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Hanna Behrenbruch, Ingolf Tegtmeier, Isabelle Clev, Janik Schöp-
per, Karim Abdel Hady, Katrin Scheuermann, Leonie Schüssler, Lilia
Stegemann, Marc Saghir, Michelle Kalbfleisch, Myra Zmarsly, Na-
dine Brass, Sonja Hanek, Timo Rothkegel, Tobias Kühlwein, and Tom
Bohlmann. Adrian and Myra deserve a special mention, as they also
worked with me as student assistants and were a great help in coding
some of the experiments and models.

Last, but not least, I would like to thank my boyfriend, Daniel
Mensch, who read all the chapters at several stages, provided valu-
able feedback and much appreciated support throughout the entire
project.





Abstract

Responding flexibly to new rules or constraints and finding tactics on
the fly to achieve arbitrary goals are hallmarks of human intelligence.
They allow us to adapt to changes in the environment and to thrive
under a wide variety of conditions. Studying the solution strategies
in puzzles, i.e., the interaction with novel and arbitrary constraints, is
a way to study aspects of these core human abilities. This thesis im-
proves on traditional research methods in the area of problem solv-
ing by combining qualitative approaches and quantitative modeling,
utilizing a broad range of modeling paradigms: production systems,
choice models, and hierarchical Bayesian modeling. The “model or-
ganisms” on which we test our methods are digit-placement puzzles,
most prominently, Sudoku. Since there are several basic tactics for
approaching such puzzles, we can study tactic choice and the factors
that might influence it.

We present a series of experiments in which participants fill the
entire puzzle freely. Concurrent think-aloud protocols enable us to
gain a thorough understanding of the tactics used by participants to
fill each digit. The studies demonstrate that various digit-placement
puzzles are solved using similar methods, and there are two distinct
ways in which participants think about the constraints: cell-based
and digit-based. Moreover, participants exhibit clear preferences for
specific solution tactics, while also utilizing a diverse range of tactics
beyond what is required to solve the puzzles. After analyzing data
from more than 200 participants, we discover that preferences for
tactics change with experience.

We then conduct experiments in which we limit our participants to
filling in only one digit per puzzle. This experimental design allows
us to control the applicable tactics for each trial. The response times
from two experiments indicate that participants can be biased to-
wards a particular tactic by task instructions and task requirements.
Based on our experimental findings, we argue that previous research
often used biasing task designs and therefore underestimated partic-
ipants’ flexibility and overestimated the importance of a problem’s
complexity. Furthermore, our experiments demonstrate that partic-
ipants are able to switch to other tactics if their first attempt does
not lead to a solution. We formalize the tactics in a process model
and find that the data can only be adequately fitted by including the
possibility of switching.

Following up on these experiments, we present a hierarchical Bayesian
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model for fitting the response times. We demonstrate how to use
process models to analyze response time data and obtain parame-
ter estimates that have a clear psychological interpretation. To esti-
mate the duration of each processing step, we assume that each step
has a random duration, modeled as draws from a gamma distribu-
tion. Modern probabilistic programming tools enable the fitting of
Bayesian hierarchical models to data, allowing for the estimation of
the duration of a step for each individual participant. This procedure
can also be applied when the step count for each trial is latent, as in
our Sudoku model. Our model allows us to estimate tactic choices
in the Sudoku task for each participant individually. This approach
can be applied to other response time experiments where a process
model exists, bridging the gap between classical cognitive modeling
and statistical inference.

We also demonstrate how problem solving traces can be analyzed
statistically using classical production systems. While research on
problem solving traditionally relies on think-aloud protocols in sin-
gle participants, other research areas usually focus on statistical anal-
yses of overt responses pooled over many participants. To obtain
sufficient data for fitting quantitative models on the individual par-
ticipant level, we introduce a new experimental interface which pro-
vides enough data to disambiguate rule selections without relying
on labor-intensive methods such as the analysis of think-aloud pro-
tocols. To account for the probabilistic nature of rule selection, we
use standard choice models, such as the Bradley-Terry-Luce model
or the elimination-by-aspects model. The model fits confirm that,
as expected, spatial and temporal factors influence rule selection in
Sudoku. Through clustering, we find that our participants can be
divided into four groups with similar rule preferences.

In summary, we believe that a broad range of methodological ap-
proaches is necessary in order to make progress in problem solving
research. Therefore, this thesis introduces and uses several experi-
mental designs as well as analysis tools and modeling approaches
to contribute to understanding how humans solve digit-placement
tasks. We show that there is great potential in the combination
of these methods to further improve our understanding of general
problem solving.
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Chapter 1

Introduction

Playing is a behavior which can be observed in humans and animals
alike. Generally speaking, it is characterized as an activity which
has no real consequences, yet for a while the playing individuals are
usually quite absorbed in the activity. The goals of the game can be
self-set (Davidson et al., 2022) and it is intrinsic motivation, not ex-
ternal reward, that drives individuals to play (Schmidhuber, 2010).
Winning or losing in a game usually has no consequences in other
aspects of the life of the player, as otherwise the activity would lose
its status as “just a game”. On the other hand, it is also assumed that
playing helps in cognitive and skill development. Often, activities
are first practiced in play which are also relevant to adult behavior
necessary for survival. Flight animals, for example, can be seen play-
ing chasing, jumping, jinking, and dodging, whereas animals of prey
more likely display behaviors like lurking, stalking, and fighting in
their games. Self-handicap in play as well as trying new and erratic
behaviors might prepare for unusual and unexpected events (Chu
and Schulz, 2020).

Human play does not always have the component of physical ac-
tivity: It can also be a language game or other mental activity. It typi-
cally also involves arbitrary rules that can be set quite spontaneously
(for example, “walk the whole way without stepping on any gap be-
tween the paving stones”) or which have been established for genera-
tions (for example, the rules for playing chess). If several persons are
playing together, they need to agree on the same set of rules (Gray,
2019). Setting abstract and arbitrary rules as well as sharing them
with others and following them is an intrinsic part of human play-
ing, reflecting the importance of these abilities for humans (Daston,
2022). We invent abstract rules and follow them, competing against
each other in these arbitrary and artificial systems. Whereas many
games are played with two or more players either cooperating or
competing, there are also single-player games where the player tries
to “beat the game” or solve a puzzle.

Structured games are also a popular study domain for research
on artificial intelligence (AI). A reason for their popularity is the
well-defined and encapsulated nature of such games. In order for
a program to play a game, it is not necessary to have a broad under-
standing of the real world. Explicit rules are easily translated into
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formats understandable to a computer. Since the early days of AI,
games were a popular challenge and testbed for new AI algorithms
and first programs for board games such as chess and checkers were
already written in the 1950s (Schaeffer et al., 2007). Programs that
could beat world champions in a specific game were milestones in
the development of AI. Especially the victory of DeepBlue against
Garry Kasparov in chess in 1997 and the victory of AlphaGo against
Lee Sedol in Go in 2016 astonished both experts and the wider pub-
lic. Next milestones have been online vido games such as Dota 2 and
StarCraft II, which AI systems can now play as good or even better
than humans (Vinyals et al., 2019).

While AI approaches are very good at following explicit rules and
optimizing given constraints, humans still outshine them in their
ability to flexibly adapt to new objectives and quickly learn from few
examples (Johnson et al., 2021; Lake et al., 2019, 2017). Flexibly re-
acting to new rules or constraints and spontaneously finding tactics
to achieve arbitrary objectives are hallmarks of human intelligence.
They allow us to adapt to changes in the environment and to thrive
under a wide array of conditions. Studying the solution strategies
in puzzles, i.e., the interaction with new and arbitrary constraints, is
therefore promising to teach us something more fundamental than
just the idiosyncrasies of the specific puzzle. Instead, we hope to
gain knowledge about core human abilities.

1.1 The information processing approach

Newell and Simon (1972) had a lasting effect on the field of problem
solving research. They introduced the information processing per-
spective to the study of human problem solving. Specifically, they
described humans as information processing systems, consisting of
receptors and effectors to interact with the environment, a central
processor, as well as an internal memory storage. The central proces-
sor connects the other elements: it receives input from the receptor,
can interface with the memory and sends signals to the effectors to
act in the world. Such an abstract system can be modeled in pro-
grams that can be run on computers. This, in turn, provides the
possibility to also translate models of human behavior on a specific
task into executable computer programs. “All information process-
ing theories of cognition have this property: they actually perform
the tasks whose performance they explain [. . . ] they provide a rigor-
ous test of the sufficiency of the hypothesized processes to perform
the tasks of interest.” (Simon, 1992, p. 153)

In order to solve a problem, the current state of the world needs
to be perceived and a difference to a desired goal state needs to be
noted. The problem solving activity can then be described as a suc-
cessive transformation of a problem state into other states until the
desired solution state has been reached. In each state, certain actions
can be taken (or operators applied) which transform the current state
into a new state. These actions are computed and selected in the cen-
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tral processor and then carried out via the effectors.
Solving the problem is equivalent to finding a sequence of actions

that transforms the initial state into the goal state. Problem solving
can be described as the search for a path in a problem space. If one
finds a path from state to state that ends in the goal state, one has
solved the problem. Searching for a path is a task that is also very
common in the classic literature on AI (Russell and Norvig, 2020,
chapter 3). There are numerous strategies of how to proceed with
such a search. Random trial and error is of course an option: execute
some possible action and observe the outcome. It might just be that
one stumbles on the solution. However, many problems require a
sequence of actions and often have a relatively large branching fac-
tor, therefore the number of paths to explore can grow quickly and
it becomes increasingly unlikely to find a solution with a random se-
quence of actions. First explorative moves are sometimes of this type
of strategy when humans approach a new problem domain. How-
ever, they usually abandon such a trial-and-error approach quickly.

Two general-purpose heuristics that were found to be frequently
used by human participants in problem solving experiments are hill-
climbing and means-ends (Simon, 1996; Simon and Reed, 1976). With
hill-climbing one tries to get incrementally closer to the solution with
each step. It is a very local approach which is prone to get stuck in
local optima, instead of finding a path to the desired solution. The
means-ends heuristic, on the other hand, starts by evaluating the
desired solution state and tries to find important preconditions or
subgoals for reaching it. The subgoals can be recursively split into
smaller subgoals, until one subgoal can easily be reached from the
current state.

Such heuristics have been found by observing participants in the
lab solving problems, such as cryptarithmetic puzzles or the towers
of Hanoi (ToH) puzzle. This research paradigm started by record-
ing detailed, concurrent think-aloud protocols from the participants
during the problem solving episodes. Subsequently, these protocols
were transcribed and carefully analyzed. The aim was to infer the
mental representation of the problem of a participant (the problem
space) as well as tracing the traversal of the problem states visited
by the participant. The researchers constructed so called problem-
behavior graphs where they added each visited state as a node.
These graphs thus track the progression of the participant through
the problem state in minute detail, also showing returns to the initial
state, false starts and dead ends. The next step in the analysis would
then be to construct a program, in form of a production system for
example, which closely matches the solution trace of the participants.

From such analyses Newell, Simon and colleagues derived general
problem solving principles such as the heuristics described above.
Even though it was a very successful and influential research pro-
gram, it was not as successfully continued as other parts of cogni-
tive science (Ohlsson, 2012). It was difficult to aggregate data from
several participants and write models that were more general than
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capturing the idiosyncrasies of particular participants. One way to
arrive at more general models were cognitive architectures, as ad-
vocated by Newell (1990). Specifying the architecture on which all
of cognition, including problem solving, works, seemed promising.
This route, however, quickly abandoned research on problem solv-
ing and instead focused on tasks with shorter and more consistent
response times such as memory retrieval and reaction to simple stim-
uli. General questions such as how a problem space is constructed or
selected by a problem solver, how learning of new production rules
works, and how the selection among productions takes place are still
not entirely resolved today.

This work returns to some of the methods employed by Newell
and Simon, especially the detailed study of individual problem solv-
ing traces. We will expand on it and integrate it with the paradigms
of modern cognitive science. With new methods and more power-
ful computational models, we see great potential for new insights to
be generated by studying problem solving (again). Therefore, this
thesis presents a collection of studies on problem solving. The over-
arching theme is the development of methods that can be used for
studying problem solving, including modeling approaches as well as
behavioral data collection paradigms.

1.2 Model problems

There are various paradigms that have been used to study human
problem solving and planning. Games and puzzles are probably the
two most popular ones. Many games are played by two opponent
players, involving elements of theory of mind as well as reasoning
and planning with the uncertainty of what the opponent will do.
Here, however, we will focus on puzzles which can be solved by a
single person. While they are comparably easier to study experimen-
tally, they nonetheless offer a rich testbed for many aspects of human
problem solving.

Insight puzzles, like the two-string problem (Maier, 1931), the
nine-dot problem (Batchelder and Alexander, 2012) or the mutilated
checkerboard (Kaplan and Simon, 1990) often involve a re-conception
of some object as another tool or a re-representation of the target do-
main. In other words, after being stuck on the problem for a pro-
longed time, a small hint often very suddenly leads people to the
solution. Insight problems are hard to study systematically in the
lab as they are each unique. While Danek et al. (2014) were able to
get some insight on such problems with several trials using magic
tricks, it it usually difficult to create multiple experimental trials to
see repeated solution attempts of the same participant.

Other puzzles, such as constraint satisfaction problems (CSPs)
(e.g., Sudoku, eight queens puzzle, map coloring, crosswords, crypt-
arithmetic) or move problems (e.g., ToH, Chinese ring puzzle, river
crossing, water jug problems), can be solved incrementally. In incre-
mental solution processes, the initial problem state is transformed
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into new states by application of operators. Usually, the problem
solver has some choice in how to transform the state and different
choices lead to different paths through the problem space. The vis-
ited states are usually observable and allow the researcher to learn
more about how the problem is tackled by the respective player.
When attempting to solve such puzzles, it can happen that a legal
move or operation leads to a partial solution which is, however, in-
compatible with the desired end state. In such a case the move needs
to be undone in order to be able to reach the full solution. In move
problems it is usually possible to reverse the previous move to go
back to the previous state. It is also possible to reverse to a previous
state in a larger loop, such that the problem solver might not even
notice they have already been in the state before and a specific move
they did was not leading towards the goal state. In CSPs, such as
map coloring or cryptarithmetic, a wrong assignment needs to be
canceled with an explicit acknowledgment that it was indeed wrong
and cannot be part of the path to the solution going forward.

1.2.1 Towers of Hanoi
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Figure 1.1: Illustration of the
initial setup of the ToH puzzle
with four disks.

The ToH is a classical puzzle and became a major research paradigm
in the 70s and 80s. Many studies were conducted with this puzzle
and many insights on human problem solving were generated from
it. In its most classical form, the ToH consists of three pegs and a
number of differently-sized discs that can be stacked on the pegs as
shown in Figure 1.1. Every disk size is unique. The disks are initially
stacked in a pyramid (i.e., sorted from biggest disk at the bottom to
smallest at the top) on peg A. The task is to move the entire stack
of disks to another peg, say C. There are two rules one needs to
obey while doing so: First, only one disk can be moved at a time
and, second, no larger disk may be placed on top of a smaller disk.
When excluding the move that would directly undo the previous
move, there are at most two possible moves at each state of the game.
Still, the problem is relatively difficult for people to solve in the first
attempt. The minimum number of moves required to solve a ToH
puzzle is 2n − 1, where n is the number of disks.

At least four different strategies have been described to solve the
ToH puzzle (Simon, 1975). An in-depth analysis of a single partic-
ipant’s think-aloud protocol while solving the same puzzle several
times showed the progressive change of planning strategy and prob-
lem representation (Anzai and Simon, 1979). A second detailed anal-
ysis of the same protocol focused on the rule acquisition events in
the protocol and showed that they were taking place in situations
where the participant deliberately ignored strategies already known
to discover new regularities and rules (VanLehn, 1991). Karat (1982)
conducted a study with 192 naive participants and different training
regimens, analyzing the data with the help of a production system
model. He showed that many participants solve the problem with-
out a full understanding of the underlying recursive structure by
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applying local rules to select the next move. The same productions
can explain the solution traces of participants of different training
groups, and only the duration of the different productions needs to
be adapted to fit the response times as well.

Kotovsky et al. (1985) studied several isomorphs of the ToH puz-
zle, meaning the structure of the state space and the number and
restrictiveness of the rules were the same. Nevertheless, different
problem statements made a big difference to the time participants
needed in order to solve the puzzle. They showed that learning
and remembering the rules are major sources of difficulty in puzzles
without physical representation and especially when the rules relate
less to real-world knowledge. The rule no bigger disk is allowed to be
placed on top of a smaller one is both easy to verify and to remember,
as it has the external representation in the disks and can be directly
perceived in the pyramidal shape. Compare this to If two globes have
the same size, only the globe held by the larger monster may be changed in
size. Not only does it require size comparisons over a larger distance,
it also involves the sizes of four items in total: the two monsters as
well as the two globes. Furthermore, a legal pattern does not corre-
spond to such an easily summarized concept as increasing in size from
top to bottom. An external representation of the problem which can
be manipulated is a big aid, reducing the memory load compared to
conditions that have to be solved with a mental representation only.

The ToH puzzle has also been used to study the effects of meta-
cognition and self-explanation on strategy learning. In a series of ex-
periments, Berardi-Coletta et al. (1995) showed that answering ques-
tions about the solution process (how are you deciding where to move the
next disk?) led to much better transfer performance in larger versions
of the ToH puzzle compared to groups with unconstrained think-
aloud instructions or silent controls. Participants initially trained
with two- to five-disk versions of the problem and finally had to
solve a six-disk problem. Those participants who were prompted
by the questions to actively think about how they approached the
problem were much better at the final transfer task than the others.
Berardi-Coletta et al. (1995) showed that the effect is not due to the
verbalization but rather to the meta-cognitive processes: Instructions
to “think about the question” (without speaking the thoughts out
loud) led to similar performance advantages than instructions where
answers had to be given to the experimenter.

1.2.2 Sudoku

The ToH puzzle is an impressive example of how much insight can
be generated in a relatively simple model domain. There is, however,
just one clearly defined optimal path to the solution in this puzzle
and once a person has fully understood the recursive structure of the
problem it becomes trivial, if tedious, to solve. A slightly more com-
plex model domain is therefore needed to study further aspects of
problem solving, such as selection between various competing and
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equally valid solution tactics, learning of various and increasingly
complex solution tactics, and puzzles that pose difficulty even for
experts. One such a “model problem” is the digit-placement puzzle
Sudoku and some of its close relatives. These problems are CSPs
and have the advantage that many problems of the same type can be
generated easily. There are virtually infinitely many cryptarithmetic
puzzles or Sudokus that share the same task structure. Transfer of
knowledge from one instance to the other is limited to general tac-
tics, no specific value assignment can be copied. It is thus possible
to study the problem solving behavior of the same individual for
extended periods of time, allowing for data collection in larger mag-
nitudes than with move problems like the ToH puzzle.

The constraints or rules of Sudoku are easily stated, understood
and remembered, which is an important prerequisite to successful
solution processes (Kotovsky et al., 1985). The fact that Sudoku is a
popular puzzle has the further advantage that it is easy to find study
participants on different levels of experience with the puzzle. One
can thus study the problem solving behavior of experts and begin-
ners alike. Even for easy puzzles there are at least two applicable
solution tactics, making it possible to study tactic selection.

There is also a large space of possible alterations of the simple
set of rules. One can leave out constraints (e.g., Latin square puz-
zles omit the box-constraint and only use rows and columns in their
specification) or add arbitrary new constraints. One can for example
introduce additional connected regions that have to add up to a spe-
cific sum, or add other regions in which digits must not repeat, such
as in diagonally adjacent cells.

While look-ahead is crucial for games with an opponent (what
opportunities will they have, if I execute this move now?) it can also be
observed in puzzle solutions. The more familiar a person is with
a puzzle, the better they usually understand that local consistency
now is not enough and may be a bad proxy for global distance to
the desired goal state (Simon and Reed, 1976). In digit-placement
puzzles look-ahead can sometimes resolve ambiguities and allow the
player to find out which digit is the correct choice for a given cell (or
which cell is the correct choice for a given digit).

All in all, we argue that Sudoku and related digit-placement puz-
zles provide a promising testbed for research on problem solving.
This thesis builds the foundation of a research paradigm to study
such CSPs, using both qualitative and quantitative research meth-
ods.

1.3 Focus of study

One aim of this thesis is the development and expansion of gen-
eral methods to study human problem solving, using Sudoku and
similar puzzles as a “model problem”. We believe that a mix of
various methods is required to make progress in problem solving re-
search. Exploration and basic understanding of possible approaches
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to a given problem are greatly aided by recording concurrent think-
aloud protocols. They are a rich source of data with good temporal
resolution and high information content. As participants can freely
decide what terms to use to describe their actions, these protocols
also provide information about the representations they form of the
problem and how these might change over time. A drawback of
think-aloud protocols is that they are labor-intensive to analyze and
difficult to summarize and aggregate. More restricted data such as
response times and answers chosen from a restricted set are easier
in this respect and, therefore, have an important part to play. One
contribution of this thesis is the development of a new experimental
interface, in which participants indicate which information is rele-
vant for deducing a digit for a cell by clicking on it. Such clicking
data is much easier to analyze with computer scripts and can, there-
fore, be collected in larger quantities than think-aloud protocols.

We also employ various modeling approaches in this work. We
develop progressively more detailed and fuller models for the task.
We start with relatively abstract production rules which describe so-
lution tactics for filling single cells. From there, we move on to more
fine-grained process models which make response time predictions
for single participants and trials. Finally, we implement a full pro-
duction system with a choice model to select between different pro-
ductions. We fit the models to the data of individual participants,
acknowledging and describing individual differences in the process.

Regarding the understanding of problem solving, this thesis con-
tributes to the aspect of flexibility in choosing appropriate tactics for
solving a given problem. In the puzzles we study, there are at least
two different solution tactics to complete the task. While participants
exhibit relatively stable preferences for different tactics in all our ex-
periments, they also usually use several different tactics, that is, more
variation in approaching the specific task than strictly necessary. In
different experiments, we look at the effect of prior experience with
such puzzles, task requirements, and instructions on the choice of
solution tactics. Generally speaking, tactic choices are adaptive and
participants chose effective and efficient solution tactics for the task
at hand.

1.4 Contributions and overview

The work presented in this thesis was a collaborative effort. Students
who contributed by working under my supervision (for a bachelor’s
or master’s thesis, a class project or as student assistant) are: Adrian
Kühn, Daksha Katahra, Fabiola Schelmbauer, Isabelle Clev, Janik
Schöpper, Janine Ramolla, Katrin Scheuermann, Lilia Stegemann,
Michelle Kalbfleisch, Myra Zmarsly, Nadine Brass, Sonja Hanek,
Timo Rothkegel, and Tobias Kühlwein. Some chapters contain pre-
viously published text and figures as described below.
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Chapter 2 We present a collection of free-filling experiments. The
work is mostly exploratory and we employ methods such as think-
aloud protocols to get a sense of how people approach various digit-
placement puzzles. Overall, we observe many commonalities be-
tween the solution tactics applied by the participants in different
puzzles. All participants are able to come up with effective and ef-
ficient tactics for solving the puzzles, even though we never teach
them any procedure explicitly but only state the constraints that
must be satisfied in the solution. We observe that there are several
tactics to solve such puzzles, and even though there is a big over-
lap and some tactics are almost universally used by all participants,
some are used only by a small set of participants. Four experiments
are presented, none of which were previously published.

Experiment 1, a free-filling Sudoku study with 4-by-4 Sudokus, was
conducted partly by me and partly by Tobias Kühlwein as part of a practical
course in the bachelor of psychology program. Half of the data was tran-
scribed and labeled by him, the other half by me. The analyses are my own
work.

Experiment 2, a free-filling Latin square task, was conducted in the con-
text of an experimental practice course for the cognitive science bachelor
program under my supervision. Students who collected that data, anno-
tated the think-aloud protocols and implemented the model to categorize the
entries are Isabelle Clev, Fabiola Schelmbauer, Katrin Scheuermann, Janik
Schöpper and Lilia Stegemann. The analyses presented here are my own
work.

Experiment 3, a free-filling Straights study, was conducted as a bache-
lor’s thesis by Myra Zmarsly under my supervision (Zmarsly, 2020). She
collected the data and implemented the eye tracking analysis tools. As a
research assistant she implemented the model of reasoning tactics. Tobias
Kühlwein labeled the protocols of three participants and analyzed them in
his bachelor’s thesis under my supervision (Kühlwein, 2020). The analyses
presented here are partly from their work and partly my own.

Experiment 4 contains the first trial of several online studies. The stud-
ies were conducted as part of bachelor’s or master’s theses, respectively,
by Nadine Bras (Bras, 2021), Sonja Hanek (Hanek, 2022), Michelle Kalb-
fleisch (Kalbfleisch, 2020), Daksha Katahra (Katahra, 2022), and Timo Roth-
kegel (Rothkegel, 2023). In all these studies we used the same 4-by-4 Sudoku
as a warm up task to familiarize participants with the interface and to make
sure they understood the rules of Sudokus. The analysis of this data was
done by me.

Chapter 3 The third chapter builds upon the insights gained in the
free-filling experiments. By design of the puzzle stimuli, we force our
participants to switch tactics, as only one leads to a conclusive solu-
tion on each trial. A major result is that most participants are able
to flexibly switch between the two required tactics and to find the
correct solution in all conditions. We observe the influence task in-
structions can have on the difficulty of the two tactics. We introduce a
process model that explains qualitative difference between different
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experimental conditions. The chapter is based on the following pa-
per: Behrens, T., Räuker, M., Kalbfleisch, M., and Jäkel, F. (2023). Flexible
use of tactics in Sudoku. Thinking & Reasoning, 29(4):488–530.

The think-aloud study was conducted as a bachelor’s thesis project by
Janine Ramolla under the supervision of Max Räuker (Ramolla, 2020). The
analyses presented in this chapter were carried out by me. The main exper-
iment was conducted as a bachelor’s thesis project by Michelle Kalbfleisch
under my supervision (Kalbfleisch, 2020). The process model was developed
and fitted by me.

Chapter 4 Here, we expand on the quantitative fitting of the discrete
process model predictions to continuous response time data. The
statistical framework for doing so is using a hierarchical Bayesian
model. This way we can fit parameter values for each participant as
well as take all information into account in an optimal way. With two
process models which predict different patterns of response times,
we can estimate for each participant to what degree they used each
of these tactics. This work is currently in preparation for submission.

We use two data sets to illustrate the ideas of the statistical model: The
data on children’s addition was kindly provided by Sarah Hopkins (Hopkins
and Bayliss, 2017). The Sudoku data is the one discussed in chapter 3
already, collected in the bachelor’s thesis project of Michelle Kalbfleisch. The
model was developed in parts as the bachelor’s thesis of Adrian Kühn under
my supervision (Kühn, 2021) and in parts by me.

Chapter 5 This chapter closes the loop and returns to an experiment
in which 4-by-4 puzzles are filled by participants. With an improved
experimental interface we are able to collect data in an online ex-
periment which is rich enough to label the filling events for which
tactic was used, without the need for think-aloud data. Participants
provide disambiguating information by clicking on all the cells that
are relevant for the deduction of the current entry. We are able to
label the entries based on this data in an automated fashion, allow-
ing us to analyze significantly more data than in the hand-coded
think-aloud experiments. For the experiment in chapter 2 we already
implemented the different rules that participants used to make new
entries. Here, we additionally model the decision for where and how
to continue filling the puzzle between each entry. Using choice mod-
els, we can fit preferences for different rules of each participant. To-
gether, the rules and the choice model form a full production system
which can fill entire puzzles in similar manners as different partici-
pants. This work is currently in preparation for submission.
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Free-filling experiments

2.1 Background and previous work

In this chapter we will use free-filling paradigms, meaning partici-
pants have to search and decide where to continue filling the puzzle
on each move. Although there is some interest in psychology in digit-
placement puzzles, there is very little prior research in free-filling
studies. In most studies, the puzzles are used in a very restricted
way and participants have to fill in only a single cell per puzzle.

The digit-placement puzzle Latin square has received some atten-
tion for its potential as a testing paradigm for fluid intelligence (Bir-
ney et al., 2012, 2006; Hartung et al., 2022; Hearne et al., 2020; Per-
ret et al., 2011; Zhang et al., 2009), whereas Sudoku has been used
as cognitive training in some cases (Papagno et al., 2013; Nombela
et al., 2011). However, most of these studies have little relevance for
the present work, as they do not make any detailed analyses of the
way people solve these problems. More relevant are the following
two papers, as they describe some specific tactics people use in cer-
tain puzzle situations.

The study by Qin et al. (2012) provides a lower bound on the re-
alistic speed of carrying out a specific reasoning pattern on 4-by-4
Sudokus. The cell to fill was highlighted, this way participants did
not have to search the board for where the rule was applicable. The
participants were university students and they had been taught the
rule and had trained the task on the day prior to the experiment. The
stimuli consisted of puzzles in which the marked cell could be filled
by using cell-based tactics. The authors differentiated between puz-
zles in which a single unit (i.e., row, column, or box) was sufficient to
find the correct digit for the cell (last-in-unit in our terminology) and
those where two or three units together provided the necessary con-
straints. They also included 2-step conditions, where a second cell
was marked which had to be mentally filled first, before finding the
value to the cell that was supposed to actually be filled. On the day
before the experiment, they taught their participants the seven pos-
sible variants of the cell-based tactic (involving either single units, or
combinations of units e.g., row and column, row and box, column
and box. . . ). During the experiment, participants were expected to
select the appropriate tactic and carry it out as quickly and accu-
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rately as possible. Elements of search or tactic-discovery were thus
explicitly eliminated from the task performance of the participants
in this study. All conditions of the experiment (single unit, multi-
ple units and two-step) were solved with very few mistakes (93% to
98% accuracy) and there were no significant differences in accuracy.
Response times, however, did show differences between the respec-
tive conditions. Whereas the average response time of the one-step
one-unit condition was 1.5 seconds, the one-step several-unit condi-
tion took 2.9 seconds to answer on average, which is almost twice as
long. The two two-step problems took 4 and 6 seconds on average
respectively. This experiment by Qin et al. (2012) provides us with
a lower bound on expected response times in our own experiments
(we do not teach the tactics explicitly, provide no highlights to indi-
cate which cell can be filled and do not administer a training session
prior to the experiment). The high accuracy shows that the various
cell-based tactics were easily applicable for all participants.

Something like an upper bound for filling duration is provided
by a free-filling study by Lee et al. (2008). Their stimuli were 9-by-9
Sudokus with relatively few given digits (28 to 30 of 81), thus only a
small proportion of cells could be filled by simple tactics. The par-
ticipants of this study had never played Sudoku before and they did
not receive explicit information about filling tactics in advance. They
thus had to discover filling tactics during the experiment and also
had to search for cells with enough restrictions to apply these tactics.
For 15 minutes, they tried to solve a standard 9-by-9 Sudoku with-
out artificial restrictions. Whenever they filled in a digit, they had
to write down a justification, explaining how they knew the chosen
digit was the correct value to fill in that specific cell. On average
participants managed to fill in 2-3 digits into a puzzle within the al-
lotted 15 minutes, i.e., they needed more than 5 minutes per entry
on average. The written justifications provide insights into the kinds
of tactics participants used. First of all, participants mostly used log-
ically sound and valid justifications, meaning they understood the
rules of the puzzle and correctly reasoned with the given informa-
tion (i.e., the rules and the given digits). They mostly described one
of the basic tactics (as described in subsection 2.1.2) in the justifica-
tion. Interestingly, they used significantly more cell-based tactics than
digit-based ones.

In this chapter, we will also use free-filling studies, asking partici-
pants to fill in entire puzzles without restrictions on the order of the
filling. However, our puzzles are smaller which simplifies the search
for where to continue filling the puzzle. With concurrent think-aloud
protocols we will be able to collect even more detailed information
about the solution process than Lee et al. (2008) did with their ap-
proach to collect written justifications after each move.

Lee et al. (2008) also describe advanced tactics, which are based not
only on digits already filled into cells, but also on possible digits in
cells. When filling a puzzle on paper, one could imagine making little
notes in the cells, writing down the digits that are still allowed in a
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cell. Usually not all nine digits are options for a cell, as some can be
excluded based on the digits already present in the intersecting units.
Sometimes two cells within a unit have the same two possible digits
as only options. If this is the case, these two digits can be eliminated
from all other cells in the same unit. Even though it is not determined
yet in what order these two digits will be assigned to the two cells,
each of the respective cells will take one of these two digits and no
other cell in the same unit can have them. These kinds of advanced
tactics are harder to carry out when the interface does not allow for
tentative notes as memory aids, but even without notes, beginners
are able to discover them (Lee et al., 2008). In an experiment with a
specified cell to fill and where advanced tactics were required to find
the correct answer, about 40% of the puzzles were correctly solved
by a group which was not allowed to take notes. In a second group,
which had the possible digits already filled in small font in each
relevant cell, the success rate rose to 70%.

In the experiments that will be presented in this chapter, our par-
ticipants generally preferred to reason based on the basic tactics, as
described in subsection 2.1.2. However, in the so called Straights puz-
zles of section 2.4 the given digits were not sufficient to always infer
other definite digits with these basic tactics. In this case the most suc-
cessful participants spontaneously resorted to using advanced tactics
and reasoned with possibilities, even though the experimental inter-
face did not allow to write down tentative notes. Other participants
used guessing instead, filling in digits they could not be sure to be
correct.

When solving an entire puzzle, the player not only needs to figure
out what kind of reasoning rule they can apply, but also where on
the board they can apply it. Finding intersecting constraints that
are strong enough to deduce a new digit that can be filled in is not
an easy task. This part of the solution process is especially poorly
studied in prior literature. Furthermore, in solving an entire puzzle,
people do not carry out each move in isolation. Instead, they often
think about several adjacent empty cells at once, knowing a small
set of digits that needs to be distributed across them. Filling one
of the cells will have immediate consequences for the options in the
other cells. Even when not initially planned out in sequence, they
often follow up on additional constraints generated by filling in a
digit. Are the neighboring cells now determined, too? Alternatively,
the placement of the other tokens of the same digit might now be
sufficiently constrained.

Recording concurrent think-aloud protocols gave us relatively de-
tailed information on the way participants tackled the task. The pro-
tocols do not only cover the successful moves, but provide even more
information: They document how the participants searched for how
to continue and what features they looked at when trying to find a
starting point. Additionally, the protocols contain reasoning chains
that did not lead to the filling in of a digit in some empty cell, i.e.,
also unsuccessful solution attempts.
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2.1.1 Think-aloud protocols as data

Think-aloud protocols are a great tool in order to understand what
people are doing when solving problems. They are a very rich source
of data, providing detailed insights into some of the approaches par-
ticipants use to tackle a problem. Newell and Simon (1972) pioneered
research on human problem solving with systematic and very in-
depth protocol analysis. They showed that it is possible to construct
detailed problem-behavior graphs from said protocols. These graphs
reconstruct the knowledge states the participant visited as well as re-
produce the operators that were used by the participant to move
from state to state.

Although there have been debates about the validity of verbal re-
ports (Nisbett and Wilson, 1977), as of today there is convincing evi-
dence that under the right conditions, think-aloud protocols can give
veridical information about the processing tactics of participants (Fox
et al., 2011). An important precondition for a reliable think-aloud
protocol is to use a task that has a correct answer, instead of asking
questions on opinions or preferences for example. It is important to
use instructions that encourage participants to verbalize all thoughts
that they have during the solution process. When they are speak-
ing the thoughts that they already had (but would have normally
thought only silently) this is considered level 1 verbalization (Erics-
son and Simon, 1993). Level 2 verbalization consist of thoughts that
were not in verbal form, but might have been mental images for ex-
ample. They therefore need some translation to be put into words
but were consciously thought already. In general, level 1 and level 2

verbalization do not alter the “normal” solution process, except for
slowing it down as talking takes time (Berardi-Coletta et al., 1995;
Fox et al., 2011). When asked to justify their actions verbally (in-
stead of just voicing their thoughts), participants are prompted to
reflect on the specific procedure and need to verbalize content which
would normally not have occurred to them when solving the task.
This level 3 verbalization usually changes performance in problem
solving tasks, often improving it (Berardi-Coletta et al., 1995). Since
we are interested in the unbiased solution process, the studies re-
ported below are aiming at eliciting level 1 and level 2 verbalization,
and are not asking for explicit reasons or justifications.

Processes that fall in an intermediate range of automation and
novelty are best captured in think-aloud protocols. When partici-
pants are discovering new rules or tentatively explore new represen-
tations of the problem they often have trouble verbalizing this pro-
cess and tend to fall silent. On the other hand, when a process is too
low-level or automatic, it might not reach consciousness explicitly
and thus often fails to show up in the verbal protocol. Duncker (1945)
already pointed out that a “protocol is relatively reliable only for
what it positively contains, but not for that which it omits. For even
the best-intentioned protocol is only a very scanty record of what ac-
tually happens.” (p. 11). Some thoughts might be too fleeting, others
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deemed uninteresting or irrelevant by the participant and, as a conse-
quence, are not being uttered. Nonetheless, concurrent think-aloud
protocols are a valuable tool for studying problem solving, provid-
ing very detailed information about the involved processes and their
temporal order.

