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Zusammenfassung

Globalisierung und Migration erhöhen zunehmend den Bedarf an Mehrsprachigkeit, wel-
che bereits jetzt schon als eine der Schlüsselkompetenzen für Erfolg gilt. Institutionen
wie die Europäische Kommission und das Hochkommissariat der Vereinten Nationen für
Flüchtlinge projizieren bereits jetzt schon einen Zuwachs an Geflüchteten durch eine
Verschärfung des Klimawandels. Obgleich dieser Entwicklung gibt es einen beständigen ein
Mangel an Dolmetscher:innen. Gleichzeitig stellen verfügbare technische Lösungen, wie au-
tomatisierte Übersetzungsgeräte, keine adäquate Alternative dar, da diese—insbesondere
für selten gesprochene Sprachen und spezifische Domänen wie Jura oder Medizin—stark
hinter den Anforderungen zurückfallen. Ebenso schaffen Large Language Models (LLMs)
keine Abhilfe, da diese anfällig gegenüber Stereotypisierungen und sogenannten Halluzi-
nationen sind. Der konstante Mangel an qualifiziertem Lehrpersonal verschärft hierbei
umso mehr den Mangel an Sprachlernmöglichkeiten. Diese könnten zwar durch Intelligent
Tutoring Systems (ITS) bereichert werden, allerdings bedarf die Entwicklung solcher Sys-
teme die Überwindung von hohen rechtlichen und bürokratischen Hürden aufgrund stark
lizenzierter Daten und strengen Datenschutzauflagen. Dies macht Methoden notwendig,
die dazu in der Lage sind, bereits aus geringem Feedback zu lernen.

Das Ziel dieser Thesis ist die Schaffung neuer Sprachlernmöglichkeiten durch die Ent-
wicklung von Methoden, welche die Arbeit des Lehrpersonals erleichtern und neue
Möglichkeiten des Selbststudiums anregen. Unser Anwendungsgebiet sind sogenannte
C-Tests, Lückentexte, welche sich durch eindeutigere Lücken von den cloze tests ab-
grenzen. Hierfür werden im ersten Teil der Thesis neue Methoden zur automatischen
Generierung solcher C-Tests entwickelt. Im Gegensatz zu vergangenen Arbeiten zeichnen
sich unsere Methoden, welche auf Heuristiken und Constrained Optimization basieren,
dadurch aus, dass sie C-Tests mit einer bestimmten Zielschwierigkeit erstellen können.
Zudem garantiert unsere, auf Mixed-Integer-Programming basierende Methodik, dass
spezifische Vorgaben während der C-Test Generierung eingehalten werden.

Im zweiten Teil dieser Arbeit entwickeln wir ein neues Samplingverfahren, um ein C-Test
Selektionsmodell interaktiv zu trainieren. Hierfür verwenden wir Konzepte aus dem
Bereich des Active Learning, welches darauf abzielt, nur Instanzen zu annotieren, welche
optimal zum Modelltraining beitragen (Modell Objective). Auf den ersten Blick erscheint
Active Learning ungeeignet für Sprachlernszenarien, da dies zur Selektion von Instanzen
führt, die schwieriger zu annotieren sind—und dementsprechend auch unpassend für
Lernende sind (d.h. zu schwierig oder zu einfach). Im Gegensatz hierzu steht die Selektion
von C-Tests, welche mit großer Wahrscheinlichkeit für Lernende geeignet sind (User
Objective); da diese nicht sonderlich hilfreich für das Modelltraining sind. Wir zeigen
mit unserer Samplingstrategie, dass es möglich ist, Instanzen zu selektieren, welche beide
Objectives gleichzeitig maximieren, und dass diese gleichzeitige Maximierung zu zur
Selektion von C-Tests führt, die das Training und den Lernprozess optimieren; insgesamt
sogar besser als die Optimierung der jeweiligen Einzelobjectives.

Im letzten Teil der Thesis widmen wir uns der Erschließung von interaktiven Annotati-
onsszenarien als einen weiteren Anwendungsfall, welcher von der neuen Samplingstrategie
profitieren könnte. Hierfür entwickeln wir zuerst eine Applikation, die am Anwendungs-
fall einer Prozesslernfabrik aufzeigt, wie der Arbeitsalltag von Angestellten durch die
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interaktive Datenannotation erleichtert werden kann. Zuletzt zeigen wir, dass auch in
Annotationsstudien Lernprozesse zu finden sind, und entwickeln Annotation Curricula,
eine Methode zur Sortierung der annotierten Instanzen. Unsere Nutzungsstudie zeigt,
dass Annotation Curricula die für die Annotation benötigte Zeit signifikant reduzieren.
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Abstract

Increasing globalization and immigration is driving the importance of multi-lingual
proficiency. Being able to communicate across different languages is already one of
the key competencies that can define success—however, various institutions such as the
European Council or the United Nations High Commissioner for Refugees predict that this
trend will intensify even further with climate change and rising refugee numbers. Despite
these concerning developments, a shortage of proficient human translators remains, while
existing automated solutions fall far behind the requirements. For instance, current
translation tools have been shown to perform substantially worse in low-resource languages
or in specialized domains such as legal or medical—causing real-world harm through
unreflected use. Large language models (LLMs) still exhibit biases and hallucinations—
rendering them unreliable. At the same time, the continuous shortage of teachers leads
to an increasing gap for language learning opportunities. While self-directed learning
and intelligent tutoring systems (ITS) have the potential to alleviate some of the issues,
research in this area suffers from limited available data—a result of proprietary software
and data protection regulations. This calls for methods that are capable of learning
efficiently from little user feedback.

The goal of this thesis is to provide new language learning opportunities by devising
methods that alleviate the work for teachers and that empower learners to self-directed
learning. For evaluation we use C-Tests, a type of gap filling exercise that is similar to
cloze tests, but less ambiguous. In the first part of this thesis, we develop novel methods
for generating C-Tests. In contrast to previous works, our methods—that are based
on heuristics and constrained optimization—are capable of generating C-Tests with a
specific target difficulty. Moreover, our method based on mixed-integer programming
allows teachers to pose specific constraints which are guaranteed to be adhered, resulting
in C-Tests that better suit their needs.

In the second part of this thesis, we devise a new sampling method to interactively train
a C-Test selection model. We draw inspiration from active learning that aims to improve
model training by only annotating instances that presumably help the model most (model
objective). At first glance, active learning seems to be unfit for educational scenarios as
it can lead to instances that are more difficult to annotate—or likewise, result in C-Tests
that do not suit a learner’s current proficiency. Conversely, only selecting instances that
suit the learner’s current proficiency—ideally with a high certainty (user objective)—will
result in feedback that is uninformative for the model. We show that it is indeed possible
to sample instances that optimize both and that this results in C-Tests which benefit
model and learner better than sampling instances for each objective individually.

Finally, we explore interactive data annotation as a scenario that could benefit from our
joint sampling strategy. We first develop an application that showcases the usefulness of
interactive data annotation in a scenario where domain experts can interactively annotate
data to ease their work. We then show how annotation studies in general comprise
a learning process, and devise annotation curricula, a method to reorder annotated
instances which significantly reduces annotation time.

ix





Contents

Frontmatter i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Erklärungen laut Promotionsordnung . . . . . . . . . . . . . . . . . . . . . . . . v
Wissenschaftlicher Werdegang . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I Synopsis 1

Publications and My Contributions 3
Core Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Research Data and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Other Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Second Language Acquisition 11
1.1 Translation Tools to the Rescue? . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 NLP in Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Challenges and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 C-Tests 19
2.1 Cloze Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 C-Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Automated Difficulty Assessment . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Modelling Difficulty . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Predicting Difficulty . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Constrained C-Test Generation 27
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 C-Test Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Adaptive C-Test Selection 35
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xi



Contents

4.2 Data Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Curriculum Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Active Learning for Interactive Scenarios . . . . . . . . . . . . . . . . . . . 38
4.3.1 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Jointly Optimizing Model and User Objectives . . . . . . . . . . . 40
4.3.3 Adaptive Exercise Selection . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Beyond CALL 43
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Interactive Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Annotator Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

II Publications 49

6 Manipulating the Difficulty of C-Tests 51
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Task Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4 C-Test Difficulty Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.5 C-Test Difficulty Manipulation . . . . . . . . . . . . . . . . . . . . . . . . 56
6.6 Evaluation of the Manipulation System . . . . . . . . . . . . . . . . . . . 57
6.7 User-based Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Constrained C-Test Generation via Mixed-Integer Programming 69
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.3 MIP Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.4 Task Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.5 Gap Difficulty Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.6 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 Efficient Methods for Natural Language Processing: A Survey 103
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.3 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.4 Pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.5 Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.6 Inference and Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xii



Contents

8.7 Hardware Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.8 Evaluating Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.9 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 Empowering Active Learning to Jointly Optimize System and User Demands141
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.4 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
9.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

10 TexPrax: A Messaging Application for Ethical, Real-time Data Collection
and Annotation 159
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.2 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
10.3 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

11 Annotation Curricula to Implicitly Train Non-Expert Annotators 169
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
11.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
11.3 Annotation Curriculum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

11.3.1 Annotation Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
11.3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

11.4 Evaluation with Existing Datasets . . . . . . . . . . . . . . . . . . . . . . 178
11.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
11.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 179
11.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 180

11.5 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.5.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.5.2 Study Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
11.5.3 General Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
11.5.4 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
11.5.5 Participant Questionnaire . . . . . . . . . . . . . . . . . . . . . . . 191

11.6 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 193
11.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.8 Erratum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

xiii



Contents

III Epilogue 203

12 Conclusion And Future Work 205
12.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
12.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

12.2.1 Interactive Machine Learning . . . . . . . . . . . . . . . . . . . . . 207
12.2.2 Second Language Acquisition . . . . . . . . . . . . . . . . . . . . . 208

Bibliography 209

xiv



Part I

Synopsis





Publications and My Contributions

This thesis is based on six scientific publications to which I contributed as the lead
author. They were co-authored together with my advisors Iryna Gurevych and Christian
M. Meyer, as well as following co-authors (in alphabetical order):

Betty van Aken, Niranjan Balasubramanian, Qingqing Cao, Manuel R. Ciosici, Leon
Derczynski, Jesse Dodge, Jessica Zosa Forde, Nicholas Frick, Michael Hassid, Kenneth
Heafield, Sara Hooker, Tianchu Ji, Jan-Christoph Klie, Pedro H. Martins, André F. T.
Martins, Peter Milder, Joachim Metternich, Marvin Müller, Marc Pfetsch, Colin Raffel,
Edwin Simpson, Noam Slonim, Erik Schwan, Roy Schwartz, Lorenz Stangier, Emma
Strubell, Marcos Treviso, and Yuxi Wang.

I am grateful to all my co-authors and their significant contributions to these pleasant as
well as successful collaborations. In the following, I describe my own contributions to
each publication.

Core Publications

Chapter 3 corresponds to the following publications4:

Ji-Ung Lee, Erik Schwan, and Christian M. Meyer. 2019. Manipulating the
Difficulty of C-Tests. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics(ACL), pages 360–370, Florence, Italy.

Christian and I developed the idea for this work which was initially given as a Bachelor’s
thesis topic to Erik Schwan, whom Christian and I co-supervised. We developed the
proposed algorithms together over the course of the thesis. I collected and prepared the
datasets and provided an updated feature extraction system that was initially developed by
Beinborn (2016). Erik implemented the proposed algorithms and conducted reproduction
and ablation studies. He further recruited participants for the user study. I devised
the study design with advice from Christian and implemented the study interface. I
conducted experiments regarding the C-Test variability and provided an in-depth analysis
of the user study. I wrote the initial draft of the article and performed the subsequent
corrections. I discussed this work regularly with Christian and Erik, who helped me
improve the draft.

Ji-Ung Lee, Marc Pfetsch, Iryna Gurevych. 2024. Constrained C-Test Generation
using Mixed-Integer Programming. arXiv:2404.08821.

4Works with a shared first authorship where each first author contributed equally are marked with *.
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I conceived the research ideas after detailed discussions with Marc and Iryna. I per-
formed all of the implementation work, planned and conducted all experiments, designed,
implemented, and conducted the user study, and performed all of the analyses. I wrote
the initial draft of the article and performed the subsequent corrections. I discussed this
work regularly with Iryna and Marc, who helped me improve the draft.

Chapter 4 corresponds to the following publications:

Marcos Treviso∗, Ji-Ung Lee∗, Tianchu Ji∗, Betty van Aken, Qingqing Cao,
Manuel R. Ciosici, Michael Hassid, Kenneth Heafield, Sara Hooker, Colin Raffel,
Pedro H. Martins, André F. T. Martins, Jessica Zosa Forde, Peter Milder, Edwin
Simpson, Noam Slonim, Jesse Dodge, Emma Strubell, Niranjan Balasubramanian,
Leon Derczynski, Iryna Gurevych, Roy Schwartz. 2023. Efficient Methods for
Natural Language Processing: A Survey. Transactions of the Association for
Computational Linguistics, 11: pages 826–860. MIT Press.

This survey paper is a joint effort of 22 researchers led by Marcos Treviso, Tianchu Ji,
and me as equal contribution first authors. The idea for this work was developed at the
Dagstuhl seminar 22232: Efficient and Equitable Natural Language Processing in the Age
of Deep Learning. The structure and content of the work was drafted as a group activity
during two sessions at the seminar, with me being responsible for writing §8.2. After the
seminar, Marcos, Tianchu, and I took the lead in refining the initial draft into a paper
ready for submission. After the first rejection, Marcos and I revised the paper together,
including change requests brought forward by the reviewers and adding new works that
were published in the meantime. Throughout this effort, everyone involved worked on
the section concerning their focus area (in the initial draft) and continued to provide
suggestions and changes across the whole paper.

Ji-Ung Lee, Christian M. Meyer, and Iryna Gurevych. 2020. Empowering Active
Learning to Jointly Optimize System and User Demands. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 4233–4247, Online.

I developed this idea as a key part of my thesis to tackle the lack of training data in the
educational domain. I formalized the sampling objectives, implemented and conducted
the experiments as well as the analysis. I further wrote the initial draft of the article and
performed subsequent corrections. I discussed this work regularly with Christian and
Iryna, who helped me improve the draft.

Chapter 5 corresponds to the following publications:

Lorenz Stangier∗, Ji-Ung Lee∗, Yuxi Wang, Marvin Müller, Nicholas Frick,
Joachim Metternich, and Iryna Gurevych. 2022. TexPrax: A Messaging Applica-
tion for Ethical, Real-time Data Collection and Annotation. In Proceedings of the
2nd Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics and the 12th International Joint Conference on Natural Language
Processing: System Demonstrations (AACL), pages 9–16, Taipei, Taiwan.

Lorenz Stangier and I equally contributed as first authors to this publication. The core idea
for this project described in §10.2 was developed by Marvin Müller and me. Lorenz was
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primarily responsible for implementing the application described in §10.3. Marvin, Yuxi,
and Nicolas were responsible for recruiting and instructing the participants of our study,
and ensuring the correct annotation of the data (cf. §10.4). I devised the setup for the
user study and wrote the initial draft of the paper. I furthermore finalized and packaged
the code and analyzed the data. The experiments were conducted by Lorenz and me. We
discussed this work regularly with Joachim and Iryna, who helped us improve the draft.

Ji-Ung Lee∗, Jan-Christoph Klie∗, Iryna Gurevych. 2022. Annotation Curricula
to Implicitly Train Non-Expert Annotators. Computational Linguistics, 48 (2):
343-–373.

Jan-Christoph Klie and I equally contributed as first authors to this publication. We
developed the core ideas during several brainstorming sessions. We researched and
wrote the introduction, background, definition, and conclusion jointly. We also made
the subsequent corrections together. Jan-Christoph collected and selected the datasets
for the simulation described in §11.4. He further implemented, executed, analyzed
the experiments, and wrote the chapter. Based on the simulation results, I designed,
implemented, and conducted the user study described in §11.5. I further analyzed the
results and wrote the respective chapter. We discussed this work regularly with Iryna,
who helped us improve the draft.

All research results of the aforementioned publications are documented in the present
thesis, which is archived by the Universitäts- und Landesbibliothek Darmstadt.

Research Data and Software

Each publication—except for the survey in Chapter 8 which is available at the ACL An-
thology (CC BY 4.0)—entails various resources comprising software, models, and research
data that were created and used to obtain the respective results. In the following, we
provide brief descriptions and links to each component that was published under open
source or creative commons licenses. We further ensure the long-term preservation of
the research data in accordance with the Deutsche Forschungsgemeinschaft’s (German
Research Foundation) “Principles for the Handling of Research Data”5, and archive all
research data including the used data splits, intermediate results, models and hyper-
parameter tuning experiments in TU datalib.6 This data repository has solely been
created for archiving purposes and contains proprietary data which may not be shared
outside TU Darmstadt or used for any other purpose than reproducing the results of
the respective publication. Any use of the C-Test data requires prior permission of the
Language Resource Centre of TU Darmstadt.7

5https://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/forschungsdaten/
leitlinien_forschungsdaten.pdf

6https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4207
7https://www.spz.tu-darmstadt.de/index.en.jsp
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Chapter 6 Manipulating the Difficulty of C-Tests

The experiments conducted in this work comprise a reproduction study, an intrinsic
evaluation of the new C-Test generation strategies, and a user study.

• All code to run our experiments is shared via GitHub (Apache 2.0):
https://github.com/UKPLab/acl2019-ctest-difficulty-manipulation/

• The user study data and the models are shared via TU datalib (CC BY 4.0):
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2704

• The corresponding research data archive on TU datalib is:
Chapter-6_ACL_2019_research_data.zip

• The publication is available at the ACL Anthology (CC BY 4.0):
https://aclanthology.org/P19-1035/

Chapter 7 Constrained C-Test Generation via Mixed-Integer Programming

The experiments conducted in this work include a rework of the feature extraction pipeline,
the implementation of multiple gap difficulty prediction models, and the reimplementation
of the C-Test generation models from Chapter 6. In addition, we implemented multiple
generation strategies using mixed-integer programming and conducted a user study.

• The code is structured into four segments corresponding to (1) feature extraction,
(2) gap difficulty prediction, (3) C-Test generation, and (4) user study. All code is
shared via GitHub (Apache 2.0):
https://github.com/UKPLab/arxiv2024-constrained-ctest-generation

• The data comprises all results of our user study and the data sampled from the
GUM (Zeldes, 2017) corpus we used for our intrinsic evaluation. All data and
models are shared via TU datalib (CC BY 4.0):
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/4205

• The corresponding research data archive on TU datalib is:
Chapter-7_Arxiv_2024_research_data.zip
Due to their large size, all fine-tuned transformer models are archived in separate
.zip files, starting with Chapter-7_Arxiv_2024.

• A preprint of the publication is available on arXiv (CC BY 4.0):
https://arxiv.org/abs/2404.08821

Preprocessing the C-Test data used in this work (as well as in Chapters 6 and 9) requires
running the feature extraction pipeline developed by Beinborn (2016), that was previously
split across multiple components. With this work, we provide two executable .jar files
for sentence scoring and feature extraction that comprise all individual steps, and a single
bash script for running the full extraction pipeline. Note, that feature extraction involves
setting up a DKPro Home environment which relies upon two proprietary resources for
which prior permission needs to be obtained:
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• The TreeTagger and Chunker are available at
https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

• The Web1T resource found at https://catalog.ldc.upenn.edu/LDC2006T13

For reproduction experiments, the TU datalib archive also contains a fully working DKPro
Home environment: DKPro.zip

Chapter 8 Efficient Methods for Natural Language Processing: A Survey

This is a survey paper that has no code or research data contributions.

• The publication is available at the ACL Anthology (CC BY 4.0):
https://aclanthology.org/2023.tacl-1.48/

Chapter 9 Empowering Active Learning to Jointly Optimize System and
User Demands

The experiments conducted in this work evaluate different active learning strategies which
are implemented and shared via GitHub. We are not allowed to share the C-Test data.

• All code to run our experiments is shared via GitHub (Apache 2.0):
https://github.com/UKPLab/acl2020-empowering-active-learning

• The models to simulate learners of different proficiency are also shared via GitHub
in the learner_models folder.

