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Preface

The field of geophysical fluid dynamics is a very active area of research. One
of the reasons for this is its importance for weather prediction and climate
science. We mention here for example the primitive equations of the atmo-
sphere and the ocean. The latter were introduced by Richardson in 1922, but
at first, they were considered too complicated, so research focused on simpler
submodels instead. The mathematical analysis of the primitive equations then
only started in the series of articles of Lions, Temam and Wang [93–96].

The equations of geophysical fluid dynamics result from the conservation
equations of physics such as conservation of mass, momentum, energy, or
also salt in the case of the ocean or humidity for the atmosphere. In that
respect, we also mention the presence of characteristic length and time scales
in geophysical fluid dynamics. Typically, the horizontal scales span several
thousand kilometers, while the vertical scales are much smaller.

Another characteristic feature of the equations of geophysical fluid dynam-
ics is the hierarchy of models with regard to physical relevance and the level of
complexity of the described physical phenomena as also explained in the book
chapter of Temam and Ziane [128]. Let us mention that the primitive equa-
tions are physically simpler than the three-dimensional Navier-Stokes equa-
tions, owing to the so-called hydrostatic balance. The latter means that the
conservation of momentum in the vertical direction is replaced by the hy-
drostatic equation as expressed in (2.34). However, the primitive equations
were considered more mathematically demanding than the three-dimensional
Navier-Stokes equations in view of the shape of the nonlinearity. The non-
linear term in the Navier-Stokes equations is of the form “velocity times
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Preface

first-order derivatives of the velocity”, whereas the hydrostatic approxima-
tion causes that the nonlinear term in the primitive equations takes the
shape “first-order derivatives of the horizontal velocity times first order deriva-
tives of the horizontal velocity”. In this context, the groundbreaking global
strong well-posedness result of the three-dimensional viscous incompressible
primitive equations for arbitrary large initial data in H1 due to Cao and
Titi [24] seems even more surprising as the corresponding problem for the
three-dimensional Navier-Stokes equations remains open until today. This
example illustrates that geophysical flow models call for some proper inves-
tigation in order to analyze and understand their behavior. Moreover, the
characteristic scales may result in surprising phenomena that one might not
expect from classical mathematical fluid dynamics.

The present thesis consists of two parts: the analysis of several geophysical
flow models by means of quasilinear evolution equations and approaches to
time periodic quasilinear problems. All geophysical flow models under consid-
eration here are related to sea ice. The first and second part of the thesis are
linked by the application of one of the time periodic frameworks to a problem
related to sea ice.

In the sequel, we describe the content of the two parts of the thesis. The
introduction of the problems is fairly brief, and the results presented in the
following are simplified versions. Hence, we refer to the respective chapters for
more thorough introductions of the underlying models and complete versions
of the results.

Geophysical Flow Models
Recent years have witnessed an increase in research of mathematical climate
models in general and sea ice models in particular. The reason for this is
probably the role of sea ice in climate science. In fact, the climate system is
constituted by the atmosphere, the oceans, the biosphere and the cryosphere.
The latter includes of all types of frozen water, so sea ice makes part of it,
see also the work of Kreyscher et al. [82]. Sea ice thus has multiple effects
on the climate system. In the following, we mention some of these aspects
described in more detail in the PhD thesis of Harder [59]. More information
on the importance of sea ice models in climate study can also be found in the
survey paper of Hunke, Lipscomb and Turner [72].

First, the ocean absorbs roughly 90% of the sunlight, whereas sea ice re-
flects 80%. This is significant for the heating of the ocean surface and thereby
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also for the evaporation of water, its transport in the atmosphere and the for-
mation of clouds and rain. If the ice is additionally covered by snow, then the
aforementioned effect is even stronger. Another important related aspect is
the so-called ice-albedo effect, meaning that a decrease of the ice layer results
in a decline in reflection, which in turn reduces the areal extent of ice. Sea ice
represents a thin layer between the atmosphere and the ocean and thus acts
as an insulator, since it reduces the heat exchange between the latter two.
Furthermore, due to the much lower portion of salt in sea ice compared to
ocean water, sea ice plays the role of fresh water in a climate system. Indeed,
when oceanic water freezes, the added salt in the water underneath the sea
ice results in an increase in density. In other words, the layers in the ocean
destabilize, and one can observe convection. Conversely, melting sea ice has
a stabilizing effect and reduces convection.

Among the sea ice models under consideration, the viscous-plastic dynamic-
thermodynamic model introduced by William D. Hibler III in the seminal arti-
cle [60] in 1979 has become one of the most frequently used ones in simulation
and numerical analysis. It captures many characteristic features of sea ice as
a material. Sea ice results from freezing sea water and consists of pure ice,
liquid brine, air pockets and solid salt. Moreover, Hibler’s model is a large-
scale 2D model. This means that the dynamics of sea ice is described on a
large scale of tens or hundreds of kilometers instead of tracking the behavior
of individual ice floes, and the vertical motion of sea ice is neglected. There-
fore, sea ice can be regarded as a highly fractured continuum. The model
is constituted by a momentum equation for the horizontal sea ice velocity,
where the forces are the internal ice stress due to friction as well as external
forces such as the Coriolis force or atmospheric wind and ocean stresses. The
momentum equation is coupled to balance laws for the mean ice thickness
and the ice compactness via the ice strength appearing in the stress tensor.
An essential aspect of the model is that sea ice is viewed as a viscous-plastic
material. However, this leads to further mathematical difficulties, since the
shear and bulk viscosities in the associated stress tensor degenerate.

With regard to the importance of sea ice in climate science as expressed
above, it is no surprise that there is a vast literature on Hibler’s sea ice
model as well as related models in numerics and computation, see also the
short bibliographic overview in Section 3.1. On the other hand, the rigorous
mathematical analysis of Hibler’s model has remained a terra incognita until
quite recently. In fact, the mathematical analysis of regularized versions of this
model started in the joint work with Disser, Haller-Dintelmann and Hieber [18]
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as well as independently by Liu, Thomas and Titi [97].
It is the purpose of the first part of this thesis to present the state-of-the-

art concerning strong solutions to some geophysical flow models related to
Hibler’s model. More precisely, we first consider a fully parabolic regularized
version of Hibler’s model. In a second step, we investigate the interaction
problem of sea ice with a rigid body. Another focal point is the analysis
of a coupled atmosphere-sea ice-ocean model, which emphasizes that sea ice
represents a thin layer between the atmosphere and the ocean. Finally, we
study a more physical parabolic-hyperbolic variant of Hibler’s model.

Analysis of the Fully Parabolic Regularized Hibler Model
Sea ice is considered on a bounded domain Ω ⊂ R2 with sufficiently smooth
boundary. The model variables are the horizontal sea ice velocity vice ∈ R2,
the mean ice thickness h ∈ [κ,∞), where κ > 0 is small parameter, and the
ice compactness a ∈ (0, 1). For mice = ρiceh denoting the ice mass for a con-
stant density ρice > 0, the sea ice dynamics are described by the momentum
equation

mice(∂tvice + (vice · ∇H)vice) = F.

The right-hand side F encompasses the internal ice stress divH σ, with σ rep-
resenting the stress tensor as made precise in (3.3), and the aforementioned
external forcing terms. For the time being, these terms are summarized in F ice.
Since the stress tensor σ degenerates, we will investigate a regularized ver-
sion σδ as introduced in (3.5) throughout this thesis. Hence, we study the
modified sea ice momentum equation

(ME) mice(∂tvice + (vice · ∇H)vice) = divH σδ + F ice.

The sea ice model is completed by balance laws for the mean ice thickness
and the ice compactness given by

(BLP)

∂th+ divH (viceh) = Sh + dh∆Hh,

∂ta+ divH (vicea) = Sa + da∆Ha,

where Sh and Sa represent thermodynamic source terms, see (3.8). In most
chapters, we take into account the balance laws of the above form. Hibler [60]
already introduced diffusive terms in the balance laws for numerical stability.
We further assume homogeneous Dirichlet boundary conditions for vice and
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take into account homogeneous Neumann boundary conditions for h and a.
Moreover, initial conditions (vice,0, h0, a0) are considered.

Chapter 3 is centered around the analysis of the system given by (ME)
and (BLP), which is also referred to as the fully parabolic regularized model.
The starting point is the analysis of the quasilinear operator corresponding to
the internal ice stress divH σδ. More precisely, we establish a representation of
the operator in non-divergence form and verify certain ellipticity properties.
By means of the theory of parabolic boundary value problems as developed
in the seminal work of Denk, Hieber and Prüss [37], this leads to the maximal
Lp-regularity of the linearized version of this operator. In the next step,
we rewrite (ME)–(BLP) as a quasilinear abstract Cauchy problem. A more
thorough analysis of the associated linearized operator matrix, which is based
on the above maximal Lp-regularity, and Lipschitz estimates of the nonlinear
terms then pave the way for the first main result on the local strong well-
posedness thanks to quasilinear existence theory as stated in the monograph
of Prüss and Simonett [115, Chapter 5]. We provide a simplified version of
this first main result in the case p = q.
Theorem. Let p > 4, and consider (vice,0, h0, a0) ∈ V ⊂ W2−2/p,p(Ω)4 subject
to compatibility conditions, where u = (vice, h, a) ∈ V guarantees h > κ and
a ∈ (0, 1). Then there exists T > 0 such that (ME)–(BLP) has a unique
strong solution u = (vice, h, a) on (0, T ), i. e.,

u ∈ W1,p(0, T ; Lp(Ω)4) ∩ Lp(0, T ; W2,p(Ω)4) ∩ C([0, T ];V ).

When neglecting (most of) the external forcing terms, i. e., setting F ice = 0
and Sh = Sa = 0, we find that (0, h∗, a∗), with h∗ > κ and a∗ ∈ (0, 1) constant
in time and space, is an equilibrium solution to

(SIS)


mice(∂tvice + (vice · ∇H)vice) = divH σδ,

∂th+ divH (viceh) = dh∆Hh,

∂ta+ divH (vicea) = da∆Ha.

A refined analysis of the simplified system exhibits the global strong well-
posedness for initial data close to such equilibria thanks to the generalized
principle of linearized stability due to Prüss, Simonett and Zacher [117]. In a
simplified form, this result can be rephrased as follows.
Theorem. Let p > 4, and consider (vice,0, h0, a0) ∈ V ⊂ W2−2/p,p(Ω)4 close
to a constant equilibrium u∗ = (0, h∗, a∗) ∈ V of (SIS) and subject to compat-
ibility conditions. Then (SIS) admits a unique solution u = (vice, h, a) in R+
which converges to an equilibrium solution at an exponential rate.
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These results, which are contained in Chapter 3, have been obtained in a
joint article with Karoline Disser, Robert Haller-Dintelmann and Matthias
Hieber [18]. Moreover, parts of the linear theory of the operator emerging
from divH σδ are included in the master thesis [17]. The chapter is of essential
importance in this thesis, because the following chapters in the context of
the sea ice equations build upon the linear theory and the estimates of the
nonlinear terms established here.

Interaction of Sea Ice with a Rigid Body
The investigation of interaction problems of fluids with rigid bodies is a clas-
sical topic in mathematical fluid mechanics. We refer here only to the survey
article of Galdi [45]. The focal point of Chapter 4 is the analysis of the inter-
action of sea ice, described by the fully parabolic regularized model, with rigid
structures. The physical motivation for this is the motion of large structures
such as ships in ice floe fields as described in the article of Zhan et al. [134] or
the survey article [131] by Tuhkuri and Polojörvi on ice-structure interaction.

From a mathematical point of view, the above system (ME)–(BLP) is com-
plemented by equations for the translational velocity ξ ∈ R2 and the rotational
velocity denoted by ω ∈ R for convenience. The domain of the interaction
problem is time-dependent, since it varies with the motion of the rigid body,
and it will be denoted by F(t). The equations satisfied by ξ and ω follow from
Newton’s laws. For the rigid body mass mS , an inertia tensor J0, the position
of the center of mass of the rigid body xc(t), the ice-structure interface ∂S(t)
as well as the unit outward normal vector ν(t), these equations read as

(RBE)


mSξ

′(t) = −
∫

∂S(t)
σδ(u)ν(t) dΓ,

J0ω
′(t) = −

∫
∂S(t)

(xH − xc(t))⊥σδ(u)ν(t) dΓ.

The quasilinear nature of the stress tensor σδ in the surface integrals is chal-
lenging. Another mathematical difficulty arises from the interface condition

(IC) vice = ξ + ω(xH − xc)⊥

on ∂S(t), guaranteeing the equality of the velocities of sea ice and the rigid
body on their interface.

In order to overcome the time-dependence of the domain, we employ a local
change of coordinates capturing the motion of the rigid body. This transform
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has first been employed by Inoue and Wakimoto [73]. It leads to a more
complicated shape of the equations in exchange for the time-independence of
the domain. In a next step, we investigate the linearized interaction problem
corresponding to the transformed versions of (ME), (BLP), (RBE) and (IC)
by a “cascade approach”. This means that we first solve the equations of
the rigid body and the parabolic equations associated to the balance laws and
then interpret the sea ice momentum equation as an inhomogeneous boundary
value problem in the framework of Denk, Hieber and Prüss [38]. This allows
us to reformulate the task of finding a strong solution to the transformed
interaction problem as a fixed point problem. The estimates of the nonlinear
terms are then established thanks to a thorough analysis of the transform.
Finally, we use the inverse coordinate transform to get back the solution to
the original problem on the moving domain. Below, we state a simplified
version of the local strong well-posedness result.

Theorem. Let p > 4, and consider (vice,0, h0, a0, ξ0, ω0) ⊂ W2−2/p,p(F0)4 × R3

such that h0 > κ and a0 ∈ (0, 1), and subject to compatibility conditions.
If the rigid body starts with a strictly positive distance from the outer sea ice
boundary, then there is T > 0 such that the interaction problem (ME), (BLP),
(RBE) and (IC) has a unique strong solution (vice, h, a, ξ, ω) on (0, T ), so

(vice, h, a) ∈ W1,p(0, T ; Lp(F(·))4) ∩ Lp(0, T ; W2,p(F(·))4),
ξ ∈ W1,p(0, T )2 and ω ∈ W1,p(0, T ).

The main result in Chapter 4 of the above shape has also been obtained
in a joint article with Tim Binz and Matthias Hieber [11]. However, the
strategy in [11] is quite different from the one employed in this thesis. The
article relies on a non-autonomous version of a quasilinear existence result,
and the estimates of the nonlinear terms are deduced directly from those of
the original terms together with regularity properties of the transform. In
contrast, in Chapter 4, we show the estimates of the transformed terms “by
hand”. Also, the linear theory in [11] is based on a “monolithic” approach and
a decoupling argument.

A Coupled Atmosphere-Sea Ice-Ocean Model
Lions, Temam and Wang [95, 96] introduced a coupled atmosphere-ocean
model and provided numerical as well as mathematical analysis for it. The
rigorous mathematical analysis of coupled models in the context of atmo-
sphere and ocean dynamics has been an active area of research ever since. In
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Chapter 5 of this thesis, we take into account a coupled atmosphere-sea ice-
ocean model, where the atmosphere and ocean dynamics are modeled by the
viscous incompressible primitive equations, while the fully parabolic regular-
ized version of Hibler’s model is used for the sea ice part. A slight difference
with Chapter 3 is that the sea ice equations are considered on the square
G = (0, 1) × (0, 1) and subject to periodic boundary conditions.

The primitive equations are given on cylindrical domains based on the
square G, and for the respective full and horizontal velocities ui and vi as
well as the pressure terms πi, with i ∈ {atm, ocn}, they take the shape

(PE)



∂tvatm − ∆vatm + (uatm · ∇)vatm + ∇Hπatm = 0,
∂zπatm = 0,

div uatm = 0,
∂tvocn − ∆vocn + (uocn · ∇)vocn + ∇Hπocn = 0,

∂zπocn = 0,
div uocn = 0.

We assume the sea ice to occupy a layer in between the atmosphere and the
ocean, so h ∈ (κ1, κ2) for 0 < κ1 < κ2. As a consequence, the atmosphere
exerts a force on the sea ice via atmospheric wind. On the other hand, we
suppose the ocean stress on the sea ice to be proportional to the shear rate
as for a plane Couette flow. In addition, we assume that the velocity of the
ice and the ocean coincide on their interface. Denoting by τatm and τocn the
respective forcing terms appearing in F ice from (ME), up to densities, drag
coefficients and rotation matrices, the coupling conditions are

(CC) τatm = |vatm|vatm, τocn = −∂zvocn and vocn = vice, on G.

The last coupling condition is the mathematically most challenging one. In
fact, we reformulate the coupled system (SIS), (PE) and (CC) as a quasilinear
abstract Cauchy problem, and the domain of the resulting linearized operator
matrix is non-diagonal. In order to bypass this, we investigate the stationary
hydrostatic Stokes problem with inhomogeneous boundary conditions. We
thereby construct a lifting operator for the interface condition of the ice and
the ocean. This allows us to perform a similarity transform of the operator
matrix with non-diagonal domain to an operator matrix with diagonal do-
main, but of a more complicated shape. We verify the bounded H∞-calculus
of the operator matrix with diagonal domain thereafter and exploit that it
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is preserved under similarity transforms. In particular, we obtain the maxi-
mal Lp-regularity of the original linearized operator matrix with non-diagonal
domain. Together with estimates of the nonlinear terms, this results in the
local strong well-posedness of the complete coupled system in view of quasi-
linear existence theory. The result in this context can be paraphrased in the
following simplified way.
Theorem. Let p > 4, and consider (vatm,0, vocn,0, vice,0, h0, a0) ⊂ (W2−2/p,p)8

subject to compatibility conditions and such that h0 ∈ (κ1, κ2) and a0 ∈ (0, 1).
Then there is T > 0 such that the coupled model (ME), (BLP), (PE), (CC)
admits a unique strong solution v = (vatm, vocn, vice, h, a) on (0, T ), so

v ∈ W1,p(0, T ; (Lp)8) ∩ Lp(0, T ; (W2,p)8) ∩ C([0, T ];V ),

where V ⊂ W2−2/p,p(Ω)8 is again such that h ∈ (κ1, κ2) and a ∈ (0, 1).
In the special situation corresponding to τatm = 0 and Sh = Sa = 0, we

observe that (0, 0, 0, h∗, a∗), for h∗ ∈ (κ1, κ2) and a∗ ∈ (0, 1) constant in time
and space, is an equilibrium solution to (ME), (BLP), (PE) and (CC). A
similar strategy as in the context of the fully parabolic regularized sea ice
model, based on the generalized principle of linearized stability, also leads to
the global strong well-posedness of this simplified model for initial data in the
vicinity of constant equilibria. The result can be sketched as follows.
Theorem. Let p > 4, and let (vatm,0, vocn,0, vice,0, h0, a0) ⊂ (W2−2/p,p)8 sub-
ject to compatibility conditions and close to constant equilibria (0, 0, 0, h∗, a∗),
with h∗ ∈ (κ1, κ2) and a∗ ∈ (0, 1). Then there exists a unique strong solution
v = (vatm, vocn, vice, h, a) in R+ to (ME), (BLP), (PE) and (CC) in the situ-
ation τatm = 0 and Sh = Sa = 0. Moreover, v converges to an equilibrium of
the simplified coupled system at an exponential rate.

Chapter 5 is based on a joint work with Tim Binz and Matthias Hieber [12].

The Parabolic-Hyperbolic Regularized Hibler Model
As we have already partially indicated in the above, the introduction of viscous
terms in the balance laws (BLP) was motivated by the resulting increase in
numerical stability. However, it is more physical to consider the situation
without these regularizing terms. This is precisely addressed in Chapter 6 of
this thesis, where instead of (BLP), we take into account

(BLH)

∂th+ divH (viceh) = Sh,

∂ta+ divH (vicea) = Sa.
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The work of Liu, Thomas and Titi [97] tackles a problem which is similar
to (ME)–(BLH). Their stress tensor is not only regularized, but it is also
modified significantly. In contrast, the regularization of σ used in this thesis
agrees with common regularizations employed in the numerical analysis of
Hibler’s model.

System (ME)–(BLH) is of parabolic-hyperbolic nature which results in ad-
ditional mathematical difficulties. We circumvent the hyperbolic effects in
the balance laws by introducing Lagrangian coordinates. Another ingredient
is the choice of an anisotropic ground space. More precisely, the underlying
space for the sea ice momentum equation is Lp, while we study the balance
laws in W1,p. The maximal Lp-regularity of the linearized system allows us to
reformulate the existence of a unique local-in-time strong solution as a fixed
point problem. With regard to the contraction mapping principle, good esti-
mates of the nonlinear terms are required. Due to the change of coordinates,
the nonlinear terms take a more involved shape.

The associated main result asserts the local strong well-posedness of the
parabolic-hyperbolic regularized sea ice model and can be paraphrased as fol-
lows.

Theorem. Let p > 4 and (vice,0, h0, a0) ∈ V ⊂ W2−2/p,p(Ω)2×W1,p(Ω)2 subject
to compatibility conditions, and (vice,0, h0, a0) ∈ V satisfies h0 > κ as well
as a0 ∈ (0, 1). Then there is T > 0 such that system (ME)–(BLH) has a
unique strong solution v = (vice, h, a), meaning that

v ∈ W1,p(0, T ; Lp(Ω)2 × W1,p(Ω)2) ∩ Lp(0, T ; W2,p(Ω)2 × W1,p(Ω)2).

The results in this chapter have not been published yet.

Time Periodic Quasilinear Evolution Equations
In the second part of this thesis, we concentrate on time periodic quasilinear
problems. The study of time periodic problems is classical, see for example the
works of Serrin [123], Judovič [74] or Prodi [112]. Unlike the first part of the
thesis, which addresses concrete problems in the context of geophysical flow
models, the second part is rather centered around the presentation of general
frameworks. Applications of these frameworks are provided in a second step.
One of these applications also concerns a time periodic problem associated to
Hibler’s sea ice model, providing a link with the first part.
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Time Periodic Quasilinear Evolution Equations by the
Arendt-Bu Theorem
For a Banach space X, a linear operator A : D(A) ⊂ X → X and a term on
the right-hand side f ∈ Lp(0, 2π; X), consider

(PACP)

u
′(t) + Au(t) = f(t), for t ∈ (0, 2π),

u(0) = u(2π).

Then A admits maximal periodic Lp-regularity if for any f ∈ Lp(0, 2π; X),
there exists a unique solution

u ∈ W1,p(0, 2π; X) ∩ Lp(0, 2π; D(A))

to (PACP). Arendt and Bu [7] provided a characterization of this property
by iZ ⊂ ρ(−A) and the R-boundedness of (kR(ik,−A))k∈Z. This is in turn
equivalent to the maximal Lp-regularity of the initial value problem on the in-
terval (0, 2π) and 1 ∈ ρ(e−2πA), which is referred to as the Arendt-Bu theorem.
The latter theorem proves useful for the investigation of time periodic prob-
lems. It is the purpose of Chapter 7 to provide several frameworks to time
periodic quasilinear abstract Cauchy problems by means of the Arendt-Bu
theorem. In fact, we investigate problems of the shape

(QACP)

u
′(t) + A(u(t))u(t) = F1(u(t)) + F2(t, u(t)), for t ∈ (0, T ),

u(0) = u(T ),

on a Banach space X0, and we study the existence and uniqueness of solu-
tions to (QACP) close to equilibrium solutions u∗ of A(u∗)u∗ = F1(u∗). Under
certain Lipschitz assumptions on the nonlinear terms A, F1 and F2, and as-
suming that the linearization A∗ := A(u∗) with domain D(A∗) = X1 fits in the
framework of the Arendt-Bu theorem, we deduce the existence of a unique
strong solution u to the problem (QACP). The main result in this context
roughly reads as follows.

Theorem. Let u∗ be an equilibrium to the autonomous part of (QACP), con-
sider an open neighborhood V of u∗, and suppose that

A ∈ C0,1(V ; L(X1,X0)) and F1, F2 ∈ C0,1(V ; X0),

where the Lipschitz constants of A at the equilibrium and of F1 as well as F2
are assumed to shrink to zero with the radius of the ball on which the Lipschitz
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continuity is investigated. Moreover, suppose that 0 ∈ ρ(A∗), and that the
operator A∗ has maximal Lp-regularity on (0, T ).

Then if F2(·, u∗) is small in Lp(0, T ; X0), there exists a strong solution
u ∈ W1,p(0, T ; X0) ∩ Lp(0, T ; X1) to (QACP), which is unique in a small
neighborhood of u∗.

In addition, we elaborate on time periodic solutions in a neighborhood of
zero, and we especially consider the case of bilinear nonlinearities.

The other part of Chapter 7 is dedicated to the investigation of the time
periodic sea ice problem, so the problem (ME)–(BLP) is considered in the
time periodic framework and subject to time periodic forcing terms fice, fh
and fa. More precisely, we take into account

(SIP)



∂tvice + (vice · ∇H)vice = 1
mice

divH σδ + 1
mice

F ice + fice, in R × Ω,

∂th+ divH (viceh) = Sh + dh∆Hh+ fh, in R × Ω,
∂ta+ divH (vicea) = Sa + da∆Ha+ fa, in R × Ω,

u(t) = u(t+ T ), for t ∈ R,

completed by Dirichlet boundary conditions for vice and Neumann boundary
conditions for h and a. We study the existence of time periodic solutions in a
neighborhood of constant equilibrium solutions u∗ = (0, h∗, a∗), with h∗ > κ

and a∗ ∈ (0, 1), to the simplified problem (SIS). For F ice
p := F ice + fice, the

difference ũ := u− u∗ = (ṽice, h̃, ã) satisfies

(SIPR)



∂tṽice − 1
mice

divH σδ = −(ṽice · ∇H)ṽice + F ice
p , in R × Ω,

∂th̃+ h∗divH ṽice − dh∆Hh̃ = Sh − divH (ṽiceh̃) + fh, in R × Ω,
∂tã+ a∗divH ṽice − da∆Hã = Sa − divH (ṽiceã) + fa, in R × Ω,

ũ(t) = ũ(t+ T ), for t ∈ R,

and the boundary conditions are unaffected. In the next step, we reformu-
late (SIPR) as a time periodic quasilinear abstract Cauchy problem.

A major obstacle in the analysis is the lack of invertibility due to the pres-
ence of Neumann Laplacian operators. We overcome this by taking into ac-
count Lp-functions with spatial average zero, denoted by Lp

0(Ω), in the h- and
a-component. The new ground space thus takes the shape

X0 = Lp(Ω)2 × Lp
0(Ω) × Lp

0(Ω).
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The equations satisfied by h̃ and ã preserve this property provided the thermo-
dynamic terms and the periodic forcing terms also have spatial average zero.
Another ingredient is that (SIPR) can be studied on the time interval (0, T ),
and the solution is then extended thanks to the periodicity. Additionally ver-
ifying the maximal Lp-regularity of the linearized operator matrix by means
of perturbation theory, and showing estimates of the nonlinear terms, we find
that (SIPR) lies in the scope of the framework developed in the first part of
the chapter. The emerging result asserts the existence of a strong time peri-
odic solution to (SIPR) which is unique in a neighborhood of zero. Below, we
state a simplified version of this result.

Theorem. Consider p > 4 and a constant equilibrium solution u∗ = (0, h∗, a∗)
to (SIS), where h∗ > κ and a∗ ∈ (0, 1). Let also f = (fice, fh, fa) : R → X0 be
T -periodic such that f |(0,T ) ∈ Lp(0, T ; X0). Then if f and the other external
forcing terms are sufficiently small, there exists a strong T -periodic solution ũ
to (SIPR), i. e.,

ũ|(0,T ) ∈ W1,p(0, T ; X0) ∩ Lp(0, T ; W2,p(Ω)2 × (W2,p(Ω) ∩ Lp
0(Ω))2).

Moreover, the solution is unique in a small neighborhood of zero.

Let us observe that u = ũ + u∗ solves the original time periodic sea ice
problem (SIP). A similar result based on a significantly different strategy has
been obtained in a joint work with Matthias Hieber [20].

Time Periodic Quasilinear Evolution Equations in Real
Interpolation Spaces
The above Arendt-Bu theorem requires maximal Lp-regularity of the associ-
ated initial value problem, which can also be deduced from the R-boundedness
of resolvents in applications in view of a famous result due to Weis [132]. In
the context of initial value problems, a classical theorem due to Da Prato and
Grisvard [32] asserts the maximal regularity of initial value problems in real
interpolation spaces when only assuming that the underlying linear operator
generates a bounded analytic semigroup and is invertible. A time periodic
analogue of this result has been provided by Hieber et al. [64].

Chapter 8 is devoted to the study of time periodic quasilinear problems of
the shape

(QACP-I)

u
′(t) + A(u(t))u(t) = F (t, u(t)) + f(t), for t ∈ R,

u(t) = u(t+ T ), for t ∈ R.
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For A0 denoting the linearization of A at zero as well as an underlying Banach
space X, the spaces for the maximal periodic Lp-regularity read as

DA0(θ, p) :=

x ∈ X : [x]θ,p :=
(∫ ∞

0

∥∥∥t1−θA0e−tA0x
∥∥∥p

X

dt
t

)1/p

< ∞

 .
These spaces coincide with the real interpolation spaces (X,D(A0))θ,p un-
der mild assumptions on A0. Besides, we denote by E1 the domain of the
DA0(θ, p)-realization of the operator A0. The result on the existence of a
unique solution to (QACP-I) is described in a simplified way below.

Theorem. Assume that A and F are locally Lipschitz continuous from

E1,θ := W1,p(0, T ; DA0(θ, p)) ∩ Lp(0, T ; E1)

into Lp(0, T ; DA0(θ, p)), and the Lipschitz constant of F shrinks with the ra-
dius of the balls. In addition, suppose that −A0 generates a bounded analytic
semigroup and satisfies 0 ∈ ρ(A0).

Then if F (·, 0)|(0,T ) and f |(0,T ) are sufficiently small in Lp(0, T ; DA0(θ, p)),
there exists a strong solution u with u|(0,T ) ∈ E1,θ to (QACP-I), and u is
unique in a small neighborhood of zero.

The second part of the Chapter 8 is concerned with applications of the gen-
eral framework. In contrast to the previous considerations, these applications
do not concern geophysical flow models, but we show that the framework
can also be applied to different examples. More precisely, we investigate the
time periodic problems associated to quasilinear Keller-Segel systems, and to
a Nernst-Planck-Poisson type problem from electrochemistry.

For a bounded and sufficiently regular domain Ω ⊂ Rd, with d ≥ 2, the
density of a cell population n : R × Ω → R, the concentration of a chemoat-
tractant c : R × Ω → R and a T -periodic function f = (fn, fc), the time
periodic quaslinear Keller-Segel system under investigation is

(KSP)


∂tn− ∇ · ((n+ 1)m∇n) = −∇ · (n∇c) + fn, in R × Ω,

∂tc− ∆c+ c− n = fc, in R × Ω,
n(t) = n(t+ T ), c(t) = c(t+ T ), in R × Ω.

Moreover, n and c are assumed to satisfy homogeneous Neumann boundary
conditions. With regard to the first part of the chapter, we rewrite (KSP) as
a time periodic quasilinear abstract Cauchy problem. In a similar way as for
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the sea ice equations in the periodic setting, we consider Lp-functions with
spatial average zero in the n-equation in order to obtain invertibility. In view
of the shape of the nonlinear term, we consider W1,p as the ground space of
the c-component, so

X0 = Lp
0(Ω) × W1,p(Ω).

The sectoriality of the linearized operator matrix A0 with associated trace
space DA0(θ, p) is a consequence of the fact that the restriction of the Neumann
Laplacian operator to its injective part inherits the well known properties from
the Neumann Laplacian operator, while the argument in the c-component re-
lies on a Banach scale argument for the shifted Neumann Laplacian. In order
to estimate the nonlinear terms, we employ a newly developed version of the
mixed derivative theorem in real interpolation spaces. This yields that the
time periodic abstract Cauchy problem corresponding to (KSP) fits in the
framework from the first part of the chapter. The result on the existence of
a time periodic strong solution in the real interpolation space can be para-
phrased as follows.

Theorem. Let p > d+2 and θ ∈ (0, 1) with θ ∈ (d/2p, 1/2+1/2p), and consider a
T -periodic forcing term f : R → DA0(θ, p), where f |(0,T ) ∈ Lp(0, T ; DA0(θ, p)).
Then if f is sufficiently small, there exists a T -periodic strong solution (n, c)
to (KSP), and the solution is unique in a neighborhood of zero.

This chapter is based on a joint article with Matthias Hieber [19].

Outline of the Thesis
In order to prepare for the further analysis in this thesis, which is intended to
be as self-contained as possible, we recall selected concepts in Chapter 1 and
Chapter 2. In that respect, Chapter 1 settles some notation, introduces ba-
sic interpolation theory, discusses function spaces and their properties such as
traces as well as embedding or interpolation relations and collects further use-
ful analytical tools such as the Poincaré inequality or the Rellich-Kondrachov
theorem.

Chapter 2 is dedicated to the presentation of some abstract theory. Most
importantly, we recall the notion of maximal Lp-regularity of abstract Cauchy
problems and discuss its relation with other operator theoretic concepts as e. g.
the bounded H∞-calculus, and we study its application to parabolic boundary
value problems. Another purpose of Chapter 2 is to set up a toolbox for the
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nonlinear analysis carried out in the following chapters. This means that
we collect useful embedding relations, and we also invoke general quasilinear
existence theory on the local well-posedness of quasilinear abstract Cauchy
problems, or even on global strong well-posedness close to equilibria. Finally,
we discuss the viscous primitive equations and recall the hydrostatic Stokes
operator.

In Chapter 3, we investigate the fully parabolic regularized sea model, in-
cluding a short bibliographic overview as well as the introduction of the system
of equations. Moreover, we study the operator emerging from the internal ice
stress in detail and rewrite the sea ice equations as a quasilinear abstract
Cauchy problem. This culminates in the local strong well-posedness of the
model. We also establish the global strong well-posedness of a simplified ver-
sion of the model in the absence of external forcing terms for initial data close
to constant equilibria.

Chapter 4 addresses the interaction problem of sea ice with a rigid body.
This moving domain problem is reduced to a problem on a fixed domain
by employing a local coordinate transform. We then tackle the linearized
problem. Complemented by estimates of the nonlinear terms, this results in
the local strong well-posedness of the interaction problem.

The focal point of Chapter 5 is the investigation of a coupled atmosphere-sea
ice-ocean model. Again, we reformulate the complete system as a quasilinear
abstract Cauchy problem. The linear theory is handled by the study of the
stationary hydrostatic Stokes problem, finally leading to the maximal Lp-
regularity of the linearized operator matrix. This allows us to show the local
strong well-posedness of the complete coupled model, and to establish the
global strong well-posedness close to equilibria for a simplified model.

The last chapter completely dedicated to geophysical flow models is Chap-
ter 6. It discusses a parabolic-hyperbolic variant of Hibler’s sea ice model.
To this end, we use the Lagrangian change of coordinates, establish the max-
imal Lp-regularity of the linearized problem and show estimates of the non-
linear terms to derive the existence of a unique strong solution from an appli-
cation of the contraction mapping principle. In the end of Chapter 6, we also
provide a brief outlook on questions still open in the mathematical analysis
of Hibler’s sea ice model.

Chapter 7 provides frameworks to time periodic quasilinear evolution equa-
tions based on the Arendt-Bu theorem on maximal periodic Lp-regularity.
Moreover, we especially address the situation of bilinear nonlinearities. In a
second step, we apply the general frameworks to the time periodic problem
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corresponding to the fully parabolic regularized sea ice model.
In the final Chapter 8, we present a framework to time periodic quasilinear

problems in real interpolation spaces by means of a time periodic version of
the Da Prato-Grisvard theorem. The second part of this chapter is concerned
with applications of the general framework to quasilinear Keller-Segel systems
and to a parabolic Nernst-Planck-Poisson type system.

xxiii



Preface

Acknowledgements
First and foremost, I would like to express my deepest gratitude to my PhD
supervisor Matthias Hieber for making this work possible. In particular, I
thank him for his enthusiasm for mathematics as well as his immense knowl-
edge and impressive intuition, from which I have benefited enormously. He
was always open to discussion, regardless of the topic or time. At the same
time, his guidance gave me enough freedom and space to work on my own.
I am also grateful for his continuous support and his belief in me and this
project, which started with the Master’s thesis.

Another big thank you goes out to Moritz Egert, without whom this work
would not have been possible. I further thank him for his very valuable advice
in mathematical and non-mathematical aspects, the French Fridays and the
espresso which is undoubtedly the best in Darmstadt and fueled this work.

I would further like to express my sincere gratitude to Professor Hideo
Kozono for reviewing the thesis.

Next, I am grateful to Tim Binz for all our discussions and his passion for
mathematics. He had a great influence on my mathematical thinking and
often helped me to find answers to questions about my research.

I would also like to thank Arnab Roy, not only for stimulating mathemat-
ical discussions, but also for the more philosophical conversations, the nice
memories we share from our trips and his ability to make me smile.

Besides, I am indebted to all coauthors with whom I had the pleasure of
working, namely Tim Binz, Karoline Disser, Robert Haller, Matthias Hieber,
Arnab Roy and Tarek Zöchling.

I am further grateful to Tim Binz, Arnab Roy and Tarek Zöchling for their
valueable proofreading of this thesis.

Also, I would like to thank the whole Analysis group in Darmstadt for
making my time as a PhD student a pleasant experience. In addition to
the persons named above, I am especially grateful to my former office mate
Simone Ciani and Tarek Zöchling here. Special thanks go to Renate Drießler
and Anke Meier-Dörnberg for their support in all organizational matters.

My work was supported by the Research Unit FOR 5528 which is funded
by Deutsche Forschungsgemeinschaft (DFG).

Abschließend bedanke ich mich bei meiner Familie und meinen Freunden
für all die Unterstützung und den Rückhalt. Insbesondere danke ich meinen
Eltern und meinen Geschwistern sehr herzlich. Ohne sie wäre diese Arbeit
nicht möglich gewesen.

xxiv



Zusammenfassung in Deutscher Sprache

In dieser Arbeit werden geophysikalische Strömungsmodelle mithilfe der Theo-
rie quasilinearer Evolutionsgleichungen untersucht. Ferner werden zeitperiodi-
sche quasilineare parabolische Gleichungen studiert.

Der erste Teil dieser Arbeit beschäftigt sich mit der rigorosen mathemati-
schen Analyse von Modellen im Zusammenhang eines viskoplastischen Mee-
reismodells. Dieses wurde 1979 durch den Geophysiker William D. Hibler III in
einem viel beachteten Artikel eingeführt und entwickelte sich in den vergange-
nen Jahrzehnten zu einem häufig verwendeten Modell, um die Meereisdynamik
in Klimamodellen abzubilden. Vor diesem Hintergrund mutet es erstaunlich
an, dass die rigorose mathematische Untersuchung von Hiblers Modell erst in
der jüngsten Vergangenheit begann. Ferner steht dies in klarem Kontrast zur
großen Anzahl an wissenschaftlichen Artikeln aus der Geophysik, Simulation
und numerischen Analyse zu Hiblers Meereismodell.

Hiblers Modell stellt ein großskaliges Modell dar, was bedeutet, dass nicht
die Bewegung einzelner Eisschollen betrachtet wird, sondern das Verhalten
von Meereis auf großen Skalen von vielen hundert Quadratkilometern be-
schrieben wird. Zudem bildet Hiblers Modell dynamische wie thermodynami-
sche Aspekte ab.

Die Modellvariablen in Hiblers Modell sind die horizontale Eisgeschwin-
digkeit, die Eisdicke sowie die Eiskompaktheit. Letztere gibt den Anteil von
dickem Eis in einem Kontrollgebiet an. Das zugrunde liegende Gebiet ist ein
beschränktes Gebiet in zwei Raumdimensionen, dessen Rand als hinreichend
regulär angenommen wird. Weiter besteht das Modell aus einer Impulsglei-
chung für die horizontale Eisgeschwindigkeit sowie Bilanzgleichungen für die
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Eisdicke und die Eiskompaktheit. Die wesentlichen Kraftterme in der Im-
pulsgleichung sind die aus der Reibung des Eises entstehenden inneren Eis-
kräfte, Kräfte aufgrund atmosphärischer Winde und ozeanischer Strömungen,
Coriolis-Kräfte und eine Kraft aufgrund der wechselnden Neigung des Eises.
Präziser werden die inneren Eiskräfte mithilfe einer viskoplastischen Rheologie
modelliert. Andererseits enthalten die Bilanzgleichungen thermodynamische
Quell- und Senkenterme.

Im ersten Schritt wird der Spannungstensor regularisiert, um eine Dege-
neration der Impulsgleichung zu vermeiden. Diese Regularisierung ist durch
bestehende Ansätze aus der numerischen Analysis motiviert. Eine weitere Ver-
einfachung besteht darin, zusätzliche viskose Terme in den Bilanzgleichungen
einzuführen. Bereits Hibler führte solche Terme ein, um die Stabilität der nu-
merischen Algorithmen zu erhöhen. Das intensive Studium des zu den internen
Eiskräften korrespondierenden Differentialoperators stellt einen weiteren be-
deutenden Schritt in der rigorosen mathematischen Analysis dar. Über gewis-
se Elliptizitätseigenschaften führt dies schließlich zur sogenannten maximalen
Lp-Regularität des zugehörigen linearisierten Operators. Anschließend wird
das komplette System als quasilineare Evolutionsgleichung aufgefasst und es
wird die maximale Lp-Regularität für die assoziierte linearisierte Operator-
matrix bewiesen. Gemeinsam mit Lipschitz-Abschätzungen und quasilinearer
Existenztheorie resultiert dies schließlich in der lokalen Existenz und Ein-
deutigkeit einer starken Lösung des regularisierten parabolisch-parabolischen
Systems für hinreichend reguläre Anfangswerte.

Daraufhin wird ein vereinfachtes Modell ohne äußere Kräfte studiert. Die-
ses Modell besitzt sogar eindeutige starke Lösungen, die global in der Zeit
existieren, sofern die Anfangswerte nahe genug an konstanten Gleichgewichts-
punkten in Betracht gezogen werden.

Ein weiteres Kapitel widmet sich der Untersuchung der Fluid-Struktur-
Interaktion von Meereis mit einem (großen) Festkörper, wobei Hiblers regula-
risiertes viskoplastisches Modell als Basis dient und Newtons Gesetze für die
Bewegung des Festkörpers angenommen werden. Das Gebiet im entstehenden
Problem ist zeitabhängig, sodass in einem ersten Schritt eine Transformation
angewandt wird, die lokal im Ort agiert und auf ein zeitunabhängiges Gebiet
führt. Auf der anderen Seite nehmen die transformierten Terme eine kompli-
ziertere Gestalt an. Eine weitere Schwierigkeit ergibt sich aus der Bedingung,
dass die Geschwindigkeit des Eises mit der aus Translation und Rotation
resultierenden Geschwindigkeit des Festkörpers am gemeinsamen Rand über-
einstimmt. Diesem Umstand wird beim Studium des linearisierten Modells
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Rechnung getragen, indem das Modell schrittweise analysiert und letztlich als
inhomogenes parabolisches Randwertproblem aufgefasst wird. Für die Fluid-
Struktur-Interaktion wird die lokale starke Wohlgestelltheit für hinreichend
reguläre Anfangswerte schließlich mithilfe eines Fixpunktarguments gezeigt.
Neben der geeigneten Linearisierung basiert letzteres auf geeigneten Lipschitz-
Abschätzungen.

Im nächsten Schritt stehen die zu den atmosphärischen Winden und ozea-
nischen Strömungen assoziierten Kräfte im Vordergrund. Präziser werden die
Wind- und Ozeangeschwindigkeit in Hiblers viskoplastischem Modell inter-
nalisiert, wobei beide durch die primitiven Gleichungen beschrieben werden.
Daher wird als zugrunde liegendes Gebiet für das Meereis G = (0, 1) × (0, 1)
betrachtet und es werden periodische Randbedingungen angenommen. Eine
weitere Bedingung ist, dass die Geschwindigkeiten des Ozeans und des Eises
an ihrem gemeinsamen Rand identisch sind. Als Konsequenz handelt es sich
um ein gekoppeltes Modell, das wieder als quasilineare Evolutionsgleichung
behandelt wird. Von zentraler Bedeutung ist in diesem Kapitel die Unter-
suchung des stationären hydrostatischen Stokes-Problems. Dies erlaubt, die
Analyse des linearen Problems auf ein entkoppeltes Problem zurückzufüh-
ren, um schließlich Eigenschaften wie die maximale Lp-Regularität zu etablie-
ren. Mithilfe von Lipschitz-Abschätzungen und quasilinearer Existenztheorie
münden diese Untersuchungen wieder in der lokalen starken Wohlgestelltheit
für Anfangswerte von ausreichend hoher Regularität. Ebenso lässt sich die
Existenz und Eindeutigkeit von globalen starken Lösungen nahe konstanten
Gleichgewichtspunkten beweisen.

Den Schlusspunkt des ersten Teils der Dissertation markiert ein Kapitel
zu einer parabolisch-hyperbolischen Variante von Hiblers Modell, die physi-
kalisch realitätsgetreuer erscheint. Im Vergleich zu vorher werden dazu keine
viskosen Terme in den Bilanzgleichungen in Betracht gezogen. Eine Schwie-
rigkeit besteht dann in der Handhabung der hyperbolischen Effekte. Dies wird
durch den Übergang zu Lagrange-Koordinaten gelöst, was eine Analyse des
linearisierten Problems ermöglicht. Dagegen sind die Terme infolge der Trans-
formation von einer komplizierteren Gestalt. Wieder wird die lokale starke
Wohlgestelltheit mithilfe eines Fixpunktarguments bewiesen, wobei sorgfältig
Lipschitz-Abschätzungen der nichtlinearen Terme hergeleitet werden. Weiter
müssen hinreichend reguläre Anfangswerte betrachtet werden.

Gegenstand des zweiten Teils der vorliegenden Arbeit sind zeitperiodische
quasilineare Probleme. Die Frage nach zeitperiodischen Lösungen für Proble-
me mit zeitperiodischen äußeren Kräften stellt ein klassisches Problem für
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die mathematische Analysis im Allgemeinen und die mathematische Fluiddy-
namik im Speziellen dar. In einem ersten Schritt entwickeln wir verschiede-
ne theoretische Resultate für die starke Lösbarkeit zeitperiodischer Probleme
in unterschiedlichen Zusammenhängen, die auf der Betrachtung als zeitpe-
riodische quasilineare Evolutionsgleichungen basieren. Hinsichtlich der linea-
ren Theorie wird an dieser Stelle der Begriff der maximalen periodischen Lp-
Regularität genutzt. Zugrunde liegt dabei ein Theorem, das auf Arendt und Bu
zurückgeht. Es gestattet eine Charakterisierung der maximalen periodischen
Lp-Regularität über die gewöhnliche maximale Lp-Regularität parabolischer
Anfangswertprobleme und Spektraleigenschaften der korrespondierenden er-
zeugten C0-Halbgruppe. Die allgemeine Theorie wird daraufhin auf die regu-
larisierte parabolisch-parabolische Variante von Hiblers Modell angewendet.
In dieser Hinsicht stellt der zugehörige Abschnitt ein Bindeglied der beiden
Teile der Dissertation dar. Eine wesentliche Schwierigkeit besteht in der feh-
lenden Invertierbarkeit der linearisierten Operatormatrix. Um diese Hürde
zu überwinden, wird das Modell nahe Gleichgewichtspunkten betrachtet und
entsprechend umformuliert. Eine Modifikation des Grundraums ebnet schlus-
sendlich den Weg für die Invertierbarkeit der linearisierten Operatormatrix.
Als Resultat kann die zuvor entwickelte allgemeine Theorie verwendet wer-
den, um die Existenz einer zeitperiodischen starken Lösung für hinreichend
kleine zeitperiodische äußere Kräfte sicherzustellen.

Das zweite Kapitel des zweiten Teils dieser Arbeit basiert auf einer peri-
odischen Variante eines klassischen Resultats von Da Prato und Grisvard,
das maximale Regularität in reellen Interpolationsräumen impliziert, sofern
Sektorialität und Invertierbarkeit des unterliegenden Operators angenommen
werden. Diese Variante liefert die starke Wohlgestelltheit von zeitperiodischen
quasilinearen Evolutionsgleichungen für hinreichend kleine zeitperiodische äu-
ßere Kräfte. Die Anwendungen in diesem Kapitel betreffen ein quasilineares
Keller-Segel Modell, welches die direkte Bewegung von Zellen und Organis-
men als Reaktion auf chemische Gradienten modelliert, sowie ein paraboli-
sches Nernst-Planck-Poisson Modell aus der Elektrochemie. In beiden Fällen
wird die Existenz zeitperiodischer starker Lösungen gezeigt.
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CHAPTER 1

Interpolation, Function Spaces and Analytical Tools

In this chapter, we introduce some basic concepts which will appear through-
out the thesis. More precisely, after settling some notation and conventions in
Section 1.1, we briefly discuss the real and complex interpolation method in
Section 1.2, invoke a variety of function spaces in the scalar- and vector-valued
setting and elaborate on the trace as well as interpolation and embedding re-
lations of these spaces in Section 1.3 and collect some useful analytical tools
in Section 1.4.

1.1. Basic Notation and Conventions
First, we make precise the notation of some sets and spaces.

(i) For θ ∈ (0, π], we denote by Σθ the sector of angle θ in the complex
plane C, i. e., Σθ := {z ∈ C \ {0} : | arg z| < θ}.

(ii) For a Banach space X, an element x0 ∈ X and r > 0, we denote the
open ball in X with center x0 and radius r by BX(x0, r), while BX(x0, r)
represents the corresponding closed ball.

(iii) Given two Banach spaces X and Y, the space of bounded linear operators
from X to Y is denoted by L(X,Y). In the sequel, we use the convention
L(X,X) =: L(X).
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1. Interpolation, Function Spaces and Analytical Tools

We proceed with some notation in the context of derivatives. In fact, ∂j

denotes the j-th partial derivative in the classical, weak or distributional
sense, depending on the precise situation. Moreover, Dj abbreviates −i∂j,
and ∂α represents ∂α1

1 . . . ∂αd
d for a multi-index α = (α1, . . . , αd). In that

respect, we also mention the shorthand Dα for Dα1
1 . . .Dαd

d . Concerning the
chapters on sea ice, we also remark that we use xH to denote the horizontal
variables, i. e., xH = (x, y), while z usually represents the vertical variable.
In addition, we indicate objects associated to the horizontal variables with
a subscript H, so divH designates the horizontal divergence, while ∇H is the
horizontal gradient.

In this thesis, we use the concept of generic constants. In that respect,
C > 0 typically represents a generic constant in the sequel. However, in
proofs, we number the constants, i. e., we use C1, C2, . . . in order to simplify
the tracking of constants, and at the beginning of each proof, the numbering
starts again from C1 > 0.

Furthermore, for a Banach space X with norm ∥ · ∥X, we denote by Xd the
d-product space as e. g. the Rd- or Cd-valued space of X and still denote the
norm of this space by ∥ · ∥X instead of ∥ · ∥Xd for simplicity.

1.2. Interpolation Theory
In this section, we briefly recall the real and complex interpolation method.
We mainly follow [2, Chapter 7] as well as [100, Section 1.1 and 2.1] here.

Before describing the two methods, we begin with some basics. Consider
two Banach spaces X and Y, and assume that X,Y ↪→ Z is valid for some
Hausdorff topological vector space Z. Moreover, suppose that X ∩ Y ̸= ∅.
Then (X,Y) is referred to as an interpolation couple. We observe that X ∩ Y
and the algebraic sum X + Y defined by

X + Y := {u = x+ y : x ∈ X, y ∈ Y}

become Banach spaces when endowed with the norms

∥u∥X∩Y := max {∥u∥X, ∥u∥Y} and
∥u∥X+Y := inf {∥x∥X + ∥y∥Y : u = x+ y, with x ∈ X, y ∈ Y} .

In addition, we obtain X ∩ Y ↪→ X,Y ↪→ X + Y. The above properties are
classical, and we refer e. g. to [2, Chapter 7]. In general, a Banach space Z̃
such that X ∩ Y ↪→ Z̃ ↪→ X + Y is called intermediate space.
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In this context, we also mention the concept of (exact) interpolation spaces.
To this end, consider two interpolation couples (X0,Y0) and (X1,Y1) as well
as a bounded linear operator T : X0 + Y0 → X1 + Y1 such that T : Xi → Yi is
also bounded with norm at most Mi for i = 0, 1. Two intermediate spaces Z0
for (X0,Y0) and Z1 for (X1,Y1) are called interpolation spaces of type θ for
(X0,Y0) and (X1,Y1) if every operator T of the above form maps Z0 into Z1,
with norm M satisfying M ≤ CM1−θ

0 M θ
1 . In the above, C ≥ 1 is independent

of T . If the previous relation is fulfilled with C = 1, then Z0 and Z1 are
referred to as exact interpolation spaces.

Real Interpolation
Let X and Y be as introduced at the beginning of this section. For t > 0
fixed, we set

K(t;u) := inf {∥x∥X + t∥y∥Y : u = x+ y, with x ∈ X and y ∈ Y} .

This defines a norm on X + Y which is equivalent to the above norm. Fur-
thermore, for an interval J ⊂ R+ and p ∈ [1,∞), we define

Lp
∗(J) :=

{
f ∈ Lp(J) : ∥f∥Lp

∗(J) < ∞
}
, with ∥f∥p

Lp
∗(J) :=

∫
J

|f(t)|p dt/t.

In the case p = ∞, we set L∞
∗ (J) := L∞(J). For θ ∈ (0, 1) and p ∈ [1,∞], we

introduce the real interpolation space (X,Y)θ,p defined by

(X,Y)θ,p :=
{
u ∈ X + Y : t 7→ t−θK(t;u) ∈ Lp

∗(R+)
}
, where

∥u∥(X,Y)θ,p
:= ∥t−θK(t;u)∥Lp

∗(R+).

Let us observe that (X,Y)θ,p is indeed an intermediate space between X and Y,
see for instance [2, Theorem 7.10]. We also observe that for two interpola-
tion couples (X0,Y0) and (X1,Y1), the real interpolation spaces (X0,Y0)θ,p

and (X1,Y1)θ,p are exact interpolation spaces of type θ. For a proof of this
property, we refer for example to [100, Theorem 1.6]. In the following, we also
use the term real interpolation functor for (·, ·)θ,p, and we say that the real
interpolation method is functorial.

If one space is contained in the other in an interpolation couple, we can
establish a relation of the real interpolation spaces as stated below. The
result is well known, see for instance [100, Proposition 1.4].
Lemma 1.2.1. Let X, Y be an interpolation couple such that Y ⊂ X. Then
for θ1, θ2 ∈ (0, 1) with θ1 < θ2, we have (X,Y)θ2,∞ ⊂ (X,Y)θ1,1. Moreover,
for all p, q ∈ [1,∞], it holds that (X,Y)θ2,p ⊂ (X,Y)θ1,q.
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1. Interpolation, Function Spaces and Analytical Tools

Complex Interpolation
We take into consideration X and Y as made precise at the beginning of
the section. In addition, we introduce the set F = F(X,Y) given by all
functions f of ζ = θ + iτ taking values in X + Y and satisfying that

(a) f is bounded and continuous on the strip 0 ≤ θ ≤ 1 into X + Y,

(b) f is holomorphic from 0 < θ < 1 into X + Y,

(c) f is continuous on the line θ = 0 into X with ∥f(iτ)∥X → 0 as |τ | → ∞,
and

(d) f is continuous on the line θ = 1 into Y so that ∥f(1 + iτ)∥Y → 0 as
|τ | → ∞.

It turns out that F is a Banach space equipped with the norm

∥f∥F := max
{

sup
τ∈R

∥f(iτ)∥X, sup
τ∈R

∥f(1 + iτ)∥Y

}
,

see for example [100, Section 2.1]. The above space F allows us to define
the complex interpolation method. For θ ∈ (0, 1), we define the complex
interpolation space [X,Y]θ by

[X,Y]θ := {u ∈ X + Y : u = f(θ) for some f ∈ F} , with
∥u∥[X,Y]θ := inf {∥f∥F : f(θ) = u} .

Again, it follows that (X,Y) is an intermediate space between X and Y, and
for two interpolation couples (X0,Y0) and (X1,Y1), the spaces [X0,Y0]θ as
well as [X1,Y1]θ are exact interpolation spaces of type θ, see [100, Theo-
rem 2.6]. Besides, we call [·, ·]θ the complex interpolation functor and refer to
the complex interpolation method as functorial.

The following lemma establishes a link between real and complex interpo-
lation spaces. The result is also well known, and for convenience, we refer for
instance to [100, Proposition 2.10].

Lemma 1.2.2. Let X, Y be an interpolation couple. Then for all θ ∈ (0, 1),
we have [X,Y]θ ↪→ (X,Y)θ,∞.

Combining Lemma 1.2.1 and Lemma 1.2.2, we find the following relation
of real and complex interpolation spaces in the situation of nested spaces.

Lemma 1.2.3. Let X, Y be an interpolation couple such that Y ⊂ X. Then
for θ1, θ2 ∈ (0, 1) with θ1 < θ2 and p ∈ [1,∞], we have [X,Y]θ2 ↪→ (X,Y)θ1,p.
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Interpolation of Closed Subspaces
We conclude the section on interpolation theory by commenting on the in-
terpolation of closed subspaces. It is a consequence of [130, Theorem 1.17.1]
together with the property of real and complex interpolation being exact in-
terpolation functors of type θ.

Lemma 1.2.4. Let X, Y be an interpolation couple, and consider a comple-
mented subspace C of X + Y such that the projection P satisfies P ∈ L(X)
and P ∈ L(Y). Then X ∩ C, Y ∩ C is an interpolation couple as well, and
for θ ∈ (0, 1) and p ∈ [1,∞], it holds that

(X ∩ C,Y ∩ C)θ,p = (X,Y)θ,p ∩ C and [X ∩ C,Y ∩ C]θ = [X,Y]θ ∩ C.

1.3. Function Spaces, Traces and Embeddings
In this section, we introduce the function spaces required in this thesis. Apart
from classical function spaces, we also invoke Lebesgue spaces, Sobolev spaces,
Bessel potential spaces, Besov spaces, Sobolev-Slobodeckij spaces as well as
Triebel-Lizorkin spaces. Moreover, we discuss properties of the trace and
normal derivative on some of these spaces, and we also recall interpolation
and embedding relations. Since we require vector-valued spaces, we make
this concept precise as well. In this context, we also discuss time weights in
vector-valued Lebesgue and Sobolev spaces. Another topic is the introduction
of functions on time-dependent domains. For this section, we mainly follow
the monograph of Triebel [130].

Basic Function Spaces
Throughout this section, we consider Ω ⊂ Rd, d ∈ N0, open, and m denotes
a non-negative integer. We start with some classical functions spaces and
variants of these.

(a) By Cm(Ω), we denote the space of all functions f so that f and all its
partial derivatives ∂βf of orders |β| ≤ m are continuous on Ω. The
space Cm(Ω) is defined analogously, with Ω replaced by Ω.

(b) The space Cm
b (Ω) consists of all functions f ∈ Cm(Ω) such that ∂βf is

additionally bounded on Ω for all 0 ≤ |β| ≤ m. Again, Cm
b (Ω) is defined

likewise, and we observe that Cm
b (Ω) = Cm

b (Ω) provided Ω is bounded.
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1. Interpolation, Function Spaces and Analytical Tools

(c) For α ∈ (0, 1], Cm,α(Ω) represents the subspace of Cm(Ω) so that ∂βf

satisfies a Hölder condition of exponent α in Ω for |β| = m, i. e., there
exists a constant C > 0 with∣∣∣∂βf(x1) − ∂βf(x2)

∣∣∣ ≤ C · |x− y|α, for x1, x2 ∈ Ω.

(d) We denote by BUC(Ω) the bounded and uniformly continuous functions
on Ω, while BUCα(Ω) represents the bounded and uniformly α-Hölder
continuous functions on Ω.

(e) Another subspace needed in the sequel is the space C0(R+) consisting
of the functions in C(R+) with lim

x→∞
f(x) = 0.

We proceed with the usual Lebesgue and Sobolev spaces.

(a) For p ∈ [1,∞), we denote by Lp(Ω) the class of all measurable func-
tions f on Ω for which

∥f∥p
Lp(Ω) :=

∫
Ω

|f(x)|p dx < ∞.

In the p = ∞-case, L∞(Ω) designates the space of all essentially bounded
functions on Ω, so f ∈ L∞(Ω) if and only if

∥f∥L∞(Ω) := ess sup
x∈Ω

|f(x)| < ∞.

In both situations, p ∈ [1,∞) and p = ∞, we identify functions if they
are equal almost everywhere on Ω.

(b) We also define the space of functions with average zero on Ω. Indeed,
for Ω ⊂ Rd bounded and p ∈ [1,∞), we set

(1.1) Lp
0(Ω) :=

{
f ∈ Lp

0(Ω) :
∫

Ω
f(x) dx = 0

}
.

Furthermore, for f ∈ Lp(Ω), we introduce the splitting

(1.2) f = fm +favg, where favg := 1
|Ω|

∫
Ω
f(x) dx and fm := f −favg,

leading to fm ∈ Lp
0(Ω).
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(c) For m ∈ Z+ and p ∈ [1,∞], we recall the Sobolev space

Wm,p(Ω) := {f ∈ Lp(Ω) : ∂βf ∈ Lp(Ω), for 0 ≤ |β| ≤ m},

and ∂βf denotes the weak partial derivative here. For p = 2, we also
use the notation Hm(Ω) := Wm,2(Ω).

We finish the consideration of the basic function spaces with an elementary
lemma yielding T -powers in estimates of Lebesgue and Sobolev functions on
the time interval (0, T ). It is a direct consequence of Hölder’s inequality.

Lemma 1.3.1. Let p ∈ (1,∞) with associated Hölder conjugate p′ ∈ (1,∞),
so 1/p + 1/p′ = 1, and consider T ∈ (0,∞). Then for f ∈ L∞(0, T ), we have

∥f∥Lp(0,T ) ≤ T
1/p · ∥f∥L∞(0,T ).

A function f ∈ W1,p(0, T ) with f(0) = 0 satisfies the estimate

∥f∥L∞(0,T ) ≤ T
1/p′ · ∥f∥W1,p(0,T ).

Bessel Potential, Besov, Sobolev-Slobodeckij and Triebel-
Lizorkin Spaces
The aforementioned spaces do not suffice in order to fully exploit the methods
used in this thesis. Instead, a wider range of function spaces is needed. As
we shall see later, the spaces presented in the sequel appear naturally as
interpolation spaces.

Let us recall the Schwartz space S(Rd) and its dual space S′(Rd), the so-
called space of tempered distributions. We denote by F as well as F−1 the
Fourier transform and its inverse, and we recall that F ,F−1 : S(Rd) → S(Rd)
and F ,F−1 : S′(Rd) → S′(Rd) are bounded.

As the following spaces are also defined via Fourier methods, it is natural to
distinguish the situation of the whole space and to comment on the situation
of more general domains Ω ⊂ Rd in a second step.

(a) For p ∈ (1,∞) and s ∈ R, we define the Bessel potential space Hs,p(Rd)
to be given by the elements in S′(Rd) such that

∥f∥Hs,p(Rd) :=
∥∥∥F−1(1 + |ξ|2) s

2 Ff
∥∥∥

Lp(Rd)
< ∞.
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1. Interpolation, Function Spaces and Analytical Tools

(b) Let p ∈ (1,∞), q ∈ [1,∞], s ∈ R, and consider a dyadic partition of
unity (φj)j∈N. Then the Besov spaces Bs

pq(Rd) are the elements in S′(Rd)
with ∥f∥Bs

pq(Rd) < ∞, where

∥f∥Bs
pq(Rd) :=

 ∞∑
j=0

2jsq ·
∥∥∥F−1φjFf

∥∥∥
Lp(Rd)

1/q

, if q < ∞, and

∥f∥Bs
p∞(Rd) := sup

j∈N0

2js ·
∥∥∥F−1φjFf

∥∥∥
Lp(Rd)

, if q = ∞.

(c) We are now in the position to introduce the Sobolev-Slobodeckij spaces.
For p ∈ (1,∞) and s ≥ 0, they are defined by

Ws,p(Rd) :=

Hs,p(Rd), if s ∈ N0,
Bs

pp(Rd), if s /∈ N0.

(d) The last class of function spaces to be presented in this context are the
Triebel-Lizorkin spaces denoted by Fs

pq(Rd). In fact, for p ∈ (1,∞),
q ∈ [1,∞], s ∈ R and a dyadic partition of unity (φj)j∈N, these are the
elements in S′(Rd) such that ∥f∥Fs

pq(Rd) < ∞, with

∥f∥Fs
pq(Rd) :=

∥∥∥∥∥∥∥
 ∞∑

j=0
2jsqF−1φjFf

1/q
∥∥∥∥∥∥∥

Lp(Rd)

, if q < ∞, and

∥f∥Fs
p∞(Rd) :=

∥∥∥∥∥sup
j∈N0

2jsF−1φjFf
∥∥∥∥∥

Lp(Rd)
, if q = ∞.

For s ∈ N0, it is well known that the Bessel potential spaces Hs,p(Rn) and
thus also the Sobolev-Slobodeckij spaces Ws,p(Rn) coincide with the usual
Sobolev spaces as introduced above.

Next, we comment on the definition of the aforementioned function spaces
on more general domains Ω ⊂ Rd.

(a) Let p ∈ (1,∞) as well as s ∈ R. The Bessel potential space Hs,p(Ω) is
defined by restriction, so Hs,p(Ω) is the restriction of Hs,p(Rd) to Ω, and

∥f∥Hs,p(Ω) = inf
g|Ω=f, g∈Hs,p(Rd)

∥g∥Hs,p(Rd).

(b) For p ∈ (1,∞), q ∈ [1,∞] and s ∈ R, the Besov space Bs
pq(Ω) is also

defined via restriction to Ω, and the norm ∥f∥Bs
pq(Ω) is obtained as in (a).
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(c) For p ∈ (1,∞) and s ≥ 0, we set

Ws,p(Ω) :=

Hs,p(Ω), if s ∈ N0,
Bs

pp(Ω), if s /∈ N0.

(d) Given p ∈ (1,∞), q ∈ [1,∞] as well as s ∈ R, the Triebel-Lizorkin
space Fs

pq(Ω) is defined by restricting Fs
pq(Rd) to Ω again, and the norm

can be deduced as in (a).

It is known that for s ∈ N0, the Bessel potential spaces Hs,p(Ω) and then
also Sobolev-Slobodeckij spaces Ws,p(Ω) are equal to the usual Sobolev spaces
provided the domain Ω satisfies the so-called uniform C1-condition. Instead
of elaborating on this condition, we only mention that it is especially satisfied
for bounded domains with C2-boundary as usually considered throughout this
thesis. In this context, we mention that Ω ⊂ Rd having a Ck-domain, with
k ∈ N0, means that ∂Ω can be locally represented as the graph of a Ck-
diffeomorphism. More precisely, for all x ∈ ∂Ω, there are rx > 0 and a
bijective map ψx : BRd(x, rx) → D ⊂ Rd so that

(a) ψx(BRd(x, rx) ∩ Ω) → Rd−1 × (0,∞),

(b) ψx(BRd(x, rx) ∩ ∂Ω) → Rd−1 × {0}, and

(c) ψx ∈ Ck(BRd(x, rx)) as well as ψ−1
x ∈ Ck(D).

Moreover, let us observe that for s ∈ R and p ∈ (1,∞), the Bessel potential
spaces Hs,p(Ω) and the Triebel-Lizorkin spaces Fs

p2(Ω) with parameter q = 2
coincide, so Hs,p(Ω) = Fs

p2(Ω). In particular, for m ∈ N, we have the relation

(1.3) Wm,p(Ω) = Fm
p2(Ω).

The Trace and the Normal Derivative
We proceed with the trace operator as well as the normal derivative, and
we mainly follow [130, Section 2.9 and Section 4.7] for this. In a first step,
we focus on the situation of the trace acting on functions defined on the
whole space Rd or half space Rd

+, d ≥ 2, and taking values in Rd−1, while
the focus in the second part is on bounded domains Ω ⊂ Rd with sufficiently
regular boundary. As in this thesis, we mainly investigate parabolic problems
of second order, we will often consider Ω such that the boundary ∂Ω is of
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class C2. Let us observe that in [130], it is assumed that ∂Ω is of class C∞

for technical reasons, but the results carry over to the situation of less regular
domains in case there exists a uniform extension operator. This is especially
valid in the instances we are interested in.

We recall that for p ∈ (1,∞), q ∈ [1,∞] and s ≥ 0, the spaces Hs,p(Rd
+),

Bs
pq(Rd

+) and Ws,p(Rd
+) are defined via restriction of the respective spaces on

the whole space Rd. In this case, for x = (x′, xd) = (x1, . . . , xd−1, xd), the
trace operator γ and the normal derivative ∂ν are defined by

γf(x′) := f(x′, 0) and ∂νf(x′) := ∂

∂xd

f(x′, 0).

An operator R is referred to as retraction between Banach spaces X and Y
if R ∈ L(X,Y), and if there exists a right-inverse S ∈ L(Y,X), i. e., RS = Id
on X. In this case, S is called coretraction. Note that a retraction is in
particular surjective. For the result below on properties of the trace and the
normal derivative on the whole space and the half space, we refer for example
to [130, Theorem 2.9.3].

Lemma 1.3.2. Let p ∈ (1,∞), q ∈ [1,∞].

(a) If s > 1/p, then γ is a retraction
(i) from Hs,p(Rd) and Hs,p(Rd

+) onto Bs−1/p
pp (Rd−1),

(ii) from Bs
pq(Rd) and Bs

pq(Rd
+) onto Bs−1/p

pq (Rd−1), and
(iii) from Ws,p(Rd) and Ws,p(Rd

+) onto Ws−1/p,p(Rd−1).

(b) In the case s > 1 + 1/p, the normal derivative ∂ν is a retraction
(i) from Hs,p(Rd) and Hs,p(Rd

+) onto Bs−1/p−1
pp (Rd−1),

(ii) from Bs
pq(Rd) and Bs

pq(Rd
+) onto Bs−1/p−1

pq (Rd−1), and
(iii) from Ws,p(Rd) and Ws,p(Rd

+) onto Ws−1/p−1,p(Rd−1).

The latter lemma also reveals that Besov and Sobolev-Slobodeckij spaces
seem to be more “natural” spaces when dealing with traces and normal deriva-
tives. As we shall see below, the same remains valid when considering bounded
domains Ω ⊂ Rd, d ≥ 2, with sufficient regular domain. In particular, the
result remains valid in the instances which we consider.

In the latter situation, for p ∈ (1,∞), q ∈ [1,∞] and s ∈ R, the boundary
spaces Hs,p(∂Ω) and Bs

pq(∂Ω) are defined via the respective spaces on Rd−1 via
localization and restriction, see for example [130, Definition 3.6.1] for more
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details. For p ∈ (1,∞) and s ≥ 0, the Sobolev-Slobodeckij spaces Ws,p(∂Ω)
can be set to coincide with Hs,p(∂Ω) for integer s, and to be equal to Bs

pp(∂Ω)
for non-integer s as above. Moreover, the trace and the normal derivative
are defined as the restriction to the boundary value and the derivative in the
normal direction restricted to the boundary, respectively. This means that

γf = f |∂Ω as well as ∂νf = ∂f

∂ν

∣∣∣∣∣
∂Ω
.

The result below can for example be found in [130, Theorem 4.7.1].

Lemma 1.3.3. Consider a bounded domain Ω ⊂ Rd with sufficiently smooth
boundary, and let p ∈ (1,∞) as well as q ∈ [1,∞].

(a) For s > 1/p, the trace γ is a retraction from Hs,p(Ω) onto Bs−1/p
pp (∂Ω),

from Bs
pq(Ω) onto Bs−1/p

pq (∂Ω), and from Ws,p(Ω) onto Ws−1/p,p(∂Ω).

(b) If s > 1 + 1/p, then ∂ν is a retraction from Hs,p(Ω) onto Bs−1/p−1
pp (∂Ω),

from Bs
pq(Ω) onto Bs−1/p−1

pq (∂Ω), and from Ws,p(Ω) onto Ws−1/p−1,p(∂Ω).

In the sequel, we also use the subscripts D and N to denote function spaces
with Dirichlet or Neumann boundary conditions on ∂Ω, i. e., if γf = 0 or
if ∂νf = 0, respectively. In addition, we fill also use W1,p

0 (Ω) to denote the
functions in W1,p(Ω) such that γf = 0.

Function Spaces with Periodic Boundary Conditions
We also briefly elaborate on function spaces defined on G = (0, 1)× (0, 1) and
subject to periodic boundary conditions on ∂G. A smooth function f : G → R
is called periodic of order m if

∂α

∂xα
f(0, y) = ∂α

∂xα
f(1, y) and ∂α

∂yα
f(x, 0) = ∂α

∂yα
f(x, 1)

for all α = 0, . . . ,m. We then set

C∞
per(G) :=

{
f ∈ C∞(G) : f is periodic of arbitrary order on ∂G

}
.

Moreover, we define the Sobolev spaces, Bessel potential spaces, Besov spaces
and Sobolev-Slobodeckij spaces with periodic boundary conditions as the re-
spective closure of C∞

per(G), so for p ∈ (1,∞), q ∈ [1,∞], m ∈ N0 and s ∈ R+,
we define

Wm,p
per (G) := C∞

per(G)
∥·∥Wm,p

, Hs,p
per(G) := C∞

per(G)
∥·∥Hs,p

,

Bs
pq,per(G) := C∞

per(G)
∥·∥Bs

pq and Ws,p
per(G) := C∞

per(G)
∥·∥Ws,p

.
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The function spaces on cylindrical domains Ω = G × (a, b) with periodic
boundary conditions on the lateral boundary ∂G× (a, b), −∞ < a < b < ∞,
are defined analogously, see also Section 2.7.

Interpolation and Embedding Relations
In the sequel, we unveil several interpolation and embedding relations of the
spaces introduced before. The lemma below reveals that the Bessel potential
spaces fit in the complex interpolation scale of the Lebesgue and Sobolev
spaces, whereas the Besov spaces also arise as real interpolation spaces of
Lebesgue and Sobolev spaces, and they fit in the complex interpolation scale.
These relations can e. g. be deduced from [130, Section 2.4, 2.10.1 and 4.3.1].

Lemma 1.3.4. Let Ω ⊂ Rd denote the whole space, the half space, or a
bounded domain with sufficiently regular boundary. Furthermore, consider
the parameters p ∈ (1,∞), q ∈ [1,∞], s ∈ R and θ ∈ (0, 1). Then we have

[Lp(Ω),Wm,p(Ω)]θ = Hθm,p(Ω), (Lp(Ω),Wm,p(Ω))θ,q = Bθm
pq (Ω) and[

Bs
pq(Ω),Bs+2

pq (Ω)
]

θ
= Bs+2θ

pq (Ω).

As a consequence of Lemma 1.2.4, applied to the projection onto Lp
0(Ω)

induced by (1.2), and Lemma 1.3.4, we especially obtain the following inter-
polation result.

Lemma 1.3.5. For a bounded domain Ω ⊂ Rd with sufficiently smooth bound-
ary, p, q ∈ (1,∞), θ in (0, 1), m ∈ N and Lp

0(Ω) from (1.1), it holds that

[Lp
0(Ω),Wm,p(Ω) ∩ Lp

0(Ω)]θ = Hθm,p(Ω) ∩ Lp
0(Ω) and

(Lp
0(Ω),Wm,p(Ω) ∩ Lp

0(Ω))θ,q = Bθm
pq (Ω) ∩ Lp

0(Ω).

We are not only interested in the interpolation of the average zero condition
as discussed in the previous lemma, but we are also inclined to find out more
about the interpolation of boundary conditions. As we have already indicated,
we also use the subscripts D and N to denote Dirichlet and Neumann boundary
conditions. In that respect, for s > 1/p, we denote by Ws,q

D (Ω) the space of
functions f in Ws,q(Ω) such that γf = 0, while Ws,q

N (Ω), s > 1+1/p, represents
the functions f in Ws,q(Ω) with ∂νf = 0. The spaces Hs,p

D (Ω) and Hs,p
N (Ω) as

well as Bs
qp,D(Ω) and Bs

qp,N(Ω) are defined analogously.
The result below can be deduced as a special instance of [4, Theorem 5.2].

For the (complex) interpolation of boundary conditions, we also refer to the
article of Guidetti [56].
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Lemma 1.3.6. Consider a bounded domain Ω ⊂ Rd with sufficiently regular
boundary, and let p ∈ (1,∞), q ∈ [1,∞] and θ ∈ (0, 1). Then

[Lp(Ω),W2,p(Ω) ∩ W1,p
0 (Ω)]θ =

H2θ,p(Ω), if θ < 1/2p,
H2θ,p

D (Ω), if θ > 1/2p,

[Lp(Ω),W2,p
N (Ω)]θ =

H2θ,p(Ω), if θ < 1/2 + 1/2p,
H2θ,p

N (Ω), if θ > 1/2 + 1/2p,

and

(Lp(Ω),W2,p(Ω) ∩ W1,p
0 (Ω))θ,q =

B2θ
pq(Ω), if θ < 1/2p,

B2θ
qp,D(Ω), if θ > 1/2p,

(Lp(Ω),W2,p
N (Ω))θ,q =

B2θ
pq(Ω), if θ < 1/2 + 1/2p,

B2θ
pq,N(Ω), if θ > 1/2 + 1/2p.

In the above lemma, it is also reflected that the (strong) trace is only
defined provided the regularity parameter exceeds 1/p, whereas the normal
derivative requires the regularity parameter to be larger than 1 + 1/p. There
are also certain ways to handle the situations of θ = 1/2q for Dirichlet boundary
conditions and θ = 1/2 + 1/2q in the case of Neumann boundary conditions.
However, we do not comment on these possibilities as this is not needed in
the following.

Below, we provide a complex interpolation result of Besov spaces with
boundary conditions, and this result can be obtained in a similar way as
Lemma 1.3.6.

Lemma 1.3.7. Let Ω ⊂ Rd be a bounded domain with sufficiently regular
boundary, and consider p ∈ (1,∞), q ∈ (1,∞) and s > 0.

If s < 1/p, then for all θ ∈ (0, 1) with θ ̸= 1/2p − s/2p, we have

[Bs
pq(Ω),Bs+2

pq,D(Ω)]θ =

Bs+2θ
pq (Ω), if s/2 + θ < 1/2p,

Bs+2θ
pq,D (Ω), if s/2 + θ > 1/2p.

If s < 1 + 1/p, then for all θ ∈ (0, 1) such that θ ̸= 1/2 + 1/2p − s/2p, we get

[Bs
pq(Ω),Bs+2

pq,N(Ω)]θ =

Bs+2θ
pq (Ω), if s/2 + θ < 1/2 + 1/2p,

Bs+2θ
pq,N (Ω), if s/2 + θ > 1/2 + 1/2p.
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1. Interpolation, Function Spaces and Analytical Tools

Let now Ω ⊂ Rd be a bounded domain with a sufficiently smooth bound-
ary. Again, we remark that ∂Ω ∈ C2 as considered in this thesis is typically
sufficient. For the following embeddings, we refer for example to [130, Theo-
rem 4.6.1 and 4.6.2], and the relations of the Triebel-Lizorkin spaces can be
obtained from [130, Section 2.3.2] upon invoking a suitable extension operator.

(a) For p ∈ (1,∞), q1, q2 ∈ [1,∞] with q1 ≤ q2, s ∈ R and ε > 0, we have

(1.4) Bs+ε
p∞ (Ω) ↪→ Bs

p1(Ω) ↪→ Bs
pq1(Ω) ↪→ Bs

pq2(Ω) ↪→ Bs
p∞(Ω).

(b) Let p, q ∈ (1,∞), r ∈ [1,∞] as well as s, t ∈ R such that t ≤ s, and
consider s− d/p ≥ t− d/q. Then

(1.5) Bs
pr(Ω) ↪→ Bt

qr(Ω), Hs,p(Ω) ↪→ Ht,q(Ω), Ws,p(Ω) ↪→ Wt,q(Ω),

and

(1.6) Hs,p(Ω) ↪→ Bt
qp(Ω) as well as Bs

pq(Ω) ↪→ Ht,q(Ω).

Moreover, if s, t ≥ 0, by definition of the Sobolev-Slobodeckij spaces,
we deduce from (1.5) and (1.6) that

(1.7) Ws,p(Ω) ↪→ Bt
qp(Ω) and Bs

pq(Ω) ↪→ Wt,q(Ω).

(c) Let p ∈ (1,∞), r ∈ [1,∞], t ∈ R+ and s > t+ d/p. Then

(1.8)
Bs

pr(Ω) ↪→ C⌊t⌋,t−⌊t⌋(Ω), Hs,p(Ω) ↪→ C⌊t⌋,t−⌊t⌋(Ω) and
Ws,p(Ω) ↪→ C⌊t⌋,t−⌊t⌋(Ω),

where we identify Ct,0(Ω) with Ct(Ω). Moreover, if t > 0 is non-integer,
then (1.8) is also valid for s = t+ d/p.

(d) For p ∈ (1,∞), q1, q2 ∈ [1,∞], s ∈ R and ε > 0, we have

(1.9) Fs+ε
pq0 (Ω) ↪→ Fs

pq1(Ω).

Below, we state a result on the Banach algebra structure of Besov spaces
for which we refer to [64, Lemma 5.2], see also [8, Cor. 2.86 and Prop. 2.39].

Lemma 1.3.8. Let Ω ⊂ Rd be a bounded domain with boundary of class C2,
and consider s > 0 as well as p ∈ (1,∞) and q ∈ [1,∞). If s > d/p, or, in the
case q = 1 even for s ≥ d/p, then Bs

pq(Ω) is a Banach algebra.
In particular, in the situation that p = q, we obtain the Banach algebra

property of the Sobolev-Slobodeckij space Ws,p(Ω) provided s > d/p.
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Vector-Valued Function Spaces
With regard to the parabolic setting, vector-valued function spaces come into
picture very naturally. These spaces rely on the Bochner integral. More
precisely, consider an interval J ⊂ R, a Banach space X and a measurable
function f : J → X. It is well known that such a function is Bochner integrable
if and only if it is measurable and ∥f∥X is integrable, i. e., the integral∫

J
∥f(t)∥X dt

exists. More information on the Bochner integral and vector-valued distri-
butions can for example be found in [6, Chapter 1]. For p ∈ [1,∞), the
vector-valued Lebesgue space Lp(J ; X) is defined to be the space of all mea-
surable functions f : J → X with

∥f∥Lp(J ;X) :=
(∫

J
∥f(t)∥p

X dt
)1/p

< ∞.

The space L∞(J ; X) consists of all measurable functions f : J → X with

∥f∥L∞(J ;X) := ess sup
t∈J

∥f(t)∥X < ∞.

The aforementioned spaces become Banach spaces with the common iden-
tification of functions coinciding almost everywhere on J . In an analogous
manner, for k ∈ N0, p ∈ [1,∞] and f (j) representing the j-th weak derivative,
we define the vector-valued Sobolev spaces Wk,p(J ; X) by

Wk,p(J ; X) :=
{
f ∈ Wk,1

loc(J ; X) : f (j) ∈ Lp(J ; X), for j = 0, . . . , k
}
, with

∥f∥Wk,p(J ;X) :=
 k∑

j=0
∥f (j)∥p

Lp(J ;X)

1/p

.

For p ∈ (1,∞) and s ∈ N, the vector-valued Bessel potential spaces Hs,p(J ; X)
and vector-valued Sobolev-Slobodeckij spaces Ws,p(J ; X) are defined as the cor-
responding Sobolev space, while for s /∈ N, they are introduced via complex
and real interpolation. In fact, for s = ⌊s⌋ + s∗ and p ∈ (1,∞), we set

Hs,p(J ; X) := [W⌊s⌋,p(J ; X),W⌊s⌋+1,p(J ; X)]s∗ and
Ws,p(J ; X) := (W⌊s⌋,p(J ; X),W⌊s⌋+1,p(J ; X))s∗,p.

Below, we comment on the Banach algebra property of some of the vector-
valued Sobolev spaces. The lemma can be deduced from Lemma 1.3.8 together
with the Sobolev embedding W1,p(J) ↪→ L∞(J) for a finite interval J ⊂ R
and the well-known Banach algebra structure of the space L∞.
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Lemma 1.3.9. Consider a bounded interval J ⊂ R as well as a bounded
domain Ω ⊂ Rd with boundary of class C2. Then for p ∈ (1,∞) and q > d,
the spaces W1,p(J ; W1,q(Ω)) and L∞(J ; W1,q(Ω)) are Banach algebras.

Time Weights
Next, in order to allow for a larger class of initial data in the general frame-
work, and to fully exploit the parabolic regularization, we introduce weighted
vector-valued Lebesgue and Sobolev spaces. Consider a Banach space X as well
as p ∈ (1,∞) and µ ∈ (1/p, 1]. We define

Lp
µ(R+; X) :=

{
f : R+ → X : t1−µf ∈ Lp(R+; X)

}
, with

∥f∥Lp
µ(R+;X) :=

(∫ ∞

0
∥t1−µf(t)∥p

X dt
)1/p

,

rendering Lp
µ(R+; X) a Banach space. Moreover, we set

W1,p
µ (R+; X) :=

{
f ∈ Lp

µ(R+; X) ∩ W1,1
loc((0,∞); X) : ∂tf ∈ Lp

µ(R+; X)
}

and

∥f∥W1,p
µ (R+;X) :=

(
∥f∥p

Lp
µ(R+;X) + ∥∂tf∥p

Lp
µ(R+;X)

)1/p

.

Equipped with the above norm, W1,p
µ (R+; X) also becomes a Banach space.

The above definitions can be adapted easily to finite time intervals of the
shape J = (0, T ), 0 < T < ∞.

Function Spaces on Time-Dependent Domains
When facing moving domain problems, it is necessary to introduce function
spaces on time-dependent domains. Indeed, let (0, T ), with T ∈ (0,∞], and
for t ∈ (0, T ), consider Ω(t) ⊂ Rd. We define

ΩT := {(t, x) : t ∈ (0, T ), x ∈ Ω(t)} and Ω0 := Ω(0).

Moreover, let X : ΩT → Ω0 be a map such that

φ : ΩT → (0, T ) × Ω0, (t, x) 7→ (t,X(t, x))

is a C1-diffeomorphism, and X(τ, ·) : Ω(τ) → Ω0 are C2-diffeomorphisms for
all τ ∈ [0, T ]. For p, q ∈ (1,∞), s ∈ {0, 1} and l ∈ {0, 1, 2}, we then define
the function spaces on time-dependent domains by

Ws,p(0, T ; Wl,q (Ω(·))) :=
{
f(t, ·) : Ω(t) → R : f ◦ φ ∈ Ws,p(0, T ; Wl,q(Ω0))

}
.
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1.4. Further Analytical Tools
The last section of this chapter is dedicated to collecting further useful analyt-
ical tools such as the Poincaré and Korn inequality or the Rellich-Kondrachov
theorem. We start with the classical Poincaré inequality allowing for an esti-
mate of a Sobolev function with homogeneous Dirichlet boundary conditions
by its gradient, and we refer for instance to [2, Theorem 6.30].

Lemma 1.4.1 (Poincaré’s inequality). Consider a bounded domain Ω ⊂ Rd

with Lipschitz boundary. Then there exists a constant C > 0 such that

∥f∥Lp(Ω) ≤ C · ∥∇f∥Lp(Ω)

for all f ∈ W1,p
0 (Ω), i. e., for all f ∈ W1,q(Ω) with γf = 0.

For a sufficiently smooth function f , we define the symmetric part of the
gradient ε = ε(f) by

ε := 1
2
(
∇f + (∇f)⊤

)
.

It readily follows that the Lp-norm of ε can be estimated by the Lp-norm of ∇f .
Korn’s inequality asserts that the converse is also true provided we take into
account functions with homogeneous Dirichlet boundary conditions. For a
more thorough discussion of Korn’s inequality and variants of it under different
assumptions, we also refer to [1, Section 3.1] and the references therein.

Lemma 1.4.2 (Korn’s inequality). Let Ω ⊂ Rd be a bounded domain with
Lipschitz boundary. Then there is a constant C > 0 with

∥∇f∥Lp(Ω) ≤ C · ∥ε(f)∥Lp(Ω)

for all f ∈ W1,p
0 (Ω).

The following result on compactness of Sobolev embeddings also proves
powerful, especially with regard to the spectral analysis of differential oper-
ators on bounded domains. It is known as the Rellich-Kondrachov theorem,
see for example [2, Theorem 6.3].

Lemma 1.4.3 (Rellich-Kondrachov theorem). Let Ω ⊂ Rd be a bounded do-
main with Lipschitz boundary, and consider p, q ∈ [1,∞), j ∈ N0 and m ∈ N.

