TUprints (2024)

GPU Ray Tracing of Triangular Grid Primitives

Max von Buelow

Technical University of Darmstadt, Germany

Abstract

Triangular grid primitives are a technique used to handle memory-intensive meshes more efficiently. They are also referred to
as micro meshes in recent proprietary hardware implementations. This representation can reduce the memory footprint during
ray tracing of subdivision surfaces or displacement maps that may result from mesh simplification. This paper presents a novel
approach to accelerate GPU software ray tracing using a two-level bounding volume hierarchy (BVH) to store vertices in a
non-redundant manner. The primary goal is to make the technology more accessible by focusing on standard GPU devices. The
bottom-level BVH strictly follows the subdivision recursion, allowing for the side effect of rendering intermediate recursion
depths. Our approach enables us to encode geometry and BVH using approximately 6.3 bytes per triangle, reducing standard
representations by a factor of 4.5. Additionally, the construction time of the BVH is reduced. Our data structure achieves a peak

performance impact of 16 % for a three-level subdivision.
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1. Introduction

Ray tracing is an important rendering technique that transforms ar-
bitrary scene descriptions, such as triangle meshes, into an image. It
has practical applications in computer-aided design, virtual reality,
games, and the movie industry. Ray tracing has become increas-
ingly popular in the real-time domain, replacing classical rasteriza-
tion due to its superior capabilities in physically correct global il-
lumination approximation [PJH17]. Additionally, specialized GPU
hardware has embedded ray tracing in recent years [PBD*10]. Al-
though high quality scenes can currently be rendered in real time,
memory reduction advancements can be utilized to increase the
density of a mesh and compensate for more detail in the output
image.

Structured primitives, such as triangular grid primitives, can be
used in areas where static geometry can be assumed within a coarse
domain, such as subdivision surface representations or displace-
ment maps converted and discretized to the vertex domain. The
latter can be derived either from measured data or from previous
simplification steps, as in micro mesh rendering. Although simpli-
fying complex structures is an active research topic, our focus is
on rendering them using ray tracing. Therefore, we will use tra-
ditional subdivision surfaces or displacement maps as input data.
Converting from micro meshes will be straightforward. While re-
cent works implement these primitives [BP23; MMT23; KSW21],
none of them focus on a pure software implementation that uses
the GPU as a ray tracing device. One downside of these hardware
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implementations is that they require newer hardware, which may
limit accessibility for older or less specialized devices.

In this paper we present a data structure optimized for ray tracing
triangular grid primitives on the GPU. The main idea is to reduce
the memory footprint of connectivity data by exploiting the inter-
nal structure of the grid [VBKF23]. This is achieved by distinguish-
ing between interior and boundary vertices of a grid primitive and
referencing them using a two-level static indexed triangle list, en-
suring that no vertex needs to be stored twice. This basic structure
is accelerated by a secondary level BVH using bounding spheres
built around the geometry after subdivision recursion. The resulting
BVH is stored semi-implicitly in memory, so that only little addi-
tional memory is required and its construction is computationally
negligible. Our data structure is very easy to implement because it
exploits the structure of the subdivision recursion tree.

In summary, our contributions are:

e A joint geometry and BVH data structure for triangular grid
primitives that targets software GPU ray tracers that achieves a
small memory footprint of approximately 6.3 bytes per triangle
for four-level subdivisions.

e Non-redundant storage of vertices shared between grid primi-
tives using an advanced, but computationally efficient to com-
pute two-level indexing scheme.

e Increased availability due to a simple design that is easy to im-
plement on arbitrary GPU architectures.
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Related Work GPU-accelerated ray tracing has been a well-
studied topic in computer graphics for quite some time. Initial ap-
proaches by APPEL [App68] and WHITTED [Whi79] have been
successively improved to allow more efficient and realistic render-
ing of different types of scenes.

Basic memory footprint reduction of ray tracers has been ex-
plored in recent years, usually trying to improve runtime perfor-
mance [VSM*18; AL09] by compressing the BVH or using BVH
recursion for compression. This was done in a lossless manner with
respect to the output image, either by implicitly accessing the accel-
eration structure [EBGM12], compressing the leaves [BWWA18],
or quantizing the BVH in a hierarchical fashion [SE10; WMZ22].
BENTHIN, BOULOS, LACEWELL, and WALD [BBLWO7] presents
on-the-fly surface traversal of subdivision on GPUs, which can be
seen as a compression technique for meshes to be subdivided. The
latter has the disadvantage that it is not feasible for the GPU, since
on-the-fly operations are computationally expensive and geometry
caches would lead to further divergence on the GPU.

