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Abstract
The evolving landscape of software development increasingly prioritizes functionality, maintainability, and developer produc-
tivity. This typically comes hand in hand with the shortcoming that less focus is invested on optimizing for runtime performance
of programs. However, optimizing for performance is an important task in time-critical domains. Additionally, optimizing for
performance can be an important way of reducing actual hardware requirements and achieving a better ecological footprint.
So, why not bringing program optimization closer to the software engineer and reducing the disconnect between profiling re-
sults and their interpretability? This poster presents a GPU-focused in-situ profiling approach that visualizes memory profiling
metrics directly inside the source code and gives the software engineer an direct hint for identifying inefficient parts during
development. Performance metrics evaluated on each line are highlighted in the source code.

CCS Concepts
• Software and its engineering → Massively parallel systems; • General and reference → Performance; • Human-centered
computing → Visualization toolkits;

1. Introduction

HARWARD, IRWIN, and CHURCHER [HIC10] implemented the
idea of visualizing profiling metrics in source code using simple
techniques that display the metrics directly in the code. They also
added a secondary visualization layer at the beginning of each line
to display an additional metric. BECK, MOSELER, DIEHL, and
REY [BMDR13] emphasized the psychological perspective of pro-
viding in-situ profiling metrics. The study evaluates how profiling
data is cognitively processed and concludes that in-situ visualiza-
tions physically integrate different representations. This integration
mitigates the split-attention effect and reduces extraneous cogni-
tive load, resulting in enhanced cognitive resources for information
processing and improved user information processing. The toolset
of CITO, LEITNER, BOSSHARD, et al. [CLB*18] offers advanced
techniques for interactive visualization in an integrated develop-
ment environment. While existing works provide a solid theoreti-
cal and practical foundation, they are tied to specific programming
languages like Java or to CPU hardware. This poster presents an
approach capable of inspecting arbitrary source code that can be
executed on an NVIDIA GPU and can be easily migrated to other
GPU vendors. The presented approach avoids such limitations.

In summary, our contribution is an in-situ code profiling imple-
mentation that maps memory profiling metrics to the domain of the
source code focused on GPU hardware by estimating per-line met-
rics of the program.
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Figure 1: Flowchart for user interaction using in-situ profiling.

2. In-Situ Code Profiling

The system’s primary interface for user interaction is a Visual
Studio Code extension. This choice was made due to this edi-
tor’s widespread popularity, ease of extension management, and the
availability of programming interfaces that facilitate profiling visu-
alization, such as the built-in CodeLens API and code highlighting
decorator. Further details on these aspects are discussed in a later
section.

Figure 1 shows the workflow that extends the original software
engineering process of repeatedly coding, building, and executing
the program. The extension includes building the executable, con-
figuring the integrated development environment (IDE) extension
for the specific kernel and executable, and starting the profiling pro-
cess. Once the profiling is complete, the data is evaluated, fed back
into the IDE, and made available for analysis. The user can choose
to restart the process by selecting the previously profiled kernel af-
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ter modifying the source code or by profiling another kernel to view
alongside the existing data.

Starting with the preparation, users build the source code with
debug information, which provides line-number information for the
generated device code. This information is essential for later map-
ping the instrumented memory instructions to understand which
lines of code were involved.

Regarding configuration, after building the executable, the user
can profile one kernel at a time. To do so, the executable containing
the kernel source compilation must be specified. Once the exten-
sion is enabled in the user’s IDE, a new context menu entry be-
comes available. By right-clicking on the line with the function
signature, users can select a menu item to invoke in-situ profiling.
The user’s selection of the executable automatically determines the
Kernel. The profiling process’ terminal output will appear in a text
field within the window.

The profiling itself is based on a framework [BGF22] that simu-
lates critical parts of the GPU memory pipeline depending on dy-
namic binary instrumentation techniques. The simulation step is
necessary because native profiling metrics are recorded at a per-
kernel granularity. This framework annotates cache hit estimates at
the granularity of each memory access, which we accumulate by
averaging over each line of source code from the debug informa-
tion.

The profiling process executes in the background. Once profil-
ing is complete, the user will receive a prompt to review the data
within the source code location. Here, lines of code that generate
read or save statements are highlighted with colors based on linear
interpolation of memory accesses relative to cache hit rates.

Software developers can repeat the profiling process to verify po-
tential optimizations. They can choose a different kernel or profile
the same kernel after making code changes and recompiling. New
data is added to their source code tabs, with the old data remaining
accessible until a cleanup operation is performed. Cleanup can be
initiated through a context menu entry.

3. Results and Conclusion

To demonstrate the profiler’s performance, we chose an example
program that is expected to have poor caching rates at certain po-
sitions in source code. This way, we can explore its behavior in
case of poor cache. Such a behavior can occur when threads within
a parallel execution unit access memory regions with a high offset
without a chance of being merged into a single transaction [Har13].
To simulate this, we include a large array in the kernel code that
generates large spaces for each thread that exceed the cache sizes.

As anticipated, the source code displays red lines, with line 29
being particularly intense in color, as shown in fig. 2. A low cache
hit rate of 7 % is observed on this line. In contrast, line 27 main-
tains a cache hit rate of 90 %, which is clearly distinguishable from
the other colors. Furthermore, the figure illustrates that our toolset
presents additional memory-related metrics in a separate informa-
tion box. In summary, the visualization effectively highlights areas
with low cache hit rates, as indicated by the prominent red color,

Figure 2: The kernel for matrix multiplication has been modified
resulting in poor caching behavior. This is particularly evident
in line 29, which is highlighted in an eye-catching red color that
stands out from the blue and purple hues.

which contrasts well with the blue and purple hues. The annota-
tions above the corresponding lines provide clear information for
read or store operations.

This poster presents a profiling tool that offers detailed in-situ
insights into memory accesses, with a focus on caching behavior
at the level of individual lines of code. The tool’s insights are eval-
uated and seamlessly integrated into the Visual Studio Code IDE
workflow. Users can conveniently examine profiling data through
visualizations and obtain precise numerical values directly in the
source code.

Source Code We release source code upon publication.
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