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I. SIMULATION DETAILS

All simulations are performed using the GROMACS package version 5.0 [1] for decanol and version 4.6 [2] for
DPPC and are analyzed using our open-source software MAICoS (https://www.maicos-analysis.org/) based on
the MDAnalysis package [3]. For all systems 3d-periodic boundary conditions and a time step of 2 fs are employed.
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Lennard–Jones interactions are truncated at rc = 0.9 nm, for the electrostatic interactions the Particle Mesh Ewald
method [4] is employed with a real-space cut-off rc = 0.9 nm.

As explained in detail below, simulations of decanol bilayers are performed at a water number determined such that
the water chemical potential is equal to its value in bulk under standard conditions.. Simulations of DPPC bilayers
are carried out in two different ensembles. In the first simulation setup, which mimics the so-called osmotic-stress
ensemble that is used in many experiments, simulations are carried out at fixed water number and at a fixed normal
pressure Πosm = 1bar, here the hydration pressure Π is calculated from the measured chemical potential via the
Gibbs–Duhem equation as explained below. In a second set of DPPC-bilayer simulations, the applied pressure Π
is varied at fixed water number such that the water chemical potential is equal to its value in bulk under standard
conditions, these simulations are used for decomposing the pressure into its direct and indirect contributions Π = Πdir

+ Πind.

A. Decanol bilayer

For the decanol systems we simulate a bilayer consisting of two monolayers, each containing ofNl = 100 polar decanol
CH3(CH2)9OH molecules. The periodic system is filled with a varying number of Nw = 170 up to 1,160 SPC/E water
molecules [5]. Force-field parameters are based on GROMOS53A6 [6], where decanol hydroxyl groups are represented
in atomistic detail, CH2 and CH3 groups as united atoms. The Lennard–Jones repulsion between head group oxygens
is increased to reduce intra-surface hydrogen bonding [7]. To avoid slow reorientation events, we restrain all decanols
on the second CH2 group counting from the OH head group with force constants kx = ky = 500 kJ/(mol nm2) and

kz = 10 kJ/(mol nm2) and the terminal CH3 group with kx = ky = 5kJ/(mol nm2) on a centered rectangular lattice
with a lateral area per head group of A/Nl = 0.234 nm2 and decanol tilt angle of 30◦, where the distance between
opposing tails is chosen according to their equilibrium separation. Simulations are performed in the NwALzT ensemble
at constant volume V = ALz and the number of water molecules Nw is adjusted via thermodynamic extrapolation
to yield a constant chemical potential [8]. The extrapolation thus employs at least three sets of simulations at fixed
Lz with different water numbers Nw. We use 18 simulations along the free energy perturbation reaction coordinate
to obtain the chemical potential µ(Nw) using the MBAR method [9]. Each individual trajectory has a length of 100
ns, thus the total sampling time per data point in the pressure–distance curve for the decanol system is about 6 µs.

B. Simulation of DPPC bilayers in the gel and fluid phase using the Berger forcefield

For all DPPC simulation results shown in the main text we use the Berger lipid force field [10–12] and the SPC/E
water model [5]. The assisted freezing method [13] is used for the construction of fully hydrated membranes in the
Lβ (gel) phase at a temperature of T = 270K, controlled by the canonical velocity rescaling thermostat [14]. This
fully hydrated membrane consists of 2× 36 DPPC lipids hydrated by 40 water molecules per lipid. The structure is
equilibrated at T = 300K and afterwards gradually dehydrated by removing one water molecule per lipid at a time
and equilibration for 5 ns down to a hydration level of 3 waters per lipid molecule. All equilibration runs are performed
in the NΠT ensemble. To improve sampling, we use four different starting configurations, which are independently
dehydrated five times with different random seeds, giving 20 different systems per hydration level. For production
runs in the Lα fluid phase the temperature in the gel state is increased to 330 K, above the melting temperature of
DPPC membranes in experiment and in simulations [15–18].

An anisotropic pressure coupling is employed using the Berendsen barostat [11] with a time constant of τP = 2ps.
Each system is simulated for 5 ns, so the total simulation time is 100 ns per hydration level. In the osmotic ensemble,
the pressure is set to Πosm = 1bar and the chemical potential µosm is measured. From the 20 different systems per
hydration level the error of the chemical potential and thus the osmotic pressure is estimated, for which we perform
18 simulations along the free energy perturbation reaction coordinate. Prior to the production runs, fluid and gel
membranes at all hydration levels are equilibrated for at least 5 ns and production runs are performed over another
5 ns, thus the total simulation time for the pressure–distance curves of DPPC exceeds 60 µs. To decompose the total
interaction pressure into its direct and indirect parts as defined in the main manuscript, simulations in the hydrostatic
ensemble at extrapolated pressures Π are performed [19]. We explicitly verified that the resulting chemical potential
in this case equals the bulk water chemical potential.
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II. COMPARISON WITH DPPC SIMULATIONS USING THE CHARMM36UA FORCE FIELD

The Berger parameters [11] are widely used for molecular dynamics simulations of lipid bilayers, yet excellent alter-
natives are available that perform better when compared to experimental observables such as the glycerol backbone
structure [20]. In order to show that our results and conclusions are independent of the lipid forcefield and water
model employed, we exemplarily perform simulations of DPPC bilayers using the united atom lipid chain version of
CHARMM36 (C36-UA) [21] with the CHARMM version of the TIP3P water model [22]. We used the NAMD input
files provided by Claire Loison for the NMRLipid projects (https://zenodo.org/record/17004?ln=en) and con-
verted the topology using version 0.1.7 of the PyTopol script (https://github.com/resal81/PyTopol). Simulations
for the lipid system using C36-UA were performed using a force-switch function for the Lennard–Jones interaction at
1.0 nm, whereas the short-range cut-off for the Coulomb interaction was set to 1.2 nm. The long-range electrostatics
was computed using the Particle Mesh Ewald (PME) method [4]. The temperature in the C36-UA simulations was
set to 323 K. All other simulation parameters agree with the aforementioned setup for fluid DPPC using the Berger
forcefield. Simulations were performed using 5.1 of the GROMACS simulation package [1] and single point energies
were checked against NAMD version 2.10 [23].
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Figure S1. Simulation results of DPPC in the liquid phase using the C36-UA force field. (a) Area per lipid, A/Nl