2.1.2 Basic definitions (a) Sudoku

(b) Straights

Figure 2.1: In both puzzles the
correct solution for cell AA is
1, which can be found using
cell-based tactics. Ask yourself:
“Which digit is allowed in cell
AA?”

All digit-placement puzzles in this section consist of a square grid
of partly filled cells. The grids can be divided in rows and columns,
Sudokus additionally have boxes, i.e., 2-by-2 connected regions in the
case of 4-by-4 Sudokus. In Sudokus and Latin squares, each digit has
to appear exactly once per unit (row, column, or box). In Straights,
each digit has to appear at most once per unit (the specific rules of
Straights will be explained in section 2.4). The peers of a cell denotes
the set of other cells which share a unit with it: they are either in the
same row, column, or box. The digit in one cell cannot appear in any
of its peers.

There are three basic tactics which can be applied to all the digit-
placement puzzles of this chapter.

The cell-based tactic You select a cell and look at its peers. The digits
which are in any of the shared units of this cell have to be excluded
as candidates for it. Lee et al. (2008) therefore refer to this tactic as
exclusion tactic. If only one digit remains as a possible candidate, you
can enter it in the cell. Examples for applicable cell-based tactics can
be found in Figure 2.1. All digits except for the 1 can be excluded for
cell AA in the upper left corner of our example, because they appear
already in the peers.

(a) Sudoku

(b) Latin square

Figure 2.2: In both puzzles a 1

can be placed in one cell only,
namely cell AA, which can be
found using digit-based tactics.
Ask yourself: “Where can I put
the digit 1?”

The digit-based tactic Each digit has to appear once in each unit of
the Sudoku or Latin square. You can therefore start the search for the
next entry with a specific digit in mind and test whether its place-
ment in a specific unit is restricted: For example “Where in this box
can I place the 1?”. If it is not yet in a given unit, you can try to place
it there. Cells which are already filled are, of course, not a possible
candidate location. For open cells, you need to check in their peers
whether the specific digit is in them already. Each cell that has this
digit in its peers can be excluded as candidate location. If only one
cell in a unit remains as a candidate location, you can fill it in. Exam-
ples for digit-based tactics can be found in Figure 2.2. In the upper
row (or box, in the case of Sudoku) the 1 can be placed in one cell
only, namely AA. Lee et al. (2008) call this tactic inclusion because
one tries to include a digit into one specific unit.

Last-in-unit A special case combining both of the two tactics de-
scribed above arises when a unit is almost full. When N − 1 cells of
a unit of size N are filled, the value of the last empty cell in the unit
can easily be determined. In a cell-based mind set, the peers of the
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empty cell exclude all values but one and only one unit is needed.
In a digit-based mindset you can reach the answer easily, too. When
looking for where to place the digit in the unit, only one cell can be
chosen as all the others are already filled. It is visually quite salient
when a unit is almost full and the reasoning becomes rather easy.

2.1.3 Outlook on chapter

The first three experiments in this chapter employ think-aloud pro-
tocols to get a relatively detailed insight on how people act to solve
various related digit-placement puzzles. The experiments are or-
dered by puzzle complexity. Section 2.2 uses 4-by-4 Sudoku puzzles
as stimuli. These are solved comparatively quickly by participants,
on average they need less than a minute per puzzle.

More challenging puzzles are used in section 2.3: Latin squares of
increasing sizes from 4-by-4 to 7-by-7 are the stimuli. The fact that
they have one type of constraint less (no boxes) than Sudokus makes
the rules even simpler to state, but it also means there is less leverage
to constrain the solution. As this type of puzzle is more difficult to
solve the solution times increase and we see more pronounced search
phases where participants look for how to continue with the puzzle.

The puzzles in section 2.4 introduce a new kind of constraint
which is a bit more difficult to understand than the “each digit ex-
actly once per unit” constraint of Latin squares and Sudokus. Ad-
ditionally they are the most difficult puzzles, leading participants to
reason with possible digits in cells, instead of reasoning only based
on given or definitely inferred digits. The data of this section not
only contains information about tactic application and searching for
how to continue, but also gives some insight into learning within the
domain of solving these puzzles.

Section 2.5 analyses 253 solutions to one 4-by-4 Sudoku. We do
not have think-aloud protocols here, the resolution of the data is thus
more coarse, as we only have the filling events to analyze. However,
the quantity of the data allows for statistical analyses that were not
possible on the other experimental results of this chapter. Especially,
the large number of participants allowed us to look at the correlation
between prior experience with similar puzzles and tactic choice.

2.2 Experiment 1: Mini-Sudokus

In our first experiment we used very simple puzzles, 4-by-4 Sudokus
with seven to ten empty cells. The advantage of using simple and
therefore rather quickly completed puzzles is that it allowed us to
conduct relatively many trials and thus to also see how consistent
participants were over time.

2.2.1 Methods

There were 20 participants (15 female, 5 male), aged between 18

and 39 (mean: 22.2, SD: 4.74). One participant was excluded from
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the analysis due to making too many mistakes and talking too lit-
tle. Students of psychology and cognitive science participated for
partial course credit, other participants received no compensation.
Participation was voluntary and participants gave informed consent.
The study was approved by the local university’s ethics committee.
Each participant was recorded individually. They were instructed to
think-aloud during the experiment. Instructions were Please utter all
thoughts going through your mind while solving the task without filtering
them. Please mention each step you take and also attempts and tryouts
that you don’t think through till the end. To get familiar with utter-
ing their thoughts the participants each solved two math problems,
one three-digit subtraction and one two-digit multiplication. Sub-
sequently they filled in the Sudoku puzzles on a computer. If they
fell silent for longer than 15 seconds, they were reminded to keep
talking by the experimenter who was sitting in the same room but
out of sight. The think-aloud recordings were transcribed after the
experiment. All participants filled the same 20 puzzles but the order
was randomized and different for each participant. All puzzles had
the same level of difficulty. Of the 16 cells of a 4-by-4 Sudoku, about
half of the cells were filled (mean: 8.65), the number of empty cells
ranged from seven to ten. In addition to the think-aloud data, we
recorded overt responses, mouse movements, and the response time
for each entry measured from stimulus onset.

2.2.2 Response times

On average, participants needed 48 seconds (SD: 23) per puzzle. Even
though most participants were fairly quick in solving the puzzles,
the spread was wide. The shortest trial lasted just 16 seconds, the
longest 218 seconds. The mean time per move was 5 seconds, with
a standard deviation of 5.44 seconds and a median of 3.2 seconds.
Overall, participants were quite fast at filling the Sudokus and the
puzzles did not pose a big challenge for them.

2.2.3 Classification of moves

As search phases were usually quite short, we decided to only label
moves, i.e., reasoning patterns leading to an entry of a digit. There
were, of course, also other utterances in the protocols, such as com-
ments on the progress of the experiment, the experimental interface,
annoyance about typos or a reasoning chain that did not lead to
the entry of a digit. These were rare enough, however, to discard
them without losing too much information. After taking a look at
the utterances and reasoning patterns of our participants, we imple-
mented the most common ones as a Prolog program. The program
was very helpful during subsequent labeling of participants’ moves.
For a given board configuration and move, the program computed
all rules that would allow the entry of the digit. To label a move, one
could now select from the list of computed options. Alternatively, it
was always possible to enter a new label instead. 79% of all moves
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Table 2.1: Labels in the 4-by-4 Sudoku task. Frequency of the label, as well as mean and standard
deviation for the response time of the moves with this label are given. There is also a short explanation
and an example utterance to show where the label would be applied. Exemplary board situations with
mouse movements and think-aloud utterances can be found in Figure 2.3 to Figure 2.6.

time (sec)
Label Freq. Mean SD Description Example

last-in-unit 3 of the 4 cells in a unit are filled, the
participant fills the last one.

“And here we need a
2.”row 16.2 4.25 3.42

column 13.0 4.11 3.48

box 14.1 3.52 2.53

digit-unit Combination of a unit and a digit to be
placed into it. All other empty cells in the
unit can be excluded as locations for the
digit.

“I’m looking for the 4

in the box. It can’t be
here, it has to be
there.”

row 0.7 10.4 4.93

column 0.7 9.88 5.89

box 16.9 6.88 5.15

4th 2.6 8.72 5.40 When there are three instances of the digit
on the board, all units could function as ba-
sis unit, no clear basis unit recognizable.

2-open A unit has two empty and two filled cells.
Participant notes which digits are missing
in it. Some digit in an intersecting unit
restricts the placement of one of the two
digits. The next move is to fill the other
empty cell with the remaining digit.

“Then there can be a 1

and a 3 here. The 3

can’t go there, so it
goes here. And here
goes the 1.”

row 1.8 11.01 6.64

column 0.9 12.75 6.58

box 5.1 10.59 9.43

cell-
complex

0.9 23.68 11.34 Focus on a single cell. The digits in two inter-
secting units allow only one digit to be placed
into the cell.

“In the column is 2

and 3 and in the row
the 4 already. Mean-
ing in this cell only a
1 is allowed”

only-digit-
missing

2.5 1.67 1.47 When a participant fills in all missing tokens
of each digit in blocks, for the last digit they
do not have to check any constraints. They
know that in all of the empty cells they need
to fill in the one digit that is still missing on
the board.

“And in the remain-
ing free cells will be
only 2s, because all
the rest is already
there”

other 24.6 4.83 7.68 correcting mistakes, uncommented move, . . .
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could be assigned one of the proposed labels. Most of the remaining
moves had very scarce comments in the think-aloud protocol render-
ing the disambiguation between two similar labels impossible. Of
course, there have also been reasoning errors, typos, corrections and
from time to time reasoning patterns that are not adequately cap-
tured by the implemented rules. On average, there were about eight
rules for each move to choose from in the labeling process (between
0 and 13). The utterances in the think-aloud protocols together with
the mouse movements were essential to disambiguate in the case of
more than one possible label.

About 20% of each protocol was labeled by two researchers. Inter-
rater agreement was 85%. Cohen’s kappa is a measure that puts
the inter-rater agreement into proportion of “agreement by chance”
given the base rates of each rater for each label. Calculated on our
data the kappa measure is κ = 0.72, this value is a sign of “substantial
agreement” according to Landis and Koch (1977) (perfect agreement
would lead to a value of one, chance-level agreement to a value of
zero).

Table 2.1 shows all labels for this data set: how often they oc-
curred, how long a move with this label took on average, a descrip-
tion, and an example utterance. Examples for situations in which the
rules were used, together with mouse movements and utterances,
can be seen in Figure 2.4 to Figure 2.6. All participants made moves
that were labeled last-in-unit. These were usually quite quick moves,
they took about 4 seconds on average. Most participants were rather
indifferent about the unit in which they applied this specific rule.
Digit-unit is the second most used label. Here, the unit is more im-
portant and most participants exclusively used the rule in combina-
tion with the basis unit box. Only six participants used this move less
than 10 times (of about 190 moves in the entire experiment), whereas
all others applied it relatively frequently. Cell-complex was used reg-
ularly by just one participant, three others used it from one to three
times. The only-digit-missing rule was applied by few participants:
One applied it in most of the puzzles, four others used it from one
to 15 times.

One label is different from the rest, as it does not describe moves
in isolation but classifies two moves together: 2-open. Seven par-
ticipants applied this rule regularly and reasoned at least once per
puzzle about two empty cells and their digits together. Most other
participants used this rule at least once, too. Only two participants in
our experiment never used the rule at all. This reasoning pattern can
be applied when one unit is half filled, i.e., two cells are empty and
two are full. The two missing digits have to go into the two empty
cells. The participants then looked for an occurrence of one of the
missing digits in the peers of the empty cells to resolve the ambigu-
ity of where which digit goes. Figure 2.3 shows an example. This
reasoning pattern is characterized by long response times before the
first digit is filled in and very short response times for the second
digit. All reasoning and explanation as documented in the think-
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aloud protocols already happened in the first move, the second digit
assignment followed naturally and needed no further reasoning. It
should be noted that it would be possible to break such a double
move down into two steps and label them independently. The sec-
ond part would then always be a last-in-unit move: putting the last
missing digit in the only open cell of the unit. The first step would
be classified either as digit-unit or cell-complex, depending on the ex-
act situation. In Figure 2.3 the reasoning is classified as digit-based
because the participant mentioned that the 3 is constrained (by the 3

in the cell in the third row and third column) to go to the lower left
cell. If they had started to fill the 1 into the cell where the 3 is not
allowed, it would have been classified as cell-complex, as the digits of
the column and the row together only allow the 1 to be placed there.

(a) Label: 2-open 1st (b) Label: 2-open 2nd

Figure 2.3: Example from par-
ticipant 14: The digit in red
is the new entry, the gray line
depicts the trajectory of the
mouse. Think-aloud except (a)
Then there can be a 1 and a 3 here.
The 3 can’t go there, so it goes here.
(b) And here goes the 1.

(a) Label: digit-box (b) Label: last-in-row

Figure 2.4: Participant 06: (a)
I’m looking for the 4 in the box. It
can’t be here, it has to be there. (b)
Now I can fill up the row, a 2 is
missing.

(a) Label: digit-box (b) Label: digit-4th

Figure 2.5: Participant 03: (a)
There are two instances of 3 and
two instances of 2 on the board.
There, the, hmm. . . one 3 blocks
this in the lower left and the other
that. So a 3 has to be here. (b) Now
we have three 3s, we know where
the last one goes, that is here, be-
cause all others are blocked.Some specific move examples A noteworthy observation we made on

this data set was that participants very often followed up on entries
they just made. Even when the reasoning was not explicitly about
two cells from the beginning, the next move is often close to the
previous one, either by being in the same unit or by using the same
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(a) Label: cell-complex (b) Label: last-in-column

Figure 2.6: Participant 19: (a)
Looking for a cell with just one op-
tion. . . it has to be this cell, because
. . . in the column is 2 and 3 and in
the row the 4 already. Meaning in
this cell only a 1 is allowed. (b)
As a consequence, . . . in the sec-
ond column only the 4 is missing,
which we can enter directly.

digit. Most participants stayed within the same unit and filled the
other empty cells in it, which were more constrained after they filled
some digits in them already. Others rather followed up on the digit
they entered and looked how it constrained the other occurrences of
the same digit.

Figure 2.4 to Figure 2.6 show the first two moves of a trial of dif-
ferent participants from the think-aloud experiment. The gray lines
show the trace of the mouse. The digit in red font was entered on
the move. The accompanying utterances (translated from German)
are in the captions of the figures.

Figure 2.7: Labels for all moves
of participant 03: The vertical
lines indicate the start of a new
puzzle.

Figure 2.8: Labels for all moves
of participant 14: The vertical
lines indicate the start of a new
puzzle.

Consistency of behavior over time With the relatively many trials per
participant it is also possible to look at the consistency of the behav-
ior of each participant. In Figure 2.7 to Figure 2.9, some exemplary
participants’ labels are plotted over time. The marker’s position on
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Figure 2.9: Labels for all moves
of participant 19: The vertical
lines indicate the start of a new
puzzle.

the y-axis indicates how long the respective move took, measured
in seconds since the previous move. In the first puzzle participants
were slightly slower, but otherwise there was not much change over
the course of the experiment. Each participant quickly found a set of
rules that they then applied throughout the experiment. Most par-
ticipants seemed not to be aware of the existence of the rules they
did not apply. Some explicitly mentioned that the analysis of the
data must be boring, because everyone would solve the puzzles in
the same way. The figures illustrate how each rule has its own typi-
cal duration: last-in-unit entries, for example, are typically quite fast
and also very consistent within one participant. The first move in a
puzzle often required longer time, as participants needed a moment
to orient and find out where they can start in the puzzle. Subsequent
moves often follow up on the previous move and are thus faster,
most obviously so in the case of 2-open.

2.2.4 Discussion

Our main findings are that people know and use a variety of tactics,
often only using special cases of more general tactics. This is most
strongly seen in the case of the digit-unit label, where the majority
of participants use the tactic only in combination with the basis unit
box. Response times can only be analyzed to a limited degree in
this study. When comparing response times between participants,
a very influential factor is the amount of talking that they did. A
participant who aims at fully explaining why they did a move and
how they knew it was legal, takes obviously much longer than a
participant who just says “and here a 1”, i.e., without any explana-
tion as to why. Such a difference in time does not necessarily reveal
anything about the difference in reasoning speed between the two re-
spective participants. What can better be compared, however, are the
response times within one participant, differentiating between differ-
ent tactics. Even though some response times can be misleading due
to an unsuccessful filling attempt with some other tactic or in some
other part of the puzzle, we can see robust effects here. For most
participants, the last-in-unit tactic was the fastest: it is only topped
by only-digit-missing, a tactic that is applied by only few participants,
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though.
Free-filling experiments entail that the board configurations par-

ticipants encounter while solving the puzzles are not all identical.
Only the initial puzzle situation is seen by all participants. Subse-
quent configurations of constraints depend on the order in which
they fill the puzzle.

These complications in analysis were compensated by the insights
we gained in this study. The puzzles could have been solved by
using only one of the following tactics in combination with last-in-
unit: cell-complex, digit-unit, or 2-open. It was not necessary to use
several of these tactics, but all participants used at least two different
reasoning tactics besides last-in-unit. The majority of participants
had clear preferences for one or two tactics and applied them with
about constant frequency throughout the entire experiment. Each
tactic had its own relatively consistent execution duration within a
participant.

As the puzzles were so small and quickly became very constrained,
the majority of all recorded moves were completed with the last-in-
unit tactic. With this tactic, most participants were very flexible about
the unit to which it was applied and used all basis units to a similar
degree. When this tactic was not applicable, most participants re-
sorted to using the digit-based or 2-open tactic rather than using the
cell-based tactic with the union of at least two units.

2.3 Experiment 2: Latin square Task

In the following experiment we used a free-filling, think-aloud para-
digm with Latin squares as puzzles. The advantage of Latin squares
is that they can be smoothly changed in size. In our experiment we
used puzzles with side lengths ranging from 4-by-4 up to 7-by-7,
with all intermediate sizes. In Sudoku puzzles only square numbers
like 4 and 9 can be used because of the additional box-constraints.
The larger puzzle sizes in this study make it possible to pose more
challenging problems to the participants and observe more situa-
tions in which applying solely the last-in-unit tactic is not possible.
We can thus learn more about the search process and reasoning in
more complex situations than in the small 4-by-4 Sudokus.

2.3.1 Methods

15 participants (8 female, 7 male) took part in the study, and they
received no compensation. Their ages ranged from 20 to 58, mean
age was 31.6 years (SD: 14.6). Participation was voluntary and par-
ticipants gave informed consent. The study was approved by the
university’s ethics committee. The experiment ran for about 30 min-
utes per person. Depending on their speed, they solved between
four and ten Latin square puzzles during this time window. Some
motivated participants completed more puzzles, even though the 30

minutes planned for the experiment were exceeded. We increased
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the difficulty of the puzzles over the course of the experiment by
making them larger and decreasing the number of given digits. The
first puzzle was a 4-by-4 Latin square with just six empty cells. The
last puzzle was a 7-by-7 Latin square with 30 empty cells. Partic-
ipants filled the empty cells with a drag and drop interface. Next
to the puzzle were stacks of all the digits that could be filled in the
puzzle. Participants had to pick up a digit tile with the mouse and
drop it into the empty cell they wanted to fill. A trial could only be
finished when the puzzle was correctly filled. If, however, there was
an error in the completely filled puzzle, the button “delete all wrong
digits” could be used. All cells containing a wrong digit would then
get cleared and the cells could be filled again by the participant. We
ensured the participants did not use the button often during the ex-
periment, but only when they did not see the mistakes at the end of
the trial. Participants were instructed to think aloud during the entire
experiment and utter their thoughts. We used instructions similar to
the ones in section 2.2. Participants practiced thinking aloud with
a two-digit multiplication and a three-digit subtraction task. When
they fell silent for more than 20 seconds, the experimenter reminded
them to keep talking. In addition to the filled in digits, we recorded
the mouse movements, the response time for each entry measured
from stimulus onset, and the think-aloud protocols.

Time (min)
Trial Puzzle

size
Empty
cells

Completed
by

Mean SD

1 4 6 15 0.7 0.3
2 4 8 15 1.1 0.9
3 5 14 15 2.6 2.1
4 5 17 15 3.8 2.8
5 5 17 14 7.8 4.0
6 6 22 14 5.3 2.8
7 6 22 12 9.1 2.9
8 6 22 4 5.1 2.0
9 7 30 3 11.4 5.7

10 7 30 1 10.4 —

Table 2.2: Latin square task:
List of trials, the size of the puz-
zle, the number of empty cells
in the puzzle, how many partic-
ipants completed the trial and
how long they needed on aver-
age for the puzzle.

2.3.2 Results

The participants completed between four and ten trials, 14 out of 15

participants completed at least 6 trials, including a puzzle of size 6-
by-6. They needed on average between 10 and 35 seconds per empty
cell, 12 participants needed less than 20 seconds. The time per empty
cell increased over the course of the experiment (from around 6 sec-
onds per empty cell in the first trial to about 20 seconds per empty
cell in the last trial), showing that the puzzles were indeed more and
more difficult to solve.
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2.3.3 Move classification

The classification labels for the moves we used in the Latin square
puzzles are compatible with the ones used in Experiment 1 for the
4-by-4 Sudoku puzzles, only a bit simplified. With a simple model,
we could classify all moves as belonging to one of six categories: fill-
ing the last empty cell in a unit (last-in-unit), digit-based reasoning
(digit-unit), cell-based reasoning (cell), either digit-based or cell-based
reasoning (both), no simple rule applicable (none, this could either be
faulty reasoning, a lucky guess or higher order reasoning based on
possibilities in other cells), and wrong inputs (error). Wrong inputs
might not violate any constraint on the board in that state, i.e., they
might be plausible guesses in that state of the board. However, com-
pared to the final solution, they constitute a violation and cannot be
logically inferred by any valid rule.

Figure 2.10: Move categories
per trial, relative to the num-
ber of empty cells in the Latin
square task. Without errors or
deletions they would sum to
one on each trial. The last-in-
unit was the most easily appli-
cable tactic and was used al-
most whenever possible. With
increasingly complex puzzles
the fraction of applicability of
this tactic decreases.

As can be seen in Figure 2.10, the tactic that was used the most is
last-in-unit (in 47% of all moves). In the early puzzles it was almost
sufficient to fill the entire puzzle, but with an increasing number of
empty cells in the puzzles it became relatively less applicable. The
second most used tactic, with 24%, was to fill in cells based on digit-
based reasoning. Cell-based filling events were recorded rarely (5%),
but their fraction is relatively constant across trials. The fraction
of errors rises sharply on the fifth puzzle (around 20% of all filling
events were classified as errors on the fifth trial) and remained on
a similar level throughout the rest of the experiment (on average
across the entire experiment 17% of the filling events were classified
as errors). Moves which could be either cell-based or digit-based
(i.e., are labeled as both) made up around 5% of the filling events and
moves without any label (i.e., labeled none, and which most probably
were lucky guesses) made up 3%.

2.3.4 Think-aloud data

Labels to code the utterances of the protocols were developed based
on the data. The think-aloud data match the move classification in
most cases, but provide more details about the search process be-
tween the filling events. An overview of the labels and what they
mean can be found in Table 2.3. The labels for filling events are com-
patible with the ones from the 4-by-4 Sudoku task (Experiment 1)
in section 2.2, only slightly simplified. First of all, we do not distin-
guish the basis unit because in the Latin square task only rows and
columns exist as units, boxes are not present and most participants
switch freely between rows and columns. Second, we do not use the
2-open label. With the varying sizes of the Latin squares the situation
of having exactly two empty cells in a unit does not occur as often
any more. With the additional labels for the search phases we can
also label utterances about several missing digits in a unit explicitly.
We also do not use the only-digit-missing label as we did not observe
situations where it would have applied. As the puzzles were more
challenging than the 4-by-4 Sudokus of Experiment 1, there were
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more and longer phases of searching and reasoning between filling
events. We decided to label the search here.

Table 2.3: Latin square task: Labels for the think-aloud utterances. Mean and standard deviation indicate
the relative occurrence of labels per participant.

frequency
Labels Mean SD Description Example

Filling
last-in-unit 0.15 0.07 last cell of a row or column “And that just leaves the 5.”

digit-unit 0.12 0.05 digit-based justification “There is already a 4 there and there, so
the 4 can only go here.”

cell 0.04 0.03 cell-based justification “There is a 4 there, so that means the 3

needs to go here.”

try 0.04 0.09 plausible guess, not sure the ac-
tion is correct

“Hmm, both of those work. . . Alright,
let’s just try and see how it goes.”

Searching
focus unit 0.33 0.12 focusing the attention on one

row or column
“1, 3, 4, 6, so 2 and 5 are missing. Let’s
see the 2 can go both here and here.”

focus digit 0.13 0.09 focusing the attention on one
digit

“Alright, 5, 5, 5, 5. . . So only one 5 left
which has to go here.”

search 0.04 0.03 generally looking for where to
continue

“Maybe here. . . no that doesn’t work ei-
ther. Hmm, where should I start?”

hypothesis 0.02 0.02 mentally testing the conse-
quences of filling a certain digit
in a certain cell

“If I were to put the 2 here that would
mean the 4 can only go there. That would
mean. . . ”

Other
other 0.14 0.06 deletion of wrong inputs, talk-

ing to the experimenter, . . .
“That was wrong.”

As can be seen in Figure 2.11, there are large differences between
the participants with respect to their tactic use. Nevertheless, some
trends can be reported for the entire group. Overall, it is very clear
that when searching for where to continue, our participants liked to
focus on one unit at a time. With 33% this is by far the most fre-
quent label in our data. Only a single participant barely used this
approach (2%), the participant with the next fewest occurrences of
this label is at 20%, for six participants at least 40% of all labels are
focus-unit (higher than any other label frequency). Focusing on a unit
is a classic start for digit-based reasoning. We do not have a label for
focus-cell, because in the search process this was never mentioned
by our participants. Although they do notice cell-based constraints
and sometimes fill a cell based on them, often this solution approach
stems from starting with a unit-based focus. The other more speci-
fied and regularly used search tactic was focus-digit, which in case of
success would also lead to a digit-based filling event. In cases where
the focus on one unit or one digit did not lead to a successful fill-
ing event, some participants resorted to guessing, others to playing
through the consequences of some guess on the rest of the board.
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Testing the consequences of choosing a particular digit only men-
tally is, of course, more challenging and places a high load on the
working memory. This tactic is mainly used by more experienced
players, whereas beginners are more likely to fill in a “reasonable
guess” without knowing for sure whether this is the correct solution.
Both these approaches usually start from a unit with only few empty
cells left, so that the potential cell-digit pairings can be reduced to
two in the best case (2 empty cells, 2 missing digits in the unit).

Figure 2.11: Think-aloud labels
in the Latin square task. Each
dot is the relative frequency of
label of one participant.

2.3.5 Discussion

In the think-aloud study with 4-by-4 Sudokus, participants needed
on average 5 seconds per empty cell, whereas in the Latin square
task they needed 16 seconds per empty cell on average, showing that
the Latin square puzzles were much more challenging to our par-
ticipants. The perceived difficulty with the task varied significantly
between participants. One participant struggled a lot: they com-
pleted four puzzles only and guessed a lot throughout. The other
participants had less difficulty with the task and completed at least
six puzzles. The puzzles in this experiment were overall more chal-
lenging than the small 4-by-4 Sudokus from the previous experiment.
One reason for the increased difficulty was the growing size of the
puzzles, and there were more empty cells and fewer “easy starting
points” for the participants. Whereas in the small Sudokus more
than half of the cells can be already filled by some rule at the onset
of the puzzle, that fraction is much smaller in the Latin square puz-
zles we presented in this study. Hence, when checking a unit, cell or
digit at random to see whether some conclusions can be drawn there,
the chances of success are lower, and more reasoning dead-ends are
met.

The resulting longer and more frequent phases of searching for
an opportunity to continue filling the puzzle and unsuccessful filling
attempts warranted an explicit coding of the corresponding think-
aloud passages. We saw two main approaches of searching. One
was to focus on specific digits and searching their occurrences on the
board, testing whether they constrain the placement of the other in-
stances of the same digit. The other, more frequently used approach
was to focus on some row or column, finding out what digits were
missing in it and testing whether the placement of the missing dig-
its was constrained by digits in intersecting units. We never saw a
participant start their search process by focusing on a single cell and
testing which digits were still allowed in it.

2.4 Experiment 3: Straights

Another digit-placement puzzle with variable grid size is the game
of Straights. This puzzle introduces a new constraint and thus en-
ables and requires additional deduction rules compared to the Latin
square task and Sudoku. In the following experiment we use more
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difficult puzzles compared to Experiments 1 and 2. Besides think-
aloud protocols, here, we also explore eye-tracking as another method
to gain insight into the solution process.

2.4.1 The rules of Straights puzzles

Figure 2.12: Example for a
Straights puzzle: All the white
empty cells have to be filled
with digits between 1 and 6.
Each digit can appear at most
once per row and column. Con-
secutive white cells within a
row or column have to be filled
with digits that can form an un-
broken sequence. Hence, in the
row second to the bottom, only
a 2 and a 4 can be filled in for
example.

Straights are puzzles similar to Latin squares: they are quadratic
grids of any size (in our experiment we used 4-by-4 and 6-by-6),
where some cells are already filled with digits and the task is to fill
the empty cells. For an example puzzle see Figure 2.12. As in a Latin
square, no digit can exist more than once in a row or column. A
new element in Straights is that some of the cells are black instead of
empty. These black cells can have a digit in them from the beginning,
but can never be filled by the player. An empty black cell in a unit
(i.e., a row or a column) also means that not all digits will be present
in the unit. The black cells can divide a unit into separate parts, like
separate words in a cross-word puzzle. Each of these parts has to
be filled with digits that can be sorted into an unbroken sequence,
a so called straight. For example, if there is a 2 and a 3 in a section
with three empty cells, the last cell can be filled with either a 1 or
a 4, but nothing else. The straights constraint is very powerful, but
compared to Sudokus or Latin square puzzles a difficulty in Straights
is that one does not know from the beginning which digits will be
in a row or column if an empty black cell is present in it. In other
words, the constraint is that a digit occurs in a unit at most once,
whereas in Sudoku and Latin squares it is exactly once. Note: not
all Straights can be completed to be valid Latin squares: sometimes
the black cells would require one digit to complete the row and yet
another digit to complete the column.

2.4.2 Methods

Nine participants (4 male, 5 female) took part in Experiment 3. Their
ages ranged from 18 to 53 years, with a mean of 25 years. Students
of cognitive science received partial course credit, others did not re-
ceive any compensation. Participation was voluntary and partici-
pants gave informed consent. The study was approved by the uni-
versity’s ethics committee. None of the participants had ever solved
a Straights puzzle before, all of them had at least a little experi-
ence with Sudokus. At the beginning of the experiment, the rules
of Straights puzzles were explained in six screens. During the exper-
iment participants could re-read the rules at any time. Next, partic-
ipants were instructed to think-aloud during the entire experiment.
To familiarize participants with the think-aloud method, they solved
a three-digit addition and a two digit multiplication task and were
instructed to describe their solution process speaking out loud. Sub-
sequently, they filled one warm-up 4-by-4 Straights puzzle (recorded
as trial 0). Only then did they start with the six main six 6-by-6 puz-
zles of this experiment. To fill in a digit they had to click on an empty
cell and then enter the digit via the keyboard. We recorded their fill-
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ing actions, mouse movements, utterances and also eye movements.
We used an SMI RED250 eye tracker with a sampling rate of 250 Hz.

2.4.3 Timing and accuracy

Filling all puzzles took between 50 and 122 minutes per participant,
with a mean duration of 80 minutes (SD: 25). The recorded times
and errors per trial are shown in Table 2.4. It can be seen that the
smaller warm-up puzzle (trial 0) was solved much faster than the
subsequent bigger puzzles. The times and errors improved over the
course of the first three puzzles (trials 1, 2 and 3) before increasing
again. Trials 2, 4 and 5 were pretty similar performance-wise, but the
last puzzle (i.e., trial 6) posed a bigger challenge and required much
longer solution times and had a high error rate again.

Time (minutes) Errors
Trial Mean SD Median Mean SD Median Per cell

0 3.6 2.4 2.8 5.8 6.9 1 0.72

1 16.1 11.7 13.7 18.9 24.0 5 0.99

2 13.9 10.5 10.2 10.6 16.8 2 0.59

3 7.8 6.5 6.5 4.1 6.0 0 0.18

4 10.9 4.8 10.4 4.2 6.1 1 0.22

5 10.1 5.2 10.4 6.4 10.7 3 0.32

6 17.8 8.9 15.3 16.1 16.3 13 0.85

Table 2.4: Straights task: Time
and errors per trial in the
Straights experiment

2.4.4 Eye-tracking

Thanks to the eye tracker we know at all times at which part of the
puzzle the participant looked. Especially the search phases are often
not well commented, here the eye tracker gives information about
the focus of attention that is otherwise unavailable.

See Figure 2.13 for an example of the search phase at the begin-
ning of a puzzle. The example features participant 5, a person with
relatively few errors but quite terse utterances in the think-aloud pro-
tocol (11.1 utterances per entry as compared to the average of 29.5,
see Table 2.5). This is a participant where the additional informa-
tion from the eye tracker is most promising, because they probably
reason thoroughly but often do not voice the reasoning process in
sufficient detail to understand it based on the think-aloud protocol.
During the first 17 seconds (Figure 2.13 (a)), the participant looked at
the entire board, especially at all the given digits in the puzzle. The
following 18 seconds seem to be made up of several short episodes
(Figure 2.13 (b)): First, they shortly focused on one three-cell straight
with one given digit (column 1, 6 fixations), but seemed to give up
on it rather quickly. The other fixations and saccade patterns in this
time frame are a bit harder to understand. There are more vertical
than horizontal saccades, so the participant seemed to be focusing on
columns rather than rows. There were two longer fixations on the 5

in the bottom row and also a back and forth between this five and the
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(a) Looking at all given digits (b) Column 1, digits 5 and 6

(c) Row 2, column 5 (d) Final reasoning: digit 5 in row 2

Figure 2.13: Fixations and sac-
cades of participant 5 at the
beginning of trial 4. They
only talked about the final rea-
soning, not the search before.
Transcript (translated from Ger-
man): “There [row 2] needs to be
a 5. Can’t be here, here nor here.
Therefore it has to be there.”

one in the third row, fifth column. The next figure (Figure 2.13 (c))
shows first a focus on the second row, then a search in columns five
and six. The last 20 seconds prior to the entry, the participant looked
at all the relevant parts for the reasoning basis for this entry (Fig-
ure 2.13 (d)): They looked up and down the second row, in which a 5

needed to be placed, as they mentioned in the think-aloud protocol.
Of the four empty cells in the row, three can be excluded as locations
for the 5, because of other instances of 5 in intersecting columns.
They looked at each of them during this episode. The utterance for
the episode is (translated from German): “There [row 2] needs to be a
5. Can’t be here, here nor here. Therefore it has to be there.”. Note that
two fives were already looked at intensely at around 25 seconds af-
ter stimulus onset, i.e., 20 seconds before the final reasoning episode
seems to begin.

It might be possible to do more automated analyses with the eye-
tracking data, detecting episodes of general search on the entire
board and more focused attention on smaller parts. However, we
did not do that. To understand the reasoning processes think-aloud
protocols were more helpful for us as they not only inform about
what information was used, but also how.
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2.4.5 Think-aloud protocols

ID Entries E./cell Min. Sec./e. Words Words/e.

1 213 1.69 71 20 4819 22.6
2 348 2.76 68 12 3326 9.6
3 192 1.52 70 22 5339 27.8
4 483 3.83 122 15 8558 17.7
5 178 1.41 104 35 1976 11.1
6 172 1.37 50 18 5474 31.8
7 154 1.22 51 20 6090 39.5
8 127 1.01 75 36 10439 82.2
9 283 2.25 108 23 6671 23.6

Table 2.5: Time, filling events
and utterances per participant
in the Straights experiment. En-
tries are abbreviated as e.

Table 2.5 compares some high-level data of the problem-solving
behavior of all nine participants in this experiment. In total, there
were 126 empty cells to fill. Participant 8 only made one typo and
thus needed 127 filling events (one cell was filled twice to correct the
typo). All other participants made substantially more errors, which
included typos, reasoning errors and “just trying out” an assign-
ment. Participant 4, with 483 filling events needed by far the most
attempts of all participants (on average this participant filled each
cell about 3.8 times).

All think-aloud protocols contain interesting sequences and help
us understand how each participant went about solving the puzzles.
However, behavior of participants who guess a lot or who frequently
make mistakes and then reason based on a faulty puzzle state is hard
to analyze formally. Therefore, only the think-aloud protocols of par-
ticipants 6, 7 and 8, who have both the fewest errors and the most
words per filling event, were coded and analyzed in more detail. See
Table 2.6 for an overview of the labels and how often they were used
by each of these three participants. The coding labels for this exper-
iment do not only include categories for filling and search events,
but also reasoning steps that reduce the set of possibilities: either the
digits a cell could take, digits that are allowed in a unit or straight or
locations where a digit is allowed to be placed.

