
TYPE Original Research

PUBLISHED 19 April 2024

DOI 10.3389/fninf.2024.1323203

OPEN ACCESS

EDITED BY

Dong Song,

University of Southern California, United

States

REVIEWED BY

Shuangming Yang,

Tianjin University, China

Georgios Detorakis,

Independent Researcher, Irvine, United States

*CORRESPONDENCE

Marvin Kaster

marvin.kaster@tu-darmstadt.de

RECEIVED 17 October 2023

ACCEPTED 27 March 2024

PUBLISHED 19 April 2024

CITATION

Kaster M, Czappa F, Butz-Ostendorf M and

Wolf F (2024) Building a realistic, scalable

memory model with independent engrams

using a homeostatic mechanism.

Front. Neuroinform. 18:1323203.

doi: 10.3389/fninf.2024.1323203

COPYRIGHT

© 2024 Kaster, Czappa, Butz-Ostendorf and

Wolf. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Building a realistic, scalable
memory model with independent
engrams using a homeostatic
mechanism

Marvin Kaster1*, Fabian Czappa1, Markus Butz-Ostendorf1,2 and

Felix Wolf1

1Laboratory for Parallel Programming, Department of Computer Science, Technical University of

Darmstadt, Darmstadt, Germany, 2Data Science, Translational Medicine and Clinical Pharmacology,

Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany

Memory formation is usually associated with Hebbian learning and synaptic

plasticity, which changes the synaptic strengths but omits structural changes.

A recent study suggests that structural plasticity can also lead to silent memory

engrams, reproducing a conditioned learning paradigm with neuron ensembles.

However, this study is limited by its way of synapse formation, enabling

the formation of only one memory engram. Overcoming this, our model

allows the formation of many engrams simultaneously while retaining high

neurophysiological accuracy, e.g., as found in cortical columns. We achieve

this by substituting the random synapse formation with the Model of Structural

Plasticity. As a homeostatic model, neurons regulate their activity by growing

and pruning synaptic elements based on their current activity. Utilizing synapse

formation based on the Euclidean distance between the neurons with a scalable

algorithm allows us to easily simulate 4 million neurons with 343 memory

engrams. These engrams do not interfere with one another by default, yet we

can change the simulation parameters to form long-reaching associations. Our

model’s analysis shows that homeostatic engram formation requires a certain

spatiotemporal order of events. It predicts that synaptic pruning precedes and

enables synaptic engram formation and that it does not occur as a mere

compensatory response to enduring synapse potentiation as inHebbian plasticity

with synaptic scaling. Ourmodel paves theway for simulations addressing further

inquiries, ranging from memory chains and hierarchies to complex memory

systems comprising areas with di�erent learning mechanisms.
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1 Introduction

Memory is a key ingredient in our thinking and learning process. However, the

understanding of learning and memories is still very limited. In 1921, Richard Semon

described the idea of a memory engram, the neurophysiological trace of a memory.

Nowadays, working memory is usually characterized by persistent neuron activity (Barak

and Tsodyks, 2014). Recent study (Fiebig and Lansner, 2017) modeled this persistent

activity with a partly plastic network and synaptic plasticity.

However, synaptic plasticity is limited to changing the weights of already existing

connections and prohibits the formation of new synapses between neurons. A memory

engram, e.g., in the form of a strongly interconnected group of neurons, could represent

an abstract memory. If we now want to form an association with another memory in

the form of a memory engram, we are limited to strengthening existing synapses with

synaptic plasticity alone. We cannot build an association if there is no or only sparse
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connectivity between these two engrams. Moreover, ignoring

structural plasticity limits the storage capacity of the brain

drastically (Chklovskii et al., 2004), and structural plasticity can

overcome both problems. An alternative for a model using only

synaptic plasticity is to use all-to-all connectivity, but this is

impractical for large networks. Additionally, recent study showed

that structural plasticity also plays an essential role in the biology

of memory formation (Butz et al., 2009; May, 2011; Holtmaat and

Caroni, 2016) and especially long-termmemory, on the other hand,

is usually characterized by silent synapses (Gallinaro et al., 2022).

While most structures (Kalisman et al., 2005; Mizrahi, 2007)

and synapses in the developed brain remain stable, there is

evidence that learning (Holtmaat and Svoboda, 2009) and sensory

input leads to an increased synapse turnover, growth of dendritic

spines, and axonal remodeling (Barnes and Finnerty, 2010). For

example, the alternate trimming of whisker hair of mice leads

to a changed sensory input and an increased dendritic spine

turnover (Trachtenberg et al., 2002), with 50% of the formed

spines becoming stable. Another example is the change in the

brain’s gray matter when adults learn juggling (Boyke et al.,

2008). Recently, it was proposed that synaptic plasticity plays

a vital role in memory consolidation (Butz et al., 2009; Caroni

et al., 2012; Holtmaat and Caroni, 2016). This is the process

of transmitting information from the short-term memory into

the long-term memory. First, learning increases the synaptic

turnover and the formation of vacant synaptic elements (Butz

et al., 2009; Holtmaat and Svoboda, 2009; Caroni et al., 2012).

Synaptic elements are dendritic spines and axonal boutons, which,

if unoccupied, generate potential synapses (Stepanyants et al.,

2002). Some potential synapses later materialize, forming actual

new synapses (Butz et al., 2009; Caroni et al., 2012). The correlation

between spine stabilization and the performance of animals in

tests (Xu et al., 2009) supports this hypothesis further. Moreover,

when newly formed synapses during training are impaired, the

performance of the animal decreases (Hayashi-Takagi et al., 2015),

indicating that the formation of new synapses is essential for

learning. However, how the learning process interacts with the

increased turnover and stabilization of specific spines, without

overall modification of the structures in the brain, remains

unclear (Caroni et al., 2012).

Dammasch (1990) proposed the idea of forming memory

engrams based on structural plasticity. Recently, Gallinaro et al.

(2022) developed a model that can form silent memory engrams

with only structural plasticity on a homeostatic basis. They showed

that a homeostatic rule implicitly models a Hebbian learning

rule and demonstrated this principle with a conditioned learning

paradigm. However, their model connects neurons uniformly at

random, making the simultaneous formation of clustered neurons

as distinct memory engrams impossible. The stimulation of

multiple memory engrams at once would lead to one single large

memory engram instead of multiple small ones, which differs from

the brain, where different regions are active simultaneously without

interfering with one another. We extended their work with a

more neurophysiological accurate approach by connecting neurons

depending on their distance and forming memory engrams

simultaneously.We simulated 4million neurons with 343 engrams,

enormously increasing the number of simulated neurons and

memory engrams simulated with homeostatic structural plasticity.

We showed that the engrams do not interfere with each other.

The structure of the model underlying our simulation draws

inspiration from the human cortex, which is organized in columns

further subdivided into minicolumns (Mountcastle, 1997). Each

of these minicolumns consists of excitatory pyramid cells that act

as a group for a specific feature depending on the cortex area.

For example, a minicolumn in the visual cortex represents the

orientation of an object in a visual field (Hubel and Wiesel, 1962).

The different minicolumns combined comprise a hypercolumn that

enables encoding all orientations for a certain spot on the retina.

Similar organizations can be found in the auditory cortex (Reale

and Imig, 1980) and the somatosensory cortex (Ruben et al., 2001).

The columns of higher associative cortices represent more complex

features such as colors (Hadjikhani et al., 1998), objects (López-

Aranda et al., 2009), or persons (Downing and Peelen, 2011). In

our study, we adopted the cortical organization of the associative

cortices, where complex features can be learned and represented in

a column. Hence, we split our network into boxes that represent a

column. Each column represents a feature that acts independently

from neighboring columns, and, therefore, all columns can be

active simultaneously. In our example with the visual cortex, two

neighboring columns encode an orientation for their field of view,

respectively, without interference.

Our contributions are:

• We increased the neurophysiological plausibility of

homeostatic memory models, which enables us to model

cortical-like structures.

• Our model maintains the introduced structure of the cortical

columns without additional constraints on how the neurons

can connect.

• We formed multiple ensembles in parallel without unwanted

interference between them. This is comparable to the brain

with its many concurrent activities.

2 Materials and methods

In the experiment, we followed the study by Gallinaro

et al. (2022), modeling a conditioned learning paradigm. In a

conditioned learning paradigm, a subject learns the relationship

between an unconditioned stimulus and a neutral stimulus. Before

the experiment, the subject shows an unconditioned reaction

to the unconditioned stimulus. During the experiment, both

unconditioned (e.g., food) and neutral stimuli (e.g., bell) are

presented simultaneously. After the experiment, the subject shows

the same previously unconditioned (now conditioned) reaction

(e.g., salivating) for the previously neutral (now conditioned)

stimulus. At the level of neuronal networks, we modeled a stimulus

by stimulating neurons and a reaction as the firing of a downstream,

so-called readout, neuron.We split the whole population into boxes

of equal side lengths and divided the neurons within each box

into four distinct neuron ensembles: Unconditioned stimulus (US),

conditioned stimulus 1 (C1), conditioned stimulus 2 (C2), and

the rest. We added a single readout neuron (R) to each box that
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FIGURE 1

Initial setup of our model network as a 2D simplification with 2× 2 boxes. We split the boxes into equally sized boxes and grouped a subset of

neurons from each box in three equally sized ensembles representing the unconditional stimulus (US), the first conditional stimulus (C1), and the

second conditional stimulus (C2). The neurons of the ensemble US are fully connected with an additional readout neuron (R). The remaining neurons

did not belong to any ensemble.

is fully connected to the neurons in the ensemble US with static

connections (Figure 1) to monitor the unconditioned reaction

of the network. With these neuron ensembles, we can model a

conditioned learning paradigm by representing a neuron ensemble

with a stimulus. Similar to the conditioned learning paradigm,

where an unconditioned learning stimulus is presented at the

same time as a conditioned stimulus and, therefore, learns a

relationship between them, the network shall learn a relationship

between US and C1 within each box. However, there should

be no relationship associated with C2 or across different boxes,

as C2 acts as our control ensemble. To accomplish this, we

stimulated the ensembles US and C1 together. We performed these

stimulations simultaneously for every memory that we wanted

to learn.