Structured mesh privitives [SB87], however, target the topology
of the mesh data structure itself by assuming a fixed connectiv-
ity in the base geometry. The basic idea of using coarse mesh
representations that are refined at render time is very old and is
called displacement mapping [Coo84]. For structured grid primi-
tives, quad meshes have traditionally been used as the base geome-
try, and BENTHIN, VAIDYANATHAN, and WOOP [BVW21] present
alossy CPU ray tracer capable of processing such a representation.
They measure a 15 % increase in rendering time. The rasteriza-
tion engine Nanite [KSW21] enables rendering of triangular grid
primitive meshes and includes a prior mesh simplification step to
retreive this representation from a high-resolution mesh. This pro-
cess is commonly referred to in the industry as micro mesh ray
tracing. BENTHIN and PETERS [BP23] port this idea to the GPU,
making heavy use of NVIDIA’s specialized ray tracing hardware
by building second-level BVHs on-the-fly in the format expected
by the hardware. Recently, NVIDIA implemented the whole idea
completely in hardware [NVI; MMT23].

Unfortunately, none of these works targeting structured triangu-
lar grid primitives can be used on standard GPUs without propri-
etary ray tracing hardware, making them expensive to use and de-
pendent on a single vendor. Our work takes the basic idea of trian-
gular grid primitive ray tracing and presents a simple data structure
that can be implemented on arbitrary standard computing devices,
but is optimized for standard GPU architectures.

2. Ray Tracing of Triangular Grids

As the name suggests, triangular grids are seen as primitives in our
ray tracer, similar to standard triangles in a ray tracing pipeline.
Consequently, we use a two-level BVH, where the top-level BVH
is built on top of the list of primitives and the bottom-level BVH
resides inside a primitive to speed up traversal of the subdivision
geometry. The geometric structure of our grid primitive data struc-
ture is largely based on the recursive idea of subdivision surfaces
and can be seen in fig. 1, while the vertices define the geometry and
the connectivity is implicitly given by the static structure of a grid.
For the lowest level BVH, we construct bounding spheres around
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Figure 1: Two-dimensional sketch of the geometric structure for
three subdivisions. The blue circles indicate the bounding spheres
for the first subdivision. Gray triangles indicate further subdivi-
sions without spheres. The bounding sphere of the center triangle
is omitted for a less cluttered visualization.
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(a) Preliminary vertex indexing (b) Translated boundary indices

Figure 2: Preliminary vertex indexing and an example of
boundary and corner index translation for a two-level subdivi-
sion. Final indices are computed given the grid primitive tupel
(100,101,102,6,6,—26) and eq. (3).

each of the four triangles in each subdivision level. In the following,
section 2.1 describes the data structure itself and its construction in
detail, and section 2.2 focuses on its traversal.

2.1. Data Structure

BVH The main idea of our bottom-level hierarchy is to use semi-
implicitly derived spheres from triangles as enclosing volumes and
to align the BVH with the recursive subdivision aspect. We use the
following formulas to compute the sphere center p; and radius 77,
where (ar,br,c;) are the triangle vertices and V; are all vertices of
a tringle ¢ and its recursively traversed children in the bottom-level
BVH as seen in fig. 1.

pr=1/3(ar + b+ ) 1)
ri = max|[7; — prl| @

Vi

While p; can be trivially computed on-the-fly while traversing
the BVH, we only need to explicitly store r;. A node of our BVH
thus consists of a single floating-point value representing the sphere
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radius (Ist. 1). While definitions of spherical bounding volumes
with narrower radii exist, initial experiments showed us that their
center would be undesirably expensive to compute during traversal
on the GPU. We implement the BVH construction in an iterative
bottom-up manner, successively refining radii from leaves to the
inner BVH root, which is overall much more efficient than stan-
dard SAH in deep BVH levels.