Of those three participants, the relative frequencies of labels do
not change much over the course of solving the different puzzles.
On average, the analyzed participants used between 3 (participant 6)
and 4 (participant 8) labeled utterances per entry. That means, they
often verbalize reasoning steps that do not directly lead to an entry.
This is also reflected in the relative frequencies of the different labels:
Three labels of the category refine (reduce, possible digit and required
digit) are by far the most common labels. Together they make up
more than 65% of all labels for each participant (see Table 2.6). By
definition, reasoning steps of this kind do not lead to an entry of a
digit, they refine and make explicit the knowledge about possibilities.
Based on these refined possibilities, the participant is oftentimes able
to find the definite assignment of a digit in a next step. If it does not
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Table 2.6: Description and examples for each label, with relative occurrence per participant in the Straights
task.

Participant
Labels 6 7 8 Description Example

Filling
last-in-unit 0.09 0.09 0.08 last cell of a unit “And in the last remaining

cell I’ll simply put the 3.”

straight 0.01 0.02 0.03 justification based on the straight “Could be 2 or 4. . . ah no,
the 2 can’t connect the
straight. So 4.”

try 0.01 — — plausible guess, not sure the action
is correct

“okay, let’s just try it. I’ll
just put a 2 here.”

fill? 0.05 0.09 0.01 unclear justification “And here is a 1.”

Refine
required digit 0.30 0.25 0.34 mentioning a digit that has to be in

some unit or straight
“One of them has to be a 4.”

reduce 0.22 0.20 0.21 reducing the digits that are allowed
in a cell or straight OR reducing the
cells that can take a digit

“The 6 can’t go in the cell on
the bottom.”

possible digit 0.17 0.25 0.12 mentioning a digit that could go into
a cell or straight

“As a partner for the 2, there
has to be a 1 or a 3.”

hypothesis 0.04 0.01 0.01 mentally testing the consequences of
filling a certain digit in a certain cell

“Alright, if I had a 1 here, I
would need a 3 and a 5. 3

would have to go here and 5

there.”

Other
delete 0.06 0.04 — deletion of wrong inputs “Let’s start over.”

other 0.06 0.06 0.19 for example, talking to the experi-
menter, general comments

“Ah, right, I am supposed to
talk.”



free-filling experiments 49

directly lead to an entry of a digit in one or two steps, and the focus
of attention is moved to a different part of the board. It is unclear,
however, how much of the generated knowledge is retained over a
longer period. Sometimes participants go back and clearly remember
their previous inferences: this time over, they only take very few
digits into account as possibilities for a cell. On other occasions,
however, they have to go through the same reasoning process again
and do not recall the result from the last time.

Formal model We built a formal model in the form of a program that
can solve all the puzzles of Experiment 3 by applying similar rules
as the ones captured by the labels of the think-aloud protocols. The
representation we use for the reasoning steps are several possibility-
dictionaries. For each empty cell and each straight with open cells,
we store what digits could possibly be filled into them. Most rules
work on reducing the set of possible digits. For reaching a point
where a digit can be entered, usually two or three rules need to
applied on the puzzles used in this experiment.

It is difficult to formally asses the similarity of the reasoning chains
of a participant and that of the model. Often, participants articulate
multiple reasoning steps about one part of the puzzle, abandon that
chain of thought and continue somewhere else. Furthermore, they
often do not mention some piece of information necessary for the
deduction. So the think-aloud protocols neither show a complete
list of all reasoning steps, nor do they mention only reasoning steps
necessary for the next entry.

Hence, when matching a human trace with a model trace, we can
neither require all human labels to be present in the model trace, nor
all model steps to be mentioned by the human. Nevertheless, there
is good correspondence between the labels and the rules we imple-
mented and qualitatively we are able to match the relevant processes
quite well.

Some observation regarding participants with many mistakes Participant
4 is the one with the longest time per puzzle (40 minutes for the first
“real” one as opposed to the 16 minute average). They tried to find
a clearly unambiguous cell-digit combination, but did not look for it
very long. Instead, they also went ahead and filled cells with digits
which were not the only possible solution. In the first puzzle they
did not understand all the rules, so some errors arose because of
a lacking understanding of the rules. At the end of the first puz-
zle they had understood all the rules. Over the course of the first
three puzzles they got better in several ways. They kept using guess-
ing or “just trying out” but did so in a more informed way: Most
importantly, they knew the rules. They also got better at spotting
immediate inconsistencies (e.g., did not fill in the same digit twice
in a row or column; already in the beginning they knew the rule but
did not always look both into the row and the column). Furthermore,
they got better in the search for promising places to continue filling
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the puzzle, i.e., either cells where one constraint results in an un-
ambiguous digit assignment or locations where several constraints
intersect. And last but not least, they became better at knowing and
remembering which entries were based on logical deductions and
which involved some guessing. Hence, they also deleted guessed
entries faster when they discovered inconsistencies further along the
solving process. This way, they could repair the puzzle state locally
and reach correct states without having to delete all entries. Til the
end of the experiment, they sometimes overlooked constraints and
put digits in cells that led to immediate violations but those events
became less frequent.

Very similar observations can be made for two other participants
as well. From their utterances it is unclear whether they understood
from the beginning that only one unique solution exists, they did not
necessarily intuit that “no obvious violation now” does not mean
“has to be (one of the) correct solution(s)”. We can be relatively
certain that after a few puzzles they understood that each puzzle has
just one solution and that they had to find it.

2.4.6 Discussion

The Straights puzzles were the most difficult of all puzzles in the ex-
periments presented in this chapter. All nine participants completed
the same six puzzles, regardless of the time it required to do so. This
led to long and exhausting experimental sessions for the participants,
but also allowed us to witness some learning taking place.

The difficulty of the puzzles required participants in many cases to
reason about sets of possible digits and how these possibilities con-
strain other possibilities. Another approach chosen was to just fill in
one of the options and play it out on the board, instead of reason-
ing multiple steps ahead mentally. The requirement to reason about
possibilities instead of just the digits on the board is the foremost dif-
ference to all the other puzzles we presented to our participants in
this thesis. This does not mean that reasoning based on possible dig-
its cannot occur in Sudokus or Latin square puzzles, we just chose
puzzles that were simple enough as to not require such steps. The
requirement of reasoning with possibilities (or testing them by fill-
ing cells based on “guessing”) made labeling the utterances as well
as finding a formal model for the processes much harder. Reasoning
based on theoretical possibilities is harder to observe, the digits on
the board can be seen, but the possible digits taken into consideration for
cells or regions can only be understood if the participants are very
thorough at verbalizing their thought process. If not, there is much
more room for misunderstandings between the experimenter and the
participant in the labeling process. It is also much harder to find a
list of valid reasoning steps in each situation, when not all underly-
ing facts are visible on the board but some only exist in the head of
the participant. Even if the participants once talked through some
candidate reduction process and it is quite clear what they consider
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as possibilities in that moment, it is very unclear to the experimenter
how long this derived knowledge remains available to the partici-
pant. We know that both cases occur, sometimes they forget and go
through the reasoning steps again, sometimes they remember and fill
in digits without much of a comment. Reasoning with possibilities
instead of just with the specific digits that are already placed on the
board clearly poses a challenge to the working memory. It appears
quite possible that a better organized working memory is one of the
major advantages more experienced players have over beginners.

We explored the use of eye-tracking to gain insight into the prob-
lem solving process. We saw that especially for the phases when a
participant is searching for where to continue, eye-tracking data has
great potential to give additional information besides the think-aloud
protocols. Participants are often good at verbalizing reasoning steps
they understand well and that they can carry out with relative ease.
When they find new deduction rules or when they are unsure how
to continue, they usually have a lot more trouble with verbalizing.
We did not find a way to more systematically analyze eye-tracking
data and generate quantitative data from it. One reason for this is
probably also the very explorative nature of the study. With clearer
expectations about patterns or different phases it would be easier
to use the eye-tracking data. Even though we did not use this type
of data much here, we see great potential of this kind of data for
future work. For understanding the search phases and how partic-
ipants decide where on the board to continue, eye-tracking data is
very promising. A lot of skill of successful players will come from
quickly finding locations where enough constraints hold so that a
definite assignment can be made.

Another very interesting finding of Experiment 3 is that the less
skilled puzzle solvers change their behavior over the course of the
experiment. It is difficult to quantify, but a few points are quite clear
when looking at the solution traces. An important prerequisite is, of
course, for the participant to fully understand all rules, which took
some participants one to two puzzles. There is also a difference be-
tween knowing all constraints and checking whether they are all sat-
isfied before entering a digit. Some of the participants with more
errors simply did not always check in all relevant units, but rather
restricted their reasoning to one unit only. Over time they became
somewhat better at checking all constraints before entering a digit.
The most important change, however, was their better grasp of and
memory for the distinction between “sure entries” and “entries based
on guesses.” In later puzzles they went back and deleted the content
of cells that was not derived by logically sound and compelling rea-
soning whenever they encountered inconsistencies further along the
solution process. They could thus locally repair a faulty state in a
more promising way as opposed to randomly changing assignments
or deleting all entries, as they resorted to in the beginning.
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2.5 Experiment 4: Mini-Sudoku (again)

We used a 4-by-4 Sudoku as a warm-up exercise in the beginning of
several online experiments, one of which will be discussed in later
sections (see chapter 3). The aim of this warm-up puzzle was to
familiarize participants with the experimental interface and to make
sure they understand the Sudoku rules before the main experiment
started. Participants could only start the main experiment once they
had filled the 4-by-4 Sudoku correctly.

Here, we will analyze the data from this warm-up trial. Even
though we only have the filling events and no disambiguating infor-
mation such as eye-tracking, mouse-tracking or think-aloud proto-
cols, the data set is interesting to look at, mainly because there are so
many participants that we can conduct more quantitative analyses
than in any of the previous experiments.

2.5.1 Methods

Before the respective experiment began, participants indicated how
often they solve Sudokus or similar puzzles on a scale from “never”
to “several times per week”. Then the experiment began with an
explanation of the rules of Sudoku: The three unit types (row, col-
umn, and box) were named and highlighted on an image and it was
explained that each digit has to occur exactly once per unit. Subse-
quently a small 4-by-4 Sudoku was displayed and had to be solved
by the participants. To do so, participants had to click on an empty
cell and then enter a digit via the keyboard. While filling the warm-
up puzzle, a button with the words “repeat the rules” was always
available to the participants. By clicking on it, participants could go
back to the explanation of the Sudoku rules from the beginning. As
soon as all empty cells were filled, a button with the words “check
solution” appeared. Upon pressing the button, all correctly filled
cells turned green, those with a wrong digit in them turned red. If
there were some mistakes, they could press a button labeled “delete
wrong input”, which reset the colors to neutral gray and emptied
all cells with wrong digits in them. Correctly filled cells remained
filled. The participants could then proceed from this partially filled
Sudoku. Only if all entries were correct, participants could proceed
to the main part of the experiment.

Overall, we have 253 completed warm-up trials from five separate
experiments: One them is Experiment 2 from chapter 3, the others
were completed as Bachelor’s or Master’s thesis and are not fur-
ther discussed in this work (Bras, 2021; Hanek, 2022; Katahra, 2022;
Rothkegel, 2023). We did not record age and sex in all experiments.
Students from the Technical University Darmstadt and (in one of the
five experiments) Technical University Kaiserslautern received par-
tial course credit for participation. Participation was voluntary and
participants gave informed consent. The studies were approved by
the university’s ethics committee.
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Figure 2.14: The warm-up Su-
doku: Heatmap for the most
frequently filled first cell (the
darker, the more participants
filled this cell first).

Move classification With the Prolog model we developed for the anal-
ysis of the think-aloud study with 4-by-4 Sudokus (see subsection 2.2.3),
we could also classify the moves in this study. As we do not have
any other disambiguating cues such as the mouse movements or ut-
terances, we use a subset of the original labels, leaving out 2-open and
only-digit-missing. We also ignore the basis unit, as this is often am-
biguous. Whenever a last-in-unit label applies, we take this label, as
it is the most simple explanation of the move and was a very highly
used reasoning pattern in the think-aloud study. In cases where it is
not applicable, and either cell-complex or digit-unit are, we take these
as labels. In the few cases where both cell-complex and digit-unit are
applicable, the move gets the label unclear. Correct entries that could
not be explained by any of the Prolog rules get the label no label. The
most probable explanation for these cases is faulty reasoning or a
lucky guess. Moves that are either entering a wrong digit into a cell
or are made in faulty board states are labeled with error.

2.5.2 Results

It took participants between 17 and 2471 seconds to fill in the puzzle,
with a mean of 86 seconds (SD: 159) and a median of 61 seconds. The
puzzle had 10 empty cells that had to be filled, but many participants
needed more filling events than 10, meaning that they filled cells
several times, presumably to correct mistakes. In total, we recorded
3384 filling events, that is 13.23 on average per person. Of course,
there are many participants without a single mistake and some who
needed many filling events to get the puzzle right. 120 participants
had at least one mistake, 133 had only correct puzzle states. Fig-
ure 2.14 shows the puzzle together with a heatmap indicating which
cells were most often filled first.

Stage Poss. states Vis. states Coverage Most frequent

1 10 10 1.0 76

2 45 16 0.36 77

3 120 28 0.23 71

4 210 37 0.18 27

5 252 45 0.18 76

6 210 44 0.21 64

7 120 49 0.41 45

8 45 31 0.69 65

9 10 10 1.0 71

10 1 1 1.0 253

Table 2.7: Warm-up data: The-
oretically possible and actually
visited states per stage of the
filling. When one cell is filled
by the participant, there are 10

different possible puzzle states
and all of them are realized
in our data. “Most frequent”
displays the number of partic-
ipants in the most visited state.

In free-filling experiments, the problem states the participants see
quickly diverge from each other. They all start with the same ini-
tial puzzle, but depending on where they begin to solve it, they will
encounter different intermediate states and will thus also have differ-
ent solution tactics available at different moments. Each participant
has to fill in all 10 empty cells. We use the term stage to describe
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Figure 2.15: A graph displaying all the states that were actually visited by participants. All nodes on
the same x-axis belong to the same stage, i.e., have the same number of filled cells. All error states are
summarized in a single node per stage (the one with red incoming arrows towards the top). Colors of
the edges indicate the rule that would lead from one to the other state. Green is cell-based reasoning,
blue digit-based reasoning, teal is a last-in-unit rule and red are transitions that cannot be labeled by our
Prolog program. The thicker an edge, the more participants used this transition.

all puzzle states with the same number of filled cells. At the first
stage, when one cell has been filled, there are 10 possible states of
the puzzle (considering only correct filling actions). At the second
stage, there are (10

2 ) = 45 possible correct puzzle states. Possible
states increase to (10

5 ) = 252 in the fifth stage, before they decrease
again. See Table 2.7 for a list of the number of possible states per
stage. Random filling actions would visit all states with the same
probability. The participants in our data are clearly not proceeding
randomly but follow similar reasoning rules as the participants in
the think-aloud studies did. Not surprisingly, they thus do not cover
the entire space of possible correct states, but only a portion of it. At
the widest point of the state space graph, coverage is down to 18%,
i.e., only 18% of possible correct spaces were visited by at least one
participant. In most stages, the most popular state is visited by about
a quarter of all participants, which shows a strong concentration on
few states. The unequal distribution across states can also be seen in
Figure 2.15. More popular paths are generally found at the top of the
graph. Each correct state that was visited by at least one participant
is represented by a node in the graph. The starting state is at the left,
all participants start with the same initial state. Nodes on the same
x-coordinate in the graph belong to the same stage: they all have the
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same number of filled cells. Edges are colored according to the tactic
that most probably explains the move: Green: cell-based, blue: digit-
based, red: no implemented tactic (the nodes without leaving arrows
are the collected error states of the stage), teal: last-in-unit was pos-
sible. Note that we do not know whether the reasoning was indeed
last-in-unit, some participants might have used digit based reasoning
throughout the entire puzzle. As last-in-unit is the simplest expla-
nation for a move, however, this is what we use for labeling when-
ever it is available. At the beginning of the puzzle, no last-in-unit
move was available, and participants had to either use cell-based or
digit-based reasoning (or make a lucky guess). No matter in what
order the puzzle is filled, there are always at least three states when
a tactic other than last-in-unit is required. Most participants are in
such states when filling the fourth and the seventh digit. It is clear
that there are multitudinous paths that are taken by participants, but
there are some nodes where many participants come through.

Figure 2.16: Proportion of tac-
tics used for each experience
group in the warm-up Sudoku.
Beginners make many mistakes
and thus have to make al-
most two filling actions per cell.
The most experienced group of
participants needs the fewest
moves and has the highest pro-
portion of clearly digit-based
moves.

Experience Experience was self-reported by the participants on a
scale from “never/less than once per year” to “several times per
week”. 58 participants answered with “never/less than once per
year”, 73 participants with “once per year”, 75 with “once per month”,
25 with “once per week” and 22 with “several times per week”.

The kind of tactics that were used differ between the experience
groups. Figure 2.16 shows a summary of tactic use for each expe-
rience group. It is very clear that beginners make more errors than
others. More than half of the moves of the beginners were wrong or
done in a board state that contained an error.

When looking at the very first move in the puzzle, i.e., at a state
where everyone started with the exact same given digits, we see clear
trends that change with experience. Table 2.8 shows a summary
of the percentage of labels for each experience group. Last-in-unit
was not applicable in that state and no cell could have been filled
with both cell-based and digit-based reasoning, so these two labels
do not occur. The categories no label, error and cell-based reasoning
are most common in the least experienced participant group and
decline almost monotonically towards the more experienced groups.
Only for the digit-based label we see the opposite effect of a steady
increase from 16% in the least experienced participants to 77% for
the most experienced ones.

Experience No label Error Cell-based Digit-based

<1/year 0.10 0.31 0.43 0.16

1/year 0.05 0.12 0.38 0.44

1/month 0.04 0.13 0.25 0.57

1/week 0.00 0.08 0.16 0.76

>1/week 0.00 0.00 0.23 0.77

Table 2.8: Warm-up data:
Percentage of labels of the
first move for each experience
group.
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2.5.3 Discussion

The time per move is pretty similar in the present study and the
think-aloud study with similar puzzles (mean think-aloud study 6.8
seconds per move (SD: 7.1), see Experiment 1 in section 2.2, mean
this data set 6.0 seconds (SD: 11.5)). When looking at the median,
participants in the think-aloud experiment were considerably slower
per move than the participant in the current experiment (median
think-aloud study 4.37 seconds per move, median this data set 2.7
seconds). Participants in the think-aloud study were required to utter
their thoughts, which is known to slow down and can explain the
difference (Berardi-Coletta et al., 1995).

Thanks to the relatively large number of participants who solved
the same puzzle, we could quantify how much of the possible so-
lution space is actually covered. We see that the coverage of the
possible state space is higher in the second half of the stages (i.e.,
after five digits have been entered) than in the first half. This fact
is not really surprising as the number of constraints in the puzzle
steadily increases and more and more cells can be filled with simple
reasoning tactics.

A new insight this data set provided is the strong correlation of
experience with frequency of digit-based tactics. Most clearly this is
seen in the very first move of the puzzle, where more than 75% of
the two most experienced participant groups used digit-based tac-
tics. In the least experienced group the percentage of participants
using digit-based tactics is only a third of that, namely 16%. The two
groups in between neatly interpolate between these extremes. Less
experienced participants make more errors, but when they reason
correctly they are much more likely than more experienced partic-
ipants to use cell-based reasoning. More than 60% of the correct
entries in the first stage by the least experienced participants were
cell-based. In the other free-filling studies already discussed in this
chapter we usually did not have enough participants to see robust
effects of experience on tactic use.

Lee et al. (2008, study 1) found that in a free-filling paradigm their
participants (none had prior experience with Sudoku) used more
cell-based than digit-based tactics. When looking at the entire group
of participants we, to the contrary, find the opposite effect, more
digit-based tactic are used. However, when only looking at the inex-
perienced participants we see a similar pattern in the data. Therefore,
it seems that beginners do tend to first use cell-based tactics before
discovering and using digit-based tactics.

2.6 Overall discussion of chapter

The reasons for us to start out with free-filling and think-aloud exper-
iments were that we wanted to get an understanding of how differ-
ent participants might approach the task of filling a digit-placement
puzzle. Observing several participants doing the same tasks gives
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some general insights into possible solution strategies. With all three
different digit-placement puzzles in this chapter (i.e., Sudoku, Latin
squares and Straights), we have seen participants using similar ap-
proaches to solve them. The most common and most trivial tactic is
to place the last digit into an almost full unit. All of our participants
apply this tactic in all of the different puzzles. Most participants are
very flexible about the basis unit in this case. However, it is not al-
ways applicable and more complex reasoning tactics are required to
fill a puzzle. When looking for how to continue filling the puzzle, a
very common approach used for all puzzles is to focus on one unit
of the puzzle, determine which digits are missing in it and subse-
quently check whether some of the missing digits’ position can be
determined based on the constraints from intersecting units.

It is possible to distinguish cell-based and digit-based reasoning
in all three puzzles. Across all of our experiments, both reasoning
tactics were used, but digit-based reasoning more often than cell-
based reasoning. When looking only at the group of beginners (the
group which stated they played Sudoku “less than once per year”),
this trend reverses. Beginners tend to use more cell-based reasoning
than digit-based reasoning.

In several of the experiments, we have seen that beginners also
tend to just fill in plausible guesses if they do not see an easy way
of deducing a cell-digit combination for sure. It is unclear whether
they fully understand that all the digit-placement puzzles in our ex-
periments have one unique solution. Filling in a plausible guess
has a probability of 50% or 33% of being correct (mostly they make
entries after reasoning with a result of “either here or there” (digit-
based) or “either this or that digit-based” (cell-based), or at most 3

possibilities). It might be that some participants think “if there is
no contradiction at this stage of the puzzle, it cannot be false” (and
maybe several correct solutions exist for the puzzle). Or they just do
not see any other possibility than trying.

More experienced players often rather play the options through in
their mind: they test what consequences one of the options would
have on other already relatively restricted parts of the puzzle. Play-
ing through such an option mentally places a high demand on work-
ing memory, remembering where which digit was assumed to come
and then reasoning based on these new constraints that are not vis-
ible on the board yet. If they find a contradiction after two to three
moves, they know that only the other option can be the correct
one and can assign it for sure. Beginners are probably not famil-
iar enough with the reasoning processes to be able to carry out these
reasoning chains mentally. When they reach a contradiction after a
plausible guess they filled in a few moves earlier, they often do not
recall where they made a guessed move and are not able to retrace
their reasoning and delete the parts that build upon a loose founda-
tion.

The free-filling paradigms of this section allowed us to observe
participants approach different digit-placement puzzles without ad-
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ditional experimental restrictions. Observing several participants do-
ing a small set of relatively similar tasks gives some general insights
into possible solution strategies. We saw that there is quite a vari-
ety of approaches, although most of them can be well described by
a small set of rules. Some beginners’ behavior is less accurately de-
scribed by simple deductive rules, as they commit reasoning errors
and fill in wrong digits.

There are some drawback to doing experiments with free-filling
paradigms. One difficulty is that as soon as participants start filling
the puzzle, the problem states they encounter differ, as there are
many different orders in which a puzzle can be solved. The diverging
puzzle states make it harder to aggregate and compare data across
participants. Another disadvantage of the paradigms used in this
chapter is that a large portion of the filling events is based on very
simple reasoning tactics. In the 4-by-4 Sudokus more than half of
the entries were based on last-in-unit rules. It is more informative to
observe more complex reasoning tactics.

A problem with free-filling experiments in combination with col-
lecting think-aloud data is also that it is difficult to scale up and
collect and analyze data from significantly more participants. Data
analysis for think-aloud protocols is very labor intensive. With clear
expectations about possible reasoning patterns, it was possible in
section 2.5 to analyze data from a free-filling experiment without
recorded think-aloud traces. By leveraging what we learned in pre-
vious experiments, we could infer tactic use in some cases based
solely on the entries participants did.

All in all, the work in this chapter is a good foundation to do more
controlled experiments. Knowing how participants approach the
task of solving a digit-placement puzzle “naturally” without notable
constraints from the experimental interface helps to design experi-
ments to answer specific questions. Questions that will be explored
in chapter 3 and chapter 4 include: Do all participants discover digit-
based and complex cell-based tactics, when that is the only way of
solving a task correctly? Do the two tactics differ in difficulty? Under
what circumstances is it useful to use which tactic? What might be
the reason for a shift in tactic use with increasing experience? And fi-
nally, in chapter 5 we look at answering the question whether we can
describe the different preferences for rules of individual participants
more formally. Building upon the understanding we gained by the
free-filling studies, we are well equipped to answer these questions.



Chapter 3

Restricted filling

This chapter has been published as Behrens, T., Räuker, M., Kalbfleisch,
M., and Jäkel, F. (2023). Flexible use of tactics in Sudoku. Thinking &
Reasoning, 29(4):488–530. Copyright Taylor & Francis, available online:
https://www.tandfonline.com/doi/abs/10.1080/13546783.2022.2091040.
Some terminology is adapted to fit better with the other chapters and
references to the other chapters are inserted where appropriate.

3.1 Introduction

When we solve problems there are usually a number of different
strategies that we can use. It is a hallmark of intelligence that we, as
humans, are able to flexibly choose between them. Siegler and col-
leagues have shown that even children already know and use a wide
array of strategies. For example, when learning simple addition they
usually start with counting on their fingers. Counting all the way
from one to the sum is effortful. Hence, they quickly acquire various
shortcuts before memory retrieval becomes the dominant strategy
(Siegler and Jenkins, 1989). They flexibly interchange strategies and
mostly use the most appropriate one, i.e. they use effortful strate-
gies only when simpler strategies fail (Siegler, 1991). Many stud-
ies have shown that not just children but also adults often know
and use several strategies when engaging with a task. Be it mental
rotation (Alderton and Larson, 1994), memory tasks (Alderton and
Larson, 1994; Brown, 1995), sentence-picture comparison (Clark and
Chase, 1972; MacLeod et al., 1978), deciding between investment op-
tions (Lee et al., 2019; Rieskamp and Otto, 2006), fraction magnitude
comparison (Fazio et al., 2016), or fault finding in an electrical cir-
cuit (Friedrich and Ritter, 2020), there is always more than one strat-
egy. Depending on the situation each strategy might entail different
amounts of cognitive effort or might be more or less reliable. Being
able to flexibly choose between strategies is thus an essential aspect
of problem solving.

Here, we propose that Sudoku provides a suitable test-bed to
study and model this flexibility. Previous studies on Sudoku have
established that there are two dominant and well-understood strate-
gies (Lee et al., 2008). It is good experimental practice to restrict par-
ticipants’ behavior to one strategy either through task requirements

https://www.tandfonline.com/doi/abs/10.1080/13546783.2022.2091040
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or instructions. In this way, a strategy can be studied in pure form.
Only after all the dominant strategies are understood can we begin to
understand their interaction and how people choose between them.
However, as we will show in this paper, for reasonably complex and
realistic problems, like Sudoku puzzles, it is hard to restrict partic-
ipants’ behavior appropriately and only through modeling several
strategies simultaneously can we explain their behavior.

If several strategies can be used in a task, this clearly complicates
the design and analysis of problem solving experiments. If partici-
pants just use one kind of strategy, researchers will be able to average
over all participants and trials, making quantitative analyses easier
to carry out. If several strategies are used in the course of the exper-
iment, averaging over them will often lead to erroneous conclusions,
as shown in detail by Siegler (1987). Even if a model that assumes
only one dominant strategy provides a good overall fit, there is no
guarantee that participants only used this strategy. The so-called min
strategy for children’s addition explained much of the variance in
experimental data (Siegler, 1987) and so did the linguistic model for
the sentence-picture comparison task (Clark and Chase, 1972). Still,
modeling two or more different strategies dramatically improved the
fit in both cases (MacLeod et al., 1978; Siegler, 1987) and we present
a similar result for Sudoku.

Unfortunately, it is often not easy to tell which strategies partici-
pants use in an experiment. Overt responses and response time mea-
sures are the bread and butter of experimental psychology but they
are seldom enough to classify trials according to the strategy that
was used. While cognitive scientists often object to verbal reports,
they are hard to avoid in problem solving research and less problem-
atic than usually assumed (Jäkel and Schreiber, 2013). Siegler and
Jenkins (1989), for example, asked children after each trial how they
obtained the result, and the answers matched well with the overt
behavior on the trial as well as with the time they needed. Other
possibilities to help distinguish strategies include concurrent verbal
protocols and eye- or mouse-tracking. As participants can be very in-
ventive and use strategies that researchers did not expect, researchers
can also use these methods to discover strategies in a data-driven
way. In general, if researchers are too narrow-minded and expect just
one strategy, their experimental setup will often miss the variability
that naturally occurs when people solve problems of interesting com-
plexity. This happened, for example, in a study by Ritter and Bibby
(2008). They modeled only one strategy for finding faults in electrical
circuits. Their SOAR model fit well for 8 out of 10 participants and
could explain trial-to-trial variability. However, in a replication of the
experiment without a worked example at the beginning, only 4 out
of 35 participants were well matched by the model (Friedrich and
Ritter, 2020). In this second experiment, Friedrich and Ritter (2020)
found and subsequently modeled five more strategies. In our stud-
ies on Sudoku we therefore use a mixed-methods approach where
response time experiments are combined with modeling and verbal
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reports to make sure that we do not overlook any relevant strategies.
As there are usually several strategies for any problem, how do

people choose which one to use? There is some research on differ-
ent factors influencing the choice of strategies: Participants adapt
their strategy to the task and learn with experience what the opti-
mal strategy is (Gunzelmann and Anderson, 2003; Lee and Johnson-
Laird, 2013; Rieskamp and Otto, 2006). Alderton and Larson (1994),
however, found that participants who switched strategies optimally
in one task might perform far from optimal in another task (with
respect to strategy switching). They concluded that strategy switch-
ing is not governed by a central metacognitive process but is task-
specific. Personal ability (e.g. verbal ability, spatial orientation) also
influences what strategies participants use in a task, such that partici-
pants who are generally strong in a domain more likely use strategies
relying on operations in this domain (MacLeod et al., 1978; Roberts
et al., 1997).

While experience and personal ability are probably also important
for strategy selection in Sudoku, here, we study the role of task re-
quirement and task instruction. Sudoku problems can conveniently
be constructed in a way that they are only solvable with one of the
dominant strategies and not the other. Hence, if participants start
with the wrong strategy they will have to switch. Sudokus thus
provide us with a suitable test-bed to study strategy choice under
changing requirements. Furthermore, through the task instruction
we can induce participants to start with one or the other strategy.
This is achieved by presenting the problem either as having to fill
out a specific cell or as having to find a cell for a specific digit. The
way a problem is presented – and therefore represented by the prob-
lem solver – is well known to have a huge effect on problem solving
(Newell and Simon, 1972; Kaplan and Simon, 1990). It is therefore
surprising that previous studies on Sudoku have focused on one par-
ticular problem presentation that highlights a cell and requires par-
ticipants to fill in the correct digit. We show that previously reported
pronounced differences in difficulty between different strategies are
confounded with this specific mode of presentation.

3.1.1 Overview of chapter

In a series of three experiments we try to understand the influence
of the two well-known dominant strategies on the difficulty of solv-
ing Sudoku puzzles. Experiment 1 is a think-aloud study on how
people approach the standard task where one cell is highlighted by
the experimenter. In Experiment 2 we directly compare the perfor-
mance of participants with the standard instruction and a second
instruction where the task is to find a cell for a specific digit. As
much of the previous literature on Sudoku is focused on the influ-
ence of complexity on task difficulty, we conduct Experiment 3 to
be able to compare our results to previous studies. Finally, we in-
troduce a simple process model that implements both strategies and



62 improving research methods for problem solving

explains how strategy, complexity, task requirement, and instruction
together determine task difficulty. But before we can present the ex-
periments and their results, the next section first provides necessary
background information on Sudoku.

3.2 Background on Sudoku

While Sudoku puzzles are probably known to most readers, a few
words about their relation to Latin squares are in order. A Latin
square is a square grid of side length N where each field is filled by
a digit from the range from 1 to N. Each digit has to appear exactly
once per row and once per column. In a Latin square task (LST) the
grid is only partially filled and the task of the player is to fill in the
missing digits without violating the constraints. Sudoku is similar, it
only introduces an additional unit type to the already defined rows
and columns, namely boxes. Boxes are of size

√
N-by-

√
N and the

same constraint holds: each digit has to appear exactly once per box.
Thus, Sudoku-grids need to be of a side length that is a quadratic
number in order to make the boxes possible. Typical Sudokus are
of size 9-by-9 and examples are shown in Figure 3.1. The term peers
describes the set of all cells that are connected to one cell by sharing
a unit: the same row, column, or box. Although both puzzles are
usually referred to as digit-placement puzzles, numerical properties
do not play any role in the problem solution. The digits could be
replaced by arbitrary symbols without changing the nature of the
task.

3.2.1 Basic tactics

So far, we used the term strategy to be consistent with the termi-
nology in the literature on strategy selection. Following Lee et al.
(2008) we will, from now on, use the term tactic to talk about differ-
ent reasoning patterns participants use for filling in a single digit in a
digit-placement puzzle. Tactics describe more local phenomena and
a systematic sequence of tactics would then make up a strategy. Ac-
cording to this definition, some of the phenomena discussed in the
introduction would be better described as tactics instead of strate-
gies. Following Lee et al. (2008) we distinguish two basic tactics for
filling in single cells: a cell-based tactic and a digit-based tactic. The
tactics described in the following are inferring a new digit for some
cell, based on the digits already present on the board.

The cell-based tactic Participants select a cell and look at its peers
(i.e., those cells that are in the same unit as the cell, for example in
the same row). All digits that appear in the peers of the cell can be
excluded as possible values for it. Lee et al. (2008) therefore refer
to this tactic as exclusion tactic. Examples for situations in which the
cell-based tactic is applicable can be seen in Figure 3.1 (c) and (d). All
digits except for the 9 can be excluded for the cell AA in the upper
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left corner because they appear already in the same row, column, or
box.

The digit-based tactic Participants start with one specific unit and a
specific digit in mind: For example “Where in this box can I place
the 9?”. Each digit has to appear once in each unit (row, column,
box) of the Sudoku. So if it is not yet placed in a unit, one can start
looking for candidate cells to place it in. Cells of the unit which are
already filled drop out of the candidate set without much further
consideration, but some of the empty cells often can be excluded,
too. Consider Figure 3.1 (d): the digit 9 is still missing from the
upper left box. The 9 in the second row at BG excludes cells BA and
BB and the 9 at the bottom of the second column in IB excludes cell
CB as possible location. The only cell where a 9 does not lead to a
violation of Sudoku rules is the upper left cell AA. Lee et al. (2008)
call this tactic inclusion because one tries to include a digit into one
specific unit.

(a) cell-based tactic, 2 units re-
quired (cb-2)

(b) cell-based tactic, 3 units re-
quired (cb-3)

(c) digit-based tactic, 2 units re-
quired (db-2)

(d) digit-based tactic, 3 units re-
quired (db-3)

Figure 3.1: The correct solu-
tion for the cell AA is 9 in all
four puzzles. The units needed
to reach this result are marked
with shaded background. The
best starting question for the
cell-based tactic is “Which digit
is allowed in cell AA?”, all dig-
its except for the 9 can be ex-
cluded. The best starting ques-
tion for the digit-based tactic is
“Where in the upper left box
(AA-CC) can I put the digit 9?”,
all cells of the box except for
AA can be excluded.

3.2.2 Tactics and their complexity

Birney et al. (2006) were the first to introduce the notion of complex-
ity to the study of digit-placement puzzles. They classified puzzles
according to their relational complexity (Halford et al., 1998), count-
ing how many variables a reasoning tactic requires. However, they
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based their analysis purely on the cell-based tactic and ignored the
digit-based perspective. Thus, some of the items are not as complex
as they seem in their analysis. Later, Lee et al. (2008) introduced the
digit-based perspective to studies of Sudoku. They adopted the term
relational complexity from Birney et al. (2006) and did not count
variables but units required for the reasoning process. Here, we
use the same complexity measure as Lee et al. (2008) because it is
easy to specify for a given puzzle situation. Note, however, that it
is unclear how this measure relates to relational complexity as origi-
nally conceived. Relational complexity is defined as “the number of
interacting variables that must be represented in parallel” (Halford
et al., 1998, p. 805). If there is a way to serialize the problem into
a sequence of steps that require fewer variables at once, the effec-
tive relational complexity is reduced. The relational complexity of a
task can therefore only be determined if one has an explicit process
model that spells out how participants solve the task and how many
independent variables need to be held in mind at any point during
this process. Therefore, contrary to previous studies we do not use
the term relational complexity and instead only speak of number of
required units (NRU).

According to this measure, we can distinguish three levels of NRU
within the cell-based tactic. If all cells but one of a unit are already
filled, a deduction can be made by focusing solely on this unit. The
unit could be either row, column or box, the NRU is always 1. We
label these cases as cb-1. However, in many situations a combina-
tion of units is required to deduce the next digit. In Figure 3.1 (a)
for example, the union of the values from the row and the column
(row+column) is needed to exclude all but one digit. Other possible
combinations of units are row+box, column+box, row+column+box.
We label all cases involving two units as cb-2 and three types of units
as cb-3.