as function of the water slab thickness dw. The simulation data for the two force-fields studied are compared to experimental
data by Lis et al. [24], Nagle [25] and Petrache et al. [26]. (b) Comparison of the obtained pressure–distance curves in the
osmotic stress ensemble for the two force-fields with experimental data from Refs. [24, 27, 28]. (c) Indirect simulation pressures
(symbols) and fits to Eq. (8) of the main text (lines), with the decay length λ fixed by fits to the orientation profiles (shown
in Fig. S2). As explained in the main text and below in Section IX, these simulations are performed at varying hydrostatic
pressures that are adjusted to yield water chemical potentials corresponding to the bulk value at standard conditions.

Figure S1 (a) and (b) compare the simulation data using the C36-UA forcefield to the results using the Berger
parameters, as employed in our analysis in the main text. The area per lipid, A/Nl in Fig. S1 (a) for C36-UA
agrees slightly better with experimental values. However, both force fields reproduce the experimental reduction of
lateral area upon dehydration and deviations are on the order of ≈ 5%. Strikingly, the pressure–distance curves for
the two force fields in Fig. S1 (b) agree quantitatively with each other and the experimental values. This is at first
surprising, as the indirect pressures in Fig. S1 (c) are significantly different both in amplitude and in decay length, but
it confirms, independently of the employed forcefield, that direct (which are due to electrostatic and Van der Waals
interactions between the bilayers) and indirect interactions (which are due to water-mediated forces) are well-balanced
in phospholipid simulations, as has been found previously [29].

The decay length for the Landau–Ginzburg pressure, Eq. (8) shown in Fig. S1 (c) by the solid lines, is obtained
from fits of the Landau–Ginzburg polarization profile Eq. (5) to the polarization profiles shown in Fig. S2 (a). The
obtained value λmz

of 0.40 nm for C36-UA is significantly larger than 0.27 nm obtained for Berger in the main
text. This difference is in fact expected considering the different water models: The bulk water dielectric constants
differ significantly, ε = 67 for SPC/E at 330 K and ε = 97 for the CHARMM TIP3P model at 323 K, which we
determined independently using the same simulation parameters as in the lipid system. As discussed in the main
text, the dielectric constant in confinement differs significantly from bulk. Additionally, the detailed partial charge
distribution in the head groups contributes significantly to the effective dielectric constant [30]. Thus, it is surprising
that although the indirect interactions are significantly different in the two force fields (Fig. S1 (c)), the total pressures
agree excellently (Fig. S1 (b)), which is due to the balance between water-mediated and direct, head group-head group
interactions.

The perpendicular polarization profiles mz(z) for C36-UA are shown in Fig. S2 (a) together with the fits of Eq. (5)
in the main text to the data. Overall, the agreement between the simulated polarization profiles and the Landau–

https://zenodo.org/record/17004?ln=en
https://github.com/resal81/PyTopol
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Figure S2. Polarization order parameter for liquid DPPC using the C36-UA simulation parameters. (a) Polar-
ization profiles at different surface separations. (b) Order parameter at the surface (symbols) and fit of Eq. (6) of the main
text to the simulation data (line). Data is obtained from simulations in the ensemble at fixed water chemical potential given
by the bulk value at standard conditions.

Ginzburg prediction is excellent, although the deviations close to the interface positions are more pronounced compared
to the Berger force-field results, which might be due to the complex atomistic head group derails in the case of C36-
UA. However, the surface value of the polarization shown in Fig. S2 (b) is well described by Eq. (6) of the main text,
corresponding to a constant surface-field boundary condition.

III. NON-LOCAL DENSITY-FUNCTIONAL THEORY FOR POLARIZABLE FLUIDS

Here we work out a few important properties of the non-local density-functional theory for polarizable fluids that
we need in order to connect the scalar order parameter that appears in Eq. (1) of the main text with the normal
component of the dielectric polarization. We write the electrostatic energy of the polarization-charge distribution
ρpol(r) of a polarizable fluid using the bare Coulomb interaction v(r) = 1/(4πε0|r|) as

Hpol =
1

2

∫
d3rd3r′ρpol(r)v(r− r′)ρpol(r

′)

=
1

2

∫
d3rd3r′∇imi(r)v(r− r′)∇jmj(r

′)

=
1

2

∫
d3q

(2π)3
m̃i(q)m̃j(−q)qiqj/(ε0q

2). (S1)

Note that image-charge or dielectric-boundary effects do not modify the Coulomb interaction between polarization
charges since polarization effects are explicitly accounted for. Throughout this derivation, we employ the Einstein
convention, according to which doubly appearing indices are summed over, and define Fourier transforms as m̃i(q) =∫
d3re−iq·rmi(r). In the derivation of Eq. (S1) we used the relationship between the polarization m(r) and the

polarization charge distribution, as described by the Poisson equation ρpol(r) = −∇imi(r) and inserted the Fourier
transform of the Coulomb interaction ṽ(q) = 1/(ε0q

2). The determinant of the matrix qiqj is zero; this signals a
singularity of a purely dipolar interaction model that can be regularized by addition of an isotropic, wave-vector-
dependent non-dipolar interaction δij f̃(q

2). This non-dipolar interaction on one hand regulates the variance of the
polarization, which reflects the fact that the molecular dipole moment is finite, on the other hand it accounts for the
presence of non-electrostatic interactions. The resulting interaction is a free energy, since f̃(q2) will in general be
temperature dependent, and can be written as

Fpol =
1

2

∫
d3q

(2π)3

[
m̃i(q)m̃j(−q)

g̃−1
ij (q)

2
− m̃i(q)h̃i(−q)