All radii are stored in memory in a breadth-first search (BFS)
traversal order, which ensures that equal levels of detail are within
the same region of memory. In addition, since all subtrees have
the same subdivision depth, the BVH is a complete tree, making
implicit indexing trivial (see section 2.2).

Looking ahead to our evaluation in section 3.4, we have evalu-
ated that it is optimal to exclude the last two layers containing 16
triangles from the BVH in order to take advantage of the trade-
off between intersecting unnecessary triangles and the additional
sphere intersection overhead [MB90]. For a subdivision depth of
three, fig. 1 visualizes that only one BVH level remains, which
strictly speaking corresponds to a set of bounding volumes.

Geometry The geometry is largely based on an indexed triangle
list with some modifications to improve runtime performance on
GPUs. First, due to the structure of each triangular grid primitive,
we can naturally assume that each grid has the same connectiv-
ity. This allows us to store vertex indices for each triangle in the
GPU’s constant memory, making them almost as fast to access as
registers. We extend this simple scheme to prevent vertices of grid
boundaries and corners from being encoded multiple times by in-
troducing a secondary indexing layer that translates from prelimi-
nary indices (as visualized in fig. 2a) to final indices. Preliminary
indices are referenced in the constant memory indexed triangle list
and translated into final indices in the corresponding vertex buffer
at runtime. First, the vertices of each grid corner are defined to
have preliminary indices C € {0,1,2}. Given the number of ver-
tices on a boundary (excluding corners) nj, = 2l — 1, the following
preliminary indices By € [3,3+ny), By € [3+np,3+2-np), and
By € [3+2-np,3+3-ny) represent boundary vertices for each of
the three boundaries. Given this semantic, we can easily map these
preliminary indices to separate storage locations shared by grids re-
siding in a global address space. Therefore, we explicitly store the
base pointer ¢ to each corner and b for continuously stored vertices
of a boundary as the following tupel (co, ¢, ¢2,bo,b1,b2). Listing 1
shows how a tupel explicitly represents a grid in memory. Prelim-
inary indices of inner vertices follow boundary indices and can be
translated completely implicitly, because each grid has the same
number of inner vertices, which are used exclusively by one grid
and stored continuously in a separate memory region. Because ver-
tices of adjacent boundaries are encoded in reverse, stored bound-
ary pointers can be negative in such a way that the absolute value
computes the correct final index a of the desired vertex as follows
and is visualized in fig. 2b:

a=1|bj+Bj| (3)

The idea of encoding adjacent offsets as negative offsets using the
absolute value function avoids further special cases and additional
explicitly stored indicators for these cases.

© 2024 The Authors.

Listing 1: Our data structure used to encode a BVH node repre-
sented only by the sphere center and a grid primitive.

typedef float BottomLevelBVHNode;
struct GridPrimitive {
uint32_t ¢y, ¢1, ¢3; // corners
int32_t by, by, by; // boundaries

Top-Level BVH We construct a binary BVH on the set of grid
primitives using the surface area heuristic (SAH) [MB90] and store
it in a manner similar to the work of WALD, SLUSALLEK, BEN-
THIN, and WAGNER [WSBWO01], analogous to our reference im-
plementation further described in section 3.1. Its node structure in
memory is visualized in fig. 4.

2.2. Traversal

The traversal of our structure is based on the while-while approach
[ALO09], which we implement slightly differently for the two-level
BVH. The first inner while loop traverses the top-level hierarchy
and the second traverses the bottom-level hierarchy and its leaves,
rather than separating between inner and leaf nodes. Other config-
urations, such as three separate while loops for bottom-level, top-
level, and leaves, proved less efficient and resulted in less device
occupancy. The top-level hierarchies are traversed as usual.

Bottom-level hierarchy traversal begins with loading the tupel
of the grid, which contains the corner and boundary pointers, from
memory. Additionally, the six preliminary vertex indices for the
first subdivision level consisting of four triangles are fetched from
constant memory and translated as described in section 2.1. From
these triangles, the traversal implementation computes the bound-
ing spheres to intersect in order to decide whether to continue
traversing a child. Each intersection of a bounding sphere results in
an intersection interval [t,#;]. Our tracer then pushes a #p-sorted list
of intersected spheres onto the traversal stack, making sure that the
near geometry is tested first, and continues traversing until the max-
imum traversal depth is reached. In this case, we perform standard
triangle intersection tests [MT97] instead of sphere intersections.
The traversal state needs only one variable besides the stack and
the current interval to keep track of the current node. Calculation
of child node offsets can be done implicitly because of the com-
plete BES layout. The first of the four children of the current node
n is at position cg =4 -n+1, followed by ¢c; = co+ 1,0 =cp+2,
and ¢3 = ¢ + 3. Note, that the tree is indexed in BFS layout, while
it is traversed in depth first search (DFS) order as predefined by the
stack data structure.

