 182, 193, 194, 198, 200, 202, 203, 205, 495, 526],
which are based on a stability analysis or directly related approaches.
To the best of our knowledge, there has not been a significant attempt to discuss the limitations

and successes of these method in great detail using a fully-understood/solved model, where
the exact solution is well-known. Hence, our goal is to revisit the (1+1)-dimensional GN model,
as it has been solved analytically in Refs. [181, 504] with an exact solution for the ground
state for all temperatures T and chemical potentials µ, and extend earlier “stability analyses”74
within this and closely related models [180, 195, 196, 201] and the gGL analysis put forward in
Ref. [495]. In this sense the present discussion is in the spirit of chapter 3: we again use exact
reference values (now be it much more involved ones than just mere integrals) to rigorously
test and evaluate computational methods (now the stability and gGL analysis instead of the
FRG in a CFD formulation).
At this point we emphasize that the work discussed in this section is explicitly not about

groundbreaking new results or a concept that is original to this work. It is merely a recapitulation
and combination of existing literature results in a form that is meant to allow for a keener
insight into the quantitative and qualitative predictive power of the stability analysis and
related gGL analysis as indirect methods to study inhomogeneous condensates.

This section is structured as follows: In subsection 4.4.1, we briefly recapitulate the phe-
nomenology of the GN model in the infinite-N limit, viz. its inhomogeneous phase diagram at
(non-)zero baryon densities and (non-)zero temperature.
In subsection 4.4.2 we discuss the stability analysis. First we introduce the formalism for the

stability analysis of bosonic two-point functions w.r.t. inhomogeneous perturbations. After this
technical introduction we discuss explicit results for the renormalized GN model at infinite N
in the subsequent subsubsections. In subsubsection 4.4.2.1 we discuss numerical results for the
two-point function. The results for the detection of inhomogeneous condensation in the phase
diagram via the stability analysis are presented and compared to the analytical solution of the
model in subsubsection 4.4.2.2. In two additional subsections, namely subsubsections 4.4.2.3
and 4.4.2.4, we compare the dominant mode of the exact inhomogeneous condensate with the
dominant wave vector from the stability analysis and further comment on the values of the
bosonic wave-function renormalization and its implications.
In subsection 4.4.3 we confront the results obtained with a gGL analysis [495] with the

analytical solution of the model.

74In these works the term “almost degenerate perturbation theory (ADPT)” is used instead of “stability analysis”.
However, the approach is quite similar.
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4.4.1. The inhomogeneous phase diagram of the Gross-Neveu model

The inhomogeneous phase diagram of the GN model for N →∞ is well-known, which makes
it an ideal testing ground for methods in QFTs. Therefore, we will briefly summarize the
established phenomenology of the GN in the µ-T -plane as benchmark and reference values.
For related (and more comprehensive) discussions and original works of the rich large-N

phenomenology and physics of the GN model we refer to Refs. [170–174, 179–183, 185–192,
194–197, 497, 498, 500–506, 621, 662, 670, 672, 683, 684, 693–695, 709, 714–730].
Enforcing the ground state (the ⟨ ˜̄ψψ̃⟩-condensate) of the auxiliary field to be constant (homo-

geneous) in space-time, thus σ(x) = σ̄ = const., we are in the setting of the previous section 4.3,
where we discussed the homogeneous phase diagram 4.2 at length in subsection 4.3.2. We
recall the following findings in the language and notation75 used in this section: We find a homo-
geneously broken phase (HBP) with a condensate Σ̄(µ, T ) ̸= 0 (broken Z2 symmetry) at small
µ and T and the symmetric phase (SP) with Σ̄(µ, T ) = 0 with restored Z2 symmetry in the rest
of the µ-T -plane. The phase transition is of second-order at (µ, Tc)/Σ̄0 = (0, eγ/π) ≃ (0, 0.567)
and ranges from µ = 0 to the critical point (CP) at (µCP, TCP)/Σ̄0 ≃ (0.608, 0.318). At this
point the phase transition becomes first-order and continues to lower temperatures until it
finally terminates at (µc,hom, T )/Σ̄0 = (1/

√
2, 0.0) ≃ (0.707, 0.0).

75In this subsection we denote the homogeneous condensate/fermion mass with Σ̄(µ, T ) ≡ σ(µ, T )h ≡ ∆(µ, T )
with its value in vacuum Σ̄0 ≡ Σ̄(0, 0) ≡ σ(0, 0)h ≡ σ0h ≡ ∆0. At this point I have to apologize for the wealth
of different – but at least not contradictory – notations for the same quantities in this part of my thesis. Since
this chapter is based on published results [4, 5] involving different collaborators, the notations of Refs. [4,
5] are slightly different. Unifying the notations would require changing the plot labels and legends, which I
deemed too time consuming and cumbersome when it comes to referencing the figure sources.
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Relaxing the restrictive assumption of homogeneous condensation and allowing for a spatially
varying background field φ = ∼φ = σ(x), a modified phase diagram is obtained. Here, one finds
an inhomogeneous phase (IP) where the ground state Σ(µ, T ) = Σ(µ, T, x) is an oscillating
function in space. This phase emerges for temperatures T < TL ≃ 0.318 Σ̄0 and moderate
chemical potentials µ > µL ≃ 0.608 Σ̄0 and grows in µ-direction for decreasing temperature,
cf. figure 4.8 and Refs. [180, 181, 501, 502, 504, 505]. The former homogeneous first-order
phase boundary is completely engulfed by the IP. The novel phase transition between the
IP and the HBP is of second-order and ranges from (µc, T )/Σ̄0 = (2/π, 0.0) ≃ (0.637, 0.0) to a
Lifshitz point (LP) which is located at the position (µL, TL)/Σ̄0 ≃ (0.608, 0.318) of the former
CP. At the LP three phases – a homogeneously broken, an inhomogeneously broken, and a
restored phase – meet.
At the HBP↔ IP phase boundary, the phase transition is not linked to the Z2 symmetry

breaking/restoration, but rather to the breaking/restoration of spatial translational invariance,
because discrete chiral symmetry is always (periodically) broken by the condensate. The other
phase boundary from the IP to the SP is also of second-order and thus all phase boundaries of
the correct/revised mean-field phase diagram correspond to second-order phase transitions.
Crossing the SP↔ IP phase boundary the discrete chiral symmetry as well as spatial translational
invariance are broken/restored. This crucial difference between discrete chiral symmetry and
translational invariance breaking/restoration is of great importance for the remainder of this
work and the limitations of the stability analysis.
The spatially inhomogeneous chiral condensate in the IP is described by Jacobi elliptic

functions76

Σ =M0

√
ν sn(M0x, ν) , (4.70)

and for increasing chemical potential

• its shape evolves from a kink-antikink shape (ν → 1) to a sine-like shape (ν → 0),

• its amplitudeM0

√
ν decreases – mainly due to the aforementioned decrease of ν,

• its wave vector q = 2π
M0K(ν)

increases,

as shown in figure 4.9 for zero temperature, see also Refs. [181, 504]. The general behavior of
the condensate is very similar at non-zero temperature, see Ref. [181] for details.

4.4.2. Stability analysis of the spatially homogeneous Z2-symmetric phase

This subsection is based on Sec. II.D of Ref. [5]. The four included subsubsections closely
follow the discussions of Secs. III.A–D of Ref. [5].
The numerical results for the stability analysis in the µ-T -plane, cf. figures 4.16

and 4.18, were obtained with my C++ code [653], computing 49875 points in the µ-T -
plane in about two hours CPU time on an AMD Ryzen© 9 3900X processor (14 minutes
wall time on 12 cores). The references values discussed in subsection 4.4.1, see also
figure 4.8, were computed by L. Pannullo in a few hours of wall time.

76For definitions, properties, and relations of the involved Jacobi elliptic functions, see, e.g., Chap. 22 of Ref. [302].
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In this subsection we turn to the theoretical considerations behind the stability analysis to
detect spatially inhomogeneous phases and discuss numerical results in the following subsub-
sections 4.4.2.1–4.4.2.4, where we confront the results obtained from the stability analysis with
the reference values discussed in subsection 4.4.1. The following discussion is in parts based
on Ref. [651], but similar discussions can be found in Refs. [193, 198, 199, 202]. We further
deviate a bit from the presentation chosen in Ref. [5], since we consider a computation of the
homogeneous effective potential and the bosonic two-point function using the FRG framework.

In order to relax the assumption of spatially homogeneous condensation and to search for a
spatially IP, one has to find the global x-dependent minima Σ(µ, T, x) of the functional Γ[σ(x)]
for all possible field configurations σ(x). Generically – as was already discussed in section 2.4 –
this is an extremely challenging task, both analytically and numerically.
Due to these challenges, the idea of an indirect detection of inhomogeneous condensation

arose, which is based on analyzing the stability of the spatially homogeneous ground state
against inhomogeneous perturbations. This was already discussed and/or applied in various
contexts [80, 198, 200, 202, 204] and to some extent also in the context of the (chiral) GN
model [180, 201]. The proposed approach allows to search for a sufficient condition for an IP,
i.e., if Σ̄(µ, T ) is unstable against spatially inhomogeneous perturbation, the true ground state
has to be inhomogeneous. In general, Σ̄(µ, T ) could, however, be stable against inhomogeneous
perturbations, but by a functional minimization of Γ[σ(x)] one may still find an inhomogeneous
ground state. In this scenario the local, homogeneous and the global, inhomogeneous minimum
are separated by a “potential barrier”, which prevents a stability analysis and calls for global
minimization approaches. This implies that the stability analysis is expected to work properly
in the vicinity of second-order phase boundaries between homogeneous and inhomogeneous
phases. Nonetheless, this model and approximation independent method is still a powerful tool
for the search of exotic phases of matter. Note that the construction/expansion is technically
not limited to the trivial homogeneous minimum Σ̄(µ, T ) = 0.

On a formal level the stability analysis is based on a functional (Taylor) expansion of the
effective action Γ[σ] about a spatially homogeneous background field σ̄ in powers of an in-
homogeneous perturbation δσ(x). A spatially homogeneous ground state is considered to be
unstable, if the second-order coefficient of this expansion exhibits some unstable direction in
field space, if it is evaluated on the spatially homogeneous minimum Σ̄(µ, T ). Note that the
first-order coefficient in this expansion vanishes due to the QEOM Eq. (2.20) when evaluated on
the IR minimum Σ̄(µ, T ). On a mean-field/large-N level this is encoded by the homogeneous
gap Eq. (4.47).
The second-order Taylor coefficient is the bosonic two-point function Γ(2), which is analyzed

in momentum space. An unstable direction in field space corresponds to a negative value Γ(2)

for external spatial momentum q, which can be associated to the wave vector of a spatially
oscillating energetically preferred ground state. This implies a lower ground state energy for
the inhomogeneous phase when compared to the homogeneous one assuming the higher-
order contributions of the expansion beyond the second-order are either positive or negligible.
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Whether or not this assumptions are met depends on the model, the expansion point and the
magnitude of the inhomogeneous oscillations as we will discuss in detail in the following.
Hence, the stability analysis corresponds to searching for a sign change in Γ(2) at some external
momentum q in the µ-T -plane.
Ref. [5] includes a derivation of this two-point function and the corresponding expansion

of Γ[σ] in a conventional mean-field/large-N setting [193, 198, 199, 202] using the effective
classical action Seff[σ]. For details using this approach we refer to the corresponding discussion
in Sec. II.D of Ref. [5]. We are in this work in the comfortable position that we have the FRG at
our disposal which allows us to compute n-point functions – including the bosonic two-point
function required for the following discussion. We have introduced the flow equations for
higher-order n-point functions in subsection 2.1.5 and have already encountered flow equations
for two-point functions in the context of our zero-dimensional SU(2)model, cf. subsection 3.3.2.
Details for the computation of the bosonic two-point function in the limit N →∞ can be found
in App. E.3. It should also be noted that in the renormalized limit Λ→∞ results of (fermionic)
one-loop computations are in general completely regularization-scheme-independent. At this
point we just want to give the result of the computations outlined in App. E.3, viz. the bosonic
two-point function for the GN model in the renormalized limit at infinite N :

Γ(2)(σ̄, µ, T, q) = 1
2π ln

(︂ σ̄2

Σ̄2
0

)︂
− ℓ2(σ̄, µ, T, q)+

+
1

π

∫︂ ∞

0

dp
1

Ep
(nf(β[Ep + µ]) + nf(β[Ep − µ])) , (4.71)

with the energies Ep =
√︁
p2 + σ̄2 and the integral

ℓ2(σ̄, µ, T, q) = −
(︂q2
2

+ σ̄2
)︂ 2

π

∫︂ ∞

0

dp
1

Ep

(︂ 1

E2
p+q − E2

p

+
1

E2
p−q − E2

p

)︂
×

×
(︂
1− nf(β[Ep + µ])− nf(β[Ep − µ])

)︂
. (4.72)

The result Eq. (4.71) can be further simplified, if at least one of the four arguments σ̄, µ, T ,
or q is zero. All possible cases and the respective simplifications of Γ(2) are listed in Tab. I of
Ref. [5] with corresponding symbolic expressions in App. A of Ref. [5]. A detailed derivation
and discussion of the different cases is presented in Ref. [165].
Negative values of Γ(2)(Σ̄(µ, T ), µ, T, q) indicate an instability of the homogeneous minimum

Σ̄(µ, T ) w.r.t. inhomogeneous perturbations of momentum q. Consequently, the two-point
function can be used to search for inhomogeneous ground states for arbitrary µ and T . This
can be done by analyzing Γ(2)(Σ̄(µ, T ), µ, T, q) as a function of q for each point (µ, T ) in the
phase diagram. In practice one searches for regions where Γ(2)(q) is negative.

The wave-function renormalization
In the past it was speculated, if itmight be sufficient to study the curvature ofΓ(2)(Σ̄(µ, T ), µ, T, q)
at q = 0, i.e., the second-order coefficient of a Taylor expansion of the two-point function in
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momentum space about q = 0, viz. the wave-function renormalization,

Z(σ̄, µ, T ) ≡ 1

2

d2

dq2
Γ(2)(σ̄, µ, T, q)

⃓⃓
⃓
q=0

. (4.73)

It was speculated that a negative bosonic wave-function renormalization might be sufficient to
destabilize spatially homogeneous ground states and to energetically favor gradients in the
spatial profile of the ground state over a spatially uniform ground state field configuration.
As pointed out, e.g., in Refs. [80, 510], a negative wave-function renormalization is only

indicative towards the possibility for spatial modulations of the ground state. It is not a sufficient
or even necessary criterion, because higher-order momentum-dependencies of the bosonic two-
point function might again disfavor spatially inhomogeneous condensation over homogeneous
condensation. Consequently, a study of the full momentum structure of the two-point function
is necessary.
Nevertheless, the wave-function renormalization is still an extremely important quantity,

as it directly enters the dispersion relations [731, 732], see also our discussion in subsec-
tion 4.2.1. Explicit expressions for Z(σ̄, µ, T ), where σ̄, µ, and T take either non-vanishing
or vanishing values, can be found in App. B of Ref. [5] with an overview in table II of the
aforementioned publication. The physically relevant wave-function renormalization is again
obtained, if Eq. (4.73) is ultimately evaluated at the homogeneous ground state σ̄ = Σ(µ, T ).
Finally, we turn to the actual results and the promised proof of concept. We start in subsub-

section 4.4.2.1 by presenting the q-dependence of the bosonic two-point function at various
points in the µ-T -plane. The discussion of this momentum structure provides deeper insights
in the (physical pairing) mechanisms and the operating principle behind the stability analysis.
Furthermore, we come back to these results, when we comment on recent calculations in the
GN model beyond the mean-field approximation [519–522] including implications for our
research in the next section 4.5. Based on the analysis in subsubsection 4.4.2.1 the actual
stability analysis of the homogeneous phase in the µ-T -plane can be performed and results
are presented in subsubsection 4.4.2.2. Here, we demonstrate that this method is actually
able to detect the well-known second-order phase-transition line between the IP and the SP,
but also comment on its shortcomings. Afterwards in subsubsection 4.4.2.3, the momentum
profile of the bosonic two-point function, i.e., the dominant wave vector, is compared with
the analytic solutions (4.70) from Ref. [181]. Finally, we close the discussion of our results
by presenting results for bosonic wave-function renormalization in the µ-T -plane in subsub-
section 4.4.2.4. We again comment on the insufficiency of the wave-function renormalization
as a single measure for the detection of spatially inhomogeneous condensates. Furthermore,
we discuss possible implications on the quality of the mean-field approximation based on our
quantitative calculations.

4.4.2.1. The momentum structure of the bosonic two-point function

The entire idea of the stability analysis is based on the momentum structure/dispersion of the
bosonic two-point function (4.71). Therefore, this subsubsection contains a detailed discussion
of the various possible shapes of Γ(2), which occur in the GN model at different points (µ, T ) in
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Figure 4.10.: The bosonic two-point func-
tion Γ(2)(σ̄, µ, T, q) as a function of the
external momentum q at vanishing chem-
ical potential µ = 0 and fixed tempera-
tures T/Σ̄0 ∈ {0.0, 0.3, eγ/π, 1.0} evaluated
at the respective homogeneous minimum
σ̄ = Σ̄(µ, T ). From Fig. 3 of Ref. [5].

0.0 0.5 1.0 2µ 1.5 2.0 2.5 3.0

q

−0.2

0.0

0.2

0.4

Γ
(
2
)

Figure 4.11.: The bosonic two-point func-
tion Γ(2)(σ̄, µ, T, q) as a function of the ex-
ternal momentum q at constant chemical po-
tential µ/Σ̄0 = 0.6 and vanishing temperature
T = 0 evaluated at the homogeneous global
minimum σ̄ = Σ̄(µ, 0) ̸= 0 and the homoge-
neous local minimum σ̄ = 0. The unphysi-
cal red curve (stemming from an evaluation
away from the homogeneous ground state,
viz. σ̄ = 0) has a pole at q = 2µ. From Fig. 4
of Ref. [5].

the phase diagram. Our discussion is based on figures 4.10–4.13 and 4.15, which were directly
produced by (numeric) evaluation of Eq. (4.71) or its simplified versions, see Tab. I and App. A
of Ref. [5]. If needed, the corresponding spatially homogeneous ground state Σ̄(µ, T ) was
determined (numerically) by minimization of Eq. (4.59).

We begin our discussion at vanishing chemical potential µ = 0. The corresponding plots for
Γ(2)(Σ̄(0, T ), 0, T, q) are presented in figure 4.10. One finds that the bosonic two-point function
is always positive and convex for all external momenta at µ = 0. This is the case for zero and
non-zero temperature, in the Z2 symmetry broken and symmetric phase respectively. Conse-
quently, the spatially homogeneous minimum is stable against inhomogeneous perturbations.
Furthermore, this might also imply that a low order derivative expansion of the bosonic effective
action, e.g., in the context of the following computation at finite N in section 4.5, should be a
decent approximation and capture the relevant momentum-dependencies. Additionally, this
confirms that it is unlikely to generate crystalline like ground states at zero density. Only at the
phase transition at T/Σ̄0 = eγ/π the curve for Γ(2) has a single root at q = 0, which is expected,
since the bosonic curvature mass vanishes at this phase transition [180, 184, 186, 733].

Next, figure 4.11 is discussed, where we plot Γ(2)(σ̄, µ, T, q) at constant chemical potential
µ/Σ̄0 = 0.6 and vanishing temperature T = 0 for two evaluation points σ̄ in the constant back-
ground field space. As can be seen from figure 4.8 this µ-T -point lies in the HBP implying that
the true homogeneous ground state has Σ̄(µ, 0) ̸= 0. The two curves in figure 4.11 show that
it is crucial to evaluate Γ(2)(σ̄, µ, T, q) at the correct homogeneous minimum σ̄ = Σ̄(µ, 0) ̸= 0
as the evaluation at σ̄ = 0 leads to negative values of Γ(2) giving a false signal of instability.
This seems somewhat obvious, especially for the rather simple GN model in mean-field approx-
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Figure 4.12.: The bosonic two-point func-
tion Γ(2)(σ̄, µ, T, q) as a function of the ex-
ternal momentum q at constant chemical
potential µ/Σ̄0 = 0.75 and fixed tempera-
tures T/Σ̄0 ∈ {0.0, 0.05, 0.2, 0.3, 0.5} evalu-
ated at the respective homogeneous minimum
σ̄ = Σ̄(µ, T ) = 0. The curve for T = 0.0 has a
pole at q = 2µ, cf. Eq. (A15) of Ref. [5]. From
Fig. 5 of Ref. [5].
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Figure 4.13.: The bosonic two-point func-
tion Γ(2)(σ̄, µ, T, q) as a function of the ex-
ternal momentum q at constant tempera-
ture T/Σ̄0 = 0.15 and fixed chemical poten-
tials µ/Σ̄0 ∈ {0.0, 0.6, 0.8, 1.0, 1.2} evaluated
at the respective homogeneous minimum
σ̄ = Σ̄(µ, T ). From Fig. 6 of Ref. [5].

imation. However, for example in more involved FRG model calculations as in Refs. [87, 96,
105–108, 150, 151, 162, 231, 734] and especially for advanced truncations, it is sometimes
not obvious to determine the correct evaluation point in field space for correlation functions –
at least during the RG flow.

After covering the simple scenarios, we turn to figure 4.12, where we plot the behavior of
Γ(2) for different temperatures but constant chemical potential µ/Σ̄0 = 0.75. As discussed in
subsection 4.4.1 and figure 4.8, these µ-T -points are located in the SP and in the IP, such
that the correct evaluation point in background field space is always the trivial homogeneous
minimum σ̄ = Σ̄(µ, T ) = 0. As expected we find a manifestly positive and convex Γ(2) at
high temperatures, where thermal fluctuations are likely to vaporize any kind of crystal like
structures and condensates, because the temperature T and not the chemical potential µ is the
dominating external energy scale. On the other hand, for moderate temperatures one finds
that Γ(2) develops a non-trivial minimum at some non-zero q, which indicates that the energy
scale set by µ gains in importance. However, this non-trivial minimum does not destabilize
the spatially homogeneous ground state if Γ(2) stays manifestly positive. Only below a certain
threshold for the temperature (here T/Σ̄0 ≈ 0.2), where the minimum of Γ(2) turns negative,
an instability is observed implying a breaking of the Z2 symmetry and translational invariance
by some lower lying ground state Σ(µ, T, x). Exactly at the temperature threshold the new
x-dependent ground state Σ(µ, T, x) is anticipated to exhibit a single wave vector Q, namely
the single touching root of Γ(2). The latter is equal to the minimum of the two-point function.
This is discussed in detail in subsubsection 4.4.2.3. In the following, Q generically denotes the
location of the minimum of Γ(2) in q-direction, i.e.,

Q ≡ argminq Γ
(2)(Σ̄(µ, T ), µ, T, q) . (4.74)
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Further decreasing the temperature, we observe in figure 4.12 that the q-range where Γ(2)

is negative initially grows. Additionally, the minimum of Γ(2) gets more and more negative
and ultimately turns into a pole at q = 2µ for T = 0. The roots of Γ(2) which are poles of the
propagator 1/Γ(2) signal a resonance in the respective anti-fermion-fermion two-point function
⟨ψ̄ ψ⟩. This resonance is associated with an anti-fermion-fermion bound state in which an anti-
fermion and a fermion of opposite chirality are paired with a non-zero total momentum forming
an inhomogeneous chiral condensate. More details and qualitative as well as quantitative
discussions of this pairing mechanism can be found in Refs. [63, 735, 736]. The preferred
momenta for the anti-fermion-fermion pairs are from the momentum range of negative Γ(2)(q)
with the dominant frequency Q typically associated with the minimum of Γ(2), see Eq. (4.74).
The dominant frequency of Q ∼ 2µ at low and especially zero temperature is typical for such
inhomogeneous condensates as the anti-fermion-fermion pairs are formed in vicinity of the
Fermi surface [63, 735, 736]. Apart from the identification of the dominant frequency Q the
course of Γ(2)(q) for Γ(2) < 0 between the roots (including the pole at q = 2µ for T = 0) is
not very instructive because the employed stability analysis using a homogeneous expansion
point is incapable of capturing the full physics of the inhomogeneous chiral condensate in
this momentum regime. A notable exception occurs when we have a single touching root, in
figure 4.12 the case for T ≈ 0.2, signaling the onset of instability of the homogeneous phase
in favor of an inhomogeneous phase with an explicit single momentum mode Q instead of a
spectrum. We will discuss this further in the following subsubsection 4.4.2.2.

Lastly, figure 4.13 is considered, where again Γ(2) is presented at different points in the phase
diagram. In contrast to the previous discussion, we do not vary the temperature at constant
chemical potential, but fix T/Σ̄0 = 0.15 and study curves at various chemical potentials. As
can be seen from figure 4.8 the slice through the phase diagram at T/Σ̄0 = 0.15 is chosen,
because of its rich phenomenology at different µ. Starting from zero density at µ = 0, a
convex and manifestly positive function course of Γ(2) is observed. Increasing µ the bosonic
curvature mass (the value of Γ(2) at q = 0) is lowered, but Γ(2) stays convex. As soon as
one leaves the HBP and crosses the first-order phase boundary to the Z2-symmetric phase
(for spatially homogeneous condensates), cf. figure 4.8, Γ(2) immediately develops a non-
trivial negative minimum (for µ/Σ̄0 = 0.8 at q/Σ̄0 ≈ 1.6 in figure 4.13), which indicates that
spatially inhomogeneous condensation is energetically favorable and µ completely dominates
the dynamics as an external energy scale, i.e., one enters the IP. However, further increasing
µ at non-zero T ultimately shifts the Γ(2)-profile to larger values, such that at µ/Σ̄0 ≈ 1.0
the minimal value of Γ(2) turns positive again, see figure 4.13. This means that by further
increasing µ we again cross a phase transition line and enter ultimately the Z2-symmetric and
translation invariant phase.
At this point we remark, that the q-profiles for Γ(2) in figures 4.10–4.13 are very similar to

courses of Γ(2) that were sketched in Fig. 5 of Ref. [510] or the ones calculated and displayed
in different contexts in Fig. 5 of Ref. [87], Fig. 2 of Ref. [198], and Fig. 8 of Ref. [193].