]
, (S2)

where the interaction kernel is given by

g̃−1
ij (q) = δij f̃(q2) +

qiqj
ε0q2

(S3)
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and we have added a generating field h̃i(−q) that will be used to calculate expectation values further below. The
matrix inverse of the interaction kernel is straightforwardly calculated as

g̃ij(q) =
δij

f̃(q2)
− qiqj

q2 f̃(q2)
[
1 + ε0 f̃(q2)

] , (S4)

the meaning of which will be interpreted further below. From Eq. (S4) it immediately transpires that the inverse

of g̃ij(q) only exists in the presence of a finite non-dipolar interaction f̃(q2). All expectation values follow from
the partition function Zpol =

∫
Dm(·) exp(−βFpol), the logarithm of which is, by completing the square, in real

space given by ln(Zpol) = β
∫
d3rd3r′hi(r)gij(r− r′)hj(r

′)/2. The mean polarization follows by taking a functional
derivative as

⟨mi(r)⟩ =
δlnZpol

βδhi(r)
=

∫
d3r′gij(r− r′)hj(r

′), (S5)

by which gij(r− r′) is recognized as the dielectric response function. In Fourier space it can be straightforwardly split
into its longitudinal and transverse parts according to g̃ij(q) = g̃Lij(q)+ g̃Tij(q) and which are defined by the properties

g̃Lkj(q) = qkqig̃ij(q) and qig̃
T
ij(q) = 0. They are explicitly given by

g̃Lij(q) =
ε0qiqj

q2
[
1 + ε0 f̃(q2)

] , (S6)

g̃Tij(q) =
δij − qiqj/q

2

f̃(q2)
. (S7)

The polarization cumulant correlation function follows as

Cij(r− r′) = ⟨mi(r)mj(r
′)⟩C =

δ2ln(Z)

β2δhi(r)δhj(r′)

= β−1gij(r− r′). (S8)

To obtain an expression for the bulk dielectric constant, we need to integrate Cij(r) over three-dimensional space,
which is subtle. To highlight the salient properties of polarization correlations, we integrate Cij(r) over the xy-plane
for polarizations that are perpendicular and parallel to that plane and obtain

C̃⊥(qz) = lim
qx,qy→0

C̃zz(q) = lim
qx,qy→0

g̃zz(q)/β

= lim
qx,qy→0

g̃Lzz(q)/β =
1

β
(
f̃(q2z) + ε−1

0

) , (S9)

C̃∥(qz) = lim
qx,qy→0

C̃xx(q) = lim
qx,qy→0

g̃xx(q)/β

= lim
qx,qy→0

g̃Txx(q)/β =
1

βf̃(q2z)
. (S10)

The two results are clearly different. We furthermore find that the perpendicular polarization correlations are solely
determined by the longitudinal susceptibility, while the parallel correlations are solely determined by the transverse
susceptibility. It transpires that the limit q → 0 depends on the order in which the components of q are sent to zero.
The isotropic polarization correlation follows from Eqs. (S9) and (S10) as

C̃iso(qz) = C̃⊥(qz) + 2C̃∥(qz) =
2 + 3ε0f̃(q

2
z)

βf̃(q2z)
(
ε0f̃(q2z) + 1

) . (S11)

Now the wave vector component qz can be sent to zero without complications to obtain the total polarization variance
as

⟨M2⟩C
V

= lim
qz→0

C̃iso(qz) =
2 + 3ε0f̃0

βf̃0

(
ε0f̃0 + 1

) , (S12)
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where we have introduced the limiting expression f̃0 = f̃(q2 → 0). According to the Kirkwood-Fröhlich formula [31],
the relative dielectric constant ε of an infinite system (as used in the present calculation but not in the simulations,
as is important to keep in mind) is related to the bulk polarization variance by

β⟨M2⟩C
3ε0V

=
(2ε+ 1) (ε− 1)

3ε
. (S13)

Comparing Eqs. (S12) and (S13), we obtain the relative dielectric constant as

ε = 1 +
1

ε0f̃0
. (S14)

Using the result in Eq. (S14), the perpendicular and parallel correlations Eqs. (S9) and (S10) satisfy in the zero
wave-vector limit the relations

lim
qz→0

βC̃⊥(qz)

ε0
= 1− 1/ε,

lim
qz→0

βC̃∥(qz)

ε0
= ε− 1 (S15)

and thus exhibit a subtle symmetry breaking, which again reflects that the zero-wave vector limit of the polarization
correlation function, C̃ij(q → 0), for infinite systems depends on the order in which that limit is taken. The relations
Eq. (S15) superficially resemble expressions used previously to extract perpendicular and parallel dielectric profiles
from simulations of inhomogeneous systems in planar confinement with periodic boundary conditions and metallic
embedding [30, 32]. In particular, the ratio of the parallel and perpendicular polarization fluctuations follows from
Eq. (S15) as

lim
qz→0

C̃∥(qz)

C̃⊥(qz)
= ε, (S16)

which shows that perpendicular polarization fluctuations are suppressed in comparison with parallel ones, in particular
in water where ε ≈ 80 [30, 32]. Note that this is not a confinement or boundary effect (there are no boundaries in the
present calculations), but rather a dipolar tensorial effect that is also present in bulk systems.