2.1 Model of structural plasticity

The Model of Structural Plasticity (MSP) (Butz and van

Ooyen, 2013) enables structural plasticity based on a homeostatic

mechanism. Each neuron controls its excitability and, therefore,

the number of synapses based on its calcium concentration, which

acts as a proxy for its firing rate. An approximation of MSP (Rinke

et al., 2018; Czappa et al., 2023) reduced the model’s computational

complexity from O(n2) to O(n log n), which enabled simulations

with up to 109 neurons. Using current technology, human-scale

simulations with 1011 neurons are possible in principle.We provide

all model parameters in Table 1.

2.1.1 Growth model

dCa

dt
=

{

−Ca
τ
+ β if neuron fires

−Ca
τ

otherwise
(1)

The calcium concentration that acts as a proxy for the firing

rate is described in Equation (1). It decreases over time with the

time constant τ and increases by β when the neuron fires. Based

on the calcium concentration, the number of synaptic elements

of a neuron grows or shrinks as described in Equations (2–4). It

depends on the growth rate ν, the current calcium concentration

Ca, the minimum calcium concentration η required to grow

synaptic elements, and the target calcium rate ǫ. Hence, if the

calcium concentration is higher than the target, the neuron prunes

synaptic elements; it grows new elements if the concentration is

lower than the target. We follow Butz and van Ooyen (2013) for

selecting our minimum calcium concentration ηaxon, ηden_ex, and

ηden_inh, where they showed that a high ηaxon and a low ηden
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TABLE 1 Parameters for the experiments.

Parameter Parameter description Value

µbackground Mean of the background activity 5

σbackground Standard deviation of the background

activity

2

θ Barnes–Hut acceptance criterion 0.3

τvac Retract ratio 100

ǫ Target calcium level 0.7

ηaxon Minimum calcium level to grow axons 0.4

ηden_ex Minimum calcium level to grow

excitatory dendrites

0.1

ηden_inh Minimum calcium level to grow

inhibitory dendrites

0

σ Gaussian scaling parameter 12

k Synapse conductance 3

τ Calcium decay constant 10,000

β Calcium intake 0.001

νaxon Growth rate of axons 0.0003

νden_ex Growth rate of excitatory dendrites 0.0006

νden_inh Growth rate of inhibitory dendrites 0.0006

aizh Izhikevich model parameter 0.1

bizh Izhikevich model parameter 0.2

cizh Izhikevich model parameter -65

dizh Izhikevich model parameter 2

matches the experimental data and enables functional remapping.

dz

dt
= ν

(

2 ∗ exp

(

−
(

Ca− ξ

ζ

)2
)

− 1

)

(2)

ξ =
η + ǫ

2
(3)

ζ =
η − ǫ

2
√
− ln(0.5)

(4)

2.1.2 Forming and pruning of synapses
Since we already determined how many synaptic elements

a neuron forms, we must now actually form synapses between

unbound synaptic elements or prune them if the number of grown

synaptic elements of a neuron is smaller than its actual synapses.

In the last case, we chose a synapse to prune uniformly at random

from all synapses of the neuron. Consequently, the synapse will

be removed from the source and target neuron, independently of

the number of grown synaptic elements of the partner neuron.

When we need to form a new synapse, we search for vacant

dendritic elements for every vacant axonal element. We choose

a target element randomly based on weighted probabilities. Each

target dendritic candidate is weighted with a probability based

on the distance between the positions xi of the neuron of the

inititaiting axonal element and the candidate’s neuron position xj,

as described in Equation (5). Note that the implementation uses an

approximation (Rinke et al., 2018; Czappa et al., 2023) so that it

does not need to calculate the probability for all candidates.

ki,j = exp

(

||xj − xi||22
σ 2

)

(5)

Synaptic elements that are not connected are removed over

time depending on the time constant τvac, as described in

Equation (6).

dvac

dt
= −

vac

τvac
(6)

2.1.3 Electrical activity
The electrical input I is the sum of three inputs: synaptic,

background, and stimulation, as described in Equation (7). The

synaptic input Equation (8) is calculated over all fired input

neurons j. Each of these synapses has a weight that of 1 for

excitatory input neurons or−1 for inhibitory ones and ismultiplied

by the fixed synapse conductance k. The sum over those products

for all input synapses of neuron j whose source neurons fired is

the synaptic input for j. Additionally, the neurons are driven by a

random, normally distributed background activity (Equation 9).

I = Isynaptic + Ibackground + Istimulation (7)

Isynaptic =
∑

j

k ∗ wj (8)

Ibackground ∼ N (µ, σ 2) (9)

2.2 Izhikevich model

We chose the Izhikevich model (Izhikevich, 2004) as our

neuron model because it enables modeling different spiking

patterns and strikes a good compromise between biological

accuracy and computational efficiency. We describe the membrane

potential in Equation 10, where k0, k1, and k2 are constants and u

is the membrane recovery variable as described in Equation 11. The

membrane recovery depends on the fixed parameters a, b, and c and

accounts for the hyperpolarization period of a neuron. Finally, we

assumed that a neuron spikes if the membrane potential reaches

30mV. Then, we reset the membrane potential and membrane

recovery variables according to Equation 12.

dv

dt
= k2v

2 + k1v+ k0 − u (10)

du

dt
= a(bv− u) (11)
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if v ≥ 30mV , then

{

v← c

u← u+ d
(12)

2.3 Network setup and stimulation

Unless noted otherwise, our network consisted of 337,500

neurons, each with 20% inhibitory and 80% excitatory neurons.We

distributed the neurons uniformly at random in a 3-dimensional

cubic space. We split the network into 3× 3× 3 = 27 equally sized

cubes with about 12,500 neurons each, following Gallinaro et al.

(2022). In each box, we grouped a part of the neurons into disjoint

ensembles of 333 excitatory neurons. We selected them randomly

from all neurons in the box. Figure 1 visualizes the setup as a 2D

example.

We started our network in a fully disconnected state and let it

build up the connectivity from scratch for 1,000,000 steps. In more

detail, the neurons received a normally distributed background

activity such that they have a certain baseline activity. As this

baseline is insufficient to reach the neurons’ target calcium level,

they grow synapses to connect to other neurons and receive more

input. When the neurons reach the target calcium level, they stop

growing synapses and they perform only small modifications to

their synapses due to the fluctuations in the input noise and the

resulting fluctuations in the neurons’ firing rate. In this state, the

network is in equilibrium, as every neuron is approximately at

its target calcium level, and only small modifications are made

to the network. We saved the newly formed network and used it

as a starting point for our experiment. Hence, we continued the

simulation with this network and waited for 150,000 steps until

the network stabilized itself. Then, we continued the simulation

with three stimulation phases similar to Gallinaro et al. (2022):

baseline, encoding, and retrieval. We performed all stimulations

for 2,000 steps with 20mV. In the baseline phase, we stimulated

all US ensembles in step 150,000, followed by all C1 ensembles

(250,000), and finally, all ensemble C2 (350,000). Note that US,

C1, and C2 were stimulated after each other, but all ensembles

of the same type across all boxes were stimulated at the same

time. The goal of this phase is to strengthen the connectivity

within each neuron ensemble. We selected the pause between the

stimulation so that the neurons’ calcium levels return to their

target level to ensure that there is no priming effect. Moreover,

the C2 ensemble acts as a control to counter a priming effect as

well as we would see an effect not only in US and C1 but also

in C2.

Then, in the encoding phase, we wanted to learn the

relationship between US and C1 and, therefore, stimulated all US

and C1 ensembles together in step 450,000 and all C2 ensembles in

step 550,000. The stimulation of the C2 ensembles alone acts as a

control against a priming effect. That would be the case when US

or C1 form connections to C2 despite it being stimulated alone.

Similar to the baseline phase, we stimulated the specified ensemble

types from each box at the same time.

Later, in the retrieval phase, we turned the plasticity off

so that no further modifications were possible. We did this to

see how the network behaves without any further modifications.

Here, we stimulated, beginning in step 650,000, all C1 ensembles

consecutively in isolation, one after the other, with a pause of 18,000

steps between them. Note that this is different from the previous

two phases, where we stimulated the same ensemble type (e.g., US)

from each box at the same time. In the end, we stimulated all C2

ensembles together at step 1,190,000 as a control. We expect that

the readout neuron of a box fires at an increased rate when we

stimulate C1 of the same box due to the learned relationship and

not if we stimulate the C2 ensembles. The protocol is visualized in

Figure 2A.

2.4 Validity check

To check the validity of our results, we needed to make an

assumption about the distribution of the neurons’ firing rate. We

hypothesized that the firing rates follow a normal distribution and

showed this with the Kolmogorov–Smirnov test. It calculates the

probability that the distribution of our data is not the same as

the given distribution to which we compare (in our case: normal

distribution). For this, we simulated the network that resulted

from our main experiment for 100,000 steps and recorded the

times the readout neurons fire. Then, we split the steps into

bins with the size of 1,000 steps and calculated the firing rate of

each readout neuron for each bin. As we hypothesized a normal

distribution, we calculated the mean and standard deviation for the

calculated firing rates. The histogram of the firing rates is shown

in Supplementary Figure 1. We applied the Kolmogorov–Smirnov

test (Massey Jr, 1951) to the calculated firing rates and retrieved a

p-value of 5.34 ∗ 10−6. As a value of p smaller than 0.05 can be

interpreted as non-significant, we can assume that our firing rates

are normally distributed.

Now, we can continue with our validity check by checking

the firing rate of the readout neuron during the retrieval phase

to ensure that the network behaves as expected. We assumed

that the firing rates follow a normal distribution and detect

abnormal behavior of the readout neuron when its firing rate

is significantly outside of the normal distribution. For it, we

used the 3-σ rule (Pukelsheim, 1994), as described in Equation

(13) with f as the firing rate of the readout neuron, µ as its

mean, and σ its standard deviation without any stimulation.