The digit-based tactic can similarly be subdivided. The digit-
based tactic always operates on a base unit. Additional units are
needed to exclude other empty cells from the base unit as candidate
locations for the digit. For example, the base unit in Figure 3.1 (d) is
box, and two additional units (one column and one row in this case)
are needed to rule out the three other empty cells of the box. We
count the base unit and all additionally needed units, which in this
case results in the categorization digit-based with 3 required units, or
db-3 for short. In Figure 3.1 (c) the base unit is a box, and only one
unit (the second row) is needed to find out the place for the 9, so it
would be classified as digit-based with 2 required units, or simply db-2.

Several studies have examined the influence of either complexity
alone or tactic in interaction with complexity. All these studies high-
light one cell in a puzzle (Sudoku or Latin square) and ask partici-
pants for the value that has to be assigned to the cell. In the next trial
a new puzzle is displayed in the same fashion. Studies that looked at
the difference between cell-based and digit-based reasoning found
that the cell-based tactic is easier for participants, expressed either
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by faster response times or higher accuracy or both (Lee et al., 2008;
Perret et al., 2011). All studies find that response times are longer for
puzzles with higher complexities, but whether accuracy is affected is
not so clear (Birney et al., 2006; Hearne et al., 2020; Lee et al., 2008;
Perret et al., 2011; Qin et al., 2012).

Highlighting one cell and asking for the value to be filled in it
might bias participants towards using cell-based tactics. For a better
understanding of the role of instructions, we devised a new kind
of instruction, meant to facilitate digit-based reasoning. We directly
compare the performance of participants with the two different kinds
of instruction in Experiment 2. With an experimental design that
favors digit-based reasoning the bias flips: Sudokus requiring digit-
based reasoning are now solved faster and more often correctly than
those that require cell-based reasoning. As much of the previous
literature is focused on the influence of complexity and some results
remain debated, we conduct Experiment 3 to clarify whether NRU
alone influences accuracy and response times. We find that a higher
NRU leads to longer response times but not to higher error rates
in our experiment. Finally we introduce a simple process model
that implements both tactics and explains differences between the
cell- and the digit-based tactic, and how both instructions and NRU
influence task difficulty.

3.3 Experiment 1: Highlighted cell in a 9-by-9 Sudoku

In this first study, we followed the usual practice and had partici-
pants fill in a predetermined cell in a different puzzle on each trial.
To get a better understanding of how participants approach their
task we recorded think-aloud protocols. In their first experiment, Lee
et al. (2008) asked participants after each digit they filled in how they
knew the answer was correct. This way the researchers could clas-
sify the tactics their participants employed to fill digits in cells. Our
think-aloud data give information on a more fine-grained level, we
see what features of the puzzle they pay attention to, can follow their
progress and observe how they switch tactics when a reasoning chain
does not lead to a solution.

3.3.1 Participants and methods

There were 14 participants (9 female, 5 male), aged between 20 and
56 years (mean: 39.1, SD: 15.3). Their self-reported prior experience
with Sudoku puzzles is shown in the last column (XP) of Table 3.2.
Two participants had to be excluded due to technical issues during
the experiment. Each participant was recorded individually. They
filled in the Sudoku puzzles on a computer and were instructed to
think aloud during the whole time. The puzzles were chosen to re-
quire cell-based reasoning, digit-based reasoning, and some more
complex reasoning schemata. Puzzle types were chosen adaptively
during the experiment to make the problems interesting for the par-
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ticipants. The think-aloud recordings were transcribed after the ex-
periment. Participants were instructed to fill in the correct digit in
one highlighted cell for the 9-by-9 Sudoku that was presented to
them. For each trial, participants had 120 seconds to find the correct
digit, after which the Sudoku disappeared from the screen. Response
times were measured from stimulus onset. The duration of the ex-
periment was fixed to 60 minutes. The participants solved around 60

Sudoku-cells in this time, ranging from 46 to 77, depending on their
speed.

3.3.2 Results

For puzzles that could be solved with the digit-based tactic, the most
important base unit was box. When comparing the solution times
for puzzles where the digit-based tactic was possible with only one
of the three units, those that are box-based are solved twice as fast
as those that are column- or row-based (32 seconds vs. 71 seconds).
Many puzzles could be solved with the digit-based tactic with two
or even any of the base units (row, column, or box). Because the
applicability of the digit-based tactic with base unit box was so much
more decisive for solution times, we distinguish only this feature in
Table 3.1 below.1 A look in the protocol data confirms that only 4 of 1 This observation also matches the re-

sults in the 4-by-4 Sudoku think-aloud
study in section 2.2 in which box was
the basis unit more than 20 times as
often as either row or column in digit-
based reasoning.

the 12 participants talked about the digit-based tactic in combination
with rows or columns at all. About half of the puzzles were solvable
with the digit-based tactic with the base unit box. The number of
required units (NRU) ranged from 2 to 5 with a mean of 3.2. Another
21% of the puzzles were solvable with the cell-based tactic with 2 or
3 required units (mean: 2.4). Very few (3%) of the puzzles could be
solved in both ways and 23% could not be solved directly with one
of the two simple tactics. Some of them were solvable with the digit-
based tactic with different base units (row or column) or participants
needed to mentally infer another digit with simple tactics first, in
order to figure out the correct digit for the cell in question.

Count Response Time [sec.] Accuracy

Digit-based (box) 376 35.61 ± 27.26 0.93

Cell-based 161 31.19 ± 21.13 0.99

Both 28 25.96 ± 25.72 1.00

None of the above 171 79.10 ± 35.10 0.63

All 739 44.35 ± 33.99 0.88

Table 3.1: Mean response time
in seconds and accuracy per
trial for different puzzle types
in Experiment 1.

On average participants needed 44 seconds per puzzle and were
correct on 88% of the trials. Table 3.1 shows that trials in which
cell-based strategies were applicable were faster and more often cor-
rect. When only cell-based strategies were applicable, our partici-
pants needed on average 31 seconds, as opposed to 35 seconds when
only digit-based (box) strategies were applicable. This difference is
not statistically significant. When none of the simple strategies suf-
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ficed to solve the puzzle, participants were much slower (79 seconds
on average) and when both worked they were faster (26 seconds on
average). Looking at the performance of individual participants, the
data show a similar pattern overall.

Think-aloud data The transcribed think-aloud protocols were coded
sentence by sentence. The coding scheme is more fine-grained but
for our purposes it suffices to distinguish between two classes of
labels: cell-based or digit-based utterance. Cell-based utterances in
the most basic case exclude digits that appear already in the peers
of the cell (“it can’t be the 1 because it is already in the row”). A
basic digit-based statement is something like “I need a 1 in this box”,
mentioning the digits that are still missing instead of those that can
be safely excluded as candidates.

Table 3.2: Some counts for each participant. Response Time displays the mean time in seconds the par-
ticipant needed per trial, Accuracy the fraction of correct trials, Cb-start how many trials the participant
started with a statement that was classified as cell-based, Db-start how many trials were started with a
digit-based utterance, Both how many trials included at least one statement of each of the two classes and
Trials gives the number of trials each participant completed. Self-reported experience is shown in the last
column (XP: 0–less then once per year, 1–once per year, 2–once per month, 3–once per week, 4–more than
once per week).

Participant Response Time Accuracy Cb-start Db-start Both Trials XP

01 45.39 ± 38.05 0.92 0.27 0.69 0.58 62 4

02 62.53 ± 32.68 0.90 0.88 0.04 0.52 48 1

03 42.58 ± 38.52 0.87 0.68 0.29 0.62 63 3

04 52.97 ± 31.41 0.88 0.49 0.47 0.86 51 3

05 37.29 ± 23.75 0.80 0.77 0.17 0.54 71 0

06 44.10 ± 37.62 0.91 0.81 0.17 0.69 64 0

07 54.25 ± 34.61 0.88 0.68 0.28 0.78 50 2

08 48.38 ± 25.42 0.89 0.45 0.53 0.62 55 2

09 34.16 ± 39.52 0.91 0.72 0.27 0.46 78 3

10 34.98 ± 28.82 0.87 0.76 0.20 0.39 75 2

11 44.44 ± 28.78 0.83 0.70 0.28 0.53 60 2

12 44.80 ± 32.14 0.87 0.73 0.26 0.69 62 1

All 44.35 ± 33.97 0.88 0.67 0.30 0.59 739

In Table 3.2, it can be seen that 9 of 12 participants started at least
68% of their trials by excluding digits that appear in the peers of
the highlighted cell, i.e., classical cell-based reasoning. As the par-
ticipants did not see the same problems in the same order, and de-
pending on their performance saw a different number of problems
that required cell-based reasoning, this number is not directly inter-
pretable. However, only about 25% of all trials could be solved by
cell-based reasoning. Hence, many participants clearly have a bias
to start a trial with cell-based reasoning. When they did not find
a solution with their cell-based approach, these participants mostly
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switched to digit-based reasoning, trying out the candidate digits
they found with the cell-based approach. An example can be seen in
Figure 3.2.

Here, the participant 02 (some Sudoku experience, no regular
playing) explicitly goes through all digits from 1 to 9 and checks
whether they appear in the peers of the highlighted cell, excluding
all but 6 and 9. They then check where the 6 and the 9 occur in rows
and columns intersecting the box with the highlighted cell and no-
tice that the 9 can be excluded for the three other empty cells of the
box. Therefore they can conclude with confidence that the 9 is the
correct digit for the highlighted cell.

Figure 3.2: Typical example of
starting with cell-based reason-
ing, excluding digits that ap-
pear in the peers and then
switching to digit-based rea-
soning. Transcript: “Not 1, not
2, not 3. The. . . not the 4. Not 5.
It could be 6. Not 7, not 8. . . The
6, the 6 there. The 6 and the 9. 9
can’t go there, or there. It has to be
the 9.”

Participant 05 (never played Sudoku before) uses only the cell-
based tactic for the first third of the experiment. If no unique value
is found this way, but several candidate digits remain, they just guess
one of them. But after a while they notice the digit-based perspective
and see that one of the two remaining candidate digits in that puzzle
instance can only go in one of the cells of the surrounding box and
concludes correctly that this is the only correct solution. After this
trial the participant still prefers to use the cell-based tactic, but when
it does not lead to a unique answer, tries digit-based reasoning as
follow-up. This is especially successful when only two candidate
digits remain after the cell-based approach. With more candidates
remaining this participant sometimes loses track of which digits were
already tried and which were candidates in the first place.

Others solved the puzzles in a different fashion. Some participants
regularly start with digit-based reasoning. An example is displayed
in Figure 3.3. Participant 01 (plays Sudoku at least once per week)
notices many instances of the digit 4 in relevant units: those that
intersect the box in which the target cell is located. The 4 has to be
filled in the box somewhere, but only for the highlighted cell this
does not lead to a contradiction with the existing digits.

Participant 11 (plays about once per month) used only the digit-
based tactic at the beginning of the experiment as the main reasoning
step. This person often started by remarking some digits that are ex-
cluded for the cell, but switched quickly to testing which digits can
only go into the cell instead of excluding all digits in the peers first.
Upon encountering two puzzles in close succession which were not
solvable with digit-based reasoning this participant really struggled,
exceeded the time limit and explicitly remarked (translated from
German): “Okay, why is this so difficult? [. . . ] Oh my god, you
have to adjust. This is a completely different system than what you
usually do.” After that this participant still preferred digit-based rea-
soning but switched effortlessly to the cell-based tactic if necessary.

Figure 3.3: Typical example for
digit-based reasoning. The par-
ticipant is basing their reason-
ing on the surrounding box.
Transcript: “. . . hmm. . . I’m look-
ing for where to start. There are
many 4s already, two come from
above [BC, DB]. . . eh. . . in the up-
per row is one, too [GF]. Therefore
the 4 has to go here.”

3.3.3 Discussion

On the group level this first experiment replicates the results of Lee
et al. (2008) and Perret et al. (2011) who found that puzzles requiring
cell-based strategies are easier to solve (in terms of accuracy and re-
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sponse times). However, our results are not as clear cut and strongly
in favor of cell-based reasoning as the previous studies. The accuracy
in this experiment was higher for both cell-based and digit-based tri-
als (0.99 and 0.93 respectively) than in previous studies. Lee et al.
(2008) for example found accuracies of 0.83 for cell-based and 0.67

for digit-based puzzles (both with 2 required units), but their par-
ticipants were all beginners who had never solved Sudokus before.
As our participants had a wide spread of expertise and most had at
least some experience, this difference is not surprising. As we col-
lected think-aloud data we can get a few more fine-grained insights
into our participants’ reasoning. The participants have preferences
for either the cell-based or the digit-based tactic, but they are all able
to use the non-preferred tactic as well. Not surprisingly the proto-
cols show that learning takes place. Some participants learn to apply
a tactic they did not use at the beginning. Participants often show
mixed forms of both tactics. A common pattern is for example to first
use cell-based tactics to reduce the candidate set of digits and then
follow up with digit-based reasoning to determine the final answer.

3.4 Experiment 2: The effect of the instruction

(a) cell-based instruction

(b) digit-based instruction

Figure 3.4: The puzzles were
the same in both conditions in
experiments 2 and 3, only the
highlighting and the instruction
differed.

It is possible that the results of our previous experiment are largely
influenced by the instructions we used. When only one cell per puz-
zle has to be filled and this cell is specified by the experimenter and
highlighted, it is quite likely that this biases people towards using the
cell-based tactic. We therefore conducted an experiment to test the
influence of the instructions explicitly. We designed an instruction
that was supposed to facilitate digit-based reasoning. We expected
that the kind of instruction would have an effect on the initial so-
lution attempt on a puzzle. Our main hypothesis was: (1) There is
an interaction between instruction type and required solution tactic.
If instruction and required tactic are congruent, performance should
be better than in cases where they are not. This hypothesis can be
strengthened by: (2) There is no main effect of either instruction type
or required tactic. Although Lee et al. (2008), Perret et al. (2011), and
Experiment 1 found that the cell-based tactic is easier, we hypoth-
esized that these findings are to a large degree due to the biasing
effect of the instructions. As both tactics are very easy to carry out it
could be that the effect of the required tactic disappears once instruc-
tion type is controlled for. Furthermore, if the difficulty of switching
between tactics is symmetric then we also would not expect to see
an effect of instruction type. Note that our secondary hypothesis is
a null hypothesis that is unlikely to be true exactly (i.e., tactics have
equal computation times and switching costs).

3.4.1 Methods

We preregistered the experiment and the analysis with the Open Sci-
ence Foundation on 16 June 2020 (https://osf.io/2ngc3/).

https://osf.io/2ngc3/
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Participants 58 participants, (35 female, 23 male), aged between 18

and 62 years, took part. Mean age was 30.35 years (SD: 13.07). We
collected their self-reported experience with Sudoku or similar puz-
zles on a scale from “less than once a year” to “more than once a
week.” 17 participants selected “less than once per year”, 22 “once
per year”, 10 “once per month”, 3 “once per week” and 6 “more
than once per week”. About two thirds of our participants thus had
at most little practice with this kind of puzzles.

Students of psychology and cognitive science participated for par-
tial course credit. All other participants who were recruited from
family and friends received no compensation. All participants gave
informed consent before participating. Following our preregistration
plan, we excluded 12 participants who had an accuracy below 75%
from the analysis. Analyses are based on the 46 participants, 23 per
condition, who met the inclusion criterion. The number of partici-
pants with each experience level can be seen in Table 3.3.

Play frequency XP level DB instr. CB instr. Sum

less than 1/year beginner 3 6 9

1/year intermediate 11 8 19

1/month regular 5 4 9

1/week regular 1 2 3

more than 1/week regular 3 3 6

23 23 46

Table 3.3: The number of in-
cluded participants with each
level of experience per experi-
mental condition in Experiment
2. In subsequent analyses we
group participants with once
per month and above under the
label regular.

Experimental design The experiment was a 2× 2 mixed design. The
independent variables were instruction and required tactic. Both can
be cell-based or digit-based. If the tactic that is required to solve
a puzzle and the tactic that is suggested by the instruction match,
we call the condition congruent, if they are different we call them
incongruent.

The independent variable instruction was measured between par-
ticipants. Participants were randomly assigned into one of the two
instruction groups. In the cell-based instruction the participants had
to fill in the correct digit into one highlighted cell of a 9-by-9 Sudoku.
This instruction and task is very similar to previous experiments (Bir-
ney et al., 2006; Lee et al., 2008; Perret et al., 2011). In the digit-based
instruction the participants had to fill in a given digit into one high-
lighted box of a 9-by-9 Sudoku. The two instruction types are shown
in Figure 3.4. In both instruction conditions participants used the
mouse to click on the cell they wanted to fill and then entered the
digit via the keyboard. The interaction with the experimental inter-
face was thus exactly the same in both groups.

The independent variable required tactic was measured within par-
ticipants. We used four different types of puzzles that differed in the
required tactic (digit-based or cell-based) and number of required
units (NRU) (2 or 3). Half of the puzzles could only be solved with
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the digit-based tactic and the other half of the puzzles could only
be solved with the cell-based tactic. The four types of puzzles are
shown in Figure 3.1.

Stimuli Nine logically equivalent puzzles were generated from one
seed puzzle for each type, using each digit from 1 to 9 once as the
correct answer. We exploited the fact that the digits are mere sym-
bols in Sudoku puzzles and can be interchanged. Furthermore, rows
and columns belonging to the same set of boxes can be exchanged
without changing the relation of constraints. And also bands of three
rows or columns belonging to the same set of boxes can be exchanged
with each other. By interchanging positions of rows and columns as
well as replacing digits with each other we created a set of stim-
uli that have no directly visible relation with each other. The stimuli
were carefully controlled to avoid surface-visible differences between
the conditions and exclude as many irrelevant sources of variation as
possible. All stimuli have five filled and four empty cells in the tar-
get box. Each row and column intersecting the box also had five
filled cells, so that they all give the same number of constraints and
do not provide an obvious starting point. Each digit occurs on the
board two to four times, making none stick out with unusual high or
low frequency. When attempting to solve a puzzle with the wrong
tactic, three possible answers remain. For puzzles requiring digit-
based reasoning, only six values can be excluded for the target cell
by looking at the peers, three remain as possible candidates. For
puzzles requiring cell-based reasoning, only one of the four empty
cells in the target box can be excluded, leaving three cells as possible
candidates.

For an example that requires digit-based reasoning look at Fig-
ure 3.1 (c) and (d). The correct answer is 9 in cell AA in both cases.
When the entire 3-by-3 box is highlighted with the instruction to
place the 9 into the correct cell, the answer is easily found, as 3 of the
4 empty cells can be excluded as locations for the 9. When cell AA
is highlighted and the instruction is “Please fill in the correct digit in
the highlighted cell”, the natural starting point is to see what digits
can be excluded for the cell. 5, 6 and 9 remain as options in both
puzzles. To find the correct answer, you still need to test these can-
didates using digit-based reasoning. 5 and 6 could still be placed at
several locations, but the 9 can only go in cell AA, as placing the 9 in
any of the other empty cells of the box would lead to a contradiction
with the 9s already there in the rows and columns.

An example that requires cell-based reasoning can be seen in Fig-
ure 3.1 (a) and (b). When cell AA is highlighted, one can easily
exclude the digits 1 to 8 as possible candidates and fill in the 9 as the
only allowed option. But when the entire 3-by-3 box is highlighted
and the question is where to place the 9 in it, the answer is not so
obvious. Only one of the 4 empty cells can be excluded via a 9 in the
same row or column, the other 3 remain plausible options. Only by
checking that 9 is the only value that is allowed in cell AA, i.e., using
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cell-based reasoning, you can get a definite answer.

Procedure The experiment was implemented with PsychoPy (Peirce
et al., 2019) and conducted online on Pavlovia.org. The instructions
at the beginning of the experiment explained the rules of Sudoku,
but gave no hints about possible solution tactics. Participants were
instructed to do their best and to work as quickly and as accurately
as possible. Before the main experiment started, participants had to
solve a 4-by-4 Sudoku completely to familiarize them with the in-
terface and to make sure they understood the rules of Sudoku. The
experiment consisted of six blocks and each block consisted of six Su-
doku puzzles. After each block the participants received feedback on
how many trials they solved correctly in that block. All participants
solved the same puzzles and half of the trials were congruent and
half of the trials were incongruent with the respective instruction.
The order of the trials was randomized for every participant but the
first three trials of the first block were chosen to be congruent with
the instruction. For each Sudoku participants had 240 seconds to en-
ter their solution. After that the Sudoku vanished from the computer
screen and no digit could be entered for this trial anymore.

3.4.2 Results

Instruction Req. tactic Response time [sec] ± SD Accuracy

cell cell 24.69 ± 18.32 0.98

cell digit 33.65 ± 34.53 0.93

digit cell 43.33 ± 29.70 0.90

digit digit 8.67 ± 9.02 1.00

Overall 27.08 ± 27.77 0.95

Table 3.4: Response times and
accuracy in the four conditions
of Experiment 2.

A summary of the mean response time and accuracy per condition
can be found in Table 3.4, mean log-transformed response times are
graphically displayed in Figure 3.5. The average accuracy in both in-
struction groups is approximately equal (95% and 96%) and in both
groups more mistakes were made on incongruent trials. Only 3 tri-
als of the entire experiment were not completed in time, they are
counted as incorrect trials in the analyses. Accuracy in our experi-
ment was close to ceiling and much higher than in the study by Lee
et al. (2008), where beginners only had an accuracy of 83% for cb-2
and 67% for db-2. We therefore did not analyze accuracy further.

In the following analyses of response times only correct trials
are included. In accordance with our preregistration plan we log-
transformed the response time data because response times are al-
ways positive, their distribution is skewed, and because longer av-
erage response times naturally have more variance. With cell-based
instructions the mean log-response times are almost indistinguish-
able for both required tactics. With digit-based instructions, however,

Pavlovia.org
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participants were much faster for puzzles requiring the digit-based
tactic and slower for puzzles requiring the cell-based tactic, see Fig-
ure 3.5.

Figure 3.5: Mean values with
95% confidence intervals for
log10 response times in the
four conditions of Experiment
2. The two required tactics are
arranged on the x-axis (factor
varied within participants). The
two lines display the different
instruction groups (factor var-
ied between participants).

An ANOVA with repeated measures on one factor (required tac-
tic) revealed main effects of both required tactic (F(1, 44) = 101.3,
p < 0.001, η2 = 0.25) and instruction (F(1, 44) = 8.51, p = 0.006,
η2 = 0.06) as well as a significant interaction (F(1, 44) = 121.7,
p < 0.001, η2 = 0.30). We repeated the ANOVA with the untrans-
formed response times but with trimmed means, where the highest
and lowest response time of each participant was removed. Trimmed
means are often used for response time data to make the analysis
more robust against outliers. With trimmed means the main effect
of required tactic remains significant (F(1, 44) = 15.67, p < 0.001,
η2 = 0.09) but the main effect of instruction does not (F(1, 44) = 0.89,
p = 0.35). There still is an interaction effect (F(1, 44) = 40.57,
p < 0.001, η2 = 0.23).

Planned post-hoc t-tests (using log-transformed response times
again) show that the factor instruction had a significant effect on both
tactics, congruent conditions being faster than incongruent condi-
tions for both required tactics. Because the variances are not equal,
the degrees of freedom are reduced. For the digit-based required
tactic the difference is even stronger (t(32) = 8.17, p < 0.001) than
for the cell-based required tactic (t(33) = 3.45, p = 0.002). Compar-
ing the two required tactics within one instruction group revealed
a significant difference only for the digit-based instruction group
(t(34) = 11.55, p < 0.001), but not for the cell-based instruction
group (t(31) = 0.6, p = 0.54).

In the preregristration we specified that we would exclude all par-
ticipants with an accuracy below 75%. Our rationale was that we did
not want to include people in the analysis who guessed often or did
not understand the task well. However, unfortunately, the number of
people we excluded from the analysis differed between conditions.
For the cell-based instructions only two participants were excluded,
for the digit-based instructions ten. We repeated the analyses with-
out excluding any participant and got the same results, the effect
sizes were slightly smaller but the directions stayed the same and
were still significant.

One could be worried that other factors that we did not control in
our experiment or did not include in the ANOVA had an influence
on the results. For example, we expect that experience has an ef-
fect on response times and the ANOVA did not take experience into
account. For a within-participant design this would not be a big con-
cern but as the design was a mixed design there might be random
fluctuations in experience for the between-participant comparisons.
Age also might have a confounding effect on the response times. Ad-
ditionally, participants might have very different response times for
other reasons as well, e.g., conscientious people might double check
each step and hence take longer on all trials. Also, we used two levels
of NRU (2 and 3) and although all participants worked on the same
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Table 3.5: Results of the hierarchical Bayesian linear regression model for Experiments 2 and 3. The
column “Estimate” shows the mean posterior values for the parameters, “l-95% CI” and “u-95% CI” are
the lower and upper bounds of the 95% credible intervals. The group-level effect indicates how much
different participants deviate from the mean intercept. The row “instr-db” indicates how the log response
times change when the instruction changes from cell-based to digit-based, similarly for the required tactic
in row “req-db”. As the minimum number of required units (NRU) was 2, we subtracted 2 from the
numerical predictor. The trial index is meant to model learning over the course of the experiment. We
dummy-code experience (XP), beginners are the base level, the effect of intermediate or regular experience
is shown in the table.

Experiment 2 Experiment 3

l-95% CI Estimate u-95% CI l-95% CI Estimate u-95% CI

Population-Level Effects:
intercept 1.232 1.406 1.575 1.125 1.54 1.954

instr-db 0.137 0.250 0.368 -0.524 -0.424 -0.326

req-db 0.015 0.047 0.079

instr-db:req-db -0.818 -0.771 -0.727

NRU-2 0.030 0.053 0.076 0.055 0.075 0.095

XP-intermediate -0.206 -0.070 0.069 -0.211 -0.086 0.041

XP-regular -0.287 -0.143 0.011 -0.275 -0.143 -0.005

trial -0.006 -0.005 -0.004 -0.019 -0.009 0.000

age -0.003 0.002 0.006 -0.001 0.002 0.007

Group-Level Effects (participant):
SD (intercept) 0.138 0.173 0.221 0.136 0.173 0.219

Family Specific Parameters:
sigma 0.225 0.233 0.242 0.225 0.241 0.258
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items, we do expect that NRU has an effect on response times and
hence should be included in the analysis. In addition, there might
be learning over the course of the experiment and a more careful
analysis should take this possibility into account. We therefore fitted
a hierarchical Bayesian linear regression model to our data. We in-
cluded all the mentioned predictors with participants on the group
level using the brms package for R (Bürkner, 2017), which is build on
the probabilistic programming language Stan (Carpenter et al., 2017).
This analysis is the Bayesian analogue of a linear mixed effects model
with all the mentioned predictors as fixed effects and participant as
an additional random effect. As all puzzles are permutations of the
same very small set of carefully designed puzzles we cannot expect
the results to generalize to all Sudoku puzzles anyway, hence we did
not include the items as a random effect. Experience was entered in
the three levels that are indicated in Table 3.3. This analysis was not
planned in the preregistration.

Results are shown in Table 3.5. The intercept is found to be at
1.4 and represents the case of cell-based instructions and cell-based
required tactic. 101.4 = 25 seconds fits well with the mean for this
condition as reported in Table 3.4. There is considerable variation
across participants: The standard deviation around the intercept cor-
responds to a factor of 10−0.173 = 0.67 or 100.173 = 1.4. The instruc-
tion had a significant effect, participants with digit-based instruc-
tions were considerably slower in general than those with cell-based
instructions when cell-based tactics were required (instr-db in Ta-
ble 3.5). The best fitting value 0.25 indicates that participants were
100.25 = 1.78 times slower in the incongruent condition (44.5 seconds
instead of 25 when instruction and required tactic are cell-based, cf.
Table 3.4). The effect of required tactic is smaller but also significant.
Response times get a little longer when required tactic changes from
cell-based to digit-based (req-db in Table 3.5, a factor of 100.047 = 1.1,
i.e., from 25 to 27.5 seconds). Importantly, both main effects (in-
struction and required tactic) increase response times when switch-
ing from cell-based to digit-based reasoning, and hence to incon-
gruent conditions. The main predicted outcome of the experiment,
an interaction of required tactic and instruction, is again found as
a strong effect (instr-db:req-db in Table 3.5). Compared to the base
condition where instruction and required tactic are cell-based, trials
where both are digit-based are 100.771−0.25−0.047 = 2.98 times faster
(just 8.4 seconds instead of 25 seconds, cf. Table 3.4). Because of
the design of the experiment the predictors of required tactic and in-
struction together with their interaction fit the raw means in Table 3.4
reasonably well without having to include the remaining predictors
of the analysis. All conditions had exactly the same puzzles but if
NRU is included in the analysis, it explains some of the variance in
response times over trials even though its effect is not very big. Other
variables were not balanced as participants were randomly assigned
to an instruction group. We found that intermediate experience (XP-
intermediate) generally led to faster response times compared to the
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beginners, but the Bayesian credible interval includes zero. Regular
experience (XP-regular) leads to an even stronger tendency towards
shorter response times, but even this credible interval includes zero.
The effect of learning looks small (trial in Table 3.5), but the -0.005

means that over the course of the 36 trials participants became on
average 1.5 times faster (100.005∗36 = 1.51). Age has no significant ef-
fect on response times and even for the estimated parameter of 0.002

50-year-old participants are only 100.002∗(50−20) = 1.15 times slower
than 20-year-old participants. It is well known that with increasing
age cognitive performance, especially in reaction time tasks, deteri-
orates (Salthouse, 2010). The trend in this direction we see in our
data is consistent with the literature. A reason for it not becoming
significant might be that we mainly tested younger adults and do
not have any participants over the age of 62 in our sample. Overall,
the Bayesian analysis confirms the planned ANOVA and the huge
interaction effect.

3.4.3 Discussion

We found strong evidence for our main hypothesis—an interaction
between the required tactic and the instruction. When instruction
and required tactic matched, participants were faster than other-
wise, especially with the digit-based instructions. Our secondary
and much stronger hypothesis—no main effects of instruction or re-
quired tactic—was refuted. We found main effects of both, instruc-
tion and required tactic.

However, the effect of the required tactic was small in our study.
When looking at the two instruction groups individually, the cell-
based instructions (that were similar to instructions in other experi-
ments) show a slight trend for faster and more accurate responses for
puzzles requiring the cell-based tactic to solve them (see Figure 3.5).
However, it is much weaker than effects found in previous stud-
ies (Lee et al., 2008; Perret et al., 2011). The other instruction group
was digit-based and we know of no previous study with similar in-
structions. In this group we see a strongly reversed trend: digit-
based puzzles were solved much faster and more accurately than
cell-based puzzles. Hence, even though the other studies showed
a strong effect of the required tactic, it would be a mistake to con-
clude from these studies that cell-based reasoning is generally faster
or easier than digit-based reasoning.

Generally, our participants were quite fast and accurate in all
four conditions, showing that they were able to carry out both the
digit-based and the cell-based tactic. Even the participants that we
excluded due to too many errors were generally very good in the
conditions that matched their instructions. Furthermore, our results
clearly show that the instructions have a strong influence on the per-
formance in the task, presumably influencing which tactics are tried
first. The bias towards the cell-based tactic in previous studies is thus
probably at least partially due to the instructions used in those exper-
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iments. Our results are, however, not directly comparable to previous
experiments, even when restricting the analysis only to the cell-based
instruction group. Contrary to other studies where all participants
were absolute beginners, most of our participants had at least some
prior experience with Sudoku puzzles. We will come back to the in-
fluence of experience in the main discussion at the end. In our analy-
sis we excluded participants who had a performance that was worse
than 75% correct. This mainly concerned beginners and participants
with intermediate experience. And while in the cell-based instruc-
tion group only two participants were excluded, ten were excluded
for the digit-based instructions. This difference is a little puzzling
at first glance. One participant with cell-based instructions made
mistakes in about two thirds of the trials and can be excluded be-
cause they probably did not understand the task very well. No other
participant showed a similarly low accuracy, but some apparently
valued fast response times so much that they accepted rather high
error rates. They probably entered the first plausible guess, with-
out being sure it was correct. Six participants (five digit-based, one
cell-based instructions) fall clearly into this category. They had very
short response times throughout the experiment (means between 6

and 14 seconds, whereas the overall mean of all participants was 26

seconds). They were mostly correct on the congruent trials where
instruction matched the required tactic, but made many mistakes in
the incongruent trials. We think that these participants simply did
not bother to think much about the incongruent trials. The remain-
ing five excluded participants had all digit-based instructions. They
show an interesting pattern in their response times and accuracies.
They made almost no mistakes in congruent trials and were gen-
erally below 30 seconds in answering them. On incongruent trials,
however, their response times were much longer, well over 60 sec-
onds in most cases. This shows that they did notice that they had to
use a more complicated tactic and seriously tried to find the correct
answer. They did not succeed very frequently though and answered
correctly only about a third of the incongruent trials, which is the rate
we expect if people just guess one of the plausible candidates. They
struggled with the cell-based trials, the ones that were supposedly
easier for beginners according to Lee et al. (2008). With digit-based
instructions, this reported ease does not hold.

In summary, the incongruence between instructions and required
tactics is the main source of difficulty in our experiment. Some par-
ticipants were excluded because of the number of mistakes especially
in incongruent trials, but also participants that were included in the
analysis show longer response times and lower accuracy in incon-
gruent trials. Together these results illustrate, once again, that the
instructions of an experiment have a strong influence on the reason-
ing tactic participants employ.
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3.5 Experiment 3: The effect of NRU

Due to the slight inconsistencies in the literature regarding the influ-
ence of NRU within Sudokus that all require the digit-based solution
tactic, we replicated Experiment 2 from Lee et al. (2008), testing the
influence of NRU within Sudokus that all require the digit-based so-
lution tactic. We extended their paradigm by having two instruction
groups as in Experiment 2. They found an increase in response time
with increasing NRU, whereas Perret et al. (2011) found no differ-
ence in accuracy between digit-based puzzles of various complexi-
ties. Other studies found differences in both accuracy and response
times with increasing NRU (Birney et al., 2006; Hearne et al., 2020),
but as they did not differentiate between digit- and cell-based tactics,
their results are more difficult to interpret.

3.5.1 Participants, methods, and materials

We preregistered the experiment and analysis with the Open Science
Foundation on 16 June 2020 (https://osf.io/9z43w/). The same
participants as in Experiment 2 took part in this study. To them it
looked like just two more blocks of the same experiment. Instruc-
tions stayed the same and the stimuli looked the same. Our cell-
based group had instructions that were very similar to the study
by Lee et al. (2008). The digit-based group obviously had different
instructions than participants in their study (see our previous ex-
periment). Also note that they only studied beginners whereas our
sample includes people with more experience. We used only puz-
zles that required the digit-based tactic and varied the NRU between
2 and 5. For puzzles with 5 required units, there had to be 5 empty
cells in the target box, so these puzzles violated some of the prop-
erties described above in paragraph 3.4.1. As this study was meant
as a replication of Experiment 2 by Lee et al. (2008) and they did not
exclude participants based on an a priori criterion, we didn’t either
and analyzed all 58 participants.

3.5.2 Results

Figure 3.6: The mean log re-
sponse times in Experiment 4

rise in both instruction con-
ditions with increasing NRU.
Each line displays one partic-
ipant, triangles received digit-
based instructions, squares cell-
based instructions.

Following Lee et al. (2008) we used Page’s trend test to test for an
effect of NRU on response time. As our experiment had two different
kinds of instruction (the cell-based and the digit-based instruction
groups), we tested both instruction groups separately. For the cell-
based instruction the test statistics were: Page’s L = 660, z = 2.4, p =

0.02 and for the digit-based instruction group they were: Page’s L =

918, z = 5.6, p < 0.001. The trend of increasing response time with
increasing NRU was thus present in both conditions, but stronger in
the digit-based instruction group.

In addition, we fit a linear regression to predict the log-transformed
response times from the NRU and the instruction type. We found a
positive relationship between NRU and response time (β = 0.07,
p < 0.001). Hence, if the NRU increases by one, the mean response

https://osf.io/9z43w/
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time increases by a factor of 10.07 = 1.17. This positive trend can
be seen in Figure 3.6. The instruction has a strong influence on the
response time, too (β = −0.43, p < 0.001). That is, participants with
cell-based instructions are a factor of 100.43 = 2.69 slower on aver-
age than those with digit-based instructions. This regression model
explains 38% of the variance of the data (and obviously ignores sys-
tematic differences between participants).

We also fit a hierarchical Bayesian linear regression model with
all the same predictors as in Experiment 2 (experience, age, order,
and a random effect of participant), again using the brms package
for R (Bürkner, 2017). This analysis was not planned in the prereg-
istration. As before, we pool participants who indicated they played
Sudoku about once per month or more (once per month, once per
week, more than once per week) into one group of regular players.
Results can be seen in Table 3.5 and are very similar to the ones
reported for Experiment 2. The size of the influence of instruction
looks different from the one found for Experiment 2 but remember
that here the required tactic was always digit-based and hence we
have to compare the joint effect of the instruction and the interac-
tion in Experiment 2 to the effect of the instruction in Experiment
3: −0.771 + 0.250 = −0.521, which is a larger effect of the instruc-
tion than observed here with −0.424. Compared to the baseline that
were beginners, intermediate experience might lead to moderately
shorter response times, but the interval of credible values includes
zero (−0.21 to 0.04). Regular experience leads to even shorter re-
sponse times (credible values −0.28 to −0.02). The best value for the
effect of regular experience with Sudoku, -0.143, indicates that those
participants were about 100.143 = 1.39 times faster than beginners.
This ratio is roughly consistent with the raw means for response
times separated by experience as reported in Table 3.6. Age, again,
had no significant effect.