• The corresponding research data archive on TU datalib is:
Chapter-9_ACL_2020_research_data.zip

• The publication is available at the ACL Anthology (CC BY 4.0):
https://aclanthology.org/2020.acl-main.390/

Chapter 10 TexPrax: A Messaging Application for Ethical, Real-time Data
Collection and Annotation

The experiments conducted in this work comprise three data collection studies. To conduct
these studies, a bot was implemented for providing label suggestions and accepting label
corrections. In addition, a dashboard was implemented and used for participants to keep
track of the collected data.

• The code is structured into two segments corresponding to (1) the recorder bot and
(2) the dashboard. All code is shared via GitHub (Apache 2.0):
https://github.com/UKPLab/aacl2022-TexPrax
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• The data consists of sentence- and token-level annotations. We further provide
fine-tuned classification models using GermanBERT (Chan et al., 2020). All data
and models are shared via TU datalib (CC BY 4.0):
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3534

• To ease usage, we further share the data via huggingface datasets along with the
necessary .load() function:
https://huggingface.co/datasets/UKPLab/TexPrax

• The corresponding research data archive on TU datalib is:
Chapter-10_AACL_2022_research_data.zip

• The publication is available at the ACL Anthology (CC BY 4.0):
https://aclanthology.org/2022.aacl-demo.2/

Chapter 11 Annotation Curricula to Implicitly Train Non-Expert Annotators

The experiments conducted in this work comprise an intrinsic evaluation study using
three datasets and a user study.

• All code to run the intrinsic experiments and the user study is shared via GitHub
in the respective subfolders (Apache 2.0):
https://github.com/UKPLab/cl2022-annotation-curriculum

• The user study data and the models are shared via TU datalib (CC BY 4.0):
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2783
Note, that the original tweets need to be re-crawled as it is proprietary.

• The corresponding research data archive (including the original tweets) on TU
datalib is:
Chapter-11_CL_2022_research_data.zip

• The publication is available at the ACL Anthology (CC BY-NC-ND 4.0):
https://aclanthology.org/2022.cl-2.4/

Other Publications

During my time as a Ph.D. student, I was fortunate to work with great researchers on
various topics, some of which did not fit into this thesis. In the interest of completeness,
I provide references to these papers:

Jan-Christoph Klie, Ji-Ung Lee, Kevin Stowe, Gözde Gül Şahin, Nafise Sa-
dat Moosavi, Luke Bates, Dominic Petrak, Richard Eckart De Castilho, Iryna
Gurevych. 2023. Lessons Learned from a Citizen Science Project for Natural Lan-
guage Processing. In Proceedings of the 17th Conference of the European Chapter
of the Association for Computational Linguistics, pages 3594–3608, Dubrovnik,
Croatia.
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Haishuo Fang, Ji-Ung Lee, Nafise Sadat Moosavi, and Iryna Gurevych. 2023.
Transformers with Learnable Activation Functions. In Findings of the Association
for Computational Linguistics: EACL 2023, pages 2382–2398, Dubrovnik, Croatia.
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NLP Research. arXiv preprint arXiv:2306.16900.

Ulf A Hamster, Ji-Ung Lee, Alexander Geyken, Iryna Gurevych. 2023. Redis-
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Tilman Beck, Ji-Ung Lee, Christina Viehmann, Marcus Maurer, Oliver Quiring,
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in German Covid-19 social media. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers) (ACL),
pages 1–13, Online.

Marvin Müller, Ji-Ung Lee, Nicholas Frick, Lorenz Stangier, Iryna Gurevych, and
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Chapter 1

Second Language Acquisition

Learning a (second) language is one of the key factors that can directly impact a person’s
success in life (Baldo et al., 2005). Speaking the language of the residing country is not
only key to participating in daily and social life—it can even positively impact the work
life; for instance, by increasing employability (Yow and Lim, 2019). Research shows that
achieving L21 competency on a level to be acknowledged as a native speaker substantially
increases the chances for a successful immigration (Piller, 2002) and that learning a
second language can even positively impact the L1 competency; a concept also known as
multicompetence (Cook, 1992). Major institutions, such as the European Council, have
acknowledged the importance of learning languages as early as in 2002, calling for an action
to “[teach] at least two foreign languages from a very early age” (Council of Europe, 2002,
p. 20). However, the current progress in terms of multi-lingual proficiency falls behind their
initial ambitions. Even 15 years after the call to action, a study of the European Union
finds that “if English becomes the «lingua franca» of the DSM [Digital Single Market],
more than 60% of the European population will be left behind and with high disparities
between countries” (Rivera Pastor et al., 2017, p. 51). Although the actions to improve
the current state in terms of multi-lingual proficiency are easy to identify—for instance,
increasing the number of qualified personnel or strengthening the availability of open
source educational resources (i.e., data and software)—they are non-trivial to implement.
Even something as basic as the shortage of teaching personnel has been attributed to
numerous reasons that differ between countries and education systems (Blanco et al.,
2023). At the same time, the lack of access to language learning courses remains one of the
major obstacles for refugees to immigrate successfully (Fundamental Rights Agency, 2023,
p. 24). Finally, there is an increasing demand for language learning beyond Europe—due
to globalization, digital communication, and immigration (García and Weiss, 2019).

1.1 Translation Tools to the Rescue?

Natural language processing (NLP) is a research field that can help to address existing
issues on low language proficiency (Jurafsky and Martin, 2000). Especially subfields
such as machine translation (MT) and automatic speech recognition (ASR) have broken
down language barriers to some extent (Carvalho et al., 2023); and recent research
around large language models (LLMs) is showing promising results (Kocmi et al., 2023).

1In language learning research, the native language of a person is referred to as the first (or L1) language
and any other language learned afterwards as the second (or L2) language (Klein, 1986).
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Nonetheless, actual tools often remain far from being practicable in daily life for various
reasons. First of all, they still fall behind human (expert) translators and hence, are
legally not liable (Gupta et al., 2023; Vieira et al., 2023). This makes them infeasible
to deploy in critical domains such as health or law, where mistakes can cause serious
harm. One such unfortunate example are asylum applications—where even human
translators struggle (Scheffer, 1997; Berbel, 2020)—that were wrongfully rejected due to
erroneous translations.2 Moreover, a high disparity in terms of available parallel training
data between low-resource languages such as Swazi or Igbo and high-resource languages
such as English, German, or French amplifies existing issues on excluding minority
communities (Stap and Araabi, 2023; Robinson et al., 2023). Despite recent incentives
that aim to curate training data for low-resource languages, this is a labor-intensive
process which will take time to bear fruit (Siminyu and Freshia, 2020; Salesky et al., 2023).
Another issue is that trained models are expensive to deploy despite novel methods that
improve model efficiency across various factors such as run time, memory consumption,
and model size (Treviso et al., 2023). Consequently, high-quality translations require a
stable network connection to a model available online or sufficient computational resources
to run the model locally. Whereas all these issues may be resolved in the future as
research advances, there exists one big advantage of achieving a high L2 proficiency over
any MT system; namely, fostering social inclusion by seamlessly bridging the language
gap.

The importance of speaking the local language has been shown across many factors.
For instance, works found that a high L2 proficiency positively impacts the income of
immigrants (McManus et al., 1983; Tainer, 1988; Chiswick, 1991), and can substantially
reduce periods of unemployment and foster social integration (Delander et al., 2005).
Others have found that speaking the same language does not only benefit the individual,
but also the group as a whole by increasing productivity (Yow and Lim, 2019). Finally,
works suggest that speaking the same language has been one of the key factors to advance
societies, promote cultural growth, and develop shared norms (Smith, 2010; Smith et al.,
2017; Gelfand et al., 2024). This shows that human second language learning is and will
remain important.

1.2 NLP in Education

The use of computers in language learning has been considered for a long time and across
a wide range of use cases—such as automated tutoring systems (Hart, 1981) and teacher
assistance (Ahmad, 1985). This research area is often referred to as computer-assisted
language learning (CALL; Marty 1981). Following its loose definition, CALL has been
associated with various research topics over the years: interactive learning systems,
vocabulary learning, developing learning theory, as well as intelligent tutoring systems are
only a few examples of CALL (Levy, 1997). In this thesis, we will focus on a repeating topic
within this broad body of works, namely, the development of machine learning models that
are deployed in CALL systems. Here, we find various issues that remain open (Kohnke

2Date of access: March 12, 2024
https://www.theguardian.com/us-news/2023/sep/07/asylum-seekers-ai-translation-apps
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et al., 2023)—despite recent advances in tasks such as automatic essay rating (Naismith
et al., 2023; Yancey et al., 2023), automated error correction (Katinskaia and Yangarber,
2023; Loem et al., 2023), or explanation generation (Duenas et al., 2023). First and
foremost, a correct or “reliable” behavior of models needs to be ensured (Kenning and
Kenning, 1990). Especially in self-directed learning scenarios, erroneous generations can
cause substantial harm as there are no teachers to correct a model’s mistake (Tlili et al.,
2023). Second, it is not easy to maintain a continuous adaptation of models to multiple
users (learners and teachers with varying preferences and learning goals) or different
scenarios, while ensuring a high grade of personalization (Hu et al., 2023). And finally,
there is a need to move away from NLP-focused metrics—such as BERTScore (Zhang
et al., 2020)—to evaluating models or their generated content in terms of educational
usefulness and real-world users (Levy, 1997; Imperial and Madabushi, 2023).3

1.3 Challenges and Contributions

Overall, we find that globalization and immigration are increasingly driving the need for
solutions that can resolve the gap in multi-lingual proficiency. Despite recent advances
in MT and LLMs, a lack of adequate translation tools remains, not to speak of the
lacking resources to even train them for over 7,000 languages (Salesky et al., 2023). A
focal and more sustainable solution is to improve the multi-lingual proficiency among
the citizenry by assisting second language learners and teachers. Developing automated
approaches to do so would also combat the existing shortage of teachers and open source
educational resources; leading to new self-directed learning opportunities. Existing
approaches however suffer from two shortcomings. First, they are incapable of strictly
adhering to constraints posed by teachers. Using neural generation methods that can
generate outputs which are “nonsensical, or unfaithful to the provided source input” (Ji
et al., 2023) can substantially harm the learning process. Second, existing methods
rely upon a pre-defined behavior (e.g., via hand-crafted rules) or utilize trained (but
static) models. Even if models are updated successively with learner feedback, they still
may be too slow to adapt, leading to a low grade of personalization which can impede
learning (Illeris, 2003). At the same time, the growing number of learners makes it
increasingly difficult to consider all possible learning types.

The goal of this thesis is to break new ground in CALL by addressing these shortcomings.
First, we devise methods that provide mathematical guarantees on the generated output,
ensuring that the resulting exercise cannot harm the learning process. Second, we devise
methods that explicitly consider a learner’s proficiency and moreover, that are capable of
keeping up with their progress. As our use case, we focus on C-Tests (Klein-Braley and
Raatz, 1982), a specific kind of gap filling exercises that are based on a partial deletion
of words (similar to cloze tests). Finally, we show that our methods are applicable not
only within the scope of CALL, but go beyond it and demonstrate a huge potential in
data annotation scenarios. Our contributions (C) are as follows:

3For instance, Baladón et al. (2023) show that the BERTScore metric can be tricked with a simple
baseline that always replies “Hello” in a teacher response generation shared task (Tack et al., 2023).
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C1 We are the first to explore automated methods for C-Test generation that deviate
from the static generation strategy. Our novel generation strategies utilize heuris-
tics, constrained optimization, and state-of-the-art difficulty prediction models to
generate C-Tests of a specific target difficulty. We show in multiple user studies that
our strategies significantly outperform the static generation strategy and current
neural approaches while adhering to constraints posed by teachers.

C2 We propose a novel strategy for efficient model training in interactive scenarios and
evaluate it on the task of learner-adaptive C-Test selection. While existing works
focus on selecting C-Tests that best suit a learner (user objective), we argue that
this results in instances that are not optimal to train the selection model (model
objective). Consequently, the model only slowly adapts to changes in the learner’s
proficiency. In our experiments with simulated learners, we show that jointly
optimizing both (user and model objectives) is more beneficial than optimizing each
individually—resulting in C-Tests that benefit the learner and produce feedback
for instances that optimally train the model.

C3 We identify data annotation as another field that can benefit from user-adaptive
sampling strategies and educational approaches. To pave the way towards interactive
data annotation, we showcase how labeling instances can be directly built into
a domain-specific use case to ease the work of factory workers. Finally, we show
how annotators can be implicitly trained—revealing parallels between annotation
studies and learning applications—and propose annotation curricula as a means to
significantly reduce the annotation time.

Throughout our work, we do not only rely upon automated metrics, but conduct multiple
user studies that are carefully designed and controlled for possible confounding variables.
We further share all collected data and code under open source licenses to create research
opportunities for future work.

1.4 Thesis Outline

So far, we have motivated the importance of second language acquisition and discussed
the inadequacy of up-to-date MT tools. We then identified challenges in existing methods
with respect to their reliability, adaptivity, and evaluation; and finally, detailed our
contributions. The remainder of this thesis is structured as follows.

Chapter 2 - C-Tests introduces the type of gap filling exercise that serves as our
primary use case throughout this work. We compare them to other types of gap filling
exercises; identifying advantages and shortcomings of C-Tests. Finally, we discuss two
major theories that are used in educational research to assess the difficulty of exercises
and define formulas for assessing the gap and exercise difficulty of C-Tests.

Chapter 3 - Constrained C-Test Generation identifies the key challenges we face
when considering C-Test generation; namely, efficiency and mathematical guarantees.
Finding that there is a substantial lack of methods that propose automated generation
strategies for C-Tests, we introduce two novel approaches. Finally, we discuss how these
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Figure 1.1: Overall structure of this thesis.

approaches alleviate the issues on hallucination, bias, alignment, and (to some extent)
cost.

Chapter 4 - Adaptive C-Test Selection motivates the need for methods that are
capable to adaptively select appropriate C-Tests as learners improve their proficiency. We
discuss the notion of efficiency as a key component for adaptive selection methods and
introduce active learning as a data efficient, interactive annotation paradigm. As active
learning focuses on data annotation, we introduce the notion of a user objective and
propose first suitable sampling strategies that consider both, model and user objective.
Finally, we provide an overview of other exercise selection methods; finding that they
only aim to optimize either one of the two.

Chapter 5 - Beyond CALL extends our work to data annotation as another scenario
that requires interactive learning. We showcase how interactive data annotation can be of
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use especially in domains that require a high domain knowledge and where annotated data
is scarce. We further show that learning takes place in even common data annotation
scenarios and how devising a proper annotation curriculum can significantly reduce
annotation time.

Over the course of this thesis, we developed and published multiple works that can be
attributed to a respective chapter. Figure 1.1 provides an overview of the connection
between different chapters and individual works in the context CALL. In the following,
we list all publications in the same order as in Part I.

Chapter 6 - Manipulating the Difficulty of C-Tests introduces a first study on C-
Test generation strategies that deviate from the commonly used, static one. Although the
developed strategies are restricted to either manipulating the gap size or gap placement,
our user study shows that both strategies can successfully generate C-Tests with a
significantly different target difficulty.

Chapter 7 - Constrained C-Test Generation via Mixed-Integer Programming
proposes an approach that considers the whole space of possible C-Tests and is capable
of varying the gap size and placement. Using mixed-integer programming furthermore
empowers the generation strategy to provide mathematical guarantees on the generated
C-Test. More specifically, it upholds any (feasible) constraint such as the number of gaps
or their size while achieving a globally optimal solution under a trained gap difficulty
prediction model. Our evaluation study shows that our strategy significantly outperforms
two of our baseline strategies (including GPT-4; OpenAI 2023) and performs similar to
the third one.

Chapter 8 - Efficient Methods for Natural Language Processing: A Survey
provides a comprehensive overview of methods that increase efficiency for corresponding
steps in the life cycle of an NLP model. Most relevant for this thesis is §8.2 that discusses
methods to improve data efficiency and which motivates active learning as a key concept
to develop an efficient and adaptive C-Test selection method.

Chapter 9 - Empowering Active Learning to Jointly Optimize System and
User Demands develops a sampling method that jointly considers a user’s goal of
obtaining the most appropriate C-Test and a system’s goal of obtaining annotations
for a C-Test that leads to a maximum improvement of the model. We find that jointly
optimizing both goals—albeit seemingly counteractive—improves the overall performance
over optimizing them individually.

Chapter 10 - TexPrax: A Messaging Application for Ethical, Real-time Data
Collection and Annotation develops a system that allows us to transfer our research
findings into a real-world use case. We discuss various necessities and their implementation
to ensure a GDPR compliant data collection and develop a messenger application which
satisfies all conditions. Using the resulting system and a label suggestion bot, we show
how to effectively collect domain specific data in a real-world factory environment.

Chapter 11 - Annotation Curricula to Implicitly Train Non-Expert Annotators
identifies data annotation as another scenario where the order in which instances are
presented to a user significantly changes the outcome. In experiments with existing
datasets and real-world users, we show that ordering instances according to their difficulty
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significantly reduces the overall annotation time. Besides an expert-based difficulty
estimation, we further find that even a simple metric such as the BERTScore (Zhang
et al., 2020) leads to a significant reduction of annotation time.

Finally, we conclude in Chapter 12 by summarizing the main research contributions of
this thesis and discussing future research directions.
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Chapter 2

C-Tests

Teachers need to consider a wide range of factors when they generate or select suitable
language learning exercises. Such factors commonly involve the curriculum and depend
on the already learned vocabulary, grammatical constructs, as well as the learner’s
proficiency (Kelly, 1977; Krashen, 1982). In addition, it is important to ensure that the
exercises are neither too easy nor too difficult, as this may lead to boredom or frustration,
respectively (cf. Figure 3.1). Exercises that keep the learner motivated are often ascribed
to lie within the zone of proximal development (Vygotsky, 1978). Besides didactic factors
such as the exercise difficulty and the learning curriculum, learner motivation can further
be impacted by other factors such as a person’s upbringing (Eccles, 2005, p. 106) and
personal interest (Ainley, 2006). Simultaneously considering an arbitrarily large number
of factors thus makes the manual generation of exercises very challenging. At the same
time, copyright restrictions often limit the pool of tried and tested exercises teachers can
select from (Prandner and Forstner, 2022). Automatically generating exercises is hence
key to alleviate the work of teachers and to foster self-directed learning opportunities.
Moreover, they can facilitate the growth of open educational resources (OER), increasing
equity amongst learners (Hylén, 2020; Clinton-Lisell, 2021).

Gap filling exercises are a type of exercise that are especially well suited for automated
generation for three reasons (Jongsma, 1971). First, their generation only requires partial
deletion of an input text. Second, they allow teachers to control the difficulty, as they
can decide how much (e.g., parts of a word, whole words, or even multiple words) and
which parts to delete (e.g., by deleting frequently or infrequently used words). Finally,
the input text can freely be chosen—for instance, from a book that is being discussed in
class—easing their integration into a specific curriculum. Overall, gap filling exercises
have been shown to be helpful for second language learning by fostering the reproduction,
contextualization, and correct inflection of learned vocabulary (Oller Jr, 1973).

2.1 Cloze Tests

One of the most popular gap filling exercises are cloze tests (Taylor, 1953). Initially
introduced to quantify text readability, they were increasingly utilized to measure second
language proficiency (Oller Jr, 1973) and for vocabulary training (Skory and Eskenazi,
2010). Cloze tests always turn whole words into a gap; usually at a fixed deletion rate
(e.g., a deletion rate of seven turns every seventh word into a gap). A shortcoming of
the original cloze test is the high ambiguity caused by deleting whole words (Type A,
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Type Example Ambiguity Automat- Nature
ability of Task

A The students have to __ the test high high production
B The students have to __ the test low to low recognition

a) take moderate
b) fold
c) entertain
d) fry

C The students have to __ the test low to high production
Their cook will __ three salmons. moderate

All passengers should __ their seats.
Both authors __ credit for this.