We conclude this subsubsection with a discussion of a shortcoming of the stability analysis.
To do so, a point in the phase diagram is studied that is located extremely close to the first-order
phase transition line in figure 4.8, but still only just corresponds to the HBP, if only spatially
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Figure 4.14.: The homogeneous effective
potential Ū(σ̄, µ, T ) as a function of the ho-
mogeneous background field σ̄ at constant
temperature T/Σ̄0 = 0.1 and fixed chemical
potentials µ/Σ̄0 ∈ {0.67, µc,hom(T )}, where
µc,hom(T ) ≈ 0.686 is the critical chemical po-
tential of the homogeneous phase transition
at this temperature. From Fig. 7 of Ref. [5].
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Figure 4.15.: The bosonic two-point function
Γ(2)(σ̄, µ, T, q) in the σ̄-q-plane for the point
(µ, T )/Σ̄0 = (0.67, 0.1) in the phase diagram.
The solid black line marks the non-trivial min-
ima. From Fig. 8 of Ref. [5].

homogeneous condensation is considered. At (µ, T )/Σ̄0 = (0.67, 0.1) the correct homogeneous
minimum of the effective potential Ū is located at σ̄ = Σ̄/Σ̄0 ≈ 1.0, while the point σ̄ = 0
corresponds to a local minimum, which is of similar depth, see figure 4.14.
However, it is known from the exact solution [181, 502, 504], see figure 4.8, that this

point in the µ-T -plane actually corresponds to the IP, if one allows for spatial modulations of
the ground state. For selected sample points we experienced during this subsubsection that
the stability analysis seems to work well, if the expansion point is the trivial homogeneous
minimum of the effective potential in the Z2-symmetric phase, thus Σ̄(µ, T ) = 0. Naturally the
question arises whether or not the stability analysis maintains its predictive power even with
non-trivial spatially homogeneous expansion points Σ̄(µ, T ) ̸= 0 are considered. Hence, we
present Γ(2)(σ̄, µ, T, q) at (µ, T )/Σ̄0 = (0.67, 0.1) as a function of σ̄ and q in figure 4.15.
Evaluating Γ(2) at large values of σ̄, e.g., at the correct homogeneous minimum and expansion

point Σ̄/Σ̄0 ≈ 1, the bosonic two-point function is manifestly positive and does not signal any
instability. The reason is that the non-trivial homogeneous minimum and the spatially oscillating
minimum are separated by a kind of “potential barrier”, as the effective potential increases when
studying small perturbations about the homogeneous minima. Formally, the correct expansion
point is no longer unique. There are two degenerate homogeneous minima and therefore
two possible expansion points with the trivial minimum and a potential barrier in between,
see figure 4.14 upper curve. We observe that the two homogeneous minima are no longer
saddle-points with an unstable direction in momentum space, when studying inhomogeneous
perturbations. In fact the analytic solution for the ground state in the IP in terms of Jacobi elliptic
functions turns into rather pronounced kinks close to the correct second-order phase transition
to the HBP. This means that the condensate almost oscillates between the two homogeneous
minima ±Σ̄(µ, T ) and cannot be described as a small perturbation/oscillation around just
one of the two non-trivial minima. Finding an instability with large oscillations about σ̄ = 0
would require even larger δσ(x) when expanding around one of the two homogeneous minima.
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However, having large perturbations δσ(x) about ±Σ̄(µ, T ) would require to always change the
expansion point during an oscillation. Furthermore, large δσ(x) would call for the inclusion
of basically all higher-order coefficients in the expansion, see Ref. [737]. The reason is the
increase in the effective potential when perturbing around the homogeneous minima with small
δσ(x) before the effective potential decreases in the vicinity of the inhomogeneous ground state
when studying large δσ(x). Due to this behavior, coefficients of progressively higher orders are
required in the expansion in order to reproduce this behavior when moving in the µ-T -plane
towards the phase boundary between the IP and the HBP, as described in Refs. [509, 737].
In summary, we observe that for this model the stability analysis fails to detect the inhomo-

geneous phase as long as the correct expansion point Σ̄(µ, T ) ̸= 0. This was already partially
discussed in Ref. [180] and observed in Ref. [182], where a similar analysis of the GN was
done on a finite lattice. In the latter reference, it was stated that this “potential barrier” was a
result of the finite volume, but our present results in an infinite volume suggest that this is a
generic problem of the stability analysis independent of the considered volume.

4.4.2.2. The phase diagram from the stability analysis

Based on our previous discussion, we turn to the central result of this subsection. Within
the following paragraphs it is demonstrated and briefly discussed that the stability analysis
correctly detects the well-known phase transition line between the SP and the IP, but fails
in the region between the HBP↔ IP phase boundary and the homogeneous first-order phase
transition, cf. figure 4.8 and the related discussion in Ref. [180].

As we argued before, we can trust this method in the regions of the phase diagram where the
minimum and correct expansion point in field space is at σ̄ = Σ̄(µ, T ) = 0 and especially where
the inhomogeneous condensate oscillates with a small amplitude about the expansion point.
This is the case in the GN model at the phase boundary between the IP and the SP. Thus, it is
expected that the exact phase boundary and the line of instability obtained via the stability
analysis match. This is supported by our (numerical) results that are plotted in figure 4.16.
The solid black line is the line where Γ(2) has a single root at q = Q in the external momentum,
i.e., Γ(2)(Σ̄(µ, T ), µ, T,Q) = 0 only for one wave vector q = Q, see also Ref. [193]. The line
extends from the LP to larger µ and is numerically identical to the exact phase boundary, which
is shown in figure 4.8.
Interestingly (but actually not really surprisingly) also the second-order phase boundary

between the SP and HBP is correctly detected using Γ(2). The reason is that the bosonic
curvature mass vanishes along this phase transition line [180, 184, 186, 733]. The curvature
mass, however, is defined as Γ(2)(Σ̄(µ, T ), µ, T, q) evaluated at vanishing external momentum
q = 0. The minimum of Γ(2) in q-direction is located at q = 0 above the LP, viz. for T ≥ TL, as
discussed in the previous subsubsection 4.4.2.1, which explains the recovery of the SP↔HBP
phase boundary from the employed two-point function.
Nonetheless, at the phase boundary of the HBP and IP the amplitude of the inhomogeneous

condensate is large and the inhomogeneous condensate almost oscillates between the values
of the homogeneous minima, i.e., between ±Σ̄(µ, T ), cf. figure 4.9. As soon as one crosses the
first-order phase transition and needs to switch to one of these minima as the formal correct
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Figure 4.16.: The bosonic wave-function
renormalization Z(Σ̄(µ, T ), µ, T ) (heat map),
line of vanishing wave-function renormaliza-
tion Z(Σ̄(µ, T ), µ, T ) = 0 (thick black dashed
line), and the line of vanishing bosonic
two-point function Γ(2)(Σ̄(µ, T ), µ, T,Q) = 0
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ner) we find Γ(2)(Σ̄(µ, T ), µ, T,Q) < 0, i.e.,
the homogeneous minimum is unstable w.r.t.
an inhomogeneous perturbation. From Fig. 9
of Ref. [5].
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neous condensate qΣ(µ) as a function of
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Ref. [5].

expansion point, the initial assumption of the stability analysis of small perturbations about
the expansion point is violated and one finds a deviation from the exact result.
The additional color map in figure 4.16 shows the value of the wave-function renormaliza-

tion Z(σ̄, µ, T ), Eq. (4.73), evaluated at the true homogeneous minimum σ̄ = Σ̄(µ, T ). It is
calculated numerically using the appropriate formulae from App. B of Ref. [5].
We also cross-checked that these results coincide with results, which are obtained by a

numeric evaluation of the q-derivatives of Γ(2) in Eq. (4.73). In the SP the wave-function
renormalization is given by

Z(0, µ, T ) = − 1

8π

1

T 2
DLi2

(︁
µ
T

)︁
, (4.75)

according to Eq. (B3) of Ref. [5], which entails that the (Z = 0)-line is given by z2,1 ≃ 1.910
from Eq. (C.60). It therefore coincides with the (α4 = 0)-line from subsection 4.3.3. This
is well known in the context of the gGL analysis and is encountered frequently in the study
of inhomogeneous phases in different models. It implies that the locations of the LP of the
inhomogeneous phase and of the CP of the homogeneous phase coincide, see, e.g., Refs. [63,
493, 495] for details.
It is immediately clear that a negative Z(Σ̄(µ, T ), µ, T ) can only be an indication that an

inhomogeneous perturbation might lower the action, because negative curvature of Γ(2) at q = 0
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does not guarantee that the function has a root. This scenario is found in the region between
the (Z = 0)-line and the SP↔ IP phase boundary right of the LP, where the wave-function
renormalization is negative, but the spatially homogeneous ground state is stable.

Regions with Z < 0: Moat/Lifshitz regimes
We have already encountered such regions with Z < 0 in subsection 2.4.2 as an indica-
tor/precursor for inhomogeneous phases in the context of the FRG QCD computations of
Ref. [80], cf. figure 2.13a and specifically figure 2.17.
Regions with Z < 0 and the corresponding modified dispersion relation for bosons are

discussed in Refs. [731, 732, 738, 739] and referred to as moat and Lifshitz regimes. Moat
or Lifshitz regimes are regions of negative wave-function renormalization, which signals a
dispersion relation with a minimum at a non-zero momentum [731, 732, 738, 739]. The
expression moat regime [731, 732] goes back to the dispersion relations encountered in these
phases, cf. figure 4.12, resembling the deep, broad ditch – the moat – in front of a castle wall.
Regions of inhomogeneous phases can be included in such moat regimes, like in the present

study, but they do not have to be present since Z < 0 is not a necessary condition for instability
of the homogeneous phase in favor of inhomogeneous condensation. Other exotic phases of
matter, like a quantum spin liquid [739], might be possible and energetically preferred over
a typical homogeneous static ground state in the moat regime – if the particle content and
space-time dimensionality of the model is more involved.
In summary, an inhomogeneous field configuration withmomentum q that lowers the effective

action can only be indirectly detected in the present analysis, when Γ(2)(Σ̄(µ, T ), µ, T, q) < 0
and Σ̄(µ, T ) = 0, which corresponds to the hatched region (bottom, right) in figure 4.16. The
fact that Σ̄(µ, T ) = 0 is required in the present context to find Γ(2)(Σ̄(µ, T ), µ, T, q) < 0 is an a
posteriori observation rather than an a priori requirement and is related to the potential barrier
discussed in the previous subsubsection 4.4.2.1.

4.4.2.3. The wave vector of the inhomogeneous perturbation and the wave vector of the
true inhomogeneous condensate

Even though the stability analysis is expected to work only for very small perturbations about
a vanishing homogeneous condensate, we found that it even correctly predicts inhomogeneous
condensation at points to the right of the homogeneous first-order phase transition at extremely
small temperatures which are far away from the second-order SP↔ IP phase transition line. At
these points one still uses the appropriate expansion point Σ̄(µ, T ) = 0, but the perturbations
are no longer small and the true condensate has a spectrum of wave vectors instead of a single
frequency/wave vector, cf. figure 4.9.
One might thus wonder, if the single wave vector Q at the phase transition line actually

matches the wave vector of the true solution, i.e., the dominating wave vector of the Jacobi ellip-
tic functions. Therefore, we compare the dominating wave vector of the correct inhomogeneous
condensate minimizing the effective action

qΣ ≡ argmaxq Σ̃(µ, T, q) (4.76)
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Figure 4.18.: Wave vectorQ predicted by the stability analysis in (a), dominating wave vector
of the reference solution qΣ in (c), and their difference Q− qΣ in (b) in the (µ, T )-plane. Note
that the colormap in (b) is linear around 0 and logarithmic for values |(Q− qΣ)/Σ̄0| > 0.1.
From Fig. 11 of Ref. [5].

with the wave vector that minimizes the two-point function Q as defined in Eq. (4.74). WhileQ
is the direction of the largest curvature of the action at the saddle-point, it does not necessarily
coincide with qΣ. In figure 4.17 these two quantities are plotted for two different temperatures.
At T = 0, Q approaches qΣ for increasing chemical potential77 and at T/Σ̄0 = 0.15 the two
momenta match at the phase boundary. This is expected as the amplitude of the inhomogeneous
condensate Σ(µ, T, x) at this point is infinitesimal and therefore the stability analysis becomes
exact. At small chemical potential – as already discussed before – the stability analysis does not
detect an inhomogeneous phase unless Σ̄(µ, T ) = 0 and thus fails left of the homogeneous first-
order phase transition. At intermediate chemical potential, Q and qΣ do not agree. However,
qΣ is within the interval where Γ(2) < 0 is predicted by the stability analysis, which means that
the latter at least captures the dominating wave vectors.
In figure 4.18 we again compare Q and qΣ. This time we plot Q, Q − qΣ, and qΣ in the

µ-T -plane using different color maps. The previously discussed trend extends to the whole
temperature range. The difference Q − qΣ approaches zero close to the IP↔SP boundary
and its magnitude is the largest close to the HBP↔ IP boundary, where Q is zero (because
the stability analysis is ill-conditioned) and qΣ is minimal. On the other hand, Q is also non-
zero in the region of Z < 0 above the phase transition line, but does not correspond to an
inhomogeneous perturbation that lowers the action, since Γ(2) is manifestly positive. We want
to emphasize that this does not mark a failure of the employed method, but is rather just an
effect of the negative wave-function renormalization Z. A discussion similar to our elaboration
on figure 4.18 can be found in a different context in Ref. [193].

77Plots similar to figure 4.17 of the wave vector of some inhomogeneous condensate plotted over baryon density
(chemical potential), can be found in, e.g., Fig. 2 of Ref. [484], Fig. 2 of Ref. [740], Figs. 6 & 7 of Ref. [741].
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Figure 4.19.: The bosonic wave-function
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the chemical potential at fixed temperatures
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Figure 4.20.: The bosonic wave-function
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geneous minimum σ̄ = Σ̄(µ, T ). From Fig. 13
of Ref. [5].

4.4.2.4. The bosonic wave-function renormalization

Before closing our discussion of this subsection, we shortly return to our results for the bosonic
wave-function renormalization and their implications.
In figure 4.16 the bosonic wave-function renormalization Z(Σ̄(µ, T ), µ, T ) was already

presented in the entire µ-T -plane. We stress again that negative values of Z are not a sufficient
or even necessary criterion for instabilities of the homogeneous phase. However, in regions of the
phase diagram where the stability analysis is expected to work, i.e., regions with Σ̄(µ, T ) = 0,
a negative wave-function renormalization presents as a strong indicator for an inhomogeneous
phase. In regions where Γ(2)(q) is dominated by low-momentum contributions – i.e., around the
CP/LP – Z < 0 is a necessary condition for an inhomogeneous phase if contributions of O(q6)
to Γ(2)(q) can be neglected, cf. the following discussion of the gGL analysis in subsection 4.4.3.
Apart from this, one can learn a lot from the values of the wave-function renormalization

alone. In a first rather rough approximation, we can use Z as a measure for the importance
of bosonic quantum fluctuations, because it accompanies the trivial quadratic momentum-
dependence of the bosonic field in the action – the kinetic term – which drives fluctuations.
Inspecting the classical UV action of the GN model, we find that it lacks by construction a term
like Z

2
(∂µϕ)

2 – which is included in the GNY model with Z = 1 – and also all other bosonic
higher-order derivative terms, which could partially be associated to the higher-order Taylor
coefficients/moments of Γ(2) in momentum space. Hence, in the classical action of the GN
model all these coefficients are initially zero, because there are no bosonic fluctuations in
the UV – there are only non-interacting fermions – and ϕ is only introduced as an auxiliary
field. However, by integrating out all fermionic quantum fluctuations and interactions one
finds that the system gets strongly coupled and anti-fermion-fermion pairs are bosonized and
eventually condense, if the external energy scales (µ and/or T ) are not too large [186, 188,
190]. Ultimately, also all of the bosonic derivative couplings are generated by integrating out the
fermion fluctuations, as can be seen from our results for Z and Γ(2). From an FRG perspective
this is a rather natural finding, see Ref. [231] and references therein. Though, the generation
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of all these bosonic kinetic couplings actually implies that the system tends to drive bosonic
quantum fluctuations by itself, which is only hindered by the artificially suppression of the
infinite-N limit. Therefore, one might conclude that our results for the bosonic wave-function
renormalization (and the bosonic two-point function) in the infinite-N limit may – at least
to some extent – predict the insufficiency of the mean-field approximation at finite N . In
consequence one might state, that at least in those areas of the phase diagram, where the
bosonic wave-function renormalization significantly deviates from zero and rapidly changes its
value (and sign) with µ and T , bosonic quantum fluctuations will play an important role, if the
infinite-N approximation is relaxed and calculations are performed at finite N . Interestingly,
such values are indeed observed, especially close to the first-order phase transition and right
below the LP. This is actually expected, since in these regions correlation lengths usually
diverge and fluctuations of all orders become relevant.
To better visualize the behavior of Z, we additionally plot slices through the color map of

figure 4.16 in a way to cover all interesting regions of the phase diagram. In figures 4.19 and 4.20
we can observe that the wave-function renormalization increases (decreases) close to the phase
transition line78 and then jumps from positive to negative values at the phase transition. The
region of drastically rising Z is exactly the region adjacent to the first-order phase transition,
where the stability analysis fails. Thus, it seems as if the wave-function renormalization already
signals that fluctuations and gradient driven bosonic field configurations are of great importance
in this region.

4.4.3. Generalized Ginzburg-Landau analysis

This subsection is not based on Ref. [5] and the discussion is original to this work. However
the presented results are basically just a projection of the results [495] of H. Abuki et al.
into the µ-T -plane using the expressions of subsection 4.3.3 and App. C.4.1. In that sense
the presented results are just a comparison of existing literature results.

The results for this gGL analysis of the inhomogeneous phase diagram took only a few
minutes to compute on an Intel© Core™ i7-8750H processor with the Mathematica
notebook [652].

In this subsection we want to briefly introduce the generalized Ginzburg-Landau (gGL) anal-
ysis as another indirect method to study inhomogeneous phases. To this end we will fol-
low Ref. [495] but additional details can be found in Refs. [197, 493, 495, 526, 527] and
Ref. [742].

The gGL analysis can be seen as an extension of the conventional GL analysis outlined in
subsection 4.3.3. The idea is to expand the effective potential or equivalently the effective
action in a gradient expansion. Up to sixth-order such an expansion for a model like the GN
model reads,

V
[︁
µ, T ; Σ(x)

]︁
≡ ⟨ω[µ, T ; Σ(x)]⟩WS (4.77)

78Except for T = 0, where Z(Σ̄(µ, 0), µ, 0) is independent of µ for Σ̄(µ, 0)2 > µ2 ⇔ µ < 1√
2
, see Eq. (B5) of

Ref. [5]. This is a notion of the silver blaze property.
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Figure 4.21.: Average massmave ≡ (⟨Σ(x)2⟩WS)
1/2 in (a), wave vector q in (b), and associated

energy ω ≡ V
[︁
µ, T ; Σ(x)

]︁
in (c) for various inhomogeneous modulations as a function of ηA2 .

Note that H. Abuki et al. use a different convention for the pre-factors of their gGL coefficients
in Eq. (2) of Ref. [495] and thus η2 = 4

3η
A
2 . From Fig. 4 of Ref. [495]. Publication under CC

BY-SA 4.0 license with the permission of H. Abuki.
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as the volume average over the Wigner-Seitz cell of the generalized GL functional

ω[µ, T ; Σ(x)] ≡ α2(µ, T )Σ(x)
2 + α4(µ, T )

(︁
Σ(x)4 + (∇Σ(x))2

)︁
+

+ α6(µ, T )
(︁
Σ(x)6 + 5Σ(x)2(∇Σ(x))2 + 1

2
(∆Σ(x))2

)︁
(4.78)

according to Eqs. (2) and (6) in Ref. [495]. When rescaling all quantities appropriately
with α6 and setting the scale with |α2|, the r.h.s. of Eq. (4.78) has only η2 ≡ α2 α6/α

2
4 from

Eq. (4.67) as a parameter left. The great advantage of this expansion is that it allows the study
of various condensate shapes without the need of any complicated field-theoretical computation.
A condensate shape Σ(x) gets inserted into Eq. (4.78) and with Eq. (4.77) the corresponding
energy can be computed just by taking a suitable volume average. Additionally it is possible to
consider Euler-Lagrange equations for V

[︁
µ, T ; Σ(x)

]︁
which, when limited to one-dimensional

modulations, yield the solitonic solutions (4.70) of the GN model as a self-consistent solution.
For further details we refer to Refs. [495, 742].
In figure 4.21 results for several one-dimensional modulations are shown over η2, with

the solitonic wave of the GN model as the energetically most favored solution. Furthermore
η2 = 5/27 (1/2)79 can be identified as the location of the HBP↔ IP (IP↔SP) second-order
phase transition. We can use those results with our GL coefficients of subsection 4.3.3 to project
the results [495] of H. Abuki et al. in terms of η2 into the µ-T -plane. The result is shown in
figure 4.22 together with the reference values of subsection 4.4.1. As one might expect from
an expansion basically around the restored/trivial solution Σ(x) = 0 the gGL expansion loses
predictive power when leaving the vicinity of the LP. But it should be noted that around the
LP it has both qualitative and quantitative predictive power and might be one of the most
promising options when it comes to the search of the preferred condensate shape in models,
where the solution to this question is not known. Which basically includes all models in d > 2.
We close this discussion by noting, that the stability analysis via the bosonic two-point

function, as it is presented in the last subsection 4.4.2, goes beyond the gGL expansion discussed
here. The bosonic two-point function Eq. (4.71) retains its full momentum structure, which
makes the stability analysis suited for wave vectors q of all magnitudes without the limitation
to small q. Comparing figures 4.18b and 4.22 clearly shows the difference in predictive power.
Additionally, Γ(2) does not even need to be analytic for all q. This was already pointed out
in Ref. [199] and such a non-analyticity can be seen in figure 4.12 for T = 0. It is also the
reason, why the stability analysis is still predicting instabilities of the homogeneous condensate
correctly for extremely small and even vanishing temperatures.
It should however be noted that there exist several improved versions, see, e.g., Refs. [495,

526, 527], of the simple expansion up to order six discussed here.

79Note that H. Abuki et al. use a different convention for the pre-factors of their gGL coefficients in Eq. (2) of
Ref. [495] and thus η2 = 4

3η
A
2 , i.e., the values on the horizontal axis of figure 4.21 have to be rescaled by a

factor 4
3 to be consistent with the discussion in the text here.
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gGL analysis (η2 = 5/27 and η2 = 1/2) compared to the reference solution of figure 4.8.

4.5. The Gross-Neveu-Yukawa model at finite N

In this section we mainly follow the discussion of results presented in Sec. VI of Ref. [4].
The plots of Ref. [4] and the majority of underlying numerical data were produced by N.

Zorbach. Selected results have been cross-checked by J. Stoll, A. Koenigstein, and me. The
single thread wall time on various consumer processors for the numeric results of Ref. [4]
is around 80 days, with most of it spend on the computation of the phase diagram 4.35a.

After our discussions in the infinite-N limit of sections 4.3 and 4.4 it is time to use our adapted
CFD FRG formalism of section 4.2 to study the GNY model at finite N . To this end we will first
give a brief overview of the literature concerning the GN(Y) model at finiteN in subsection 4.5.1.
Even though there seem to be a lot of indications and notions, that there should not be any
symmetry breaking in the GN(Y) model at finite N and T > 0, the question is still unsettled
and will be at the heart of our research in this section.
So far we have not specified a specific UV initial condition for our LPA flow Eq. (4.21)/(4.31)

of the GNY model. In subsection 4.5.2 we will continue the discussion of subsection 4.2.1 by
incorporating our findings/rediscoveries of subsection 4.3.1 to construct a UV initial condition
viable for flows at finite and infinite N , which is based on the notion of asymptotic freedom. As
a first step we will use this IC and our CFD numerics to recover the renormalized, infinite-N
phase diagram figure 4.2.
We conclude this section with our FRG study of the GNY model at finiteN in subsection 4.5.3.

We employ our CFD numerics and perspective to discuss the role of fermionic and bosonic
fluctuations in FRG flows at zero and non-zero temperature and chemical potential. The main
result of our explicit computations, summarized by the phase diagram 4.35a of the GNY model
at N = 2, is that bosonic thermal fluctuations vaporize the chiral condensate at any finite N
and T > 0. This finding is in line with the vague consensus of arguments in subsection 4.5.1,
which predict such an outcome but usually are not based on explicit computations at finite
N . The CFD perspective of FRG flows developed in chapter 3 allows for a unique and detailed
understanding of the role the different fluctuations at finite N .
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4.5.1. To break or not to break – Z2 symmetry at finite N

This subsection has been copied from Sec. I.B of Ref. [4] with only small adaptations to
the presentation in this thesis. While I am the author of a first draft of this subsection, I
do not claim sole authorship, since it went through iterations during the preparation of
the manuscript for Ref. [4].

The big question that immediately comes to mind if one relaxes the infinite-N limit and studies
the GN model for finite N is, if spontaneous symmetry breaking (SSB) and condensation still
takes place, especially when medium effects (non-zero µ and/or T ) are included.
At first sight, it seems as if already the Coleman-Mermin-Wagner-Hohenberg (CMWH)

theorem [550–552] forbids the formation of a condensate at non-zero temperatures. Though,
the theorem strongly relies on the presence of massless Nambu-Goldstone bosons [441, 442,
563], which are only included in extensions of the GN model, e.g., the chiral GN model [197,
497, 743] with continuous chiral symmetry or other related models [171, 674]. We therefore
believe that one should exercise caution, when arguing directly with this theorem.
Nevertheless, a qualitative argumentation was put forward already by L. D. Landau in

1950 [744], which should in principle forbid also discrete chiral symmetry breaking in one-
spatial dimension at non-zero temperature. L. D. Landau and E. M. Lifshitz argue in Chap. 163
of Ref. [744] that for systems in one dimension of infinite extent only one phase can exist at
T > 0, since coexistence of more than one phase is energetically disfavored. To be concrete, they
considered a bistable system in one dimension of infinite extent at non-zero temperature with
n interfaces between the two possible phases per length L and showed that the thermodynamic
potential of the system can be decreased by increasing the concentration of interfaces n/L,
which is directly related to the entropy, assuming a finite interface energy. Thus the system
breaks down into a macroscopic number of domains, which rendered macroscopic phase
coexistence at non-zero temperature impossible. Landau’s argument can be applied to a
broad range of effectively one-dimensional systems including the Ising model in one spatial
dimension [561] at T ̸= 0, which is always in its Z2-symmetric phase, cf. Refs. [171, 178]. A
dedicated discussion of Landau’s argument in the context of one-dimensional systems can be
found in Ref. [745].
In their study [188] of the GN model based on a large-N expansion R. F. Dashen, S. Ma, and

R. Rajaraman were able to confirm Landau’s argument, see also Ref. [714]. They found no
SSB for any small but non-zero temperature and finite N . Using in parts heuristic arguments,
they showed that the entropic gain of a field configuration of alternating kinks is large enough
at finite N and 1/T to be energetically preferred over a homogeneous configuration80. Those
field configurations alternating in kinks have a vanishing chiral condensate ⟨ ˜̄ψ ψ̃⟩ = 0. In
the infinite-N -limit (mean-field), the energy per kink becomes infinite and consequently the
density of kinks approaches zero realizing a homogeneous field configuration compatible with

80Homogeneous and inhomogeneous field configurations in this context refer to the configurations used to evaluate
the partition function in a saddle-point approximation, see Ref. [188] for details on their computation, and they
are not to be confused with homogeneous and inhomogeneous classical/mean field configurations ⟨ ˜̄ψ ψ̃⟩(x)
discussed in the previous section 4.1.
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⟨ ˜̄ψ ψ̃⟩ > 0 allowing for SSB. This is no contradiction to Landau’s argument since the latter
only holds assuming finite interface energies [744, 745]. Although R. F. Dashen, S. Ma, and
R. Rajaraman argue that TC = 0 at finite N , they do not discuss the situation for T = 0 and
µ ≥ 0 for finite N in Ref. [188].

Another discussion on the absence of symmetry breaking in one-spatial dimension at non-
zero T can be found in Ref. [674] by E. Witten, which discusses the absence of a phase
with spontaneous symmetry breaking and long-range order in accordance with the CMWH
theorem [550–552] and the related possibility for a phase of Berezinski-Kosterlitz-Thouless
type [746, 747] with quasi long-range order for the SU(N) Thirring model [673, 674].

Other authors, e.g., U. Wolff [190], argue based on the duality of the spatial and Euclidean
time direction in 1+1 dimensions for T > 0 and µ = 0: The thermal GN model in 1+1
dimensions is equivalent to a QFT with a finite spatial volume (but infinite Euclidean time-
direction) and hence no SSB takes place since it is canonically considered as an effect only
present in systems with infinite volumes, see, e.g., Ref. [240]. While this reasoning – the
general absence of SSB in finite systems – might strictly speaking be sound, sufficiently large
volumes, the inclusion of small (possibly infinitesimal) explicit symmetry breaking, or subtleties
of the thermodynamic and/or infinite volume limit, cf. Ref. [748], can lead to signatures
reminiscent of SSB.