Approximately 99.7% of the normal firing rate lies within

the interval of three times the standard deviation around

the mean of the normal distribution of the firing rate. We

considered a firing rate outside of this interval for at least

500 steps to be significantly different from the normal firing

rate of the neuron when the network is in an uninfluenced

state.

f ∈ [0,µ− 3σ ) Significantly decreased firing rate

f ∈ [µ− 3σ ,µ+ 3σ ] Normal firing rate

f ∈ (µ+ 3σ , 1000] Significantly increased firing rate

(13)

We expected a readout neuron to fire at an increased rate if

• We stimulate its ensemble US during the baseline phase or,

• We stimulate its ensembles US and C1 during the encoding

phase, or
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FIGURE 2

Stimulation protocol and firing rates (y-axis) of all readout neurons plotted over time (x-axis). The vertical dashed lines represent the stimulation of

the ensembles US (blue), C1 (red), and C2 (brown). The gray lines and red line on the right represent single stimulations of C1. The readout neurons

fire at an increased rate when US is stimulated in the baseline and encoding phase. If the model successfully learns the relationship between the

ensembles US and C1 of the same box, neurons of ensemble US will also fire at an increased rate. (A) Stimulation protocol of the experiment. The

experiment is split into three stimulation phases: baseline, encoding, and retrieval. (B) Firing rates of all 27 readout neurons laid over each other. (C)

Firing rate of a single readout neuron. (D) Scatter plot when readout neurons fire at an increased rate. The 27 readout neurons are distributed along

the y-axis. A red dot indicates that a readout neuron fires at an increased rate. The stimulation of all US (blue), C1 (red), C2 (brown), and single C1

ensembles (gray) are marked with a vertical bar at the bottom.

• We stimulate its ensemble C1 during the retrieval phase.

It should not fire at an increased firing rate otherwise.

We allowed the increased firing rates to start (end) within

100ms of the start (end) of the associated stimulation to allow for

some variation in the neurons’ behavior.

2.5 Large-scale formation of memory
engrams

We successfully repeated the experiment with a larger network

to show how well our approach scales. Instead of 3 × 3 × 3 =
27 boxes, we split a larger network into 7 × 7 × 7 = 343
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boxes with a total of 343 · 12, 500 = 4, 287, 500 neurons and

stimulated the network following the same pattern as before.

We analyzed the firing rates of the readout neurons to check

whether they fired only when US was stimulated during the

baseline and encoding phases and only when C1 in the same

box was stimulated during the retrieval phase as described in

Section 2.4.

2.6 Advanced simulations

The following two experiments started with

the network that was stimulated as described in

Section 2.3 because they analyze the newly created

engrams.

2.6.1 Pattern completion
Gallinaro et al. (2022) showed that the stimulation of 50%

of the neurons of a single engram was necessary to increase the

activity of the rest of the engram; we will improve upon that

in both the necessary threshold and the technical contribution.

While we stimulated all neurons of ensemble C1 during the

retrieval in the previous experiment, we now show that it is

sufficient to stimulate only a subgroup of neurons in ensemble

C1 to trigger the readout neuron in the associated ensemble US.

Hence, after the previous learning experiment with 27 boxes, we

continued simulating the network, picked a single ensemble C1

from one box, and stimulated varying numbers of neurons. To

this end, we continued the simulation and waited for 60,000 steps

until the network stabilized. Then, we turned the plasticity off

and stimulated 5% randomly chosen neurons of the ensemble

C1 of the center box for 2,000 steps. After a pause of 98,000

steps, we added a further 5% randomly chosen neurons of

the ensemble to the stimulated neurons and stimulated them

again. We repeated this cycle until we stimulated 100% of the

ensemble.

2.6.2 Forming long-distance connections
During our main experiment, we wanted to build memory

engrams only within a box. Now, we want to show that we

can still form connections over long distances and therefore

combine memory engrams from different regions. For this,

we continued the simulation with a larger Gaussian scaling

parameter σdistant that makes connections over long distances

more probable. We selected two edge boxes on the opposite side

of the simulation area to maximize the distance. We waited for

150,000 steps so that the network could stabilize first. Then, we

stimulated the ensembles US and C1 from both boxes together

for 2,000 steps. After a pause, we turned the plasticity off

in step 250,000 and stimulated each ensemble C1 from the

boxes after each other with a pause of 8,000 steps between

them to check if the network learned the relationship between

the ensembles in the two boxes without interfering with other

boxes. As a last stimulation in the step 520,000, all of the

ensembles C2 were stimulated to check the response to the control

ensembles.

2.7 Ablation studies

We investigated how the network reacts to applied lesions. We

are interested in two cases: The loss of synapses and the loss of

neurons. For both cases, we continued the simulation from our

main experiment and applied the lesion after 150,000 steps. Then,

we waited 200,000 steps for the network to stabilize again so that

each neuron reached its calcium level again. In step 350,000, we

turned the plasticity off and stimulated all C1 ensembles after each

other and all C2 ensembles as described for the retrieval phase in

Section 2.3. We randomly selected a center of the lesion in each box

and selected a fraction of neurons that are closest to this center. In

step 150,000, we removed all connections from and to the selected

neurons. If we decided to lesion the neurons, we also removed them

from the network so they were not available for reconnecting their

synapses.

3 Results

This section is divided intomultiple parts.Wewill start with the

analysis of the process of the formation of a single memory engram.

Then, we will discuss the simultaneous formation of multiple

memory engrams. Finally, we provide the results of the large-scale

and advanced simulations.

3.1 Process of engram formation

Our experiment consists of three phases: baseline, encoding,

and retrieval. We started with the baseline phase. As described

in Section 2.3, the network was in a stable state with only minor

changes in the connectivity at the beginning of the baseline

phase (Figure 3) . At this point, the network’s connectivity was

random based on the neurons’ distances (Figure 4B). This phase

aims to form neuron ensembles with strong connectivity within

the ensemble. The additional stimulations resulted in an increased

firing rate (Figure 3A) of the neurons, which in consequence lead

to an increase in their calcium level and therefore to a pruning

of synapses (Figure 3B). After the stimulation ends, the firing rate

fell before its usual level due to the smaller synaptic input caused

by the pruning of synapses. Consequently, the neurons within the

ensemble started regrowing their synapses until they reached a

stable firing rate and calcium level as its target value. All neurons

within the ensemble regrew their synapses simultaneously and

are, therefore, looking for new synapse partners at the same time.

This high ratio of potential partners within the same ensemble

results in strong connectivity within this ensemble (Figure 3C). We

stimulated a single ensemble, such as US, from each box at the

same time. This and the property of forming new synapses based

on the distance of neurons result in a strong within-connectivity

of the ensemble in a box. After a short delay, we continued with

the second C1 ensembles, after another delay with C2 ensembles.

As a result, we had three strongly within-connected ensembles

in each box representing an engram (Figure 4C). We refer to the

study by Gallinaro et al. (2022) for details of this process. Figure 4

shows the process of reorganizing the connectivity during the entire

experiment.
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FIGURE 3

Mechanism of a single engram formation shown with a single ensemble group US. The stimulation in step 150,000 starts the engram formation. (A)

Intracellular Calcium (right y-axis) as an indicator for the average firing rate (left y-axis) of all neurons in a randomly selected example US ensemble.

The stimulation is visible as a high spike in the firing rate. This was followed by decreased activity caused by homeostatic network reorganization as

depicted in (B, C). (B) Changes in intracellular calcium triggered growth of synaptic elements of the neurons in the exemplary ensemble. The synaptic

elements decrease after the stimulation as calcium was higher than the homeostatic set-point and grew again afterwards when activities fell below

the set-point as a consequence of compensatory pruning of synapses. (C) Average connectivity of an exemplary ensemble to itself and other

neurons. As a consequence of the changing number of synaptic elements, we see a drop in the connectivity to neurons outside of the ensemble

directly after the stimulation which was slowly restored afterwards. Connectivity within the ensemble increased likewise.

Next, we continued with the encoding phase. In this phase, the

model learned the association between the memory ensembles US

and C1 within each box. For this, we stimulated the ensembles US

andC1 together. Consequently, the ensembles US andC1 in a single

box form many connections using the same mechanism as in the

baseline phase (Figure 4D).

Finally, in the retrieval phase, we checked if the model learned

the association between US and C1. The firing rate of an exemplary

single box’s readout neuron is visualized in Figure 2C. In addition

to the two spikes during the earlier phases when US was stimulated,

the readout neuron fired only at an increased rate when the

ensemble C1 from the same box was stimulated and not if we

stimulated our control ensemble C2 or any other ensemble from

another box.

3.2 Simultaneous formation of memory
engrams

Our network consisted of 3 × 3 × 3 = 27 boxes, each

with three ensembles: US, C1, and C2. By plotting the readout
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FIGURE 4

Left: Schematic illustration of the connectivity within a single box. Right: Heatmap of the neurons’ normalized number of input (row) and output

(column) connections of each ensemble (O), US, C1, and C2. Normalized with the size of the source and target ensemble.. (A) Visualization of the

network at the beginning with no connectivity besides the static connections to the readout neuron. (B) Visualization of the network after the growth

period with random connectivity. (C) Visualization of the network after the baseline phase with increased connectivity within each ensemble. (D)

Visualization of the network after the encoding phase showing that the learned relationship between US and C1 is brought about by an additional

increased connectivity between the ensembles C1 and US as marked in the heatmap with red dots.

neurons in Figures 2B, D, we show that the network learns the

relationships between US and C1 in each box and not between US

and C2. Without stimulation, the readout neurons fired at about

600Hz. All readout neurons fired at steps 150,000 and 450,000

with the maximal frequency of 1000Hz. This was followed by a

decrease of the firing rate to about 450Hz until it recovers to its

normal frequency of 600Hz. In step 150,000, we stimulated the US

ensembles directly connected to their readout neurons during the

baseline phase. During the stimulations of C1 in step 250,000 and

C2 in step 350,000, the readout neurons did not fire at an increased

rate compared to their baseline frequency. This shows that the

network works as desired because the unconditioned reaction is

shown after the unconditioned stimulus. Later, during the encoding

phase, the readout neurons fired again, as expected when US and

C1 were stimulated together in step 450,000 but not when C2

was stimulated in step 550,000. Finally, in the retrieval phase, we

stimulated the ensemble C1 from each box after each other. The

readout neuron of the same box fired when its ensemble C1 was

stimulated, indicating that the network learned the relationship

between US and C1 only within the same box but not beyond

box boundaries. The firing rates were lower than during the

stimulation in the encoding phase but still very distinguishable

from the rest of the activity. We noticed small spikes of some

readout neurons when another box was stimulated. However, the

stimulation of our control ensembles C2 still did not influence the

readout neurons.