(a) If d > mp as well as q < dp/(d−mp), we obtain the compactness of the
embedding Wj+m,p(Ω) ↪→ Wj,q(Ω).

(b) If mp ≥ d, then the embedding Wj+m,p(Ω) ↪→ Wj,q(Ω) is even compact
for all q ∈ [1,∞).
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CHAPTER 2

Abstract Theory

In this chapter, we collect some abstract theory that will be used throughout
this thesis. Generally, we only recall definitions and state results. However,
we also provide proofs if the results seem to be new or can be deduced di-
rectly from previous results. In Section 2.1, we first introduce the concept
of sectorial operators, discuss the connection with the generators of analytic
semigroups and deal with so-called trace spaces as the suitable spaces for the
initial data of abstract Cauchy problems. The later parts of this section are
centered around maximal Lp-regularity, including the definition, related prop-
erties and the characterization by the R-boundedness of the resolvents due
to Weis [132]. Section 2.2 is about maximal periodic regularity with char-
acterizations due to Arendt and Bu [7]. Another topic in this section is the
Da Prato-Grisvard theorem on maximal regularity in real interpolation spaces
together with a time periodic version. In Section 2.3, we invoke the concept of
operators with bounded imaginary powers and the bounded H∞-calculus, and
we also present several applications such as fractional power domains or the
bounded H∞-calculus of block operator matrices and relations of these prop-
erties. Section 2.4 is dedicated to establishing embeddings of the parabolic
spaces, also based on the previous concepts. Elliptic and parabolic boundary
value problems are the focal point of Section 2.5. We present an approach to
quasilinear evolution equations by maximal regularity in the Section 2.6. To
be more precise, we discuss the local strong well-posedness and also elaborate
on the global strong well-posedness close to equilibria. In the last section

21



2. Abstract Theory

of this chapter, Section 2.7, we recall the viscous primitive equations, and a
special focal point is the corresponding hydrostatic Stokes operator.

The most important references for this chapter are the memoir of Denk,
Hieber and Prüss [37] as well as the monograph of Prüss and Simonett [115].

Throughout this chapter, denote by X a Banach space with norm ∥ · ∥X.
For simplicity, we will mostly denote the latter by ∥ · ∥. For a closed linear
operator A on X, the space XA represents the domain of A equipped with the
graph norm, so

(2.1) XA = (D(A), ∥ · ∥A), where ∥x∥A := ∥x∥ + ∥Ax∥.

We also recall the sector in the complex plane Σθ, with θ ∈ (0, π] from Sec-
tion 1.1 as it will appear frequently in this chapter.

2.1. Sectorial Operators, Abstract Cauchy
Problems and Maximal Regularity

This section is dedicated to the introduction of sectorial operators, to the
presentation of so-called trace spaces for abstract Cauchy problems as well as
to the concept of maximal Lp-regularity.

Sectorial Operators and Analytic Semigroups
In the following, we define the notion of a sectorial operator.

Definition 2.1.1. A closed linear operator A : D(A) ⊂ X → X on a Banach
space X is called sectorial if

(a) it satisfies D(A) = R(A) = X, i. e., it is densely defined and has dense
range, as well as (−∞, 0) ⊂ ρ(A), and

(b) there is M ∈ (0,∞) such that ∥t(t+ A)−1∥L(X) ≤ M for all t > 0.

We denote the class of sectorial operators by S(X). If only (−∞, 0) ⊂ ρ(A)
and (b) are valid, then we refer to A as pseudo-sectorial, and PS(X) repre-
sents the corresponding class of operators. An operator A ∈ PS(X) has the
property that ρ(−A) ⊃ Σθ for some θ > 0, and it follows that

sup
{
∥λ(λ+ A)−1∥L(X) : | arg λ| < θ

}
< ∞.
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Hence, the spectral angle ϕA of A ∈ PS(X) given by

ϕA := inf
{
ϕ : ρ(−A) ⊃ Σπ−ϕ, sup

λ∈Σπ−ϕ

∥λ(λ+ A)−1∥ < ∞
}

is well-defined.

It turns out that injectivity of a pseudo-sectorial operator is sufficient for
sectoriality provided X is reflexive. For a proof of the lemma below, we refer
to [115, Theorem 3.1.2].

Lemma 2.1.2. For a reflexive Banach space X as well as A ∈ PS(X) such
that N(A) = {0}, we have A ∈ S(X).

In the following, we recall the notion of an analytic semigroup and investi-
gate the relation of (pseudo-)sectorial operators and the generators of analytic
semigroups. We start with the definition of C0-semigroups and (bounded) an-
alytic semigroups.

Definition 2.1.3. We call a family of operators {T (t)}t≥0 ⊂ L(X) a semi-
group provided T (t+ s) = T (t)T (s) holds for t, s > 0, and T (0) = Id.
The semigroup is referred to as C0-semigroup if it also holds that

lim
t→0+

T (t)x = x, for x ∈ X.

The semigroup is called analytic of angle θ ∈ (0, π/2] if it has an analytic
extension to the sector Σθ which is bounded on

Σθ′ ∩ {z ∈ C : |z| ≤ 1} for all θ′ ∈ (0, θ).

Besides, the semigroup is bounded analytic of angle θ ∈ (0, π/2] if T has a
bounded analytic extension to Σθ′ for all θ′ ∈ (0, θ).

The result below sheds light on the link of generators of bounded analytic
semigroup and (pseudo-)sectorial operators. We refer e. g. to [115, Theo-
rem 3.3.2].

Lemma 2.1.4. Let A be a closed densely defined operator on a Banach space
X. Then A ∈ PS(X) with spectral angle ϕA < π/2 if and only if −A generates
a bounded analytic semigroup of angle π/2 − ϕA.

In particular, if A ∈ S(X) with ϕA < π/2, then −A generates a bounded
analytic semigroup of angle π/2 − ϕA.
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For a linear operator A on X, we define the spectral bound s(A) by

s(A) := sup{Reλ : λ ∈ σ(A)}.

Given a C0-semigroup {T (t)}t≥0, the growth bound ωsg is defined by

ωsg := inf
{
ω ∈ R : ∃Mω ≥ 1 with ∥T (t)∥L(X) ≤ Mωeωt ∀t ≥ 0

}
.

It readily follows that the growth bound of a C0-semigroup {T (t)}t≥0 and
the spectral bound s(A) of its generator satisfy the relation s(A) ≤ ωsg,
see for example [42, Corollary II.1.13]. Even more can be deduced in the
particular situation of analytic semigroups. More precisely, we obtain the
following spectral mapping theorem for analytic semigroups, for which we refer
for instance to [42, Corollary IV.3.12].

Lemma 2.1.5. Let {T (t)}t≥0 be an analytic semigroup with generator A.
Then the spectral mapping theorem

etσ(A) = σ(T (t)) \ {0}, for t ≥ 0,

holds true. Moreover, the spectral bound s(A) of A and the growth bound ωsg
of the semigroup {T (t)}t≥0 coincide, i. e., s(A) = ωsg.

In the sequel, we investigate operators with compact resolvents. The pur-
pose of the following lemma is twofold. On the one hand, we provide a handy
characterization of this property whose proof can e. g. be found in [42, Propo-
sition II.4.25]. On the other hand, we collect useful properties of operators
with compact resolvent. The assertion in (b) on the spectrum only consist-
ing of eigenvalues is classical and can be found in [42, Corollary IV.1.19] for
instance, while (c) follows from [35, Theorem 1.6.1 and Corollary 1.6.7].

Lemma 2.1.6. Let A : D(A) ⊂ X → X be an operator with ρ(A) ̸= ∅, and
consider XA as introduced in (2.1).

(a) The operator A has compact resolvent, i. e., the resolvent R(λ,A) is
compact for one (and thus for all) λ ∈ ρ(A), if and only if the canonical
injection XA ↪→ X is compact.

(b) If the operator A has compact resolvent, then

σ(A) = {λ ∈ C : λ− A is not injective},

so all spectral values are eigenvalues.
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(c) Let Ω ⊂ Rd be open, and for p ∈ [1,∞), assume that there are consistent
C0-semigroups {Tp(t)}t≥0 ∈ L(Lp(Ω)), i. e.,

Tp(t)f = Tq(t)f, for f ∈ Lp(Ω) ∩ Lq(Ω) and t > 0,

and with T2(t) = T (t). Moreover, denote by Ap the associated genera-
tors. If A2 has compact resolvent, then σ(A2) = σ(Ap) for p ∈ (1,∞),
so the spectrum is p-independent.

We shall not be concerned about the term of consistent C0-semigroup ap-
pearing in Lemma 2.1.6(c), because the objects studied in this thesis typically
satisfy this property.

Trace Spaces and Real Interpolation
Next, we investigate the so-called time trace spaces and their relation with
real interpolation spaces. For the generator −A of a bounded analytic semi-
group {T (t)}t≥0 with T (t) = e−tA on the Banach space X, we consider the
homogeneous abstract Cauchy problem

(2.2)

u
′(t) + Au(t) = 0, for t ∈ R+,

u(0) = x,

in X. The solution u(t) to (2.2) is given by e−tAx. A natural question is which
additional properties x ∈ X has to satisfy to guarantee u(t) ∈ D(A) for almost
all t > 0 as well as Au ∈ Lp(R+; X). This explains the term trace space or
time trace space.

The following definition gives rise to a candidate for the trace space. The
assumption on A being pseudo-sectorial with spectral angle ϕA < π/2 is
equivalent to the generation of a bounded analytic semigroup with regard
to Lemma 2.1.4.

Definition 2.1.7. Consider a densely defined operator A ∈ PS(X) with spec-
tral angle ϕA < π/2. For θ ∈ (0, 1) and p ∈ [1,∞), the spaces DA(θ, p), defined
by

(2.3) DA(θ, p) :=

x ∈ X : [x]θ,p :=
(∫ ∞

0

∥∥∥t1−θAe−tAx
∥∥∥p

X

dt
t

)1/p

< ∞

 ,
and endowed with the norm ∥x∥θ,p := ∥x∥ + [x]θ,p, are referred to as trace
spaces. The choice of the norm renders them Banach spaces.
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The following lemma reveals that the trace spaces introduced in Defini-
tion 2.1.7 are indeed natural spaces for the initial data when asking for the
above regularity properties of the solution to the initial value problem (2.2).
The result is classical, and we refer for instance to [115, Proposition 3.4.2].
For later use, we include the time-weighted setting.

Lemma 2.1.8. Let A ∈ S(X) with spectral angle ϕA < π/2 be invertible,
consider p ∈ (1,∞) as well as µ ∈ (1/p, 1], and recall the weighted Lebesgue
and Sobolev spaces from Section 1.3. Then for the solution u of (2.2), the
following assertions are equivalent:

(a) u(t) ∈ D(A) for almost all t > 0, and u ∈ Lp
µ(R+; XA),

(b) u ∈ W1,p
µ (R+; X), and

(c) x ∈ DA(µ− 1/p, p).

In this case, there is a constant C > 0 such that

∥u′∥Lp
µ(R+;X) + ∥Au∥Lp

µ(R+;X) ≤ C · ∥x∥µ−1/p,p

for all x ∈ DA(µ− 1/p, p).

Below, we provide a useful characterization of the time trace space by a real
interpolation space. This result is well known, see e. g. [99, Proposition 2.2.2].

Lemma 2.1.9. Let A ∈ PS(X) be densely defined with ϕA < π/2, and con-
sider θ ∈ (0, 1) and p ∈ [1,∞). Then DA(θ, p) = (X,XA)θ,p, and ∥ · ∥θ,p as
well as ∥ · ∥(X,XA)θ,p

are equivalent.

If the underlying operator is invertible, then [·]θ,p from Definition 2.1.7
already gives rise to an equivalent norm of the real interpolation space. For
this result, we refer to [58, Corollary 6.5.5].

Lemma 2.1.10. Let A ∈ S(X) with spectral angle ϕA < π/2 be invertible.
Then for θ ∈ (0, 1) and p ∈ [1,∞), the space DA(θ, p) endowed with [·]θ,p is
a Banach space, and it coincides with the real interpolation space (X,XA)θ,p

with equivalent norms.
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Maximal Regularity
Next, we elaborate on the concept of maximal Lp-regularity. To this end, for
a time interval J = R+ or J = (0, a) with a > 0, let f : J → X, and consider
the inhomogeneous initial value problem

(2.4)

u
′(t) + Au(t) = f(t), for t ∈ J,

u(0) = u0,

in Lp(J ; X) for p ∈ (1,∞). The term maximal Lp(J)-regularity for (2.4) is
defined as follows.

Definition 2.1.11. Let A : D(A) ⊂ X → X be a closed and densely de-
fined operator. Then we say that there is maximal Lp(J)-regularity for (2.4)
if for every f ∈ Lp(J ; X), there is a unique u ∈ W1,p(J ; X) ∩ Lp(J ; XA)
which satisfies (2.4) almost everywhere in J with u0 = 0. In this case, A
is said to belong to the class MRp(J ; X). For simplicity, we use the notation
MRp(X) := MRp(R+; X). Unless specified otherwise, maximal Lp-regularity
means maximal Lp(R+)-regularity in the sequel.

If there is maximal Lp(J)-regularity for (2.4), then the closed graph theorem
yields the existence of a constant C > 0 with

∥u∥Lp(J ;X) + ∥u′∥Lp(J ;X) + ∥Au∥Lp(J ;X) ≤ C · ∥f∥Lp(J ;X)

for all f ∈ Lp(J ; X). Additionally invoking Lemma 2.1.8 in the case µ = 1
for the situation of inhomogeneous initial values, we even get

∥u∥Lp(J ;X) + ∥u′∥Lp(J ;X) + ∥Au∥Lp(J ;X) ≤ C ·
(
∥u0∥DA(1−1/p,p) + ∥f∥Lp(J ;X)

)
.

The lemma below discusses properties of operators in the class MRp(J ; X).
In particular, it shows that invertibility is even necessary for A ∈ MRp(X).
We refer e. g. to [113, Proposition 1.2] or also [115, Proposition 3.5.2].

Lemma 2.1.12. Let A ∈ MRp(J ; X) for some p ∈ (1,∞). Then

(a) if J = (0, a), there is ω ≥ 0 such that ω + A is sectorial with spectral
angle ϕA < π/2, and

(b) if J = R+, the operator A is sectorial with spectral angle ϕA < π/2 as
well as 0 ∈ ρ(A).

In view of Lemma 2.1.12, the property of maximal Lp-regularity on R+ is
quite restrictive. We thus introduce a weaker notion which we will also refer
to as maximal regularity of Lp-type.
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Definition 2.1.13. Let A : D(A) ⊂ X → X be a closed and densely defined
operator. Then we say that there is maximal regularity of Lp-type for (2.4) if
for every f ∈ Lp(R+; X), there is a unique u ∈ C(R+; X) with u′ ∈ Lp(R+; X)
as well as Au ∈ Lp(R+; X), and solving (2.4) a. e. in R+ with u0 = 0. More-
over, A is said to belong to the class 0MRp(X). By the closed graph theorem,
there is a constant C > 0 such that for all f ∈ Lp(R+; X), we have

∥u′∥Lp(R+;X) + ∥Au∥Lp(R+;X) ≤ C · ∥f∥Lp(R+;X).

With regard to Lemma 2.1.8, we also obtain the estimate

∥u′∥Lp(R+;X) + ∥Au∥Lp(R+;X) ≤ C ·
(
∥u0∥DA(1−1/p,p) + ∥f∥Lp(R+;X)

)
in the case of inhomogeneous initial values.

The next lemma can be found in [113, Corollary 1.3] or [115, Corollary 3.5.3]
and establishes a link between the classes MRp(X) and 0MRp(X).

Lemma 2.1.14. Consider A ∈ 0MRp(X). Then A is pseudo-sectorial in X
with spectral angle ΦA < π/2. Moreover, we have A ∈ MRp(X) if and only if
it holds that A ∈ 0MRp(X) and 0 ∈ ρ(A).

The preceding Lemma 2.1.14 also reveals that given A ∈ 0MR(X), we get
maximal Lp-regularity by shifting the operator A to achieve invertibility. The
next lemma takes a closer look at the shift and the possibility to omit it if
invertibility is known. We refer here to the discussion in [115, Section 6.3.4]
for the general idea of the proof.

Lemma 2.1.15. Suppose that there is ω0 ∈ R such that for all ω > ω0, we
have A+ω ∈ 0MRp(X), and consider the spectral bound s(−A) of the negative
operator −A. Then it follows that A + ω ∈ 0MRp(X) for all ω > s(−A).
Especially, if 0 ∈ ρ(A), then A ∈ MRp(X) ⊂ 0MRp(X).

R-Boundedness
We now introduce the notion of R-boundedness of operator families. This
concept is of fundamental importance with regard to the characterization of
maximal regularity, and it has first been introduced by Bourgain [16].

Definition 2.1.16. Consider Banach spaces X and Y. We refer to a family
of operators T (X.Y) as R-bounded if there are C > 0 and p ∈ [1,∞) such
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that for all N ∈ N, Tj ∈ T , xj ∈ X, and for every independent, symmetric,
{−1, 1}-valued random variable εj on a probability space (Ω,A, µ), we have∥∥∥∥∥∥

N∑
j=1

εjTjxj

∥∥∥∥∥∥
Lp(Ω;Y)

≤ C ·

∥∥∥∥∥∥
N∑

j=1
εjxj

∥∥∥∥∥∥
Lp(Ω;X)

.

Moreover, the smallest C > 0 for which the inequality holds true is called the
R-bound of T , and it is denoted by R(T ).

Let us remark that R-boundedness of an operator family is a stronger prop-
erty than uniform boundedness. However, if X and Y are Hilbert spaces, then
both terms coincide, see e. g. [37, Remark 3.1]. For particular instances of X
and Y such as X = Y = Lq(G) for an open set G ⊂ Rd, the R-boundedness
admits more handy characterizations, see for instance [115, Section 4.1].

Banach Spaces of Class HT and UMD Spaces
Next, we discuss two equivalent properties of Banach spaces, and these notions
are of prime importance in applications of the maximal regularity. For the
definition of the first property, we require the so-called Hilbert transform H.
It is defined by

(2.5) Hu(t) := lim
R→∞

∫
R−1≤|s|≤R

f(t− s) ds/πs.

We now introduce Banach spaces of class HT .

Definition 2.1.17. A Banach space X is said to be of class HT if the Hilbert
transform H as defined in (2.5) is bounded on L2(R; X).

In the sequel, we invoke unconditional martingale spaces, or, in short, UMD
spaces.

Definition 2.1.18. The Banach space X is called unconditional martingale
space, which we abbreviate by the term UMD space, if for every p ∈ (1,∞),
there is Cp > 0 so that for any X-valued martingale (fk)k≥0 on a probability
space (Ω,A, µ), N ∈ N, and each choice of signs (εn)n∈N ⊂ {−1, 1}, we have

∥∥∥∥∥f0 +
N∑

k=1
εk(fk − fk−1)

∥∥∥∥∥
Lp(Ω;X)

≤ Cp · ∥fN∥Lp(Ω;X).
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It is well known that the latter two properties are equivalent, see for in-
stance [16] or [22]. For further details, we also refer to the survey article of
Burkholder [23]. In view of the equivalence of both notions, we only use the
term UMD space in the remainder of this thesis.

In the following, we recall useful properties of UMD spaces from [5, Theo-
rem III.4.5.2].

Lemma 2.1.19. (a) Every Banach space which is isomorphic to a UMD
space is a UMD space.

(b) Every Hilbert space is a UMD space.

(c) Every finite-dimensional Banach space is a UMD space.

(d) Finite products of UMD spaces are UMD spaces.

(e) For a UMD space X as well as a σ-finite measure space (Ω, µ), the
space Lp(Ω, µ; X) is a UMD space for p ∈ (1,∞).

(f) For an interpolation couple (X0,X1) of UMD spaces, the spaces [X0,X1]θ
and (X0,X1)θ,p are UMD spaces for θ ∈ (0, 1) and p ∈ (1,∞).

(g) Closed linear subspaces of UMD spaces are UMD spaces.

We will use the above properties of UMD spaces freely in the sequel. In par-
ticular, we often make use of the properties (c), (d) and (e) without explicitly
mentioning them.

R-Sectorial Operators and Maximal Lp-Regularity
We are approaching the characterization of the maximal Lp-regularity. The
last ingredient is the subsequent notion of R-sectoriality, which is a stronger
property than the usual sectoriality from Definition 2.1.1, since it requires the
R-boundedness of the resolvents.

Definition 2.1.20. We say that a sectorial operator A is R-sectorial provided

RA(0) := R
{
t(t+ A)−1 : t > 0

}
< ∞.

Moreover, the R-angle ϕR
A of an R-sectorial operator A is defined by

ϕR
A := inf {θ ∈ (0, π) : RA(π − θ) < ∞} , where

RA(θ) := R
{
λ(λ+ A)−1 : | arg λ| ≤ θ

}
.

We denote the class of R-sectorial operators by RS(X).
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The next proposition asserts the celebrated characterization of 0MRp from
Definition 2.1.13 by R-sectoriality. It is due to Weis [132]. Let us also refer
to [37, Theorem 4.4], where the result is stated in terms of R-sectoriality as
below.

Proposition 2.1.21 ([132, Theorem 4.2]). Let X be a UMD space, p ∈ (1,∞),
and consider A ∈ S(X) with spectral angle ϕA < π/2. Then A ∈ 0MRp(X) if
and only if A ∈ RS(X) with R-angle ϕR

A < π/2.

We remark that Proposition 2.1.21 provides a characterization of the weaker
maximal regularity of Lp-type. However, if there is further information on the
spectral bound of the operator, or by employing a shift, the usual maximal
Lp-regularity can be deduced from there, see Lemma 2.1.14 or Lemma 2.1.15.

A Glimpse of Perturbation Theory
A nice feature of the notion of R-sectoriality, and thus also of the maximal
regularity of Lp-type in the situation of UMD spaces, is its behavior under
perturbation. This is the next focal point.

We consider the situation of an R-sectorial operator perturbed by a rela-
tively bounded operator. For A : D(A) ⊂ X → X and B : D(B) ⊂ X → X, we
say that B is relatively A-bounded if there exist α, β ∈ R+ such that

(2.6) D(A) ⊂ D(B) and ∥Bx∥ ≤ α · ∥Ax∥ + β · ∥x∥, for all x ∈ D(A).

The R-sectoriality is preserved provided the relative bound is sufficiently
small and a shift is taken into consideration. This is precisely the assertion
of the following lemma, which has been obtained in [37, Proposition 4.3]
or [84, Corollary 2].

Lemma 2.1.22. Let A be a sectorial operator on X, consider a linear opera-
tor B such that (2.6) holds for some α, β ∈ R+, assume

R
{
λ(λ+ A)−1 : λ ∈ Σθ

}
=: a < ∞,

and set CA := sup
µ>0

∥∥∥A(µ+ A)−1
∥∥∥ and MA := sup

µ>0

∥∥∥µ(µ+ A)−1
∥∥∥. If it is valid

that α < 1/((1+a)CA) and µ > (βMA(1+a))/(1−αCA(1+a)), then

R
{
λ(λ+ µ+ A+B)−1 : λ ∈ Σθ

}
< ∞.
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The latter abstract result calls for an application in the context of maxi-
mal Lp-regularity. The corollary below can be deduced from Lemma 2.1.22
together with Proposition 2.1.21 and Lemma 2.1.14.

Corollary 2.1.23. Let X be a Banach space with the UMD property, consider
an operator A ∈ 0MRp(X), and suppose that for every α > 0, there is β ≥ 0
so that A and B fulfill (2.6). Then there is ω ≥ 0 with A+B+ω ∈ MRp(X).

Maximal Regularity in the Weighted Setting
We only provide this section for completeness. In fact, the result stated in
this section is not used explicitly in this thesis, but it is underlying in the
general framework in Section 2.6.

First, we generalize the notion of maximal Lp-regularity to the situation of
weighted spaces. To this end, for f : R → X, let us recall the inhomogeneous
initial value problem

(2.7)

u
′(t) + Au(t) = f(t), for t ∈ R+,

u(0) = u0.

With regard to Definition 2.1.11, the definition of maximal Lp
µ-regularity below

is natural.

Definition 2.1.24. Consider A : D(A) ⊂ X → X closed and densely defined.
We say that (2.7) has maximal Lp

µ-regularity if for every f ∈ Lp
µ(X), there

exists a unique u ∈ W1,p
µ (R+; X)∩Lp

µ(R+; XA) solving (2.7) almost everywhere
in R+ with u0 = 0. We denote the class of such operators by MRp,µ(X).

Furthermore, the closed graph theorem implies the existence of some con-
stant C > 0 such that for all f ∈ Lp

µ(R+; X)

∥u∥Lp
µ(R+;X) + ∥u′∥Lp

µ(R+;X) + ∥Au∥Lp
µ(R+;X) ≤ C · ∥f∥Lp

µ(R+;X).

As a consequence of Lemma 2.1.8, we also obtain the estimate

∥u∥Lp
µ(R+;X) + ∥u′∥Lp

µ(R+;X) + ∥Au∥Lp
µ(R+;X) ≤ C ·

(
∥u0∥DA(µ−1/p,p) + ∥f∥Lp

µ(R+;X)

)
for non-homogeneous initial data.

The next lemma reveals the equivalence of maximal Lp
µ-regularity with usual

maximal Lp-regularity. It is due to Prüss and Simonett [114, Theorem 2.4].
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Lemma 2.1.25. For p ∈ (1,∞) and µ ∈ (1/p, 1], it holds that A ∈ MRp(X)
if and only if A ∈ MRp,µ(X).

As already revealed in Definition 2.1.24, the “correct” space for the ini-
tial data, i. e., the trace space in the present weighted setting, takes the
shape DA(µ − 1/p, p). From Lemma 2.1.9, we recall that it coincides with
the real interpolation space (X,XA)µ−1/p,p with equivalent norms provided the
underlying operator is pseudo-sectorial with spectral angle ϕA < π/2.

2.2. Maximal Periodic Regularity and Maximal
Regularity in Real Interpolation Spaces

In this section, we are interested in maximal periodic Lp-regularity. In partic-
ular, we provide characterizations of this property due to Arendt and Bu [7].
We also discuss maximal regularity in real interpolation spaces via the Da
Prato-Grisvard theorem [32] and mention a time periodic version.

Maximal Periodic Regularity - the Arendt-Bu Theorem
Let X be a Banach space, and consider a linear operator A : D(A) ⊂ X → X.
For f ∈ Lp(0, 2π; X), we investigate the time periodic abstract Cauchy problem

(2.8)

u
′(t) + Au(t) = f(t), for t ∈ (0, 2π),

u(0) = u(2π).

We introduce the notion of maximal periodic Lp-regularity.

Definition 2.2.1. Let A : D(A) ⊂ X → X be closed and densely defined,
and p ∈ (1,∞). Then A admits maximal periodic Lp-regularity if for every
f ∈ Lp(0, 2π; X), there is a unique solution u ∈ W1,p(0, 2π; X) ∩ Lp(0, 2π; XA)
to (2.8). We denote the class of operators with maximal periodic Lp-regularity
by MRper,p(X). Moreover, the closed graph theorem yields the existence of a
constant C > 0 such that for all f ∈ Lp(0, 2π; X), we get

∥u∥Lp(0,2π;X) + ∥u′∥Lp(0,2π;X) + ∥Au∥Lp(0,2π;X) ≤ C · ∥f∥Lp(0,2π;X).

By a rescaling argument, we can also consider a general time interval (0, T )
for 0 < T < ∞ in (2.8) and Definition 2.2.1. However, in order to keep the
notation as simple as possible, we concentrate on the interval (0, 2π) in this
section.
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The characterization of the maximal periodic Lp-regularity below can be
regarded as a periodic analogue of the famous Weis theorem as recalled in
Proposition 2.1.21. It was established by Arendt and Bu [7].

Proposition 2.2.2 ([7, Theorem 2.3]). Let X be a UMD Banach space, and
consider p ∈ (1,∞). Then A ∈ MRper,p(X) if and only if iZ ⊂ ρ(−A), and
the sequence (kR(ik,−A))k∈Z is R-bounded.

Interestingly, even a characterization of the maximal periodic Lp-regularity
in terms of the usual maximal Lp(0, 2π)-regularity as introduced in Defini-
tion 2.1.11 can be obtained. The following result will be referred to as the
Arendt-Bu theorem.

Proposition 2.2.3 ([7, Theorem 5.1]). Consider a Banach space X and the
generator of a C0-semigroup −A : D(A) ⊂ X → X, and let p ∈ (1,∞). Then
we have A ∈ MRper,p(X), i. e., A admits maximal periodic Lp-regularity, if
and only if A ∈ MRp(0, 2π; X) and 1 ∈ ρ(e−2πA).

The equivalent condition for the maximal periodic Lp-regularity means
that A has maximal Lp(0, 2π)-regularity, and the semigroup satisfies the spec-
tral condition. Let us provide an equivalent property of the latter spectral con-
dition of the semigroup. In fact, Lemma 2.1.12 and the maximal Lp-regularity
on (0, 2π) yield the sectoriality of A with spectral angle ϕA < π/2, up to a shift.
Lemma 2.1.4 then implies that the operator −A, possibly subject to a shift,
generates a bounded analytic semigroup. This means that −A generates an
analytic semigroup, see for instance [6, Proposition 3.7.4]. Hence, from the
spectral mapping theorem for analytic semigroups as stated in Lemma 2.1.5,
it follows that 1 ∈ ρ(e−2πA) if and only if 0 ∈ ρ(A).

We summarize the preceding discussion in the corollary below on the max-
imal periodic Lp-regularity and also invoke Lemma 2.1.15 and Lemma 2.1.14.

Corollary 2.2.4. Suppose that A ∈ 0MRp(X), and assume that 0 ∈ ρ(A).
Then we have A ∈ MRper,p(X).

Maximal Regularity in Real Interpolation Spaces - the
Da Prato-Grisvard Theorem and a Time Periodic Version
Now, we recall the Da Prato-Grisvard theorem on the maximal regularity in
real interpolation spaces for sectorial and invertible underlying linear opera-
tors. This is a way to circumvent the task of showing R-boundedness of the

34



2.2. Maximal Periodic Regularity and Maximal Regularity in Real
Interpolation Spaces

resolvents. Another significant aspect is that maximal L1-regularity can be
obtained as well.

Let us also recall from Lemma 2.1.9 the equality of DA(θ, p) and the real
interpolation space (X,XA)θ,p, justifying the term maximal regularity in real
interpolation spaces.

Proposition 2.2.5 (Da Prato-Grisvard [32]). Let A ∈ S(X) with spectral
angle ϕA < π/2 be invertible, and let θ ∈ (0, 1) as well as p ∈ [1,∞). Then we
have A ∈ MRp(DA(θ, p)).

Below, we discuss a time periodic version of the aforementioned Da Prato-
Grisvard theorem. It can be viewed as a counterpart to the Arendt-Bu theo-
rem presented in Proposition 2.2.3. For convenience, we also briefly introduce
the setting. For a pseudo-sectorial and densely defined operator A with spec-
tral angle ϕA < π/2, the trace space DA(θ, p), for θ ∈ (0, 1) and p ∈ [1,∞),
a fixed time period T > 0 and f : R → DA(θ, p) T -periodic, we consider the
time periodic abstract Cauchy problem on the whole real line

(2.9)

u
′(t) + Au(t) = f(t), for t ∈ R,

u(t) = u(t+ T ), for t ∈ R.

From a formal perspective, a candidate for a solution to (2.9) is

(2.10) u(t) :=
∫ t

−∞
e−(t−s)Af(s) ds.

To shorten notation, we set E0,θ := Lp(0, T ; DA(θ, p)), and E1,θ is defined by

E1,θ :=
{
u ∈ W1,p(0, T ; DA(θ, p)) : Au ∈ Lp(0, T ; DA(θ, p)), u(0) = u(T )

}
.

The following result has been obtained in [64, Section 2].

Proposition 2.2.6. Let A ∈ S(X) with spectral angle ϕA < π/2 be invertible.
Moreover, let θ ∈ (0, 1) as well as p ∈ [1,∞), and consider a fixed time pe-
riod T > 0 as well as f : R → DA(θ, p) with f |(0,T ) ∈ E0,θ. Then u from (2.10)
is the unique, strong solution to (2.9), meaning that u is the unique T -periodic
function in C(R; X) which is differentiable for almost every t ∈ R, and it ful-
fills u ∈ D(A), Au ∈ Lp(0, T ; X) and solves u′(t)+Au(t) = f(t). Furthermore,
there exists a constant C > 0 such that for all f ∈ E0,θ, we have

(2.11) ∥u∥E1,θ
≤ C · ∥f∥E0,θ

.
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2.3. Bounded Imaginary Powers and Bounded
H∞-Calculus

In this section, we introduce the concept of bounded imaginary powers to-
gether with its applications to fractional power domains and interpolation-
extrapolation scales. Moreover, we discuss the so-called bounded H∞-calculus
and point out relations with the concepts from Section 2.1.

Bounded Imaginary Powers and Banach Scales
The term of bounded imaginary powers of a sectorial operator is classical. As
a preparation, for z ∈ C, we consider the functions hz(λ) = λz and observe
that they are holomorphic on the sector Σπ, with estimate

|hz(λ)| ≤ |λ|Re zeϕ| Im z|, for λ ∈ Σϕ.

This justifies that the extended functional calculus as described in detail in
[115, Section 3.3.2] and also introduced later in this section can be applied,
leading to the following result. We also refer to [37, Proposition 2.2].

Lemma 2.3.1. Let A ∈ S(X), and define Az by Az := hz(A). Then

(a) Azx is holomorphic on the strip | Re z| < k for all x ∈ D(Ak) ∩ R(Ak),

(b) Az is closed for every z ∈ C,

(c) Az+wx = AsAwx for all z, w ∈ C and x ∈ D(Ak) ∩ R(Ak), where
k > | Re z|, | Rew|, | Re(z + w)|, and

(d) Azx = limε→0 A
z
εx for x ∈ D(Ak)∩R(Ak) as well as | Re z| ≤ k, with Az

ε

defined by Aε = (ε+ A)(1 + εA)−1.

The class BIP(X) defined below has first been considered by Prüss and
Sohr [118]. It is well-defined thanks to Lemma 2.3.1.

Definition 2.3.2. Let A ∈ S(X). Then A has bounded imaginary powers
on X provided Ais ∈ L(X) is valid for all s ∈ R, and there is a constant C > 0
with ∥Ais∥L(X) ≤ C for |s| ≤ 1.

By Lemma 2.3.1, Ais has the group property, and the bounded imaginary
powers of A are thus equivalent to {Ais}s∈R being a strongly continuous group
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of bounded linear operators in X. The growth bound θA of this group is referred
to as power angle of A, and it is given by

θA = lim sup
|s|→∞

1
|s|

log |Ais|.

We observe that for every ω > θA, there exists a constant M ≥ 1 with

∥Ait∥L(X) ≤ Meω|t|, for t ∈ R.

The class of operators with bounded imaginary powers proves particularly
useful when studying the so-called fractional power spaces.

Definition 2.3.3. Let A ∈ S(X) as well as α ∈ (0,∞). We define the
space XAα by XAα := (D(Aα), ∥ · ∥α), with ∥x∥α := ∥x∥ + ∥Aα∥, and we also
call this the fractional power scale generated by (X, A).

A proof of the following result on the characterization of the fractional
power spaces in terms of complex interpolation spaces for the class BIP can
e. g. be found in [130, pp. 103–104].

Lemma 2.3.4. Let A ∈ BIP(X), and recall the spaces XA and XAθ from (2.1)
and Definition 2.3.3, respectively. Then for θ ∈ (0, 1) and [·, ·]θ denoting the
complex interpolation functor, it holds that XAθ

∼= [X,XA]θ.

Another important application of the theory of operators with bounded
imaginary powers concerns the so-called interpolation-extrapolation scales. In
the sequel, we follow the monograph of Amann [5, Section V.1.5] and [116, Ap-
pendix A.1] for the introduction of this concept. We start with the underlying
notion of a Banach scale. Let I ∈ {N,Z,R+,R}, and for every α ∈ I, consider
a Banach space Xα := (Xα, ∥ · ∥α) and a linear isomorphism Aα : Xα+1 → Xα.

Definition 2.3.5. We call [(Xα, Aα) : α ∈ I] a Banach scale provided the
operator Aα : Xα+1 → Xα is a linear isomorphism for every α ∈ I, it holds
that Xα ↪→ Xβ for every pair α, β ∈ I with α > β, and the diagram

. . . Xα+1 Xβ+1 . . .

. . . Xα Xβ . . .

Aα Aβ

is commutative.
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Let now X be a Banach space, and consider a closed linear and densely
defined operator A on X with 0 ∈ ρ(A). Moreover, for j ∈ N, denote by
Xj the domain of the operator Aj endowed with the norm ∥Aj · ∥ which is
in turn equivalent to the graph norm of Aj. This allows us to introduce Aj

as the Xj-realization of the operator A. By virtue of [5, Theorem V.1.2.1],
the family [(Xj, Aj) : j ∈ N] is a Banach scale, so the definition below makes
sense.

Definition 2.3.6. For a closed linear and densely defined operator A on X
with 0 ∈ ρ(A), consider Xj = (D(Aj), ∥Aj · ∥), and denote by Aj the Xj-
realization of A. Then the Banach scale [(Xj, Aj) : j ∈ N] is called power
scale generated by (X, A).

For a more thorough discussion of the fractional power scale as well as
the extrapolation scale, we also refer to [5, Sections V.1.2 and V.1.3]. Now,
consider a closed linear densely defined operator A : X1 → X0 on a reflexive
Banach space. The next notion is well-defined thanks to [5, Theorem V.1.5.1].

Definition 2.3.7. Let A : X1 → X0 denote a closed linear densely defined op-
erator on a reflexive Banach space. For [·, ·]θ, θ ∈ (0, 1), denoting the complex
interpolation functor, the pair (A,X0) gives rise to the Banach scale (Xα, Aα),
where Xα := [Xj,Xj+1]α−j for j < α < j + 1, and Aα is the Xα-realization
of A. More precisely, for α ≥ 0, Aα represents the maximal restriction of A
to Xα, while for α < 0, the operator Aα denotes the closure of A in Xα.

The Banach scale (Xα, Aα) is referred to as the interpolation-extrapolation
scale generated by (X0, A) and [·, ·]θ.

The following lemma demonstrates the strength of the bounded imaginary
powers of an operator, and it is implied directly by [5, Theorem V.1.5.4].

Lemma 2.3.8. Under the assumptions on A as in Definition 2.3.7, sup-
pose in addition that A ∈ BIP(X0). Then the interpolation-extrapolation
scale (Xα, Aα) introduced in Definition 2.3.7 is equivalent to the fractional
power scale generated by (X0, A).

In particular, recalling XAα from Definition 2.3.3, for α > 0, we find the
equality Xα = XAα up to norm equivalence.

Another important feature of the class of operators with bounded imaginary
powers is that this property is preserved in the interpolation-extrapolation
scale generated by the complex interpolation functor. A proof of this result
can be found in [5, Proposition V.1.5.5]
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Lemma 2.3.9. Let A ∈ BIP(X0) be a densely defined linear operator on a
reflexive Banach space X0 with 0 ∈ ρ(A) and power angle θA < π, and recall
the interpolation-extrapolation scale (Xα, Aα) from Definition 2.3.7. Then it
holds that Aα ∈ BIP(Xα) with power angle θAα = θA < π.

Let us briefly comment on the invertibility assumption on A. If 0 /∈ ρ(A),
then it is possible to choose ω > 0 such that 0 ∈ ρ(A+ ω) and to investigate
the interpolation-extrapolation scale generated by A+ ω instead.

We conclude this section with a lemma resulting from Lemma 2.3.4 in
conjunction with Lemma 2.3.8 and Lemma 2.3.9.

Lemma 2.3.10. Let A ∈ BIP(X0), and take into account the interpolation-
extrapolation scale (Xα, Aα) generated by (X0, A), or, in the case 0 /∈ ρ(A),
by (X0, A+ω) for ω > 0 sufficiently large. For k ∈ N, the spaces Xk and Xk,A

are as introduced in Definition 2.3.6 and (2.1), respectively. Then for θ > 0
with θ /∈ N, we get XAθ

∼= [X⌊θ⌋,X⌊θ⌋,A]θ−⌊θ⌋, while XAθ
∼= Xθ for θ ∈ N.

Bounded H∞-Calculus
Another important concept for the upcoming considerations is the bounded
H∞-calculus which we discuss in the following. This term was first introduced
by McIntosh [102]. Here, we mainly follow [67, Section 1.4] for a brief intro-
duction of the concept. Let us also mention [85, Section 9] for more details.
First, for θ ∈ (0, π], we set

H∞(Σθ) := {f : Σθ → C : f is holomorphic and bounded},

and H∞(Σθ) becomes a Banach algebra when equipped with the norm

∥f∥θ
∞ := sup{|f(λ)| : | arg λ| < θ}.

If A ∈ S(X) with spectral angle ϕA is bounded and invertible, then for θ > ϕA,
the usual Dunford calculus for bounded linear operators can be used. More
precisely, the spectrum σ(A) then is a compact subset of Σθ. Thus, the choice
of a closed path ΓA in Σθ surrounding σ(A) counterclockwise allows us to
define

f(A) := 1
2πi

∫
ΓA

f(λ)R(λ,A) dλ, for f ∈ H∞(Σθ),

because the integral is well-defined by the compactness of ΓA.
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Based on the above definition of f(A), the bounded holomorphic functional
calculus for operators in S(X) is constructed. For λ ∈ Σθ, we introduce

ϱ(λ) := λ

(1 + λ)2 ,

and we suppose that there exist C > 0 and ε > 0 such that

(2.12) |f(λ)| ≤ C · |ϱ(λ)|ε, for λ ∈ Σθ.

Given θ ∈ (0, π), we also define

H∞
0 (Σθ) := {f ∈ H∞(Σθ) : there exist C, ε > 0 so that (2.12) is valid}.

For A ∈ S(X) with spectral angle ϕA, θ > ϕA and f ∈ H∞
0 (Σθ), we set

(2.13) f(A) := 1
2πi

∫
∂Σθ′

f(λ)R(λ,A) dλ, for θ′ ∈ (ϕA, θ).

As revealed in the next lemma, for which we refer e. g. to [37, Section 2.1],
the above definition gives rise to an extended functional calculus on H∞

0 (Σθ).

Lemma 2.3.11. Let A ∈ S(X) with spectral angle ϕA. For θ′ ∈ (ϕA, θ),
f ∈ H∞

0 (Σθ) and f(A) from (2.13), we define ΦA(f) := f(A). Then the
mapping ΦA : H∞

0 (Σθ) → L(X) is linear, and

(a) the integral in (2.13) is independent of the choice of θ′ ∈ (ϕA, θ),

(b) ΦA(f · g) = ΦA(f)ΦA(g), for f , g ∈ H∞
0 (Σθ),

(c) if (fn), f ∈ H∞
0 (Σθ) are uniformly bounded, and fn(λ) → f(λ) is valid

for all λ ∈ Σθ, then for every g ∈ H∞
0 (Σθ), we have

lim
n→∞

ΦA(fn · g) = ΦA(f · g), in L(X), and

(d) if f(λ) = λ(µ1 − λ)−1(µ2 − λ)−1 with µ1, µ2 /∈ Σθ, then

f(A) = AR(µ1, A)R(µ2, A).

Let us emphasize that so far, functions such as λ 7→ (µ − λ)−1 are not
within the scope of the functional calculus ΦA as introduced in Lemma 2.3.11.
The aim is thus to further generalize ΦA so that its extension is defined for
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all f ∈ H∞(Σθ) such that f(A) gives rise to a bounded operator on X. Thus,
for A ∈ S(X) with spectral angle ϕA, θ > ϕA and f ∈ H∞

0 (Σθ), we define

∥f∥A := ∥f∥H∞(Σθ) + ∥f(A)∥L(X),

and we set H∞
A (Σθ) to consist of the functions f ∈ H∞(Σθ) for which there

is a sequence (fn) ⊂ H∞
0 (Σθ) such that fn(λ) → f(λ) for all λ ∈ Σθ as

well as supn∈N ∥fn(A)∥A < ∞. Let us observe that H∞
A (Σθ) is a subalgebra

of H∞(Σθ). The lemma below, also referred to as McIntosh’s convergence
lemma, guarantees the existence of the limit

ΦA(f)(x) := lim
n→∞

ΦA(fn)(x), for f ∈ H∞
A (Σθ) and x ∈ X,

and thus induces a functional calculus on H∞
A (Σθ). We refer here to [102] or

also [85, Theorem 9.6].

Lemma 2.3.12. Consider A ∈ S(X) with spectral angle ϕA and θ > ϕA.
Then the functional calculus ΦA introduced in Lemma 2.3.11 admits an ex-
tension ΦA : H∞

A (Σθ) → L(X) such that

(a) ΦA is linear and multiplicative,

(b) for µ /∈ Σθ, we have rµ(λ) = (µ−λ)−1 ∈ H∞
A (Σθ) and ΦA(rµ) = R(µ,A),

and

(c) if f ∈ H∞(Σθ), (fn) ⊂ H∞
A (Σ) with fn(λ) → f(λ) for all λ ∈ Σθ and

∥fn∥A < C for all n ∈ N and some C > 0, then f ∈ H∞
A (Σθ),

lim
n→∞

ΦA(fn)(x) = ΦA(f)(x) for all x ∈ X, and ∥ΦA∥ ≤ C.

By virtue of Lemma 2.3.12, we are able to define the notion of an operator
possessing a bounded H∞-calculus.

Definition 2.3.13. An operator A ∈ S(X) with spectral angle ϕA ∈ [0, π)
and θ ∈ (ϕA, π) is referred to have a bounded H∞-calculus if there exists a
constant C > 0 such that

∥f(A)∥L(X) ≤ C · ∥f∥H∞(Σθ), for all f ∈ H∞
0 (Σθ).

Furthermore, ϕ∞
A designates the H∞-angle of A with this property, and it is

defined as the infimum of such θ. We denote the class of sectorial operators
admitting a bounded H∞-calculus for some angle θ ∈ (0, π) on X by H∞(X).
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The class of operators with a bounded H∞-calculus has the following handy
permanence property, for which we refer e. g. to [37, Proposition 2.11(vi)].

Lemma 2.3.14. Let X and Y be two Banach spaces and T ∈ L(X,Y) bijec-
tive. Then A ∈ H∞(X) if and only if A1 = TAT−1 ∈ H∞(Y) and ϕ∞

A = ϕ∞
A1.

The result below proves useful when dealing with restrictions of operators
that can be obtained from a projection.

Lemma 2.3.15. Consider A ∈ H∞(X) with Φ∞
A ∈ [0, π), and let Y ⊂ X

be a closed subspace resulting from a projection P ∈ L(X,Y) such that for
all x ∈ D(A), we have Px ∈ D(A) and PAx = APx. Then B := PA has the
property that B ∈ H∞(Y) with Φ∞

B ≤ Φ∞
A .

Proof. First, we observe that B = A|Y, so D(B) = D(A|Y), R(B) = R(A|Y)
and R(λ,B) = R(λ,A)|Y for all λ ∈ ρ(A). Hence, the sectoriality of A on X
implies that B is sectorial on Y. We also observe that f(B) = f(A)|Y for
all f ∈ H∞

0 (Σθ) with θ > ϕ∞
A . Thus, for such f and θ, we have

∥f(B)∥L(Y) = ∥f(A)|Y∥L(Y) ≤ C · ∥f∥H∞(Σθ)

by A ∈ H∞(X) with H∞-angle ϕ∞
A . With regard to Definition 2.3.13, this

yields B ∈ H∞(Y) with ϕ∞
B ≤ ϕ∞

A .

Let us invoke the following relations of the notions introduced so far, and
for which we refer for example to [37, Section 4.4]. It holds that

(2.14)
A ∈ H∞(X) ⊂ BIP(X) ⊂ RS(X) ⊂ S(X), with

ϕ∞
A ≥ θA ≥ ϕR

A ≥ ϕA.

In the sequel, we discuss a generalization of the Da Prato-Grisvard theorem
as presented in Proposition 2.2.5. It is due to Dore [39].

Lemma 2.3.16. Let A ∈ S(X) with ϕA ∈ [0, π) be invertible, and let θ ∈ (0, 1)
and p ∈ [1,∞). Then A ∈ H∞(DA(θ, p)) with H∞-angle ϕ∞

A = ϕA.

With regard to applications, we also present two perturbation results of the
bounded H∞-calculus in the sequel. In contrast to the perturbation result
of the R-sectoriality from Lemma 2.1.22 or also Corollary 2.1.23, the first
result concerns perturbations of lower (fractional) order. It can be found
in [85, Proposition 13.1].
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Lemma 2.3.17. Assume that A ∈ H∞(X) with H∞-angle ϕ∞
A ∈ [0, π) sat-

isfies 0 ∈ ρ(A). Moreover, consider δ ∈ (0, 1), and suppose that the linear
operator B satisfies D(A) ⊂ D(B), and that there is a constant C > 0 with

∥Bx∥ ≤ C · ∥A1−δx∥

for all x ∈ D(A). Then there exists ω > 0 such that A+B+ω ∈ H∞(X) with
H∞-angle ϕ∞

A+B+ω = ϕ∞
A .

The second perturbation result regards relatively Aα-bounded perturba-
tions for some α ∈ [0, 1). We refer here to [115, Corollary 3.3.15].

Lemma 2.3.18. Let A ∈ H∞(X) with ϕ∞
A ∈ [0, π), and consider a linear

operator B in X such that D(Aα) ⊂ D(B) for some α ∈ [0, 1), and

∥Bx∥ ≤ a · ∥x∥ + b · ∥Aαx∥, for x ∈ D(Aα),

is valid for some constants a, b > 0. If A+B ∈ S(X) with 0 ∈ ρ(A+B) and
spectral angle ϕA+B, then A+B ∈ H∞(X) with ϕ∞

A+B ≤ max{ϕ∞
A , ϕA+B}.

Application to the Laplacian Operator
Next, we collect properties of the Laplacian operator on bounded domains
with regard to the concepts introduced in the preceding sections. We first
recall that the Laplacian operator is defined by

∆u := ∂2
1u+ . . .+ ∂2

du.

Now, let Ω ⊂ Rd, d ∈ N, be a bounded domain with boundary of class C2.
The Dirichlet Laplacian operator on Lq(Ω) is defined by

(2.15) ∆Du := ∆u, with D(∆D) = W2,q(Ω) ∩ W1,q
0 (Ω).

On the other hand, the Neumann Laplacian operator on Lq(Ω) is defined by

(2.16) ∆Nu := ∆u, with D(∆N) = W2,q
N (Ω),

where the subscript N indicates homogeneous Neumann boundary conditions
as introduced in Section 1.3.

The first assertion of the result can be found in [67, Proposition 1.4.12],
or it can be deduced from the considerations in Section 2.5, while the other
ones are implied by (2.14), Proposition 2.1.21 as well as Lemma 2.1.14 in
conjunction with 0 ∈ ρ(−∆D) and σ(−∆N) ⊂ [0,∞). Moreover, we invoke
the UMD property of Lq(Ω) for the last aspect.
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Lemma 2.3.19. Let p, q ∈ (1,∞), and denote by ∆D and ∆N the Dirichlet
and Neumann Laplacian operators on Lq(Ω) as introduced in (2.15) and (2.16),
respectively. Then for every ω > 0, it holds that

(a) −∆D, −∆N + ω ∈ H∞(Lq(Ω)) with H∞-angles ϕ∞
−∆D

= ϕ∞
−∆N+ω = 0,

(b) −∆D, −∆N + ω ∈ BIP(Lq(Ω)) with power angles θ−∆D = θ−∆N+ω = 0,

(c) −∆D, −∆N + ω ∈ RS(Lq(Ω)) with R-angles ϕR
−∆D

= ϕR
−∆N+ω = 0, and

(d) −∆D, −∆N + ω ∈ S(Lq(Ω)) with spectral angles ϕ−∆D = ϕ−∆N+ω = 0.

(e) In particular, −∆D, −∆N +ω ∈ 0MRp(Lq(Ω)), and it is even valid that
−∆D ∈ MRp(Lq(Ω)) and −∆N + ω ∈ MRp(Lq(Ω)).

We still denote by Ω ⊂ Rd, d ∈ N, a bounded domain with C2-boundary.
Another important application concerns the Lq

0(Ω)-realization of the Laplacian
operator subject to Neumann boundary conditions. In fact, for Lq

0(Ω) denoting
the space of functions with average zero in Ω as introduced in (1.1), we set

(2.17) ∆N,mu := ∆u, for u ∈ D(∆N,m) = W2,q
N (Ω) ∩ Lq

0(Ω).

In contrast to the Neumann Laplacian operator ∆N from (2.16), the opera-
tor ∆N,m is invertible thanks underlying space of functions with average zero.
We collect the properties of ∆N,m in the lemma below.

Lemma 2.3.20. Let p, q ∈ (1,∞), and consider ∆N,m from (2.17). Then
we have σ(−∆N,m) ⊂ (0,∞) as well as −∆N,m ∈ H∞(Lq

0(Ω)) with H∞-angle
ϕ∞

−∆N,m
= 0.

As a consequence, we get −∆N,m ∈ BIP(Lq
0(Ω)) ⊂ RS(Lq

0(Ω)) ⊂ S(Lq
0(Ω))

with θ−∆N,m = ϕR
−∆N,m

= ϕ−∆N,m = 0. In particular, −∆N,m ∈ MRp(Lq
0(Ω)).

Proof. The idea is to deduce the bounded H∞-calculus of −∆N,m from the
one of −∆N by Lemma 2.3.15. First, we define P: Lq(Ω) → Lq

0(Ω) by

Pu := u− 1
|Ω|

∫
Ω
u dx.

We clearly have Pu ∈ D(∆N) for all u ∈ D(∆N). Moreover, the divergence
theorem together with the Neumann boundary conditions of u ∈ D(∆N) imply

P(∆Nu) = ∆u− 1
|Ω|

∫
Ω

∆u dx = ∆(Pu) −
∫

∂Ω
∂νu dS = ∆N(Pu)
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for all u ∈ D(∆N). Thus, ∆N,m = P∆N results from ∆N by restriction to the
subspace Lq

0(Ω), so σ(−∆N,m) ⊂ σ(−∆N). On the other hand, 0 ∈ ρ(∆N,m), so
σ(−∆N,m) ⊂ (0,∞) is implied. As ∆N,m + ω Id = P(∆N + ω Id) on Lq

0(Ω), we
derive from Lemma 2.3.15 and Lemma 2.3.19(a) that −∆N,m+ω ∈ H∞(Lq

0(Ω))
with ϕ∞

−∆N,m+ω = 0 for all ω > 0.
In the remainder of the proof, we show that the last property is also

valid without shift. The strategy here is to view −∆N,m as a perturbation
of the shifted operator, and to employ the invertibility of ∆N,m joint with
Lemma 2.3.18. By (2.14), we especially have −∆N,m + ω ∈ RS(Lq

0(Ω)) with
ϕR

−∆N,m+ω = 0. Thanks to the UMD property of Lq
0(Ω) by Lemma 2.1.19(g),

it follows that −∆N,m +ω ∈ 0MRp(Lq
0(Ω)) with regard to Proposition 2.1.21.

Lemma 2.1.15 together with 0 ∈ ρ(−∆N,m) yields −∆N,m ∈ MRp(Lq
0(Ω)).

From Lemma 2.1.12(b), we conclude −∆N,m ∈ S(Lq
0(Ω)) with spectral an-

gle ϕ−∆N,m = 0. Finally, an application of Lemma 2.3.18 to the operator
(−∆N,m + ω Id) − ω Id leads to −∆N,m ∈ H∞(Lq

0(Ω)) with ϕ∞
−∆N,m

= 0.

Next, we investigate the Laplacian operator on the set G = (0, 1) × (0, 1)
with periodic boundary conditions on ∂G. In fact, for W2,q

per(G) as introduced
in Section 1.3, we denote the operator by ∆H : W2,q

per(G) → Lq(G).
From [108, Theorem 4.2], we derive the following result on the bounded H∞-

calculus of −∆H up to a shift. By (2.14), this also yields the boundedness of
the imaginary powers and thus leads to the asserted shape of the fractional
power domains by Lemma 1.3.4 on the shape of the complex interpolation
spaces in conjunction with Lemma 2.3.4. The periodic boundary conditions
are preserved by interpolation, see also [63, Section 4].

Lemma 2.3.21. Let q ∈ (1,∞). Then it holds that −∆H + ω ∈ H∞(Lq(G))
for all ω > 0. In particular, it is valid that −∆H + ω ∈ BIP(Lq(G)), and for
β ∈ (0, 1), we have D((−∆H + ω)β) ∼= H2β,q

per (G).

Bounded H∞-Calculus of Block Operator Matrices

As a next step, we investigate the bounded H∞-calculus of block operator
matrices. For this, we follow the paper of Agresti and Hussein [3]. More
precisely, we denote by X and Y Banach spaces, and A, B, C and D rep-
resent linear operators such that A : D(A) ⊂ X → X, D : D(D) ⊂ Y → Y,
B : D(B) ⊂ Y → X and C : D(C) ⊂ X → Y Furthermore, we assume that A
and D are densely defined and closed operators. Setting Z := X×Y, we define
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the block operator matrix

(2.18)

K : D(K) = D(A) × D(D) ⊂ Z → Z, where

K

(
x

y

)
=

A B

C D

(x
y

)
, for

(
x

y

)
∈ D(K).

The following notion of diagonal dominance proves useful when studying
block operator matrices with regard to bounded H∞-calculus.

Definition 2.3.22. The block operator matrix K on Z as introduced in (2.18)
is called diagonally dominant provided D(D) ⊂ D(B) and D(A) ⊂ D(C), and
if there exist cA, cD as well as L ≥ 0 such that

∥Cx∥Y ≤ cA · ∥Ax∥X + L · ∥x∥X, for x ∈ D(A), and
∥By∥X ≤ cD · ∥Dy∥Y + L · ∥y∥Y, for y ∈ D(D).

Below, we discuss a sufficient condition for the relative A-boundedness of C
with arbitrarily small constant cA > 0, see also [3, Corollary 5.7].

Remark 2.3.23. The relative A-boundedness of C as in Definition 2.3.22 can
be established for every cA > 0 if there is γ ∈ (0, 1) with C ∈ L(D(Aγ),Y).

The following result by Agresti and Hussein [3, Corollary 5.7] asserts the
bounded H∞-calculus of diagonally dominant block operator matrices.

Proposition 2.3.24. Let K as defined in (2.18) be a diagonally dominant
block operator matrix in the sense of Definition 2.3.22. Moreover, assume that
A ∈ H∞(X) and D ∈ H∞(Y) with H∞-angles ϕ∞

A ∈ [0, π) and ϕ∞
D ∈ [0, π),

respectively, and suppose the existence of δ ∈ (0, 1) so that for c > 0, we have

(2.19)
C(D(A1+δ)) ⊂ D(Dδ), and ∥DδCx∥Y ≤ c · ∥A1+δx∥X,

B(D(D1+δ)) ⊂ D(Aδ), and ∥AδBy∥X ≤ c · ∥D1+δy∥Y,

for all x ∈ D(A1+δ) and y ∈ D(D1+δ). Then for every ϕ ∈ (max{ϕ∞
A , ϕ

∞
D }, π),

there are ε0 ≥ 0 and ω0 ∈ R so that if cA < ε0, it follows that K+ω ∈ H∞(Z)
with H∞-angle ϕ∞

K ≤ ϕ for all ω > ω0.

By Remark 2.3.23, the smallness of cA in Proposition 2.3.24 is especially
valid in the situation that C ∈ L(D(Aγ),Y) for some γ ∈ (0, 1).
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2.4. Embeddings of the Parabolic Spaces
In this section, we present tools for embedding results of the function spaces
in the parabolic setting.

Extension Operators
We usually denote extension operators by E, while the associated restriction
operators are denoted by R. The following lemma discusses the existence of
continuous extension operators on UMD Banach space-valued Bessel potential
and Sobolev-Slobodeckij spaces, and we refer to [107, Lemma 2.5].

Lemma 2.4.1. Let J = (0, T ) be a finite interval and p ∈ (1,∞), and con-
sider a UMD space X. Then there exists an extension operator EJ from J

to R+ such that for all s ∈ [0, 1], we have

EJ ∈ L(Hs,p(J ; X),Hs,p(R+; X)) ∩ L(Ws,p(J ; X),Ws,p(R+; X)).

It turns out that the operator norm of the extension operator is even in-
dependent of T if we invoke the spaces 0Hs,p and 0Ws,p with zero time trace
for s > 1/p. Again, we refer to [107, Lemma 2.5].

Lemma 2.4.2. Let J = (0, T ) be a finite interval and p ∈ (1,∞), and con-
sider a UMD space X. Then there exists an extension operator E0

J from J

to R+ such that for all s ∈ [0, 1/p), we have

E0
J ∈ L(Hs,p(J ; X),Hs,p(R+; X)) ∩ L(Ws,p(J ; X),Ws,p(R+; X)),

and for s ∈ (1/p, 1], we get

E0
J ∈ L

(
0H

s,p(J ; X), 0H
s,p(R+; X)

)
∩ L

(
0W

s,p(J ; X), 0W
s,p(R+; X)

)
.

In addition, the operator norm of E0
J is independent of T .

The Derivative Operator
We now introduce the derivative operator on various subintervals of R and
study its properties. The first setting under consideration is the whole real
line. Recall the Banach space X, and let p ∈ (1,∞) in the sequel. For t ∈ R,
we define the derivative operator on Lp(R; X) by

(2.20) (Bpu)(t) := u′(t), for u ∈ D(Bp) := W1,p(R; X).
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Next, for t ∈ R+ we introduce the derivative operator on Lp(R+; X) given by

(2.21) (BR+,pu)(t) := u′(t), for u ∈ D(BR+,p) := 0W
1,p(R+; X).

The subscript 0 in (2.21) means that the time trace equals zero, i. e., u(0) = 0
for u ∈ D(BR+,p).

Last, we consider a finite interval J = (0, T ), where 0 < T < ∞. The
derivative operator on Lp(J ; X) takes the shape

(2.22) (BJ,pu)(t) := u′(t), for u ∈ D(BJ,p) := 0W
1,p(J ; X),

where t ∈ J , and the subscript 0 again means that u ∈ D(BJ,p) has homoge-
neous initial values.

The result below establishes the bounded H∞-calculus of Bp, BR+,p as well
as BJ,p under the additional assumption that the underlying Banach space X
is a UMD space in the sense of Definition 2.1.18. It can for example be found
in [115, Corollary 4.3.12 and Theorem 4.3.14].

Lemma 2.4.3. Let p ∈ (1,∞), and suppose that X is a UMD space. Then the
derivative operators Bp, BR+,p and BJ,p from (2.20), (2.21) and (2.22) satisfy
Bp ∈ H∞(Lp(R; X)), BR+,p ∈ H∞(Lp(R+; X)) and BJ,p ∈ H∞(Lp(J ; X)).

In particular, for BR+,p, the H∞-angle is equal to π/2, i. e., ϕB∞
R+,p

= π/2.
For α ∈ (0, 1/p), we have D(Bα

R+,p) = Hα,p(R+; X), while for α ∈ (1/p, 1), it
holds that D(Bα

R+,p) = 0Hα,p(R+; X).

For completeness, we also invoke the negative derivative operator on the
half real line and on finite intervals. In fact, we do not impose a trace zero
condition in this case. On the one hand, this makes it harder to apply the
results from the whole line case. Fortunately, we still have the H∞-calculus for
the negative derivative operator on Lp(R+; X) and can extend this property
to finite intervals by extension and restriction. For p ∈ (1,∞) and t ∈ R+,
we define the negative derivative operator on Lp(R+; X) by

(2.23) (−BR+,pu)(t) := −u′(t), for u ∈ D(BR+,p) := W1,p(R+; X).

Analogously, for t ∈ J and J = (0, T ), 0 < T < ∞, we introduce the negative
derivative operator on Lp(J ; X) given by

(2.24) (−BJ,pu)(t) := −u′(t), for u ∈ D(−BJ,p) := W1,p(J ; X).

The corresponding result on the bounded H∞-calculus of −BR+,p and −BJ,p

reads as follows.
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Lemma 2.4.4. Let p ∈ (1,∞), and assume that X is a UMD space. Then
the negative derivative operators −BR+,p and −BJ,p from (2.23) and (2.24)
satisfy −BR+,p ∈ H∞(Lp(R+; X)) and −BJ,p ∈ H∞(Lp(J ; X)) with H∞-angles
ϕ∞

−BR+,p
= ϕ∞

−BJ,p
= π/2. Furthermore, for α ∈ (0, 1), we especially have

D(−Bα
R+,p) = Hα,p(R+; X).

Proof. For the assertion on −BR+,p, we refer to [107, Theorem 2.7]. Let us
also mention [91, Theorem 6.8] for the shape of the fractional power domain
of −BR+,p.

With regard to −BJ,p, we use an argument involving extensions and restric-
tions. In fact, for J = (0, T ), we recall the continuous extension operator EJ

from Lp(J ; X) to Lp(R+; X) from Lemma 2.4.1 and denote the corresponding
restriction operator by RJ . Then for λ ∈ C such that | arg λ| > π/2, the
resolvent R(λ,−BJ,p) of −BJ,p admits the representation

R(λ,−BJ,p) = RJR(λ,−BR+,p)EJ .

Together with the identity f(−BJ,p)u = RJf(−BR+,p)EJu, for u ∈ Lp(J ; X)
and f ∈ H∞

0 (Σθ), this implies the assertion on −BJ,p as well.

The Mixed Derivative Theorem
In the next step, we provide the abstract version of the mixed derivative the-
orem, which is based on a result due to Kalton and Weis [75] on the extension
of the scalar H∞-calculus of a sectorial operator to the R-bounded operator-
valued case. In addition, we recall the Dore-Venni theorem on the sum of
two operators before stating the mixed derivative theorem. Thereafter, we
present more concrete instances in which properties of the derivation oper-
ator are used. In particular, we discuss a variant of the mixed derivative
theorem in real interpolation spaces which seems to be new.

We start with the Kalton-Weis theorem paving the way for an extension of
the bounded H∞-calculus to the operator-valued case.
Proposition 2.4.5 ([75, Section 4]). Consider A ∈ H∞(X) with H∞-angle
ϕ∞

A ∈ [0, π), and for ϕ > ϕ∞
A , let F ⊂ H∞(Σϕ; L(X)) denote an operator-

valued family such that for µ ∈ ρ(A), λ ∈ Σϕ and F ∈ F , we have

F (λ)(µ− A)−1 = (µ− A)−1F (λ).

Then there is a constant CA > 0 so that supF ∈F R(F (Σϕ)) < ∞ implies the
relation F(A) := {F (A) : F ∈ F} ⊂ L(X), and it holds that

∥F (A)∥L(X) ≤ CAR(F (Σϕ)), for F ∈ F .
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Let us also briefly recall the classical Dore-Venni theorem on the sum of two
operators. As revealed in [75], it can also be deduced from Proposition 2.4.5
by considering F (λ) of the form F (λ) = f(λ,B) and setting f(λ, µ) = µ/(λ+µ).

Proposition 2.4.6 (Dore and Venni,[40]). Let A ∈ H∞(X) and B ∈ RS(X)
be commuting such that ϕ∞

A + ϕR
B < π. Then the operator A+B with domain

D(A+ B) = D(A) ∩ D(B) is closed, and A+ B ∈ S(X) is valid with spectral
angle ϕA+B ≤ max{ϕ∞

A , ϕ
R
B}, and for a constant C > 0, the estimate

∥Ax∥ + ∥Bx∥ ≤ C · ∥(A+B)x∥

holds true for all x ∈ D(A)∩D(B). Moreover, the operator A+B is invertible
provided A or B have this property.

The following mixed derivative theorem in the abstract formulation can be
obtained by investigating the situation of

F (λ) = f(λ,B) = λαB1−α(λ+B)−1

in Proposition 2.4.5 and concluding the R-boundedness of F (Σθ) from a con-
tour integral representation of F (λ) together with the R-sectoriality of B as
well as the convexity of R-bounds. For details, we refer to [115, Section 4.5.2],
while the result can be found in [115, Corollary 4.5.10].

Proposition 2.4.7. Consider A ∈ RS(X) as well as B ∈ H∞(X) such that A
and B commute and ϕR

A + ϕ∞
B < π. Then for every α ∈ (0, 1), the operator

AαB1−α(A+B)−1 is bounded, and we especially obtain

D(A) ∩ D(B) = D(A+B) ↪→ D(AαB1−α).

The results on the derivative operator discussed before allow us to exploit
the mixed derivative theorem Proposition 2.4.7. As a consequence, the UMD
property of X as introduced in Definition 2.1.18 is required.

Proposition 2.4.8. Let X be a UMD Banach space, and let A : D(A) → X
be densely defined with A ∈ RS(X) and ϕR

A < π/2. Recall XA from (2.1), and
denote by D(Aβ), β ∈ (0, 1), the fractional power domain of A.

(a) For every β ∈ (0, 1), we obtain the embeddings

W1,p(R+; X) ∩ Lp(R+; XA) ↪→ H1−β,p(R+; D(Aβ)),

0W
1,p(R+; X) ∩ Lp(R+; XA) ↪→ H1−β,p(R+; D(Aβ)), if 1 − β < 1/p and

0W
1,p(R+; X) ∩ Lp(R+; XA) ↪→ 0H

1−β,p(R+; D(Aβ)), if 1 − β > 1/p.
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(b) For all β ∈ (0, 1) and J = (0, T ), we infer that

W1,p(J ; X) ∩ Lp(J ; XA) ↪→ H1−β,p(J ; D(Aβ)),

0W
1,p(J ; X) ∩ Lp(J ; XA) ↪→ H1−β,p(J ; D(Aβ)), if 1 − β < 1/p and

0W
1,p(J ; X) ∩ Lp(J ; XA) ↪→ 0H

1−β,p(J ; D(Aβ)) if 1 − β > 1/p.

In particular, the embedding constants in the second and third embedding
can be chosen independent of T .

Proof. The idea is to exploit the properties of the derivative operator and
then apply the abstract mixed derivative theorem in the formulation of Propo-
sition 2.4.7. As X is a UMD space by assumption, Lemma 2.4.4 is applicable
and yields −BR+,p ∈ H∞(Lp(R+; X)) with H∞-angle ϕ−BR+,p

= π/2. The do-
main of −BR+,p is given by W1,p(R+; X). The R-sectoriality of A with R-angle
ϕR

A < π/2 then yields that ϕR
A + ϕ∞

−BR+,p
< π. Therefore, the first part of the

assertion of (a) is a consequence of Proposition 2.4.7 upon invoking the shape
of the fractional powers of the negative derivative operator from Lemma 2.4.4.

The second and third part of the assertion of (a) follow from completely
analogous arguments, where we replace Lemma 2.4.4 by Lemma 2.4.3 in order
to get the H∞-calculus of the derivative operator BR+,p on Lp(R+; X) with
domain 0W1,p(R+; X).

Concerning (b), we make use of (a) in conjunction with the extension op-
erators EJ and E0

J from Lemma 2.4.1 and Lemma 2.4.2. Indeed, for the first
embedding, given

u ∈ W1,p(J ; X) ∩ Lp(J ; XA),
and using that XA also enjoys the UMD property as a closed subspace of X,
see Lemma 2.1.19(g), we deduce from Lemma 2.4.1 and (a) that

EJu ∈ W1,p(R+; X) ∩ Lp(R+; XA) ↪→ H1−β,p(R+; Xβ).

Since by Lemma 2.1.19(f), the space Xβ has the UMD property as an in-
terpolation space of X and XA, the extension operator is also continuous
on H1−β,p(R+; Xβ) in view of Lemma 2.4.1, and the same is valid for the
restriction operator. Thus, we conclude

u = RJEJu ∈ H1−β,p(J ; Xβ).

The second and third embedding of (b) can be obtained likewise. This time,
the extension operator E0

J from Lemma 2.4.2 is used. The T -independence of
the emerging embedding constant holds thanks to the fact that the operator
norm of E0

J is T -independent as stated in Lemma 2.4.2.
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By virtue of the UMD property of X and Proposition 2.1.21, the assertion
of Proposition 2.4.8 remains valid provided we assume A ∈ 0MRp(X) instead
of A ∈ RS(X) with R-angle ϕR

A < π/2.
If the assumption A ∈ RS(X) with ϕR

A < π/2 is replaced by A ∈ BIP(X)
with θA < π/2, then Lemma 2.3.4 yields D(Aβ) = [X,XA]β =: Xβ, β ∈ (0, 1).

In view of the relation of the classes RS(X) and BIP(X) as stated in (2.14),
the following embeddings are implied by Proposition 2.4.8.

Corollary 2.4.9. Let X be a UMD Banach space, and consider a densely
defined operator A : D(A) → X with A ∈ BIP(X) and power angle θA < π/2.
Denote by Xβ, β ∈ (0, 1), the complex interpolation space [X,XA]β.

(a) For every β ∈ (0, 1), we get the embeddings

W1,p(R+; X) ∩ Lp(R+; XA) ↪→ H1−β,p(R+; Xβ),

0W
1,p(R+; X) ∩ Lp(R+; XA) ↪→ H1−β,p(R+; Xβ), if 1 − β < 1/p and

0W
1,p(R+; X) ∩ Lp(R+; XA) ↪→ 0H

1−β,p(R+; Xβ), if 1 − β > 1/p.

(b) For all β ∈ (0, 1) and J = (0, T ), it holds that

W1,p(J ; X) ∩ Lp(J ; XA) ↪→ H1−β,p(J ; Xβ),

0W
1,p(J ; X) ∩ Lp(J ; XA) ↪→ H1−β,p(J ; Xβ), if 1 − β < 1/p and

0W
1,p(J ; X) ∩ Lp(J ; XA) ↪→ 0H

1−β,p(J ; Xβ), if 1 − β > 1/p.

In particular, the embedding constant in the second and third embedding
can be chosen independent of T in the second embedding.

By (2.14), the property that A ∈ H∞(X) with H∞-angle ϕ∞
A < π/2 is another

sufficient condition to get the assertion of Corollary 2.4.9.
Finally, we discuss the mixed derivative theorem for evolution equations

in real interpolation spaces. For this purpose, let us recall the trace spaces
DA(θ, p), θ ∈ (0, 1) and p ∈ [1,∞) from (2.3). We also invoke the domain E1
of the realization of the operator A on the trace space DA(θ, p), so

E1 := {u ∈ D(A) : Au ∈ DA(θ, p)} .

The result then reads as follows. We remark that it has already been obtained
in a joint work with Matthias Hieber, see [19, Theorem 3.1].
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Proposition 2.4.10. Let X be a UMD space, and consider A ∈ S(X) invert-
ible with spectral angle ϕA < π/2. Moreover, recall the negative derivative op-
erator −BR+,p and −BJ,p on R+ and J = (0, T ), respectively, and assume that
the operator A on Lp(R+; DA(θ, p)) or Lp(J ; DA(θ, p)) and −BR+,p or −BJ,p

commute. Then it holds that

W1,p(R+; DA(θ, p)) ∩ Lp(R+; E1) ↪→ H1−β,p(R+; [DA(θ, p),E1]β) and
W1,p(J ; DA(θ, p)) ∩ Lp(J ; E1) ↪→ H1−β,p(J ; [DA(θ, p),E1]β).

Proof. Let us recall from Lemma 2.1.9 that DA(θ, p) = (X,XA)θ,p with equiv-
alent norms. Moreover, thanks to 0 ∈ ρ(A) and Lemma 2.1.10, we get the
equivalence of the norm of the real interpolation space with the homoge-
neous norm [·]θ,p from (2.3). We observe that XA is also a UMD space in
view of the isomorphism A−1 : X → XA thanks to Lemma 2.1.19(a). This in
turn reveals that DA(θ, p) = (X,XA)θ,p has the UMD property by virtue of
Lemma 2.1.19(f). From Lemma 2.4.4, we now recall that

−BR+,p ∈ H∞(R+; DA(θ, p)) and −BJ,p ∈ H∞(J ; DA(θ, p))

for J = (0, T ), and with H∞-angles ϕ∞
−BR+,p

= ϕ∞
−BJ,p

= π/2. On the other
hand, the Dore result as stated in Lemma 2.3.16 implies A ∈ H∞(DA(θ, p))
with H∞-angle ϕ∞

A = ϕA < π/2 by assumption. From (2.14), we further deduce

A ∈ BIP(DA(θ, p)) as well as A ∈ RS(DA(θ, p)),

with power angle θA and R-angle ϕR
A satisfying ϕR

A ≤ θA ≤ ϕ∞
A < π/2. The

desired embeddings now follow from the general result Proposition 2.4.7 in
the same way as Proposition 2.4.8 and Corollary 2.4.9.

Trace Space Embeddings
Let X0 be a Banach space, and consider another densely embedded Banach
space X1. Moreover, for p ∈ (1,∞), denote by Xγ the real interpolation space

(2.25) Xγ := (X0,X1)1−1/p,p.

Recall that BUC(J ; Xγ) denotes the bounded and uniformly continuous func-
tions on an interval J ⊂ R+ with values in Xγ. The next proposition dis-
cusses an embedding of the solution space in the maximal Lp-regularity setting
into BUC(J ; Xγ). It can be found in [5, Theorem III.4.10.2].
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Proposition 2.4.11. Let X1 be densely embedded into X0, and consider an
interval J ⊂ R+. Then for Xγ as introduced in (2.25), we have

W1,p(J ; X0) ∩ Lp(J ; X1) ↪→ BUC(J ; Xγ).

Let us comment on the particular situation of a finite interval J = (0, T ).
Remark 2.4.12. In general, the embedding constant resulting from Proposi-
tion 2.4.11 depends on T when considering J = (0, T ), where 0 < T < ∞.
However, if we consider functions with homogeneous initial values, then we
can invoke the extension operator E0

J from Lemma 2.4.2 and proceed as in the
proof of Proposition 2.4.8(b). More precisely, the extension operator allows
us to reduce the assertion on J to the one of R+, and the time-independence
of the operator norm of E0

J implies that the resulting embedding constant can
also be chosen independent of T .

For completeness, we provide the analogue of Proposition 2.4.11 in the situ-
ation of time-weighted spaces, along with a result on instantaneous smoothing.
In this context, for µ ∈ (1/p, 1], we set

(2.26) Xγ,µ := (X0,X1)µ−1/p,p.

We refer to [114, Proposition 3.1] for this result in the case J = R+ and remark
that its extension to general time intervals J = (0, T ) follows by invoking
suitable extension operators in the weighted setting, see [107, Section 2].
Lemma 2.4.13. Let X1 be densely embedded into X0, J ⊂ R+, and re-
call Xγ,µ, with p ∈ (1,∞) and µ ∈ (1/p, 1], from (2.26). Then we have

(a) W1,p
µ (J ; X0) ∩ Lp

µ(J ; X1) ↪→ BUC(J ; Xγ,µ), and

(b) W1,p
µ (R+; X0) ∩ Lp

µ(R+; X1) ↪→ C((0,∞); Xγ).
We also provide an estimate of a function in BUC([0, T ]; Xγ) by the initial

values and the solution, where the special feature is that the constant in
the estimate is independent of T > 0. Hence, it is particularly useful in
applications to functions with non-homogeneous initial values. For a proof,
we refer e. g. to [124, Section 3].
Lemma 2.4.14. Let X1 be densely embedded into X0, consider Xγ as defined
in (2.25), and let

u ∈ W1,p(0, T ; X0) ∩ Lp(0, T ; X1) =: E1.

Then there exists a constant C > 0, independent of T , such that

sup
t∈[0,T ]

∥u(t)∥Xγ ≤ C ·
(
∥u(0)∥Xγ + ∥u∥E1

)
.
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Application to the Laplacian Operator

We now exploit the properties of the Dirichlet and Neumann Laplacian on
bounded domains to get embeddings for the spatial components being Besov
spaces. First, we recall from Lemma 2.3.19 that −∆D ∈ S(Lq(Ω)), and shift-
ing the Neumann Laplacian, we get Id −∆N ∈ S(Lq(Ω). For the spectral
angles, we have ϕ−∆D = ϕId −∆N = 0. Besides, 0 ∈ ρ(∆D) and 0 ∈ ρ(Id −∆N).
In addition, in view of Lemma 2.1.9 and Lemma 1.3.6, it holds that

D−∆D(θ, p) = B2θ
qp(Ω), if θ < 1

2q and

DId −∆N(θ, p) = B2θ
qp(Ω), if θ < 1

2 + 1
2q .

The domains of the respective realizations on the trace spaces E1(−∆D) as
well as E1(Id −∆N) are given by

E1(−∆D) = B2θ+2
qp,D (Ω) and E1(Id −∆N) = B2θ+2

qp,N (Ω),

and the subscripts D and N represent Dirichlet and Neumann boundary con-
ditions on ∂Ω, respectively. Hence, the below lemma follows from Proposi-
tion 2.4.10 in conjunction with the shape of the interpolation spaces as made
precise in Lemma 1.3.4 and Lemma 1.3.7.

Lemma 2.4.15. Consider J = (0, T ) with T ∈ (0,∞) or J = R+ as well as
parameters θ ∈ (0, 1), p ∈ (1,∞) and q ∈ (1,∞).

(a) If θ < 1/2q, then for all β ∈ (0, 1) with β ̸= 1/2q − θ, we have

W1,p(J ; B2θ
qp(Ω)) ∩ Lp(J ; B2θ+2

qp,D (Ω))

↪→

H1−β,p(J ; B2θ+2β
qp (Ω)), if θ + β < 1/2q,

H1−β,p(J ; B2θ+2β
qp,D (Ω)), if θ + β > 1/2q.

(b) If θ < 1/2 + 1/2q, then for all β ∈ (0, 1) with β ̸= 1/2 + 1/2q − θ, we obtain

W1,p(J ; B2θ
qp(Ω)) ∩ Lp(J ; B2θ+2

qp,N (Ω))

↪→

H1−β,p(J ; B2θ+2β
qp (Ω)), if θ + β < 1/2 + 1/2q,

H1−β,p(J ; B2θ+2β
qp,N (Ω)), if θ + β > 1/2 + 1/2q.
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2.5. Elliptic and Parabolic Problems
This section is dedicated to the investigation of elliptic and parabolic bound-
ary value problems by means of maximal Lp-regularity, bounded H∞-calculus
as well as optimal Lp-Lq estimates. For this, we mainly follow the articles by
Denk, Hieber and Prüss [37, 38], Denk et al. [36] as well as Chapter 6 in the
monograph of Prüss and Simonett [115].

In the following, let E be an arbitrary Hilbert space with inner prod-
uct (·, ·)E. For d ∈ N, we consider a bounded domain Ω ⊂ Rd with boundary
of class C2. The notions introduced below can be defined analogously in
the context of the whole space or the half space. Moreover, we employ the
notation D = −i(∂1, . . . , ∂d), and we typically take into account x ∈ Ω.

Ellipticity of Differential Operators
First, we discuss several notions of ellipticity for second order differential
operators of the form

(2.27) A(x,D) =
∑

|α|≤2
aα(x)Dα,

where aα ∈ L(E), and the highest-order coefficients are continuous. We denote
the principal part by A#(x,D). The associated symbol is given by

(2.28) A#(x, ξ) =
∑

|α|=2
aα(x)ξα.

In the particular situation of differential operators acting on Cd-valued func-
tions, the principal part takes the shape

[A#(x,D)v(x)]i =
d∑

j,k,l=1
akl

ij (x)DkDlvj(x), for x ∈ Ω, with symbol

(A#(x, ξ))ij =
d∑

k,l=1
akl

ij (x)ξkξl, for x ∈ Ω.

Definition 2.5.1. Let A(x,D) denote a second order differential operator as
in (2.27), with associated symbol of the principal part A#(x, ξ) as in (2.28).
Then A(x,D) is said to be

(i) parameter-elliptic of angle ϕ ∈ (0, π] if σ(A#(x, ξ)) ⊂ Σϕ for all x ∈ Ω
and for all ξ ∈ Rd such that |ξ| = 1, and the angle of ellipticity of A is

ϕA := inf {ϕ ∈ (0, π] : σ(A#(x, ξ)) ⊂ Σϕ} ,
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(ii) normally elliptic if it is parameter-elliptic of angle ϕA < π/2, and

(iii) strongly elliptic if there is a constant c > 0 such that

Re(A#(x, ξ)w|w)E ≥ c · ∥w∥2
E

is valid for all x ∈ Ω, for all ξ ∈ Rd with |ξ| = 1, and for all w ∈ E.

Strong ellipticity of A implies parameter-ellipticity of angle ϕA < π/2 as
the spectrum σ(L) of a linear operator L is in particular contained in the
numerical range n(L) defined by

n(L) := {z ∈ C : z = (Lw|w)E for some w ∈ E with ∥w∥E = 1}.

The Lopatinskii-Shapiro Condition
As the underlying domain Ω ⊂ Rd has a boundary, it is natural to investigate
the resulting boundary value problem with boundary differential operator.
For m ∈ {0, 1}, bβ ∈ L(E) and x ∈ ∂Ω, we consider boundary differential
operators of the shape

(2.29) B(x,D) =
∑

|β|≤m

bβ(x)Dβ,

with principal part given by

B#(x,D) =
∑

|β|=m

bβ(x)Dβ.

At this stage, the Lopatinskii-Shapiro condition, a compatibility condition for
the boundary value problem, comes into picture.

Definition 2.5.2. Let A(x,D) as in (2.27) be a parameter-elliptic differential
operator with angle of ellipticity ϕA ∈ [0, π), and let B(x,D) denote a boundary
differential operator as in (2.29). Then the Lopatinskii-Shapiro condition is
satisfied if for every x0 ∈ ∂Ω, the ODE problem in R+ given by(λ+ A#(x0, ξ

′,Dy))v(y) = 0, y > 0,
B#(x0, ξ

′,Dy)v(0) = g,

admits a unique solution v ∈ C0(R+; E) for all g ∈ E and every λ ∈ ΣϕA as
well as ξ′ ∈ Rd such that |ξ′| + |λ| ≠ 0.
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In the Cd-valued situation, there is another type of ellipticity that guaran-
tees the validity of the Lopatinskii-Shapiro condition when considering Dirich-
let or Neumann boundary conditions. This stronger property is called strong
normal ellipticity and was first introduced by Bothe and Prüss [14].

Definition 2.5.3. Let A(x,D) be a differential operator acting on Cd-valued
functions with symbol of the principal part A#(x, ξ), so

[A#(x,D)v(x)]i =
d∑

j,k,l=1
akl

ij (x)DkDlvj(x) and (A#(x, ξ))ij =
d∑

k,l=1
akl

ij (x)ξkξl

for x ∈ Ω. Then the differential operator A(x,D) is referred to as strongly
normally elliptic if A(x,D) is strongly elliptic, and if it additionally holds that

Re
d∑

i,j,k,l=1
akl

ij (x)(ξluj − νlvj)(ξkui − νkvi) > 0

for all x ∈ Ω, for all ξ, ν ∈ Rd with |ξ| = |ν| = 1 as well as (ξ|ν) = 0, and
for all u, v ∈ Cd such that Im(u|v) ̸= 0.

For a proof of the lemma below asserting the validity of the Lopatinskii-
Shapiro condition for a strongly normally elliptic Cd-valued differential opera-
tor with Dirichlet or Neumann boundary conditions, we refer to [14, Section 3],
see also the discussion in [115, Section 6.2.5].

Lemma 2.5.4. Let A(x,D) denote a strongly normally elliptic Cd-valued
operator, and consider Dirichlet or Neumann boundary conditions, meaning
that B(x,D) = γ or B(x,D) = ∂ν. Then (A,B) satisfies the Lopatinskii-
Shapiro condition for all x ∈ ∂Ω.

Maximal Regularity and Bounded H∞-Calculus
We are in the position to discuss properties of the Lq-realizations of differential
operators of the above form. For this purpose, we require some smoothness
and ellipticity conditions.

(S) Let aα and bβ denote the coefficients of the differential operator A and
the boundary differential operator B as introduced in (2.27) and (2.29),
respectively. We assume that

(i) aα ∈ C(Ω; L(E)) for |α| = 2,
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(ii) aα ∈ L∞(Ω; L(E)) for |α| < 2, and

(iii) bβ ∈ C2−m(∂Ω; L(E)) for |β| ≤ m, where m ∈ {0, 1}.

(E) We assume the existence of ϕA ∈ [0, π) such that

(i) A is parameter-elliptic of angle ϕA for all x ∈ Ω, and

(ii) (A,B) satisfies the Lopatinskii-Shapiro condition for all x ∈ ∂Ω.

In the sequel, we denote by AB the Lq(Ω; E)-realization of A(x,D), so

(2.30) D(AB) =
{
u ∈ W2,q(Ω; E) : B(x,D)u = 0

}
.