Level of Detail Our proposed data structure makes it possible to
treat all inner nodes as leaf nodes by performing triangle intersec-
tion tests directly on the intermediate subdivision. Together with
the BFS indexing, a very basic level of detail functionality can
be easily implemented by simply reducing the maximum hierar-
chy depth during traversal. Although this functionality exists, it has
two limitations, which we discuss further in section 4.
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Figure 3: Meshes used in our evaluation rendered at the used viewport.

Figure 4: The traversal order of the BVH in memory. Nodes contain
the address of a node, and edges are labeled with the address offset
from the parent. Left childs are addressed completely implicitly by
adding one to the parent address. Right childs require the recursive
size of the left child, which must be stored explicitly (5 for node 0
and 1 for node 1).

3. Results
3.1. Reference Implementation

We give a detailed explanation of our reference here to make our
results more transparent and reproducible. Our reference imple-
mentation is designed to be a strict subset of our specialized ray
tracing implementation for triangular meshes, which mostly shares
the implementation for the top-level BVH. This allows us to ef-
fectively measure differences in runtime performance and memory
consumption introduced by our specialized techniques.

BVH We use a binary BVH constructed recursively using SAH
[MB90] with 256 bins and stop object partitioning when leaves
contain no more than 16 triangles, which we found to be optimal
on our test device. These 16 triangles must be tested sequentially,
but the overhead of intersecting more bounding boxes by increas-
ing the BVH depth would be higher [MB90]. Each leaf is encoded
as potentially padded 16 indexed triangles so that our implementa-
tion can address them implicitly. We have evaluated that an addi-
tional indexing layer to prevent padding results in a less than op-
timal memory footprint. Nodes are encoded with a 32 bit signed
integer value in memory that represents the local offset o; to its
right child. The sign distinguishes between leaf and inner nodes in
the BVH. This offset can be thought of as the size of the left subtree

that may need to be skipped during traversal. Left children are en-
coded directly after their parent node, which strictly follows a DFS
traversal order [WSBWO1] and allows implicit decent into the left
children. The advantage of this representation is that it requires lit-
tle memory and is fast to traverse [WSWG13]. We have visualized
this compact structure in fig. 4. The traversal implements the while-
while approach [ALO9]. It must keep track of the index to the cur-
rent node n; and the next leaf /;. Descent to the left node is done by
incrementing n; = n; + 1, to the right by calculating n, = n; +1+o0;.
The index of the next left leaf does not change during node decent,
and the index of the next right leaf is computed by the number of
leaves in the left sub-tree I, = [; +1/2(0; + 1). As mentioned be-
fore, leaf nodes are denoted by negative o; values and obviously do
not contain any further subtrees, so a local offset is unnecessary.
We use n; = —o0; — 1 < 16 to encode how many triangles are actu-
ally encoded in a leaf to avoid unnecessary intersections on dummy
triangles of padded memory regions.

Geometry Our geometry representation is similar as in traditional
graphics pipelines. Vertex positions and other attributes like nor-
mals are encoded in two different buffers to increase cache hit
rates, since only vertex positions are needed during BVH traversal.
A triangle is defined by three indices to vertices and encoded as
described above. We have implemented the MOLLER and TRUM-
BORE triangle intersection test [MT97].