Table 2.1: Different types of cloze tests (adapted from Wojatzki et al. 2016). Open cloze
tests (A) are easy to generate, but have a high ambiguity. Adding distractors
(B) substantially reduces the ambiguity, but is more difficult to automate as
the distractors must to be incorrect. Moreover, this changes the nature of
task to a simple recognition task as opposed to production. Finally, bundled
gap filling (C) uses multiple sentences with the same gap. This reduces the
ambiguity and is easy to generate, but is limited to single sentences.

Table 2.1). These so-called open cloze tests only require the deletion of words but at the
same time, pose a substantial challenge as words that lead to ambiguous solutions must be
avoided (Felice and Buttery, 2019). To mitigate this, works soon proposed multiple choice
formats (Type B, Table 2.1) where the correct solution would be mixed within several
incorrect distractors (Cranney, 1972). The difficulty of multiple-choice cloze tests can be
controlled more explicitly than for open cloze tests; for instance, by selecting distractors
according to their solution similarity. This and other approaches for distractor selection
have been studied across the field (Zesch and Melamud, 2014; Hill and Simha, 2016;
Yeung et al., 2019; Gao et al., 2020; Panda et al., 2022; Yoshimi et al., 2023). Finally,
Wojatzki et al. (2016) propose bundled gap filling to mitigate the non-productive nature of
multiple choice cloze tests (Type C, Table 2.1). By displaying different sentences with the
same solution at once, they have a substantially lower ambiguity compared to open cloze
tests and require the learner to actively produce the correct solution. However, bundled
gap filling has only been investigated for single gap sentences, as constructing similar
exercises with multiple gaps per sentence or using whole paragraphs is substantially more
difficult (Meyer et al., 2016).

2.2 C-Tests

As shown in Table 2.1, all variants of cloze tests suffer from one or more of the following
issues:

• a high ambiguity of the gaps

• a low automatability
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There are chance meetings with strangers that interest us from the first
moment, before a word is spoken. Such w__(as) the impre_____(ssion) made
o_(n) Raskolnikov b_(y) the per___(son) sitting a lit___(tle) distance
fr__(om) him, w__(ho) looked li__(ke) a retired cl___(erk). The yo___(ung)
man of___(ten) recalled th__(is) impression after_____(wards), and ev__(en)
ascribed i_(t) to presen______(timent). He loo___(ked) repeatedly a_(t) the
cl___(erk), partly no doubt because the latter was staring persistently at
him, obviously anxious to enter into conversation. At the other persons in
the room, including the tavern-keeper, the clerk looked as though he were used
to their company, and weary of it, showing a shade of condescending contempt
for them as persons of station and culture inferior to his own, with whom it
would be useless for him to converse.

Figure 2.1: A C-Test consisting of 20 gaps that has been generated by the commonly
used static generation strategy where every second half of every second word
is turned into a gap (Klein-Braley and Raatz, 1982). In this example, gaps
are visualized by replacing the removed characters with “_”. The solution is
shown in parentheses “()” to display the original input text. The first and
the last sentences do not contain any gaps to provide sufficient context.

• a non-productive nature of the task

• a limitation to single sentences

To obtain exercises that are easy to generate, have low ambiguity, are of productive
nature, and can be generated from whole paragraphs, Klein-Braley and Raatz (1982)
propose C-Tests. Similar to cloze tests, C-Tests are also based on deletion; but instead of
the whole word, only its second half is turned into a gap, leaving the rest as a hint. This
naturally reduces the ambiguity of the gaps and at the same time, still requires learners
to actively inflect words themselves. Moreover, in contrast to bundled gap filling (Type C,
Table 2.1), they can span multiple sentences. For better comparability, C-Test creation
follows a static generation strategy that turns every second half (rounded up) of every
second word into a gap. The first and last sentences do not contain any gaps to provide
sufficient context. Finally, the number of gaps is also pre-specified and commonly set to
20 or 25 (Grotjahn, 2006). Figure 2.1 shows an example C-Test consisting of 20 gaps that
was created using the static generation strategy. As can be seen, only deleting the second
half of a word substantially reduces the ambiguity. For instance, while the word “distance”
provides a hint about the preceding gap “lit__(tle)”, without the hint “lit” the word
“far” would be an equally correct solution. Since their introduction, various works have
shown that C-Tests are useful tools for L2 vocabulary acquisition (Chapelle, 1994; McKay,
2019) and moreover, that they also follow the reduced redundancy principle (Babaii and
Ansary, 2001).1 We thus choose C-Tests as our primary object of study.

1The concept of redundancy is rooted in information theory and quantifies the amount of information
that can be removed in a message without removing any meaning (Shannon, 1948). Spolsky (1969)
introduce redundancy as a concept to second language acquisition, finding that a learner’s proficiency
correlates with the capability to deal with reduced redundancy.
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2.3 Automated Difficulty Assessment

Both—the generation and selection of exercises that suit a learner’s language proficiency—
require an automated assessment of their difficulty. The difficulty of gap filling exercises
such as cloze tests and C-Tests can be assessed on two levels—on a gap level and an
exercise level (for exercises that are comprised of multiple gaps). In the following, we
will first discuss two theories from educational and psychological testing, that provide
two fundamentally different views on modelling the difficulty. We will then provide an
overview of existing methods that have been suggested for C-Test difficulty prediction
and highlight our contributions in this area.

2.3.1 Modelling Difficulty

Quantifying the difficulty of specific items has been explored in both educational and
psychological research. Traditionally, the term item refers to a single instance within a
test or, in the case of gap filling exercises, to a single gap (Linden and Hambleton, 1997).
Two main theories have been used to model the difficulty of single items and tests (or
gaps and exercises, respectively): classical test theory and item response theory.2

Classical Test Theory. Classical test theory (CTT) is a well-established method to
quantify the test difficulty (Novick, 1966; Lord and Novick, 1968). CTT provides a
mathematical framework to describe the observed test score; i.e., the score a learner l
achieved on a test t. Consider a gap filling exercise consisting of n gaps, where each gap
can be answered either correctly (1) or incorrectly (0). The observed test score Xl,t is
then defined as the fraction of correctly answered gaps:

Xl,t = 1
n

n∑
i=1

xl,i, (2.1)

where xl,i indicates if learner l has responded correctly at gap i. CTT then postulates
that there exists a true score which represents the ability of a learner (i.e., the language
proficiency) that is contained in the observed test score Xl,t:

Xl,t = Tl,t + El,t, (2.2)

where Tl,t is the true score and El,t the error score. Although Tl,t and El,t are latent
variables that cannot be measured, CTT postulates two additional assumptions that—
together with Equation (2.2)—allow us to derive formulas for quantifying the exercise
difficulty. First, Xl,t converges towards Tl,t if the test is repeated indefinitely. It directly
follows that El,t ∼ N (0, 1); i.e., the errors are normally distributed with zero mean.
Second, Tl,t is independent of the test taken. This implies that taking an indefinite

2In the following, we use the terms exercise and test interchangeably as both refer to the same thing
but in different contexts. Same goes for the terms item and gap.
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number of measurements for a single test provides us with the true score of the test
(across all learners). For k measurements we can thus say:

T∗,t = 1
k

k∑
j=1
Tj,t, (2.3)

where Tj,t is the true score of learner j for test t. Using the first assumption (i.e., Xl,t
converges towards Tl,t), we can put this in relation to the observed score as:

X∗,t = 1
k

k∑
j=1
Xj,t, (2.4)

which provides us with a formula for the test difficulty. For the difficulty of individual
items x∗,i ∈ X∗,t, we utilize the probability value (in short, the P-value) which CTT
defines as:

x∗,i = 1
k

k∑
j=1

xj,i, (2.5)

where i denotes the i-th item. Note, that CTT defines the probability value as the
probability of the item being correctly solved.

Item Response Theory. The second well-established theory for quantifying test difficulty
is the item response theory (IRT; Hambleton et al. 1991). In contrast to CTT that
derives individual item difficulties from the test score (i.e., following a top-down approach),
IRT derives the test difficulty from individual item scores (i.e., following a bottom-up
approach). This is achieved by defining so-called item response functions (IRF) which
are probabilistic models that express the probability of a learner correctly responding
to an item. A key difference to CTT is that IRFs explicitly model a learner’s ability
θ (Hambleton and Jones, 1993; Linden and Hambleton, 1997). Over the years, multiple
IRFs have been proposed to determine the item difficulty. The most basic form is the
logistic model, also known as the Rasch model (Rasch, 1960):

Pi,j(xl,i = correct) = exp(θl − βi)
1 + exp(θl − βi)

, (2.6)

where θl describes the ability of learner l, βi is the difficulty of item i, and xl,i is
the response of learner l for item i. To better model the characteristics of individual
items, Birnbaum (1968) proposed to further extend Equation (2.6) with a discrimination
parameter αi:

Pi,j(xl,i = correct) = exp(αi(θl − βi))
1 + exp(αi(θl − βi))

. (2.7)

In other words, if βi expresses the difficulty of the i-th item, αi expresses how well it can
discriminate between different learners. The item difficulty is then defined as the ability
required for a learner to solve the item with a probability of 0.5. It is important to note
that the notion of item can be interpreted more fluently in IRT, compared to CTT. This
has also motived researchers to consider whole tests as an item and utilize the underlying
model for a learner-adaptive selection (Settles et al., 2020).
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CTT vs IRT. Although IRT has gained increasing popularity over CTT in recent years,
both theories have distinct advantages and disadvantages (Benedetto et al., 2023). IRT
explicitly models individual learner abilities as well as item-specific characteristics. This
allows researchers to make well-founded statistical adjustments in terms of the test score,
which in turn can lead to a better selection of exercises for individual learners. In contrast,
computing the test score is substantially easier in CTT and furthermore, the fraction of
correct responses is much more intuitive to interpret than ability scores derived from a
logistic function. Whereas recent works find that IRT and CTT have a high correlation
and thus, can be used interchangeably (Setiawati et al., 2023), some research indicates
that for small sample sizes, CTT may be a better choice (Mead and Meade, 2010). Similar
observations have been made by Beinborn (2016) for C-Tests, who find a high correlation
between IRT and CTT but less stable IRT estimates for small sample sizes.

C-Test Difficulty. In this thesis, we primarily rely upon the data provided by Beinborn
(2016) to train our difficulty prediction models. We thus follow their suggestion and
quantify the difficulty of a C-Test t as the mean error rate E across all learner responses:

E(t) = 1− 1
n · k

k∑
j=1

n∑
i=1

xj,i, (2.8)

where k is the number of learners, n the number of gaps in t, and xj,i the binary value
(0/1) for the correctness.3

2.3.2 Predicting Difficulty

Past works have investigated various feature-based models, neural architectures, or
combinations across different exercise types. Although our task at hand is a regression
task, we also consider works that perform difficulty classification on an ordinal scale
such as the CEFR-scale (Council of Europe, 2001); as both assume an underlying order
that allows regression scores to be mapped into the CEFR-scale (Reichert et al., 2010).
Overall, we find that the majority of works focus on the more popular cloze tests. Here,
early works utilize lexical resources such as WordNet (Miller, 1995) together with regular
expressions (Mitkov and Ha, 2003) but then follow overall trends in NLP research; moving
towards n-gram models (Skory and Eskenazi, 2010; Hill and Simha, 2016; Felice and
Buttery, 2019) and feature-based models (Liang et al., 2018). Finally, recent works also
investigate the use of word embeddings (Hsu et al., 2018) and pre-trained Transformer
models (Zhou and Tao, 2020; Benedetto et al., 2021).4

C-Test Difficulty Prediction. Besides early works that manually analyze C-Tests on
a gap level (Kamimoto, 1993) or propose simple feature-based models to predict their
difficulty (Sigott, 1995, 2006), Beinborn et al. (2014a) are the first to extensively study
and advance the difficulty prediction of C-Tests. In multiple subsequent works, they

3Note, how E(t) equals 1−P-value from Equation (2.5) averaged across all items.
4We refer the interested reader to Benedetto et al. (2023) and AlKhuzaey et al. (2023) for recent surveys
on difficulty estimation.
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Figure 2.2: C-Test difficulty prediction. For each gap, a model predicts the respective
difficulty which is then aggregated into the overall (mean) difficulty.

identify features across four categories: text difficulty, item dependency, word difficulty,
and candidate ambiguity (Beinborn et al., 2014a, 2015; Beinborn, 2016). In addition,
they establish Pearson’s correlation (ρ) and root mean square error (RMSE) as evaluation
metrics and use them to evaluate support vector machines (SVMs; Cortes and Vapnik
1995) and linear regression models. Besides these works, only Settles et al. (2020) study
the difficulty prediction of C-Tests with IRT using linguistic features to train linear and
weighted softmax models. The work is later extended by McCarthy et al. (2021) who
also introduce BERT-based features and use the models for adaptive exercise selection.
One substantial shortcoming of these works is the limited reproducibility due to the use
of proprietary training and test data. Moreover, the code is not shared publicly, making
it difficult to even consider these models for comparison.

2.4 Contributions

We make contributions towards C-Test difficulty prediction across three separate works.
In Chapter 6, we tackle the long run time of the feature extraction pipeline proposed
by Beinborn (2016). This is essential for C-Test generation which requires the repeated
computation of features with varying gap sizes and placements. We thus perform ablation
experiments to identify a subset of six features that are capable of estimating the relative
change in difficulty with reasonable performance. This substantially increases the overall
efficiency, allowing us to devise methods that iteratively increase or decrease the gap
size. In Chapter 9, we improve the performance of the difficulty prediction model.
More specifically, we identify two additional features derived from a pre-trained BERT
model (Devlin et al., 2019): the prediction probability of the solution and the entropy
computed using the top-50 tokens with the highest prediction probability (normalized
using the softmax function). We further extend our evaluation to MLPs (Rosenblatt,
1958) and bi-directional LSTMs (Hochreiter and Schmidhuber, 1997). In Chapter 7,
we re-evaluate all features for C-Tests with gap sizes and placements different from the
static generation strategy (Klein-Braley and Raatz, 1982). Moreover, we propose three
different fine-tuning mechanisms (masked-regression, CLS-token prediction, and feature-
enriched CLS-token prediction) for transformer-based models and evaluate them using
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BERT, RoBERTa (Liu et al., 2019), and DeBERTa (He et al., 2021) models (base and
large). Our evaluation shows that models trained with the masked-regression objective
generalize better than most feature-based approaches to C-Tests with different gap sizes
and placements. Nonetheless, we find that the features remain important as the best
performing model is a feature-based tree-boosting model (XGBoost; Chen and Guestrin
2016) that outperforms all pre-trained language models (PLMs). Finally, perform
extensive ablation experiments using this model and find that all feature categories
substantially contribute towards the overall performance; indicating the importance of
models that are grounded on proper linguistic theory. All works also make substantial
code and data contributions—most notably two executable .jar files and bash scripts to
run the full feature extraction pipeline and 25 fine-tuned difficulty prediction models—
published under open source licenses.
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Chapter 3

Constrained C-Test Generation

So far, we have discussed the importance of second language acquisition, finding that
C-Tests are a well-suited means to practice newly learned vocabulary together with their
inflection. We have further discussed different theories to quantify C-Test difficulty and
surveyed existing methods for C-Test difficulty prediction. Having established appropriate
foundations, we now motivate the need for C-Test generation strategies that deviate
from the commonly-used, static one. We then closer inspect contemporary LLMs, finding
multiple reasons why they are not well-suited for C-Test generation, and finally, discuss
two approaches that we have developed over the course of this thesis.

3.1 Motivation

Despite their advantages over cloze tests and other gap filling formats, a major shortcoming
of C-Tests is the static generation strategy that turns every second half (rounded up) of
every second word into a gap. Using this strategy as the primary means to automatically
generate C-Tests leads to two issues that need to be addressed. First, there still remains
a chance that the resulting gaps are ambiguous. This is especially the case in compound
words such as “grandmother” (cf. Table 3.1), where the fixed gap size of the static
generation strategy results in the hint “grand”, leading to an ambiguous gap. Second, the
fixed placement of gaps results in C-Tests that are solely dependent on the input text. In
other words, the difficulty of a C-Test can only be controlled by the choice of input text, as
each input text is turned into exactly one C-Test with a specific difficulty. Ultimately, this
ties each input text to a specific difficulty, putting an implicit restriction on the number
of input texts that are well-suited for learners of a specific proficiency. In cases where
it would be desirable to use a specific input text (for instance, one that was discussed
in class), using the static generation strategy is likely to result in a C-Test that needs
to be adapted post-generation. However, manually adjusting C-Tests towards a specific
difficulty is very challenging due to interdependencies between gaps (Beinborn, 2016);
i.e., how changing the size or placement of a single gap propagates to the surrounding
gaps, changing their difficulty as well.

Although early works suggest that there may be various benefits connected to deviating
from the static generation strategy, this line of research has not received much attention.
For instance, Cleary (1988) propose X-Tests that place the gap at the beginning of a
word instead of at the end and achieve a substantial increase in difficulty as well as
discriminative power (see, e.g., Lord and Novick 1968). Kamimoto (1993) and Farhady
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and Jamali (2006) come to a similar conclusion by simply varying the gap size (although
they do so by hand). Finally, Laufer and Nation (1999) show how manually modifying
the gap placement allows teachers to generate exercises of a specific difficulty.

Developing automated generation strategies that deviate from the static generation
strategy thus has the potential to substantially ease the work of teachers, allowing them
to tailor C-Tests towards their specific needs. Moreover, automatically generating C-Tests
would further increase their potential to be used more efficiently in self-directed learning
scenarios.

Word Hint Gap Difficulty
grandmother grand mother high
grandmother grandm other low

Table 3.1: Although C-Tests greatly reduce the occurrence of ambiguous gaps, there
is no guarantee that they will not occur. For instance, removing the second
half of the word “grandmother” results in the hint “grand”—an ambiguous
gap with “mother” and “father” as possible solutions. This problem could be
easily solved by deviating from the static generation strategy and showing
“grandm” as a hint instead.

3.2 Requirements

Our goal is to develop novel C-Test generation strategies that are useful for teachers
but can also be utilized in self-directed learning scenarios. For this, we identify two key
requirements which novel strategies need to satisfy in order to generate C-Tests that are
useful for both scenarios.

First, novel generation strategies should inherently be able to generate C-Tests of a
specific target difficulty τ . This is important to ensure that learning progresses optimally
by allowing teachers to generate exercises that lie within a learner’s zone of proximal
development (Vygotsky, 1978). As shown in Figure 3.1, generating exercises that are
too easy may lead to boredom, while exercises that are too hard may lead to frustration
(indicated by the red zones). To keep the learner motivated, it is hence important to
generate exercises that are neither of both (i.e., lie within the green zone).

Second, generation strategies should be capable of complying to constraints that are
requested by teachers or learners. This would ensure that the generated C-Tests fit their
curriculum, for instance, by explicitly turning newly learned vocabulary into gaps or
reducing (increasing) the number or size of gaps depending on the learner’s proficiency.
While generation strategies that fulfil this requirement would greatly empower teachers
and learners, the mathematical guarantees they need to provide pose a substantial chal-
lenge. This is also the main reason why contemporary state-of-the-art LLMs are not well
suited for C-Test generation: they still struggle with hallucination and alignment (Russell,
2019). Figure 3.2 shows an example where the model’s output is misaligned with the
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user’s instruction.1 It is apparent that the model is incapable of identifying and fulfilling
all hard constraints posed by the user; namely, that the generated exercise must contain
three sentences and ten gaps. Consequently, a teacher would still have to manually place
additional gaps in the exercise to achieve their goal.

Figure 3.2: GPT-3.5 failing to comply with all instructions provided by the user.

Figure 3.1: The zone of proximal develop-
ment (green). Generated C-Tests
should be neither too hard nor
too easy (red) to keep learner mo-
tivation high.

In this thesis, we thus develop novel C-Test
generation strategies that adhere to both
requirements. They are inherently capable
of generating C-Tests of varying difficulty
and at the same time, are mathematically
guaranteed to fulfil all constraints posed
by teachers and learners.