Accuracy does not systematically vary with NRU in our data. In
Table 3.6 it can also be seen that accuracy was lower in the incongru-
ent condition, with 86% to 88%, whereas in the congruent condition
it was close to ceiling. We expected high accuracies in the preregis-
tration and did not plan to analyze them further.

3.5.3 Discussion

We found an increase in response times with NRU but no difference
in accuracy. Results are very similar for both instruction groups. Lee
et al. (2008) only had cell-based instructions, we added digit-based
instructions for a second group of participants. Participants with
congruent, digit-based instructions were generally faster but were
slowed down by higher NRU. Participants with incongruent, cell-
based instructions also showed a marked slow-down with increas-
ing NRU. This experiment confirmed both results from the literature
which compared the influence of accuracy within just one tactic. We
found slower response times with increasing NRU, just as Lee et al.
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NRU 2 3 4 5

cb instructions
Accuracy

All, N=25 .86 .88 .88 .86

Beginners, N=8 .75 .81 .81 .67

Intermediate, N=8 .94 .88 .88 1

Regular, N=9 .89 .94 .94 .89

Time [sec]
All, N=25 22.0 25.5 31.0 36.0
Beginners, N=8 30.0 34.1 36.0 41.6
Intermediate, N=8 22.9 17.1 25.4 28.1
Regular, N=9 14.0 25.2 29.6 32.3

db instructions
Accuracy

All, N=33 1 .97 .98 1

Beginners, N=9 1 1 .94 1

Intermediate, N=14 1 .96 1 1

Regular, N=10 1 .95 1 1

Time [sec]
All, N=33 6.3 8.7 9.9 12.6
Beginners, N=9 7.5 7.7 14.6 13.0
Intermediate, N=14 5.6 10.6 8.2 14.5
Regular, N=10 6.0 6.8 8.0 9.5

Table 3.6: Mean accuracy and
response time in the four con-
ditions of Experiment 3. Data
are split according to prior ex-
perience with Sudokus. Begin-
ners: “less than once per year”,
Intermediate: “Once per year”,
Regular: “Once per month” or
more

(2008) did. At the same time we found no difference in accuracy
for different levels of NRU within digit-based stimuli, just as Perret
et al. (2011) reported before. The two measures—response time and
accuracy—are often used as both reflecting the difficulty of the task.
Our results suggest, however, that the two measures do not reflect
the same aspects of the task.

We mentioned in the introduction that we avoid the term rela-
tional complexity in this paper, even though this is the term used in
other papers on Sudoku and the LST (Birney et al., 2006; Lee et al.,
2008; Perret et al., 2011). The reason being: effective relational com-
plexity, i.e., number of variables to consider simultaneously, does not
necessarily increase with an increase in the number of units that need
to be considered. In Sudoku it is possible to carry out a sequential
process that takes more steps when more units have to be considered,
but does not get more difficult, i.e., does not require to consider more
information at the same time and thus does not lead to more errors.
We believe that this is the case for the digit-based tactic.

Overall our participants were much faster and more accurate than
participants in previous studies. However, when comparing only
to participants with no regular Sudoku playing experience and the
same instructions as in other experiments, this difference becomes
much smaller. The most comparable study is the second study of Lee
et al. (2008) that had college students as participants who never be-
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fore had filled a Sudoku. Their participants needed two to three
minutes on average to respond in this task (cell-based instruction,
digit-based with 2 to 5 required units), our beginners of the same
condition needed just 30 to 42 seconds on average (see response times
for beginners with cb instructions in Table 3.6). The accuracy in the
experiment by Lee et al. (2008) was between 50% and 67%. Our
beginners with similar instructions were slightly better with 67% to
81% correct (see accuracy for beginners with cb instructions in Ta-
ble 3.6). One has to keep in mind, however, that our participants
had practice with this task from the 36 previous trials of the other
experiment (our Experiment 2).

3.6 A simple process model

To understand the patterns of response times in the previous exper-
iments better, we designed a simple process model that can carry
out both the cell-based and the digit-based tactic and fill a single
cell of a given Sudoku. A basic operation required for both tactics
is to search a digit in a unit. We call this action a scan. A scan is
the process of checking a given row, column or box for one specific
digit, for example looking whether the 1 occurs in the third row of
a Sudoku puzzle. Based on theoretical considerations and insights
from the think-aloud protocols of the first experiments, we propose
the following algorithms for the two tactics. We do not think that
participants follow these procedures to the letter, but they provide
a good abstraction of many of the reasoning patterns we saw in the
think-aloud protocols of Experiment 1 and explain the patterns of
response times we saw in Experiments 2 and 3.

Cell-based instructions and cell-based tactic required With cell-based in-
structions in a Sudoku that can be solved with cell-based tactics the
process of solving a puzzle might take place as follows: The partic-
ipants need to check each digit, they usually do that in the normal
counting order from 1 to 9, as we learned from the think-aloud proto-
cols of Experiment 1. For each digit they have to find out whether it
is already placed in the peers of the cell: the same row, same column,
or same box. The exact order in which the three units are searched
leaves room for individual differences and optimization of the pro-
cess. Here, we just assume the order is random. As soon as the digit
is found in the peers, the search for it can be terminated and the next
digit can be processed. If the digit can indeed be excluded through
one of the units, on average it will be found after 2 units have been
searched (the mean of 1, 2 or 3), i.e., two scans. If the digit does not
exist in the peers, it is a potential candidate for the cell. One needs
to search all 3 units in order to be sure it does not exist. Because
the participants cannot be sure that the found candidate is the only
candidate digit, they will still have to check all the remaining digits
in the same way. If only one digit was not found in the peers of the
cell, it can safely be filled into the cell. Code 3.1 contains a summary
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of these steps in pseudo-code.

Code 3.1: Pseudocode for the cell-based tactic.

// Due to the random order in which the 3 units are searched

// ’scans’ returns a diff. number each time the code is executed.

// For all 9 digits 1-3 units have to be searched, so ’scans’

// could be any number between 10 and 27.

candidates = set()

scans = 0

for digit in [1..9]:

digit_found = False

for unit in shuffle [row, column, box]:

scans++

if digit in unit:

digit_found = True

break // no need to continue to look at other units

if not digit_found:

candidates.add(digit)

if size(candidates) == 1:

// really only one possible candidate found

assign_digit_to_cell(candidates.pop(), given_cell)

Digit-based instructions and digit-based tactic required When the in-
structions favor digit-based reasoning, a entire box of the Sudoku
is highlighted and the question is “where in this box does the digit
X go?”. In order to answer, participants need to consider all empty
cells in the highlighted box and test whether they can exclude some
of them as potential locations for the digit (because the digit appears
already in the same row or column). Again, we assume that the or-
der in which they scan row and column is random. If there is only
one cell for which the digit in question does not occur in the peers,
this is the unambiguous answer. Code 3.2 contains a summary of
these steps in pseudo-code.

Code 3.2: Pseudocode for digit-based tactic.

// In our experiment all boxes had 4 empty cells.

// Due to the random order in which the 2 units row and column

// are searched, ’scans’ returns a different number each time

// this code is executed.

// Empty cells that are in the same row can be eliminated

// in one go, if the digit in question appears in that row

// (same holds for columns).

// For the empty cells 1-2 units have to be searched, so ’scans’

// could be any number between 3 and 8.

scans = 0

candidate_cells = set()

already_eliminated = list()

for cell in empty_cells:

if not cell in already_eliminated:

is_candidate = True

for unit in shuffle [row, column]:

scans ++

if digit in unit:

is_candidate = False
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// additionally prevent all empty cells

// in the same unit from further checks

already_eliminated.append(same_unit(cell, unit))

break

if is_candidate:

candidate_cells.add(cell)

if size(candidate_cells) == 1:

// only one cell possible

assign_digit_to_cell(digit, candidate_cells.pop())

Mismatch between instructed and required tactic If the instructions do
not match the required tactic, the candidate sets found by the algo-
rithms above will not hold a single element but several candidates.
By design of our stimuli in Experiment 2, the candidate set will al-
ways be of size three, but this is not true for Sudokus in general. If
the participants started with the cell-based instructions, they will be
left with three possible digits to assign to the cell. In order to find out
which one is the correct one, they need to switch to the digit-based
tactic and test each of the candidate digits this way. If they are lucky,
the first digit they try is the correct one, but it might be necessary to
test all three. An example for exactly such a search process can be
seen in the protocol example from Experiment 1 in Figure 3.2. This
adds one to three times the digit-based search time to the already
spent cell-based search time.

Participants with digit-based instructions and a Sudoku that re-
quires cell-based reasoning will be left with 3 candidate cells after
they applied the digit-based algorithm. For each of these cells they
need to test whether the digit in question is the only digit that is
allowed there. Hence, in addition to the initially spent search time
with the digit-based algorithm the participant has to run the cell-
based search 1–3 times.

Simulation results We implemented the algorithms described above
as a model for the task and ran it on our experimental design. In
Table 3.7 the results of 1000 simulated “participants” are compared
to the actual data we recorded in the experiment with human partici-
pants from Experiment 2 (means and standard deviations are given).
Note that the two measures are not really comparable (steps vs.
scans). It is merely a coincidence that the magnitudes are roughly
in the same range. The statistics of the model are solely based on the
scans carried out, i.e., reflect the number of units that were consid-
ered before finding the answer. This model has no parameters to fit,
it just executes the assumed processes of the search. Variation in the
results comes from the random order in which units are tested and
in which the remaining candidates are tested with the other tactic, in
cases where instructions did not match the required tactics. Both the
mean and the standard deviation of the model simulations are lower
than the human data in all conditions. But the relative order of the
conditions are well matched.
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Instruction Required tactic Model [scans] Human Data [sec.]

digit digit 4.28 ± 0.96 8.67 ± 9.02

digit cell 38.40 ± 13.03 43.33 ± 29.70

cell digit 27.18 ± 5.82 33.65 ± 34.53

cell cell 15.15 ± 1.69 24.69 ± 18.32

Table 3.7: Model simulations
compared to the data from Ex-
periment 2.

Figure 3.7: Comparison of
the model simulations with the
data from Experiment 2, show-
ing the effect of required tac-
tic and instruction. The his-
tograms of the model predic-
tions are shown in dark gray,
the data from Experiment 2 are
in light gray. The 3 peaks in
the incongruent conditions of
the model reflect the 3 remain-
ing candidates (cells or digits)
that can be tested in any order.

Figure 3.8: Comparison of the
model predictions with the data
from Experiment 3, showing
the effect of number of required
units. The histograms of the
model predictions are shown in
dark gray, the data from Exper-
iment 3 are lighter. The 3 peaks
in the incongruent conditions of
the model reflect the 3 remain-
ing candidate digits that can be
tested in any order.

Figure 3.7 shows the number of scans predicted by the model for
each condition of Experiment 2. The fastest and least variable case is
the congruent digit-based condition with 3 to 6 scans. The congru-
ent cell-based condition is the next fastest with 11–20 scans. The two
incongruent conditions show 3 distinct peaks. The required scans in
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these conditions are the sum of first an unsuccessful pass through
the instructed tactic, followed by 1–3 attempts with the uninstructed
one. For example, if the instructions were digit-based, the digit-
based tactic will be tried first (7–8 scans) and then the cell-based
tactic is applied to all 3 candidate cells in turn until the answer is
found. If, by chance, the first cell that is tried is the correct one,
scan numbers are in the first peak, and the last peak represents cases
where only the third attempt was successful. For better comparison
we have overlaid the human data from Experiment 2. But note that
the x-axis for the simulation data and the human data are not com-
parable (one is number of scans, the other seconds). Figure 3.8 in
the appendix shows the same plot for Experiment 3. For both ex-
periments, the model makes clear why the congruent conditions are
faster than the incongruent conditions and why the incongruent con-
ditions have a much higher variance. In addition, as we assume that
a basic scan takes the same time in the digit-based and cell-based
tactics, the model also explains why the digit-based tactic is faster
than the cell-based tactic. Note that the model does so purely based
on a careful analysis of the puzzles and the two tactics.

3.6.1 Fitting the model quantitatively

It is possible to transform the counts of scans into predictions of re-
sponse times by assuming that each scan takes some variable amount
of time. We model the time for a scan as a draw from a Gamma
distribution and fit the parameters of this distribution to match the
empirical distributions of response times. Additionally we gave the
model more flexibility by introducing the possibility to start with
the tactic that did not fit the instruction. We saw in the think-aloud
data of Experiment 1 that some participants started with digit-based
tactics right away, even though instructions were favoring cell-based
reasoning. While we used the same parameters for the Gamma dis-
tribution of scan duration for all conditions of both Experiment 2

and 3, we allowed a different parameter value for the probability
to start with the instructed tactic for each instruction group and ex-
periment. Allowing for this additional variability improved the fits
significantly.

There are many potential sources of variation that contribute to
the response times in our experiments. Some participants are more
proficient or more motivated and thus faster and some trials might
take longer because a participant was distracted. In order to fit the
model to the response time data we therefore assume that the dura-
tion of each scan is random. Allowing the scan duration to vary
increases the variability of possible predicted response times and
should allow us to fit the model to the histograms from Figure 3.7
and Figure 3.8. It should also give us a reasonable estimate for how
long a single scan takes on average. For simplicity, in the following
analysis we pool the response time data from all participants (as in
the histograms). We model the duration of a scan by a draw from a
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Figure 3.9: Histograms show
response times from experi-
ment 2, the lines the fitted
model distributions. In the cor-
ner of each condition a pp-plot
shows the same data. The pa-
rameters for the gamma dis-
tribution are the same in all
four conditions and both ex-
periments. The probability for
choosing the instructed tactic is
fit individually for each instruc-
tion group. They are 0.7 for
the cell-based instruction group
and 0.96 for the digit-based in-
struction group.

gamma distribution. The gamma distribution is defined on the pos-
itive reals, as is appropriate for scan times. A useful property of the
gamma distribution that makes the analysis easier is that the sum
of gamma variates with the same scale parameter is again gamma-
distributed with the same scale parameter. In addition to each scan
step, we assume there is a “zeroth step” before the participants even
start with one of the tactics. This initial step models the additional
time needed for orientation. We model this orientation time to be
gamma-distributed with the same scale parameter.

We expect that participants don’t always follow our instructions.
We saw in the protocols from Experiment 1 that some participants
are not always biased by cell-based instructions but start with digit-
based tactics anyway. We therefore assume they only start with the
tactic that matches their instructions with a certain probability. For
example, if the instructions are cell-based, using digit-based tactics
instead leads to a speed up in those cases where digit-based tactics
are indeed required. But, of course, if cell-based tactics are required,
it will lead to very long searches.

In summary, we used 8 parameters to fit the model to all 12 con-
ditions in the two experiments simultaneously: 3 parameters for the
gamma distribution for the duration of each scan (shape, scale, and
off-set as the minimum scan time is greater than zero), 1 parame-
ter for the shape of the gamma distribution for the initial orienta-
tion time, and 1 parameter for each instruction group of the two
experiments that models the probability of really starting with the
instructed tactic rather than the other one. The simulated numbers
of unit scans are transformed to mixtures of gamma distributions
with the parameters described above. Each number of scans forms
the basis of one gamma distribution that contributes to the mixture
proportional to the fraction of simulations with this number of scans.
The simulated relative number of required scans per condition thus
give the probability of needing each number of scans. In the congru-
ent digit-based condition of Experiment 3, for example, the number
of scans ranges only from 4 to 7, the most probable number being 5.
We transform each integer number of scans to a gamma distribution,
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i.e. the sum of the gamma distributions for each single scan (remem-
ber that the sum of gamma variates of the same scale are gamma
variates). This gamma distribution represents the spread of response
times we expect for this number of scans and its variance naturally
increases with the number of scans because it is the sum of the sin-
gle scans. The probability for each number of scans is simulated
just once and stays fixed in our fitting procedure but the parameters
for these gamma distributions are adapted to fit the actual response
times from our experiment. To fit the probability of starting with
each tactic, we additionally sampled the scans from our model that
would result from starting with the tactic that did not fit the instruc-
tions. We evaluate the mixture distribution at all data points up to
100 seconds. Response times above this value likely include restarts
and recovery from errors which we cannot reproduce well with our
model. We minimized the negative log likelihood of the truncated
data of the experiments given the model distributions using a stan-
dard package for optimization (Virtanen et al., 2020, scipy.optimize
with SLSQP).

3.6.2 Results of quantitative fit

The fits of the model to the data can be seen in Figure 3.9 and Fig-
ure 3.10. The pp-plots in the corner of each figure plot the two cumu-
lative distributions against each other, model on the x-axis, data on
the y-axis. The parameter values that fit the data best are as follows.
The offset is at 0.42 seconds, no scan duration is shorter than this.
Mean and variance of the scan durations are 0.96 and 3.25 respec-
tively (the shape parameter is smaller than 1). The distribution is
very long tailed, skew and kurtosis are 6.53 and 64.14, making some
scans last several seconds. What really happens is probably that the
participants sometimes forget their progress, mind-wander or make
mistakes and restart the entire process. But as we cannot capture any
of these processes, the model incorporates the occasional long times
with very long-tailed distributions for the scan durations. The best
fitting distribution of initial orientation time has a mean of 4.9 sec-
onds. For Experiment 2 the participants in both instruction groups
mostly seem to try the tactic congruent with the instructions first.
The best fitting probability to start with the tactic suggested by the
instruction is 0.96 for the digit-based instruction group and 0.7 for
the cell-based instruction group. For Experiment 3 the best fitting
probability following the instruction is high for the congruent, digit-
based instruction group (p = 0.99), but very low for the incongruent,
cell-based instruction group (p = 0.29). This suggests that not all
participants are completely biased by the instructions. Some start di-
rectly with the required tactic, despite instructions favoring the other
one. In Experiment 3 only puzzles requiring digit-based reasoning
were shown and many participants seem to have noticed this and
adjusted their solution tactics accordingly. In the first experiment the
think-aloud protocols allow us to follow the reasoning steps of the
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participants in detail instead of just inferring them based on the re-
sponse times. There, we already saw that several participants indeed
were not always biased to start with cell-based tactics, even though
the instructions favored them.

Figure 3.10: Histograms show
response times from Experi-
ment 3, the lines the fitted
model distributions. In the cor-
ner of each condition a pp-plot
shows the same data. The pa-
rameters for the gamma dis-
tribution are the same in all
four conditions and both ex-
periments. The probability for
choosing the instructed tactic
is fit individually for each in-
struction group. For the digit-
based instruction group the pa-
rameter is high (0.99), for the
cell-based instruction group the
best fitting parameter is 0.29,
indicating that most of the trials
were directly started with the
required digit-based tactics.

3.6.3 Discussion

Even without any free parameters our model provides a good expla-
nation of the differences in response time in the different conditions
of Experiments 2 and 3. It shows that for congruent digit-based con-
ditions far fewer scans need to be carried out than for the congruent
cell-based conditions, explaining the main effect of required tactic
and why the cell-based instruction group was less influenced by the
required-tactic factor than the digit-based instruction group in Ex-
periment 2. Although we designed the model mainly to understand
the differences in cell- and digit-based reasoning better, it also triv-
ially explains the longer response times for increasing number of
required units in digit-based tactics: higher NRU require more scans
and more scans in turn lead to longer response times.

Introducing free parameters to the model—to account for variable
scan durations and a certain probability to start with the tactic that
was not instructed—allows us to quantitatively fit the model to re-
sponse time data. The best values for the probability to start with
the tactic suggested by the instructions found for Experiment 3 are
0.99 for digit-based instructions (always congruent) and 0.29 for cell-
based instructions (always incongruent). This strongly suggests that
many participants of the cell-based instruction group realized that
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they needed digit-based tactics in this experiment and didn’t even
bother to first try cell-based tactics. Experiment 2 was constructed
such that both tactics were required equally often and there were no
obvious surface properties that were informative about the required
tactic. Hence in this experiment, it is reasonable that the participants
generally followed the instructions. According to our model they
did so more in the digit-based instruction group (p=0.96) than in
the cell-based group (p=0.7). The first peak in model density in the
lower left plot of Figure 3.9 reflects starting with digit-based tactics
for the cell-based instruction group. More trials were faster than the
model predicts which is also reflected in the early deviation from the
diagonal in the pp-plot. The model cannot increase the probability
for digit-based tactics further to improve the fit because this would
at the same time lead to more very slow responses predicted in the
congruent condition of this instruction group. The participants of
our experiment were thus cleverer than our model, managing to im-
prove response times in the incongruent condition without hurting
performance very much in the congruent conditions.

Our model is obviously still too simplistic to capture all relevant
cognitive processes. Traditionally, cognitive architectures, like ACT-
R, are used to implement more complete models. In such a model,
the time required to give the answer via clicking and typing, for ex-
ample, would be included for free, i.e., without needing to fit extra
parameters, because they are already set in the cognitive architec-
ture. There have been some attempts to model (aspects of) solving
Sudokus within ACT-R (Qin et al., 2012; Preuß, 2018). While these
models are closer to the actual cognitive processes (with built-in con-
straints on the speed of certain processes and plausible interactions
of various components), these models are also very complex and it is
difficult to isolate the key factors influencing the performance. Our
model, on the other hand, though too simplified to capture the full
details of the process, allows us to use simple and interpretable pa-
rameters such as the probability of starting the task according to the
instructions. It was created with the aim to understand the faster
response times for the digit-based congruent condition as compared
to the cell-based congruent condition. This, at first, was a surprising
result to us because the literature suggested that cell-based reason-
ing is easier for participants, and faster (Lee et al., 2008; Perret et al.,
2011). We now understand that the reason other studies found that
cell-based reasoning is faster than digit-based reasoning is simply an
artefact of the cell-based instructions that earlier studies gave and
our data and our model show that digit-based reasoning is actually
faster given the right starting point. Hence, even though our model
describes the tactics at a very abstract level—without recourse to the
cognitive architecture—it captures a good portion of what is going
on when people solve these simple Sudoku tasks.
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3.7 General discussion

Overall we observed that our participants were remarkably flexible
in applying different tactics to solve Sudoku puzzles. The think-
aloud study provided evidence for personal preferences for certain
tactics. When the preferred tactic could not be applied, participants
were flexible to choose another tactic and approach the problem dif-
ferently. All of our participants in Experiment 1 were able to use two
tactics: cell-based and digit-based. In Experiments 2 and 3 almost
all participants successfully solved puzzles that required either kind
of tactic. We did exclude some participants who had relatively high
error rates on incongruent trials, but the majority had no problems
with either tactic. The people that were excluded were mainly in
the digit-based instruction group and had trouble carrying out cell-
based trials correctly. The cell-based tactic was previously thought
of as easier to carry out for beginners. Our experiments showed that
this is most likely just an artefact of the way instructions were given.

There are two important variables that have an influence on the
difficulty of a trial in a Sudoku or Latin square task (LST): the num-
ber of required units (NRU) and the tactic required for solving the
task. Most of the research on the LST did not distinguish between
cell-based and digit-based tactics, and classified complexity based on
the number of variables needed to consider simultaneously for solv-
ing the puzzle, which is not the same as our NRU measure. Since
they give examples for their stimuli, it is possible to re-classify the
stimuli according to our scheme and we can discuss previous results
from the literature in the light of our model.

Number of required units and relational complexity Studies that tested
the influence of NRU within just one tactic—cell-based or digit-based—
generally found an effect on response times but not error rates. Qin
et al. (2012) studied only cell-based reasoning in small 4-by-4 Su-
dokus. They found an effect of NRU on response times, but no
significant difference on accuracy (cb-1 vs. cb-2 and cb-3). Within
only digit-based trials in 9-by-9 Sudokus Lee et al. (2008) found that
increasing the NRU led to significantly longer response times, but
the trend for lower accuracy was not statistically significant (db-2
to db-5). Perret et al. (2011) only measured accuracy in a LST and
found no difference within digit-based conditions of different NRU
(db-2 to db-4). In Experiment 3 we find the same pattern, response
times increased with the NRU but accuracy stayed the same. How-
ever, based on the pioneering work of Birney et al. (2006) one would
expect that response time increases and accuracy decreases with the
NRU because it measures relational complexity (Halford et al., 1998).
A higher relational complexity would imply that more variables need
to be considered in parallel, leading to higher demands of working
memory which in turn would result in lower accuracy. The fact that
there is no drop in accuracy with increasing NRU can be explained
by our model (section 3.6). The model needs more scans if the NRU
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increases and more units are involved in a deduction. Obviously,
more scans imply longer response times. However, the search for
all relevant digits for the deduction is a serial process in our model,
and therefore requirements for working memory are the same for all
levels of NRU. Relational complexity is actually constant in all these
cases because the required variables do not need to be considered
in parallel. Hence, the number of units required for the deduction
measures some form of difficulty in Sudoku, but not relational com-
plexity. This distinction is worth keeping in mind for future research.
Whether one can really talk about relational complexity in a task de-
pends on the possible strategies for solving it. An explicit process
model, like ours, is helpful for making this distinction.

Studies that found not only an increased response time but also
lower accuracy for higher complexities generally did not distinguish
between cell-based and digit-based puzzles (Birney et al., 2006; Hearne
et al., 2020). As their highest-complexity items are all digit-based and
their lowest-complexity items all cell-based, it is not clear how much
of the reduced accuracy can actually be attributed to the complexity.
It might well be that it is rather caused by the switch in required
tactics, which would be consistent with the other studies and our
model.

Interaction of required tactic and instructions We found that which tac-
tic is more difficult to use depends strongly on the information given
in the instructions. When a cell to be filled is highlighted and the in-
struction is “Please fill in the highlighted cell”, cell-based tactics are
generally easier for participants, as expressed through higher accu-
racy and faster response times. Under different conditions, however,
digit-based tactics can become much easier and faster to carry out,
namely when the digit in question is given, and the location for it
needs to be determined. With different instructions and thus dif-
ferent given starting points for reasoning, otherwise identical tasks
change massively in difficulty (as expressed by the strong interaction
effect we saw in Experiment 2). Trials in which instructions and re-
quired tactic matched were solved faster than incongruent trials. In
fact, the fastest condition was congruent digit-based.

The model and analysis we presented in section 3.6 gives plausi-
ble reasons for the differences between the four conditions of Experi-
ment 2. It showed how the two tactics—digit-based and cell-based—
differ (see Figure 3.7). The difference is simply that excluding a digit
in the cell-based tactic always requires at least one full scan whereas
excluding a cell in the digit-based tactic will only require a scan if a
cell is empty. Hence, starting the reasoning process with a cell to fill
is very different from starting the process with a digit to place. More
concretely, just 3 to 6 scans are required in order to exclude the 3

open cells in our puzzles as possible candidate locations. In contrast,
the smallest number of required scans for the cell-based tactic is al-
ways 10 because each digit requires at least one scan. The average
number of required scans for congruent cell-based stimuli is about
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15. In incongruent cases people start out with less information and
might need to try several candidates (digits or cells). This makes
response times more variable and, on average, longer. But even sev-
eral runs of the short digit-based search can be shorter than the more
tedious cell-based search. This explains why there was only a small
difference within the cell-based instruction group between cell-based
and digit-based puzzles. For the digit-based instruction group this is
reversed, congruent cases are very fast and easily solved, but incon-
gruent cell-based trials require much extra effort and time.

Required tactic with cell-based instructions Previous studies only used
cell-based instructions. Not all of them differentiated between digit-
based and cell-based required tactics. When they did, they found the
cell-based tactic to be easier for participants, as expressed through
shorter response time and higher accuracy. Perret et al. (2011) found
a big difference between cell-based and digit-based conditions. Cell-
based tasks (cb-2) were solved with much higher accuracy (80%) than
digit-based ones (≈50% for db-2 to db-4) by children between 8 and
11 years of age. Lee et al. (2008) found much shorter response times
and higher accuracies for cb-2 as compared to db-2 trials in a popu-
lation of university students. Our model predicts this effect, too. As
the instructions contain more task relevant information for the cell-
based tactic, fewer scans are required to reach the solution, which
implies shorter response times. In Experiment 1 we found a trend
towards shorter response times in cell-based trials as compared to
digit-based trials, but it was very slight and not statistically signifi-
cant. The same is the case for our second experiment, when looking
only at the cell-based instruction group.

The role of experience Some of the differences between our results
and what is reported in the literature can be explained by differ-
ences in experience. Other studies only looked at the performance of
absolute beginners and generally found that cell-based tactics were
easier for them. We think that some of this effect can be attributed to
the task instructions that favored cell-based reasoning, as explained
above. However, also in a free-filling paradigm (where we can’t
blame the instructions) Lee et al. (2008) found that beginners were
more likely to use cell-based tactics. And also in our own free-filling
study reported above in section 2.5 we saw the same pattern: Be-
ginners used more cell-based tactics but the proportion of cell-based
tactics quickly decreased with prior experience of the participants.
Taking all findings together, the advantage for cell-based tactics in
experiments with beginners suggests that beginners seem to under-
stand and employ cell-based tactics more easily than digit-based tac-
tics. As we saw in our model, digit-based tactics are, however, much
more effective in reaching conclusions and finding specific cell-value
assignments. Given that people are quite adept at learning to apply
the most efficient strategy (Gunzelmann and Anderson, 2003; Lee
and Johnson-Laird, 2013; Rieskamp and Otto, 2006), it seems likely
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that with increasing experience Sudoku players prefer to use digit-
based tactics more and more.

Overcoming instructions For a good fit of the cell-based instruction
group with our model, we needed the additional possibility to start
with the uninstructed tactic. The best value for the probability to
do this, was around 30% in Experiment 2. In Experiment 3 it be-
comes even more obvious that many of our participants overcame
the instructions. Our model fit suggests that around 70% of the tri-
als of the cell-based instruction group of Experiment 3 were started
directly with the uninstructed but required digit-based tactics. Each
participant completed 8 trials in this experiment that all required
digit-based tactics. Many participants seem to have noticed this task
requirement and adapted to it by skipping the uninformative cell-
based approach altogether. They quickly learned to ignore the ex-
perimenters’ misleading instructions, showing once again that re-
searchers should not assume that participants behave as they expect
them to.

3.7.1 Conclusion and outlook

Our process model clarifies the role of task requirement, task in-
struction, number of required units, and how these factors interact
to determine the difficulty participants have with a puzzle. Much of
the prior research on Sudoku can be understood better in terms of
our model. Importantly, we could develop our model only thanks to
our mixed-methods approach, which included an exploratory think-
aloud study. The think-aloud protocols gave us a very detailed un-
derstanding of how participants approach a Sudoku task. In partic-
ular, we saw how participants switched to digit-based tactics when
they could not find the correct answer via cell-based tactics (for an
example see Figure 3.2). This explicit switching of tactics has not pre-
viously been reported in the literature on Sudoku or the LST. This
insight is at the heart of our model and the two response time tasks
that were used to evaluate the model.

More generally, problem solving is a complex human activity that
we have not yet fully understood, and there is currently no consensus
on what are the best methods to study it (Batchelder and Alexander,
2012; Jäkel and Schreiber, 2013; Ohlsson, 2012). Here, we used think-
aloud data to inform a relatively coarse probabilistic process model
(coarse compared to the level of detail in, say, ACT-R) and fitted the
model to fine-grained response data from experiments that varied
relevant task parameters. Similarly, Lee et al. (2019) provide another
good example of how to use different sources of data (decisions,
mouse clicks, think-aloud protocols) to inform a model and make
more accurate inferences about the strategies participants used in
each trial of an experiment. We believe that research on problem
solving would benefit from using this kind of combined qualitative
and quantitative modeling more systematically. Sudoku provides us



94 improving research methods for problem solving

with a convenient test-bed for developing this approach further.
Our results, once more, showed that we should appreciate that

there are generally many different strategies for solving a given prob-
lem. We should therefore embrace and study participants’ flexibil-
ity to make progress on the big open questions in problem solv-
ing research. The two instruction types we employed in our stud-
ies both restrict the participants in their responses and most likely
lead to strategies that are quite different from “natural” Sudoku fill-
ing. The advantage of such restrictions is better experimental control.
However, if we are genuinely interested in participants’ flexibility of
choosing between different tactics, constraining participants less will
probably lead to more interesting observations. In a paradigm where
participants freely fill a Sudoku puzzle, there will be many more op-
portunities for strategy and tactic selection than in the restricted tasks
that we used here. While, in theory, it should be possible to obtain a
big data set from people solving complete Sudokus online (see e.g.,
Pelánek (2011)), these data will usually not be enough to infer the
tactic that was used in each step. There is only one careful lab study
we know of that employed a free-filling paradigm and also studied
participants’ tactics: Lee et al. (2008) asked their participants after
each cell they filled to justify how they knew the entry was correct.
However, this method does not provide any information as to how
the participants decided on what tactic to use, which cell to attack,
or which digit to try and fill into a unit. In future work, we will ad-
dress the important question of how tactics are chosen more directly
by studying how people solve complete Sudokus (see chapter 5).



Chapter 4

Hierarchical Bayesian model: EIP regression

This chapter has been accepted as Behrens, T., Kühn, A., and Jäkel,
F. (2024). Connecting process models to response times through Bayesian
hierarchical regression analysis. Behavior Research Methods. Some termi-
nology is adapted to fit better with the other chapters and references
to the other chapters are inserted where appropriate.

Models of mental processes have a long tradition in cognitive sci-
ence and psychology. They specify a series of (mental) operations
necessary to complete a task and can make predictions about the dif-
ficulty and successes of different strategies under varying conditions.
The amount of mental processing required to complete a task is as-
sumed to be reflected in the time it takes to do so. Response times are
easy to measure in psychological experiments and, if analyzed with
the right tools, can thus be very informative about the underlying
mental processes. For a psychological model it is desirable to have
the possibility of fitting it to the data of individual participants. It
can then make more precise statements about the fit and the variabil-
ity between participants. Here, we propose a Bayesian hierarchical
regression analysis to link classical process models to response time
data of individual participants.

In human computer interaction detailed process models of spe-
cific tasks have a long history (John and Newell, 1989). For example,
GOMS models (goals, operators, methods, selection rules) are used
to analyze the complexity of a task for a specific user interface. They
can make predictions about the time required to complete a task as
well as the working memory load for the user (Estes, 2021). They
do so by using an inventory of basic building blocks, simple atomic
actions, for which duration and memory load have been measured
carefully. When building a model for a new task, these building
blocks can be combined to get an estimate of the overall duration.
Although in this approach process models predict response times
directly, they are not adequate as psychological models as they make
predictions about a standard expert user only and cannot be used
to fit data and find out about a specific person’s abilities, for exam-
ple. Similar caveats hold for cognitive architectures (like Soar (Laird,
2012), ACT-R (Anderson, 2007) or Clarion (Sun, 2016)).
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The modeling approach we will introduce here, however, builds
upon simpler and more abstract process models. Process models that
can count elementary information processing (EIP) steps for single
experimental trials. Such process models have, for example, been
used extensively in the decision-making literature (Bettman et al.,
1990; Payne and Bettman, 2004; Payne et al., 1988). The duration of a
single elementary information process could be estimated by simple
analysis tools, such as linear regression. The analysis we advocate
for builds on this idea but improves it in several important ways.
First, we make the duration of a single EIP step inherently prob-
abilistic, turning the model into a more plausible cognitive model.
For simplicity, however, we will focus solely on serial processing
models where each EIP is identically distributed for each partici-
pant and there is across-stage independence (Townsend and Ashby,
1983). Second, we use gamma distributions instead of normal dis-
tributions to model the duration of an EIP step. Gamma distribu-
tions are more adequate in many psychological models, as already
advocated by Maris (1993). Third, we use a hierarchical Bayesian
framework, allowing to jointly fit the model to the data of individual
participants. And lastly, we add some extensions to the model such
that it can also deal with situations where the exact EIP step count is
latent or there are several strategies with associated process models
and EIP step counts. We call the resulting analysis (hierarchical) EIP
regression.

Examples where this analysis can be applied include children’s
addition, which can often be well predicted by the smaller of the
two addends (Groen and Parkman, 1972), mental rotation, where re-
sponse times increase linearly with angular difference between the
two stimuli (Shepard and Metzler, 1971), and visual search in a
feature-conjunction display (Treisman, 1982). In these cases, the re-
gression models are not just mere statistical tools to analyze the data,
they can be interpreted as simple cognitive models. The slope of the
regression tells us something about the processing speed of some
cognitive component. In the case of simple addition, the elementary
information process is counting up a number. A regression model
then tells us something about the speed of mental counting. When
our model predicts half a second increase in response time for each
increase in the smaller addend, that means that children need about
half a second to carry out one EIP step, i.e. counting up one num-
ber. In the experiment where two depictions of 3D objects had to
be compared, the response time increased linearly with the angular
difference between the two depictions. The fact that the data could
be fit by linear regression, with the angular difference as a predictor
of response time, tells us that the internal process seems to involve
mentally rotating one of the objects to match the image of the other.
We also learn that this mental rotation seems to be done at approxi-
mately constant speed which we can read off of the regression slope.