Indeed, only recently some of our colleagues and collaborators found some indications via
numerical lattice Monte-Carlo simulations [519–522], that some (inhomogeneous) condensa-
tion phenomena in the massless bGN model at finite N and non-zero µ and T still seem to be
present. Similar results were already found in earlier lattice Monte-Carlo studies [693–695] at
finite N . However, in all of these works, the above arguments by Landau et al. against conden-
sation at non-zero T could neither be completely ruled out nor be confirmed. In fact, most
of the results suffer from the facts that proper continuum and infinite volume extrapolations
were not performed. Consequently finite volume effects and discretization artifacts limit the
predictive power of those results for the continuum theory in an infinite volume. The finite
sized spatial domain (and the related BCs) might have prevented a sufficient resolution of
long-range fluctuations, which are however of uttermost importance for condensation and in
this context especially vaporization phenomena in low-dimensional systems.

Recent lattice results presented in Refs. [519–522] have sparked further lattice studies of
four-Fermi models in 1 + 1 dimensions: We are aware of these parallel developments and
computations using lattice Monte Carlo simulations in the GN model and related models
(especially the chiral GN model) in Refs. [749, 750], which are however not completed yet
and therefore omitted in the following discussion. For the chiral GN model, we expect some
interesting dynamics at finite N due to competing effects from the CMWH theorem and a
U(1)A anomaly [743].

All of this lead us to the idea to study the phenomenon of Z2 symmetry breaking and/or
restoration in the GN model at finite N , T ≥ 0, and also µ ≥ 0 but in an infinite spatial volume
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within a different framework – namely within our CFD frame work for FRG flow equations.81
We wanted to find out, if it is possible to (numerically) confirm the arguments by Landau et al.
against symmetry breaking in the GN model or if there are some other competing effects, which
are not captured in the aforementioned mostly qualitative/heuristic discussions, that allow for
symmetry breaking or some long-range ordering.

4.5.2. UV initial condition for FRG flows at variable N

This subsection is based on Secs. V.D and E of Ref. [5].

We again turn to the UV IC for the effective potential and continue the discussion of subsec-
tion 4.2.1. For practical calculations within the FRG framework, where the flow is not integrable
analytically, we can not initialize the FRG flow directly at Λ =∞. But rather we have to choose
a sufficiently large and but finite Λ to specify the initial values for the flow via Γ̄Λ[χ] = S[χ].
For a general discussion in the context of RG consistency we refer to subsection 2.1.6 and our
specific, explicit discussion of the issue in zero dimensions in subsubsection 3.2.3.1.

From the previous discussion in subsection 4.3.1, it is obvious, how to specify the IC for a
numeric solution of Eq. (4.42) or rather Eq. (4.31) with Q(t, ∂σu) = 0, i.e., in the mean-field
approximation:
In our discussion on asymptotic freedom, we were able to eliminate g2 from the IC (4.44) in

favor of the UV scale Λ and the combination ∆0 ≡ hσ0. Hence, we can simply use Eq. (4.51)
as the initial potential at some large scale Λ. Initializing the (numeric) mean-field version of
the FRG flow (4.31) with the σ-derivative of (4.51) and an arbitrary value for h at some scale
Λ ≫ h, one always finds that the IR minimum in vacuum is located at σ0. Consequently and
w.l.o.g. we can rescale all dimensionful quantities in terms of h and express the dimensionless
field space variable σ in multiples of σ0. On the level of the equations, this amounts to setting
σ0 = 1 and h = 1. Other choices for h and σ0 correspond to different renormalization conditions,
but all results are unique and can be transformed into each other via simple rescaling – as
already mentioned. However, we still have to ensure that other IR observables do not depend
on the UV scale Λ, which is realized by choosing Λ much larger than all internal and external
model scales. This checked numerically in the following paragraph discussing figure 4.23.

Including bosonic quantum fluctuations, it is less obvious, how to choose the IC for the FRG
flow, that means how to choose a meaningful value for h2

g2
in Eq. (4.26). When performing

calculations at finiteN , each individual choice ofN represents a single model on its own. Hence,
even if there is symmetry breaking for the vacuum flow equation (4.24) including bosonic
quantum fluctuations, the IR physics for different N is not necessarily directly comparable.
Thus, setting a unique renormalization condition for all N in the IR, like fixing the position of
81After completing Ref. [4], we became aware of Ref. [715], where next-to-leading order corrections of the

1
N -expansion to the effective potential of the GN model were calculated. Finding that this expansion breaks
down in the vicinity of mean-field critical temperature TC the authors also suggest to analyze the GN model
within the FRG framework, which is the main focus of this section and one main purpose of this whole chapter.
We thank J. Braun for drawing our attention to this interesting publication.
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the IR minimum and/or the IR curvature mass by tuning the various UV ICs, is – to the best of
our knowledge – not useful.
We think that it is natural to use exactly the same IC for all FRG flows, namely Eq. (4.51),

with and without bosons and to fix the renormalization condition for the bosonic FRG flows in
the UV. This might be counter-intuitive, because in a lot of FRG studies for effective models of
strongly correlated systems, the physics is fixed in the IR and the UV IC is tuned, in such a
way that the FRG flow ends up with an IR effective action having observables compatible with
desired numerical values. We are however using the GN model in our studies with the same
top-down approach, used in the FRG studies of QCD, discussed in subsection 2.3.3. We make
use of asymptotic freedom and RG consistency to fix our initial condition and associated UV
initial scale Λ in the following way.

Using the same UV IC for all finite and infiniteN allows for a direct comparison of calculations
at different N . This is the case, because the 1

N
-rescaled UV potential (4.51) always describes

a theory of N asymptotically free fermions and a σ-mode that decouples from the system at
the UV initial scale. Choosing Λ ≫ h naturally leads to a large curvature mass ∂2σU(t, σ) and
suppression of fluctuations of the σ-mode in the UV, which can be directly seen in Eq. (4.51).
On a formal level this can be seen by inspecting the fluid-dynamic formulation of the FRG
flow equation (4.31) and especially its bosonic contribution in terms of a highly non-linear
diffusion equation (4.34). One finds that the large curvature mass ∂2σU(t, σ) = ∂σu(t, σ) in the
propagators 1

Eσ
yields a small diffusion coefficient α(t, ∂σu) and therefore a suppression of the

diffusion along field space – the bosonic contribution to the FRG flow.
Though, the more drastic argument, why bosonic fluctuations are actually totally absent

in the UV, is a fundamental property of all diffusion equations of type ∂tu(t, σ) ∝ ∂2σu(t, σ).
Independent of the finite diffusion coefficient the term ∂2σu(t, σ) vanishes exactly for spatially
linear u(t, σ) ∝ σ and the diffusion and dynamics stops, cf. subsection 2.2.4 and especially
the discussion surrounding Eq. (2.139c′) as an equilibrium solution to the HE (2.138) with
Dirichlet BCs. In the context of this work, it follows from the quadratic UV potential (4.26) that
u(0, σ) ∝ σ and consequently the contribution from the σ-mode to the FRG flow vanishes exactly.
Bosonic fluctuations will be suppressed as long as the fermionic source/sink contributions to
the FRG flow do not alter the linear shape of u(t, σ), which is approximately the case until
k2(t) ≈ (hσ)2 for small σ. We conclude that the FRG trajectories in theory space for FRG
flows including fermions and bosons at finite N will approximately follow the mean-field FRG
trajectories for infinite N , as long as the UV initial potential is quadratic in σ. This behavior is
indeed observed in our numeric computations in subsection 4.5.3.
It also gives merit to our choice of setting Zφ(t = 0) = 1 in the UV and we expect to resemble

the dynamics of the GN model with the GNY model in LPA to a certain extent. Even though
Zφ(t = 0) = 1 would allow for contributions of bosonic fluctuations to the FRG flow at the initial
scale, our choice of UV IC leads to a vanishing contribution of the corresponding diffusion flux.
Given our discussion in subsubsection 4.4.2.4 fermionic fluctuations will eventually generate a
non-vanishing Zφ(t) at non-zero t, so initializing the wave-function renormalization for the
bosons with a non-zero value is certainly justified especially from an RG consistency perspective.
So our flows in the GNY model at early RG times are completely dominated by fermionic
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contributions and only after their sink/source dynamics leave a significant imprint on u(t, σ)
bosonic contributions become relevant. This is very reminiscent of the sequential decoupling,
in composite FRG flows for hadronized QCD, described in subsection 2.3.3. However, as we
will see in subsection 4.5.3, the decoupling is even more clear and pronounced in the GNY
model.
Our last formal argument is based on the previous discussion and concerns regarding the UV-

scale-independence, i.e., RG consistency, of IR observables for FRG flows at finite N . Because
the FRG trajectories at finite N will approximately follow the mean-field FRG trajectories
at infinite N , we expect that choices of Λ, which are sufficiently large to ensure UV-scale-
independence at infinite N , should also suffice to ensure RG consistency for FRG flows at finite
N , if the same UV initial potential is used. This is explicitly demonstrated in App. F.3 of Ref. [4],
where we numerically demonstrate UV scale independence of the calculations presented in
subsection 4.5.3 in the spirit of our related test in zero dimensions, cf. figures 3.11 and 3.24c.

In summary, as a first approach to enable a comparison of FRG flows within the GNY with
bosonic quantum fluctuations at different N , we choose exactly the same UV IC (4.51) with
h = 1 and σ0 = 1 for all FRG flows. Hence, all dimensionful quantities are measured in terms
of the UV value of the Yukawa coupling h (which stays constant in our truncation anyhow),
while field space is measured in multiples of the mean-field minimum σ0, which has turned
into a free additional parameter. Including bosonic fluctuations σ0 is no longer the position of
the vacuum IR minimum, but modifies the ratio of the Yukawa coupling h and Λ in the UV, cf.
Eq. (4.51). Of course, this ratio will still influence the dimensionless position of the vacuum IR
minimum even in the presence of bosons. Hence, it is most convenient for us to choose σ0 = 1
in the IC (4.51) to recover the infinite-N results directly for N →∞, without trivial rescalings.
Still, we also performed calculations for σ0 ̸= 1, which did not alter the qualitative results.
Overall this implies that we do not perform computations for differentN on lines of “constant

IR physics”. We compute on “constant UV physics” for different N , which is no problem for us,
since we are not interested in specific values for IR observables anyway. Again, as mentioned in
A disclaimer about physics in chapter 1, we do not use the GN(Y) model to describe physical
systems, we use it as a testing ground.

(Numeric) consistency check with the renormalized, infinite-N results
This paragraph is dedicated to a consistency check of our numeric implementation of the
fermionic contribution to the FRG flow. Furthermore, we comment on the concept of RG
consistency in the context of the discussed mean-field calculations, as a direct application of
the first scenario described in subsubsection 2.1.6.1.

For the consistency checks in this section we use the numerical implementation presented
in subsection 4.2.2 and manually switch off the bosonic contribution (the diffusion) in the
flow equation (4.31). Since Eq. (4.31) is formulated for u(t, σ) = ∂σU(t, σ), we used the
σ-derivative of Eq. (4.51) as the IC for u(t, σ). Furthermore, as already done in the previous
section 4.3, we work in rescaled quantities. This means that σ is measured in multiples of σ0
and dimensionful quantities are measured in multiples of the Yukawa coupling h – implying
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Figure 4.23.: Phase transition lines (equally colored dots) in the µ-T -plane of the GNY
model (4.8) in the mean-field approximation for different values of the UV scale Λ. The curves
are extracted from numerical solutions of the FRG flows of u(t, σ) with the methods presented
in subsection 4.2.2. As a reference curve, we also plot the exact phase transition line (in
yellow) in the renormalized limit Λ→∞ below the data points, cf. figure 4.2. FRG flows for
larger cutoffs Λ are closer to the renormalized reference result. From Fig. 3 of Ref. [4].

w.l.o.g. h = 1 and σ0 = 1 on the level of the equations. Thus, the UV IC for the (numeric) FRG
flow in dimensionless variables explicitly reads

u(t = 0, σ) =
dγ
2π σ

[︃
artanh

(︃[︂
1 +

(︁
1
Λ

)︁2]︂− 1
2

)︃
−
[︂
1 +

(︁
1
Λ

)︁2]︂− 1
2

]︃
. (4.79)

The explicit dependence on Λ of u(t = 0, σ) realizes non-trivial IR minima at ±σ0 independent
of the UV initial scale by a RG-consistent construction in vacuum.
One way to ensure RG consistency in medium is to choose Λ significantly larger than all

external scales of the problem under consideration. We will discuss this on mean-field level in
this subsection while dedicating subsection 4.5.3 to a similar discussion at finite N .

While the condensate is fixed in the IR in vacuum by construction, the corresponding sigma
curvature mass, see Eq. (4.54), is not. Comparing the expression (4.54) at finite Λ to the
renormalized result of Eq. (4.57) we conclude that a relative difference of for example 10−3

(10−6) between m2
σ at finite and infinite Λ requires an UV initial scale of around 40 (1200).

Considerations like this in vacuum give insight into internal model scales.
Studying the Λ-dependence of observables at µ > 0 and/or T > 0 we can asses the relation

between Λ and the external model scales. To this end we plot the phase transition lines in
the µ-T -plane, which we obtain via the numerical solution of the purely fermionic FRG flow
equation for various Λ in figure 4.23. The phase boundaries are extracted via the bisection
method [554, 555] in the µ-T -plane, by extracting the minimum of the IR potential from the
cell averages {ūi(tIR)}.
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As reference values for the mean-field phase boundaries in figure 4.23, we use the exact
results of the previous section, which are also plotted in figure 4.2. We observe a dependence of
the phase boundary between the restored and broken phase on Λ. Increasing Λ beyond 102 we
observe an apparent convergence of the numerically obtained phase boundaries, which eventu-
ally for Λ ≈ 105 approaches the phase boundary of the renormalized mean-field computation.
The general UV initial scale dependence at non-zero chemical potential and temperature is
easily understood when considering the expression (4.43) of the underlying IR potential. In
FRG based mean-field computations with the Litim regulator the UV initial scale acts basically
like a sharp momentum cutoff (with an additional surface term, see also App. E.2).
We find that our numeric implementation of the source term in the FRG flow equation

(4.31) is capable of reproducing the conventional mean-field results. Furthermore, we already
obtain some estimate for decent UV-cutoffs Λ for computations involving bosonic quantum
fluctuations. At this point we can close all our preliminary discussions and finally turn our
attention to bosonic quantum fluctuations at finite N .

4.5.3. Bosonic quantum fluctuations in the GNY model

In this subsection we closely follow the discussion of results presented in Sec. VI of Ref. [4].

In this subsection, we present our (numeric) results for FRG flows of the GNY model at non-zero
µ and T including bosonic quantum fluctuations in the LPA. Thereby we proceed as follows:
First, we discuss the dynamics, which take place during a single FRG flow at some fixed
finite N , µ, and T , cf. the similar discussion in subsubsection 3.2.3.1 for the zero-dimensional
O(N) model. This sets the stage for a detailed discussion of the effects that are induced by
the chemical potential at low temperatures. Here we support our conceptual discussion of
subsection 4.2.2 with explicit numerical computations. Afterward, we turn to our central
result – the absence of spontaneous Z2 symmetry breaking at finite N and T > 0. We thereby
present details on dependencies on µ, T , and N of the restoration scale kres, where the discrete
chiral symmetry is restored, as well as a phase diagram during the FRG flow.

4.5.3.1. Symmetry breaking and restoration during the FRG flow

This subsubsection is dedicated to an instructive discussion of symmetry breaking and restora-
tion during FRG flows in the framework developed within section 3.2. To get a better intuition
on how this realizes during the FRG flow and how the typical setup and dynamics looks like, we
picked a single point in the µ-T -plane, namely µ = 0.1 and T = 0.1, where we at least expect
some non-trivial condensation and vaporization phenomena and typical dynamics in the FRG
flow. We also fixed the number of fermions to N = 2. The computational parameters used for
the computations in this subsection are σmax = 6, ncells = 1000, Λ = 105, and kIR = 10−4. They
have been validated with the methodology developed in subsection 3.2.3 and the detailed
checks and numerical tests can be found in App. F of Ref. [4]. As UV initial condition, we
directly use Eq. (4.79), as discussed in subsection 4.5.2, with h = 1 and σ0 = 1.
Using this setup, we obtain the numeric results for the FRG flow of u(t, σ) and U(t, σ).
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(a) FRG flow of the scale-dependent effective po-
tential U(t, σ) (upper panel) and its σ-derivative
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functions u(t, σ) and U(t, σ) are plotted for posi-
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Figure 4.24.: FRG flow of the potential U(t, σ) and its derivative on the left (a) and corre-
sponding evolution of σmin(k), m2

σ(k) and changing rate |∂tm2
σ(k)| on the right (b) for N = 2

at T = 0.1 and µ = 0.1. From Figs. 4 and 5 of Ref. [4].

The latter is reconstructed from the cell averages {ūi(t)} by direct Riemann summation, cf.
Eq. (3.96) and the corresponding discussion in subsubsection 3.2.3.1. The FRG flow of the
potential is depicted in figure 4.24a with figure 4.24b showing the associated evolution of the
scale-dependent minimum σmin(t) and the scale-dependent curvature mass,

m2
σ(t) = ∂2σU(t, σ)

⃓⃓
σmin(t)

= ∂σu(t, σ)
⃓⃓
σmin(t)

, (4.80)

which is evaluated at the moving scale-dependent minimum. We determine the position of the
scale-dependent minimum σmin(t) = ∆σ · imin(t), by searching for the position imin(t) of cells
next to zero-crossings in the list {u(t, σi)} combined with a check of the list {U(t, σi)} for its
smallest entry. The curvature mass is calculated at this minimum via a simple right-derivative
stencil, hence ∂σu(t, σ)

⃓⃓
σmin(t)

= 1
∆σ

[ūimin+1(t) − ūimin
(t)]. For optical guidance and better

detection, when the plateau in IR is reached, we also introduce the changing rate of the
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curvature mass

∂tm
2
σ(kj) ≡ −kj

m2
σ(kj+1)−m2

σ(kj)

kj+1 − kj
, (4.81)

which we evaluated for the plots at j ∈ {0, 1, . . . , 998} intermediate RG scales kj between
k = Λ and k = kIR, such that the belonging RG times are equidistantly distributed.
In figure 4.24 we observe the following dynamics: The flow for u(t, σ) starts with the UV

initial condition that is linear in σ. At the beginning of the flow the fermions are active and
clearly dominate the dynamics, according to the sink/source contribution in the fluid-dynamic
language. We find that this sink/source contribution causes the Z2 symmetry breaking and
generation of a non-trivial minimum at k(t ≈ 11.2) ≈ 1.31, which is roughly at the order of
the model scales, which are of order 1 (cf. position of the intermediate minimum or value of
h). Shortly after the non-trivial minimum has formed, the sink (source) is still active, but the
diffusion caused by the bosonic contributions sets in, due to the negative gradients ∂σu(t, σ)
close to σ = 0, which enhance the diffusion coefficient. Interestingly, when the position of the
minimum (the value of the condensate) has settled, it is approximately of the same order of
magnitude as for the mean-field calculations, even though N = 2 is everything but close to
N →∞. As a matter of fact, this signals that the diffusion is weak at σ > σmin(t). Subsequently,
for approximately another two orders of magnitude in RG scale k(t), the minimum keeps its
position σmin ≈ 0.93. Also the bosonic curvature mass seems to freeze at m2

σ ≈ 0.28 and the
potential U(t, σ) is not changing much. However, having a closer look at u(t, σ), we find that the
diffusion in field space direction σ causes some highly non-linear dynamics, especially close to
the point, where the gradient ∂σu(t, σ) changes its sign. Suddenly, at k(t ≈ 15.1) ≈ 2.76 · 10−2,
we observe a destabilization of the condensate σmin(t) and alsom2

σ(t) starts changing drastically.
The inclusion of IR modes in a small momentum range leads to a complete vaporization of
the condensate. Additionally, inspecting U(t, σ), we find that meanwhile the potential turned
convex – as it should be the case in the IR. This flattening of the potential is completely driven
by the highly non-linear diffusion, cf. subsection 3.2.4. Finally, we find that the dynamics
completely freezes and that we indeed integrated out all fermionic and bosonic quantum
fluctuations. This can be seen best by looking at the absolute value of the changing rate
of the squared curvature mass |∂tm2

σ(t)|, but also directly from m2
σ(t) or σmin(t). Note, that

m2
σ(tIR) ≈ 4.60 · 10−4, which is not visible from the plot, while σmin(t) = 0 already shortly after

k(t ≈ 15.1) ≈ 2.76 · 10−2.
Overall, we observed that the fermions were indeed able to form a condensate, which however

does not survive the long-range bosonic quantum fluctuations in the deep IR. This dynamics
might also be referred to as precondensation [273, 510, 699, 751–753].

4.5.3.2. The role of the chemical potential in the fluid-dynamic setup

Before we come to our discussion on symmetry breaking and restoration in FRG flows for
arbitrary N and arbitrary points in the µ-T -plane, we briefly return to the discussion in
subsection 4.2.2 on the role of the chemical potential in the fluid-dynamic formulation of the
FRG flow equation (4.31). We therefore accentuate our theoretical discussion with explicit
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Figure 4.25.: Mean-field (infinite-N) FRG flow (sink term only) of the scale-dependent
effective potential U(t, σ) (upper panel) and its σ-derivative (the fluid) u(t, σ) (lower panel)
from the UV (blue) to the IR (red). For T = 0 on the left (a) and T = 0.00625 on the right (b)
both at µ = 0.6. The white vertical line in the colored bar-legend denotes the RG time (scales)
when the Z2 symmetry is broken (condensation). There is no symmetry restoration at these
points in the phase diagram in MF. From Figs. 6 and 7 of Ref. [4].

calculations and plots of FRG flows at very low as well as vanishing temperature and moderate
chemical potential. W.l.o.g. we choose µ = 0.6 and T = 0.00625 or T = 0.

Therefore we present figure 4.25a as the reference plot of our discussion. It shows the mean-
field FRG flow for u(t, σ) and U(t, σ) at T = 0 and µ = 0.6. As predicted the chemical potential
enters the FRG flow of u(t, σ), which is entirely described via the source/sink equation, suddenly
as a discontinuity of u(t, σ) in field space. This discontinuity appears at σ = 0 when k2(t) ≈ µ2

and moves towards larger |σ| until σ2 ≈ µ2

h2
(h = 1). Formally, this discontinuity leads to infinite

negative gradients ∂σu(t, σ) and impedes the following study of bosonic quantum fluctuations at
T = 0, µ ̸= 0 and finite N . This is, because E2

b(t, ∂σu) = k2(t)+∂σu(t, σ) ≈ µ2+∂σu(t, σ) < 0,
which leads to an abrupt overshooting over the poles of the bosonic propagators 1

Eb
and drives

the diffusion coefficient α(t, ∂σu) from Eq. (4.34) negative.
After spatial integration of u(t, σ) the remnant of the discontinuity is clearly visible in U(t, σ)

in terms of a moving cusp. Additionally, it is worth mentioning that the potential U(t, σ) is in
the symmetry broken phase and everything but flat for small |σ| in the IR, which violates a
fundamental property of thermodynamic potentials and Γ[φ,ψ, ψ̄], namely convexity. This is a
typical mean-field/infinite-N artifact.

In order to study, how the chemical potential influences the bosonic FRG flows, hence the
diffusion in field space, we first slightly increase the temperature of the mean-field calculation
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Figure 4.26.: Same FRG flow as in figure 4.25b but N = 16 on the left (a) and N = 2 on
the right (b) instead N → ∞, thus involving the effects of bosonic quantum fluctuations
(diffusion). From Figs. 8 and 9 of Ref. [4].

to T = 0.00625, while keeping the same chemical potential µ = 0.6. In figure 4.25b it is clearly
visible that the huge negative gradients ∂σu(t, σ) are still present and the overall shape and
flows of u(t, σ) and U(t, σ) do not change much compared to figure 4.25a.
Though, already very small temperatures are able to smear out the sharp edges of the jumps,

which smoothens u(t, σ) significantly already without any diffusive contributions from the
bosons. This effect stemming from the Fermi-Dirac distribution function (C.18) enables the
inclusion of bosons, since gradients are still large, but finite.

The next question is, what happens, if the number of fermions is finite and bosonic fluctuations
enter the FRG flow as non-linear diffusion on the level of u(t, σ). To this end, we plot the same
FRG flows as before at T = 0.00625 and µ = 0.6 for N = 16 fermions in figure 4.26a.
Even though the number of fermions seems to be rather large, the overall picture changes

drastically when compared to the situation in the limit N →∞. We observe that the chemical
potential is still clearly visible on the level of u(t, σ) in terms of rather large gradients and
cusps. But it is hardly visible in U(t, σ). The highly non-linear character of the diffusion
does not really smear out the cusps, but results in the somewhat strange movement of the
straight part of u(t, σ) between the two pronounced edges. Finally, the greatest difference to
the mean-field calculations is that the diffusion vaporizes the condensate and fully restores
the Z2 symmetry in the IR82. Additionally, the potential U(t, σ) turns convex in the IR, as
82We have checked numerically that there is indeed only a trivial minimum at σ = 0, which is hardly visible,
because u(tIR, σ) and U(tIR, σ) are extremely close to the σ-axis in the relevant region. For details, we refer to
the discussions within the next subsubsections.
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expected in the case of finite N . Already from this calculation it is obvious that large but finite
numbers of N yields entirely different results than the N →∞ limit, as prominently stated in
various publications [171, 178, 674] and exemplified in great detail in subsection 3.2.5 for the
zero-dimensional O(N) model at large N .

Finally, we further decrease the number of fermions to N = 2 and again study the FRG flows
at T = 0.00625 and µ = 0.6. In the corresponding figure 4.26b we observe that the diffusion
via the σ-mode sets in much earlier during the FRG flow and the intermediate symmetry
breaking is less drastic. The reason is rather obvious: Changing N in Eq. (4.23) changes the
relative strength between bosonic and fermionic interactions (fluctuations). On the level of the
fluid-dynamic equation (4.31) this implies that the flow is either more diffusion (for small N)
or more source/sink (for large N) dominated. Still, even for N = 2 the chemical potential is

294 4.5. The Gross-Neveu-Yukawa model at finite N



clearly visible in form of a slightly smeared and moving cusp in u(t, σ). Apart from this, the
qualitative picture is similar to the N = 16 scenario.

4.5.3.3. Varying the number of flavors N

Next, we turn to a more systematic analysis of our previous findings regarding FRG flows at
different numbers of flavors. We start by analyzing the relation between the RG scale kres,
where the Z2 symmetry is restored (if it was initially broken by fermionic quantum fluctuation)
and the number of fermionic flavors N .

As a first step to get an overall impression, we again fix µ = 0.1 and T = 0.1 and look at
the condensate σmin(t) as a function of the RG scale k(t) for various selected values of N . The
numeric results are depicted in figure 4.27.
The results are rather intuitive. The RG time period, in which we find a non-zero condensate

σmin(t) ̸= 0, strongly depends on N . For small N , the Z2 symmetry restores almost at model
scales, which are set by h = 1, while for larger N one finds that the restoration scale kres moves
several orders of magnitude on the RG scale towards the IR83. Furthermore, we observe that in
the time periods with broken Z2 symmetry, the position of the minimum σmin(t) is approaching
its mean-field value σmin = 1 rapidly while increasing N in figure 4.27. The reason for this
behavior is that the precondensation – the formation of a non-persistent non-trivial minimum
during the FRG flow – due to fermionic quantum fluctuations does not depend on N .