3.2. Meshes

We evaluate the implementation of our triangle mesh data structure
on several individual meshes, whose ray tracing viewport is visu-
alized in fig. 3. Figure 3a shows a cassette of a hand-modeled Bike
containing about 1.7 million triangles in the basic representation
and 429.4 million triangles for the four-layer LOOP subdivision.
Memory requirements can be calculated with fig. 6. The triangu-
lated Head mesh (fig. 3b) results from a static displacement map
subdivision. The mesh is hand modeled and the displacement map
is derived from a 3D reconstruction of a real human head. It consists
of 17 684 triangles for the root and 4.5 millions for the correspond-
ing four-layer subdivision. The Sponza mesh visualized in fig. 3c is
also hand-modeled and contains 262 231 root triangles and approx-
imately 67.1 million level-four triangles. Figure 3d shows the 3D
reconstructed Armadillo consisting of 345944 root triangles and
88 million level-four triangles. Finally, the reconstructed Dragon
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Figure 5: Detailed memory footprint of our data structure and
reference to the representative Armadillo mesh for three levels of
subdivision. Some values in this graph are stacked to further dis-
tinguish between different categories. In this context, C stands for
vertices at corners, B for vertices at boundaries and I for inner ver-
tices, stacked in that order. Note that the amount of corner geometry
is very small and almost invisible in the diagram.

mesh consists of 871414 root triangles and 223 million level-four
triangles.

3.3. Memory Footprint

Figure 5 shows a detailed overview of the memory footprint pro-
duced by the implementation of our data structure compared to the
footprint of the reference implementation on the Armadillo mesh.
Other meshes produce plots with the same relative values. We have
divided the memory footprint into four groups: the connectivity
consisting of vertex indices and our grid data structure, the geome-
try consisting of vertices, the BVH consisting of the tree data struc-
ture (section 3.1), and the bounding boxes and bounding spheres.
It is clearly observed that our data structure drastically reduces the
storage overhead of the connectivity. This fact confirms the idea of
grid data structures to remove unnecessary connectivity informa-
tion by assuming static connectivity within a grid. The plot of our
triangular grid primitive implementation also shows that boundary
vertices take up about one-third of the space of the entire geom-
etry, confirming the importance of not storing them redundantly.
However, the memory usage of the geometry remains the same,
confirming that our implementation has not duplicated any vertices
at these mesh boundaries. The reduced memory consumption for
the BVH, including its bounding volumes, results from the implicit
representation of the bottom-level BVH and its drastically reduced
geometric information.

© 2024 The Authors.

The middle row of fig. 6 plots the memory requirements for each
level of subdivision. Because the numbers are normalized to the to-
tal number of faces, the values of individual meshes have insignifi-
cant differences that are not apparent from the graph. We see the ob-
vious fact that increasing the BVH level requires additional mem-
ory to store them. In all cases, our representation is more efficient
in terms of memory, except for the one-level subdivision with full
BVH depth. This is because our primitive tuple of section 2.1 has a
large memory footprint compared to a standard indexed triangle for
every four corresponding triangles resulting from the subdivision.

3.4. Run-Time Performance

We compare our triangular grid data structure to our reference im-
plementation of section 3.1 on a NVIDIA RTX 2080 Ti GPU. Both
approaches are implemented using the CUDA runtime APIL. The
top row of Figure 6 shows the runtime performance of the ray trac-
ers. The plots compare individual meshes, subdivision depths, and
BVH depths. Unfortunately, the Bike has no data point for the refer-
ence implementation at four subdivision levels, due to the fact that
the mesh is simply too large for the memory of our GPU device. Its
memory consumption for geometry and BVH is about 11.15 GiB
without the normals we need to visualize the result.

Looking at the runtime performance of each level of subdivision,
the one-level subdivision has a speedup between 0 % to 28 %. For
two-level subdivision, we see speedups of 10 %, ranging to impacts
of 39 %. The trend continues for three levels with 16 % to 68 %
performance impact and for four levels with 55 % to 85 %. This be-
havior is explained by the fact that our semi-implicitly constructed
bottom-level BVH has increased endpoint overlap [AKL13], result-
ing in more BVH nodes being traversed unnecessarily during ren-
dering.

When comparing individual meshes, our results show that
meshes with a higher number of triangles visible in the viewport
tend to produce more computational overhead, which was expected
since more BVH nodes need to be intersected. We also see that
the Head and Armadillo meshes have the highest potential of our
bottom-level BVH, which can be explained by the lower number
of self-intersecting bounding volumes resulting from lower mesh
complexity of them.