The next result, which is due to Denk, Hieber and Prüss [37], establishes
maximal Lp-regularity of AB.

Proposition 2.5.5 ([37, Theorem 8.2]). Consider a Hilbert space E, d ∈ N
and q ∈ (1,∞), and let Ω ⊂ Rd be a bounded domain with C2-boundary. More-
over, suppose that the boundary value problem (A,B) satisfies the smoothness
and ellipticity conditions (S) and (E) from above for some ϕA ∈ [0, π).

Then for every ϕ > ϕA, there is µϕ such that µϕ + AB is R-sectorial with
R-angle ϕµϕ+AB

≤ ϕA. If ϕA < π/2, then µϕ +AB has the property of maximal
regularity in Lp(R+; Lq(Ω; E)) for every p ∈ (1,∞).

If we make slightly stronger smoothness assumptions on the coefficients of
the principal part, we can even establish the bounded H∞-calculus of AB up
to a shift. The stronger smoothness assumption reads as follows.

(S+) For the coefficients aα of A, it holds that aα ∈ BUCρ(Ω; L(E)) for some
ρ ∈ (0, 1) and for all α with |α| = 2.

The corresponding result by Denk et al. [36] reads as follows.

Proposition 2.5.6 ([36, Theorem 2.3]). Let E be a Hilbert space, d ∈ N as
well as q ∈ (1,∞), and let Ω ⊂ Rd be a bounded domain with C2-boundary.
Besides, suppose that the boundary value problem (A,B) satisfies the smooth-
ness and ellipticity conditions (S), (E) and (S+) for some ϕA ∈ [0, π).

Then for every ϕ > ϕA, there is µϕ such that µϕ +AB ∈ H∞(Lq(Ω; E)) with
H∞-angle ϕ∞

µϕ+AB
≤ ϕA.
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Optimal Lp-Lq Estimates
The purpose of the following discussion is twofold. On the one hand, we
extend the previous considerations from homogeneous to non-homogeneous
boundary data. On the other hand, we will see that the assumptions on the
data are not only sufficient, but they are in fact necessary to obtain maximal
Lp-regularity.

For a bounded domain Ω ⊂ Rd with boundary of class C2, a second order
differential operator A(x,D) as defined in (2.27), a boundary differential op-
erator B(x,D) as introduced in (2.29), and for given data (f, g, u0), we study
the parabolic problem

(2.31)


∂tu+ ωu+ A(x,D)u = f, in Ω,

B(x,D)u = g, on ∂Ω,
u(0) = u0, in Ω.

We proceed with a notion of ellipticity for the optimal Lp-Lq estimates.

Definition 2.5.7. We say that (A(x,D),B(x,D)) is uniformly normally ellip-
tic provided A(t, x,D) is normally elliptic for all x ∈ Ω, and the Lopatinskii-
Shapiro condition is satisfied.

We also invoke the following regularity assumptions on the coefficients.

(S’) Let aα and bβ denote the coefficients of the differential operator A and
the boundary differential operator B as introduced in (2.27) and (2.29),
respectively. We assume that

(i) aα ∈ C(Ω; L(E)) for |α| = 2,
(ii) aα ∈ L∞(Ω; L(E)) for |α| < 2, and
(iii) bβ ∈ B2κ

rjq(∂Ω; L(E)) for |β| = j ≤ m and m ∈ {0, 1}, and where
rj ≥ q as well as 2κ > (d−1)/rj, with κ = 1 − 1/2q if m = 0 and
κ = 1/2 − 1/2q in the situation of m = 1.

We remark that (S’)(iii) is always satisfied in the case of constant coeffi-
cients of the boundary differential operator as for usual Dirichlet or Neumann
boundary conditions.

The following result, see [115, Theorem 6.3.2] as well as [115, Section 6.3.4],
discusses the sufficiency and necessity of the assumptions on the data (f, g, u0).
For a version with time-dependent coefficients, we refer to [38, Theorem 2.3].
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Proposition 2.5.8. Let E be a Hilbert space, d ∈ N and p, q ∈ (1,∞),
consider a bounded domain Ω ⊂ Rd with boundary of class C2, and suppose
that the boundary value problem (A,B) is uniformly normally elliptic in the
sense of Definition 2.5.7 and satisfies the smoothness assumptions on the
coefficients from (S’). Besides, assume that κ ̸= 1/p for κ from (S’)(iii).

Then there is ω0 ∈ R such that for all ω > ω0, the problem (2.31) admits a
unique solution

u ∈ W1,p(R+; Lq(Ω; E)) ∩ Lp(R+; W2,q(Ω; E)) =: E1

if and only if the data (f, g, u0) satisfy

(i) f ∈ Lp(R+; Lq(Ω; E)) =: E0,

(ii) u0 ∈ B2−2/p
qp (Ω; E) =: Xγ,

(iii) g ∈ Fκ
pq(R+; Lq(∂Ω; E)) ∩ Lp(R+; B2κ

qq (∂Ω; E)) =: F, where κ = 1 − 1/2q

if m = 0 in B(x,D) from (2.29) as well as κ = 1/2 − 1/2q if m = 1, and

(iv) B(x,D)u0 = g(0) if κ > 1/p.

Moreover, the closed graph theorem yields the existence of a constant C > 0
such that for all f ∈ E0, u0 ∈ Xγ and g ∈ F, we have

∥u∥E1 ≤ C ·
(
∥f∥E0 + ∥u0∥Xγ + ∥g∥F

)
.

Furthermore, for AB denoting the Lq(Ω; E)-realization of A(x,D) subject to
homogeneous boundary conditions as introduced in (2.30), the minimal shift ω0
can be chosen equal to the spectral bound of −AB, so ω0 = s(−AB).

The above result remains valid when considering finite intervals (0, T ) so
that the assumptions on the data also reduce to the case of a finite interval.
Again, we refer to the article of Denk, Hieber and Prüss [38] for further details.

H∞-Calculus of Elliptic Operators on Closed Manifolds
Next, we focus on the bounded H∞-calculus of elliptic operators on closed
manifolds. The importance of this paragraph for us becomes apparent when
dealing with functions with periodic boundary conditions on the torus, be-
cause they can be identified with functions on a closed manifold.

Let X be a compact closed d-dimensional C2-manifold and G := (G, π,X)
be a complex C2-vector bundle over X of rank N with fiber H. Let A be
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a linear differential operator of second order with continuous coefficients and
principal part A# whose symbol reads as

A : T (X)∗ → L(G).

In addition, the Lq-realization is given by

A : W2,q(X,G) → Lq(X,G).

The operator A is referred to as ω-elliptic if for the principal part, we have

σ(A#) ⊂ Σω, for ξ∗
x ∈ [Tx(X)∗] and x ∈ X.

The following result is due to Duong and Simonett, see [41, Theorem 7.1].

Proposition 2.5.9. Let q ∈ (1,∞), and assume that for 0 ≤ ω < ϕ < π, the
differential operator A is ω-elliptic. Then there is µ > 0 with the property
that A+ µ ∈ H∞(Lq(X,G)) and H∞-angle ϕ∞

A+µ = ϕ.

2.6. Quasilinear Parabolic Evolution Equations
This section is devoted to recalling some theory with regard to quasilinear
parabolic evolution equations. We mainly follow Sections 5.1 and 5.3 in the
monograph of Prüss and Simonett [115]. With regard to an approach to
quasilinear parabolic evolution equations by means of maximal Lp-regularity,
let us also mention the works of Clément and Li [28], Prüss [113] as well as
the series of articles by Köhne, Prüss and Wilke [78], LeCrone, Prüss and
Wilke [89] and Prüss and Wilke [119] in which a framework to quasilinear
parabolic evolution equations in weighted Lp-spaces has been developed. The
generalized principle of linearized stability as presented in the second part of
this section is due to Prüss, Simonett and Zacher [117].

General Setting and Local Strong Well-Posedness
We start by describing the general setting. In fact, let X0 and X1 denote
Banach spaces such that the embedding X1 ↪→ X0 is dense. The space X0
will be referred to as ground space, while we also call X1 regularity space.
Moreover, as already introduced in (2.26), for p ∈ (1,∞) and µ ∈ (1/p, 1],
denote by Xγ,µ the real interpolation space

Xγ,µ := (X0,X1)µ−1/p,p.
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It is common to use the term trace space for the latter interpolation space. In
addition, Vµ ⊂ Xγ,µ represents an open subset of the trace space Xγ,µ.

For A : Vµ → L(X1,X0) and F : Vµ → X0, initial data u0 ∈ Vµ and a time
interval J = (0, T ), 0 < T ≤ ∞, we aim for the local strong well-posedness of
the quasilinear abstract Cauchy problem

(2.32)

u
′(t) + A(u(t))u(t) = F (u(t)), for t ∈ J,

u(0) = u0,

on the ground space X0. More precisely, we are particularly interested in
solutions in the so-called maximal regularity space

E1,µ := W1,p
µ (J ; X0) ∩ Lp

µ(J ; X1),

where the weighted Lp- and Sobolev space are as introduced in Section 1.3.
We refer to solutions u to (2.32) such that u ∈ E1,µ as strong solutions. The
suitable space for data in the present framework is the data space

E0,µ := Lp
µ(J ; X0).

The following proposition asserts the existence of a unique strong local
solution to (2.32) under additional assumptions on the operator A as well as
the nonlinear term on the right-hand side F . It can for example be found
in [115, Theorem 5.1.1].
Proposition 2.6.1. Consider p ∈ (1,∞), µ ∈ (1/p, 1] and u0 ∈ Vµ, and
assume that (A,F ) ∈ C0,1(Vµ; L(X1,X0) × X0), meaning that there exist con-
stants CA, CF > 0 such that

∥(A(v1) − A(v2))w∥X0 ≤ CA · ∥v1 − v2∥Xγ,µ · ∥w∥X1 , and
∥F (v1) − F (v2)∥X0 ≤ CF · ∥v1 − v2∥Xγ,µ

for all v1, v2 ∈ Vµ and w ∈ X1. Moreover, suppose A(u0) ∈ MRp(X0).
Then there are T = T (u0) > 0 and r = r(u0) > 0 with BXγ,µ(u0, r) ⊂ Vµ

such that (2.32) has a unique solution

u(·, u1) ∈ E1,µ ∩ C([0, T ];Vµ)

on [0, T ]. Moreover, there exists a constant C = C(u0) > 0 such that

∥u(·, u1) − u(·, u2)∥E1,µ ≤ C · ∥u1 − u2∥Xγ,µ

for all u1, u2 ∈ BXγ,µ(u0, r). For every δ ∈ (0, T ), we additionally obtain

u ∈ E1(δ, T ) := W1,p((δ, T ); X0) ∩ Lp((δ, T ); X1) ↪→ C([δ, T ]; Xγ,µ).

In other words, the solution regularizes instantly in time.
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With regard to applications of the latter theorem, we briefly comment on
the Lipschitz properties whose shape in Proposition 2.6.1 was mainly chosen
for simplicity of notation.

Remark 2.6.2. The Lipschitz properties of A and F are only needed locally.
This can be recovered from inspecting the proof of [115, Theorem 5.1.1], see
also [113, Section 3]. More precisely, it is sufficient to make the following
assumptions: Given u0 ∈ Vµ, for every r > 0 with BXγ,µ(u0, r) ⊂ Vµ, there
exist CA(r) > 0 and CF (r) > 0 such that

∥(A(v1) − A(v2))w∥X0 ≤ CA(r) · ∥v1 − v2∥Xγ,µ · ∥w∥X1 , and
∥F (v1) − F (v2)∥X0 ≤ CF (r) · ∥v1 − v2∥Xγ,µ

for all v1, v2 ∈ BXγ,µ(u0, r) and w ∈ X1.

The question on the continuation of the solution obtained in Proposi-
tion 2.6.1 arises naturally. The following result provides an answer and further
yields a characterization of the maximal time interval of existence of the so-
lution. We refer for instance to [115, Corollary 5.1.2].

Corollary 2.6.3. Under the assumptions of Proposition 2.6.1, suppose in
addition that A(v) ∈ MRp(X0) for every v ∈ Vµ. Then the solution u

to (2.32) resulting from Proposition 2.6.1 has a maximal time interval of ex-
istence J(u0) = [0, t+(u0)), with the characterization

(a) global existence, i. e., t+(u0) = ∞,

(b) lim inf
t→t+(u0)

distXγ,µ(u(t), ∂Vµ) = 0, or

(c) lim
t→t+(u0)

u(t) does not exist in Xγ,µ.

The Generalized Principle of Linearized Stability
The remainder of this section is devoted to the study of the stability of equi-
librium solutions to (2.32). More precisely, we will introduce the so-called
generalized principle of linearized stability. Throughout this section, we con-
sider the unweighted situation, i. e., µ = 1. In order to simplify the notation,
we will use Xγ to denote the resulting trace space (X0,X1)1−1/p,p, and we will
also omit the subscript µ in the open subset V ⊂ Xγ as well as in the data
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and maximal regularity space. Moreover, E ⊂ V ∩ X1 represents the set of
equilibrium solutions to (2.32), where u ∈ E if and only if

u ∈ V ∩ X1 and A(u)u = F (u).

In comparison with the investigation of the local strong well-posedness, we
slightly strengthen the regularity assumption on the nonlinear terms (A,F ).
In fact, we demand that (A,F ) ∈ C1(V ; L(X1,X0) × X0), since the lineariza-
tion considered in the sequel involves the Fréchet derivatives of A and F .

Let u∗ denote an equilibrium solution to (2.32). Then for u ∈ X1, the total
linearization around the equilibrium u∗ is defined by

(2.33) A0u := A(u∗)u+ (A′(u∗)u)u∗ − F ′(u∗)u.

The generalized principle of linearized stability is closely linked to the fol-
lowing notion of normal stability of an equilibrium.

Definition 2.6.4. Let u∗ ∈ E, assume (A,F ) ∈ C1(V ; L(X1,X0) × X0), and
recall A0 from (2.33). Then u∗ is called normally stable if

(a) near u∗, the set of equilibria E is an m-dimensional C1-manifold in X1,

(b) the tangent space for E at u∗ is isomorphic to N(A0),

(c) zero is a semi-simple eigenvalue of A0, i. e., N(A0) ⊕ R(A0) = X0, and

(d) it holds that σ(A0) \ {0} ⊂ C+.

We now state the generalized principle of linearized stability due to Prüss,
Simonett and Zacher [117], see also [115, Theorem 5.3.1].

Proposition 2.6.5 ([117, Theorem 2.1]). Let p ∈ (1,∞), assume that the
nonlinearities satisfy (A,F ) ∈ C1(V ; L(X1,X0) × X0), and let u∗ ∈ E be
normally stable in the sense of Definition 2.6.4 such that A(u∗) ∈ 0MRp(X0).

Then u∗ is stable in Xγ, and there is δ > 0 such that the unique solution u

to (2.32) for initial data u0 ∈ Xγ fulfilling ∥u0 − u∗∥Xγ < δ exists on R+ and
converges to some u∞ ∈ E in Xγ at an exponential rate as t → ∞.

Below, we comment on the assumption A(u∗) ∈ 0MRp(X0).

Remark 2.6.6. The assumption A(u∗) ∈ 0MRp(X0) in Proposition 2.6.5 can
be relaxed to A(u∗)+ω ∈ 0MRp(X0) for some ω ∈ R if the underlying space X0
is a UMD Banach space. We can see this as follows. The idea in the proof
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of [115, Theorem 5.3.1] is to decompose the spectrum σ(A0) into the center
part σc = {0} and the stable part σs ⊂ C+. Next, we invoke the corresponding
spectral projections P l, l ∈ {c, s}. We denote the part of A0 in Xs

0 := PsX0 by
As and observe that σ(As) = σs ⊂ C+ as well as 0 ∈ ρ(As). An inspection of
the proof of [115, Theorem 5.3.1] shows that the gist is As ∈ MRp(Xs

0). From
Corollary 2.1.23 and the shape of A0, it follows that A0 +ω0 ∈ MRp(X0) for
possibly larger ω0 ∈ R under the present assumptions. On the other hand,
we have As + ω0 ∈ MRp(Xs

0). Thanks to the relation σ(As) = σs ⊂ C+, we
deduce from Lemma 2.1.15 the validity of A0 ∈ MRp(Xs

0).

2.7. The Viscous Primitive Equations and the
Hydrostatic Stokes Operator

This section is devoted to the introduction of the viscous incompressible prim-
itive equations. In particular, we specify on the so-called hydrostatic Stokes
operator appearing in the linearization of the primitive equations.

The mathematical analysis of the primitive equations was pioneered by
Lions, Temam and Wang in a series of articles [93, 94, 96]. The global strong
well-posedness of the viscous incompressible primitive equations was shown
by Cao and Titi [24]. We also refer to the articles of Kukavica and Ziane [83]
or Hieber and Kashiwabara [65] for the consideration of different boundary
conditions or the global strong well-posedness in the Lp-Lq framework. For a
survey of results and further references, we also refer to [92].

We consider G = (0, 1)×(0, 1) and Ω = G×(a, b), where −∞ < a < b < ∞.
The full velocity is denoted by u : Ω → R3, and we have u = (v, w), for v
and w representing the horizontal and vertical velocity, respectively. More-
over, π : Ω → R is the pressure. For a time interval (0, T ), 0 < T ≤ ∞,
and ∇H representing the horizontal gradient as before, the viscous incom-
pressible primitive equations take the shape

(2.34)



∂tv + (u · ∇)v − ∆v + ∇Hπ = 0, in (0, T ) × Ω,
∂zπ = 0, in (0, T ) × Ω,

div u = 0, in (0, T ) × Ω,
v(0) = v0, in Ω.

System (2.34) is completed by boundary conditions. Indeed, v, w and π are
assumed to be periodic on the lateral boundary Γl = ∂G × (a, b), and w is
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supposed to satisfy homogeneous Dirichlet boundary conditions on the lower
and upper boundary Γa := G× {a} and Γb := G× {b}, so w = 0 on Γa ∪ Γb.
Moreover, homogeneous Dirichlet or Neumann boundary conditions on the
upper and lower boundary are usually considered for v. The respective parts
of the boundary are denoted by ΓD and ΓN, respectively. Hence, v = 0 on ΓD
and ∂zv = 0 on ΓN, where ΓD ∈ {∅,Γa,Γb,Γa ∪ Γb} and ΓN = (Γa ∪ Γb) \ ΓD.

The characteristic feature of the primitive equations is that no evolution
equation for w is considered. Instead, due to the typically large horizontal
scales and small vertical scales, the so-called hydrostatic approximation comes
into picture. It reads as ∂zπ = 0.

Next, we comment on some of the consequences of the hydrostatic ap-
proximation on the mathematical analysis. With regard to the homogeneous
boundary conditions of w as well as the divergence free condition, it is possible
to recover w from the horizontal divergence of v by

(2.35) w(xH, z) = w(v)(xH, z) = −
∫ z

a
divH v(xH, ξ) dξ.

As a result of (2.35), the term w∂zv appearing in the nonlinearity u · ∇v
in (2.34) has derivatives in both factors.

In the sequel, we use v to denote the vertical average of v, so

v(·) := 1
b− a

∫ b

a
v(·, ξ) dξ.

In that respect, we also introduce the fracturing part ṽ defined by ṽ := v− v.
In view of the homogeneous Dirichlet boundary conditions of w on the

upper boundary Γb, another consequence of (2.35) is divH v = 0. In other
words, the horizontal divergence of the vertical average of v vanishes.

In the second part of this section, we focus on the hydrostatic Stokes oper-
ator. This operator arises in the study of the hydrostatic Stokes equations

(2.36)


∂tv − ∆v + ∇Hπ = 0, in (0, T ) × Ω,

divH v = 0, in (0, T ) × Ω,
v(0) = v0, in Ω.

With regard to the analysis of (2.36), it is natural to introduce the hydrostatic
solenoidal Lq-functions. The resulting function space is given by the Lq-closure
of the smooth hydrostatic functions. This means that we introduce

(2.37) Lq
σ(Ω) := {v ∈ C∞

per(Ω)2 : divH v = 0}
∥·∥Lq(Ω)

,
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and the subscript per indicates the periodic boundary conditions on the lateral
boundaries for the function spaces C∞

per(Ω) and C∞
per(G). As the classical two-

dimensional Helmholtz projection will be relevant in the following, we also
recall the space of solenoidal vector fields in Lq(G) defined by

Lq
σ(G) = {v ∈ C∞

per(G)2 : divH v = 0}
∥·∥Lq(G)

.

Let us recall the classical two-dimensional Helmholtz projection PH on G, so

PH : Lq(G)2 → Lq
σ(G), with PHv := v − ∇Hπ.

For further information regarding the classical Helmholtz projection, we also
refer to [68, Section 2]. We proceed with the hydrostatic Helmholtz projection

(2.38) Pv := PHv + ṽ.

We observe that P annihilates the pressure in the v-equation, so P(∇Hπ) = 0,
and the space Lq(Ω)2 admits the decomposition

Lq(Ω)2 = Lq
σ(Ω) ⊕

{
∇Hπ : π ∈ Ŵ1,q(G)

}
,

where by Ŵ1,q(G), we denote the functions in L1
loc(G) such that the (horizon-

tal) gradient lies in Lq(G). Let us also refer here to [65, Section 4] as well
as [62, Section 1.5.1] for further details.

For p, q ∈ (1,∞) and s ∈ [0,∞), similarly as in Section 1.3, we define the
Bessel potential spaces with horizontally periodic boundary conditions by

Hs,q
per(Ω) := C∞

per(Ω)
∥·∥Hs,q(Ω) and Hs,q

per(G) := C∞
per(G)

∥·∥Hs,q(G)
,

and the Sobolev-Slobodeckij spaces Ws,q
per and Besov spaces Bs

qp,per with pe-
riodic boundary conditions on the lateral boundary are defined analogously.
For q ∈ (1,∞) and s ∈ [0,∞), we also define

Hs,q
per,b.c.(Ω) :=



{
v ∈ Hs,q

per(Ω)2 : v|ΓD = 0, ∂zv|ΓN = 0
}
, for s ∈ (1 + 1/q, 2],{

v ∈ Hs,q
per(Ω)2 : v|ΓD = 0

}
, for s ∈ (1/q, 1 + 1/q),

Hs,q
per(Ω)2, for s ∈ (0, 1/q),

and Ws,q
per,b.c.(Ω) as well as Bs

qp,per,b.c.(Ω) are defined likewise.
With the hydrostatic Helmholtz projection P from (2.38), we introduce the

hydrostatic Stokes operator

(2.39) Ab.c.v := P∆v, where D(Ab.c.) := W2,q
per,b.c.(Ω) ∩ Lq

σ(Ω).
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In the following, we recall the bounded H∞-calculus of the hydrostatic Stokes
operator and the invertibility in the case ΓD ̸= ∅ from [50, Theorem 3.1]
and [65, Sections 3 and 4], respectively. For the last part of the lemma below,
we refer to [50, Section 4].

Lemma 2.7.1. Let Ab.c. denote the hydrostatic Stokes operator as defined
in (2.39), and consider q ∈ (1,∞) as well as µ ≥ 0.

(a) The operator −Ab.c. + µ admits a bounded H∞-calculus on Lq
σ(Ω) with

H∞-angle ϕ∞
−Ab.c.+µ = 0 if µ > 0.

(b) In the case ΓD ̸= ∅, we even have −Ab.c. ∈ H∞(Lq
σ(Ω)) with ϕ∞

Ab.c.
= 0,

and 0 ∈ ρ(Ab.c.) also holds in this situation.

(c) If ΓD = ∅, then Ab.c. results from the restriction of ∆ to Lq
σ(Ω).

In particular, from the relations in (2.14), we deduce the lemma below.

Lemma 2.7.2. Recall the hydrostatic Stokes operator Ab.c. from (2.39), and
let q ∈ (1,∞) as well as µ ≥ 0.

(a) If µ > 0, then

(i) −Ab.c. + µ ∈ BIP(Lq
σ(Ω)) with power angle θ−Ab.c.+µ = 0,

(ii) −Ab.c. + µ ∈ RS(Lq
σ(Ω)) with ϕR

−Ab.c.+µ = 0 and

(iii) −Ab.c. + µ ∈ S(Lq
σ(Ω)) with ϕ−Ab.c.+µ = 0.

(b) If ΓD ̸= ∅, then the assertions from (a) remain valid for µ = 0.

Combining Lemma 2.7.2(a) with Lemma 2.3.4, the observation that the
shift does not affect the domain, the shape of the complex interpolation
spaces from Lemma 1.3.4 and the interpolation of closed subspaces from
Lemma 1.2.4, we derive the following result on the fractional power spaces
of the hydrostatic Stokes operator. The values 1/2q and 1/2 + 1/2q are avoided
because of the subtlety in the boundary conditions, see also Section 1.3. For
the interpolation of periodic boundary conditions, we refer to [63, Section 4].

Lemma 2.7.3. Let Ab.c. be as in (2.39) as well as q ∈ (1,∞), consider
β ∈ (0, 1) \ {1/2q, 1/2 + 1/2q}, and let µ > 0, or if ΓD ̸= ∅, let µ = 0. Then

D((−Ab.c. + µ)β) ∼= H2β,q
per,b.c.(Ω) ∩ Lq

σ(Ω) ↪→ H2β,q
per (Ω) ∩ Lq

σ(Ω).

69



2. Abstract Theory

Similarly, this time applying Lemma 2.3.10, we also get the following char-
acterization of the higher fractional powers.

Lemma 2.7.4. Recall Ab.c. from (2.39), consider q ∈ (1,∞), and for ΓN = ∅,
let β ∈ [1, 1 + 1/2q), while for ΓD = ∅, let β ∈ [1, 3/2 + 1/2q). Then for µ > 0,
or µ = 0 if ΓN = ∅, it holds that

D((−Ab.c. + µ)β) ∼= H2β,q
per,b.c.(Ω) ∩ Lq

σ(Ω) ↪→ H2β,q
per (Ω) ∩ Lq

σ(Ω).

When considering the resolvent problem associated to (2.36) and taking the
vertical average, we obtain

λv − ∆Hv + ∇Hπ = 1
b− a

· ∂zv

∣∣∣∣
ΓD

and divH v = 0.

An application of divH then yields

(2.40) ∇Hπ = 1
b− a

· ∇H∆−1
H divH · ∂zv

∣∣∣∣
ΓD

.

We also refer to [50, (4.3)] here.
Concerning the linear theory, we also invoke the following relation of the

adjoint of the hydrostatic Stokes operator. For clarity, we denote it by Ab.c.,q.
Let us refer here to [65, Remark 4.5(c)] for a proof.

Lemma 2.7.5. Let q ∈ (1,∞) and recall Ab.c.,q from (2.39). Then the ad-
joint A′

b.c.,q of Ab.c.,q satisfies A′
b.c.,q = Ab.c.,q′, where 1/q + 1/q′ = 1.

The last part of this section is dedicated to the estimate of the bilinear
term appearing in the primitive equations in (2.34). This requires some further
preparation in terms of notation, namely so-called anisotropic function spaces.
For s, t ≥ 0 and 1 ≤ p, q ≤ ∞, we consider the spaces

Wr,q
z Ws,p

xy := Wr,q((a, b); Ws,p(G)), endowed with the norms
∥v∥Wr,q

z Ws,p
xy

:=
∥∥∥∥v(·, z)∥Ws,p(G)

∥∥∥
Wr,q(a,b)

.

This renders the anisotropic function spaces Banach spaces. Hölder inequality
applied independently with respect to z and xH = (x, y) yields

(2.41) ∥fg∥Lq
zLp

xy
≤ ∥f∥Lq1

z Lp1
xy

· ∥g∥Lq2
z Lp2

xy
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for p, p1, p2 as well as q, q1 and q2 with 1/p1 + 1/p2 = 1/p and 1/q1 + 1/q2 = 1/q. In
addition, it proves useful to employ the embedding relations separately in z

and (x, y) to infer that

Wr,q
z Ws,p

xy ↪→ Wr1,q1
z Ws,p

xy , for Wr,q
z (a, b) ↪→ Wr1,q1

z (a, b) and
Wr,q

z Ws,p
xy ↪→ Wr,q

z Ws1,p1
xy , for Ws,p

xy (G) ↪→ Ws1,p1
xy (G).

In the case p = q, it especially follows that Wr+s,q(Ω) ⊂ Wr,q
z Ws,q

xy . The
same relations also hold true if the Sobolev-Slobodeckij spaces are replaced
by Bessel potential spaces.

In a similar manner, for s, t ≥ 0 and 1 ≤ p0, p1, q0, q1 ≤ ∞, we define the
anisotropic Besov spaces by Br

q0p0,zBs
q1p1,xy := Br

q0p0((a, b); Bs
q1p1(G)) and equip

them with the analogous norm as above. Again, the above identities remain
valid. In particular, we have Br+s

qp (Ω) ⊂ Br
qp,zBs

qp,xy.
Now, for the hydrostatic Helmholtz projection P from (2.38), we set

(2.42) F (v1, v2) := P((v1 · ∇H)v2 + w(v1) · ∂zv2), with F (v) := F (v, v).

This is precisely the bilinearity of the primitive equations after applying the
hydrostatic Helmholtz projection. The lemma below addresses the conti-
nuity and resulting Lipschitz estimates of this bilinearity. It is analogous
to [65, Lemma 5.1] or [51, Lemma 6.1]. Let us stress that the latter two are
in different functional analytic set-ups. For convenience, we introduce the
abbreviation Xpe

γ := B2−2/p
qp (Ω)2 ∩ Lq

σ(Ω).

Lemma 2.7.6. Let p, q ∈ (1,∞) be such that 2/p + 1/q < 1, and consider the
bilinearity F from (2.42). Then there is a constant C > 0 such that

(a) ∥F (v)∥Lq
σ

(Ω) ≤ C · ∥v∥2
Xpe

γ
for all v ∈ Xpe

γ , and

(b) for all v1, v2 ∈ Xpe
γ , it is valid that

∥F (v1) − F (v2)∥Lq
σ

(Ω) ≤ C ·
(
∥v1∥Xpe

γ
+ ∥v2∥Xpe

γ

)
· ∥v1 − v2∥Xpe

γ
.

Proof. First, we note that the assertion of (b) readily follows from (a) since

∥F (v1) − F (v2)∥Lq
σ

(Ω) ≤ ∥F (v1, v1 − v2)∥Lq
σ

(Ω) + ∥F (v1 − v2, v2)∥Lq
σ

(Ω)

≤ C ·
(
∥v1∥Xpe

γ
+ ∥v2∥Xpe

γ

)
· ∥v1 − v2∥Xpe

γ
.

By the boundedness of P : Lq(Ω)2 → Lq
σ(Ω) in conjunction with the inclu-

sion Xpe
γ ⊂ B2−2/p

qp (Ω)2, it is sufficient to estimate (v · ∇H)v and w(v) · ∂zv

in Lq(Ω) by ∥v∥2
B2−2/p

qp (Ω)
.
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For this purpose, we deduce from the assumption on p and q the existence
of ε > 0 with 2 − 2/p − ε− 3/q ≥ −3/3q and 2 − 2/p − ε− 3/q ≥ 1 − 2/q. Hence,
the embeddings from (1.4) and (1.6) yield

B2−2/p

qp (Ω) ↪→ B2−2/p−ε
q3q (Ω) ↪→ L3q(Ω) and

B2−2/p

qp (Ω) ↪→ B2−2/p−ε/2
q3q (Ω) ↪→ H1,3q/2+ε/2(Ω) ↪→ W1,3q/2(Ω).

Together with Hölder’s inequality, the latter embeddings lead to

∥(v · ∇H)v∥Lq(Ω) ≤ C1 · ∥v∥L3q(Ω)∥v∥W1,3q/2(Ω) ≤ C2 · ∥v∥2
B2−2/p

qp (Ω)
,

establishing the desired estimate of the first addend.
The treatment of the second addend requires slightly more effort. First, we

make use of Hölder’s inequality in anisotropic spaces (2.41) to obtain

∥w · ∂zv∥Lq(Ω) ≤ ∥w∥L∞
z L2q

xy
· ∥∂zv∥Lq

zL2q
xy
.

In the sequel, we provide separate estimates of the two factors. From the
embedding W1,q(a, b) ↪→ L∞(a, b), Poincaré’s inequality applied to ∂zw thanks
to w = 0 on Γa ∪Γb, the embedding B1−2/p−ε/2

qp (G) ↪→ H1+ε/2,2q(G) ↪→ W1,2q(G),
which follows in a similar way as above, the aforementioned relations of the
anisotropic function spaces and the condition divH v + ∂zw = 0, we conclude

∥w∥L∞
z L2q

xy
≤ C3 · ∥w∥W1,q

z L2q
xy

≤ C4 · ∥∂zw∥Lq
xL2q

xy
≤ C5 · ∥divH v∥Lq

xL2q
xy

≤ C6 · ∥v∥Lq
zW1,2q

xy
≤ C7 · ∥v∥B

ε/2
qp,zB2−2/p−ε/2

qp,xy
≤ C8 · ∥v∥B2−2/p

qp (Ω).

On the other hand, the conditions on p and q again imply that there ex-
ists ε > 0 sufficiently small such that 1−2/p−ε−2/q ≥ −2/2q, so (1.4) and (1.6)
result in B1−2/p−ε/2

qp (G) ↪→ B1−2/p−ε
q2q (G) ↪→ L2q(G). Combining this embedding

and the above relations of the anisotropic function spaces, we get

∥∂zv∥Lq
zL2q

xy
≤ C9 · ∥v∥W1,q

z L2q
xy

≤ C10 · ∥v∥B1+ε/2
qp,z B1−2/q−ε/2

qp,xy
≤ C11 · ∥v∥B2−2/p

qp (Ω).

A concatenation of the previous two estimates finishes the proof.

The following lemma discusses a cancellation law which proves useful when
establishing energy estimates of the primitive equations.

Lemma 2.7.7. Let u = (v, w) be a solution to the primitive equations (2.34),
so v ∈ W2,q

per(Ω) and w = w(v) = 0 on the upper and lower boundary. Then∫
Ω

(u · ∇)v · v d(xH, z) = 0.
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Proof. Making use of div u = 0 as well as the divergence theorem, and in-
voking the periodic boundary conditions and w = 0 on the upper and lower
boundary, we derive∫

Ω
(u · ∇)v · v d(xH, z) = 1

2

∫
Ω

div (|v|2u) d(xH, z) = 1
2

∫
∂Ω

|v|2
(

v
w

)
· ν dS = 0,

for ν denoting the outer normal vector. This proves the claim.
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CHAPTER 3

Analysis of the Fully Parabolic Regularized Hibler Model

This chapter presents the rigorous analysis of the fully parabolic regularized
Hibler model. The first steps for this are the introduction of the model with all
its features, the analysis of the operator emerging from the internal ice stress,
the reformulation as an abstract Cauchy problem as well as the maximal
regularity of the associated linearized operator matrix. In a second step, the
local strong well-posedness and finally also the global strong well-posedness of
a simplified version of the model without external forces and close to constant
equilibria are established. This chapter is essential in this thesis, because it
not only settles the strong well-posedness, but also contains many results on
the linearized operator matrix, especially with regard to the Hibler operator
corresponding to the internal ice stress, and the nonlinear estimates are used
throughout this thesis as well.

The structure of this chapter is as follows. In Section 3.1, we give an
overview of the literature on Hibler’s sea ice model with regard to the model-
ing, simulation, numerical and mathematical analysis. Section 3.2 is dedicated
to introducing the model variables, the stress tensor σ in (3.3) as well as its
regularized version σδ in (3.5), the momentum equations, the balance laws and
finally the complete system in (3.10). The focal point of Section 3.3 is the
analysis of the differential operator related to divH σδ. We briefly elaborate
on the derivation of the operator and then discuss its ellipticity properties.
From there, we also deduce the bounded H∞-calculus in Proposition 3.3.4 and
the maximal regularity as well as further consequences in Corollary 3.3.5. It
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is the purpose of Section 3.4 to rewrite the fully parabolic regularized Hibler
model in operator form in (3.26) so that it fits into the general framework
presented in Section 2.6. Moreover, we discuss the maximal regularity of the
linearized operator matrix in Proposition 3.4.1. Section 3.5 is devoted to es-
tablishing the first main result of this chapter, Theorem 3.5.2, on the local
strong well-posedness by showing estimates of the nonlinear terms and invok-
ing the maximal regularity in order to apply the general local well-posedness
result, Proposition 2.6.1. The last section, Section 3.6, introduces a simplified
model without external forces in (3.35), which is also rewritten as a quasi-
linear abstract Cauchy problem in (3.39). Thereafter, the normal stability of
constant equilibria is shown, leading to the second main result of the chapter,
Theorem 3.6.6, on the global strong well-posedness of the simplified model for
initial data close to such equilibria.

The results obtained in this chapter have partially been obtained in the
master thesis [17] and published in the joint article with Karoline Disser,
Robert Haller-Dintelmann and Matthias Hieber [18]. More precisely, the
derivation and ellipticity properties of Hibler’s operator are studied in de-
tail in [17, Chapter 4 and 5], while the maximal regularity of the linearized
operator matrix, the local strong well-posedness and the global strong well-
posedness can also be found in [18, Section 6 and 7].

3.1. A Short Bibliographic Overview
The large-scale dynamic-thermodynamic viscous-plastic sea ice model under
consideration in this thesis was introduced by William D. Hibler III in the
seminal article [60]. Since then, this model has been used frequently for
describing sea ice on large scales in climate science. For further information
and literature on the role of sea ice models in climate science, we refer to the
preface and the survey article of Hunke, Lipscomb and Turner [72].

One of the main features of Hibler’s model is the underlying rheology, lead-
ing to a description of sea ice as a viscous-plastic material. This is related
to the complex mechanical and thermodynamic behavior of sea ice, resulting
from freezing sea water and consisting of pure ice, liquid brine, air pockets
and solid salt. The precise formation of sea ice is highly dependent on the
laminar or turbulent environmental conditions. In addition to the aforemen-
tioned article by Hibler [60], we also refer to the articles of Feltham [44] and
Golden [52]. A survey of the modeling of sea ice can be found in the overview
paper of Golden et al. [53].
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Even though the rigorous mathematical analysis of Hibler’s sea ice model
has only recently started, there is a plethora of literature on simulation and
numerical analysis by various communities. We do not provide an exhaustive
literature overview here, but we mention the work of Kreyscher et al. [82],
Lemieux and Tremblay [90], Losch and Danilov [98], Bouchat and Trem-
blay [15], Danilov et al. [34], Kimmritz, Danilov and Losch [77], Mehlmann
and Richter [106], Seinen and Khouider [122], Mehlmann [103], Mehlmann and
Korn [105], Mehlmann et al. [104], Yaremchuk and Panteleev [133], Shih [125],
Shih et al. [126] or Bertrand and Schneider [10] as well as the references
therein. In some of the above articles, an elastic-viscous-plastic sea ice model
with additional elasticity is used for the numerical analysis. This model has
been first introduced by Hunke and Dukowicz [71] in order to circumvent the
degeneration of the stress tensor in Hibler’s viscous-plastic model. We discuss
this property of the stress tensor as well as our way to bypass in detail in Sec-
tion 3.2. As demonstrated in [98], the original viscous-plastic sea ice model
and its elastic-viscous-plastic counterpart exhibit a different behavior in terms
of numerical analysis. We also mention the recent article of Ringeisen, Losch
and Tremblay [120] using teardrop and parabolic lens yield curves for the
numerical analysis of viscous-plastic sea ice models.

Concerning the mathematical analysis of Hibler’s model, the first works in
this direction are due to Gray [54] and Guba, Lorenz and Sulsky [55]. In fact,
the authors investigated particular simplified submodels in the context of hy-
perbolic systems and reported ill-posedness. Recently, Chatta, Khouider and
Kesri [25] established the linear well-posedness of one-dimensional viscous-
plastic equations, where the Heaviside function cut-off for the viscosity co-
efficient is replaced by a hyperbolic tangent. The first works to address the
complete system, though employing certain regularizations, are the joint ar-
ticle with Disser, Haller-Dintelmann and Hieber [18] and the paper of Liu,
Thomas and Titi [97]. While the first article uses a common regularization of
the stress tensor as also present in [82] or [105] as well as diffusion terms in the
balance laws for the mean ice thickness and the ice compactness, the second
article relies on a different regularization of the stress tensor, which seems to
be further away from the original viscous-plastic one, and does not include
parabolicity in the balance laws. Moreover, in [18], local strong well-posedness
of the fully parabolic regularized model and global strong well-posedness for
initial data close to constant equilibria in the absence of external forces are
shown by means of the theory of quasilinear evolution equations. On the
other hand, Liu, Thomas and Titi [97] prove local strong well-posedness of
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their model under consideration by a direct approximation.
Let us also mention the recent paper of Piersanti and Temam [111] intro-

ducing and analyzing a model for the thickness evolution of grounded shallow
ice sheet by means of a semi-discrete scheme and the penalty method.

3.2. Introduction of the Model
For the introduction of the model, we follow the article of Hibler [60]. In this
chapter and also in Chapter 6 and Section 7.2, we assume that Ω ⊂ R2 is a
bounded domain with boundary ∂Ω of class C2. Moreover, for T ∈ (0,∞),
we fix a time interval (0, T ). The first model variable is the horizontal sea ice
velocity

vice : (0, T ) × Ω → R2.

The other model variables are the mean ice thickness

h : (0, T ) × Ω → [κ,∞),

where κ > 0 denotes a small parameter, and the ice compactness

a : (0, T ) × Ω → (0, 1).

It describes the horizontal average of area covered by thick ice, where ice is
considered thick if h ≥ h• for some specific h• > 0.

Let us briefly comment on the ranges of the latter two variables. The as-
sumption on h means that the average ice volume per control area is bounded
from below by κ. This amounts to saying that there is at least some sea ice
in each control area, which is also indicated by the variable a only attaining
strictly positive values. At the same time, as a < 1, it is implicit that each
control area is not completely covered by thick ice.

One of the most characteristic features of Hibler’s sea ice model is the stress
tensor with its viscous-plastic rheology, giving rise to a quasilinear degenerate
problem. In the sequel, we introduce this stress tensor. By

ε = ε(vice) = 1
2
(
∇Hvice + (∇Hvice)⊤

)
,

we denote the deformation tensor associated to the horizontal sea ice velocity.
Next, P represents the ice strength, and for given constants p∗, c• > 0, it
takes the explicit shape

(3.1) P = P (h, a) = p∗he−c•(1−a).
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Moreover, e > 1 is the ratio of the major to minor axes of the elliptical yield
curve on which the principle components of the stress lie. We set

△2(ε) :=
(
ε2

11 + ε2
22

) (
1 + 1

e2

)
+ 4
e2 ε

2
12 + 2ε11ε22

(
1 − 1

e2

)
.

The bulk and shear viscosities are then given by

(3.2) ζ(ε, P ) = P (h, a)
2△(ε) and η(ε, P ) = e−2ζ(ε, P ).

The stress tensor σ is constituted by the aforementioned bulk and shear
viscosities, the deformation tensor as well as the ice strength, so

(3.3) σ = 2η(ε, P )ε+ [ζ(ε, P ) − η(ε, P )] tr(ε) Id2 −P

2 Id2,

where Id2 represents the identity matrix in two dimensions.
The bulk and shear viscosities ζ and η from (3.2) exhibit a singularity

for △(ε) tending to zero. Hence, the stress tensor also degenerates even
though the above law describes an idealized viscous-plastic material. With
regard to the rigorous and numerical analysis, this phenomenon calls for a
remedy in a first step. To this end, similarly as in [82] and [105], we set

(3.4) △δ(ε) :=
√
δ + △2(ε)

for δ > 0. Equipped with △δ(ε), we introduce the regularized viscosities

ζδ(ε, P ) := P (h, a)
2△δ(ε)

and ηδ(ε, P ) := e−2ζδ(ε, P ).

For δ > 0, this leads to the regularized stress tensor

(3.5) σδ := 2ηδ(ε, P )ε+ [ζδ(ε, P ) − ηδ(ε, P )] tr(ε) Id2 −P

2 Id2 .

In the sequel, we will assume that the ice density ρice > 0 is constant. The
ice mass mice is given by mice = ρiceh. As in [60], we take into account the
momentum equation of the form “mass times acceleration equals force”, i. e.,

mice
Dvice

Dt = F, with material derivative Dvice

Dt = ∂tvice + (vice · ∇H)vice,

and F represents the forcing term. The latter consists of the internal ice stress
as well as the external forcing terms F ice, so for σ as introduced in (3.3), it
takes the shape

F = divH σ + F ice.
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In the remainder of this thesis, we focus on the regularized version of the
model. Hence, we will replace σ by σδ from (3.5) in the above.

We now discuss the external forcing terms. For a positive Coriolis parame-
ter ccor > 0, the term representing the Coriolis force is given by −miceccorv

⊥
ice,

where v⊥ = (−v2, v1)⊤ for v = (v1, v2) ∈ R2. Besides, for the gravity g

and H : (0, T ) × Ω → [0,∞) denoting the sea surface dynamic height, the
force resulting from the varying sea surface tilt is −miceg∇HH. The remain-
ing external forcing terms are due to atmospheric winds and ocean currents.
Throughout this chapter as well as Chapter 4, Chapter 6 and Section 7.2, we
assume that the atmospheric wind and ocean currents are external, whereas
Chapter 5 is centered around the analysis of a coupled model with internalized
air and ocean velocities. In the sequel, Vatm and Vocn denote the externally
given velocities of the surface winds of the atmosphere and the surface velocity
of the ocean. With the air and ocean drag coefficients Catm and Cocn, the den-
sities for air and sea water ρatm and ρocn as well as the rotation matrices Ratm
and Rocn, the atmospheric wind and ocean force are

(3.6)
τatm = ρatmCatm|Vatm|RatmVatm and

τocn(vice) = ρocnCocn|Vocn − vice|Rocn(Vocn − vice).

The latter two take the shape of drag conditions, where the assumption that
the atmospheric wind velocity Vatm is typically much higher than the sea ice
velocity vice is underlying. For brevity, we also write τice := τatm + τocn(vice).

In summary, the momentum equation investigated in the sequel is given by

(3.7) mice
Dvice

Dt = divH σδ −miceccorv
⊥
ice −miceg∇HH + τice.

The sea ice model is completed by balance laws for the mean ice thickness
and the ice compactness. Before providing these equations, we introduce the
thermodynamic source terms Sh and Sa. For a function fgr ∈ C1

b([0,∞)) de-
scribing the ice growth rate, see for example the one suggested by Hibler [60],
and the parameter κ > 0, the thermodynamic terms take the shape

(3.8)
Sh(h, a) = fgr

(
h

a

)
a+ (1 − a)fgr(0) and

Sa(h, a) =


fgr(0)

κ
(1 − a), if fgr(0) > 0,

0, if fgr(0) < 0,
+

0, if Sh > 0,
a

2h
Sh, if Sh < 0.

For simplicity of the presentation, we assume the ice growth rate fgr to be
independent of time here.

82



3.3. Hibler’s Operator

In this chapter as well as in Chapter 4, Chapter 5 and Section 7.2, we
consider the fully parabolic variant of Hibler’s model as introduced in [60]
for numerical stabilization, while Chapter 6 is dedicated to the study of the
parabolic-hyperbolic problem. Therefore, at this stage, for dh, da > 0 con-
stant, we consider the balance laws

(3.9)

∂th+ divH (viceh) = Sh(h, a) + dh∆Hh,

∂ta+ divH (vicea) = Sa(h, a) + da∆Ha.

The sea ice model consists of the momentum equation as introduced in (3.7)
and the balance laws from (3.9). Furthermore, it is completed by boundary
and initial conditions. More precisely, we assume that vice is subject to ho-
mogeneous Dirichlet boundary conditions, so

vice = 0, on (0, T ) × ∂Ω,

meaning that the sea ice is supposed to be at rest at the boundary. On the
other hand, h and a fulfill Neumann boundary conditions, i. e.,

∂νh = ∂νa = 0, on (0, T ) × ∂Ω.

The initial conditions read as

vice(0) = vice,0, h(0) = h0 and a(0) = a0, on Ω.

Finally, we provide the complete system, referred to as fully parabolic regu-
larized model. Thanks to h ≥ κ, it is valid that mice > 0, and we may divide
the momentum equation by mice. The system is given by

(3.10)



∂tvice + (vice · ∇H)vice = 1
mice

divH σδ − ccorv
⊥
ice

− g∇HH + 1
mice

τice, in (0, T ) × Ω,

∂th+ divH (viceh) = Sh(h, a) + dh∆Hh, in (0, T ) × Ω,
∂ta+ divH (vicea) = Sa(h, a) + da∆Ha, in (0, T ) × Ω,

vice = 0, ∂νh = ∂νa = 0, on (0, T ) × ∂Ω,
vice(0) = vice,0, h(0) = h0, a(0) = a0, in Ω.

3.3. Hibler’s Operator
This section is devoted to the differential operator emerging from the internal
ice stress. Since parts of this section have already been included in the master
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thesis [17], we are rather brief here and refer to [17] for the proofs of some re-
sults. First, we introduce this operator and then investigate its Lq-realization
by discussing ellipticity properties of the principle part and exploiting the
theory on parabolic boundary value problems from Section 2.5.

In order to deduce the shape of the quasilinear second order operator arising
from divH σδ, we introduce a matrix S : R2×2 → R2×2 such that

(3.11) Sε =


(
1 + 1

e2

)
ε11 +

(
1 − 1

e2

)
ε22

1
e2 (ε12 + ε21)

1
e2 (ε12 + ε21)

(
1 − 1

e2

)
ε11 +

(
1 + 1

e2

)
ε22

 .
Upon identifying ε ∈ R2×2 with the vector (ε11, ε12, ε21, ε22)⊤ ∈ R4, the action
of S to ε amounts to the multiplication by the matrix

S =
(
Skl

ij

)
=



1 + 1
e2 0 0 1 − 1

e2

0 1
e2

1
e2 0

0 1
e2

1
e2 0

1 − 1
e2 0 0 1 + 1

e2


.

We then rewrite

(3.12)
△2(ε) = ε⊤Sε =

2∑
i,j,k,l=1

εikSkl
ijεjl

= (ε11 + ε22)2 + 1
e2 (ε11 − ε22)2 + 1

e2 (ε12 + ε21)2 .

With S(ε, P ) := P
2

Sε
△(ε) , the stress tensor σ from (3.3) has the representation

σ(ε, P ) = S(ε, P ) − P

2 Id2 .

Correspondingly, for the regularized situation, we set

(3.13) Sδ = Sδ(ε, P ) := P

2
Sε

△δ(ε)
.

Hibler’s operator is then defined by

AHvice := 1
ρiceh

· divH Sδ = 1
ρiceh

· divH

(
P

2
Sε√

δ + ε⊤Sε

)
.
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Let us observe that the preceding definition of Hibler’s operator slightly de-
viates from its introduction in [18, Section 3] and [17, Chapter 4]. In fact, for
the sake of consistency of notation, we change the sign, and we also include
the term mice = ρiceh in the denominator.

From an application of the product rule and the chain rule together with
the symmetries of S and ε, it follows that AHvice = AH(u)vice takes the shape

(3.14)

(AHvice)i =
2∑

j,k,l=1

P

2ρiceh

1
△δ(ε)

(
Skl

ij − 1
△2

δ(ε)
(Sε)ik(Sε)lj

)
∂kεjl

+ 1
2ρiceh△δ(ε)

2∑
j=1

(∂jP )(Sε)ij

= −
2∑

j,k,l=1

P

2ρiceh

1
△δ(ε)

(
Skl

ij − 1
△2

δ(ε)
(Sε)ik(Sε)jl

)
DkDlvice,j

+ 1
2ρiceh△δ(ε)

2∑
j=1

(∂jP )(Sε)ij,

where i = 1, 2 and Dm = −i∂m, see also [18, Section 3]. A more thorough
derivation of Hibler’s operator can also be found in [17, Chapter 4]. The
coefficients of the principal part of AH are given by

(3.15) akl
ij (ε, P ) := − P

2ρiceh

1
△δ(ε)

(
Skl

ij − 1
△2

δ(ε)
(Sε)ik(Sε)jl

)
.

In the sequel, we will denote the principle variable associated to the sea ice
equations by u = (vice, h, a). For u0 = (vice,0, h0, a0) ∈ C1(Ω)4 with h0 ≥ κ,
the linearized Hibler operator takes the shape

(3.16)
[AH(u0)vice]i =

2∑
j,k,l=1

akl
ij (ε(vice,0), P (h0, a0))DkDlvice,j

+ 1
2ρiceh0△δ(ε(vice,0))

2∑
j=1

(∂jP (h0, a0))(Sε(vice))ij.

Having introduced the Hibler operator AH and its linearization AH(u0), we
now discuss the ellipticity properties from Definition 2.5.1. For a detailed
proof, we refer to [17, Chapter 5], see also [18, Proposition 4.1].

Proposition 3.3.1. Let u0 ∈ C1(Ω)4 be such that h0 ≥ κ. Then for all x ∈ Ω,
the principal part of the negative linearized Hibler operator −AH(u0) as intro-
duced in (3.16) is strongly elliptic and parameter-elliptic of angle ϕ−AH(u0) = 0.
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We emphasize that the statement remains true even though the factor 1/ρiceh0

is included in the present operator in contrast to the definition in [17] or [18].
This is due to the regularity assumptions on u0 as well as the assumption
that h0 is bounded from below, preventing this factor from degenerating.

The following lemma is important for the verification of the Lopatinskii-
Shapiro condition. Again, we do not give a proof here and refer to [17, Sec-
tion 5.3] or [18, Lemma 4.2] instead.

Lemma 3.3.2. Let u0 ∈ C1(Ω)4 be such that h0 ≥ κ, and recall from (3.15)
the coefficients akl

ij (u0) of the principal part of the linearized Hibler opera-
tor AH(u0). Then for x ∈ ∂Ω, ξ, ν ∈ R2 such that |ξ| = |ν| = 1 as well
as (ξ|ν) = 0, and u, v ∈ C2, it holds that

Re
 2∑

i,j,k,l=1
−akl

ij (u0)(ξluj − νlvj)(ξkui − νkvi)
 ≥ 0, and

Re
 2∑

i,j,k,l=1
−akl

ij (u0)(ξluj − νlvj)(ξkui − νkvi)
 > 0, if Im(u|v) ̸= 0.

In particular, the negative Hibler operator is strongly normally elliptic in the
sense of Definition 2.5.3.

The proposition below on the validity of the Lopatinskii-Shapiro condition
for the negative Hibler operator subject to homogeneous Dirichlet boundary
conditions is a consequence of Lemma 3.3.2 together with Lemma 2.5.4, since
Hibler’s operator acts on R2-valued functions.

Proposition 3.3.3. Let u0 ∈ C1(Ω)4 with h0 ≥ κ. Then the principal part of
the negative Hibler operator −AH(u0) subject to homogeneous Dirichlet bound-
ary conditions satisfies the Lopatinskii-Shapiro condition.

After recalling the ellipticity properties of the Hibler operator, we invoke the
resulting Lq-realization. For u0 ∈ C1(Ω)4 with h0 ≥ κ, the Lq-realization of
the linearized Hibler operator AH(u0) subject to Dirichlet boundary conditions
on ∂Ω is defined by

(3.17)

[
AH

D(u0)
]
vice :=

[
AH(u0)

]
vice, with

D(AH
D(u0)) := W2,q(Ω)2 ∩ W1,q

0 (Ω)2.

The next proposition on the bounded H∞-calculus of AH
D(u0) is the starting

point for the further discussion of the Hibler operator and the investigation
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of the local and the global strong well-posedness. Let us observe that the
regularity assumption on u0 is slightly stronger than in the above introduction
of the Lq-realization.

Proposition 3.3.4. Let q ∈ (1,∞), consider u0 ∈ C1,α(Ω)4 for some α > 0,
with h0 ≥ κ, and recall AH

D(u0) from (3.17). Then there exists ω0 ∈ R such
that for all ω > ω0, the shifted operator −AH

D(u0) + ω admits a bounded H∞-
calculus on Lq(Ω)2 with angle ϕ∞

−AH
D(u0)+ω

= 0.

Proof. The proof relies on an application of Proposition 2.5.6, so we need
to verify the smoothness conditions (S) and (S+) as well as the ellipticity
condition (E) from Section 2.5.

First, recalling the shape of the coefficients of the principal part of AH

from (3.15), and invoking the assumptions u0 ∈ C1,α(Ω)4 and h0 ≥ κ, we find
the existence of ρ ∈ (0, 1) such that akl

ij (ε, P ) ∈ BUCρ(Ω) for all i, j, k, l = 1, 2.
Similarly, with regard to (3.16), it follows that the lower order coefficients of
Hibler’s operator AH are in L∞(Ω). The aspect (S)(iii) is satisfied as we con-
sider Dirichlet boundary conditions so that the coefficients of the correspond-
ing boundary differential operator are even constant. Thus, conditions (S)
and (S+) are thus fulfilled.

On the other hand, we have seen in Proposition 3.3.1 that −AH(u0) is in
particular parameter-elliptic with angle ϕAH = 0, whereas Proposition 3.3.3
yields that −AH(u0) subject to Dirichlet boundary conditions on ∂Ω satisfies
the Lopatinskii-Shapiro condition. Hence, condition (E) from Section 2.5 is
also valid, showing the assertion by the above argument.

Next, we collect properties of the negative Lq-realization −AH
D. In fact,

the first two assertions result from Proposition 3.3.4 in conjunction with the
relation of the properties as stated in (2.14). The other second part of (b)
is implied by the characterization of the maximal regularity of Lp-type from
Proposition 2.1.21 joint with the UMD property of Lq(Ω)2 for q ∈ (1,∞) as
well as Lemma 2.1.14 on the link with maximal Lp-regularity. The assertion
of (c) follows from Lemma 2.1.4.

Corollary 3.3.5. Let p, q ∈ (1,∞), and consider u0 ∈ C1,α(Ω)4 for some
α > 0 such that h0 ≥ κ, and consider AH

D(u0) as introduced in (3.17). Then
there is ω0 ∈ R such that for all ω > ω0, it follows that

(a) −AH
D(u0) + ω ∈ BIP(Lq(Ω)2) with θ−AH

D(u0)+ω = 0, and
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(b) −AH
D(u0) + ω ∈ RS(Lq(Ω)2) with ϕR

−AH
D(u0)+ω

= 0.

In particular, we have −AH
D(u0) + ω ∈ 0MRp(Lq(Ω)2). For ω1 ≥ ω0

sufficiently large, we further obtain −AH
D(u0) + ω ∈ MRp(Lq(Ω)2) for

all ω > ω1. In other words, −AH
D(u0) + ω has the property of maximal

Lp-regularity on Lq(Ω)2.

(c) The operator AH
D(u0) generates an analytic semigroup etAH

D(u0) on Lq(Ω)2,
referred to as the Hibler semigroup.

For later use, we comment on the maximal regularity of Hibler’s operator
without making use of the bounded H∞-calculus, and if we merely assume
that u0 ∈ C1(Ω)2 × C(Ω) × C(Ω). We proceed similarly as in the proof
of Proposition 3.3.4, this time applying Proposition 2.5.5. The regularity
assumption on u0 guarantees the validity of (S) with regard to the coefficients
of the Hibler operator as introduced in (3.15), because they depend smoothly
on ε, h and a. This can be summarized in the proposition below.

Proposition 3.3.6. Let p, q ∈ (1,∞) as well as u0 ∈ C1(Ω)2 × C(Ω) × C(Ω)
with h0 ≥ κ, and recall AH

D(u0) from (3.17). Then there exists ω0 ∈ R such
that for every ω > ω0, it follows that −AH

D(u0) + ω ∈ MRp(Lq(Ω)2).

We conclude this section by a small, yet important lemma with regard to
the analysis developed in the following sections.

Lemma 3.3.7. Let q ∈ (1,∞) and u0 ∈ C1,α(Ω)4 for some α > 0 with h0 ≥ κ.
Then for the Lq-linearization AH

D(u0) as defined in (3.17), it holds that

(a) AH
D(u0) has a compact resolvent,

(b) the spectrum σ(AH
D(u0)) as an operator on Lq(Ω)2 is q-independent, and

(c) the spectrum σ(AH
D(u0)) only consists of eigenvalues.

Proof. The compactness of the resolvent is a consequence of Lemma 2.1.6(a)
together with the compact embedding of D(AH

D(u0)) into Lq(Ω)2. In fact,
the Rellich-Kondrachov theorem as recalled in Lemma 1.4.3 implies that the
embedding W2,q(Ω) ↪→ Lq(Ω) is compact, and this is also preserved for the
closed subspace W2,q(Ω) ∩ W1,q

0 (Ω). The assertions of (b) and (c) are then
implied in view of Lemma 2.1.6(b) and (c).
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3.4. Reformulation in Operator Form and Linear
Theory

In this section, we rewrite the complete system of equations from (3.10) as a
quasilinear abstract Cauchy problem. Moreover, we investigate the resulting
linearized operator matrix. For q ∈ (1,∞), we introduce the ground space

(3.18) X0 := Lq(Ω)2 × Lq(Ω) × Lq(Ω).

Moreover, the regularity space takes the shape

(3.19) X1 := W2,q(Ω)2 ∩ W1,q
0 (Ω)2 × W2,q

N (Ω) × W2,q
N (Ω),

where the subscript N indicates Neumann boundary conditions on ∂Ω. For
parameters p ∈ (1,∞) and µ ∈ (1/p, 1] with 2(µ− 1/p) > 1+ 1/q, it then follows
from Lemma 1.3.6 that the trace space Xγ,µ = (X0,X1)µ−1/p,p is given by

(3.20) Xγ,µ = B2(µ−1/p)
qp,D (Ω)2 × B2(µ−1/p)

qp,N (Ω) × B2(µ−1/p)
qp,N (Ω) ↪→ B2(µ−1/p)

qp (Ω)4.

In the above, the subscript D represents homogeneous Dirichlet boundary
conditions on ∂Ω. In view of (3.20) and the embedding (1.8), to guarantee

(3.21) Xγ,µ ↪→ C1,α(Ω)4,

we will consider p, q ∈ (1,∞) and µ ∈ (1/p, 1] with

(3.22) 1
2 + 1

p
+ 1
q
< µ ≤ 1.

Let us observe that (3.22) implies in particular that 2(µ− 1/p) > 1+ 1/q, so the
trace space Xγ,µ incorporates Dirichlet boundary conditions in the component
of vice and Neumann boundary conditions in the h- and a-component.

Next, we define the open subset Vµ ⊂ Xγ,µ by

(3.23) Vµ := {u = (vice, h, a) ∈ Xγ,µ : h > κ and a ∈ (0, 1)} .

By introducing the above set Vµ, we ensure that the mean ice thickness h and
ice compactness a only attain physically reasonable values, and it is guaran-
teed that the terms in (3.10) do not degenerate when dividing by mice.

We are equipped with all the relevant pieces of notation to present the quasi-
linear operator A and the nonlinear right-hand side F . For u ∈ Vµ, recalling
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the Lq-realization of the linearized Hibler operator AH
D(u0) and the Neumann

Laplacian operator ∆N from (2.16), we first define A : Vµ → L(X1,X0) by

(3.24) A(u) :=


−AH

D(u) ∂hP (h,a)
2ρiceh

∇H
∂aP (h,a)

2ρiceh
∇H

0 −dh∆N 0

0 0 −da∆N

 .

We remark that the terms

∂hP (h, a)
2ρiceh

∇H and ∂aP (h, a)
2ρiceh

∇H

result from divH P (h, a) Id2 which has not yet been captured.
Furthermore, for u ∈ Vµ, and recalling τice = τatm + τocn(vice), Sh and Sa

from (3.6) as well as (3.8), we define F : Vµ → X0 by

(3.25) F (u) :=


−(vice · ∇H)vice − ccorv

⊥
ice − g∇HH + 1

ρiceh
τice

−divH (viceh) + Sh(h, a)

−divH (vicea) + Sa(h, a)

 .

In total, for A(u) and F (u) from (3.24) and (3.25), we rewrite the fully
parabolic regularized model (3.10) as the quasilinear abstract Cauchy problem

(3.26)

u
′(t) + A(u(t))u(t) = F (u(t)), for t ∈ (0, T ),

u(0) = u0,

on the ground space X0 from (3.18). Next, we discuss the maximal Lp-
regularity of the linearized operator matrix.

Proposition 3.4.1. Let p, q ∈ (1,∞) and µ ∈ (1/p, 1] satisfy (3.22), u0 ∈ Vµ,
and consider A(u0) as defined in (3.24). Then there exists ω0 ∈ R such that
for all ω > ω0, we have A(u0) + ω ∈ MRp(X0). In other words, A(u0) + ω

has maximal Lp-regularity on X0 for all ω > ω0.

Proof. We collect the properties of the operators on the diagonal of A(u0)
and then use a perturbation argument to derive the desired property for the
complete operator matrix. More precisely, we first use the decomposition

A(u0) := A1(u0) +B(u0), with A1(u0) := diag(−AH
D(u0),−dh∆N,−da∆N)
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and

B(u0) :=


0 ∂hP (h0,a0)

2ρiceh0
∇H

∂aP (h0,a0)
2ρiceh0

∇H

0 0 0

0 0 0

 .

Thanks to the conditions on p, q and µ from (3.22) and u0 ∈ Vµ, we ob-
tain the embedding (3.21) and are thus able to apply Corollary 3.3.5 for the
respective property of the linearized Hibler operator. Additionally recalling
Lemma 2.3.19 for the (shifted) Neumann Laplacian operators, we derive the
existence of ω̃0 with A1(u0) + ω ∈ 0MR(X0) for all ω > ω̃0.

The next step is to show the relative (A1(u0) + ω)-boundedness of B(u0)
for such ω. To this end, recall from (3.1) that

∂hP (h0, a0) = p∗e−c•(1−a0), so ∂hP (h0, a0)
2ρiceh0

= p∗e−c•(1−a0)

2ρiceh0
.

From the embedding (3.21) and the assumption u0 ∈ Vµ, it especially follows
that ∂hP (h0, a0) ∈ L∞(Ω). Additionally, we recall that there is C1 > 0 with

∥h∥W2,q(Ω) ≤ C1 · ∥(−dh∆N + ω)h∥Lq(Ω).

Hence, Hölder’s inequality, the interpolation of Lq(Ω) and W2,q(Ω) as revealed
in Lemma 1.3.4 and Young’s inequality yield

(3.27)

∥∥∥∥∥∂hP (h0, a0)
2ρiceh0

∇Hh

∥∥∥∥∥
Lq(Ω)

≤ C2 · ∥h∥W1,q(Ω)

≤ C3

α
· ∥h∥Lq(Ω) + α

2C1
· ∥h∥W2,q(Ω)

≤ C3

α
· ∥u∥X0 + α

2 · ∥(−dh∆N + ω)h∥Lq(Ω)

≤ C3

α
· ∥u∥X0 + α

2 · ∥(A1(u0) + ω)u∥X0

for u ∈ X1, and for every α > 0. Concerning the other term in B(u0), an
analogous argument can be used, so for every α > 0, there is C > 0 with

∥B(u0)u∥X0 ≤ α · ∥(A1(u0) + ω)u∥X0 + C · ∥u∥X0

for all u ∈ X1. By the above property of A1(u0) and Corollary 2.1.23, there
exists a possibly larger ω0 ∈ R such that for all ω > ω0, we have

A(u0) + ω = A1(u0) +B(u0) + ω ∈ MRp(X0).

Thus, A(u0)+ω has the property of maximal Lp-regularity for all ω > ω0.
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3.5. Local Strong Well-Posedness
In this section, we present the first main result of this thesis, namely the local
strong well-posedness of the fully parabolic regularized model from (3.10).
For this, we first collect some assumptions on the external forcing terms.

Assumption 3.5.1. Let q ∈ (1,∞). We make the following assumptions on
the external forcing terms.

(a) The wind velocity at the surface Vatm and the ocean velocity Vocn have
the property that Vatm, Vocn ∈ L2q(Ω)2.

(b) The sea surface dynamic height H satisfies ∇HH ∈ Lq(Ω)2.

(c) The ice growth rate fgr fulfills fgr ∈ C1
b([0,∞)).

The terms in Assumption 3.5.1 are considered independent of time. It is a
straightforward task to include time-dependence and adjust the assumptions
accordingly. However, for simplicity of the presentation, we do not deal with
this aspect here.

The following result not only captures the local strong well-posedness, but
it also presents several other features of the emerging strong solution such as
the continuous dependence on the initial data, the instantaneous smoothing
in time or the characterization of the maximal time interval of existence of
the solution.

Theorem 3.5.2. Let p, q ∈ (1,∞) and µ ∈ (1/p, 1] be such that (3.22) holds
true, let u0 ∈ Vµ, where Vµ is as defined in (3.23), suppose that the external
terms Vatm, Vocn, H and fgr satisfy Assumption 3.5.1, and recall X0, X1 as
well as Xγ,µ from (3.18), (3.19) and (3.20).

Then there exist T = T (u0) > 0 and r = r(u0) > 0 with BXγ,µ(u0, r) ⊂ Vµ

such that the quasilinear abstract Cauchy problem (3.26) associated to sea ice,
i. e., the fully parabolic regularized model as in (3.10), has a unique solution

u(·, u1) ∈ W1,p
µ (0, T ; X0) ∩ Lp

µ(0, T ; X1) ∩ C([0, T ];Vµ) =: E1,µ ∩ C([0, T ];Vµ)

for every initial value u1 ∈ BXγ,µ(u0, r). In addition, the solution has the
following properties.

(a) There is C = C(u0) > 0 such that

∥u(·, u1) − u(·, u2)∥E1,µ ≤ C · ∥u1 − u2∥Xγ,µ

for all u1, u2 ∈ BXγ,µ(u0, r). This means that the solution depends con-
tinuously on the initial data.
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(b) For every δ > 0, we obtain

u ∈ E1(δ, T ) = W1,p(δ, T ; X0) ∩ Lp(δ, T ; X1) ↪→ C([δ, T ]; Xγ),

so the solution regularizes instantly in time.

(c) The existence of the solution u = u(u0) is guaranteed on a maximal time
interval J(u0) = [0, t+(u0)), where t+(u0) is characterized by

(i) global existence, i. e., t+(u0) = ∞,
(ii) lim inf

t→t+(u0)
distXγ,µ(u(t), ∂Vµ) = 0, or

(iii) lim
t→t+(u0)

u(t) does not exist in Xγ,µ.

Proof. The proof relies on an application of Proposition 2.6.1. With regard
to the maximal Lp-regularity result, Proposition 3.4.1, for ω > ω0 and u ∈ Vµ,
we first introduce the shifted operator matrix and right-hand side given by

Aω(u) := A(u) + ω Id4 and Fω(u) := F (u) + ωu,

where A(u) and F (u) have been defined in (3.24) and (3.25), respectively.
Solving (3.26) is now equivalent to treatingu

′(t) + Aω(u(t))u(t) = Fω(u(t)), for t ∈ (0, T ),
u(0) = u0.

Proposition 3.4.1 yields that Aω(u0) ∈ MRp(X0), i. e., Aω(u0) has maximal
Lp-regularity on X0.

In order to make use of Proposition 2.6.1, it remains to verify that the opera-
tor matrix and right-hand side (Aω, Fω) : Vµ → L(X1,X0)×X0 satisfy suitable
Lipschitz estimates. In view of Remark 2.6.2, let r > 0 with BXγ,µ(u0, r) ⊂ Vµ,
and consider u1, u2 ∈ BXγ,µ(u0, r) as well as w = (vice, h, a) ∈ X1. Concern-
ing Aω, it follows that

∥Aω(u1)w − Aω(u2)w∥X0

≤
∥∥∥(AH

D(u1) − AH
D(u2)

)
vice

∥∥∥
Lq(Ω)

+
∥∥∥∥∥
(
∂hP (h1, a1)

2ρiceh1
− ∂hP (h2, a2)

2ρiceh2

)
∇Hh

∥∥∥∥∥
Lq(Ω)

+
∥∥∥∥∥
(
∂aP (h1, a1)

2ρiceh1
− ∂aP (h2, a2)

2ρiceh2

)
∇Ha

∥∥∥∥∥
Lq(Ω)

.

In the sequel, we denote by AH
D,# the principal part of the Lq-realization

of the linearized Hibler operator. Moreover, recalling the coefficients of the
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3. Analysis of the Fully Parabolic Regularized Hibler Model

linearized Hibler operator from (3.15), and invoking u1, u2 ∈ Vµ, we observe
that the coefficients akl

ij (εm, Pm) := akl
ij (ε(vice,m), hm, am) depend in a smooth

way on εm := ε(vice,m), hm and am, where m = 1, 2. Therefore, Hölder’s
inequality, the mean value theorem, the embedding (3.21) and u1, u2 ∈ Vµ

imply the existence of constants Ci > 0, i ∈ {1, 2}, such that

(3.28)

∥∥∥(AH
D,#(u1) − AH

D,#(u2)
)
vice

∥∥∥
Lq(Ω)

≤ max
i,j,k,l=1,2

∥∥∥akl
ij (ε1, P1) − akl

ij (ε2, P2)
∥∥∥

L∞(Ω)
· ∥vice∥W2,q(Ω)

≤ C1 · ∥(ε1, h1, a1) − (ε2, h2, a2)∥L∞(Ω) · ∥w∥X1

≤ C2 · ∥u1 − u2∥Xγ,µ · ∥w∥X1 .

Similarly, we find that the remaining part of Hibler’s operator and the off-
diagonal terms in Aω(ui) satisfy Lipschitz estimates. In total, we conclude
that Aω : Vµ → L(X1,X0) is indeed valid. On the other hand, we deduce that
for every r > 0 with BXγ,µ(u0, r) ⊂ Vµ, there exists CA > 0 with

(3.29) ∥Aω(u1)w − Aω(u2)w∥X0 ≤ CA · ∥u1 − u2∥Xγ,µ · ∥w∥X1

for all u1, u2 ∈ BXγ,µ(u0, r) and w ∈ X1.
Next, we deal with the Lipschitz estimates of Fω, and we will estimate all

terms separately. As above, we restrict ourselves to the case of sufficiently
small r > 0 such that BXγ,µ(u0, r) ⊂ Vµ and consider u1, u2 ∈ BXγ,µ(u0, r).
For small α > 0, as in (3.21), we deduce from condition (3.22) on p, q and µ

and the embedding in (1.8) that

(3.30) Xγ,µ ↪→ B2(µ−1/p)
qp (Ω)4 ↪→ C1,α(Ω)4 ↪→ L∞(Ω)4 ∩ W1,q(Ω)4.

Therefore, we first get by Hölder’s inequality the estimate

∥(vice,1 · ∇H)vice,1 − (vice,2 · ∇H)vice,2∥Lq(Ω)

≤ ∥((vice,1 − vice,2) · ∇H)vice,1∥Lq(Ω) + ∥(vice,2 · ∇H)(vice,1 − vice,2)∥Lq(Ω)

≤ ∥vice,1 − vice,2∥L∞(Ω) · ∥vice,1∥W1,q(Ω) + ∥vice,2∥L∞(Ω) · ∥vice,1 − vice,2∥W1,q(Ω)

≤ C3 ·
(
∥u1∥Xγ,µ + ∥u2∥Xγ,µ

)
· ∥u1 − u2∥Xγ,µ

≤ C4 ·
(
r + ∥u0∥Xγ,µ

)
· ∥u1 − u2∥Xγ,µ

for constants C3, C4 > 0. Recalling that divH (viceh) = vice · ∇Hh+ hdivH vice,
we find corresponding Lipschitz estimates of divH (viceh) and divH (vicea) in a
completely analogous way. Thanks to Xγ,µ ↪→ X0, for C5 > 0, we also obtain∥∥∥(−ccorv

⊥
ice,1, 0, 0)⊤ + ωu1 − (−ccorv

⊥
ice,1, 0, 0)⊤ − ωu2

∥∥∥
X0

≤ C5 · ∥u1 − u2∥Xγ,µ .
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Let us observe that the term −g∇HH does not depend on ui. On the other
hand, Assumption 3.5.1(b) yields that −g∇HH ∈ Lq(Ω)2.

Next, thanks to u1, u2 ∈ Vµ and the mean value theorem in conjunction
with the above embedding (3.30), we find constants C6, C7 > 0 such that

(3.31)
∥∥∥∥∥ 1
ρiceh1

− 1
ρiceh2

∥∥∥∥∥
L∞(Ω)

≤ C6 · ∥h1 − h2∥L∞(Ω) ≤ C7 · ∥u1 − u2∥Xγ,µ .

The shape of τatm from (3.6) and (3.31) joint with Assumption 3.5.1(a) imply∥∥∥∥∥
(

1
ρiceh1

− 1
ρiceh2

)
τatm

∥∥∥∥∥
Lq(Ω)

≤ C8 · ∥u1 − u2∥Xγ,µ .

For τocn as introduced in (3.6), setting cocn := ∥Vocn∥L2q(Ω) < ∞ thanks to
Assumption 3.5.1(a), and employing Hölder’s and Young’s inequality as well
as the embedding (3.30), which yields in particular Xγ,µ ↪→ L2q(Ω)2, we get

(3.32)

∥τocn(vice,i)∥Lq(Ω) ≤ C9 · ∥Vocn − vice∥2
L2q(Ω)

≤ C10 ·
(
∥Vocn∥2

L2q(Ω) + ∥vice,i∥2
L2q(Ω)

)
≤ C11 ·

(
c2

ocn + ∥ui∥2
Xγ,µ

)
≤ C12 ·

(
c2

ocn + r2 + ∥u0∥2
Xγ,µ

)
.

Similar arguments together with u1, u2 ∈ Vµ result in

(3.33)

∥∥∥∥∥ 1
ρicehi

(τocn(vice,1) − τocn(vice,2))
∥∥∥∥∥

Lq(Ω)

≤ C13 · ∥(τocn(vice,1) − τocn(vice,2)∥Lq(Ω)

≤ C14 ·
(
cocn + r + ∥u0∥Xγ,µ

)
· ∥u1 − u2∥Xγ,µ .

Hence, a concatenation of (3.31), (3.32) and (3.33) leads to∥∥∥∥∥ 1
ρiceh1

τocn(vice,1) − 1
ρiceh2

τocn(vice,2)
∥∥∥∥∥

Lq(Ω)
≤ C15

(
r, ∥u0∥Xγ,µ

)
· ∥u1 − u2∥Xγ,µ .

It remains to estimate the thermodynamic terms Sh(h, a) and Sa(h, a)
from (3.8). By u1, u2 ∈ Vµ, Assumption 3.5.1(c) and the mean value the-
orem, we first get

(3.34)

∥Sh(h1, a1) − Sh(h2, a2)∥Lq(Ω)

≤ C16 · ∥u1 − u2∥Xγ,µ +
∥∥∥∥∥fgr

(
h1

a1

)
− fgr

(
h2

a2

)∥∥∥∥∥
L∞(Ω)

· ∥u1∥Xγ,µ

≤ C17
(
r, ∥u0∥Xγ,µ

)
· ∥u1 − u2∥Xγ,µ .
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3. Analysis of the Fully Parabolic Regularized Hibler Model

As r > 0 is assumed to be small enough, we may suppose that Sh(hi, ai) > 0
or Sh(hi, ai) < 0 for i = 1, 2. Consequently, with regard to the shape of Sa,
the above estimate (3.34) as well as u1, u2 ∈ Vµ and the estimate∥∥∥∥ a1

2h1
Sh(h1, a1) − a2

2h2
Sh(h2, a2)

∥∥∥∥
Lq(Ω)

≤
∥∥∥∥ a1

2h1
(Sh(h1, a1) − Sh(h2, a2))

∥∥∥∥
Lq(Ω)

+
∥∥∥∥( a1

2h1
− a2

2h2

)
Sh(h2, a2)

∥∥∥∥
Lq(Ω)

,

we conclude

∥Sa(h1, a1) − Sa(h2, a2)∥Lq(Ω) ≤ C18
(
r, ∥u0∥Xγ,µ

)
· ∥u1 − u2∥Xγ,µ .

In total, putting together the above arguments and estimates, we infer the
validity of Fω : Vµ → X0. Besides, for every r > 0 sufficiently small such
that BXγ,µ(u0, r) ⊂ Vµ, there exists CF (r, ∥u0∥Xγ,µ) > 0 with

∥Fω(u1) − Fω(u2)∥X0
≤ CF

(
r, ∥u0∥Xγ,µ

)
· ∥u1 − u2∥Xγ,µ .

The main assertion of the theorem as well as (a) and (b) are then implied by
Proposition 2.6.1, where for the sufficiency of the previous Lipschitz estimates,
we also refer to Remark 2.6.2. Finally, the assertion in (c) is a result of
Corollary 2.6.3.

3.6. Global Strong Well-Posedness close to
Constant Equilibria

After elaborating on the local strong well-posedness of (3.10), it is natural to
ask for results which are global-in-time. As we shall see in the sequel, when
assuming the external forces to vanish, we obtain global strong well-posedness
for initial data close to constant equilibria.

More precisely, we investigate the situation when there are no forces due to
the changing sea surface height, the atmospheric wind and the ocean currents,
so we assume

−g∇HH = τatm = τocn = 0.

We also concentrate on the situation without thermodynamic effects, i. e.,

Sh = Sa = 0.
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The resulting simplified fully parabolic regularized model reads as

(3.35)



∂tvice + (vice · ∇H)vice = 1
mice

divH σδ − ccorv
⊥
ice, in (0, T ) × Ω,

∂th+ divH (viceh) = dh∆Hh, in (0, T ) × Ω,
∂ta+ divH (vicea) = da∆Ha, in (0, T ) × Ω,

vice = 0, ∂νh = ∂νa = 0, on (0, T ) × ∂Ω,
vice(0) = vice,0, h(0) = h0, a(0) = a0, in Ω.

Next, we rewrite (3.35) as a quasilinear evolution equation on the ground
space X0 as introduced in (3.18). With regard to Proposition 2.6.5, we restrict
ourselves to the setting without time weights, meaning that we focus on the
case µ = 1. As a consequence, we will denote the trace space by Xγ = Xγ,1.
For X0 and X1 from (3.18) and (3.19), respectively, and for 2 − 2/p > 1 + 1/q,
it follows from (3.20) that the trace space is given by

(3.36) Xγ = (X0,X1)1−1/p,p = B2−2/p

qp,D (Ω)2 × B2−2/p

qp,N (Ω) × B2−2/p

qp,N (Ω),

with the meaning of the subscripts as explained after (3.20). Besides, we
denote the open set by V := V1, and V1 has been defined in (3.23). For
convenience, we also recall the condition on p, q ∈ (1,∞) resulting from in
the case µ = 1. It takes the shape

(3.37) 1
p

+ 1
q
<

1
2

and especially implies 2 − 2/p > 1 + 1/q.
Similarly as in (3.25) for the complete model, we define Fs : V → X0 by

(3.38) Fs(u) :=


−(vice · ∇H)vice − ccorv

⊥
ice

−divH (viceh)

−divH (vicea)

 .

For A : V → L(X1,X0) as defined in (3.24), the quasilinear abstract Cauchy
problem associated to (3.35) is given by

(3.39)

u
′(t) + A(u(t))u(t) = Fs(u(t)), for t ∈ (0, T ),

u(0) = u0.
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3. Analysis of the Fully Parabolic Regularized Hibler Model

We will denote the set of equilibrium solutions to (3.39), or, equivalently,
to (3.35), by E . This set is given by

E := {u ∈ V ∩ X1 : A(u)u = Fs(u)} .

Considering h∗ > κ as well as a∗ ∈ (0, 1) constant in time and space, and
inserting u∗ = (0, h∗, a∗) ∈ V ∩ X1 into the operator matrix A(u) from (3.24)
as well as into Fs(u) from (3.38), we find that A(u∗)u∗ = 0 = Fs(u∗). This is
summarized in the following lemma.

Lemma 3.6.1. Let u∗ = (0, h∗, a∗), where h∗ > κ and a∗ ∈ (0, 1) are constant
in time and space. Then u∗ ∈ E, i. e., u∗ is an equilibrium solution to (3.39),
or, equivalently, to (3.35).

Concerning the investigation of equilibria u∗ of the above shape, we aim
for an application of the generalized principle of linearized stability from Sec-
tion 2.6. For this purpose, we need to calculate the total linearization of the
problem given by

A0u = A(u∗)u+ (A′(u∗)u)u∗ − F ′
s(u∗)u

for u ∈ X1 in the present case. Before, in order to simplify the notation, we
introduce the terms

(3.40)

P∗ := P (h∗, a∗)
2ρiceh∗

= p∗e−c•(1−a∗)

2ρice
,

Ph,∗ := ∂hP (h∗, a∗)
2ρiceh∗

= p∗e−c•(1−a∗)

2ρiceh∗
and

Pa,∗ := ∂aP (h∗, a∗)
2ρiceh∗

= c•p
∗e−c•(1−a∗)

2ρice
.

Lemma 3.6.2. Let p, q ∈ (1,∞) be such that (3.37) holds true, and recall A
and Fs from (3.24) and (3.38). Then (A,Fs) ∈ C1(V ; L(X1,X0) × X0), and
for u ∈ X1, the total linearization is given by

(3.41) A0u =


−AH

D(u∗)vice + ccorv
⊥
ice + Ph,∗∇Hh+ Pa,∗∇Ha

−dh∆Nh+ h∗divH vice

−da∆Na+ a∗divH vice

 .
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Proof. Let us first observe that Fs from (3.38) consists of bilinear terms
and the linear term −ccorv

⊥
ice. Thus, it follows that Fs : V → X0 is Fréchet

differentiable. In view of the shape of u∗ = (0, h∗, a∗) with h∗ > κ as well
as a∗ ∈ (0, 1) constant in time and space, for u ∈ X1, we find that

(3.42) F ′
s(u∗)u =


−ccorv

⊥
ice

−h∗divH vice

−a∗divH vice

 .

Next, with regard to A(u∗), we insert u∗ of the above shape into (3.24) and
use Ph,∗ and Pa,∗ from (3.40) to obtain

(3.43) A(u∗)u =


−AH

D(u∗)vice + Ph,∗∇Hh+ Pa,∗∇Ha

−dh∆Nh

−da∆Na


for u ∈ X1. Concerning the h- and a-component in the operator matrix A,
the Fréchet differentiability is immediate as −dh∆N and −da∆N are linear
operators. For the terms appearing in the equation of vice, we recall the shape
of Hibler’s operator AH

D from Section 3.3 and argue that the dependence of the
coefficients on ε(vice), h and a is smooth thanks to the latter variables being
contained in V so that the operator does not degenerate. In total, it follows
that A is also Fréchet differentiable. The shape of u∗ = (0, h∗, a∗), with h∗

and a∗ constant in time and space, then yields that (A′(u∗)u)u∗ = 0.
Concatenating the latter observation with (3.42) and (3.43), we recover the

shape of A0 as asserted in (3.41).

In the following, we verify that u∗ as in Lemma 3.6.1 are normally stable
equilibria in the sense of Definition 2.6.4. We start with spectral properties
of the linearized Hibler operator AH

D(u∗) and the total linearization A0.

Lemma 3.6.3. Consider u∗ = (0, h∗, a∗), where h∗ > κ and a∗ ∈ (0, 1) are
constant in time and space, and recall the linearized Hibler operator AH

D(u∗)
from (3.17) and the total linearization A0 around u∗ from (3.41). Then

(a) we have 0 ∈ ρ(AH
D(u∗)), s(AH

D(u∗)) < 0 and −AH
D(u∗) ∈ MRp(Lq(Ω)2),

(b) the operator A0 has a compact resolvent on X0. In particular, the spec-
trum of A0 is q-independent and only consists of eigenvalues, and
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(c) it holds that σ(A0) \ {0} ⊂ C+ and N(A0) = {0} × R × R.

Proof. The shape of u∗ implies u∗ ∈ C1,α(Ω) for α > 0 and h∗ ≥ κ. Therefore,
Corollary 3.3.5(b) and Lemma 2.1.15 lead to −AH

D(u∗) + ω ∈ 0MRp(Lq(Ω)2)
for all ω > s(AH

D(u∗)). Moreover, by virtue of Lemma 3.3.7, the spec-
trum σ(AH

D(u∗)) is q-independent and only consists of eigenvalues. Hence,
for vice ∈ D(AH

D(u∗)), it is sufficient to consider the eigenvalue equation
for AH

D(u∗) which reads as

(3.44) λvice − AH
D(u∗)vice = 0.

Before proceeding, we first elaborate on the precise shape of AH
D(u∗). Recalling

the coefficients akl
ij (ε, P ) from (3.15), we find by the shape of u∗ that

(3.45) −AH
D(u∗)vice = − P∗√

δ

2∑
j,k,l=1

Skl
ij∂k∂lvice,j.