3.3 C-Test Generation

Although a large number of works explore
the task of exercise generation, many focus
on exercise types different from C-Tests.
Especially the increasing capability of gen-
erative models has instead stoked various
works to explore the task of question gen-
eration for reading comprehension exer-
cises (Zou et al., 2022; Perkoff et al., 2023;
Xiao et al., 2023). However, not many are
concerned with assessing the difficulty—let
alone controlling the difficulty. Moreover, many works conduct evaluation with NLG-
focused metrics such as ROUGE (Lin, 2004) or n-gram overlaps (Rathod et al., 2022)
that make it difficult to assess educational value. For reading comprehension exercises,

1Date of conversation with ChatGPT (GPT-3.5): 23.02.2024
URL: https://chat.openai.com/share/2ca36950-30d1-4991-ad73-a32d076ff98a
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we find that only Uto et al. (2023) and Laverghetta Jr. and Licato (2023) consider
exercise difficulty and actual human evaluation. Fortunately, we find a different trend
in the second prominent research area concerning exercise generation; namely, cloze
tests. Here, most works focus on selecting suited distractors—in a way that allows
teachers to explicitly control the difficulty of the generated cloze tests (Yeung et al.,
2019; Gao et al., 2020; Panda et al., 2022) or to practice a specific competence such as
grammar (Yoshimi et al., 2023). Finally, Felice et al. (2022) propose a new method to
fine-tune ELECTRA (Clark et al., 2020) for generating open cloze tests and find that
their model performs mostly well but also suffers from structural problems. For C-Tests,
we are the first to develop automated generation strategies with a controllable difficulty
and thus, provide a task formalization in the following.

3.3.1 Task Definition

Following our definitions from §6.3 and §7.3, we define the task of C-Test generation as
consisting of the following inputs:

T : the input text used as the basis.

τ : the target difficulty of our C-Test (i.e., the true score).

m : the number of gaps to be placed in the C-Test.

We further define the set G ⊂ T that includes all words w that can be turned into a
gap g with m < n = |G|.2 Following CTT and Equation (2.8), we define the true score
τ ∈ [0, 1] as:

τ = 1
m

m∑
i=1

error(gi), (3.1)

where gi denotes the i-th gap of the C-Test. The function error(·) indicates if the i-th
gap was filled-out correctly and returns a binary value (0 for correct and 1 for incorrect).
Consequently, smaller values of τ relate to easier, and larger values to more difficult
C-Tests. As the actual error(·) function is learner dependent and not known during
generation, we approximate it using a gap difficulty prediction model fθ : Rk 7→ [0, 1] with
parameters θ that computes the error rate for each gap, represented as a k-dimensional,
real number vector x.3 We can now define the estimated difficulty τ̂ for any selection of
m gaps g ∈ G:

τ̂ = 1
m

m∑
i=1

fθ(gi), (3.2)

and say that given fθ, any C-Test that has minimal distance between the estimated and
the target difficulties is optimal. Hence, our optimization objective is:

min |τ − τ̂ |. (3.3)
2Note, that G excludes words that contain any numbers or punctuation and have less than two characters;
i.e., words that either violate the C-Test creation paradigm by providing no hint or are likely to result
in gaps unrelated to language proficiency (e.g., the mention of years such as “1642”).

3Depending on the used model, each of the k dimensions either present a feature or an embedding
dimension. For instance, the XGB model used in Chapter 7 uses k = 61 features while the BERT
model in the masked-regression setup uses k = 512, corresponding to the embedding dimension.
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Gap placement. So far, τ̂ only includes gaps that have already been selected. To model
the task of optimally placing them across all possible gaps G with |G| = n > m, we now
introduce binary decision variables:

min
bi∈{0,1}

|τ − 1
m

n∑
i=1

bi fθ(gi)| (3.4)

s.t.
n∑
i=1

bi = m, (3.5)

where bi denotes a binary decision variable for a selected gap at the i-th word.4 The
constraint ensures that the resulting C-Test has exactly m gaps.

Gap size. In addition to the placement, each gap can assume a different size. We hence
extend our objective with additional binary decision variables si,j for the gap size where
li denotes the length of the i-th word with j ∈ {1, . . . , li−1}. Our final model comprising
gap placement and gap size is then:

min
si,j ,bi∈{0,1}

|τ − 1
m

n∑
i=1

bi

li−1∑
j=1

si,jfθ(gi,j)| (3.6)

s.t.
n∑
i=1

bi = m, (3.7)

li−1∑
j=1

si,j = 1, (3.8)

where gi,j denotes a gap at the i-th word with size j, for all words i ∈ {1, . . . , n}. Our
binary decision variables for the gap placement (bi) and size (si,j) have one constraint
each to ensure that the resulting C-Test consists of exactly m gaps (Equation (3.7)) and
that each gap has exactly one specific gap size (Equation (3.8)).

3.3.2 Methods

Existing works only consider the manual manipulation of C-Test difficulty (Cleary, 1988;
Kamimoto, 1993; Laufer and Nation, 1999; Grotjahn, 2006). Automatically generating C-
Tests that suit a target difficulty would substantially increase their versatility—allowing
any text to be used as an input—but comes with substantial challenges as C-Test
difficulty is influenced by various factors (Beinborn, 2016). In this thesis, we devise
two fundamentally different C-Test generation methods which we will outline in the
following. Chapter 6 introduces two generation strategies that either manipulate the
gap size or gap placement of C-Tests (but not both). We will refer to them as locally
optimal approaches, as the manipulation takes place iteratively. In Chapter 7, we devise
an approach based on constrained optimization methods that are capable of complying
with hard constraints. We will refer to them as globally optimal approaches, as they
provide rigorous mathematical guarantees for optimization.

4Note, that i now ranges from 1 to n, with n denoting the number of all possible gaps and m the target
number of gaps.
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Locally optimal approaches. A key concern of our work in Chapter 6 is the large
number of possible combinations between gap size and placement during generation.
Only considering all possible gap placements without varying the gap size already results
in: (

n

m

)
= n!
m!(n−m)! (3.9)

C-Tests for placing m gaps across n words. Consequently, simply generating every
possible C-Test out of T and selecting the one with minimal distance to τ is infeasible.
Instead, we propose to partially rely upon the static generation strategy and develop two
iterative approaches that either manipulate the gap placement (SEL) or size (SIZE):

SEL first estimates the difficulty τ̂i of all n = 40 candidate gaps gi ∈ G using an SVM
trained with the features defined by Beinborn (2016). All gaps are then divided
into two sets G≤τ : ∀τ̂i ≤ τ and G>τ : ∀τ̂i > τ ; that is, sets that only contain gaps gi
that are easier or harder compared to the target difficulty τ . G≤τ and G>τ are then
both sorted according to |τ − τ̂i| (i.e., their distance to τ). Finally, we generate the
C-Test by selecting the gaps closest to τ from each set in an alternating manner,
until the final number of gaps m = 20 have been selected.

SIZE also starts with estimating the gap difficulty of all default gaps using the same
model as in SEL. We then utilize two SVMs that we separately train to predict the
relative change in difficulty if the gap size is increased or decreased by one character.
For training these SVMs, we conduct an ablation study, identifying six features that
minimize compute time while maximizing performance. To provide both SVMs with
sufficient training data, we utilize synthetic data that was generated by estimating
the difficulty of gaps with varying gap sizes using the full feature model. Using
these models as our estimators, we then increase or decrease the gap size for each
gap until all gaps have a minimal distance to the target difficulty τ .

Note, that both strategies utilize parts of the static generation strategy, but in different
manner. SEL only varies the gap placement, keeping the gap size static and SIZE only
varies the gap size with a static gap placement. Although we evaluate additional models
and features for both strategies in subsequent work (cf. §7.8, D1.2), we find that the
models trained in Chapter 6 perform better.

Globally optimal approaches. One shortcoming of our work in Chapter 6 is the pre-
defined restriction of the generated C-Test in terms of gap size (SEL) or gap placement
(SIZE). This discards a large number of C-Tests as potential solutions. Moreover, itera-
tively selecting gaps or adjusting their size does not take any global interdependencies
between gaps into account, leading to locally optimal solutions. In Chapter 7, we hence
propose to tackle C-Test generation as a mixed-integer programming (MIP) problem
which results in three advantages over existing methods.5 First, we can now make use of
well-established solving methods that efficiently remove whole sets of unsuitable C-Tests
while finding a provably optimal solution (Schrijver, 1986). This allows us to consider
all possible C-Tests with a feasible run time (∼48.6 seconds). Second, we can directly

5For an introduction into MIP, we refer the interested reader to §7.8.A.2.
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integrate trained models into the optimization problem, providing an end-to-end solution
that achieves global optimality. Third, the use of MIP provides mathematical guarantees
that the resulting C-Test adheres to all constraints that are defined by a teacher.

A key contribution of this work is the formalization of our model fθ that is comprised of
features proposed by Beinborn (2016) and Lee et al. (2020). This results in 61-dimensional
vector x for a single gap gi,j , where each dimension k relates to a specific feature. Overall,
we identify three types of features. First, 51 features that are not affected by a change in
gap size si,j or gap placement bi. We model these as equality constraints:

gi,j,k = ci,j,k, (3.10)

where ci,j,k is the k-th pre-computed feature value for gap gi,j,k. Second, six features that
only change according to the gap size si,j which we model as an additional constraint:

gi,j,k = si · Ci,k, (3.11)

where si ∈ Bli−1 is the 1-hot vector (of length li − 1) representing the gap size decision
variables (with 1 being at the j-th position) for gap gi. The matrix Ci,k ∈ Rli−1×k

represents all possible values k ∈ U can take for all possible gap sizes j ∈ {1, . . . , li − 1}
at gap gi with U = {49, 50, 56, 57, 58, 59}; i.e., all our features that depend on the gap
size. Third, four features that depend on the gap placement. In contrast to the gap size
features, all placement features depend on the placement of the other gaps. We thus
need to model these dependencies into our constraints:

gi,j,51 = max(b ·V), (3.12)
gi,j,52 =

∑
h∈Si

bh, (3.13)

gi,j,53 =
i−1∑
h=1

bh, (3.14)

gi,j,54 =
∑

h∈Si,h<i

bh, (3.15)

for all i, j ∈ {1, . . . , n} where Si denotes the set of all words in the sentence containing
gi. The vector b denotes all placement decision variables bi and V the n× n matrix of
binary values vi,j with:

vi,j =
{

1, if wi = wj ,

0, otherwise,

for all i, j ∈ {1, . . . , n} where i 6= j. A full list of features is provided in §7.8.B.1.

3.4 Contributions

We are the first to develop methods that automatically generate C-Tests of varying
difficulty from a single input text. This is a substantial contribution which allows
teachers and self-directed learners to choose the input text based on their curriculum
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or personal interest and not based on the difficulty of the resulting C-Test (as with
the static generation strategy). In total, we devise three novel generation strategies in
two works. In Chapter 6, we propose two locally optimal generation strategies that
either modify the gap size or placement. To make these strategies computationally
feasible, we conduct ablation studies and identify a small subset of features that are
used to train efficient gap difficulty prediction models. Our user study shows that both
generation strategies succeed in controlling the difficulty of the resulting C-Test. In
our evaluation with synthetic data we identify the restriction to either modify the gap
size or placement (but not both) as one of the key limitations of both locally optimal
generation strategies. In Chapter 7, we tackle this limitation by devising a globally
optimal generation strategy that is capable of modifying gap size and placement at once.
We further find that contemporary LLMs such as GPT-4 (OpenAI, 2023) struggle to fulfill
hard constraints (e.g., fail to always generate the correct number of gaps) which motivates
us to utilize constrained optimization methods. The resulting mixed-integer programming
formulation of our novel generation strategy provides mathematical guarantees to adhere
to hard constraints posed by teachers. Our user study shows that our proposed method
significantly outperforms two of the baseline strategies (based on gap placement and
GPT-4); and performs on-par with the third (based on gap size). Finally, we devise and
evaluate additional formulations of the optimization objective, substantially reducing
the run time of the solver from 22.5 to 3.1 seconds. Both works also make substantial
code and data contributions—most notably 48 C-Tests consisting of 20 gaps each and
annotated with their respective error rate—published under open source licenses.
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Chapter 4

Adaptive C-Test Selection

In the previous chapter, we have introduced methods that allow us to automatically
generate C-Tests that suit a learner’s proficiency. In the context of exercise generation,
we have identified two requirements that are important. First, methods should be capable
of generating exercises that adhere to a target difficulty and second, they should adhere
to constraints posed by teachers. We have discussed how both requirements are necessary
to alleviate the work of teachers and to empower self-directed learning. Finally, our
evaluation studies showed that all developed methods are advantageous over the static
generation strategy. This summarizes the first major contribution of this thesis, which
paves the way towards building more open educational resources through automated
generation methods. The second major contribution focuses on two aspects that have
received less attention in this thesis so far. First, adapting models to an individual learner
or a specific group of learners and second, selecting the most appropriate C-Test out of a
pool of already tried and tested C-Tests.

4.1 Motivation

So far, our C-Test generation strategies rely on models that assess the general C-Test
difficulty regardless of the individual learner; or in other words, utilize the mean error rate
E from all learner responses as shown in Equation (2.8). This may be fine in scenarios
where a teacher (or a system) has enough knowledge to assess a learner’s proficiency,
allowing them to consider it during exercise selection or generation. But this is not
always the case, especially in self-directed learning scenarios. Imagine a learner who has
already completed an introductory course and wants to keep practicing on their own
using an intelligent tutoring system (ITS; see, e.g.,Murray 1999). Without asking the
learner about their previous knowledge, the system has no way besides random selection
to suggest exercises. This may be fine in the beginning, however, continuously doing so
would substantially hurt the learning process and demotivate learners due to exercises
that are too easy or too difficult. To provide better suggestions, the system has to
consider the learner’s feedback (e.g., the errors they made on a previously suggested
exercise) and adapt its suggestions towards it. It is important to note that this problem
does not only arise in the beginning—as learner proficiency increases, the system has to
further adapt its suggestions to keep the learner engaged (Illeris, 2003). This brings us to
interactive machine learning (IML; Fails and Olsen 2003) where the model is iteratively
updated with incoming feedback from a human.
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Figure 4.1: Interactive machine learning (IML). In contrast to classical machine learning
where a model is only trained once, IML considers a continuous learning
scenario where a model is updated with newly provided human feedback.

Figure 4.1 shows the typical IML cycle where a system iteratively updates its internal ma-
chine learning model with incoming human feedback. One such example are recommender
systems (cf., Aggarwal 2016 for an introduction) where a user is presented with a list of
items to choose from (ranked according to the model’s estimates). By choosing the item
that best fits their preference, the user provides feedback which is then used to retrain
the model. Over the years, IML has been researched across a wide range of scenarios
that involve human interaction and has benefited from research in related areas such as
continual learning, preference learning, and reinforcement learning (Mosqueira-Rey et al.,
2023). A key challenge when deploying IML in educational scenarios is the inherent
competency of the human. In recommender systems, users are typically aware of their
likings to make choices that suit their needs. In contrast, the goal in educational scenarios
is to provide learners with exercises that lead to an optimal learning process. Asking
learners to assess the usefulness of an exercise themselves (e.g., by choosing from a list of
exercises) is likely to result in suboptimal choices as they are not experts (i.e., teachers).
A more reliable way to obtain feedback is through a learner’s performance on a selected
exercise. This requires us to devise data efficient methods, as learners cannot be asked to
solve an arbitrary number of exercises just for adapting the model towards their needs.

4.2 Data Efficiency

To improve data efficiency, we can either use fewer training instances, or make better
use of available instances. Despite recent works that emphasize the importance of data
quality (Paullada et al., 2021; Lee et al., 2022b; Kreutzer et al., 2022), data work often
remains a less popular research area (Sambasivan et al., 2021). Overall, we identify three
lines of research that aim to improve data efficiency in different ways (Treviso et al.,
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2023): filtering, curriculum learning, and active learning.1

4.2.1 Filtering

Improving data quality by filtering out low-quality instances can boost performance
while reducing training costs during pre-training and fine-tuning.2 Especially for lim-
ited compute budgets, a careful selection of instances is important to achieve optimal
performance (Hoffmann et al., 2022). Filtering approaches such as deduplication have
been shown to be very effective for pre-training (Lee et al., 2022b). Finally, filtering can
also mean removing instances that do not contribute much to model training. One such
example is the SNLI dataset (Bowman et al., 2015), for which Mishra and Sachdeva
(2020) identify a subset of ∼2% that results in a similar fine-tuning performances as to
using the full corpus.

4.2.2 Curriculum Learning

Whereas filtering relates to a static removal of data, curriculum learning follows a more
dynamic process by identifying data orderings that reduce the number of training steps
to achieve a target performance (Elman, 1993; Bengio et al., 2009). Key challenges in
curriculum learning are quantifying the instance difficulty (Swayamdipta et al., 2020;
Baldock et al., 2021; Ethayarajh et al., 2022) and finding a good pacing, i.e., when to
progress to more difficult instances to avoid wasting compute on “easy” instances (Kumar
et al., 2010). Despite various works that devise new difficulty estimates and pacing
strategies (Kocmi and Bojar, 2017; Graves et al., 2017; Platanios et al., 2019) selecting
the best one for a specific task remains difficult (Dodge et al., 2020).

4.2.3 Active Learning

Finding that instances and their ordering contribute differently towards model perfor-
mance raises the question why one should annotate all instances—including those with
little or no contribution—in the first place. This brings us to active learning, the third
and central line of research for this chapter. Active learning aims to effectively reduce
annotation cost and the amount of necessary training data by only labeling instances
that contribute most towards improving a model’s performance (Lewis and Gale, 1994;
Settles, 2012). This is by no means easy, as the usefulness of instances needs to be
estimated before annotation; i.e., without knowing the ground truth.3 Many works resort

1Note, that the term active learning also exists as a teaching paradigm where the goal is to actively
involve learners (Bonwell et al., 1991). In this thesis, we use this term to exclusively refer to the
machine learning paradigm.

2Here, we focus on unlabeled data or datasets that have already been cleaned. For approaches that
tackle erroneously labeled instances, we refer to Klie et al. (2024).

3This is a key difference to curriculum learning that relies upon knowing the ground truth (which
is not necessarily the same as a label). One example is self-supervised learning that utilizes the
next word as a ground truth (hence, requiring no label) and for which curriculum learning has been
applied (Nagatsuka et al., 2021).
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to estimating the model uncertainty—assuming that labeling instances with the highest
uncertainty is most helpful (Lewis and Gale, 1994; Tang et al., 2002; Gal et al., 2017;
Yuan et al., 2020) and instance representativeness—to maximize diversity of sampled
instances while avoiding outliers (Bodó et al., 2011; Sener and Savarese, 2018); or a
combination of both criteria (Kirsch et al., 2019; Ash et al., 2020; Margatina et al.,
2021).

Advantages. Following the compelling promise of efficient model training and reduced
annotation costs, works have studied and successfully employed active learning in various
areas such as MT (Liu et al., 2018), entity linking (Klie et al., 2020), and coreference
resolution (Li et al., 2020; Yuan et al., 2022). Active learning has also been shown to
be helpful across different training paradigms and model architectures (Zhang et al.,
2022). For instance, Ein-Dor et al. (2020) study various active learning strategies across
different text classification tasks using BERT (Devlin et al., 2019). Su et al. (2023) even
show how active learning can improve performance for in-context learning (ICL; Radford
et al. 2019). Especially in domains such as education and language learning that are
constantly challenged by privacy concerns and proprietary datasets (Poesio et al., 2013;
Lyding et al., 2022) active learning can hence provide a compelling solution.

Shortcomings. Despite all advantages, various issues remain such as the correct choice
of model, the hyperparameters, and stopping criterion (Lowell et al., 2019; Margatina
and Aletras, 2023). Works have further found that active learning can be prone to
selection biases and may favor outliers (Cortes et al., 2008; Karamcheti et al., 2021;
Snijders et al., 2023); or that it may even involuntarily increase the annotation cost by
primarily selecting instances that are “difficult” to annotate (Settles et al., 2008; Lee
et al., 2022a). All these issues can be addressed with the development of new methods
that are outlier-aware (Kirsch et al., 2021) and by adapting existing methods to new
models (Margatina et al., 2022). However, a fundamental challenge that prevents the
deployment of active learning in interactive scenarios is the assumption of an omnipresent
and omniscient oracle (i.e., human annotator) (Kottke et al., 2017; Settles, 2009). As we
will discuss in the next section, the main issue here is not assuming that the oracle is
omnipresent and omniscient. Especially the latter has been addressed in various efforts
to adapt active learning to crowdsourcing by modelling noisy labels (Yan et al., 2016;
Zhang and Chaudhuri, 2015; Lin et al., 2016; Baumler et al., 2023). The main issue is
reducing humans to the role of a mere labeling oracle (Amershi et al., 2014).