The learned relationship between US and C1 in each box can

be explained with the newly formed connections, as visualized in

Figure 5. At the beginning of the simulation, all ensembles were

randomly connected (Figure 5A). After the baseline phase, the

connectivity within the ensembles increased, and the connectivity

between different ensembles decreased (Figure 5B). This increased

connectivity within ensembles indicates the formation of memory

engrams similar to Gallinaro et al. (2022). However, in contrast

to what they did, we stimulated all US and C1 ensembles

together only once instead of thrice. After the encoding phase,

the connectivity between the ensembles US and C1 in the same

box increases significantly, clarifying that the network learned

the relationship between US and C1 (Figure 5C). However, we

could observe a slightly increased connectivity between the

ensembles of neighboring boxes due to the connectivity probability

being based on the distance of neurons. This explains the

slightly increased activity of the readout neurons sometimes

when another box is stimulated. Furthermore, the C2 ensembles

formed connections primarly within their ensembles and did not

connect to neurons in other boxes or ensembles, confirming

that these control ensembles did not influence the learning

process.
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FIGURE 5

Connectivity between chosen ensembles in the network. From the top left box of the first layer (box 00) over the center box of the second layer (box

13) to the bottom right box of the last layer (box 26). (A) During baseline phase, before first stimulation at step 150,000, connectivity is randomly

distributed but predominantly remains within a box. (B) After baseline phase at step 450,000, connectivity has increased within each neuron

ensembles. (C) After the encoding phase at step 650,000, connectivity also increased between ensembles US and C1 within the same box.

3.3 Spatiotemporal dynamics of
homeostatic engram formation

We observe the average calcium level, grown axons and

excitatory dendrites, and the connectivity of the neurons over the

entire reorganization process for the ensembles US, C1, and C2

for an exemplary single box in Figure 6 to analyze the mechanism

behind the synaptic reorganization further. Moreover, we visualize

the average calcium level and, therefore, indirectly, the activity

of the neuron groups at different times in the context of the

growth curves for the different types of synaptic elements in

Figure 7A. Before the first stimulation in the encoding phase

of the ensembles US and C1, the calcium level of all groups

was around their target level (Figure 7A left). The values of the

growth curves for this activity level were at around zero as the

model is in an equilibrium state with only minor modifications

to the network, which is also visible in the almost constant

number of axons and dendrites, as illustrated in Figures 6C, D.

The connectivity between US and C1 was almost zero, as there

is no relationship between them yet. Instead, the connectivity

from within the ensemble US to external neurons was only high

for neurons outside of any ensemble just because of the higher

number of neurons not belonging to an ensemble compared

to the size of the ensembles C1 and C2. Next, we applied the

stimulation to the US and C1 ensembles (Figure 6 (0)), causing

their activity to increase and moving the calcium for these

ensembles to the right in Figure 7A (center). The values of the

ensembles’ growth curves were almost -1 for this calcium level,
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FIGURE 6

Homeostatic reorganization of neuron ensembles within a single box during the encoding phase. All graphs are averaged over all neurons of the

respective ensemble within a single box. We stimulated the ensembles US and C1 at step 450,000 (vertical red-blue line) and the ensemble C2 at step

550,000 (vertical brown line). Panels show the average intracellular calcium concentration (A), connectivity (B), amounts of excitatory dendritic

elements (C) and axonal elements (D). Networks are in a homeostatic equilibrium before first stimulation (0). After stimulation, activity of the

ensembles US and C1 is increased, resulting in pruning of synapses until calcium levels fall below the target value (1). Then, synaptic elements are

formed, and calcium level may rise again (2). Axonal and dendritic elements are simultaneously formed by neurons of ensembles US and C1, which

become available for synapse formation and explain the observed connectivity increase between these ensembles. The growth phase is followed by

a transient overshoot (3) and subsequent minor pruning until a homeostatic equilibirum is reached again (4). The stimulation of C2 (5) follows the

same trend [(5)-(9)] with the main di�erence that neurons from ensemble C2 are the only ones that grow axonal and dendritic elements at the same

time. The consequence is a massive increase of connections within the ensemble but not between C2 and ensemble US.

reducing the synaptic elements at maximum speed. Consequently,

the number of axons and dendrites and their connectivity started

decreasing.

After the stimulation ended, the calcium levels fell below their

target (Figure 6 (1)). The neurons started rebuilding their synapses

as soon as the calcium level dropped below its target level. The

decrease in the calcium level was slowed down until it reached its

lowest level (Figure 7A right, Figure 6 (2)). At this calcium level,

the ensembles US and C1 correspond to the spike of the growth

curve of the axons. The growth curves of the dendrites are lower but

still positive. Hence, the ensembles US and C1 build new synapses

fast, as shown in Figures 6C, D. As the ensembles US and C1 built

new synapses simultaneously, they formed their synapses to a large

degree between themselves, increasing connectivity between them

(Figure 6B). The fast formation of synapses caused the calcium level

to exceed its target (Figure 6 (3)) due to the increased synaptic input

and, therefore, led again to a slight reduction of synaptic elements.

In the end, the calcium levels of all groups returned to their set level

(Figure 7A bottom, Figure 6 (4)) and the connectivity as well as the

number of synaptic elements remained at a stable level. During the

entire stimulation and reorganization of the ensembles US and C1,

the calcium level, number of synaptic elements, and connectivity

of the control ensemble C2 remained unchanged. The reaction of

the ensemble C2 followed the same trend as the ensembles US

and C1 during and after its stimulation (Figure 6 (5)-(9)). As we

stimulate the ensemble C2 on its own, we see no effect on the other

ensembles.

When we look at the course of the calcium levels before

(Figure 7B left) and after (Figure 7B center) we removed all

connectivity between a group of neurons (Figure 7B), we observe

that the levels dropped from their target level for the lesioned

group of neurons. The decreased calcium level corresponds almost
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FIGURE 7

The average calcium level of groups of neurons of a single box (x-axis) with calcium-dependent growth curves (y-axis). (A) Calcium level before and

after the ensembles US and C1 were stimulated at step 450,000. Subsequentially, their calcium levels increased and growth curves caused synaptic

elements to decrease and synapses to prune. When stimulation stopped and synapses were pruned, activities and calcium levels, respectively,

dropped below the homeostatic set-point which, in turn, triggered the growth of synaptic elements and potentially also the growth of new synapses.

Note, that calcium levels below the set-point were in an optimal regime for axonal element formation while dendritic elements grew slower. A surplus

of axonal elements may result in more long-range connections while a prolongued growth of dendritic elements extended the phase in which new

engrams could form because it may take longer until activities return to a homeostatic set-point. (B) Average calcium levels during ablation studies in

which we removed connectivity of 50% of the neurons in a box. Directly after the stimulation, calcium levels of lesioned neurons dropped due to the

lack of input. As a result, the neurons start regrowing synaptic elements until enough synapses were formed to restore activity homeostasis. The

homeostatic reorganization is comparable to engram formation after stimulation in A. Note, that even for higher deletion rates neurons will return

average firing rates to the homeostatic set-point (data not shown) very much as in (B), however without functional recovery of trained engrams.

to the peak of the growth curve for axons (Figure 7B center),

meaning that axons were built at their maximum speed. Moreover,

dendrites were also built fast but not at their maximum speed.

As a result of the build-up of synaptic elements, the activity

and, therefore, the calcium levels of the lesioned neurons started

increasing until they reached their target level again (Figure 7B

right). The calcium level of the non-lesioned neurons remained

mostly unchanged. The rebuilding of the synaptic elements after

completely removing them for the lesioned neurons is similar

to rebuilding the synapses after the stimulation during the

conditioned learning experiment. This explains why the network

can only recover its learned relationships if all or a high ratio of the

lesioned neurons are part of the learned relationship. Otherwise,

the network expresses the same learning effect as before but

between all lesioned neurons regardless of the affiliation of the

neurons.

As we could observe, the synaptic reorganization in our

model always follows the same pattern. First, there is a loss

of connectivity either directly caused by a lesion or indirectly

caused by stimulation and the following pruning of synaptic

elements caused by the increased activity and the growth rule

of our model itself (Figure 6 (0)-(1)). In consequence, the

activity of the neurons decreases because of the smaller synaptic

input. Then, neurons start rebuilding the synapses, connecting

mostly among themselves (Figure 6 (1)-(4)). In the end, the

activity of the neurons returns to its initial level. This contrasts

Hebbian plasticity, where we cannot observe such a sequence of

events. Neurons with similar activity patterns, e.g., because of

stimulation, directly strengthen their connections. Strengthening

their connections makes it more likely that they fire together

and increase their activity. As they are now more likely to

fire together, Hebbian plasticity continues to strengthen their

synapses. This can lead to continuous strengthening of synapses

and increasing neuron activities with unbound synaptic weights.

Multiple counter mechanisms have been discussed (Chen et al.,

2013; Chistiakova et al., 2015; Fox and Stryker, 2017) to counter

the runaway activity of Hebbian plasticity. Integrating our model

of structural homeostatic plasticity with Hebbian plasticity could

also counter this problem. While most models are difficult

to observe in experiments, our model shows an observable

sequence of events during learning that could be tested in

experiments.
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3.4 Large-scale formation of memory
engrams

To show how well our approach scales, we repeated the

experiment with 343 boxes. We assessed that the network

behaves correctly for 341 readout neurons firing only with

a significantly increased rate when expected. Two readout

neurons behaved not as expected. One of the readout neurons

fired only at an increased rate for 1,400 steps instead of

the entire 2,000 steps of the stimulation of the associated

ensemble C1 during the retrieval phase. In contrast, the

other readout neuron fired at an increased rate for 500 steps

during the retrieval phase when another ensemble C1 was

stimulated.

3.5 Pattern completion

Wewant to see if our network can reactivate the learned pattern

if we stimulate it only partly. As we see in Supplementary Figure 2,

the firing rate of the corresponding readout neuron of US

increased with more stimulated neurons of C1 except for

the change between 0%–5%, 45%–50%, and 80%–85%, where

the firing rate decreased slightly. We considered a firing rate

larger than three times higher than its mean significantly

different from its baseline, as 99.7% of the baseline activity

lies within this interval (3 σ rule; Pukelsheim, 1994). This

was the case for 45% or more stimulated neurons of the

ensemble, concluding that at least 150 stimulated neurons are

necessary to increase the firing rate of the readout neuron

significantly.