Given these observations and the memory footprint of sec-
tion 3.3, we recommend our triangular grid data structure for sub-
division depths no greater than three, as the non-significantly dif-
ferent compression rates do not justify the greatly increased com-
putational overhead. For larger subdivision depths, coarse subdivi-
sion levels could be triangulated and handed over to the domain
of the top-level BVH during preprocessing, combining the com-
pression rates of our approach with the increased runtime perfor-
mance of the reference implementation. Regarding the BVH depth,
it can be seen that deeper BVH levels do not necessarily increase
the runtime performance. This is a typical behavior, as bounding
volume intersections add computational overhead that must be bal-
anced against the overhead of intersecting triangles far from the ray
[MB90]. Our results suggest excluding the bottom two BVH layers
from the bottom-level BVH, which also has a positive impact on
memory consumption. This behavior is consistent with our refer-
ence implementation (section 3.1), where we evaluated 16 triangles
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per leaf as optimal, which corresponds to two levels of subdivision
consisting of 4? triangles.

3.5. Construction Time

The bottom row of fig. 6 plots the construction time on an Intel
Core i9-9900K CPU with the same parameters as in the previous
sections. One clear observation is that the number of BVH levels
has little effect on the runtime performance of the construction
procedures. This was expected, since our low-level BVH is com-
putationally more efficient than object partitioning by an order of
magnitude. The full SAH construction of the reference implemen-
tation becomes a bigger bottleneck the larger the dataset is. For a
three-level sudivision on the Bike, our algorithm is 42 times faster
than full SAH, and 383 times faster for a four-level subdivision. A
final observation is that a more efficient construction and memory
footprint does not directly correlate to the runtime performance of
the traversal.

4. Conclusion

Efficiently structured triangular grid primitives are a promising
technique for reducing the memory footprint of ray tracing im-
plementations that already depend on similar structures. Practical
applications could range from virtual environments to gaming or
computer aided design. While recent work has already presented
implementations, typically called micro mesh renderers, all of them
either focus on CPU architectures or make use of heavily special-
ized ray tracing hardware that is not available on many devices.
In this paper, we presented a novel data structure that exploits the
structure of triangular grid primitives and compresses their con-
nectivity information to a minimum compared to standard indexed
triangle lists. Since our data structure implicitly preserves the sub-
division recursion information, it is possible to limit to intermediate
subdivision depths without regenerating the data structure, which
could be useful in computationally constrained environments. Our
results show that our approach achieves 6.3 bytes per triangle, re-
ducing standard representations by a factor of 4.5 for geometry and
BVH, while we are able to speed up the construction time by a fac-
tor of 42 compared to SAH in the lowest levels for a subdivision
depth of three. Our data structure has a performance impact be-
tween 16 % to 68 % for the same three-level subdivision depending
on the rendered mesh, but the tradeoff of losing runtime perfor-
mance for more efficient storage is a common behavior.

Limitations and Future Work In the future, we would like to
add lossy compression to the triangular grid primitives, as their
local grouping would potentially allow further redundancy reduc-
tion through quantization. The general idea of wavelet subdivision
[VP04; LQS04] stores detail vectors that refine coarse trivial-to-
compute subdivisions, which are usually more efficient to quan-
tize. While this idea cannot be used directly with our approach, as
it would add unfeasible overhead to the traversal stack that needs
to store decompressed intermediate recursion levels, a solution that
quantizes relative to the root triangle instead of the direct parent
would have more potential. While we have tried several things in
this direction, current GPU architectures do not have enough reg-

isters to implement this with high device occupancy, and we leave
this further extension to related work.

In terms of level of detail, our system has two limitations. The
first concerns the correctness of vertices at early traversal breaks.
In the context of subdivision surfaces, our approach would lead
to incorrect visualizations for maximum depths lower than gen-
erated, because the LOOP subdivision scheme [Loo87] refines all
vertices per iteration, and our rendering does not upload vertices
from previous iterations to the GPU. While the visual effects ap-
pear to be small, it is generally possible to upload additional ver-
tices from corresponding levels of subdivision. The second limita-
tion is that our approach cannot be used adaptively without creating
small cracks in the surface where the level of detail changes. Espe-
cially solving the latter with respect to our data structure would be
an interesting topic for future work.