The direct follow up question is, if there is some fixed relation between kres and N and if we
can expect to recover the mean-field result for N →∞, where kres = 0, which is not reachable
in practical computations at finite N involving bosonic fluctuations. Therefore, we calculate
and plot kres as a function of N for different combinations of µ and T in figure 4.28 in a double
logarithmic plot. The values for µ and T in figure 4.28 lie in the symmetry broken phase of the
MF phase diagram and consequently precondensation occurs during the FRG flow, which is
necessary to define and discuss the restoration scale kres.
Already from the numeric data points, it seemed as if we found some power law behavior

for kres(N), which was confirmed for all combinations of µ and T , as long as T is sufficiently
small84. The straight lines are fits of the function

kres(N) ∝ N−1 (4.82)

to our data points. This strongly supports the hypothesis that for all finite N the discrete
chiral symmetry is never broken in the IR for T > 0, while for N →∞, the mean-field result
is recovered. In the following discussions we will mainly focus on N = 2. Nevertheless, we
83This is the reason, why we cannot choose arbitrarily large N for numeric calculations. If N is too large, we have
to integrate to too small RG scales to find symmetry restoration. However, this is numerically not possible, due
to general limitations of the numerical precision during numerical RG time evolution.

84For µ = 0.0 and T = 0.5 the relation kres(N) does not obey a strict power law (4.82) but slightly deviates.
We believe that the reason for this behavior is the fact that for sufficiently large T one is already close to the
second-order phase transition, where the Z2 symmetry is restored by thermal fluctuations (also in mean-field)
and not primary by bosonic quantum fluctuations.
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checked for various other values of N that our overall findings are similar for general finite
N > 1.

4.5.3.4. Varying the temperature T

In this subsubsection we focus on the relation between the restoration scale kres and the tem-
perature T . This relation is exemplified for N = 2.

We start by setting µ = 0 and solely focusing on the evolution of σmin(t) along the RG scale
k(t) for different temperatures T . This is plotted in figure 4.29.
We find, that by decreasing the temperature, the RG time period of broken Z2 symmetry

becomes longer and one has to go deeper into the IR to find symmetry restoration for smaller
temperatures. Additionally, we observe remnants of the mean-field second-order phase tran-
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sition, because for larger temperatures the value of the intermediate condensate σmin(t) is
smaller than for smaller temperatures. In general we observe no SSB in the IR for all T > 0 and
µ = 0. For temperatures above the mean-field critical temperature TC ≃ 0.567, see Eq. (4.65),
symmetry restoration is driven by thermal fluctuations while for 0 < T < TC bosonic quantum
fluctuations seem to drive symmetry restoration at finite N and µ = 0.

In figure 4.30 we present results for the temperature-dependence of the symmetry restoration
scale kres(T ) for various chemical potentials. We observe that for large temperatures, which are
already close to the mean-field critical temperature, the influence of the thermal fluctuations,
also in the fermionic loop contribution is too large to have a simple relation between kres and T .
For T ≳0.03 we find that kres(T ) depends non-trivially on µ indicating a complicated interplay
of thermal, density, and quantum fluctuations that leads to symmetry restoration.
For low temperatures we can identify two distinct trends in figure 4.30. On the one hand, the

points kres(T ) for µ > 0.6 become insensitive to T for T ≲0.03while showing a clear dependence
on µ: kres(T ) = c(µ)T 0. In this regime it is not the bosonic quantum fluctuations that restore
the symmetry, but rather density fluctuations related to the chemical potential. This is already
the case in the limitN →∞ (mean-field). In the fluid-dynamical interpretation of fermions as a
source/sink term, symmetry gets restored at large chemical potentials due to the manifestation
as a source in this scenario, cf. subsection 4.2.2.
On the other hand, the points kres(T ) for µ < 0.6 become rather insensitive to µ for T ≲0.03

while showing a clear linear dependence on T , viz. kres(T ) = c(µ)T , where the constant c(µ)
depends only very weakly on µ. This implies that for small T the fermionic contributions to the
flow are almost negligible and predominantly the first non-zero Matsubara mode 2πT controls
kres, which also explains the linear relation between kres and T .
For T < 0.3 and µ < 0.6 we find symmetry restoration at a finite kres – consequently no SSB

in the IR – at finite N = 2, which is in direct contrast to the N → ∞ (mean-field) results,
where symmetry is still broken in this regime. Assuming that the functional trends identified in
figure 4.30 at low T hold in the limit T → 0, the linear relations kres(T ) ∝ T 1 suggest SSB in the
IR at T = 0 even at finiteN . We will come back to this possibility in subsubsection 4.5.3.7 when
discussing the phase diagram after we explore the situation in vacuum in subsubsection 4.5.3.6.

Before we turn to further discussion concerning the chemical potential, we conclude this
subsubsection on temperature-dependencies with another plot, namely figure 4.31. With this
figure we study the dependence of the temperature Tpc on N . Tpc is the precondensation tem-
perature [273, 510, 699, 751–753], which is defined in our work as the threshold temperature
above which the system is always in the symmetric phase for all k(t) at µ = 0 and Z2 symmetry
is never broken during the FRG flow. We observe that Tpc approaches the mean-field value for
the critical temperature TC ≃ 0.567 while increasing N . It should however be stressed, that for
finite N Tpc is not a critical temperature associated with a second-order phase transition to a
symmetry broken phase in the IR. While symmetry breaking occurs for T < Tpc(N) during the
FRG flow, bosonic fluctuations restore symmetry in the IR for all finite N . Only in the limit
N → ∞ the mean-field result of a second-order phase transition at limN→∞ Tpc(N) = TC is
recovered, which again qualitatively confirms the consistency of our numeric results.

4.5. The Gross-Neveu-Yukawa model at finite N 297



101 102

N

0.400

0.500

0.567

0.600

T
p

c

µ = 0.0,Λ = 105, kIR = 10−4,
ncells = 1000, σmax = 6.0

Figure 4.31.: Precondensation temperature Tpc(N) as a function of the number of fermions
N at µ = 0. Hereby Tpc(N) is defined as the temperature that is needed to keep the system
in the Z2-symmetric phase over the entire FRG flow, meaning that σmin(k) = 0 at all scales k.
The red-dashed line marks the critical temperature TC ≃ 0.567 from mean-field calculations,
see Eq. (4.65). From Fig. 14 of Ref. [4].

4.5.3.5. Varying the chemical potential µ

To further study the relation between kres and µ, we proceed as follows. First, we fix N = 2
and T = 0.1 and again look at σmin(t) plotted over the RG scale k(t) in figure 4.32.
Here, we observe that for large µ > 0.6 the fermionic density fluctuations restore the

symmetry during the FRG flow, signaled by a kres which is slightly smaller than µ but of the
same order of magnitude. The strip at T = 0.1 with µ > 0.6 is in the restored phase of the
mean-field phase diagram and the dynamics at finite and infiniteN are dominated by fermionic
density fluctuations mediated by the chemical potential. Small values of µ < 0.6 cannot
influence a large region in field space. The source contributions at small µ are insufficient to
restore the symmetry (compare with our previous discussions). For µ < 0.6 the restoration
scale kres is always the same and is set by the temperature.
This behavior is visualized even better in figure 4.33, where we plot kres(µ) for various T .

Note that kres(µ) becomes insensitive to µ for small chemical potentials. We observe remnants –
the jump/large gradient in kres(µ) at µ ≈ 0.6 around T ≈ 0.3 – of the mean-field first-order
phase transition below the mean-field critical point (µCP, TCP) ≃ (0.6, 0.3).
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4.5.3.6. Computations in vacuum

Before we conclude this subsection with the discussion of the phase diagram at finite N we
turn to selected results in vacuum at vanishing temperature and chemical potential. Direct
numerical computations at T = 0 and µ > 0 and finite N were not possible within this work
as discussed at length in the previous subsubsections. Computations at T = 0 and vanishing
chemical potential µ = 0 are however possible at finite N . In this subsubsection we discuss a
specific vacuum flow at N = 2 obtained by numerical solution of the vacuum flow Eq. (4.24)
(strictly speaking the σ-derivative of Eq. (4.24)) with the one-dimensional Litim regulator also
used for the previous computations at T > 0.

The vacuum FRG flow for N = 2 is displayed in figure 4.34a, showing the scale evolution
from the UV and the initial condition (4.79) towards the IR. The corresponding flows of the
running minimum σmin(k), the squared curvature mass m2

σ(k) = ∂σu(t, σ) at the IR minimum
σmin > 0 with the corresponding changing rate |∂tm2

σ(k)| according to Eq. (4.81) are plotted in
figure 4.34b. We observe SSB in the IR indicated by the non-zero minimum σmin > 0. The value
of σmin ≈ 0.907 for N = 2 is slightly smaller than the mean-field value in the limit N →∞ of
σmin = σ0 = 1. The curvature mass squared forN = 2 is extremely small withm2

σ ≈ 1.04 ·10−5,
significantly smaller than the mean-field value of m2

σ = 1
π ≃ 0.318, see Eq. (4.57), in the limit

N →∞. The changing rate |∂tm2
σ(k)| indicates an extremely long dynamical range in RG scale

k. The IR cutoff of kIR = 10−4 is arguably not low enough and integration deeper into the
IR should be performed to ensure that all relevant long-range bosonic vacuum fluctuations
are included. However the computations in vacuum are numerically extremely demanding.
Lower IR cutoffs would require better spatial resolution and potentially even higher numerical
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precession for numerical RG time evolution. Both increase the computational time significantly.
Computations with lower IR cutoffs were infeasible within the scope of this work. This limitation
also implicitly excludes studies at significantly higher finite N since the dynamics get shifted
to even lower RG scales for N > 2 as discussed in subsubsection 4.5.3.3.
The result of SSB in the IR for finiteN = 2 at T = µ = 0 is supported by the results discussed

in App. E of Ref. [4] obtained from vacuum flows using two-dimensional Litim regulators. A
non-vanishing σmin in vacuum is also supported by the results at finite but low temperature of
subsubsection 4.5.3.4 and especially the results presented in figure 4.30.
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Figure 4.35.: Phase diagram of the GNY model in the µ-T -plane with N = 2 at selected
RG scales k(t) during the FRG flow, where condensation is present. Phase transition lines
on the left (a) and corresponding density plots on the right (b). The plots are extracted
from 3432 independent FRG flows at points (µi, Tj) with µi = 0.0125 · i, i ∈ {0, . . . , 65} and
Tj = 0.0125 · j, j ∈ {1, . . . , 48}. For better resolution at small temperatures, we also included
calculations at points with Tj = 0.00625 · j, j ∈ {1, . . . , 4} and the same µi as before. From
Figs. 19 and 20 of Ref. [4].

4.5.3.7. The phase diagram

With this subsubsection we finally turn to a discussion of the phase diagram in the µ-T -plane
at finite N . We focus explicitly on N = 2 but the qualitative statements should, following
subsubsection 4.5.3.3, generalize to finite N > 2.
In figure 4.35a we plot the phase transition lines in the µ-T -plane for different k(t). For

slightly larger and smaller values of k(t) – including the physical point in the IR – than those
that are presented, there is no phase with Z2 symmetry breaking at finite temperature. For
k(t) > 0.4 not enough momentum modes are included to allow for the formation of a non-
trivial minimum by fermionic fluctuations, while for scales k(t) < 0.003 bosonic long-range
fluctuations already vaporized the condensate. With figure 4.35b, we present complementary
density plots for the condensate at the selected k(t) of figure 4.35a.
We find that when symmetry breaking sets in, the phase transition line looks similar to

its infinite-N counter part (yellow line in figure 4.35a). However, the region of broken Z2
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symmetry is smaller at its formation at k(t) ≈ 0.4, since thermal bosonic fluctuations work
against the symmetry breaking induced by the fermions. As soon as one further decreases k(t),
the symmetry broken regime shrinks drastically. Interestingly, we can observe directly, that for
small T and late RG times the phase boundary is almost independent of µ. This was already
discussed in the previous subsubsections. Ultimately, the entire Z2 symmetry broken phase
vanishes for T > 0, such that plotting a “phase diagram” in the µ-T -plane at the physical point
in the IR is kind of pointless. Still, figure 4.35 clearly shows the region in the µ-T -plane, where
the precondensation phenomenon [273, 510, 699, 751–753] takes place.
It is also noteworthy, that the time period during the FRG flow, hence the range of RG scales,

where we find Z2 symmetry breaking, is rather small (approximately k ∈ [0.4, 0.003] spanning
over roughly two orders of magnitude), if compared to the total flow time, respectively the
nine-orders of magnitude between the UV scale kUV = Λ = 105 and the IR scale kIR = 10−4.
A dynamical range of roughly two orders of magnitude starting at around k(t) ≈ 1 was also
observed in the previous subsubsections for computations at T > 0 and N = 2.

We conclude this subsubsection with a few remarks regarding the situation at zero tem-
perature and finite N . From the N = 2 computations in vacuum, presented in the previous
subsubsection 4.5.3.6, we have strong reasons to believe that Z2 symmetry breaking persists in
vacuum for finite N at low RG scales in the IR. The results obtained by direct computations
at low temperatures and µ ≥ 0 discussed in subsubsection 4.5.3.4 support this notion and
suggest that Z2 symmetry breaking persists at non-zero µ until a chemical potential of µ ≈ 0.6
is reached. For µ≳0.6 at T = 0 and N = 2 we do not expect symmetry breaking in the IR. In
order to give a more definite and refined picture of the situation at T = 0 and µ ≥ 0 further
computations as well as research and development are required including computations at
even lower RG scales as well as direct computations at T = 0 and µ > 0 for finite N .
A phase transition at zero temperature driven by an external parameter (or field) rather

than thermal fluctuation is called a quantum phase transition [754]. In the context of the
GN(Y) model at zero temperature the chemical potential acts as such an external parameter.
Fermionic vacuum fluctuations are responsible for symmetry breaking in vacuum and low µ,
while density fluctuations induced by a non-zero chemical potential (at finite and infinite N)
as well as bosonic quantum fluctuations (at finite N only) drive the system towards symmetry
restoration. For a general pedagogic discussion of quantum phase transitions we refer to the
textbook [754] as well as the review article [755]. There are multiple systems known to exhibit
a quantum phase transition, see, e.g., Refs. [754, 755] and references therein.
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4.6. Conclusion and outlook

This section has been compiled from Secs. VII and IV of Refs. [4, 5] respectively.

In the introduction of this chapter, in subsection 4.4.1, and with our literature review in
subsection 4.5.1 – regarding the fate of Z2 symmetry breaking at finite N , we provided a broad
phenomenological overview of the GN model. Nevertheless, we have considered the GN model
within this chapter just as our next testing ground in d = 1+1 after leaving the roam of d = 0.
Within this chapter we have studied the GN model at infinite-N and the GNY model – as a
closely related bosonized variant of the GN model – at finite N . Identifying the GNY model as
a suitable candidate for an LPA FRG study of the partially bosonized GN model we considered
its formulation in our CFD frame work for the FRG

The LPA flow equation of the GNYM as a highly non-linear diffusion-source/sink equation
Setting up the framework for numerical computation with the LPA flow equation of the GNY
model, included as a first step the reformulation of the flow equation in conservative form.
Using the previously established methodology we formulate the LPA flow equation as a non-
linear diffusion equation with a source/sink term. The diffusive contributions can be clearly
attributed to bosonic quantum fluctuations, of a massive radial mode, which we studied at
length already in d = 0. While we already encountered source/sink-like contributions from
Grassmann numbers, the manifestation of the source/sink term in the GNY model as a real
QFT with a chemical potential is novel to our discussion. We have dedicated subsection 4.2.2 to
a discussion of its dynamic: depending on RG scale, location in field space, chemical potential,
and temperature it can either act like a source or a sink. Fermionic fluctuations can therefore
both act towards a breaking and a restoration of Z2 symmetry.

The homogeneous phase at infinite N
For infinite N the bosonic fluctuations are completely suppressed within the GNY model, which
is then equivalent to the GN model. Within the FRG framework in the limit N →∞ we recover
well-known infinite-N (mean-field) results for the homogeneous phase diagram of the GN
model. The discrete chiral Z2 symmetry is spontaneously broken at small chemical potentials
and temperatures and gets restored at high temperatures and chemical potentials across a
second-order (first-order) phase transition for high temperatures (low temperatures). The
restoration of Z2 symmetry in the infinite-N limit is purely driven by fermionic thermal and
density fluctuations.

The inhomogeneous phases at infinite N
Before turning our attention to the FRG studies at finite N . We make use of the well established
explicit results for the inhomogeneous phase in the GNmodel to benchmark the stability analysis
as one of the most popular indirect detection methods for inhomogeneous condensation.
It was shown in subsubsection 4.4.2.2 that the stability analysis is able to accurately predict

the second-order phase transition between the IP and SP as the amplitude of the inhomogeneous
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condensate Σ at this phase boundary becomes infinitesimal and its functional form is described
by a harmonic wave. Matching the initial expectation, the stability analysis fails to correctly
detect the phase boundary between the HBP and IP, because large perturbations would be
required. Such perturbations can not be captured within the present expansion scheme.
Therefore, the region of the IP, where Σ̄(µ, T ) ̸= 0, is completely undetected by the stability
analysis.
Moreover, we compared the wave vector that minimizes the bosonic two-point function Q

with the dominating wave vector of the inhomogeneous condensate qΣ in subsubsection 4.4.2.3.
Inside the IP close to the phase boundary between the SP and IP these two quantities agree very
well. Further away from this phase boundary, the amplitude of the inhomogeneous condensate
is large, thus violating an assumption of the stability analysis. This is reflected in a small but
finite tension of Q and qΣ.
Also, the bosonic wave-function renormalization Z was investigated. The existence of a

region where the wave-function renormalization is negative and the homogeneous minimum
is stable under inhomogeneous perturbations, i.e., Z < 0 and ∀q, Γ(2)(Σ̄(µ, T ), µ, T, q) > 0,
explicitly shows that a negative Z is only a necessary condition for an inhomogeneous phase.
In summary, these findings show that the stability analysis can indeed be an appropriate

tool in the search for second-order phase boundaries of inhomogeneous phases. By using
the (1+1)-dimensional GN model as a test ground the shortcomings of this methods were
quantified and it was demonstrated that it can also give a reasonable estimate of quantities
within the inhomogeneous phase like the dominating wave vector of the condensate.

In subsection 4.4.3 we briefly discuss the related gGL analysis and identify it as a very simple
jet potent tool in the vicinity of LPs.

The Gross-Neveu-Yukawa model at finite N
Using the FRG framework and the established finite volume methods for it, we have performed
computations for the GNY model at finite and infinite number of flavor N at finite temperature
T ≥ 0 and quark chemical potential µ ≥ 0.

At finite N the GNY and GN model are not equivalent in LPA truncation. We argue however
that, due to our specific choice for the classical action of the GNY model, the phenomenology
of both at least on LPA level should be similar. Direct computations with the GN model in LPA
truncation within the FRG framework are not feasible. A proper resolution of the differences
between the two models at finite N would be possible by improving the truncation scheme.
Especially the addition of a scale-dependent wave-function renormalization for the scalar
σ-channel is a natural next step in this direction. First results in this direction are discussed
in Ref. [165] and indicate that due to the intricate dynamics on the level of the two-point
function, discussed here in the context of the stability analysis, higher orders in the derivative
expansion might indeed be crucial to properly resolve the underlying FRG flow.
Numerical results for various finite N and especially N = 2 at non-zero temperature and/or

chemical potential were presented and discussed in subsection 4.5.3 and have revealed that
there is no spontaneous Z2 symmetry breaking at non-zero temperature for finite N . This
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binary result is in agreement with heuristic arguments of L. D. Landau et al. [744] and in the
context of the GN model of R. F. Dashen et al. [188], which were summarized and discussed in
subsection 4.5.1. The situation at vanishing temperature is not completely settled yet.
Direct computations in vacuum are numerically challenging but possible and suggest sponta-

neous Z2 symmetry breaking even for finite N at T = µ = 0. Computations at zero and very
low temperatures and non-zero chemical potentials within the used LPA flow equation are also
challenging and arguably, see subsection 4.2.2, impossible at zero temperature. This novel
aspect of LPA flow equations arising in the CFD framework certainly warrants further research
and development. Direct computations beyond very low temperatures are however possible
without conceptual or numerical challenges even at non-zero chemical potentials. Considering
the vacuum results and an extrapolation from results at low temperatures we have strong
reasons to believe that a quantum phase transition between a phase of broken Z2 symmetry at
low chemical potentials and a restored phase at higher chemical potentials is a highly likely
scenario at T = 0 and finite N .

Outlook
Beyond the aforementioned further research directions in regards to truncation and a more
refined understanding of the involved sources, studies in related models in 1+1 dimensions
might be very interesting. Another extremely interesting research direction is the study of the
GN(Y) model in finite volumes.
Further remarks regarding the application of the more and more refined CFD framework for

FRG flow equations will be made in chapter 6.
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5. Quark meson model in four dimensions

Large parts of this chapter are based on the unpublished and so far unfinishedmanuscript [6]
and related work which has been done in close collaboration with M. Buballa and B.-J.
Schaefer. The manuscript [6] is based on research done for this dissertation. The draft
for [6] is in its early stages and so far I am the sole contributor to the document in
terms of explicit computations and text. Parts of subsection 5.2.1 discuss results done in
collaboration with L. Kurth.
The numerical results discussed in section 5.2, were obtained with various versions of

my C++ code [756], computing the phase diagrams in the µ-T -plane in a few hours of
wall time using various consumer processors.

The role of bosonic thermal and quantum fluctuations on the stability of inhomogeneous
chiral condensates remains unclear. Recent FRG studies, cf. subsection 2.4.2 and especially
the discussion surrounding figures 2.13a, 2.17, and 2.18, have shown indications, that in-
homogeneous chiral condensation might be possible beyond the mean-field/large-Nc limit.
Both FRG studies [80, 87] used indirect methods, related to the stability analysis discussed in
subsection 4.4.2, to infer information about the possibility of inhomogeneous condensation.
We plan to contribute to this research in two ways.

With the methodological developments regarding both the numerics for FRG flow equations,
mainly discussed in chapter 3 and sections 4.2 and 4.5, and the stability analysis, discussed in
section 4.3, we plan to study inhomogeneous phases by means of a FRG based stability analysis.
We believe, that we now have the proper tools and understanding to apply our conceptual
developments to LEFTs of QCD in the spirit of subsection 2.3.3. With the developed CFD
framework for FRG flow equations it should be possible to continue the discussion started in
Ref. [87] to answer the question whether there is an instability towards inhomogeneous con-
densation in the QM model in LPA. The main point of interest of Ref. [87] were thermodynamic
instabilities/artifacts of the QM model in LPA and inhomogeneous condensates were not the
focus of the discussion in Ref. [87]. A review of the issues discussed in Ref. [87] can be found
in Sec. III.B of the recent review [109]. Very recent results [210] have brought significant
progress with a combination of improvements regarding regulator choice, truncation but also
importantly a robust CFD formulation of the underlying flow equation.

The second way in which we want to contribute to the research into inhomogeneous phases
beyond mean-field is to the best of our knowledge original to our work [6] and this thesis.
We plan to supplement the indirect detection methods with a direct method. To this end we
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developed a way to incorporate an explicit inhomogeneous condensate into the FRG treatment
of LEFTs like the QM model. We will spend the rest of this chapter discussing this development.
In the next section 5.1 we will discuss the central result of this chapter, viz. our successful

derivation of a LPA flow equation for a specific inhomogeneous condensate – the chiral density
wave (CDW) – in the QM model. This derivation is based on two related analytical/symbolic
ideas, which we will discuss in detail, and a subsequent rather tedious but straight forward
symbolic computation. We will include the latter only in the digital auxiliary file [757].
In the second and last section 5.2 of this chapter, we will discuss a series of mean-field

results we obtained using the derived flow equation. Here we will just focus on the obtained
results rather than the technical details given the already substantial scope of the present work.
Details regarding the implementation and the involved expressions can be found in the C++
code [756], in the digital auxiliary file [757], and will eventually be discussed in Ref. [6].
These studies do not include any bosonic fluctuations and the derived flow equation can be
integrated in RG scale symbolically. We will focus on RG-consistent mean-field computations
to study the QM model as a LEFT rather than a renormalizable model.
We will not conclude this chapter with its own, separated conclusion and outlook, since it is

the last chapter of the main part of this thesis. We will include our concluding remarks and
outlook regarding this part of our research, in the following final summary and outlook in
chapter 6.