Now, as a further preparation, we test (3.45) by vice, integrate by vector
parts, where we invoke the Dirichlet boundary conditions of vice, and redis-
cover △2(∇Hvice) as introduced in (3.12) to get

−
∫

Ω
AH

D(u∗)vice · vice dxH = − P∗√
δ

2∑
i,j,k,l=1

∫
Ω
Skl

ij∂k∂lvice,jvice,i dxH

= P∗√
δ

2∑
i,j,k,l=1

∫
Ω
Skl

ij∂kvice,i∂lvice,j dxH

= P∗√
δ

∫
Ω

△2(∇Hvice) dxH.

By the shape of △2(∇Hvice), we find the estimate

△2(∇Hvice) ≥ 1
e2 · |ε(vice)|2.

Together with Korn’s inequality, see Lemma 1.4.2, and Poincaré’s inequality
as stated in Lemma 1.4.1, the latter inequality leads to

P∗√
δ

∫
Ω

△2(∇Hvice) dxH ≥ C1√
δ

∫
Ω

|ε(vice)|2 dxH

≥ C2√
δ

· ∥∇Hvice∥2
L2(Ω)

≥ C3√
δ

· ∥vice∥2
H1(Ω).
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In summary, for some constant C4(δ) > 0, we have

(3.46) −
∫

Ω
AH

D(u∗)vice · vice dxH ≥ C4(δ) · ∥vice∥2
H1(Ω).

Consequently, testing equation (3.44) by vice, for C4(δ) > 0, we conclude

0 = λ∥vice∥2
L2(Ω) −

∫
Ω
AH

D(u∗)vice · vice dxH ≥ λ∥vice∥2
L2(Ω) + C4(δ) · ∥vice∥2

H1(Ω).

It follows that λ ∈ R and vice = 0 if λ = 0, so 0 ∈ ρ(AH
D(u∗)). If on the

other hand vice ̸= 0, then λ < 0. Thus, the spectral bound of the L2(Ω)2-
realization of AH

D(u∗) is negative. With regard to the q-independence of the
spectrum, this carries over to every q ∈ (1,∞), i. e., we get s(AH

D(u∗)) < 0. In
particular, the argument from the beginning of the proof and Lemma 2.1.15
imply −AH

D(u∗) ∈ MRp(Lq(Ω)2), finishing the proof of (a).
As in the proof of Lemma 3.3.7, we use the Rellich-Kondrachov theorem

from Lemma 1.4.3 to argue that the embedding of X1 = D(A0) from (3.19)
into X0 from (3.18) is compact, so the compactness of the resolvent of A0
follows from Lemma 2.1.6(a). The q-independence of the spectrum as well
as the fact that the latter only consists of eigenvalues are then a result of
Lemma 2.1.6(b) and (c). This shows the assertion of (b).

Thanks to (b), for u ∈ D(A0), it is sufficient to consider the eigenvalue
equation

(3.47) λu+ A0u = 0

in order to determine the spectrum. Similarly as in the proof of (a), we start
with the L2-case which then extends to general q by (b). First, we set

c1 := Ph,∗

h∗
> 0, c2 := Pa,∗

a∗
> 0 and ũ :=

(
vice, c

1/2
1 h, c

1/2
2

)
.

Let us observe that∫
Ω
u⊤ · (vice, c1h, c2a)⊤ dxH = ∥ũ∥2

L2(Ω).

Moreover, we have v⊥
ice · vice = 0. An integration by parts based on the

Neumann boundary conditions of h and a leads to

(3.48)
−
∫

Ω
dh∆Nh · c1h dxH = dhc1 · ∥∇Hh∥2

L2(Ω) and

−
∫

Ω
da∆Na · c2a dxH = dac2 · ∥∇Ha∥2

L2(Ω).
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Testing the eigenvalue equation (3.47) by (vice, c1h, c2a), and integrating by
vector parts, additionally invoking the preceding relations, we obtain

(3.49)

0 = λ∥ũ∥2
L2(Ω) −

∫
Ω
AH

D(u∗)vice · vice dxH

+ Ph,∗

∫
Ω

∇Hh · vice dxH + Pa,∗

∫
Ω

∇Ha · vice dxH

+ dhc1 · ∥∇Hh∥2
L2(Ω) + c1h∗

∫
Ω
h · divH vice dxH

+ dac2 · ∥∇Ha∥2
L2(Ω) + c2a∗

∫
Ω
a · divH vice dxH.

Now, we treat the terms (3.49) separately. Let us observe that we already
treated the term related to the linearized Hibler operator in (3.46). Another
integration by parts as well as the shape of c1 imply that

Ph,∗

∫
Ω

∇Hh ·vice dxH +c1h∗

∫
Ω
h ·divH vice dxH = (Ph,∗ − c1h∗)

∫
Ω

∇Hh ·vice dxH

equals zero, and likewise

Pa,∗

∫
Ω

∇Ha · vice dxH + c2a∗

∫
Ω
a · divH vice dxH = 0.

Plugging these estimates and identities back into (3.49), we infer the existence
of C5(δ) > 0 such that

(3.50) 0 ≥ λ∥ũ∥2
L2(Ω) + C5(δ) ·

(
∥vice∥2

H1(Ω) + ∥∇Hh∥2
L2(Ω) + ∥∇Hh∥2

L2(Ω)

)
.

It follows from (3.50) that λ ∈ R as well as λ ≤ 0. In conjunction with
the q-independence of the spectrum of A0 by (b), we get σ(A0) \ {0} ⊂ C+.
For λ = 0 in (3.50), we can determine N(A0). In fact, it follows that vice = 0,
and h and a are constant, completing the proof of (c).

The next lemma investigates the shape of the set of equilibria E .

Lemma 3.6.4. Let p, q ∈ (1,∞) be such that (3.37) holds true, and consider
an equilibrium u∗ = (0, h∗, a∗), where h∗ > κ and a∗ ∈ (0, 1) are constant
in time and space. Near u∗, the set of equilibria E is a C1-manifold in X1.
Moreover, the tangent space of E at u∗ is isomorphic to N(A0).

Proof. Let u = (vice, h, a) ∈ V ∩ X1 be an equilibrium with ∥u − u∗∥Xγ < r

for given r > 0. Then u satisfies A(u)u = Fs(u). For the presentation below,
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it is advantageous to multiply the respective first equation by 2ρiceh. The
resulting set of equations satisfied by u is given by

(3.51) 0 =


2ρiceh(−AH

D(u) + (vice · ∇H)vice + ccorv
⊥
ice) + ∇HP (h, a)

−dh∆Nh+ divH (viceh)

−da∆Na+ divH (vicea)

 .

The idea is again to test (3.51) by a suitable test function. In the sequel,
we calculate and estimate some terms as a preparation. First, let us observe
that u ∈ V with ∥u− u∗∥Xγ < r especially yields

(3.52) P (h, a) ≥ p∗κe−c• =: P∗∗ > 0 and 1
△δ(ε(vice))

≥ 1√
δ + cer2

for some constant ce > 0. Hence, recalling the shape of Hibler’s operator
from (3.17), see also (3.16), using an integration by parts along with the
Dirichlet boundary conditions of vice, invoking the shape of △2(ε) = ε⊤Sε
from (3.12), and exploiting the above inequalities from (3.52), we find

−
∫

Ω
2ρicehA

H
D(u)vice · vice dxH = −

∫
Ω

divH

(
P (h, a) Sε

△δ(ε)

)
· vice dxH

=
∫

Ω
P (h, a)ε(vice)⊤Sε(vice)

△δ(ε(vice))
dxH

≥ P∗∗√
δ + cer2

∫
Ω
ε(vice)⊤Sε(vice) dxH

≥ P∗∗(1 − 1/e2)√
δ + cer2 · ∥ε(vice)∥2

L2(Ω).

Additionally using Korn’s and Poincaré’s inequality from Lemma 1.4.2 and
Lemma 1.4.1, for some constants C1, C2 > 0, we derive the estimate

(3.53)
−
∫

Ω
2ρicehA

H
D(u)vice · vice dxH ≥ C1√

δ + cer2 · ∥∇Hvice∥2
L2(Ω)

≥ C2√
δ + cer2 · ∥vice∥2

H1(Ω).

Next, Hölder’s inequality and the trace space embedding (3.21) joint with the
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shape of the equilibrium u∗ = (0, h∗, a∗) and ∥u− u∗∥Xγ < r yield

(3.54)

2ρice

∫
Ω
h(vice · ∇H)vice · vice dxH

≤ C3 · ∥h∥L∞(Ω) · ∥∇Hvice∥L∞(Ω) · ∥vice∥2
L2(Ω)

≤ C4 ·
(
h∗ + ∥h− h∗∥L∞(Ω)

)
· ∥vice∥C1(Ω) · ∥vice∥2

H1(Ω)

≤ C5 · (1 + r) · r · ∥vice∥2
H1(Ω)

for some constant C5 > 0. Next, we define c1 := 2ρicePh,∗ and c2 := 2ρicePa,∗.
Adding and subtracting suitable terms, we then compute

(3.55)

∫
Ω

∇HP (h, a) · vice dxH

=
∫

Ω
(∂hP (h, a) − c1h)∇Hh · vice dxH + c1

∫
Ω
h∇Hh · vice dxH

+
∫

Ω
(∂aP (h, a) − c2a)∇Ha · vice dxH + c2

∫
Ω
a∇Ha · vice dxH.

From (3.55) and an integration by parts, it follows that

(3.56)

∫
Ω

∇HP (h, a) · vice dxH + c1

∫
Ω

divH (viceh)h dxH

+ c2

∫
Ω

divH (vicea)a dxH

=
∫

Ω
∇HP (h, a) · vice dxH − c1

∫
Ω
h∇Hh · vice dxH

− c2

∫
Ω
a∇Ha · vice dxH

=
∫

Ω
(∂hP (h, a) − c1h)∇Hh · vice dxH

+
∫

Ω
(∂aP (h, a) − c2a)∇Ha · vice dxH.

Finally, we test (3.51) by (vice, c1h, c2a). From the estimates and identi-
ties (3.53), (3.48), (3.54), (3.56) and v⊥

ice · vice = 0, we infer that

(3.57)

0 ≥
(

C2√
δ + cer2 − C5(1 + r)r

)
· ∥vice∥2

H1(Ω) + c1dh · ∥∇Hh∥2
L2(Ω)

+ c2da · ∥∇Ha∥2
L2(Ω) +

∫
Ω
(∂hP (h, a) − c1h)∇Hh · vice dxH

+
∫

Ω
(∂aP (h, a) − c2a)∇Ha · vice dxH.

It remains to absorb the terms without sign in (3.57) into the other terms.
To this end, we note that

∂hP (h, a) − c1h = p∗

h∗

(
(h∗ − h)e−c•(1−a) + h

(
e−c•(1−a) − e−c•(1−a∗)

))
.
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Moreover, let us observe that ∥h∥L∞(Ω) ≤ h∗ + r by ∥u− u∗∥Xγ < r as well as
the embedding (3.21). Therefore, making use of the mean value theorem and
the aforementioned relations as well as u ∈ V , we get

(3.58)
∥∂hP (h, a) − c1h∥L∞(Ω)

≤ C6 · ∥h∗ − h∥L∞(Ω) + C7 · (1 + r) · ∥a∗ − a∥L∞(Ω)

≤ C8(1 + r)r.

Upon remarking that

∂aP (h, a) − c2a = c•p
∗

a∗

(
(a∗ − a)he−c•(1−a) + a(h− h∗)e−c•(1−a)

+ ah∗
(
e−c•(1−a) − e−c•(1−a∗)

))
,

we use an analogous strategy to find for some C9 > 0 the estimate

(3.59) ∥∂aP (h, a) − c2a∥L∞(Ω) ≤ C9(1 + r)r.

An application of Hölder’s and Young’s inequality in (3.57) in conjunction
with (3.58) and (3.59) results in

0 ≥
(

C2√
δ + cer2 − C10(1 + r)r

)
· ∥vice∥2

H1(Ω)

+ (c1dh − C11(1 + r)r) · ∥∇Hh∥2
L2(Ω) + (c2da − C12(1 + r)r) · ∥∇Ha∥2

L2(Ω).

Consequently, if we choose r > 0 sufficiently small, we get

0 ≥ ∥vice∥2
H1(Ω) + ∥∇Hh∥2

L2(Ω) + ∥∇Ha∥2
L2(Ω).

In summary, for an equilibrium u ∈ V ∩ X1 with ∥u− u∗∥ < r for such r > 0,
we conclude that vice = 0, and h as well as a are constant, i. e.,

BXγ∩E(u∗, r) = {0} × R × R = N(A0)

by Lemma 3.6.3(c). This also shows that near u∗, the set of equilibria is a two-
dimensional C1-manifold. Besides, the tangent space of the set of equilibria
near u∗ coincides with N(A0) and is thus especially isomorphic to the latter
one. This completes the proof of the lemma.

Next, we study the spectral value zero in more detail.

Lemma 3.6.5. For u∗ = (0, h∗, a∗), with h∗ > κ and a∗ ∈ (0, 1) constant
in time and space, consider the resulting A0 as in (3.41). Then zero is a
semi-simple eigenvalue of A0, i. e., we have N(A0) ⊕ R(A0) = X0.
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Proof. For the space of functions in Lq(Ω) with average zero Lq
0(Ω) as defined

in (1.1), we set
Xm

0 := Lq(Ω)2 × Lq
0(Ω) × Lq

0(Ω).
Moreover, Am

0 represents the restriction of the total linearization to Xm
0 , i. e.,

(3.60) Am
0 u := A0u, for u ∈ D(Am

0 ) := D(A0) ∩ Xm
0 .

Also in this case, we deduce from (3.50) the existence of C1 > 0 with

(3.61) 0 ≥ C1 ·
(
∥vice∥2

H1(Ω) + ∥∇Hh∥2
L2(Ω) + ∥∇Ha∥2

L2(Ω)

)
when testing the equation A0u = 0 for u ∈ D(Am

0 ). As h, a ∈ Lq
0(Ω), we

conclude from (3.61) that vice = 0 as well as h = a = 0. The compact
resolvent of A0 also carries over to Am

0 by observing that the average zero
condition is simply preserved by interpolation, see Lemma 1.3.5. Thus, the
spectrum of Am

0 is also q-independent by Lemma 2.1.6(a). Therefore, it holds
that 0 ∈ ρ(Am

0 ). On the other hand, we recall from Lemma 3.6.3(c) that

N(A0) = {0} × R × R,

so in order to show that X0 = N(A0) + R(A0), it suffices to verify

(3.62) Lq(Ω)2 × Lq
0(Ω) × Lq

0(Ω) ⊂ R(A0).

For this, consider f = (fice, fh, fa) ∈ Lq(Ω)2×Lq
0(Ω)×Lq

0(Ω). From 0 ∈ ρ(Am
0 ),

it follows that there is u ∈ D(Am
0 ) such that A0u = Am

0 u = f . Therefore, we
have (3.62) which in turns implies X0 = N(A0) + R(A0).

It remains to verify N(A0) ∩ R(A0) = {0}. Thus, let u ∈ N(A0) ∩ R(A0).
From the above shape of N(A0), it especially follows that u = (0, ch, ca) for
two constants ch and ca. On the other hand, as u ∈ R(A0), there is ũ ∈ D(A0)
such that A0ũ = u. Next, we invoke the splitting into mean value zero part
and average part as introduced in (1.2) in the h- and a-component, i. e.,

ũ =


ṽice

h̃

ã

 =


ṽice

h̃m

ãm

+


0

h̃avg

ãavg

 =: ũm + ũavg.

In particular, we have ũm ∈ Xm
0 , yielding ũm ∈ D(Am

0 ), and ũavg ∈ N(A0).
Consequently, it is valid that

u = A0ũ = A0ũm + A0ũavg = Am
0 ũm.
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In other words, u ∈ R(Am
0 ), so ch, ca ∈ Lq

0(Ω), but this implies ch = ca = 0 and
hence u = 0 in total. This proves that N(A0) ∩ R(A0) = {0}. In conclusion,
we have shown that X0 = N(A0) ⊕ R(A0) is indeed valid.

Combining Lemma 3.6.2, Lemma 3.6.3, Lemma 3.6.4 and Lemma 3.6.5,
for p, q ∈ (1,∞) such that (3.37), we deduce the normal stability of equilibria
of the shape u∗ = (0, h∗, a∗), with h∗ > κ and a∗ ∈ (0, 1) constant in time
and space. With regard to the generalized principle of linearized stability
as summed up in Proposition 2.6.5, it remains to argue that A(u∗) admits
maximal regularity of Lp-type. Thanks to Remark 2.6.6, it is sufficient to
have this property up to a shift, which is guaranteed by Proposition 3.4.1.

The theorem below is the second main result of this chapter and asserts
the global strong well-posedness of the simplified fully parabolic regularized
model (3.35) for initial data close to constant equilibria of the aforementioned
shape. By the above arguments, it is implied by an application of the gener-
alized principle of linearized stability as stated in Proposition 2.6.5.

Theorem 3.6.6. Let p, q ∈ (1,∞) satisfy (3.37), consider u∗ = (0, h∗, a∗),
where h∗ > κ and a∗ ∈ (0, 1) are constant in time and space, and recall Xγ

from (3.36). Then u∗ is stable in Xγ, and there is r > 0 so that the unique
solution u to (3.39), and thus also to (3.35), for initial data u0 ∈ Xγ with

∥u0 − u∗∥Xγ < r

exists on R+ and converges to some u∞ ∈ E in Xγ at an exponential rate
as t → ∞.

In comparison with [18, Theorem 2.3], we do not impose a condition on the
regularization parameter δ > 0. This is due to a refined choice of the test
function in the proof of Lemma 3.6.3.
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CHAPTER 4

Interaction of Sea Ice with a Rigid Body

In this chapter, we investigate the interaction problem of sea ice, modeled
by the fully parabolic regularized version of Hibler’s model as discussed in
Chapter 3, with a rigid body. The main result asserts the local strong well-
posedness of the interaction problem.

The interaction of rigid structures with viscous fluids is a classical topic in
mathematical fluid mechanics. We do not provide a full reference list here, but
we only refer to the survey article of Galdi [45], the articles of Takahashi [127]
and Geissert, Götze and Hieber [48] in the context of strong solutions to
fluid-structure interaction problems with incompressible Newtonian and gen-
eralized Newtonian fluids, the work of Maity and Tucsnak [101] on a maximal
regularity approach to fluid-structure interaction with incompressible fluids,
or the papers of Hieber and Murata [66] and Haak et al. [57] on the interac-
tion problem of a rigid body with viscous compressible fluids and compressible
Navier-Stokes-Fourier fluids, respectively.

Let us observe that the physical motivation of the problem under consider-
ation in this chapter lies in understanding the interaction of sea ice with large
rigid structures with heavy mass such as ships. Concerning the numerical
simulation of the motion of ships in an ice floe field, we refer for example to
the article of Zhan et al. [134]. On the other hand, Tuhkuri and Polojörvi [131]
provide a survey on ice-structure interaction.

Unlike most of the above references, the present underlying sea ice system
is of quasilinear nature, leading to additional mathematical problems. The
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main result of the present chapter asserting the local strong well-posedness
of the interaction problem has been obtained in a joint work with Tim Binz
and Matthias Hieber [11]. However, the strategy in this chapter is completely
different from the one in [11]. The linear theory there is obtained by a “mono-
lithic” approach based on a decoupling argument, i. e., the coupling conditions
are included in the domain of the operator matrix. In contrast, this chapter
relies on a “cascade” approach. More precisely, the inhomogeneous boundary
conditions resulting from the equality of the sea ice velocity and the rigid body
velocity are handled by optimal Lp-Lq estimates as recalled in Section 2.5. An-
other difference is that abstract non-autonomous quasilinear existence theory
is used in [11], whereas we employ a direct fixed point argument here.

The chapter is organized as follows. In Section 4.1, we present the interac-
tion problem of sea ice with a rigid body on the moving domain, leading to
the complete system in (4.8). Section 4.2 is dedicated to the transformation
of the moving domain problem to a problem on the fixed domain by means of
a local transform as used first by Inoue and Wakimoto [73]. The properties
of this transform are also discussed in Appendix A. This transformation to
the fixed domain comes at the cost of non-autonomous terms as visible in the
transformed interaction problem (4.28). Section 4.3 discusses the resulting
linearization (4.30). In fact, Proposition 4.3.3 establishes the maximal regu-
larity of the linearized problem by first solving the equations of the rigid body
and regarding the interface condition on the sea ice and rigid body velocity as
an inhomogeneous boundary conditions, resulting in the maximal regularity
by virtue of Lp-Lq estimates as in Section 2.5. The purpose of Section 4.4 is to
prepare the main result on the local strong well-posedness, Theorem 4.4.13,
by setting up the fixed point argument, estimating the nonlinear terms and
then showing the local strong well-posedness on the fixed domain. From there,
the main result is deduced by employing the inverse coordinate transform.

4.1. The Interaction Problem of Sea Ice
Let O ⊂ R2 be a bounded domain with boundary ∂O of class C2, and consider
a positive time 0 < T ≤ ∞. In the sequel, we investigate the situation of a 2D
rigid body immersed in sea ice, and we denote the time-dependent domain
occupied by the rigid body at time t ∈ (0, T ) by S(t). The remaining part of
the domain filled by sea ice, which is modeled by Hibler’s viscous-plastic model
as introduced in Chapter 3, is denoted by F(t) = O \ S(t). Consequently, the
interface is ∂S(t). Moreover, S0 represents the initial domain of the rigid body,
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and we assume its boundary ∂S0 to be of class C2. Accordingly, F0 = O \ S0
designates the initial sea ice domain, and the interface at time zero is ∂S0.

We denote by xc(t) the center of mass of the rigid body at time t ∈ (0, T ).
For convenience, we suppose that xc(0) = 0. Moreover,

ξ : (0, T ) → R2

represents the translational velocity of the rigid body, i. e., x′
c(t) = ξ(t). It

follows from xc(0) = 0 that xc can be deduced from ξ by integration, i. e.,

(4.1) xc(t) =
∫ t

0
ξ(s) ds.

As the rigid body also rotates, we introduce the rotation angle β(t), t ∈ (0, T ),
and associate to it a special orthogonal matrix Q(t) ∈ SO(2) of the shape

(4.2) Q(t) =

cos β(t) − sin β(t)

sin β(t) cos β(t)

 ,
accounting for the rotation of the rigid body. Its angular velocity

Ω: (0, T ) → R

then represents the derivative of the rotation angle, i. e., β′(t) = Ω(t). When
assuming β(0) = 0 without loss of generality, we can thus derive β from

(4.3) β(t) =
∫ t

0
Ω(s) ds.

With y⊥
H = (−y2, y1)⊤ for yH = (y1, y2)⊤ ∈ R2, we compute

(4.4) Q′(t)Q⊤(t)yH = Ω(t)y⊥
H , for all t > 0 and yH ∈ R2.

Hence, the rigid body domain S(t) at time t is determined by

S(t) = {xc(t) +Q(t)yH : yH ∈ S0} ,

and the velocity of the rigid body is given by

vS(t, xH) = ξ(t) + Ω(t) (xH − xc(t))⊥ , for all (t, xH) ∈ (0, T ) × S(t).

To distinguish the model variables from the fixed domain case, we introduce

vice : (0, T ) × F(t) → R2, h : (0, T ) × F(t) → [κ,∞) and
a : (0, T ) × F(t) → (0, 1),
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representing the sea ice velocity, the mean ice thickness and the ice compact-
ness on the present domain in spacetime (0, T ) × F(t). The ranges of the
variables have been explained in detail in Section 3.2. From there, we also
recall the ice mass mice = ρiceh for ρice > 0 constant, the regularized stress ten-
sor σδ from (3.5), the Coriolis parameter ccor > 0, the term g∇HH associated
to the sea surface dynamics height, the atmospheric wind and ocean current
force τice = τatm + τocn(vice) for τatm and τocn(vice) as in (3.6), the thermody-
namic source terms Sh and Sa from (3.8) as well as the constants dh, da > 0.
Similarly as in Section 3.2, up to the adjustment to the time-dependent do-
main (0, T ) × F(t), the system of equations satisfied by u = (vice, h, a) is

(4.5)



∂tvice + (vice · ∇H)vice = 1
mice

divH σδ − ccorv
⊥
ice

− g∇HH + 1
mice

τice, in (0, T ) × F(t),

∂th+ divH (viceh) = Sh(h, a) + dh∆Hh, in (0, T ) × F(t),
∂ta+ divH (vicea) = Sa(h, a) + da∆Ha, in (0, T ) × F(t).

We further assume that the velocities of the sea ice vice and the rigid body vS

coincide on their common interface, i. e.,

(4.6) vice = vS , on (0, T ) × ∂S(t).

Moreover, we suppose that the sea ice satisfies a no-slip boundary condition on
the outer boundary ∂O, while the mean ice thickness h and the ice compact-
ness a are assumed to satisfy homogeneous Neumann boundary conditions on
the boundary of the sea ice domain ∂F(t). This reads as

(4.7) vice = 0, on (0, T ) × ∂O, and ∂νh = ∂νa = 0, on (0, T ) × ∂F(t).

After introducing the system of equations as well as the boundary conditions
satisfied by the sea ice part in the interaction problem, we focus on the equa-
tions of the rigid body. By ρS , we denote the density of the rigid body, and
for simplicity, as it does not affect the analysis, we suppose that ρS ≡ 1. As
a result, the mass of the rigid body mS is determined by

mS =
∫

S(t)
1 dxH.

As revealed in [31, Section 1], since we are in the 2D case, for J denoting the
inertia tensor of the rigid body, we obtain

J =
∫

S(t)
ρS |xH − xc(t)|2 dxH =

∫
S0

|yH|2 dyH =: J0.
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In particular, we deduce therefrom that (JΩ)′(t) = J0Ω′(t). We further in-
troduce external forces and torques F : (0, T ) → R2 and N : (0, T ) → R.
Recalling the regularized stress tensor σδ = σδ(u) from (3.5), and following
Newton’s laws, we find that the equations satisfied by the momentum and
angular momentum of the rigid body are given by

mSξ
′(t) = −

∫
∂S(t)

σδ(u)ν(t) dΓ + F (t), for t ∈ (0, T ),

J0Ω′(t) = −
∫

∂S(t)
(xH − xc(t))⊥σδ(u)ν(t) dΓ +N(t), for t ∈ (0, T ),

where ν(t) represents the unit outward normal to the boundary of F(t), so it
is directed inwards to S(t). We observe that ν(t) is generally time-dependent.

In total, combining the equations satisfied by the sea ice and the rigid body,
invoking the boundary conditions as well as the interface condition as in (4.6),
and completing the system by initial conditions vice,0, h0 and a0 in F0 for the
sea ice variables as well as ℓ0 and ω0 for the translational and angular velocity,
we obtain the interaction problem of sea ice with a rigid body

(4.8)



∂tvice = 1
mice

divH σδ(u) − (vice · ∇H)vice

− ccorv
⊥
ice − g∇HH + 1

mice
τice, in (0, T ) × F(t),

∂th = dh∆Hh

− divH (viceh) + Sh(h, a), in (0, T ) × F(t),
∂ta = da∆Ha

− divH (vicea) + Sa(h, a), in (0, T ) × F(t),
mSξ

′(t) = F (t)

−
∫

∂S(t)
σδ(u)ν(t) dΓ, for t ∈ (0, T ),

J0Ω′(t) = N(t)

−
∫

∂S(t)
(xH − xc(t))⊥σδ(u)ν(t) dΓ, for t ∈ (0, T ),

and completed by the boundary conditions
vice = vS , ∂νh = ∂νa = 0, on (0, T ) × ∂S(t), and
vice = 0, ∂νh = ∂νa = 0, on (0, T ) × ∂O,

as well as the initial conditions
vice(0) = vice,0, h(0) = h0, a(0) = a0, in F0, and
xc(0) = 0, ξ(0) = ℓ0, β(0) = 0, Ω(0) = ω0.
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4.2. Transformation to a Fixed Domain
As the complete system of equations (4.8) is defined on a moving domain, the
first step is the transformation to a fixed domain. This is addressed in the
present section. The cost of the transformation to a time-independent domain
is that the terms in the resulting system become more complicated.

The main idea is to transform the system of equations only in a suitable
neighborhood of the rigid body. This type of transform was introduced by
Inoue and Wakimoto [73].

Throughout this section, we consider fixed translational and angular veloc-
ities ξ ∈ W1,p(0, T )2 and Ω ∈ W1,p(0, T ), respectively. Next, we introduce

m(t) = Ω(t)

 0 1

−1 0

 , so m(t)xH = Ω(t)x⊥
H.

By (4.4), m(t) acts as Q′(t)Q⊤(t) for the rotation matrix Q from (4.2) and
with angle β(t) deduced from Ω by (4.3). For the center of mass of the rigid
body xc(t) recovered from (4.1), we investigate the initial value problem

(4.9)

∂tX0(t, yH) = m(t)(X0(t, yH) − xc(t)) + ξ(t), in (0, T ) × R2,

X0(0, yH) = yH, for yH ∈ R2.

With the aforementioned Q ∈ SO(2), the solution to (4.9) takes the shape

(4.10) X0(t, yH) = Q(t)yH + xc(t).

From the above regularity assumptions on ξ and Ω, we especially derive
that Q ∈ W2,p(0, T )2×2. In addition, the inverse Y0 of X0 is

(4.11) Y0(t, xH) = Q⊤(t)(xH − xc(t)).

For M(t) := Q⊤(t)m(t)Q(t) and ℓ(t) := Q⊤(t)ξ(t), the inverse Y0 of X0 in
turn solves the initial value problem

(4.12)

∂tY0(t, xH) = −M(t)Y0(t, xH) − ℓ(t), in (0, T ) × R2,

Y0(0, xH) = xH, for xH ∈ R2.

Currently, the diffeomorphisms X0 and Y0 solving (4.9) and (4.12), respec-
tively, do not only act in a suitable neighborhood of the moving rigid body.
Hence, the following step is to modify them so that the transform is only local.
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4.2. Transformation to a Fixed Domain

In this aspect, we follow the method of Geissert, Götze and Hieber [48, Sec-
tions 3 and 7], but it is not necessary for us to preserve a divergence free
condition. As a result, we do not require the Bogovskĭı operator, so the trans-
form is of a less complicated shape compared to [48].

More precisely, the modified diffeomorphism is defined implicitly as the
solution to the initial value problem

(4.13)

∂tX(t, yH) = b(t,X(t, yH)), in (0, T ) × R2,

X(0, yH) = yH, for yH ∈ R2.

The right-hand side b accounting for the precise behavior of the transform
will be determined in the sequel. The concrete description of b requires some
further knowledge regarding the situation of the rigid body trapped in sea ice.
In fact, we assume it to start with a strictly positive distance from the outer
sea ice boundary, i. e., there exists r > 0 such that

dist(S0, ∂O) > r.

By continuity of the rigid body velocity, we can consider solutions up to a time
such that a positive distance of the rigid body and ∂O is preserved. However,
it is not desirable to affect the regularity by introducing b. Consequently, we
invoke a smooth cut-off function χ ∈ C∞(R2; [0, 1]) with

χ(xH) :=


1, if dist(xH, ∂O) ≥ r,

0, if dist(xH, ∂O) ≤ r

2 .

We then define the right-hand side b : [0, T ] × R2 → R2 by

(4.14) b(t, xH) := χ(xH − xc(t))[m(t)(xH − xc(t)) + ξ(t)],

so it readily follows from the construction that b ∈ W1,p(0, T ; C∞
c (R2)) and

b∂S0 = ω0x
⊥
H + ℓ0.

The initial value problem (4.13) has a unique solution X ∈ C1(0, T ; C∞(R2)2)
as a consequence of the Picard-Lindelöf theorem. Let us also note the conti-
nuity of the mixed partial derivatives

∂|α|+1X

∂t(∂yH,j)α
and ∂|α|X

(∂yH,j)α
,
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4. Interaction of Sea Ice with a Rigid Body

where α ∈ N3
0 is a multi-index. Furthermore, it follows from (4.13) and an

integration in time that the Jacobian matrix JX takes the shape

(4.15) (JX)ij(t, yH) = ∂jXi(t, yH) = δij +
∫ t

0

∂bi

∂yH,j

(s,X(s, yH)) ds.

The next lemma discusses conditions for the invertibility of JX . The proof
relies on a Neumann series argument in conjunction with the regularity of b
as revealed above. Let us also refer to [66, Section 2] for a proof of a similar
result in the context of the interaction problem of a compressible fluid.

Lemma 4.2.1. Consider the time interval (0, T ), where 0 < T ≤ ∞.

(a) If T0 ∈ (0, T ] is sufficiently small, or

(b) if ∥∇Hb∥L∞((0,T )×R2) < δ0, for some small δ0 > 0,

then the Jacobian matrix JX(t, ·) from (4.15) is invertible for every t ∈ (0, T0),
or even for every t ∈ (0, T ) in the situation of (b).

Thanks to Lemma 4.2.1, the term

(4.16) b(Y )(t, yH) := −J−1
X (t, yH)b(t,X(t, yH))

is well-defined for t ∈ (0, T0), or even for t ∈ (0, T ) provided the spatial
gradient of b is small. Besides, the inverse transform Y of X solves

(4.17)

∂tY (t, xH) = b(Y )(t, Y (t, xH)), in (0, T0) × R2,

Y (0, xH) = xH, for xH ∈ R2.

Let us observe that JX(t, yH)JY (t,X(t, yH)) = Id2. It is also worth mention-
ing that b(Y ) and Y inherit the regularity in time and space from b and X by
construction. Moreover, if the rigid body does not come close to the outer
boundary of the sea ice ∂O, then X and Y are identical with X0 and Y0
from (4.10) and (4.11), respectively. In contrast, when the rigid body ap-
proaches the outer boundary ∂O, we find

∂tX(t, yH) = ∂tY (t, xH) = 0.

The preceding discussion enables us to perform the transformation to the
fixed domain. For the solution X : (0, T ) × R2 → R2 to (4.13), the rotation
matrix Q from (4.2) and with angle β = β(t) resulting from the rotational
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4.2. Transformation to a Fixed Domain

velocity Ω by (4.3), considering (t, yH) ∈ (0, T )×R2, and denoting the principle
sea ice variable by u = (vice, h, a), we set

(4.18)

vice(t, yH) := vice(t,X(t, yH)),
h(t, yH) := h(t,X(t, yH)),
a(t, yH) := a(t,X(t, yH)),

ℓ(t) := Q⊤(t)ξ(t) and ω(t) := Ω(t),
F (t) := Q⊤(t)F (t) and N(t) := N(t),

Tδ(u) := Q⊤(t)σδ(u)Q(t),
I := J and ν := Q⊤(t)ν(t).

Given the objects on the fixed domain, we calculate the system of equations
satisfied by the transformed quantities from (4.18). First, we use the chain
rule to compute the transformed time derivative given by

∂tvice = ∂tvice +
2∑

j=1
(∂tYj)∂jvice = ∂tvice + (∇Hvice)∂tY.

Similarly, we obtain

∂th = ∂th+ ∇Hh · ∂tY and ∂ta = ∂ta+ ∇Ha · ∂tY.

Another application of the chain rule leads to

(4.19) ((vice · ∇H)vice)i =
2∑

j,k=1
vice,j(∂jYk)∂kvice,i =: (N (vice))i.

The next terms to be transformed are divH (viceh) and divH (vicea). We get

(4.20) divH (viceh) =
2∑

j,k=1
(∂jYk)(vice,j∂kh+ h∂kvice,j) =: M(vice, h).

Likewise, it follows that

divH (vicea) = M(vice, a).

In order to compute the transformed Laplacian terms, we invoke the metric
contravariant tensor gij given by

(4.21) gij :=
2∑

k=1
(∂kYi)(∂kYj).
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4. Interaction of Sea Ice with a Rigid Body

We then exploit the chain rule again to derive

(4.22) ∆Hh =
2∑

j,k=1
gjk∂k∂jh+

2∑
j=1

(∆HYj)∂jh =: Lh.

By analogy, we get
∆Ha = La.

Transforming the Hibler operator as well as the ice strength P associated
with divH σδ is more delicate. In a first step, we calculate the transformed
symmetric part of the gradient given by

2εij(vice) = ∂ivice,j + ∂jvice,i

=
2∑

k=1
((∂iYk)∂kvice,j + (∂jYk)∂kvice,i) =: 2ε̃ij(vice).

For simplicity, we will also denote the latter by ε̃ in the following. As a result,
we obtain

∂kεjl(vice) = (∂kYm)∂mε̃jl.

Moreover, we have

(4.23)
∂mε̃jl(vice) = 1

2

2∑
n=1

(
(∂m∂jYn)∂nvice,l + (∂jYn)∂m∂nvice,l

+ (∂m∂lYn)∂nvice,j + (∂lYn)∂m∂nvice,j

)
.

Besides, for the ice strength P as defined in (3.1), we calculate

(4.24)
∂jP (h, a) =

2∑
k=1

p∗e−c•(1−a)(∂jYk)(∂kh+ c•h∂ka)

=
2∑

k=1
∂hP (h, a)(∂jYk)(∂kh+ c•h∂ka).

In the sequel, we consider the part of the momentum equation associated
with Sδ as introduced in (3.13), i. e.,

1
ρiceh

· divH Sδ(u) = 1
ρiceh

· divH

P (h, a)
2

Sε(vice)√
δ + ε(vice)⊤Sε(vice)

 .
This corresponds to AH from Section 3.3. The derivation of the operator is
completely analogous to Section 3.3. Invoking akl

ij (ε(vice, P (h, a)) from (3.15),
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4.2. Transformation to a Fixed Domain

we find that the i-th component of the operator admits the representation[
1

ρiceh
· divH Sδ(u)

]
i

=
2∑

j,k,l=1
−akl

ij (ε(vice), P (h, a))∂kεjl(vice)

+ 1
2ρiceh△δ(ε(vice))

2∑
j=1

(∂jP (h, a))(Sε(vice))ij.

Making use of the above relations and setting

(4.25) aklm
ij (ε(vice), P (h, a)) := (∂kYm)akl

ij (ε(vice), P (h, a)),

we conclude that the transformed quasilinear Hibler operator AH on the fixed
domain is given by

(4.26)

1
ρiceh

· divH Sδ(u)i =
2∑

j,k,l,m=1
−aklm

ij (ε̃, P )∂mε̃jl

− ∂hP (h, a)
2ρiceh△δ(ε̃)

2∑
j,k=1

(∂jYk)(∂kh+ c•h∂ka)

=: [AH(u)vice]i.

With regard to divH σδ, it remains to deal with the ice strength P . From

divH
P (h, a)

2 Id2 = 1
2
(
∂1P (h, a) + ∂2P (h, a)

)
and an insertion of (4.24), we conclude

(4.27)
1

ρiceh
· divH

P (h, a)
2 Id2 = ∂hP (h, a)

2ρiceh

2∑
j,k=1

(∂jYk)(∂kh+ c•h∂ka)

=: Bh(h, a) + Ba(h, a) = B(h, a).

The other terms from the sea ice part of the interaction problem (4.5) do not
include derivatives, so the resulting transformed terms are simply obtained by
plugging in the transformed variables from (4.18). More precisely, we get

−ccorv
⊥
ice − g∇HH + 1

ρiceh
τice = −ccorv

⊥
ice − g∇HH + 1

ρiceh
τice

as well as Sh(h, a) = Sh(h, a) and Sa(h, a) = Sa(h, a). In addition, by con-
struction of the transform, the boundary conditions from (4.7) are not af-
fected, while the interface condition from (4.6) becomes

vice = ℓ(t) + ω(t)y⊥
H , on (0, T ) × ∂S0.
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4. Interaction of Sea Ice with a Rigid Body

Before providing the complete transformed system, we calculate the trans-
formed terms in the context of the rigid body equations. From Q(t) ∈ SO(2)
and ω(t) = Ω(t), we first deduce that

M(t)xH = Q⊤(t)m(t)Q(t)xH = Ω(t) det(Q(t))
(
x2

−x1

)
= ω(t)x⊥

H.

As the inertia tensor is not changed in (4.18), the new quantity I inherits
the time-independence from J = J0. The property Q(t) ∈ SO(2) also yields
that y⊥

HQ(t)zH = (Q⊤(t)y⊥
H)zH. Equipped with the latter identity, and re-

calling the transformed stress tensor Tδ(u) and transformed normal vector ν
from (4.18), we determine the surface integrals on the fixed domain to be∫

∂S(t)
σδ(u)ν(t) dΓ = Q(t)

∫
∂S0

Tδ(u)ν dΓ and∫
∂S(t)

(xH − xc(t))⊥σδ(u)ν(t) dΓ =
∫

∂S0
y⊥

HTδ(u)ν dΓ.

Last, we remark that the definition of ℓ yields that the term ω(t)ℓ⊥(t) arises
in the transformed system of equations.

Now, we can rewrite the complete system from (4.8) on the fixed domain.
The transformed system of the sea ice interaction problem is given by

(4.28)



∂tvice = AH(u)vice − B(h, a) − (∇Hvice)∂tY

− N (vice) − ccorv
⊥
ice − g∇HH

+ 1
mice

(τatm + τocn(vice)), in (0, T ) × F0,

∂th = dhLh− ∇Hh · ∂tY

− M(vice, h) + Sh(h, a), in (0, T ) × F0,

∂ta = daLa− ∇Ha · ∂tY

− M(vice, a) + Sa(h, a), in (0, T ) × F0,

mSℓ
′(t) = F (t) +mSω(t)ℓ⊥(t)

−Q(t)
∫

∂S0
Tδ(u)ν dΓ, for t ∈ (0, T ),

Iω′(t) = N(t) −
∫

∂S0
y⊥

HTδ(u)ν dΓ, for t ∈ (0, T ).

In the above, the transformed Hibler operator AH(u)vice is as introduced
in (4.26), the transformed term B(h, a) corresponding to the ice strength P

has been defined in (4.27), the transformed convective term N (vice) can be
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4.3. Maximal Regularity of the Linearized Interaction Problem

found in (4.19), the transformed Laplacian L has been made precise in (4.22),
and the transformed bilinear term M has been derived in (4.20). Accordingly,
the boundary conditions on the fixed domain read as

vice = ℓ(t) + ω(t)y⊥
H , ∂νh = ∂νa = 0, on (0, T ) × ∂S0, and

vice = 0, ∂νh = ∂νa = 0, on (0, T ) × ∂O,

and the system is complemented by the initial data

(4.29)
vice(0) = vice,0, h(0) = h0, a(0) = a0, in F0, and
xc(0) = 0, ℓ(0) = ℓ0, β(0) = 0, ω(0) = ω0.

4.3. Maximal Regularity of the Linearized
Interaction Problem

This section is dedicated to the linear theory for the transformed interaction
problem from (4.28)–(4.29). The first step is to provide a suitable lineariza-
tion. Thereafter, we analyze the resulting linearized problem, for which we
will use a so-called “cascade” approach, meaning that we first solve the equa-
tions for the rigid body and then insert them into the sea ice part. The
maximal regularity is finally obtained by an application of an optimal Lp-Lq

regularity result as discussed in Proposition 2.5.8.
As we have already indicated, we start with the linearization of the trans-

formed system (4.28)–(4.29) on the fixed domain. In the present cascade
approach, we linearize the sea ice equations similarly as in Section 3.4, while
we consider the ODEs for ℓ and ω without the surface integrals. Thus, for
appropriate terms on the right-hand side

f1 : (0, T ) × F0 → R2, f2, f3 : (0, T ) × F0 → R,
f4 : (0, T ) → R2 and f5 : (0, T ) → R,

suitable initial data
z0 = (vice,0, h0, a0, ℓ0, ω0)

as well as

u1 = (vice,1, h1, a1) ∈ C1,α(F0)4, with α > 0, h1 ≥ κ and a1 ∈ (0, 1),
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4. Interaction of Sea Ice with a Rigid Body

and for a shift µ > 0 in the sea ice part, we investigate the linearized problem

(4.30)



∂tvice − (AH(u1) − µ)vice +B1(u1)
(
h

a

)
= f1, in (0, T ) × F0,

∂th− (dh∆H − µ)h = f2, in (0, T ) × F0,

∂ta− (da∆H − µ)a = f3, in (0, T ) × F0,

mSℓ
′(t) = f4, for t ∈ (0, T ),

Iω′(t) = f5, for t ∈ (0, T ),
vice = ℓ(t) + ω(t)y⊥

H , ∂νh = ∂νa = 0, on (0, T ) × ∂S0,

vice = 0, ∂νh = ∂νa = 0, on (0, T ) × ∂O,
vice(0) = vice,0, h(0) = h0, a(0) = a0, in F0,

ℓ(0) = ℓ0, ω(0) = ω0.

In (4.30), we recall the linearized Hibler operator AH(u1) from (3.16), whereas
the term B1(u1) captures the off-diagonal part, so

(4.31) B1(u1)
(
h

a

)
= ∂hP (h1, a1)

2ρiceh1
∇Hh+ ∂aP (h1, a1)

2ρiceh1
∇Ha.

At this point, we also introduce the compatibility condition of the initial data.
Definition 4.3.1. For z0 = (vice,0, h0, a0, ℓ0, ω0) ∈ B2−2/p

qp (F0)4 × R3, we say
that the compatibility condition is satisfied if for 2 − 2/p > 1/q, we have

vice,0 = ℓ0 + ω0y
⊥
H , on ∂S0, and vice,0 = 0, on ∂O,

and if additionally for 2 − 2/p > 1 + 1/q, it holds that

∂νh0 = ∂νa0 = 0, on ∂F0.

There is no condition on the initial data in the case 2 − 2/p < 1/q.

In the sequel, we introduce some further spaces to shorten the notation. We
start with the space X0 playing the role of the ground space. For q ∈ (1,∞),
it is defined by

(4.32) X0 := Lq(F0)2 × Lq(F0) × Lq(F0) × R2 × R.

Next, for z = (vice, h, a, ℓ, ω) and q ∈ (1,∞), we define the space X1 acting as
the regularity space by

(4.33)
X1 :=

{
z ∈ W2,q(F0)2 × W2,q(F0) × W2,q(F0) × R2 × R :
vice = ℓ+ ωy⊥

H , on ∂S0, vice = 0, on ∂O, and
∂νh = ∂νa = 0, on ∂F0

}
.
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4.3. Maximal Regularity of the Linearized Interaction Problem

For p, q ∈ (1,∞) with 2/p + 1/q /∈ {1, 2}, the space Xγ is given as follows. We
set z ∈ Xγ if and only if z ∈ B2−2/p

qp (F0)2 × B2−2/p
qp (F0) × B2−2/p

qp (F0) × R2 × R,
and for 2 − 2/p > 1/q, we additionally demand that

(4.34)
vice = ℓ+ ωy⊥

H , on ∂S0, vice = 0, on ∂O, if 2 − 2/p < 1 + 1/q,

∂νh = ∂νa = 0, on ∂F0, if 2 − 2/p > 1 + 1/q.

From the considerations in Section 1.3, it follows that the space Xγ can also
be obtained from real interpolation of X0 and X1 by (X0,X1)1−1/p,p. At this
stage, we also refer to [11, Lemma 5.3], where this fact is proved by using the
underlying monolithic approach.

The following remark is an immediate consequence of the definition of Xγ.

Remark 4.3.2. It holds that z0 ∈ Xγ if and only if z0 satisfies the compati-
bility condition as introduced in Definition 4.3.1.

Before discussing the maximal Lp-regularity of (4.30), we present the spaces
for the data and the solution. For the ground space X0 from (4.32) and a time
interval (0, T ), 0 < T ≤ ∞, the data space E0 is defined by

(4.35) E0 := Lp(0, T ; X0).

With X1 from (4.33), we introduce the maximal regularity space

(4.36) E1 := W1,p(0, T ; X0) ∩ Lp(0, T ; X1).

The next proposition on the maximal regularity of the linearized system is
the starting point for the further analysis of the interaction problem.

Proposition 4.3.3. Let p, q ∈ (1,∞) be such that 2/p + 1/q /∈ {1, 2}, and
assume u1 = (vice,1, h1, a1) ∈ C1,α(F0)4 for some α > 0, and with h1 ≥ κ as
well as a1 ∈ (0, 1). Moreover, for Xγ as in (4.34) and E0 as in (4.35), we
consider z0 = (vice,0, h0, a0, ℓ0, ω0) ∈ Xγ and (f1, f2, f3, f4, f5) ∈ E0.

Then there is µ0 ∈ R such that for all µ > µ0, the linearized problem (4.30)
has a unique solution z = (vice, h, a, ℓ, ω) ∈ E1 on (0, T ), with E1 as introduced
in (4.36). Moreover, there exists a constant CMR > 0, which can be chosen
independent of T in the case of homogeneous initial values, so that the unique
solution z of (4.30) satisfies

(4.37) ∥z∥E1 ≤ CMR ·
(
∥(f1, f2, f3, f4, f5)∥E0 + ∥z0∥Xγ

)
.
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4. Interaction of Sea Ice with a Rigid Body

Proof. As partially explained above, the main idea of the proof is to consider
the linearized problem (4.30) in “cascades”. More precisely, we first consider
the equations of the rigid body which we can solve immediately by ODE
theory. In parallel, we can handle the linear equations related to the mean ice
thickness h and the ice compactness a thanks to properties of the Neumann
Laplacian operator as discussed in Lemma 2.3.19. We can then tackle the
resulting linearized sea ice momentum equation in the interaction problem
with the optimal Lp-Lq result Proposition 2.5.8.

The ODEs accounting for the motion of the rigid body read as

(4.38)

mSℓ
′(t) = f4 and Iω′(t) = f5, in (0, T ),
ℓ(0) = ℓ0, ω(0) = ω0.

As mS > 0 and I are constant, it follows from classical ODE theory that
there exists a unique solution (ℓ, ω) ∈ W1,p(0, T )3 to (4.38), and there is a
constant C1 > 0 such that

(4.39) ∥(ℓ, ω)∥W1,p(0,T ) ≤ C1 ·
(
∥(f4, f5)∥Lp(0,T ) + |(ℓ0, ω0)|

)
.

Next, we address the equations for h and a in (4.30). In fact, we are in-
terested in the Lq-realization of the respective Neumann Laplacian operators.
Thanks to the assumptions that O and ∂S0 are of class C2, we may apply
Lemma 2.3.19(e). The latter result yields that for every µ > 0, there exists a
unique solution (h, a) ∈ W1,p(0, T ; Lq(F0)2) ∩ Lp(0, T ; W2,q

N (F0)2) to

(4.40)


∂th− (dh∆N − µ)h = f2, in (0, T ) × F0,

∂ta− (da∆N − µ)a = f3, in (0, T ) × F0,

h(0) = h0, a(0) = a0, in F0.

Moreover, for some constant C2 > 0, this solution satisfies the estimate

(4.41)
∥(h, a)∥W1,p(0,T ;Lq(F0))∩Lp(0,T ;W2,q

N (F0))

≤ C2 ·
(

∥(f2, f3)∥Lp(0,T ;Lq(F0)) + ∥(h0, a0)∥B2−2/p
qp (F0)

)
.

It remains to study the linearized momentum equation part. Plugging the
solutions (ℓ, ω) to (4.38) as well as (h, a) to (4.40) into (4.30), we obtain

(4.42)



∂tvice − (AH(u1) − µ)vice = f̃1, in (0, T ) × F0,

vice = bℓ,ω, on (0, T ) × ∂S0,

vice = 0, on (0, T ) × ∂O,
vice(0) = vice,0, in F0,
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where
f̃1 = f1 −B1(u1)

(
h

a

)
and bℓ,ω = ℓ+ ωy⊥

H .

We need to verify the assumptions of Proposition 2.5.8 in the present setting.
Let us first observe that vice in (4.42) is subject to Dirichlet boundary condi-
tions, yielding that (S’)(iii) holds true. Additionally invoking the assumption
that u1 ∈ C1,α(F0)4 for some α > 0, we argue that (S’)(i) as well as (S’)(ii) are
also valid in view of the shape of the linearized Hibler operator as in (3.16).
Hence, in order to get the desired maximal Lp-regularity, we have to show that
the data (f̃1, bℓ,ω, vice,0) lie within the scope of Proposition 2.5.8. To this end,
recall that f1 ∈ Lp(0, T ; Lq(F0)2). Next, making use of Hölder’s inequality in
conjunction with the assumption u1 ∈ C1,α(F0)4 with h1 ≥ κ and a1 ∈ (0, 1),
we find that B1(u1) from (4.31) satisfies

(4.43)

∥∥∥∥∥B1(u1)
(
h

a

)∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤
∥∥∥∥∥∂hP (h1, a1)

2ρiceh1

∥∥∥∥∥
L∞(0,T ;L∞(F0))

· ∥∇Hh∥Lp(0,T ;Lq(F0))

+
∥∥∥∥∥∂aP (h1, a1)

2ρiceh1

∥∥∥∥∥
L∞(0,T ;L∞(F0))

· ∥∇Ha∥Lp(0,T ;Lq(F0))

≤ C3 · ∥(h, a)∥W1,p(0,T ;Lq(F0))∩Lp(0,T ;W2,q
N (F0)),

where C3 > 0 is constant. Consequently, we have f̃1 ∈ Lp(0, T ; Lq(F0)2).
The next term under consideration is the boundary term bℓ,ω. By Proposi-

tion 2.5.8, we must check that

(4.44) bℓ,ω ∈ F := F1−1/2q

pq

(
0, T ; Lq(∂S0)2

)
∩ Lp

(
0, T ; B2−2/q

qq (∂S0)2
)
.

From (ℓ, ω) ∈ W1,p(0, T )3 and the fact that bℓ,ω is smooth in the spatial
variable, it readily follows that

bℓ,ω ∈ Lp
(
0, T ; B2−2/q

qq (∂S0)2
)
.

As bℓ,ω only depends on time via ℓ and ω, it suffices to verify the embedding

W1,p(0, T ) ↪→ F1−1/2q

pq (0, T ).

In fact, by virtue of the identity (1.3) and the embedding relation (1.9), we
get for ε > 0 sufficiently small that

W1,p(0, T ) = F1
p2(0, T ) ↪→ F1−ε

pq (0, T ) ↪→ F1−1/2q

pq (0, T ),

125



4. Interaction of Sea Ice with a Rigid Body

as desired. In total, (4.44) is satisfied, and for a constant C4 > 0, we obtain

(4.45) ∥bℓ,ω∥F ≤ C4 · ∥(ℓ, ω)∥W1,p(0,T ).

It remains to study the initial data vice,0. From the above shape of Xγ, we
deduce that vice,0 ∈ B2−2/p

qp (F0)2. Furthermore, using z0 ∈ Xγ in conjunction
with the equivalence of 1 − 1/2q > 1/p and 2 − 2/p > 1/q, we conclude that

vice,0 = ℓ0 + ω0y
⊥
H = bℓ,ω(0)

holds for 1 − 1/2q > 1/p by (4.34). Therefore, we can apply Proposition 2.5.8,
and the latter result yields the existence of µ0 > 0 such that for all µ > µ0,
the remaining linearized momentum equation (4.42) has a unique solution

vice ∈ W1,p(0, T ; Lq(F0)2) ∩ Lp(0, T ; W2,q(F0)2).

In addition, the closed graph theorem together with the estimates (4.43)
and (4.45) as well as (4.41) and (4.39) yields that

(4.46)

∥vice∥W1,p(0,T ;Lq(F0))∩Lp(0,T ;W2,q(F0))

≤ C5 ·
(

∥f̃1∥Lp(0,T ;Lq(F0)) + ∥bℓ,ω∥F + ∥vice,0∥B2−2/p
qp (F0)

)
≤ C6 ·

(
∥f1∥Lp(0,T ;Lq(F0)) + ∥(h, a)∥W1,p(0,T ;Lq(F0))∩Lp(0,T ;W2,q

N (F0))

+ ∥(ℓ, ω)∥W1,p(0,T ) + ∥(vice,0, h0, a0, ℓ0, ω0)∥Xγ

)
≤ C7 ·

(
∥(f1, f2, f3, f4, f5)∥E0 + ∥(vice,0, h0, a0, ℓ0, ω0)∥Xγ

)
.

Collecting the solutions (ℓ, ω) to (4.38), (h, a) to (4.40) and the latter solu-
tion vice to (4.42), we infer that there is µ0 such that for all µ > µ0, the lin-
earized problem (4.30) has a unique solution z = (vice, h, a, ℓ, ω) with z ∈ E1.
At the same time, the estimates in (4.46), (4.41) as well as (4.39) yield the
existence of a constant CMR > 0 such that (4.37) holds true.

In the case of homogeneous initial values, the constants in the above esti-
mates can be chosen independent of T , where we invoke that the result above
can also be shown in the case of R+ thanks to Proposition 2.5.8, and we also
employ the extension operator with T -independent norm from Lemma 2.4.2
as well as the maximal regularity constant CMR in the situation of R+.

4.4. Local Strong Well-Posedness
The aim of this section is to establish the local strong well-posedness of the
interaction problem of sea ice (4.8). The general idea is to show first that the
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transformed system (4.28) admits a unique, strong, local-in-time solution, and
to deduce the local strong well-posedness of (4.8) from there by performing
the backward change of variables.

We start with the reformulation of the problem of finding a solution to (4.28)
as a fixed point problem by virtue of the maximal regularity as seen in Propo-
sition 4.3.3. Moreover, we provide estimates of the nonlinear terms in a second
step. Finally, we are in the position to state and prove the local well-posedness
result in the reference domain and in the moving domain.

The Fixed Point Argument

For the treatment of the initial conditions, we require the concept of a ref-
erence solution capturing the initial values, and this will also be the starting
point in the process of reformulation.

Before rewriting the problem, we need some further preparation with regard
to notation. We start by introducing an open subset V ⊂ Xγ of the trace
space Xγ from (4.34), and this subset ensures that h and a take values in the
physically reasonable range. More precisely, we define

(4.47) V := {z = (vice, h, a, ℓ, ω) ∈ Xγ : h > κ and a ∈ (0, 1)} .

As already seen in the previous chapter, we impose an additional condition
on p and q so that the trace space embeds into a classical space. In fact, we
take into account p, q ∈ (1,∞) with

(4.48) 1
p

+ 1
q
<

1
2 .

Recalling the shape of Xγ from (4.34), observing that this space especially
embeds into the one without boundary and coupling conditions, and exploit-
ing (4.48) for the embedding (1.8), we find that

(4.49)
Xγ ↪→ B2−2/p

qp (F0)2 × B2−2/p

qp (F0) × B2−2/p

qp (F0) × R2 × R
↪→ C1,α(F0)2 × C1,α(F0) × C1,α(F0) × R2 × R

for some α > 0.
In the next step, we introduce the system for the reference solution. To this

end, let us recall µ0 ∈ R from Proposition 4.3.3, and consider µ > µ0. Given
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initial data z0 = (vice,0, h0, a0, ℓ0, ω0) ∈ V , we then investigate the system

(4.50)



∂tvice − (AH(u0) − µ)vice +B1(u0)
(
h

a

)
= 0, in (0, T ) × F0,

∂th− (dh∆H − µ)h = 0, in (0, T ) × F0,

∂ta− (da∆H − µ)a = 0, in (0, T ) × F0,

mSℓ
′(t) = 0, for t ∈ (0, T ),

Iω′(t) = 0, for t ∈ (0, T ),
vice = ℓ(t) + ω(t)y⊥

H , ∂νh = ∂νa = 0, on (0, T ) × ∂S0,

vice = 0, ∂νh = ∂νa = 0, on (0, T ) × ∂O,
vice(0) = vice,0, h(0) = h0, a(0) = a0, in F0,

ℓ(0) = ℓ0, ω(0) = ω0.

We now discuss the existence of a unique reference solution to (4.50) for
given initial data z0 ∈ V . From z0 ∈ V , it follows that h0 > κ, a0 ∈ (0, 1)
and z0 ∈ Xγ. As a consequence, (4.49) yields that u0 = (vice,0, h0, a0) from z0
satisfies u0 ∈ C1,α(F0)4 for some α > 0. We are thus in the scope of Propo-
sition 4.3.3, leading to the existence of a unique solution z∗

0 ∈ E1, with E1 as
in (4.36), to (4.50). This is summarized in the proposition below.

Proposition 4.4.1. Consider p, q ∈ (1,∞) with (4.48), and let 0 < T ≤ ∞
as well as z0 = (vice,0, h0, a0, ℓ0, ω0) ∈ V for V given in (4.47). Then (4.50)
admits a unique solution z∗

0 = (v∗
ice,0, h

∗
0, a

∗
0, ℓ

∗
0, ω

∗
0) ∈ E1.

The reference solution z∗
0 emerging from Proposition 4.4.1 is of essential

importance, because it allows us to reduce the analysis to a problem with
homogeneous initial data. This is crucial in order to get the T -independence
of embedding constants, allowing for a proof of the local strong well-posedness
upon establishing suitable estimates of the nonlinear terms. Because of the
role of the reference solution, some further remarks on it are in order.

Remark 4.4.2. Under the assumptions of Proposition 4.4.1, consider the
resulting reference solution z∗

0.

(a) In the following, we denote by C∗
T the norm of z∗

0, so C∗
T := ∥z∗

0∥E1.

(b) The reference solution z∗
0 ∈ E1 exists on (0, T ), where 0 < T ≤ ∞, so

its maximal regularity space norm shrinks to zero in time, i. e., C∗
T → 0

as T → 0.
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(c) We also obtain the convergence of the reference solution z∗
0 to the initial

datum z0 in BUC([0, T ]; Xγ) as time approaches zero, so

(4.51) ∥z∗
0 − z0∥BUC([0,T ];Xγ) → 0 as T → 0.

(d) As V ⊂ Xγ is open and we have z0 ∈ V , there exists r0 > 0 sufficiently
small with BXγ (z0, r0) ⊂ V . Thanks to (4.51), we conclude the existence
of T0 > 0 sufficiently small such that

(4.52) sup
t∈[0,T0]

∥z∗
0 − z0∥Xγ ≤ r0

2 .

In particular, we have z∗
0(t) ∈ V for all t ∈ [0, T0].

Equipped with the reference solution z∗
0 from Proposition 4.4.1, we are

able to reformulate the transformed interaction problem (4.28) as a linearized
problem of the shape as (4.30) with homogeneous initial values. To this
end, let z = (vice, h, a, ℓ, ω) denote a solution to the transformed interaction
problem (4.28), and define ẑ = (v̂ice, ĥ, â, ℓ̂, ω̂) by ẑ := z − z∗

0 , so

v̂ice := vice − v∗
ice,0, ĥ := h− h∗

0, â := a− a∗
0, ℓ̂ := ℓ− ℓ∗

0 and ω̂ := ω − ω∗
0.

As z0 ∈ V is fixed, we also use the pieces of notation AH = AH(u0) as well
as B1 = B1(u0) for simplicity. The above ẑ then solves

(4.53)



∂tv̂ice − (AH − µ)v̂ice +B1

(
ĥ

â

)
= G1(ẑ), in (0, T ) × F0,

∂tĥ− (dh∆H − µ)ĥ = G2(ẑ), in (0, T ) × F0,

∂tâ− (da∆H − µ)â = G3(ẑ), in (0, T ) × F0,

mS ℓ̂
′(t) = G4(ẑ), for t ∈ (0, T ),

Iω̂′(t) = G5(ẑ), for t ∈ (0, T ),
v̂ice = ℓ̂(t) + ω̂(t)y⊥

H , ∂ν ĥ = ∂ν â = 0, on (0, T ) × ∂S0,

v̂ice = 0, ∂ν ĥ = ∂ν â = 0, on (0, T ) × ∂O,
v̂ice(0) = 0, ĥ(0) = 0, â(0) = 0, in F0,

ℓ̂(0) = 0, ω̂(0) = 0.
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The terms on the right-hand side of (4.53) are given by

(4.54)

G1(ẑ) :=
(
AH(ẑ + z∗

0) − AH(u0)
)

(v̂ice + v∗
ice,0)

− (B(ẑ + z∗
0) −B1(u0))

(
ĥ+ h∗

0
â+ a∗

0

)
− ∇H(v̂ice + v∗

ice,0)∂tY

− N (v̂ice + v∗
ice,0) + µ(v̂ice + v∗

ice,0) − ccor(v̂ice + v∗
ice,0)⊥

− g∇HH + 1
ρice(ĥ+ h∗

0)

(
τatm + τocn(v̂ice + v∗

ice,0)
)

in the transformed sea ice momentum equation, by

(4.55)

G2(ẑ) := dh(L − ∆H)(ĥ+ h∗
0) + µ(ĥ+ h∗

0) − ∇H(ĥ+ h∗
0) · ∂tY

− M(v̂ice + v∗
ice,0, ĥ+ h∗

0) + Sh(ĥ+ h∗
0, â+ a∗

0) and
G3(ẑ) := da(L − ∆H)(â+ a∗

0) + µ(â+ a∗
0) − ∇H(â+ a∗

0) · ∂tY

− M(v̂ice + v∗
ice,0, â+ a∗

0) + Sa(ĥ+ h∗
0, â+ a∗

0)

for the transformed balance laws for h and a, and by

(4.56)
G4(ẑ) := F +mS(ω̂ + ω∗

0)(ℓ̂+ ℓ∗
0)⊥ −Q

∫
∂S0

Tδ(û+ u∗
0)ν dΓ and

G5(ẑ) := N −Q
∫

∂S0
y⊥

HTδ(û+ u∗
0)ν dΓ

in the situation of the transformed rigid body equations.
With regard to (4.53), it is natural to introduce the maximal regularity

space with homogeneous initial values, and we use 0E1 for this, i. e., ẑ ∈ 0E1
satisfies ẑ(0) = 0. Another important aspect is that the solution z = ẑ+z∗

0 to
the transformed system does not leave the physically relevant range V , and
this also guarantees that ρiceh does not degenerate. For this, we fix T0 > 0
from Remark 4.4.2(d). Not only do we assume an upper bound for the time,
but we also demand that R > 0 is sufficiently small. Indeed, for z0 ∈ V ,
there exists r0 > 0 so that BXγ (z0, r0) ⊂ V . The ultimate goal is to prove
that z(t) = ẑ(t) + z∗

0(t) consisting of the unique fixed point of (4.53) and the
reference solution z∗

0 emerging from Proposition 4.4.1 is in V for sufficiently
small t and R. Next, for the present time interval (0, T0), we recall

(4.57) 0E1 ↪→ BUC([0, T0]; Xγ)

from Proposition 2.4.11 and invoke Remark 2.4.12 for the T -independence of
the embedding constant C > 0 by virtue of the homogeneous initial values.
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The estimate (4.52) on the time interval [0, T0] as well as R0 ≤ r0/2C yield
that ẑ ∈ 0E1 with ∥ẑ∥E1 ≤ R0 satisfies

sup
t∈[0,T0]

∥z(t) − z0∥Xγ ≤ sup
t∈[0,T0]

(
∥ẑ∥Xγ + ∥z∗

0(t) − z0∥Xγ

)
≤ C · ∥ẑ∥E1 + sup

t∈[0,T0]
∥z∗

0(t) − z0∥Xγ ≤ r0

2 + r0

2 ≤ r0.

In summary, we obtain the lemma below guaranteeing that the solution to
the transformed interaction problem stays in V when choosing the time and
the norm of the solution sufficiently small.

Lemma 4.4.3. Consider z0 ∈ V and recall T0 > 0 from Remark 4.4.2.
Besides, let 0 < R0 ≤ r0/2C, for C > 0 denoting the T -independent em-
bedding constant from (4.57), and r0 > 0 with BXγ (z0, r0) ⊂ V . Take into
account T ∈ (0, T0] and R ∈ (0, R0], and let z := ẑ + z∗

0, with ẑ ∈ 0E1
and ∥ẑ∥E1 ≤ R as well as z∗

0 ∈ E1 representing the reference solution from
Proposition 4.4.1. Then it follows that z(t) ∈ V for all t ∈ [0, T ].

Finally, we describe the precise fixed point argument in more details. In
fact, let p, q ∈ (1,∞) satisfy (4.48), and for T0 > 0 and R0 > 0, consider the
time T ∈ (0, T0] and the radius R ∈ (0, R0]. We then set

(4.58)
KR

T := {z̃ ∈ 0E1 : ∥z̃∥E1 ≤ R} and
ΦR

T : KR
T → 0E1, with ΦR

T (z̃) := ẑ,

where ẑ denotes the unique solution to (4.53) for the terms on the right-hand
side G1(z̃), G2(z̃), G3(z̃), G4(z̃) and G5(z̃) from (4.54), (4.55) as well as (4.56),
with z̃ ∈ KR

T . In view of the maximal regularity result Proposition 4.3.3, the
map ΦR

T is well-defined thanks to z0 ∈ V ⊂ Xγ and the embedding (4.49)
provided the terms on the right-hand side are contained in the data space.
This will also be addressed below.

Estimates of the Nonlinear Terms
In this section, we consider T0 > 0 and R0 > 0 fixed as in Lemma 4.4.3 and
let T ∈ (0, T0] as well as R ∈ (0, R0]. Moreover, for z̃, z̃1, z̃2 ∈ KR

T and the
reference solution z∗

0 from Proposition 4.4.1, we define

z := z̃ + z∗
0 = (ṽice + v∗

ice,0, h̃+ h∗
0, ã+ a∗

0, ℓ̃+ ℓ∗
0, ω̃ + ω∗

0),
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and we set zi := z̃i + z∗
0 , i = 1, 2, likewise. From z̃ ∈ KR

T and the definition
of C∗

T as the norm of the reference solution in Remark 4.4.2, we deduce that

(4.59) ∥z∥E1 ≤ R + C∗
T .

In the sequel, C0 > 0 represents the norm of the initial values, so C0 := ∥z0∥Xγ .
Another estimate used frequently in the sequel concerns the reference solu-
tion in BUC([0, T ]; Xγ). From Lemma 2.4.14, we deduce for a T -independent
constant C > 0 as well as C0 and C∗

T as explained above that

(4.60) ∥z∗
0∥BUC([0,T ];Xγ) ≤ C ·

(
∥z0∥Xγ + ∥z∗

0∥E1

)
= C(C0 + C∗

T ).

The next focal point is the procedure to derive the diffeomorphisms X
and Y from given rigid body velocities ℓ and ω. This is addressed below.

Remark 4.4.4. Consider (ℓ, ω) ∈ W1,p(0, T )3.

(a) The original angular velocity Ω coincides with ω by (4.18), and the ro-
tation angle β can then be deduced from (4.3). This also leads to the
rotation matrix Q ∈ W2,p(0, T )2×2 with angle β as given in (4.2).

(b) After obtaining the rotation matrix Q, we can recover the original trans-
lational velocity from ξ(t) = Q(t)ℓ(t) with regard to (4.18). As revealed
in (4.1), the center of mass follows from the integral

xc(t) =
∫ t

0
x′

c(s) ds =
∫ t

0
ξ(s) ds.

(c) Consequently, b(t, xH) can be reconstructed from (4.14), and we plug it
into (4.13) to get the diffeomorphism X.

(d) Next, we conclude the diffeomorphism Y by inserting the resulting right-
hand side b(Y )(t, yH) = J−1

X (t, yH)b(t,X(t, yH) into (4.17) and solving the
corresponding initial value problem. Let us observe that J−1

X (t, yH) is
well-defined for sufficiently small time thanks to Lemma 4.2.1.

In order to shorten the notation, we use the subscript i ∈ {1, 2} to denote
the dependence of objects on the rigid body velocities (ℓi, ωi) in the sequel.
In particular, Xi and Yi represent the diffeomorphisms associated to (ℓi, ωi)
and deduced therefrom by the procedure described in Remark 4.4.4. Several
properties of the diffeomorphisms X and Y can be found in Appendix A.

The lemma below provides ingredients for the estimate of the difference of
the transformed Laplacian and the non-transformed Laplacian.
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Lemma 4.4.5. Consider p, q ∈ (1,∞) such that (4.48). Moreover, for the
reference solution z∗

0 from Proposition 4.4.1 with norm C∗
T and z̃ ∈ KR

T ,
set z := z̃ + z∗

0, and recall C0 = ∥z0∥Xγ . Then for Y resulting from z as de-
scribed in Remark 4.4.4 and the associated contravariant tensor gjk, we have

∥gjk − δjk∥L∞(0,T ;L∞(F0)) ≤ CT (R + C0 + C∗
T ) and

∥∂jYk − δjk∥L∞(0,T ;L∞(F0)) ≤ CT (R + C0 + C∗
T ).

Proof. First, the identity transform X(t, yH) = yH for all t > 0 and yH ∈ R2

corresponds precisely to the situation of the body at rest, so ℓ = 0 as well
as ω = 0. As a result, we can apply Lemma A.1.2 in this instance. Addition-
ally, we split (ℓ, ω) into its component with initial value zero (ℓ̃, ω̃) and the
part corresponding to the reference solution (ℓ∗

0, ω
∗
0), exploit Lemma 1.3.1 for

the first part and employ the estimate (4.60) for the second one to obtain

∥gjk − δjk∥L∞(0,T ;L∞(F0)) ≤ C1T ·
(
∥(ℓ̃, ω̃)∥L∞(0,T ) + ∥(ℓ∗

0, ω
∗
0)∥L∞(0,T )

)
≤ C2T ·

(
T

1/p′ · ∥(ℓ̃, ω̃)∥W1,p(0,T ) + ∥z∗
0∥BUC([0,T ];Xγ)

)
≤ C3T ·

(
T

1/p′

0 · ∥z̃∥E1 + C0 + C∗
T

)
≤ C4T (R + C0 + C∗

T ).

The second estimate follows in a similar way.

The embeddings collected below equip us with an important tool in order
to tackle the nonlinear estimates.

Lemma 4.4.6. Let p, q ∈ (1,∞) fulfill (4.48), let T ∈ (0, T0], with T0 > 0
from Remark 4.4.2, and recall the trace space Xγ from (4.34).

(a) It holds that 0E1 ↪→ BUC([0, T ]; Xγ). Moreover, the embedding constant
can be chosen independent of T > 0.

(b) We have BUC([0, T ]; Xγ) ↪→ L∞(0, T ; W1,q(F0)4 × R3). In particular,

0E1 ↪→ L∞(0, T ; W1,q(F0)4 × R3) ↪→ L2p(0, T ; L2q(F0)4 × R3),

with T -independent embedding constants.

Proof. The embedding in (a) directly follows from Proposition 2.4.11, and
the T -independence thanks to the homogeneous initial values is discussed in
Remark 2.4.12. With regard to (b), the embedding in the space component
is implied by the embedding of the trace space as revealed in (4.49) together
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with the boundedness of the initial domain F0. The second part of (b) is direct
consequence of (a), the first embedding and W1,q(F0) ↪→ L2q(F0), following
from the Sobolev embedding (1.5).

As a preparation of the nonlinear estimates, we first address some au-
tonomous terms in the lemma below.

Lemma 4.4.7. Let p, q ∈ (1,∞) satisfy (4.48), and let z = ẑ+z∗
0, zi = ẑi+z∗

0,
i = 1, 2, with ẑ, ẑ1, ẑ2 ∈ KR

T and z∗
0 = (u∗

0, ℓ
∗
0, ω

∗
0) = (v∗

ice,0, h
∗
0, a

∗
0, ℓ

∗
0, ω

∗
0)

representing the reference solution from Proposition 4.4.1. Then there exists
a T -independent constant C > 0 such that, using B∗

1 := B1(u∗
0) for simplicity,∥∥∥∥∥(AH(u∗

0) − AH(u0)
)
vice − (B∗

1 −B1(u0))
(
h

a

)∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤ C · ∥z∗
0 − z0∥BUC([0,T ];Xγ) · (R + C∗

T ),∥∥∥∥∥(AH(u∗
0) − AH(u0)

)
(v̂ice,1 − v̂ice,2) − (B∗

1 −B1(u0))
(
ĥ1 − ĥ2

â1 − â2

)∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤ C · ∥z∗
0 − z0∥BUC([0,T ];Xγ) · ∥ẑ1 − ẑ2∥E1 ,∥∥∥∥∥(AH(u) − AH(u∗

0)
)
vice − (B1(u) −B∗

1)
(
h

a

)∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤ CR(R + C∗
T ), and

∥∥∥∥∥(AH(u2) − AH(u∗
0)
)

(v̂ice,1 − v̂ice,2) − (B1(u2) −B∗
1)
(
ĥ1 − ĥ2

â1 − â2

)∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤ CR · ∥ẑ1 − ẑ2∥E1 .

Proof. We recall that z = (vice, h, a, ℓ, ω) ∈ V especially implies h > κ as
well as a ∈ (0, 1) by the definition in (4.47). With regard to the shape of X1
as in (4.33), we conclude from z = (vice, h, a, ℓ, ω) ∈ X1 that u = (vice, h, a)
possesses the required regularity properties as in the proof of Theorem 3.5.2.
As a consequence, the same arguments as in the aforementioned proof as well
as the embedding properties of the trace space from (4.49) reveal the existence
of a constant C1 > 0 related to the Lipschitz constant CA > 0 from the proof
of Theorem 3.5.2 with

(4.61)

∥∥∥∥∥(AH(u1) − AH(u2)
)
vice − (B1(u1) −B1(u2))

(
h

a

)∥∥∥∥∥
Lq(F0)

≤ C1 · ∥z1 − z2∥Xγ · ∥z∥X1
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for z1, z2 ∈ V and z ∈ X1. Thus, it remains to argue that the elements in our
case are contained in V for the whole time interval [0, T ]. By assumption, we
have z0 ∈ V . Moreover, it follows from Remark 4.4.2(d) that z∗

0(t) ∈ V for all
t ∈ [0, T ], whereas we recall from Lemma 4.4.3 that z = ẑ+z∗

0 satisfies z(t) ∈ V

on [0, T ]. An integration in time and an application of (4.61) as well as (4.59)
yield, upon recalling the abbreviation B∗

1 = B1(u∗
0), that∥∥∥∥∥(AH(u∗

0) − AH(u0)
)
vice − (B∗

1 −B1(u0))
(
h

a

)∥∥∥∥∥
Lp(0,T ;Lq(F0))

=
∫ T

0

∥∥∥∥∥(AH(u∗
0(t)) − AH(u0)

)
vice(t) − (B∗

1 −B1(u0))
(
h(t)
a(t)

)∥∥∥∥∥
p

Lq(F0)
dt
1/p

≤ C1

(∫ T

0
∥z∗

0(t) − z0∥p
Xγ

· ∥z(t)∥p
X1 dt

)1/p

≤ C2 · ∥z∗
0 − z0∥BUC([0,T ];Xγ) · ∥z∥E1

≤ C2 · ∥z∗
0 − z0∥BUC([0,T ];Xγ) · (R + C∗

T ).

The first estimate is thus shown. The other estimates follow in a similar way.
At this stage, we also emphasize that the dependence of the constants on z0
and R0 is not critical as the latter objects are fixed.

As in the previous chapter, we also make assumptions on the external data
in order to obtain suitable estimates of the related terms.

Assumption 4.4.8. Let q ∈ (1,∞), and recall T0 > 0 from Remark 4.4.2.
The external data are assumed to have the following properties.

(a) For the surface wind velocity Vatm and the ocean velocity Vocn, it is valid
that Vatm, Vocn ∈ L∞(0, T0; L2q(F0)2).

(b) The sea surface dynamic height H fulfills ∇HH ∈ L∞(0, T0; Lq(F0)2).

(c) For the ice growth rate function fgr, we have fgr ∈ C1
b([0,∞)).

In the following lemmas, we collect the estimates of the nonlinear terms
in order to ensure the self map and contraction property of the fixed point
map ΦR

T from (4.58) for R > 0 and T > 0 sufficiently small.
The first nonlinear term to be estimated is the term G1 as determined

in (4.54). As we also elaborate on its Lipschitz property in the sequel, we
calculate the difference as well. In order to shorten the notation, we use z1
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4. Interaction of Sea Ice with a Rigid Body

and z2, but we still observe that the dependence can be regarded as a depen-
dence on ẑ1 and ẑ2. The difference is then given by

G1(ẑ1) −G1(ẑ2)

=
(
AH(z1) − AH(z2)

)
vice,1 − (B(z1) − B(z2))

(
h1

a1

)

+
(
AH(z2) − AH(u0)

)
(v̂ice,1 − v̂ice,2) − (B(z2) −B1(u0))

(
ĥ1 − ĥ2

â1 − â2

)
− ∇H(v̂ice,1 − v̂ice,2)∂tY1 − (∇Hvice,2)∂t(Y1 − Y2) − (N (vice,1) − N (vice,2))
+ µ(v̂ice,1 − v̂ice,2) − ccor(v̂ice,1 − v̂ice,2)⊥

+
(

1
ρiceh1

− 1
ρiceh2

)
(τatm + τocn(vice,1)) + 1

ρiceh2
(τocn(vice,1) − τocn(vice,2)) .

The lemma below asserts that the Lp-Lq norm ofG1(ẑ) becomes small asR > 0
and T > 0 tend to zero, and that G1 also admits a Lipschitz estimate with
shrinking Lipschitz constant.

Lemma 4.4.9. Let p, q ∈ (1,∞) satisfy (4.48), and consider z = ẑ + z∗
0,

z1 = ẑ1 + z∗
0 and z2 = ẑ2 + z∗

0, with ẑ, ẑ1, ẑ2 ∈ KR
T , and z∗

0 representing the
reference solution from Proposition 4.4.1. Moreover, suppose that Vatm, Vocn
and ∇HH lie within the scope of Assumption 4.4.8. In addition, recall the
T -independent maximal regularity constant CMR > 0 from Proposition 4.3.3.

Then there exist CG1(R, T ), LG1(R, T ) > 0 such that CG1(R, T ) < R/10CMR

for R > 0 and T > 0 sufficiently small as well as LG1(R, T ) → 0 as R → 0
and T → 0, and with

∥G1(ẑ)∥Lp(0,T ;Lq(F0)) ≤ CG1(R, T ) and
∥G1(ẑ1) −G1(ẑ2)∥Lp(0,T ;Lq(F0)) ≤ LG1(R, T ) · ∥ẑ1 − ẑ2∥E1 .

Proof. We first comment on the main ideas and tools used below. Through-
out this proof, we rely on Lemma 1.3.1, yielding T -powers when estimating the
norm ∥·∥Lp(0,T ) by ∥·∥L∞(0,T ), or when estimating ∥·∥L∞(0,T ) by ∥·∥W1,p(0,T ) in
the case of homogeneous initial values. We also frequently use that z = ẑ+z∗

0 ,
with ẑ ∈ KR

T , satisfies z(t) ∈ V for all t ∈ [0, T ] by virtue of Lemma 4.4.3
and R ≤ R0 as well as T ≤ T0. The same is valid for the analogously de-
fined z1 and z2. Another important ingredient is the estimate of the E1-norm
of such z, z1 and z2 by R + C∗

T with regard to (4.59). In general, we often
split the elements z, z1 and z2 into their respective parts with homogeneous
initial values ẑ, ẑ1, ẑ2 and the reference solution z∗

0 . We then use embeddings
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with T -independent constants and the bound by R in E1 for the first parts,
while for the reference solution z∗

0 , we employ the estimate by C(C0 + C∗
T )

in BUC([0, T ]; Xγ) as settled in (4.60) or the E1-norm C∗
T . Concerning the

terms in which the diffeomorphism Y appears, we make use of the estimates
from Appendix A and Lemma 4.4.5.

By v̂ice(0) = 0 and Lemma 1.3.1, we get

(4.62)

∥µ(v̂ice + v∗
ice,0) − ccor(v̂ice + v∗

ice,0)⊥∥Lp(0,T ;Lq(F0))

≤ C1
(
T

1/p · ∥v̂ice∥L∞(0,T ;Lq(F0)) + ∥v∗
ice,0∥Lp(0,T ;Lq(F0))

)
≤ C2

(
T · ∥v̂ice∥W1,p(0,T ;Lq(F0)) + ∥z∗

0∥E1

)
≤ C2 (T · ∥ẑ∥E1 + C∗

T )
≤ C3(TR + C∗

T ).
From Lemma 1.3.1 and Assumption 4.4.8, we deduce that

∥ − g∇HH∥Lp(0,T ;Lq(F0)) ≤ T
1/p · ∥ − g∇HH∥L∞(0,T ;Lq(F0)) ≤ C4T

1/p.

Thanks to z(t) ∈ V for all t ∈ [0, T ], we conclude h(t) = ĥ(t) + h∗
0(t) > κ on

the time interval [0, T ]. Therefore, there exists a constant C5 > 0 such that

(4.63)
∥∥∥∥∥ 1
ρice(ĥ+ h∗

0)

∥∥∥∥∥
L∞(0,T ;L∞(F0))

≤ C5.

Together with Lemma 1.3.1, Hölder’s inequality and Assumption 4.4.8(a), the
estimate (4.63) yields that

(4.64)

∥∥∥∥∥ 1
ρice(ĥ+ h∗

0)
τatm

∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤ C6T
1/p · ∥τatm∥L∞(0,T ;Lq(F0))

≤ C7T
1/p · ∥Vatm∥2

L∞(0,T ;L2q(F0))

≤ C8T
1/p.

The term accounting for the ocean force can be dealt with in a similar manner.
Indeed, exploiting Lemma 1.3.1, the above estimate (4.63) of the fraction, the
embedding from Lemma 4.4.6(b) and (4.60), we infer that

(4.65)

∥∥∥∥∥ 1
ρice(ĥ+ h∗

0)
τocn(v̂ice + v∗

ice,0)
∥∥∥∥∥

Lp(0,T ;Lq(F0))

≤ C9T
1/p · ∥τocn(v̂ice + v∗

ice,0)∥L∞(0,T ;Lq(F0))

≤ C10T
1/p ·

(
∥Vocn + v̂ice + v∗

ice,0∥2
L∞(0,T ;L2q(F0))

)
≤ C11T

1/p
(
1 + ∥ẑ∥2

E1 + ∥z∗
0∥2

BUC([0,T ];Xγ)

)
≤ C12T

1/p
(
1 +R2 + C2

0 + (C∗
T )2

)
.
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Now, we address the terms related to the coordinate transform. In fact,
Hölder’s inequality, Lemma A.1.1(a) for the estimate of ∂tY , Lemma 1.3.1 and
the embedding in Lemma 4.4.6(b) with T -independent embedding constant
thanks to the homogeneous initial values of ẑ lead to

(4.66)

∥∇H(v̂ice + v∗
ice,0)∂tY ∥Lp(0,T ;Lq(F0))

≤ C13∥v̂ice + v∗
ice,0∥Lp(0,T ;W1,q(F0)) · ∥∂tY ∥L∞(0,T ;L∞(F0))

≤ C14
(
T

1/p · ∥v̂ice∥L∞(0,T ;W1,q(F0)) + ∥v∗
ice,0∥Lp(0,T ;W1,q(F0))

)
≤ C15

(
T

1/p · ∥ẑ∥E1 + ∥z∗
0∥E1

)
≤ C15

(
T

1/pR + C∗
T

)
.

Furthermore, Hölder’s inequality, Lemma A.1.1(a) for the estimate of the
coordinate transform, the embedding of the trace space from (4.49), the em-
bedding in Lemma 4.4.6(a), the same arguments for ∥v̂ice +v∗

ice,0∥Lp(0,T ;W1,q(F0))
as in (4.66) and (4.60) imply

(4.67)

∥N (v̂ice + v∗
ice,0)∥Lp(0,T ;Lq(F0))

≤ C16 · ∥∂jYk∥L∞(0,T ;L∞(F0)) · ∥v̂ice + v∗
ice,0∥L∞(0,T ;L∞(F0))

· ∥v̂ice + v∗
ice,0∥Lp(0,T ;W1,q(F0))

≤ C17 ·
(
∥ẑ∥E1 + ∥z∗

0∥BUC([0,T ];Xγ)
)

·
(
T

1/p · ∥v̂ice∥L∞(0,T ;W1,q(F0)) + ∥v∗
ice,0∥Lp(0,T ;W1,q(F0))

)
≤ C18 (R + C0 + C∗

T )
(
T

1/pR + C∗
T

)
.

With regard to (4.54), it remains to control the difference
(
AH(ẑ + z∗

0) − AH(u0)
)

(v̂ice + v∗
ice,0) − (B(ẑ + z∗

0) −B1(u0))
(
ĥ+ h∗

0
â+ a∗

0

)
.

We reduce this task by introducing intermediate terms, so we consider
(
AH(ẑ + z∗

0) − AH(û+ u∗
0)
)

(v̂ice + v∗
ice,0) − (B(ẑ + z∗

0) −B1(û+ u∗
0))

(
ĥ+ h∗

0
â+ a∗

0

)

as well as the resulting terms
(
AH(û+ u∗

0) − AH(u∗
0)
)

(v̂ice + v∗
ice,0) − (B1(û+ u∗

0) −B1(u∗
0))

(
ĥ+ h∗

0
â+ a∗

0

)
and

(AH(u∗
0) − AH(u0))(v̂ice + v∗

ice,0) − (B1(u∗
0) −B1(u0))

(
ĥ+ h∗

0
â+ a∗

0

)
.
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For the third difference, with z = ẑ + z∗
0 , we recall from Lemma 4.4.7 that

∥∥∥∥∥(AH(u∗
0) − AH(u0)

)
vice − (B1(u∗

0) −B1(u0))
(
h

a

)∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤ C19 · ∥z∗
0 − z0∥BUC([0,T ];Xγ) · (R + C∗

T ).