In this paper we demonstrate how this big class of process mod-
els can be fit to response time data. In all cases where the cognitive
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process can be expressed in counts of EIP steps, they can be fitted
with the model we present here. The serial processing model that
we assume may, of course, be wrong. EIP steps might not follow
a gamma distribution. Even if they do, they might not follow the
same distribution within each participant. This could be because
there are really several different elementary processes instead of just
one. Or the speed of processing at one stage might depend on the
speed of processing at other (earlier) stages and, therefore, across-
stage independence does not hold. In general, the processing might
also happen (partially) in parallel. As mentioned before, it is sur-
prisingly hard to identify the true serial or parallel architecture from
response times alone (Townsend and Ashby, 1983). However, for
many practical applications – e.g., in human-computer interaction
or as in the above example, where children count on their fingers –
these assumptions are plausible, and the true architecture is of less
interest than a model of the expected increase in response time with
relevant task variables.

4.1 EIP regression

We assume that each EIP step takes some time, so that trials that
require more EIP steps will, on average, have proportionally longer
response times than trials with fewer EIP steps. Additionally, there is
a constant offset component in the model, accounting for processes
that are the same in all trials (e.g. orienting oneself or initiating the
motor response of pressing a key). Hence, the expected response
time of participant i on trial j can be described with the following
linear equation:

µij = aixij + bi. (4.1)

This mean response time µij is given by the constant time bi (account-
ing for the steps that are the same across trials) and the parameter ai

that is multiplied by the number of EIP steps xij (that vary between
trials). We want to estimate the two parameters ai and bi to find out
the processing speeds for each participant.

Figure 4.1: Regression line with
asymmetrical gamma density
around it. Here the parameters
are a = 0.5, b = 1, θ = 1. With
an increasing count of EIP steps
the spread increases.

In linear regression, a noise term—usually normally distributed
with constant variance—is added to the mean to account for the vari-
ability of the data. Here, instead, we assume that every single EIP
step is of random duration. EIP steps will not take the exact same
amount of time in each execution. We model each EIP step as a draw
from a gamma distribution with mean ai and the constant part as a
single draw from a different gamma distribution with mean bi. The
fact that gamma distributions are skewed and only defined on pos-
itive values make them very well suited for modeling the duration
of an EIP step (Maris, 1993). A natural effect of summing several
random EIP steps is that the expected spread of the overall response
time increases with a higher EIP step count. See Figure 4.1 for an
example of how the regression line with the gamma density around
it might look like. Hence, using gamma distributions for EIP steps
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fixes two conceptual flaws compared to simply assuming normal er-
rors and homoscedacity for Eq. 4.1, as it is usually done. First, re-
sponse times are constrained to be positive and, second, the variance
increases with the step count, as it should.

Let zn ∼ Gamma(kn, θi) be the random processing time of the nth

EIP step. Usually, gamma distributions are specified using parame-
ters for shape, k, and scale, θ. Mean and standard deviation of the
distribution are then m = kθ and s =

√
mθ. We prefer, however, to

parameterize the gamma distribution directly by mean and standard
deviation because they are easier to interpret. We denote this param-
eterization of the gamma distribution Gamma′. With mn = knθi the
random processing time zn for the nth EIP step can then equivalently
be written as

zn ∼ Gamma′(mn,
√︁

mnθi). (4.2)

We assume that the zn are identically and independently distributed.
Psychologically, this means that for each participant there is just one
elementary information process and that there is across-stage inde-
pendence (Townsend and Ashby, 1983). We also assume that the EIP
steps are processed serially, hence, we now want to know the total
response time distribution of N + 1 random steps, y = ∑N

n=0 zn. We
assume all gamma distributions of participant i share the same scale
parameter θi. In this way, the overall response time distribution for y
is easy to compute, because the sum of several independent gamma
variates zn from distributions with the same scale θi and shape pa-
rameters kn is again gamma distributed: y ∼ Gamma(∑N

n=0 kn, θi).
The mean of this gamma distribution is M = θi ∑N

n=0 kn = ∑N
n=0 mn

and its standard deviation is S =
√

Mθi. And, hence, the overall re-
sponse time y ∼ Gamma′ (M, S) in our alternative parameterization
of the gamma distribution.

Remember that each participant i is modeled by three parameters
that describe the gamma-distributed response time of each trial: The
mean time each EIP step takes, ai, the mean offset, bi, and the scale
of the gamma distributions θi. Hence, if participant i needs N = xij

EIP steps on trial j, m0 = bi for the initial step and mn = ai for
the other identical EIP steps (where n ranges from 1 to xij), then
the overall mean of the summed EIP-step-times is M = aixij + bi =

µij (Equation 4.1) with standard deviation S =
√︂

µijθi = σij. The
random response time yij of participant i on trial j is therefore

yij =

xij

∑
n=1

zn ∼ Gamma′
(︁
µij, σij

)︁
. (4.3)

The basic EIP regression model is, thus, a linear gamma regression
with the intuitive interpretation of a latent random duration for each
processing step.

Importantly, because we know the distribution of the sum of the
latent gamma variates we do not have to model the duration of the
single EIP steps zn explicitly. This is a great computational advantage
in the hierarchical Bayesian model that we propose in the next sec-
tion. Other commonly used distributions for response times (e.g., the
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Weibull or log-normal distributions) do not have this property and
would, therefore, be a lot more cumbersome to work with. In later
sections we will extend the use of the EIP regression model to cases
where not just the duration of the intermediate steps is unknown
but the overall number of EIP steps is also latent. If we assume a
distribution for the number of steps, the expected response time of
participant i on trial j will be

E(yij | ai, bi, θi) = E(µij | ai, bi, θi)

= E(aixij + bi)

= aiE(xij) + bi (4.4)

We know the distribution of xij and can thus easily calculate its ex-
pected value. To find the unique combination of values for ai and bi

one needs at least two experimental conditions with different expec-
tations for E(xij). While it is possible to estimate the parameters from
the means, it is statistically much better to try and model the full re-
sponse time distributions yij to infer the parameters. In order to do
so, we need to take into account the full distribution of the number of
EIP steps xij. This complicates the statistical modeling considerably
because, in this case, the response time distribution is a mixture of
gamma distributions. Before we introduce these complications with
an example model for response times in a Sudoku task, we will first
present a hierarchical extension to model individual differences and
apply this model to response time data of children adding numbers.

4.1.1 Bayesian hierarchical EIP regression

By adding one layer of priors we can easily extend the basic gamma
regression model to a hierarchical model and estimate the parame-
ters of several participants in parallel. Hierarchical Bayesian models
have big advantages over estimating each participant on its own: pa-
rameter estimation becomes more robust and one can borrow strength
across participants (Gelman and Hill, 2007; Rouder et al., 2003).

As the parameters for each participant (ai, bi, and θi) all need
to be positive, we sample them from log-normal priors. Usually,
log-normal distributions are characterized using parameters µ and
σ, which are the mean and standard deviation of the logarithm of
the distribution (which is a normal distribution). Similar to the
gamma distribution, we define a different parameterization denoted
by LogNormal′, using the mean and variance of the distribution it-
self. This parameterization leads the parameters to be measured
in seconds and, hence, makes them easier to relate directly to the
data. Both of these hyperparameters need to be positive, too. For the
hyperpriors on the means, we use a half-normal distribution with
σ = 5. For the hyperpriors on the variances, we use half-Cauchy
distributions with β = 5. These values proved to be reasonable in
our applications of the model. They do favor small values but are
wide enough to allow for a wide range of values.
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yij
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θi

mθ sθ

xij

ma,mb,mθ ∼ HalfNormal(σ = 5)

sa, sb, sθ ∼ HalfCauchy(β = 5)

ai ∼ LogNormal′(ma, sa)

bi ∼ LogNormal′(mb, sb)

θi ∼ LogNormal′(mθ, sθ)

xij ← EIP step count

µij ← aixij + bi

σij ←
√
µijθi

yij ∼ Gamma′(µij , σij)
j trials

i participants

Figure 4.2: Hierarchical EIP re-
gression model. The outer box
is the core regression model for
each participant i. The ob-
served response time yij de-
pends on a known (or latent,
see later sections) number of
EIP steps xij. The expected re-
sponse time µij is a linear func-
tion of the number of steps with
slope ai and offset bi. The stan-
dard deviation σij scales with θi.

The graphical model of our hierarchical EIP regression can be
found in Figure 4.2. In the display of the graphical models we follow
the conventions used in (Lee and Wagenmakers, 2014): Round nodes
are continuous, squared nodes represent discrete values; open nodes
are latent variables, shaded ones are observed; a node with double
border is deterministic. In addition, plates enclose parts of a graph
to denote independent replications.

This basic model can be extended to more complex cases when
the number of EIP steps for a trial are not observed or when there
are several tactics to solve a task which would produce a different
number of EIP steps. We will deal with such extensions later in the
paper. In general, we implemented all graphical models discussed
in this paper with PyMC (Salvatier et al., 2016) and used the No-
U-Turn Sampler (NUTS, (Hoffman and Gelman, 2014)) to find good
parameter values. We let four chains run in parallel for 2000 itera-
tions, after tuning the hyperparameters of NUTS with 1000 samples
which were discarded. Convergence was checked via visual inspec-
tion of the traces as well as the diagnostic parameters R̂ and effective
sample size (ESS) (Vehtari et al., 2021). The code for all models can
be found here: https://osf.io/rgh3j/.

4.2 A first example: Addition

The simplest possible use-case for the model is when there is just
one cognitive tactic that we want to model and the EIP step count
for each trial is known. We will show the application of the model in
one such simple case: Adding two numbers.

When children learn to add, they usually start by putting up their
fingers for each addend and then simply count the fingers (Siegler
and Jenkins, 1989). Before they reach the proficiency level of adults
and can retrieve the answer to small addition problems from mem-
ory, they usually discover several shortcuts to counting explicitly

https://osf.io/rgh3j/
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through all the numbers from one to the sum. A quite sophisticated
tactic, called min-counting, is to start counting at the larger of the
two addends (e.g. 3+ 5: start at 5 and count three numbers up to get
the answer) (Siegler and Jenkins, 1989). During the learning process,
children usually use several tactics concurrently. With experience,
the most efficient tactics come to dominate, which are the retrieval
tactic followed by the min-counting tactic (Siegler, 1987).

Hopkins and Bayliss (2017) examined what tactics children in 7th
grade use to solve simple addition problems where both addends
are single digits. Here, we use their data to illustrate how our model
can be used to infer the temporal properties of EIP steps in the min-
counting tactic. 200 children from 13 schools with a mean age of
12.38 years took part in the study. The addition part of the study
consisted of 36 trials, all single digit additions with addends greater
than 1. After each answer a child gave, the experimenter asked how
they arrived at the answer. Answers were classified as min-counting,
retrieval, decomposition and other (e.g. “don’t know”). For details
of the experiment see Hopkins and Bayliss (2017). Here we are only
concerned with the min-counting trials which make up about a quar-
ter of the data (of the 6855 correct trials, 1786 were min-counting
trials).

Figure 4.3: Results for one ex-
emplary participant for the EIP
model of min-counting. The
regression line and the data
points are the same in the first
two plots. In the bottom most
plot the individual samples of
the two parameters a and b are
depicted.

The process model for min-counting trials comprises the follow-
ing parts: read the question, find the bigger number, count from that
number as many steps up as the other number indicates, state the an-
swer. Each counting step in this model thus constitutes an EIP step.
We can therefore map the counting speed of child i onto the param-
eter ai and the duration of the other processes onto the parameter
bi.

4.2.1 Results of EIP regression

The estimates for the group parameters of the Bayesian hierarchical
EIP regression model can be found in Table 4.1. These group pa-
rameters tell us the mean parameter values and how the parameters
vary over participants. For example, looking at the mean values for
a and b we see that on average the offset parameter is roughly four
times as big as the slope parameter. Hence, on average the constant
processes (orienting, response initiation, etc.) take about four times
as long as each counting step.

For each participant, we also get the individual posterior distribu-
tions of all three parameters. The distribution of parameter densities
for all participants can be seen in Figure 4.4. The regression line for
a single, exemplary participant can be seen in Figure 4.3. The plot on
the left of Figure 4.3 shows the conditional fit for the location of the
mean (given the data) with its confidence intervals (95% HDI). These
are calculated as the respective quantiles of the matrix aix+ bi, where
x is the vector [2, ..9] and ai and bi are all the posterior samples of the
respective values for participant i.

The x-axis depicts the EIP step count, the y-axis the response time
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mean SD HDI 2.5% HDI 97.5%

ma[s] 0.434 0.029 0.379 0.493

mb[s] 1.724 0.084 1.561 1.889

mθ [s] 0.509 0.047 0.421 0.602

sa[s] 0.293 0.040 0.221 0.373

sb[s] 0.447 0.100 0.253 0.637

sθ [s] 0.485 0.089 0.324 0.653

Table 4.1: The parameters
found for the EIP regression for
the counting trials. The m pa-
rameters are the mean and the
s parameters the standard devi-
ations of the prior distributions
of the respective participant pa-
rameters. All values are in sec-
onds.

in seconds. The dots mark individual response times of this partici-
pant (only those trials where the participant reported they had used
“counting” to find the answer). There were three trials with the min-
imum value 5 (with response times varying between 1.8 seconds to
4.8 seconds), for all other minimum values at most two trials were
solved by counting by this participant. The solid line is the mean
of all posterior regression lines of this participant. Despite the hier-
archical model, the 95% HDI around the mean is still on the order
of one second. However, note that the regression of this student is
based on only a few trials. We again see that the constant offset
is relatively large, around 2 seconds, compared to the average time
this participant needs to do one counting step. In the middle of Fig-
ure 4.3, the same mean line is depicted, the shaded area around it
illustrates the density of the gamma distribution around it. Except
for one data point all the data are well within the expected variance.
To help the reader relate standard linear regression analysis to the
EIP regression and appreciate the difference as well as the similarity,
we included a linear regression model in the appendix (section A.2).
The main results are not much different in the two models, the dif-
ference is mainly in the shape of the expected distribution of the data
around the regression line.

Figure 4.4: The distributions
of the participant parameters
for all participants for the EIP
model of min-counting. Each
line shows the posterior density
of values for the respective vari-
able for one participant.

4.3 A more complex example with latent steps: Sudoku

In the previous example, the number of processing steps that each
participant went through was known. Hence, we could simply plot
the number of EIP steps against the response times and the linear fit
gave us estimates of the offset and processing time of each EIP. How-
ever, for more complex tasks, usually, we will not know the number
of processing steps exactly. As an example for such a task we will
look at Sudoku. In general, there are often different ways to solve a
problem. In the previous addition example, there was min-counting
and retrieval from memory. For Sudoku, too, there are different tac-
tics to fill a cell in a puzzle. Contrary to the data for the addition
example, where we knew how a student solved the addition prob-
lem, here, we will look at data where we do not necessarily know
which tactic was tried. Furthermore, also contrary to the counting
example, tactics are rarely so simple that each participant executes
the tactic in the same way in each situation. Participants do not
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follow a tactic deterministically but make probabilistic choices. For
example, in Sudoku a participant might sometimes choose to first
look at the columns and then at the rows and sometimes do it the
other way round. Thus, the number of processing steps needed to
solve a problem is not fixed but random and, usually, unobserved.
Fortunately, the basic EIP regression model can be extended to deal
with these complications.

In this section, we will first cover a previously published study
on Sudoku (Behrens et al., 2023) to illustrate how these additional
complications commonly arise in problem-solving data. In this pre-
vious paper we also published a process model for how people solve
Sudokus but only applied it to group data. Here, we will showcase
how Bayesian hierarchical EIP regression can be combined with the
process model to analyze these data at the single-participant level.
These analyses will be very similar for other problem-solving tasks
where the results of some reasoning processes can be observed in
behavior, but many cognitive steps are latent.

4.3.1 Sudoku tactics

Let us first look at the two most simple tactics in Sudoku. They
work with different elements as focus: “What digit can I place in this
cell?” vs. “Where can I place this digit?” The cell-based tactic (CB for
short) tests for a single empty cell of the puzzle which digits can be
excluded from it by looking at the surrounding cells. When a digit
appears already in the same row, column, or box, it cannot be placed
in the cell under consideration. If all but one digit can be excluded,
the one remaining digit is the solution for the cell. The digit-based
tactic (DB) focuses on a specific digit which occurs already several
times on the board. When it does not yet occur in some unit, for
example a 3-by-3 box, one can see whether the other occurrences of
the digit restrict where in the given box this digit can be placed. If
all empty cells of the box but one can be excluded as locations for
the digit, the one remaining cell has to be filled with the digit. See
Figure 4.5 for examples of the tactics.

Figure 4.5: Examples for the
two tactics. The correct answer
is 9 for the cell AA in both puz-
zles. For the cell-based tactic,
the easiest way to find the an-
swer is by asking “what digit
can I place in cell AA?” The eas-
iest way for finding the answer
in the digit-based puzzle is by
asking “where in the upper left
box (A:C–A:C) can I place the
9?”

4.3.2 Experiment and instruction groups

In the experiment, we had two different instruction groups that were
supposed to bias participants to use one or the other tactic. The
task for participants of both instruction groups was to fill in one
correct digit in a given Sudoku per trial. In order to do so, they
had to click on an empty cell with the mouse and then enter a digit
via the keyboard. In the cell-based instruction group one cell was
highlighted, and the instructions were “Please fill in a digit in the
highlighted cell”. For the digit-based instruction group, a 3-by-3 box
was highlighted and the instructions were “Please fill in the X into
the highlighted box” (where X was replaced with a specific digit
in each trial). Both instruction groups saw the same puzzles in a
random order, half of which could only be solved with CB tactics,
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the other half only with DB tactics. Hence, if a participant always
started with the same tactic, in half of the cases it led to the cor-
rect answer, in the other half they would have to follow up on the
first attempt with the second tactic in order to successfully solve the
puzzle. The experiment was thus a 2 × 2 design, with the inde-
pendent variables instruction and required tactic. The data set, the
experimental materials, and the analysis code are available at the
OSF project site https://osf.io/rgh3j/. The data set consists of 46

participants, 23 per condition, who met the inclusion criterion (at
least 75% correct responses). Every participant completed 36 trials,
all saw the same puzzles in randomized order. For both required
tactics we had two seed puzzles and created 9 isomorphic stimuli
from them. The isomorphs were created by exchanging rows and
columns and interchanging the values for different digits. Although
the isomorphs look different on the surface, they afford the same
logical inferences and the process model predicts the same number
of EIP steps for them.1 We, therefore, do not distinguish between the 1 Some differences in EIP step counts

arise due to the order in which digits
are tried. If a smaller digit is tried first
and it is the required target digit then
this puzzle has a lower number of EIP
steps. But we do not want to make the
strong assumption that our participants
always follow this exact order. So we
lump all target digit scan distributions
together.

individual puzzles in the following analyses, but just use one dis-
tribution of EIP step counts for each combination of instruction and
required tactic.

4.3.3 Process model (First strategy)

The information given in the two instruction groups is different (fixed
cell vs. fixed digit) and the process model we developed accordingly
also covers the two different cases. The basic processing step that
we use in the process model is to search for a digit in a given unit
(e.g., looking for the 3 in the first row). We call such a step a scan.
Scans are the EIP steps for all following models. Note that each scan
consists of several sub-steps, i.e., looking at each cell in a unit, that
are not modeled explicitly. The model makes predictions about the
required number of scans for a given puzzle and instruction. Impor-
tantly, the process model makes some random choices and therefore
the number of EIP steps needed in a trial varies randomly. For exam-
ple, in Figure 4.5 in the CB example, participants will at some point
have to scan the A-row and the A-column for a 3 to check whether it
can be filled into cell AA. We assume that participants will randomly
either first check the A-row or the A-column. Participants who first
check the A-column get lucky and only need one scan to exclude the
3. Participants who first look at the A-row will also have to search
the A-column and therefore need two scans. In the case where the
first executed tactic does not lead to a unique answer, the other tactic
has to be applied as a follow-up. The strategy we implemented as a
process model here is to always start with the tactic that best fits the
instruction they see. We thus expect more scans in incongruent tri-
als, i.e., where the required tactic does not match the one favored by
the instruction type. For a detailed description of the proposed algo-
rithms behind the process model see (Behrens et al., 2023). We let the
model run on on the puzzles for 1000 trials to get a distribution of

https://osf.io/rgh3j/
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the EIP step count in each of the four conditions.2 Hence, instead of 2 For some models it will be easy to
compute this distribution by hand but
in general it will be easier to estimate
this distribution by sampling.

knowing the precise number of EIP steps for each trial as in the min-
counting example, here, we only know the probability distribution
over the number of EIP steps that will be needed by our stochastic
process model. In Figure 4.6 the solid lines show the distribution of
EIP step counts in the different conditions.

Figure 4.6: The gray bars repre-
sent the response times of the
participants in the four con-
ditions of the Sudoku experi-
ment, the lines depict the EIP
step counts for two different
strategies. For the first Su-
doku model, only the solid
lines are relevant. They show
the EIP step counts for the pro-
cess model of the first strategy
we implemented. The dashed
lines (strategy 2) show the al-
ternative process model that is
additionally used in the EIP
model with strategy selection.
Note that the x-axis depicts sec-
onds for the response times but
‘number of EIP steps’ for the
scan distributions.

4.3.4 EIP regression with latent steps

The core of the model is identical to the model we used for the count-
ing data. The added complexity stems from the fact that we do not
have a definite EIP step count per trial, but a distribution over EIP
steps instead. We still want to estimate how long each participant
needs on average to carry out an EIP step, i.e., a scan. Additionally,
we estimate an intercept term to take care of the processing time not
captured in the process model (reading the task, typing the answer).
Of course, this is also a validation attempt of the process model.
Only if the model makes reasonable predictions about the required
number of EIP steps in the different conditions (or at least their rela-
tive proportions) can a good fit be found that explains the response
times mainly on the basis of the EIP step count.

As mentioned above, before we fit the EIP regression model, we
first let the process model run on the stimuli to get a discrete distri-
bution of the EIP step counts per condition. As we now know this
distribution, we can treat the number of EIP steps xij as a latent vari-
able in our Bayesian model. The only change that is required to the
original Bayesian hierarchical EIP regression from before is that we
need to provide the discrete prior distribution for each xij (that de-
pends on the stimulus that was shown in trial j and the instruction
participant i received). Hence, each yij is now not gamma distributed
anymore but a mixture of gamma distributions over the latent num-
ber of EIP steps. When fitting the EIP regression model, we could
just draw from the latent distribution to get one specific EIP step
count for each draw. Instead, we marginalize over this distribution
and work directly with the mixture of gamma distributions for yij.
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Marginalization has the advantage that the samples converge more
quickly to a stable distribution. Without marginalization, we need
to take more samples in each chain to reach convergence. Once the
chains have reached convergence, the results are the same in the two
approaches, as one would expect given their equivalence. We report
the results from the model with marginalization here.

4.3.5 Results of latent EIP regression

mean SD HDI 2.5% HDI 97.5%

ma[s] 1.526 0.386 0.945 2.249

mb[s] 7.270 1.694 4.315 10.696

mθ [s] 5.243 0.705 3.960 6.639

sa[s] 2.458 1.736 0.746 5.346

sb[s] 14.424 7.528 4.266 28.945

sθ [s] 4.542 1.249 2.523 6.972

Table 4.2: The parameters
found for the EIP regression
with latent EIP step count for
the Sudoku data. The m pa-
rameters are the mean and the
s parameters the standard devi-
ations of the prior distributions
of the respective participant pa-
rameters.The values of the group parameters can be seen in Table 4.2. For

each participant, i, individual values are sampled for the parameters
ai, bi and θi. Their mean is depicted on the left of Figure 4.10. Ac-
cording to these fits, participants take between 0.1 and 3 seconds for
one EIP step. The intercept term accounts for all the other processes
in the response time. It is below 5 seconds for about half of the par-
ticipants. The other half has very variable intercept terms, including
values of up to 25 seconds. Such high intercept terms are a sign of
a rather poor process model because in our case the response times
ranged from about 10 to about 60 seconds. If more than half of the
time needs to be accounted for by the intercept term instead of the
sum of the EIP steps, this means that the distributions of EIP steps
do not match participant behavior very well. Luckily, not all is lost,
and we can extend the model further to better account for the data.

4.3.6 EIP regression with strategy selection

The strategy described above assumes that first the instructed tactic
is carried out fully, and only if it did not lead to a unique solution,
subsequently the other tactic is carried out. However, it might also
be that our participants do not always apply the tactics in this order,
instead, they might be starting with the tactic that does not fit the
instruction. If they do this, they need more EIP steps in the congru-
ent trials but fewer in incongruent trials. We defined “starting with
the other tactic” as a second strategy, implemented a corresponding
process model and again sampled the expected numbers of EIP steps
per condition to get distributions of scan numbers. The dashed line
in Figure 4.6 shows the corresponding distributions. We extend the
EIP regression model to incorporate strategy selection for each par-
ticipant. In order to estimate to what extent each of the two strategies
explains their response time patterns, for each trial, we draw from a
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yij

µij σij

ai

sama

bi

sbmb

θi

mθ sθ

xijsij

wi

ma,mb,mθ ∼ HalfNormal(σ = 5)

sa, sb, sθ ∼ HalfCauchy(β = 5)

ai ∼ LogNormal′(ma, sa)

bi ∼ LogNormal′(mb, sb)

θi ∼ LogNormal′(mθ, sθ)

wi ∼ Beta(1, 1)

sij ∼ Bernoulli(wik)

xij ∼ EIP step count(sij)

µij ← aixij + bi

σij ←
√
µijθi

yij ∼ Gamma′(µij , σij)
j trials

i participants

Figure 4.7: EIP regression
model with latent EIP step
count and strategy selection for
the Sudoku experiment.

Bernoulli distribution with probability wi and decide which strategy
sij is used to explain the response time on trial j. We sample these
weights wi from a uniform beta distribution (Beta(1,1)). From the EIP
step distribution corresponding to the selected strategy, one specific
EIP step count, xij, is sampled. From here on the rest of the model is
the same as in the basic EIP regression model. See Figure 4.7 for the
corresponding graphical model. Again, we can use marginalization
to reach convergence in fewer sampling iterations. In this case, we
use the wi parameter as a mixing weight of the two strategy distri-
butions. Note, however, that the distributions of EIP step counts for
the two strategies have considerable overlap (see Figure 4.6), so it is
probably impossible to say very precisely how much of each of these
strategies contributed to the performance of a participant.

4.3.7 Results of strategy selection analysis

The values of the group parameters can be seen in Table 4.3. Com-
pared to the values found by the simpler model, the intercept term
mb decreased significantly, while the variance related term, mθ , de-
creased and slope, ma, increased a bit (the confidence intervals for
ma and mθ are overlapping in the two models). The standard devi-
ations of the prior distributions for the three parameters (sa, sb and
sθ) decreased all at least a bit, indicating that the individual par-
ticipants now have more similar parameter values compared to the
model with just one strategy. The widths of the highest density inter-
vals of all population parameters (except for sb decreased, showing
that the model is more precise in its results. The densities of the
participant parameters can be seen in Figure 4.9, split into the two
instruction groups. The mean of the slope and intercept terms for
both models can be seen in Figure 4.10. The DB-instruction group
gets consistently very low weight parameters for the new strategy
(bottom right of Figure 4.9), meaning that they overwhelmingly do
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as the first strategy proposed, i.e. start with the DB-tactic. They were
well fit by that model and the additional strategy did not change the
fit much. Accordingly, the blue triangles did not move very much
between the two plots in Figure 4.10. The most striking difference
between the two models in Figure 4.10 is that the intercept terms, bi,
decreased dramatically for many participants in the CB-instruction
group. In this group, some participants get a high weight for the
newly added strategy. Together, this indicates that around half of
the participants in the CB-instruction group did not follow the first
strategy’s assumptions, but instead often opted for using the DB-
tactic early, even though it was not favored by the instructions. With
the additional tactic in the model, a much bigger portion of the over-
all response time can be explained by the EIP step count assumed
in the model instead of needing to be covered by the “catch all” in-
tercept term. This shift alone makes the new model with strategy
selection a much better model in our eyes. When the response times
can be explained by differences in required EIP steps, it means that
there is the possibility of some correspondence between the process
models and the processes in the head of the participants.

Figure 4.8: The posterior pre-
dictive distributions for the EIP
regression model with latent
EIP step count and strategy se-
lection for the Sudoku experi-
ment. The inset figures show
the PP-plots for the respective
condition.

in Figure 4.8 the posterior predictive distributions of the model for
the four conditions of the experiment can be seen. The lower right
part of the figure shows the congruent digit-based condition. Here,
the observed response times contain many very short answers, which
the model cannot match perfectly. The other three conditions are fit
very well, as can be seen in the almost perfect diagonal PP-plots in
the insets.
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mean SD HDI 2.5% HDI 97.5%

ma[s] 1.490 0.141 1.232 1.782

mb[s] 2.589 0.950 1.053 4.433

mθ [s] 3.525 0.532 2.557 4.555

sa[s] 0.893 0.192 0.577 1.265

sb[s] 6.724 10.001 0.548 17.713

sθ [s] 3.296 1.032 1.759 5.344

Table 4.3: The parameters
found for the EIP regression
with latent EIP step count and
additional strategy selection for
the Sudoku data.

Figure 4.9: The posterior den-
sity of all the participant pa-
rameters in the Sudoku model
with strategy selection. The two
rows of the plot show different
instruction groups.

4.3.8 Model comparison

Figure 4.10: The mean of the
ai and bi parameters for each
participant as fit by the two
Sudoku models. The color
and orientation of the trian-
gles mark the two instruction
groups. The size of the tri-
angles reflects the value of θ,
so smaller means better pre-
dictable.

Besides the observation that the parameter values are in more plau-
sible ranges in the model with strategy selection as compared to the
one without, we can also look at the fit of the data more formally. We
use 10-fold cross validation to do so. We split the data such that all
participants are equally represented in all folds. We train the model
on nine tenths of the data and test the performance on the last tenth,
which was not used for this training round. This is done ten times,
where each fold of the data is the held-out part once. We thus get
a measure for how well the model can predict data it has not seen
during training. As performance measure we use expected log point-
wise predictive density (ELPD) as described by Vehtari et al. (2017),
which is the log likelihood of the data given the entire distribution
of parameter estimates instead of point estimates of parameters. The
ELPD for the EIP regression with latent EIP step count is −5552.32
(with a standard error of 49) and for the model with additional strat-
egy selection it is −5489.08 (with a standard error of 49), so there is a
difference of 63.24 (with a standard error of 18.19 on this difference),
showing that the data are much more likely under the more complex
model. The ArviZ project (Kumar et al., 2019) also provides a tool
to compute an estimated leave-one-out ELPD on the traces. The data
contain outlier points resulting in warnings about highly influential
observations. Nevertheless, the results by the ArviZ toolbox confirm
the results of the cross validation.
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4.4 Discussion

We have shown how to connect process models to response time
data using gamma regression. The key idea is to treat each EIP step
as having a gamma-distributed random processing time. We assume
the same scale parameter to ensure that the overall response time
is also gamma distributed. We call this core model EIP regression.
This model can be extended to a Bayesian hierarchical regression
model. Such a model allows us to fit the predictor variable of a
process model, i.e., the number of EIP steps, to the response time
data of individual participants. We illustrated how the model works
by applying it to children’s addition (and you can find a comparison
to a standard regression analysis in the appendix, see section A.2).

In a second example, we developed a process model of a Sudoku
task which made predictions about the required number of process-
ing steps in different conditions. As the process model is probabilis-
tic in itself, the predicted number of processing steps is not a single
number but a distribution of possible values instead. Even though
the number of EIP steps is not observed, the Bayesian hierarchical
EIP regression can still be fit to those data. Connecting the discrete
predictions of the process model with the quantitative probabilistic
model allows us to do two important things: First, we can get an
estimate for how long a processing step should take given our pro-
cess model and the data we collected. Hence, we can make statistical
inferences about processes that are never observed in isolation. Sec-
ond, it also allowed us to statistically assess the process model itself.
We saw that our first attempt did not match the data of the cell-based
instruction group very well. The average response time assigned to
the processing steps was very short and most of the overall response
time had to be explained by the intercept term. We implemented a
second process model that allows for starting out with the tactic that
does not fit the instruction. In the EIP model, we added a weight
parameter for each participant to fit the degree to which each of
the two strategies explains the response time patterns. An second
version of the process model that allows for starting with different
solution tactics improved the fit immensely. The improvement was
clearly shown in a model comparison (much better log likelihood of
the data) as well as in the values for the individual parameters.

Using a probabilistic programming framework, like PyMC (Sal-
vatier et al., 2016; Wiecki et al., 2022), allows us to define models
that would not be expressible in traditional statistical analyses. For
example, the generalization from an observed to a latent number
of processing steps is straightforward in PyMC but would be very
hard using standard regression tools. In general, one motivation for
this paper was to showcase how probabilistic programming can be
used to bridge the gap between classical cognitive modeling and sta-
tistical inference. Traditionally, process models are hypothetical al-
gorithms of how participants solve a problem and make qualitative
predictions about processing times, but they are seldom scrutinized
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statistically. Lee and Wagenmakers (2014) have long advocated the
use of Bayesian tools for cognitive modeling and their book provides
an excellent collection of basic and advanced models. Our contri-
bution here is to provide one model, EIP regression, that can easily
be adapted to many use-cases. If you have a probabilistic process
model that you can implement in a computer program, and the pro-
gram has clearly identifiable elementary information processes, then
you can use EIP regression to infer the model’s parameters. Impor-
tantly, these parameters have a clear psychological interpretation in
terms of the average processing time of an EIP. In addition, as the
core model is a simple regression model, the data analysis is very
similar to standard analyses in psychology. We thus believe that EIP
regression can easily supplement many existing process models.

In fact, decision-making tactics have already been analyzed in
depth using EIP models and standard regression tools (Bettman et al.,
1990; Payne and Bettman, 2004; Payne et al., 1988). A host of different
decision-making tactics exist, some relying on single features, some
considering several or all features of the choice options, but they
all share the same elementary information processes. Some models
have even differentiated between different processes (e.g., counting,
multiplication, comparisons, reading) within the same experiment
and estimated the duration of each of these individually. This was,
however, only possible for simple models and through very clever
experimental design. In contrast, estimating the duration of several
interacting elementary information processes even for complex mod-
els is a straightforward extension of the EIP regression we presented
in this article. Ideally, in the future EIP regression should be inte-
grated with GOMS-like modeling frameworks, e.g., Cogulator (Estes,
2021). This would immediately make modern statistical estimation
and model comparison tools available for a large class of classical
cognitive models that are also widely applied in human-computer
interaction.





Chapter 5

Statistical modeling of rule selection

This chapter is in preparation for submission.

The ability to solve problems is at the core of human intelligence.
Newell and Simon (1972) revolutionized our understanding of prob-
lem solving by developing computer programs that can mimic hu-
man problem-solving behavior. They first recorded detailed think-
aloud protocols while participants solved various problems. From
these protocols they could then infer the problem space as well as
the operations that participants used to search the space. They also
carefully described in which context each operator could be applied.
Importantly, as in some contexts several operators could be applied,
they could also infer a preference order from a participant’s think-
aloud protocol. Using all these ingredients they developed computer
programs with a repertoire of a participant’s operators in the form of
if-then rules. In these early programs, operators were always applied
in a fixed preference order. Only when a rule was not applicable or
did not lead to a change in the problem state the next rule was tried.
Amazingly, with the right preference order such a production sys-
tem could provide reasonably good explanations for a participant’s
trace through the problem space (Newell and Simon, 1972, Chap-
ter 6). However, it was clear from the start that participants do not
always follow a fixed preference order. Rule selection is probably
probabilistic and highly context-dependent.

It has often been commented that Newell’s and Simon’s approach
to problem solving has not yielded many deep theoretical insights
beyond its early successes (Batchelder and Alexander, 2012; Jäkel
and Schreiber, 2013; Ohlsson, 2012). One obvious problem of their
qualitative approach is its reliance on think-aloud protocols. There
is no simple way to systematically aggregate such data and analyze
them statistically – as it’s done in most other areas of cognitive sci-
ence (Ohlsson, 2012). Here, we therefore develop a statistical model
for probabilistic and context-dependent rule selection that can be fit
to coded protocols or directly observable behavior. In this way, we
can quantify the relative importance of different production rules
and their statistical dependencies. Furthermore, we can cluster par-
ticipants into groups that show similar behavior. We illustrate this
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statistical approach to analyzing problem-solving behavior using Su-
doku puzzles.

There are good reasons Newell and Simon relied so much on
think-aloud protocols in their early exploratory studies. Think-aloud
protocols are well-suited to trace the problem-solving process in a
very open experimental setting. Participants can freely choose what
to say and are not restricted to some predefined set of operators to
chose from. The downside of think-aloud protocols is the very labor-
intensive coding process, which relies on human coders. Despite
all the recent technological advances in natural language processing,
transcribing and labeling a protocol still typically takes several times
longer than it took to record the protocol in the first place. Further-
more, there will always remain some degree of subjectivity in the
labels even if multiple coders label the same data.