In order to associate the generating field h(r) with the electric field, we use the non-local linear response relation
Eq. (S5). In Fourier space, and using the result in Eq. (S4), we obtain for the perpendicular and parallel response in
the limit qx, qy → 0

⟨m̃z(qz)⟩
h̃z(qz)

=
ε0

ε0f̃(q2z) + 1
,

⟨m̃x(qz)⟩
h̃x(qz)

=
1

f̃(q2z)
. (S17)

The non-local linear dielectric response relation between the displacement field D(r) and the electric field E(r) reads

Di(r) = ε0

∫
d3r′εnlij(r− r′)Ej(r

′), (S18)

which defines the tensorial non-local dielectric function εnlij(r). Using the relation ε0E(r) = D(r) −m(r), we obtain
in Fourier space in the limit qx, qy → 0 the relations

⟨m̃z(qz)⟩
D̃z(qz)/ε0

= ε0
(
ε̃nlzz(qz)− 1

)
,

⟨m̃x(qz)⟩
Ẽx(qz)

= ε0
(
1− 1/ε̃nlxx(qz)

)
. (S19)

Comparison with Eq. (S17) shows that the wave-vector dependent dielectric function is given by

ε̃nlzz(qz) = ε̃nlxx(qz) = 1 +
1

ε0f̃(q2z)
(S20)
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and that h̃z(qz) = D̃z(qz)/ε0 and h̃x(qz) = Ẽx(qz). It thus turns out that the generating field h corresponds to
the electric field E or to the displacement field D, depending on the direction. In the limit qz → 0 the wave-vector
dependent dielectric function Eq. (S20) goes over to the bulk dielectric constant Eq. (S14). In this respect it is
important to note that in the time-independent case, Ex is independent of z, while in the absence of free charges,
Dz is independent of z. So in a simulation, one determines the wave-vector dependent dielectric response from the
polarization correlation function Eq. (S9) [33].

We finally note that in an isotropic system, there are two equivalent ways of calculating the isotropic correlation
function Ciso(r), defined in Eq. (S11), in real space, either by taking the trace of the tensorial polarization correlation
function,

Ciso(r) = Cxx(r) + Cyy(r) + Czz(r), (S21)

or by an angular average over one diagonal component of the tensorial polarization correlation function,

Ciso(r) = 3

∫
dΩ

4π
Czz(r). (S22)

IV. MAPPING BETWEEN LANDAU–GINZBURG MODEL
AND NON-LOCAL POLARIZATION THEORY

In the following, we show how to relate the parameters a and b of the one-dimensional Landau–Ginzburg model in
Eq. (1) of the main text to the parameters appearing in the augmented polarization free energy defined by Eqs. (S2)
and (S3). We consider the polarization in z-direction, mz(x, y, z), that is averaged over the lateral x and y directions,
so the relevant interaction kernel is given by

g̃−1
zz (qz) = lim

qx,qy→0
g̃−1
zz (q) =

1

ε0
+ f̃(q2z), (S23)

which after expansion of the function f̃(q2z) to first order according to f̃(q2z) ≃ f̃0 + q2z f̃1 results in

g̃−1
zz (qz) =

1

ε0
+ f̃0 + f̃1q

2
z . (S24)

Using the kernel in Eq. (S24) in conjunction with Eq. (S2) and comparing with Eq. (1), we obtain the parameters as

a =
β

2

(
1

ε0
+ f̃0

)
=

1

2C̃⊥(qz = 0)
=

βε

2ε0(ε− 1)

b =
βf1
2

, (S25)

where in the last expression for a we have used the result in Eq. (S14) for the relative bulk dielectric constant ε.
From Eq. (S25) we obtain a = 355 nm/e2, where we used εbulk = 70 for SPC/E water at 300 K [30, 34]. Note,

however, that Eq. (S14) only holds for a homogeneous bulk system; interfacial and confined systems are characterized
by anisotropic polarization fluctuations, where the perpendicular polarization fluctuations are significantly suppressed
for confined water while the perpendicular dielectric constant stays rather constant and decreases only for strong
confinement of about a nanometer [30, 35, 36]. For an interfacial system we can estimate a from the perpendicular

polarization fluctuations. Using that C̃⊥(qz = 0) = ⟨M2
z ⟩C/V we obtain from Eq. (S25) the relation

a =
1

2⟨M2
z ⟩C/V

. (S26)

V. LANDAU FREE ENERGY WITH GENERALIZED BOUNDARY CONDITIONS

We derive the solution of the Landau–Ginzburg model including surface fields h and g that couple linearly and
quadratically to the order parameter mz [37, 38]. The free energy in quadratic order is given by
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βFLG [mz(·)]
A

=

∫ d/2

−d/2

[
am2

z(z) + b (∇mz(z))
2
]
dz+h+mz

(
d

2

)
+ h−mz

(
−d

2

)
+g+m

2
z

(
d

2

)
+ g−m

2
z

(
−d

2

)
. (S27)

Performing the variation yields

βδFLG[mz(·)]/A
δmz(z̃)

= 2amz(z̃)− 2b∇2mz(z̃) + δ

(
d

2
− z̃

)[
h+ + 2b∇mz

(
d

2

)
+ 2g+mz

(
d

2

)]
+ δ

(
d

2
+ z̃

)[
h− − 2b∇

(
−d

2

)
+ 2g−mz

(
−d

2

)]
. (S28)

The antisymmetric solution for h+ = −h− ≡ h and g+ = +g− ≡ g of Eq. (S28) is given by [38]

mz(z) = −hλ

2b

sinh (z/λ)

cosh(d/2λ) + χ sinh (d/2λ)
, (S29)

where we have used λ = (b/a)1/2 and χ = gλ/b = g(ab)−1/2. The free energy then follows from Eq. (S27) as

βFLG

A
=

h2λ

2b

1

χ+ coth(d/2λ)
. (S30)

For χ → 0, Eq. (5) of the main text is recovered and the surface value mz0 = ±mz(±d/2) follows from the constant
coupling field h,

mz0 =
h

2aλ
tanh(d/2λ). (S31)

In this case, the free energy simplifies to

βFLG

A
=

h2λ

2b

1

coth(d/2λ)
, (S32)

as obtained by Cevc et al. [39]. We used the limiting case χ → 0 for our analysis in the main text because the
simulation results can be modeled rather well using Eq. (S31). The resulting pressure is repulsive and follows from
the derivative of Eq. (S32) as

Πind = − ∂

∂d

βFLG

A
=

h2

4b

1

cosh2(d/2λ)
, (S33)

where it is noted that the Landau–Ginzburg model does not account for direct membrane–membrane interactions and
thus only describes the indirect contribution to the pressure.