4.3 Active Learning for Interactive Scenarios

In annotation scenarios, humans assume the role of an labeler with an explicit incentive
to label instances. Moreover, they are intrinsically motivated to annotate as they receive
some kind of reward (e.g., money or data). This is completely different in interactive
scenarios where humans are users of a system with an incentive that is not labeling.
Take for instance recommender systems, where the user’s incentive is to receive the best
possible recommendation of a product. Although the system may be adapted interactively
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with a user’s feedback, its primary goal remains to make suggestions that satisfy the user’s
goal. Same goes for the educational domain. For instance, an ITS should aim to select
the exercises that maximize a learner’s progress (Sottilare et al., 2017). This however
leads to the issue that the selected instances may not be the ones that substantially
improve the system and moreover, it may even be reasonable to select instances where
a system is highly certain (i.e., the exact opposite of active learning). Consequently,
it is highly likely that the user’s feedback is not very useful which slows (or may even
halt) the system’s improvement. In this thesis, we tackle this issue by conjoining active
learning and interactive scenarios; devising methods that jointly optimize model and user
objective.

4.3.1 Formalization

We first formalize both objectives in the context of learner adaptive exercise selection.
Let U by the pool of unlabeled exercises. At each iteration i, we select an exercise xi ∈ U
using a model fθi−1 and query it to a learner vi−1. The learner vi−1 then solves the
exercise, improving their proficiency (resulting in vi for the next iteration) and providing
a respective label yi (i.e., their performance on exercise xi). The resulting exercise-label
pair (xi, yi) is added to the set of labeled exercises L and xi is removed from U . Finally,
we train (or update) our model fθi

using L.

Model objective. Following the active learning paradigm, the model’s goal is to select
exercises that would maximize its predictive performance if labeled. We thus define
model objective smodel as:

smodel(U , fθi−1 , vi−1) = arg max
x∈U

U(x, fθi−1), (4.1)

where U : (x, fθi−1) 7→ [0, 1] is a function that estimates the usefulness of x for improving
fθi−1 ; for instance, the maximum entropy (Shannon, 1948) in the case of multi-class
uncertainty sampling (Lewis and Gale, 1994).

User objective. In contrast to the model objective, the learner’s goal is to achieve the
best possible learning process; i.e., to receive instances that maximize their language
proficiency. We therefore define the user objective suser as:

suser(U , fθi−1 , vi−1) = arg max
x∈U

A(x, vi−1), (4.2)

where A : (x, vi−1) 7→ [0, 1] returns the degree of appropriateness of instance x for the
learner vi−1. We consider an exercise appropriate if it is neither too easy nor too difficult,
as this maximizes the learner’s proficiency. A(·) can be quantified in various ways, for
instance via CTT (cf. §2.3) by measuring the error between the predicted label and the
learner’s demand (Lee et al., 2020).
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Model objective Joint objective User objective

Figure 4.2: Sampling objectives visualized within the zone of proximal development.
Green and red regions indicate exercises that are desirable or to be avoided,
respectively. The model objective (left; in blue) focuses on exercises from the
border region that presumably help the model to learn the borders well. In
contrast, the user objective (right; in green) requires exercises that suit the
learner well. In the joint objective (middle; in gold), we propose to sample
exercises that benefit both, model and user objective.

4.3.2 Jointly Optimizing Model and User Objectives

We have defined model and user objectives in a flexible manner which allows us to utilize
any arbitrary function for the usefulness U(·) and appropriateness A(·), respectively.
Although both objectives seem counteracting at first glance, the zone of proximal de-
velopment provides us with an intuitive explanation on how they are jointly optimized.
Figure 4.2 visualizes all sampling objectives in the zone of proximal development (Vy-
gotsky, 1978) with red and green indicating regions of exercises that are ill-suited and
well-suited, respectively. The goal of our model is to classify exercises into ill-suited and
well-suited ones; i.e., to learn the dashed borders that separate the red and green regions.
Consequently, sampling exercises from the border regions is most beneficial for the model
(left; in blue). In contrast, the goal of the learner is to receive exercises from within their
zone of proximal development; i.e., the green region (right; in green). In Chapter 9, we
show that it is possible to optimize both by sampling exercises from the intersecting
regions (middle; in gold).

4.3.3 Adaptive Exercise Selection

Finally, we discuss existing works that investigate methods for adaptive exercise selection
(or generation). Here, we focus on methods that are adaptive themselves; i.e., that are
capable of learning from a learner’s feedback. This is in stark contrast to systems that are
capable of providing learner adaptive suggestions but only based on a pre-defined set of
rules (or models); in other words, without any capability of automated adaptation (Baker,
2016; Essa et al., 2023; Kaur et al., 2023). Although such systems may somewhat alleviate
existing bottlenecks in second language acquisition and have been developed for various
exercise types (Haring et al., 2021; Heck and Meurers, 2022; Chan et al., 2022; Bitew
et al., 2023)—adapting them to specific learners or use cases requires substantial work.
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Figure 4.3: Efficient, adaptive exercise selection. We conjoin active learning (blue) and
leaner goals (green) to jointly optimize these seemingly counteracting goals
(gold). Figure adapted from Lee et al. (2020).

Devising methods that automatically adapt themselves to suit a leaner’s need is hence
essential to meet the increasing demand on language learning applications.

Apart from some early works that utilize interactively trained SVMs for adaptive test selec-
tion (Hoshino et al., 2010) or partially observable Markov decision processes (POMDPs)
to suggest actions in ITS (Chi et al., 2010; Rafferty et al., 2016); adaptive exercise
selection has only gained more attention recently (Truong, 2016). For instance, Heck and
Meurers (2023) investigate the use of learning analytics (Siemens and Long, 2011) to
dynamically generate personalized exercises. Cui and Sachan (2023) propose to a system
that keeps track of a learner’s progress using an LSTM (Hochreiter and Schmidhuber,
1997) for deep knowledge tracing (Corbett and Anderson, 1994; Piech et al., 2015) and a
BART (Lewis et al., 2020) model to generate vocabulary training exercises (Settles et al.,
2018).

C-Test selection. With respect to C-Tests, we identify three works that propose adaptive
selection methods. Settles et al. (2020) propose an IRT-based method to adaptively select
various kinds of exercises; comprising audio and textual yes or no questions, C-Tests,
dictation exercises, and speech exercises. They train two regression models to predict
exercise difficulty on a CEFR-scale (Council of Europe, 2001) and find considerable
performance in terms of ranking correlation. McCarthy et al. (2021) improve this
model even further by introducing additional BERT features to address the cold start
problem (Schein et al., 2002).4 Most notable in both works is the large amount of
exercises that are used for evaluation, however, due to proprietary restrictions, neither
code nor data is publicly available. Finally, we propose an adaptive selection method
using CTT-based, simulated learners in Chapter 9. Our experiments show that jointly
optimizing model and user objective leads to exercises that optimally train the model

4The cold start problem comes from the area of recommender systems and refers to the scenario when
no (or only little) data is available for “warming up” (i.e., training) a recommender model. Utilizing
heuristics or pre-trained models until a sufficient amount of data is available, is one way to address
this problem.
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(compared to uncertainty sampling) and at the same time, fits the learner’s proficiency.
Figure 4.3 shows an overview of our proposed system.

4.4 Contributions

We define adaptive C-Test selection as a task complementary to C-Test generation which
can alleviate the work of teachers and empower self-directed learning. We then discuss
the benefits of IML for educational scenarios and identify data efficiency as a key property
for a successful deployment. Our survey across different fields related to data efficiency
allows us to single out active learning as the most promising research direction as it
substantially increases data efficiency and improves model training. We then propose
an adaptation of active learning to IML scenarios, by separately formalizing the model
objective, i.e., selecting instances that optimally train the model once labeled, and the
user objective, i.e., selecting instances that lead to an optimal learning process. This
marks the second key contribution of this thesis. Using this formalization, we then
devise a sampling strategy in Chapter 9 that selects C-Tests which jointly optimize both
objectives; resulting in exercises that efficiently inform the difficulty prediction model
about changes in a learner’s proficiency while ensuring that they are neither too easy nor
too difficult. Our experiments with simulated learners show that our joint optimization
approach yields significant improvements over optimizing each objective individually,
indicating that both objectives need to be considered in IML scenarios. We further make
substantial code and data contributions—most notably five different learner models and
the implementation of five different sampling strategies as well as four different learner
behaviors—published under open source licenses.

42



Chapter 5

Beyond CALL

In the first part of this thesis, we devised novel C-Test generation strategies that are
mathematically guaranteed to uphold any constraint that may be posed by teachers. In
the second part, we then investigated adaptive C-Test selection methods and found that
sampling C-Tests according to a joint optimization strategy benefits both, the learner and
the model. Especially the second contribution was made possible by shifting the focus
away from a solely model-centered perspective and more towards the human; effectively
operationalizing active learning for human-centered IML scenarios. In this chapter, we
will show how research areas beyond CALL can equally benefit from focusing more on the
human’s perspective. More specifically, we will outline two use cases in data acquisition
utilizing our insights from previous chapters. In our first use case, we will show how
we can utilize interactive data collection to alleviate the work of domain experts and at
the same time, collect highly domain specific dialogue data. In our second use case, we
will show how learning curricula (Kelly, 1977) can be used in data annotation studies to
implicitly train annotators and significantly reduce the annotation time.

5.1 Motivation

The lack of high quality training data and other open resources which we discussed in
Chapter 4 is not only an issue in educational research, but one that concerns the whole AI
research community. Although early works already identify and tackle data acquisition
as one of the key bottlenecks (Olson and Rueter, 1987; Cullen and Bryman, 1988), data
collection still remains challenging (Sambasivan et al., 2021). Especially the complexity of
annotation studies—that often involve multiple steps which can vastly change depending
on the underlying task, the annotators, and many other factors—makes data acquisition
difficult and error-prone. Unfortunately, alleviating the work of (human) annotators is
an aspect that receives less attention, even though annotators are the backbone of each
annotation study (Klie et al., 2024). Instead, various works propose to reduce annotation
costs by recruiting non-expert annotators such as crowd workers (Snow et al., 2008) or by
(semi-) automatically generating data (see, e.g., Bañón et al. 2020)—often at the expense
of annotation quality (Paullada et al., 2021; Kreutzer et al., 2022). Besides lowering
annotation quality, the quest for cheap data has also raised ethical issues (Shmueli
et al., 2021; Kummerfeld, 2021) and even allured crowd workers to utilize LLMs for
annotation (Veselovsky et al., 2023). This is a concerning development especially in the
face of model collapse; i.e., the forgetting caused by repeatedly training on automatically
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generated (i.e., synthetic) data (Shumailov et al., 2024). We propose that one sustainable
way to combat this trend is to make manual (expert) annotations more feasible—not by
simply reducing the payment but by easing the annotation process using our insights
from IML and CALL.

5.2 Interactive Data Collection

The lack of domain experts is one of the key bottlenecks that make data acquisition in
many areas difficult or very expensive. Nonetheless, building systems based on expert
knowledge can substantially ease the work of the very same experts, especially in areas
such as medicine where they have to face many stressful situations (Hummelsberger
et al., 2023). To avoid burdening experts with additional data collection work, one
solution is to implicitly collect data by integrating data collection into systems that
are already used by experts in their daily work. This shares some similarity to games
with a purpose (Von Ahn, 2006) which have been successfully deployed across various
data collection efforts (Chamberlain et al., 2013; Madge et al., 2019; Kicikoglu et al.,
2020). However, whereas games with a purpose are built in a bottom-up manner starting
from a specific annotation task, this is not possible in scenarios with already existing
workflows. Instead, expert scenarios require a top-down approach that considers the full
scope of their work and then identifies individual opportunities where systems can provide
assistance. Such a human-centered approach guarantees that experts who contribute the
data actually benefit from the system, resulting in usable AI (Xu, 2019).

Task-oriented dialogues in a factory environment. We demonstrate the effectiveness
of a human-centered, interactive data collection system in a use case with a highly
specific domain, namely, task-oriented dialogues that occur between workers in a factory.
Task-oriented dialogue processing is a use case where data is scarce and tedious to
annotate (Razumovskaia et al., 2022). Collecting dialogue data is even more difficult
in languages other than English and for very task-specific application domains where
only a small number of experts are sufficiently qualified to be involved (Sambasivan
et al., 2021). In such scenarios, we cannot ask crowd workers (Crowston, 2012) or deploy
expert annotation tasks with traditional annotation tools such as INCEpTION (Klie
et al., 2018), because that would require a substantial amount of time to annotate. To
alleviate the need for expert annotations in such scenarios, we propose a system that is
capable of collecting and annotating data on the fly. We showcase such a system (called
TexPrax) that further assists experts their work with a separate dashboard. Interactively
collecting data with TexPrax leads to four advantages over common annotation tools
and crowdsourcing. First, the users are the very domain experts that hold qualified
conversations in the target-domain. This allows us to directly collect the dialogue data,
instead of having to generate it semi-automatically or asking crowd workers who can only
provide limited expertise (Raghu et al., 2021). Second, employees have an immediate
benefit from annotating and improving the recommendation model that is integrated
in the dashboard. Third, they have full control over their own data which saves time
for NLP practitioners as it alleviates research data management. Finally, the use of an
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end-to-end encryption protocol ensures that only parties selected by the employees will
have access to the data, even if the server is breached.

TexPrax system

Milling Machine 
DMC 50H

Assembly
Barrels

Supply Storage 
(internal)

Supply Storage 
(external)

Lathe

Learning 
stations

Lean 
Machining

Heijunka
Board

Factory environment

Figure 5.1: Left: An overview of the TexPrax messaging system that is composed of
three main components; a chatbot that collects data, a messaging application
(client-side) that allows users to chat with each other, and a server that
collects and manages the data. Right: The data is then used to collect
information about a factory environment where workers have to document
errors that occur during work. An automated documentation of these errors
alleviates existing workflows of the employees. Figures adapted from Stangier
et al. (2022).

Figure 5.1 provides an overview of the TexPrax system (left) and the setup (right): several
workers in a factory environment consisting of multiple assembly lines. Generally, errors
that occur during work need to be documented within a dashboard manually (Müller
et al., 2021). Using TexPrax in this setting has a two-fold benefit. First, it accelerates
troubleshooting via a save and secure communication channel. Second, it automatically
identifies and documents occurring problems, their cause, and their solution. The chatbot
we implement further assists workers in their annotation by allowing them to provide
corrections, which we showcase in three separate data collection studies.

5.3 Annotator Training

Annotator training is a reliable way to improve data quality with benefits for experts
and crowd workers (Bayerl and Paul, 2011). Although it can substantially improve
inter-annotator agreement, a recent survey by Klie et al. (2024) finds that annotators
received training in only 18% of the cases and that almost all of them (except one)
concerned crowd workers. One reason for this may be that annotator training is tedious
to implement, especially for annotation studies that involve a complex annotation scheme.
For instance, in their effort to collect high quality argumentative data, Stab and Gurevych
(2014) undergo several rounds of training with their annotators, having to readjust their
annotation scheme and guideline multiple times. To ease annotator trainings, Tauchmann
et al. (2020) propose to systematically split the data into multiple batches of increasing
complexity. After each batch, the annotators are evaluated and low-performing annotators
are asked to either complete additional trainings, or filtered out. While this effectively
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Figure 5.2: Annotation curricula in a nutshell. We show that annotators who receive
instances for annotation according to a proper curriculum (right) require
significantly less time, compared to a random ordering (left).

reduces annotation cost and increases quality, their approach is limited to crowdsourcing
and moreover, still places a substantial burden on the study conductor.

Annotation curricula. Instead, we draw inspiration from traditional learning curric-
ula (Kelly, 1977) and propose to apply them to annotation scenarios by considering
annotators as learners. Our goal is to better guide annotators through the annotation
task by ordering instances according to their difficulty, ensuring that simple instances
are displayed first. As annotators gradually familiarize themselves with the task, we
move on to more difficult instances. A major advantage such annotation curricula is that
they are scalable to single or multi-batch scenarios and moreover, can be adapted to
suit the annotator’s needs (experts and crowd workers). We first formalize annotation
curricula as a flexible framework and then conduct experiments using existing datasets
and a carefully designed user study in which we investigate the following hypothesis:

Annotators that are presented with easy instances first and then with instances that
gradually increase in terms of annotation difficulty require less annotation time or have
improved annotation quality compared to annotators that receive the same instances in a
random order (cf. Figure 5.2).

Our findings show that annotation order actually matters and that utilizing annotation
curricula can significantly reduce annotation time.

5.4 Contributions

We explore possibilities of transferring our previous findings from Chapter 4 to scenarios
beyond CALL. In Chapter 10, we showcase how interactive approaches can be implemented
in real-world use cases by implementing a system that interactively collects an annotates
dialogue data. We further point out important steps in the development of such systems
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concerning data privacy and safety regulations such as the GDPR (EU, 2016). Using
these steps, we received full clearance by the ethics committee and staff council of TU
Darmstadt. Finally, we contribute a German dataset consisting of 202 dialogues, 591
turns, and 1,027 annotated sentences collected in a highly specific domain (manufacturing
at an assembly line in a factory).

In Chapter 11, we present annotation curricula as a novel paradigm for data anno-
tation with several contributions. First, we provide a means to increase annotation
efficiency with a low computational overhead, when using heuristic methods such as the
BERTScore (Zhang et al., 2020). Second, we do not observe any drawbacks caused by
ordering instances according to their annotation difficulty; all strategies outperform a
random ordering. Finally, our work has raised increasing awareness among the community
to consider instance ordering (Scholman et al., 2022; Eckman et al., 2024).
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Abstract
We propose two novel manipulation strategies
for increasing and decreasing the difficulty of
C-tests automatically. This is a crucial step
towards generating learner-adaptive exercises
for self-directed language learning and prepar-
ing language assessment tests. To reach the
desired difficulty level, we manipulate the size
and the distribution of gaps based on abso-
lute and relative gap difficulty predictions. We
evaluate our approach in corpus-based experi-
ments and in a user study with 60 participants.
We find that both strategies are able to generate
C-tests with the desired difficulty level.

1 Introduction

Learning languages is of utmost importance in an
international society and formulated as a major po-
litical goal by institutions such as the European
Council, who called for action to “teaching at least
two foreign languages” (EC, 2002, p. 20). But also
beyond Europe, there is a huge demand for lan-
guage learning worldwide due to increasing global-
ization, digital communication, and migration.

Among multiple different learning activities re-
quired for effective language learning, we study
one particular type of exercise in this paper: C-
tests are a special type of cloze test in which the
second half of every second word in a given text is
replaced by a gap (Klein-Braley and Raatz, 1982).
Figure 1 (a) shows an example. To provide context,
the first and last sentences of the text do not contain
any gaps. C-tests rely on the reduced redundancy
principle (Spolsky, 1969) arguing that a language
typically employs more linguistic information than
theoretically necessary to communicate unambigu-
ously. Proficient speakers intuitively understand an
utterance even if the level of redundancy is reduced
(e.g., when replacing a word’s suffix with a gap),
whereas learners typically rely on the redundant
signal to extrapolate the meaning of an utterance.

Besides general vocabulary knowledge, C-tests
require orthographic, morphologic, syntactic, and
semantic competencies (Chapelle, 1994) to cor-
rectly fill in all gaps, which make them a frequently
used tool for language assessment (e.g., placement
tests). Given that C-tests can be easily generated
automatically by introducing gaps into an arbitrary
text and that there is usually only a single correct
answer per gap given its context, C-tests are also
relevant for self-directed language learning and
massive open online courses (MOOC), where large-
scale personalized exercise generation is necessary.