Because of these drawbacks of think-aloud protocols, experimenters
usually try to design tasks in a way that externalizes as much of a
participant’s internal problem-solving process as possible. Partici-
pants should not plan and simulate everything only in their head
but should draw it out or make moves in the environment (virtual
or physical). This then leaves an easily recordable and interpretable
trace. The Towers of Hanoi are one such example. The path to the
solution is easily enacted in a physical or virtual representation of
the problem and participants are unlikely to do lot of purely men-
tal planning. This is one of the reasons the Towers of Hanoi are such
a popular puzzle to study the application and learning of problem
solving strategies (Anderson et al., 2005; Anzai and Simon, 1979; Ko-
tovsky et al., 1985; VanLehn, 1991).

Once we have a trace of the problem-solving process (from a
coded think-aloud protocol or other data sources), the most inter-
esting part of data analysis still lies ahead. What where the rules
and problem solving strategies that gave rise to this trace? Even a
coded think-aloud protocol is a rich source of data that is not eas-
ily reduced to simple statistical tests. Even though it is not a very
common technique, think-aloud protocols have a small but constant
appearance over the years (Blech et al., 2019; Brandstätter and Guss-
mack, 2013; Chi, 1997; Ericsson and Simon, 1993; Fox et al., 2011;
Walsh and Gluck, 2015). However, the process data are rarely an-
alyzed at the same level of detail as in the work of Newell and Si-
mon (1972). They carefully constructed so-called problem-behavior-
graphs from the annotated protocols. These graphs trace the mental
states of the participants, the operators that are presumably applied,
and the resulting changes in problem state representations. They
then built a production system with if-then rules to describe and
simulate the participant’s problem-solving behavior. To determine
the execution priority of the different rules, they used a fixed prefer-
ence order, estimated from the data. A fixed order, however, is not
the best description of participants’ behavior. Instead, participants
usually display variability which would be better described with a
probabilistic mechanism. Hence, our analysis focuses on statistically
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estimating choice probabilities.
The easiest way to estimate rule selection probabilities would be

to simply count how often each rule was chosen in a protocol to
estimate a rule’s probability. This approach works well in stable en-
vironments where all rules are applicable at any moment. However,
when the applicability of rules changes from move to move, this anal-
ysis does not yield the full picture. Some rules might be used rarely,
but the reason could simply be that they were applicable only on
very few occasions. Also, it matters which other rules were applica-
ble at the same time. We thus need to take into account the context
in which a rule was chosen. In the analyses by Newell and Simon
(1972) this was taken care of by the preconditions of the rules. How-
ever, if choices are probabilistic and context-dependent, you can only
get reasonable count-estimates for the choice probabilities if you col-
lected enough data for each relevant context. Unfortunately, in many
problem solving tasks, contexts vary a lot over moves and you might
only observe each context very few times, sometimes even just once.
This makes estimating the probability for a rule to be selected a chal-
lenging statistical problem. Luckily, this estimation problem is not
unique to rule selection. In fact, it is the core problem of choice
modeling (Luce, 1959). Choice models allow us to estimate choice
probabilities in varying contexts. We therefore propose to use such
models to statistically analyze rule selection in production systems.
After we estimated its parameters, we can use a choice model to
compute the probability that a participant will select a production
rule for any problem state. Together with the production rules that
can change the problem state, we can then stochastically simulate
complete traces for solving a problem. In this way, we can generate
behavior similar to the behavior of the participants and can assign a
probability to any given trace. A production system together with a
choice model is thus a compact description of the distribution over
possible traces.

In the present study we collect problem solving data on 4-by-4
Sudokus. These 4-by-4 Sudokus are an ideal problem domain for
us because they are quick to fill and we can therefore present many
puzzles in a single experimental session. Furthermore, there are sev-
eral distinct rules for filling them and at any point in time several of
them can be applied. Participants thus have a choice between differ-
ent rules at all times. The many choice opportunities make 4-by-4
Sudokus an excellent problem domain for studying rule selection.
Different knowledge of or preferences for rules will lead to different
solution paths and these differences are easily observable in the overt
behavior. We model these preferences with choice models that can
be fit to the data of individual participants.

For our previous think-aloud study (see section 2.2), we already
identified several inference rules that were used in similar puzzles
to fill the empty cells. Labeling the moves of the think-aloud study
was successful for a big proportion of the data, but very tedious and
sometimes subjective. As most cells can be filled by several rules,
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even the think-aloud data were frequently too sparse to uniquely
determine the rule that was used. For choice modeling, the amount
of data from the think-aloud study was unsatisfactory. We therefore
designed an interface that allows us to infer the rules that were used
on each move without having to rely on think-aloud data. In this
new interface, participants used the mouse to click on and highlight
all the cells in a Sudoku that were relevant for filling in a digit. We
have thus externalized the most important aspect of the inference
process to be able to automatically identify the rules that were used
by the participants. This allowed us to efficiently collect (mostly)
unambiguous problem-solving traces. These traces are then the basis
for fitting choice models to describe each participant’s preference for
different rules.

5.1 Production system

To help us label the data of the think-aloud study in section 2.2, we
developed a Prolog program that can solve Sudokus using the same
rules our participants used in that study. It can be used to generate a
list of all possible rules for each empty cell of a given Sudoku board.

These rules can also be seen as productions in production systems.
The typical way of defining productions is by if-then rules. If certain
conditions are met, then apply the change stated in the second part
of the rule. In cases when the if part of several productions is met,
a choice must me made which of them to “fire”. Selection could
be random, according to a fixed preference order, or probabilistic
according to some utility weight attached to each rule. In this chapter
we show that the utility weights for probabilistic selection can be
learned from data to match each participant’s behavior.

The following productions are written with the abstract variable
UNIT. When fitting the choice probabilities, we actually fit a weight
for each unit type (row, column and box) separately for those rules
that have UNIT in their name. When a rule is applied, all the vari-
ables in it are instantiated with specific values such as cell-2 for CELL
and row-1 for UNIT. The same rule might be applicable in several lo-
cation, i.e., with several different values inserted for the variables.

Code 5.1: The following three productions summarize the principles
of the actual code. The all-caps word are variables and need to be
bound to specific values. All conditions in the “if” part need to hold
simultaneously.

all-digits = set{1, 2, ..., N}

if

CELL is empty

CELL is part of ROW

DIGIT is all-digits \ digits-in-ROW

| DIGIT | = 1

then

fill DIGIT in CELL

label: last-in-row
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// analogous definitions for

// last-in-column

// last-in-box

if

CELL is empty

CELL is part of UNIT.1

CELL is part of UNIT.2

DIGIT is all-digits \ (digits-in-UNIT.1
⋃︁

digits-in-UNIT.2)

| DIGIT | = 1

then

fill DIGIT in CELL

label: cell-complex

if

DIGIT is not in BOX

CELL is empty-cells-in-BOX \ cells-where-DIGIT-in-peers

| CELL | = 1

then

fill DIGIT in CELL

label: digit-box

// analogous definitions for

// digit-row

// digit-column

5.2 Empirical study

We designed an observational study in which participants solved 4-
by-4 Sudokus. In order to be able to distinguish between inference
rules, we required participants to highlight all cells that were relevant
to their deduction. Figure 5.1 shows the interface of the study. We
used a subset of the labels described in section 2.2 that will be shortly
described here again. First, in cell-based reasoning, a participant is
trying to fill a specific cell and, given the digits in the other highlighted
cells, only one digit is still possible. An example can be the seen in
Figure 5.1 (a). The participant is trying to fill the cell with the green
outline. As there is a 4 already in the same row and 1 and 3 are
already in the same column, only the 2 is still possible for the green
cell. Second, in digit-based reasoning, a participant tries to put a
specific digit they have in mind into a unit and the cell that is filled is
the only cell in this unit, where the digit is still possible. An example
can be the seen in the right panel of Figure 5.1. The participant is
trying to place a 1 into the upper left box. The 1 cannot go into the
cell where there’s already a 2. But it also cannot go into the second
row because it already has a 1. This leaves only the green cell for the
1. Lastly, there is the last-in-unit move, where a digit is filled into the
last empty cell of a unit. Reasoning can be either cell- or digit-based
in this case.
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5.2.1 Methods

Participants The study was conducted online. Students of psychol-
ogy and cognitive science received course credit for participation. 32

participants (21 female, 11 male) completed the experiment. Their
age ranged from 18 to 31 years (mean: 21.8, SD: 2.69). They indi-
cated their prior experience with Sudoku on a discrete 5-point scale.
Two participants chose “more than once a week”, three “once per
week”, ten “once per month”, nine “once per year” and eight “less
than once per year”.

(a) Cell-based reasoning

(b) Digit-based reasoning

Figure 5.1: Examples of the in-
terface. Only the 16 central
cells belong to the puzzle. The
darker gray ones surrounding
them provide convenient high-
lighting of entire Sudoku units
(the adjacent row, column or
box). The active cell with a
green frame will be filled when
a digit is entered.

Procedure At the beginning of the study the rules of Sudoku and
the interface were explained. The instructions for each trial were “We
would like to understand how you proceed while solving the puzzle.
Please mark the relevant digits and cells for each step.” Highlight-
ing was done by clicking on a cell. Additionally it was possible to
highlight a entire unit (4 cells in the same row, column or 2x2 box)
at once by clicking on buttons surrounding the board. See Figure 5.1
for a view of the interface. On every move when the participant tried
to fill a digit into a cell, the program checked that the inference was
licensed by the highlighted cells alone, i.e., no other constraints are
needed to uniquely determine the digit that belongs into the cell. If
a participant filled a cell and the highlighted cells did not license
that move, a pop-up window appeared on the screen and informed
the participant that the highlights were not sufficient and the entered
digit was not accepted. This check prevented participants from ever
entering a wrong digit into a cell and therefore only correct digits
(with appropriate highlights) were accepted. We never explained the
different strategies to our participants and left the instructions inten-
tionally rather vague to avoid biasing the actions of the participants.

The study comprised 60 4-by-4 Sudokus presented in a differ-
ent random order to each participant. We recorded overt responses,
mouse movements, and the response time for each entry measured
from stimulus onset.

Stimuli We used 10 different 4-by-4 Sudokus as bases and generated
6 isomorphs for each of them. Isomorphs were created by switching
rows within a box (i.e., 1 with 2 or 3 with 4) or blocks of rows (1,2)
with (3,4), same for columns. The digits in Sudoku are just symbols,
their numerical value is irrelevant. Our base Sudokus were defined
with letters as symbols. Each isomorph had a random translation
from letters to digits (while using only the digits from 1 to 4). The
Sudokus had between 4 and 8 given digits, with an average of 5.8.
It is possible to solve all Sudokus of our study by exclusively using
digit- or cell-based rules.

Labeling the data Even for the small 4-by-4 Sudokus, several different
inference rules can be used to fill in digits. Based on an earlier think-
aloud study and other literature (Behrens et al., 2023; Lee et al., 2008;
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Qin et al., 2012) we isolated seven rules that are commonly used in
this setting (these rules are called tactics in previous work). Three
of those are digit-based and only differ in whether a box, column
or row is the base unit (corresponding labels are digit-box, digit-col,
digit-row). Cell-based reasoning gets the label cell-complex (we do
not distinguish which combination of units was used exactly). The
remaining three labels could be either cell- or digit-based and are
used when the last value of a unit is filled (corresponding labels are
last-in-box, last-in-col, last-in-row). We implemented these rules in a
Prolog program that takes a partially filled Sudoku puzzle as input.
It returns a list of applicable rules for each empty cell.

Whether the justification of an entry was digit-based or cell-based
(or potentially both) was already determined during the experiment,
when checking whether the provided highlights of cells were indeed
sufficient to deduce the entry. The exact label for each move was de-
termined off-line after the experiment. The highlights of the partic-
ipants were used for disambiguation when several rules could have
led to the entry. The heuristic we use for determining the base unit is
based on the number of highlights per unit. The unit with the most
highlighted cells is assumed to be the base unit for reasoning.

When, for example, several digit-based rules are applicable, the
unit with the most highlighted cells was chosen as the base unit. An
example can be seen in Figure 5.1 (a). When the 1 is filled into the
cell with the green frame, it has to be digit-based reasoning. Looking
at the neighbors of the cell, two possible digits remain (1 and 3),
therefore cell-based reasoning does not lead to a unique digit and
cannot be applied. But when looking for where to place the 1, the
cell remains the only option for all three containing units (box, row,
column). The placement of the highlights in this example strongly
suggest that the base unit used was box because three cells of the
box are highlighted, whereas only one cell of the row and one cell of
the column. The label for this move would thus be digit-box.

Some participants highlight only a few filled cells individually,
without highlighting the entire unit. In these cases it might be im-
possible to say what base unit was used, only the digit-based nature
of the move can be deduced for certain. In these cases we label the
move with digit-? without a specific unit. This is still valuable infor-
mation that can be used in fitting the choice-models as it excludes
more than half of the rules.

The last-in-unit labels were given to a move when all highlights
are within one unit. The basis unit is easily determined in this case.
As we do not distinguish between the different combinations of units
that could be used for cell-complex reasoning, we do not need high-
lights for disambiguation here.

5.2.2 Results

The mean solution time per puzzle was 44 seconds (SD: 26). The
shortest trial took 10 seconds, the longest 384 seconds. The first
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few trials took a little longer in this experiment, suggesting that the
participants needed a while to get familiar with the interface. After
about 5 trials the response times stay mostly constant.

With the defined disambiguation rules, 89% of the data could be
labeled precisely. 4% of the moves could not be labeled at all as the
highlights were sufficient for the move, but not clearly matched by
any pattern. It is for example possible to highlight all cells on the
board. In this case the relevant information will be highlighted, but
in such an unspecific way that it does not tell us anything about
the reasoning process of the participant. Another 7% of moves were
clearly digit-based, but the base unit was ambiguous. For a detailed
breakdown of occurrences of each label please refer to Table 5.1.

Table 5.1: How often each label
occurred in the click-reasoning
experiment.

Label relative absolute

last-in-box 0.230 4508

last-in-col 0.210 4111

last-in-row 0.186 3651

cell-compl 0.044 862

digit-box 0.164 3216

digit-col 0.030 593

digit-row 0.030 584

digit-? 0.068 1335

unclear 0.037 724

total 19584

5.3 Statistical modeling of rule selection data

5.3.1 Choice models

In order to statistically estimate the probability that one inference
rule is chosen over another, we use choice models. Research on how
people choose from a set of available options has a long tradition,
both in psychology and in economics (Luce, 1959; McFadden, 1973).
While people will not always choose the same option in recurring
situations, they still show preferences in their probabilistic choices.
Hence, if repeated choices can be observed, one can statistically infer
the underlying preferences. In theory, one could group the data by
context and then estimate the choice probabilities for each context
separately. However, in our data a context recurs only 3.5 times per
participant on average, rendering this idea impossible. Using choice
models, we can still estimate these probabilities. This is possible
because such models make assumptions about how the choices in
different contexts relate to each other (Train, 2003).

Bradley-Terry-Luce model The simplest choice model is the Bradley-
Terry-Luce (BTL) model (Bradley and Terry, 1952; Luce, 1959). Each
potential option x is assumed to have a positive weight u(x). These
weights formalize a participant’s preferences for the different op-
tions. The probability of selecting option x from a choice set A is
equal to the weight attached to this option divided by the weight of
all other items in the choice set:

P(x, A) =
u(x)

∑y∈A u(y)
. (5.1)

Obviously, the larger the weight of option x, the higher the proba-
bility that it will be picked from the set of available options A. Im-
portantly, the probability of choosing x also depends on the other
options available in context A. The bigger A and the more attractive
the other options in A, the lower the probability of choosing x. Note
that the unit of u is arbitrary and cancels.
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Elimination-by-aspects model In circumstances where some of the choice
options are similar, a fundamental assumption of the BTL model is
likely to be violated: Independence from irrelevant alternatives (IIA).
In the BTL model the ratio rxy of how often option x is chosen over
option y is the same for all choice contexts (divide the two choice
probabilities in Equation 5.1 and the denominator cancels). In par-
ticular, if you are given the choice between x and y, the introduction
of a third option z should not change the ratio rxy. However, if z is
similar to x or y, it usually does (Debreu, 1960).

The elimination by aspects (EBA) model can deal with situations
where the choice options are similar and the IIA assumption is likely
to be violated (Tversky, 1972). In the EBA model, each option is rep-
resented by a set of aspects. The decision is a multi-step process,
focusing on a single aspect in each step. When an aspect is selected,
only options that have this aspect are kept for further consideration.
All other options are eliminated from the choice set. This process
continues until only one option remains. Or if several identical op-
tions remain, one is picked at random with equal probabilities. In
the EBA model the aspects of the options have associated weights,
not the options themselves (as in the BTL model). The probability to
select a certain aspect for consideration is proportional to the weight
associated with this aspect. A highly weighted aspect is thus much
more likely to be decisive than a minor one. The choice probabilities
for the EBA model can be computed recursively by

P(x, A) =
∑α∈x′\A0 u(α)P(x, Aα)

∑β∈A′\A0 u(β)
(5.2)

where x′ are the aspects of the chosen item, A0 is the set of aspects
shared by all items in the context, u(α) is the estimated weight of
aspect α, Aα is the subset of A consisting of all items that have aspect
α and A′ are the aspects of all items in the context. If no aspects are
shared between any of the options, the EBA model reduces to the
BTL model.

5.3.2 Three choice models for rule selection

We can now adapt the above choice models to the case of rule selec-
tion in Sudoku: The options available for choice are cell-rule combi-
nations. In a puzzle with four open cells, there might be five rules per
cell available to fill them. In this case the choice set would consist of
20 options, only one of which the participant chooses to fill out a cell.
We do not expect participants to be consciously aware of all available
options. They probably choose the first cell-rule combination they
notice as possible. Still, choice models are a good way to capture
the preferences of the participants. The models can make context-
dependent predictions of the next action of the participant. Given
a configuration of the board (plus the previous move for our full
model), which cell-rule combination is most likely to be picked by a
specific participant? Using choice models, it is possible to compute
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the probabilities for all available options in the context. Of course,
it is also possible to compute the marginals: the probability for a
certain rule or for each of the empty cells.

Model 1: Rules only (M1) The basic model is defined as a BTL model
and only knows about the applicable cell-rule combinations in a spe-
cific situation and tries to predict the probability of choosing each of
them. In our experimental data the choice context, i.e., all applicable
rules in a situation, can be determined automatically, with the help
of our Prolog program. For the cell that was filled, 4.39 rules were
consistent with a move on average. However, for the entire board
(i.e., all empty cells before the move was made), 15.52 rules were ap-
plicable on average. As we only identified seven rules, this means
that most rules are applicable in several places for many board con-
figuration. We assume that if a rule is applicable in several places,
each rule application is a different option. We further assume that
the weight of the option is only determined by the rule and not by
where on the board it can be applied.1 The actual choice is given 1 Of course, we expect there to be spa-

tial biases but here we are not interested
in them and trying to estimate them
would increase the number of free pa-
rameters massively.

by the labels that were identified in the protocol analysis. All moves
are included in the fitting and testing of the models. This includes
those moves with no or only incomplete labels. When no label for a
move is given, we marginalized over all available options for that cell
in that context. Incomplete labels specify a subset of the rules that
might have led to the filling of the digit. They reduce the number
of possible labels from seven to some smaller number and are still
valuable information. In this case marginalization has to be done
only between the potential labels, all other rules can be ignored.

Instead of estimating u directly, we estimate the log weights v(x) =
log(u(x)) to ensure positivity of u. Furthermore, for the base model,
we assume that the choices on all M moves a participant makes are
independent. With xi being the rule that was chosen on move i, and
Ai being the set of applicable rules the overall negative log likelihood
for a participant is

NLLBTL = − log

(︄
M

∏
i=1

ev(xi)

∑y∈Ai
ev(y)

)︄
(5.3)

= −
M

∑
i=1

(︄
v(xi)− log

(︄
∑

y∈Ai

ev(y)

)︄)︄
. (5.4)

As this function is convex we can easily find the unique optimum
for v by numerical optimization. It can, however, happen that a par-
ticipant used a rule every time it was applicable or never at all. In
these cases the v that optimize the negative log likelihood tend to
plus or minus infinity. To regularize the solution we added a zero-
mean Gaussian prior for v and minimized the negative log poste-
rior using a standard package for optimization (Virtanen et al., 2020,
scipy.optimize with BFGS). The prior also has the benefit of implic-
itly choosing the arbitrary unit for u. We chose the variance of the
Gaussian prior such that it is reasonably uninformative given the
precision of the data.



statistical modeling of rule selection 123

Model 2: Rules and cell aspects (M2) The IIA assumption of BTL prob-
ably does not hold for our Sudoku contexts. It is likely that partici-
pants systematically scan the board for filling opportunities, for ex-
ample row by row or box by box. Thereby they focus their attention
on one part of the board at a time. Imagine a situation in which three
cells can be filled with the same rule: one cell in the first row that is
otherwise full and two cells in the third row with the two other cells
of the row being filled, too. Assume that a participant has decided
on using this rule. The rules-only model (M1) would then assign all
three cells the same probability of 1/3, as they all involve the same
rule and therefore each cell-rule combination has the same weight.
This, however, is not plausible (Debreu, 1960, cf.). If the participant
first randomly picks a row with equal probability and then a cell
within the row, the cell in the first row will have a probability of 1/2
and the other two cells have a probability of 1/4 each. These choice
probabilities are much more plausible, especially as cells in more
constrained units with fewer open cells are chosen more frequently
than cells in relatively empty units.

We can capture these statistical regularities by adding locational
aspects to the rule options and using the EBA model instead of BTL.
As in M1, each cell-rule combination has one aspect that represents
one of the seven rules. In addition, we represent each cell by the
row, column and box they belong to (row and column together al-
ready uniquely identify each cell, but we want the very salient unit of
boxes to be represented, too). To keep the number of free parameters
reasonably small we restrict the model to using just one weight per
unit type. There is one weight parameter for the four rows, one for
the four columns, one for the four boxes. Hence, we do not model
any spatial biases (e.g., a preferences for row 1 over row 2), but only
a bias to restrict the selection to one type of unit (boxes rather than
columns for example).

While participants who prefer the cell-based rules first need to
select a cell before they can apply a rule, participants who prefer the
digit-based rules have to select a digit first. Hence, they will often
scan the board for cells to fill in a specific digit. In this way they will
introduce statistical regularities into the cell-rule choices that depend
on the digit rather than the unit. We therefore also added an aspect
for the digit to be entered into a cell. In order to keep the number of
free parameters small we assume that each digit has the same weight
and there are no biases in picking one digit over another. The total
number of weights to be estimated is thus 11: seven for the rules plus
four for the aspects row, column, box and digit.

In summary, each option is represented as a set of aspects that
describes a cell-rule combination. Consider the following example:

{’last-in-col’, ’col-1’, ’row-2’, ’box-1’, ’dig-4’}

The first aspect is the name of the rule, the others specify the digit
that is the correct solution for the cell and the cell location via row,
column and box. The complete context to choose from is a list of
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sets. The same cell can often be filled through several rules, in which
case there will be several options in the choice context with the same
cell-aspects that differ only in the rule aspect.

As before, we optimize the log-weights v(x) = log(u(x))—but
this time for the aspects in an EBA model—to ensure positivity.

NLLEBA = − log

(︄
M

∏
i=1

∑α∈x′\A0 ev(α)P(x, Aα)

∑β∈A′\A0 ev(β)

)︄
(5.5)

= −
M

∑
i=1

log

(︄
∑α∈x′\A0 ev(α)P(x, Aα)

∑β∈A′\A0 ev(β)

)︄
(5.6)

This formula does not simplify as nicely as in the BTL case. We
could not prove that the function is convex. Nevertheless optimiza-
tion worked well and led to stable results, which we ensured by
optimizing the values repeatedly with different initial values. We
use the same zero-mean Gaussian as above to regularize the solution
and minimize the NLL in the same way as for the rules-only model.

Model 3: Full model with serial dependencies (M3) So far we assumed
that the choices in each move are independent of each other. How-
ever, there are obvious serial dependencies between moves. In the
think-aloud study described in section 2.2 we saw that participants
often follow up on information they just generated. For example,
they often fill in cells in the same unit as the one they just filled be-
fore. Participants who prefer digit-based rules on the other hand,
often fill in the same digit as they did in the previous move. We
can model these statistical regularities across trials by temporarily
increasing the weights of the aspects corresponding to the previous
entry (row, column, box, digit). The factor by how much these as-
pects should be boosted is a free parameter of the model. For exam-
ple consider the situation in Figure 5.1 (a). When a 1 is entered in
the cell with the green frame (row 1, column 2), for the next move
the aspects row-1, column-2, box-1 and digit-1 will be boosted by mul-
tiplying their weights by a factor.

The total number of free parameters to be estimated is now 12:
seven for the rules, four for the aspects row, column, box and digit,
plus one for the boost factor. Note that the three models are nested.
The rules-only model, M1, has the seven free parameters for the
rules. For M2 we then add the distinguishing aspects for the cells
and four free parameters. Lastly, for M3 we add the boost parameter
in order to capture serial dependencies.

5.3.3 Model fits

We fit the three nested choice models to each participant. All three
models are well calibrated. The probability assigned to a potential
move by a fitted model reflects very well the actual percentage of
times such a move was selected by the participant during the course
of the experiment. The fits of the models for different participants
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might differ (see Table 5.2), but they all accurately reflect the prob-
abilities for the selection of different options. Figure 5.2 shows a
summary plot of the calibration of all three models over all partici-
pants.

Figure 5.2: Calibration plots for
all three models. Due to the
smaller number of predictions
of high probability the calibra-
tion gets less precise.

All three models have weights for the rules, some add additional
weights for the cell aspects and for momentarily increasing the fo-
cus on aspects that correspond to the previous entry. We fit the log
weights (v), but report the back-transformed weights (u). As men-
tioned above, the absolute value of the weights is not important,
only the ratio between them matters. As the absolute values are not
meaningful, we normalize them such that the weights for the rules
sum (without the cell aspects and the boost) to one. In this way the
parameters of all three models can be compared to each other. For
most participants, the resulting normalized weights for the rules are
almost indistinguishable for the three models. They are not identical
but the differences are smaller than 0.05 for 27 out of 32 participants.
Only five participants have a deviation larger than 0.05 between the
normalized weights of the three models. All of these have in com-
mon that they have at least one of the weights for the cell aspects
unusually high. The similarity in the weights for the rules in the
three models shows that the additional aspects in the M2 and M3

model are relatively orthogonal to the rules.
The weights found for the rules by the choice models differ in

important ways from the pure counts of labels. They are shown
together for some participants in Figure 5.3. The frequency with
which each rule was used by the participant is depicted by the gray
bars. The estimated weight of each rule is shown by the black bars.
There is some correspondence between the bars but one can also see
notable differences. Whenever the black bar exceeds the gray bar
this means that the participant highly valued this rule and chose it
very frequently compared to the availability. A gray bar considerably
higher than a black bar shows that this rule was used to a consider-
able degree, but has been available even more than that: Compared
to the availability it has not been chosen that much. This can be
clearly illustrated with participants 06 and 32 (top right panels of
Figure 5.3). These participants applied the cell-complex rule in almost
a quarter of all their moves. However, this rule is applicable very of-
ten, and taking the availability into account shows that it was by far
not the most preferred rule for the participant. The three last-in-unit
rules are used with a similar frequency as cell-complex but they were
less often available. These participants seem to have a clear prefer-
ence for the last-in-unit rules over cell-complex, a fact that would not
be visible from raw label-counts alone.

Model 1: rules only (M1) There are seven rules and corresponding
weights to estimate for each participant. All participants have one
to four favorite rules with large weights (the average is 3), all other
rules get small weights with less than 4% of the overall mass. Most
participants get large weights for the three last-in-unit rules.
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Model 2: Rules and cell aspects (M2) The additional aspects (3 loca-
tion, 1 digit) generally get weights that are much smaller than the
most favored rules, but bigger than the least favored rules. Only
three participants (a subset of the five who have very different rule-
weights in different models as mentioned above) have single cell as-
pects (box or digit) that are bigger than the biggest rule aspects. The
little overall mass of weight put on these aspects for the other 29 par-
ticipants suggests that the applicable rules are much more important
for the selection of the next move than the cell aspects. Still, adding
these aspects generally improved the fit (see model comparison be-
low).

Model 3: Full model with serial dependencies (M3) The cell aspects vary
more between the M2 model and the M3 model than the rule aspects.
Even when multiplying the cell aspects by the boost factor, all but the
three participants mentioned above have larger weights for the rules
than for the cell aspects.

For M3 the boost parameter has a value between 2 and 10 for all
participants, the mean is 5.1 (SD=2.4). This confirms that strong se-
rial dependencies are present in all our participants. When a specific
row is five times more likely to be picked, this significantly influ-
ences the predictions of the model. Even for a participant with low
row-focus in general, the most recent row will more likely be picked
than any other row, given that the same rules are applicable in them.
Specifically, a boost value of 5 means that when two options are equal
in all respects except for whether they are in the same row that was
filled by the previous move or in another row, the one in the same
row will be picked in 5 out of 6 cases (83%). This is because in EBA
only the aspects that differ between two options matter for the choice
probability. And when the weight u of one of the row-aspects is mul-
tiplied by a boost factor of b = 5, that means the probability that the
corresponding item will be picked is

P(item in boosted row) =
bu

bu + u
=

b
b + 1

. (5.7)

5.3.4 Model comparisons

We performed five-fold cross-validation to test which model per-
forms best and to ensure they do not overfit the data. The data of
each participant was randomly split into five parts. Each part acted
as the test set once while the model was trained on the other 4/5 of
the data. The models are evaluated based on the mean log-likelihood
of the test sets. In order to be able to judge the absolute values of
the log-likelihood we also implemented a baseline model. It assigns
the probability of 1/|A| to each option in context A for each choice
situation. Compared to this baseline, all three models improve the
fit immensely for all participants. M2 is better than the simple M1

model for 24 of the 32 participants. This proportion is bigger than
what we would expect if there was no systematic difference in fit.
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According to a sign-test this difference is unlikely to occur by chance
(p = 0.0035). For all participants the full M3 model fits best. This
result is very unlikely to occur by chance (p = 0.532 ≈ 2.3× 10−10)

We report the cross-validated average negative log2 likelihood for
each participant and model in Table 5.2. We use base 2 instead of the
natural logarithm because it is easier to interpret. It can be thought
of as bits of information for each decision and conveys the number of
options per trial the model guessed between. The baseline of about
3.8 corresponds nicely to the roughly 15 options per trial on average
(23.83 = 14.2). If a model reduces this number by 1 it means that
the effective choice set from which to guess was reduced to half the
original size.

When averaging over all participants the difference in the log2

likelihood per move between the simplest M1 and the M2 model
is 0.033, which sums to 20.196 for the entire experiment (0.033 ×
612 moves = 20.196), which in turn means, that the data are 220 =

1, 048, 576 times more likely under the more complex model. The
difference between the M2 and the M3 model is even bigger: 0.071
per trial or 43.452 for the entire experiment, meaning the data are 243

times more likely under M3 than under M2.
The three models described above are nested: when setting some

parameters to zero the more complex ones could describe and pre-
dict the exact same patterns of data as the simpler ones. Hence,
likelihood-ratio tests can also be used for model comparisons. Like-
lihood-ratio tests and the Bayesian information criterion (BIC) largely
confirmed the results we got via cross-validation. Likelihood ratio
tests had the exact same numbers as the cross validation (for 24 out
of 32 participants, M2 is better than M1, for all 32 participants the
M3 model is best). The BIC is a bit more critical in the comparison
of the M2 model to M1. Only for 18 participants the more complex
M2 model has a better BIC value than the simpler M1 model. This
is a ratio that could easily be due to chance (p = 0.2983 according to
a sign test). In the comparison of the M3 model to the others, BIC
agrees with the other tests, the M3 model has the best BIC value for
all participants.

Even the best fit of the most predictable participant is only at 1.55

bits per trial on average, which corresponds to guessing from a bit
under 3 options. On average the M3 model has 2.55 bits per trial,
which corresponds to guessing from about 5.8 options. Of course
there are many situations when the model assigns a high probability
of 80% or more to the actually selected move. On the other hand,
at the beginning of a puzzle for example, there is bigger uncertainty
in the model. Participants with the worst overall fits often placed
the highlights in a way that makes exact labeling impossible. When
they have many digit-? labels for example, the fits cannot be good
because the model cannot learn which basis unit should be used.
See also subsection 5.3.6 for a discussion of the (in-)consistency of
behavior of different participants.
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M1 M2 M3 baseline

01 2.785 2.738 2.554 3.832

02 2.932 2.906 2.775 3.885

03 2.416 2.361 2.285 3.805

04 2.960 2.968 2.886 3.808

05 2.780 2.763 2.734 3.876

06 2.113 2.108 2.062 3.868

07 2.605 2.576 2.525 3.859

08 2.705 2.641 2.603 3.811

09 2.586 2.563 2.477 3.833

10 2.620 2.593 2.584 3.826

11 2.622 2.608 2.552 3.840

12 2.750 2.708 2.698 3.867

13 1.618 1.601 1.554 3.801

14 3.032 3.031 2.952 3.795

15 3.688 3.582 3.449 3.896

16 2.425 2.437 2.369 3.794

17 2.807 2.797 2.728 3.825

18 3.410 3.331 3.204 3.917

19 2.250 2.224 2.089 3.795

20 2.907 2.917 2.862 3.763

21 2.482 2.214 2.068 3.941

22 2.540 2.555 2.528 3.808

23 2.618 2.556 2.540 3.856

24 3.479 3.484 3.445 3.816

25 2.235 2.222 2.138 3.823

26 2.411 2.339 2.308 3.856

27 2.819 2.841 2.806 3.836

28 2.408 2.388 2.305 3.779

29 2.634 2.592 2.486 3.821

30 2.850 2.851 2.827 3.836

31 2.454 2.404 2.305 3.835

32 2.049 2.052 1.966 3.865

mean 2.656 2.623 2.552 3.836

Table 5.2: Average negative
log2 likelihood per move for
the three different models as
found by cross-validation to-
gether with the baseline model.
The best model for each partic-
ipant is printed in bold. For
the entire experiment the log-
likelihood is 612 times bigger,
as there were that many filling
events per participant.

5.3.5 Clustering of participants

Even though each participant has their unique profile of best fitting
weights, some seem to have quite similar preferences for rules and
units. For a more formal assessment of similarity, we clustered the
participants with k-means (we used the algorithm provided by scikit-
learn 1.3.0 (Pedregosa et al., 2011)). We can base the clustering on
the weights of each of the three models. We decided to use the best-
fitting M3 model as the basis for clustering. A good number of clus-
ters is four for our group of participants. With more clusters, some
clusters contain only a single participant. We repeatedly started the
clustering with different random seeds. The best-fitting partition for
four clusters has the following four clusters:
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• Cluster 1, 13 participants

• Cluster 2, 11 participants

• Cluster 3, 5 participants

• Cluster 4, 3 participants

In Figure 5.3, two exemplary members of each cluster are shown.
About 40% of our participants are in cluster 1. These participants
have a strong preference for the three last-in-unit rules. They use
other rules when they have to, but none of them gets a strong weight.
Participants from the next biggest cluster 2 also have a preference for
the three last-in-unit rules, but additionally they clearly prefer digit-
box over the other alternatives. Members of cluster 3 prefer to use
the three last-in-unit rules, too. When these cannot be applied, they
resort to cell-complex rules, instead of any of the digit-based ones. The
last and smallest cluster (only 3 participants) is most unique: these
participants are very digit- and box-based in their approach. The two
rules they apply the most are last-in-box and digit-box. They do not
use any other rule at all.

Figure 5.3: All participants
were clustered based on the
weights of the M3 model. Rep-
resentative participants of each
cluster are depicted. Model
weights (black bars) and rule
frequencies (light gray bars) are
plotted side by side for compar-
ison. The bars to the right of
the dividing line represent ad-
ditional aspects that do not cor-
respond to rules.

5.3.6 Consistency of behavior in similar situations

As mentioned in the methods section, we presented six isomorphs
of ten different seed puzzles to each participant. They thus saw six
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logically equivalent puzzles of each base puzzle during the experi-
ment. This enables us to assess the degree of consistency of behavior
in similar situations for each participant. Some participants with a
few very specific rule preferences will nearly always choose the the
same action in a similar situation. Others have much more variable
or flexible behavior and behave differently each time they encounter
a certain situation. We can compare a participant’s behavior to the
traces generated by the model. When we limit the analysis to the first
few moves per puzzle, it is even possible to exhaustively generate all
possible start sequences and calculate their likelihoods according to
the model. Generally speaking, the participants with the best fits in
Table 5.2 are the more deterministic participants.

A participant with one of the worse fits is participant 02. They are
variable in how they start this particular puzzle, two times they use
a clearly cell-based start, the other four times a digit-based start (see
Figure 5.4). Follow-up moves most often stay in the same unit, but
whether row or box are preferred to stay in is unclear since both are
used. In one puzzle participant 02 follows up on the digit instead
and fills in all instances of 1 first. An additional difficulty for the
model is that many of the digit-based labels are under-specified, it
remains unclear which unit was the base for the deduction and thus
the model has to work with more unspecific data. The very flexible
behavior is reflected in the model, too. When scoring all possible
first three moves in the puzzle, the 40 most probable moves add
up to only 70% of probability mass. Many starting sequences are
possible according to the model, but none are very salient or likely.