In the opposite limit for large χ, the surface stiffness g dominates. Expanding Eq. (S30) to second order results in

βFLG

A
≃ −h2λ

2b

[
1

χ
− coth (d/2λ)

χ2

]
(S34)

and the corresponding pressure follows as

Πind = − ∂

∂d

βFLG

A
≃ −am2

z0

1

sinh2(d/2λ)
, (S35)

which reveals attraction. Note that for d ≫ λ both expressions Eqs. (S33) and (S35) show an exponential decay,

Πind(d ≫ λ) ∼ ±e−d/λ, (S36)

however, the behavior at small separations is very different [40]: Whereas for χ → 0 the pressure saturates for fixed
mz0, it diverges for χ → ∞.

The solution for symmetric order parameters h+ = h− ≡ h and g+ = g− ≡ g follows as

mz(z) = −hλ

2b

cosh (z/λ)

cosh(d/2λ) + χ sinh (d/2λ)
(S37)
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with the free energy

βFLG

A
= −h2λ

2b

1

χ+ tanh(d/2λ)
. (S38)

In the limit χ → 0 the profile simplifies to

mz(z) = mz 0

cosh (z/λ)

cosh(d/2λ)
, (S39)

where the surface value of the order parameter is given by [40]

mz0 =
h

2aλ
coth(d/2λ) (S40)

and the resulting interaction pressure,

Πind = − ∂

∂d

βFLG

A
= −h2

4b

1

sinh2(d/2λ)
, (S41)

is attractive.
In the limit of large χ the free energy follows to second order as

βFLG

A
≃ −h2λ

2b

[
1

χ
− tanh (d/2λ)

χ2

]
(S42)

and the pressure as

Πind = − ∂

∂d

βFLG

A
= am2

z0

1

cosh2(d/2λ)
. (S43)

Thus, when mz(±d/2) = mz0 is constant, the pressure is repulsive.

VI. QUADRUPOLE AND OCTUPOLE ORDER-PARAMETER PROFILES

There are many order parameters that can be used to describe the water structure, here we discuss higher-order
electric multipole densities.

A. Octupole order parameter

We start with the zzz -component of the octupole density, ozzz(z) =
〈
Ozzz (z)ρ(z)

〉
, where, as defined in the main

text, the overline denotes the lateral average. Because of its symmetry, the zzz -component of the octupole density is
expected to exhibit an antisymmetric profile between identical surfaces, therefore it will make a repulsive contribution
to the total hydration pressure for the constant surface-field boundary condition. The octupole moment of molecule i
is defined in terms of the multipole expansion with l = 3 as Ozzz = (1/6)

∑
j(i) qj(zj−zi)

3, where as reference position

of a water molecule we chose the oxygen atom. Figure S3 shows the profiles ozzz(z) for decanol and DPPC in the
liquid and gel phase, together with the fits to Eq. (5) of the main text. The resulting values for the decay lengths are
λo = 0.15 nm for decanol and 0.30 and 0.28 nm for DPPC in the liquid and gel phase, respectively, and are close to
the values given for the polarization in table 1 of the main text. The surface values shown in Fig. S4 are also nicely
described by the Landau–Ginzburg prediction for constant surface-field boundary condition, Eq. (6) of the main text.

To obtain the expected amplitude of the indirect pressures due to the octupole ordering βΠ∞
ind,o = h2

o/
(
aoλ

2
o

)
as

defined in Eq. (8) of the main text, we need to independently determine the corresponding stiffness ao, note that λo is
already determined from the fits in Fig. S3 and the ratio ho/ao follows from the fits in Fig. S4 according to Eq. (6) of
the main text. For an interfacial system the expression corresponding to Eq. (S26) for the octupolar order parameter
is

ao =
1

2⟨O2

zzz⟩/V
, (S44)
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Figure S3. Octupole order-parameter profiles. Simulation data for (a) decanol bilayers, (b) DPPC bilayers in the liquid
Lα phase and (c) DPPC bilayers in the gel Lβ phase. The dashed vertical lines indicate the surface positions at ±d/2, the
corresponding values of d are given in the legends. Solid lines are fits according to Eq. (5) given in the main text, yielding
decay lengths λo = 0.15, 0.30 and 0.28 nm, respectively, for (a)-(c). Data is obtained from simulations in the constant water
chemical potential ensemble.
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Figure S4. Octupole order-parameter surface values: Data is shown for decanol (green), DPPC in the liquid state (blue)
and DPPC in the gel phase (orange). Lines denote fits to Eq. (6) given in the main text where the amplitudes h/a are fitted
to the simulation data while the corresponding correlation lengths λo are taken from the fits in Fig. S3.
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Figure S5. Landau–Ginzburg pressure due to water octupole ordering. The predicted repulsive indirect pressure
due to the distance-dependent perturbation of the water octupole order-parameter profile is obtained from the fits in Figs. S3
and S4 and the stiffness calculated according to Eq. (S44). As before, data is shown for decanol and DPPC in the Lα and Lβ

phases, respectively.



11

where V = Ad is the volume corresponding to the surface separation d between the surfaces of area A. In our
simulations we evaluate the instantaneous laterally averaged octupole moment of the confined water by summing over

the octupole moments of water molecule i according to Ozzz =
∫ L/2

−L/2
dz ozzz(z) =

∑Nw

i=1 Ozzz
(i).

The repulsive indirect pressures predicted by the Landau–Ginzburg model for the octupolar order parameter are
shown in Fig. S5. As expected from the good agreement of the order parameter profiles between Landau–Ginzburg
predictions and simulations, the shape of the pressure–distance curve is quite similar to the indirect pressures from
simulations reported in Fig. 3 of the main text, but the amplitudes are significantly smaller by a factor of about 102

(for decanol) and 104 (for DPPC), thus rendering the contribution of the one-dimensional, laterally averaged octupole
density orientation to the indirect pressure negligible.