Therefore, it is enough to stimulate 45% of the neurons of

the ensemble C1 to significantly reactivate the pattern so that

the readout neurons fire with a significantly increased firing rate.

This shows that we can also perform pattern completion over the

engram pairs C1 and US due to our high connectivity within a box.

3.6 Forming long-distance connections

As described in Equation 5, we can control the probability

with which neurons connect by adjusting the Gaussian scaling

parameter σ . We can connect engrams of different boxes when

we increase this scaling parameter after we have already formed

engrams within a box. To demonstrate this, we increased σ and

stimulated the ensembles US and C1 from two boxes together

and checked in the retrieval phase whether they formed a single,

interconnected engram. The firing rates are visualized in Figure 8.

We can see that the readout neurons of both boxes fired once we

stimulated them together in step 150,000 and during retrieval when

the C1 ensembles of both boxes were stimulated at different times.

Thus, we can connect engrams that were not associated before and

are distant from each other.

3.7 Ablation studies

To see if our model can recover from lesions, we visualize the

reaction of a single C1 ensemble to the deletion of all connections

from 50% of the neurons of the ensemble in Figure 9A. Initially,

the connectivity from neurons outside US and C1 was by far

the strongest. The connectivity from C1 to itself and US to C1

was approximately equal, ranging at about one connection per

neuron. We can immediately see the removed connections in

step 150,000 as the connectivity from all ensembles decreased

drastically. Then, every neuron received less input. Half of the

neurons in the ensemble received no synaptic input because we had

entirely disconnected them; the other half kept only connections to

neurons outside of the ensemble and among each other. As a result,

the calcium level started decreasing, and the neurons formed new

synapses to rebuild their connections.

However, the newly grown synapses connected differently

than the recently removed ones. The connectivity from US

to C1 was approximately only half as strong as before after

the network returned to an equilibrium. In exchange, the

connectivity from other neurons outside of US and C1 increased

slightly. Interestingly, the connectivity within C1 increased to

approximately 2, doubling the connectivity strength within the

ensemble. We can explain this behavior with the same effect

observed for the learning mechanism with the homeostatic model

in Section 3.1. All the neurons from which we removed the

connections rebuild their synapses simultaneously so that they

start looking for new partners simultaneously. This led to a huge

ratio of potential synapse partners within the ensemble. During

the retrieval phase at the end, all readout neurons fired at an

increased rate at the expected times when we stimulated the C1

of the corresponding box. Nevertheless, the rewiring caused three

readout neurons to fire at an increased rate when a C1 from another

box was stimulated.

In Figure 9B, we illustrate the reaction of the network when

we permanently apply a lesion to half of the neurons in C1

in step 150,000. A lesion in our model includes removing all

connections from and to the lesioned neuron and removing them

from the network so that no new connections can be formed. As

we completely removed the lesioned neurons from the network,

they were no longer considered when calculating the average

connectivity after step 150,000. Hence, we see a large decrease in

the total connectivity in average connectivity but not in the average

connectivity per neuron simply because of the decreased size of the

ensemble.

First, the average connectivity shifted immediately after the

lesion in step 150,000 because the remaining neurons have slightly

different average connectivity. Moreover, the average connectivity

from C1 to itself decreased slightly because a fraction of these

connections were to lesioned neurons and dropped out. The newly

freed synapses can connect instantly with neurons outside US and

C1. This leads to a small decrease in the firing rate, which could

be observed in the decrease in the average calcium level. Second,

the neurons regrew synapses to return to their target activity level.

In contrast to our network with only removed connections, mostly

the connectivity from neurons outside of US and C1 increased. This
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FIGURE 8

Firing rates of the two readout neurons from the boxes boxes that we stimulated to form long-distance connections. Both neurons fired at a rate of

1kHz when both ensembles were stimulated together. They also started firing together when only a single ensemble C1 was stimulated, indicating

that both boxes had formed a new engram. The blue (red) dashed line mark the stimulation of the ensemble US (C1) of the depending box. (A) Firing

rate of a read-out neuron located in the upper left box on the top side of the cubic simulation model [see inset (A)]. (B) Firing rate of a read-out

neuron in the right bottom box at the bottom side of the cubic simulation model [see inset (B)].

is caused by the much smaller fraction of potential synapse partners

from neurons within C1, as the lesioned neurons were not looking

for new synapse partners. Note that the average connectivity of

C1 after the lesions varied due to the randomness involved, as

we can see in the shift in the connectivity from other neurons to

C1. Other boxes may have different shifts and, therefore, different

initial conditions for regrowing their synapses, but all boxes had

in common that the connectivity within C1 was not or only slightly

strengthened. However, the connectivity from outside of US and C1

was strengthened. Nevertheless, the remaining connectivity from

C1 to US was still large enough to enable firing all readout neurons

at an increased rate during the retrieval phase.

We visualize the network’s connectivity if we remove all

connections from 30% of all neurons within a box regardless of

whether they are part of an ensemble in Figure 9C. The decrease

in connectivity in step 150,000 is visible for the connection from

US and C1. As the newly freed synapses reconnected immediately

to random neurons, we see an increase in the connectivity from

neurons outside of US and C1. This increase continued until the

neurons were satisfied with their input again. The connectivity

from US and C1 remained low as the probability of connecting

to these neurons is much smaller due to the small size of the

ensembles compared to the rest of the network. However, the

remaining connectivity was still sufficient to excite the readout

neurons enough during the retrieval phase so that they fired at an

increased rate.

If we removed the connections of even more neurons, as

visualized in Figure 9D, the trend was similar but to a larger

degree. More connections were removed and restructured mostly

to random neurons, leaving only a small number of connections

between US and C1. This was visible in the retrieval, and three

readout neurons did not fire at an increased rate when we removed

50% of the connections. When we removed all connections from

70% of the neurons (Figure 9E), the number of connections

between US and C1 was close to zero and, therefore, insufficient

to trigger an increased firing rate of the readout neurons in 19 out

of 27 boxes.

3.8 Memory capacity

We will take a closer look at the memory capacity of

our model. Fusi (2024) defined the memory capacity of a

neural network over the signal-to-noise ratio (SNR), with

which memories can be recalled and the number of stored

memories. Instead of measuring the neurons’ activity during

the memory recall, they observe the changes in the network

structure and assume that the changes happening in the
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FIGURE 9

Network response to simulated lesions over time (x-axis). Left: Average input connectivity per neuron for all non-lesioned neurons within a randomly

selected example ensemble C1. Input synapses originate from neurons of the same receiving ensemble (blue), from the ensemble US (yellow), or

from other ensembles (green) within the same box. The dotted line visualizes the average calcium level of all non-lesioned neurons (right y-axis). A

successful functional recovery would require re-formation of input connectivity from ensemble US. Right: Successful functional recovery indicated

by red dots meaning increased firing of readout neurons in the retrieval phase as in Figure 2D. Lack of increased firing is marked with a gray cross.

The stimulation of single C1 (all C2) ensembles is marked with a vertical gray (brown) bar at the bottom of each diagram. (A) Lesioned network

loosing the entire connectivity from 50% of the input neurons of ensemble C1. (B) Lesioned network in which 50% of the input neurons from the

ensemble C1 are completely removed from the network. (C) Lesioned network with input connectivity from 30% of randomly selected neurons from

the entire box is deleted. (D) Lesioned network as in C but with a deletion rate of 50%. (E) Lesioned network as in C but with a deletion rate of 70%.

network during learning represent a memory. Their model

uses synaptic plasticity; therefore, the changed synaptic weights

represent memory and the signal. When the network learns

more memories, synaptic weights are changed again, reducing

the ability to recognize the first memory of the network if it

overrides the same synaptic weights. In other words, adding

more memories reduces the SNR. This SNR can then be

interpreted as an upper bound of the memory capacity—an

upper bound because it cannot tell whether the network can

recall a memory, only whether its structure is still present in

the network, which is necessary but not sufficient. Their study

describes that memory is forgotten when its SNR falls below

a threshold.

Our model uses only structural plasticity, so we cannot

apply the same calculations directly. In our model, each neuron

has approximately the same number of synapses sneuron in the

equilibrium state. We first remove some of the existing synapses of

each stimulated neuron and their partners due to the stimulation.

Then, the synapses regrow in a structured way so that they encode

the newly created memory. The number of retraced and regrown

synapses per neuron is roughly the same for each stimulated neuron

that we call sengram with sengram ≤ sneuron. Similar to Fusi (2024), we

first calculate the memory signal that can be retrieved directly after

creating the memory. Each memory consists of nengram number

of neurons that we stimulate and recruit. This means that we

have sinit = nengram ∗ sengram synapses retracted and regrown that
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represent a single memory initially. As a result, we can express the

SNR of the memory in comparison to the noise of the network as

proportional to snrinit ∝ sinit/(ntotal ∗ sneuron). If we add additional

memory to the network, we remove and replace sinit synapses in our

network. A single synapse in ourmemory has the probability of q =
nengram/ntotal ∗ sengram/sneuron being removed. The first quotient

represents the probability that either the pre- or the postsynaptic

neuron belongs to the stimulated neurons, and the second quotient

is the probability of a single synapse from a single neuron belonging

to the deleted synapses. As a result, the number of synapses still

encoding our memory after t added memories is proportional to

sinit∗(1−q)t and the SNR is proportional to snr(t) ∝ snrinit∗(1−q)t .
We visualize the SNR for our model and different parameters

in Figure 10. A higher SNR indicates a better-recallable memory.

Our initial SNR depends on the number of neurons in the engram,

the number of synapses, and the total number of synapses in the

network. We can say that a larger memory—either by a larger

number of recruited neurons (Figure 10D) or a larger number of

belonging synapses (Figure 10B)—increases the initial SNR as we

have a lot of synapses (signal) compared to our noise. The larger

memory has the disadvantage that we can store fewer memories

in our network as synapses are more likely to be overwritten by

other synapses. This is visible in the faster fall of the SNR with

an increasing number of memories. In contrast, a smaller memory

has the disadvantage of an initial small SNR but the advantage of a

much slower decreasing SNR as we have more unrelated synapses

in our network. This behavior is similar to the plasticity–stability

tradeoff described by Fusi (2024), where an increase in synaptic

plasticity (e.g., by a large learning rate) allows faster learning

of memories but also faster forgetting. In conclusion, our SNR

depends on the ratio between the size of a memory compared to

the size of the network.