5.1. Deriving a LPA flow equation for the chiral density wave

Considering the QM model of subsubsection 2.3.3.1 in LPA entails the ansatz (2.184) for the
EAA:

Γk[χ] ≡
∫︂

x

(︃
ψ̄(γν∂ν − γ4µ+ hφiτ

i)ψ +
1

2

(︁
∂µφ

)︁2
+ Uk(ϱ)

)︃
. (5.1)

For the condensates – the possible solutions of the QEOM –we consider in this section exclusively

χEoM = ∼χ = (∼φ(x⃗), 0, 0) , (5.2)

with “the” chiral density wave (CDW)

∼φ(x⃗) ≡ ∆(cos(q⃗ · x⃗), 0, 0, sin(q⃗ · x⃗)) , (5.3)

with wave vector q⃗ and amplitude ∆. Due to its specific analytic properties this is one of the
most commonly studied inhomogeneous modulations, see, e.g., Refs. [83–86, 88, 193, 484–486,
514] and section 2.4. A crucial and unique property of this inhomogeneous modulation is the
fact that, its related O(4) invariant is constant:

1

2 ∼
φ(x⃗)2 =

1

2
∆2 = const. (5.4)

on account of the Pythagorean identity. Another closely related property is a variant of Euler’s
formula

∀O2 = 1 ∼φ0(x⃗)± iO∼φ3(x⃗) = ∆exp(±iOq⃗ · x⃗) . (5.5)
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A third very nice property is, that in the limit q⃗ = 0 the CDW becomes the ordinary homogeneous
condensate

∼χ
q⃗=0−→ χ = ((∆, 0, 0, 0), 0, 0) . (5.6)

When evaluating the Wetterich equation on the CDW background, Eq. (5.4) allows for a
simple and conventional treatment of the LPA potential on the r.h.s. of the Wetterich equation
(2.37). The r.h.s. involves the fermionic and bosonic two-point functions

∼Γ
,ψ̄ψ
k (x, y) = δ(4)(x− y)

[︁
γν∂xν − γ4µ+ h∆

2
(cos(q⃗ · x⃗) + 2iγcht3 sin(q⃗ · x⃗))

]︁
, (5.7)

∼Γ
,φiφj
k (x, y) = δ(4)(x− y)

[︁
(−δ2x + U ′

k(∆
2/2))δi,j + U ′′

k (∆
2/2)∼φi(x⃗)∼φj(x⃗)

]︁
, (5.8)

which are manifest position-dependent for q ≡ |q⃗ | ̸= 0. In momentum space this amounts
to a non-diagonal coupling of momenta, which is a characteristic feature of inhomogeneous
phases. As mentioned in section 2.4, this non-diagonal structure in momentum space makes an
inversion – necessary for the computation of propagators – of the involved two-point functions
impossible with standard techniques.
The unique analytical properties of the CDW however, here notably Eq. (5.5), make a symbolic

inversion possible. Noting that (2γcht3)2 = 1, we may rewrite Eq. (5.7) as

∼Γ
,ψ̄ψ
k (x, y) = δ(4)(x− y)

[︁
γν∂xν + γ4µ+ h∆

2
exp(+i(2γcht3)q⃗ · x⃗)

]︁
. (5.9)

Given this form F. Dautry and E. M. Nyman realized in their pioneering work [484] that the
unitary transformation

Uψ(x⃗) = exp(−iγcht3q⃗ · x⃗) (5.10)

eliminates the explicit position dependency in Eq. (5.9), when considering

∼Γ
ψ̄ψ
k;U ≡ U †

ψγ
4
∼Γ
,ψ̄ψ
k Uψ , (5.11)

since U †
ψγ

4 = γ4Uψ, which can be easily verified and is ultimately rooted in the fact that γch
anticommutes with all other γ-matrices, including γ4. In momentum space this translates to a
diagonalization of γ4∼Γ

,ψ̄ψ
k using Uψ, with only the small price of a slightly more complicated

matrix structure. We can follow F. Dautry and E. M. Nyman and can invert the fermionic
two-point function by transforming it and the fermionic regulator according to (5.11). This can
be formalized by inserting identities U †

ψUψ = 1 and γ4γ4 = 1 into the r.h.s. of the Wetterich
equation and using the cyclic property of the trace. As mentioned in the introduction, details
regarding this step can be found in Ref. [757].
Motivated by this approach we started working on a similar unitary transformation for the

bosonic two-point function ∼Γ
,φiφj
k . By studying the term ∼φi(x⃗)∼φj(x⃗) we ultimately were ableto construct such a transformation

Uϕ(x⃗)ij =
1

2

⎛
⎜⎜⎜⎝

1− exp(−2iq⃗ · x⃗) 0 0 1 + exp(−2iq⃗ · x⃗)
0 2 0 0
0 0 2 0

−i(1 + exp(−2iq⃗ · x⃗)) 0 0 i(exp(−2iq⃗ · x⃗)− 1)

⎞
⎟⎟⎟⎠
ij

. (5.12)
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The transformed two-point functions ∼Γ
ψ̄ψ
k;U , ∼Γ

φφ
k;U , and the corresponding transformed reg-

ulators gain complexity in terms of their matrix structure but the conceptually challenging
inversion problem in momentum space is solved. Performing the involved matrix inversions
and traces one can derive the following LPA flow equation, assuming spatial regulators in a
unified regulator scheme:

∂kUk(ϱ) = 12

∫︂
d3p

(2π)3

∑︂

±

(︁
− 1 + nf(β(E

±
ψ;k + µ)) + nf(β(E

±
ψ;k − µ))

)︁
∂kE

±
ψ;k+

+

∫︂
d3p

(2π)3

3∑︂

i=0

(︁
1
2
+ nb(βE

i
ϕ;k)
)︁
∂̃kE

i
ϕ;k , (5.13)

with the two fermionic CDW eigenvalues E±
ψ;k, four bosonic CDW eigenvalues Ei

ϕ;k, and the
invariant ϱ = ∆2/2. The aforementioned fermionic eigenvalues are given by

(E±
k )

2 = M2 +
(p⃗ +q
k )2

2
+

(p⃗ −q
k )2

2
±
√︃
M2

(︂
p⃗ +q
k − p⃗ −q

k

)︂2
+

1

4

(︂
(p⃗ +q
k )2 − (p⃗ −q

k )2
)︂2

(5.14a)
q=0
= M2 + (p⃗k)

2 (5.14b)

with the mass termM2 ≡ 1
4
h2∆2 = h2

2
ϱ and the shifted regulated momenta, cf. Eq. (C.55),

p⃗ qk =
(︁
p⃗+ q⃗/2

)︁
λk
(︁
|p⃗+ q⃗/2|

)︁
. (5.15)

We may distinguish the four bosonic eigenvalues in two pairs:

(E1
ϕ;k)

2 = (E2
ϕ;k)

2 = (p⃗k)
2 + U ′

k(ϱ)
q=0
= (p⃗k)

2 + U ′
k(ϱ) (5.16)

are the ones always associated with the massless π-modes, cf. Eq. (3.63) from section 3.2 for
the related discussion in the zero-dimensional O(N) model. While

(E0,3
ϕ;k)

2 =
1

2
(p⃗k)

2 +
1

2
(p⃗ +4q
k )2 + U ′

k(ϱ) + ϱU ′′
k (ϱ)±

±
√︃
ϱ2U ′′

k (ϱ)
2 +

1

4

(︂
(p⃗ +4q
k )2 − (p⃗k)2

)︂2
(5.17a)

q=0
= (p⃗k)

2 + U ′
k(ϱ) + ϱ(U ′′

k (ϱ)± |U ′′
k (ϱ)|) (5.17b)

are associated with the CDW continuously rotating its chiral symmetry breaking between the
σ- and π3-direction. Only in the limit q = 0 can we recover the notion of another mass-less and
just one massive mode in Eq. (5.17b).
In the limit q = 0 we overall recover the conventional LPA flow equation of the QM model,

using a so far not specified regulator shape function.
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Figure 5.1.: QM model phase diagram at Λ = 1GeV with inhomogeneous window marked in
red and homogeneous phase boundary (in white), which would occur if one were to disregard
inhomogeneous condensation. Solid (dashed/dash-dotted) lines mark first-order (second-
order) phase transitions. The dot marks the inhomogeneous LP while the square marks the
homogeneous CP. All model parameters are included in the figure and the color map shows
the magnitude of the quark mass parameterM .

5.2. RG-consistent mean-field results

As discussed in chapter 1 at the time we derived Eq. (5.13), we did not have the appropriate
tools to numerically solve it. So in a first step we focused, before we got “distracted” by our
studies in d = 0 and d = 1+1, on mean-field studies with this flow equation. Disregarding the
novel contributions of the bosons the equation becomes an integral equation, cf. our discussion
in chapter 4, which can be integrated in RG scale at wish symbolically. This allows for a direct
application of the construction principles outlined in subsubsection 2.1.6.1.
We chose the exponential regulator (2.47) for explicit numerical integration [703] and

subsequent repeated, local, numerical minimization [704] of the integrated flow equation
Eq. (5.13) using my C++ code [756]. The phase boundaries have been obtained with the
help of a block-structured adaptive mesh refinement algorithm, which I implemented for the
efficient computation of these phase diagrams and the precise detection of lines of interest,
without the need of explicit bisection. Details can be found in the C++ code [756] and its
documentation.
While we are ultimately interested in an application of the QM model as a LEFT theory in

the context of subsection 2.3.3, for this work we did not consider such a setup. We choose
the standard bottom-up approach of many mean-field and FRG studies a like and fitted IR
observables to fix our model parameters. We choose a “sombrero”-type (symmetric double-well)
potential, cf. subsubsection 3.2.3.2, as initial condition. Tuning its two parameters and the
Yukawa coupling h in vacuum to fix the bare pion decay constant fπ to its common reference
value in the chiral limit, viz. fπ = 88MeV, the curvature mass of the σ-meson tomσ = 600MeV
and the quark mass parameterMψ = 300MeV. We did so in an RG-consistent setting fixing
those parameters at a relatively low model reference scale Λ′ = 0.4GeV and used the FRG
flow as described in subsubsection 2.1.6.1 to construct a UV completion – hence allow for a
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Figure 5.2.: Same as figure 5.1 but for lower Λ′ = Λ = 0.4GeV. With the gray-dotted line
µ2 + π2T 2 = Λ2 we mark an a posteriori estimate for the range of validity of this computation.

study not plagued by regularization artifacts. The resulting phase diagram constructing the
completion up to Λ = 1GeV is shown in figure 5.1
With figure 5.2 we show the corresponding situation using Λ′ = Λ = 0.4GeV and thus a

situation without a proper UV completion. As one would expect we find an extreme violation
of RG consistency at T > 0 and the results basically loose complete predictive power for
µ2 + π2T 2 > Λ2 which we made out as a rough estimate. At these large external scales the
initial scale Λ = 0.4GeV is just too low in this case. This highlights the need for a proper
RG-consistent UV completion when using small Λ′.
We summarize the situation with figure 5.3 overlaying four results ranging from Λ = 0.4GeV

up to Λ = 5GeV all the while keeping Λ′ = 0.4GeV. The difference between the results at
1GeV and 5GeV is rather small signaling that we are approaching RG consistency in the entire
thermodynamic range considered. We find a stable, persistent but rather small inhomogeneous
phase ending in a LP where HBP, IP, and SP meet and beyond which we observe a second-order
phase transition between HBP and SP as usual in the chiral limit in such models.
Using RG consistency as a guiding principle to construct proper UV completions in MF

computations is a very elegant way to remove cutoff artifacts and focus on other issues, like,
e.g., renormalization and/or parameter fitting.
Before discussing issues related to renormalization in the present approach, we want to

comment on one particular limit. In a RG-consistent MF computation it is technically possible
to set Λ′ = 0 and thus – from an FRG perspective – fixing the EA in the IR without considering
any vacuum fluctuations from the flow whatsoever. When doing this with the classical initial
condition this effectively entails disregarding all fermionic quantum fluctuations, only allowing
for thermodynamic ones. With a sufficiently large Λ or even Λ→∞ we are thus able to recover
the standard mean-field result of figure 2.16a in figure 5.485.

85The only small quantitative difference stemming from the fact that in Ref. [86] fπ = 93MeV is used while we
fix fπ = 88MeV.
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Figure 5.3.: Same as figure 5.1 but for increasing Λ: moving towards RG consistency from
Λ = 0.4GeV up to Λ = 5GeV all the while keeping Λ′ = 0.4GeV.
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Figure 5.4.: Recovering the standard mean-field/no-sea (sMF) result of figure 2.16a with a
RG-consistent reconstruction with Λ′ = 0 and Λ = 5GeV. The black line is the homogeneous
phase boundary, the red lines and shaded area mark the inhomogeneous phase, and the solid
(dashed) lines are first-(second-)order phase transitions.

5.2.1. Renormalized mean-field, parameter fitting, and Poincaré invariance

Within this subsection we want to comment on important observations when it comes to
renormalization in the present MF context. One can consider the QMmodel as a renormalizable
QFT on its own and it is possible to renormalize it, i.e., remove all cutoffs and for these
simple fermionic one-loop computations even all scheme-dependencies. The result for the
inhomogeneous phase diagram in such a scenario is presented in figure 2.16b, which was
computed using dimensional regularization in the original Ref. [86], but can be exactly
reproduced by other regularization schemes like Pauli-Villars, see, e.g., Ref. [85].
From the present perspective of the QM model as a LEFT such a renormalization with a

quartic potential in the limit Λ→∞ makes little sense. It would however seem dishonest not
to comment on the renormalization of the QM model in the present setup as a consistency
check in the spirit of all the other consistency checks discussed in this thesis.
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Figure 5.5.: Starting at Λ′ = 0.4GeV, cf. figure 5.2, we increase Λ′ in increments of 0.05GeV
from top to bottom and observe the disappearance of the inhomogeneous window while fixing
Λ′ = Λ. The color map on the right (left) shows the magnitude of the quark mass parameter
M (CDW wave vector q).

Figure 5.5 shows the immediate failure of this consistency check as we do not find any
inhomogeneous phases for Λ′≳500MeV. The reason for this is however understood, see, e.g.,
Ref. [758] for the specific context here, and is quite general. When we fit our parameters
to bare quantities, while considering fluctuations in the effective potential we incorporate
fluctuations in an inconsistent way. For some observables and applications this might not
be an issue, for the renormalized inhomogeneous phase diagram it is however a massive
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one [85, 758]. One has to fit renormalized quantities: for the QM model the renormalized
pion decay constant and the pole mass of the sigma meson not its curvature mass. These can
be computed on LPA-level (mean-field being one further simplification) by evaluating the flow
of the corresponding two-point functions, cf. our related discussion in section 4.4 and App. E.3.
While the flow of the two-point function has no direct feedback into the LPA flow it generates
non-trivial contributions to the two-point functions.
In an attempt to sufficiently improve our parameter fitting a new issue arose, which we

also wondered about in subsection 4.2.1 for the GNY model. Our choice of regulator breaks
(Euclidean) Poincaré invariance explicitly for all finiteΛ, which is especially apparent in vacuum,
where we are now trying to fit observables by computing wave-function renormalization factors
and pole masses. We observe a splitting in the wave-function renormalization due to our
regulator choice which spoils our results. We however found a solution for this problem by
introducing appropriate counter terms in the UV to account and correct for this splitting in
the IR, see, e.g., Refs. [102, 262] for comments on such Ward identities. Using two counter
terms and fixing 1 = Z

||
π = Z⊥

π in the IR seems to yield the best results at finite Λ. Preliminary
tests show that one approaches the reference values of the renormalized limit as Λ is increased.
It seems however that with our exponential regulator this approach is rather slow. We have
chosen this regulator to increase the performance of our numerical integration of the CDW
eigenvalues, which worked out well but especially for considerations of renormalization one
should probably explore other options, cf. Ref. [265].
With a remark in this direction we will finish this chapter: the flow Eq. (5.13) for the CDW

for arbitrary regulator shape functions involves genuine two-dimensional integrals which is the
main contributor to the numerical cost of these MF computations. Numerical evaluating these
integrals when studying the FRG flow with bosonic fluctuations in our developed CFD context,
seems like a daunting task: we have our volume cells in field direction, our flow in RG time, the
wave vector of the CDW as an additional minimization parameter and the µ-T -plane to raster.
A careful consideration of the angle-dependence in the eigenvalues (5.14a) and (5.17a) of the
CDW might allow for an analytic evaluation for Litim-type regulators, which should definitely
be considered when implementing the LPA flow Eq. (5.13).
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6. Summary and outlook

We have already summarized the findings of our studies in d = 0 and d = 1+1 in section 3.4
and section 4.6 respectively. At this point, we want comment on overarching concepts and key
findings with a special focus on applications in d = 3+1.

Our work and research has been focused on technical developments within the framework
of the FRG. With our research in zero and two dimensions we have developed a firm under-
standing of FRG flow equations, particularly of the LPA flow equation, as conservation laws.
Within the framework of (numerical) fluid dynamics we have established an understanding
of pionic modes and fluctuations as non-linear advective contributions. While we identified
radial/massive modes and fluctuations with non-linear diffusive contributions. Fermionic quan-
tum and thermodynamic fluctuations are understood as sources and sinks on the level of the
LPA flow. We have observed highly non-linear dynamics during our studies of FRG flows both
driven by internal and external factors.
The field of CFD did not only provide the powerful and robust FV method of our choosing,

namely the KT scheme, but it also provided a potent language to concisely describe the dynamics
and interplay of different fluctuations on the level of the flow equation. Especially the notion of
(numerical) entropy and characteristic curves can provide quite unique insights. We established
a connection between numerical entropy and the inherent irreversible nature of the FRG, which
manifests itself clearly on the level of the flow equation.
We have further developed and studied tools for both the direct and indirect detection

of inhomogeneous phases. We find ourselves in a very promising position. With a firm
understanding of the stability analysis as an indirect method and a LPA flow equation for an
explicit inhomogeneous condensate as a direct method, we hope to use them in conjunction
to gain novel insights into inhomogeneous phases beyond mean-field. The adaptation of the
developed CFD approach for the LPA flow equation to the QM model seems to be the logical
next step. First one would establish contact with recent results, e.g., Ref. [210], using the FV
method as an alternative to the employed discontinuous Galerkin methods [162, 210, 247].
This would provide a valuable cross-check of both approaches. Hopefully gaining control over
the homogeneous computations to a sufficient level one could turn towards inhomogeneous
phases using both the homogeneous stability analysis and the explicitly inhomogeneous CDW
condensate. The latter, in particular, will still involve more research and development especially
when it comes to the involved momentum integrals.

Our developments with RG-consistent MF studies, parameter fitting, and Poincaré invariance
deserve more attention and space than we gave them in this work. They are a rather unique
combination and culmination of different results from the field of mean-field studies in the
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context of the FRG. We plan to finish Ref. [6] in the near future before any further new
developments as it has been put of for too long already. Even for this thesis the plan was a
more detailed discussion of the involved concepts but again the preceding discussions in zero
and two dimensions took the space.

Talking about space it seems only appropriate to come back to zero-dimensional theories at
this point. I want to again stress the wealth of knowledge hidden in these simple theories. Our
work with Grassmann numbers in zero-dimensions is still in its infancy. I personally have high
hopes when it comes to the study of Grassmann numbers with the FRG. I think there is a lot
of potential for developments for fermion-boson systems using just Grassmann numbers and
scalars in zero dimensions.
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A. Digital auxiliary files and used software

A.1. Digital auxiliary files and online repository

The following digital auxiliary files

[299] M. J. Steil, “Field space and FRG flow equations”, fs_20231206.nb, Mathematica
notebook (2023), digital auxiliary file,

[325] M. J. Steil, “Computational fluid dynamic”, cfd_20231111.nb, Mathematica note-
book (2023), digital auxiliary file,

[399] M. J. Steil, “Quantum chromodynamics and low-energy effective models”, qcd_
20231129.nb, Mathematica notebook (2023), digital auxiliary file,

[364] M. J. Steil, “Zero dimensional O(N) model”, 0ON_20231205.nb, Mathematica note-
book (2023), digital auxiliary file,

[365] M. J. Steil, “Zero dimensional O(1) model”, 0dO1_20231120.nb, Mathematica note-
book (2023), digital auxiliary file,

[366] M. J. Steil, “Zero dimensional O(N) model at large N”, 0dONLargeN_20231111.nb,
Mathematica notebook (2023), digital auxiliary file,

[642] M. J. Steil, “Zero dimensional SU(2) model”, 0dSU2_20230806.nb, Mathematica
notebook (2023), digital auxiliary file,

[652] M. J. Steil, “Gross-Neveu model in d = 1 + 1”, gn_20240701.nb, Mathematica
notebook (2024), digital auxiliary file,

[653] M. J. Steil, “Gross-Neveu model at infinite N”, GNcpp_20231207.zip, C++ code
(2023), digital auxiliary files,

[742] M. J. Steil, “Generalized Ginzburg-Landau analysis”, ggl_20200227.nb, Mathematica
notebook (2020), digital auxiliary file,

[757] M. J. Steil, “QMM LPA CDW flow equation”, qmmcdw_20231210.nb, Mathematica
notebook (2023), digital auxiliary file,

[756] M. J. Steil, “Quark-Meson model inhomogeneous MF”, QMcpp_20231209.zip, C++
code (2023), digital auxiliary files,

[705] M. J. Steil, “BSAM for phase diagrams”, bsamPD_20201115.pdf, Group seminar talk
(2020), digital auxiliary file,
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[713] M. J. Steil, “Thermal quantum field theory”, tqft_20231122.nb, Mathematica note-
book (2023), digital auxiliary file

are referenced throughout this work. They serve as digital appendices of this thesis and they
include related derivations and computations which are either too lengthy to be presented
in this print document directly or they benefit immensely from a digital format. In the latter
category are Mathematica notebooks and packages, C++ codes, and related files.
Files for figures, underlying data, bibliographic references, additional material, my dis-

putation presentation, and the LATEX code for this thesis are also included in the following
repository.
The digital material is available in the online repository

https://github.com/MJSteil/PhD-Thesis.

A.2. Used software

This document has been created with the use of several software tools and packages.
The document itself is typeset in LATEX [759, 760] using a slightlymodified version of the TUDa-

CI [761, 762]. For bibliography management and citation formatting we use the BibLATEX [763]
package with the biber backend [764]. A multitude of other LATEX packages are used for various
applications, e.g., axodraw2 [53, 54] for Feynman diagrams, glossaries/glossaries-extra [765,
766] for acronyms, cleveref [767] for intelligent cross-referencing, and amsmath [768] for
improved mathematical typesetting to name a few notable ones.
Parts of this thesis have been manually spell-checked using the dictionaries of TEXnic

Center [769], Notepad++ [770], and the language model ChatGPT 4 [771]. Note that
the latter has not been used to generate text passages. The text in this document has been
compiled in accordance with the affidavit – Erklärungen laut Promotionsordnung – and the
disclaimers throughout this work, see also section 1.2.
Plots and figures in this document have been created with Matplotlib [56] and Mathemat-

ica [166, 353].
The software and code used for symbolic and numeric computations is described and refer-

enced in the main part of this work, see also App. A.1.
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B. Units, conventions, and notations

B.1. Compact notations

Throughout this work, we employ various compact notations to improve readability.
Compact notations and abbreviations related to computations in field space and in posi-

tion/momentum space are discussed separately in App. B.4 andApp. B.5. Summation/integration
over repeated internal indices/variables is implied in the usual manner. When abbreviating
elements of large sums or products, we adopt the Skeleton notation of Mathematica [166]
where≪n≫ is used to represent a sequence of n omitted elements.

B.2. Units

For equations and numerical computations in this work we use a natural units (NU) system in
which the units are defined such that the Boltzmann constant kB, the reduced Planck constant
ℏ, and the speed of light in vacuum c are dimensionless and exactly unity, i.e.,

(kB)NU ≡ (ℏ)NU ≡ (c)NU ≡ 1 . (B.1)

This NU system simplifies equations and numerical computations and it is realized by using
energy as dimension for the quantities mass and temperature and reciprocal energy as dimen-
sions for time and length. We chose electronvolt (eV) as the base unit of energy in our NU
system. For discussions and figures which benefit/require the use of units, we usually adopt
units common in high-energy physics which are obtained from results in NU by multiplication
with appropriate powers of the conversion factor

ℏc = 197.328 980 4 . . . MeVfm , (B.2)

see, e.g., Eqs. (B.8) and (B.9).
Selected conversion factors to SI units and derived units are

(︁
1MeV

)︁
NU

= 1MeV · c−2 = 1.782 661 9 . . . × 10−30 kg , (B.3)
(︁
1MeV−1

)︁
NU

= 1MeV−1 · ℏc = 1.973 269 8 . . . × 10−13 m , (B.4)
(︁
1MeV−1

)︁
NU

= 1MeV−1 · ℏ = 6.582 119 5 . . . × 10−22 s , (B.5)
(︁
1MeV

)︁
NU

= 1MeV · 1 = 1.602 176 6 . . . × 10−13 J , (B.6)
(︁
1MeV

)︁
NU

= 1MeV · k−1
B = 1.160 451 8 . . . × 10+10 K , (B.7)
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(︁
1MeV3

)︁
NU

= 1MeV3 · (ℏc)−3 = 1.301 489 2 . . .× 10−7 fm−3 , (B.8)
(︁
1MeV4

)︁
NU

= 1MeV4 · (ℏc)−3 = 1.301 489 2 . . .× 10−7 MeVfm−3 , (B.9)

for mass, length, time, energy, temperature, number density, and energy density respectively.
Depending on the context pressure and density are typically expressed in units ofMeVfm−3 in
high-energy physics with the following conversion factors

1MeVfm−3 ˆ︁= 1.602 176 6 . . . × 10+32 Pa ˆ︁= 1.782 661 9 . . . × 10+15 kgm−3 (B.10)

to the respective (derived) SI units.
For the exact SI values of the fundamental constants – viz. kB, ℏ, c, and the electronvolt in

joules – used in our numerical computations we use the recommended values of CODATA [772].

B.3. The (special) unitary group

The Lie algebra su(N) of the group SU(N) – the Lie-group of unitary matrices U of rank N and
determinant one – has in its N -dimensional fundamental representation N2 − 1 generators
Ta ≡ T a (traceless, hermitian N ×N matrices) obeying

TaTb =
1

2N
δa,b1N +

1

2

N2−1∑︂

c=1

(︁
ifabc + dabc

)︁
T c , (B.11)

and thus implementing the (anti-)commutator relations

{︁
Ta, Tb

}︁
≡ TaTb + TbTa =

1

N
δa,b1N +

N2−1∑︂

c=1

dabcT
c , (B.12)

[︁
Ta, Tb

]︁
≡ TaTb − TbTa = i

N2−1∑︂

c=1

fabcT
c , (B.13)

with the antisymmetric structure constants fabc, the symmetric d-coefficients, and the normal-
ization

Tr
(︁
TaTb

)︁
=

1

2
δa,b . (B.14)

The elements of the group SU(N) are given by

U = exp(iθaT
a) , (B.15)

with the generators T a and the real parameters θa.

The (N2 − 1)-dimensional adjoint representation is given by

(T̃ a)bc = −ifabc . (B.16)
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B.3.1. SU(2) and U(2) algebras

The special unitary group of degree two SU(2) is of particular importance for several parts of
this work therefore we elaborate on this special case of the group SU(N) in this appendix.

The Lie algebra su(2) of the group SU(2) consists of 2× 2 hermitian matrices with vanishing
trace. The three two-dimensional generators ta ≡ ta of the fundamental representation are
given by

t1 =
1

2
σ1 =

1

2

(︄
0 1
1 0

)︄
, t2 =

1

2
σ2 =

1

2

(︄
0 −i
i 0

)︄
, t3 =

1

2
σ3 =

1

2

(︄
1 0
0 −1

)︄
, (B.17)

with the canonical Pauli matrices σi. The structure constants fabc are given by the totally
antisymmetric Levi-Civita symbol εabc and the symmetric d-coefficients vanish for the generators
of SU(2) and consequently Eq. (B.11) manifests as

tatb =
1

4
δa,b12 +

i

2
εabctc , (B.18)

where Latin indices run from 1 to 3 and summation over repeating indices implied as usual.
Using Eq. (B.18) and contraction identities for the Levi-Civita symbol repeatedly one can show

tatbtc =
i

8
εabc12 +

1

4

(︁
δb,cta − δa,ctb + δa,btc

)︁
, (B.19)

tatbtctd =
i

8
εbcdta +

1

16

(︁
δa,dδb,c − δa,cδb,d + δa,bδc,d

)︁
12+

+
i

8

(︁
δb,cεad

m − δb,dεacm + δc,dεab
m
)︁
tm , (B.20)

and consequently the following identities for traces hold

Tr
(︁
ta
)︁
= 0 , (B.21)

Tr
(︁
tatb
)︁
=

1

2
δa,b , (B.22)

Tr
(︁
tatbtc

)︁
=

i

4
εabc , (B.23)

Tr
(︁
tatbtctd

)︁
=

1

8

(︁
δa,dδb,c − δa,cδb,d + δa,bδc,d

)︁
. (B.24)

Further product and trace identities can be derived by further repeated use of Eq. (B.18).

The three-dimensional adjoint representation is defined by the structure constants fabc = εabc
and given by

t̃1 =

⎛
⎜⎝
0 0 0
0 0 −i
0 i 0

⎞
⎟⎠ , t̃2 =

⎛
⎜⎝

0 0 i
0 0 0
−i 0 0

⎞
⎟⎠ , t̃3 =

⎛
⎜⎝
0 −i 0
i 0 0
0 0 0

⎞
⎟⎠ . (B.25)
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The Lie algebra u(2) of the groupU(2) of unitary matrices of rankN has four two-dimensional
generators {t0, t1, t2, t3}, where t1, t2 are t3 shared with su(2), see Eq. (B.17), and

t0 =
1

2
12 =

1

2

(︄
1 0
0 1

)︄
. (B.26)

B.4. Field space notation

The field space notation introduced in this appendix is based on the one put forward in
Refs. [104, 222, 226] and allows for a unified treatment of fermionic (Grassmann-valued) and
bosonic (non-Grassmann-valued) fields.