Concerning the second difference, also using the abbreviation B∗
1 = B1(u∗

0),
we conclude from Lemma 4.4.7 the estimate∥∥∥∥∥(AH(u) − AH(u∗

0))vice − (B1(u) −B∗
1)
(
h

a

)∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤ C20R(R + C∗
T ).

Hence, it remains to estimate the term associated to the difference of the
transformed problem and the non-transformed problem. In this context, we
start with

(4.68)
(
AH(ẑ + z∗

0) − AH(û+ u∗
0)
)

(v̂ice + v∗
ice,0),

corresponding to the Hibler operator. With regard to the shape of the terms
from (4.26) and (3.14), in the principal part, this amounts to estimating

2∑
j,k,l,m=1

(
aklm

ij (ε̃(v̂ice + v∗
ice,0), P (ĥ+ h∗

0, â+ a∗
0))∂mε̃jl(v̂ice + v∗

ice,0)

− akl
ij (ε(v̂ice + v∗

ice,0), P (ĥ+ h∗
0, â+ a∗

0))δkm∂kεjl(v̂ice + v∗
ice,0)

)
= I + II.

For simplicity of notation, we do not explicitly write the dependence of ε as
well as ε̃ on v̂ice + v∗

ice,0, and the dependence of P on ĥ+ h∗
0 and â+ a∗

0. The
terms in the above are defined by

I :=
2∑

j,k,l,m=1

(
aklm

ij (ε̃, P )∂mε̃jl − akl
ij (ε, P )δkm∂kε̃jl

)
and

II :=
2∑

j,k,l=1

(
akl

ij (ε, P )∂kε̃jl − akl
ij (ε, P )∂kεjl

)
.

We start with the estimate of II, where the task is to estimate the difference
of the transformed and the non-transformed symmetric part of the gradient.
Invoking the derivatives of the transformed term as revealed in (4.23), we get,
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also using the notation vice = v̂ice + v∗
ice,0, the identity

∂kε̃jl − ∂kεjl = 1
2

2∑
n=1

(
(∂k∂jYn)∂nvice,j + (∂jYn)∂k∂nvice,l + (∂k∂lYn)∂nvice,j

+ (∂lYn)∂k∂nvice,j

)
− 1

2∂k(∂jvice,l + ∂lvice,j)

= 1
2

2∑
n=1

(
(∂jYn − δjn)∂k∂nvice,l + (∂lYn − δln)∂k∂nvice,j

+ (∂k∂jYn)∂nvice,j + (∂k∂lYn)∂nvice,j

)
.

Lemma 4.4.5 yields estimates of terms as ∂jYn − δjn, so by (4.59), we get

∥(∂jYn − δjn)∂k∂nvice,l∥Lp(0,T ;Lq(F0))

≤ ∥∂jYn − δjn∥L∞(0,T ;L∞(F0)) · ∥vice∥Lp(0,T ;W2,q(F0))

≤ C21T (R + C0 + C∗
T ) · ∥z∥E1

≤ C22T (R + C0 + C∗
T )(R + C∗

T ).

The estimate of (∂lYn −δln)∂k∂nvice,j follows in the same way. In order to com-
plete the estimate of the terms in II, it remains to estimate the terms with two
derivatives on Y . Indeed, Hölder’s inequality together with Lemma A.1.1(a)
and (4.59) result in

∥(∂k∂jYn)∂nvice,j∥Lp(0,T ;Lq(F0)) ≤ ∥∂k∂jYn∥L∞(0,T ;L∞(F0)) · ∥vice∥Lp(0,T ;W1,q(F0))

≤ C23T (R + C∗
T ) · ∥z∥E1

≤ C24T (R + C∗
T )2.

The term (∂k∂lYn)∂nvice,j can again be treated analogously. We finish the
estimate of II by deducing from the shape of the coefficients in (3.15) and
from z(t) ∈ V for all t ∈ [0, T ] the boundedness of the coefficients, i. e.,

(4.69) ∥akl
ij (ε, P )∥L∞(0,T ;L∞(F0)) ≤ C25.

A concatenation of the previous estimates implies

∥II∥Lp(0,T ;Lq(F0)) ≤ C26T (R + C0 + C∗
T )(R + C∗

T ).

The next step is the treatment of the term I tracking the difference of the
transformed and non-transformed coefficients. In view of the transformed
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coefficients from (4.25), we expand I into

III :=
2∑

j,k,l,m=1

(
aklm

ij (ε̃, P ) − aklm
ij (ε, P )

)
∂mε̃jl and

IV :=
2∑

j,k,l,m=1
akl

ij (ε, P )(∂kYm − δkm)∂mε̃jl.

For IV, we recall (4.23) for the shape of ∂mε̃jl and make use of Lemma A.1.1(a)
to estimate the resulting term related to the transform, whereas the derivatives
of vice can be estimated in view of (4.59). In total, we find that

(4.70) ∥∂mε̃jl∥Lp(0,T ;Lq(F0)) ≤ C27

for some constant C27 > 0. Joint with the above boundedness of the coeffi-
cients and Lemma 4.4.5 for the estimate of ∂kYm − δkm, this leads to

∥IV∥Lp(0,T ;Lq(F0)) ≤ C28T (R + C0 + C∗
T ).

Concerning III, we first observe that (4.70) yields an estimate of the last
factor. On the other hand, ∂kYm also appears in both terms, and it can
be estimated in L∞(0, T ; L∞(F0)) by virtue of Lemma A.1.1(a). Hence, it
remains to estimate the difference akl

ij (ε̃, P )−akl
ij (ε, P ). Let us observe that the

difference only regards the symmetric part of the gradient, so the coefficients
have the common factor

P (ĥ+ h∗
0, â+ a∗

0)
2ρice(ĥ+ h∗

0)
.

This term can be treated by a combination of (4.63) as well as an estimate
of P (ĥ+h∗

0, â+ a∗
0) relying on z(t) ∈ V for all t ∈ [0, T ]. Thus, it is crucial to

handle the difference
1

△δ(ε̃)

(
Skl

ij − 1
△2

δ(ε̃)
(Sε̃)ik(Sε̃)jl

)
− 1

△δ(ε)

(
Skl

ij − 1
△2

δ(ε)
(Sε)ik(Sε)jl

)
.

At this stage, we invoke the smooth dependence on ε̃ and ε thanks to the
regularization by δ > 0, so an application of the mean value theorem yields∥∥∥∥∥ 1

△δ(ε̃)

(
Skl

ij − 1
△2

δ(ε̃)
(Sε̃)ik(Sε̃)jl

)

− 1
△δ(ε)

(
Skl

ij − 1
△2

δ(ε)
(Sε)ik(Sε)jl

)∥∥∥∥∥
L∞(0,T ;L∞(F0))

≤ C29 · ∥ε̃− ε∥L∞(0,T ;L∞(F0)).

141



4. Interaction of Sea Ice with a Rigid Body

The difference of the transformed symmetric part of the gradient and the
original one admits the representation

ε̃ij − εij = 1
2

2∑
k=1

(
(∂iYk − δik)∂kvice,j + (∂jYk − δjk)∂kvice,i

)
.

Making use of the trace space embedding (4.49), Lemma 4.4.6(a) thanks to
the homogeneous initial values of ẑ and (4.60), we obtain

∥∂kvice∥L∞(0,T ;L∞(F0)) ≤ C30 · ∥vice∥L∞(0,T ;C1(F0))

≤ C31 ·
(
∥ẑ∥BUC([0,T ];Xγ) + ∥z∗

0∥BUC([0,T ];Xγ)
)

≤ C32 · (∥ẑ∥E1 + C0 + C∗
T )

≤ C32(R + C0 + C∗
T ).

Invoking Lemma 4.4.5 for the estimates of ∂iYk − δik and ∂jYk − δjk, we derive

∥III∥Lp(0,T ;Lq(F0)) ≤ C33T (R + C0 + C∗
T )2.

In total, we get

∥I∥Lp(0,T ;Lq(F0)) ≤ C34T (R + C0 + C∗
T )(1 +R + C0 + C∗

T ).

Let us observe that the non-principal part of Hibler’s operator can be
treated in the same way. The last part to be handled in order to get the
estimate of G1(ẑ) is

(B(ẑ + z∗
0) −B1(û+ u∗

0))
(
ĥ+ h∗

0
â+ a∗

0

)
,

and we concentrate on the h-part of this difference. It takes the shape

∂hP (ĥ+ h∗
0, â+ a∗

0)
2ρice(ĥ+ h∗

0)

2∑
k=1

(∂jYk − δjk)∂k(ĥ+ h∗
0).

The denominator 2ρice(ĥ+h∗
0) in the fraction can be estimated by using (4.63),

while the derivative of the ice strength reads as

∂hP (ĥ+ h∗
0, â+ a∗

0) = p∗e−c•(1−(̂a+a∗
0)).

By virtue of z(t) ∈ V for all t ∈ [0, T ], we get in particular that the ice
compactness satisfies a(t) = â(t) + a∗

0(t) ∈ (0, 1) on [0, T ], and the result is∥∥∥∂hP (ĥ+ h∗
0, â+ a∗

0)
∥∥∥

L∞(0,T ;L∞(F0))
≤ C35.
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In conjunction with Lemma 4.4.5 in order to estimate ∂jYk − δjk and the
embedding in Lemma 4.4.6(b), we conclude

(4.71)

∥∥∥∥∥∂hP (ĥ+ h∗
0, â+ a∗

0)
2ρice(ĥ+ h∗

0)

2∑
k=1

(∂jYk − δjk)∂j(ĥ+ h∗
0)
∥∥∥∥∥

Lp(0,T ;Lq(F0))

≤ C36 · ∥∂jYk − δjk∥L∞(0,T ;L∞(F0)) · ∥ĥ+ h∗
0∥Lp(0,T ;W1,q(F0))

≤ C37T (R + C0 + C∗
T )
(
T

1/p · ∥ĥ∥L∞(0,T ;W1,q(F0)) + ∥z∗
0∥E1

)
≤ C38T (R + C0 + C∗

T )
(
T

1/p · ∥ẑ∥E1 + C∗
T

)
≤ C38T (R + C0 + C∗

T )
(
T

1/pR + C∗
T

)
.

Let us observe that the term corresponding to the a-part can be estimated in
the exact same way.

Putting together all the above, we conclude the first part of the assertion
for some CG1(R, T ) > 0. Moreover, we first choose R > 0 sufficiently small
and then let T → 0 to infer that indeed, CG1(R, T ) < R/10CMR, where we also
exploit that C∗

T → 0 for T → 0 by Remark 4.4.2(b) and the convergence of the
difference of z∗

0 and z0 in BUC([0, T ]; Xγ) to zero as T → 0 by Remark 4.4.2(c).
The second part of the proof is dedicated to the Lipschitz estimate of G1.

Proceeding as in (4.62), additionally observing that v̂ice,1 − v̂ice,2 has homoge-
neous initial values, we deduce that

∥µ(v̂ice,1 − v̂ice,2) − ccor(v̂ice,1 − v̂ice,2)⊥∥Lp(0,T ;Lq(F0)) ≤ C39T · ∥ẑ1 − ẑ2∥E1

for some constant C39 > 0. The mean value theorem and ĥi(t) + h∗
0(t) > κ,

thanks to zi(t) ∈ V for all t ∈ [0, T ] and i = 1, 2, yield∥∥∥∥∥ 1
ρice(ĥ1 + h∗

0)
− 1
ρice(ĥ2 + h∗

0)

∥∥∥∥∥
L∞(0,T ;L∞(F0))

≤ C40 · ∥ẑ1 − ẑ2∥E1 .

Using the same arguments as in (4.64) and (4.65), we derive the estimate∥∥∥∥∥
(

1
ρice(ĥ1 + h∗

0)
− 1
ρice(ĥ2 + h∗

0)

)(
τatm + τocn(v̂ice,1 + v∗

ice,0)
)∥∥∥∥∥

Lp(0,T ;Lq(F0))

≤ C41T
1/p
(
1 +R2 + C2

0 + (C∗
T )2

)
· ∥ẑ1 − ẑ2∥E1 .

For the other term related to the oceanic forcing term, we first observe the
boundedness of the inverse of ρice(ĥ2 + h∗

0) as argued above. On the other
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hand, employing the notation vice,i = v̂ice,i + v∗
ice,0 for simplicity, we calculate

τocn(vice,1) − τocn(vice,2)
= ρocnCocn|Vocn − vice,1|Rocn(−(v̂ice,1 − v̂ice,2))

+ ρocnCocn(|Vocn − vice,1| − |Vocn − vice,2|)(Vocn − vice,2).

The first resulting addend can be handled as in (4.65), so we get

∥ρocnCocn|Vocn − v̂ice,1 − v∗
ice,0|Rocn(−(v̂ice,1 − v̂ice,2))∥Lp(0,T ;Lq(F0))

≤ C42T
1/p(1 +R + C0 + C∗

T ) · ∥ẑ1 − ẑ2∥E1 .

The second addend can be treated similarly, so in total,∥∥∥∥∥ 1
ρice(ĥ2 + h∗

0)

(
τocn(v̂ice,1 + v∗

ice,0) − τocn(v̂ice,2 + v∗
ice,0)

)∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤ C43T
1/p(1 +R + C0 + C∗

T ) · ∥ẑ1 − ẑ2∥E1 .

As in the first part of the proof, we next address the terms related to the
coordinate transform. Mimicking the arguments from (4.66), and invoking
again the homogeneous initial values of v̂ice,1 − v̂ice,2, we find the estimate

(4.72) ∥∇H(v̂ice,1 − v̂ice,2)∂tY1∥Lp(0,T ;Lq(F0)) ≤ C44T
1/p · ∥ẑ1 − ẑ2∥E1 .

With regard to the other term related to the transformed time derivative, we
also use a similar strategy as in (4.66), this time exploiting Lemma A.1.1(a)
for the estimate of the L∞(0, T ; L∞(F0))-norm of ∂t(Y1 − Y2) to obtain

(4.73)
∥∇H(v̂ice,2 + v∗

ice,0)∂t(Y1 − Y2)∥Lp(0,T ;Lq(F0))

≤ C45(T 1/pR + C∗
T )T · ∥ẑ1 − ẑ2∥E1 .

The next task is to estimate the difference in the transformed term N . First,
we expand this term further so that it is easier to handle. More precisely,
employing again vice,i = v̂ice,i + v∗

ice,0 to simplify notation, we write

N (vice,1) − N (vice,2) =
2∑

j,k=1

(
(v̂ice,1 − v̂ice,2)j(∂j(Y1)k)∂k(vice,1)j

+ (vice,2)j(∂j(Y1 − Y2)k)∂k(vice,1)j

+ (vice,2)j(∂j(Y2)k)∂k(v̂ice,1 − v̂ice,2)j

)
.
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4.4. Local Strong Well-Posedness

A similar strategy as in (4.67), also based on Lemma A.1.1(a) in order to
estimate the difference in Y in the middle term, yields

(4.74)
∥N (v̂ice,1 + v∗

ice,0) − N (v̂ice,2 + v∗
ice,0)∥Lp(0,T ;Lq(F0))

≤ C46
(
(1 + T (R + C0 + C∗

T ))(T 1/pR + C∗
T ) + T

1/p(R + C0 + C∗
T )
)

· ∥ẑ1 − ẑ2∥E1 .

It remains to estimate the terms related to the Hibler operator and the ice
strength. In fact, we start with the difference

(4.75)

(
AH(ẑ2 + z∗

0) − AH(u0)
)

(v̂ice,1 − v̂ice,2)

− (B(ẑ2 + z∗
0) −B1(u0))

(
ĥ1 − ĥ2

â1 − â2

)
.

As in the first part of the proof, we insert two intermediate term. In fact,
Lemma 4.4.7 reveals that∥∥∥∥∥(AH(û2 + u∗

0) − AH(u∗
0)
)

(v̂ice,1 − v̂ice,2)

− (B1(û2 + u∗
0) −B1(u∗

0))
(
ĥ1 − ĥ2

â1 − â2

)∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤ C47R · ∥ẑ1 − ẑ2∥E1

as well as∥∥∥∥∥(AH(u∗
0) − AH(u0)

)
(v̂ice,1 − v̂ice,2) − (B∗

1 −B1(u0))
(
ĥ1 − ĥ2

â1 − â2

)∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤ C48 · ∥z∗
0 − z0∥BUC([0,T ];Xγ) · ∥ẑ1 − ẑ2∥E1 .

Concerning the resulting terms in (4.75), similar arguments as for the estimate
of (4.68) and (4.71) especially lead to∥∥∥(AH(ẑ2 + z∗

0) − AH(û2 + u∗
0)
)

(v̂ice,1 − v̂ice,2)
∥∥∥

Lp(0,T ;Lq(F0))

≤ C49T · ∥ẑ1 − ẑ2∥E1

and ∥∥∥∥∥(B(ẑ2 + z∗
0) −B1(u∗

0))
(
ĥ1 − ĥ2

â1 − â2

)∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤ C50T · ∥ẑ1 − ẑ2∥E1 .

The rest of the proof focuses on the Lipschitz continuity of(
AH(ẑ1 + z∗

0) − AH(ẑ2 + z∗
0)
)

(v̂ice,1 + v∗
ice,0)

− (B(ẑ1 + z∗
0) − B(ẑ2 + z∗

0))
(
ĥ1 + h∗

0
â1 + a∗

0

)
.
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4. Interaction of Sea Ice with a Rigid Body

For this, we need to control the difference of the transformed terms in the
arguments. The first step is to estimate the transformed Hibler operator.
Moreover, we concentrate on the principal part and remark that the remaining
part can be estimated in a similar way. In view of (4.26), this means that we
need to estimate

2∑
j,k,l,m=1

(
aklm

ij

(
ε̃(v̂ice,1 + v∗

ice,0), P (ĥ1 + h∗
0, â1 + a∗

0)
)

− aklm
ij

(
ε̃(v̂ice,2 + v∗

ice,0), P (ĥ2 + h∗
0, â2 + a∗

0)
))
∂mε̃jl(v̂ice,1 + v∗

ice,0).

Compared to the above considerations, we require better estimates of the
term ∂mε̃jl(v̂ice,1 + v∗

ice,0). In that respect, for vice,1 = v̂ice,1 + v∗
ice,0, we recall

∂mε̃jl(vice,1) = 1
2

2∑
n=1

(
(∂m∂j(Y1)n)∂n(vice,1)l + (∂j(Y1)n)∂m∂n(vice,1)l

+ (∂m∂l(Y1)n)∂n(vice,1)j + (∂l(Y1)n)∂m∂n(vice,1)j

)
.

We invoke Lemma 1.3.1, the trace space embedding (4.49), Lemma A.1.1(a)
for the estimate of the second derivatives of Y , Lemma 4.4.6(a) and the esti-
mate of ∥z∗

0∥BUC([0,T ];Xγ) from (4.60) to get

∥(∂m∂j(Y1)n)∂n(vice,1)l∥Lp(0,T ;Lq(F0))

≤ ∥∂m∂j(Y1)n∥Lp(0,T ;Lq(F0)) · ∥∂n(vice,1)l∥L∞(0,T ;L∞(F0))

≤ C51T
1/p · ∥∂m∂j(Y1)n∥L∞(0,T ;L∞(F0)) ·

(
∥ẑ1∥BUC([0,T ];Xγ) + ∥z∗

0∥BUC([0,T ];Xγ)
)

≤ C52T
1+1/p(R + C∗

T ) · (∥ẑ1∥E1 + C0 + C∗
T )

≤ C53T
1+1/p(R + C∗

T )(R + C0 + C∗
T ).

At the same time, employing the boundedness of the gradient of Y1 as stated
in Lemma A.1.1(a) and (4.59), we find the estimate

∥(∂j(Y1)n)∂m∂n(vice,1)l∥Lp(0,T ;Lq(F0))

≤ C54 · ∥∂j(Y1)n∥L∞(0,T ;L∞(F0)) · ∥vice,1∥Lp(0,T ;W2,q(F0))

≤ C55 · ∥z1∥E1 ≤ C55(R + C∗
T ).

A concatenation of the preceding estimates shows that ε̃ = ε̃(vice,1) satisfies

(4.76) ∥∂mε̃jl∥Lp(0,T ;Lq(F0)) ≤ C56
(
(R + C∗

T )(1 + T 1+1/p(R + C0 + C∗
T ))
)
.
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For n = 1, 2, we employ the notation ε̃n and Pn instead of ε̃(v̂ice,n + v∗
ice,0)

and P (ĥn + h∗
0, ân + a∗

0) for simplicity. Moreover, we recall from (4.25) that
the transformed coefficients are of the form

aklm
ij (ε̃n, Pn) = akl

ij (ε̃n, Pn)(∂k(Yn)m).

Hence, when considering aklm
ij (ε̃1, P1) − aklm

ij (ε̃2, P2), we observe that the dif-
ference is either in the original coefficients or in the diffeomorphism. With
regard to (3.28), in the first case, we get the estimate

∥akl
ij (ε̃1, P1) − akl

ij (ε̃2, P2)∥L∞(0,T ;L∞(F0))

≤ C57 · ∥(ε̃1, h1, a1) − (ε̃2, h2, a2)∥L∞(0,T ;L∞(F0)).

The estimate of the resulting difference in h and a is straightforward, so we
only elaborate on the estimate of the difference in the transformed symmetric
part of the gradient. To this end, we compute

(ε̃1)ij − (ε̃2)ij

= 1
2

2∑
k=1

(
(∂i(Y1)k − ∂i(Y2)k)∂k(v̂ice,1 + v∗

ice,0)j + (∂i(Y2)k)∂k(v̂ice,1 − v̂ice,2)j

+ (∂j(Y1)k − ∂j(Y2)k)∂k(v̂ice,1 + v∗
ice,0)i + (∂j(Y2)k)∂k(v̂ice,1 − v̂ice,2)i

)
.

In order to estimate the resulting terms with the difference in the diffeomor-
phism, we exploit Lemma A.1.1(a) to get an estimate by the difference of the
rigid body velocities. More precisely, we also use the embedding of the trace
space from (4.49), the embedding from Lemma 4.4.6(a) and (4.60) to infer

∥(∂i(Y1)k − ∂i(Y2)k)∂k(v̂ice,1 + v∗
ice,0)j∥L∞(0,T ;L∞(F0))

≤ C58T · ∥ẑ1 − ẑ2∥E1 · ∥v̂ice,1 + v∗
ice,0∥L∞(0,T ;W1,q(F0))

≤ C59T ·
(
∥ẑ1∥E1 + ∥z∗

0∥BUC([0,T ];Xγ)
)

· ∥ẑ1 − ẑ2∥E1

≤ C60T (R + C0 + C∗
T ) · ∥ẑ1 − ẑ2∥E1 .

Concerning the terms with the difference in the sea ice velocity, we conclude
from Lemma A.1.1(a) the boundedness of the gradient of Y , so

∥(∂i(Y2)k)∂k(v̂ice,1 − v̂ice,2)j∥L∞(0,T ;L∞(F0)) ≤ C61 · ∥ẑ1 − ẑ2∥E1 .

In total, we get the estimate

(4.77) ∥ε̃1 − ε̃2∥L∞(0,T ;L∞(F0)) ≤ C62 (T (R + C0 + C∗
T ) + 1) · ∥ẑ1 − ẑ2∥E1 .
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With regard to the above estimate of the difference of the coefficients, we
derive that

∥akl
ij (ε̃1, P1) − akl

ij (ε̃2, P2)∥L∞(0,T ;L∞(F0))

≤ C63 (T (R + C0 + C∗
T ) + 1) · ∥ẑ1 − ẑ2∥E1 .

Putting together the last estimate, the estimate of ∂mε̃jl from (4.76) and
the boundedness of ∂k(Yn)m by virtue of Lemma A.1.1(a), we find that the
difference term

(akl
ij (ε̃1, P1) − akl

ij (ε̃2, P2))(∂k(Y1)m)∂mε̃1

admits an estimate of the desired shape, i. e., it is Lipschitz continuous in ẑ

with Lipschitz constant shrinking to zero as R → 0 and T → 0. On the other
hand, because of

∥∂k(Y1)m − ∂k(Y2)m∥L∞(0,T ;L∞(F0)) ≤ C64T · ∥ẑ1 − ẑ2∥E1 ,

following from Lemma A.1.1(a) again, and invoking the boundedness of the
coefficients as revealed in (4.69), we deduce a suitable estimate of the term

akl
ij (ε̃2, P2) (∂k(Y1)m − ∂k(Y2)m) ∂mε̃1.

This completes the treatment of the term(
AH(ẑ1 + z∗

0) − AH(ẑ2 + z∗
0)
)

(v̂ice,1 + v∗
ice,0)

upon observing that the non-principal part can be handled analogously.
The last term to be estimated is thus

(B(ẑ1 + z∗
0) − B(ẑ2 + z∗

0))
(
ĥ1 + h∗

0
â1 + a∗

0

)
.

In this context, we focus on the estimate of the h-part and stress that the
a-part again allows a similar handling. As a first step, we provide a more
advantageous representation, namely(

(Bh(ẑ1 + z∗
0) − Bh(ẑ2 + z∗

0)) (ĥ1 + h∗
0)
)

i

=
(

∂hP1

2ρice(ĥ1 + h∗
0)

− ∂hP2

2ρice(ĥ2 + h∗
0)

) 2∑
j=1

(∂i(Y1)j)∂j(ĥ1 + h∗
0)

+ ∂hP2

2ρice(ĥ2 + h∗
0)

2∑
j=1

(∂i(Y1)j − ∂i(Y2)j) ∂j(ĥ1 + h∗
0).
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For the estimate of the second addend, we mimic the procedure from (4.71),
where Lemma 4.4.5 has to be replaced by Lemma A.1.1(a), to estimate the
difference of the diffeomorphisms, and we then get∥∥∥∥∥∥ ∂hP2

2ρice(ĥ2 + h∗
0)

2∑
j=1

(∂i(Y1)j − ∂i(Y2)j) ∂j(ĥ1 + h∗
0)

∥∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤ C65T (T 1/pR + C∗
T ) · ∥ẑ1 − ẑ2∥E1 .

With regard to the first addend in the above representation, a similar strategy
can be used. Indeed, using the smoothness of the coefficients in h and a in
conjunction with the mean value theorem in order to estimate the first factor,
we end up with∥∥∥∥∥∥

(
∂hP1

2ρice(ĥ1 + h∗
0)

− ∂hP2

2ρice(ĥ2 + h∗
0)

) 2∑
j=1

(∂i(Y1)j)∂j(ĥ1 + h∗
0)

∥∥∥∥∥∥
Lp(0,T ;Lq(F0))

≤ C66(T 1/pR + C∗
T ) · ∥ẑ1 − ẑ2∥E1 .

In summary, we have also verified the Lipschitz continuity ofG1 with shrink-
ing Lipschitz constant LG1(R, T ).

The next terms under consideration are G2 and G3 from (4.55). As for G1,
we provide the resulting differences as a preparation. In fact, employing the
notation zi = ẑi + z∗

0 , we have

G2(ẑ1) −G2(ẑ2) = dh(L1 − L2)h1 + dh(L2 − ∆H)(ĥ1 − ĥ2) + µ(ĥ1 − ĥ2)
− ∇H(ĥ1 − ĥ2) · ∂tY1 − ∇Hh2 · ∂t(Y1 − Y2) − (M(vice,1, h1)
− M(vice,2, h2)) + Sh(h1, a1) − Sh(h2, a2)

and

G3(ẑ1) −G3(ẑ2) = da(L1 − L2)a1 + da(L2 − ∆H)(â1 − â2) + µ(â1 − â2)
− ∇H(â1 − â2) · ∂tY1 − ∇Ha2 · ∂t(Y1 − Y2) − M(vice,1, a1)
+ M(vice,2, a2) + Sa(h1, a1) − Sa(h2, a2).

Lemma 4.4.10. Consider p, q ∈ (1,∞) such that (4.48), and let z = ẑ + z∗
0,

z1 = ẑ1 + z∗
0 and z2 = ẑ2 + z∗

0, where ẑ, ẑ1, ẑ2 ∈ KR
T , while z∗

0 denotes
the reference solution from Proposition 4.4.1. In addition, suppose that fgr
satisfies Assumption 4.4.8(c), and recall the T -independent maximal regularity
constant CMR > 0 from Proposition 4.3.3.
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Then there are constants CG2(R, T ), LG2(R, T ), CG3(R, T ), LG3(R, T ) > 0
with CG2(R, T ), CG3(R, T ) < R/10CMR for R > 0 and T > 0 sufficiently small
and LG2(R, T ), LG3(R, T ) → 0 as R → 0 and T → 0, and such that

∥G2(ẑ)∥Lp(0,T ;Lq(F0)) ≤ CG2(R, T ),
∥G3(ẑ)∥Lp(0,T ;Lq(F0)) ≤ CG3(R, T ),

∥G2(ẑ1) −G2(ẑ2)∥Lp(0,T ;Lq(F0)) ≤ LG2(R, T ) · ∥ẑ1 − ẑ2∥E1 and
∥G3(ẑ1) −G3(ẑ2)∥Lp(0,T ;Lq(F0)) ≤ LG3(R, T ) · ∥ẑ1 − ẑ2∥E1 .

Proof. The tools are the same as explained at the beginning of the proof
of Lemma 4.4.9. Concerning the estimates, we start with the simple terms.
As µ > 0 is fixed, we first deduce from Lemma 1.3.1 and Lemma 4.4.6 that

(4.78)

∥µ(ĥ+ h∗
0)∥Lp(0,T ;Lq(F0)) ≤ C1 ·

(
∥ĥ∥Lp(0,T ;Lq(F0)) + ∥h∗

0∥Lp(0,T ;Lq(F0))
)

≤ C2 ·
(
T

1/p · ∥ĥ∥L∞(0,T ;Lq(F0)) + ∥z∗
0∥E1

)
≤ C3 ·

(
T

1/p · ∥ẑ∥BUC([0,T ];Xγ) + C∗
T

)
≤ C4(T 1/pR + C∗

T ).

Next, the same arguments as in (4.66) reveal that

∥∇H(ĥ+ h∗
0) · ∂tY ∥Lp(0,T ;Lq(F0)) ≤ C5

(
T

1/pR + C∗
T

)
.

Likewise, mimicking the procedure to obtain the estimate (4.67), and using
that M(v̂ice + v∗

ice,0, ĥ+ h∗
0) has a similar structure as N (v̂ice + v∗

ice,0), we infer

∥M(v̂ice + v∗
ice,0, ĥ+ h∗

0)∥Lp(0,T ;Lq(F0)) ≤ C6 (R + C0 + C∗
T )
(
T

1/pR + C∗
T

)
.

With regard to the thermodynamic term Sh, we employ Hölder’s inequality,
Assumption 4.4.8(c), Lemma 1.3.1 as well as Lemma 4.4.6 to deduce that

∥Sh(h̃, ã)∥Lp(0,T ;Lq(F0)) ≤
∥∥∥∥∥fgr

(
h̃

ã

)∥∥∥∥∥
L∞(0,T ;L∞(F0))

· ∥â+ a∗
0∥Lp(0,T ;Lq(F0))

+ ∥fgr(0)∥Lp(0,T ;Lq(F0)) + ∥fgr(0)(â+ a∗
0)∥Lp(0,T ;Lq(F0))

≤ C7 ·
(
T

1/p + ∥â∥Lp(0,T ;Lq(F0)) + ∥a∗
0∥Lp(0,T ;Lq(F0))

)
≤ C8 ·

(
T

1/p(1 + ∥â∥L∞(0,T ;Lq(F0))) + ∥z∗
0∥E1

)
≤ C9 ·

(
T

1/p(1 + ∥ẑ∥BUC([0,T ];Xγ)) + C∗
T

)
≤ C10(T 1/p(1 +R) + C∗

T ).
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Hence, the last part of G2 to be estimated is dh(L − ∆H)(ĥ+ h∗
0) resulting

from the transformed Laplacian. For this purpose, we recall the shape of L
from (4.22) and employ the notation h = ĥ+ h∗

0 to get

(L − ∆H)h =
2∑

j,k=1
(gjk − δjk)∂k∂jh+

2∑
j=1

(∆HYj)∂jh.

Making use of this representation, and invoking Lemma A.1.1(a) for the esti-
mate of ∆HYj, Lemma 4.4.5 to estimate gjk − δjk and (4.59), we derive

(4.79)

∥dh(L − ∆H)(ĥ+ h∗
0)∥Lp(0,T ;Lq(F0))

≤ C11 ·
(
∥gjk − δjk∥L∞(0,T ;L∞(F0)) · ∥∂k∂jh∥Lp(0,T ;Lq(F0))

+ ∥∆HYj∥L∞(0,T ;L∞(F0)) · ∥∂kh∥Lp(0,T ;Lq(F0))
)

≤ C12T (R + C0 + C∗
T ) · ∥z∥E1

≤ C13T (R + C0 + C∗
T )(R + C∗

T ).

Upon recalling C∗
T → 0 from Remark 4.4.2(b), we deduce the estimate of G2

for some CG2(R, T ) > 0 shrinking to zero as R → 0 and T → 0. The term G3
can be estimated in a similar fashion.

For the Lipschitz estimates, we start again with the easiest terms. Similarly
as in (4.78), also exploiting the homogeneous initial values of ĥ1 − ĥ2, we get

∥µ(ĥ1 − ĥ2)∥Lp(0,T ;Lq(F0)) ≤ C14T
1/p · ∥ẑ1 − ẑ2∥E1 .

Precisely as in (4.72) and (4.73) in the proof of Lemma 4.4.9, we deduce that

∥∇H(ĥ1 − ĥ2) · ∂tY1 + ∇H(ĥ2 + h∗
0) · ∂t(Y1 − Y2)∥Lp(0,T ;Lq(F0))

≤ C15
(
T

1/p + (T 1/pR + C∗
T )T

)
· ∥ẑ1 − ẑ2∥E1 .

Likewise, making use of the similar shape of M compared to N , we can
proceed as in (4.74) to establish

∥M(v̂ice,1 + v∗
ice,0, ĥ1 + h∗

0) − M(v̂ice,2 + v∗
ice,0, ĥ2 + h∗

0)∥Lp(0,T ;Lq(F0))

≤ C16
(
(1 + T (R + C0 + C∗

T ))(T 1/pR + C∗
T ) + T

1/p(R + C0 + C∗
T )
)

· ∥ẑ1 − ẑ2∥E1 .

For the estimate of the difference in the thermodynamic source term, we write

Sh(ĥ1 + h∗
0, â1 + a∗

0) − Sh(ĥ2 + h∗
0, â2 + a∗

0)

= fgr

(
ĥ1 + h∗

0
â1 + a∗

0

)
(â1 + a∗

0) − fgr

(
ĥ2 + h∗

0
â2 + a∗

0

)
(â2 + a∗

0) − (â1 − â2)fgr(0).
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Then the term (â1 − â2)fgr(0) can be handled exactly as the term µ(ĥ1 − ĥ2)
above. On the other hand, the remaining term can be expanded suitably in
a similar manner as in the proof of Theorem 3.5.2, and it follows therefrom
that the difference in the thermodynamic term can be estimated by

C17(T 1/p +R + C∗
T ) · ∥ẑ1 − ẑ2∥E1 .

For the Lipschitz estimates of G2, it remains to deal with the objects asso-
ciated to the transformed Laplacian. First, we derive the representation

(L1 − L2)(ĥ1 + h∗
0)

=
2∑

j,k=1

(
(g1)jk − (g2)jk

)
∂k∂j(ĥ1 + h∗

0) +
2∑

j=1
(∆H(Y1 − Y2)j)∂j(ĥ1 + h∗

0).

From Hölder’s inequality joint with Lemma A.1.2 and Lemma A.1.1(a) to
estimate the terms related to the coordinate transform and (4.59), we deduce

∥dh(L1 − L2)(ĥ1 + h∗
0)∥Lp(0,T ;Lq(F0))

≤ C18 ·
(

∥(g1)jk − (g2)jk∥L∞(0,T ;L∞(F0)) · ∥ĥ1 + h∗
0∥Lp(0,T ;W2,q(F0))

+ ∥∆H(Y1 − Y2)∥L∞(0,T ;L∞(F0)) · ∥ĥ1 + h∗
0∥Lp(0,T ;W1,q(F0))

)
≤ C19T · ∥z1∥E1 · ∥ẑ1 − ẑ2∥E1

≤ C20T (R + C∗
T ) · ∥ẑ1 − ẑ2∥E1 .

Next, arguing as in (4.79), we find that

∥dh(L2 − ∆H)(ĥ1 − ĥ2)∥Lp(0,T ;Lq(F0)) ≤ C21T (R + C0 + C∗
T ) · ∥ẑ1 − ẑ2∥E1 .

We observe again that the terms in G3 can be handled likewise, completing
the proof of the Lipschitz property.

The last terms to be addressed are G4 and G5 from (4.56) corresponding
to the rigid body equations. With regard to the desired Lipschitz estimates,
we elaborate on the shape of the differences. They are given by

G4(ẑ1) −G4(ẑ2) = mS(ω̂1 − ω̂2)(ℓ̂1 + ℓ∗
0)⊥ +mS(ω̂2 + ω̂∗

0)(ℓ̂1 − ℓ̂2)⊥

+Q1

∫
∂S0

Tδ(û1 + u∗
0)ν dΓ −Q2

∫
∂S0

Tδ(û2 + u∗
0)ν dΓ

as well as

G5(ẑ1) −G5(ẑ2) = Q1

∫
∂S0

y⊥
HTδ(û1 + u∗

0)ν dΓ −Q2

∫
∂S0

y⊥
HTδ(û2 + u∗

0)ν dΓ.

152



4.4. Local Strong Well-Posedness

The lemma on the self map and Lipschitz estimate of the terms G4 and G5
reads as follows.

Lemma 4.4.11. Let p, q ∈ (1,∞) such that (4.48), and consider z = ẑ + z∗
0,

z1 = ẑ1 + z∗
0 and z2 = ẑ2 + z∗

0, with ẑ, ẑ1, ẑ2 ∈ KR
T and the reference solu-

tion z∗
0 from Proposition 4.4.1. Furthermore, assume F ∈ Lp(0, T0)2 as well

as N ∈ Lp(0, T0) for T0 > 0 from Remark 4.4.2, and recall the T -independent
maximal regularity constant CMR > 0 from Proposition 4.3.3.

Then there are constants CG4(R, T ), LG4(R, T ), CG5(R, T ), LG5(R, T ) > 0
with CG4(R, T ), CG5(R, T ) < R/10CMR for R > 0 and T > 0 sufficiently small
and LG4(R, T ), LG5(R, T ) → 0 as R → 0 and T → 0, and such that

∥G4(ẑ)∥Lp(0,T ) ≤ CG4(R, T ),
∥G5(ẑ)∥Lp(0,T ) ≤ CG5(R, T ),

∥G4(ẑ1) −G4(ẑ2)∥Lp(0,T ) ≤ LG4(R, T ) · ∥ẑ1 − ẑ2∥E1 and
∥G5(ẑ1) −G5(ẑ2)∥Lp(0,T ) ≤ LG5(R, T ) · ∥ẑ1 − ẑ2∥E1 .

Proof. Again, we use many of the tools as described at the beginning of the
proof of Lemma 4.4.9. Concerning the estimates, we first observe that the
external forcing terms F and N can be estimated thanks to the assumption,
since the norms shrink to zero as T → 0. Moreover, Hölder’s inequality, the
embedding from Lemma 4.4.6(a) and (4.60) yield

(4.80)

∥(ω̂ + ω∗
0)(ℓ̂+ ℓ∗

0)⊥∥Lp(0,T )

≤ ∥ω̂ + ω∗
0∥Lp(0,T ) · ∥ℓ̂+ ℓ∗

0∥L∞(0,T )

≤ C1T
1/p ·

(
∥ω̂∥L∞(0,T ) + ∥ω∗

0∥L∞(0,T )
)

·
(
∥ℓ̂∥L∞(0,T ) + ∥ℓ∗

0∥L∞(0,T )
)

≤ C2T
1/p ·

(
∥ẑ∥BUC([0,T ];Xγ) + ∥z∗

0∥BUC([0,T ];Xγ)
)2

≤ C3T
1/p · (∥ẑ∥E1 + C∗

T + C0)2

≤ C3T
1/p(R + C∗

T + C0)2.

With regard to the surface integrals, we first recall the more compact repre-
sentation of σδ(u) from Section 3.3. In fact, for Sε̃ as introduced in (3.11)
and △δ(ε̃) as made precise in (3.4), the stress tensor takes the shape

(4.81) σδ(u) = P

2

(
Sε̃

△δ(ε̃)
− Id2

)
.

Thanks to z(t) ∈ V for all t ∈ [0, T ] and the embeddings of the trace space
from (4.49), for u with z = (u, ℓ, ω) = (vice, h, a, ℓ, ω), we have u(t) ∈ C1(F0)4
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for all t ∈ [0, T ]. Besides, it also holds that a(t) ∈ (0, 1) for all t ∈ [0, T ] by
definition of V . Consequently, for all t ∈ [0, T ], we get∥∥∥∥∥P (h(t), a(t))

2

∥∥∥∥∥
L∞(∂F0)

≤ C4 · ∥u(t)∥C1(F0) ≤ C5 · ∥z(t)∥Xγ .

On the other hand, the definition of △δ(ε̃) in (3.4), the shape of Sε̃ in (3.11)
and the aforementioned embedding of the trace space imply∥∥∥∥∥ 1

△δ(ε̃)

∥∥∥∥∥
L∞(∂F0)

≤ C6 and ∥Sε̃∥L∞(∂F0) ≤ C7 · ∥∇HY (t)∥L∞(∂F0) · ∥z(t)∥Xγ

for some constants C6 > 0 and C7 > 0. Hence, putting together the previous
estimates and the shape of the transformed stress tensor Tδ from (4.18), and
exploiting the compactness of ∂S0, we conclude

(4.82)

∣∣∣∣∫
∂S0

Tδ(û(t) + u∗
0(t))ν dΓ

∣∣∣∣
=
∣∣∣∣∫

∂S0
Q(t)⊤σδ(û(t) + u∗

0(t))Q(t)ν dΓ
∣∣∣∣

≤ |Q(t)|2
∫

∂S0
|σδ(û(t) + u∗

0(t))| dΓ

≤ C8 · |Q(t)|2 ·
(
1 + ∥∇HY (t)∥L∞(∂F0) · ∥z(t)∥Xγ

)
· ∥z(t)∥Xγ .

Therefore, integrating in time, exploiting Hölder’s inequality and using the
estimate of Q from Lemma A.1.1(b), Y ∈ C1((0, T ); C∞(R2)2) and the esti-
mate of ∇HY from Lemma A.1.1(a), the embedding from Lemma 4.4.6(a) as
well as (4.60), we infer that

(4.83)

∥∥∥∥Q ∫
∂S0

Tδ(u)ν dΓ
∥∥∥∥

Lp(0,T )

≤ C9
(
T

1/2p + ∥z∥L2p(0,T ;Xγ)
)

· ∥z∥L2p(0,T ;Xγ)

≤ C10T
1/p ·

(
1 + ∥z∥BUC([0,T ];Xγ)

)
· ∥z∥BUC([0,T ];Xγ)

≤ C11T
1/p ·

(
1 + ∥ẑ∥E1 + ∥z∗

0∥BUC([0,T ];Xγ)
)

·
(
∥ẑ∥E1 + ∥z∗

0∥BUC([0,T ];Xγ)
)

≤ C12T
1/p (1 +R + C0 + C∗

T ) (R + C0 + C∗
T ) .

The surface integral appearing in G5 can be estimated in the same way, so the
self map estimates of G4 and G5 are implied upon observing that C∗

T → 0.
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The remaining task is thus to show the Lipschitz estimates of G4 and G5.
As in (4.80), we first derive the estimate

∥mS(ω̂1 − ω̂2)(ℓ̂1 + ℓ∗
0)⊥ +mS(ω̂2 + ω̂∗

0)(ℓ̂1 − ℓ̂2)⊥∥Lp(0,T )

≤ C13T
1/p(R + C∗

T + C0) · ∥ẑ1 − ẑ2∥E1 .

In the sequel, we estimate the differences in the surface integrals. Concerning

(Q1 −Q2)
∫

∂S0
Tδ(û1 + u∗

0)ν dΓ,

we make use of Lemma A.1.1(b) to estimate Q1 −Q2 and proceed as in (4.83)
to infer that

(4.84)

∥∥∥∥(Q1 −Q2)
∫

∂S0
Tδ(û1 + u∗

0)ν dΓ
∥∥∥∥

Lp(0,T )

≤ ∥Q1 −Q2∥L∞(0,T ) ·
∥∥∥∥∫

∂S0
Tδ(û1 + u∗

0)ν dΓ
∥∥∥∥

Lp(0,T )

≤ C14T
1/p (1 +R + C0 + C∗

T ) (R + C0 + C∗
T ) · ∥ẑ1 − ẑ2∥E1 .

For G4, it remains to deal with

Q2

∫
∂S0

(Tδ(û1 + u∗
0) − Tδ(û2 + u∗

0))ν dΓ.

With regard to Lemma A.1.1(b) ensuring the boundedness of Q2 in L∞(0, T ),
the task boils down to estimating the integral. Furthermore, we observe that

Tδ(û1 + u∗
0) − Tδ(û2 + u∗

0)
= Q⊤

1 σδ(û1 + u∗
0)Q1 −Q⊤

2 σδ(û2 + u∗
0)Q2

= (Q⊤
1 −Q⊤

2 )σδ(û1 + u∗
0)Q1 +Q⊤

2 (σδ(û1 + u∗
0) − σδ(û2 + u∗

0))Q1

+Q⊤
2 σδ(û2 + u∗

0)(Q1 −Q2).

Thanks to Lemma A.1.1(b), we argue that the handling of the first and the
third resulting addend parallels the one from (4.84). Thus, the last term to
be analyzed is the second addend. In view of (4.81), we have

σδ(û1 + u∗
0) − σδ(û2 + u∗

0)

= P (h1, a1)
2

(
Sε̃(vice,1)

△δ(ε̃(vice,1))
− Id2

)
− P (h2, a2)

2

(
Sε̃(vice,2)

△δ(ε̃(vice,2))
− Id2

)
.

Given this representation, we exploit the smoothness of the terms in ε̃(vice), h
and a together with the mean value theorem as well as a similar estimate of
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the difference ε̃(vice,1) − ε̃(vice,2) as seen in (4.77) to derive an estimate of the
above term by ẑ1 − ẑ2. We can then plug the resulting estimate into (4.82) to
get an estimate by the difference. In the same way as in the step from (4.82)
to (4.83), we also derive the presence of a T -power with positive exponent in
the estimate.

The difference in the surface integral of G5 can be handled in the same way,
so the proof of the lemma is complete.

The previous lemma completes the preparation for the proof of the main
result. This is the topic of the subsequent paragraph.

Statement and Proof of the Local Strong Well-Posedness
First, we state and prove the local well-posedness result in the reference con-
figuration, i. e., on the time-independent domain F0, thanks to the fixed point
procedure described at the beginning of this section and fueled by the maxi-
mal regularity from Proposition 4.3.3 and the above nonlinear estimates. In
a second step, we deduce from there the actual local well-posedness of the
interaction problem of sea ice in the moving domain.

The local-in-time well-posedness result in the fixed domain is given below.

Proposition 4.4.12. Let p, q ∈ (1,∞) be such that (4.48) is valid, let z0 ∈ V ,
with V as defined in (4.47), suppose that Vatm, Vocn, ∇HH and fgr satisfy
Assumption 4.4.8, assume F ∈ Lp(0, T0)2 and N ∈ Lp(0, T0) for T0 > 0 from
Remark 4.4.2, and recall the spaces X0 and X1 from (4.32) and (4.33).

Then there is T ∈ (0, T0] such that the transformed interaction problem
on F0 as given in (4.28) admits a unique strong solution z with

z ∈ W1,p(0, T ; X0) ∩ Lp(0, T ; X1) ∩ C([0, T ];V ).

Proof. The proof is based on the fixed point argument as described in detail
at the beginning of the present section. More precisely, from the uniqueness
of the reference solution obtained in Proposition 4.4.1, it follows that (4.28)
has a unique solution if and only if (4.53) has a unique fixed point ẑ, and
the solution is then given by z = ẑ + z∗

0 for the reference solution z∗
0 from

Proposition 4.4.1.
Hence, the idea is to show that the map ΦR

T from (4.58) is a self map and
contraction on KR

T for R > 0 and T > 0 sufficiently small. Proposition 4.3.3
implies that system (4.53) with right-hand sides G1(z̃), G2(z̃), G3(z̃), G4(z̃)
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and G5(z̃) admits a unique solution ẑ ∈ 0E1. Moreover, in view of Proposi-
tion 4.3.3, and also invoking Lemma 4.4.9, Lemma 4.4.10 and Lemma 4.4.11,
we infer that

∥ΦR
T (z̃)∥E1 ≤ CMR ·

5∑
i=1

CGi
(R, T ) ≤ CMR · R

2CMR
≤ R

2

for R > 0 and T > 0 sufficiently small. Thus, ΦR
T is indeed a self map for

such R and T . In a similar way, considering z̃1, z̃2 ∈ KR
T , we obtain unique

solutions ẑ1 = Φ(z̃1) and ẑ2 = Φ(z̃2) of the respective system (4.53) with
corresponding terms on the right-hand side. In addition, from the maximal
regularity in Proposition 4.3.3 as well as Lemma 4.4.9, Lemma 4.4.10 and
Lemma 4.4.11, we deduce that

∥ΦR
T (z̃1) − ΦR

T (z̃2)∥E1 ≤ CMR ·
5∑

i=1
LGi

(R, T ) · ∥z̃1 − z̃2∥E1 ≤ 1
2 · ∥z̃1 − z̃2∥E1

for R > 0 and T > 0 sufficiently small again. In other words, ΦR
T is a self map

and contraction on KR
T for such R > 0 and T > 0, and ΦR

T thus has a unique
fixed point ẑ thanks to the contraction mapping principle. By the above
argument, this means precisely that there exists a unique solution ẑ ∈ 0E1
to (4.53). Adding the reference solution z∗

0 , we find that z := ẑ + z∗
0 ∈ E1

is the desired solution to the transformed system (4.28). Furthermore, the
solution lies in the asserted regularity class by definition of ΦR

T on KR
T as well

as the regularity of the reference solution emerging from Proposition 4.4.1.
The intersection with C([0, T ];V ) follows from the embedding of the maximal
regularity space from Proposition 2.4.11 together with Lemma 4.4.3, because
we especially consider T ≤ T0.

Now, we are in the position to state and prove the main theorem of this
chapter. It asserts the existence of a unique strong solution to the sea ice
interaction problem as introduced in (4.8). The result follows from Proposi-
tion 4.4.12 in conjunction with the inverse coordinate transform. The function
spaces on time-dependent domains are defined via a pull-back induced by the
coordinate transform, see also the respective paragraph in Section 1.3.

Theorem 4.4.13. Let p, q ∈ (1,∞) satisfy (4.48), consider z0 ∈ V , with V

as introduced in (4.47), suppose that Vatm, Vocn, ∇HH and fgr fulfill Assump-
tion 4.4.8, and assume F ∈ Lp(0, T0)2 and N ∈ Lp(0, T0) for T0 > 0 from
Remark 4.4.2. If the rigid body starts with a strictly positive distance from
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the outer boundary, i. e., for some r > 0, we have dist(S0, ∂O) > r, then
there is T > 0 so that X ∈ C1([0, T ]; C2(R2)2), where X(τ, ·) : F(τ) → F0
are C2-diffeomorphisms for all τ ∈ [0, T ], and the interaction problem of sea
ice (4.8) has a unique solution (vice, h, a, ξ,Ω) with

vice ∈ W1,p(0, T ; Lq(F(·)2) ∩ Lp(0, T ; W2,q(F(·)2),
h, a ∈ W1,p(0, T ; Lq(F(·)) ∩ Lp(0, T ; W2,q(F(·)),
ξ ∈ W1,p(0, T )2 and Ω ∈ W1,p(0, T ).

Proof. As we have already indicated, the proof is based on Proposition 4.4.12
in the reference configuration. The latter yields the existence of a unique
solution z = (vice, h, a, ℓ, ω) to (4.28). Given (ℓ, ω) ∈ W1,p(0, T )3, we derive
the original body velocities ξ and Ω together with the diffeomorphism X

as expressed in Remark 4.4.4. In the next step, we perform the backward
change of coordinates as revealed in Section 4.2. This leads to the solution
to the interaction problem on the moving domain (4.8). The uniqueness is a
consequence of the uniqueness obtained in Proposition 4.4.12.

Finally, some remarks on the aforementioned main result of this chapter
are in order.

Remark 4.4.14. (a) A solution in the regularity class as in Theorem 4.4.13
is referred to as a strong solution.

(b) The position of the center of mass xc as well as the rotation angle β

can be deduced from the translational and angular velocities of the rigid
body ξ and Ω by (4.1) and (4.3), respectively.

(c) In principle, it is possible to verify the aspects of the solution as in The-
orem 3.5.2 such as the continuous dependence of the solution on the
initial data or the characterization of the maximal time interval of exis-
tence of the solution. However, as the proof of Theorem 4.4.13 is rather
“hands-on”, based on a direct fixed point argument, the implementation
of these aspects into the proof would require an adjustment of the proof.

(d) Furthermore, it is also possible to introduce time weights in order to
lower the regularity of the initial data. Again, as the nonlinear estimates
are handled by a direct approach, the inclusion of time weights would
complicate the estimates.
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CHAPTER 5

A Coupled Atmosphere-Sea Ice-Ocean Model

In this section, we investigate a coupled atmosphere-sea ice-ocean model. It
results from internalizing the velocities of the atmosphere and the ocean ap-
pearing as terms on the right-hand side of the sea ice equations as introduced
in (3.6). More precisely, the ocean and atmosphere dynamics are described
by the viscous primitive equations, and the layer in between is occupied by
sea ice, which is in turn modeled by Hibler’s viscous-plastic model. The at-
mosphere and the ice are coupled via surface wind acting as a force in the
sea ice momentum equation, while the velocities of the ice and the ocean are
assumed to coincide at their common interface, and the ocean stress on the
ice is considered to be proportional to the shear rate as in the situation of a
plane Couette flow. The main results in this chapter are the local strong well-
posedness and the global strong well-posedness close to constant equilibria for
a simplified version of the model.

The investigation of coupled models in the context of the atmosphere, the
ocean and sea ice has a long tradition. We refer here for instance to the ocean-
ice model by Hibler and Bryan [61], where Hibler’s sea ice model from [60] is
coupled with a multilevel baroclinic ocean model introduced by Bryan [21].
In their model, the ocean and sea ice are coupled via heat and salt flux as
well as momentum exchange. We also mention the article of Timmermann,
Beckmann and Hellmer [129] on the coupling of a dynamic-thermodynamic
sea ice model and the so called S-coordinate primitive equations (SPEM).
Their model incorporates the coupling by heat and salt flux, transmission of

159



5. A Coupled Atmosphere-Sea Ice-Ocean Model

solar radiation and momentum flux. Let us also mention a recent article of
Constantin and Johnson [29] on the dynamics of the atmosphere, ocean and
sea ice in near surface areas in the Arctic Ocean. The authors start with the
Navier-Stokes equations rather than with the primitive equations, and they
do not employ Hibler’s sea ice model. With regard to coupled atmosphere-
ocean models, we also refer to the work of Lions, Temam and Wang [95,96] on
the introduction and numerical as well as mathematical analysis of a model
coupling primitive equations of the atmosphere as introduced in [93] with
primitive equations of the large-scale ocean [94] by nonlinear drag conditions.

The results of the present chapter are also contained in a recent preprint
with Tim Binz and Matthias Hieber [12]. Concerning the general strategy, the
chapter relies again on the abstract theory as introduced in Section 2.6. From
that point of view, it is conceptually closer to Chapter 3 than to Chapter 4.
On the other hand, it requires some effort to establish the linear theory in the
present case. This is due to the (linear) coupling conditions of the ocean and
the sea ice.

The outline of this chapter is described in the sequel. It is the purpose
of Section 5.1 to settle some notation and to introduce the coupling condi-
tions in (5.1), (5.2) and (5.3). We then summarize the complete coupled sys-
tem (5.4) in Section 5.2, and we also present the reformulation as a quasilinear
abstract Cauchy problem in this section in (5.16). The following Section 5.3
is of prime importance for the linear theory. In fact, the section is dedicated
to the stationary hydrostatic Stokes problem corresponding to the coupling
of the ocean and sea ice via the equality of velocities on the interface. In that
respect, Proposition 5.3.9 and Proposition 5.3.10 on the emerging hydrostatic
Dirichlet operator and its regularity properties are the starting point for the
further linear theory. The latter is then addressed in Section 5.4, where we
use a decoupling approach together with the bounded H∞-calculus of block
operator matrices as discussed in Section 2.3 to establish properties of the lin-
earized operator matrix such as the bounded H∞-calculus in Proposition 5.4.3
and Corollary 5.4.4. Section 5.5 contains the first main result of this chap-
ter, Theorem 5.5.2, on the local strong well-posedness. The proof is based
on the general framework to quasilinear evolution equations from Section 2.6.
Finally, Section 5.6 tackles the global strong well-posedness of a simplified
version of the coupled model in the case of initial data close to constant equi-
libria. For this, we establish the normal stability of such equilibria and then
apply the generalized principle of linearized stability as revealed in Section 2.6
to get the second main result of this chapter, Theorem 5.6.6.
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5.1. Notation and Coupling Conditions

This section is dedicated to settling some notation, and to introducing the
coupling conditions. We recall that xH = (x, y) denotes the horizontal co-
ordinates, while z represents the vertical coordinate. Besides, the sub- or
superscripts atm, ocn and ice indicate the correspondence of objects to the at-
mosphere, the ocean or the ice. In that respect, we denote by uatm, vatm
and watm the full, horizontal and vertical velocity of the atmospheric wind.
The pieces of notation uocn, vocn and wocn have an analogous meaning. As
in Chapter 3, we denote by vice the horizontal sea ice velocity, h represents
the mean ice thickness, and a is the ice compactness. We also keep the
notation u = (vice, h, a) for the principle variable in the context of the sea
ice equations. In contrast, the principle variable associated to the complete
coupled system is denoted by v = (vatm, vocn, vice, h, a), while πatm and πocn
represent the respective pressure variables for the atmosphere and the ocean.

In comparison with Chapter 3, the sea ice domain changes. In fact, in order
to guarantee compatibility with the primitive equations, which are typically
investigated on cylindrical domains, we take into account G = (0, 1) × (0, 1)
with boundary ∂G as the new sea ice domain throughout this chapter. As
a consequence, the sea ice variables are assumed to have periodic boundary
conditions on ∂G. Another difference to the aforementioned chapter is that
we assume the mean ice thickness to be bounded by some sufficiently large
parameter κ2 > 0, so h ∈ (κ1, κ2) is supposed, where κ1 > 0 plays the role of
the parameter κ > 0 from Section 3.2.

In the sequel, domains are typically denoted by Ω, whereas Γ usually repre-
sents an interface. These objects may be complemented by subscripts. For the
parameter κ2 > 0 and a fixed sufficiently large height hatm > 0, the domain oc-
cupied by the atmosphere is Ωatm = G×(κ2, hatm), while Ωocn = G×(−hocn, 0),
for a fixed depth hocn > 0, is the domain of the ocean. We continue with the
boundaries and interfaces. In fact, we denote by Γu = G× {hatm} the upper
boundary, and Γb = G × {−hocn} represents the lower boundary, while the
interfaces between the the atmosphere and the sea ice as well as the ocean
and the sea ice are denoted by Γi = G × {κ2} and Γo = G × {0}, respec-
tively. Finally, the lateral boundaries of the atmosphere and ocean are given
by Γl,atm = ∂G × (κ2, hatm) and Γl,ocn = ∂G × (−hocn, 0), respectively. For
further aspects concerning notation, we also refer to Section 2.7.

We now discuss the present coupling and boundary conditions. Let us first
recall the sea ice momentum equation from (3.7). On the right-hand side, the
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terms τatm and τocn(vice) appear. The velocities of the atmospheric wind and
the ocean are internalized. With regard to the force exerted by the atmosphere
on the sea ice, we assume that (3.6) remains valid, i. e.,

(5.1) τatm = ρatmCatm|vatm|Ratmvatm, on G.

Concerning the ocean force on the sea ice, we suppose that it is proportional
to the shear rate. In the present set-up, for a viscosity parameter µocn > 0,
this means that the force of the ocean exerted on the sea ice is given by

(5.2) τocn = −µocn∂zvocn, on G,

Let us observe that (5.2) is in accordance with the situation of a plane Couette
flow for a Newtonian fluid. Finally, we also suppose that the velocities of the
ocean and the sea ice coincide on their common interface Γo, so

(5.3) vocn = vice, on G.

5.2. The Complete Coupled System
In this section, we introduce the complete coupled atmosphere-sea ice-ocean
model and provide its reformulation as a quasilinear abstract Cauchy problem.

In the sequel, we neglect the Coriolis terms in order to simplify the notation.
We will comment on this at a later stage. Taking into account the sea ice
equations as in Section 3.2, with the modifications pointed out in the previous
section, and invoking the viscous incompressible primitive equations for the
atmosphere and the ocean as introduced in Section 2.7, we get the complete
coupled atmosphere-sea ice-ocean model

(5.4)



∂tvatm − ∆vatm + ∇Hπatm = Fatm, in (0, T ) × Ωatm,

∂zπatm = 0, in (0, T ) × Ωatm,

div uatm = 0, in (0, T ) × Ωatm,

∂tvocn − ∆vocn + ∇Hπocn = Focn, in (0, T ) × Ωocn,

∂zπocn = 0, in (0, T ) × Ωocn,

div uocn = 0, in (0, T ) × Ωocn,

∂tvice − 1
mice

· divH σδ = Fice, on (0, T ) ×G,

∂th− dh∆Hh = Fh, on (0, T ) ×G,

∂ta− da∆Ha = Fa, on (0, T ) ×G,

vocn = vice, on (0, T ) ×G,
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where

Fatm = −(uatm · ∇)vatm + fatm, Focn = −(uocn · ∇)vocn + focn,

Fice = −(vice · ∇H)vice − g∇HH + 1
mice

(τatm(vatm) + τocn(vocn)),

Fh = −divH (viceh) + Sh and Fa = −divH (vicea) + Sa.

In the above, fatm and focn represent external forcing terms in the context of
the atmosphere and ocean equations.

The coupled system is complemented by boundary conditions. More pre-
cisely, we suppose that the horizontal velocity of the atmosphere vatm satisfies
homogeneous Neumann boundary conditions on its upper and lower bound-
ary Γu and Γi, while Dirichlet boundary conditions are considered for the
horizontal velocity of the ocean vocn on the lower boundary Γb. In addition,
we assume that the vertical velocities watm and wocn equal zero on all the
boundaries. The preceding discussion can be summarized by

(5.5)
∂zvatm = 0, on Γu ∪ Γi, vocn = 0, on Γb, and
watm = 0, on Γu ∪ Γi, wocn = 0, on Γo ∪ Γb.

Finally, we consider periodic boundary conditions on all lateral boundaries,
so vatm and πatm are periodic on Γl,atm, vocn and πocn are periodic on Γl,ocn,
and vice, h and a are periodic on ∂G.

The next step is to rewrite the complete coupled system (5.4) completed
by the boundary conditions in (5.5) in operator form. For this purpose, we
first invoke the underlying operators. Let P denote the hydrostatic Helmholtz
projection in the context of the primitive equations as introduced in (2.38).
In order to distinguish the objects in the situation of the atmosphere and
the ocean, we denote by Patm the hydrostatic Helmholtz projection for the
atmosphere, while Pocn represents the hydrostatic Helmholtz projection for
the ocean. As a special case of the hydrostatic Stokes operator as defined
in (2.39), we set the hydrostatic Stokes operator for the atmosphere to be

(5.6) Aatmvatm := Patm∆vatm, with

D(Aatm) :=
{
vatm ∈ W2,q

per(Ωatm)2 ∩ Lq
σ(Ωatm) : ∂zvatm = 0, on Γu ∪ Γi

}
.

In the above Lq
σ(Ωatm), denotes the space of hydrostatic solenoidal vector fields

whose definition can be found in (2.37) in Section 2.7. On the other hand, with
regard to the inhomogeneous boundary conditions of the ocean equations, we
also introduce the so-called maximal hydrostatic Stokes operator. Its name
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is related to the fact that the domain of the operator is chosen “maximal”.
There are no boundary conditions incorporated into its domain, so

(5.7)
Aocn

m vocn := Pocn∆vocn, with
D(Aocn

m ) := {vocn ∈ Lq
σ(Ωocn) : Pocn∆vocn ∈ Lq

σ(Ωocn)} .

Since we will use a similarity transform leading to the investigation of the
hydrostatic Stokes operator for the ocean, we also introduce the oceanic hy-
drostatic Stokes operator with homogeneous boundary conditions, so we set

(5.8)
Aocn

0 vocn := Pocn∆vocn,

D(Aocn
0 ) :=

{
vocn ∈ W2,q

per(Ωocn)2 ∩ Lq
σ(Ωocn) : vocn = 0, on Γo ∪ Γb

}
.

For convenience, we briefly recall the Hibler operator on G. By a slight
abuse of notation, we still denote the differential form of Hibler’s operator
on G by AH. As in (3.14), the operator AHvice = AH(u)vice takes the shape

(5.9)
(AHvice)i = −

2∑
j,k,l=1

P

2ρiceh

1
△δ(ε)

(
Skl

ij − 1
△2

δ(ε)
(Sε)ik(Sε)jl

)
DkDlvice,j

+ 1
2ρiceh△δ(ε)

2∑
j=1

(∂jP )(Sε)ij,

where i = 1, 2 and Dm = −i∂m. In contrast to Section 3.3, no Dirichlet
boundary conditions are considered, but we assume periodic boundary con-
ditions instead. For sufficiently regular u0 = (vice,0, h0, a0), we define the
Lq-realization of the linearized Hibler operator with periodic boundary condi-
tions AH by

(5.10) [AH(u0)]vice := [AH(u0)]vice, D(AH(u0)) := W2,q
per(G)2.

In order to shorten the notation, we also abbreviate the off-diagonal terms
appearing in the momentum equation of vice and acting on h and a by

(5.11) Bh(h0, a0)h := ∂hP (h0, a0)
2ρiceh0

∇Hh and Ba(h0, a0)a := ∂aP (h0, a0)
2ρiceh0

∇Ha.

Finally, by ∆H, we denote the Lq-realization of the Laplacian operator on G

subject to periodic boundary conditions, so D(∆H) := W2,q
per(G).

Having settled all the relevant pieces of notation, we are now able to intro-
duce the objects in order to rewrite the complete coupled system (5.4) subject
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to the boundary conditions (5.5) as a quasilinear abstract Cauchy problem.
First, the ground space is defined by

(5.12) X0 := Lq
σ(Ωatm) × Lq

σ(Ωocn) × Lq(G)2 × Lq(G) × Lq(G).

For the principle variable v = (vatm, vocn, vice, h, a), the regularity space, which
coincides with the domain of the linearized operator matrix, takes the shape

(5.13)
X1 :=

{
v ∈ D(Aatm) × D(Aocn

m ) × D(AH) × D(∆H) × D(∆H) :

vocn = 0, on Γb, and vocn = vice, on Γo

}
.

The decoupling argument together with regularity theory will reveal that the
vocn-component of an element v ∈ X1 also enjoys W2,q-regularity.

With Co,i(h) := µocn/ρiceh, it follows that 1/miceτocn = Co,i(h)∂zvocn for τocn as
introduced in (5.2). In comparison with the complete coupled system (5.4),
we apply the respective Helmholtz projection associated to the atmosphere
and the ocean in the first two components to handle the pressure. We observe
that all nonlinear terms in the operator matrix only depend on the sea ice
variables. For the corresponding principle variable u0 = (vice,0, h0, a0) of the
sea ice equations, we then define the linearized operator matrix A(u0) by

(5.14) A(u0) :=



−Aatm 0 0 0 0

0 −Aocn
m 0 0 0

0 Co,i(h0)∂z −AH(u0) Bh(h0, a0) Ba(h0, a0)

0 0 0 −dh∆H 0

0 0 0 0 −da∆H


,

with domain D(A(u0)) := X1. The last step is to capture the remaining
inhomogeneous and nonlinear terms in the right-hand side F . In fact, we set

(5.15) F (v) :=



−Patm ((vatm · ∇H)vatm + watm(vatm) · ∂zvatm − fatm)

−Pocn ((vocn · ∇H)vocn + wocn(vocn) · ∂zvocn − focn)

−(vice · ∇H)vice − g∇HH + 1
ρiceh

τatm(vatm)

−divH (viceh) + Sh

−divH (vicea) + Sa


.

165



5. A Coupled Atmosphere-Sea Ice-Ocean Model

We remark that watm and wocn can be derived from vatm as well as vocn as
described in (2.35). In total, the coupled system (5.4) subject to the boundary
conditions (5.5) admits the reformulation in operator form as

(5.16)

v
′(t) + A(v(t))v(t) = F (v(t)), for t ∈ (0, T ),

v(0) = v0,

on the ground space X0 from (5.12).

5.3. The Stationary Hydrostatic Stokes Problem
In this section, we investigate the stationary hydrostatic Stokes problem with
inhomogeneous boundary conditions. This is associated to the coupling condi-
tion via the equality of the velocities as in (5.3), and to the Dirichlet boundary
conditions of the horizontal velocity of the ocean on the lower boundary as
in (5.5). More precisely, for the maximal hydrostatic Stokes operator Aocn

m
from (5.7) and φ ∈ Lq(G)2, we investigate the stationary problem

(5.17)


Aocn

m vocn = 0, on Ωocn,

vocn = φ, on Γo,

vocn = 0, on Γb,

on the hydrostatic solenoidal space of the ocean Lq
σ(Ωocn). In the sequel, the

corresponding solution operator of (5.17) is referred to as hydrostatic Dirichlet
operator and denoted by

(5.18) L0 : Lq(Γo)2 → Lq
σ(Ωocn).

We stress that Γo = G× {0} will be identified with G in the following, so we
will also write Lq(G)2 instead of Lq(Γo)2 in some instances.

In order to prepare for the investigation of the stationary hydrostatic Stokes
problem, we first collect some properties of the hydrostatic Stokes operators in
the present setting, and we also discuss some properties of the Hibler operator
and the Laplacian operator on G subject to periodic boundary conditions.

The assertions of the lemmas below follow directly from Lemma 2.7.1,
Lemma 2.7.2 and Lemma 2.7.3. We start with the hydrostatic Stokes op-
erators of the atmosphere Aatm.

Lemma 5.3.1. Recall Aatm from (5.6), and let q ∈ (1,∞). Then for µ > 0, we
have −Aatm +µ ∈ H∞(Lq

σ(Ωatm)) with H∞-angle ϕ∞
−Aatm+µ = 0. In particular,
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(a) −Aatm + µ ∈ BIP(Lq
σ(Ωatm)) with power angle θ−Aatm+µ = 0,

(b) −Aatm + µ ∈ RS(Lq
σ(Ωatm)) with R-angle ϕR

−Aatm+µ = 0, and

(c) for the fractional powers of Aatm, it holds that

D((−Aatm +µ)β) ∼= H2β,q
per,N(Ωatm)2 ∩Lq

σ(Ωatm) ↪→ H2β,q
per (Ωatm)2 ∩Lq

σ(Ωatm)

for β ∈ (1/2+1/2q, 3/2+1/2q), where the subscript N indicates homogeneous
Neumann boundary conditions on Γu ∪ Γi, and

D((−Aatm + µ)β) ∼= H2β,q
per (Ωatm)2 ∩ Lq

σ(Ωatm)

in the case β < 1/2 + 1/2q.

In the lemma below, we deal with the hydrostatic Stokes operator Aocn
0

corresponding to the ocean and with homogeneous boundary conditions. Ad-
ditionally, we discuss the higher fractional powers. It is a consequence of
Lemma 2.7.4.

Lemma 5.3.2. Consider Aocn
0 as introduced in (5.8), and let q ∈ (1,∞). Then

we have 0 ∈ ρ(Aocn
0 ), and −Aocn

0 ∈ H∞(Lq
σ(Ωocn)) with H∞-angle ϕ∞

Aocn
0

= 0.
Moreover, it especially holds that

(a) −Aocn
0 ∈ BIP(Lq

σ(Ωocn)) with power angle θ−Aocn
0

= 0,

(b) −Aocn
0 ∈ RS(Lq

σ(Ωocn)) with R-angle ϕR
−Aocn

0
= 0, and

(c) for the fractional powers of Aocn
0 , we have

D((−Aocn
0 )β) ∼= H2β,q

per,D(Ωocn)2 ∩ Lq
σ(Ωocn) ↪→ H2β,q

per (Ωocn)2 ∩ Lq
σ(Ωocn)

for β ∈ (1/2q, 1 + 1/2q), for D denoting homogeneous Dirichlet boundary
conditions on Γb ∪ Γo , whereas for β < 1/2q, it holds that

D((−Aocn
0 )β) ∼= H2β,q

per (Ωocn)2 ∩ Lq
σ(Ωocn).

Let us remark that the shape of the fractional power domain of −Aocn
0 is

not affected by a shift by ω > 0 as the operator Aocn
0 already admits bounded

imaginary powers without shift, and the property is preserved under shifts in
the correct direction.

Next, we focus on Hibler’s operator on G subject to periodic boundary
conditions. We get the following result.
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Lemma 5.3.3. Let q ∈ (1,∞) as well as u0 = (vice,0, h0, a0) ∈ C1(G)4 such
that h0 ≥ κ1, and recall the linearized operator AH(u0) from (5.10). Then
there is ω0 ∈ R so that for all ω > ω0, the shifted operator −AH(u0) + ω has
a bounded H∞-calculus on Lq(G)2 with angle ϕ−AH(u0)+ω < π/2.

Proof. The proof is based on Proposition 2.5.9 upon identifying functions
on the domain G = (0, 1) × (0, 1) subject to periodic boundary conditions
with functions on the two-dimensional torus T2. Moreover, the ellipticity
properties as stated in Proposition 3.3.1 can be shown to be valid as well in
the present setting, yielding ω-ellipticity in the sense of Section 2.5 for ω = 0.
In addition, recalling the shape of the coefficients of Hibler’s operator on G

from (5.9), we observe the smooth dependence on ∇Hvice,0, h0 and a0, so the
regularity assumption on u0 implies the continuity of the coefficients. The
assertion then follows from Proposition 2.5.9.

After establishing the bounded H∞-calculus, we also discuss several further
properties of the shifted Hibler operator. They follow from Lemma 5.3.3 in
conjunction with the relation (2.14) as well as Lemma 2.3.4 and Lemma 2.3.10
for the fractional power domains. For the interpolation of the periodic bound-
ary conditions, we also refer to the discussion preceding Lemma 2.7.3.

Lemma 5.3.4. Let p, q ∈ (1,∞) as well as u0 = (vice,0, h0, a0) ∈ C1(G)4 such
that h0 ≥ κ1, and consider the linearized Hibler operator AH(u0) as introduced
in (5.10). Then there exists ω0 ∈ R so that for all ω > ω0, it holds that

(a) −AH(u0) + ω ∈ BIP(Lq(G)2) with power angle θ−AH(u0)+ω < π/2,

(b) −AH(u0) + ω ∈ RS(Lq(G)2) with R-angle ϕR
−AH(u0)+ω <

π/2, and

(c) D((−AH(u0) + ω)β) ∼= H2β,q
per (G)2 for β > 0.

Next, we verify that the hydrostatic Dirichlet operator L0 from (5.18) is
well-defined and bounded. The first step in this direction is the following
result on an extension with vertical average zero. Denoting by g the vertical
average of g, we consider

(5.19)


g = 0, on Ωocn,

g = φ, on Γo,

g = 0, on Γb.

The result on the solvability of (5.19) reads as follows.
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Lemma 5.3.5. Let φ ∈ C∞
per(G)2. Then the extension problem (5.19) admits

a smooth solution g ∈ C∞
per(Ωocn)2.

Proof. Let us recall that Ωocn = G × (−hocn, 0). The idea is to split g
into a product of φ and a function depending only on z. More precisely, we
consider g(xH, z) = r(z) · φ(xH). As a result, (5.19) reduces to the study of

(5.20)


r = 0, on (−hocn, 0),

r(0) = 1,
r(−hocn) = 0.

Now, (5.20) can be solved explicitly, namely by r(z) = 3/h2
ocn · z2 + 4/hocn · z+ 1.

As r is especially smooth, and φ ∈ C∞
per(G)2 is assumed, it follows in particular

that g = r · φ ∈ C∞
per(Ωocn)2 is a solution to (5.19).

Let us comment on the extension problem (5.19). The solutions to (5.19) are
generally not unique. We observe that divH g = 0 holds for all φ ∈ C∞

per(G)2,
since g(xH, z) = r(z) · φ(xH) satisfying divH g = 0 for all φ ∈ C∞

per(G)2 is
equivalent to r = 0.

From g = 0 and the regularity of g, it follows that g lies in the domain
of the maximal hydrostatic Stokes operator Aocn

m from (5.7), so g ∈ D(Aocn
m ).

Therefore, vg := vocn − g ∈ D(Aocn
m ) is valid, and vg solves

(5.21)


Aocn

m vg = f, on Ωocn,

vg = 0, on Γo,

vg = 0, on Γb,

where f := −Aocn
m g ∈ Lq

σ(Ωocn). As a result, (5.17) has a unique solution if
and only if the lifted problem (5.21) has this property. We note that (5.21)
means precisely that Aocn

0 vg = f thanks to classical regularity theory. From
Lemma 2.7.1, we recall in particular that 0 ∈ ρ(Aocn

0 ). Together with the
previous observation, this results in the existence and uniqueness of a solution
to (5.17) as stated in the lemma below.

Lemma 5.3.6. Given φ ∈ C∞
per(G)2, there exists a unique u ∈ D(Aocn

m ) solv-
ing (5.17).

Thanks to Lemma 5.3.6, L0 is well-defined on the dense subspace C∞
per(G)2

of Lq(G)2. Thus, we may define a unique adjoint

L′
0 : D(L′

0) ⊂ (Lq
σ(Ωocn))′ → (Lq(G)2)′,
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and we have (Lq
σ(Ωocn))′ ∼= Lq′

σ (Ωocn) and (Lq(G)2)′ ∼= Lq′(G)2 for 1/q + 1/q′ = 1.
In the sequel, we use ∂r

z to denote the distributional normal derivative on Γo,
so for r ∈ (1,∞), we consider

∂r
z : D(∂r

z) :=
{
f ∈ Lr

σ(Ωocn) : ∂r
zf ∈ Lr(G)2

}
⊂ Lr

σ(Ωocn) → Lr(G)2.

Furthermore, Aocn
0,r represents the hydrostatic Stokes operator for the ocean

on Lr
σ(Ωocn) and subject to homogeneous boundary conditions as introduced

in (5.8). We recall from Lemma 2.7.5 that (Aocn
0,q )′ = Aocn

0,q′ for 1/q + 1/q′ = 1.
The adjoint L′

0 of the hydrostatic Dirichlet operator L0 is linked to the
hydrostatic Stokes operator Aocn

0 as follows.

Lemma 5.3.7. Let q, q′ ∈ (1,∞) with 1/q + 1/q′ = 1. Then for the adjoint L′
0

of L0, it is valid that

(5.22) L′
0 = ∂q′

z R(0, Aocn
0,q )′ = ∂q′

z R(0, Aocn
0,q′).

Proof. Consider φ ∈ C∞
per(G)2 and k ∈ Lq′

σ (Ωocn). We have (Aocn
0,q )′ = Aocn

0,q′

and further define f := L0φ and g := (Aocn
0,q′)−1k. The function g is well-defined

in view of Lemma 2.7.1(b). Moreover, we obtain f ∈ D(Aocn
m ) ⊂ Lq

σ(Ωocn)
and g ∈ D(Aocn

0,q′) ⊂ Lq′

σ (Ωocn). Recalling the periodic boundary conditions on
the lateral boundary in conjunction with an integration by parts, we deduce

⟨∇Hπocn, g⟩L2(Ωocn) =
∫

G

∫ 0

−hocn
∇Hπocn · g dz dxH

= hocn

∫
G

∇Hπocn · g dxH

= −hocn

∫
G
πocn · divH g dxH = 0.

In a similar way, it follows that ⟨f,∇Hπocn⟩L2(Ωocn) = 0. Combining the latter
two identities and additionally making use of Green’s second identity and the
horizontal periodicity, we infer

⟨∆f + ∇Hπocn, g⟩L2(Ωocn) − ⟨f,∆g + ∇Hπocn⟩L2(Ωocn)

= ⟨∆f, g⟩L2(Ωocn) − ⟨f,∆g⟩L2(Ωocn)

=
∫

G
∂zf(xH, 0)g(xH, 0) dxH +

∫
G
∂zf(xH,−hocn)g(xH,−hocn) dxH

−
∫

G
f(xH, 0)∂zg(xH, 0) dxH −

∫
G
f(xH,−hocn)∂zg(xH,−hocn) dxH.

By virtue of g ∈ D(Aocn
0,q′), we have g(xH, 0) = g(xH,−hocn) = 0. On the other

hand, by construction, it holds that f(xH,−hocn) = 0 and f(xH, 0) = φ. As a

170



5.3. The Stationary Hydrostatic Stokes Problem

result, we obtain

⟨f,∆g+ ∇Hπocn⟩L2(Ωocn) = ⟨∆f + ∇Hπocn, g⟩L2(Ωocn) +
∫

G
φ(xH)∂zg(xH, 0) dxH.

Together with the definition of the hydrostatic Stokes operator Aocn
0 from (5.8)

and Aocn
m f = 0 on Ωocn, which in turn follows by construction, the latter

identity leads to

⟨L0φ, k⟩L2(Ωocn) = ⟨f, Aocn
0,q′g⟩L2(Ωocn)

= ⟨f,∆g + ∇Hπocn⟩L2(Ωocn)

= ⟨∆f + ∇Hπocn, g⟩L2(Ωocn) +
∫

G
φ(xH)∂zg(xH, 0) dxH

= ⟨Aocn
m f, g⟩L2(Ωocn) +

∫
G
φ(xH)∂zg(xH, 0) dxH

= ⟨φ, ∂z((Aocn
0,q′)−1k)Γo⟩L2(Ωocn).

This proves the assertion.

Now, we justify that the right-hand side of the identity (5.22) of the ad-
joint L′

0 can be extended to a bounded operator.

Lemma 5.3.8. The normal derivative ∂r
z is relatively (−Aocn

0,r )δ-bounded pro-
vided δ > 1/2 + 1/2r.

Proof. We recall from Lemma 1.3.2 as well as Bs
qq ↪→ Lq for all s > 0 that

in the half-space case, the normal derivative is bounded from Hr,q to Lq pro-
vided r > 1 + 1/q. Let us observe that horizontally periodic functions can be
extended periodically onto a layer and then be cut off, so the latter result also
holds in the present situation. This yields

Hr,q
per(Ωocn)2 ∩ Lq

σ(Ωocn) ↪→ D(∂r
z)

in the case r > 1 + 1/q. As on the other hand, Lemma 5.3.2(c) implies
that D((Aocn

0 )δ) ↪→ H2δ,q
per (Ωocn)2 ∩ Lq

σ(Ωocn), the assertion follows.

Putting together Lemma 5.3.7 and Lemma 5.3.8, we find that the adjoint L′
0

of L0 can be extended to a bounded operator from Lq′

σ (Ωocn) to Lq′(G)2, paving
the way to the result below on the hydrostatic Dirichlet operator.

Proposition 5.3.9. The operator L0 admits an extension to a bounded op-
erator from Lq(G)2 to Lq

σ(Ωocn), still denoted by L0 by abuse of notation.
Furthermore, for C > 0, the unique solution vocn = L0φ to (5.17) satisfies

∥vocn∥Lq
σ

(Ωocn) ≤ C · ∥φ∥Lq(G).
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In the following, we discuss that higher regularity of the boundary data also
results in an increase in regularity of the solution to the stationary hydrostatic
Stokes problem (5.17).

Proposition 5.3.10. Let p, q ∈ (1,∞) as well as r < 1/q.

(a) For φ ∈ Lq(G)2, the unique solution vocn to (5.17) already has the prop-
erty that vocn ∈ Hr,q

per(Ωocn)2 ∩ Lq
σ(Ωocn).

(b) If φ ∈ Hs,q
per(G)2 for s ∈ (0, 2], then the unique solution vocn to (5.17)

fulfills vocn ∈ Hs+r,q
per (Ωocn)2 ∩ Lq

σ(Ωocn).

(c) For s ∈ (0, 2] and φ ∈ Bs
qp,per(Ωocn)2, the unique solution vocn to (5.17)

satisfies vocn ∈ Bs+r
qp,per(Ωocn)2 ∩ Lq

σ(Ωocn).

(d) In particular, L0 is bounded from Hs,q
per(G)2 to Hs,q

per(Ωocn)2 ∩ Lq
σ(Ωocn)

and from Bs
qp,per(G)2 to Bs

qp,per(Ωocn)2 ∩ Lq
σ(Ωocn), where s ∈ (0, 2], so

the solution vocn to (5.17) admits the estimates

∥vocn∥Hs,q
per(Ωocn) ≤ C · ∥φ∥Hs,q

per(G) and ∥vocn∥Bs
qp,per(Ωocn) ≤ C · ∥φ∥Bs

qp,per(G).

Proof. First, we investigate the case s ∈ [0, 2 − 1/q] as well as φ ∈ Hs,q
per(G)2.

With regard to Proposition 5.3.9, we deduce the existence of a unique solu-
tion vocn ∈ D(Aocn

m ) ⊂ Lq
σ(Ωocn) to (5.17). This solution especially satisfies

Pocn∆vocn = Aocn
m vocn = 0 ∈ Lq

σ(Ωocn).

We then deduce from the surjectivity of the hydrostatic Helmholtz projec-
tion Pocn : Lq(Ωocn)2 → Lq

σ(Ωocn) that ∆vocn ∈ Lq(Ωocn)2. As vocn solves the
inhomogeneous problem

∆vocn = ∇Hπocn, on Ωocn,

vocn = φ, on Γo,

vocn = 0, on Γb,

and we have ∆vocn ∈ Lq(Ωocn)2, we also find ∇Hπocn ∈ Lq(Ωocn)2. By standard
regularity theory of the Laplacian, we obtain vocn ∈ Hs+r,q

per (Ωocn)2 for r < 1/q.
In particular, the assertion of (a) follows.

Next, we focus on the case s ≥ 2 − 1/q and consider φ ∈ Hs,q
per(G)2. The

previous step then yields vocn ∈ H2,q
per(Ωocn)2∩Lq

σ(Ωocn). In addition, employing
the representation of ∇Hπocn as discussed in (2.40), we find that

∇Hπocn = 1
hocn

∇H∆−1
H divH ∂zvocn,

172



5.3. The Stationary Hydrostatic Stokes Problem

resulting in ∇Hπocn ∈ H1−1/q,q
per (G)2 ↪→ H1−1/q,q

per (Ωocn)2. The case s ∈ (2 − 1/q, 2]
can then be obtained by a bootstrap argument, showing (b). Finally, (c)
follows by real interpolation, while (d) is a consequence of (b) and (c).

We also comment on the situation of the general hydrostatic Stokes problem
Aocn

m vocn = f, on Ωocn,

vocn = φ, on Γo,

vocn = 0, on Γb,

where f ∈ Lq
σ(Ωocn) and φ ∈ Lq(G)2. By virtue of the invertibility of Aocn

0 from
Lemma 5.3.2, Proposition 5.3.9 and the linearity of the hydrostatic Stokes
operator, the above problem admits a unique solution vocn ∈ D(Aocn

m ) which
takes the shape vocn = −R(0, Aocn

0 )f + L0φ.
Based on the considerations on the hydrostatic Dirichlet operator, we now

introduce the so-called hydrostatic Dirichlet-to-Neumann operator. For the
hydrostatic Dirichlet operator L0 from (5.18), it is defined by

(5.23) N0φ := ∂q
zL0φ, with D(N0) :=

{
φ ∈ Lq(G)2 : L0φ ∈ D(∂q

z)
}
.