B. Quadrupole order parameter

As an example for a symmetric order parameter we discuss the laterally averaged water quadrupole density qzz. In
analogy to the main text and the analysis of the octupole density discussed above, we show the quadrupole density
qzz(z) =

〈
(Qzz(z)−Qbulk)ρ(z)

〉
in Fig. S6, where we subtract the bulk value Qbulk = 1.411 · 10−3 e nm2. The

quadrupole density is even with respect to the z = 0 plane, as expected by symmetry. The quadrupole density profiles
shown in Fig. S6 can be fitted rather well to the symmetric expression Eq. (S39) derived for constant surface-field
boundary condition. The decay lengths obtained from these fits, λq = 0.08, 0.22 and 0.20 nm for the decanol bilayer,
DPPC in the fluid and DPPC in the gel phase, respectively, are similar to the values for the polarization given in
table 1 of the main text.
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Figure S6. Quadrupole order-parameter profiles. Simulation data for (a) decanol bilayers, (b) DPPC bilayers in the liquid
Lα phase and (c) DPPC bilayers in the gel Lβ phase. The dashed vertical lines indicate the surface positions at ±d/2, the
corresponding values of d are given in the legends. Solid lines are fits according to Eq. (S39) yielding decay lengths λq = 0.08,
0.22 and 0.20 nm, respectively, for (a)-(c). Data is obtained from simulations in the constant water chemical potential ensemble.

The surface values qzz0 obtained from the fits are shown in Fig. S7 and are satisfactorily described by Eq. (S40),
thus confirming the constant surface-field boundary condition also for the quadrupolar density.

Using the same methodology as outline in the previous section, we evaluate the pressure due to the quadrupole
ordering using the corresponding stiffness

aq =
1

2⟨Q2

zz⟩/V
. (S45)

Since the constant surface field boundary condition holds also for the quadrupole order parameter, the resulting
indirect pressures according to the Landau–Ginzburg model are attractive and shown in Fig. S8. The pressures for
decanol and DPPC in the liquid and gel phase are not only attractive, but also two to three orders of magnitude
smaller than the repulsion due to polarization in Fig. 3 of the main text and thus completely negligible.

Although there exist a large variety of other order parameters that can be used to describe the water structure, the
most intuitive candidates, such as the second Legendre polynomial of the water orientation or the water tetrahedrality,
are symmetric and obey the constant surface-field boundary condition [41], they thus lead to attraction and do not
serve to explain the hydration repulsion.
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Figure S7. Quadrupole order-parameter surface values: Data is shown for decanol (green), DPPC in the liquid state
(blue) and DPPC in the gel phase (orange). Lines denote fits of Eq. (S40) to the simulation data yielding the amplitudes h/a,
while the corresponding correlation lengths λq are taken from the fits in Fig. S6.

0.0 0.5 1.0 1.5 2.0

d [nm]

10−6

10−4

10−2

100

-Π
in

d
[b

ar
]

Decanol

DPPC fluid

DPPC gel

Figure S8. Landau–Ginzburg pressure due to water quadrupole ordering. The predicted attractive indirect pressure
due to the distance-dependent perturbation of the quadrupolar order-parameter profile is obtained from the fits in Figs. S6
and S7 and the stiffness calculated according to Eq. (S45). As before, data is shown for decanol and DPPC in the Lα and Lβ

phases, respectively.
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Figure S9. Definition of the separation d. (a) Mass density ρm of water (blue line) and the oxygen of the head group (green
line) for the decanol system at a water slab thickness dw = 1.5 nm. The structural separation ds is defined by the separation
between the mean position of the selected head group atoms, for decanol the oxygens and for DPPC the posphors. Vertical
blue lines indicate the Gibbs dividing surface positions, whose separation defines dw, the light blue shaded area denotes the
distance d, which follows from the difference between the structural separation ds at finite water content and its value at zero
water content Nw = 0 and extrapolated pressure, shown in (b). (c) Chemical structure of a decanol molecule and a DPPC
lipid molecule.
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VII. DISTANCE DEFINITION

In Fig. S9(a) we illustrate the determination of the distance d based on the structural separation ds between selected
atoms in the head group, for which we chose the oxygen for decanol and phosphor for DPPC. To define the head group
positions we evaluate the center of mass of the selected atoms. The equilibrium separation at zero water content d0s is
determined from simulations at 1 bar normal pressure in the absence of water, dw = 0 (c.f. Fig. 3 of the main text),
as illustrated in Fig. S9(b).
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Figure S10. Structural separation and lateral area. (a) Separation d based on the phosphorus distance for DPPC bilayers
as a function of the water slab thickness dw in the osmotic stress ensemble. The inset shows d as a function of the number
of waters per head group, Nw/Nl. (b) Lateral area A per lipid molecule Nl. For DPPC (symbols), the area is free to adjust
during the dehydration, whereas for decanol the lateral area in the simulations is fixed.

Figure S10(a) shows a comparison of the effective distance d, defined based on the separation between selected
atoms in the head group, versus the water slab thickness dw, based on the bulk water molecular volume vw according
to dw = Nwvw/A, for DPPC bilayer systems considered. We find for separations dw ≳ 1 nm a roughly linear relation
between d and dw, which for smaller separations turns into a non-linear relation (note that by definition d → 0
as dw → 0). This becomes clear when considering the inset of Fig. S10(a), which shows d as a function of the
number of waters per lipid molecule, Nw/Nl. The different slopes reflect the different areas per lipid molecule via
Nw/Nl = Adw/(vwNl), shown in Fig. S10(b). Whereas for simulations of DPPC the lateral area adjusts such that the
lateral pressure is 1 bar, which corresponds to the experimental situation in the osmotic stress ensemble [19], we fix
the area in the simulations of decanol independently of the hydration.
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Figure S11. Polarization density profiles using dw as surface position definition. (a) Decanol bilayers, (b) DPPC in
the disordered Lα and (c) DPPC in the ordered Lβ phase. Data is obtained from simulations in the constant water chemical
potential ensemble.

To justify our definition of d we show in Fig. S11 the polarization profiles for the three systems where the water slab
thickness dw is used for the effective separation that enters the Landau–Ginzburg model. The corresponding surface
values m⊥0 obtained from fitting Eq. (5) of the main text to the simulation data in Fig. S11 are shown in Fig. S12.
The qualitative behavior is similar to the case when d is used for the effective distance in Figs. 4 and 5 in the main
text, however, the quality of the fits is slightly worse.
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Figure S12. Polarization order-parameter surface values using dw as surface-position definition. The values m⊥0

are obtained from the fits of the polarization profiles, shown in Fig. S11, to Eq. (5) of the main text.