In the following we collect all Grassmann-valued fields of the theory under consideration
in ψ̂ and ˆ̄ψ and all other fields in φ̂. In the FS notation introduced in this appendix, we will
suppress all discrete and continuous internal indices of those fields and collect all fields in one
multi-field χ̂. FS indices, related to components of the multi-field χ̂, are typeset as bold roman
indices. The multi-field χ̂ includes all fundamental fields of the theory as well as all optional
composite fields under consideration. The FS components of this multi-field

(χ̂a) ≡ (φ̂, ψ̂, ˆ̄ψ)⊤ , (B.27)

(χ̂a) ≡ (φ̂, ˆ̄ψ,−ψ̂) , (B.28)

are chosen to implement the contraction

χ̂mχ̂m = γmnχ̂nχ̂m = χ̂mχ̂nγnm = φ̂2 + ˆ̄ψψ̂ − ψ̂ ˆ̄ψ = φ̂2 + 2 ˆ̄ψψ̂ , (B.29)

where we introduced the FS metric86

(︁
γab
)︁
≡
(︁
γab
)︁
≡

⎛
⎜⎝
1 0 0
0 0 1
0 −1 0

⎞
⎟⎠ (B.30)

and the Northwest-Southeast (NW-SE) convention: FS indices are always raised (N) from the
left (W), χ̂a = γamχ̂m, and lowered (S) from the right (E), χ̂a = χ̂mγma. Summation over FS
and discrete internal indices as well as integration over continuous internal variables is implied
for contractions.
86Our FS metric of Eq. (B.30) is consistent with the sign conventions used in Refs. [104, 226] while in Ref. [222]
the signs in the FS metric of Eq. (A.1) should be switched for Eqs. (A.2) and (A.7) of Ref. [222] to be consistent.
The ±1 for the components of the FS metric related to Grassmann-valued fields are just convention (∓1 is also
possible) but they affect the relation between (χ̂a) and (χ̂a), see Eqs. (B.27) and (B.28), and consequently signs
in contractions like the one in Eq. (B.29).
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The FS metric is non-diagonal in FS, which is necessary to take the Grassmann nature of
some field components into account. In all, in our notation currently suppressed, internal
spaces the metric is trivial and the respective identity. The FS metric introduced above has the
following properties

γ b
a = γamγ

bm = γmaγ
mb = δba , (B.31)

γab = γamγmb = γmaγbm = (−1)abδab , (B.32)

where we introduced the generalized sign factor

(−1)ab ≡
{︄
−1 if the components a and b are Grassmann-valued
+1 otherwise

, (B.33)

which tracks possible sign flips due to the commutation of FS components a and b. Products
of such sign factors appear frequently in practical computations therefore we introduce the
compact notation

(−1)ab,cd,ef ≡ (−1)ab(−1)cd,ef ≡ (−1)ab,≪2≫ . (B.34)

The defined metric together with the NW-SE convention implements the anticommutation of
Grassmann-valued fields properly, e.g.,

χ̂mχ̂m = γmnχ̂nχ̂
lγlm = χ̂nχ̂

lγnl = (−1)nlδnl χ̂nχ̂
l = (−1)mmχ̂mχ̂

m , (B.35)

which is of course consistent with Eq. (B.29).
Sources related to components of χ̂ can also be treated in the introduced notation

(Ĵa) ≡ (Jφ̂, J ˆ̄ψ
, Jψ̂), (B.36)

(Ĵa) = (γamĴm) = (Jφ̂, Jψ̂,−J ˆ̄ψ
) , (B.37)

which implements

Ĵmχ̂m = (−1)mmχ̂mĴm = Jφ̂φ̂+ Jψ̂ψ̂ − J ˆ̄ψ
ˆ̄ψ = Jφ̂φ̂+ Jψ̂ψ̂ + ˆ̄ψJ ˆ̄ψ

. (B.38)

Functional derivatives in FS are always taken from the left. The order of those derivatives
is important since derivatives w.r.t. Grassmann-valued fields or sources anticommute with
Grassmann-valued components. For the product rule this implies

δ

δĴb

(︄
δf [Ĵ ]

δĴa
g[Ĵ ]

)︄
=

(︄
δ

δĴb
δf [Ĵ ]

δĴa

)︄
g[Ĵ ] + (−1)ab δf [Ĵ ]

δĴa
δg[Ĵ ]

δĴb
, (B.39)

while for the chain rule

δ

δĴa
f [g[Ĵ ]] = f ′[g[Ĵ ]]

δg[Ĵ ]

δĴa
(B.40)
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applies in the usual manner.
For functional derivatives we frequently adopt the compact notations

Γ
,xmn...m2m1
k [χ] ≡ δ

δχx
Γ
,mn...m2m1
k [χ] ≡ δ

δχx

δ

δχmn

. . .
δ

δχm2

δ

δχm1

Γk[χ] , (B.41)

Wk,xmn...m2m1 [Ĵ ] ≡
δ

δĴx
Wk,mn...m2m1 [χ] ≡

δ

δĴx
δ

δĴmn
. . .

δ

δĴm2

δ

δĴm1
Wk[Ĵ ] , (B.42)

where additional derivatives are attached from the left, derivatives to the right are performed
first, taking derivatives w.r.t. upper (lower) FS indices lowers (raises) the index in question
and functional derivatives are understood as derivatives w.r.t. the argument of the functional
in question.
For FS components of operators which are not directly related to functional derivatives and

which already carry sub- or superscript characters we use a semicolon as separator, e.g., χ̂k;a[χ̃]
and Gk;ab[χ].

B.5. Fourier transformations and functional derivatives

For d-dimensional Euclidean QFTs at zero temperature and the corresponding (d = s+1)-
dimensional theories at non-zero temperature T = 1/β, see also App. C, we use the following
conventions for Fourier transformations of bosonic (φ) and fermionic (ψ, ψ̄) fields

φ(x) =

∫︂ +∞

−∞

ddp

(2π)d
φ(p) e+ip·x , φ(x⃗, τ) =

1

β

∞∑︂

n=−∞

∫︂ +∞

−∞

dsp

(2π)s
φ(p⃗, ωn) e

+i(p⃗·x⃗+ωnτ) , (B.43)

ψ(x) =

∫︂ +∞

−∞

ddp

(2π)d
ψ(p) e+ip·x, ψ(x⃗, τ) =

1

β

∞∑︂

n=−∞

∫︂ +∞

−∞

dsp

(2π)s
ψ(p⃗, νn) e

+i(p⃗·x⃗+νnτ) , (B.44)

ψ̄(x) =

∫︂ +∞

−∞

ddp

(2π)d
ψ̄(p) e−ip·x, ψ̄(x⃗, τ) =

1

β

∞∑︂

n=−∞

∫︂ +∞

−∞

dsp

(2π)s
ψ̄(p⃗, νn) e

−i(p⃗·x⃗+νnτ) . (B.45)

The corresponding inverse transformations are given by

φ(p) =

∫︂

Vd

ddxφ(x) e−ip·x , φ(p⃗, ωn) =

∫︂ β

0

dτ

∫︂

Vs

dsxφ(x⃗, τ) e−i(p⃗·x⃗+ωnτ) , (B.46)

ψ(p) =

∫︂

Vd

ddxψ(x) e−ip·x , ψ(p⃗, νn) =

∫︂ β

0

dτ

∫︂

Vs

dsxψ(x⃗, τ) e−i(p⃗·x⃗+νnτ) , (B.47)

ψ̄(p) =

∫︂

Vd

ddx ψ̄(x) e+ip·x , ψ̄(p⃗, νn) =

∫︂ β

0

dτ

∫︂

Vs

dsx ψ̄(x⃗, τ) e+i(p⃗·x⃗+νnτ) . (B.48)

Appropriate boundary conditions for the fields – (anti-)periodic ones for fermionic/bosonic
fields – in position space at non-zero temperature are implemented by series using discrete
bosonic ωn = 2n π

β
and fermionic νn = (2n+ 1) π

β
Matsubara frequencies, cf. Apps. C.1 and C.2.
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Throughout this work we usually abbreviate momentum and position space integrals and
sums over internal indices with a single

∫︁
or ∑︁
∫︁
. Appropriate factors of 1/β for Matsubara sums

and powers of 1/(2π) for momentum-space integrals are included in the ∑︁
∫︁
- and

∫︁
-symbols:

∫︂

Vd

ddx1 . . . d
dxm →

∫︂

x1,...,xm

, (B.49)

∫︂ +∞

−∞

ddp1
(2π)d

. . .
ddpm
(2π)d

→
∫︂

p1,...,pm

, (B.50)

∫︂ β

0

dτ1 . . . dτm

∫︂

Vs

dsx1 . . . d
sxm →

∫︂
τ1,...,τm
x1,...,xm

, (B.51)

1

βm

∞∑︂

n1,...,nm=−∞

∫︂ +∞

−∞

dsp1
(2π)s

. . .
dspm
(2π)s

→
∑︂∫︂

n1,...,nm
p1,...,pm

. (B.52)

Conventions for Fourier transformations of operators follow from the identities for the fields,
e.g.,

Γ̄,φ1φ2k (p1, p2) =

∫︂

x1,x2

e−ip1·x1Γ̄,φ1φ2k (x1, x2)e
−ip2·x2 , (B.53)

Γ̄,ψ̄1ψ2k (p1, p2) =

∫︂

x1,x2

e+ip1·x1Γ̄,ψ̄1ψ2k (x1, x2)e
−ip2·x2 , (B.54)

Γ̄,ψ1ψ̄2k (p1, p2) =

∫︂

x1,x2

e−ip1·x1Γ̄,ψ1ψ̄2k (x1, x2)e
+ip2·x2 . (B.55)

Apart from the introduced conventions for (inverse) Fourier transformations of fields and
operators the following identities for delta distributions are very useful in practical computations

∫︂

Vd

ddx e+ip·x = (2π)dδ(d)(p) , (B.56)
∫︂ β

0

dτ

∫︂

Vs

dsx e+i(p⃗·x⃗+υτ) = β(2π)sδ(s)(p⃗)δ(υ) , (B.57)

where υ usually manifests as a sum/difference of Matsubara frequencies, e.g., ωn1 + ωn2 =
ωn1+n2 or νn1 − νn2 = ωn1−n2 in which case δ(υ) manifests as δ0,n1±n2 = δn1,∓n2 and is strictly
speaking not understood as a distribution. Note that Eqs. (B.56) and (B.57) are the identity
operators in momentum space, given our conventions for momentum integrals and Matsubara
sums. In the expressions and computations of App. E we will routinely encounter expressions
like

(2π)sδ(s)(p⃗1 ± p⃗2) ≡ δ̃(s)p⃗1±p⃗2 , (B.58)

βδ0,n1±n2(2π)
sδ(s)(p⃗1 ± p⃗2) ≡ δ̃(s)n1±n2

p⃗1±p⃗2
, (B.59)
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where we introduced the compact notations using δ̃. This entails in momentum space
∫︂ +∞

−∞

ddp

(2π)d
(2π)dδ(d)(p) ≡

∫︂

p

δ̃(d)p = 1 (B.60)

1

β

∞∑︂

n=−∞

∫︂ +∞

−∞

dsp

(2π)s
βδ0,n(2π)

sδ(s)(p) ≡
∑︂∫︂

n;p

δ̃
(s)
n
p

= 1 (B.61)

summarizing the previously introduced compact notations in momentum space.

Functional derivatives in position space are understood as

δφ1(x1)

δφ2(x2)
= δa1a2δ

(d)(x1 − x2) ,
δφ1(x⃗1, τ1)

δφ2(x⃗2, τ2)
= δa1a2δ

(s)(x⃗1 − x⃗2)δ(τ1 − τ2) , (B.62)

δψ1(x1)

δψ2(x2)
= δα1α2δ

(d)(x1 − x2) ,
δψ1(x⃗1, τ1)

δψ2(x⃗2, τ2)
= δα1α2δ

(s)(x⃗1 − x⃗2)δ(τ1 − τ2) , (B.63)

δψ̄1(x1)

δψ̄2(x2)
= δα2α1δ

(d)(x1 − x2) ,
δψ̄1(x⃗1, τ1)

δψ̄2(x⃗2, τ2)
= δα2α1δ

(s)(x⃗1 − x⃗2)δ(τ1 − τ2) , (B.64)

where discrete bosonic indices are collected in a and discrete fermionic indices are collected in
α. Corresponding functional derivatives in momentum space are given by

δφ1(p1)

δφ2(p2)
= δa1a2δ

(d)(p1 − p2) ,
δφ1(p⃗1, ωn1)

δφ2(p⃗2, ωn2)
= δa1a2δ

(s)(p⃗1 − p⃗2)δn1n2 , (B.65)

δψ1(p1)

δψ2(p2)
= δα1α2δ

(d)(p1 − p2) ,
δψ1(p⃗1, νn1)

δψ2(p⃗2, νn2)
= δα1α2δ

(s)(p⃗1 − p⃗2)δn1n2 , (B.66)

δψ̄1(p1)

δψ̄2(p2)
= δα2α1δ

(d)(p1 − p2) ,
δψ̄1(p⃗1, νn1)

δψ̄2(p⃗2, νn2)
= δα2α1δ

(s)(p⃗1 − p⃗2)δn1n2 , (B.67)

which in combination with the transformations of Eqs. (B.43)–(B.45) lead to the rather useful
identities for mixed functional derivatives

(2π)dδφ1(x1)

δφ2(p2)
= δa1a2e

+ip2·x1 ,
β(2π)sδφ1(x⃗1, τ1)

δφ2(p⃗2, ωn2)
= δa1a2e

+i(p⃗2·x⃗1+ωn2τ1) , (B.68)

(2π)dδψ1(x1)

δψ2(p2)
= δα1α2e

+ip2·x1 ,
β(2π)sδψ1(x⃗1, τ1)

δψ2(p⃗2, νn2)
= δα1α2e

+i(p⃗2·x⃗1+νn2τ1) , (B.69)

(2π)dδψ̄1(x1)

δψ̄2(p2)
= δα2α1e

−ip2·x1 ,
β(2π)sδψ̄1(x⃗1, τ1)

δψ̄2(p⃗2, νn2)
= δα2α1e

−i(p⃗2·x⃗1+νn2τ1) . (B.70)
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B.6. Spinor degrees of freedom

In this work, we perform computations involving spinors in two and four dimensions using a
Euclidean metric gµν ≡ δµν . In this appendix we present the relevant conventions for Euclidean
and Minkowski signature, where the latter is not used in practical computations through out
this work and is presented here for completeness sake. The notation and conventions we
introduce below are partly based on the ones put forward in Ref. [422] therefore we refer the
interested reader to this article for further details especially regarding discrete and continuous
symmetries and aspects of analytic continuation87.

We consider the Clifford algebra

{γµ, γν} = 2gµν1 (B.71)

for the d-dimensional inverse diagonal metric gµν with s̃ eigenvalues−1 such that s̃ = 0 amounts
to Euclidean and s̃ = d− 1 to Minkowski signature. In this work we only consider d even, viz.
d = 2 and d = 4, and (γµ)† = ±γµ for gµµ = ±1. When considering Euclidean space Greek
(Lorentz) indices run from 1 to dwhile we use µ ∈ {1, . . . , d−1, 0}when considering Minkowski
signature. We use (dγ ≡ 2⌊d/2⌋)-dimensional Dirac spinors for chiral fermions described by two
associated elements ψ and ψ̄ of a Grassmann algebra which transform under infinitesimal
SO(s̃, d− s̃) transformations of the generalized Lorenz group as

δψᾱ = − 1
2
ϵµν(Σ

µν)ᾱβ̄ψ
β̄ , (B.72)

δψ̄ᾱ = 1
2
ϵµνψ̄β̄(Σ

µν)β̄ ᾱ , (B.73)

with ϵµν = −ϵνµ = ϵ∗µν , the spinor indices ᾱ and β̄ and where we suppressed the corresponding
transformations of the generalized Lorenz group of coordinates or momenta in our notation.
Conventions for (inverse) Fourier transformations for fermionic components can be found in
App. B.5. The generators Σµν of the SO(s̃, d− s̃) group can be constructed using the elements
γµ of the matrix representation of the Clifford algebra (B.71)

Σµν =
1

4
[γµ, γν ] . (B.74)

Dirac spinors in even dimensions can be decomposed into Weyl spinors using an additional
gamma matrix

γch ≡ −(−i)d
2−s̃γ1 . . . γd−1γd/0 (B.75)

for Euclidean (s̃ = 0) and Minkowski (s̃ = d− 1) signature respectively88. With γch defined
according to Eq. (B.75) the following identities hold

(γch)2 = 1 , (B.76)
87Our conventions for analytic continuation from Minkowski signature (s = 1) to Euclidean signature (s = 0),
implied by the conventions of Apps. B.6.1 and B.6.2, are based on the usual continuation of the time coordinate
and not on the formulation using a vielbein used in Ref. [422].

88We use a different sign convention for γch when compared to Eq. (2.14) of Ref. [422].
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(γch)† = γch , (B.77)
{γµ, γch} = 0 , (B.78)
[Σµν , γch] = 0 . (B.79)

Because of the property (B.76) one can define the “right”- and “left”-handed projection operators

γ± ≡
1

2
(1± γch) , (B.80)

which can be used to decompose the Dirac spinors into two Weyl spinors ψ± (ψ̄±) of opposite
"chirality" denoted by the subscript ±:

ψ± = γ±ψ, ψ̄± = ψ̄γ∓ . (B.81)

Boosts and rotations do not mix between Weyl spinors of opposite "chirality" and while rotations
act similarly on ψ+ (ψ̄+) and ψ− (ψ̄−), boosts act differently on ψ+ (ψ̄+) and ψ− (ψ̄−), which
when considering d = 4 and Minkowski signature s̃ = 3 gives rise to the notion of chirality in
this context.
Using the objects introduced in this appendix it is possible to define the bilinears ψ̄1ψ,

ψ̄γchψ, ψ̄γµψ, ψ̄γchγµψ and ψ̄Σµνψ, which transform under Lorenz transformations as scalars,
pseudoscalars, vectors, pseudovectors, and antisymmetric second rank tensors respectively.
Those bilinears can be used to construct Lorentz-invariant actions including spinor degrees of
freedom.

For lengthy (partial) Dirac traces in d dimension we use the functionalities of the FormTracer
package [773, 774] for Mathematica [166] as well as the explicit representations of the
following two subsections.

B.6.1. Clifford algebra in two dimensions

For computations in d = 2 and Euclidean signature (s̃ = 0) requiring an explicit representation
we use hermitian gamma matrices in Weyl basis

γ1 = −σ2 =

(︄
0 i
−i 0

)︄
, γ2 = σ1 =

(︄
0 1
1 0

)︄
, γch = −σ3 =

(︄
−1 0
0 1

)︄
, (B.82)

as basis elements of the Clifford algebra in accordance to the representation-independent
definitions of App. B.6. Corresponding matrices for computations in Minkowski signature
(s̃ = 1) are given by

γ0M = γ2 , γ1M = −iγ1 , and γchM = γch . (B.83)
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B.6.2. Clifford algebra in four dimensions

For computations in d = 4 and Euclidean signature (s̃ = 0) requiring an explicit representation
we use hermitian gamma matrices in Weyl basis89

γi =

(︄
|||02×2 iσi

−iσi |||02×2

)︄
, γ4 =

(︄
|||02×2 12×2

12×2 |||02×2

)︄
, γch =

(︄
−12×2 |||02×2

|||02×2 12×2

)︄
, (B.84)

with i ∈ {1, 2, 3} as basis elements of the Clifford algebra in accordance to the representation-
independent definitions of App. B.6. Corresponding matrices for computations in Minkowski
signature (s̃ = 3) are given by

γ0M = γ4 , γiM = −iγi , and γchM = γch . (B.85)

89We use a different sign for γi and γch in Weyl basis when compared to Eq. (A.1) of Ref. [422].
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C. Thermal quantum field theory

In this appendix, we will briefly discuss the Matsubara formalism [775] used in this work,
for computations in thermal equilibrium (at non-zero temperature). We will focus mainly on
technical aspects and refer the interested reader to Refs. [558, 776–781] for a comprehensive
introduction of thermal (quantum) field theory. An introduction to FRG flows at non-zero
temperature can be found, e.g., Refs. [226, 782]. This appendix has a corresponding digital
auxiliary file [713].

C.1. Grand canonical partition function

Throughout this work we use the grand canonical ensemble to study equilibrium bulk properties
of thermodynamic systems at non-zero temperature T , chemical potentials µ90 and in our
applications constant spatial volume Vs. The latter is usually assumed to be asymptotically
large/infinite and we limit the discussion to appropriate densities of thermodynamic quantities,
cf. Eqs. (C.9)–(C.12). The partition function of the grand canonical ensemble is given by

Z = Tr ρ̂ = Tr e−βĤ =
∑︂

n

e−βEn , (C.1)

with the density matrix ρ̂, the Hamiltonian Ĥ, and corresponding energy eigenvalues En
with Ĥ|n⟩ = En|n⟩. The Hamiltonian Ĥ includes a Lagrange multiplier µN̂ realizing the
conservation of the associated mean quark number density n = ⟨N̂⟩ with the corresponding
quark chemical potential µ. The latter is a measure of the change in the energy of the system
when the number of quarks, i.e., quark-anti-quark-asymmetry, is changed. The associated mean
quark number density n measures the number of quarks minus the number of anti-quarks per
unit volume. The ensemble average of an observable represented by the operator Ô is given by

⟨Ô⟩ = 1

Tr ρ̂
Tr
(︁
ρ̂ Ô
)︁
=

1

Z Tr
(︁
Ôe−βĤ

)︁
. (C.2)

The traces in Eqs. (C.1) and (C.2) can be expressed as

Z = Tr e−βĤ =

∫︂
dsχ̃⟨χ̃|e−βĤ|χ̃⟩ , (C.3)

⟨Ô⟩ = 1

Z

∫︂
dsχ̃⟨χ̃|Ôe−βĤ|χ̃⟩ , (C.4)

90Through this work we consider only one chemical potential, viz. the quark chemical potential. Expressions in this
appendix however can trivially be extended to incorporate multiple chemical potentials.
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using field eigenstates. In this context the density matrix ρ̂ – the operator e−βĤ – can be
interpreted as an evolution operator on a compact imaginary time axis with 0 ≤ t ≤ iβ. This
allows a computation – in the Matsubara formalism [775] – of such traces as expectation values
of Euclidean QFTs with a compact Euclidean time-direction 0 ≤ τ ≤ β and on account of the
governing traces (anti-)periodic boundary conditions

χ̃(x⃗, τ) = ∓χ̃(x⃗, τ + β) , (C.5)

for (fermionic) bosonic fields. In momentum space this periodicity amounts to a replacement
of continuous frequencies pd ≡ ps+1 associated with the Euclidean time direction with discrete
bosonic ωn = 2n π

β
or fermionic νn = (2n+ 1) π

β
Matsubara frequencies. Related conventions

for fields, operators, and functional derivatives are presented in App. B.5. Identities for
computations involving Matsubara frequencies are presented in the next App. C.2.
In the context of subsection 2.1.1 the thermodynamic partition function Z is given by the

Euclidean generating functional in the IR (k = 0) and at vanishing source (Ĵ = 0): Z = Z0[0].
This allows for an identification of the EAA Γ0[χEoM] in the IR evaluated on the QEOM,

χEoM;a =
δW0[Ĵ ]

δĴa

⃓⃓
⃓⃓
Ĵ=0

⇔ δΓ0[χ]

δχa

⃓⃓
⃓⃓
χ=χEoM

= 0 , (C.6)

viz. Eqs. (2.11) and (2.20), with the so called grand potential Ω̃:

Ω̃(µ, T ) = −T lnZ = T Γ0[χEoM;µ, T ] . (C.7)

Therefore Γ0[χ] does not only carry the information of all 1PI correlation function in its moments,
it also encodes the thermodynamics of the system when evaluated on the QEOM (C.6). Explicit
solutions for χEoM depend on temperature and chemical potential. In the context of symmetry
breaking and phase transitions the QEOM (C.6) might have multiple solutions. The physical
ground state of the system is in this case given by the solution χEoM which minimizes Γ0[χ].
Explicit examples are discussed in chapters 4 and 5 including both homogeneous χEoM = const.
and inhomogeneous χEoM(x⃗) solutions of the QEOM.
For our explicit computations at constant and implicitly infinite spatial volume Vs it is

convenient to work with the grand potential density Ω

Ω ≡ 1

Vs
Ω̃ = − T

Vs
lnZ =

T

Vs
Γ0[χEoM] , (C.8)

from which one can derive densities of thermodynamic quantities in the usual manner:

f = − T
Vs

lnZ = Ω , (C.9)

p =
∂T lnZ
∂V

= −Ω , (C.10)

s =
1

Vs

∂T lnZ
∂T

= −∂Ω
∂T

, (C.11)
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n = − 1

Vs

∂T lnZ
∂µ

= −∂Ω
∂µ

, (C.12)

with the Landau free energy density f , the pressure p, the entropy density s, and the mean
quark number density n. The energy density ε follows with the Gibbs-Duhem relation as

ε = −p+ Ts+ µn . (C.13)

Eq. (C.10) holds only if the EAA in the IR is normalized such that Ω(0, 0) = 0 reproduces a van-
ishing pressure in vacuum. Such a normalization is not very practical and in fact not necessary
since Ω(0, 0) = 0 can be realized for any sensible normalization by modifying Eq. (C.10):

p = −(Ω(µ, T )− Ω(0, 0)) =
T

Vs

(︂
Γ0[0, 0;χEoM]− Γ0[µ, T ;χEoM]

)︂
. (C.14)

For the study of phase transitions and symmetry breaking it is convenient to define the
effective potential

V [µ, T ;χ] ≡ T

Vs
Γ0[µ, T ;χ] , (C.15)

which entails for the extremum χEoM

δV [µ, T ;χ]
δχa

⃓⃓
⃓⃓
χ=χEoM

= 0 , (C.16)

as a variant of Eq. (C.6). The grand potential density Ω is found by minimizing V [µ, T ;χ]
w.r.t. χ and Ω(µ, T ) = V [µ, T ;χEoM]. When studying homogeneous condensation, the effective
potential becomes a function (not a functional) of the homogeneous/constant expectation values
χ and the effective potential can be identified with the local potential V (µ, T ;χ) = U0(µ, T ;χ),
cf. chapters 4 and 5 for explicit applications.