With regard to the regularity theory of the inhomogeneous stationary hy-
drostatic Stokes problem, we infer the following result on the domain of the
hydrostatic Dirichlet-to-Neumann operator.
Proposition 5.3.11. Let N0 be the hydrostatic Dirichlet-to-Neumann opera-
tor as introduced in (5.23). Then Hs,q

per(G)2 ⊂ D(N0) holds for all s > 1.
Proof. Similarly as in the proof of Lemma 5.3.8, we find that

Hr′,q
per (Ωocn)2 ∩ Lq

σ(Ωocn) ⊂ D(∂q
z)

for r′ > 1 + 1/q. On the other hand, for r < 1/q, Proposition 5.3.10 implies

L0
(
Hs,q

per(G)2
)

⊂ Hs+r,q
per (Ωocn)2 ∩ Lq

σ(Ωocn) ⊂ D(∂q
z)

provided s+ r > 1 + 1/q, i. e., s > 1. This yields Hs,q
per(G)2 ⊂ D(N0).

The next result on the relative boundedness of the hydrostatic Dirichlet-to-
Neumann operator N0 with respect to fractional powers of the Hibler operator
on G is a direct consequence of Proposition 5.3.11 and the shape of the frac-
tional power domains of −AH(u0) + ω as revealed in Lemma 5.3.4(c).
Corollary 5.3.12. Let q ∈ (1,∞) and u0 ∈ C1(G)4 with h0 ≥ κ1, and recall
Hibler’s operator on G from (5.10) as well as ω > ω0 from Lemma 5.3.4.
Then the hydrostatic Dirichlet-to-Neumann operator N0 from (5.23) is rela-
tively (−AH + ω)δ-bounded for δ > 1/2.
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5.4. Linear Theory of the Coupled System
This section discusses properties of the operator matrix A(u0) from (5.14).
The investigation is based on a decoupling argument and the consideration
of the operator as a block operator matrix, so it remains to verify that it
lies within the scope of Proposition 2.3.24. Before proceeding, let us remark
that we omit writing the dependence on u0 = (vice,0, h0, a0) explicitly in the
remainder of this section as u0 ∈ C1(G)4 with h0 ≥ κ1 is fixed.

We recall the hydrostatic Dirichlet operator L0 as well as the hydrostatic
Dirichlet-to-Neumann operator N0 from (5.18) and (5.23), while the other
operators are as introduced in Section 5.2. As a first step, we define the
operator matrix Ã of a more complicated shape than the one from (5.14) by

(5.24)



−Aatm 0 0 0 0

0 −Aocn
0 − L0Co,i∂z L0(AH − Co,iN0) 0 0

0 Co,i∂z −AH + Co,iN0 Bh Ba

0 0 0 −dh∆H 0

0 0 0 0 −da∆H


,

with domain D(Ã) := D(Aatm) × D(Aocn
0 ) × D(AH) × D(∆H) × D(∆H), and on

the ground space X0 from (5.12). The advantage of Ã over A is the diagonal
domain. Below, we reveal the link of the operator matrices A and Ã.

Lemma 5.4.1. The operator matrix A from (5.14) and the above operator
matrix Ã from (5.24) are isomorphic on X0.

Proof. We provide the similarity transform explicitly. In fact, it is given by

S =



Id 0 0 0 0

0 Id −L0 0 0

0 0 Id 0 0

0 0 0 Id 0

0 0 0 0 Id


and S−1 =



Id 0 0 0 0

0 Id L0 0 0

0 0 Id 0 0

0 0 0 Id 0

0 0 0 0 Id


.

Let us recall from Proposition 5.3.9 that indeed, L0 ∈ L(Lq(G)2,Lq
σ(Ωocn)),

yielding S ∈ L(X0) and S−1 ∈ L(X0). A direct computation further ex-
hibits Ã = SAS−1. Moreover, by standard regularity theory, it follows
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that ṽocn ∈ D(Aocn
m ) with homogeneous boundary conditions already satis-

fies ṽocn ∈ D(Aocn
0 ). Hence, as ṽocn := vocn − L0vice for v ∈ D(A) = X1 has

precisely these properties, it follows that D(Ã) = SD(A). In total, A and Ã

are isomorphic, as desired.

For v = (vatm, vocn, vice, h, a) ∈ D(A), with D(A) = X1 as introduced
in (5.13), we deduce from Lemma 5.4.1 and its proof that vocn = ṽocn +L0ṽice,
where ṽocn ∈ D(Aocn

0 ) and ṽice ∈ W2,q
per(G)2. In conjunction with Proposi-

tion 5.3.10, this yields vocn ∈ W2,q
per(Ωocn)2 ∩ Lq

σ(Ωocn) =: D(Aocn). Hence,

(5.25)
X1 =

{
v ∈ D(Aatm) × D(Aocn) × D(AH) × D(∆H) × D(∆H) :

vocn = 0, on Γb, and vocn = vice, on Γo

}
.

Thanks to the diagonal domain of the operator matrix Ã, it is possible to
investigate its individual components. Regarding the bounded H∞-calculus,
it also proves useful to split the complete matrix Ã into smaller blocks. First,
we separate the hydrostatic Stokes operator for the atmosphere, so

Ã =

−Aatm 0

0 J

 , with D(Ã) = D(Aatm) × D(J).

The smaller block J then has the structure

J =

J1 B′

0 J2

 , with D(J) = D(J1) × D(J2) and

B′ =

 0 0

Bh Ba

 as well as J2 = diag(−dh∆H,−da∆H).

The resulting block operator matrix J1 takes the shape

J1 =

−Aocn
0 − L0Co,i∂z L0(AH − Co,iN0)

Co,i∂z −AH + Co,iN0

 , where

D(J1) = D(Aocn
0 ) × D(AH).

Concerning the bounded H∞-calculus, we first verify this property for J1.
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Lemma 5.4.2. Let q ∈ (1,∞) as well as u0 ∈ C1(G)4 with h0 ≥ κ1. Then
there is ω0 ∈ R such that for all ω > ω0, the shifted operator matrix J1 + ω

satisfies J1 + ω ∈ H∞(Lq
σ(Ωocn) × Lq(G)2) with H∞-angle ϕ∞

J1+ω < π/2.

Proof. As we have already indicated, the main idea is to use the theory on
bounded H∞-calculus for block operator matrices as presented in Section 2.3.
More precisely, we first apply Proposition 2.3.24 to the simplified version J̃1
of J1, defined by

J̃1 :=

−Aocn
0 L0A

H

Co,i∂z −AH

 , with D(J̃1) = D(Aocn
0 ) × D(AH),

and then exploit perturbation theory.
For ω0 ∈ R from Lemma 5.3.3 and ω > ω0, we study J̃1,ω := J̃1 +ω Id in the

sequel. First, we establish the diagonal dominance of J̃1,ω. From Lemma 5.3.2
and Lemma 5.3.3, we recall that −Aocn

0 ∈ H∞(Lq
σ(Ωocn)) with ϕ∞

−Aocn
0

= 0
and −AH + ω ∈ H∞(Lq(G)2) with ϕ∞

−AH+ω <
π/2, so −Aocn

0 + ω and −AH + ω

are especially closed and densely defined. Moreover, for δ > 1/2 + 1/2q, we
deduce from Lemma 5.3.8 that

Co,i∂z ∈ L
(
D((−Aocn

0 )δ),Lq(G)2
)
.

The last assertion remains valid for −Aocn
0 + ω. Hence, Remark 2.3.23 yields

the relative (−Aocn
0 + ω)-boundedness of Co,i∂z, and the (−Aocn

0 + ω)-bound
is arbitrarily small. On the other hand, we conclude from Proposition 5.3.9
the existence of a constant C1 > 0 such that

∥L0A
Hvice∥Lq

σ
(Ωocn) ≤ C1 ·

(
∥(−AH + ω)vice∥Lq(G) + ∥vice∥Lq(G)

)
for all vice ∈ D(AH). Therefore, the diagonal dominance of J̃1,ω as presented
in Definition 2.3.22 indeed follows.

In order to show the bounded H∞-calculus of J̃1, it remains to verify (2.19).
For this purpose, consider δ ∈ (0, 1/2q). From Lemma 5.3.2(c) as well as
Lemma 5.3.4(c), we deduce the embeddings and identities

D((−Aocn
0 )1+δ) ↪→ H2+2δ,q

per (Ωocn)2 ∩ Lq
σ(Ωocn),

D((−Aocn
0 )δ) = H2δ,q

per (Ωocn)2 ∩ Lq
σ(Ωocn),

D((−AH + ω)1+δ) ↪→ H2+2δ,q
per (G)2 and D((−AH + ω)δ) ↪→ H2δ,q

per (G)2.

176



5.4. Linear Theory of the Coupled System

Let us observe that the fractional power domains of −Aocn
0 +ω take the same

shape, see also the remark after Lemma 5.3.2. Besides, as in the proof of
Lemma 5.3.8, it especially follows that

Co,i∂z

(
D((−Aocn

0 + ω)1+δ)
)

⊂ H2δ,q
per (G)2 = D((−AH + ω)δ).

On the other hand, as a consequence of Proposition 5.3.10, we obtain

L0A
H
(
D((−AH + ω)1+δ)

)
= L0

(
D((−AH + ω)δ)

)
= L0

(
H2δ,q

per (G)2
)

⊂ H2δ,q
per (Ωocn)2 ∩ Lq

σ(Ωocn) = D((−Aocn
0 + ω)δ).

In addition, thanks to the operators L0A
H as well as Co,i∂z being closed, the

estimates in (2.19) follow from the closed graph theorem. Hence, Proposi-
tion 2.3.24 yields the existence of ω1 > 0 such that for every ω > ω1, it holds
that J̃1 + ω ∈ H∞(Lq

σ(Ωocn) × Lq(G)2) with H∞-angle ϕ∞
J̃1+ω

< π/2.
With regard to the perturbation argument, we consider ω > 0 sufficiently

large such that 0 ∈ ρ(J̃1 + ω). Considering vocn ∈ D(Aocn
0 ) and concatenating

Proposition 5.3.9 for the boundedness of L0 and Lemma 5.3.8 for the relative
boundedness of ∂z with respect to −Aocn

0 , for δ > 1/2 + 1/2q, we first get

∥ − L0Co,i∂zvocn∥Lq
σ

(Ωocn) ≤ C2 · ∥∂zvocn∥Lq(G)

≤ C3 · ∥(−Aocn
0 + ω)δvocn∥Lq

σ
(Ωocn).

At the same time, Proposition 5.3.9 and the relative (−AH +ω)-boundedness
of N0 as asserted in Corollary 5.3.12 imply

∥ − L0Co,iN0vice∥Lq
σ

(Ωocn) ≤ C4 · ∥N0vice∥Lq(G)

≤ C5 · ∥(−AH + ω)δvice∥Lq(G)

for vice ∈ D(AH) and δ > 1/2. In total, setting

B :=

−L0Co,i∂z −L0Co,iN0

0 Co,iN0

 ,
and taking into account (vocn, vice) ∈ D(J̃1), for δ > 1/2 + 1/2q, we derive that∥∥∥∥∥B

(
vocn

vice

)∥∥∥∥∥
Lq

σ
(Ωocn)×Lq(G)

≤ C6 ·
∥∥∥∥∥(J̃1 + ω)δ

(
vocn

vice

)∥∥∥∥∥
Lq

σ
(Ωocn)×Lq(G)

.

The assertion of the lemma is then implied by the perturbation result on the
bounded H∞-calculus, Lemma 2.3.17.
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The preceding lemma enables us to state and prove the main result of this
section on the bounded H∞-calculus of the complete operator matrix A with
non-diagonal domain from (5.14).

Proposition 5.4.3. Let q ∈ (1,∞), and consider u0 ∈ C1(G)4 with h0 ≥ κ1.
Then there exists ω0 ∈ R so that A+ω, with A from (5.14), admits a bounded
H∞-calculus for all ω > ω0, so A+ ω ∈ H∞(X0) with H∞-angle ϕA+ω < π/2.

Proof. The idea is to establish first the bounded H∞-calculus of the operator
matrix with diagonal domain Ã from (5.24) by making use of the previous
lemma and by invoking the respective properties of the hydrostatic Stokes op-
erator of the atmosphere and the Laplacian operators with periodic boundary
conditions. In a second step, we exploit that A and Ã are isomorphic.

From Lemma 2.3.21, we first recall that J2 + ω ∈ H∞(Lq(G) × Lq(G)) for
all ω > 0. Together with Lemma 5.4.2, we thus get the bounded H∞-calculus
of diag(J1, J2) + ω on Lq

σ(Ωocn) × Lq(G)2 × Lq(G) × Lq(G) for all ω > ω0,
where ω0 ∈ R, from Lemma 5.4.2. Similarly as in (3.27), also invoking the
fractional powers of the negative Laplacian from Lemma 2.3.21, it follows that∥∥∥∥∥∂hP (h0, a0)

2ρiceh0
∇Hh

∥∥∥∥∥
Lq(G)

≤ C1 · ∥h∥W1,q
per(G) ≤ C2 · ∥(−∆H + ω)1/2h∥Lq(G).

The other term Ba from (5.11) can be dealt with likewise, so it follows that∥∥∥∥∥B′
(
h

a

)∥∥∥∥∥
Lq

σ
(Ωocn)×Lq(G)

≤ C3 ·
∥∥∥(J2 + ω)1/2

∥∥∥
Lq(G)×Lq(G)

.

Hence, choosing ω > 0 sufficiently large such that 0 ∈ ρ(diag(J1, J2) + ω), we
conclude from Lemma 2.3.17 that

J + ω ∈ H∞
(
Lq

σ(Ωocn) × Lq(G)2 × Lq(G) × Lq(G)
)

for ω > ω0, where ω0 ∈ R is possibly larger than before. Moreover, we get
the H∞-angle ϕ∞

J+ω < π/2. By virtue of the bounded H∞-calculus of Aatm,
up to a shift, as asserted in Lemma 5.3.1, we infer that Ã + ω ∈ H∞(X0)
for ω > ω0, and ϕ∞

Ã+ω
< π/2.

Finally, the claim of the proposition follows from Ã and A being iso-
morphic on X0, as revealed in Lemma 5.4.1, and the preservation of the
bounded H∞-calculus and the H∞-angle by similarity transforms as discussed
in Lemma 2.3.14.

178



5.4. Linear Theory of the Coupled System

From the preceding proposition, we draw further conclusions with regard
to the linear theory of the operator matrix. As a preparation, and in order to
shorten the notation in the remainder of this section, we introduce the spaces

Y0 := X0 = Lq
σ(Ωatm) × Lq

σ(Ωocn) × Lq(G)4 and
Y1 := W2,q

per(Ωatm)2 ∩ Lq
σ(Ωatm) × W2,q

per(Ωocn)2 ∩ Lq
σ(Ωocn) × W2,q

per(G)4,

where no boundary conditions on the respective upper and lower boundaries
are taken into account. In a similar manner as in Section 1.3, upon invok-
ing the brief discussion before Lemma 2.7.3 for the interpolation of periodic
boundary conditions, we get

Yβ := [Y0,Y1]β
= H2β,q

per (Ωatm)2 ∩ Lq
σ(Ωatm) × H2β,q

per (Ωocn)2 ∩ Lq
σ(Ωocn) × H2β,q

per (G)4

for β ∈ (0, 1), while for θ ∈ (0, 1) and p ∈ (1,∞), we obtain

Yθ,p := (Y0,Y1)θ,p

= B2θ
qp,per(Ωatm) ∩ Lq

σ(Ωatm) × B2θ
qp,per(Ωocn) ∩ Lq

σ(Ωocn) × B2θ
qp,per(G)4.

In particular, we use Yγ to denote the space Y1−1/p,p = (Y0,Y1)1−1/p,p. In the
above, no certain values of the regularity parameter need to be omitted as no
Dirichlet or Neumann boundary conditions are taken into consideration.

The collection of useful properties of the operator matrix A resulting from
Proposition 5.4.3 is given in the following.

Corollary 5.4.4. Let p, q ∈ (1,∞), and consider u0 ∈ C1(G)4 with h0 ≥ κ1.
Besides, we recall the notation A = A(u0) for simplicity.

(a) Then there is ω0 ∈ R such that for all ω > ω0, we have
(i) A+ ω ∈ BIP(X0) with power angle θA+ω < π/2,

(ii) A + ω ∈ RS(X0) with R-angle ϕR
A+ω < π/2. In particular, ω > 0

can be chosen sufficiently large such that A+ ω ∈ MRp(X0),
(iii) D((A + ω)β) ∼= [X0,X1]β =: Xβ for β ∈ (0, 1) \ {1/2q, 1/2 + 1/2q}.

Moreover, we have Xβ = Yβ if β ∈ (0, 1/2q),

Xβ = {v ∈ Yβ : vocn = 0 on Γb, and vocn = vice on Γo}

provided β ∈ (1/2q, 1/2 + 1/2q), and

Xβ = {v ∈ Yβ : ∂zvatm = 0 on Γu ∪ Γi, vocn = 0 on Γb, and
vocn = vice on Γo} ,

in the case β ∈ (1/2 + 1/2q, 1), and
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(iv) (X0,X1)θ,p = Yθ,p for θ ∈ (0, 1/2q), whereas for θ ∈ (1/2q, 1/2 + 1/2q),
it is valid that

(X0,X1)θ,p = {v ∈ Yθ,p : vocn = 0 on Γb, and vocn = vice on Γo} ,

and for θ ∈ (1/2 + 1/2q, 1), we get

(X0,X1)θ,p = {v ∈ Yθ,p : ∂zvatm = 0 on Γu ∪ Γi, vocn = 0 on Γb,

and vocn = vice on Γo} .

(b) The operator matrix A has a compact resolvent, and the spectrum σ(A)
of A is q-independent and only consists of eigenvalues.

Proof. The assertions of (a)(i) and (ii) are immediate consequences of the
relations of the above concepts as made precise in (2.14), Proposition 2.1.21
and Lemma 2.1.14. The first relation in (iii) is implied by (i) in conjunction
with Lemma 2.3.4. For the shape of the resulting interpolation spaces, we
first deduce from Proposition 5.4.3 the bounded H∞-calculus and thus also
the boundedness of the imaginary powers of Ã with diagonal domain D(Ã)
from (5.24). Thus, we derive from Lemma 2.3.4 together with the considera-
tions in Section 1.3 and Section 2.7 that

D((Ã+ ω)β) ∼= [X0,D(Ã)]β =: X̃β, β ∈ (0, 1),

and X̃β coincides with Yβ complemented by homogeneous Dirichlet boundary
in the vocn-component if β > 1/2q, and by homogeneous Neumann boundary
conditions for vatm in the case β > 1/2+1/2q. The isomorphism S from the proof
of Lemma 5.4.1 is also an isomorphism in the category of Banach couples. By
the functoriality of the complex interpolation as explained in Section 1.2, we
thus infer that

[X0,X1]β =
{
(vatm, vocn + L0vice, vice, h, a) : (vatm, vocn, vice, h, a) ∈ X̃β

}
.

The concrete shape of Xβ = [X0,X1]β then follows from the above arguments
together with the regularity properties of L0 as shown in Proposition 5.3.10.
This shows (a)(iii), and the assertion of (a)(iv) can be obtained analogously.

With regard to (b), we observe that the operator Ã : D(Ã) → X0 has a
compact resolvent thanks to the compact embedding D(Ã) ↪→ X0 as a result
of the Rellich-Kondrachov theorem from Lemma 1.4.3. At this stage, we recall
the boundedness of the domains in the present study. In view of

(λ− A) = S−1(λ− Ã)S
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for S as introduced in the proof of Lemma 5.4.1, we find that ρ(A) = ρ(Ã).
Furthermore, the compactness of (λ− Ã)−1 : X0 → D(Ã) implies that

(λ− A)−1 = S−1(λ− Ã)−1S : X0 → D(A) = X1

is also compact for λ ∈ ρ(A) = ρ(Ã). The other two assertions of (b) then
follow from Lemma 2.1.6(b) and (c).

5.5. Local Strong Well-Posedness
In this section, we present the first main result of this chapter on the local
strong well-posedness of the coupled system from (5.4), or, equivalently in
operator form, from (5.16).

As in Chapter 3, we introduce an open set V ⊂ Xγ := (X0,X1)1−1/p,p to
make sure that the initial data attain physically relevant values. We set

(5.26) V := {v ∈ Xγ : h0 ∈ (κ1, κ2) and a0 ∈ (0, 1)}.

With regard to the results established in the previous sections, it is natural
to impose constraints on p and q such that the ice component embeds into
the space C1(G)4. Indeed, the assumption

(5.27) 1/p + 1/q < 1/2

yields 1 − 1/p > 1/2 + 1/2q, so from the embedding relation (1.8) and Corol-
lary 5.4.4(a)(iv), we deduce that u0 from v0 = (vatm,0, vocn,0, u0) ∈ V is con-
tained in C1, i. e.,

(5.28) u0 ∈ C1(G)4.

Next, we make some assumptions on the external terms. As the atmosphere
and ocean velocity are internalized in the present situation, no assumptions
on these quantities are required in contrast to Chapter 3.

Assumption 5.5.1. Let p, q ∈ (1,∞) be such that (5.27) holds true.

(a) The external forcing terms fatm and focn satisfy fatm ∈ Lq(Ωatm)2 as well
as focn ∈ Lq(Ωocn)2.

(b) The sea surface dynamic height H fulfills ∇HH ∈ Lq(G)2.

(c) For the ice growth rate function fgr, it is valid that fgr ∈ C1
b([0,∞)).
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It would also be possible to take into consideration time-dependent external
forcing terms. However, for simplicity, and as it fits better into the framework
presented in Section 2.6, we focus on the autonomous case in this chapter.

The result below asserts the local strong well-posedness of the coupled sys-
tem. We do not only state the existence of a unique local strong solution, but
we also discuss several features of the resulting solution such as the continuous
dependence on the initial data or the characterization of the maximal time
interval of existence of the solution.

Theorem 5.5.2. Let p, q ∈ (1,∞) be such that (5.27) is valid, consider ini-
tial data v0 = (vatm,0, vocn,0, u0) ∈ V , with u0 = (vice,0, h0, a0) and for V as
introduced in (5.26), and suppose that the external terms fatm, focn, H and fgr
fulfill Assumption 5.5.1. Moreover, recall the spaces X0 and X1 from (5.12)
and (5.13), respectively, and take into account Xγ = (X0,X1)1−1/p,p.

Then there are T = T (v0) > 0 and r = r(v0) > 0 with BXγ (v0, r) ⊂ V ,
and for all v1 ∈ BXγ (v0, r), the quasilinear abstract Cauchy problem (5.16),
or, equivalently, the complete coupled system of equations (5.4) complemented
by the boundary conditions (5.5), admits a unique solution

v(·, v1) ∈ W1,p(0, T ; X0) ∩ Lp(0, T ; X1) ∩ C([0, T ];V ) =: E1 ∩ C([0, T ];V ).

For the solution, we also get the properties stated below.

(a) There is a constant C = C(u0) > 0 with

∥v(·, v1) − v(·, v2)∥E1 ≤ C · ∥v1 − v2∥Xγ

for all v1, v2 ∈ BXγ (v0, r).

(b) The solution exists on a maximal time interval J(v0) = [0, t+(v0)),
where t+(v0) is characterized by

(i) global existence, so t+(v0) = ∞,
(ii) lim inf

t→t+(v0)
distXγ (v(t), ∂V ) = 0, or

(iii) lim
t→t+(v0)

v(t) does not exist in Xγ.

Proof. The idea of the proof is again to apply the abstract result, Proposi-
tion 2.6.1. The hardest part of the proof in this case, namely the linear theory,
has already been established. More precisely, in Corollary 5.4.4(a)(ii), we have
proved that A(u0) + ω ∈ MRp(X0) for ω > ω0 for some ω0 ∈ R. Therefore,
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for ω > ω0, we introduce Aω(u0)v := A(u0)v + ωv and Fω(v) := F (v) + ωv.
The remainder of the proof is dedicated to showing the Lipschitz estimates.

With regard to notation, we will omit the subscript per throughout this proof
as the spaces with such boundary conditions embed into the ones without.

From the previous section together with the shape of V from (5.26) and
the smoothness of u0 as revealed in (5.28), we conclude as in the proof of
Theorem 3.5.2 that Aω : V → L(X1,X0).

Again, we invoke Remark 2.6.2, and for r > 0 such that BXγ (v0, r) ⊂ V ,
we consider v1, v2 ∈ BXγ (v0, r) and v ∈ X1. The only nonlinearity in the
present operator matrix which does not emerge from the sea ice equations
is Co,i(h)∂z, where ∂z is understood as the normal derivative on Γo. Thanks
to the condition on p and q given in (5.27), we deduce from (1.4) and (1.8)
the embedding

(5.29) B2−2/p

qp (G) ↪→ B2−2/p−ε
q2q (G) ↪→ L∞(G)

for ε > 0 is sufficiently small. The continuity of ∂z from W2,q(Ωocn) to Lq(G)
and the mean value theorem in conjunction with v1, v2 ∈ V , the afore-
mentioned embedding relation and the shape of Xγ as revealed in Corol-
lary 5.4.4(a)(iv) then yield

∥Co,i(h1)∂zvocn − Co,i(h2)∂zvocn∥Lq(G)

≤ ∥Co,i(h1) − Co,i(h2)∥L∞(G) · ∥∂zvocn∥Lq(G)

≤ C1 ·
∥∥∥∥ 1
h1

− 1
h2

∥∥∥∥
L∞(G)

· ∥vocn∥W2,q(Ωocn)

≤ C2 · ∥h1 − h2∥B2−2/p
qp (G) · ∥v∥X1

≤ C3 · ∥v1 − v2∥Xγ · ∥v∥X1 .

For the other nonlinear terms in Aω, we argue similarly as in the proof of
Theorem 3.5.2 to get the existence of a constant CA > 0 with

∥Aω(u1)v − Aω(u2)v∥X0 ≤ CA · ∥v1 − v2∥Yγ · ∥v∥Y1

≤ C ′
A · ∥v1 − v2∥Xγ · ∥v∥X1 ,

where we additionally made use of the embeddings X1 ↪→ Y1 and Xγ ↪→ Yγ,
following from Corollary 5.4.4(a)(iv).

Having established the estimate of the operator matrix, we now discuss
the estimates of the shifted right-hand side Fω, with F from (5.15). For this
purpose, we recall the estimates of the bilinear terms of the primitive equations
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from Lemma 2.7.6. In the sequel, we use the more compact notation of the
bilinearity, namely (ui · ∇)vi = (vi · ∇)vi +wi(vi) · ∂zvi, where i ∈ {atm, ocn}.
Making use of the embedding Xγ ↪→ Yγ from Corollary 5.4.4(a)(iv) again,
for v1, v2 ∈ BXγ (v0, r), we find

∥Patm((uatm,1 · ∇)vatm,1 − (uatm,2 · ∇)vatm,2)∥Lq
σ

(Ωatm)

≤ C4 ·
(

∥vatm,1∥B2−2/p
qp (Ωatm)∩Lq

σ
(Ωatm) + ∥vatm,2∥B2−2/p

qp (Ωatm)∩Lq
σ

(Ωatm)

)
· ∥vatm,1 − vatm,2∥B2−2/p

qp (Ωatm)∩Lq
σ

(Ωatm)

≤ C5 ·
(
∥v1∥Yγ + ∥v2∥Yγ

)
· ∥v1 − v2∥Yγ

≤ C6(r, ∥v0∥Xγ ) · ∥v1 − v2∥Xγ .

Completely analogously, we obtain

∥Pocn((uocn,1 · ∇)vocn,1 − (uocn,2 · ∇)vocn,2)∥Lq
σ

(Ωocn)

≤ C7(r, ∥v0∥Xγ ) · ∥v1 − v2∥Xγ .

Concerning the nonlinear terms in the context of the sea ice equations, we ob-
serve that the forcing term associated to the ocean, Co,i(h)∂zvocn, has already
been incorporated into the operator matrix, whereas the forcing term related
to the atmosphere takes a different shape compared to Section 3.5. For the
estimate of the atmospheric forcing term

τatm = ρatmCatm|vatm|Ratmvatm,

we first observe the estimate

∥|g1|g1 − |g2|g2∥Lq(G) ≤
(
∥g1∥L2q(G) + ∥g2∥L2q(G)

)
∥g1 − g2∥L2q(G).

Besides, we conclude from (5.27) the existence of some small ε > 0 with

2 − 2
p

− ε

2 − 3
q

≥ 1
2q + ε

2 − 3
2q .

The embedding relations (1.4) and (1.7) then imply

(5.30) B2−2/p

qp (Ωatm) ↪→ B2−2/p−ε/2
q2q (Ωatm) ↪→ W1/2q+ε/2,2q(Ωatm).

Making use of v1, v2 ∈ V , employing the above basic estimate, invoking the
continuity of the trace as an operator from W1/2q+ε/2(Ωocn) to L2q(G) in the
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spirit of Lemma 1.3.3, and making use of the embedding (5.30), we obtain∥∥∥∥∥ρatmCatm

ρiceh1
(|vatm,1|Ratmvatm,1 − |vatm,2|Ratmvatm,2)

∥∥∥∥∥
Lq(G)

≤ C8 ·
(
∥vatm,1∥L2q(G) + ∥vatm,2∥L2q(G)

)
· ∥vatm,1 − vatm,2∥L2q(G)

≤ C9 ·
(
∥vatm,1∥W1/2q+ε/2,2q(Ωocn) + ∥vatm,2∥W1/2q+ε/2,2q(Ωocn)

)
· ∥vatm,1 − vatm,2∥W1/2q+ε/2,2q(Ωocn)

≤ C10 ·
(

∥vatm,1∥B2−2/p
qp (Ωocn) + ∥vatm,2∥B2−2/p

qp (Ωocn)

)
· ∥vatm,1 − vatm,2∥B2−2/p

qp (Ωocn)

≤ C11 ·
(
∥v1∥Xγ + ∥v2∥Xγ

)
· ∥v1 − v2∥Xγ

≤ C12(r, ∥v0∥Xγ ) · ∥v1 − v2∥Xγ .

Likewise, proceeding in a similar way as for the estimate of Co,i, we derive∥∥∥∥∥
(
ρatmCatm

ρiceh1
− ρatmCatm

ρiceh2

)
|vatm,2|Ratmvatm,2

∥∥∥∥∥
Lq(G)

≤ C13 ·
∥∥∥∥ 1
h1

− 1
h2

∥∥∥∥
L∞(G)

· ∥vatm,2∥2
W1/2q+ε/2,2q(Ωatm)

≤ C14 · ∥v2∥2
Xγ

· ∥v1 − v2∥Xγ

≤ C15(r, ∥v0∥Xγ ) · ∥v1 − v2∥Xγ .

For the remaining terms of the nonlinear right-hand side, we can mimic the
procedure from the proof of Theorem 3.5.2. Therefore, we get the existence
of a constant CF = CF (r, ∥v0∥Xγ ) > 0 with

∥Fω(v1) − Fω(v2)∥X0 ≤ CF · ∥v1 − v2∥Xγ .

In total, taking into consideration Assumption 5.5.1, the assertion of the the-
orem is a consequence of Proposition 2.6.1 and Corollary 2.6.3.

We also comment on some possible generalizations of Theorem 5.5.2.

Remark 5.5.3. (a) It is also possible to introduce time weights µ ∈ (1/p, 1]
in order to exploit the parabolic regularization in the Lp-setting. In this
case, the space for the initial data becomes

Xγ,µ = (X0,X1)µ−1/p,p,

and condition (5.27) is then replaced by

1/2 + 1/p + 1/q < µ ≤ 1,
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ensuring classical regularity of functions in the time trace space Xγ,µ.
Accordingly, an open subset Vµ ⊂ Xγ,µ in the spirit of (5.26) is in-
troduced. An analogue of Theorem 5.5.2 can be shown upon slightly
adjusting Assumption 5.5.1. The resulting solution v then satisfies

v ∈ W1,p
µ (0, T ; X0) ∩ Lp

µ(0, T ; X1) =: E1,µ.

As in Theorem 3.5.2, for every δ > 0, the solution v fulfills

v ∈ E1(δ, T ) ↪→ C([δ, T ]; Xγ).

(b) The assertion of Theorem 5.5.2 remains valid when including Coriolis
terms for the atmosphere, the ocean and the ice.

(c) We can also consider anisotropic horizontal and vertical Reynolds num-
bers ReH,atm, Rez,atm, ReH,ocn and Rez,ocn for the atmosphere and the
ocean. The viscous terms ∆vatm and ∆vocn are then substituted by

1
ReH,atm

∆Hvatm + 1
Rez,atm

∂2
zvatm and 1

ReH,ocn
∆Hvocn + 1

Rez,ocn
∂2

zvocn.

The statement of Theorem 5.5.2 is also still true in this situation. In-
deed, one can consider the transformed velocity U = (V,W ), the trans-
formed pressure Π and the transformed right-hand side F of the shape

V (t, xH, z) := ReH · v (ReH · t, xH, 1/(Re
3/2
H Rez) · z) ,

W (t, xH, z) :=
√

Re5
HRez · v (ReH · t, xH, 1/(Re

3/2
H Rez) · z) ,

Π(t, xH, z) := Re2
H · π (ReH · t, xH, 1/(Re

3/2
H Rez) · z) and

F (t, xH, z) := f (ReH · t, xH, 1/(Re
3/2
H Rez) · z) .

This yields usual primitive equations on Ω̃ = G×(a/
√

Re3
HRez, b/

√
Re3

HRez).

5.6. Global Strong Well-Posedness close to
Equilibria

This final section of the chapter discusses the global strong well-posedness of
a simplified version of the coupled model provided the initial data are chosen
sufficiently close to constant equilibria. Conceptually, we proceed in a similar
way as in Section 3.6. This means that we first introduce the simplified system
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and reformulate it as a quasilinear abstract Cauchy problem, determine the
constant equilibria, provide the total linearization and finally verify the normal
stability in order to apply the generalized principle of linearized stability as
stated in Proposition 2.6.5.

We consider the situation that the external forces are absent, i. e.,

fatm = focn = g∇HH = 0,

and the thermodynamic terms are neglected, so

Sh = Sa = 0.

Moreover, we assume that the atmosphere has no effect on the sea ice, i. e.,

τatm = 0.

The emerging simplified coupled atmosphere-sea ice-ocean model is given by

(5.31)



∂tvatm − ∆vatm + ∇Hπatm = −(uatm · ∇)vatm, in (0, T ) × Ωatm,

∂zπatm = 0, in (0, T ) × Ωatm,

div uatm = 0, in (0, T ) × Ωatm,

∂tvocn − ∆vocn + ∇Hπocn = −(uocn · ∇)vocn, in (0, T ) × Ωocn,

∂zπocn = 0, in (0, T ) × Ωocn,

div uocn = 0, in (0, T ) × Ωocn,

∂tvice − 1
mice

· divH σδ = −(vice · ∇H)vice

+ 1
mice

τocn(vocn), on (0, T ) ×G,

∂th− dh∆Hh = −divH (viceh), on (0, T ) ×G,

∂ta− da∆Ha = −divH (vicea), on (0, T ) ×G,

vocn = vice, on (0, T ) ×G,

and the system is again completed by the boundary conditions as revealed
in (5.5) as well as periodic boundary conditions on the lateral boundaries.

Compared to Section 5.2, the functional analytic set-up remains unchanged,
so we consider X0 as in (5.12), X1 as in (5.13) and Xγ = (X0,X1)1−1/p,p as exam-
ined in Corollary 5.4.4(a)(iv), where p, q ∈ (1,∞) satisfy (5.27). In addition,
we invoke the open subset V ⊂ Xγ of the time trace space from (5.26). We
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define Fs : V → X0 in the present context by

(5.32) Fs(v) :=



−Patm((vatm · ∇H)vatm + watm(vatm) · ∂zvatm)

−Pocn((vocn · ∇H)vocn + wocn(vocn) · ∂zvocn)

−(vice · ∇H)vice

−divH (viceh)

−divH (vicea)


,

while the operator matrix A : V → L(X1,X0) from (5.14) is unaffected. Thus,
the quasilinear abstract Cauchy problem on the ground space X0 correspond-
ing to (5.31) reads as

(5.33)

v
′(t) + A(v(t))v(t) = Fs(v(t)), for t ∈ (0, T ),

v(0) = v0.

The set of equilibrium solutions to (5.33), or, equivalently, to (5.31) is

E := {v ∈ V ∩ X1 : A(v)v = Fs(v)}.

For the right-hand side Fs from (5.32) and the operator matrix A from (5.14),
it readily follows that

A(v∗)v∗ = 0 = Fs(v∗)

for v∗ = (0, 0, 0, h∗, a∗), with h∗ ∈ (κ1, κ2) and a∗ ∈ (0, 1) constant in time
and space. In particular, such v∗ satisfies v∗ ∈ V ∩ X1. We summarize the
previous findings in the lemma below.

Lemma 5.6.1. Consider v∗ = (0, 0, 0, h∗, a∗) for h∗ ∈ (κ1, κ2) and a∗ ∈ (0, 1)
constant in time and space. Then v∗ ∈ E, so v∗ is an equilibrium solution
to (5.33), or, equivalently, to (5.31).

Next, we take into consideration the total linearization in the present con-
text and the required underlying Fréchet-differentiability of A and Fs. For
this purpose, let us recall the notation Ph,∗ and Pa,∗ from (3.40), namely

Ph,∗ := ∂hP (h∗, a∗)
2ρiceh∗

= p∗e−c•(1−a∗)

2ρiceh∗
and Pa,∗ := ∂aP (h∗, a∗)

2ρiceh∗
= c•p

∗e−c•(1−a∗)

2ρice
.

The total linearization is determined in the lemma below.
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Lemma 5.6.2. For p, q ∈ (1,∞) satisfying (5.27), the operator matrix A

from (5.14) and Fs from (5.32), we have (A,Fs) ∈ C1(V ; L(X1,X0) × X0).
Moreover, for v ∈ X1, the total linearization at an equilibrium v∗ of the shape
in Lemma 5.6.1 reads as

(5.34) A0v =



−Aatmvatm

−Aocn
m vocn

Co,i(h∗)∂zvocn − AH(u∗)vice + Ph,∗∇Hh+ Pa,∗∇Ha

−dh∆Hh+ h∗divH vice

−da∆Ha+ a∗divH vice


.

Proof. The Fréchet-differentiability of the term Fs : V → X0 is a consequence
of its bilinear structure. Invoking the shape of v∗ = (0, 0, 0, h∗, a∗), and using
the bilinear shape of Fs, we first argue that

F ′
s(v∗)v = (0, 0, 0, h∗divH vice, a∗divH vice)⊤.

On the other hand, we find that

A(v∗)v =



−Aatmvatm

−Aocn
m vocn

Co,i(h∗)∂zvocn − AH(v∗)vice + Ph,∗∇Hh+ Pa,∗∇Ha

−dh∆Hh+ h∗divH vice

−da∆Ha+ a∗divH vice


.

From the shape of v∗, it results that (A′(v∗)v)v∗ = 0, so the assertion of the
lemma is implied by A0v = A(v∗)v + F ′

s(v∗)v.

Having determined the total linearization around constant equilibria, we
now address the normal stability of the equilibrium solutions in the sense of
Definition 2.6.4. Before proceeding, let us recall from (5.25) that v ∈ X1
especially fulfills vocn ∈ W2,q(Ωocn)2. In the remainder of this section, we will
use this improved regularity.

Next, we discuss the spectral properties of A0.

Lemma 5.6.3. Let v∗ = (0, 0, 0, h∗, a∗), with h∗ ∈ (κ1, κ2) and a∗ ∈ (0, 1)
constant in time and space, and recall A0 from (5.34). Then
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(a) the operator A0 has a compact resolvent on X0, and the spectrum of A0
is q-independent and only consists of eigenvalues, and

(b) we have σ(A0) \ {0} ⊂ C+ and N(A0) = R2 × {0} × {0} × R × R.

Proof. For the proof of the compactness of the resolvent of A0, we can pro-
ceed as in the proof of this property in Corollary 5.4.4(b), i. e., we can invoke
the similarity transform from Lemma 5.4.1 and use that the decoupled oper-
ator matrix with diagonal domain has this property by virtue of the compact
embedding of the domain into the ground space. The q-independence of the
spectrum and the fact that it is formed by eigenvalues are then implied by
Lemma 2.1.6, showing (a).

With regard to (b), the first step consists of computing several integrals
for v = (vatm, vocn, vice, h, a) ∈ X1 to be used later on. An integration by parts,
the periodic boundary conditions on the lateral boundary and the Neumann
boundary conditions on the upper and lower boundary as well as divH vatm = 0
for vatm ∈ D(Aatm) yield

(5.35)

− ⟨Aatmvatm, vatm⟩L2(Ωatm)

= ⟨−∆vatm + ∇Hπ, vatm⟩L2(Ωatm)

=
∫

Ωatm
|∇vatm|2 d(xH, z) − (hatm − κ2)

∫
G
π · divH vatm dxH

= ∥∇vatm∥2
L2(Ωatm).

Likewise, employing vocn = vice on Γo, which can be identified with G, the
other boundary condition vocn = 0 on Γb and Poincaré’s inequality as stated
in Lemma 1.4.1, we deduce

(5.36)

− ⟨Aocn
m vocn, vocn⟩L2(Ωocn)

=
∫

Ωocn
|∇vocn|2 d(xH, z) −

∫
Γo

∂zvocn · vocn dxH

= ∥∇vocn∥2
L2(Ωocn) −

∫
G
∂zvocn · vice dxH

≥ C1 · ∥vocn∥2
H1(Ωocn) − ⟨∂zvocn, vice⟩L2(G)

for some constant C1 > 0. Furthermore, as in the proof of Lemma 3.6.3,
recalling the shape of △2(∇Hvice) from (3.12), we establish the estimate

2∑
i,j,k,l=1

Skl
ij∂lvice,j∂kvice,i = △2(∇Hvice) ≥ 2

e2 · |ε(vice)|2.
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Next, as in (3.40), we introduce

P∗ := P (h∗, a∗)
2ρiceh∗

= p∗e−c•(1−a∗)

2ρice
, Ph,∗ := ∂hP (h∗, a∗)

2ρiceh∗
and Pa,∗ := ∂aP (h∗, a∗)

2ρiceh∗
.

Concatenating the previous estimate with an integration by parts, the periodic
boundary conditions and Korn’s inequality as in Lemma 1.4.2, we conclude

(5.37)

−⟨AH(u∗)vice, vice⟩L2(G) = − P∗

δ1/2

∫
G

2∑
i,j,k,l=1

Skl
ij∂k∂lvice,jvice,i dxH

= P∗

δ1/2

∫
G

2∑
i,j,k,l=1

Skl
ij∂lvice,j∂kvice,i dxH

≥ C2
P∗

δ1/2
· ∥∇Hvice∥2

L2(G)

for some constant C2 > 0. The preparation of the proof is finished by the
observation that

(5.38) −⟨∆Hh, h⟩L2(G) = ∥∇Hh∥2
L2(G) and − ⟨∆Ha, a⟩L2(G) = ∥∇Ha∥2

L2(G)

thanks to another integration by parts joint with the periodic boundary con-
ditions.

By virtue of the q-independence of the spectrum and its property of con-
sisting of eigenvalues as revealed in (a), it is sufficient to test the eigenvalue
equation λv + A0v = 0 of −A0 to locate the spectrum. We choose a suit-
able test function to exploit the cancellation of some terms. In fact, for an
element v = (vatm, vocn, vice, h, a) ∈ X1, we test the aforementioned eigenvalue
equation by (vatm, vocn, c3vice, c4h, c5a), where

c3 = 1
Co,i(h∗)

, c4 = c3
Ph,∗

h∗
and c5 = c3

Pa,∗

a∗
.

In view of h∗ ∈ (κ1, κ2) as well as a∗ ∈ (0, 1), it holds that c3, c4, c5 > 0.
Thus, testing the eigenvalue equation by the above test function, integrating
by vector parts, making use of the periodic boundary conditions on the lateral
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boundary and plugging in (5.35), (5.36), (5.37) as well as (5.38), we obtain

0 = λ · ∥vatm∥2
L2(Ωatm) + λ · ∥vocn∥2

L2(Ωocn) + λc3 · ∥vice∥2
L2(G) + λc4 · ∥h∥2

L2(G)

+ λc5 · ∥a∥2
L2(G) − ⟨Aatmvatm, vatm⟩L2(Ωatm) − ⟨Aocn

m vocn, vocn⟩L2(Ωocn)

+ Co,i(h∗)c3⟨∂zvocn, vice⟩L2(G) − c3⟨AH(u∗)vice, vice⟩L2(G)

− c3⟨Ph,∗h, vice⟩L2(G) − c3⟨Pa,∗a, vice⟩L2(G) − c4dh⟨∆Hh, h⟩L2(G)

+ c4h∗⟨divH vice, h⟩L2(G) − c5da⟨∆Ha, a⟩L2(G) + c5a∗⟨divH vice, a⟩L2(G)

≥ λ · ∥vatm∥2
L2(Ωatm) + λ · ∥vocn∥2

L2(Ωocn) + λc3 · ∥vice∥2
L2(G) + λc4 · ∥h∥2

L2(G)

+ λc5 · ∥a∥2
L2(G) + C3 ·

(
∥∇vatm∥2

L2(Ωatm) + ∥vocn∥2
H1(Ωocn) + ∥∇Hvice∥2

L2(G)

+ ∥∇Hh∥2
L2(G) + ∥∇Ha∥2

L2(G)

)
+ (Co,i(h∗)c3 − 1) ⟨∂zvocn, vice⟩L2(G)

+
(
c3

∂hP∗

2ρiceh∗
− c4h∗

)
⟨∇Hh, vice⟩L2(G)

+
(
c3

∂aP∗

2ρiceh∗
− c5a∗

)
⟨∇Ha, vice⟩L2(G).

Inserting the above choice of c3, c4 and c5, we infer that

0 = λ∥vatm∥2
L2(Ωatm) + λ∥vocn∥2

L2(Ωocn) + λc3∥vice∥2
L2(G) + λc4∥h∥2

L2(G)

+ λc5∥a∥2
L2(G) + C3 ·

(
∥∇vatm∥2

L2(Ωatm) + ∥vocn∥2
H1(Ωocn) + ∥∇Hvice∥2

L2(G)

+ ∥∇Hh∥2
L2(G) + ∥∇Ha∥2

L2(G)

)
.

From the preceding inequality, we deduce that λ ∈ R with λ ≤ 0. The
q-independence of the spectrum then yields σ(A0) \ {0} ⊂ C+. In particular,
considering λ = 0, we are able to determine N(A0). In this case, it follows
that ∇vatm = 0, vocn = 0, ∇Hvice = 0 and ∇Hh = ∇Ha = 0. Hence, the
variables vatm, vice, h and a are constant. With regard to vice, we additionally
invoke the boundary condition vocn = vice on G, yielding vice = 0 as well. As
a result, the kernel of A0 is of the asserted shape.

After settling the spectral properties of the total linearization A0, we now
elaborate on the shape of E near constant equilibria.

Lemma 5.6.4. Consider p, q ∈ (1,∞) such that (5.27) is valid, and take into
account an equilibrium v∗ of the shape v∗ = (0, 0, 0, h∗, a∗), with h∗ ∈ (κ1, κ2)
and a∗ ∈ (0, 1) constant in time and space. Near v∗, the set of equilibria E is
a C1-manifold in X1, and the tangent space of E at v∗ is isomorphic to N(A0).
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Proof. Let v = (vatm, vocn, vice, h, a) ∈ V ∩ X1 be an equilibrium solution
such that ∥v − v∗∥Xγ < r for some given r > 0. Hence, we obtain the
equality 0 = A(v)v − Fs(v). Multiplying the sea ice momentum equation
by 2ρiceh, and employing the notation u = (vice, h, a), we then get

(5.39) 0 =



−Aatmvatm + (vatm · ∇H)vatm + watm(vatm) · ∂zvatm

−Aocn
m vocn + (vocn · ∇H)vocn + wocn(vocn) · ∂zvocn

2ρiceh
(
Co,i(h)∂zvocn − AH(u) + (vice · ∇H)vice

)
+ ∇HP (h, a)

−dh∆Hh+ divH (viceh)

−da∆Ha+ divH (vicea)


.

In the sequel, we will also test (5.39) by a suitable test function.
For i ∈ {atm, ocn}, we observe that (ui · ∇)vi = (vi · ∇H)vi + wi(vi) · ∂zvi

on Ωi. Thus, Lemma 2.7.7 implies

(5.40)

∫
Ωatm

((vatm · ∇H)vatm + watm(vatm) · ∂zvatm) · vatm d(xH, z) = 0 and∫
Ωocn

((vocn · ∇H)vocn + wocn(vocn) · ∂zvocn) · vocn d(xH, z) = 0.

In particular, inspecting the proof of Lemma 2.7.7, we observe that the cou-
pling conditions do not come into picture in view of the shape of the normal
vector. Instead, it is only important that the vertical velocities wi are zero on
the boundary.

Next, analogously as in (3.52) in the proof of Lemma 3.6.4, we argue
that v ∈ V with ∥v − v∗∥Xγ < r implies

P (h, a) ≥ p∗κe−c• =: P∗∗ > 0 and 1
△δ(ε(vice))

≥ 1√
δ + cer2

for a constant ce > 0. Let us stress the independence of P∗∗ from u, δ and r.
In the same way as in (3.53) in the proof of Lemma 3.6.4 up to the step where
the Poincaré inequality is used, which is not applicable in our situation, we
obtain the estimate

(5.41) −⟨2ρicehA
H(vice, h, a)vice, vice⟩L2(G) ≥ C1√

δ + cer2 · ∥∇Hvice∥2
L2(G)

for some constant C1 > 0. Now, for v ∈ V ∩ X1 such that ∥v − v∗∥Xγ < r, we
test equation (5.39) by (vatm, vocn, c3vice, c4h, c5a), where this time, we set

(5.42) c3 = 1
µocn

, c4 = 2ρicePh,∗c3 and c5 = 2ρicePa,∗c3.
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The choice of the test function as revealed in (5.42) in particular leads to

−⟨∂zvocn, vice⟩L2(G) + c3µocn⟨∂zvocn, vice⟩L2(G) = 0.

On the other hand, an integration by parts joint with the shape of ∇HP (h, a)
also result in

c3

∫
G

∇HP (h, a) · vice dxH + c4

∫
G

divH (viceh)h dxH + c5

∫
G

divH (vicea)a dxH

= c3

∫
G

∇HP (h, a) · vice dxH − c4

∫
G
h∇Hh · vice dxH − c5

∫
G
a∇Ha · vice dxH

=
∫

G
(c3∂hP (h, a) − c4h) ∇Hh · vice dxH

+
∫

G
(c3∂aP (h, a) − c5a) ∇Ha · vice dxH.

Therefore, testing (5.39) by (vatm, vocn, c3vice, c4h, c5a) and employing the re-
lations (5.35), (5.36), (5.38), (5.40) as well as (5.41), we get

(5.43)

0 ≥ ∥∇vatm∥2
L2(Ωocn) + C2 · ∥vocn∥2

H1(Ωocn) + c3C1√
δ + cer2 · ∥∇Hvice∥2

L2(G)

+ c4dh · ∥∇Hh∥2
L2(G) + c5da · ∥∇Ha∥2

L2(G)

+ 2c3ρice

∫
G
h((vice · ∇H)vice) · vice dxH

+
∫

G
(c3∂hP (h, a) − c4h) ∇Hh · vice dxH

+
∫

G
(c3∂aP (h, a) − c5a) ∇Ha · vice dxH

for another constant C2 > 0 as seen in the proof of Lemma 5.6.3. The remain-
ing task is to absorb the terms without a sign in (5.43). Similarly as in (3.54),
making use of the shape of the equilibrium together with ∥v − v∗∥Xγ < r and
the embedding from (5.29), and invoking vice = vocn on Γo = G joint with the
continuity of the trace as an operator from H1(Ωocn) to L2(Γo), we derive

(5.44)

2c3ρice

∫
G
h(vice · ∇H)vice · vice dxH

≤ C3 · ∥h∥L∞(G) · ∥vice∥L∞(G) · ∥vice∥L2(G) · ∥∇Hvice∥L2(G)

≤ C4 (1 + r) r ·
(
∥∇Hvice∥2

L2(G) + ∥vocn∥2
H1(Ωocn)

)
,

where C4 > 0 represents a suitable constant. In an analogous manner as
in (3.58) and (3.59), we further conclude that

∥c3∂hP (h, a) − c4h∥L∞(G) ≤ C5(1 + r)r and
∥c3∂aP (h, a) − c5a∥L∞(G) ≤ C5(1 + r)r
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for a constant C5 > 0. Combining these estimates with vocn = vice on the
interface G = Γo, the continuity of the trace operator from H1(Ωocn) to L2(Γo),
Hölder’s inequality and Young’s inequality, we infer that

(5.45)

∫
G

(c3∂hP (h, a) − c4h) ∇Hh · vice dxH

+
∫

G
(c3∂aP (h, a) − c5a) ∇Ha · vice dxH

≥ −C6(1 + r)r ·
(
∥∇Hh∥2

L2(G) + ∥∇Ha∥2
L2(G) + ∥vocn∥2

H1(Ωocn)

)
.

Hence, inserting the estimates (5.44) and (5.45) into (5.43), we conclude

0 ≥ ∥∇vatm∥2
L2(Ωocn) + (C2 − (C4 + C6)(1 + r)r) · ∥vocn∥2

H1(Ωocn)

+
(

c3C1√
δ + cer2 − C4(1 + r)r

)
· ∥∇Hvice∥2

L2(G)

+ (c4dh − C6(1 + r)r) · ∥∇Hh∥2
L2(G) + (c5da − C6(1 + r)r) · ∥∇Ha∥2

L2(G).

As a consequence, when choosing r > 0 sufficiently small, we deduce the
existence of a constant C7 > 0 such that

0 ≥ C7 ·
(

∥∇vatm∥2
L2(Ωatm) + ∥vocn∥2

H1(Ωocn) + ∥∇Hvice∥2
L2(G)

+ ∥∇Hh∥2
L2(G) + ∥∇Ha∥2

L2(G)

)
,

so vatm, vice, h and a are constant, whereas vocn = 0. Because of vocn = vice
on Γo = G, we also have vice = 0. Therefore, for v = (vatm, vocn, vice, h, a) ∈ E
with v ∈ V ∩ X1 and ∥v− v∗∥Xγ < r for r > 0 sufficiently small, vatm, h and a
are constant, while vocn = vice = 0. In other words,

BXγ∩E(v∗, r) = R2 × {0} × {0} × R × R = N(A0),

and the last equality is due to Lemma 5.6.3(b). From this, we especially
deduce that the set of equilibria near v∗ is a C1-manifold of dimension 4, and
that the tangent space of E near v∗ even coincides with N(A0). Hence, the
latter two are in particular isomorphic, finishing the proof.

The remaining aspect in the verification of the normal stability of the equi-
libria is the property of zero being a semi-simple eigenvalue of the total lin-
earization A0 from (5.34). This is precisely addressed in the lemma below.

Lemma 5.6.5. Let v∗ = (0, 0, 0, h∗, a∗), where h∗ ∈ (κ1, κ2) and a∗ ∈ (0, 1)
are constant in time and space. Then zero is a semi-simple eigenvalue of the
total linearization A0 from (5.34), meaning that N(A0) ⊕ R(A0) = X0.
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Proof. The idea of the proof is similar to the one of Lemma 3.6.5. Be-
fore, we provide some arguments to simplify the proof. First, we invoke
Lemma 2.7.1(c) to argue that Aatm is simply the restriction of the Laplacian
operator in view of the pure Neumann boundary conditions on the upper and
lower boundary. Therefore, Aatm inherits the properties of the underlying
Laplacian operator with periodic boundary conditions on the lateral bound-
ary and Neumann boundary conditions on the upper and lower boundary. It
also follows that zero is a semi-simple eigenvalue of Aatm on Lq

σ(Ωatm). In view
of the block structure of A0, with Aatm representing a decoupled block, we
conclude that the remaining part of A0 can be investigated separately.

We denote the reduced part of A0 by A0,r, and it is given by

A0,r



vocn

vice

h

a


=



−Aocn
m vocn

Co,i(h∗)∂zvocn − AH(u∗)vice + Ph,∗∇Hh+ Pa,∗∇Ha

−dh∆Hh+ h∗divH vice

−da∆Ha+ a∗divH vice


.

The associated ground space X0,r takes the shape

X0,r = Lq
σ(Ωocn) × Lq(G)2 × Lq(G) × Lq(G),

and the domain D(A0,r) is defined accordingly. Furthermore, for Lq
0(G) rep-

resenting the space of Lq(G)-functions with mean value zero on G, we define

Xm
0,r := Lq

σ(Ωocn) × Lq(G)2 × Lq
0(G) × Lq

0(G),

and we denote by Am
0,r the restriction of A0,r to Xm

0,r. The same arguments as
in the proof of Lemma 5.6.3 for λ = 0 show that

(5.46) 0 ≥ C1 ·
(
∥vocn∥2

H1(Ωocn) + ∥∇Hvice∥2
Lq(G) + ∥∇Hh∥2

Lq(G) + ∥∇Ha∥2
Lq(G)

)
when testing the eigenvalue equation A0,r(vocn, vice, h, a) = 0 by a suitable
test function for (vocn, vice, h, a) ∈ D(Am

0,r) = D(A0,r) ∩ Xm
0,r. In a first step,

it follows therefrom that vocn = 0, while vice, h and a are constant. Because
of vocn = vice on Γo = G as well as h, a ∈ Lq

0(G), we derive that vice = 0
and also h = a = 0. As a result, zero is not an eigenvalue of Am

0,r. The
compact resolvent of A0 as well as its q-independent spectrum only consisting
of eigenvalues carry over from Lemma 5.6.3 to the present situation, leading
to 0 ∈ ρ(Am

0,r).
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From (5.46), applied in the situation of X0,r, it follows that

N(A0,r) = {0} × {0} × R × R.

In order to verify X0,r = N(A0,r) + R(A0,r), it then suffices to prove that

Lq
σ(Ωocn) × Lq(G)2 × Lq

0(G) × Lq
0(G) ⊂ R(A0,r).

For this purpose, let f = (focn, fice, fh, fa) ∈ Lq(G)2 × Lq
0(G) × Lq

0(G). Thanks
to 0 ∈ ρ(Am

0,r), we find (vocn, vice, h, a) ∈ D(Am
0,r) with

A0,r(vocn, vice, h, a)⊤ = Am
0,r(vocn, vice, h, a)⊤ = f,

showing R(A0,r) ⊂ Xm
0,r as well as X0,r = N(A0,r) + R(A0,r).

The last step is thus to establish that N(A0,r) ∩ R(A0,r) = {0}. In fact,
for ṽ = (vocn,0, vice,0, h0, a0) ∈ N(A0,r) ∩ R(A0,r), we conclude from the above
shape of N(A0,r) that ṽ = (0, 0, ch, ca), where ch and ca are constant. In
contrast, ṽ ∈ R(A0,r) yields the existence of v̂ = (vocn, vice, h, a) ∈ D(A0,r)
with A0,rv̂ = ṽ. For hm and am as well as havg and aavg designating the
respective mean value zero and average parts as also already used in the
proof of Lemma 3.6.5, we consider

v̂ = (vocn, vice, h, a)⊤ = (vocn, vice, hm + havg, am + aavg)⊤.

In particular, we observe that (0, 0, havg, aavg) ∈ N(A0,r) since havg and aavg
are constant. Therefore, for ṽ = (0, 0, ch, ca)⊤, we have ṽ = A0,rv̂, where

A0,rv̂ = A0,r



vocn

vice

hm

am


+ A0,r



0

0

havg

aavg


= A0,r



vocn

vice

hm

am


= Am

0,r



vocn

vice

hm

am


.

As a result, ṽ ∈ R(Am
0,r) = Lq

σ(Ωocn) × Lq(G)2 × Lq(G) × Lq(G), so we deduce
that ch = ca = 0. This shows that indeed, ṽ = 0. In total, we have thus
verified N(A0,r) ⊕ R(A0,r), as desired.

Concatenating Lemma 5.6.3, Lemma 5.6.4 and Lemma 5.6.5, we conclude
that equilibria of the shape as introduced in Lemma 5.6.1 are normally stable
in the sense of Definition 2.6.4. On the other hand, it follows from Corol-
lary 5.4.4(a)(ii) that the linearized operator matrix at an equilibrium v∗ ad-
mits maximal Lp-regularity up to a shift. The following theorem is hence
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obtained by an application of Proposition 2.6.5 together with Remark 2.6.6.
It asserts the global strong well-posedness of the simplified coupled system
for initial data close to constant equilibria.

Theorem 5.6.6. Let p, q ∈ (1,∞) be such that (5.27), take into account an
equilibrium v∗ = (0, 0, 0, h∗, a∗), with h∗ ∈ (κ1, κ2) and a∗ ∈ (0, 1) constant in
time and space, and recall Xγ = (X0,X1)1−1/p,p from Corollary 5.4.4(a)(iv).
Then v∗ is stable in Xγ, and there exists r > 0 so that the unique solution v

to (5.33), or, equivalently, to (5.31), for initial data v0 ∈ Xγ with

∥v0 − v∗∥Xγ < r

exists on R+ and converges to some v∞ ∈ E in Xγ at an exponential rate
as t → ∞.

The next remark on extensions of Theorem 5.6.6 completes the chapter.

Remark 5.6.7. The assertion of Theorem 5.6.6 remains valid when consid-
ering Coriolis forcing terms and anisotropic Reynolds numbers as explained in
Remark 5.5.3(b) and (c) in the context of the local strong well-posedness. In
fact, the treatment of the Coriolis terms parallels Section 3.6, while the reduc-
tion argument for the anisotropic Reynolds numbers has already been provided
in Remark 5.5.3(c).
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CHAPTER 6

The Parabolic-Hyperbolic Regularized Hibler Model

In this chapter, we focus on a parabolic-hyperbolic variant of Hibler’s model,
meaning that we drop the viscous terms in the balance laws. In (3.10), this
corresponds precisely to the situation of dh = da = 0. Let us remark that
Hibler included diffusion terms in his original model [60], but the latter were
added for numerical stability, and it is more physical to avoid these terms.
We establish the local strong well-posedness of the resulting system with reg-
ularized stress tensor. In comparison with the previous chapters, the general
strategy is closer to the one in Chapter 4, i. e., we use a direct approach, so
we set up a fixed point argument instead of applying the abstract theory from
Section 2.6. The results of this chapter have not been published so far.

It is worth pointing out that the considerations in this chapter differ signif-
icantly from the work of Liu, Thomas and Titi [97]. In fact, they established
local strong well-posedness of a parabolic-hyperbolic version of Hibler’s model
with strongly regularized stress tensor. In contrast, as we have already ex-
pressed in Chapter 3, the regularization used in this thesis and especially
in this chapter agrees with one of the most common regularizations used in
numerical analysis, see for instance [82] or [105].

The chapter has the following structure. In Section 6.1, we provide the
parabolic-hyperbolic system in Eulerian and Lagrangian coordinates in (6.1)
and (6.8), respectively. The reason for using Lagrangian coordinates is that
it allows us to handle the hyperbolic terms. This becomes apparent in Sec-
tion 6.2, where we establish the maximal regularity of the linearized sys-
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tem (6.9) in an anisotropic ground space in Proposition 6.2.1. The maximal
regularity is also the starting point for the fixed point argument presented in
Section 6.3. There is no such thing as a free lunch, especially not in math-
ematics, so employing the Lagrangian coordinates is not for free. In fact,
the differential operators involved take more complicated shapes as a result.
It is the purpose of Section 6.4 to provide estimates of the nonlinear terms.
At this stage, the choice of the anisotropic ground space proves useful once
more, since the Sobolev space W1,q(Ω) is a Banach algebra for q > 2. In Sec-
tion 6.5, we finally state the main result, Theorem 6.5.1, on the local strong
well-posedness of the parabolic-hyperbolic regularized model. The proof is
based on the fixed point argument and the contraction mapping principle
which in turn rely on the maximal regularity and the nonlinear estimates.
The final Section 6.6 discusses some remaining open problems concerning the
mathematical analysis of Hibler’s sea ice model.

6.1. The System in Eulerian and Lagrangian
Coordinates

Our strategy to attack the parabolic-hyperbolic model relies on the transform
from Eulerian to Lagrangian coordinates in order to circumvent the hyperbolic
effects in the balance laws. We elaborate on this in detail in Section 6.2. For
this reason, we provide the system in both configurations in this section.

For convenience, we recall the general setting. Except for the absence of the
dissipative terms, the set-up does not change in comparison with Chapter 3.
In that respect, we consider a bounded domain Ω ⊂ R2 with boundary ∂Ω
of class C2 as well as a time interval (0, T ), where 0 < T ≤ ∞. Moreover,
by vice : (0, T ) × Ω → R2, h : (0, T ) × Ω → [κ,∞) and a : (0, T ) × Ω → (0, 1),
we denote the horizontal ice velocity, the mean ice thickness and the ice com-
pactness, respectively. In contrast to the consideration in Chapter 3, we do
not include the diffusion terms dh∆Hh and da∆Ha in the balance laws. There-
fore, with the thermodynamic terms Sh and Sa as made precise in (3.8), the
adjusted hyperbolic balance laws are given by∂th+ divH (viceh) = Sh(h, a),

∂ta+ divH (vicea) = Sa(h, a).

In this new setting, the mean ice thickness h and the ice compactness a are not
subject to any boundary conditions. On the other hand, we still assume that
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the horizontal ice velocity vice satisfies Dirichlet boundary conditions on ∂Ω,
so vice = 0 on (0, T )×∂Ω. Recalling the momentum equation from (3.7), using
the abbreviation τice := τatm + τocn(vice), and invoking the initial conditions,
we obtain the parabolic-hyperbolic regularized model

(6.1)



∂tvice + (vice · ∇H)vice = 1
mice

divH σδ − ccorv
⊥
ice

− g∇HH + 1
mice

τice, in (0, T ) × Ω,

∂th+ divH (viceh) = Sh(h, a), in (0, T ) × Ω,
∂ta+ divH (vicea) = Sa(h, a), in (0, T ) × Ω,

vice = 0, on (0, T ) × ∂Ω,
vice(0) = vice,0, h(0) = h0, a(0) = a0, in Ω.

The next step is to transform (6.1) to Lagrangian coordinates. The un-
derlying coordinate transform requires the characteristics X corresponding to
the ice velocity vice. This means that X is the solution to the Cauchy problem

(6.2)

∂tX(t, yH) = vice(t,X(t, yH)), for t > 0,
X(0, yH) = yH, for yH ∈ R2.

For t ∈ (0, T ), we denote by Y (t, ·) = [X(t, ·)]−1 the inverse of X(t, ·), and we
will comment on the invertibility at a later stage. The corresponding change
of variables to Lagrangian coordinates is given by

(6.3)
ṽice(t, yH) := vice(t,X(t, yH)),
h̃(t, yH) := h(t,X(t, yH)) and
ã(t, yH) := a(t,X(t, yH)).

In addition, the principal variable will be denoted by ũ = (ṽice, h̃, ã). With Y
representing the above transform, we especially obtain

u(t, xH) = ũ(t, Y (t, xH)).

An integration in time in (6.2) and the change of variables from (6.3) lead to

X(t, yH) = yH +
∫ t

0
ṽice(s, yH) ds.

Equipped with the variables in Lagrangian coordinates, we are interested
in the emerging transformed system of equations. It is well known, or can
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directly be derived from the change of variables, that the time derivative of
the variables in Lagrangian coordinates coincides with the material derivative
in Eulerian coordinates, so

∂tṽice(t, yH) = ∂tvice(t,X(t, yH)) + (vice(t,X(t, yH)) · ∇H)vice(t,X(t, yH)),
∂th̃(t, yH) = ∂th(t,X(t, yH)) + vice(t,X(t, yH)) · ∇Hh(t,X(t, yH)) and
∂tã(t, yH) = ∂ta(t,X(t, yH)) + vice(t,X(t, yH)) · ∇Ha(t,X(t, yH)).

Similarly as for the interaction problem in Section 4.2, the transformed sym-
metric part of the gradient takes the shape

(6.4)
2εij(vice) = ∂ivice,j + ∂jvice,i

=
2∑

k=1
(∂iYk)∂kṽice,j + (∂jYk)∂kṽice,i =: 2ε̃ij(ṽice).

Before dealing with the transformed Hibler operator, we introduce

(6.5) aklm
ij (ε̃(ṽice), P (h̃, ã)) := (∂kYm)akl

ij (ε̃(ṽice), P (h̃, ã))

and calculate

∂mε̃jl(vice) = 1
2

2∑
n=1

(
(∂m∂jYn)∂nṽice,l + (∂jYn)∂m∂nṽice,l

+ (∂m∂lYn)∂nṽice,j + (∂lYn)∂m∂nṽice,j

)
.

With regard to the Hibler operator in differential form as introduced in (3.14),
we recover the transformed Hibler operator ÃH of the shape

(6.6)
[ÃH(ũ)ṽice]i =

2∑
j,k,l,m=1

aklm
ij (ε̃(ṽice), P (h̃, ã))∂mε̃jl(ṽice)

+ 1
2ρiceh̃△δ(ε̃(ṽice))

2∑
j,k=1

(∂jYk)(∂kh̃+ c•∂kã)(Sε̃(ṽice))ij.

We also comment on the transformation of terms resulting from the horizontal
divergence of the ice strength P . Their respective i-th components read as

(6.7)
(B̃h(ũ)h̃)i := ∂hP (h̃, ã)

2ρiceh̃

2∑
j=1

(∂iYj)∂jh̃ and

(B̃a(ũ)ã)i := ∂aP (h̃, ã)
2ρiceh̃

2∑
j=1

(∂iYj)∂j ã.
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For convenience, we also introduce the notation

B̃(ũ)
(
h̃

ã

)
:= B̃h(ũ)h̃+ B̃a(ũ)ã.

Concerning the terms involving differential operators, it remains to calculate
the transformed (horizontal) divergence of vice. In fact, we obtain

divH vice =
2∑

j,k=1
(∂jYk)∂kṽice,j.

The remaining terms from the complete system (6.1) do not involve deriva-
tives, so their respective transformed versions can be deduced from an inser-
tion of ũ instead of u = (vice, h, a). Consequently, the system of equations in
Lagrangian coordinates is given by

(6.8)



∂tṽice = ÃH(ũ)ṽice − B̃(ũ)
(
h̃

ã

)
− ccorṽ

⊥
ice

− g∇HH + 1
ρiceh̃

(τatm + τocn(ṽice)), in (0, T ) × Ω,

∂th̃ = −h̃
2∑

j,k=1
(∂jYk)∂kṽice,j + Sh(h̃, ã), in (0, T ) × Ω,

∂tã = −ã
2∑

j,k=1
(∂jYk)∂kṽice,j + Sa(h̃, ã), in (0, T ) × Ω,

ṽice = 0, on (0, T ) × ∂Ω,
ṽice(0) = vice,0, h̃(0) = h0, ã(0) = a0, in Ω.

The initial conditions result from the fact that for time zero, the transform
from Eulerian to Lagrangian coordinates is simply the identity.

6.2. Maximal Regularity of the Linearized
Problem

With regard to the linearized problem, we consider f1 : (0, T ) × Ω → R2 as
well as f2, f3 : (0, T )×Ω → R. Moreover, we take into account suitable initial
data u0 = (vice,0, h0, a0) and invoke u1 ∈ C1(Ω)2 × C(Ω) × C(Ω), where h1 ≥ κ

and a1 ∈ (0, 1). For ω ≥ 0, the Hibler operator AH(u1) as defined in (3.16),
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and the term B1 related to divH P and as made precise in (4.31), the linearized
problem investigated in the sequel is given by

(6.9)



∂tṽice − (AH(u1) − ω)ṽice +B1(u1)
(
h̃

ã

)
= f1, in (0, T ) × Ω,

∂th̃+ h1divH ṽice + ωh̃ = f2, in (0, T ) × Ω,
∂tã+ a1divH ṽice + ωã = f3, in (0, T ) × Ω,

ṽice = 0, on (0, T ) × ∂Ω,
ṽice(0) = vice,0, h̃(0) = h0, ã(0) = a0, in Ω.

Again, before stating the linear result, we comment on the functional analytic
set-up. It deviates significantly from the one introduced in Section 3.4 in the
context of the parabolic-hyperbolic model. In fact, for q ∈ (1,∞), we consider
the ground space

(6.10) X0 := Lq(Ω)2 × W1,q(Ω) × W1,q(Ω),

while the regularity space takes the shape

(6.11) X1 := W2,q(Ω)2 ∩ W1,q
0 (Ω)2 × W1,q(Ω) × W1,q(Ω).

The natural space for the initial data is again Xγ = (X0,X1)1−1/p,p, and we
refer to this space as trace space. For 2−2/p > 1/q, it follows from Lemma 1.3.4
and Lemma 1.3.6 that it is given by

(6.12) Xγ = B2−2/p

qp,D (Ω)2 × W1,q(Ω) × W1,q(Ω),

where the subscript D represents homogeneous Dirichlet boundary conditions.
If 2 − 2/p < 1/q, then we have Xγ = B2−2/p

qp (Ω)2 × W1,q(Ω) × W1,q(Ω).
The corresponding data space takes the shape

(6.13) E0 := Lp(0, T ; X0),

and the maximal regularity space reads as

(6.14) E1 := W1,p(0, T ; X0) ∩ Lp(0, T ; X1).

We are now in the position to state the maximal regularity result for (6.9).

Proposition 6.2.1. Let p ∈ (1,∞) and q ∈ (2,∞) be such that 1/p + 1/2q ̸= 1,
and for u1 = (vice,1, h1, a1), assume u1 ∈ C1(Ω)2 × W1,q(Ω) × W1,q(Ω) such
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that h1 ≥ κ and a1 ∈ (0, 1). Moreover, for the time trace space Xγ and the
data space E0 as defined in (6.12) and (6.13), let u0 = (vice,0, h0, a0) ∈ Xγ,
and consider (f1, f2, f3) ∈ E0.

Then there exists ω0 ∈ R such that for all ω > ω0, the linearized prob-
lem (6.9) admits a unique solution ũ = (ṽice, h̃, ã) ∈ E1, with E1 as introduced
in (6.14). In addition, there exists a constant CMR > 0, which can be chosen
independent of T provided u0 = 0, such that

∥ũ∥E1 ≤ CMR ·
(
∥(f1, f2, f3)∥E0 + ∥u0∥Xγ

)
.

Proof. The operator matrix associated to (6.9) for ω = 0 reads as

A(u1) =


−AH

D(u1) ∂hP (h1,a1)
2ρiceh1

∇H
∂aP (h1,a1)

2ρiceh1
∇H

h1divH 0 0

a1divH 0 0



=


−AH

D(u1) 0 0

h1divH 0 0

a1divH 0 0

+


0 ∂hP (h1,a1)

2ρiceh1
∇H

∂aP (h1,a1)
2ρiceh1

∇H

0 0 0

0 0 0


=: A1(u1) +B(u1).

As q > 2, we derive from (1.8) that the embedding W1,q(Ω) ↪→ C(Ω) is
valid. Therefore, invoking u1 ∈ C1(Ω) × W1,q(Ω) × W1,q(Ω), we first deduce
from Proposition 3.3.6 the existence of ω′

0 ∈ R such that for all ω > ω′
0, we

have −AH
D(u1) + ω ∈ MRp(Lq(Ω)2). In other words, the parabolic problem

(6.15) ∂tṽice − (AH
D(u1) − ω)ṽice = f1, in (0, T ) × Ω, and ṽice(0) = vice,0

admits a unique solution

ṽice ∈ W1,p(0, T ; Lq(Ω)2) ∩ Lp(0, T ; W2,q(Ω)2 ∩ W1,q
0 (Ω)2) =: Eice

1 .

On the other hand, the operator ω Id on W1,q(Ω) is R-sectorial in the
sense of Definition 2.1.20 with R-angle ϕR

ω Id < π/2. By the UMD property
of W1,q(Ω), Proposition 2.1.21 implies ω Id ∈ 0MRp(W1,q(Ω)). The fact
that 0 ∈ ρ(ω Id) together with Lemma 2.1.14 yields ω Id ∈ MRp(W1,q(Ω)).
Moreover, the solution ṽice to (6.15) satisfies divH ṽice ∈ Lp(0, T ; W1,q(Ω)). In
conjunction with h1 ∈ W1,q(Ω) being constant in time, the Banach algebra
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structure of W1,q(Ω) for q > 2, Lemma 1.3.8 and f2 ∈ Lp(0, T ; W1,q(Ω)), this
yields

f̃2 := f2 − h1divH ṽice ∈ Lp(0, T ; W1,q(Ω)),

and likewise f̃3 := f3 − a1divH ṽice ∈ Lp(0, T ; W1,q(Ω)). Hence, the maxi-
mal regularity of ω Id for ω > max{0, ω′

0} implies the existence of a unique
solution (h̃, ã) with h̃, ã ∈ W1,p(0, T ; W1,q(Ω)) to

∂th̃+ ω Id h̃ = f̃2, in (0, T ) × Ω, h̃(0) = h0, and
∂tã+ ω Id ã = f̃3, in (0, T ) × Ω, ã(0) = a0.

In summary, A1(u1) + ω has maximal Lp-regularity for ω > max{0, ω′
0}.

It remains to argue that B(u1) can be handled as a perturbation term.
For u = (vice, h, a) ∈ X1, as in (3.27), we find the existence of C1 > 0 with∥∥∥∥∥∂hP (h1, a1)

2ρiceh1
∇Hh

∥∥∥∥∥
Lq(Ω)

≤ C1 · ∥h∥W1,q(Ω).

Thus, performing the same estimate for the corresponding a-term, we infer
that B(u1) is a bounded perturbation of A1(u1) in the present setting. Con-
sequently, for ω > ω0, where ω0 ∈ R is possibly larger than the previous ω′

0,
we derive the maximal Lp-regularity of A(u1) + ω from Corollary 2.1.23. The
maximal regularity estimate then follows from the closed graph theorem. Con-
cerning the T -independence of CMR in the case of homogeneous initial values,
we observe that we can use the maximal Lp(R+)-regularity joint with the ex-
tension operators with T -independent operator norm from Lemma 2.4.2.

In the sequel, we fix ω > ω0, where ω0 ∈ R is the shift resulting from
Proposition 6.2.1.

6.3. The Fixed Point Argument
In this section, we rewrite the process of finding a solution to the transformed
problem as a fixed point problem. In order to handle the initial conditions,
we first invoke a so-called reference solution. It solves the linearized problem
with homogeneous right-hand side and captures the initial values. As in the
previous chapters, we also introduce an open subset V ⊂ Xγ of the time trace
space Xγ defined precisely in (6.12). In fact, we set

(6.16) V := {u = (vice, h, a) ∈ Xγ : h > κ and a ∈ (0, 1)}.

206



6.3. The Fixed Point Argument

In the sequel, we consider p, q ∈ (1,∞) such that

(6.17) 1
p

+ 1
q
<

1
2 .

With regard to (1.8), condition (6.17) yields the embedding

(6.18) Xγ ↪→ B2−2/p

qp (Ω)2 × W1,q(Ω) × W1,q(Ω) ↪→ C1(Ω)2 × C(Ω) × C(Ω).

For ω > ω0 as described in Section 6.2 and u0 = (vice,0, h0, a0) ∈ V , the system
under consideration reads as

(6.19)



∂tṽice − (AH(u0) − ω)ṽice +B1(u0)
(
h̃

ã

)
= 0, in (0, T ) × Ω,

∂th̃+ h0divH ṽice + ωh̃ = 0, in (0, T ) × Ω,
∂tã+ a0divH ṽice + ωã = 0, in (0, T ) × Ω,

ṽice = 0, on (0, T ) × ∂Ω,
ṽice(0) = vice,0, h̃(0) = h0, ã(0) = a0, in Ω.

The following result discusses the existence of a unique reference solution.

Proposition 6.3.1. Let p, q ∈ (1,∞) fulfill (6.17), consider 0 < T ≤ ∞,
and let u0 = (vice,0, h0, a0) ∈ V , where V was introduced in (6.16). Then
there exists a unique solution u∗

0 = (v∗
ice,0, h

∗
0, a

∗
0) ∈ E1 to (6.19), with E1 as

in (6.14).

Proof. Let us first observe that (6.17) especially yields that q ∈ (2,∞) as
well as 2/p + 1/q ̸= 2. Thanks to the embedding (6.18) and the definition
of V , we deduce from u0 ∈ V ⊂ Xγ that u0 ∈ C1(Ω)2 × W1,q(Ω) × W1,q(Ω)
with h0 > κ and a0 ∈ (0, 1). The choice of the shift larger than ω0 guarantees
the existence of a unique solution u∗

0 to (6.19) by Proposition 6.2.1.

Some additional remarks on the reference solution are in order now.

Remark 6.3.2. (a) The reference solution u∗
0 is simply obtained by apply-

ing the semigroup generated by A(u0) + ω as invoked in the proof of
Proposition 6.2.1, so u∗

0(t) = e−(A(u0)+ω)(t)u0. For convenience, we will
denote the norm of u∗

0 by C∗
T in the sequel, i. e., C∗

T := ∥u∗
0∥E1.

(b) As the reference solution exists on any time interval (0, T ), 0 < T ≤ ∞,
we obtain the convergence of C∗

T to zero as T → 0, so C∗
T → 0 as T → 0.
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(c) The representation of the reference solution from (a) also yields

(6.20) ∥u∗
0 − u0∥BUC([0,T ];Xγ) → 0 as T → 0.

On the other hand, since V ⊂ Xγ is open and u0 ∈ V , there is r0 > 0
sufficiently small such that BXγ (u0, r0) ⊂ V . By virtue of (6.20), there
is T0 sufficiently small such that

(6.21) sup
t∈[0,T0]

∥u∗
0(t) − u0∥Xγ ≤ r0

2 ,

implying u∗
0(t) ∈ V for all t ∈ [0, T0].

In the sequel, we restrict ourselves to the situation of T ≤ T0, where T0 > 0
is the time chosen sufficiently small in Remark 6.3.2(c) in order to guarantee
that u∗

0(t) ∈ V on the complete time interval [0, T0], i. e., the reference solution
only attains values in the physically relevant range.

In view of the maximal regularity result, we are inclined to reformulate the
transformed system of equations (6.8) as a linearized problem based on the
linearization (6.9) for which we have the maximal regularity result Proposi-
tion 6.2.1 at hand. As the reference solution u∗

0 captures the initial values,
we consider homogeneous initial values in the subsequent linearized prob-
lem. Indeed, recalling the reference solution u∗

0 = (v∗
ice,0, h

∗
0, a

∗
0) from Propo-

sition 6.3.1, and considering a solution ũ = (ṽice, h̃, ã) to the transformed
system (6.8), we define û = (v̂ice, ĥ, â) by

v̂ice := ṽice − v∗
ice,0, ĥ := h̃− h∗

0 and â := ã− a∗
0.

Then û solves

(6.22)



∂tv̂ice − (AH(u0) − ω)v̂ice +B1(u0)
(
ĥ

â

)
= F1(û), in (0, T ) × Ω,

∂tĥ+ h0divH v̂ice + ωĥ = F2(û), in (0, T ) × Ω,
∂tâ+ a0divH v̂ice + ωâ = F3(û), in (0, T ) × Ω,

v̂ice = 0, on (0, T ) × ∂Ω,
v̂ice(0) = 0, ĥ(0) = 0, â(0) = 0, in Ω,

where, also using the abbreviation τice = τatm + τocn(v̂ice + v∗
ice,0), we have

(6.23)

F1(û) :=
(
ÃH(û+ u∗

0) − AH(u0)
)

(v̂ice + v∗
ice,0)

−
(
B̃(û+ u∗

0) −B1(u0)
)(ĥ+ h∗

0
â+ a∗

0

)
+ ω(v̂ice + v∗

ice,0)

− ccor(v̂ice + v∗
ice,0)⊥ − g∇HH + 1

ρice(ĥ+ h∗
0)
τice
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as well as

(6.24)

F2(û) := h0divH (v̂ice + v∗
ice,0) − (ĥ+ h∗

0)
2∑

j,k=1
(∂jYk)∂k(v̂ice + v∗

ice,0)j

+ ω(ĥ+ h∗
0) + Sh(ĥ+ h∗

0, â+ a∗
0) and

F3(û) := a0divH (v̂ice + v∗
ice,0) − (â+ a∗

0)
2∑

j,k=1
(∂jYk)∂k(v̂ice + v∗

ice,0)j

+ ω(â+ a∗
0) + Sa(ĥ+ h∗

0, â+ a∗
0).

By 0E1, we denote the elements in E1 with homogeneous initial values, that
means û ∈ 0E1 satisfies û(0) = 0. We fix T0 > 0 as in Remark 6.3.2(c).
Concerning an upper bound R0 for R > 0, we also impose some condition.
In fact, recall that given u0 ∈ V , there is r0 with BXγ (u0, r0) ⊂ V . The aim
is to ensure that the solution ũ = û + u∗

0 given by the sum of the unique
fixed point û of (6.22) and the reference solution u∗

0 from Proposition 6.3.1 is
still contained in the open ball V for a suitable choice of R0. For the time
interval (0, T0), we thus recall from Proposition 2.4.11 the embedding

(6.25) 0E1 ↪→ BUC([0, T0]; Xγ).

The associated embedding constant C > 0 is independent of T by the homo-
geneous initial values, see Remark 2.4.12. Thus, making use of (6.21) by the
choice of T0, and choosing R0 ≤ r0/2C, for û ∈ 0E1 with ∥û∥E1 ≤ R0, we infer

sup
t∈[0,T0]

∥ũ(t) − u0∥Xγ ≤ sup
t∈[0,T0]

(
∥û∥Xγ + ∥u∗

0(t) − u0∥Xγ

)
≤ C · ∥û∥E1 + sup

t∈[0,T0]
∥u∗

0(t) − u0∥Xγ ≤ r0

2 + r0

2 ≤ r0.

We summarize the preceding discussion in the following lemma.

Lemma 6.3.3. Let u0 ∈ V , recall T0 > 0 from Remark 6.3.2, and for the
T -independent embedding constant C from (6.25) as well as r0 > 0 such
that BXγ (u0, r0) ⊂ V , set 0 < R0 ≤ r0/2C. Consider T ∈ (0, T0], R ∈ (0, R0]
and ũ := û + u∗

0, where û ∈ 0E1 with ∥û∥E1 ≤ R, and u∗
0 ∈ E1 denotes the

reference solution from Proposition 6.3.1. Then ũ(t) ∈ V for all t ∈ [0, T ].

We are now in the position to elaborate on the fixed point argument.
Consider p, q ∈ (1,∞) fulfilling (6.17), and for T0 > 0 and R0 > 0 as in
Lemma 6.3.3, let T ∈ (0, T0] as well as R ∈ (0, R0]. From there, we define

(6.26)
KR

T := {u ∈ 0E1 : ∥u∥E1 ≤ R} and
ΦR

T : KR
T → 0E1, with ΦR

T (u) := û.
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In the above, û represents the unique solution to (6.22), where we consider
the right-hand sides F1(u), F2(u) and F3(u) as introduced in (6.23) as well
as (6.24), and u ∈ KR

T is assumed. If the terms on the right-hand side are
contained in the data space, then the map ΦR

T is indeed well-defined thanks
to u0 ∈ V ⊂ Xγ, the embedding (6.18) of the trace space and the maximal
regularity from Proposition 6.2.1.

6.4. Nonlinear Estimates
This section is dedicated to establishing suitable estimates of the terms F1, F2
and F3 defined precisely in (6.23) and (6.24). The latter task requires some
preparation which we address below.

We start with the coordinate transform from Eulerian to Lagrangian coor-
dinates. At first, let us recall from Section 6.1 that

(6.27) X(t, yH) = yH +
∫ t

0
ṽice(s, yH) ds,

and we denote by Y (t, ·) the inverse of X(t, ·), also leading to

∇HY (t,X(t, yH)) = [∇HX]−1(t, yH).

We observe that the diffeomorphisms X and Y depend on ṽice. In particular,
we are interested in the situation of ṽice of the shape described in Section 6.3,
so ṽice being the sea ice component of ũ = û + u∗

0, where u∗
0 is the reference

solution from Proposition 6.3.1 with norm C∗
T , while û ∈ 0E1 solves (6.22)

and satisfies ∥û∥E1 ≤ R, so û ∈ KR
T . For such ũ, writing E1 = Eice

1 × Eh
1 × Ea

1,
we deduce

(6.28) ∥ũ∥E1 ≤ R + C∗
T ≤ R0 + C∗

T0 , so ∥ṽice∥Eice
1

≤ R0 + C∗
T0 .

Denoting by C0 the norm of the initial values, so C0 := ∥u0∥Xγ , we deduce
from Lemma 2.4.14 the estimate

(6.29) ∥u∗
0∥BUC([0,T ];Xγ) ≤ C

(
∥u0∥Xγ + ∥u∗

0∥E1

)
≤ C(C0 + C∗

T ),

where the constant C > 0 is independent of T . In the subsequent discussion,
we do not number the constants and remark instead that C > 0 represents
a generic constant. For X as in (6.27) and p′ denoting the Hölder conjugate
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6.4. Nonlinear Estimates

of p, we first get by Hölder’s inequality

(6.30)

sup
t∈[0,T ]

∥∇HX − Id2 ∥W1,q(Ω) ≤ C
∫ T

0
∥∇Hṽice(t, ·)∥W1,q(Ω)

≤ CT
1/p′ · ∥ṽice∥Eice

1

≤ CT
1/p′(R0 + C∗

T0).