A crucial question for such tasks is predicting
and manipulating the difficulty of a C-test. For
language assessment, it is important to generate
C-tests with a certain target difficulty to allow for
comparison across multiple assessments. For self-
directed language learning and MOOCs, it is impor-
tant to adapt the difficulty to the learner’s current
skill level, as an exercise should be neither too easy
nor too hard so as to maximize the learning ef-
fect and avoid boredom and frustration (Vygotsky,
1978). Automatic difficulty prediction of C-tests
is hard, even for humans, which is why there have
been many attempts to theoretically explain C-test
difficulty (e.g., Sigott, 1995) and to model features
used in machine learning systems for automatic
difficulty prediction (e.g., Beinborn et al., 2014).

While state-of-the-art systems produce good pre-
diction results compared to humans (Beinborn,
2016), there is yet no work on automatically ma-
nipulating the difficulty of C-tests. Instead, C-tests
are generated according to a fixed scheme and man-
ually post-edited by teachers, who might use the
predictions as guidance. But this procedure is ex-
tremely time-consuming for language assessment
and no option for large-scale self-directed learning.

In this paper, we propose and evaluate two strate-
gies for automatically changing the gaps of a C-test
in order to reach a given target difficulty. Our first
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Figure 1: C-tests with (a) standard gap scheme, (b) manipulated gap position, and (c) manipulated gap size

strategy varies the distribution of the gaps in the
underlying text and our second strategy learns to
decide to increase or decrease a gap in order to
make the test easier or more difficult. Our approach
breaks away from the previously fixed C-test cre-
ation scheme and explores new ways of motivating
learners by using texts they are interested in and
generating tests from them at the appropriate level
of difficulty. We evaluate our strategies both auto-
matically and in a user study with 60 participants.

2 Related Work

In language learning research, there is vast liter-
ature on cloze tests. For example, Taylor (1953)
studies the relation of cloze tests and readability. In
contrast to C-tests (Klein-Braley and Raatz, 1982),
cloze tests remove whole words to produce a gap
leading to more ambiguous solutions.

Chapelle and Abraham (1990) contrast four
types of cloze tests, including fixed-ratio cloze
tests replacing every ith word with a gap, rational
cloze tests that allow selecting the words to replace
according to the language trait that should be as-
sessed, multiple-choice tests, and C-tests. Similar
to our work, they conduct a user study and measure
the difficulty posed by the four test types. They
find that cloze tests replacing entire words with
a gap are more difficult than C-tests or multiple-
choice tests. In our work, we go beyond this by
not only varying between gaps spanning the entire
word (cloze test) or half of the word (C-test), but
also changing the size of the C-test gaps. Laufer
and Nation (1999) propose using C-tests to assess
vocabulary knowledge. To this end, they manually
construct C-tests with only a single gap, but use
larger gaps than half of the word’s letters. Our
work is different to these previous works, since
we test varying positions and sizes for C-test gaps
and, more importantly, we aim at manipulating
the difficulty of a C-test automatically by learning
to predict the difficulty of the gaps and how their
manipulation affects the difficulty.

Previous work on automatically controlling and
manipulating test difficulty has largely focused on
multiple-choice tests by generating appropriate dis-
tractors (i.e., incorrect solutions). Wojatzki et al.
(2016) avoid ambiguity of their generated distrac-
tors, Hill and Simha (2016) fit them to the context,
and Perez and Cuadros (2017) consider multiple
languages. Further work by Zesch and Melamud
(2014), Beinborn (2016), and Lee and Luo (2016)
employ word difficulty, lexical substitution, and
the learner’s answer history to control distractor
difficulty.

For C-tests, Kamimoto (1993) and Sigott (2006)
study features of hand-crafted tests that influence
the difficulty, and Beinborn et al. (2014) and Bein-
born (2016) propose an automatic approach to es-
timate C-test difficulty, which we use as a starting
point for our work.

Another related field of research in computer-
assisted language learning is readability assessment
and, subsequently, text simplification. There exists
ample research on predicting the reading difficulty
for various learner groups (Hancke et al., 2012;
Collins-Thompson, 2014; Pilán et al., 2014). A spe-
cific line of research focuses on reducing the read-
ing difficulty by text simplification (Chandrasekar
et al., 1996). By reducing complex texts or sen-
tences to simpler ones, more texts are made acces-
sible for less proficient learners. This is done either
on a word level by substituting difficult words with
easier ones (e.g., Kilgarriff et al., 2014) or on a
sentence level (Vajjala and Meurers, 2014). More
recent work also explores sequence-to-sequence
neural network architectures for this task (Nisioi
et al., 2017). Although the reading difficulty of a
text partly contributes to the overall exercise diffi-
culty of C-tests, there are many other factors with
a substantial influence (Sigott, 1995). In particu-
lar, we can generate many different C-tests from
the same text and thus reading difficulty and text
simplification alone are not sufficient to determine
and manipulate the difficulty of C-tests.
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Figure 2: Proposed system architecture

3 Task Overview

We define a C-test T = (u,w1, . . . , w2n, v,G) as a
tuple of left and right context u and v (typically one
sentence) enframing 2n words wi where n= |G| is
the number of gaps in the gap set G. In each gap
g=(i,`)∈ G, the last ` characters of word wi are
replaced by a blank for the learners to fill in. Klein-
Braley and Raatz (1982) propose the default gap
generation scheme DEF with G = {(2j, d |w2j |

2 e) |
1 ≤ j ≤ n} in order to trim the (larger) second
half of every second word. Single-letter words,
numerals, and punctuation are not counted as words
wi and thus never contain gaps. Figure 1 (a) shows
an example C-test generated with the DEF scheme.

A major limitation of DEF is that the difficulty
of a C-test is solely determined by the input text.
Most texts, however, yield a medium difficulty (cf.
section 6) and thus do not allow any adaptation
to beginners or advanced learners unless they are
manually postprocessed. In this paper, we there-
fore propose two strategies to manipulate the gap
set G in order to achieve a given target difficulty
τ ∈ [0, 1] ranging from small values for beginners
to high values for advanced learners. To estimate
the difficulty d(T ) = 1

|G|
∑

g∈G d(g) of a C-test T ,
we aggregate the predicted difficulty scores d(g) of
each gap. In section 4, we reproduce the system
by Beinborn (2016) modeling d(g) ≈ e(g) as the
estimated mean error rates e(g) per gap across mul-
tiple learners, and we conduct additional validation
experiments on a newly acquired dataset.

The core of our work is the manipulation of
the gap set G in order to minimize the difference
|d(T ) − τ | between the predicted test difficulty
d(T ) and the requested target difficulty τ . To this
end, we employ our difficulty prediction system for
validation and propose a new regression setup that
predicts the relative change of d(g) when manipu-
lating the size ` of a gap.

Figure 2 shows our system architecture: Based
on a text corpus, we generate C-tests for arbitrary
texts (e.g., according to the learner’s interests).

Then, we manipulate the difficulty of the generated
text by employing the difficulty prediction system
in order to reach the given target difficulty τ for a
learner (i.e., the estimated learner proficiency) to
provide neither too easy nor too hard tests.

4 C-Test Difficulty Prediction

Beinborn et al. (2014) and Beinborn (2016) re-
port state-of-the-art results for the C-test difficulty
prediction task. However, there is yet no open-
source implementation of their code and there is
little knowledge about the performance of newer
approaches. Therefore, we (1) conduct a reproduc-
tion study of Beinborn’s (2016) system, (2) evalu-
ate newer neural network architectures, and (3) val-
idate the results on a newly acquired dataset.

Reproduction study. We obtain the original soft-
ware and data from Beinborn (2016). This system
predicts the difficulty d(g) for each gap within a C-
test using a support vector machine (SVM; Vapnik,
1998) with 59 hand-crafted features. The proposed
features are motivated by four factors which are
deemed important for assessing the gap difficulty:
item dependency, candidate ambiguity, word dif-
ficulty, and text difficulty. We use the same data
(819 filled C-tests), metrics, and setup as Beinborn
(2016). That is, we perform leave-one-out cross
validation (LOOCV) and measure the Pearson cor-
relation ρ, the rooted mean squared error RMSE,
and the quadratic weighted kappa qwκ as reported
in the original work.

The left hand side of table 1 shows the results
of our reproduced SVM compared to the original
SVM results reported by Beinborn (2016). Even
though we reuse the same code as in their original
work, we observe small differences between our
reproduction and the previously reported scores.

We were able to trace these differences back to li-
braries and resources which have been updated and
thus changed over time. One example is Ubuntu’s
system dictionary, the American English dictionary
words (wamerican), on which the original system
relies. We experiment with different versions of
the dictionary between Ubuntu 14.04 (wamerican
v.7.1.1) and 18.04 (wamerican v.2018.04.16-1) and
observe differences of one or two percentage points.
As a best practice, we suggest to fix the versions of
all resources and avoid any system dependencies.

Neural architectures. We compare the system
with deep learning methods based on multi-layer
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Original data New data
Model ρ RMSE qwκ ρ RMSE qwκ

SVM (original) .50 .23 .44 – – –
SVM (reproduced) .49 .24 .47 .50 .21 .39
MLP .42 .25 .31 .41 .22 .25
BiLSTM .49 .24 .35 .39 .24 .27

Table 1: Results of the difficulty prediction approaches.
SVM (original) has been taken from Beinborn (2016)

perceptrons (MLP) and bi-directional long short-
term memory (BiLSTM) architectures, which are
able to capture non-linear feature dependencies.1

To cope for the non-deterministic behavior of
the neural networks, we repeat all experiments
ten times with different random weight initializa-
tions and report the averaged results (Reimers and
Gurevych, 2017). While the MLP is trained similar
as our reproduced SVM, the BiLSTM receives all
gaps of a C-test as sequential input. We hypoth-
esize that this sequence regression setup is better
suited to capture gaps interdependencies. As can
be seen from the table, the results of the neural
architectures are, however, consistently worse than
the SVM results. We analyze the RMSE on the train
and development sets and observe a low bias, but
a high variance. Thus, we conclude that although
neural architectures are able to perform well for
this task, they lack a sufficient amount of data to
generalize.

Experiments on new data. To validate the re-
sults and assess the robustness of the difficulty
prediction system, we have acquired a new C-test
dataset from our university’s language center. 803
participants of placement tests for English courses
solved five C-tests (from a pool of 53 different C-
tests) with 20 gaps each. Similar to the data used
by Beinborn (2016), we use the error rates e(g) for
each gap as the d(g) the methods should predict.

The right-hand side of table 1 shows the perfor-
mance of our SVM and the two neural methods.
The results indicate that the SVM setup is well-
suited for the difficulty prediction task and that it
successfully generalizes to new data.

Final model. We train our final SVM model on
all available data (i.e., the original and the new
data) and publish our source code and the trained
model on GitHub.2 Similar to Beinborn (2016), we

1Network parameters and a description of the tuning pro-
cess are provided in this paper’s appendix.

2https://github.com/UKPLab/
acl2019-ctest-difficulty-manipulation

Algorithm 1 Gap selection strategy (SEL)
1: procedure GAPSELECTION(T , τ )
2: GFULL ← {(i, d |wi|2

e | 1 ≤ i ≤ 2n}
3: GSEL ← ∅
4: while |GSEL| < n do
5: G≤τ ← {g ∈ GFULL | d(g) ≤ τ}
6: if |G≤τ | > 0 then
7: g∗ ← arg ming∈G≤τ |d(g)− τ |
8: GSEL ← GSEL ∪ {g∗}
9: GFULL ← GFULL \ {g∗}

10: G>τ ← {g ∈ GFULL | d(g) > τ}
11: if |G>τ | > 0 then
12: g∗ ← arg ming∈G>τ |d(g)− τ |
13: GSEL ← GSEL ∪ {g∗}
14: GFULL ← GFULL \ {g∗}
15: return GSEL

cannot openly publish our dataset due to copyright.

5 C-Test Difficulty Manipulation

Given a C-test T = (u,w1, . . . , w2n, v,G) and a
target difficulty τ , the goal of our manipulation
strategies is to find a gap set G such that d(T )
approximates τ . A naı̈ve way to achieve this goal
would be to generate C-tests for all texts in a large
corpus with the DEF scheme and use the one with
minimal |d(T )−τ |. However, most corpora tend to
yield texts of a limited difficulty range that only suit
a specific learner profile (cf. section 6). Another
drawback of the naı̈ve strategy is that it is difficult
to control for the topic of the underlying text and
in the worst case, the necessity to search through a
whole corpus for selecting a fitting C-test.

In contrast to the naı̈ve strategy, our proposed
manipulation strategies are designed to be used in
real time and manipulate any given C-test within 15
seconds at an acceptable quality.3 Both strategies
operate on a given text (e.g., on a topic a learner is
interested in) and manipulate its gap set G in order
to come close to the learner’s current language skill.
The first strategy varies the position of the gaps and
the second strategy learns to increase or decrease
the size of the gaps.

5.1 Gap Selection Strategy

The default C-test generation scheme DEF creates
a gap in every second word w2j , 1 ≤ j ≤ n.
The core idea of our first manipulation strategy
SEL is to distribute the n gaps differently among
the all 2n words in order to create gaps for eas-
ier or harder words than in the default generation
scheme. Therefore, we use the difficulty predic-

(licensed under the Apache License 2.0).
3On an Intel-i5 with 4 CPUs and 16 GB RAM.
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tion system to predict d(g) for any possible gap
g ∈ GFULL = {(i, d |wi|2 e) | 1 ≤ i ≤ 2n} (i.e.,
assuming a gap in all words rather than in every
second word). Then, we alternate between adding
gaps to the resultingGSEL that are easier and harder
than the preferred target difficulty τ , starting with
those having a minimal difference |d(g)− τ |.

Algorithm 1 shows this procedure in pseudocode
and figure 1 shows a C-test whose difficulty has
been increased with this strategy. Note that it has
selected gaps at corresponding rather than with,
and soothsayers rather than the. Our proposed al-
gorithm is optimized for runtime. An exhaustive
search would require testing

(2n
n

)
combinations if

the number of gaps is constant. For n= 20, this
yields 137 billion combinations. While more ad-
vanced optimization methods might find better gap
selections, we show in section 6 that our strategy
achieves good results.

5.2 Gap Size Strategy

Our second manipulation strategy SIZE changes
the size of the gaps based on a pre-defined gap set.
Increasing a gap g=(i, `) by one or more charac-
ters, yielding g′=(i, `+ k) increases its difficulty
(i.e., d(g′)≥ d(g)), while smaller gaps make the
gap easier. We identify a major challenge in esti-
mating the effect of increasing or decreasing the
gap size on the gap difficulty. Although d(g′) could
be estimated using the full difficulty prediction sys-
tem, the search space is even larger than for the
gap selection strategy, since each of the n gaps has
|wi|−2 possible gap sizes to test. For n = 20 and
an average word length of six, this amounts to one
trillion possible combinations.

We therefore propose a new approach to pre-
dict the relative difficulty change of a gap g =
(i, `) when increasing the gap size by one letter
∆inc(g) ≈ d(g′)− d(g), g′ = (i, `+ 1) and corre-
spondingly when decreasing the gap size by one
letter ∆dec(g) ≈ d(g)−d(g′), g′ = (i, `−1). The
notion of relative difficulty change enables gap size
manipulation in real time, since we do not have
to invoke the full difficulty prediction system for
all combinations. Instead, we can incrementally
predict the effect of changing a single gap.

To predict ∆inc and ∆dec, we train two SVMs on
all gap size combinations of 120 random texts from
the Brown corpus (Francis, 1965) using the fol-
lowing features: predicted absolute gap difficulty,
word length, new gap size, modified character, a

Algorithm 2 Gap size strategy (SIZE)
1: procedure INCREASEDIFFICULTY(T , τ )
2: GSIZE ← GDEF

3: D ← d(T )
4: while D < τ do
5: g∗ = (i, `)← arg maxg∈GSIZE ∆inc(g)
6: `← `+ 1
7: D ← D + ∆inc(g)
8: return GSIZE

binary indicator if the gap is at a th sound, and loga-
rithmic difference of alternative solutions capturing
the degree of ambiguity with varying gap size.

With a final set of only six features, our new
models are able to approximate the relative diffi-
culty change very well deviating from the original
system’s prediction only by 0.06 RMSE for ∆inc

and 0.13 RMSE for ∆dec. The predictions of both
models highly correlate with the predictions achiev-
ing a Pearson’s ρ of over 0.8. Besides achieving
a much faster average runtime of 0.056 seconds
for the relative model vs. 11 seconds for the full
prediction of a single change, we can invoke the
relative model iteratively to estimate d(T ) for mul-
tiple changes of the gap size more efficiently.

The final manipulation strategy then requires
just a single call of the full prediction system. If
d(T )<τ , we incrementally increase the gap sizes
to make T more difficult and, vice-versa, decrease
the gap sizes if d(T ) > τ . In each iteration, we
modify the gap with the highest relative difficulty
change in order to approach the given target diffi-
culty τ as quickly as possible. Algorithm 2 shows
pseudocode for creating Gsize with increased dif-
ficulty (i.e., d(T ) < τ ) based on the default gap
scheme DEF. The procedure for d(T )> τ works
analogously, but using ∆dec and decreasing the gap
size. Figure 1 (c) shows a much easier version of
the example C-test, in which a learner often only
has to complete the last one or two letters.

6 Evaluation of the Manipulation System

To evaluate our C-test manipulation strategies, we
first test their ability to cover a higher range of tar-
get difficulties than the default generation scheme
and then measure how well they meet the de-
sired target difficulty for texts from different do-
mains. We conduct our experiments on 1,000 ran-
domly chosen paragraphs for each of the Gutenberg
(Lahiri, 2014), Reuters (Lewis et al., 2004), and
Brown (Francis, 1965) corpora. We conduct our
experiments on English, but our strategies can be
adapted to many related languages.
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Figure 3: Difficulty distribution of exercises generated
with DEF, SEL, and SIZE for extreme τ values

Difficulty range. The black  -marked line of
figure 3 shows the distribution of d(T ) based on
our difficulty prediction system when creating a
C-test with the default generation scheme DEF for
all our samples of the Brown corpus. The vast
majority of C-tests range between 0.15 and 0.30
with a predominant peak at 0.22.

To assess the maximal difficulty range our strate-
gies can achieve, we generate C-tests with maximal
(τ = 1) and minimal target difficulty (τ = 0) for
both strategies S ∈ {SEL, SIZE}, which are also
shown in figure 3 as (S, τ). Both strategies are able
to clearly increase and decrease the test difficulty
in the correct direction and they succeed in substan-
tially increasing the total difficulty range beyond
DEF. While SEL is able to reach lower difficulty
ranges, it has bigger issues with generating very
difficult tests. This is due to its limitation to the
fixed gap sizes, whereas SIZE can in some cases
create large gaps that are ambiguous or even un-
solvable. Since SIZE is, however, limited to the 20
predefined gaps, it shows a higher variance. Espe-
cially short gaps such as is and it cannot be made
more difficult. Combining the two strategies is thus
a logical next step for future work, building upon
our findings for both strategies. We make similar
observations on the Reuters and Gutenberg corpora
and provide the respective figures in the appendix.

Manipulation quality. We finally evaluate how
well each strategy S reaches a given target diffi-
culty. That is, we sample a random corpus text
and τ , create the C-test using strategy S, predict
the test difficulty d(T ) and measure its difference
to τ using RMSE. Table 2 shows the results for
our three corpora. Throughout all three corpora,
both manipulation strategies perform well. SEL

consistently outperforms SIZE, which matches our
observations from the previous experiment. Mind
that these results depend on the quality of the au-

Strategy Brown Reuters Gutenberg

SEL .11 .12 .10
SIZE .13 .15 .12

Table 2: RMSE for both strategies on each corpora with
randomly sampled target difficulties τ

tomatic difficulty predictions, which is why we
conduct a user-based evaluation in the next section.

7 User-based Evaluation

Hypothesis. To evaluate the effectiveness of our
manipulation strategies in a real setting, we con-
duct a user study and analyze the difficulty of the
manipulated and unmanipulated C-tests. We inves-
tigate the following hypothesis: When increasing
a test’s difficulty using strategy S, the participants
will make more errors and judge the test harder
than a default C-test and, vice versa, when decreas-
ing a test’s difficulty using S, the participants will
make less errors and judge the test easier.