C.2. Selected Matsubara sums and identities for distribution
functions

Symbolic expressions arising in computations in the Matsubara formalism involve so called
Matsubara sums

1

β

∞∑︂

n=−∞
f(ωn) or 1

β

∞∑︂

n=−∞
g(νn) (C.17)

involving bosonic ωn = 2n π
β
or fermionic νn = (2n+ 1) π

β
Matsubara frequencies. Such sums

can usually be computed by means of the residue theorem using bosonic (Bose-Einstein [783])

nb(x) ≡
1

ex − 1
=

1

2
coth

(︁
x
2

)︁
− 1

2
(C.18)
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or fermionic (Fermi-Dirac [784–786])

nf(x) ≡
1

ex + 1
=

1

2
− 1

2
tanh

(︁
x
2

)︁
(C.19)

distribution functions, which have poles at iωn and iνn respectively. Using the residue theorem
the sums in Eq. (C.17) can be expressed as contour integrals using the distributions functions
with the initial contour enclosing all poles of the distribution functions. When considering sums
involving well-behaved functions f or g, which decay sufficiently fast for arguments with a
large absolute value, the contours can be deformed to include the poles of f or g instead of the
poles of the distributions functions without changing the result of the integrals. The remaining
contour integrals can be evaluated using the residue theorem backwards to express the contour
integrals as sums over the poles of f or g. Explicit computations for typical sums can be found in,
e.g., Ref. [779]. After presenting useful relations and identities for the distribution functions we
will present results for selected explicit Matsubara sums relevant for this work. The following
expressions and corresponding computations can be found in the chapter Distribution functions
of the digital auxiliary file [713].
Using the definitions (C.19) and (C.18) for nb(x) and nf(x) the following identities for

powers and derivatives of the distribution functions are straightforward to derive

n′
b(x) = − 1

4
sinh−2

(︁
x
2

)︁
= (C.20)

= −nb(x)
2 − nb(x) ,

n′′
b(x) =

1
4
coth

(︁
x
2

)︁
sinh−2

(︁
x
2

)︁
= (C.21)

= 2nb(x)
3 + 3nb(x)

2 + nb(x) ,

n′′′
b (x) = − 1

8
sinh−4

(︁
x
2

)︁
− 1

4
coth2

(︁
x
2

)︁
sinh−2

(︁
x
2

)︁
= (C.22)

= −6nb(x)
4 − 12nb(x)

3 − 7nb(x)
2 − nb(x) ,

nb(x)
2 = −n′

b(x)− nb(x) , (C.23)
nb(x)

3 = 1
2
n′′
b(x) +

3
2
n′
b(x) + nb(x) , (C.24)

nb(x)
4 = − 1

6
n′′′
b (x)− n′′

b(x)− 11
6
n′
b(x)− nb(x) , (C.25)

n′
f(x) = − 1

4
coth−2

(︁
x
2

)︁
= (C.26)

= nf(x)
2 − nf(x) ,

n′′
f (x) =

1
4
tanh

(︁
x
2

)︁
coth−2

(︁
x
2

)︁
= (C.27)

= 2nf(x)
3 − 3nf(x)

2 + nf(x) ,

n′′′
f (x) =

1
8
coth−4

(︁
x
2

)︁
− 1

4
tanh2

(︁
x
2

)︁
coth−2

(︁
x
2

)︁
= (C.28)

= 6nf(x)
4 − 12nf(x)

3 + 7nf(x)
2 − nf(x) ,

nf(x)
2 = n′

f(x) + nf(x) , (C.29)
nf(x)

3 = 1
2
n′′
f (x) +

3
2
n′
f(x) + nf(x) , (C.30)
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nf(x)
4 = 1

6
n′′′
f (x) + n′′

f (x) +
11
6
n′
f(x) + nf(x) . (C.31)

Additionally relations for the indefinite parity

nb(−x) = −1− nb(x) , (C.32)
nf(−x) = 1− nf(x) , (C.33)

and transmutations

nb(β(E + iωn)) = nb(βE) , nb(β(E + iνn)) = −nf(βE) , (C.34)
nf(β(E + iωn)) = nf(βE) , nf(β(E + iνn)) = −nb(βE) , (C.35)

of distribution functions are again direct consequences of the definitions (C.19) and (C.18). In
the limit of vanishing temperature (β = 1/T →∞) we find

∀E > 0 lim
β→∞

nb(βE) = lim
β→∞

1

eβE − 1
= 0 , (C.36)

∀E > 0, µ ≥ 0 lim
β→∞

nf(β(E + µ)) = lim
β→∞

1

eβ(E+µ) − 1
= 0 , (C.37)

∀E > 0, µ ≥ 0 lim
β→∞

nf(β(E − µ)) = lim
β→∞

1

eβ(E−µ) − 1
= Θ(µ− E) ≡

⎧
⎪⎪⎨
⎪⎪⎩

1 E < µ
1
2

E = µ

0 E > µ

, (C.38)

with the Heaviside step function Θ(x) in half-maximum convention with Θ(0) = 1
2
.

In the computation of (non-perturbative) one-loop diagrams involving a single propagator
the bosonic sum

M1
b(µ, β;E) ≡M1

b(β;E) ≡ 1

β

∞∑︂

n=−∞

1

ω2
n + E2

=
1

2E
+
nb(βE)

E
(C.39)

and the fermionic sum

M1
f (µ, β;E) ≡ 1

β

∞∑︂

n=−∞

1

(νn + iµ)2 + E2
=

1

2E
− nf(β(E + µ))

2E
− nf(β(E − µ))

2E
(C.40)

are frequently encountered. The identities

M0
b(µ, β;E) ≡M0

b(β;E) ≡ 1

β

∞∑︂

n=−∞
ln[β2(ω2

n + E2)] =

= −E − 2
β
ln[nb(βE)] + const. (C.41)

= E + 2
β
ln
[︁
1 + e−βE

]︁
+ const. , (C.42)
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M0
f (µ, β;E) ≡ 1

β

∞∑︂

n=−∞
ln[β2((νn + iµ)2 + E2)] =

= −E − 1
β
ln[nf(β(E + µ))]− 1

β
ln[nf(β(E − µ))] + const. (C.43)

= E + 1
β
ln
[︁
1 + e−β(E+µ)

]︁
+ 1

β
ln
[︁
1 + e−β(E−µ)]︁+ const. , (C.44)

containing divergent but in E, β, and µ constant contributions follow directly from the identi-
ties (C.39) and (C.40) when applying 1

2E
∂
∂E
to them.M0

b/f appear in the study of zero-point
functions – effective/thermodynamic potentials – and naturally in (partial) integrals involving
expressions containingM1

b/f .
In the computation of computation of two-point functions Matsubara sums involving multiple

energies appear frequently. The simplest sums of this type are

M1,1
b (µ, β;E1, E2) ≡M1,1

b (β;E1, E2) ≡
1

β

∞∑︂

n=−∞

1

ω2
n + E2

1

1

ω2
n + E2

2

=

=
1

2E1(E2
2 − E2

1)
(1 + 2nb(βE1)) + 1↔ 2 , (C.45)

M1,1
f (µ, β;E1, E2) ≡

1

β

∞∑︂

n=−∞

1

(νn + iµ)2 + E2
1

1

(νn + iµ)2 + E2
2

=

=
1

2E1(E2
2 − E2

1)
(1 + nf(β(E1 + µ)) + nf(β(E1 − µ))) + 1↔ 2 . (C.46)

Related sums involving higher powers of (ω2
n+E

2
i ) or ((νn+iµ)2+E2

i ) can be readily computed
by applying − 1

2Ei

∂
∂Ei
toM1,1

b (µ, β;E1, E2) orM1,1
f (µ, β;E1, E2) potentially repeatedly.

The zero-temperature limits of the presented Matsubara sums can be obtained with the
help of the limits of Eqs. (C.36)–(C.38). For renormalization and regularization it is often
advantageous to split (if possible) the Matsubara sums into vacuum and medium parts in the
following way

M(µ, β) ≡M;vac +M;med(µ, β) , (C.47)

where

M;vac ≡ lim
β→∞

M(µ = 0, β) , (C.48)

M;med(µ, β) ≡M(µ, β)−M;vac . (C.49)

For the Matsubara sums presented in this appendix this split can be read of the given expressions
directly when noting that both the bosonic and fermionic distribution functions vanish in the
zero-temperature limit at vanishing chemical potential µ. For the sums M0

b/f(µ, β;E) the
alternative expressions (C.42) and (C.44) should be considered to directly read of the zero-
temperature limit and/or the split in vacuum and medium parts.
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C.3. Momentum integrals and related notations

Throughout this work and in QFT in general we are frequently faced with momentum-space
integrals – often referred to as loop integrals. Before commenting on their evaluation (especially
in the FRG context) note and recall the following identities between RG time t, RG scale k, the
dimensionless ration y, and spatial momentum p,

y ≡ p2

k2
−→ dp→ k2

2p
dy , (C.50)

k ≡ Λe−t −→ ∂t = −k∂k = 2y∂y , (C.51)

cf. Eqs. (2.12) and (2.41).
For s-dimensional momentum-space integrals with spherical symmetry, i.e., their integrands

depend only on the absolute value/square the spatial momentum, we employ hyperspherical
coordinates

∫︂
dsp

(2π)s
f(|p⃗|) = as

(2π)s

∫︂ ∞

0

dp ps−1f(p) = sAs

∫︂ ∞

0

dp ps−1f(p) , (C.52)

with hypervolume as of the s− 1 unit sphere (area of the boundary of the s-dimensional unit
ball) and the related factor As:

as ≡
2π

s
2

Γ( s
2
)
, with a1 = 2 , and a3 = 4π , (C.53)

As ≡
as

s(2π)s
=

21−sπ− s
2

sΓ( s
2
)
, with A1 =

1
π , and A3 =

1
6π2 . (C.54)

Note that one-dimensional hyperspherical coordinates (s = 1) are trivial in the sense that
they just entail using the Z2 symmetry of the one-dimensional momentum integral (hence
a1 = 2) and three-dimensional hyperspherical coordinates (s = 3) are just canonical spherical
coordinates (hence a3 = 4π, viz. the surface area of the 2-sphere).

The following compact notation for regulated spatial momenta

p⃗k ≡ p⃗
√︁
λ(p⃗ 2/k2) , (C.55)

with λ(y) ≡ r(y) + 1 ≡ rb(y) + 1 ≡ (rf(y) + 1)2 from Eq. (2.49), is particularly useful for our
FRG computations in chapters 4 and 5 and the corresponding App. E.

C.4. Series expansion for the medium part of the MF thermodynamic
potential

The medium contribution to the effective potential in MF approximation of a fermionic theory
Vf;med(µ, T ; ∆) in d = s+1 dimensions involves the s-momentum integral over the medium
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part of the Matsubara sumM0
f , cf. Eq. (C.44),

Vf;med(µ, T ; ∆) ≡ −dγN
2

∫︂
dsp

(2π)s
M0

f ;med

(︁
µ, β;

√︁
p2 +∆2

)︁
, (C.56)

with the dimension dγ = Tr(1γ) of the matrix representation of the Clifford algebra (B.71)
(in even dimensions typically dγ ≡ 2⌊d/2⌋) used for the fermions, N the number of different
fermion species, and the quark mass ∆ associated with homogeneous, spontaneous (chiral)
symmetry breaking.
The Ginzburg–Landau expansions discussed in subsection 4.3.3 require an expansion of

Eq. (C.56) around ∆ = 0. Such an expansion can be computed by expressing the integral
in Eq. (C.56) with a series of modified Bessel function of the second kind Kn(x) [166, 787]
following Ref. [702] one can derive:

Vf;med(µ, T ; ∆) =
21−ndγN

πn
(β∆)nβ−2n

∞∑︂

m=1

(−1)mKn(mβ∆) cosh(mβµ) , (C.57)

with the inverse temperature β = 1/T and n = s+1
2
. A detailed derivation of this and the

following expressions of this section can be found in the chapter 4 of the digital auxiliary
file [713].
Using the ascending Series for Kn(x) for integer n from Eq. (9.6.11) of Ref. [787] it is possible

to split the sum in Eq. (C.57) and rewrite it in terms of a modified power series in ∆ for odd
spatial dimensions s (integer n):

Vf;med(µ, T ; ∆) = 2−ndγN
n−1∑︂

k=0

(−1)k
22k+1−nπn

(n− k − 1)!

k!
β2k−2n∆2k×

×
(︂
Li2n−2k(−e−βµ) + Li2n−2k(−eβµ)

)︂
+

+ 2−ndγN
(−1)n
(2π)nn!

∆2n

(︃
γ− Hn

2
+ ln

(︂
β∆
2

)︂
+DLi0(βµ)

)︃
+

+ 2−ndγN
∞∑︂

k=1

(−1)n
22k+nπnk!(k + n)!

β2k∆2(k+n)DLi2n(βµ) , (C.58)

involving the Euler-Mascheroni constant γ ≃ 0.577216, the harmonic number Hn (H1 = 1 and
H2 = 3/2), and (derivatives of) the polylogarithm function Lin(z)91

DLi2n(z) ≡
[︁
∂
∂m

Lim(−ez) + ∂
∂m

Lim(−e−z)
]︁
m=−2n

= (C.59a)

= −δ0,n( ln(2π) + γ ) + (−1)1+n(2π)−2nℜψ(2n)
(︁
1
2
+ i

2π z
)︁
. (C.59b)

91At this point we have to apologize for the differing definitions for the subscript of DLi2n(z) across our publica-
tions [4, 5]. Throughout this work we exclusively and consistently use the definitions of Eqs. (C.59a) and (C.59b)
which can be translated by switching sign in the subscript DLi2n(z) ↔ DLi−2n(z) in Refs. [4, 5].
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Figure C.1.: First four functions DLi2n(z) for n = 0, 1, 2, 3 plotted log-linearly over z = µβ.
The roots of DLi2n(z) for n = 1, 2, 3 are marked with solid dots and additional grid lines while
the corresponding numerical values (in double precision – 16 decimal digits) for the roots can
be found in Eqs. (C.60), (C.61), and (C.62). DLi2n(z) decay asymptotically for large z with
z−2n for n > 0 while DLi0(z) diverges logarithmically. The asymptotics of DLi0(z) for z →∞
is plotted in the corresponding panel (upper left) as a gray-dashed line.

The representation92 (C.59b) for DLi2n(z) is based on identities for the polygamma function
ψ(2n), see, e.g., Refs. [166, 302, 787], and a relation with the Hurwitz zeta function, cf. identity
25.11.12 of Ref. [302]. Eq. (C.59b) is better suited for numerical computations of DLi2n(z)
when compared to the defining expression (C.59a).
Figure C.1 displays the first four DLi2n(z) with their asymptotics and roots. For positive

integer n DLi2n(z) are smooth, “well behaved”, and their roots can be computed numerically
to arbitrary precision using Mathematica [166]. DLi0(z) has no root, DLi2(z) has a single
root located at

z2,1 = 1.910668692586341 , (C.60)

92Expressions involving ℜψ(2n)( 12 + i
2π z) appear throughout analytic work for limits, expansion, and evaluations

involving fermionic distribution functions. We do not claim that the expression (C.59b) in conjunction with
Eq. (C.58) is original to this work but we do not have an explicit reference for this formulation either. A similar
expansion to Eq. (C.58) can be found in Ref. [788] which is referenced in Ref. [709].
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DLi4(z) has two roots located at

z4,1 = 1.024174392948833 , (C.61a)
z4,2 = 4.359150199084925 , (C.61b)

and DLi6(z) has three roots located at

z6,1 = 0.717273524934982 , (C.62a)
z6,2 = 2.505674421545387 , (C.62b)
z6,3 = 6.473624182009944 . (C.62c)

Evaluating Eq. (C.58) explicitly for s = 1 and s = 3 (n = 1 and n = 2) we arrive at
Ginzburg–Landau expansions for Vf;med in form of modified power series in ∆ presented in
Apps. C.4.1 and C.4.2. Modified in the sense that αs=1

2 (µ, T ) and αs=3
4 (µ, T ) contain loga-

rithmic divergencies ln∆, which are however highly relevant and in fact physical rather than
artificial, see, e.g., Eq. (4.64). The zero temperature limit (β →∞) in the following equations
is computed using the appropriate expansions (6.3.18) and (6.4.11) of Ref. [787] for the
polygamma function and they are cross-checked using the explicit computations at T = 0 of
App. C.5 [713].

C.4.1. Ginzburg-Landau series for Vs=1
f;med(µ, T ; ∆) in one spatial dimension

Vs=1
f;med(µ, T ; ∆) =

dγN

2

∞∑︂

m=0

αs=1
2m (µ, T )∆2m , (C.63)

with the first six non-vanishing medium Ginzburg-Landau coefficients

αs=1
0 (µ, T ) = − µ2

2π − πT2

6
, (C.64)

αs=1
2 (µ, T ) = − 1

2π

(︁
DLi0(

µ
T
) + ln( ∆

2T
) + γ− 1

2

)︁
=

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
2π

(︁
−ℜψ(0)( iµ

2πT + 1
2
) + ln( ∆

4πT )− 1
2

)︁
for µ > 0 ∧ T > 0

− 1
2π

(︁
ln( ∆

πT ) + γ− 1
2

)︁
for µ = 0 ∧ T ≥ 0

− 1
2π

(︁
ln( ∆

2µ
)− 1

2

)︁
for µ ≥ 0 ∧ T = 0

, (C.65)

αs=1
4 (µ, T ) = −DLi2(

µ
T
)

16πT 2
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
64π3T2ℜψ(2)( iµ

2πT + 1
2
) for µ > 0 ∧ T > 0

7ζ(3)

32π3T2 for µ = 0 ∧ T ≥ 0

− 1
16πµ2

for µ ≥ 0 ∧ T = 0

, (C.66)

αs=1
6 (µ, T ) = −DLi4(

µ
T
)

384πT 4
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
6114π5T4ℜψ(4)( iµ

2πT + 1
2
) for µ > 0 ∧ T > 0

− 31ζ(5)

256π5T4 for µ = 0 ∧ T ≥ 0

− 1
64πµ4

for µ ≥ 0 ∧ T = 0

, (C.67)
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which can also be found in Ref. [709] for µ > 0 ∧ T > 0. The adept reader might recognize
the Stefan-Boltzmann pressure of a massless free Fermi gas in 1 + 1 dimensions, see, e.g.,
Ref. [709] and the textbooks [682, 778], in Eq. (C.64) for −αs=1

0 (µ, T ).

C.4.2. Ginzburg-Landau series for Vs=3
f;med(µ, T ; ∆) in three spatial dimension

Vs=3
f;med(µ, T ; ∆) =

dγN

4

∞∑︂

m=0

αs=3
2m (µ, T )∆2m , (C.68)

with the first six non-vanishing medium Ginzburg-Landau coefficients

αs=3
0 (µ, T ) = − µ4

12π2 − µ2T2

6
− 7π2T4

180
, (C.69)

αs=3
2 (µ, T ) = µ2

4π2 + T2

12
, (C.70)

αs=3
4 (µ, T ) =

1

8π2

(︁
DLi0(

µ
T
) + ln( ∆

2T
) + γ− 3

4

)︁
=

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
8π2

(︁
−ℜψ(0)( iµ

2πT + 1
2
) + ln( ∆

4πT )− 3
4

)︁
for µ > 0 ∧ T > 0

1
8π2

(︁
ln( ∆

πT ) + γ− 3
4

)︁
for µ = 0 ∧ T ≥ 0

1
8π2

(︁
ln( ∆

2µ
)− 3

4

)︁
for µ ≥ 0 ∧ T = 0

, (C.71)

αs=3
6 (µ, T ) =

DLi2(
µ
T
)

96π2T 2
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
384π4T2ℜψ(2)( iµ

2πT + 1
2
) for µ > 0 ∧ T > 0

− 7ζ(3)

192π4T2 for µ = 0 ∧ T ≥ 0

1
96π2µ2

for µ ≥ 0 ∧ T = 0

. (C.72)

The adept reader might recognize the Stefan-Boltzmann pressure of a massless free Fermi
gas in 3 + 1 dimensions, see, e.g., Ref. [789] and the textbooks [682, 778], in Eq. (C.69) for
−αs=3

0 (µ, T ).

C.5. Zero temperature limit of the medium part of the MF
thermodynamic potential

Using Eq. (C.38) we can compute Vf;med(µ, T = 0;∆) from Eq. (C.56) directly for µ > 0

Vf;med(µ, T = 0;∆) = −dγN
2

lim
β→∞

∫︂
dsp

(2π)s
M0

f ;med

(︁
µ, β;

√︁
p2 +∆2

)︁
(C.73)

= −dγN
2

as
(2π)s

∫︂ ∞

0

dp ps−1
(︂
µ−

√︁
p2 +∆2

)︂
Θ
(︂
µ−

√︁
p2 +∆2

)︂
(C.74)

=

∫︂ ∞

0

dEρs(E) (µ− E)Θ (µ− E) , (C.75)
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where we used hyperspherical coordinates, see App. C.3 and specifically Eq. (C.53), and in
Eq. (C.75) the density of states

ρs(E) =
dγN

2sπ
s
2Γ( s

2
)
E(E2 −∆2)

s
2−1Θ(E −∆) . (C.76)

Evaluating the integrals in Eq. (C.75) explicitly for s = 1 and s = 3 we arrive at

Vs=1
f;med(µ, T = 0;∆) =

dγN

4π

(︃
∆2 sinh−1

(︃√︂
µ2

∆2 − 1

)︃
− µ

√︁
µ2 −∆2

)︃
Θ(µ−∆) , (C.77)

Vs=3
f;med(µ, T = 0;∆) =

dγN

96π2

(︃
µ
(︂
5∆2 − 2µ2

)︂√︁
µ2 −∆2−

− 3∆4 sinh−1

(︃√︂
µ2

∆2 − 1

)︃)︃
Θ(µ−∆) , (C.78)

which are used in Eq. (4.46) and for the validation of the T = 0 expressions in Apps. C.4.1
and C.4.2 using the series expansion (4.6.31) of Ref. [787] for the inverse hyperbolic sine in
Eqs. (C.77) and (C.78) [713].
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D. Models in zero dimensions

D.1. O(N) model

D.1.1. Selected vertices, propagators, and regulator insertions

In this appendix we will present the for section 3.2 relevant two-point functions, regulator
insertions, propagators, and vertices. Those are obtained by taking functional derivatives of
the EAA (3.58) and evaluating the resulting expressions on the QEOM, viz. projecting on to
φEoM = φ ≡ (0, . . . , 0, σ):

(︁
A......
)︁
φ=φEoM=φ

≡ A...... . (D.1)

We will mark uncontracted, external indices with an underscore, in the spirit of subsection 2.1.5,
and the involved and SO(N − 1) flavor indices are i ∈ 1, . . . , N − 1. Note that traces in flavour
space lead to the N − 1 multiplicity of the pion loop contributions, cf. Eq. (3.63).

The non-vanishing two-point functions are

Γ
,πjπi
t ≡ πjπi = δi,j

U
(1)
t (σ)

σ
= δi,j

u(t,σ)
σ

, (D.2a)

Γ,σσt ≡ σσ = U
(2)
t (σ) = ∂σu(t, σ) . (D.2b)

The regulator insertions – marked as usual with a crossed circle (⊗) – are given by

∂tR
;πjπi
t ≡ πjπi = δi,j∂tr(t) , (D.3a)

∂tR
;σσ
t ≡ σσ = ∂tr(t) , (D.3b)

and follow directly from Eq. (3.61).
Splitting radial and transversal modes in the unified propagator (3.62) leads to

Gt;πjπi
= πjπi =

1

rb(t) + u(t, σ)/σ
δi,j , (D.4a)

Gt;σσ = σσ =
1

rb(t) + ∂σu(t, σ)
, (D.4b)
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for the pion- and sigma-propagator93 respectively.
The flow for the sigma-one-point function in Eq. (3.75) includes the following vertices,

Γ,σt = σ = U
(1)
t (σ) = u(t, σ) , (D.5a)

Γ
,πjπiσ

t =

σ

πi

πj

= ∂σ

[︂U (1)
t (σ)

σ

]︂
δi,j = ∂σ

[︁
1
σ
u(t, σ)

]︁
δi,j , (D.5b)

Γ,σσσt =

σ

σ

σ

= U
(3)
t (σ) = ∂2σu(t, σ) . (D.5c)

D.1.2. Numerical derivatives

This appendix has been copied from App. A of Ref. [1] with only small adaptations to the
presentation in this thesis.

Throughout section 3.2 and subsections 3.2.4 and 3.2.5 we need to extract the 1PI vertex
functions Γ(2n)

φi1 ···φi2n at the physical point σ = 0 from the IR results of the FRG flows (or
respectively the coefficients Γ(2n), which contain the same information). To this end, we
compute numerical derivatives of the discrete values of the derivative of the effective potential
u(tIR, σ) = ∂σU(tIR, σ), which were calculated via the FV method. In this work, the following
FD approximations [787, 790] are used,

f
(1,2)
i,c =

−fi−1 + fi+1

2∆x
+O(∆x2) , (D.6)

f
(1,4)
i,c =

fi−2 − 8 fi−1 + 8 fi+1 − fi+2

12∆x
+O(∆x4) , (D.7)

f
(1,2)
i,f =

−3 fi + 4 fi+1 − fi+2

2∆x
+O(∆x2) , (D.8)

f
(3,2)
i,c =

−fi−2 + 2 fi−1 − 2 fi+1 + fi+2

2∆x3
+O(∆x2) , (D.9)

f
(3,4)
i,c =

fi−3 − 8 fi−2 + 13 fi−1 − 13 fi+1 + 8 fi+2 − fi+3

8∆x3
+O(∆x4) , (D.10)

f
(3,2)
i,f =

−5 fi + 18 fi+1 − 24 fi+2 + 14 fi+3 − 3 fi+4

2∆x3
+O(∆x2) , (D.11)

f
(5,2)
i,c =

−fi−3 + 4 fi−2 − 5 fi−1 + 5 fi+1 − 4 fi+2 + fi+3

2∆x5
+O(∆x2) , (D.12)

f
(5,4)
i,c =

fi−4 − 9 fi−3 + 26 fi−2 − 29 fi−1 + 29 fi+1 − 26 fi+2 + 9 fi+3 − fi+4

6∆x5
+O(∆x4) ,

(D.13)
93The term “propagator” is of course misleading for a QFT in a single point, where “propagation” in the true sense of
the word is not possible. Nevertheless, we again adopt the notation from higher-dimensional QFT and statistical
mechanics for the zero-dimensional analog expressions.
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where fi ≡ f(xi), f (n,m) denotes the nth derivative of f to orderO(∆xm), and the subscripts c/f
stand for central/forward stencil approximations. The scaling order m of the error is indicated
by O(∆xm). In our numerical implementation, the central-scheme approximations are further
simplified by exploiting the antisymmetry property u(t,−σ) = −u(t, σ) of the derivative of
the effective potential. In consequence, the central stencils are effectively forward stencils.
Furthermore, at the same order of accuracy, the anti-symmetrized central stencils need one
point less than the actual forward stencils of same error order of accuracy. In figure 3.8 we
find that this property singles out the central stencils as the most favorable choice, because the
accumulation of errors in the derivative stencil, which originally derive from the numerical
solution of the flow equation, can be reduced this way, by including as few points as possible in
the numerical derivative approximations.
We stress that the use of low-order finite-difference approximations to the derivative is

only justified because the effective IR potential U(tIR, σ) has to be smooth, which is discussed
at length in App. B of Ref. [1]. For higher-dimensional models, the use of finite-difference
approximations to extract information from the IR effective potential U(tIR, σ)might not always
be justified due to the possibility of non-analyticities in the vicinity of the physical point, where
the 1PI n-point functions have to be calculated. Further investigation is needed.

D.1.3. Additional expressions for the O(N) model in the N → ∞ limit

This appendix is compiled from Apps. A–D of Ref. [3] with only minor adaptations to the
presentation in this thesis.

D.1.3.1. Analytical solution for the instructive toy model

Within this appendix we present results for the integral INn [V ] of Eq. (3.148) for the potential
(3.149),

INn [V ] =N−(N2 +n)
(︂
Γ
(︁
N
2
+ n

)︁
− Γ

(︁
N
2
+ n, 2N

)︁
+ e6N(a+1) Γ

(︁
N
2
+ n, 8N

)︁
+

+ (−a)−(N2 +n) e−2N(a+1)
[︁
Γ
(︁
N
2
+ n,−2Na

)︁
− Γ

(︁
N
2
+ n,−8Na

)︁]︁)︂
, (D.14)

and in the special case a = 0,

INn [V ] =N−(N2 +n)

[︄
Γ
(︁
N
2
+ n

)︁
− Γ

(︁
N
2
+ n, 2N

)︁
+ e6N Γ

(︁
N
2
+ n, 8N

)︁
+

+ e−2N

(︁
4

N
2 +n − 1

)︁
(2N)

N
2 +n

N
2
+ n

]︄
, (D.15)

where

Γ(a, z) ≡
∫︂ ∞

z

dt ta−1 e−t , Γ(z) ≡ Γ(z, 0) , (D.16)
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is the (incomplete) gamma function. To determine the leading order contribution to ⟨(ϕ⃗ 2)n⟩ in
the limit N →∞ assuming finite n, we employ the asymptotic series, see, e.g., Secs. 6.1.41
and 6.5.32 of Ref [787] or Secs. 5.11 and 8.11 of Ref. [302],

Γ(z) = e−z
√︂

2π
z
zz
(︁
1 + 1

12z
+ 1

288z2
+ . . .