VIII. THERMODYNAMIC EXTRAPOLATION METHOD

The Gibbs–Duhem equation for bulk water, Nw dµ = −SdT + V dΠ, evaluated at constant temperature yields(
∂µ

∂Π

)
T

=
V

Nw
= vw(Π). (S46)

From Eq. (S46) the chemical potential difference between a water reservoir at chemical potential µosm and pressure
Πosm and water confined between two surfaces at (hydrostatic) interaction pressure Π follows as

∆µ = µ− µosm =

∫ Π

Πosm

vw(Π
′) dΠ′. (S47)

In osmotic stress experiments, as well as in the corresponding simulations, the pressure is fixed by atmospheric
conditions Πosm ≈ 1 bar. Using the fact that water is incompressible up to several kilobars [8] allows us to approximate
the relation using the constant bulk water volume vw as

∆Π = Π−Πosm =
∆µ

vw
+O(∆Π2). (S48)

While the bulk water volume can be measured directly in simulations, the accurate determination of chemical poten-
tials is more involved, see e.g. Ref. [42]. We decompose the chemical potential according to

µ(z) = kBT log ρ(z) + µLJ(z) + µC(z), (S49)

where the first term is the ideal gas contribution and ρ(z) is the water-mass density at position z. The other two
terms correspond to the excess Lennard-Jones (LJ) and Coulomb contributions, respectively. We make use of the fact
that a SPC/E water molecule consists of a single LJ interaction site only, therefore it is convenient to evaluate µLJ

via the Widom Test Particle Insertion method (TPI) [43]. The electrostatic chemical potential µC is then estimated
using the MBAR method [9]. Note that in thermodynamic equilibrium, the total chemical potential µ is independent
of the position z, therefore it can be evaluated at an arbitrary position, which we choose in the center of the water
slab between the surfaces.

IX. DECOMPOSITION OF THE INTERACTION PRESSURE

In order to relate the interaction pressure from simulations to the Landau–Ginzburg model, we decompose the
pressure into direct, i.e. bilayer-bilayer contributions, and an indirect part, which is mediated by water. To this
end we post-process the simulation trajectories by expanding the simulation box in z-direction such that on each
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(a) (b) (c)

Figure S13. Simulation setup for pressure decomposition into direct and indirect contributions, here illustrated
for decanol bilayers. (a) The total force acting on the upper monolayer is measured in a box that is expanded such that
periodic replica can be neglected. (b) To obtain the direct pressure the water is removed and the force on the upper monolayer
is measured. (c) To obtain the interaction pressure between water and the upper surface, the lower monolayer is removed.

side of the water slab, which is in the center of the box, there is only one monolayer, see Fig. S13 (a). This way
interactions with periodic images in z-direction are minimized, as Lennard-Jones interactions are zero beyond the
cut-off rc and electrostatic interactions, which to leading order are due to dipolar interactions, decay also relatively
quickly. We verified that the pseudo-2D summation of the electrostatic forces [44] does not change this decomposition,
as the monolayers are net neutral and the negligible dipole term does not change the pressure. To measure the direct
contribution, the water is removed from the slab, thus only the opposing monolayers, which interact with each other
across the free space, see Fig. S13 (b), are left. The force acting on one of the monolayers divided by the area gives the
direct contribution to the hydration pressure. In order to obtain the indirect contribution, one monolayer is removed,
and again the force acting on the remaining monolayer is calculated, see Fig. S13 (c). The obtained sum of the
pressures Π = Πind +Πdir determined from the force acting on the surfaces agrees perfectly with the values obtained
from the virial (circles in Fig. 3(a) of the main text), demonstrating that interactions between periodic neighbors
contribute negligibly to the hydration force; this validates our method used for the pressure decomposition.

X. MULTIPOLE EXPANSION OF THE POLARIZATION DENSITY AND FACTORIZED
DENSITY-WEIGHTED DIPOLE DENSITY

In Figure S14(a) we show the water polarization density and its multipole contributions up to the octupole moment
according to Eq. (10) of the main text for the decanol bilayer system at d = 1.35 nm and in Fig. S14(b) for DPPC in

the liquid state at d = 1.72 nm. In both cases the octupole term m
(3)
z (red line in Fig. S14(a) and (b)) is zero within the

numerical noise. Smoothing the octupole data via a gliding window average before taking the derivative, shown in the
inset of Fig. S14(a), does not yield profiles that agree well with the sinh-shape expected from the Landau–Ginzburg
model in Eq. (5) of the main text. As discussed there, the quadrupole contribution for decanol over-compensates

the dipole contribution, giving rise to different signs between m
(1)
z and mz. Contrary, for DPPC in Fig. S14(b) the

quadrupole contribution has the same sign as the dipole contribution and contributes only about 10% to the total
polarization.

It is worthy to note that the water density profile and the water dipolar orientation profile are broad distributions

that do not factorize. This is demonstrated in Fig. S14(c), where we plot the dipolar polarization density profilem
(1)
z (z)

(orange line), which in our analysis is computed as m
(1)
z (z) = P0 ⟨ρ(z) cos θ(z)⟩ from the average over the product of

the water density ρ and its orientation with respect to the membrane normal cos(θ), where P0 = 4.893 · 10−2 e nm
is the dipole moment of SPC/E water. The factorized expression, given by P0 ⟨ρ(z)⟩ ⟨cos θ(z)⟩ (blue line), is slightly
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Figure S14. Multipole expansion of the water polarization density. (a) Polarization density for the decanol system at
d = 1.35 nm. The total water polarization (blue) is split into contributions stemming from dipoles (orange), quadrupoles (green)
and octupoles (red), we find the octupole term to be almost negligible and dominated by numerical noise. Vertical black lines
indicate the surface positions defined by the separation d. The inset shows the smoothed contribution of the octupole moment
density. (b) Same as in (a) but for DPPC in the liquid state at d = 1.72 nm. (c) Average dipole density (orange line) and
density weighted dipole orientation (blue line) for decanol at d = 1.35 nm. The vertical black lines denote the corresponding
interface positions defined by the separation d, dashed green lines the position of the GDS corresponding to dw = 1.5 nm.

shifted, indicating that the distributions of density and orientation do not factorize. Interestingly, the product
P0 ⟨ρ(z)⟩ ⟨cosΘ(z)⟩ has its maximum at the position of the surface defined by the shifted structural distance d,
indicated as vertical solid black lines in Fig. S14(c).