Experimental design. We select four different
English texts from the Brown corpus and shorten
them to about 100 words with keeping their para-
graph structure intact. None of the four texts is par-
ticularly easy to read with an average grade level
above 12 and a Flesh reading ease score ranging
between 25 (very difficult) to 56 (fairly difficult).
In the supplementary material, we provide results
of an automated readability analysis using standard
metrics. From the four texts, we then generate the
C-tests Ti, 1 ≤ i ≤ 4 using the default genera-
tion scheme DEF. All tests contain exactly n = 20
gaps and their predicted difficulties d(Ti) are in a
mid range between 0.24 and 0.28. T1 remains un-
changed in all test conditions and is used to allow
the participants to familiarize with the task. For
the remaining three texts, we generate an easier
variant TS,dec

i with target difficulty τ = 0.1 and a
harder variant TS,inc

i with τ = 0.5 for both strate-
gies S ∈ {SEL, SIZE}.

From these tests, we create 12 sequences of four
C-tests that we give to the participants. Each par-
ticipant receives T1 first to familiarize with the
task. Then, they receive one easy TS,dec

i , one de-
fault Ti, and one hard TS,inc

i C-test for the same
strategy S based on the texts i ∈ {2, 3, 4} in ran-
dom order without duplicates (e.g., the sequence
T1 T

SEL,dec
2 T3 T

SEL,inc
4 ). Having finished a C-test,

we ask them to judge the difficulty of this test on a

58



five-point Likert scale ranging from too easy to too
hard. After solving the last test, we additionally
collect a ranking of all four tests by their difficulty.

Data collection. We collect the data from our
participants with a self-implemented web interface
for solving C-tests. We create randomized creden-
tials linked to a unique ID for each participant and
obfuscate their order, such that we can distinguish
them but cannot trace back their identity and thus
avoid collecting any personal information. Addi-
tionally, we ask each participant for their consent
on publishing the collected data. For experiments
with a similar setup and task, we obtained the ap-
proval of the university’s ethics commission. After
login, the participants receive instructions and pro-
vide a self-assessment of their English proficiency
and their time spent on language learning. The
participants then solve the four successive C-tests
without knowing the test difficulty or the manipula-
tion strategy applied. They are instructed to spend
a maximum of five minutes per C-test to avoid time-
based effects and to prevent them from consulting
external resources, which would bias the results.

Participants. A total of 60 participants com-
pleted the study. We uniformly distributed the 12
test sequences (six per strategy), such that we have
30 easy, 30 default, and 30 hard C-test results for
each manipulation strategy. No participant is na-
tive in English, 17 are taking language courses, and
57 have higher education or are currently univer-
sity students. The frequency of their use of English
varies, as we found a similar number of participants
using English daily, weekly, monthly, and (almost)
never in practice. An analysis of the questionnaire
is provided in the paper’s appendix.

Hypothesis testing. We evaluate our hypothesis
along three dimensions: (1) the actual error rate of
the participants, (2) the perceived difficulty after
each individual C-test (Likert feedback), and (3)
the participants’ final difficulty ranking. While the
latter forces the participants to provide an explicit
ranking, the former allows them to rate C-tests
equally difficult. We conduct significance testing
at the Bonferroni-corrected α = 0.05

2 = 0.025 for
each dimension using one-tailed t-tests for the con-
tinuous error rates and one-tailed Mann–Whitney
U tests for the ordinal-scaled perceived difficulties
and rankings. Figure 4 shows notched boxplots of
our results.

To test our hypothesis, we first formulate a null

easy (dec) default hard (inc)
SEL SIZE DEF SEL SIZE

T1 – – .30 – –
T2 .17∗ .11∗ .34 .66∗ .44∗

T3 .16∗ .10∗ .27 .52∗ .43∗

T4 .28 .09∗ .30 .43∗ .45∗

Average .20∗ .10∗ .30 .53∗ .44∗

Table 3: Mean error rates e(T ) per text and strategy.
Results marked with ∗ deviate significantly from DEF

hypothesis that (a) the mean error rate, (b) the me-
dian perceived difficulty (Likert feedback), and (c)
the median rank of the manipulated tests equal the
default tests. While the participants have an aver-
age error rate of 0.3 on default C-tests, the TS,dec

i

tests are significantly easier with an average error
rate of 0.15 (t = 7.49, p < 10−5) and the TS,inc

i

tests are significantly harder with an average error
rate of 0.49 (t = −7.83, p < 10−5), so we can
safely reject the null hypothesis for error rates.

Table 3 shows the error rates per C-test and strat-
egy. Both SEL and SIZE are overall able to sig-
nificantly (p < 0.025) increase and decrease the
test’s difficulty over DEF, and with the exception of
T SEL,dec
4 , the effect is also statistically significant

for all individual text and strategy pairs. Figure 5
shows the 30 participants per strategy on the x-axis
and their error rates in their second to fourth C-test
on the y-axis. C-tests, for which we increased the
difficulty (S, inc), yield more errors than C-tests
with decreased difficulty (S,dec) in all cases. The
easier tests also yield less errors than the test with
the default scheme DEF in most cases. While hard
tests often have a much higher error rate than DEF,
we find some exceptions, in which the participant’s
error rate is close or even below the DEF error rate.

Regarding the perceived difficulty, we find that
the participants judge the manipulated C-tests with
lower d(T ) as easier on both the Likert scale (z =
6.16, p < 10−5) and in the rankings (z = 6.59,
p < 10−5) based on the Mann-Whitney-U test.
The same is true for C-tests that have been manipu-
lated to a higher difficulty level, which the partici-
pant judge harder (z = −4.57, p < 10−5) and rank
higher (z = −3.86, p < 6 · 10−5). We therefore
reject the null hypotheses for the Likert feedback
and the rankings and conclude that both strategies
can effectively manipulate a C-test’s difficulty.

Manipulation quality. We further investigate if
the strategies yield different difficulty levels. There-
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(a) (b) (c)

Figure 4: Notched boxplots for the (a) observed error rates, (b) Likert feedback, and (c) the participants’ rankings
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Figure 5: Error rates per participant and strategy

SEL DEF SIZE
τ .10 .50 – .10 .50

RMSE(e, d) .10 .13 .04 .09 .11
RMSE(e, τ) .12 .10 – .01 .06

Table 4: RMSE between the actual difficulty e(T ) and
predicted difficulty d(T ) as well as target difficulty τ .

fore, we use two-tailed significance testing between
SEL and SIZE for all three dimensions. We find that
SIZE yields significantly easier C-tests than SEL in
terms of error rates (p = 0.0014) and Likert feed-
back (p = 6 · 10−5), and observe p = 0.0394 for
the rankings. For increasing the difficulty, we, how-
ever, do not find significant differences between the
two strategies. Since both strategies successfully
modify the difficulty individually, this motivates
research on combined strategies in the future.

We furthermore investigate how well our strate-
gies perform in creating C-tests with the given tar-
get difficulty τ . Table 4 shows the RMSE for e(T )
and d(T ) as well as for e(T ) and τ for both strate-
gies. As expected, our difficulty prediction sys-
tem works best for C-tests generated with DEF as
they use the same scheme as C-tests in the train-
ing data. Though slightly worse than for DEF, we
still find very low RMSE scores for manipulated C-
tests. This is especially good when considering that
the system’s performance on our newly acquired
dataset yields and RMSE of 0.21 (cf. section 6).
Computing the RMSE with respect to our chosen
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Figure 6: Predicted difficulties d(T ) vs the actual error
rates e(T ).

target difficulties τ yields equally good results for
SEL and exceptionally good results for SIZE. Fig-
ure 6 displays d(T ) in comparison to e(T ) for each
individual text and strategy. With the exception of
T SEL,inc
2 and T SEL,dec

4 , all predictions are close to
the optimum (i.e., the diagonal) and also close to
the desired target difficulty τ .

In a more detailed analysis, we find two main
sources of problems demanding further investiga-
tion: First, the difficulty prediction quality when
deviating from DEF and second, the increasing am-
biguity in harder C-tests. However, it underesti-
mates the d(T ) = 0.11 for T SEL,dec

4 (the same text
used in figure 1), for which we found an actual
error rate of 0.28. This is due to chains of four
successive gaps, such as:

gap g i wh w a
solution is what we are
d(g) 0.17 0.22 0.23 0.19
e(g) 0.70 0.40 0.10 0.20

As the prediction system has been trained only on
DEF-generated C-tests, it underestimates d(g) for
cases with limited context. It will be interesting for
future work to focus on modeling gap interdepen-
dencies in C-tests deviating from DEF.

Another issue we observe is that the gap size
strategy might increase the ambiguity of the C-test.
In the standard scheme, there is in most cases only
a single correct answer per gap. In T SIZE,inc

2 , how-
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ever, the SIZE strategy increased the gap of the
word professional to its maximal length yielding
p . One participant answered popularis-
ing for this gap, which also fits the given context.
We carefully checked our datasetfor other ambi-
guity, but only found one additional case: In T4,
instead of the word close, 13 participants out of 30
used clear as a modifier of correspondence, which
both produce meaningful contexts. Given that this
case is already ambiguous in the DEF scheme yield-
ing the gap cl , we conclude that the issue is
not severe, but that the difficulty prediction system
should be improved to better capture ambiguous
cases; for example, by introducing collocational
features weighted by their distribution within a cor-
pus into ∆inc and ∆dec.

8 Conclusion

In this work, we proposed two novel strategies for
automatically manipulating the difficulty of C-test
exercises. Our first strategy selects which words
should be turned into a gap, and the second strat-
egy learns to increase or decrease the size of the
gaps. Both strategies automatically predict the dif-
ficulty of a test to make informed decisions. To
this end, we reproduced previous results, compared
them to neural architectures, and tested them on a
newly acquired dataset. We evaluate our difficulty
manipulation pipeline in a corpus-based study and
with real users. We show that both strategies can
effectively manipulate the C-test difficulty, as both
the participants’ error rates and their perceived dif-
ficulty yield statistically significant effects. Both
strategies reach close to the desired difficulty level.

Our error analysis points out important direc-
tions for future work on detecting ambiguous gaps
and modeling gap interdependencies for C-tests
deviating from the default generation scheme. An
important observation is that manipulating the gaps’
size and position does not only influence the C-test
difficulty, but also addresses different competen-
cies (e.g., requires more vocabulary knowledge or
more grammatical knowledge). Future manipu-
lation strategies that take the competencies into
account have the potential to train particular skills
and to better control the competencies required for
a placement test. Another strand of research will be
combining both strategies and deploying the manip-
ulation strategies in a large scale testing platform
that allows the system to adapt to an individual
learner over time. A core advantage of our ma-

nipulation strategies is that we can work with any
given text and thus provide C-tests that do not only
have the desired difficulty, but also integrate the
learner’s interest or the current topic of a language
course.
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Sergiu Nisioi, Sanja Štajner, Simone Paolo Ponzetto,
and Liviu P. Dinu. 2017. Exploring neural text sim-
plification models. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (ACL): Short Papers, volume 2, pages
85–91, Vancouver, Canada.

Naiara Perez and Montse Cuadros. 2017. Multilin-
gual call framework for automatic language exer-
cise generation from free text. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics (EACL):
Software Demonstrations, pages 49–52, Valencia,
Spain.
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Manipulating the Difficulty of C-Tests
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Ji-Ung Lee and Erik Schwan and Christian M. Meyer
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Computer Science Department, Technische Universität Darmstadt, Germany
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This document provides supplementary material for
our ACL 2019 paper “Manipulating the Difficulty
of C-Tests”.

1 C-Test Difficulty Manipulation

Feature description for ∆inc and ∆dec. We pro-
vide an extended feature description for the subset
of features used for our relative difficulty predic-
tion models ∆inc and ∆dec. Features marked with
* are also used by the absolute difficulty prediction
model proposed by Beinborn (2016). For a gap
g = (i, `) in word wi, we define:

• the predicted absolute gap difficulty d(g) for
the initial C-test created with DEF obtained
from our reproduced difficulty prediction sys-
tem, see line 3 of algorithm 2 (PS),

• the word length |wi| (WL*),

• the new gap size ` ± 1 after modification
(GL*),

• the modified character wi[`] when increasing
or decreasing the gap (CH),

• a binary indicator if the gap is after a th sound
(RG*), and

• the logarithmic difference of alternative solu-
tions (LD*) capturing the change in the degree
of ambiguity when increasing or decreasing `.

Feature ablation test. We conduct feature abla-
tion tests to evaluate the impact of each feature
on our relative difficulty prediction models ∆inc

and ∆dec. Both models were evaluated on all gap
size combinations for 120 random texts from the
Brown corpus (Francis, 1965) with a three-fold
cross-validation. Table 1 shows the performance
increase for each model after including each fea-
ture. RMSE shows the deviation and ρ the correla-
tion of our relative difficulty prediction compared

∆inc ∆dec

Feature RMSE ρ RMSE ρ

PS .088 .521 .213 .271
+ WL .072 .712 .183 .570
+ GL .066 .771 .162 .687
+ CH .069 .735 .157 .707
+ RG .069 .736 .157 .707
+ LD .061 .805 .131 .806

Table 1: Feature ablation test for ∆inc and ∆dec com-
pared to the full difficulty prediction system

to the absolute difficulty prediction. Although the
increase in performance with RG is not substantial,
we decided to include it as a meaningful feature
which measures the impact for increasing or de-
creasing the gap size in words starting with th.

2 Neural Network Parameters

Although obtaining state-of-the-art results in many
tasks, the deep neural networks we evaluated dur-
ing our preliminary experiments did perform worse
than the SVM. We performed parameter tuning
with 100 randomly initialized configurations for
both, MLP and BiLSTM. We tune the following
parameters:

• Number of hidden layers Hl ∈ [1, ..., 5]

• Number of hidden units Hu
l ∈ [50, ..., 200]

• Dropout rate Dx ∈ [0.1, ..., 0.5]

We use Adam with Nesterov Momentum (Dozat,
2016) as our optimizer and keep the batch size at
5 for both models. All models are trained for 200
epochs with an early stopping after 10 epochs with
no improvement of the loss. Figure 1 shows the
resulting architectures of both models after tuning.
Since our goal is to output regression values, we
use a linear activation function in the output layer.

64



H 2
150

H3
100

D0.1

D0.1

D0.1

output

f (x)=x

gapigapi

D0.1

gapioutput

H 1
50

H 1
100 gapigapi

f (x)=x

Figure 1: Final, tuned architectures of our BiLSTM
(left) and MLP (right) models.

In preliminary experiments, we also tuned and
evaluated BiLSTMs including soft attention, how-
ever, they performed even worse than the models
without any attention. Analyzing the results of the
best performing attention based model showed that
it had a strong bias towards predicting the mean
value of the whole training set. Furthermore, simi-
lar to the other neural models, it showed a low error
on the training set (low bias) and a rather high error
on the development set (high variance), indicating
a lack of training data.

3 Evaluation of the Manipulation System

Results for additional corpora. Figure 2 and
figure 3 show our results on the Gutenberg (Lahiri,
2014) and the Reuters (Lewis et al., 2004) corpora.
As already discussed in the main paper, we observe
very similar distributions for DEF, SEL, and SIZE

across both corpora matching our descriptions for
the Brown (Francis, 1965) corpus.

We further compute τmax − τmin for SEL and
SIZE for each text within a corpus and thus, mea-
sure the difficulty range both strategies are able
to cover for a single text. As figure 4 shows, SEL
achieves a larger difficulty range, whereas consid-
erably more C-tests achieve higher difficulty levels
when generated with SIZE. We again observe very
similar distributions throughout the three corpora.
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Figure 2: Difficulty distribution of exercises generated
with DEF, SEL, and SIZE for extreme τ values on the
Gutenberg corpus.
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Figure 3: Difficulty distribution of exercises generated
with DEF, SEL, and SIZE for extreme τ values on the
Reuters corpus.
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Figure 4: Error rate range (τmax − τmin) of exercises
generated with SEL and SIZE for all three corpora.
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4 User-based Evaluation

Questionnaire. At the begin of our study, our
participants answered a questionnaire for a self-
assessment of their English proficiency described
in figure 5. We partitioned our questionnaire into
three sections asking about 1) our participants’ En-
glish proficiency (Q1, Q2), 2) their learning habits
and goals (Q4), and 3) other languages they have
been learning (Q3, Q5, Q6).

Q1: Please estimate your current language
proficiency in English
A1: # Beginner (A1) # Elementary (A2)
# Intermediate (B1) # Upper Intermediate (B2)
# Advanced (C1) # Proficiency (C2)

Q2: I studied English for about years.

Q3: Do you participate in any language learning
courses (for example, at your university, evening
school,. . . )? If yes, than which ones?
A3: # Yes, . # No.

Q4: How often do you practice English?
A4: # Never # Monthly # Weekly # Daily

Q5: What is your native language?
A5:

Q6: Have you tried learning other languages
before? If yes, than which ones?
A6: # Yes, . # No.

Figure 5: Self-assessment questionnaire.

Answers. As described in the main paper, 17 par-
ticipants are taking in language courses (Q3). Over-
all, 41 participants have tried to learn a second
language (Q6). The exact answers can be found
in the data we provide. Note, that not all partici-
pants provided the language which they attempted
to learn since this was not mandatory. Figure 6–8
shows our participants’ answers to Q1, Q2, and Q4.
As can be seen, none of our participants consider
themselves at the Beginner (A1) level. Furthermore,
most of them are rather confident in their English
proficiency and provide an estimate of either Upper
Intermediate (B2) or Advanced (C1).
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Figure 6: Our participants’ CEFR level self-assessment
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Figure 7: The number of years our participants have
been practicing English
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Readability index T1 T2 T3 T4

Flesch reading ease 56.1 24.8 32 55.6
Gunning Fog 9.1 17.7 18.1 13.1
Flesch-Kincaid grade level 8.2 17.3 15.2 9.6
Coleman-Liau index 12 12 12 11
SMOG index 8.1 15.5 13.5 10.1
Automated readability index 7.9 17.4 15.5 9.7
Linsear Write formula 6.5 22.3 18.4 11.2

Table 2: Automated readability analysis of the four
texts used for our C-tests. Scores are based on the on-
line tool at http://www.readabilityformulas.com.

C-tests. Figure 9 shows the four texts T1 to T4
taken from the Brown corpus and the C-tests with
the default gap scheme DEF we created from them
for our user study. We have shortened each text to
approximately 100 words and generated n = 20
gaps. In figure 10, we provide the results of our ma-
nipulation strategies SEL and SIZE with decreased
(τ = 0.1) and increased (τ = 0.5) difficulty. Note
that, we only show sentences that contain gaps; the
beginning and end of each text is the same as in
figure 9.

Table 2 reports readability scores for multiple
common automated readability formulas. A Flesch
reading ease score between 50–59 indicates fairly
difficult, 30–49 difficult, and 0–29 very difficult. A
Gunning Fog score of 9.1 indicates fairly easy to
read and scores above 12 indicates hard to read.
The remaining readability scores corresponding to
grade levels.

The study of the St. Louis area’s economic
prospects prepared for the Construction Industry
Joint Conference confirms and reinforces both
the findings of the Metropolitan St. Louis Survey
of 1957 and the easily observed picture of the
Missouri-Illinois countryside. St. Louis si in t
center o a relatively slow-growing a in so
places stag mid-continent region . Slac
regional dem for St. Lo goods a services
refl the reg ’s relative la of purch
power. N all St. Lo industries, o course, ha
a market ar confined t the immediate
neighborhood. But for those which do, the slow
growth of the area has a retarding effect on the
metropolitan core.

(a) C-test of T1 with DEF gaps

Your invitation to write about Serge Prokofieff to
honor his 70th Anniversary for the April issue of
Sovietskaya Muzyka is accepted with pleasure,
because I admire the music of Prokofieff; and
with sober purpose, because the development of
Prokofieff personifies, in many ways, the course of
music in the Union of Soviet Socialist Republics.
The Se Prokofieff wh we kn in t United
Sta of Ame was g , witty, merc , full o
pranks a bonheur – a very cap as a
profes musician. Th qualities ende him
t both t musicians a the social-economic
ha monde wh supported the concert world
of the post-World War 1, era. Prokofieff’s outlook
as a composer-pianist-conductor in America was,
indeed, brilliant.