In view of the embedding W1,q(Ω) ↪→ L∞(Ω) resulting from the Sobolev em-
bedding (1.8) thanks to condition (6.17) on p and q, this also yields

sup
t∈[0,T ]

∥∇HX − Id2 ∥L∞(Ω) ≤ CT
1/p′(R0 + C∗

T0).

Hence, we may choose T ′
0 sufficiently small such that

(6.31) sup
t∈[0,T ′

0]
∥∇HX − Id2 ∥L∞(Ω) ≤ 1

2 .

A Neumann series argument thus guarantees the invertibility of ∇HX(t, ·) for
all t ∈ [0, T ′

0], and ∇HY (t, ·) thus exists on [0, T ′
0]. At the same time, it follows

from (6.27) that ∂t∇HX(t, yH) = ∇Hṽice(t, yH). By (6.28), we get

∥∂t∇HX(t, ·)∥Lp(0,T ;W1,q(Ω)) ≤ C · ∥ṽice∥Eice
1

≤ C(R0 + C∗
T0).

In summary, as R0 + C∗
T0 is fixed, there exists a constant C > 0 such that

(6.32) ∥∇HX∥W1,p(0,T ;W1,q(Ω)) + ∥∇HX∥L∞(0,T ;W1,q(Ω)) ≤ C.

With regard to the condition on p and q from (6.17), we find that the
spaces W1,p(0, T ; W1,q(Ω)) as well as L∞(0, T ; W1,q(Ω)) are Banach algebras
by virtue of Lemma 1.3.9, meaning that the norm of a product can be es-
timated by the product of the norm. As a consequence of (6.32) and the
definition of det and Cof, we conclude the existence of a constant C > 0 with

∥ det ∇HX∥W1,p(0,T ;W1,q(Ω)) + ∥ det ∇HX∥L∞(0,T ;W1,q(Ω)) ≤ C and
∥ Cof ∇HX∥W1,p(0,T ;W1,q(Ω)) + ∥ Cof ∇HX∥L∞(0,T ;W1,q(Ω)) ≤ C.

Thanks to (6.31), we find that det ∇HX ≥ C > 0 on (0, T ) × Ω for some
constant C > 0 provided T ≤ T ′

0. The representation

(6.33) ∇HY = [∇HX]−1 = 1
det ∇HX

(Cof ∇HX)⊤

then results in

∥∇HY ∥W1,p(0,T ;W1,q(Ω)) + ∥∇HY ∥L∞(0,T ;W1,q(Ω)) ≤ C.

We collect the preceding observations in the lemma below.
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6. The Parabolic-Hyperbolic Regularized Hibler Model

Lemma 6.4.1. Let p, q ∈ (1,∞) be such that (6.17), and let T ∈ (0, T1],
with T1 := min{T0, T

′
0} > 0, where T0 > 0 comes from (6.21), and T ′

0 > 0 is
related to (6.31). Besides, for R0 > 0 as in Lemma 6.3.3, consider R ∈ (0, R0]
and ũ := û + u∗

0, where û ∈ KR
T , and u∗

0 denotes the reference solution from
Proposition 6.3.1. Then for X as in (6.27) and ∇HY := [∇HX]−1, whose
existence is guaranteed by (6.33), we get

∥∇HX∥W1,p(0,T ;W1,q(Ω)) + ∥∇HX∥L∞(0,T ;W1,q(Ω)) ≤ C and
∥∇HY ∥W1,p(0,T ;W1,q(Ω)) + ∥∇HY ∥L∞(0,T ;W1,q(Ω)) ≤ C

for some constant C > 0.

In the remainder of this section, we consider T ∈ (0, T1] and R ∈ (0, R0],
where T1 > 0 is as determined in Lemma 6.4.1, and R0 > 0 is as made precise
in Lemma 6.3.3. Combining Lemma 6.4.1 with the T -powers resulting from
Hölder’s inequality as made precise in Lemma 1.3.1, we derive the following
estimate of Id2 −∇HY upon observing ∇HY (0, ·) = Id2.

Lemma 6.4.2. Let p, q ∈ (1,∞) be such that (6.17) is valid, T ∈ (0, T1] as
well as R ∈ (0, R0]. Let further ũ := û+ u∗

0, where û ∈ KR
T , and u∗

0 ∈ E1 rep-
resents the reference solution from Proposition 6.3.1. Then for X from (6.27)
and ∇HY = [∇HX]−1, we have

∥ Id2 −∇HY ∥L∞(0,T ;W1,q(Ω)) ≤ CT
1/p′

for a constant C > 0 and p′ ∈ (1,∞) with 1/p + 1/p′ = 1.

With regard to the Lipschitz estimates, we also discuss estimates of differ-
ences of the diffeomorphisms. More precisely, we investigate the transforms
associated to ṽice,1 and ṽice,2, where ũi = ûi +u∗

0, for ûi ∈ 0E1 and the reference
solution u∗

0 from Proposition 6.3.1. The diffeomorphisms related to ṽice,i are
denoted by Xi and Yi, i = 1, 2. As in (6.30), we get

sup
t∈[0,T ]

∥∇HX1 − ∇HX2∥W1,q(Ω) ≤ CT
1/p′ · ∥û1 − û2∥E1 ,

also implying

sup
t∈[0,T ]

∥∇HX1 − ∇HX2∥L∞(Ω) ≤ CT
1/p′ · ∥û1 − û2∥E1 .

On the other hand, from ∂t(∇HX1 − ∇HX2) = ∇H(v̂ice,1 − v̂ice,2), we conclude

∥∂t∇H(X1 −X2)∥Lp(0,T ;W1,q(Ω)) ≤ C · ∥û1 − û2∥E1 .
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In summary, we thus obtain

(6.34)
∥∇H(X1 −X2)∥W1,p(0,T ;W1,q(Ω))

+ ∥∇H(X1 −X2)∥L∞(0,T ;W1,q(Ω)) ≤ C · ∥û1 − û2∥E1 .

For the treatment of the difference ∇H(Y1 − Y2) = ∇HY1 − ∇HY2, we invoke

∇HY1 − ∇HY2 = −∇HY1 (∇H(X1 −X2)) ∇HY2.

Hence, exploiting the Banach algebra structure of W1,p(0, T ; W1,q(Ω)) as well
as L∞(0, T ; W1,q(Ω)) as asserted in Lemma 1.3.9, and using (6.34) together
with Lemma 6.4.1, we find the existence of a constant C > 0 with

∥∇H(Y1 − Y2)∥W1,p(0,T ;W1,q(Ω))

+ ∥∇H(Y1 − Y2)∥L∞(0,T ;W1,q(Ω)) ≤ C · ∥û1 − û2∥E1 .

The above discussion is summarized in the lemma below.

Lemma 6.4.3. Let p, q ∈ (1,∞) satisfy (6.17), T ∈ (0, T1] and R ∈ (0, R0].
Moreover, consider ũi := ûi + u∗

0, i = 1, 2, where ûi ∈ KR
T , and u∗

0 denotes
the reference solution from Proposition 6.3.1. Then for Xi as made precise
in (6.27), ∇HYi := [∇HXi]−1 and ∇H(Y1 − Y2), we infer the existence of a
constant C > 0 such that

∥∇H(X1 −X2)∥W1,p(0,T ;W1,q(Ω))

+ ∥∇H(X1 −X2)∥L∞(0,T ;W1,q(Ω)) ≤ C · ∥û1 − û2∥E1 and
∥∇H(Y1 − Y2)∥W1,p(0,T ;W1,q(Ω))

+ ∥∇H(Y1 − Y2)∥L∞(0,T ;W1,q(Ω)) ≤ C · ∥û1 − û2∥E1 .

The analogue of Lemma 6.4.2 for the estimate of differences in ∇HY reads as
follows. It is a consequence of Lemma 6.4.3 in conjunction with Lemma 1.3.1
as well as the observation that ∇HY1(0, ·) = ∇HY2(0, ·) = Id2.

Lemma 6.4.4. Let p, q ∈ (1,∞) satisfy (6.17), T ∈ (0, T1] and R ∈ (0, R0].
Besides, consider ũi := ûi + u∗

0, i = 1, 2, where ûi ∈ KR
T , and u∗

0 denotes the
reference solution from Proposition 6.3.1. Then for Xi as in (6.27) as well
as ∇HYi := [∇HXi]−1 and ∇H(Y1 − Y2), we conclude that

∥∇H(Y1 − Y2)∥L∞(0,T ;W1,q(Ω)) ≤ CT
1/p′ · ∥û1 − û2∥E1

for a constant C > 0 and the Hölder conjugate p′ ∈ (1,∞) of p.
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6. The Parabolic-Hyperbolic Regularized Hibler Model

Before attacking the estimates of the right-hand sides, we establish some
further handy embedding results.

Lemma 6.4.5. Let p, q ∈ (1,∞) satisfy (6.17), let T ∈ (0, T1], and recall the
trace space Xγ from (6.12), also denoted by Xγ = Xice

γ ×Xh
γ ×Xa

γ in the sequel.

(a) We have the embedding 0E1 ↪→ BUC([0, T ]; Xγ), and the associated em-
bedding constant can be chosen independent of T > 0.

(b) It holds that

BUC([0, T ]; Xice
γ ) ↪→ L∞(0, T ; L2q(Ω)2) ↪→ L2p(0, T ; L2q(Ω)2).

In particular, for a T -independent embedding constant, we obtain

0E1 ↪→ BUC([0, T ]; Xice
γ ) ↪→ L2p(0, T ; L2q(Ω)2).

Proof. The assertion of (a) is a direct consequence of Proposition 2.4.11,
where Remark 2.4.12 implies the T -independence of the embedding constant.
Concerning (b), the embedding in time directly follows from the time interval
being finite, whereas the embedding in space is a result of the trace space
embedding (6.18) and the boundedness of the domain Ω ⊂ R2. The second
assertion of (b) is then implied by (a).

We successively estimate the nonlinear terms F1, F2 and F3 from (6.23)
and (6.24). Let us remark that we consider T ∈ (0, T1] and R ∈ (0, R0]
throughout this section, where T1 > 0 and R0 > 0 are fixed and result from
Lemma 6.4.1 and Lemma 6.3.3, respectively. The first terms to be estimated
only concern the quasilinear terms from the non-transformed equation.

Lemma 6.4.6. Let p, q ∈ (1,∞) be such that (6.17). For T ∈ (0, T1] as
well as R ∈ (0, R0], consider ũ := û + u∗

0 and ũi := ûi + u∗
0, with i = 1, 2

and for û, û1, û2 ∈ KR
T and the reference solution u∗

0 from Proposition 6.3.1.
Moreover, we set B∗

1 := B1(u∗
0) for simplicity. Then there exists C > 0 with∥∥∥∥∥(AH(u∗

0) − AH(u0)
)
ṽice − (B∗

1 −B1(u0))
(
h̃

ã

)∥∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ C · ∥u∗
0 − u0∥BUC([0,T ];Xγ) · (R + C∗

T ),∥∥∥∥∥(AH(u∗
0) − AH(u0)

)
(v̂ice,1 − v̂ice,2) − (B∗

1 −B1(u0))
(
ĥ1 − ĥ2

â1 − â2

)∥∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ C · ∥u∗
0 − u0∥BUC([0,T ];Xγ) · ∥û1 − û2∥E1 ,
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∥∥∥∥∥(AH(ũ) − AH(u∗
0)
)
ṽice − (B1(ũ) −B∗

1)
(
h̃

ã

)∥∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ CR(R + C∗
T ) and∥∥∥∥∥(AH(ũ2) − AH(u∗

0)
)

(v̂ice,1 − v̂ice,2) − (B1(ũ2) −B∗
1)
(
ĥ1 − ĥ2

â1 − â2

)∥∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ CR · ∥û1 − û2∥E1 .

Proof. First, let us observe that the reduced regularity of the trace space Xγ

as introduced in (6.12) in the h- and a-components does not affect the es-
timates from the considerations in Chapter 3 as the terms depend smoothly
on h and a. Thus, it is sufficient to have continuity in the h- and a-component
up to the boundary. As in the proof of Theorem 3.5.2, for u1, u2 ∈ V as well
as w = (vice, h, a) ∈ X1, we find the existence of a constant CA > 0 with

(6.35)

∥∥∥∥∥(AH(u1) − AH(u2)
)
vice − (B1(u1) −B1(u2))

(
h

a

)∥∥∥∥∥
Lq(Ω)

≤ CA · ∥u1 − u2∥Xγ · ∥w∥X1 .

We have u∗
0(t) ∈ V for all t ∈ [0, T ] thanks to Remark 6.3.2(c), while

Lemma 6.3.3 implies that ũ(t) = û(t) +u∗
0(t) ∈ V for all t ∈ [0, T ]. Therefore,

an application of (6.35) and (6.28) in the last step yields∥∥∥∥∥(AH(u∗
0) − AH(u0)

)
ṽice − (B1(u∗

0) −B1(u0))
(
h̃

ã

)∥∥∥∥∥
Lp(0,T ;Lq(Ω))

=
∫ T

0

∥∥∥∥∥(AH(u∗
0(t)) − AH(u0)

)
ṽice(t) − (B∗

1 −B1(u0))
(
h̃(t)
ã(t)

)∥∥∥∥∥
p

Lq(Ω)
dt
1/p

≤ CA

(∫ T

0
∥u∗

0(t) − u0∥p
Xγ

· ∥ũ(t)∥p
X1 dt

)1/p

≤ CA · ∥u∗
0 − u0∥BUC([0,T ];Xγ) · ∥ũ(t)∥Lp(0,T ;X1)

≤ C1 · ∥u∗
0 − u0∥BUC([0,T ];Xγ) · (R + C∗

T ).

This shows the first part of the assertion. The other estimates can be obtained
in a similar way. Note that the dependence of the constant on u0 and r0 is
not an issue, since the latter two quantities are fixed.

For the estimates of the nonlinearities, we impose assumptions on the data.

Assumption 6.4.7. Let q ∈ (1,∞), and consider T1 > 0 as in Lemma 6.4.1.
We then make the following assumptions on the data.
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(a) For the velocities of the surface winds Vatm and the ocean Vocn, it is valid
that Vatm, Vocn ∈ L∞(0, T1; L2q(Ω)2).

(b) The sea surface dynamic height H satisfies ∇HH ∈ L∞(0, T1; Lq(Ω)2).

(c) The ice growth rate function fgr fulfills fgr ∈ C1
b([0,∞)).

With regard to the estimates of the nonlinear terms, we start with F1(û)
from (6.23). As we will also address Lipschitz estimates of this term, we
compute the difference of F1(û1) and F1(û2) as a preparation. Employing the
notation ũi = ûi + u∗

0 for simplicity, and observing that the terms thus still
depend on ûi, we deduce that

F1(û1) − F1(û2)

=
(
ÃH(ũ1) − ÃH(ũ2)

)
ṽice,1 −

(
B̃(ũ1) − B̃(ũ2)

)(h̃1

ã1

)

+
(
ÃH(ũ2) − AH(u0)

)
(v̂ice,1 − v̂ice,2) −

(
B̃(ũ2) −B1(u0)

)(ĥ1 − ĥ2

â1 − â2

)
+ ω(v̂ice,1 − v̂ice,2) − ccor(v̂ice,1 − v̂ice,2)⊥

+
(

1
ρiceh̃1

− 1
ρiceh̃2

)
(τatm + τocn(ṽice,1)) + 1

ρiceh̃2
(τocn(ṽice,1) − τocn(ṽice,2)) .

The estimates of F1(û) from (6.23) with regard to the self map and con-
traction property of the fixed point map ΦR

T are collected in the lemma below.

Lemma 6.4.8. Let p, q ∈ (1,∞) be such that (6.17) holds true, and con-
sider ũ = û + u∗

0, ũ1 = û1 + u∗
0 and ũ2 = û2 + u∗

0, with û, û1, û2 ∈ KR
T ,

and u∗
0 denoting the reference solution from Proposition 6.3.1. Besides, sup-

pose that Vatm, Vocn and ∇HH satisfy Assumption 6.4.7, and recall the T -
independent maximal regularity constant CMR > 0 from Proposition 6.2.1.

Then there are CF1(R, T ), LF1(R, T ) > 0 such that CF1(R, T ) < R/6CMR

for R > 0 and T > 0 sufficiently small and LF1(R, T ) → 0 as R → 0
and T → 0, and we obtain the estimates

∥F1(û)∥Lp(0,T ;Lq(Ω)) ≤ CF1(R, T ) and
∥F1(û1) − F1(û2)∥Lp(0,T ;Lq(Ω)) ≤ LF1(R, T ) · ∥û1 − û2∥E1 .

Proof. We start by describing the essential ideas and auxiliary material for
the present rather lengthy proof. As deducible from the statement, we are in-
terested in estimates of the nonlinear terms by powers of T and R or shrinking
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terms in R and T . For this purpose, we often employ Lemma 1.3.1 in order to
estimate Lp-norms in time by L∞-norms or L∞-norms in time by W1,p-norms
in the case of homogeneous initial values. Another important ingredient is
that ũ(t) ∈ V for all t ∈ [0, T ], where ũ = û + u∗

0 for û ∈ KR
T and the

reference solution u∗
0, thanks to Lemma 6.3.3 and the choice of R ∈ (0, R0]

and T ∈ (0, T1]. This is also valid for ũ1 and ũ2 of the above shape. More-
over, we often exploit the estimate of the E1-norm of ũ, ũ1 and ũ2 by R+C∗

T ,
resulting from (6.28). In addition, we frequently split ũ, ũ1 and ũ2 in their re-
spective parts with homogeneous initial values û, û1 and û2, allowing us to use
the embeddings with T -independent constant as established in Lemma 6.4.5.
On the other hand, with regard to the reference solution, (6.29) proves useful
as it provides an estimate of u∗

0 in BUC([0, T ]; Xγ) by the norm of the initial
values and the E1-norm of u∗

0, and with T -independent constant. Concerning
the transform Y , we heavily rely on Lemma 6.4.1, Lemma 6.4.2, Lemma 6.4.3
and Lemma 6.4.4. We also often use the embedding W1,q(Ω) ↪→ L∞(Ω).

By virtue of v̂ice(0) = 0, we first deduce from Lemma 1.3.1 that

(6.36)

∥ω(v̂ice + v∗
ice,0) − ccor(v̂ice + v∗

ice,0)⊥∥Lp(0,T ;Lq(Ω))

≤ C1
(
T

1/p · ∥v̂ice∥L∞(0,T ;Lq(Ω)) + ∥v∗
ice,0∥Lp(0,T ;Lq(Ω))

)
≤ C2

(
T · ∥v̂ice∥W1,p(0,T ;Lq(Ω)) + C∗

T

)
≤ C3(TR + C∗

T ).

Lemma 1.3.1 and Assumption 6.4.7(b) further yield

∥ − g∇HH∥Lp(0,T ;Lq(Ω)) ≤ T
1/p · ∥ − g∇HH∥L∞(0,T ;Lq(Ω)) ≤ C4T

1/p.

As ũ(t) ∈ V on [0, T ], we have h̃(t) = ĥ(t) + h∗
0(t) > κ for all t ∈ [0, T ], so

(6.37)
∥∥∥∥∥ 1
ρice(ĥ+ h∗

0)

∥∥∥∥∥
L∞(0,T ;L∞(Ω))

≤ C5

for some constant C5 > 0. A concatenation of (6.37), Lemma 1.3.1, Hölder’s
inequality and Assumption 6.4.7 then results in

(6.38)

∥∥∥∥∥ 1
ρice(ĥ+ h∗

0)
τatm

∥∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ C6T
1/p · ∥τatm∥L∞(0,T ;Lq(Ω))

≤ C7T
1/p · ∥Vatm∥2

L∞(0,T ;L2q(Ω))

≤ C8T
1/p.
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For the oceanic forcing term, we proceed in a similar way. More precisely,
we use the above estimate (6.37), the elementary estimate Lemma 1.3.1, the
embedding of the maximal regularity space from Lemma 6.4.5(b) and (6.29)
for the estimate of ∥u∗

0∥BUC([0,T ];Xγ) to argue that

(6.39)

∥∥∥∥∥ 1
ρice(ĥ+ h∗

0)
τocn(v̂ice + v∗

ice,0)
∥∥∥∥∥

Lp(0,T ;Lq(Ω))

≤ C9T
1/p · ∥τocn(v̂ice + v∗

ice,0)∥L∞(0,T ;Lq(Ω))

≤ C10T
1/p ·

(
∥Vocn + v̂ice + v∗

ice,0∥2
L∞(0,T ;L2q(Ω))

)
≤ C11T

1/p ·
(
1 + ∥û∥2

E1 + ∥u∗
0∥BUC([0,T ];Xγ)

)
≤ C12T

1/p
(
1 +R2 + C2

0 + (C∗
T )2

)
.

Regarding the first part of the assertion, it remains to handle the terms
associated to the Hibler operator and the off-diagonal terms, i. e., we consider

(
ÃH(û+ u∗

0) − AH(u0)
)

(v̂ice + v∗
ice,0) −

(
B̃(û+ u∗

0) −B1(u0)
)(ĥ+ h∗

0
â+ a∗

0

)
.

In view of Lemma 6.4.6, we can further reduce this task by adding and sub-
tracting suitable terms. In fact, it comes down to estimating

(6.40)

(
ÃH(û+ u∗

0) − AH(û+ u∗
0)
)

(v̂ice + v∗
ice,0)

−
(
B̃(û+ u∗

0) −B1(û+ u∗
0)
)(ĥ+ h∗

0
â+ a∗

0

)

as well as

(
AH(û+ u∗

0) − AH(u∗
0)
)

(v̂ice + v∗
ice,0) − (B1(û+ u∗

0) −B1(u∗
0))

(
ĥ+ h∗

0
â+ a∗

0

)
and

(
AH(u∗

0) − AH(u0)
)

(v̂ice + v∗
ice,0) − (B1(u∗

0) −B1(u0))
(
ĥ+ h∗

0
â+ a∗

0

)
.

By Lemma 6.4.6, the last two differences can be estimated in Lp(0, T ; Lq(Ω)2),
namely by R(R + C∗

T ) and ∥u∗
0 − u0∥BUC([0,T ];Xγ) · (R + C∗

T ), respectively.
Hence, it remains to estimate (6.40). For this, we begin with(

ÃH(û+ u∗
0) − AH(û+ u∗

0)
)

(v̂ice + v∗
ice,0).
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We will focus on the principal part and observe that the other part can be
treated likewise. In view of (3.14) and (6.6), we need to estimate

2∑
j,k,l,m=1

(
aklm

ij (ε̃(v̂ice + v∗
ice,0), P (ĥ+ h∗

0, â+ a∗
0))∂mε̃jl(v̂ice + v∗

ice,0)

− akl
ij (ε(v̂ice + v∗

ice,0), P (ĥ+ h∗
0, â+ a∗

0))δkm∂kεjl(v̂ice + v∗
ice,0)

)
= I + II.

Since ε and ε̃ both depend on v̂ice + v∗
ice,0, while P always depends on ĥ+ h∗

0
and â + a∗

0, we omit writing the dependence explicitly in the sequel. In the
above, I and II are given by

(6.41)
I :=

2∑
j,k,l,m=1

(
aklm

ij (ε̃, P )∂mε̃jl − akl
ij (ε, P )δkm∂kε̃jl

)
and

II :=
2∑

j,k,l=1

(
akl

ij (ε, P )∂kε̃jl − akl
ij (ε, P )∂kεjl

)
.

The main difficulty in the estimate of II is to control the difference of the
transformed symmetric part of the gradient ε̃ and the original symmetric
part of the gradient ε. In view of (6.4), we obtain

∂kε̃jl − ∂kεjl = 1
2

2∑
n=1

(
(∂k∂jYn)∂nṽice,j + (∂jYn)∂k∂nṽice,l + (∂k∂lYn)∂nṽice,j

+ (∂lYn)∂k∂nṽice,j

)
− 1

2∂k(∂j ṽice,l + ∂lṽice,j)

= 1
2

2∑
n=1

(
(∂jYn − δjn)∂k∂nṽice,l + (∂lYn − δln)∂k∂nṽice,j

+ (∂k∂jYn)∂nṽice,j + (∂k∂lYn)∂nṽice,j

)
.

Employing the estimates on Y from Lemma 6.4.2 and (6.28), we find that

∥(∂jYn − δjn)∂k∂nṽice,l∥Lp(0,T ;Lq(Ω))

≤ ∥ Id2 −∇HY ∥L∞(0,T ;L∞(Ω)) · ∥ṽice∥Lp(0,T ;W2,q(Ω))

≤ C13 · ∥ Id2 −∇HY ∥L∞(0,T ;W1,q(Ω)) · ∥ũ∥E1

≤ C14T
1/p′(R + C∗

T ).

The estimate of the term (∂lYn − δln)∂k∂nṽice,j is completely analogous. Next,
we treat the term (∂k∂jYn)∂nṽice,j. In fact, we make use of Hölder’s inequality,
the embedding of the trace space Xγ (6.18), Lemma 1.3.1, Lemma 6.4.1 on
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the transform Y , the embedding from Lemma 6.4.5(a) with T -independent
embedding constant and (6.29) to deduce

∥(∂k∂jYn)∂nṽice,j∥Lp(0,T ;Lq(Ω))

≤ ∥∂k∂jYn∥Lp(0,T ;Lq(Ω)) · ∥∂nṽice,j∥L∞(0,T ;L∞(Ω))

≤ C15 · ∥∇HY ∥Lp(0,T ;W1,q(Ω)) ·
(
∥v̂ice∥L∞(0,T ;C1(Ω)) + ∥v∗

ice,0∥L∞(0,T ;C1(Ω))

)
≤ C16T

1/p · ∥∇HY ∥L∞(0,T ;W1,q(Ω)) ·
(
∥û∥BUC(0,T ;Xγ) + ∥u∗

0∥BUC(0,T ;Xγ)
)

≤ C17T
1/p · (∥û∥E1 + C0 + C∗

T )
≤ C17T

1/p(R + C0 + C∗
T ).

The estimate of (∂k∂lYn)∂nṽice,j is completely analogous. Recalling the coeffi-
cients akl

ij from (3.15), and invoking ũ(t) ∈ V for all t ∈ [0, T ], we conclude

(6.42) ∥akl
ij (ε, P )∥L∞(0,T ;L∞(Ω)) ≤ C18.

Thus, concatenating the preceding estimates, we find that there exist a con-
stant C19 > 0 and β > 0 such that

∥II∥Lp(0,T ;Lq(Ω)) ≤ C19T
β(R + C0 + C∗

T ).

Concerning the Hibler operator and its transformed version, it remains to
estimate I from (6.41). Exploiting aklm

ij = (∂kYm)akl
ij from (6.5), we split I into

(6.43)
III :=

2∑
j,k,l,m=1

(
aklm

ij (ε̃, P ) − aklm
ij (ε, P )

)
∂mε̃jl and

IV :=
2∑

j,k,l,m=1
akl

ij (ε, P )(∂kYm − δkm)∂mε̃jl.

With regard to IV, we use Lemma 6.4.2 to estimate Id2 −∇HY and thus get

(6.44) ∥∂kYm −δkm∥L∞(0,T ;L∞(Ω)) ≤ C20∥ Id2 −∇HY ∥L∞(0,T ;W1,q(Ω)) ≤ C21T
1/p′

for some constant C21 > 0. The term ∂mε̃jl can be estimated by a constant in
a similar way as above, using Lemma 6.4.1 for estimating the terms related to
the diffeomorphism Y and (6.28) in order to obtain estimates of the derivatives
of ṽice which are uniform in R and T , so there is a constant C22 > 0 with

(6.45) ∥∂mε̃jl∥Lp(0,T ;Lq(Ω)) ≤ C22.

220



6.4. Nonlinear Estimates

In conjunction with (6.42), this results in

(6.46) ∥IV∥Lp(0,T ;Lq(Ω)) ≤ C23T
1/p′
.

For III from (6.43), we can make use of (6.45) to estimate the last term.
Moreover, the L∞(0, T ; L∞(Ω))-norm of (∂jYk) appearing in both terms in the
difference can be bounded by a constant thanks to Lemma 6.4.1. The estimate
thus comes down to investigating akl

ij (ε̃, P ) − akl
ij (ε, P ). As the difference only

concerns the symmetric part of the gradient, we observe that the first factor

P (ĥ+ h∗
0, â+ a∗

0)
2ρice(ĥ+ h∗

0)

can be bounded in L∞(0, T ; L∞(Ω)) by combining (6.37) with an estimate
of P (ĥ+ h∗

0, â+ a∗
0) which is in turn based on ũ(t) ∈ V for all t ∈ [0, T ]. The

remaining difference then is

1
△δ(ε̃)

(
Skl

ij − 1
△2

δ(ε̃)
(Sε̃)ik(Sε̃)jl

)
− 1

△δ(ε)

(
Skl

ij − 1
△2

δ(ε)
(Sε)ik(Sε)jl

)
.

Since the dependence on ε is smooth thanks to the regularization by δ > 0,
we can use the mean value theorem to infer that∥∥∥∥∥ 1

△δ(ε̃)

(
Skl

ij − 1
△2

δ(ε̃)
(Sε̃)ik(Sε̃)jl

)

− 1
△δ(ε)

(
Skl

ij − 1
△2

δ(ε)
(Sε)ik(Sε)jl

)∥∥∥∥∥
L∞(0,T ;L∞(Ω))

≤ C24 · ∥ε̃− ε∥L∞(0,T ;L∞(Ω)).

Next, we calculate

ε̃ij − εij = 1
2

2∑
k=1

(
(∂iYk − δik)∂kṽice,j + (∂jYk − δjk)∂kṽice,i

)
.

For the differences (∂iYk) − δik and (∂jYk) − δjk, we can use (6.44) to get an
estimate by a T -power. For the derivative of ṽice, we employ the embeddings
from (6.18) and Lemma 6.4.5(a) as well as the estimate (6.29) to argue that

∥∂kṽice∥L∞(0,T ;L∞(Ω)) ≤ C25 · ∥ṽice∥L∞(0,T ;C1(Ω))

≤ C26 ·
(
∥û∥BUC([0,T ];Xγ) + ∥u∗

0∥BUC([0,T ];Xγ)
)

≤ C27 · (∥û∥E1 + C0 + C∗
T )

≤ C27(R + C0 + C∗
T ).
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In conclusion, there exists C28 > 0 such that

(6.47) ∥III∥Lp(0,T ;Lq(Ω)) ≤ C28T
1/p′(R + C0 + C∗

T ).

Combining (6.46) and (6.47), we find the existence of a constant C29 > 0 with

∥I∥Lp(0,T ;Lq(Ω)) ≤ C29T
1/p′(1 +R + C0 + C∗

T ).

In order to complete the proof of the first part of the assertion, we still need
to deal with the off-diagonal part

(
B̃(û+ u∗

0) −B1(û+ u∗
0)
)(ĥ+ h∗

0
â+ a∗

0

)
,

which we can further split into the difference of the h- and a-component. The
resulting difference in the h-component is given by

(6.48) ∂hP (ĥ+ h∗
0, â+ a∗

0)
2ρice(ĥ+ h∗

0)

2∑
j=1

(∂iYj − δij)∂j(ĥ+ h∗
0).

In (6.48), note that the inverse of 2ρice(ĥ + h∗
0) can be handled with (6.37).

On the other hand, we have

∂hP (ĥ+ h∗
0, â+ a∗

0) = p∗e−c•(1−(̂a+a∗
0)).

As u(t) ∈ V on [0, T ], we also have ã(t) = â(t)+a∗
0(t) ∈ (0, 1) for all t ∈ [0, T ].

This implies
∥∂hP (ĥ+ h∗

0, â+ a∗
0)∥L∞(0,T ;L∞(Ω)) ≤ C30.

Putting together the above arguments, making use of Lemma 6.4.2 to es-
timate ∂iYj − δij, and employing Lemma 1.3.1 as well as the embedding
of 0E1 into BUC([0, T ]; Xγ) with T -independent embedding constant from
Lemma 6.4.5(a), we derive that

(6.49)

∥∥∥∥∥∥∂hP (ĥ+ h∗
0, â+ a∗

0)
2ρice(ĥ+ h∗

0)

2∑
j=1

(∂iYj − δij)∂j(ĥ+ h∗
0)

∥∥∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ C31 · ∥ Id2 −∇HY ∥L∞(0,T ;L∞(Ω)) ·
(
∥ĥ+ h∗

0∥Lp(0,T ;W1,q(Ω))
)

≤ C32 · ∥ Id2 −∇HY ∥L∞(0,T ;W1,q(Ω))
(
T

1/p · ∥ĥ∥L∞(0,T ;W1,q(Ω)) + ∥u∗
0∥E1

)
≤ C33T

1/p′ ·
(
T

1/p · ∥û∥E1 + C∗
T

)
≤ C33T

1/p′
(
T

1/pR + C∗
T

)
.
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The corresponding term in the a-component

∂aP (ĥ+ h∗
0, â+ a∗

0)
2ρice(ĥ+ h∗

0)

2∑
j=1

(∂iYj − δij)∂j(â+ a∗
0)

can be treated analogously.
In total, the first part of the assertion follows for some CF1(R, T ) > 0.

For R > 0 and T > 0 sufficiently small, we conclude that CF1(R, T ) < R/6CMR

thanks to C∗
T → 0 by Remark 6.3.2(b), while Remark 6.3.2(c) yields that the

difference of u∗
0 and u0 in BUC([0, T ]; Xγ) converges to zero as T → 0.

Now, we address the Lipschitz estimate of F1. First, as in (6.36), upon
noting the homogeneous initial values of v̂ice,1 − v̂ice,2, we find that

∥ω(v̂ice,1 − v̂ice,2) − ccor(v̂ice,1 − v̂ice,2)⊥∥Lp(0,T ;Lq(Ω)) ≤ C34T · ∥û1 − û2∥E1 .

Moreover, we use the mean value theorem together with ĥi(t) + h∗
0(t) > κ,

for i = 1, 2, on [0, T ] as well as Lemma 1.3.1 for∥∥∥∥∥ 1
ρice(ĥ1 + h∗

0)
− 1
ρice(ĥ2 + h∗

0)

∥∥∥∥∥
L∞(0,T ;L∞(Ω))

≤ C35T
1/p · ∥û1 − û2∥E1 .

The norm ∥τatm + τocn(v̂ice,1 + v∗
ice,0)∥Lp(0,T ;Lq(Ω)) can be estimated as in (6.38)

and (6.39) to conclude that∥∥∥∥∥
(

1
ρice(ĥ1 + h∗

0)
− 1
ρice(ĥ2 + h∗

0)

)
(τatm + τocn(v̂ice,1 + v∗

ice,0))
∥∥∥∥∥

Lp(0,T ;Lq(Ω))

≤ C36T
(
1 +R2 + C2

0 + (C∗
T )2

)
· ∥û1 − û2∥E1 .

As above, the inverse of ρice(ĥ2 + h∗
0) is bounded thanks to ĥ2(t) + h∗

0(t) > κ

for all t ∈ [0, T ]. With ṽice,i = v̂ice,i + v∗
ice,0, the remaining contribution of the

oceanic forcing term can be expanded as

τocn(ṽice,1) − τocn(ṽice,2)
= ρocnCocn|Vocn − ṽice,1|Rocn(−(v̂ice,1 − v̂ice,2))

+ ρocnCocn(|Vocn − ṽice,1| − |Vocn − ṽice,2|)(Vocn − ṽice,2).

Concerning the first addend, we proceed again as in (6.39) to obtain

∥ρocnCocn|Vocn − v̂ice,1 − v∗
ice,0|Rocn(−(v̂ice,1 − v̂ice,2))∥Lp(0,T ;Lq(Ω))

≤ C37T
1/p · ∥Vocn − v̂ice,1 − v∗

ice,0∥L∞(0,T ;L2q(Ω)) · ∥v̂ice,1 − v̂ice,2∥L∞(0,T ;L2q(Ω))

≤ C38T
1/p (1 +R + C0 + C∗

T ) · ∥û1 − û2∥E1 .
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For the second addend, in an analogous way, we derive the estimate∥∥∥ρocnCocn
(
|Vocn − v̂ice,1 − v∗

ice,0| − |Vocn − v̂ice,2 − v∗
ice,0|

)
·
(
Vocn − v̂ice,2 − v∗

ice,0

)∥∥∥
Lp(0,T ;Lq(Ω))

≤ C39T
1/p(1 +R + C0 + C∗

T ) · ∥û1 − û2∥E1 .

To finish the Lipschitz estimate of F1, we need to handle the terms associ-
ated to the Hibler operator and the ice strength. In that respect, concerning(

ÃH(û2 + u∗
0) − AH(u0)

)
(v̂ice,1 − v̂ice,2)

−
(
B̃(û2 + u∗

0) −B1(u0)
)(ĥ1 − ĥ2

â1 − â2

)
,

we proceed similarly as in the first part of the proof by plugging in an inter-
mediate term. For B∗

1 denoting B1(u∗
0) for simplicity, Lemma 6.4.6 yields∥∥∥∥∥(AH(û2 + u∗

0) − AH(u∗
0)
)

(v̂ice,1 − v̂ice,2)

− (B1(û2 + u∗
0) −B∗

1)
(
ĥ1 − ĥ2

â1 − â2

)∥∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ C40R · ∥û1 − û2∥E1

and∥∥∥∥∥(AH(u∗
0) − AH(u0)

)
(v̂ice,1 − v̂ice,2) − (B∗

1 −B1(u0))
(
ĥ1 − ĥ2

â1 − â2

)∥∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ C41 · ∥u∗
0 − u0∥BUC([0,T ];Xγ) · ∥û1 − û2∥E1 .

Following the lines of the first part of the proof, we find β > 0 such that∥∥∥(ÃH(û2 + u∗
0) − AH(û2 + u∗

0)
)

(v̂ice,1 − v̂ice,2)
∥∥∥

Lp(0,T ;Lq(Ω))

≤ C42T
β · ∥û1 − û2∥E1

and ∥∥∥∥∥(B̃(û2 + u∗
0) −B1(û2 + u∗

0))
(
ĥ1 − ĥ2

â1 − â2

)∥∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ C43T
β · ∥û1 − û2∥E1 .

It remains to show the Lipschitz continuity with shrinking constant of

(6.50)

(
ÃH(û1 + u∗

0) − ÃH(ũ2 + u∗
0)
)

(v̂ice,1 + v∗
ice,0)

−
(
B̃(û1 + u∗

0) − B̃(û2 + u∗
0)
)(ĥ1 + h∗

0
â1 + a∗

0

)
.
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In the beginning, we focus on the difference in ÃH, and there, we concentrate
on the principal part as the other part can then be handled likewise. Thus,
the first task is to estimate

2∑
j,k,l,m=1

(
aklm

ij (ε̃(v̂ice,1 + v∗
ice,0), P (ĥ1 + h∗

0, â1 + a∗
0))

− aklm
ij (ε̃(v̂ice,2 + v∗

ice,0), P (ĥ2 + h∗
0, â2 + a∗

0))
)
∂mε̃jl(v̂ice,1 + v∗

ice,0).

In contrast to the self map estimate, the boundedness of ∂mε̃jl(v̂ice,1 + v∗
ice,0)

in Lp(0, T ; Lq(Ω)) is not sufficient. Thus, we revisit this estimate and recall

∂mε̃jl(ṽice,1) = 1
2

2∑
n=1

(
(∂m∂j(Y1)n)∂n(ṽice,1)l + (∂j(Y1)n)∂m∂n(ṽice,1)l

+ (∂m∂l(Y1)n)∂n(ṽice,1)j + (∂l(Y1)n)∂m∂n(ṽice,1)j

)
.

Making use of the elementary estimate from Lemma 1.3.1, Lemma 6.4.1 in
order to control the diffeomorphism, Lemma 6.4.5(a) for the embedding of the
maximal regularity space with homogeneous initial values into BUC([0, T ]; Xγ)
and (6.29) to control ∥u∗

0∥BUC([0,T ];Xγ), we find that

∥(∂m∂j(Y1)n)∂n(ṽice,1)l∥Lp(0,T ;Lq(Ω))

≤ C44 · ∥∇HY1∥Lp(0,T ;W1,q(Ω)) · ∥v̂ice,1 + v∗
ice,0∥L∞(0,T ;Xice

γ )

≤ C45T
1/p · ∥∇HY1∥L∞(0,T ;W1,q(Ω)) ·

(
∥û1∥E1 + ∥u∗

0∥BUC([0,T ];Xγ)
)

≤ C46T
1/p(R + C0 + C∗

T ).

On the other hand, Lemma 6.4.1 also yields

∥(∂j(Y1)m)∂m∂n(v̂ice,1 + v∗
ice,0)l∥Lp(0,T ;Lq(Ω))

≤ C47 · ∥∇HY1∥L∞(0,T ;L∞(Ω)) · (∥û1∥E1 + ∥u∗
0∥E1)

≤ C48(R + C∗
T ).

Combining the previous two estimates, we conclude the estimate

(6.51) ∥∂mε̃jl(ṽice,1)∥Lp(0,T ;Lq(Ω)) ≤ C49
(
T

1/p(R + C0 + C∗
T ) +R + C∗

T

)
.

In order to keep the notation simpler, we use ε̃n and Pn, n = 1, 2, to de-
note ε̃(v̂ice,n + v∗

ice,0) as well as P (ĥn + h∗
0, ân + a∗

0) in the sequel. We invoke
that the coefficients aklm

ij (ε̃n, Pn) take the shape

(6.52) akl
ij (ε̃n, Pn)(∂k(Yn)m).
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Regarding (6.52), and adding and subtracting suitable terms, we find that the
difference can be considered in the original coefficients as introduced in (3.15)
or in the diffeomorphism. In view of (3.28) in the local strong well-posedness
proof in Chapter 3, we obtain

(6.53)
∥akl

ij (ε̃1, P1) − akl
ij (ε̃2, P2)∥L∞(0,T ;L∞(Ω))

≤ C50 · ∥(ε̃1, h1, a1) − (ε̃2, h2, a2)∥L∞(0,T ;L∞(Ω)).

For the difference in h and a, we get from Lemma 1.3.1 that

∥(ĥ1, â1) − (ĥ2, â2)∥L∞(0,T ;L∞(Ω)) ≤ C51 · ∥(ĥ1, â1) − (ĥ2, â2)∥L∞(0,T ;W1,q(Ω))

≤ C52T
1/p′∥(ĥ1, â1) − (ĥ2, â2)∥W1,p(0,T ;W1,q(Ω))

≤ C53T
1/p′ · ∥û1 − û2∥E1 .

Concerning the difference in ε, using the simplification ε̃i = ε(v̂ice,i +v∗
ice,0) for

convenience, we calculate

(ε̃1)ij − (ε̃2)ij

= 1
2

2∑
k=1

(
(∂i(Y1)k − ∂i(Y2)k)∂k(v̂ice,1 + v∗

ice,0)j + (∂i(Y2)k)∂k(v̂ice,1 − v̂ice,2)j

+ (∂j(Y1)k − ∂j(Y2)k)∂k(v̂ice,1 + v∗
ice,0)i + (∂j(Y2)k)∂k(v̂ice,1 − v̂ice,2)i

)
.

For the estimate of the first term in the above, we exploit Lemma 6.4.4 to
estimate the difference in the diffeomorphisms, Lemma 6.4.5(a) and (6.29), so

∥(∂i(Y1)k − ∂i(Y2)k)∂k(v̂ice,1 + v∗
ice,0)j∥L∞(0,T ;L∞(Ω))

≤ C54T
1/p′ · ∥û1 − û2∥E1 · ∥v̂ice,1 + v∗

ice,0∥L∞(0,T ;Xice
γ )

≤ C55T
1/p′ · ∥û1 − û2∥E1 ·

(
∥û1∥E1 + ∥u∗

0∥BUC([0,T ];Xγ)
)

≤ C56T
1/p′(R + C0 + C∗

T ) · ∥û1 − û2∥E1 .

On the other hand, we deduce that

∥(∂i(Y2)k)∂k(v̂ice,1 − v̂ice,2)j∥L∞(0,T ;L∞(Ω)) ≤ C57 · ∥û1 − û2∥E1 ,

implying

∥ε̃1 − ε̃2∥L∞(0,T ;L∞(Ω)) ≤ C58
(
T

1/p′(R + C0 + C∗
T ) + 1

)
· ∥û1 − û2∥E1 .

In view of (6.51), (6.53) and the boundedness of ∂k(Yn)m by Lemma 6.4.1, we
conclude a Lipschitz estimate of the term(

akl
ij (ε̃1, P1) − akl

ij (ε2, P2)
)

(∂k(Y1)m)∂mε̃jl(ṽice,1)
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in Lp(0, T ; Lq(Ω)), where the Lipschitz constant converges to zero as R → 0
and T → 0.

As the coefficients are especially bounded, we also deduce from

∥∂k(Y1)m − ∂k(Y2)m∥L∞(0,T ;L∞(Ω)) ≤ C59T
1/p′ · ∥û1 − û2∥E1 ,

following in turn from Lemma 6.4.4, the desired Lipschitz estimate of the term

akl
ij (ε̃2, P2) (∂k(Y1)m − ∂k(Y2)m) ∂mε̃jl(ṽice,1).

This also completes the Lipschitz estimate of the first part of (6.50).
The final term to be estimated is

(
B̃(û1 + u∗

0) − B̃(û2 + u∗
0)
)(ĥ1 + h∗

0
â1 + a∗

0

)
.

We only focus on the h-term and remark that the a-term can be treated by
analogy. To this end, recalling B̃h from (6.7), and using Pn, n = 1, 2, to
denote the dependence on ûn + u∗

0, we calculate(
(B̃h(û1 + u∗

0) − B̃h(û2 + u∗
0)
)

(ĥ1 + h∗
0))i

=
(

∂hP1

2ρice(ĥ1 + h∗
0)

− ∂hP2

2ρice(ĥ2 + h∗
0)

) 2∑
j=1

(∂i(Y1)j)∂j(ĥ1 + h∗
0)

+ ∂hP2

2ρice(ĥ2 + h∗
0)

2∑
j=1

(∂i(Y1)j − ∂i(Y2)j) ∂j(ĥ1 + h∗
0).

Concerning the second term, we proceed as in (6.49), with Lemma 6.4.2 re-
placed by Lemma 6.4.4 in order to control the difference in Y , so∥∥∥∥∥∥ ∂hP2

2ρice(ĥ2 + h∗
0)

2∑
j=1

(∂i(Y1)j − ∂i(Y2)j)∂j(ĥ1 + h∗
0)

∥∥∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ C60T
1/p′(T 1/pR + C∗

T ) · ∥û1 − û2∥E1 .

For the first term, we can argue likewise, this time using the smoothness of
the coefficients in h̃ and ã together with the mean value theorem to estimate
the first factor. This results in∥∥∥∥∥∥

(
∂hP1

2ρice(ĥ1 + h∗
0)

− ∂hP2

2ρice(ĥ2 + h∗
0)

) 2∑
j=1

(∂i(Y1)j)∂j(ĥ1 + h∗
0)

∥∥∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ C61(T 1/pR + C∗
T ) · ∥û1 − û2∥E1 .
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Concatenating the previous estimates, we deduce the desired Lipschitz
estimate of (6.50), completing the proof of this lemma upon invoking Re-
mark 6.3.2.

In the next step, we establish estimates of the nonlinear terms F2 and F3
as defined in (6.24). As a preparation, for ũi = ûi + u∗

0, we calculate

F2(û1) − F2(û2) = −
2∑

j,k=1

(
h̃1∂j(Y1)k − h̃2∂j(Y2)k

)
∂k(ṽice,1)j

− h̃2

2∑
j,k=1

(∂j(Y2)k)∂k(v̂ice,1 − v̂ice,2)j + h0divH (v̂ice,1 − v̂ice,2)

+ ω(ĥ1 − ĥ2) + Sh(h̃1, ã1) − Sh(h̃2, ã2)

as well as

F3(û1) − F3(û2) = −
2∑

j,k=1
(ã1∂j(Y1)k − ã2∂j(Y2)k) ∂k(ṽice,1)j

− ã2

2∑
j,k=1

(∂j(Y2)k)∂k(v̂ice,1 − v̂ice,2)j + a0divH (v̂ice,1 − v̂ice,2)

+ ω(â1 − â2) + Sa(h̃1, ã1) − Sa(h̃2, ã2).

The estimates of F2 and F3 are given below.

Lemma 6.4.9. Let p, q ∈ (1,∞) fulfill (6.17), and consider ũ = û + u∗
0,

ũ1 = û1 + u∗
0 and ũ2 = û2 + u∗

0, where û, û1, û2 ∈ KR
T , and u∗

0 represents the
reference solution from Proposition 6.3.1. Moreover, suppose that fgr satisfies
Assumption 6.4.7, and recall the T -independent maximal regularity constant
from Proposition 6.2.1.

Then there exist CF2(R, T ), LF2(R, T ), CF3(R, T ), LF3(R, T ) > 0 such
that CF2(R, T ), CF3(R, T ) < R/6CMR for R > 0 and T > 0 sufficiently small
as well as LF2(R, T ), LF3(R, T ) → 0 as R → 0 and T → 0, and we get

∥F2(û)∥Lp(0,T ;Lq(Ω)) ≤ CF2(R, T ),
∥F3(û)∥Lp(0,T ;Lq(Ω)) ≤ CF3(R, T ),

∥F2(û1) − F2(û2)∥Lp(0,T ;Lq(Ω)) ≤ LF2(R, T ) · ∥û1 − û2∥E1 and
∥F3(û1) − F3(û2)∥Lp(0,T ;Lq(Ω)) ≤ LF3(R, T ) · ∥û1 − û2∥E1 .

Proof. The main strategy and tools remain unchanged in comparison with
Lemma 6.4.8. In view of the present setting, with W1,q(Ω) being the ground
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space in the h- and a-component, we also heavily rely on the Banach algebra
structure of W1,q(Ω) thanks to q > 2 which is in turn implied by (6.17).

Recalling that ω > 0 is fixed, and employing Lemma 1.3.1 as well as the
embedding from Lemma 6.4.5(a), we conclude

(6.54)

∥ωh̃∥Lp(0,T ;W1,q(Ω)) ≤ C1 ·
(
∥ĥ∥Lp(0,T ;W1,q(Ω)) + ∥h∗

0∥Lp(0,T ;W1,q(Ω))
)

≤ C2 ·
(
T

1/p · ∥ĥ∥L∞(0,T ;W1,q(Ω)) + ∥u∗
0∥E1

)
≤ C3 ·

(
T

1/p · ∥û∥BUC([0,T ];Xγ) + C∗
T

)
≤ C4(T 1/pR + C∗

T ).

With regard to the thermodynamic term Sh, we use Hölder’s inequality, As-
sumption 6.4.7(c), Lemma 1.3.1 and Lemma 6.4.5(a) to get

∥Sh(h̃, ã)∥Lp(0,T ;W1,q(Ω))

≤
∥∥∥∥∥fgr

(
h̃

ã

)∥∥∥∥∥
L∞(0,T ;W1,q(Ω))

· ∥â+ a∗
0∥Lp(0,T ;W1,q(Ω))

+ ∥fgr(0)∥Lp(0,T ;W1,q(Ω)) + ∥fgr(0)(â+ a∗
0)∥Lp(0,T ;W1,q(Ω))

≤ C5 ·
(
T

1/p + ∥â∥Lp(0,T ;W1,q(Ω)) + ∥a∗
0∥Lp(0,T ;W1,q(Ω))

)
≤ C6

(
T

1/p ·
(
1 + ∥â∥L∞(0,T ;W1,q(Ω))

)
+ ∥u∗

0∥E1

)
≤ C7

(
T

1/p ·
(
1 + ∥û∥BUC([0,T ];Xγ)

)
+ C∗

T

)
≤ C8

(
T

1/p · (1 + ∥û∥E1) + C∗
T

)
≤ C9(T 1/p(1 +R) + C∗

T ).

The remaining term to be estimated is thus

h0divH (v̂ice + v∗
ice,0) − (ĥ+ h∗

0)
2∑

j,k=1
(∂jYk)∂k(v̂ice + v∗

ice,0)j,

and we handle this term by the addition and subtraction of the intermediate
terms (ĥ + h∗

0)divH (v̂ice + v∗
ice,0) and h∗

0divH (v̂ice + v∗
ice,0). We deduce from

Hölder’s inequality and (6.28) that

(6.55)

∥(h0 − h∗
0)divH (v̂ice + v∗

ice,0)∥Lp(0,T ;W1,q(Ω))

≤ C10 · ∥h0 − h∗
0∥BUC([0,T ];W1,q(Ω)) · ∥v̂ice + v∗

ice,0∥Lp(0,T ;W2,q(Ω))

≤ C11 · ∥u0 − u∗
0∥BUC([0,T ];Xγ) · ∥ũ∥E1

≤ C11 · ∥u0 − u∗
0∥BUC([0,T ];Xγ) · (R + C∗

T ).
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6. The Parabolic-Hyperbolic Regularized Hibler Model

For the other intermediate term, we use Hölder’s inequality, the embedding
from Lemma 6.4.5(a) and (6.28) to infer that

(6.56)

∥h∗
0divH (v̂ice + v∗

ice,0) − (ĥ+ h∗
0)divH (v̂ice + v∗

ice,0)∥Lp(0,T ;W1,q(Ω))

≤ C12 · ∥ĥ∥L∞(0,T ;W1,q(Ω)) · (∥v̂ice∥Lp(0,T ;W2,q(Ω)) + ∥v∗
ice,0∥Lp(0,T ;W1,q(Ω)))

≤ C13 · ∥û∥BUC([0,T ];Xγ) · (∥û∥E1 + ∥u∗
0∥E1)

≤ C14R(R + C∗
T ).

Let us observe that the last term in the context of F2 can be written as

(ĥ+ h∗
0)divH (v̂ice + v∗

ice,0) − (ĥ+ h∗
0)

2∑
j,k=1

(∂jYk)∂k(v̂ice + v∗
ice,0)j

= (ĥ+ h∗
0)

2∑
j,k=1

(δjk − ∂jYk) ∂k(v̂ice + v∗
ice,0)j.

We then use Hölder’s inequality, Lemma 6.4.2 for handling the transform,
the embedding of 0E1 into BUC([0, T ]; Xγ) with T -independent embedding
constant from Lemma 6.4.5(a) and (6.29) to conclude

(6.57)

∥∥∥∥∥∥(ĥ+ h∗
0)

2∑
j,k=1

(δjk − ∂jYk)∂k(v̂ice + v∗
ice,0)j

∥∥∥∥∥∥
Lp(0,T ;W1,q(Ω))

≤ C15 · ∥ĥ+ h∗
0∥L∞(0,T ;W1,q(Ω)) · ∥ Id2 −∇HY ∥L∞(0,T ;W1,q(Ω))

· ∥v̂ice + v∗
ice,0∥Lp(0,T ;W2,q(Ω))

≤ C16T
1/p′ ·

(
∥û∥BUC([0,T ];Xγ) + ∥u∗

0∥BUC([0,T ];Xγ)
)

· (∥û∥E1 + ∥u∗
0∥E1)

≤ C17T
1/p′ ·

(
∥û∥E1 + ∥u0∥Xγ + ∥u∗

0∥E1

)
(R + C∗

T )
≤ C17T

1/p′(R + C0 + C∗
T )(R + C∗

T ).

A concatenation of the estimates leads to the assertion for F2 upon noting
that Remark 6.3.2(b) and (6.20) ensure C∗

T → 0 and ∥u∗
0−u0∥BUC([0,T ];Xγ) → 0,

respectively, in order to get CF2(R, T ) < R/6CMR for R > 0 sufficiently small
and then letting T → 0. The desired estimate of F3 follows likewise.

The second part of the proof is dedicated to the Lipschitz estimates of F2,
and we remark again that F3 can then be dealt with analogously. With regard
to the linear term in F2, we argue as in (6.54) to get

∥ω(ĥ1 − ĥ2)∥Lp(0,T ;W1,q(Ω)) ≤ C18T
1/p · ∥û1 − û2∥E1 .

230



6.4. Nonlinear Estimates

For the difference in Sh, we observe that it is given by

Sh(ĥ1 + h∗
0, â1 + a∗

0) − Sh(ĥ2 + h∗
0, â2 + a∗

0)

= fgr

(
ĥ1 + h∗

0
â1 + a∗

0

)
(â1 + a∗

0) − fgr

(
ĥ2 + h∗

0
â2 + a∗

0

)
(â2 + a∗

0) − (â1 − â2)fgr(0).

The term (â1 − â2)fgr(0) can be estimated as ω(ĥ1 − ĥ2) above, i. e.,

∥(â1 − â2)fgr(0)∥Lp(0,T ;W1,q(Ω)) ≤ C19T
1/p · ∥û1 − û2∥E1 .

We further expand the remaining term and make use of Assumption 6.4.7(c)
to conclude an estimate by C20(T 1/p +R + C∗

T ) · ∥û1 − û2∥E1 .
The first line in the difference of F2 can be expanded as

(6.58)
(ĥ1 − ĥ2)

2∑
j,k=1

(∂j(Y1)k)∂k(v̂ice,1 + v∗
ice,0)j

+ (ĥ2 + h∗
0)

2∑
j,k=1

(∂j((Y1)k − (Y2)k)) ∂k(v̂ice,1 + v∗
ice,0)j.

The first addend in (6.58) allows a similar treatment as (6.57). We replace
Lemma 6.4.2 by Lemma 6.4.1 to bound the gradient of Y1, so∥∥∥∥∥∥(ĥ1 − ĥ2)

2∑
j,k=1

(∂j(Y1)k)∂k(v̂ice,1 + v∗
ice,0)j

∥∥∥∥∥∥
Lp(0,T ;W1,q(Ω))

≤ C21(R + C∗
T ) · ∥û1 − û2∥E1 .

In a similar manner, additionally invoking Lemma 6.4.4 for the estimate of the
difference in the diffeomorphisms and (6.29) to control ∥ĥ2 +h∗

0∥L∞(0,T ;W1,q(Ω)),
we find that∥∥∥∥∥∥(ĥ2 + h∗

0)
2∑

j,k=1
(∂j((Y1)k − (Y2)k)) ∂k(v̂ice,1 + v∗

ice,0)j

∥∥∥∥∥∥
Lp(0,T ;W1,q(Ω))

≤ C22 · ∥ĥ2 + h∗
0∥L∞(0,T ;W1,q(Ω)) · ∥∇H(Y1 − Y2)∥L∞(0,T ;W1,q(Ω))

· ∥v̂ice,1 + v∗
ice,0∥Lp(0,T ;W2,q(Ω))

≤ C23(R + C0 + C∗
T )T 1/p′(R + C∗

T ) · ∥û1 − û2∥E1 .

In total, this yields a suitable estimate of (6.58) in Lp(0, T ; W1,q(Ω)).
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Next, the negative of the second line of the difference of F2 equals

(6.59)
(ĥ2 + h∗

0)
2∑

j,k=1
(∂j(Y2)k − δjk) ∂k(v̂ice,1 − v̂ice,2)j

+ ĥ2divH (v̂ice,1 − v̂ice,2) + (h∗
0 − h0)divH (v̂ice,1 − v̂ice,2).

In the same way as in (6.57), we argue that the first addend in (6.59) satisfies∥∥∥∥∥∥(ĥ2 + h∗
0)

2∑
j,k=1

(∂j(Y2)k − δjk)∂k(v̂ice,1 − v̂ice,2)j

∥∥∥∥∥∥
Lp(0,T ;W1,q(Ω))

≤ C24T
1/p′(R + C0 + C∗

T ) · ∥û1 − û2∥E1 .

For the second term in (6.59), we can proceed as in (6.56) to derive

∥ĥ2divH (v̂ice,1 − v̂ice,2)∥Lp(0,T ;W1,q(Ω)) ≤ C25R · ∥û1 − û2∥E1 .

As in (6.55), we establish the estimate

∥(h∗
0 − h0)divH (v̂ice,1 − v̂ice,2)∥Lp(0,T ;W1,q(Ω))

≤ C26 · ∥u0 − u∗
0∥BUC([0,T ];Xγ) · ∥û1 − û2∥E1 .

Putting together all the above estimates, and recalling again that C∗
T → 0

and ∥u0 − u∗
0∥BUC([0,T ];Xγ) → 0 as T → 0, we conclude the assertion.

6.5. Local Strong Well-Posedness
In this section, we finally state and prove the main result of this chapter on
the local strong well-posedness of the parabolic-hyperbolic regularized sea ice
model as introduced in (6.1). We consider again T ∈ (0, T1] and R ∈ (0, R0],
where T1 > 0 from Lemma 6.4.1 and R0 > 0 from Lemma 6.3.3 are fixed.

The local-in-time strong well-posedness result of the parabolic-hyperbolic
regularized sea ice model reads as follows.

Theorem 6.5.1. Let p, q ∈ (1,∞) be such that (6.17) holds true, let u0 ∈ V ,
where V is as made precise in (6.16), suppose that Vatm, Vocn, H and fgr
fulfill Assumption 6.4.7, and recall the spaces X0, X1 and Xγ from (6.10),
(6.11) and (6.12). Then there exists T > 0 such that (6.1) admits a unique
solution

u ∈ W1,p(0, T ; X0) ∩ Lp(0, T ; X1) ∩ C([0, T ];V ) = E1 ∩ C([0, T ];V ).
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Proof. The strategy of this proof consists of finding a unique solution to
the transformed system (6.8) in Lagrangian coordinates first and then to
transform back to Eulerian coordinates.

Let us recall the set KR
T and the map ΦR

T from (6.26). For û ∈ KR
T , we deduce

from the maximal regularity result Proposition 6.2.1 as well as Lemma 6.4.8
and Lemma 6.4.9 that

∥ΦR
T (û)∥E1 ≤ CMR · ∥(F1(û), F2(û), F3(û))∥E0

≤ CMR ·
(

R

6CMR
+ R

6CMR
+ R

6CMR

)
≤ R

2
upon exploiting the T -independence of CMR and choosing R > 0 as well
as T > 0 sufficiently small. In other words, ΦR

T is a self map on KR
T for

such R > 0 and T > 0.
On the other hand, Lemma 6.4.8 and Lemma 6.4.9 yield the existence

of L(R, T ) > 0 with L(R, T ) → 0 as R → 0 and T → 0 such that

∥ΦR
T (û1) − ΦR

T (û2)∥E1 ≤ CMRL(R, T ) · ∥û1 − û2∥E1

≤ 1
2 · ∥û1 − û2∥E1

for û1, û2 ∈ KR
T as well as R > 0 and T > 0 sufficiently small. This means

that ΦR
T is also a contraction on KR

T . The contraction mapping principle then
yields the existence of a unique fixed point û ∈ KR

T of ΦR
T .

By construction, ũ := û+u∗
0, for u∗

0 representing the reference solution from
Proposition 6.3.1, solves the transformed system (6.8). We also observe that

ũ = û+ u∗
0 ∈ E1,

while ũ ∈ C([0, T ];V ) follows from the usual embedding of the maximal reg-
ularity space into BUC([0, T ]; Xγ) from Proposition 2.4.11 and Lemma 6.3.3.

Thanks to T ≤ T1, the map X(t, yH) is especially bijective on Ω, with
regularity X ∈ C1([0, T ]; W2,q(Ω)2), see also [43, Section 8]. The same is also
valid for the inverse Y (t, ·) = [X(t, ·)]−1. We can thus recover the Eulerian
variables u = (vice, h, a), which also solve the original problem (6.1), from

vice(t, xH) := ṽice(t, Y (t, xH)),
h(t, xH) := h̃(t, Y (t, xH)) and
a(t, yH) := ã(t, Y (t, xH)).

The transform does not change the regularity properties, and it does not
affect the property u ∈ C([0, T ];V ) either. The uniqueness is a result of the
uniqueness of the fixed point joint with the uniqueness of the transform.
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Generally, it would be possible to establish properties of the solution such as
the continuous dependence on the initial data as collected in Theorem 3.5.2.
This could e. g. be realized by an adjustment of the fixed point argument.

Moreover, it would also be possible to include time weights in order to lower
the regularity of the initial data, and to exploit the instantaneous smooth-
ing. As the terms become non-autonomous after invoking the Lagrangian
coordinates, this would require refined estimates of the nonlinear terms.

6.6. Open Problems in Connection with Hibler’s
Sea Ice Model

In this last section of the first part of the thesis, we provide a brief overview
of some remaining open problems in the context of the mathematical analysis
of Hibler’s viscous-plastic sea ice model.

One important problem concerns the existence of (global) weak solutions.
Note that the results presented in this thesis as well as the work of Liu,
Thomas and Titi [97] all concern strong solutions. In contrast, the investiga-
tion of weak solutions remains open so far. In that respect, it would also be
interesting to study the relation between weak solutions and the results ob-
tained in the numerical analysis. Since the results on the parabolic-hyperbolic
regularized variants of Hibler’s model from [97] and the present chapter are
local-in-time, results with global-in-time character would be an interesting
complement.

With regard to the shape of the original stress tensor from (3.3), it is a
natural question whether the resulting problem in the situation of degener-
ate viscosities allows some well-posedness result. This task appears to be
particularly challenging due to the quasilinear and degenerate nature of the
problem.

Another significant aspect that has not been addressed to date is the anal-
ysis of the thermodynamic consistency of the model. In general, it seems that
the thermodynamic aspect in Hibler’s model might be subject to adjustments.

Finally, having in mind the results from the present chapter, one can ask
if similar results as the ones established for the sea ice interaction problem in
Chapter 4, the coupled atmosphere-sea ice-ocean model in Chapter 5 and also
the time periodic problem in Section 7.2 can be proved for the hyperbolic-
parabolic regularized variant of Hibler’s model.
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CHAPTER 7

Time Periodic Quasilinear Evolution Equations by the
Arendt-Bu Theorem

In this chapter, we present different frameworks to time periodic quasilinear
evolution equations based on the Arendt-Bu theorem on maximal periodic
regularity as stated in Section 2.2. As an application, we consider the time
periodic problem associated to Hibler’s sea ice model, where the underlying
model will be the fully parabolic regularized one from Chapter 3. The general
frameworks have not been published, whereas the result in the application to
Hibler’s sea ice model has been obtained in a similar form in a joint article
with Matthias Hieber [20].

The study of time periodic problems has a long history. In the context of
mathematical fluid mechanics, the topic was pioneered by Serrin [123], Ju-
dovič [74] and Prodi [112]. In the past decades, Kozono and Nakao [80],
Galdi and Sohr [47], Kozono, Mashiko and Takada [79], Geissert, Hieber and
Nguyen [49] or Galdi and Kyed [46] further investigated time periodic prob-
lems in fluid mechanics and developed new techniques. With regard to strong
solutions, the work of Kyed [86, 87] based on Fourier series together with a
splitting of the time periodic problem into a stationary part and a part with
mean value zero in time shed new light. Kyed and Sauer [88] extended the
analysis to time periodic parabolic boundary value problems. In [69], Hieber
and Stinner introduced a framework to time periodic quasilinear evolution
equations, based on the Arendt-Bu theorem and with applications to quasi-
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linear Keller-Segel systems. We slightly generalize their approach and also
elaborate on the particular situation of bilinear nonlinearities in the following
section. Another approach to time periodic solutions to semilinear evolution
equations in real interpolation spaces was presented by Hieber, Kajiwara,
Kress and Tolksdorf [64], and they applied this method to the time periodic
problem of the bidomain equations. Their work is the inspiration for the
considerations in Chapter 8, where we investigate time periodic quasilinear
problems in real interpolation spaces.

This chapter is organized as follows. Section 7.1 is dedicated to the pre-
sentation of different frameworks to time periodic quasilinear problems, and
the common aspect is that all frameworks rely on the Arendt-Bu theorem.
The first framework, leading to Theorem 7.1.2, is the most general one and
discusses the existence and uniqueness of strong time periodic solutions close
to equilibria of the autonomous part of the evolution equation. The second
framework as summarized in Corollary 7.1.4 is deduced from there. It is con-
cerned with time periodic solutions in a neighborhood of zero. In the last
part of this section, we elaborate on the semilinear situation with bilinear
right-hand side, and the corresponding main results are Corollary 7.1.5 and
Corollary 7.1.6. The second part of this chapter, Section 7.2, is centered
around the application to Hibler’s sea ice model. The main difficulty here is
to circumvent the lack of invertibility of the underlying Neumann Laplacian
operators. For this purpose, we focus on time periodic solutions to the sys-
tem close to constant equilibria. By subtracting the equilibrium parts, we can
adjust the ground space to get invertibility, finally resulting in Theorem 7.2.7.

7.1. General Frameworks
We provide various frameworks to time periodic quasilinear problems based
on the Arendt-Bu theorem as recalled in Proposition 2.2.3.

Throughout this section, let X0 and X1 be Banach spaces such that X1 is
densely embedded into X0. We start by providing a fairly general framework
to time periodic quasilinear problems in the vicinity of equilibrium solutions.
For a given time period (0, T ), T ∈ (0,∞), we consider problems of the shape

(7.1)

u
′(t) + A(u(t))u(t) = F1(u(t)) + F2(t, u(t)), for t ∈ (0, T ),

u(0) = u(T ),

on some Banach space X0. We also refer to (7.1) as the general time periodic
quasilinear abstract Cauchy problem. Moreover, for X0 and X1 as described
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above and p ∈ (1,∞), we set Xγ := (X0,X1)1−1/p,p, and we suppose the exis-
tence of an open subset V ⊂ Xγ such that

A : V → L(X1,X0), F1 : V → X0 and F2 : [0, T ] × V → X0

are well-defined. Furthermore, let u∗ ∈ V ∩ X1 denote a constant-in-time
equilibrium solution to the associated autonomous problem, i. e.,

(7.2) A(u∗)u∗ = F1(u∗).

The appropriate spaces for the data and the solution in this case are

(7.3) E0 := Lp(0, T ; X0) and E1 := W1,p(0, T ; X0) ∩ Lp(0, T ; X1).

Before making assumptions on the nonlinear terms and the underlying lin-
earized operator, we discuss that u∗ ∈ E1 ∩V already implies BE1(u∗, R0) ⊂ V

for some R0 > 0. From Proposition 2.4.11, it follows that

(7.4) E1 ↪→ BUC([0, T ]; Xγ).

Therefore, given u ∈ E1, we get u(t) ∈ Xγ for every t ∈ [0, T ]. Thanks to V
being open, there is R1 > 0 sufficiently small such that BXγ (u∗, R1) ⊂ V .
Hence, setting R0 := R1/C, where C > 0 represents the embedding constant
from (7.4), it follows from u ∈ BE1(u∗, R0) that

sup
t∈[0,T ]

∥u(t) − u∗∥Xγ ≤ C · ∥u− u∗∥E1 ≤ R1.

In other words, u(t) ∈ V for all t ∈ [0, T ].
The following assumption paves the way for a result on the existence and

uniqueness of a solution to (7.1). Let us observe that R0 > 0 as described
below exists thanks to the preceding argument.

Assumption 7.1.1. Let u∗ ∈ V ∩ X1 be a solution to (7.2), and consider a
radius R0 > 0 so that u ∈ BE1(u∗, R0) satisfies u(t) ∈ V for all t ∈ [0, T ].

(i) The operators A : V → L(X1,X0) are a family of closed linear operators.
In addition, for every R ∈ (0, R0), there exists L(R) > 0 such that

∥(A(u1(·)) − A(u2(·)))v(·)∥E0 ≤ L(R) · ∥u1 − u2∥E1 · ∥v∥E1

for all u1, u2 ∈ BE1(u∗, R) and v ∈ E1. Besides, for every R ∈ (0, R0),
there is L′(R) > 0 with

∥(A(u1(·)) − A(u2(·)))u∗∥E0 ≤ L′(R) · ∥u1 − u2∥E1

for all u1, u2 ∈ BE1(u∗, R).
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(ii) The maps F1 : V → X0 as well as F2 : [0, T ]×V → X0 have the property
that F1(u(·)), F2(·, u(·)) ∈ E0 for all u ∈ BE1(u∗, R0). Furthermore, for
every R ∈ (0, R0), there are C1(R), C2(R) > 0 such that

∥F1(u1(·)) − F1(u2(·))∥E0 ≤ C1(R) · ∥u1 − u2∥E1 and
∥F2(·, u1(·)) − F2(·, u2(·))∥E0 ≤ C2(R) · ∥u1 − u2∥E1

for all u1, u2 ∈ BE1(u∗, R). Moreover, we have F2(0, u) = F2(T, u) for
all u ∈ BE1(u∗, R).

(iii) For all p ∈ (1,∞), the operator A∗ := A(u∗) satisfies 0 ∈ ρ(A∗) as well
as A∗ ∈ 0MRp(X0).

The result on the existence and uniqueness of a solution to the T -periodic
quasilinear abstract Cauchy problem (7.1) now reads as follows.

Theorem 7.1.2. Let u∗ ∈ V ∩ X1 be a solution to (7.2), and suppose that
Assumption 7.1.1 is satisfied. Assume further that for some R ∈ (0, R0),
the constants L′(R), C1(R) and C2(R) fulfill max{L′(R), C1(R), C2(R)} < δ1,
where δ1 > 0 is sufficiently small.

Then there are r ∈ (0, R) and δ2 = δ2(r) > 0 so that if ∥F2(·, u∗)∥E0 < δ2,
the problem (7.1) has a solution u ∈ BE1(u∗, r) which is unique in BE1(u∗, r).

Proof. The proof is based on the Arendt-Bu theorem. First, we linearize (7.1)
to reformulate the question of the existence and uniqueness of a solution as
a fixed point problem. We observe that finding a unique solution to (7.1) is
equivalent to establishing the existence of a unique fixed point of

(7.5)


u′(t) + A∗u(t) = (A(u∗) − A(v(t)))v(t)

+ F1(v(t)) + F2(t, v(t)), for t ∈ (0, T ),
u(0) = u(T ),

where v ∈ E1. For r ∈ (0, R), with R ∈ (0, R0) as in the assertion, we
obtain BE1(u∗, r) ⊂ V . We define the solution map Φ to (7.5) by

Φ: BE1(u∗, r) → E1, Φ(v) := u,

where u ∈ E1 is the unique solution to (7.5). First, we show that Φ is well-
defined. Thanks to Assumption 7.1.1(iii), we can apply Corollary 2.2.4, which
is based on the Arendt-Bu theorem, to A∗ and deduce A∗ ∈ MRper,p(X0).
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Hence, A∗ has maximal periodic Lp-regularity. As a consequence, there exists
a unique solution to (7.5) if the right-hand side lies in the data space, i. e.,

(A(u∗) − A(v))v + F1(v) + F2(t, v) ∈ E0.

This is ensured by Assumption 7.1.1(i) and (ii), so Φ is indeed well-defined.
With regard to the above argument, the task now is to prove that Φ admits

a unique fixed point. The first step here is the verification that Φ is also a
self map for r ∈ (0, R) sufficiently small. To this end, consider v ∈ BE1(u∗, r)
as well as the resulting solution u = Φ(v) to the linearized problem (7.5), and
set w := u− u∗. From the time-independence of u∗ and A(u∗)u∗ = F1(u∗) by
assumption, we find that w solves

w′ + A∗w = u′ + A∗u− A(u∗)u∗

= (A(u∗) − A(v))v + F1(v) + F2(t, v)) − A(u∗)u∗

= (A(u∗) − A(v))(v − u∗) − (A(v) − A(u∗))u∗ − A(u∗)u∗

+ F1(v) + F2(t, v) − F2(t, u∗) + F2(t, u∗)
= (A(u∗) − A(v))(v − u∗) − (A(v) − A(u∗))u∗ + F1(v) − F1(u∗)

+ F2(t, v) − F2(t, u∗) + F2(t, u∗).

As u(0) = u(T ), and u∗ is time-independent, we get w(0) = w(T ). By virtue
of A∗ ∈ MRper,p(X0), we deduce from Definition 2.2.1 the existence of a
constant C > 0 such that

(7.6)
∥Φ(v) − u∗∥E1 ≤ C ·

(
∥(A(u∗) − A(v(·)))(v(·) − u∗)∥E0

+ ∥(A(v(·)) − A(u∗))u∗∥E0 + ∥F1(v(·)) − F1(u∗)∥E0

+ ∥F2(·, v(·)) − F2(·, u∗)∥E0 + ∥F2(·, u∗)∥E0

)
.

Thanks to v, u∗ ∈ BE1(u∗, R) for every R ∈ (0, R0), we may plug the Lips-
chitz estimates of A, F1 and F2 from Assumption 7.1.1(i) and (ii) into (7.6).
Invoking ∥F2(·, u∗)∥E0 < δ2, and exploiting v ∈ BE1(u∗, r), we obtain

(7.7)

∥Φ(v) − u∗∥E1 ≤ C
(
L(R) · ∥v(·) − u∗∥E1 + L′(R) + C1(R)

+ C2(R)
)

· ∥v(·) − u∗∥E1 + Cδ2

≤ C
(
L(R)r + L′(R) + C1(R) + C2(R)

)
r + Cδ2.

Concerning the contraction property of Φ, we consider v1, v2 ∈ BE1(u∗, r)
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and investigate ui = Φ(vi), where i = 1, 2. Then u := u1 − u2 solves

u′ + A∗u = u′
1 + A∗u1 − (u′

2 + A∗u2)
= (A(u∗) − A(v1))v1 + F1(v1) + F2(t, v1)

− (A(u∗) − A(v2))v2 − F1(v2) − F2(t.v2)
= (A(u∗) − A(v1))(v1 − v2) + (A(v1) − A(v2))(u∗ − v2)

− (A(v1) − A(v2))u∗ + F1(v1) − F1(v2) + F2(t, v1) − F2(t, v2).

In addition, we deduce u(0) = u(T ) from the respective property of u1 and u2.
Thus, with the above maximal periodic regularity constant C > 0, we get

∥Φ(v1) − Φ(v2)∥E1 ≤ C ·
(
∥(A(u∗) − A(v1(·)))(v1(·) − v2(·))∥E0

+ ∥(A(v1(·)) − A(v2(·)))(u∗ − v2(·))∥E0

+ ∥(A(v1(·)) − A(v2(·)))u∗∥E0

+ ∥F1(v1(·)) − F1(v2(·))∥E0

+ ∥F2(·, v1(·)) − F2(·, v2(·))∥E0

)
.

As v1, v2 ∈ BE1(u∗, r) ⊂ V , it is again justified to use the Lipschitz estimates
of A and F from Assumption 7.1.1(i) and (ii). This leads to

(7.8)

∥Φ(v1) − Φ(v2)∥E1 ≤ C
(
L(R) · ∥v1 − u∗∥E1 + L(R) · ∥v2 − u∗∥E1

+ L′(R) + C1(R) + C2(R)
)

· ∥v1 − v2∥E1

≤ C
(
2L(R)r + L′(R) + C1(R) + C2(R)

)
· ∥v1 − v2∥E1 .

If for some R ∈ (0, R0), we have max{L′(R), C1(R), C2(R)} < 1/12C =: δ1,
r < min{1/4CL(R), R} and δ2 := r/2C with ∥F2(·, u∗)∥E0 < δ2, for v ∈ BE1(u∗, r),
we deduce from (7.7) that

∥Φ(v) − u∗∥E1 < C
( 1

4C + 1
4C

)
r + r

2 = r.

In other words, Φ is a self map on BE1(u∗, r). At the same time, (7.8) implies

∥Φ(v1) − Φ(v2)∥E1 < C
( 1

2C + 1
4C

)
· ∥v1 − v2∥E1 = 3

4 · ∥v1 − v2∥E1

for v1, v2 ∈ BE1(u∗, r). Thus, Φ is also a contraction map on BE1(u∗, r). The
contraction mapping principle hence yields a unique fixed point u ∈ BE1(u∗, r)
of Φ. By the reformulation from the beginning of the proof, this is in turn
the unique solution to (7.1).
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After establishing a relatively general framework to time periodic quasilin-
ear problems, we next focus on some more particular situations. In fact, the
first more specific case deals with time periodic solutions close to zero. Thus,
for an open set V ⊂ Xγ with 0 ∈ V , we consider

(7.9)

u
′(t) + A(u(t))u(t) = F (t, u(t)), for t ∈ (0, T ),

u(0) = u(T ).

Similarly as in the preceding framework, we suppose that

A : V → L(X1,X0) and F : [0, T ] × V → X0.

We also still use the data space E0 as well as the solution space E1 as intro-
duced in (7.3). Before stating the well-posedness result of (7.9), we provide
assumptions tailored to the present situation.

Assumption 7.1.3. Let R0 > 0 be such that every u ∈ BE1(0, R0) has the
property u(t) ∈ V for all t ∈ [0, T ].

(i) The operators A : V → L(X1,X0) are a family of closed linear operators,
and for every R ∈ (0, R0), there exists L(R) > 0 such that

∥(A(u1(·)) − A(u2(·)))v(·)∥E0 ≤ L(R) · ∥u1 − u2∥E1 · ∥v∥E1

for all u1, u2 ∈ BE1(0, R) and v ∈ E1.

(ii) The map F : [0, T ] × V → X0 has the property that F (·, u(·)) ∈ E0 for
all u ∈ BE1(0, R0), and for every R ∈ (0, R0), there is C(R) > 0 with

∥F (·, u1(·)) − F (·, u2(·))∥E0 ≤ C(R) · ∥u1 − u2∥E1

for all u1, u2 ∈ BE1(0, R). Furthermore, suppose that F (0, u) = F (T, u)
for all u ∈ BE1(0, R).

(iii) For all p ∈ (1,∞), the operator A0 := A(0) fulfills 0 ∈ ρ(A0) as well
as A0 ∈ 0MRp(X0).

The result in the simplified situation of (7.9) is given as follows.

Corollary 7.1.4. Suppose that Assumption 7.1.3 is satisfied. Assume further
that for some R ∈ (0, R0), the constant C(R) > 0 fulfills C(R) < δ1 for δ1 > 0
sufficiently small. Then there exist r ∈ (0, R) as well as δ2 = δ2(r) > 0 such
that for ∥F (·, 0)∥E0 < δ2, there is a solution u ∈ BE1(0, r) to (7.9), and u is
unique in BE1(0, r).
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Proof. The assertion can be derived from Theorem 7.1.2. For this purpose,
we consider u∗ = 0 and set F1(u) = 0 as well as F2(t, u) = F (t, u). It readily
follows that u∗ = 0 satisfies (7.2), and 0 ∈ V is also valid by assumption.
Let us observe that the first part Assumption 7.1.1(i) is satisfied in view of
Assumption 7.1.3(i), while the second part is an immediate consequence of

(A(u1) − A(u2))u∗ = 0

for all u1, u2 ∈ BE1(0, R0). The concrete choice of F1 = 0 clearly has the
properties demanded in Assumption 7.1.1(ii), whereas Assumption 7.1.3(ii)
yields that the above F2 lies within the scope of Assumption 7.1.1(ii) as well.
Moreover, Assumption 7.1.1(iii) coincides with Assumption 7.1.3(iii) in the
present case. We are thus in the framework of Theorem 7.1.2 upon observing
that L′(R) and C1(R) can be chosen equal to zero here, and C(R) plays the
role of C2(R).

Since many time periodic problems, especially the ones arising from fluid
mechanics, are of semilinear nature with bilinear nonlinearity, we also provide
a well-posedness result for time periodic problems of this shape. For X0 and X1
as above and β ∈ (0, 1), we consider the complex interpolation space

Xβ := [X0,X1]β.

In this set-up, we suppose that A : X1 → X0 is a linear operator, while the
term on the right-hand side G : Xβ × Xβ → X0 is assumed to be bilinear and
bounded. For f ∈ E0 with f(0) = f(T ), the problem under consideration
takes the shape

(7.10)

u
′(t) + Au(t) = G(u(t), u(t)) + f(t), for t ∈ (0, T ),

u(0) = u(T ).

The well-posedness result associated to (7.10) is given below. Compared to
the previous results, we make stronger assumptions on the ground space X0
as well as on the operator A. Later, we will comment on possible relaxations.

Corollary 7.1.5. Let X0 be a UMD Banach space, consider p ∈ (1,∞), and
let A ∈ BIP(X0) with power angle θA < π/2 such that 0 ∈ ρ(A). Moreover,
for β ∈ (1 − 1/p, 1) with 2β − 1 ≤ 1 − 1/p, assume that G : Xβ × Xβ → X0 is
bilinear and bounded.

Then there exist r > 0 and δ = δ(r) > 0 such that if ∥f∥E0 < δ, there is a
solution u ∈ BE1(0, r) to (7.10). In addition, u is unique in BE1(0, r).
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Proof. The idea here is to reduce the assertion to Corollary 7.1.4. The task
thus is to verify Assumption 7.1.3. From A ∈ BIP(X0) with θA < π/2, it
follows that A ∈ RS(X0) with ϕR

A < π/2 by virtue of (2.14). Hence, Proposi-
tion 2.1.21 implies that A ∈ 0MRp(X0) thanks to the UMD property of X0.
The assumption 0 ∈ ρ(A) implies that Assumption 7.1.3(iii) holds true. As A
is linear, it readily follows that Assumption 7.1.3(i) is satisfied.

It remains to show the validity of Assumption 7.1.3(ii). The variant of the
mixed derivative theorem as in Corollary 2.4.9(b) implies

(7.11) E1 = W1,p(0, T ; X0) ∩ Lp(0, T ; X1) ↪→ H1−β,p(0, T ; Xβ)

for all β ∈ (0, 1) and p ∈ (1,∞). Let us observe that 2β−1 ≤ 1− 1/p is equiv-
alent to 1 − β − 1/p ≥ −1/2p. Thus, we conclude from the Sobolev embedding
in (1.5) that H1−β,p(0, T ; Xβ) ↪→ L2p(0, T ; Xβ). Under the present assumptions
on β ∈ (0, 1) and p ∈ (1,∞). Together with the above embedding (7.11), this
results in

(7.12) E1 ↪→ L2p(0, T ; Xβ).

We set F (t, u) := G(u, u)+f(t). Let R > 0, and consider u1, u2 ∈ BE1(0, R).
Making use of the bilinearity and boundedness of G : Xβ ×Xβ → X0, applying
Hölder’s inequality, and exploiting (7.12) and ∥ui∥E1 ≤ R, i = 1, 2, we find

(7.13)

∥F (·, u1(·)) − F (·, u2(·))∥E0

≤ ∥G(u1(·), u1(·) − u2(·))∥E0 + ∥G(u1(·) − u2(·), u2(·))∥E0

=
(∫ T

0
∥G(u1(t), u1(t) − u2(t))∥p

X0 dt
)1/p

+
(∫ T

0
∥G(u1(t) − u2(t), u2(t))∥p

X0 dt
)1/p

≤ C1

((∫ T

0
∥u1(t)∥p

Xβ
· ∥u1(t) − u2(t)∥p

Xβ
dt
)1/p

+
(∫ T

0
∥u1(t) − u2(t)∥p

Xβ
· ∥u2(t)∥p

Xβ
dt
)1/p)

≤ C2 ·
(
∥u1∥L2p(0,T ;Xβ) + ∥u2∥L2p(0,T ;Xβ)

)
· ∥u1 − u2∥L2p(0,T ;Xβ)

≤ C3R · ∥u1 − u2∥E1 .

This yields that the Lipschitz estimate from Assumption 7.1.3(ii) holds true
with C(R) = C3R. Additionally invoking the assumption on f , and ob-
serving that the only explicit time-dependence in F (t, u) = G(u, u) + f(t)
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is via f , which satisfies f(0) = f(T ) by assumption, we conclude that As-
sumption 7.1.3(ii) is satisfied. Moreover, we observe that G(0, 0) = 0, imply-
ing F (·, 0) = f(·). The assertion thus follows from Corollary 7.1.4.

We briefly comment on the preceding proof of Corollary 7.1.5 and on a pos-
sibility to weaken the assumptions on the operator A. First, we observe that
the embedding constant emerging from the mixed derivative embedding (7.11)
above is generally not time-independent as we do not consider zero initial val-
ues. This does not pose any problems in the above proof as we consider a
fixed time period (0, T ).

The proof of Corollary 7.1.5 also reveals that we only require the bounded
imaginary powers of A in order to derive the embedding (7.11). The latter
can also be concluded if there exists a densely defined operator B on X0 such
that D(B) = X1 and B ∈ BIP(X0) with θB < π/2. By Corollary 2.4.9(b),
this yields the desired embedding (7.11). With regard to A, it is sufficient to
assume A ∈ 0MRp(X0) with 0 ∈ ρ(A) to satisfy Assumption 7.1.3(iii). In
particular, if there is B : D(B) = X1 → X0 with B ∈ BIP(X0) and θB < π/2,
then for p ∈ (1,∞) and 2β − 1 ≤ 1 − 1/p, we have

(7.14) E1 ↪→ H1−β,p(0, T ; Xβ) ↪→ L2p(0, T ; Xβ).