XI. LATERALLY INHOMOGENEOUS ORDER-PARAMETER PROFILES

We so far have considered the Landau–Ginzburg model only for the laterally averaged polarization, which due to
isotropy corresponds to the polarization in z-direction mz(z). We here consider a more general vectorial polarization
profile

mi(r⃗) = mq
i (z) cos(q̄xx) +mz(z) (S50)

with i = x, y, z, that exhibits a modulation in x-direction characterized by the wave vector q̄x. The z-dependent
coefficientsmq

i (z) describe the modulated components of the polarization profile. The Fourier-transformed polarization
profile reads

m̃i(q⃗) = m̃q
i (qz)2πδ(qy)π [δ(qx − q̄x) + δ(qx + q̄x)]

+ m̃z(qz)2πδ(qx)2πδ(qy). (S51)

In analogy to Eq. (S2), the polarization free energy is given as

Fpol =
1

2

∫
d3q

(2π)3
m̃i(q)m̃j(−q)

[
δij f̃(q2) +

qiqj
ε0q2

]
. (S52)

To reduce the length of the following equations, we set mq
y(z) = 0, i.e., we assume that the polarization modulation has

vectorial components in the x and z directions only. Inserting Eq. (S51) into Eq. (S52) and performing the integrals
over qx and qy, we obtain

Fpol =
A

2

∫
dqz
2π

[
m̃(qz)m̃(−qz)

(
f̃(q2z) + ε−1

0

)
+ m̃q

z(qz)m̃
q
z(−qz)

(
f̃(q2z + q̄2x) +

q2z
ε0(q2z + q̄2x)

)
+m̃q

x(qz)m̃
q
x(−qz)

(
f̃(q2z + q̄2x) +

q̄2x
ε0(q2z + q̄2x)

)]
. (S53)

After expansion of the non-electrostatic interaction kernel f̃(q2z) to first order according to f̃(q2z) ≃ f̃0+q2z f̃1, as done
in Section IV, and back Fourier transformation, we obtain the Landau–Ginzburg model for a modulated polarization
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profile

βFLG

A
=

∫ d/2

−d/2

dz
[
am2

z(z) + b (∇mz(z))
2

+ az (m
q
z(z))

2
+ bz (∇mq

z(z))
2

+ax (m
q
x(z))

2
+ bx (∇mq

x(z))
2
]
, (S54)

which is a generalization of Eq. (1) in the main text. By comparison of Eq. (S53) and Eq. (S54) we obtain for

the Landau–Ginzburg parameters az = β(f̃0 + q̄2xf̃1)/2, bz = β(f̃1 + ε−1
0 q̄−2

x )/2, ax = β(ε−1
0 + f̃0 + q̄2xf̃1)/2, bx =

β(f̃1 − ε−1
0 q̄−2

x )/2, and where a and b are given in Eq. (S25). We conclude from this short calculation that there
is an entire spectrum of modulated order parameters which characterize the water polarization profile between two
surfaces, each characterized by a different modulation wave vector q̄x and described by a Landau–Ginzburg model with
parameters ax, az, bx, bz. Since these parameters depend on q̄x, also the decay length of the resulting hydration force
will depend on q̄x, which might explain the simulation finding in the main text that different surfaces produce different
decay lengths of the indirect hydration force. Importantly, each of these order parameters will make a contribution to
the hydration pressure, whose magnitude depends on the coupling strength to the surface, to be discussed in future
work.

XII. LATERAL DIPOLAR CORRELATIONS BETWEEN WATER MOLECULES

Here, we show that correlations of the lateral dipolar component between water molecules close to the two surfaces
are significant and might be of importance for the resulting interaction between polar surfaces. To this end we study
the decanol surface and assign water molecules to the decanols on the two opposing surfaces based on the shortest
distance to the first carbon of decanol counting from the OH-group. Then, we compute the correlation for the dipolar
Cartesian components α = x, y, z,

ϕα = ⟨Plow,αPup,α⟩ /P 2
0 , (S55)

where Plow and Pup are the dipole moments of the water molecules at opposing decanols at the lower and upper

surface, respectively, and P0 = 0.49 eÅ is the dipole moment of a SPC/E water molecule.
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Figure S15. Correlation of the parallel and perpendicular dipolar components between water molecules located on the lower
and upper decanol surfaces as defined by Eq. (S55).

Figure S15 shows the correlation of the dipole component perpendicular to the surfaces, ϕ⊥ = ϕz (blue squares),
and the correlation of dipole components parallel to the surfaces, ϕ∥ = 1

2 (ϕx + ϕy) (orange circles). As expected, the
perpendicular dipole components are anticorrelated at large separations, reflecting the fact that the dipole orientation
profile is antisymmetric. The correlation in fact turns positive in strong confinement at approximately Nw/Nl < 1.5
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waters per lipid (upper x-axis in Fig. S15). The parallel component ϕ∥, shown as orange circles in Fig. S15, is also
anticorrelated at large separations, which presumably is due to the preferred antiparallel orientation of the head
groups, which minimizes their electrostatic energy [8]. We observe that the lateral correlations, ϕ∥, are of similar
amplitude as the perpendicular correlations, ϕ⊥. As discussed in the main text and Section XI of the Supporting
Information, lateral orientational correlations of water molecules are also expected to contribute to the hydration
pressure and are missed when laterally averaging the water polarization profile.
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