When we talk about large and small memories, we mean the

relative size of a memory in ratio to the network size. More

precisely, we measure the size of a memory as the total number of

synapses a memory occupies. Hence, the larger a memory is, the

higher the ratio of synapses out of the total number of synapses

in the network. A memory with the same number of synapses

is relatively smaller in a network with many neurons than in

a small network. Hence, we can increase the SNR of a single

memory either by increasing the number of total synapses per

memory or by decreasing the number of synapses in the network.

Again, the total number of synapses for either a single memory

or the entire network can be modified by changing either the

number of neurons (Figure 10A) or the number of synapses per

neuron (Figure 10C). The number of neurons in the network we

recruit for a single memory is a direct parameter we can modify in

our experiment. On the other hand, we can also indirectly influence

the number of synapses as it depends on the calcium level of the

neuron. Possible parameters that we can modify to increase the

number of synapses per neuron are the target calcium level η, the

parameters β and τ that influence the accumulation of the calcium

level, or the parameters ν and µ to influence the growth curve

of synaptic elements based on the calcium level. Additionally, if

we want to modify the number of synapses retracted and regrown

by the stimulation of a neuron, we can modify the stimulation

intensity or duration.

Moreover, the information storage capacity could be increased

by recruiting neurons to more than one ensemble. This can explain

how the human brain can learn many concepts and associations

with a limited number of neurons. In our simulations, neurons are

mostly in a single memory engram, but forming multiple engrams

in a single box with overlapping neurons could significantly

increase the number of engrams that can be simulated with the

same number of neurons.

4 Discussion

We could show that the Model of Structural Plasticity

(MSP) (Butz and van Ooyen, 2013) can form multiple and

non-interfering memory engrams in a recurrent and sparsely

connected network of spiking neurons. This is remarkable as MSP

does not aim to form associative memories. With MSP engram

formation solely results from the reciprocal interplay of altered

activity levels (after stimulation of selected neuronal ensembles and

caused by rewired network connectivity) with local homeostatic

morphogenetic changes of neurons (forming and deleting of axonal

and dendritic elements) and distance-dependent synapse formation

and deletion. Hence, MSP emulates associative memory formation

with distinct properties that distinguish it from pure Hebbian

synaptic plasticity.

4.1 Comparison between homeostatic
engram formation and synaptic
plasticity-driven learning models

In the human brain, synapses are formed only sparsely. With

synaptic plasticity alone, only the weights of these synapses can

be changed. This can be a problem if learning patterns require

strong connectivity between certain neurons, but their connectivity

is low (Knoblauch, 2017). Structural plasticity can overcome those

suboptimal connectivity patterns of sparsely connected networks

by forming new synapses between the required neurons (and

reducing cross-talk in neuronal assemblies by pruning synapses).

Moreover, this is an important property when the network needs

to learn an entirely new input or when the network needs to

recover from a partial lesion. Computational models with synaptic

plasticity avoid this problem either by all-to-all connectivity (Rolls

et al., 2013; Huang and Wei, 2021)—which is computationally

demanding on the one hand and not comparable to the brain

where connectivity is only sparse on the other hand—or they

require the creation of a fixed number of synapses between random

neurons (Szatmáry and Izhikevich, 2010; Savin and Triesch, 2014;

Fiebig and Lansner, 2017) at the beginning, limiting the ability to

form memories between neuron pairs drastically. Our approach

overcomes this limitation, allowing the forming of connections

between all neurons and influencing the range over which neurons

connect by changing our Gaussian probability parameter σ .

If we repeat our experiment with only synaptic plasticity with

all-to-all connectivity instead of structural plasticity, we would

need n ∗ (n − 1) synapses, where n is the number of neurons

in our network. Our network of 27 boxes consists of 337,500
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FIGURE 10

The signal-to-noise ratio (SNR) of our model with varying parameters for an increasing number of stored memories in the network. The orange line

visualizes the SNR of the model used in our main experiment with 27 boxes. The blue and green lines visualize the change in the SNR by decreasing

(blue) or increasing (green) a single parameter. (A) SNR with varying numbers of total neurons in the network. (B) SNR with varing number of synapses

overwritten per neuron in the engram. (C) SNR with varying numbers of synapses per neuron. (D) SNR with varying numbers of neurons per engram.

neurons and 3,009,795 synapses. With all-to-all connectivity, each

neuron would need 337,499 synapses compared to our model’s

average of 9 synapses, resulting in 113,905,912,500 synapses. If we

compare the numbers of our large-scale experiment with 343 boxes

and 4,287,500 neurons, we see that while our final network had

38,296,669 synapses, all-to-all connectivity would require about

1013 synapses. Even if we connect only a tiny fraction of neuron

pairs with synapses, simulating such a large number of synapses

is impractical, and the quadratic dependency of the number of

synapses on the number of neurons limits the size of the network

enormously. In contrast, our network’s synapses grow linearly with

the number of neurons; as in our homeostatic model, each neuron

aims for the same number of synapses.

An alternative approach could use neuromorphic computing,

where specialized hardware circuits are used for the simulations

with spiking neuronal networks instead of general-purpose CPUs.

This enables optimizations for neuron simulations in the form of

power usage, parallelism, and speed. The hardware architectures

range from hybrid systems with FPGAs (Park et al., 2016),

analog circuits, ASICs (Davies et al., 2018) to massively parallel

supercomputers (Furber et al., 2014). A considerable advantage

is the parallel simulation of neurons through direct hardware

support, e.g., having a separate circuit for each neuron. The

platforms differ in the way that they transmit spikes between

the neurons. They can be transmitted over buses (Mortara

et al., 1995), grids (Merolla et al., 2007), or special routing

networks (Yang et al., 2021b). Synaptic plasticity is also supported

by many platforms enabling fast learning (Yang et al., 2021a).

These platforms are built biologically motivated, mimicking

some aspects of the brain architectures, e.g., a cerebellum

network for motor learning (Yang et al., 2021c), dendritic

on-line learning (Yang et al., 2023b), and context-dependent

learning (Yang et al., 2021a). Based on the platform for context-

dependent learning, a real-world application for smart traffic

systems was developed (Yang et al., 2023a). Moreover, recent

studies showed that structural plasticity can be modeled on

some of these platforms (Bogdan et al., 2018; Billaudelle et al.,

2021). Our approach, which enormously decreases the required

number of synapses, could benefit from a neuromorphic platform

implementation with an adaptable routing system to further

increase its scalability.

4.2 Biological implications

We showed that the Model of Structural Plasticity enables the

simultaneous formation of multiple memory engrams. We saw

clear, distinct spikes during the retrieval phase, indicating that the

network learned the relationship between the ensembles US and

C1. However, the firing rate of the readout neurons was lower

than during the direct stimulation of US with 1kHz. Moreover,

while confirming the general neurophysiological conclusions by
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Gallinaro et al. (2022), we demonstrated them at a much greater

scale—with a network of 4,287,500 neurons and 343 ensemble

pairs. And given the favorable scaling properties of the underlying

algorithm, we see no obvious limit to further increases.

Our ablation studies showed that the memory engrams are

resistant. If a loss of connections affected only neurons within the

memory engram, it could recover from it and even strengthen its

connections. Even a lesion of 50% of the neurons did not lead

to forgetting a memory as the connectivity between the memory

ensemble was still high enough. This implies some inherent reserve

capacity in cortical connectivity (as currently being discussed

for Alzheimer’s disease Teipel et al., 2016). If exceeded and

connectivity dropped below a critical level, the network would not

regrow the connections. As a result, memory engrams may not be

recovered.

For this reserve capacity, distant connections may also play a

role. Moreover, forming synapses in a distant-dependent manner

enables the simulation of ongoing neuron activity in different

brain areas without interference. Without this property, all of our

ensembles, US and C1, would connect to each other, forming

a single large memory engram instead of various smaller ones.

Nevertheless, engrams can be largely distributed over the brain

brought about by the Gaussian scaling parameter σ . An increment

of σ would be comparable with a phase in which the subject learns

a new concept and increases plasticity in the brain. This could

be comparable to the release of proteins during learning phases

that allow higher plasticity in the brain (Poo, 2001; Lamprecht and

LeDoux, 2004). Another possibility is to model different types of

neurons with different σ to ensure that some neurons can project

into other brain areas while others project only locally to their direct

neighbors.

4.3 Comparison with modular organization
of cortical and hippocampal networks

The organization of our 3D model in distinct boxes is

comparable to the modular organization of the cortex in columns

and hyper-columns (Hubel and Wiesel, 1962; Mountcastle, 1997).

One concept is learned in one box very much within a single

module of the associative cortices in the brain. However, our model

can still learn relationships between more than one box. These

memory engrams do not influence the local memory engrams

within a box comparable to the human brain, where inactive

memories remain unchanged while non-associated memories are

active.

Another view on ourmodel is its similarity to the hippocampus,

which is an essential area in memory formation (Squire et al.,

2004) and shows structural changes during learning (Leuner

et al., 2003; Groussard et al., 2010; Leuner and Gould, 2010).

Declarative and spatial memory are often associated with the

hippocampus (Eichenbaum and Cohen, 2014; Deuker et al., 2016;

Eichenbaum, 2017). Spatial memory enables us to navigate and

capture the relation of locations. It was originally suspected that

the brain consists of a spatial allocentric map that would allow a

mapping of locations in an absolute coordinate system (Tolman,

1948; O’keefe and Nadel, 1979; O’Keefe, 1991), but later research

discarded this idea (Eichenbaum et al., 1999). Nevertheless, place

cells have been found in the hippocampus of humans and rats

that are active when the subject is at a certain location (O’Keefe

and Dostrovsky, 1971; Hill and Best, 1981; Thompson and Best,

1989; Eichenbaum et al., 1999; Moser et al., 2008). These place cells

allow reliable location detection but are not spatially distributed

in the hippocampus. However, place cells of the same or nearby

location tend to cluster (Eichenbaum et al., 1989), and the distance

between these place cells correlates with the real-world locations

they represent (O’Keefe and Burgess, 1996). Neurons representing

similar concepts, such as similar locations, are often located close

to each other. Other examples can be found in the retinotopic

organization of the visual cortex (Hubel and Wiesel, 1962; Tusa

et al., 1979) and the cerebral cortex (Penfield and Rasmussen, 1950).