A much more predictable participant is participant 32. They al-
ways start with a complex cell-based reasoning step and generally
seem to prefer to stay in the same unit and follow up with only-value
rules (see Figure 5.5). According to the model the 40 most probable
puzzle starts can account for more than 90% of the probability mass.

5.4 Discussion

In this work we used 4-by-4 Sudokus to study probabilistic rule selec-
tion in humans. At each moment in the puzzle the participants have
on average 15.52 different cell-rule combinations to choose from.
While we do not think that they are explicitly aware of all these op-
tions, choice models are still a very good tool to describe the statisti-
cal preferences for specific options each participant has. We showed
that choice models provide a compact and quantitative description
of the statistical regularities in each participant’s behavior. We ex-
pect this form of analysis to be helpful for other discretely labeled
data, too. It contains much more nuanced information as compared
to simple counts of labels (as used in standard protocol analysis).
The high-level quantitative description of preferences of each partic-
ipant also allowed us to further investigate another influence on the
selection of a move at each moment: the dependence on the previous
move. We could quantify how strongly participants preferred to stay
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within the same unit for their next move.

5.4.1 The benefits of externalizing thinking

One important aspect that enabled the statistical modeling done in
this article is improved data collection. With the interface we devel-
oped we could collect data in an online experiment and label each
move automatically. Similar to research on decision making (Johnson
et al., 1989; Rieskamp and Otto, 2006) or planning (Callaway et al.,
2021), we relied on externalization of the reasoning process to under-
stand the actions of our participants better and gain detailed insights
without requiring think-aloud protocols. We developed an interface
in which participants not only filled the 4-by-4 Sudokus but also in-
dicated which cells were relevant for each inference. They did so
by highlighting these relevant cells by clicking on them. The high-
lights allowed us to clearly assign a rule label to 89% of all moves.
Knowing only which cell was filled at each moment would not have
been enough. On average 4.39 rules are applicable for each filled cell.
Only about 4% of all filling events took place in cells where only a
single rule was applicable and could have been labeled without the
highlights. We developed the interface with the highlighting of rele-
vant cells after our experience from a previous study (see section 2.2)
that relied on think-aloud protocols for labeling. It would have been
a lot of work to transcribe and hand-label this amount of data from
think-aloud protocols. While think-aloud protocols are immensely
useful in the early stages of a study on problem solving, it is impor-
tant that research on problem solving moves beyond the traditional
analysis of the idiosyncratic behavior of single participants. With the
new paradigm we recorded more than 4 times as much data as in the
think-aloud study and still reached results much faster. Our adapta-
tion of the Sudoku task might serve as an example for other problem
solving tasks.

5.4.2 Choice models for problem solving traces

As we expected, the Sudoku data clearly showed that the raw fre-
quency of rule application can be misleading with respect to the rel-
ative importance of a rule for a participant. This mismatch is caused
by the uneven distribution of rule applicability. Some rules can be
applied in several places for most moves, others only in one place ev-
ery now and then. We are interested in the conditional choice proba-
bilities of rules given the context. But most contexts repeat not nearly
often enough in the course of the experiment to count the choices
in each context separately (on average every context comes up 3.5
times in our data). Here, we showed that choice models are excellent
high-level models to describe how participants select rules in given
contexts. These models take into account the context in which a rule
was applied but do not need repetitions of the exact same choice sit-
uation in order to estimate the rule weights. This makes it possible
to find a ranking among the rules and important aspects to describe
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each participants’ statistical preferences and predict choices in novel
contexts. Importantly, a fixed order for rule preference—as Newell
and Simon (1972) used in their analyses—cannot match participants’
behavior fully, because they usually do not behave deterministically.
A probabilistic ranking of the rules is therefore more appropriate.
While production systems can easily incorporate probabilistic rule
selection (and often do, e.g., in ACT-R), the rule weights are usually
not directly estimated from data. Choice modeling provides a sound
framework for doing so. We showed that simple BTL-choice models
are well suited to model the preferences for the different rules of our
participants.

The rather high level nature of our model made it possible to
model another factor that influences the choice of the next move
besides the preferences for the different rules, namely the depen-
dence on the previous move. We used an EBA model to integrate the
influence of several aspects on the choice of the participant. Choice
options were cell-rule combinations, where each cell was represented
by the aspects row, column, box, and digit. These cell aspects could
be boosted, in case they were identical to the previous move. When
fitting this model for each participant, we found that the rules are
much more important than the cell aspects for the majority of our
participants. As rules were often applicable in several places, the cell
aspects were still influential: they provide disambiguation between
several instances of the same rule. The boost factor, which can be
interpreted as an attentional focus, makes sure that an option that
shares a unit with the previous move (say it is in the same row) is
more likely to be picked than another cell where the same rule can be
applied. We found that this attentional focus increased the fit of the
model significantly for each of our participants and that its strength
differs between participants.

5.4.3 Clustering of participants

It is true that different participants approach problem solving tasks
in different manners. Nonetheless, it is desirable to also find com-
mon elements to describe their actions. The compact representa-
tion of their preferences via weights for a limited number of aspects
makes it possible to compare the profiles of participants and find
marked similarities as well as differences. It became clear that some
participants behaved similarly. In a cluster analysis we found four
clusters in which the participants can be grouped. Finding not only
the inter-individual differences but also similarities among groups
of participants was possible only because we had a sufficient num-
ber of participants. The fact that we were able to process the data
with scripts with not much additional processing time per partici-
pant made it possible to go beyond the usually small sample size in
problem solving research.
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5.4.4 Limitations and outlook

Choice models can capture statistical regularities in the rules partic-
ipants apply in a problem solving task. They are, however, not a
cognitively plausible model for how participants actually go about
selecting cells and rules for a move. The options in the choice mod-
els consist of all the cells that can currently be filled. However, the
participants cannot know which cell-rule combinations will or will
not work before actually trying them. They do not explicitly repre-
sent the complete set of options and then choose from it. Instead
they have to search for cell-rule combinations that leads to a unique
answer. It is likely that participants use heuristics, like looking at
units with more filled cells first. In doing so, they will sometimes
also try cell-rule combinations that do not lead to an entry. These
failures, unfortunately, leave no trace in the observed choices (they
will prolong response times though). The statistical regularities that
we observe in the data are a result of this partially unobservable
heuristic search process. It is remarkable that even without speci-
fying these details of the cognitive process, we can still model the
statistical regularities in the behavior reasonably well. In fact, we
believe that the statistical analyses we presented here will help us to
better understand the underlying cognitive processes. For example,
we have seen that the statistical preference for a rule has to be dis-
entangled from the raw frequency that it was used. Also, we could
see that participants’ preferences for rules come in clusters and these
clusters are likely to represent different stable strategies for solving
4-by-4 Sudokus. Future work will try and the extend the EBA model
to include search heuristics and learning while keeping the model
simple enough to be fit quantitatively to empirical data.
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(a) First moves of participant 02 (b) Model of participant 02

Figure 5.4: A participant with very variable behavior: participant 02. (a) The first three moves in all
isomorphs of puzzles ‘h’ of participant 02. The isomorphs are transformed such that they all look the
same here. Highlights as clicked by the participant in gray. The newly filled digit is printed in green. The
titles of the subplots give the label of the move. (b) The six most probable starts of the puzzle according
to the M3 model of participant 02. The probability of the entire sequence is on the left, the probability of
each individual move in the title of the subplots.
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(a) First moves of participant 32 (b) Model of participant 32

Figure 5.5: A participant with more predictable behavior: participant 32. (a) The first three moves in all
isomorphs of puzzles ‘h’ of participant 32. The isomorphs are transformed such that they all look the
same here. Highlights as clicked by the participant in gray. The newly filled digit is printed in green. The
titles of the subplots give the label of the move. (b) The six most probable starts of the puzzle according
to the M3 model of participant 32. The probability of the entire sequence is on the left, the probability of
each individual move in the title of the subplots.





Chapter 6

Discussion and outlook

Throughout this thesis we have used a wide array of methods to
study the behavior of people while they solve digit-placement puz-
zles. We believe that in order to make progress in research within the
domain of higher cognition in general, it is necessary to adopt a ver-
satile set of tools and a mix of qualitative and quantitative data. To
get a general understanding of the domain, we started with informal
introspection (Jäkel and Schreiber, 2013), moving on to think-aloud
studies, and then to response-time experiments, we developed more
and more detailed models of solution tactics for the task. From the
first models, which were relatively abstract production rules for dif-
ferent filling tactics in chapter 2, we progressed to more detailed
process models of some of the tactics in chapter 3, which we fit to
individual response times in chapter 4. In chapter 5 we increased
the time frame our models could describe: By using choice models
to select productions, we moved from modeling single filling events
to filling the entire puzzle.

In chapter 2 we reported the results of several think-aloud stud-
ies. Even though it is a labor-intensive research method and further-
more does not lead to results which are readily usable as the basis
for quantitative model fitting, it has an important part to play in re-
search on higher cognition. We found several filling tactics that were
relatively similar across different puzzles. All our participants were
able to find simple tactics for filling the puzzles without any explicit
instructions on how to do so. They displayed relatively stable prefer-
ences for specific filling tactics, with more experienced players using
different tactics than inexperienced ones. Without think-aloud proto-
cols, we would probably have overlooked the only-digit-missing tactic,
as we did not anticipate it. Behaviorally it could have been last-in-unit
as well, but the utterances accompanying the filling events clearly
showed a different reasoning tactic. Problem solving approaches,
such as an exploration of different problem spaces, as participant S8

in Newell and Simon (1972, chapter 7) did, can only be observed
in relatively unconstrained experiments with an open and rich data
source such as think-aloud protocols. Whenever we are interested
in processes that have a deliberate and conscious component, think-
aloud studies have the potential to provide very rich information
about them. They allow for relatively open tasks, as the think-aloud
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protocols enables us to understand the unique interpretation of the
task a participant came up with.

A measure with even higher temporal resolution than think-aloud
protocols is eye-tracking. We employed it in addition to the think-
aloud and mouse-tracking recording in section 2.4. For us, however,
the data from the eye-tracker was not as helpful for the explorative
analyses than the other two in combination. The mouse-tracking
was well aligned with the utterances in the think-aloud protocol and
helped to disambiguate the referents of the utterances. We think
that eye-tracking would be more informative with a better and more
detailed model of what participants probably do in the task. With
the process model we developed for the cell-based and the digit-
based trials in Sudoku puzzles, it would now be interesting to check
whether the saccades of people doing the task fit the patterns pre-
dicted by the model. All in all, we think eye-tracking can be a valu-
able source of information, but for a task such as ours, it is better
suited with good models of the solution tactics, instead of during
the first exploration phase.

When one has acquired a good overview of possible tactics partic-
ipants might employ in a given task, it is reasonable to move on to
more controlled experiments in order to find out specific details. It is
important to acknowledge the influence of the scaffolding provided
by a more controlled experiment. If there is only one specific way in
which a participant can answer, they will try to do so to the best of
their ability. However, this might not be the first answer that came to
their mind or the most natural way to solve the task for them. They
were solving the specific task posed by the experiment, which is not
necessarily the same as the “natural” one that was the inspiration for
the experiment. See for example Straub and Rothkopf (2022) for an
argument on why it makes sense to infer the costs participants have
and optimize, which might differ from the ones the experimenter sets
and expects. A good understanding of relatively “natural” behavior
of participants in a relatively unconstrained task environment, helps
the researcher to see the changes and limitations imposed by more
rigorous experimental control. It is important to keep these in mind
when generalizing the results of an experiment.

In the more controlled experiments in chapter 3, we disentangled
the effects of the number of required units (NRU) as well as required
tactic and the interaction with the task instruction. Already with
simple statistical tests on the response times we found significant in-
teraction effects. In combination with a process model, however, the
results could be interpreted in much more detail. We showed that
an increase in the NRU lead to longer response times, but no sig-
nificant difference in accuracy. The process model explains this one-
sided influence by showing that more processing steps are required
with higher numbers of required units, but the burden on working
memory does not increase, as the processes can take place in serial
order. The difference in response time between congruent cell-based
and digit-based trials is also explained by the process model: The



discussion and outlook 139

digit-based condition needs many fewer scans and can therefore be
answered more quickly.

The statistical model we developed to fit the process model’s steps
to the individual response time patterns of the participants allowed
us to deepen our understanding of the data even further (see chap-
ter 4). We generated parameter estimates for scan durations and
intercepts for each participant and could also estimate to which de-
gree they used each tactic. Estimating the tactic use for each partic-
ipant based solely on the response times was only possible with the
help of the process models which we developed from the insights
we gained from the analyses of the think-aloud protocols. As a pos-
sible next step it would be informative to conduct an eye-tracking
study to test whether the eye movements of participants confirm the
assumptions of the processing model. The elementary information
processing (EIP) regression model we developed in this chapter can
estimate the duration of processing steps even if they number of pro-
cessing steps on each trial is latent. The model is general and can be
applied to analyze response time data in light of a processing model
and return parameter estimates with a clear psychological interpre-
tation.

Another way in which we expanded our initial modeling was by
combining choice models with the production rules for filling sin-
gle cells (see chapter 5). In this way, we built a production system
which can fill a entire puzzle in similar ways as different partici-
pants do. In filling Sudoku puzzles, the exact same context rarely
repeats but choice models allowed us to generalize over different
contexts and estimate the preference weight of each participant for
each production. The probabilistic description of most likely choices
in each context are an adequate model for the variable behavior of
our participants. In order to collect enough data to fit such models,
we developed a novel experimental interface, in which participants
indicated which parts of the puzzle were relevant for finding the
value for the cell they filled in on each move. The filling events alone
are mostly ambiguous and do not reveal which reasoning tactic was
used to deduce the value. With the additional information, 89% of
the moves could be labeled automatically, reducing the time and ef-
fort of data preparation by orders of magnitude compared to hand-
labeling think-aloud protocols. In future work it could be interesting
to connect the two approaches (a detailed process model and a pro-
duction system) to build a more detailed production system. Such a
model would make more detailed predictions about response times
of individual participants for specific puzzles. However, further in-
vestigation would be needed to understand how these productions
are learned in the first place and how preferences for them arise over
time. Ideas about how to approach such questions are presented
in section 6.1. We observed in our experiments that performance
is not always perfect and errors can occur. More detailed models,
therefore, should also include the possibility of errors and not only
describe perfect execution of solution tactics. Introducing a limited
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working memory, for example, might be one way of accounting for
errors.

To sum up, we believe that a broad range of methodological ap-
proaches is necessary in order to make progress in problem solving
research. The work in this thesis is an exploration of possible exper-
imental designs as well as analysis tools and modeling approaches.
Their combination has great potential to further improve our under-
standing of general problem solving tactics.

6.1 Outlook: Aspects of learning

We propose digit-placement puzzles as an ideal domain to study
learning in problem solving on different levels. When telling novices
the rules of such a puzzle, they are quickly able to come up with sim-
ple solution tactics. In our own experiments with 4-by-4 Sudokus, all
participants solved their first puzzle within just a few minutes. In a
study by Lee et al. (2008), beginners managed to place on average
two to three digits in a complex 9-by-9 Sudoku within 15 minutes.
That means, when starting to work on a digit-placement puzzle, peo-
ple are translating the constraints into some form of executable rule
to find digits they can enter in the puzzle. Over the course of the ex-
periment a speedup could be observed in most of our experiments,
indicating a form of learning. The routine participants developed in
applying rules could be observed in the utterances in the think-aloud
protocols, too. The utterances got shorter and often explicitly indi-
cated routine actions by referring to repetition. Practice leading to
routine and faster execution is probably the form of learning that is
easiest to study in experiments.

It is also possible to continuously increase the difficulty of the
puzzles during an experimental session. We did so in the Straights
experiment in section 2.4, for example. In this case, learning is not
restricted to developing a routine, but participants are challenged to
find new and possibly more complex solution tactics in order to solve
the puzzles. Digit-placement puzzles offer a wide range of difficulty:
It is possible to devise puzzles that still pose a challenge to very
experienced players. It is also possible to introduce new constraints
in a puzzle like Sudoku, allowing to place fewer digits at the start.
New constraints require participants to find new tactics, integrating
already learned approaches with new knowledge to form new and
more complex tactics.

Sudoku in particular offers to study the performance of players
of different levels of experience. As it is such a popular puzzle, it
is not difficult to find participants who regularly solve Sudokus in
their spare time. It is thus possible to compare the performance and
tactics of different learning stages without having to train the experts
in the lab necessarily. Another option would be to give participants
practice tasks to do at home.

It is even possible to analyze data of people solving Sudokus with-
out conducting experiments: There are both large data sets (Pelánek,
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2011) and smaller, high quality ones by puzzle champions with con-
current commentary by the solvers, explaining their thought pro-
cesses (youtube.com/@CrackingTheCryptic).

6.1.1 Preference learning

Modeling learning in the domain of Sudoku and similar puzzles re-
quires the inclusion of several aspects. One such aspect is the de-
velopment of preferences for some tactics over others. Preferences
might arise through mechanisms of reinforcement learning (RL). In
RL an agent learns which actions to take in what state through re-
wards. It is formalized as a Markov decision process with states and
actions the agent can take. Depending on the action the agent takes,
the state changes to a new state. The transition to a new state can be
either deterministic or probabilistic. With trial and error the agent
learns in which states which actions likely lead to a high reward and
thus transitions from exploring the state space to exploiting known
paths to a reward. In Q-learning the agent learns a table of expected
rewards, one entry for each state-action pair. Replacing an explicitly
enumerated table of rewards with a deep neural network that ap-
proximates the value function has enabled RL to be applied to much
larger problems, for example learning to play Atari games from pixel
input and the score alone (Mnih et al., 2015).

In ACT-R a learning mechanism called utility learning (Anderson,
2007, chapter 4) is implemented which can give rise to preferences
for specific solution tactics. It is very similar to RL. A simplification
in ACT-R’s utility learning as compared to Q-learning is that utili-
ties are learned for productions (i.e., actions) instead of state-action
pairs. This assumes that actions (if they are applicable at all) always
have the same utility which is independent of the state of the prob-
lem (Brasoveanu and Dotlacil, 2021). With utility learning, an agent
will be more likely to repeat actions that lead to a favorable outcome
in the future.

If simple tactics are implemented in the language of ACT-R, each
of them would need several productions to fire in sequence before a
digit could be entered. In this case, the normal ACT-R utility learn-
ing mechanism could be applied out of the box. Paths leading to
an entry with fewer productions would be more strongly reinforced
than ones requiring more productions to fire. Here, we used more
macroscopic productions (see Code 5.1) which all lead directly to an
entry. In this sense, all productions are equally good and no basis
for preferring one over the other is given. It would be possible, how-
ever, to combine the EIP steps of chapter 4 with these productions.
The productions would then return a count of EIP steps each time
they were applied to a specific puzzle situation. The number of EIP
steps could then be used as basis for the temporal discounting factor,
leading to a preference of productions which need fewer EIP steps
over time. Unsuccessful attempts to apply a production to a specific
puzzle situation would need to lead to a negative utility update.

https://www.youtube.com/@CrackingTheCryptic
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Such RL mechanisms should give rise to preferences for groups
of productions that optimally play together. It would be interesting
to compare these preferences with the preference clusters we found
in chapter 5. RL might be a good explanation for how such prefer-
ences form and could provide additional explanations as to the likely
preconditions for different preference-patterns.

6.1.2 Chunking

Another aspect of learning concerns the sped-up and in some cases
automated execution of known procedures. Procedures which for a
beginner require conscious effort can often be carried out much faster
and without much thought by highly trained individuals. At least
some of it can be explained by chunking: growing building blocks of
perception, cognition, and action. Over time, events that often occur
together in the environment will be grouped and processed as single
unit instead of in individual parts. In the Towers of Hanoi puzzle,
for example, a participant developed the concept of moving an en-
tire pyramid of disks (Anzai and Simon, 1979). This chunk of actions
made planning of long-term goals for her much easier, as it lifted the
burden of enumerating the entire sequence of moves. And in chess,
masters are able to remember more pieces from meaningful posi-
tions (ones that actually occurred during a game) than from random
arrangements of chess pieces on a board, presumably also because
they can perceive some groups of pieces as unitary chunk (Chase and
Simon, 1973). Some common patterns in chess even have their own
names, like castled-King position or pawn chain. Such concepts help
in the game when the player recognizes a pattern: They might im-
mediately see some of the strengths and weaknesses of the position,
without having to consider each piece and its options in isolation.
Some chunks form in conscious effort, others arise automatically.
When solving a task together in collaboration, humans quickly in-
vent names to refer to recurring situations (Angerer and Schreiber,
2019). A name helps to refer to a complex concept and might also
help solidify and consolidate a chunk in the mind (Gentner, 2003). It
has already been shown for infants and young kids that labels help to
find commonalities between objects and understand more complex
concepts (Althaus and Plunkett, 2016; Gentner et al., 2021).

Procedural chunking is implemented in ACT-R as production com-
pilation (Anderson, 2007; Taatgen et al., 2006). When several pro-
ductions are activated in direct succession, a new production, com-
bining their effects can be created. An example for this might be
the addition of two numbers, say 2 and 5. There is a general pro-
duction which can take two variable digits as inputs and look up
their sum in long term memory. A second production can harvest
the returned answer from memory and output the answer. If these
two productions fire, a new, very specific production can be created,
which answers 7 immediately upon seeing the digits 2 and 5 in a
summing context. The utility of such a new production is initially
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very weak. Only if it is encountered very often will it become the
dominant production to use. As the compiled production does not
require a memory retrieval, it gives the answer much quicker than
the two productions. With a lot of practice the answer to the specific
combination of digits thus becomes automated. Of course, only sums
that have been encountered very often will be answered in such au-
tomated fashion, others have to be retrieved from memory and will
be answered more slowly.

Figure 6.1: A possible pat-
tern in Mini-Sudokus: Diago-
nals. Two digits of the same
kind are on the outer ends of
one diagonal, the other two
need to be on the inner ends of
the other diagonal.

Similar production compilation mechanisms could be used in Su-
doku models to create productions that are very specific to some
pattern on the board. See for example Figure 6.1 for a possible pat-
tern in a Mini-Sudoku. Every time the same digit appears in the two
opposing corners of the puzzle, the other two instances of the dig-
its have to appear on the other diagonal, but in the two inner most
cells. Another pattern might be called windmill, see Figure 6.2: if two
outer cells, one directly above and one directly below the middle bar
contain the same digit, the other two instances of the digit have to
appear on the outer periphery of the puzzle as well, directly right
and left of the vertical middle bar. Also in 9-by-9 Sudokus, there are
named patterns that regular players typically know (hidden pair, naked
pair, X-wing, swordfish. . . ). The deductions licensed by such patterns
could be made with a more general rule, but with a lot of practice
such patterns might become salient and lead to almost automated re-
sponses, lifting the burden of thinking through the reasoning behind
it again. Rules for such specific patterns can well be created by a
mechanism like ACT-R’s production compilation. In language mod-
eling, the trade-off between re-computation and storage of new rules
has been modeled with the help of a fragment grammar, a proba-
bilistic formalism that stores frequently co-occurring strings such as
idioms in their own building blocks (O’Donnell et al., 2009). Figure 6.2: A possible pat-

tern in Mini-Sudokus: Wind-
mill. Two digits of the same
kind are on just above and be-
low the horizontal middle bar
at the outer periphery of the
puzzle, the other two then need
to go right and left of the verti-
cal middle bar on the outer pe-
riphery as well.

Chunking might be a necessary precondition for participants to
find new and more complex solution tactics. By automating some
simple steps, it frees the participant from reasoning through simple
processes such that they have the free mental capacity to think of
new tactics. In a two-player game, more experienced players can
plan more steps in the future than novices do, which improves their
performance (van Opheusden et al., 2023). It was already remarked
by Roberts and Erdos (1993) that participants who struggle the most
with a task are the ones who do not have the resources to develop
new and maybe simpler solution tactics. Simple addition is a case
in point: When children learn to add single digits, they usually start
with counting tactics to do so (Siegler and Jenkins, 1989). Starting
with counting all numbers in the sum they progress to use more
efficient tactics and eventually have enough practice that they can
simply retrieve the answers to the most common questions. Retrieval
is much faster than counting and is very helpful when performing
more complex mathematical operations such as adding multi-digit
numbers with paper and pencil. However, children who count very
slowly and make many mistakes there, also are the ones who are
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least likely to develop retrieval tactics for simple addition problems,
presumably because of their slow counting (Hopkins and Lawson,
2006).

The causal link between the slow counting and problems to learn
new tactics for addition tasks is hard to establish in studies with
children because it interacts with many other factors. With a task
such as Sudoku it might be possible to study it in the lab: Enu-
merating all digits is a frequent sub-routine in order to find a digit
which is still allowed in a specific cell, for example. One could re-
place the digits with arbitrary other symbols without changing the
fundamental properties of the puzzle, as no numerical properties of
the digits play a role in a normal Sudoku puzzle. However, other
symbols would be more difficult to enumerate exhaustively for the
participants, slowing down this process. One could thus devise an
experiment in which the discovery and use of tactics is compared
between two groups: one with the conventional digits (easy and fast
enumeration) and one with arbitrary symbols (slow, effortful, and
error-prone enumeration). This would be a good test of the effect of
a slowed-down subroutine.

6.1.3 Learning new rules

The previous sections have dealt with preference learning on exist-
ing rules or efficiency gains through chunking existing productions.
But could it be possible to model how people learn fundamentally
new rules that go beyond already implemented procedures? Some
form of inductive learning is required here (Schmid and Kitzelmann,
2011).

One way in which humans learn new tactics or an entirely new
task is by demonstration: An expert solves the task while the novice
watches and then attempts to copy the behavior of the expert. Un-
derstanding the intentions of the expert and reasons for specific ac-
tions helps the learner to solve the task successfully. Reasonable
imitation usually involves some form of abstraction and analogous
reasoning, 14 months old infants can already translate a movement
to a different extremity instead of blindly copying the movement of
the adult (Gergely et al., 2002).

Program induction generalizes from a small set of demonstrations
to a general function that can work on new inputs (Gulwani, 2011;
Kitzelmann, 2008). There is also work that interleaves program in-
duction with building a more expressive language through abstract-
ing common induced structures and storing them as new building
blocks (Ellis et al., 2020). For learning new rules from examples we
probably have already collected an ideal data set: The data we col-
lected in chapter 5 does not only contain filling events, but all cells
that were relevant for the deduction are highlighted, too. We have
already labeled each entry in that data set with a rule from the set
found in previous think-aloud studies. It might be possible to fur-
ther cluster the moves with the same label to get even finer classes
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of rules to learn. In future work, this data set should be suited to
inductively learn the rules that describe the inference made in the
examples.

Humans, however, cannot only learn from demonstration, they
can also find new tactics on their own (Ericsson et al., 1980; Gray and
Lindstedt, 2017). Such strategy discovery is often a conscious effort,
marked by some form of meta-cognition, where the problem solver
observes their own tactic and tries to improve it (Jäkel and Schreiber,
2013). Analogy and abstraction might play a very important part in
finding new tactics in such cases and they are often considered a key
element of our intelligence (Gentner, 2003; Mitchell, 2021). In the
domain of Sudoku, the following are observations most beginners
likely make: The most simple analogy in the domain of Sudoku is
“rows are like columns” and any reasoning tactic that is applicable
to rows is similarly applicable to columns. For many cases boxes are
also equivalent to rows and columns and a possible abstraction over
these three elements is unit. A further insight could be that some-
times the union of two or three units can take the place of a single unit.
A more advanced abstraction could be that in some cases it is possi-
ble to reason on the basis of candidate digits in a similar way as with
known digits. Analogies and abstractions like these make it possi-
ble to reason about situations which would have seemed unsolvable
before.

Within-domain analogies and abstractions will probably go a long
way in explaining tactic learning in Sudoku. To explain problem
solving more generally, however, it will also be necessary to in-
clude analogies between different domains (Gick and Holyoak, 1980;
Mitchell, 2021). Whether analogical reasoning will suffice to explain
the learning of new rules in Sudoku is an empirical question that
remains to be tested.

6.2 Conclusion

The flexibility to choose suitable tactics for tackling a task is a core
human ability that can be observed in game-like settings. Flexibly
adapting to new objectives or taking new constraints into account is
an area in which humans still outperform artificial intelligence (AI)
approaches (Johnson et al., 2021; Lake et al., 2019). The paradigms
proposed in this work are well suited to study this ability. The qual-
itative insights gained from the think-aloud protocols were an im-
portant prerequisite for our quantitative modeling of participants’
behavior in follow-up experiments. We found that people are adept
at switching tactics on the fly when the task demands it. Method-
ologically, this work has been inspired by Newell and Simon (1972),
specifically by also studying individual problem solving traces and
the use of production systems. We have built on these methods
and combined them with tools of modern cognitive science, namely
choice models and hierarchical Bayesian models. Digit-placement
puzzles proved to be a rich experimental paradigm allowing us to
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study and model different aspects of tactic preferences and tactic se-
lection. There is great potential to advance our knowledge of human
problem solving, flexibility in tactic choice and learning of new tac-
tics with these methods and tasks.



Appendix A

Appendix for: Hierarchical Bayesian model

A.1 Posthoc parameter recovery study

As a sanity check we can test how well the model fits the parameters
for artificially generated data with known values. Of course, when
generating data from the model, Bayesian inference should be able
to re-discover the values from the generated data. Such a parameter
recovery study does not tell us about the model’s adequacy for real-
world data. For that aspect it is more useful to compare different
models, similar to our comparison of the two Sudoku models (Lee
et al., 2019, Appendix B).

When we generate data from our model we know the true values
of each parameter. We can then check where the true value is in the
posterior distribution. Intuitively, the best case would be if the true
value is very close to the mean of the distribution. Of course, also the
width of the posterior distribution should be well calibrated. More
specifically, the quantiles of where the true values fall within the
posterior distribution should follow a uniform distribution. Hence,
when one has many true values, one can calculate for each of them
the quantile within the corresponding posterior distribution of sam-
ples and check whether they are correctly distributed.

In order to quantify how many participants and trials per partic-
ipant are necessary in order to reach a specific size of highest den-
sity interval (HDI), one can simulate data of different sizes and fit
the model on them. Naturally, with more data the size of the HDI
shrinks. The numbers required to reach a desired size of course de-
pend on the model specification. It thus makes sense to run such
simulations with the specific model one wants to use for data anal-
ysis. To give an impression of possible results of such a study, we
show different combinations of participant number and trials per
participant for the experiment and model reported above (“EIP re-
gression with strategy selection”) in Table A.1. To generate the data
we set the six population parameters to approximately the means
found in the model for the actual experiment. We used ma = 1.5,
mb = 2.5, mθ = 3.5,sa = 1.3, sb = 3, and sθ = 3.

As expected, the size of the HDI shrinks with more data. Partic-
ipant parameters can be estimated more precisely with more trials
per participant, whereas population level parameters get more pre-
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cise estimates with an increasing number of participants. Depending
on which of these values one needs to a certain precision, one can
adapt the experimental design to reach the goal. One thing that be-
comes apparent in this simulation study is that the model has most
problems in finding precise values for the b parameter and its priors.
The sizes of the confidence intervals are much larger than for any of
the other parameters.

We only fit one simulated experiment per combination of partici-
pant and trial number, due to computation time. While the smallest
combination was fit in just 10 minutes, the largest ones needed sev-
eral days on our machine, the latent steps make computations very
slow. All the models are well calibrated. The true values fall evenly
within the quantiles of the posterior distribution. PP-plots showing
how closely the fitted distributions match the theoretical expectations
can be found at https://osf.io/rgh3j/.

Part. 10 50 150

Trials 30 150 450 30 150 450 30

ma 1.92 1.94 2.42 0.68 0.47 0.49 0.32

mb 5.57 5.61 3.66 5.97 2.90 3.44 2.52

mθ 4.04 3.29 3.83 1.82 1.93 2.27 1.17

sa 3.13 2.98 4.56 0.90 0.56 0.64 0.41

sb 56.90 101.33 75.37 53.22 16.77 17.14 17.53

sθ 8.83 5.54 6.76 2.67 3.12 3.99 1.90

a 0.59 0.36 0.16 0.86 0.34 0.23 0.67

b 5.58 4.29 1.32 10.27 3.95 3.42 6.58

θ 3.57 1.92 1.23 4.76 2.65 1.59 4.76

w 0.40 0.25 0.17 0.54 0.30 0.19 0.54

Table A.1: Sizes of highest den-
sity intervals for different num-
bers of participants and tri-
als for the EIP regression with
latent steps and strategy se-
lection. Experimental design
of the simulations was exactly
like in the reported experiment
above, only the number of par-
ticipants and trials per partici-
pant were varied.

https://osf.io/rgh3j/
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A.2 Linear regression as comparison

We can also implement the traditional linear regression as a hier-
archical Bayesian model. We do so to compare the results to the
EIP regression model on the data of children’s addition. We esti-
mate parameters for the mean (ai) and slope (bi) for each participant,
the variance is a population parameter in this model. We model
the participant parameters as draws from normal distributions. The
graphical model can be found in Figure A.1.

yij

µij

ai bi

σaµa σbµb

σy

xij

µa, µb ∼ Normal(0, 10)

σa, σb ∼ HalfCauchy(β = 5)

ai ∼ Normal(µa, σa)

bi ∼ Normal(µb, σb)

σy ∼ HalfCauchy(β = 5)

xij ← EIP step count

µij ← aixij + bi

yij ∼ Normal(µij , σy)

j trials

i participants

Figure A.1: Hierarchical linear
regression model for the count-
ing trials. The predicted mean
is determined by the parame-
ters ai and bi together with the
value of the min addend xij.

A.2.1 Results linear regression

mean sd HDI 2.5% HDI 97.5%

µa [s] 0.433 0.030 0.374 0.494

µb [s] 1.726 0.106 1.515 1.929

σa [s] 0.267 0.019 0.229 0.304

σb [s] 0.231 0.149 0.000 0.494

σy [s] 1.584 0.028 1.533 1.643

Table A.2: The parameters
found for the hierarchical lin-
ear regression. All values are in
seconds.

Again, we get parameters for each participant and hyper-parameter
distributions describing the group. Group parameters can be found
in Table A.2, the distribution of participant parameters is plotted in
Figure A.2. The regression line for a single, exemplary participant
can be seen in Figure A.3.
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Figure A.2: The distributions
of the participant parameters
for all participants for the two
models of min-counting. Each
line shows the posterior density
of values for the respective vari-
able for one participant. Top:
EIP regression model, bottom:
linear regression model. Note
how some distributions of the
variable a get credible values of
below zero in the linear regres-
sion model.

A.2.2 Comparing the results of the two models

The two models, EIP regression and standard linear regression, use
different distributions for the priors as well as the spread around
the predicted mean, so one would expect slightly different results.
An important difference is also that the EIP regression model fits a
variance parameter for each individual participant, whereas in the
linear regression model the variance parameter is shared by all par-
ticipants. However, generally the two models agree very well with
each other. In the group parameters, the means and standard devi-
ations of a and b are almost identical, only the standard deviation
for the b parameter is bigger in the EIP regression model than the
linear regression. The parameters per participant can be compared
easily. ai is the value of the slope, bi the value of the intercept for
each participant. Both models try to fit the mean of the participant
data. in Figure A.2 the densities of all participants for both param-
eters are depicted. The rough ranges of plausible parameters is the
same in both models, in the linear regression model some values be-
low zero are included, which is excluded by the specification of the
EIP regression model.

It is also possible to translate the parameters into regression lines
for single participants in both models. An example can be seen in
Figure A.3. The mean prediction is very similar in both models. The
biggest difference between the two models is how the variance of
the data points around the mean is handled. In the linear regression
model, steps of the same duration are added and variance is only
added via a normal distribution around the so calculated mean in
the end. In the EIP regression model on the other hand, we assume
that each step that contributes to the overall time is a random variable
that can have different duration. So a larger spread for bigger values
of the min addend (xij) is expected by the EIP regression model but
not by the linear regression model. In the linear regression model,
the standard deviation of the normal distribution is just one parame-
ter that is shared by all participants, in the EIP regression model the
precision parameter θi is fit for each participant i and can thus be
different across participants. An obvious advantage of the Gamma
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density is, that it will never place probability mass below zero. Sta-
tistically, using the estimated leave-one-out ELPD or cross valida-
tion ELPD, the EIP regression model has much better log-likelihood
(−2783.81 with standard error 49.85 for the EIP model and −3473.51
with standard error 115.58, the difference is thus 689.70 with a stan-
dard error of 91.34) Hence, while the EIP regression is theoretically
clearly superior, in this example, it does lead to conclusions that are
extremely similar to those of a standard linear regression analysis –
as performed in the study of Hopkins and Bayliss (2017), whose data
we analyzed here.

Figure A.3: Direct comparison
of the two model results. The
point estimates for the regres-
sion line is very similar in both
models. The biggest difference
is in the lower plot. In EIP re-
gression, the expected spread
around the mean is adjusted for
each participant individually. It
is not symmetric around the re-
gression line, but has a bigger
spread above than below. Ad-
ditionally, it increases with the
value of the min addend. In the
linear regression, we fit just a
single spread parameter for the
entire population, it is symmet-
ric around the regression line
and thus can include negative
response times in the expected
region.
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