Next, we see that the structural assumptions can be relaxed provided we
content ourselves with 2β − 1 < 1 − 1/p.

Corollary 7.1.6. Let p ∈ (1,∞) as well as A ∈ 0MRp(X0) with 0 ∈ ρ(A).
Besides, for β ∈ (1 − 1/p, 1) such that 2β − 1 < 1 − 1/p, suppose that the
right-hand side G : Xβ × Xβ → X0 is bilinear and bounded.

Then there are r > 0 and δ = δ(r) > 0 such that if ∥f∥E0 < δ, there exists
a unique solution u ∈ BE1(0, r) to (7.10).

Proof. Again, the plan is to show that the present corollary lies within the
scope of Corollary 7.1.4. As in the proof of Corollary 7.1.5, it readily follows
that Assumption 7.1.3(i) and (iii) are fulfilled.

For the verification of Assumption 7.1.3(ii), we set F (t, u) := G(u, u)+f(t).
With regard to the below estimates, we first establish some embeddings. In
fact, as X1 ↪→ X0, thanks to β − 1 + 1/p > 0, we deduce from the embedding
in Lemma 1.2.3 that

(7.15) Xβ = [X0,X1]β ↪→ (X0,X1)1−1/p,p = Xγ.
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As a result of (7.15), for u ∈ X1, we obtain the interpolation inequality

(7.16) ∥u∥Xβ
≤ C1 · ∥u∥1−α

Xγ
· ∥u∥α

X1 ,

where α/p = β − 1 + 1/p. Let us also recall the embedding of the maximal
regularity space from Proposition 2.4.11, yielding

(7.17) E1 = W1,p(0, T ; X0) ∩ Lp(0, T ; X1) ↪→ BUC([0, T ]; Xγ).

First, the bilinearity and boundedness of G : Xβ × Xβ → X0, the interpola-
tion inequality from (7.16) as well as Hölder’s inequality result in

(7.18)

∥G(u1(·), u2(·))∥E0

≤ C2

(∫ T

0
(∥u1(t)∥Xβ

· ∥u2(t)∥Xβ
)p dt

)1/p

≤ C3

(∫ T

0
∥u1(t)∥(1−α)p

Xγ
· ∥u1(t)∥αp

X1 · ∥u2(t)∥(1−α)p
Xγ

· ∥u2(t)∥αp
X1 dt

)1/p

≤ C4 · ∥u1∥1−α
BUC([0,T ];Xγ) · ∥u2∥1−α

BUC([0,T ];Xγ) ·
(∫ T

0
∥u1(t)∥2αp

X1 dt
)α/αp

·
(∫ T

0
∥u2(t)∥2αp

X1 dt
)α/αp

.

Next, we consider r ∈ (1,∞) with 1/r = 1/2αp − 1/p = (1−2α)/2αp > 0, where the
positivity is a consequence of 2β− 1 < 1 − 1/p. Using Hölder’s inequality, and
employing the embedding (7.17), we derive from (7.18) that

∥G(u1(·), u2(·))∥E0

≤ C5 · ∥u1∥1−α
E1 · ∥u2∥1−α

E1 · T 2α/r ·
(∫ T

0
∥u1(t)∥p

X1 dt
)α/p

·
(∫ T

0
∥u2(t)∥p

X1 dt
)α/p

≤ C6T
2α/r∥u1∥E1 · ∥u2∥E1 .

Similarly as in the proof of Corollary 7.1.5, in conjunction with the bilinearity
of G, for all u1, u2 ∈ BE1(0, R), R > 0, the previous estimate leads to

∥F (·, u1(·)) − F (·, u2(·))∥E0 ≤ C7T
2α/rR · ∥u1 − u2∥E1 .

Hence, the Lipschitz estimate from Assumption 7.1.3(ii) is verified, and the
proof can be concluded in the same way as the one of Corollary 7.1.5.
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7.2. Application to Hibler’s Sea Ice Model
This section is dedicated to the time periodic problem of the Hibler sea ice
model as introduced and analyzed in detail in Chapter 3. We use the general
framework to time periodic problems developed in Section 7.1 to show the
existence of time periodic strong solutions to Hibler’s model subject to time
periodic forces. As in Chapter 3, Ω ⊂ R2 denotes a bounded domain of
class C2, and u = (vice, h, a) represents the principle variable. For a fixed time
period T > 0, we consider T -periodic forces fice, fh and fa. In contrast to
Chapter 3, we take into account generic thermodynamic terms Sh and Sa with
certain structural assumptions to be specified below. With Hibler’s model as
in Section 3.2 and summarized in (3.10), and with τice = τatm + τocn(vice), the
time periodic problem associated to Hibler’s sea ice model is given by

(7.19)



∂tvice + (vice · ∇H)vice = 1
mice

divH σδ − ccorv
⊥
ice

− g∇HH + 1
mice

τice + fice, in R × Ω,

∂th+ divH (viceh) = Sh + dh∆Hh+ fh, in R × Ω,
∂ta+ divH (vicea) = Sa + da∆Ha+ fa, in R × Ω,

vice = 0, ∂νh = ∂νa = 0, on R × ∂Ω,
u(t) = u(t+ T ), for t ∈ R.

Below, we consider time periodic solutions close to constant equilibria u∗

of the simplified system from (3.35), where −g∇HH = τatm = τocn = 0 as well
as Sh = Sa = 0. Hence, u∗ = (0, h∗, a∗), with h∗ > κ and a∗ ∈ (0, 1) constant
in time and space. If u = (vice, h, a) solves (7.19), then ũ := u−u∗ := (ṽice, h̃, ã)
is a solution to

(7.20)



∂tṽice − 1
mice

divH σδ = −(ṽice · ∇H)ṽice − ccorṽ
⊥
ice

− g∇HH + 1
mice

τice + fice, in R × Ω,

∂th̃− dh∆Hh̃ = Sh − h∗divH ṽice

− divH (ṽiceh̃) + fh, in R × Ω,
∂tã− da∆Hã = Sa − a∗divH ṽice

− divH (ṽiceã) + fa, in R × Ω,
ṽice = 0, ∂ν h̃ = ∂ν ã = 0, on R × ∂Ω,

ũ(t) = ũ(t+ T ), for t ∈ R.
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We observe that mice = ρice(h̃+ h∗), and the terms in σδ and τice also depend
on vice = ṽice, h = h̃+ h∗ and a = ã+ a∗.

The next step is to rewrite (7.20) as a time periodic quasilinear evolution
equation on a suitable ground space X0. The ground space and regularity
space slightly differ from the ones introduced in (3.18) and (3.19). In fact, in
order to obtain invertibility of the Neumann Laplacian operators, we set

X0 = Lq(Ω)2 × Lq
0(Ω) × Lq

0(Ω) and
X1 = W2,q(Ω)2 ∩ W1,q

0 (Ω)2 × W2,q
N (Ω) ∩ Lq

0(Ω) × W2,q
N (Ω) ∩ Lq

0(Ω),

where the subscript N encodes Neumann boundary conditions, while Lq
0(Ω)

represents the space of functions in Lq(Ω) with mean value zero as defined
in (1.1). In view of the interpolation results Lemma 1.3.5 and Lemma 1.3.6,
for 2 − 2/p > 1 + 1/q, the space Xγ = (X0,X1)1−1/p,p takes the shape

(7.21) Xγ = B2−2/p

qp,D (Ω)2×B2−2/p

qp,N (Ω)∩Lq
0(Ω)×B2−2/p

qp,N (Ω)∩Lq
0(Ω) ↪→ B2−2/p

qp (Ω)4.

In the above, the subscript D indicates the presence of Dirichlet boundary
conditions on ∂Ω, whereas N again represents Neumann boundary conditions.
The validity of 2−2/p > 1+1/q is ensured by the assumptions on p, q ∈ (1,∞),
namely we assume

(7.22) 1
p

+ 1
q
<

1
2 .

Let us observe that this corresponds precisely to condition (3.37) from Sec-
tion 3.6, which in turn coincides with condition (3.22) from Section 3.4 in
the absence of weights, i. e., in the situation of µ = 1. In view of (7.22), for
small α > 0, it also follows from the embeddings stated in (1.8) that

(7.23) Xγ ↪→ C1,α(Ω)4.

Similarly as in (3.23), we next define an open set W ⊂ B2−2/p
qp (Ω)4 in order

to avoid degeneration. Let us emphasize that W is not chosen to be a subset
of Xγ as the h- and a-component of u∗ do not lie in Lq

0(Ω). Thus, we set

(7.24) W :=
{
u = (vice, h, a) ∈ B2−2/p

qp (Ω)4 : h > κ and a ∈ (0, 1)
}
,

where κ > 0 represents the small parameter from Section 3.2. Next, we verify
that u = ũ + u∗ ∈ W provided u∗ = (0, h∗, a∗) ∈ W , and ũ = (ṽice, h̃, ã) is
sufficiently small in Xγ or in the maximal regularity space E1 given by

E1 := W1,p(0, T ; X0) ∩ Lp(0, T ; X1).
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As u∗ ∈ W and W is open, there is R′
0 > 0 with BB2−2/p

qp (Ω)4(u∗, R
′
0) ⊂ W . In

addition, from Proposition 2.4.11, we recall E1 ↪→ BUC([0, T ]; Xγ). Thus, the
embedding of Xγ into B2−2/p

qp (Ω)4 as revealed in (7.21) yields

(7.25) sup
t∈[0,T ]

∥u(t) − u∗∥B2−2/p
qp (Ω) ≤ C · sup

t∈[0,T ]
∥ũ(t)∥Xγ ≤ C · ∥ũ∥E1 .

Hence, for R0 := R′
0/C and ∥ũ∥E1 ≤ R0, we deduce that u(t) = ũ(t) + u∗ ∈ W

for all t ∈ [0, T ], where we also exploit B2−2/p
qp (Ω)4 ↪→ C1,α(Ω)4, following

from (1.8) thanks to (7.22). This discussion is summarized below.

Lemma 7.2.1. Let p, q ∈ (1,∞) satisfy (7.22), and consider u∗ ∈ W constant
in time for W as in (7.24). Then there is some small R0 > 0 such that if

(a) ũ ∈ Xγ with ∥ũ∥Xγ ≤ R0, or

(b) ũ ∈ E1 with ∥ũ∥E1 ≤ R0,

then u(t) = ũ(t) + u∗ ∈ W for all t ∈ [0, T ].

Given u∗ = (0, h∗, a∗) ∈ W constant in time and space, and defining V ⊂ Xγ

to be an open neighborhood of zero in Xγ, i. e.,

(7.26) V := BXγ (0, R0),

Lemma 7.2.1 especially implies h̃(t) + h∗ > κ for all t ∈ [0, T ], and for ũ ∈ V

and u∗ ∈ W as above. As we will see below, the objects under consideration
are well-defined for ũ ∈ V .

In the following, we take into account some fixed u∗ = (0, h∗, a∗) ∈ W

constant in time and space, and for R0 > 0 resulting from Lemma 7.2.1, we
consider V as defined in (7.26). Now, we reformulate (7.20) as a time periodic
quasilinear evolution equation. For ũ ∈ V , we recall the Lq-realization of the
Hibler operator AH

D(ũ+u∗) from (3.17), which is well-defined by Lemma 7.2.1
and the embedding from (7.23). Also, ∆N,m represents the Lq

0(Ω)-realization
of the Laplacian operator subject to Neumann boundary conditions as intro-
duced in (2.17). Writing P (ũ + u∗) = P (h̃ + h∗, ã + a∗) for simplicity, we
introduce the operator matrix A : V → L(X1,X0) taking the shape

(7.27) A(ũ) :=


−AH

D(ũ+ u∗) + ccor(·)⊥ ∂hP (ũ+u∗)
2ρice(h̃+h∗)∇H

∂aP (ũ+u∗)
2ρice(h̃+h∗)∇H

h∗divH −dh∆N,m 0

a∗divH 0 −da∆N,m

 .
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Moreover, we define F : R × V → X0 corresponding to (7.20) by

F (t, ũ) :=


−(ṽice · ∇H)ṽice − g∇HH + 1

mice
(τatm + τocn(ṽice))

−divH (ṽiceh̃) + Sh

−divH (ṽiceã) + Sa

+ f(t),

where mice = ρice(h̃+h∗) and f = (fice, fh, fa)⊤. The above operator matrix A
and right-hand side F allow us to rewrite the complete system (7.20) as the
time periodic quasilinear abstract Cauchy problem

(7.28)

ũ
′(t) + A(ũ(t))ũ(t) = F (t, ũ(t)), for t ∈ R,

ũ(t) = ũ(t+ T ), for t ∈ R.

We now elaborate on the procedure to make the present problem fit into the
framework of Section 7.1. We will restrict ourselves to the time period (0, T )
and then extend the resulting solution to the whole real line R by ũ(0) = ũ(T ).
Instead of (7.28), we will thus analyze the problem on the period (0, T ).
First, we show that the linearization of the operator matrix at zero fits in the
framework. To this end, we define

(7.29) A0 := A(0) =


−AH

D(u∗) + ccor(·)⊥ ∂hP (u∗)
2ρiceh∗

∇H
∂aP (u∗)
2ρiceh∗

∇H

h∗divH −dh∆N,m 0

a∗divH 0 −da∆N,m

 .

The operator A0 from (7.29) coincides with the restriction of the total lin-
earization from (3.41) to the closed subspace Lq(Ω)2×Lq

0(Ω)×Lq
0(Ω). This has

been made precise in (3.60) when verifying the global strong well-posedness
close to constant equilibria.
Lemma 7.2.2. Consider u∗ = (0, h∗, a∗), with h∗ > κ and a∗ ∈ (0, 1) con-
stant in time and space. Then A0 from (7.29) satisfies Assumption 7.1.3(iii),
meaning that 0 ∈ ρ(A0) and A0 ∈ 0MRp(X0).
Proof. From the proof of Lemma 3.6.5 and the above observation, it follows
that 0 ∈ ρ(A0) thanks to the choice of the ground space.

With regard to the second part of the assertion, we employ the splitting

A0 = A1 + A2 :=


−AH

D(u∗) ∂hP (u∗)
2ρiceh∗

∇H
∂aP (u∗)
2ρiceh∗

∇H

0 −dh∆N,m 0

0 0 −da∆N,m

+


ccor(·)⊥ 0 0

h∗divH 0 0

a∗divH 0 0

 .
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Similarly as in the proof of Proposition 3.4.1, using the maximal Lp-regularity
of −∆N,m on Lq

0(Ω) as asserted in Lemma 2.3.20, and employing a perturbation
argument again, we find that there is ω0 ∈ R such that A1 + ω ∈ MRp(X0)
for all ω > ω0.

Next, we use a perturbation argument in order to derive this property for
the complete operator A0. Thus, we consider ũ = (ṽice, h̃, ã) ∈ X1 and get

∥ccorṽ
⊥
ice∥Lq(Ω) ≤ C1 · ∥ũ∥X0

for some constant C1 > 0. From the divergence theorem, it follows that∫
Ω
h∗divH ṽice dxH = h∗

∫
∂Ω
ṽice · ν dS = 0,

because ṽice = 0 on ∂Ω. As a result, h∗divH ṽice ∈ Lq
0(Ω), and for every α > 0,

we deduce from interpolation and Young’s inequality that

∥h∗divH ṽice∥Lq
0(Ω) ≤ C2 · ∥ṽice∥W1,q(Ω)

≤ C3 · ∥ṽice∥
1/2
Lq(Ω) · ∥ṽice∥

1/2
W2,q(Ω)

≤ C4(α) · ∥ṽice∥Lq(Ω) + α · ∥ṽice∥W2,q(Ω)

≤ C4(α) · ∥ũ∥X0 + α · ∥ũ∥X1 .

Since the term a∗divH vice allows a completely analogous treatment, and we
have X1 = D(A1 + ω), it follows that

∥A2ũ∥X0 ≤ C5(α) · ∥ũ∥X0 + α · ∥(A1 + ω)ũ∥X0

for all α > 0. In other words, A2 is relatively (A1 + ω)-bounded with arbi-
trarily small (A1 + ω)-bound for all ω > ω0. Corollary 2.1.23 then implies
the existence of ω1 ≥ 0 such that A0 + ω = A1 + A2 + ω ∈ 0MRp(X0) for
all ω > ω1. On the other hand, the spectral properties from Lemma 3.6.3,
which carry over to the present situation of the restricted operator, and the
proof of Lemma 3.6.5 yield s(−A0) < 0. This leads to 0 ∈ ρ(A0) and thus
also A0 ∈ 0MRp(X0) by Lemma 2.1.15, completing the proof.

The next task is the verification of Assumption 7.1.3(i), and this is precisely
addressed in the lemma below.

Lemma 7.2.3. Let p, q ∈ (1,∞) be such that (7.22), let u∗ = (0, h∗, a∗),
where h∗ > κ and a∗ ∈ (0, 1) are constant in time and space, and con-
sider R0 > 0 as in Lemma 7.2.1, so u(t) = ũ(t) + u∗ ∈ W for t ∈ [0, T ]
holds for all ũ ∈ V or ũ ∈ BE1(0, R0). Then
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(a) the operators A : V → L(X1,X0) are closed and linear, and

(b) for every R ∈ (0, R0), there exists a constant L(R) > 0 such that

∥(A(ũ1(·)) − A(ũ2(·)))ũ(·)∥E0 ≤ L(R) · ∥ũ1 − ũ2∥E1 · ∥ũ∥E1

for all ũ1, ũ2 ∈ BE1(0, R) and ũ ∈ E1.

In summary, Assumption 7.1.3(i) is fulfilled for A as introduced in (7.27).

Proof. In a similar fashion as in the proof of Lemma 7.2.2, we can show that
there is ω0 ∈ R such that A(ũ) + ω ∈ MRp(X0) for all ω > ω0 and ũ ∈ V ,
showing the assertion of (a).

The remaining task is to establish the Lipschitz estimate of A. First, we
observe that the only nonlinear terms contributing to the Lipschitz estimate
come from the momentum equation. We then follow the lines of the proof of
Theorem 3.5.2, where we replace u0 by u∗ and observe that ũi +u∗, i = 1, 2, is
contained in a neighborhood of u∗ in B2−2/p

qp (Ω)4, see also (7.25). As in (3.29),
we deduce the existence of a constant CA > 0 such that

(7.30) ∥(A(ũ1) − A(ũ2))ũ∥X0 ≤ CA · ∥ũ1 − ũ2∥Xγ · ∥ũ∥X1

in the present setting. Making use of (7.30), and noting that the embedding
of E1 into BUC([0, T ]; Xγ) from (7.4) is also valid in this context, we find

∥(A(ũ1(·)) − A(ũ2(·)))ũ(·)∥E0 =
(∫ T

0
∥(A(ũ1(t)) − A(ũ2(t)))ũ(t)∥p

X0 dt
)1/p

≤ CA

(∫ T

0
∥ũ1(t) − ũ2(t)∥p

Xγ
· ∥ũ(t)∥p

X1 dt
)1/p

≤ CA · ∥ũ1 − ũ2∥BUC([0,T ];Xγ) · ∥ũ∥E1

≤ L(R) · ∥ũ1 − ũ2∥E1 · ∥ũ∥E1

for a constant L(R) > 0, finishing the proof.

With regard to the last aspect in Assumption 7.1.3, the Lipschitz continuity
of the right-hand side, we further split it into an autonomous and bilinear
part F1 : V → X0 as well as a remainder part F2 : [0, T ] × V → X0. These
right-hand sides take the precise shapes

F1(ũ) =


−(ṽice · ∇H)ṽice

−divH (ṽiceh̃)

−divH (ṽiceã)
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and

F2(t, ũ) =


−g∇HH + 1

ρice(h̃+h∗)(τatm + τocn(ṽice)) + fice(t)

Sh + fh(t)

Sa + fa(t)

 .

The lemma below discusses the right-hand side F1.

Lemma 7.2.4. Consider p, q ∈ (1,∞) such that (7.22) and u∗ = (0, h∗, a∗),
with h∗ > κ and a∗ ∈ (0, 1) constant in time and space, and let R0 > 0 be as
in Lemma 7.2.1, so u(t) = ũ(t) + u∗ ∈ W on t ∈ [0, T ] is valid for all ũ ∈ V

or ũ ∈ BE1(0, R0). Then

(a) F1(ũ(·)) ∈ E0 for all ũ ∈ BE1(0, R0), and

(b) for every R ∈ (0, R0), there is a constant CF1(R) = CR > 0 with

∥F1(ũ1(·)) − F1(ũ2(·))∥E0 ≤ CF1(R) · ∥ũ1 − ũ2∥E1

for all ũ1, ũ2 ∈ BE1(0, R).

Proof. We observe that F1 is of the shape

F1(ũ) = G(ũ, ũ) :=


−(ṽice · ∇H)ṽice

−divH (ṽiceh̃)

−divH (ṽiceã)

 =


−(ṽice · ∇H)ṽice

−divH (ṽice)h̃− ṽice · ∇Hh̃

−divH (ṽice)ã− ṽice · ∇Hã

 ,

where G is bilinear. Moreover, we introduce the operator B on X0 defined by

B := diag(−∆D,−∆N,m,−∆N,m), with D(B) = X1,

where we denote by ∆D the Dirichlet Laplacian operator on Lq(Ω)2 as pre-
sented in (2.15). From Lemma 2.3.19(b) and Lemma 2.3.20, we derive that B
satisfies B ∈ BIP(X0) with θB = 0. As introduced previously, Xβ represents
the complex interpolation space [X0,X1]β for β ∈ (0, 1). Hence, from (7.14),
we conclude the embedding

(7.31) E1 ↪→ L2p(0, T ; Xβ)

for all p ∈ (1,∞) and 2β − 1 ≤ 1 − 1/p. If we now manage to show the
boundedness of G : Xβ × Xβ → X0 for such p ∈ (1,∞) and β ∈ (0, 1), we can
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argue as in (7.13) and exploit ũ1, ũ2 ∈ BE1(0, R) for

∥F1(ũ1(·)) − F1(ũ2(·))∥E0 ≤ C1 ·
(
∥ũ1∥L2p(0,T ;Xβ) + ∥ũ2∥L2p(0,T ;Xβ)

)
· ∥ũ1 − ũ2∥L2p(0,T ;Xβ)

≤ C2 · (∥ũ1∥E1 + ∥ũ2∥E1) · ∥ũ1 − ũ2∥E1

≤ 2C2R · ∥ũ1 − ũ2∥E1 .

The last part of the proof thus consists of verifying the boundedness of the
map G : Xβ × Xβ → X0 for some β ∈ (0, 1) with 2β − 1 ≤ 1 − 1/p. In view
of (7.22), we get by the Sobolev embedding (1.8) that W1,q(Ω) ↪→ L∞(Ω).
Thus, Hölder’s inequality yields

∥(ṽice · ∇H)ṽice∥Lq(Ω) ≤ ∥ṽice∥L∞(Ω) · ∥ṽice∥W1,q(Ω) ≤ C3 · ∥ṽice∥2
W1,q(Ω).

The choice β = 1/2 means that 2β − 1 ≤ 1 − 1/p is satisfied for all p ∈ (1,∞).
As a result, also invoking Xβ ↪→ H2β,q(Ω)2 × H2β,q(Ω) × H2β,q(Ω), which in
turn follows from Lemma 1.3.5, we conclude for β = 1/2 that

(7.32) ∥(ṽice · ∇H)ṽice∥Lq(Ω) ≤ C4 · ∥ũ∥2
Xβ
.

From ṽice = 0 on ∂Ω for ũ = (ṽice, h̃, ã) ∈ X1/2, we derive∫
Ω

divH (ṽiceh̃) dxH =
∫

∂Ω
h̃ṽice · ν dS = 0.

This implies divH (ṽiceh̃), divH (ṽiceã) ∈ Lq
0(Ω). Hence, using the above shape

of G(ũ, ũ), making use of the fact that Lq
0(Ω) is a closed subspace of Lq(Ω),

and proceeding in the same way as in (7.32), we obtain the estimates of the
terms in the h- and a-component.

In total, the map G : Xβ × Xβ → X0 is bilinear and bounded for β = 1/2,
completing the proof of the Lipschitz estimate. On the other hand, with
regard to (7.31), we also get F1(ũ(·)) ∈ E0 for all ũ ∈ BE1(0, R0).

Finally, we study of the remaining part of the right-hand side F2. As this
term also includes external terms, we make some assumptions below.

Assumption 7.2.5. Let p, q ∈ (1,∞). We suppose that the data have the
following properties.

(a) The surface wind and ocean velocity Vatm as well as Vocn satisfy Vatm,
Vocn ∈ L2p(0, T ; L2q(Ω)2), Vatm(0) = Vatm(T ) and Vocn(0) = Vocn(T ).
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(b) The sea surface dynamic height H fulfills ∇HH ∈ Lp(0, T ; Lq(Ω)2) and
additionally has the property that H(0) = H(T ).

(c) With regard to the thermodynamic terms Sh as well as Sa, it holds
that Sh, Sa ∈ Lp(0, T ; Lq

0(Ω)) with Sh(0) = Sh(T ) and Sa(0) = Sa(T ).

Moreover, assume the existence of δ1 > 0 with

∥Vatm∥L2p(0,T ;L2q(Ω)) + ∥Vocn∥L2p(0,T ;L2q(Ω))

+ ∥g∇HH∥Lp(0,T ;Lq(Ω)) + ∥Sh∥Lp(0,T ;Lq
0(Ω)) + ∥Sa∥Lp(0,T ;Lq

0(Ω)) < δ1.

The lemma on F2 reads as follows.

Lemma 7.2.6. Let p, q ∈ (1,∞) be such that (7.22), let u∗ = (0, h∗, a∗),
where h∗ > κ and a∗ ∈ (0, 1) are constant in time and space, and con-
sider R0 > 0 as in Lemma 7.2.1, yielding u(t) = ũ(t)+u∗ ∈ V for all t ∈ [0, T ]
provided ũ ∈ V or ũ ∈ BE1(0, R0). Moreover, suppose that Vatm, Vocn, H, Sh
and Sa satisfy Assumption 7.2.5, and f ∈ Lp(0, T ; X0) holds true. Then

(a) we have F2(·, ũ(·)) ∈ E0 for all ũ ∈ BE1(0, R0), and

(b) for every R ∈ (0, R0), there exists CF2 = CF2(δ1, R) > 0 with

∥F2(·, ũ1(·)) − F2(·, ũ2(·))∥E0 ≤ CF2 · ∥ũ1 − ũ2∥E1

for all ũ1, ũ2 ∈ BE1(0, R).

Proof. By assumption, g∇HH ∈ Lp(0, T ; Lq(Ω)2), Sh, Sa ∈ Lp(0, T ; Lq
0(Ω))

and f ∈ E0. Therefore, to prove (a), it remains to verify

(7.33) 1
ρice(h̃+ h∗)

(τatm + τocn(ṽice)) ∈ Lp(0, T ; Lq(Ω)2)

for all ũ = (ṽice, h̃, ã) ∈ BE1(0, R0). By the choice of R0, we especially
have h̃(t) + h∗ > κ for all t ∈ [0, T ], so the inverse of ρice(h̃ + h∗) is in
particular contained in L∞(0, T ; L∞(Ω)). Concerning τatm, we make use of
Hölder’s inequality and the assumption on Vatm from Assumption 7.2.5 to get

(7.34) ∥τatm∥Lp(0,T ;Lq(Ω)) ≤ C1 · ∥Vatm∥2
L2p(0,T ;L2q(Ω)) < C1δ

2
1.

Likewise, additionally invoking Young’s inequality, we find that

(7.35) ∥τocn(ṽice)∥Lp(0,T ;Lq(Ω)) ≤ C2 ·
(
δ2

1 + ∥ṽice∥2
L2p(0,T ;L2q(Ω))

)
.

256



7.2. Application to Hibler’s Sea Ice Model

In view of the condition on p and q, we observe that Xγ ↪→ C1(Ω)4. In
conjunction with E1 ↪→ BUC([0, T ]; Xγ), we thus conclude

(7.36) ∥ṽice∥L2p(0,T ;L2q(Ω)) ≤ C3 · ∥ũ∥BUC([0,T ];Xγ) ≤ C4 · ∥ũ∥E1 .

A concatenation of the above arguments and estimates yields (7.33), thereby
showing the first part of the assertion.

We now focus on the Lipschitz estimate. To this end, let ũ1, ũ2 ∈ BE1(0, R).
Concerning the term related to τatm, only the factor in front varies. In fact,
the above arguments also imply

E1 ↪→ BUC([0, T ]; Xγ) ↪→ L∞(0, T ; L∞(Ω)4).

It then follows from the mean value theorem and h̃i(t) +h∗ > κ on [0, T ] that∥∥∥∥∥ 1
ρice(h̃1 + h∗)

− 1
ρice(h̃2 + h∗)

∥∥∥∥∥
L∞(0,T ;L∞(Ω))

≤ C5 · ∥h̃1 − h̃2∥L∞(0,T ;L∞(Ω))

≤ C6 · ∥ũ1 − ũ2∥E1 .

Combining the previous estimate with (7.34), we find the estimate∥∥∥∥∥
(

1
ρice(h̃1 + h∗)

− 1
ρice(h̃2 + h∗)

)
τatm

∥∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ C7δ
2
1 · ∥ũ1 − ũ2∥E1 .

With regard to the difference in the other thermodynamic term, we can split
it into the difference in the factor in front as well as the difference in the
second factor. For the difference in the first factor, we proceed as above, this
time putting together (7.35) and (7.36), to infer∥∥∥∥∥

(
1

ρice(h̃1 + h∗)
− 1
ρice(h̃2 + h∗)

)
τocn(ṽice,1)

∥∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ C8 ·
(
∥Vocn∥2

L2p(0,T ;L2q(Ω)) + ∥ṽice,1∥2
L2p(0,T ;L2q(Ω))

)
· ∥ũ1 − ũ2∥E1

≤ C9 ·
(
δ2

1 + ∥ũ1∥2
E1

)
· ∥ũ1 − ũ2∥E1

≤ C10(δ2
1 +R2) · ∥ũ1 − ũ2∥E1 .

The inverse of ρice(h̃2 + h∗) in the first factor of the remaining term can be
estimated in L∞(0, T ; L∞(Ω)) by virtue of Lemma 7.2.1. Thus, the last task is
to consider the difference in τocn. By Hölder’s inequality, Assumption 7.2.5(a)
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and (7.36), we get

∥τocn(ṽice,1) − τocn(ṽice,2)∥Lp(0,T ;Lq(Ω))

≤ C11 ·
(
∥Vocn − ṽice,1∥L2p(0,T ;L2q(Ω)) · ∥ṽice,1 − ṽice,2∥L2p(0,T ;L2q(Ω))

+ ∥ṽice,1 − ṽice,2∥L2p(0,T ;L2q(Ω)) · ∥Vocn − ṽice,2∥L2p(0,T ;L2q(Ω))
)

≤ C12 ·
(
∥Vocn∥L2p(0,T ;L2q(Ω)) + ∥ũ1∥E1 + ∥ũ2∥E1

)
· ∥ũ1 − ũ2∥E1

≤ C13(δ1 +R) · ∥ũ1 − ũ2∥E1 .

In total, there is C14 > 0 so that the difference can be estimated by

C14(δ2
1 +R2 + δ1 +R) · ∥ũ1 − ũ2∥E1 ,

completing the proof.

We are now in the position to state and prove the main result of this section.

Theorem 7.2.7. Consider p, q ∈ (1,∞) such that (7.22), let u∗ = (0, h∗, a∗),
with h∗ > κ and a∗ ∈ (0, 1) constant in time and space, and recall R0 > 0 from
Lemma 7.2.1. Moreover, assume that f = (fice, fh, fa) : R → X0 is T -periodic
such that f |(0,T ) ∈ Lp(0, T ; X0).

Then there exist R1 > 0 and δ1 > 0 such that for all R ∈ (0, R1), and
provided Vatm, Vocn, H, Sh and Sa satisfy Assumption 7.2.5 for δ1 > 0, there
is δ2 > 0 so that if ∥ f |(0,T ) ∥E0 < δ2, there exists a strong T -periodic solu-
tion ũ : R → X0 to (7.20) with ũ|(0,T ) ∈ BE1(0, R). Additionally, ũ is unique
in BE1(0, R).

Proof. As we have already indicated, the proof relies on an application of
Corollary 7.1.4. Let us recall from Lemma 7.2.2 that A0 from (7.29) lies
within the scope of Assumption 7.1.3(iii). On the other hand, Lemma 7.2.3
yields the validity of Assumption 7.1.3(i) for the family of operator matri-
ces A from (7.27). A combination of Lemma 7.2.4 and Lemma 7.2.6 further
yields that the right-hand side F fulfills Assumption 7.1.3(ii). The latter two
lemmas also reveal that for R > 0 and δ1 > 0 sufficiently small, the Lipschitz
constant CF = CF (R, δ1) > 0 satisfies CF < δ′

1, where δ′
1 > 0 is small enough.

Furthermore, we observe

F (0) =


−g∇HH + 1

ρiceh∗
(τatm + τocn(0))

Sh(0)

Sa(0)

+ f.
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Hence, possibly choosing δ1 > 0 even smaller and letting δ2 > 0 be suffi-
ciently small, we find that ∥F (0)∥E0 < δ′

2 for some small δ′
2 > 0 thanks to

Assumption 7.2.5 and the assumption on f . The assertion is thus implied by
Corollary 7.1.4.

Finally, we add a few comments on the last result.

Remark 7.2.8. (a) By construction, for the solution ũ ∈ E1 from Theo-
rem 7.2.7, it follows that u := ũ+ u∗ = (ṽice, h̃, ã) + (0, h∗, a∗) solves the
original problem (7.19).

(b) It also holds that u ∈ E1, and the embedding E1 ↪→ BUC([0, T ]; Xγ) in
conjunction with Lemma 7.2.1 yields that u(t) ∈ W for all t ∈ [0, T ]
for W as in (7.24), so it even holds that u ∈ BUC([0, T ];W ). Let us
stress that W plays the role of V from the previous chapter. The intro-
duction of the two different open sets is required here, because elements
in the subset W , ensuring that h and a take values in the physically
meaningful ranges, can generally not be contained in the adjusted trace
space Xγ from (7.21).
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CHAPTER 8

Time Periodic Quasilinear Evolution Equations in Real
Interpolation Spaces

This final chapter of the thesis is also concerned with the investigation of time
periodic quasilinear evolution equations. In contrast to Chapter 7, where the
underlying linear result is the Arendt-Bu theorem, this chapter relies on a
time periodic version of the Da Prato-Grisvard theorem as exposed in Propo-
sition 2.2.6. In fact, merely assuming sectoriality instead of R-sectoriality of
the linearized operator, we obtain maximal periodic Lp-regularity in real inter-
polation spaces. Another important aspect is that the case p = 1 is included.
The latter property has also been exploited by Danchin, Hieber, Mucha and
Tolksdorf [33] in the context of global existence results for free boundary value
problems in the critical space L1(R+; Ḃs

p1(Rn
+)). In a second step, we apply

the general framework to quasilinear Keller-Segel systems and to a Nernst-
Planck-Poisson type system of equations in electrochemistry. The results in
this chapter have been published together with Matthias Hieber [19].

The precise structure of this chapter is as follows. In Section 8.1, we present
the framework to time periodic quasilinear evolution equations in real interpo-
lation spaces, and the main result in that respect is Theorem 8.1.2. Section 8.2
is dedicated to the application to quasilinear Keller-Segel systems, resulting
in Theorem 8.2.6. In the final Section 8.3, we apply the general framework
to a Nernst-Planck-Poisson type system to obtain the existence of a unique
time periodic strong solution in Theorem 8.3.5.
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Spaces

8.1. A Framework by the Da Prato-Grisvard
Theorem

This section is devoted to developing a general framework to time periodic
quasilinear evolution equations by means of the time periodic version of the
Da Prato-Grisvard theorem due to Hieber, Kajiwara, Kress and Tolksdorf as
presented in Proposition 2.2.6. By X, we denote a Banach space.

For a fixed time period T ∈ (0,∞), we consider

(8.1)

u
′(t) + A(u(t))u(t) = F (t, u(t)) + f(t), for t ∈ R,

u(t) = u(t+ T ), for t ∈ R.

We denote by A0 the linearization of A at zero, i. e., A0 := A(0). In the
sequel, we assume that A0 ∈ PS(X) with spectral angle ϕA0 < π/2 is densely
defined. For θ ∈ (0, 1) and p ∈ [1,∞), let us recall from (2.3) the associated
trace space DA0(θ, p) defined by

DA0(θ, p) :=

x ∈ X : [x]θ,p :=
(∫ ∞

0

∥∥∥t1−θA0e−tA0x
∥∥∥p

X

dt
t

)1/p

< ∞

 .
We also invoke the appropriate data and maximal regularity space given by

(8.2)
E0,θ := Lp(0, T ; DA0(θ, p)) as well as
E1,θ :=

{
u ∈ W1,p(0, T ; DA0(θ, p)) : A0u ∈ E0,θ and u(0) = u(T )

}
.

Moreover, E1 denotes the domain of the realization of A0 on DA0(θ, p), so

(8.3) E1 := {u ∈ D(A0) : A0u ∈ DA0(θ, p)} .

In that respect, Eγ represents the emerging trace space in this situation, i. e.,

(8.4) Eγ := (DA0(θ, p),E1)1−1/p,p , for p ∈ (1,∞),

while for p = 1, we consider Eγ := DA0(θ, 1).
We now formulate the main assumption of this section. Similarly as in

Chapter 7, we suppose that A and F fulfill suitable Lipschitz estimates, and
we also impose conditions on the linearized operator A0.
Assumption 8.1.1. (a) The operators A : Eγ → L (E1,DA0(θ, p)) consti-

tute a family of closed linear operators. Moreover, there exists R0 such
that for all R ∈ (0, R0), there is L(R) > 0 with

∥(A(u1(·)) − A(u2(·)))v(·)∥E0,θ
≤ L(R) · ∥u1 − u2∥E1,θ

· ∥v∥E1,θ

for all u1, u2 ∈ BE1,θ
(0, R) and v ∈ E1,θ.
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(b) There exists R0 so that for all R ∈ (0, R0), the map F : Eγ → DA0(θ, p)
satisfies F (·, u(·)) ∈ E0,θ for all u ∈ BE1,θ

(0, R), and for some C(R) > 0,
the estimate

∥F (·, u1(·)) − F (·, u2(·))∥E0,θ
≤ C(R) · ∥u1 − u2∥E1,θ

is valid for all u1, u2 ∈ BE1,θ
(0, R).

(c) We have A0 ∈ S(X) with spectral angle ϕA0 < π/2 as well as 0 ∈ ρ(A0).

Under the above assumption, we obtain the following existence and unique-
ness result for the time periodic quasilinear abstract Cauchy problem (8.1).

Theorem 8.1.2. Let θ ∈ (0, 1) and p ∈ [1,∞), and suppose that Assump-
tion 8.1.1 holds true. Moreover, assume that for some R ∈ (0, R0], we
have C(R) < δ1, with δ1 > 0 sufficiently small. Then there are r ∈ (0, R)
and δ2 = δ2(r) > 0 such that if ∥ F (·, 0)|(0,T ) ∥E0,θ

+ ∥ f(·)|(0,T ) ∥E0,θ
< δ2, then

there exists a T -periodic solution u : R → DA0(θ, p) with u|(0,T ) ∈ BE1,θ
(0, r)

to (8.1). In addition, u is unique in BE1,θ
(0, r).

Proof. The proof relies on the periodic version of the Da Prato-Grisvard
theorem, Proposition 2.2.6, to handle the linearized system. We rewrite the
present problem as a fixed point problem on the time period (0, T ) and then
extend the solution periodically to the whole real line. Equivalently to finding
a unique solution to (8.1), we can establish the existence of a unique fixed
point of the linearized problem

(8.5)


u′(t) + A0u(t) = A(0)v(t) − A(v(t))v(t)

+ F (t, v(t)) + f(t), for t ∈ (0, T ),
u(0) = u(T ).

Let us denote by Φ the solution map to (8.5), so

Φ: BE1,θ
(0, r) → E1,θ, with Φ(v) := u,

and u ∈ E1,θ represents the unique solution for v ∈ BE1,θ
(0, r).

The first step is to prove that Φ is a well-defined map. This is in fact a
consequence of Assumption 8.1.1: Aspect (c) yields that the linearized opera-
tor lies within the scope of Proposition 2.2.6. In addition, it follows from (a)
and (b) as well as the assumption on f that the right-hand side in (8.5) is con-
tained in the data space for R > 0 sufficiently small. Therefore, the existence
of a unique solution in the desired space is implied by Proposition 2.2.6.
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The remainder of the proof is dedicated to showing that Φ is a self map
and contraction, yielding the existence of a unique fixed point to (8.5) by
the contraction mapping principle. We denote by M > 0 the infimum of
all constants C > 0 satisfying the resulting maximal regularity type esti-
mate (2.11) from Proposition 2.2.6. Let also v ∈ BE1,θ

(0, r) for some r ≤ R

with R ∈ (0, R0). By (2.11), Assumption 8.1.1(a) and (b) and the estimates
of F (·, 0) and f(·) in the assertion, for v ∈ BE1,θ

(0, r), we conclude

∥Φ(v)∥E1,θ
≤ M ·

(
∥(A(0) − A(v(·)))v(·)∥E0,θ

+ ∥F (·, v(·))∥E0,θ
+ ∥f(·)∥E0,θ

)
≤ ML(R) · ∥v∥2

E1,θ
+M · ∥F (·, v(·)) − F (·, 0)∥E0,θ

+M ·
(
∥F (·, 0)∥E0,θ

+ ∥f(·)∥E0,θ

)
≤ ML(R) · ∥v∥2

E1,θ
+MC(R) · ∥v∥E1,θ

+Mδ2

≤ ML(R)r2 +MC(R)r +Mδ2.

Therefore, if C(R) < δ1 with δ1 := 1/4M, r ≤ min{1/4ML(R), R/2}, δ2 := r/2M

and ∥F (·, 0)∥E0,θ
+ ∥f(·)∥E0,θ

< δ2, we get ∥Φ(v)∥E1,θ
≤ r, so Φ is a self map.

For v1, v2 ∈ BE1,θ
(0, r), we next observe that the difference u := u1 − u2,

with ui := Φ(vi), solves

u′ + A0u = A(0)v1 − A(v1)v1 + F (t, v1) − A(0)v2 + A(v2)v2 − F (t, v2)
= (A(0) − A(v1))(v1 − v2) + (A(v2) − A(v1))v2

+ F (t, v1) − F (t, v2),

and u1 − u2 is also T -periodic. Thus, exploiting (2.11) as well as Assump-
tion 8.1.1(a) and (b), we obtain

∥Φ(v1) − Φ(v2)∥E1,θ

≤ M ·
(
∥A(0) − A(v1(·))(v1(·) − v2(·))∥E0,θ

+ ∥(A(v2(·)) − A(v1(·)))v2(·)∥E0,θ
+ ∥F (·, v1(·)) − F (·, v2(·))∥E0,θ

)
≤ M

(
L(R) ·

(
∥v1∥E1,θ

+ ∥v2∥E1,θ

)
+ C(R)

)
· ∥v1 − v2∥E1,θ

≤ M(2rL(R) + C(R)) · ∥v1 − v2∥E1,θ
.

Thanks to the above choice of δ1, r and δ2 = δ2(r), we get

∥Φ(v1) − Φ(v2)∥E1,θ
≤ 3

4 · ∥v1 − v2∥E1,θ
,

so Φ is also a contraction mapping. Consequently, there exists a unique fixed
point u ∈ BE1,θ

(0, r) to (8.5). Finally, we extend the solution u to the whole
real line thanks to u(0) = u(T ).
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In the sequel, we also comment on possible extensions of Theorem 8.1.2
as seen in Chapter 7. Theorem 8.1.2 corresponds to Corollary 7.1.4 from the
previous section on the approach to time periodic solutions via the Arendt-Bu
theorem. We remark that Theorem 8.1.2 can also be generalized to the situa-
tion of solutions close to an equilibrium solution. In other words, an analogue
of Theorem 8.1.2 in the spirit of Theorem 7.1.2 can be shown. However, for
simplicity of presentation, we do not explicitly state the respective result here.

The last part of this section is dedicated to the semilinear setting. In
this case, we consider a densely defined operator A ∈ PS(X) with spectral
angle ϕA < π/2. The trace spaces DA(θ, p) and resulting spaces are defined
accordingly. For a T -periodic force f : R → DA(θ, p) with f |(0,T ) ∈ E0,θ, the
time periodic semilinear abstract Cauchy problem reads as

(8.6)

u
′(t) + Au(t) = F (t, u) + f(t), for t ∈ R,

u(t) = u(t+ T ), for t ∈ R.

We also adjust the assumptions to the present context.

Assumption 8.1.3. (a) There is R0 so that for all R ∈ (0, R0) as well
as u ∈ BE1,θ

(0, R), the right-hand side F : Eγ → DA(θ, p) has the prop-
erty that F (·, u(·)) ∈ E0,θ, and there is C(R) > 0 with

∥F (·, u1(·)) − F (·, u2(·))∥E0,θ
≤ C(R) · ∥u1 − u2∥E1,θ

for all u1, u2 ∈ BE1,θ
(0, R).

(b) It is valid that A ∈ S(X) with spectral angle ϕA < π/2 and 0 ∈ ρ(A).

The result below in the semilinear case follows directly from Theorem 8.1.2.

Corollary 8.1.4. Consider θ ∈ (0, 1) and p ∈ [1,∞), assume that Assump-
tion 8.1.3 is valid, and suppose that for some R ∈ (0, R0], we have C(R) < δ1,
with δ1 > 0 sufficiently small. Then there exist r ∈ (0, R) and δ2 = δ2(r) > 0
such that if ∥ F (·, 0)|(0,T ) ∥E0,θ

+ ∥ f(·)|(0,T ) ∥E0,θ
< δ2, there is a T -periodic

solution u : R → DA(θ, p) to (8.6) with u|(0,T ) ∈ BE1,θ
(0, r). Additionally, u is

unique in BE1,θ
(0, r).

8.2. Application to Keller-Segel Systems
In this section, we apply the framework developed in Section 8.1 to quasi-
linear Keller-Segel systems. Before introducing these systems, we provide a

265



8. Time Periodic Quasilinear Evolution Equations in Real Interpolation
Spaces

brief bibliographic overview. The Keller-Segel model is a common model to
describe so-called chemotaxis, i. e., the direct movements of cells and organ-
isms in response to chemical gradients. It has first been considered by Keller
and Segel [76]. Nowadays, there is vast literature on mathematical analy-
sis of this model. We refer here for instance to the articles of Hillen and
Painter [70], Kozono and Sugiyama [81] and Bellomo et al. [9], and to the
references therein. In particular, we will investigate quasilinear Keller-Segel
systems with nonlinear diffusion in the sequel. Global existence and blow-up
results for these systems have been obtained by Ciešlak and Stinner [26] or
Bellomo et al. [9, Section 3.6].

More precisely, we will focus on a version of the quasilinear Keller-Segel
system in which the classical cross diffusion term depends linearly on the cell
density. This corresponds to the situation in [70, Section 2.5]. The specific
case m < 0 in the nonlinear diffusion term has been considered in another
article of Ciešlak and Stinner [27, Section 2.5] in the context of volume filling
models as introduced by Painter and Hillen [110].

Let now Ω ⊂ Rd, d ≥ 2, denote a bounded domain with boundary of
class C2. Besides, we denote by n : R×Ω → R the density of a cell population,
while c : R × Ω → R represents the concentration of a chemoattractant. In
the sequel, we consider a quasilinear Keller-Segel system given by


∂tn− ∇ · ((n+ 1)m∇n) = −∇ · (n∇c), in R × Ω,

∂tc− ∆c+ c− n = 0, in R × Ω,
∂νn = ∂νc = 0, on R × ∂Ω.

We are particularly interested in time periodic solutions to quasilinear
Keller-Segel systems, so for a fixed time period T ∈ (0,∞), we consider a
T -periodic function f = (fn, fc). The time periodic quasilinear Keller-Segel
system reads as

(8.7)



∂tn− ∇ · ((n+ 1)m∇n) = −∇ · (n∇c) + fn, in R × Ω,
∂tc− ∆c+ c− n = fc, in R × Ω,

∂νn = ∂νc = 0, on R × ∂Ω,
n(t) = n(t+ T ), c(t) = c(t+ T ), in R × Ω.

In order to show that (8.7) lies in the scope of Section 8.1, we first refor-
mulate it as a time periodic quasilinear abstract Cauchy problem. One main
obstacle is the necessary invertibility of the underlying operator matrix, and
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that term −∇ · (n∇c) is of second order in c. This motivates the choice of the
ground space as

X0 = Lq
0(Ω) × W1,q(Ω),

where Lq
0(Ω) denotes the space of Lq-functions on Ω with spatial mean value

zero as introduced in (1.1). Moreover, let us recall the Neumann Lapla-
cian operator ∆N with domain D(∆N) = W2,q

N (Ω) from (2.16). In addition,
we require the Lq

0-realization of the Laplacian operator subject to Neumann
boundary conditions ∆N,m as introduced in (2.17). The other operator used
in the sequel is (−∆N + 1)1. It represents the translated negative Neumann
Laplacian on W1,q(Ω), and its domain is given by

D((−∆N + 1)1) = W3,q
N :=

{
c ∈ W3,q(Ω) : ∂νc = 0, on ∂Ω

}
.

For n0 sufficiently smooth, we also take into account the linearized operator

∇ · ((n0 + 1)m∇), where D(∇ · ((n0 + 1)m∇)) = W2,q
N (Ω) ∩ Lq

0(Ω).

Hence, using w = (n, c) to denote the principle variable, we set

A(w) :=

−∇ · ((n+ 1)m∇) 0

−1 (−∆N + 1)1

 and F (w) :=

−∇ · (n∇c)

0

 .
As a result, for z = (z1, z2)⊤ and A0 := A(0), we have

(8.8) A0 =

−∆N,m 0

−1 (−∆N + 1)1

 , A(w)z =

−∇ · ((n+ 1)m∇z1)

−z1 + (−∆N + 1)1z2

 .
The above objects allow us to rewrite the time periodic problem (8.7) as

(8.9)

w
′(t) + A(w(t))w(t) = F (w(t)) + f(t), for t ∈ R,

w(t) = w(t+ T ), for t ∈ R.

In a first step, we verify that A0 satisfies Assumption 8.1.1(c).

Lemma 8.2.1. The operator A0 from (8.8) fulfills A0 ∈ S(X0) with spectral
angle ϕA0 = 0 and 0 ∈ ρ(A0).

Proof. Let us recall from Lemma 2.3.20 that 0 ∈ ρ(−∆N,m), while it holds
that 0 ∈ ρ(−∆N +1). This property carries over to the restriction of −∆N +1
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to W1,q(Ω), so 0 ∈ ρ((−∆N + 1)1). From the upper triangular structure of A0
as well as the inclusion D(−∆N,m) ⊂ W1,q(Ω), we derive that 0 ∈ ρ(A0).

It remains to show A0 ∈ S(X0). To this end, we recall from Lemma 2.3.20
that −∆N,m ∈ S(Lq

0(Ω)) with spectral angle zero. Lemma 2.3.19(b) yields
that −∆N +1 ∈ BIP(Lq(Ω)) with power angle θ−∆N+1 = 0. Upon noting that
the domain of the fractional power operator (−∆N + 1)1/2 takes the shape

D((−∆N + 1)1/2) ∼=
[
Lq(Ω),W2,q

N (Ω)
]

1/2
= H1,q(Ω) = W1,q(Ω)

by Lemma 2.3.4 as well as Lemma 1.3.6, we deduce from Lemma 2.3.9 the
validity of (−∆N + 1)1 ∈ BIP(W1,q(Ω)) with power angle θ(−∆N+1)1 = 0. In
view of (2.14), we infer that (−∆N + 1)1 ∈ S(W1,q(Ω)) with ϕ(−∆N+1)1 = 0.
Thanks to the upper triangular structure of A0 and D(−∆N,m) ⊂ W1,q(Ω) as
above, we deduce from there that A0 ∈ S(X0) with spectral angle ϕA0 = 0.

Before addressing the estimates of the nonlinear terms in order to comple-
ment Assumption 8.1.1, we first discuss the shape of the trace spaces. In view
of the triangular structure of A0 from (8.8), we will also write

DA0(θ, p) = D1
A0(θ, p) × D2

A0(θ, p) = D−∆N,m(θ, p) × D(−∆N+1)1(θ, p).

The lemma below on the trace space follows from Lemma 2.1.9 as well as the
interpolation of the closed subspace Lq

0(Ω) and the boundary conditions as
made precise in Lemma 1.3.5 and Lemma 1.3.6, respectively. As before, the
subscript N indicates Neumann boundary conditions.

Lemma 8.2.2. Let θ ∈ (0, 1), p ∈ [1,∞) and q ∈ (1,∞).

(a) If θ < 1/2q, then we have

DA0(θ, p) = D1
A0(θ, p) × D2

A0(θ, p) = B2θ
qp(Ω) ∩ Lq

0(Ω) × B2θ+1
qp (Ω).

(b) For 1/2q < θ < 1/2 + 1/2q, it holds that

DA0(θ, p) = D1
A0(θ, p) × D2

A0(θ, p) = B2θ
qp(Ω) ∩ Lq

0(Ω) × B2θ+1
qp,N (Ω).

(c) In the case 1/2 + 1/2q < θ < 1, it is valid that

DA0(θ, p) = D1
A0(θ, p) × D2

A0(θ, p) = B2θ
qp,N(Ω) ∩ Lq

0(Ω) × B2θ+1
qp,N (Ω).

In all the above cases, we have equality of the spaces with equivalent norms.
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The last preparatory result with regard to the Lipschitz estimates concerns
embeddings of the maximal regularity space E1,θ as introduced in (8.2). Sim-
ilarly as for DA0(θ, p), we write E1,θ = E1

1,θ × E2
1,θ. Since all nonlinear terms

concern the first component, we are mainly interested in embeddings of E1
1,θ.

Lemma 8.2.3. Let θ ∈ (0, 1), p ∈ (2,∞) and q ∈ (1,∞) with θ < 1/2 + 1/2q

as well as θ > d/2q.

(a) It follows that E1
1,θ ↪→ L∞(0, T ; B2θ+1

qp (Ω)).

(b) We have E1
1,θ ↪→ L∞(0, T ; L∞(Ω)), and the second component admits the

embedding E2
1,θ ↪→ L∞(0, T ; B2θ+1

qp (Ω)) ↪→ L∞(0, T ; L∞(Ω)).

(c) Moreover, if it additionally holds that

(8.10) 1
p

+ d− 1
2q <

1
2 ,

then E1
1,θ ↪→ L∞(0, T ; W2,∞(Ω)).

Proof. First, we observe that Lq
0(Ω) is in particular a UMD space as a closed

subspace of the UMD space Lq(Ω), see Lemma 2.1.19(g). Moreover, we recall
from Lemma 2.3.20 that −∆N,m ∈ S(Lq

0(Ω)) with spectral angle ϕ−∆N,m = 0
and 0 ∈ ρ(−∆N,m). We also observe that −∆N,m and the time derivative
commute, and Lemma 1.3.4 implies[

B2θ
qp(Ω),B2θ+2

qp (Ω)
]

α
= B2θ+2α

qp (Ω).

The mixed derivative theorem in real interpolation spaces given in Proposi-
tion 2.4.10 and the shape of the trace spaces from Lemma 8.2.2 then yield

(8.11) E1
1,θ ↪→ H1−α,p(0, T ; B2θ+2α

qp (Ω)).

From (1.8), we deduce E1
1,θ ↪→ H1−α,p(0, T ; B2θ+2α

qp (Ω)) ↪→ L∞(0, T ; B2θ+1
qp (Ω))

provided 1 − α − 1/p > 0 as well as α ≥ 1/2. We can find such α ∈ (0, 1)
if p > 2, so the assertion of (a) is already implied.

The assumptions on θ especially yield that 2θ+1− d/q > 0, so the first part
of (b) follows from (a) together with the embedding in (1.8). For the second
part of (b), we first use Lemma 8.2.2 and the definition of E2

1,θ to get

E2
1,θ ↪→ W1,p(0, T ; B2θ+1

qp (Ω)) ↪→ L∞(0, T ; B2θ+1
qp (Ω)),
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where the second embedding is implied by the embedding of W1,p into L∞ in
one dimension. Thus, the second part of (b) can be shown precisely as the
first part from there. With regard to (c), we also rely on (8.11) and need that

H1−α,p(0, T ; B2θ+2α
qp (Ω)) ↪→ L∞(0, T ; W2,∞(Ω)).

By (1.8), this requires that 1−α−1/p > 0 and 2θ+2α > 2+d/q. Such α ∈ (0, 1)
can exist provided 1 + d/2q − θ < 1 − 1/p, so 1/p + d/2q < θ. Taking into
consideration θ ∈ (d/2q, 1/2 + 1/2q), we find that such α and θ exist in the
situation that p and q satisfy (8.10), showing the claim.

We are equipped with all the tools to attack the Lipschitz estimates of the
nonlinear terms. First, we address the operator matrix A from (8.8). For
this purpose, let us recall that E1 denotes the domain of the realization of A0
in DA0(θ, p) as made precise in (8.3), while Eγ represents the resulting trace
space as introduced in (8.4).

Lemma 8.2.4. Let θ ∈ (0, 1), p ∈ (2,∞), q ∈ (1,∞) fulfill θ ∈ (d/2q, 1/2+1/2q)
as well as (8.10). Then

(a) the family of operators A : Eγ → L(E1,DA0(θ, p)) is a family of closed
linear operators, and

(b) there exists R0 > 0 such that for all R ∈ (0, R0), there is L(R) > 0 with

∥(A(w1(·)) − A(w2(·)))z(·)∥E0,θ
≤ L(R) · ∥w1 − w2∥E1,θ

· ∥z∥E1,θ

for all w1, w2 ∈ BE1,θ
(0, R) and z ∈ E1,θ.

Hence, Assumption 8.1.1(a) is satisfied.

Proof. From Lemma 8.2.2 and the present ranges of θ, p and q, we first recall

DA0(θ, p) = D1
A0(θ, p) × D2

A0(θ, p) = B2θ
qp(Ω) ∩ Lq

0(Ω) × B2θ+1
qp,N (Ω).

For w = (ñ, c̃) ∈ Eγ and z ∈ E1, we thus have to verify that the first com-
ponent of A(w)z has spatial mean value zero, while the second component
must satisfy Neumann boundary conditions. From z = (n, c), it follows
that n ∈ B2θ+2

qp (Ω) with ∂νn = 0 on ∂Ω, and c ∈ B2θ+3
qp (Ω) with ∂νc = ∂ν∆c = 0

on ∂Ω. By virtue of the divergence theorem, the first component of the oper-
ator matrix A(w)z from (8.8) satisfies∫

Ω
∇ · ((ñ+ 1)m∇n) dx =

∫
∂Ω

(ñ+ 1)m∂νn dS = 0.
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The second component of A(w)z reads as −(n+ (∆ − 1)c) and thus fulfills a
Neumann boundary condition by the above. Hence, A : Eγ → L(E1,DA0(θ, p))
is a family of closed linear operators, and (a) is shown.

Concerning the Lipschitz estimate, we start by showing that the diffu-
sion term does not degenerate for R0 > 0 sufficiently small. Thanks to
Lemma 8.2.3(b), we deduce the existence of C1 > 0 such that

∥w∥L∞(0,T ;L∞(Ω)) ≤ C1 · ∥w∥E1,θ
≤ C1R

for w = (n, c) ∈ BE1,θ
(0, R). For R0 := 1/2C1 and R ∈ (0, R0), we then get

(8.12) 1
2 ≤ n+ 1 ≤ 3

2 .

Furthermore, Lemma 1.3.4 yields B2θ
qp(Ω) = (Lq(Ω),W2,q(Ω))θ,p, which in turn

results in W2,q(Ω) ↪→ B2θ
qp(Ω). We clearly have W2,∞(Ω) ↪→ W2,q(Ω) by the

boundedness of the domain Ω ⊂ Rd. From a direct computation, n + 1 > 0
thanks to (8.12) and n ∈ L∞(0, T ; W2,∞(Ω)) by Lemma 8.2.3(c), we con-
clude m(n+ 1)m−1 ∈ L∞(0, T ; W2,∞(Ω)). In particular, this leads to

(8.13) ∥m(n+ 1)m−1∥L∞(0,T ;B2θ
qp(Ω)) < ∞.

Similarly as above, the first component of A(w1)z−A(w2)z has spatial average
zero. Together with the shapes of the trace spaces as revealed in Lemma 8.2.2,
the Banach algebra structure of the underlying Besov spaces as stated in
Lemma 1.3.8 as well as the mean value theorem joint with (8.13), this yields

∥A(w1(·))z(·) − A(w2(·))z(·)∥E0,θ

≤ ∥∇ · ((n1 + 1)m∇n) − ∇ · ((n2 + 1)m∇n)∥Lp(0,T ;B2θ
qp(Ω))

≤
(
∥m(n1 + 1)m−1(∇n1 − ∇n2)∇n∥Lp(0,T ;B2θ

qp(Ω))

+ ∥(m(n1 + 1)m−1 −m(n2 + 1)m−1)∇n2 · ∇n∥Lp(0,T ;B2θ
qp(Ω))

+∥((n1 + 1)m − (n2 + 1)m)∆n∥Lp(0,T ;B2θ
qp(Ω))

)
≤ C2 ·

(
∥∇n1 − ∇n2∥Lp(0,T ;B2θ

qp(Ω)) · ∥∇n∥L∞(0,T ;B2θ
qp(Ω))

+ ∥n1 − n2∥L∞(0,T ;B2θ
qp(Ω)) · ∥∇n2∥Lp(0,T ;B2θ

qp(Ω)) · ∥∇n∥L∞(0,T ;B2θ
qp(Ω))

+∥n1 − n2∥L∞(0,T ;B2θ
qp(Ω)) · ∥∆n∥Lp(0,T ;B2θ

qp(Ω))

)
≤ C3

(
∥n1 − n2∥Lp(0,T ;B2θ+1

qp (Ω)) · ∥n∥L∞(0,T ;B2θ+1
qp (Ω))

+ ∥n1 − n2∥L∞(0,T ;B2θ
qp(Ω)) · ∥n2∥Lp(0,T ;B2θ+1

qp (Ω)) · ∥n∥L∞(0,T ;B2θ+1
qp (Ω))

+∥n1 − n2∥L∞(0,T ;B2θ
qp(Ω)) · ∥n∥Lp(0,T ;B2θ+2

qp (Ω))

)
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for w1, w2 ∈ BE1,θ
(0, R), wi = (ni, ci), and z = (n, c) ∈ E1,θ. Invoking the

embedding E1
1,θ ↪→ Lp(0, T ; B2θ+2

qp (Ω)), which is a direct consequence of the
shape of the maximal regularity space E1

1,θ, and recalling the embedding of
the maximal regularity space from Lemma 8.2.3(a), we conclude

∥A(w1(·))z(·) − A(w2(·))z(·)∥E0,θ
≤ C4 ·

(
∥n1 − n2∥E1

1,θ
· ∥n∥E1

1,θ

+ ∥n1 − n2∥E1
1,θ

· ∥n2∥E1
1,θ

· ∥n∥E1
1,θ

+ ∥n1 − n2∥E1
1,θ

· ∥n∥E1
1,θ

)
≤ C5(R + 1) · ∥w1 − w2∥E1,θ

· ∥z∥E1,θ
.

This completes the proof of the lemma.

With regard to Assumption 8.1.1, we still require an estimate of the term
on the right-hand side. This is the topic of the lemma below.

Lemma 8.2.5. Let θ ∈ (0, 1), p ∈ [1,∞), q ∈ (1,∞) with θ ∈ (d/2q, 1/2 + 1/2q),
or θ ∈ [d/2q, 1/2 + 1/2q) in the case p = 1. Then for all R > 0, it holds that

(a) F : Eγ → DA0(θ, p) fulfills F (w(·)) ∈ E0,θ for all w ∈ BE1,θ
(0, R), and

(b) there exists CF > 0 such that for all w1, w2 ∈ BE1,θ
(0, R), we have

∥F (w1(·)) − F (w2(·))∥E0,θ
≤ CFR · ∥w1 − w2∥E1,θ

.

Proof. In order to verify (a), we first deduce from the divergence theorem
and the Neumann boundary conditions that∫

Ω
∇ · (n∇c) dx = 0,

yielding ∇ · (n∇c) ∈ Lq
0(Ω) for w = (n, c) ∈ E1,θ. Moreover, we invoke

E1
1,θ ↪→ Lp(0, T ; B2θ+2

qp (Ω)), E2
1,θ ↪→ Lp(0, T ; B2θ+2

qp (Ω))
E1

1,θ ↪→ L∞(0, T ; B2θ
qp(Ω)) and E2

1,θ ↪→ L∞(0, T ; B2θ+1
qp (Ω)),

following directly from the shape of the maximal regularity space as well as the
elementary embedding W1,p ↪→ L∞ in one dimension. Additionally recalling
the trace spaces from Lemma 8.2.2, and making use of the Leibniz rule as
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well as the Banach algebra structure of the underlying Besov spaces as seen
in Lemma 1.3.8, we find that

∥F (w(·))∥E0,θ
≤ ∥ − ∇ · (n∇c)∥Lp(0,T ;B2θ

qp(Ω))

≤ ∥∇n∥Lp(0,T ;B2θ
qp(Ω)) · ∥∇c∥L∞(0,T ;B2θ

qp(Ω))

+ ∥n∥L∞(0,T ;B2θ
qp(Ω)) · ∥∆c∥Lp(0,T ;B2θ

qp(Ω))

≤ C1 ·
(
∥n∥Lp(0,T ;B2θ+1

qp (Ω)) · ∥c∥L∞(0,T ;B2θ+1
qp (Ω))

+ ∥n∥L∞(0,T ;B2θ
qp(Ω)) · ∥c∥Lp(0,T ;B2θ+2

qp (Ω))

)
≤ C2 · ∥n∥E1

1,θ
· ∥c∥E2

1,θ

for w = (n, c) ∈ E1,θ. In particular, (a) is implied for any R0 > 0.
Next, we focus on the Lipschitz estimate. Similarly as above, we have

∥F (w1(·)) − F (w2(·))∥E0,θ

≤ ∥∇n1 · (∇c1 − ∇c2)∥Lp(0,T ;B2θ
qp(Ω)) + ∥(∇n1 − ∇n2) · ∇c2∥Lp(0,T ;B2θ

qp(Ω))

+ ∥n1(∆c1 − ∆c2)∥Lp(0,T ;B2θ
qp(Ω)) + ∥(n1 − n2)∆c2∥Lp(0,T ;B2θ

qp(Ω))

≤ C3 ·
(
∥n1∥E1

1,θ
· ∥c1 − c2∥E2

1,θ
+ ∥n1 − n2∥E1

1,θ
· ∥c2∥E2

1,θ

)
≤ C4R · ∥w1 − w2∥E1,θ

for w1, w2 ∈ BE1,θ
(0, R), as desired.

We are now in the position to state this section’s main theorem on the
existence of a unique T -periodic strong solution to (8.7) in a neighborhood of
zero for sufficiently small T -periodic external force f .

Theorem 8.2.6. Let T > 0, θ ∈ (0, 1), p ∈ (2,∞) and q ∈ (1,∞) such
that θ ∈ (d/2q, 1/2 + 1/2q) and (8.10). Moreover, let f = (fn, fc) : R → DA0(θ, p)
be T -periodic. Then there exist R > 0 and δ = δ(R) > 0 sufficiently small
so that if ∥ f |(0,T ) ∥E0,θ

< δ, there is a T -periodic solution w to (8.9), or,
equivalently, to (8.7), and it is valid that w|(0,T ) ∈ BE1,θ

(0, R). Furthermore, w
is unique in BE1,θ

(0, R).

Proof. We prove this theorem by applying the general framework from Sec-
tion 8.1. Concatenating Lemma 8.2.1, Lemma 8.2.4 and Lemma 8.2.5, we con-
clude the existence ofR0 > 0 such that Assumption 8.1.1 is satisfied. In partic-
ular, thanks to the explicit shape of the Lipschitz constant C(R) = CFR > 0
of F as unveiled in Lemma 8.2.5, for any δ1 > 0, we findR > 0 with C(R) < δ1.
The proof follows from Theorem 8.1.2 upon observing F (0) = 0.
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The last part of this section is dedicated to the discussion of possible adjust-
ments and extensions of the above Theorem 8.2.6. In fact, as n and c represent
densities and concentrations, it is reasonable to demand n, c ≥ 0. In the fol-
lowing, we thus consider such solutions, where we drop the assumption on
n having mean value zero. As shown below, this non-negativity assumption
already implies that fn = 0, and the spatial average of the resulting solution
is constant in time.

Lemma 8.2.7. Consider a non-negative solution w = (n, c) to (8.7) with
T -periodic forcing term f = (fn, fc) : R → DA0(θ, p). Then fn ≡ 0, and

V (t) := 1
|Ω|

∫
Ω
n(t, x) dx

is constant in time, so V (t) ≡ V for all t ∈ R.

Proof. From the non-negativity of (n, c), we already deduce that both compo-
nents of the solution are non-negative at time zero, so n(0, ·), c(0, ·) ≥ 0. The
comparison principle yields that fn and fc are also necessarily non-negative in
order to ensure non-negativity of the solution. Integrating the resulting first
equation in (8.7), using the divergence theorem, and invoking the Neumann
boundary conditions of n, we conclude

d
dt

∫
Ω
n(t, x) dx =

∫
Ω
fn(t, x) dx =: fn,avg(t),

where fn,avg denotes the spatial average of fn. In particular,

V (t) = V (0) +
∫ s

0
fn,avg(s) ds

by an integration of the preceding identity. The T -periodicity of n leads to∫ T

0
fn,avg(s) ds = 0,

that means fn ≡ 0 due to fn ≥ 0, so V (t) = V (0) =: V for all t ∈ R.

For a non-negative solution (N,C) to (8.7) with fn = 0 and V resulting
from Lemma 8.2.7, we set (n, c) := (N − V,C − V ). Then (n, c) solves

(8.14)



∂tn− ∇ · ((n+ V + 1)m∇n) = −∇ · ((n+ V )∇c), in R × Ω,
∂tc− ∆c+ c− n = fc, in R × Ω,

∂νn = ∂νc = 0, on R × ∂Ω,
n(t) = n(t+ T ), c(t) = c(t+ T ), in R × Ω.
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Arguing as in the proof of Theorem 8.2.6, and noting that the Lipschitz
constant emerging from an analogue of Lemma 8.2.5 depends directly on V

and decreases to zero for R → 0 and V → 0, we derive the following result on
the existence of a unique time periodic strong solution to (8.14).

Corollary 8.2.8. Consider T > 0, θ ∈ (0, 1), p ∈ (2,∞) and q ∈ (1,∞)
satisfying θ ∈ (d/2q, 1/2 + 1/2q) and (8.10), and let f = (0, fc) : R → DA0(θ, p)
be T -periodic. Then there are R > 0, δ = δ(R) > 0 and V0 > 0 sufficiently
small such that if ∥ f |(0,T ) ∥E0,θ

< δ and V < V0, there exists a T -periodic
solution w : R → DA0(θ, p) with w|(0,T ) ∈ BE1,θ

(0, R). In addition, w is unique
in BE1,θ

(0, R).
In particular, (N,C) := (n + V, c + V ) is a non-negative T -periodic strong

solution to (8.7) with fn = 0.

Finally, we briefly address classical semilinear Keller-Segel systems. Similar
results as Theorem 8.2.6 and Corollary 8.2.8 can be deduced in the situation
of time periodically forced semilinear Keller-Segel problems of the shape

(8.15)



∂tn− ∆n = −∇ · (n∇c) + fn, in R × Ω,
∂tc− ∆c+ c− n = fc, in R × Ω,

∂νn = ∂νc = 0, on R × ∂Ω,
n(t) = n(t+ T ), c(t) = c(t+ T ), in R × Ω.

The strategy to obtain a result in this context is to use the semilinear frame-
work as presented in Assumption 8.1.3 as well as Corollary 8.1.4. Indeed,
equation (8.15) can be rewritten as a time periodic semilinear abstract Cauchy
problem in an analogous way as the quasilinear Keller-Segel system. More-
over, Lemma 8.2.1 remains valid and yields Assumption 8.1.3(b), whereas
part (a) of the aforementioned assumption follows from Lemma 8.2.5. Hence,
we get the existence of a unique T -periodic strong solution in the same space as
before provided θ ∈ (0, 1), p ∈ [1,∞) and q ∈ (1,∞) fulfill θ ∈ (d/2q, 1/2 + 1/2q),
or θ ∈ [d/2q, 1/2 + 1/2q) in the case p = 1, and if the T -periodic external forcing
terms are sufficiently small.

8.3. Application to a Nernst-Planck-Poisson type
System

The second application of the general framework developed in Section 8.1
concerns a Nernst-Planck-Poisson type system of equations from electrochem-
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istry. For more background information on this system, we refer for instance
to the works of Rubinstein [121] or Newman and Thomas-Alyea [109]. With
regard to mathematical analysis, we mention the articles of Bothe, Fischer
and Saal [13] on the local existence of solutions to electrokinetic flows as well
as global existence in two dimenions, Constantin and Ignatova [30] on global
existence and stability for large data for ionic electrodiffusion in fluids, or
Prüss, Simonett and Wilke [116, Section 5.2], where so-called critical spaces
of these equations are investigated.

By Ω ⊂ Rd, d ∈ N, we denote a bounded domain with C2-boundary. The
model variables are the concentrations of oppositely charged ions u : R×Ω → R
and v : R × Ω → R as well as the induced electrical potential w : R × Ω → R.
For constants µu, µv > 0, the resulting system reads as

∂tu− µu∆u = ∇ · (u∇w), in R × Ω,
∂tv − µv∆v = −∇ · (v∇w), in R × Ω,
∂tw − ∆w = u− v, in R × Ω,
∂νu = ∂νv = ∂νw = 0, on R × ∂Ω.

In the following, for convenience of notation, we restrict ourselves to the
situation that µu = µv = 1. For a given time period T > 0, we investigate the
situation of time periodic solutions provided the above system of equations is
subject to a time periodic force f = (fu, fv, fw). The resulting time periodic
Nernst-Planck-Poisson type system is given by

(8.16)



∂tu− µu∆u = ∇ · (u∇w) + fu, in R × Ω,
∂tv − µv∆v = −∇ · (v∇w) + fv, in R × Ω,

∂tw − ∆w − u+ v = fw, in R × Ω,
∂νu = ∂νv = ∂νw = 0, on R × ∂Ω,

u(t) = u(t+ T ), v(t) = v(t+ T ), w(t) = w(t+ T ), in R × Ω.

Next, we reformulate (8.16) as a time periodic semilinear abstract Cauchy
problem. The task is again to ensure invertibility of the underlying operator
matrix. Another important aspect is that the nonlinear terms appearing in
the equations of u and v are of second order in w. In order to bypass this
difficulty, we choose a ground space with different orders of regularity in u

and v on the one hand and w on the other hand. In fact, we set

X0 = Lq
0(Ω) × Lq

0(Ω) × W2,q
N (Ω) ∩ Lq

0(Ω).
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The subscript N indicates Neumann boundary conditions. We also recall
from (2.17) that the third component of the ground space is precisely the
domain of the Lq

0-realization of the Laplacian operator subject to Neumann
boundary conditions. In other words, we choose the third component one or-
der higher in the scale generated by −∆N,m on the Banach space Lq

0(Ω). The
emerging operator on W2,q

N (Ω) ∩ Lq
0(Ω) is denoted by (−∆N,m)2. Its domain is

D((−∆N,m)2) =
{
w ∈ W4,q(Ω) ∩ Lq

0(Ω) : ∂νw = ∂ν∆w = 0, on ∂Ω
}
.

Denoting by z = (u, v, w) the principal variable and additionally recalling the
Neumann Laplacian operator ∆N,m on Lq

0(Ω) from (2.17), we introduce the
resulting operator matrix A and right-hand side F (z) taking the shape

(8.17) A :=


−∆N,m 0 0

0 −∆N,m 0

−1 1 (−∆N,m)2

 and F (z) :=


∇ · (u∇w)

−∇ · (v∇w)

0

 .

For a given T -periodic forcing term f = (fu, fv, fw), we can thus rewrite the
time periodic Nernst-Planck-Poisson type system (8.16) as a time periodic
semilinear abstract Cauchy problem of the form

(8.18)

z
′(t) + Az(t) = F (z(t)) + f(t), for t ∈ R,

z(t) = z(t+ T ), for t ∈ R.

As we will attack (8.18) by applying Corollary 8.1.4, we need to verify
that Assumption 8.1.3 is satisfied. For this, we begin with aspect (b) on the
sectoriality and invertibility of the linear operator A.

Lemma 8.3.1. The operator A from (8.17) satisfies A ∈ S(X0) with spectral
angle ϕA = 0 and 0 ∈ ρ(A). Thus, A lies in the scope of Assumption 8.1.3(b).

Proof. First, we recall from Lemma 2.3.20 that 0 ∈ ρ(−∆N,m). This also
carries over to the restriction of −∆N,m to D(−∆N,m), so 0 ∈ ρ((−∆N,m)2).
Hence, the triangular structure of A and u, v ∈ D(−∆N,m), implying that the
term −u+ v is contained in the ground space of (−∆N,m)2, yield 0 ∈ ρ(A).

From Lemma 2.3.20, we also deduce −∆N,m ∈ BIP(Lq
0(Ω)) ⊂ S(Lq

0(Ω))
with θ−∆N,m = ϕ−∆N,m = 0. We infer from Lemma 2.3.9 on the Banach scales
that (−∆N,m)2 ∈ BIP(W2,q

N (Ω) ∩ Lq
0(Ω)) with θ(−∆N,m)2 = 0, so (−∆N,m)2 is

especially sectorial with spectral angle zero. The upper triangular structure
of A together with the above observation leads to A ∈ S(X0) with ϕA = 0.
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Next, we unveil the shape of the spaces in the present setting. Because of
the triangular structure, we also write

DA(θ, p) = D1
A(θ, p) × D2

A(θ, p) × D3
A(θ, p)

= D−∆N,m(θ, p) × D−∆N,m(θ, p) × D(−∆N,m)2(θ, p).

The following lemma discusses the precise shape of the trace spaces and can
be obtained in the same way as Lemma 8.2.2. Again, N represents Neumann
boundary conditions.

Lemma 8.3.2. Consider θ ∈ (0, 1), p ∈ [1,∞) and q ∈ (1,∞).

(a) For 0 < θ < 1/2 + 1/2q, we have

DA(θ, p) = D1
A(θ, p) × D2

A(θ, p) × D3
A(θ, p)

= B2θ
qp(Ω) ∩ Lq

0(Ω) × B2θ
qp(Ω) ∩ Lq

0(Ω) × B2θ+2
qp,N (Ω) ∩ Lq

0(Ω).

(b) In the case 1/2 + 1/2q < θ < 1, we have

DA(θ, p) = D1
A(θ, p) × D2

A(θ, p) × D3
A(θ, p)

= B2θ
qp,N(Ω) ∩ Lq

0(Ω) × B2θ
qp,N(Ω) ∩ Lq

0(Ω) × D3
A(θ, p), with

D3
A(θ, p) =

{
w ∈ B2θ+2

qp (Ω) ∩ Lq
0(Ω) : ∂νw = ∂ν∆w = 0, on ∂Ω

}
.

In both cases, the spaces coincide with equivalent norms.

As for the trace spaces, we use E1,θ = E1
1,θ × E2

1,θ × E3
1,θ to denote the

three components of the maximal regularity space. The embeddings below
follow directly from the definition of the maximal regularity space together
with the shape of the trace spaces as revealed in Lemma 8.3.2 as well as the
embedding W1,p ↪→ L∞ in one spatial dimension.

Lemma 8.3.3. Let θ ∈ (0, 1), p ∈ [1,∞) and q ∈ (1,∞) with θ ∈ (0, 1/2+1/2q).

(a) Then we obtain the embeddings E1
1,θ, E2

1,θ ↪→ Lp(0, T ; B2θ+2
qp (Ω)) as well

as E3
1,θ ↪→ Lp(0, T ; B2θ+4

qp (Ω)), and

(b) it is valid that E1
1,θ, E2

1,θ ↪→ W1,p(0, T ; B2θ
qp(Ω)) ↪→ L∞(0, T ; B2θ

qp(Ω))
and E3

1,θ ↪→ W1,p(0, T ; B2θ+2
qp (Ω)) ↪→ L∞(0, T ; B2θ+2

qp (Ω)).

The previous lemmas provide a good toolbox for the Lipschitz estimates of
the term F (z).
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Lemma 8.3.4. Let θ ∈ (0, 1), p ∈ [1,∞) as well as q ∈ (1,∞) be such
that θ ∈ (d/2q, 1/2 + 1/2q), or θ ∈ [d/2q, 1/2 + 1/2q) if p = 1. Then for all R > 0,

(a) the map F : Eγ → DA(θ, p) satisfies F (z(·)) ∈ E0,θ if z ∈ BE1,θ
(0, R),

and

(b) there is CF > 0 so that

∥F (z1(·)) − F (z2(·))∥E0,θ
≤ CFR · ∥z1 − z2∥E1,θ

holds for all z1, z2 ∈ BE1,θ
(0, R), so Assumption 8.1.3(a) is fulfilled.

Proof. The divergence theorem and boundary conditions first imply∫
Ω

∇ · (u∇w) dx =
∫

Ω
∇ · (v∇w) dx = 0,

so ∇ · (u∇w), ∇ · (v∇w) ∈ Lq
0(Ω) is valid for z = (u, v, w) ∈ E1,θ. On the

other hand, for such z, we conclude from the Leibniz rule, the Banach algebra
structure of the present Besov spaces as asserted in Lemma 1.3.8 as well as
the embeddings from Lemma 8.3.3 that

∥∇ · (u∇w)∥Lp(0,T ;B2θ
qp(Ω)) ≤ ∥∇u∥Lp(0,T ;B2θ

qp(Ω)) · ∥∇w∥L∞(0,T ;B2θ
qp(Ω))

+ ∥u∥L∞(0,T ;B2θ
qp(Ω)) · ∥∆w∥Lp(0,T ;B2θ

qp(Ω))

≤ C1 ·
(
∥u∥Lp(0,T ;B2θ+1

qp (Ω)) · ∥w∥L∞(0,T ;B2θ+1
qp (Ω))

+ ∥u∥L∞(0,T ;B2θ
qp(Ω)) · ∥w∥Lp(0,T ;B2θ+2

qp (Ω))

)
≤ C2 · ∥u∥E1

1,θ
· ∥w∥E3

1,θ
.

Likewise, we estimate ∥ − ∇ · (v∇w)∥Lp(0,T ;B2θ
qp(Ω)). Thus, for every R > 0, we

conclude F (z(·)) ∈ E1,θ for z ∈ BE1,θ
(0, R). In the same way as in the proof

of Lemma 8.2.5, we then also obtain the estimate

∥F (z1(·)) − F (z2(·))∥BE0,θ
≤ C3R · ∥z1 − z2∥BE1,θ

for z1, z2 ∈ BE1,θ
(0, R), completing the proof.

The theorem below asserts the existence of a unique time periodic strong so-
lution to the Nernst-Planck-Poisson type system (8.16) subject to T -periodic
forces. It is a direct consequence of Corollary 8.1.4 in view of Lemma 8.3.1 as
well as Lemma 8.3.4, yielding the validity of Assumption 8.1.3, and F (0) = 0.
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Theorem 8.3.5. Let T > 0, θ ∈ (0, 1), p ∈ [1,∞) and q ∈ (1,∞) sat-
isfy θ ∈ (d/2q, 1/2 + 1/2q). In addition, consider a T -periodic external forc-
ing term f = (fu, fv, fw) : R → DA(θ, p) . Then there are R > 0 as well
as δ = δ(R) > 0 sufficiently small such that if ∥ f |(0,T ) ∥E0,θ

< δ, there exists
a T -periodic solution z = (u, v, w) to (8.18), or, equivalently, to (8.16), and
we have z|(0,T ) ∈ BE1,θ

(0, R). Besides, z is unique in BE1,θ
(0, R).

We find θ ∈ (0, 1) and q ∈ (1,∞) satisfying the assumptions from Theo-
rem 8.3.5 if q > d/2 as well as q > d− 1.
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APPENDIX A

Appendix: Properties of the Inoue-Wakimoto Transform

We discuss here several properties of the Inoue-Wakimoto transform as intro-
duced in Section 4.2, and we also refer to this section for the notation. The
properties are mainly collected from Section 6 of the article of Geissert, Götze
and Hieber [48] on the fluid-structure interaction of Newtonian and general-
ized Newtonian fluids with a rigid body. Let us observe that the properties of
the transform from there also carry over to the present situation even though
sea ice is not incompressible.

In the sequel, we use the subscript i ∈ {1, 2} to denote the dependence of
objects on the rigid body velocities (ℓi, ωi). In particular, Xi and Yi repre-
sent the diffeomorphisms associated to (ℓi, ωi) and deduced therefrom by the
procedure as described in Remark 4.4.4.

The following lemma collects properties and estimates of the transform.
For a thorough proof, we refer to [48, Section 6.1].

Lemma A.1.1. Let (ℓ1, ω1), (ℓ2, ω2) ∈ W1,p(0, T )3.

(a) It holds that Xi, Yi ∈ C1 (0, T ; C∞(R2)2), and we get the estimates

∥∂αXi∥L∞(0,T ;L∞(F0)) + ∥∂αYi∥L∞(0,T ;L∞(F0)) ≤ C

as well as

∥∂β(X1 −X2)∥L∞(0,T ;L∞(F0)) + ∥∂β(Y1 − Y2)∥L∞(0,T ;L∞(F0))

≤ CT ·
(
∥ℓ1 − ℓ2∥L∞(0,T ) + ∥ω1 − ω2∥L∞(0,T )

)
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for all multi-indices α and β with 1 ≤ |α| ≤ 3 and 0 ≤ |β| ≤ 3. In the
above, the constants only depend on Ki := ∥ℓi∥L∞(0,T ) + ∥ωi∥L∞(0,T ) and
not directly on ℓi or ωi. For i, k,m ∈ {1, 2}, we especially have

∥∂k∂iYm∥L∞(0,T ;L∞(F0)) ≤ CT (R + C∗
T ).

(b) The original body velocities (ξi,Ωi) derived from (ℓi, ωi) as described in
Remark 4.4.4(a) and (b) satisfy

∥ξ1 − ξ2∥L∞(0,T ) ≤ C ·
(
∥ℓ1 − ℓ2∥L∞(0,T ) + ∥ω1 − ω2∥L∞(0,T )

)
and

∥Ω1 − Ω2∥L∞(0,T ) ≤ C · ∥ω1 − ω2∥L∞(0,T ).

For the matrix Q deduced from Remark 4.4.4(a), and for Ki as intro-
duced in (a), we get

∥Q1 −Q2∥L∞(0,T ) ≤ CT · ∥M1 −M2∥L∞(0,T ) ≤ CT · ∥ω1 − ω2∥L∞(0,T )

and
∥Qi∥L∞(0,T ) + ∥Q⊤

i ∥L∞(0,T ) ≤ C(1 + TKieT Ki).

(c) For all multi-indices β with 0 ≤ |β| ≤ 3, the term bi from (4.14) and
related to ξi and Ωi admits the estimates

∥∂βbi∥L∞(0,T ;L∞(F0)) ≤ C and
∥∂β(b1 − b2)∥L∞(0,T ;L∞(F0)) ≤ C ·

(
∥ξ1 − ξ2∥L∞(0,T ) + ∥Ω1 − Ω2∥L∞(0,T )

)
.

(d) For all multi-indices β with 0 ≤ |β| ≤ 3, the right-hand side b(Yi)

from (4.16) and emerging from ξi and Ωi satisfies∥∥∥∂β(b(Y1) − b(Y2))
∥∥∥

L∞(0,T ;C(R2))
≤ C · ∥∂β(b1 − b2)∥L∞(0,T ;C1(R2)).

In the next step, we estimate the contravariant tensor gij from (4.21).

Lemma A.1.2. For all multi-indices 0 ≤ |α| ≤ 1, the contravariant metric
tensors associated to X, X1, X2 and Y , Y1, Y2 fulfill the estimates

∥∂αgij∥L∞(0,T ;L∞(F0)) ≤ C and
∥∂α((g1)ij − (g2)ij)∥L∞(0,T ;L∞(F0)) ≤ CT · ∥(ℓ1 − ℓ2, ω1 − ω2)∥L∞(0,T ).
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