This is similar to our model, where engrams are more likely to

form locally, leading to a clustering of neurons forming an engram.

In our model, one box represents a concept comparable to a place

field. With our simulation, we could show that it is possible to form

these place cells by simultaneous stimulation comparable to long-

term potentation (Teyler and DiScenna, 1987). When rats were

placed in a new environment, within minutes, new place cells were

activated in the hippocampus and recruited so that they could be

recalled weeks later (Rotenberg et al., 1996; Lever et al., 2002). Our

model explains this process through the increased activity of the

neurons, which leads to a locally limited cluster formation. Only a

small cue, such as a perceived environmental one or the recall of

the location in the imagination, can reactivate the cluster of place

cells (O’Keefe and Conway, 1978). This is similar to our model,

where only a partial activation of the unconditioned stimulus

(similar to an environmental cue) leads to the reactivation of the

conditioned stimulus.

4.4 Predictions on the nature of
homeostatic engram formation

Our modeling approach predicts that pruning of synapses

is an integral part of homeostatic engram formation and does

not occur as mere compensatory response to enduring synapse

potentiation associated with memory formation (as in Hebbian

plasticity with synaptic scaling Turrigiano, 2008 as synaptic

homeostasis rule) but, in fact, precedes and first enables associative

synapse formation. Homeostatic engram formation requires a

certain spatiotemporal order and availability of vacant axonal

and dendritic elements for synapse formation. If vacant synaptic

elements are not available in certain ensembles, learning or re-

learning of engrams may fail. This is particularly seen in ablation

studies and clearly distinguishes homeostatic engram formation

from associative Hebbian learning, in which the formation of new

engrams merely depends on the coincidence or temporal order

of input signals. Homeostatic engram formation can further be

boosted by inhibition opening up critical periods for amplified

synapse formation (Rinke et al., 2017) and possibly also for

engram formation (still to be shown computationally). With this,

the present modeling approach provides a number of testable

predictions on the nature of homeostatic engram formation.
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4.5 Conclusion

We believe that our approach lays the foundation for the

understanding of more complex memory systems. We could show

that the homeostatic engram formation and functional recovery

from lesions trigger a neuronal growth mechanism (implemented

as homeostatic growth rules) and, hence, may recapitulate neural

development. As we have further demonstrated, we can form

engrams locally within a box as well as over longer distances

by adapting the Gaussian scaling parameter σ . In addition to

the already discussed recruiting of neurons in multiple engrams,

we could build associations between multiple engrams locally or

distribute them across the network. This would be an important

extension because memories in the brain do not exist in a

single one-to-one relationship but rather depend on many other

memories. Another possibility is to build a memory hierarchy with

directed associations where one memory engram activates another

but not the other way around. In that case, an abstract concept

represented as a memory engram is more strongly associated with

another than vice versa. A combination of these extensions would

enable the building of a more complex memory system.
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Gallinaro, J. V., Gašparović, N., and Rotter, S. (2022). Homeostatic control of
synaptic rewiring in recurrent networks induces the formation of stable memory
engrams. PLoS Comput. Biol. 18, 1009836. doi: 10.1371/journal.pcbi.1009836

Groussard, M., La Joie, R., Rauchs, G., Landeau, B., Chetelat, G., Viader, F., et
al. (2010). When music and long-term memory interact: effects of musical expertise
on functional and structural plasticity in the hippocampus. PLoS ONE 5, e13225.
doi: 10.1371/journal.pone.0013225

Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P., and Tootell, R. B. (1998).
Retinotopy and color sensitivity in human visual cortical area v8. Nat. Neurosci. 1,
235–241. doi: 10.1038/681

Hayashi-Takagi, A., Yagishita, S., Nakamura, M., Shirai, F., Wu, Y. I., Loshbaugh, A.
L., et al. (2015). Labelling and optical erasure of synaptic memory traces in the motor
cortex. Nature 525, 333–338. doi: 10.1038/nature15257

Hill, A. J., and Best, P. J. (1981). Effects of deafness and blindness on the
spatial correlates of hippocampal unit activity in the rat. Exp. Neurol. 74, 204–217.
doi: 10.1016/0014-4886(81)90159-X

Holtmaat, A., and Caroni, P. (2016). Functional and structural underpinnings
of neuronal assembly formation in learning. Nat. Neurosci. 19, 1553–1562.
doi: 10.1038/nn.4418

Holtmaat, A., and Svoboda, K. (2009). Experience-dependent structural
synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658.
doi: 10.1038/nrn2699

Huang, Q.-S., and Wei, H. (2021). A computational model of working memory
based on spike-timing-dependent plasticity. Front. Comput. Neurosci. 15, 630999.
doi: 10.3389/fncom.2021.630999

Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106.
doi: 10.1113/jphysiol.1962.sp006837

Izhikevich, E. (2004). Which model to use for cortical spiking neurons? IEEE Trans.
Neural Netw. 15, 1063–1070. doi: 10.1109/TNN.2004.832719

Kalisman, N., Silberberg, G., and Markram, H. (2005). The neocortical microcircuit
as a tabula rasa. Proc. Nat. Acad. Sci. 102, 880–885. doi: 10.1073/pnas.0407088102

Knoblauch, A. (2017). “Chapter 17 - impact of structural plasticity on memory
formation and decline,” The Rewiring Brain, eds. A. van Ooyen, andM. Butz-Ostendorf
(San Diego: Academic Press), 361–386.

Lamprecht, R., and LeDoux, J. (2004). Structural plasticity and memory. Nat. Rev.
Neurosci. 5, 45–54. doi: 10.1038/nrn1301

Leuner, B., Falduto, J., and Shors, T. J. (2003). Associative memory formation
increases the observation of dendritic spines in the hippocampus. J. Neurosci. 23,
659–665. doi: 10.1523/JNEUROSCI.23-02-00659.2003

Leuner, B., and Gould, E. (2010). Structural plasticity and hippocampal function.
Annu. Rev. Psychol. 61, 111–140. doi: 10.1146/annurev.psych.093008.100359

Lever, C., Wills, T., Cacucci, F., Burgess, N., and O’Keefe, J. (2002). Long-term
plasticity in hippocampal place-cell representation of environmental geometry. Nature
416, 90–94. doi: 10.1038/416090a

López-Aranda, M. F., López-Téllez, J. F., Navarro-Lobato, I., Masmudi-Martín,
M., Gutiérrez, A., and Khan, Z. U. (2009). Role of layer 6 of v2 visual cortex in
object-recognition memory. Science. 325, 87–89. doi: 10.1126/science.1170869

Massey Jr, F. J. (1951). The kolmogorov-smirnov test for goodness of fit. J. Am. Stat.
Assoc. 46, 68–78. doi: 10.1080/01621459.1951.10500769

May, A. (2011). Experience-dependent structural plasticity in the adult human
brain. Trends Cogn. Sci. 15, 475–482. doi: 10.1016/j.tics.2011.08.002

Merolla, P. A., Arthur, J. V., Shi, B. E., and Boahen, K. A. (2007). Expandable
networks for neuromorphic chips. IEEE Trans. Circuits Syst. I: Regular Papers 54,
301–311. doi: 10.1109/TCSI.2006.887474

Mizrahi, A. (2007). Dendritic development and plasticity of adult-born neurons in
the mouse olfactory bulb. Nat. Neurosci. 10, 444–452. doi: 10.1038/nn1875

Mortara, A., Vittoz, E. A., and Venier, P. (1995). A communication scheme
for analog vlsi perceptive systems. IEEE J. Solid-State Circuits 30, 660–669.
doi: 10.1109/4.387069

Moser, E. I., Kropff, E., and Moser, M.-B. (2008). Place cells, grid cells,
and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89.
doi: 10.1146/annurev.neuro.31.061307.090723

Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain 120,
701–722. doi: 10.1093/brain/120.4.701

O’Keefe, J. (1991). An allocentric spatial model for the hippocampal cognitive map.
Hippocampus 1, 230–235. doi: 10.1002/hipo.450010303

O’Keefe, J., and Burgess, N. (1996). Geometric determinants of the place fields of
hippocampal neurons. Nature 381, 425–428. doi: 10.1038/381425a0

O’Keefe, J., and Conway, D. H. (1978). Hippocampal place units in the
freely moving rat: why they fire where they fire. Experim. Brain Res. 31:, -590.
doi: 10.1007/BF00239813

O’Keefe, J., and Dostrovsky, J. (1971). The hippocampus as a spatial map:
preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–5.
doi: 10.1016/0006-8993(71)90358-1

O’keefe, J., and Nadel, L. (1979). Précis of o’keefe & nadel’s the hippocampus
as a cognitive map. Behav. Brain Sci. 2, 487–494. doi: 10.1017/S0140525X000
63949

Park, J., Yu, T., Joshi, S., Maier, C., and Cauwenberghs, G. (2016). Hierarchical
address event routing for reconfigurable large-scale neuromorphic systems. IEEE trans.
Neural netw. Learn. Syst. 28, 2408–2422. doi: 10.1109/TNNLS.2016.2572164

Penfield, W., and Rasmussen, T. (1950). The cerebral cortex of man; a
clinical study of localization of function. J. Am. Med. Assoc. 144, 1412–1412.
doi: 10.1001/jama.1950.02920160086033

Poo,M. (2001). Neurotrophins as synaptic modulators.Nat. Rev. Neurosci. 2, 24–32.
doi: 10.1038/35049004

Pukelsheim, F. (1994). The three sigma rule. Am. Stat. 48, 88–91.
doi: 10.1080/00031305.1994.10476030

Reale, R. A., and Imig, T. J. (1980). Tonotopic organization in auditory cortex of the
cat. J. Comparat. Neurol. 192, 265–291. doi: 10.1002/cne.901920207

Rinke, S., Butz-Ostendorf, M., Hermanns, M. A., Naveau, M., andWolf, F. (2018). A
scalable algorithm for simulating the structural plasticity of the brain. J. Parallel Distrib.
Comput. 120, 251–266. doi: 10.1016/j.jpdc.2017.11.019

Rinke, S., Naveau, M., Wolf, F., and Butz-Ostendorf, M. (2017). “Chapter 8 -
critical periods emerge from homeostatic structural plasticity in a full-scale model of
the developing cortical column,” in The Rewiring Brain, eds. A. van Ooyen, and M.
Butz-Ostendorf (San Diego: Academic Press), 177–201.