It would also be interesting to combine our implementation of
triangular grid primitives with other already existing promising
compression techniques like short stacks [VWB22], quantization
of the BVH [SE10] or compression of BVH leaves [BWWA18].
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Figure 6: The plots in the top row show the runtime performance in terms of how many millions of rays can be traced per second (Mrays/s),
the plots in the middle row show the memory consumption of our data structure, and the plots in the bottom row show the construction time
compared to the reference implementation for all test datasets. Each plot represents a single subdivision depth, and our data structure is
further subdivided into multiple BVH depths. Each data point represents a single mesh.

[Coo084] COOK, ROBERT L. “Shade Trees”. SSIGGRAPH Comput. Graph.
18.3 (Jan. 1984), 223-231. DO1: 10.1145/964965.808602 2.

[EBGM12] EISEMANN, M., BAUSZAT, P., GUTHE, S., and MAGNOR, M.
“Geometry Presorting for Implicit Object Space Partitioning”. Computer
Graphics Forum 31.4 (2012), 1445-1454. po1: 10.1111/3.1467—
8659.2012.03140.x 2.

[KSW21] KARIS, BRIAN, STUBBE, RUNE, and WIHLIDAL, GRAHAM.
“A Deep Dive into Nanite Virtualized Geometry”. Advances in Real-
Time Rendering in Games: Part I (proc. SSGGRAPH courses). 2021.
URL: https : / / advances . realtimerendering . com /
52021/ %$20Karis_Nanite_ SIGGRAPH_ Advances_ 2021 _
final.pdf 1,2.

[Loo87] Loop, CHARLES. “Smooth Subdivision Surfaces Based on Tri-
angles”. MA thesis. Jan. 1987 6.

© 2024 The Authors.

[LQS04] L1, DENGGAO, QIN, KAIHUAI, and SUN, HANQIU. “Unlifted
loop subdivision wavelets”. 12th Pacific Conference on Computer
Graphics and Applications, 2004. PG 2004. Proceedings. 2004, 25-33.
DOI: 10.1109/PCCGA.2004.1348331 6.

[MB90] MACDONALD, J. DAVID and BOOTH, KELLOGG S. “Heuristics
for ray tracing using space subdivision”. The Visual Computer 6.3 (May
1990), 153-166. DOI: 10.1007/b£01911006 3-5.

[MMT23] MAGGIORDOMO, ANDREA, MORETON, HENRY, and TARINI,
MARCO. “Micro-Mesh Construction”. ACM Transactions on Graphics
42.4 (July 2023), 1-18.DOI1: 10.1145/3592440 1, 2.

[MT97] MOLLER, TOMAS and TRUMBORE, BEN. “Fast, Minimum
Storage Ray-Triangle Intersection”. Journal of Graphics Tools 2.1
(1997), 21-28. pDOI: 10 .1080 /10867651 .1997.10487468 3,
4.


https://doi.org/10.1145/964965.808602
https://doi.org/10.1111/j.1467-8659.2012.03140.x
https://doi.org/10.1111/j.1467-8659.2012.03140.x
https://advances.realtimerendering.com/s2021/%20Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://advances.realtimerendering.com/s2021/%20Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://advances.realtimerendering.com/s2021/%20Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://doi.org/10.1109/PCCGA.2004.1348331
https://doi.org/10.1007/bf01911006
https://doi.org/10.1145/3592440
https://doi.org/10.1080/10867651.1997.10487468

M. von Buelow / GPU Ray Tracing of Triangular Grid Primitives

[NVI] NVIDIA. Micro-Mesh Graphics Primitive For Micro Triangles.
URL: https : / / developer . nvidia . com / rtx / ray —
tracing/micro-mesh 2.

[PBD*10] PARKER, STEVEN G., BIGLER, JAMES, DIETRICH, AN-
DREAS, et al. “OptiX. a general purpose ray tracing engine”. ACM
Transactions on Graphics 29.4 (July 2010), 1-13. DOI: 10 . 1145/
1778765.1778803 1.

[PJH17] PHARR, MATT, JAKOB, WENZEL, and HUMPHREYS, GREG.
Physically Based Rendering. Elsevier, 2017. DO1: 10.1016/c2013~
0-15557-2 1.