)︁
, (D.17a)

Γ(a, z) = e−z za−1
(︁
1 + a−1

z
+ (a−2)(a−1)

z2
+ . . .

)︁
, (D.17b)

valid for large real z and in case of Γ(a, z) for a ≃ O(z) [791].
For a = 0 we find

lim
N→∞

1
Nn

⟨︁
(ϕ⃗ 2)n

⟩︁
= lim

N→∞
2nINn [V ]

IN0 [V ]

⃓⃓
⃓⃓
a=0

= 1 , (D.18)

while for a > 0

lim
N→∞

1
Nn

⟨︁
(ϕ⃗ 2)n

⟩︁
= lim

N→∞
2nINn [V ]

IN0 [V ]
= (D.19a)

= lim
N→∞

17 e6Na 16
N
2 +n + 256

√
Nπ e

n2

N + 3N
2

17 e6Na 4N + 256
√
Nπ e

3N
2

= (D.19b)

=

{︄
1 for a ≤ ac ,
16n for a > ac ,

(D.19c)

where ac ≡ 1
4
− 1

3
ln(2) ≃ 0.018951. For a > ac the first terms in the denominator and nu-

merator of Eq. (D.19b) dominate, while for a < ac the second terms dominate. For a = ac

Eq. (D.19b) can be simplified ultimately to en2

N under the limit N →∞ and thus yielding 1 in
the limit.

D.1.3.2. Saddle-point expansion at large N

In this appendix we present the so-called saddle-point expansion for integrals of the type

IN [f, g] ≡
∫︂ ∞

0

dy g(y) e−Nf(y) . (D.20)

Assuming that f(y) has a unique global minimum at y0 and further assuming analyticity
(expandability to arbitrary order) of f(y) and also g(y) in y0, it is possible to derive an asymptotic
series of IN [f, g] for large N if the series expansions of f(y) and g(y) around y0 grow like
polynomials. We focus here on the one-dimensional integral (D.20) see, e.g., Ref. [634] for
further details and generalizations.
For large N the integrand of Eq. (D.20) is peaked around y0 and we therefore consider an

expansion around y0 using the computational coordinate z defined by

y = y0 +
z√
N
. (D.21)

346 D.1. O(N) model



We proceed with the computation of IN [f, g] at large N :

IN [f, g] =

∫︂ ∞

0

dy g(y) e−Nf(y) = (D.22a)

= 1√
N

∫︂ ∞

−y0
√
N

dz g
(︁
y0 +

z√
N

)︁
exp

[︁
−Nf

(︁
y0 +

z√
N

)︁]︁
= (D.22b)

= 1√
N

∫︂ ∞

−y0
√
N

dz g
(︁
y0 +

z√
N

)︁
exp

[︂
−Nf (0) − 1

2
f (2) z2−

− 1
6
√
N
f (3) z3 − 1

24N
f (4) z4 −O(z5)

]︂
≃ (D.22c)

≃ e−Nf
(0) 1√

N

∫︂ +∞

−∞
dz e−

1
2
f(2)z2 g

(︁
y0 +

z√
N

)︁ (︂
1− 1

6
√
N
f (3) z3+

+ 1
72N

[︁
(f (3))2 z6 − 3 f (4) z4

]︁
+O

(︁
N− 3

2
)︁)︂

= (D.22d)

=e−Nf
(0) 1√

N

∫︂ +∞

−∞
dz e−

1
2
f(2)z2

(︂
g(0) + 1√

N

[︁
g(1) − 1

6
g(0) f (3) z2

]︁
z+

+ 1
N

[︁
1
2
g(2) − 1

6
g(1) f (3) z2 + 1

72
g(0) (f (3))2 z4−

− 1
24
g(0) f (4) z2

]︁
z2 +O

(︁
N− 3

2
)︁)︂

= (D.22e)

=e−Nf
(0)
√︂

2π
Nf(2)

∞∑︂

i=0

Ci[f, g]N
−i , (D.22f)

where we abbreviated nth derivatives of f and g evaluated at y0 with superscripts (n). In the
preceding set of equalities we first expanded the exponent in powers of N after switching to
the coordinate z. We split of the contributions of O(N1) and O(N0) in the exponent and then
expanded the exponential in an asymptotic series in N , while shifting the lower integration
bound94. Afterwards, we continued by expanding g and collecting terms ofO(N−n

2 ). Ultimately,
we were left with a sum over Gaussian integrals of O(N−n) and vanishing contributions of odd
integrands of O(N− 2n+1

2 ) in Eq. (D.22e) and performed those integrals, which left us with the
desired power series (D.22f) with coefficients Ci[f, g] of O(N0), e.g.,

C0[f, g] = g(0) , (D.23a)

C1[f, g] =
g(2)

2f (2)
− g(1)f (3)

2(f (2))2
+

5g(0)(f (3))2

24(f (2))3
− g(0)f (4)

8(f (2))2
. (D.23b)

The computation of higher-order coefficients is straightforward and tedious by hand, but is easy
to implement in computer algebra systems like Mathematica [353], cf. the digital auxiliary
file [366].
94Since we are interested in an asymptotic power series for large N shifting the lower integration bound in line
(D.22b) is valid since contributions stemming from this shift decay exponentially and as such faster than any
power.
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The presented saddle-point expansion of IN [f, g] can be used in combination with Eq. (3.147)
for a large-N expansion of the expectation values ⟨(ϕ⃗ 2)n⟩

1
Nn ⟨(ϕ⃗ 2)n⟩ = 2nIN [V (y)− 1

2
ln(y), yn−1]

IN [V (y)− 1
2
ln(y), y−1]

=

=2n yn0 +
1

N

n 2n yn0
[︁
2(n− 3) y20 V

(2)(y0) + n− 2y30 V
(3)(y0)− 1

]︁
[︁
2y20 V

(2)(y0) + 1
]︁2 +O(N−2) ,

(D.24)

which is valid for V (y) − 1
2
ln(y) which are analytic around their respective unique global

minimum y0. Corresponding expressions for the 1PI correlation functions can be derived using
the relations between Γ(n) and ⟨(ϕ⃗ 2)n⟩, see, e.g., Eqs. (70)-(75) of Ref. [1] or Ref. [163].

D.1.3.3. Results from the method of characteristics

In this appendix we derive the expressions for the characteristic curves of Eq. (3.167) and
(3.169) using the method of characteristics and to be specific the Lagrange–Charpit Eqs. (2.120)
introduced in subsubsection 2.2.3.1.
We proceed with the solution of the characteristic Eqs. (2.120) for the FRG flow Eq. (3.167)

and (3.169) of the zero-dimensional O(N) model in the limit N → ∞. Since the equations
in x and y are related by the coordinate transformation y = 1

2
x2, the solutions and also

characteristics curves are directly related. For simplicity we solve the characteristic equations
for the flow equation (3.169) in the rescaled invariant y and then compute the corresponding
curves in x using the coordinate transformation. A direct solution of the characteristic equations
for the flow equation (3.167) in x is also possible and shares a lot of computations with the
slightly simpler computation in y. After performing the y derivative in Eq. (3.169) comparing
coefficients with Eq. (2.119) yields for the Eqs. (2.120) explicitly

∂t(τ)

∂τ
=1 , (D.25a)

∂y(τ)

∂τ
= − Λe−t(τ)

2 [Λ e−t(τ) + v(τ)]2
, (D.25b)

∂v(τ)

∂τ
=0 , (D.25c)

with the UV ICs

t(τ = 0) =0 , (D.26a)
y(τ = 0) = y0 ≥ 0 , (D.26b)
v(τ = 0) = v(0, y0) , (D.26c)

specifying the characteristic curves. The ODEs for t(τ) and v(τ) decouple and can be trivially
integrated

t(τ) = τ , (D.27)
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v(τ) = v(0, y0) . (D.28)

Due to the direct equivalence of t and τ we continue by using the RG time t as the curve-
parameter in the following. The ODE (D.25b) for y(τ) is independent of y itself and can be
integrated directly after inserting the solutions (D.27) and (D.28) for t and v. The solution for
y(t) follows as

y(t) = y0 −
∫︂ t

0

dτ
Λe−τ

2 [Λ e−τ + v(0, y0)]2
= (D.29a)

= y0 −
1

2 [Λ e−t + v(0, y0)]
+

1

2 [Λ + v(0, y0)]
. (D.29b)

Using the coordinate transformation y = 1
2
x2 and the associated relation for the first derivative

∂yV (t, y) = 1
x
∂xV (t, x) we can compute the characteristic curves x(t) and v(t) for the flow

Eq. (3.167) from Eq. (D.29) and (D.28),

x(t) = ±
√︁

2y(t) = ±
√︄
x20 −

1

Λ e−t + v(0,x0)
x0

+
1

Λ + v(0,x0)
x0

, (D.30)

v(t) = v(0,x0)
x0

x(t) . (D.31)

A particularity of the flow equation in x is that the conserved quantity v(t, x) (the derivative
∂xV (t, x)) is not constant along the characteristics, dv

dt
̸= 0, due to the contribution stemming

from x(t) in Eq. (D.31).

D.1.3.4. Rankine-Hugoniot condition and shock position

The Riemann problems posed by the IC (3.150) with the flow Eq. (3.169) include a shock
discontinuity in the UV (t = 0) at y = 2, since v(2−) > v(2+) and G[t, v] < 0. For a discussion
see subsubsection 3.2.5.4. This appendix is dedicated to the computation of the position
of the shock as a function of flow time t using the Rankine-Hugoniot condition [368, 369]
introduced in subsubsection 2.2.3.1. A computation in the invariant y for a structurally identical
flow equation and IC can be found in App. C.1 of Ref. [247]. We present a derivation for
the complementary problem – IC (3.178) with the flow Eq. (3.167) – in x for the sake of
completeness in the following.

Assume that there is a single shock wave (discontinuity) at the position ξs(t) between
xL(t) < ξs(t) < xR(t). Integration over the conservation law (3.167) yields

∫︂ xR(t)

xL(t)

dx ∂tv(t, x) =

∫︂ xR(t)

xL(t)

dx
d

dx
F [t, x, v(t, x)] =

= −
(︁
F [t, xR(t), v(t, xR(t))]− F [t, xL(t), v(t, xL(t))]

)︁
. (D.32)
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For the l.h.s., we split the integral about the shock ξs(t)
∫︂ xR(t)

xL(t)

dx ∂tv(t, x) =

∫︂ ξs(t)

xL(t)

dx ∂tv(t, x) +

∫︂ xR(t)

ξs(t)

dx ∂tv(t, x) =

= − v(t, ξs(t)) ∂tξs(t) + v(t, xL(t)) ∂txL(t) +
d

dt

∫︂ ξs(t)

xL(t)

dx v(t, x)−

− v(t, xR(t)) ∂txR(t) + v(t, ξs(t)) ∂tξs(t) +
d

dt

∫︂ xR(t)

ξs(t)

dx v(t, x) ,

(D.33)

where we used Leibniz integral rule in the last equality. Next, we study the limits xL(t)→ ξ−s (t)
and xR(t)→ ξ+s (t). We find that the two integrals with the total time derivatives vanish and
by defining

vL(t) = lim
xL(t)→ξ−s (t)

v(t, xL(t)) , (D.34a)

FL(t) = lim
xL(t)→ξ−s (t)

F [t, xL(t), v(t, xL(t))] , (D.34b)

vR(t) = lim
xR(t)→ξ+s (t)

v(t, xR(t)) , (D.35a)

FR(t) = lim
xR(t)→ξ+s (t)

F [t, xR(t), v(t, xR(t))] , (D.35b)

the equation for the shock speed according to the Rankine–Hugoniot (jump) condition (2.122)
reads

∂tξs(t) =
FR(t)− FL(t)

vR(t)− vL(t)
. (D.36)

For the explicit problem under consideration the initial positions at t = 0 of the two shocks
are x = 2 and x = −2. W.l.o.g. we consider the shock at x = 2 since the discussion for the
shock at x = −2 follows from the symmetry of the problem. Consider the characteristic curves
(D.30) and v(t, x(t)), thus Eq. (D.31), left and right of the shock we find

vL(t) =
vUV,L

xUV,L
xL(t) = ξ−s (t) , (D.37a)

vR(t) =
vUV,R

xUV,R
xR(t) = −a ξ+s (t) , (D.37b)

and for the corresponding fluxes Eq. (3.167) yields

FL(t) = −
1
2
∂tr(t)

r(t) + vL(t)
xL(t)

= −
1
2
∂tr(t)

r(t) + 1
, (D.38a)

FR(t) = −
1
2
∂tr(t)

r(t) + vR(t)
xR(t)

= −
1
2
∂tr(t)

r(t)− a . (D.38b)
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Inserting those explicit results into the Rankine–Hugoniot (jump) condition (2.122) results in

∂tξs(t) =
FR(t)− FL(t)

vR(t)− vL(t)
=

1

ξs(t)

1

a+ 1

[︃ 1
2
∂tr(t)

r(t)− a −
1
2
∂tr(t)

r(t) + 1

]︃
, (D.39)

where we are allowed to set ξ+s (t) = ξ−s (t) = ξs(t). Using the monotonicity of the regulator
shape function r(t), see Eq. (3.8), we find

∂r
(︁
ξ2s (r)

)︁
=

1

a+ 1

(︃
1

r − a −
1

r + 1

)︃
, (D.40)

which can be integrated from the UV (r = Λ) down to an arbitrary value r(t) ≥ 0 yielding

ξs(t) =

√︄
ξ2s,UV +

1

a+ 1

[︃
ln

(︃
r(t)− a
Λ− a

)︃
− ln

(︃
r(t) + 1

Λ + 1

)︃]︃
, (D.41)

with ξ2s,UV = 22 = 4.
For a ≥ 0 (and Λ≫ a) we find ξs(t0) = 0 for a finite t0 > 0, which indicates that the shocks

originating from −2 and +2 in the UV annihilate at x = 0 at the RG time t0 based on the
discussion of this appendix. The applicability of the construction discussed in this appendix is
however limited as outlined in subsubsection 3.2.5.3.

D.2. SU(2) model

D.2.1. Selected vertices, propagators, and regulator insertions

In this appendix we will present the for section 3.3 relevant two-point functions, regulator
insertions, propagators, and vertices. Those are obtained by taking functional derivatives of
the EAA (3.217) and regulator term (3.210) and evaluating the resulting expressions on the
QEOM, viz. projecting on to χEoM = χ ≡ ((0, 0, σ), 0, 0) from Eq. (3.218):

(︁
A......
)︁
χ=χEoM=χ

≡ A...... . (D.42)

We will mark uncontracted, external indices with an underscore, in the spirit of subsection 2.1.5,
and the involved SU(2) and SO(2) flavor indices are α ∈ 1, 2 and i ∈ 1, 2.
This appendix has a corresponding digital auxiliary file [642], which includes all the following

expressions and their explicit, programmatic derivation, making use of the functionalities of
our Mathematica code [299].

The non-vanishing two-point functions are

Γ
,ϑαϑ

β

t ≡ ϑβϑα = −mt(σ)(t0)
α
β − 2iY t(σ)(t3)

α
β , (D.43a)

Γ
,ϑαϑβ
t ≡ ϑβϑα = mt(σ)(t0)

β
α + 2iY t(σ)(t3)

β
α , (D.43b)
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Γ
,πjπi
t ≡ πjπi = δi,j

U
(1)
t (σ)

σ
= δi,j

u(t,σ)
σ

, (D.43c)

Γ,σσt ≡ σσ = U
(2)
t (σ) = ∂σu(t, σ) . (D.43d)

The regulator insertions are given by

−∂tR;ϑαϑ
β

t ≡ ϑβϑα = ∂trf (t)(1t)
α
β = 2∂trf (t)(t0)

α
β , (D.44a)

−∂tR
;ϑαϑβ
t ≡ ϑβϑα = −∂trf (t)(1t)β α = −2∂trf (t)(t0)β α , (D.44b)

∂tR
;πjπi
t ≡ πjπi = δi,j∂trb(t) , (D.44c)

∂tR
;σσ
t ≡ σσ = ∂trb(t) , (D.44d)

where we introduced a minus sign for the Grassmann-valued insertions such that diagrams
with Grassmann-valued regulator insertions appear with their more conventional minus sign.
We discussed this in subsection 3.3.2 following Eq. (3.225).
Recall Eq. (2.27):

Gt;am[χ]

(︃
Γ
,mb
t [χ] +R;mb

t

)︃
= γba = (−1)abδab , (D.45)

with which we can derive the propagators

G
t;ϑαϑ

β = ϑβϑα =
−(mt(σ) + 2rf (t))(t0)

β
α + 2iY t(σ)(t3)

β
α

Y t(σ)
2 + (rf (t) +mt(σ)/2)2

, (D.46a)

Gt;ϑαϑβ
= ϑβϑα =

(mt(σ) + 2rf (t))(t0)
α
β − 2iY t(σ)(t3)

α
β

Y t(σ)
2 + (rf (t) +mt(σ)/2)2

, (D.46b)

Gt;πjπi
= πjπi =

1

rb(t) + u(t, σ)/σ
δi,j , (D.46c)

Gt;σσ = σσ =
1

rb(t) + ∂σu(t, σ)
, (D.46d)

by inverting
(︁
Γ,abt +R;ab

t

)︁
=
(︁
Γ,abt

)︁
, (D.47)

and carefully keeping track of the sign factors (−1)ab for the Grassmann numbers. Note that
(︁
Gt;ϑϑ

)︁
β
α +

(︁
Gt;ϑϑ

)︁
α
β = 0 , (D.48a)

(︁
R;ϑϑ
t

)︁
β
α +

(︁
R;ϑϑ
t

)︁
α
β = 0 , (D.48b)

i.e., they are directly related by transposition. This usually allows for a unification of Grassmann-
valued contributions in the traces of the Wetterich equation, viz. the elimination of one class of
propagators and insertions in favor of the other one, cf. Eqs. (3.222) and (3.223) in subsec-
tion 3.3.2. We will usually eliminate G

t;ϑαϑ
β in favor of Gt;ϑαϑβ

by transposition (and by using
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the invariance of the involved traces under such an operation). For complicated diagrams,
like the box-diagrams in the flow equation (3.234) for gt(σ), such a simple elimination by
transposition is not possible while maintaining the simple order of elements on the loop, cf. ref
a mixed diagram, and we maintain diagrams and expressions involving both propagator types.
The flow Eq. (3.227) for the Grassmann-valued two-point function includes the following

three- and four-point vertices,

Γ
,ϑβϑ

απi
t ≡

πi

ϑα

ϑβ

= −2i Y t(σ)
σ

(ti)
β
α , (D.49)

Γ
,ϑβϑ

ασ

t ≡
σ

ϑα

ϑβ

= −m(1)
t (σ)(t0)

β
α − 2iY

(1)
t (σ)(t3)

β
α , (D.50)

Γ
,ϑδϑ

γϑβϑ
α

t ≡
ϑα ϑβ

ϑγϑδ

= gt(σ)
[︁
(t0)

β
α(t0)

δ
γ − (t0)

β
γ(t0)

δ
α

]︁
, (D.51)

Γ
,ϑβϑ

απjπi
t ≡

πi πj

ϑαϑβ

= −δi,j
[︂
m

(1)
t (σ)

σ
(t0)

β
α + 2i∂σ

(︂
Y t(σ)
σ

)︂
(t3)

β
α

]︂
, (D.52)

Γ
,ϑβϑ

ασσ

t ≡
σ σ

ϑαϑβ

= −m(2)
t (σ)(t0)

β
α − 2iY

(2)
t (σ)(t3)

β
α , (D.53)

while the flow equation for the Grassmann-valued four-point function in subsection 3.3.2
includes, furthermore, the following mixed four-, five-, and six-point vertices,

Γ
,ϑβϑ

απiσ

t ≡
σ πi

ϑαϑβ

= −2i∂σ
(︂
Y t(σ)
σ

)︂
(ti)

β
α , (D.54)

Γ
,ϑδϑ

γϑβϑ
ασ

t ≡
σ ϑα

ϑβ

ϑγϑδ

= g
(1)
t (σ)

[︁
(t0)

β
α(t0)

δ
γ − (t0)

β
γ(t0)

δ
α

]︁
, (D.55)

Γ
,ϑδϑ

γϑβϑ
απjπi

t ≡
πi πj

ϑα

ϑβ
ϑγϑδ

= δi,j
g
(1)
t (σ)

σ

[︁
(t0)

β
α(t0)

δ
γ − (t0)

β
γ(t0)

δ
α

]︁
, (D.56)

Γ
,ϑδϑ

γϑβϑ
ασσ

t ≡
σ σ

ϑα

ϑβ
ϑγϑδ

= g
(2)
t (σ)

[︁
(t0)

β
α(t0)

δ
γ − (t0)

β
γ(t0)

δ
α

]︁
. (D.57)
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E. Gross-Neveu model in two dimensions

E.1. Selected vertices, propagators, and regulator insertions

In this appendix we will present the for chapter 4 relevant two-point functions, regulator
insertions, propagators, and vertices. Those are obtained by taking functional derivatives of the
EAA (4.17) and the corresponding, canonical regulator term (2.7) and evaluating the resulting
expressions on the QEOM, viz. projecting on to χEoM = χ ≡ (σ, 0, 0) from Eq. (4.18):

(︁
A......
)︁
χ=χEoM=χ

≡ A...... . (E.1)

We will mark uncontracted, external indices with an underscore, in the spirit of subsection 2.1.5.
We will use f as flavor index and a for spinor indices.
This appendix has a corresponding digital auxiliary file [652].

The non-vanishing two-point functions are

Γ
,ψ̄Iψ

II

t ≡ ψIIψ̄I = −δ̃nI−nII
pI−pII

(1N )
fI
fII

(︁
i(νnI + iµ)γ2 + ipIγ

1 + hσ√
N
12
)︁aI

aII , (E.2a)

Γ
,σIσII
t ≡ σIIσI = δ̃nI+nII

pI+pII

(︁
ω2
nI

+ p2I + u
(1)
t (σ)

)︁
. (E.2b)

The regulator insertions are given by

−∂tR
;ψ̄IIψ

I

t ≡ ψ̄IIψI = δ̃nI−nII
pI−pII

(1N )
fI
fII

(︁
ipIγ

1∂trf(t, pI)
)︁aI

aII , (E.3a)

∂tR
;σIσII
t ≡ σIIσI = δ̃nI+nII

pI+pII

(︁
ω2
nI

+ p2I∂trb(t, pI)
)︁
, (E.3b)

where we follow the diagrammatic conventions of App. D.2.1, momentum-space conventions
of App. B.5, and only consider the one class of fermionic contributions and unify the other by
means of transposition as discussed in App. D.2.1.
The propagators are given by

Gt;ψI ψ̄
II = ψ̄IIψI = −δ̃nI−nII

pI−pII
(1N )

fI
fII

(︁
i(νnI + iµ)γ2 + ipIγ

1 − hσ√
N
12
)︁aI

aII

(νnI + iµ)2 + p2I;k(t) +
h2σ2

N

, (E.4a)

Gt;σIσII
= σIIσI = δ̃nI+nII

pI+pII

1

ω2
nI

+ p2I;k(t) + u
(1)
t (σ)

, (E.4b)
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where we used the compact notation for the regulated spatial momenta p;k of Eq. (C.55).
For the flow equation discussed in App. E.3 we additionally require the vertex

Γ
,ψ̄IσII ψ̄

III

t ≡
ψIII

σII

ψ̄I

= δ̃nII+nIII−nII
pII+pIII−pI

h√
N
(12)

aI
aIII(1N )

fI
fIII . (E.5)

E.2. The LPA flow equation

In this appendix we present a derivation of the FRG flow equation (4.21) of the effective
potential U(t, σ) at non-zero µ and T in LPA truncation for the sake of completeness. Tracing
the Wetterich Eq. (2.37) in field space using the propagators and regulator insertions of App. E.1
and projecting onto χEoM = χ = (σ, 0, 0), cf. Eq. (4.18), yields

β(2π) δ(0) ∂tU(t, σ) = ∂tΓt =
1

2
− , (E.6)

with an infinite volume factor V ≡ β(2π) δ(0), which also appears in the loops on the r.h.s. and
thus ultimately cancels. Plugging in the explicit expressions of App. E.1, we can perform the
traces in Dirac and flavor space and are left with the traces in momentum space with manifest as
one-dimensional momentum-space integrals andMatsubara sums. The flow equation ultimately
reads

∂tU(t, σ) =
1

2

∑︂∫︂

n;p

p2 ∂tr(t, p)

ω2
n + p2[1 + r(t, p)] + ∂2σU(t, σ)

−

−
∑︂∫︂

n;p

N p2 ∂tr(t, p)

(νn + iµ)2 + p2[1 + r(t, p)] + (hσ)2

N

, (E.7)

where we assumed a unified scheme for the regulator shape functions, according to Eq. (2.49):

r(t, p) + 1 ≡ rb(t, p) + 1 ≡ (rf(t, p) + 1)2 . (E.8)

With the flat (LPA optimized Litim) regulator shape function (2.45) the momentum integral
can be evaluated analytically, see, e.g., Refs. [4, 652] for the involved subtleties, and we arrive
at

∂tU(t, σ) = − 1

π

1

β

∑︂

n

k3(t)

ω2
n + E2

b(t, σ)
+

2N

π

1

β

∑︂

n

k3(t)

(νn + iµ)2 + E2
f (t, σ)

. (E.9)

The Matsubara sums can be evaluated analytically, as discussed in App. C.2. The relevant
expressions for this case are given in Eqs. (C.39) and (C.40). After the 1

N
-rescalings of Eq. (4.19)

we finally obtain FRG flow equation (4.21) for the scale-dependent effective potential in LPA
at non-zero T and non-zero µ.
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The corresponding expression in the large-N limit with the sharp regulator shape function
of Eq. (2.46) relevant for some specifics of the discussion in section 4.4 will be included in
Ref. [652].

E.3. The bosonic two-point function in the limit N → ∞

The bosonic two-point function discussed in the stability analysis of Eq. (4.71) can be computed
from the flow equation

∂tΓ
,σIσII
t = −1

2
σI σII − 1

2
σI σII , (E.10)

which in turn can be obtained by tracing Eq. (2.68) in field space with the expressions from
App. E.1. Evaluating Eq. (E.10) at vanishing external frequency nI = nII = 0 and external
momenta pI = −pII = q yields the required flow equation ∂tΓ(2)(σ̄, µ, T, q), which can be
integrated directly in the large-N limit. Choosing the sharp regulator shape function of
Eq. (2.46) or equivalently a sharp momentum cut-off in the unregularized variant of the flow
equation, one can isolate the involved divergencies and equate them with the corresponding
divergencies from the vacuum contribution. Careful consideration in a consistent regularization
scheme allows for the computation of the renormalized result presented in Eq. (4.71). Additional
details can be found in App. A of Ref. [5] and Ref. [165].
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