Rolls, E. T., Dempere-Marco, L., and Deco, G. (2013). Holding multiple
items in short term memory: a neural mechanism. PLoS ONE 8, e61078.
doi: 10.1371/journal.pone.0061078

Frontiers inNeuroinformatics 20 frontiersin.org

https://doi.org/10.3389/fninf.2024.1323203
https://doi.org/10.1038/nrn3258
https://doi.org/10.1523/JNEUROSCI.5088-12.2013
https://doi.org/10.3389/fncom.2015.00089
https://doi.org/10.1038/nature03012
https://doi.org/10.1016/j.jpdc.2022.09.001
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.7554/eLife.16534
https://doi.org/10.1080/17588928.2011.582945
https://doi.org/10.1016/j.neuron.2017.06.036
https://doi.org/10.1016/j.neuron.2014.07.032
https://doi.org/10.1016/S0896-6273(00)80773-4
https://doi.org/10.1523/JNEUROSCI.09-08-02764.1989
https://doi.org/10.1523/JNEUROSCI.1989-16.2017
https://doi.org/10.1098/rstb.2016.0413
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1371/journal.pcbi.1009836
https://doi.org/10.1371/journal.pone.0013225
https://doi.org/10.1038/681
https://doi.org/10.1038/nature15257
https://doi.org/10.1016/0014-4886(81)90159-X
https://doi.org/10.1038/nn.4418
https://doi.org/10.1038/nrn2699
https://doi.org/10.3389/fncom.2021.630999
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1073/pnas.0407088102
https://doi.org/10.1038/nrn1301
https://doi.org/10.1523/JNEUROSCI.23-02-00659.2003
https://doi.org/10.1146/annurev.psych.093008.100359
https://doi.org/10.1038/416090a
https://doi.org/10.1126/science.1170869
https://doi.org/10.1080/01621459.1951.10500769
https://doi.org/10.1016/j.tics.2011.08.002
https://doi.org/10.1109/TCSI.2006.887474
https://doi.org/10.1038/nn1875
https://doi.org/10.1109/4.387069
https://doi.org/10.1146/annurev.neuro.31.061307.090723
https://doi.org/10.1093/brain/120.4.701
https://doi.org/10.1002/hipo.450010303
https://doi.org/10.1038/381425a0
https://doi.org/10.1007/BF00239813
https://doi.org/10.1016/0006-8993(71)90358-1
https://doi.org/10.1017/S0140525X00063949
https://doi.org/10.1109/TNNLS.2016.2572164
https://doi.org/10.1001/jama.1950.02920160086033
https://doi.org/10.1038/35049004
https://doi.org/10.1080/00031305.1994.10476030
https://doi.org/10.1002/cne.901920207
https://doi.org/10.1016/j.jpdc.2017.11.019
https://doi.org/10.1371/journal.pone.0061078
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Kaster et al. 10.3389/fninf.2024.1323203

Rotenberg, A., Mayford, M., Hawkins, R. D., Kandel, E. R., and Muller, R.
U. (1996). Mice expressing activated camkii lack low frequency ltp and do not
form stable place cells in the ca1 region of the hippocampus. Cell 87, 1351–1361.
doi: 10.1016/S0092-8674(00)81829-2

Ruben, J., Schwiemann, J., Deuchert, M., Meyer, R., Krause, T., Curio, G., et al.
(2001). Somatotopic organization of human secondary somatosensory cortex. Cereb.
Cortex 11, 463–473. doi: 10.1093/cercor/11.5.463

Savin, C., and Triesch, J. (2014). Emergence of task-dependent
representations in working memory circuits. Front. Comput. Neurosci. 8, 57.
doi: 10.3389/fncom.2014.00057

Squire, L. R., Stark, C. E., and Clark, R. E. (2004). The medial temporal lobe. Annu.
Rev. Neurosci. 27, 279–306. doi: 10.1146/annurev.neuro.27.070203.144130

Stepanyants, A., Hof, P. R., and Chklovskii, D. B. (2002). Geometry
and structural plasticity of synaptic connectivity. Neuron 34, 275–288.
doi: 10.1016/S0896-6273(02)00652-9

Szatmáry, B., and Izhikevich, E.M. (2010). Spike-timing theory of workingmemory.
PLoS Comput. Biol. 6, e1000879. doi: 10.1371/journal.pcbi.1000879

Teipel, S., Grothe, M. J., Zhou, J., Sepulcre, J., Dyrba, M., Sorg, C., et al. (2016).
Measuring cortical connectivity in alzheimer’s disease as a brain neural network
pathology: toward clinical applications. J. Int. Neuropsychological Society 22, 138–163.
doi: 10.1017/S1355617715000995

Teyler, T. J., and DiScenna, P. (1987). Long-term potentiation. Annu. Rev. Neurosci.
10, 131–161. doi: 10.1146/annurev.ne.10.030187.001023

Thompson, L., and Best, P. (1989). Place cells and silent cells in
the hippocampus of freely-behaving rats. J. Neurosci. 9, 2382–2390.
doi: 10.1523/JNEUROSCI.09-07-02382.1989

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychol. Rev. 55, 189.
doi: 10.1037/h0061626

Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes, J. R., Welker, E., et al.
(2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult
cortex. Nature 420, 788–794. doi: 10.1038/nature01273

Turrigiano, G. G. (2008). The self-tuning neuron: synaptic scaling of excitatory
synapses. Cell 135, 422–435. doi: 10.1016/j.cell.2008.10.008

Tusa, R., Rosenquist, A., and Palmer, L. (1979). Retinotopic organization of areas 18
and 19 in the cat. J. Comparat, Neurol, 185, 657–678. doi: 10.1002/cne.901850405

Xu, T., Yu, X., Perlik, A. J., Tobin, W. F., Zweig, J. A., Tennant, K., et al. (2009).
Rapid formation and selective stabilization of synapses for enduring motor memories.
Nature 462, 915–919. doi: 10.1038/nature08389

Yang, S., Tan, J., Lei, T., and Linares-Barranco, B. (2023a). Smart traffic navigation
system for fault-tolerant edge computing of internet of vehicle in intelligent
transportation gateway. IEEE Trans. Intellig. Transport. Syst. 24, 13011–13022.
doi: 10.1109/TITS.2022.3232231

Yang, S., Wang, H., Pang, Y., Azghadi, M. R., and Linares-Barranco, B. (2023b).
Nadol: Neuromorphic architecture for spike-driven online learning by dendrites. IEEE
Trans. Biomed. Circuits Syst. 18, 186–199. doi: 10.1109/TBCAS.2023.3316968

Yang, S., Wang, J., Deng, B., Azghadi, M. R., and Linares-Barranco, B.
(2021a). Neuromorphic context-dependent learning framework with fault-
tolerant spike routing. IEEE Trans. Neural Netw. Learn. Syst. 33, 7126–7140.
doi: 10.1109/TNNLS.2021.3084250

Yang, S., Wang, J., Hao, X., Li, H., Wei, X., Deng, B., et al. (2021b). Bicoss: toward
large-scale cognition brain with multigranular neuromorphic architecture. IEEE Trans.
Neural Netw. Learn. Syst. 33, 2801–2815. doi: 10.1109/TNNLS.2020.3045492

Yang, S., Wang, J., Zhang, N., Deng, B., Pang, Y., and Azghadi, M. R.
(2021c). Cerebellumorphic: large-scale neuromorphic model and architecture for
supervised motor learning. IEEE Trans. Neural Netw. Learn. Syst. 33, 4398–4412.
doi: 10.1109/TNNLS.2021.3057070

Frontiers inNeuroinformatics 21 frontiersin.org

https://doi.org/10.3389/fninf.2024.1323203
https://doi.org/10.1016/S0092-8674(00)81829-2
https://doi.org/10.1093/cercor/11.5.463
https://doi.org/10.3389/fncom.2014.00057
https://doi.org/10.1146/annurev.neuro.27.070203.144130
https://doi.org/10.1016/S0896-6273(02)00652-9
https://doi.org/10.1371/journal.pcbi.1000879
https://doi.org/10.1017/S1355617715000995
https://doi.org/10.1146/annurev.ne.10.030187.001023
https://doi.org/10.1523/JNEUROSCI.09-07-02382.1989
https://doi.org/10.1037/h0061626
https://doi.org/10.1038/nature01273
https://doi.org/10.1016/j.cell.2008.10.008
https://doi.org/10.1002/cne.901850405
https://doi.org/10.1038/nature08389
https://doi.org/10.1109/TITS.2022.3232231
https://doi.org/10.1109/TBCAS.2023.3316968
https://doi.org/10.1109/TNNLS.2021.3084250
https://doi.org/10.1109/TNNLS.2020.3045492
https://doi.org/10.1109/TNNLS.2021.3057070
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

	Building a realistic, scalable memory model with independent engrams using a homeostatic mechanism
	1 Introduction
	2 Materials and methods
	2.1 Model of structural plasticity
	2.1.1 Growth model
	2.1.2 Forming and pruning of synapses
	2.1.3 Electrical activity

	2.2 Izhikevich model
	2.3 Network setup and stimulation
	2.4 Validity check
	2.5 Large-scale formation of memory engrams
	2.6 Advanced simulations
	2.6.1 Pattern completion
	2.6.2 Forming long-distance connections

	2.7 Ablation studies

	3 Results
	3.1 Process of engram formation
	3.2 Simultaneous formation of memory engrams
	3.3 Spatiotemporal dynamics of homeostatic engram formation
	3.4 Large-scale formation of memory engrams
	3.5 Pattern completion
	3.6 Forming long-distance connections
	3.7 Ablation studies
	3.8 Memory capacity

	4 Discussion
	4.1 Comparison between homeostatic engram formation and synaptic plasticity-driven learning models
	4.2 Biological implications
	4.3 Comparison with modular organization of cortical and hippocampal networks
	4.4 Predictions on the nature of homeostatic engram formation
	4.5 Conclusion

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