[SB87] SNYDER, JOHN M. and BARR, ALAN H. “Ray Tracing Com-
plex Models Containing Surface Tessellations”. Proceedings of the 14th
Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’87. New York, NY, USA: Association for Computing Ma-
chinery, 1987, 119-128. DO1: 10.1145/37401.37417 2.

[SE10] SEGOVIA, BENJAMIN and ERNST, MANFRED. “Memory Effi-
cient Ray Tracing with Hierarchical Mesh Quantization”. Proceedings
of Graphics Interface 2010. GI °10. CAN: Canadian Information Pro-
cessing Society, 2010, 153-160 2, 6.

[vBKF23] Von BUELOW, MAX, KUIJPER, ARJAN, and FELLNER, DI-
ETER W. “A GPU Ray Tracing Implementation for Triangular Grid
Primitives”. International Conference on Artificial Reality and Telexis-
tence and Eurographics Symposium on Virtual Environments Posters and
Demos. The Eurographics Association, Dec. 2023. por: 10 . 2312/
egve.20231341 1.

[VP04] VALETTE, S. and PROST, P. “Wavelet-based multiresolution anal-
ysis of irregular surface meshes”. IEEE Transactions on Visualization
and Computer Graphics 10.2 (2004), 113-122. p01: 10.1109/TVCG.
2004.1260763 6.

[VSM*18] VAsIoU, ELENA, SHKURKO, KONSTANTIN, MALLETT, IAN,
et al. “A detailed study of ray tracing performance: render time and
energy cost”. The Visual Computer 34.6-8 (Apr. 2018), 875-885. DOTI:
10.1007/s00371-018-1532-8 2.

[VWB22] VAIDYANATHAN, K., Woopr, S., and BENTHIN, C. “Wide
BVH Traversal with a Short Stack”. Proceedings of the Conference on
High-Performance Graphics. HPG ’19. Goslar, DEU: Eurographics As-
sociation, 2022, 15-19. DOI: 10.2312/hpg.20191190 6.

[Whi79] WHITTED, TURNER. “An Improved Illumination Model for
Shaded Display”. SIGGRAPH Comput. Graph. 13.2 (Aug. 1979), 14.
DOI: 10.1145/965103.807419 2.

[WMZ22] WALD, INGO, MORRICAL, NATE, and ZELLMANN, STEFAN.
“A Memory Efficient Encoding for Ray Tracing Large Unstructured
Data”. IEEE Transactions on Visualization and Computer Graphics 28.1
(2022), 583-592. DO1: 10.1109/TVCG.2021.3114869 2.

[WSBWO01] WALD, INGO, SLUSALLEK, PHILIPP, BENTHIN, CARSTEN,
and WAGNER, MARKUS. “Interactive Rendering with Coherent Ray
Tracing”. Computer Graphics Forum 20.3 (Sept. 2001), 153-165. DOL:
10.1111/1467-8659.00508 3, 4.

[WSWG13] WODNIOK, DOMINIK, SCHULZ, ANDRE, WIDMER, SVEN,
and GOESELE, MICHAEL. “Analysis of Cache Behavior and Perfor-
mance of Different BVH Memory Layouts for Tracing Incoherent Rays”.
Eurographics Symposium on Parallel Graphics and Visualization. The
Eurographics Association, 2013. DOI: 10.2312/EGPGV/EGPGV13/
057-064 4.

© 2024 The Authors.


https://developer.nvidia.com/rtx/ray-tracing/micro-mesh
https://developer.nvidia.com/rtx/ray-tracing/micro-mesh
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1016/c2013-0-15557-2
https://doi.org/10.1016/c2013-0-15557-2
https://doi.org/10.1145/37401.37417
https://doi.org/10.2312/egve.20231341
https://doi.org/10.2312/egve.20231341
https://doi.org/10.1109/TVCG.2004.1260763
https://doi.org/10.1109/TVCG.2004.1260763
https://doi.org/10.1007/s00371-018-1532-8
https://doi.org/10.2312/hpg.20191190
https://doi.org/10.1145/965103.807419
https://doi.org/10.1109/TVCG.2021.3114869
https://doi.org/10.1111/1467-8659.00508
https://doi.org/10.2312/EGPGV/EGPGV13/057-064
https://doi.org/10.2312/EGPGV/EGPGV13/057-064