(b) C-test of T2 with DEF gaps

The superb intellectual and spiritual vitality of
William James was never more evident than in
his letters. Here w a man wi an enor gift
f living a well a thinking. T both per and
id he bro the sa delighted inte , the sa
open-minded relish f what w unique i each,
t same discrim sensibility a quicksilver
intell , the same gallantry of judgment. For
this latest addition to the Great Letters Series,
under the general editorship of Louis
Kronenberger, Miss Hardwick has made a
selection which admirably displays the variety of
James’s genius, not to mention the felicities of his
style.

(c) C-test of T3 with DEF gaps

Escalation unto death The nuclear war is already
being fought, except that the bombs are not
being dropped on enemy targets – not yet. It i
being fou , moreover, i fairly cl
correspondence wi the predi of t
soothsayers o the th factories. Th predicted
escal , and escal is wh we a getting.
T biggest nuc device t United Sta has
expl measured so 15 megatons, although our
B-52s are said to be carrying two 20-megaton
bombs apiece. Some time ago, however, Mr.
Khrushchev decided that when bigger bombs
were made, the Soviet Union would make them.

(d) C-test of T4 with DEF gaps

Figure 9: Standard C-tests of our user study

67



. . . The Serg Prokofieff who we kne in t United
State of Americ was ga , witty, mercuria , full o
pranks an bonheur – an very capabl as a
professiona musician. Thes qualities endeare him t
both t musicians an the social-economic haut
monde whic supported. . .

. . . The S Prokofieff wh we kn in t United
S of A was ga , witty, mercu , full o
pranks a bonheur – a very cap as a
p musician. T qualities end him t
both t musicians a the social-economic h
monde wh supported. . .

(a) C-test of T2 manipulated with SIZE for τ = 0.1 (b) C-test of T2 manipulated with SIZE for τ = 0.5

. . . T Serge Proko whom w kn i t Uni
Sta o Ame w gay, witty, mercurial, fu o
pranks and bonheur – a ve capable a a
professional musician. These qualities endeared h t
both t musicians a the social-economic haute
monde which supported. . .

. . . The Se Prokofieff wh we kn in the United
States of America was g , wi , merc , full of
pra a bon – and very cap as a
profes musi . Th qual ende h to
bo the musi and the social-economic ha
mo which supported. . .

(c) C-test of T2 manipulated with SEL for τ = 0.1 (d) C-test of T2 manipulated with SEL for τ = 0.5

. . . Here wa a man wit an enormou gift fo living a
well a thinking. T both person and idea he
brough the sa delighted interes , the sa
open-minded relish fo what wa unique i each, t
same discriminatin sensibility an quicksilver
intelligenc , the same gallantry of judgment. . .

. . . Here w a man w an e gift f living a
well a thinking. T both per and id he
bro the s delighted inte , the s
open-minded relish f what w unique i each, t
same d sensibility a quicksilver
i , the same gallantry of judgment. . .

(e) C-test of T3 manipulated with SIZE for τ = 0.1 (f) C-test of T3 manipulated with SIZE for τ = 0.5

. . . Here w a m wi a enormous gift f liv a
we a thinking. T both persons and ideas h
bro t sa delighted interest, t sa
open-minded relish f what w unique i each, t
same discriminating sensibility and quicksilver
intelligence, the same gallantry of judgment. . .

. . . He was a m with an enor gi for living as
well as thin . T bo per a id he
brought the same deli inte , the same
open-minded rel for wh was uni in ea , the
same discrim sensi a quick
intelligence, the same gallantry of judgment. . .

(g) C-test of T3 manipulated with SEL for τ = 0.1 (h) C-test of T3 manipulated with SEL for τ = 0.5

. . . It i being fough , moreover, i fairly clos
correspondence wit the prediction of t soothsayers
o the thin factories. The predicted escalatio , and
escalatio is wha we ar getting. T biggest nuclea
device t United State has explode measured som
15 megatons. . .

. . . It i being fou , moreover, i fairly c
correspondence w the p of t soothsayers
o the th factories. T predicted es , and
es is wh we a getting. T biggest nu
device t United Sta has expl measured s
15 megatons. . .

(i) C-test of T4 manipulated with SIZE for τ = 0.1 (j) C-test of T4 manipulated with SIZE for τ = 0.5

. . . I i be fou , moreover, i fairly close
correspondence wi t predictions o t soothsayers
o t think factories. They predicted escalation, a
escalation i wh w a getting. T big nuclear
device t Uni States has exploded measured some
15 megatons. . .

. . . It is being fought, more , in fai cl
corresp with the predi of the sooth
of the th fact . Th pred escal , and
escal is what w are get . The big nuc
dev the United States h expl meas some
15 megatons. . .

(k) C-test of T4 manipulated with SEL for τ = 0.1 (l) C-test of T4 manipulated with SEL for τ = 0.5

Figure 10: Manipulated C-tests of our user study
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Abstract

This work proposes a novel method to gener-
ate C-Tests; a deviated form of cloze tests (a
gap filling exercise) where only the last part
of a word is turned into a gap. In contrast to
previous works that only consider varying the
gap size or gap placement to achieve locally
optimal solutions, we propose a mixed-integer
programming (MIP) approach. This allows us
to consider gap size and placement simultane-
ously, achieving globally optimal solutions, and
to directly integrate state-of-the-art models for
gap difficulty prediction into the optimization
problem. A user study with 40 participants
across four C-Test generation strategies (in-
cluding GPT-4) shows that our approach (MIP)
significantly outperforms two of the baseline
strategies (based on gap placement and GPT-4);
and performs on-par with the third (based on
gap size). Our analysis shows that GPT-4 still
struggles to fulfill explicit constraints during
generation and that MIP produces C-Tests that
correlate best with the perceived difficulty. We
publish our code, model, and collected data
consisting of 32 English C-Tests with 20 gaps
each (totaling 3,200 individual gap responses)
under an open source license.1

1 Introduction

Learning a (second) language is one of the key
factors that can directly impact a person’s success
in life. It enables them to participate in daily and
social life and can even grant them new job oppor-
tunities. A crucial part of language learning is ex-
panding the vocabulary by learning new words and
their correct inflection. Gap filling exercises pro-
vide one possibility to consolidate new words and
practice grammar rules (Oller Jr, 1973). Whereas
most works focus on cloze tests (Taylor, 1953), a
gap filling exercise where a whole word is turned
into a gap, we focus on C-Tests, a deviated cloze

1https://github.com/UKPLab/
arxiv2024-constrained-ctest-generation

test (Klein-Braley and Raatz, 1982). In contrast to
cloze tests, C-Tests only remove the last part of a
word, leaving the rest as a hint (cf. Fig. 1). This
reduces the ambiguity of gap filling compared to
cloze tests and requires learners to actively inflect
words themselves. To provide sufficient context,
the first and the last sentences remain free of gaps.

Despite above advantages, a major limitation of
C-Tests is the prevalent static generation strategy
that turns every second half of every second word
into a gap. This impairs the usability of C-Tests
for two reasons. First, the difficulty of a C-Test
solely depends on the underlying text. Second,
to suit a learner’s curriculum, C-Tests need to be
adapted post-generation; for instance, by manu-
ally placing gaps at words that consider a newly
learned vocabulary. While novel C-Test generation
strategies are necessary to tackle these issues, a
key challenge is the large number of possible C-
Tests that can be generated from a single text. For
instance, placing m gaps among n words already
results in

(
n
m

)
= n!

m!(n−m)! possible C-Tests (cf.
Appendix A.1). To reduce the complexity of the
task, Lee et al. (2019) manually restrict the number
of possible C-Tests and only vary the gap size with
a static gap placement (or vice versa). Although
they successfully generate C-Tests with varying
difficulties using the same text, this discards a large
number of C-Tests as potential solutions. Moreover,
their strategies iteratively select the best gap size
or placement which does not take the global inter-
dependencies between gaps into account, leading
to locally optimal solutions.

We instead propose to tackle C-Test generation
as a mixed-integer programming (MIP) problem
which results in three advantages over existing
methods.2 First, we can now make use of
well-established solving methods that efficiently
remove whole sets of unsuitable C-Tests while
finding a provably optimal solution (see, e.g.,

2We provide a primer on MIP in Appendix A.2.
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| bench
| today

MIP

SEL

SIZE

GPT-4

“Generate a
C-Test with
difficulty
τ = 0.1
(easy) and
three gaps.”

The ca_ sa_ on the bench tod__ .

The c__ sat o_ the bench to___ .

The ca_ sat o_ the ben__ today .

The c__ sat __ the b____ today .

Figure 1: A simplified C-Test generation example. Colors indicate the gap sizes and words considered during
generation. While SIZE (■) only varies the gap size with a static placement (every second word) and SEL (■)
only the placement with a static gap size (the second half of a word, rounded up), MIP (■) considers all possible
combinations. In contrast to MIP, purely neural approaches (GPT-4) provide no theoretical guarantee that all
constraints are always satisfied. In this example, the word on is fully turned into a gap although the model correctly
states in its response that words are only “partially deleted” in C-Tests (cf. Fig. 3 for the full prompt and response).

Schrijver 1986). This allows us to consider all
possible C-Tests (instead of only a fraction) within
a feasible run time of ∼48.6 seconds.3 Second,
we can integrate trained gap difficulty prediction
models into the optimization problem and solve
the whole problem in an end-to-end manner (Bunel
et al., 2018; Anderson et al., 2020). Third, in
contrast to (purely neural) large language models
(LLMs), the use of MIP provides a theoretical
guarantee that the resulting C-Test always satisfies
all constraints such as the number of gaps or their
size (cf. Fig. 1). Together, these advantages allow
teachers to directly generate C-Tests that suit
their needs; eliminating the need to adapt them
post-generation. Our contributions are:

• A novel generation method for C-Tests (MIP),
that combines state-of-the-art models for gap
difficulty prediction with constrained opti-
mization methods.

• A user study with 40 participants that com-
pares MIP against the gap size and placement
generation strategies, as well as against C-
Tests generated by GPT-4.

• Our data consisting of 32 C-Tests with 20 gaps
each, their respective error rates, as well as
perceived difficulties on a exercise-level.

2 Related Work

Various works have shown the usefulness of
C-Tests in second language learning scenar-
ios (Chapelle, 1994; Babaii and Ansary, 2001; Grot-
jahn, 2006; McKay, 2019). To select C-Tests that

3In Appendix D.5, we devise methods that further reduce
the run time to ∼3.1 seconds.

suit a learner’s curriculum, it is necessary to pre-
dict their difficulty; i.e., proficient learners should
receive more difficult C-Tests than inexperienced
learners. This is done by either directly predict-
ing difficulty of the whole C-Test (Settles et al.,
2020; McCarthy et al., 2021), or—for a more fine-
grained selection—by aggregating the individual
gap difficulties (Lee et al., 2020). Predicting the
difficulty of individual gaps is thus key, with past
works investigating a wide range of features such
as word frequency or readability scores across dif-
ferent models (Brown, 1989; Sigott, 1995; Eckes,
2011; Beinborn et al., 2014; Beinborn, 2016).

Instead of selecting suited C-Tests, one could
also directly generate C-Tests with a specific diffi-
culty. Towards this end, Lee et al. (2019) propose
automated generation strategies for C-Tests based
on a single text. Although they only vary the gap
size or placement at once due to the large number
of possible C-Tests, another advantage of deviating
from the static generation strategy is a better quan-
tification of a learner’s proficiency (Cleary, 1988;
Kamimoto, 1993; Laufer and Nation, 1999).

Finally, recent advances in LLMs have led to
the emergence of new learning opportunities for
students and teachers (Kohnke et al., 2023). De-
spite mixed results in essay scoring (Naismith et al.,
2023; Yancey et al., 2023) and feedback gener-
ation (Duenas et al., 2023; Wang and Demszky,
2023), LLMs are easy to access and to use which
makes them a tempting alternative to proprietary
and expensive educational resources. As such,
Xiao et al. (2023) investigate ChatGPT (Ouyang
et al., 2022) to generate reading comprehension
exercises and find that the model struggles to gen-
erate appropriate distractors (incorrect answers in
multiple-choice questions). As C-Tests are solely
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based on deletion, generating them may be an eas-
ier task for LLMs than exercises that also require
the generation of distractors. We thus include GPT-
4 (OpenAI, 2023) as a baseline in our user study,
but find that the model struggles to fulfill hard con-
straints such as the number of gaps.

In contrast, our method uses MIP—a more gen-
eral form of integer linear programming (ILP)—
which allows us to find globally optimal solutions
(instead of locally optimal ones, cf. Lee et al. 2019)
by relying upon constrained optimization methods
which have been successfully applied across vari-
ous NLP tasks (Roth and Yih, 2004; Barzilay and
Lapata, 2006; Martins et al., 2009; Koo et al., 2010;
Berant et al., 2011; Lin and Ng, 2021).

3 MIP Definition

Our goal is to generate a C-Test from a text T with
a target difficulty τ and m gaps g. The gaps are
selected from a set G ⊂ T that denotes all words
which can be turned into a gap (e.g., excluding first
and last sentences). We further define τ ∈ [0, 1] to
be the error rate computed over the whole C-Test:

τ =
1

m

m∑

i=1

error(gi),

where gi denotes the i-th gap of the C-Test. The
function error(·) indicates if the i-th gap was
filled-out correctly and returns a binary value (0 for
correct and 1 for incorrect). Consequently, smaller
values of τ relate to easier, and larger values to
more difficult C-Tests. As the actual error(·)
function is learner dependent and not known during
generation, we approximate it using a gap difficulty
prediction model fθ : Rk 7→ [0, 1] with parameters
θ that computes the error rate for each gap, repre-
sented as a k-dimensional, real number vector x.4

We can now define the estimated difficulty τ̂ for
any selection of m gaps g ∈ G:

τ̂ =
1

m

m∑

i=1

fθ(gi).

Given fθ, any C-Test that has minimal distance
between the estimated and the target difficulties is
optimal. Hence, our optimization objective is:

min |τ − τ̂ |.
4From here on, we will refer to the gap error rate as the

error rate and the C-Test error rate as the difficulty for clarity.

Gap placement. So far, τ̂ only includes gaps that
have already been selected. To model the task of
optimally placing them across all possible gaps
G with |G| = n > m, we now introduce binary
decision variables:

min
bi∈{0,1}

|τ − 1

m

n∑

i=1

bi fθ(gi)|

s.t.
n∑

i=1

bi = m,

where bi denotes a binary decision variable for a se-
lected gap at the i-th word.5 The constraint ensures
that the resulting C-Test has exactly m gaps.

Gap size. In addition to the placement, each gap
can assume a different size. We hence extend our
objective with additional binary decision variables
si,j for the gap size where li denotes the length of
the i-th word with j ∈ {1, . . . , li − 1}. Our final
model comprising gap placement and gap size is
then:

min
si,j ,bi∈{0,1}

|τ − 1

m

n∑

i=1

bi

li−1∑

j=1

si,jfθ(gi,j)| (1)

s.t.
n∑

i=1

bi = m, (2)

li−1∑

j=1

si,j = 1, (3)

where gi,j denotes a gap at the i-th word with size j,
for all words i ∈ {1, . . . , n}. Our binary decision
variables bi and si,j for the gap placement and size
are constrained by Eq. (2) and Eq. (3), respectively.

Considerations. Analyzing our final model re-
veals three traits about the C-Test generation task
and how we have defined it. First, we see that the
number of possible gap placements is already very
large with

(
n
m

)
; making it intractable to try out all

combinations to identify an optimal C-Test with
certainty. Second, despite the large number of pos-
sible combinations, the search space is still finite
due to the discrete values of gap size and placement.
Consequently, it is possible that two C-Tests are
equally optimal with the same estimated difficulty
τ̂ . Third, we formulate the objective in a general
way which does not include any learner-specific
terms. Although this work does not investigate a

5Note, that i now ranges from 1 to n, with n denoting the
number of all possible gaps and m the target number of gaps.
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learner-specific adaptation, we note that the gener-
ation process can be tailored to a specific group of
learners with a model trained on learner-specific
data, or by adding learner-specific constraints (e.g.,
one that limits the gap size to a specific value).

4 Task Instantiation

Having defined our general optimization objective,
we need to identify a suitable model fθ for our eval-
uation study and define its constraints accordingly.
As we consider fθ including all its parameters in
our objective, it needs to be small enough so that
the whole optimization problem remains solvable
in feasible time. We thus focus on the feature-based
model proposed by Beinborn (2016) for predicting
the gap error rate which achieves state-of-the-art
performance. In addition to the 59 features utilized
by Beinborn (2016), we further include two addi-
tional BERT-based features that have been shown
to be helpful (Lee et al., 2020). A single gap gi,j
is thus represented by a 61-dimensional vector x,
where each dimension k relates to a specific feature.
As most of the features (51) do not depend on the
gap size si,j or placement bi, we can model them
as equality constraints for our model fθ:

gi,j,k = ci,j,k, (4)

where ci,j,k is the k-th pre-computed feature value
for gap gi,j,k.6

4.1 Gap Size Features
Overall, we identify six features that change de-
pending on the gap size si,j . The first two are the
BERT-based features that estimate the certainty that
BERT correctly predicts the masked gap (Lee et al.,
2020). For this, the authors use the probability of
BERT predicting the correct solution (k = 49) and
the entropy of the normalized vector of prediction
probabilities for the top-50 candidates (k = 50).
Next, we have three binary features that measure
whether the gap occurs at a compound break, i.e.,
if the gap and the non-gap part are words on their
own (k = 56), whether the non-gap part only con-
sists of th (k = 57), and whether the gap begins
at a syllable break (k = 58). Finally, we adapt
the WordLengthInCharacters (Beinborn 2016, page
220) to model the varying gap size (k = 59), pro-
viding our model with a proper notion of gap size.
We now describe our features that depend on the

6We provide a detailed description of all features in Ap-
pendix B.1 and an ablation study in Appendix C.3.2.

gap size in relation to our gap size decision variable
si,j by adding the following constraint to the MIP:

gi,j,k = si · Ci,k, (5)

where si ∈ Bli−1 is the 1-hot vector (of length
li − 1) representing the gap size decision vari-
ables (with 1 being at the j-th position) for gap
gi. The matrix Ci,k ∈ Rli−1×k represents all
possible values k ∈ U can take for all possi-
ble gap sizes j ∈ {1, . . . , li − 1} at gap gi with
U = {49, 50, 56, 57, 58, 59}; i.e., all our features
that depend on the gap size.

4.2 Gap Placement Features
We identify four features that change depending
on the gap placement. The first feature indicates
if the word occurs somewhere else in the C-Test
as a gap (k = 51). The second one represents the
number of gaps in the same sentence (k = 52).
The third and fourth features measure the number
of preceding gaps in the C-Test (k = 53) and in
the same sentence (k = 54). In contrast to the
gap size features, all placement features depend on
the placement of the other gaps. We thus need to
model these dependencies into our constraints:

gi,j,51 = max(b · V), (6)

gi,j,52 =
∑

h∈Si

bh, (7)

gi,j,53 =
i−1∑

h=1

bh, (8)

gi,j,54 =
∑

h∈Si,h<i

bh, (9)

for all i, j ∈ {1, . . . , n} where Si denotes the set of
all words in the sentence containing gi. The vector
b denotes all placement decision variables bi and
V the n× n matrix of binary values vi,j with:

vi,j =

{
1, if wi = wj ,

0, otherwise,

for all i, j ∈ {1, . . . , n} where i ̸= j.

5 Gap Difficulty Model

With Eq. (1)–(9) defining our full optimization
model, we focus on training a well-performing
regression model fθ that predicts the gap error
rate. To ensure that the optimization model re-
mains solvable in feasible time, we focus on small
models with architectures that provide strong guar-
antees (Anderson et al., 2020).
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Dataset Usage # CT # Gaps µ GS σ GS

ACL2020-train Train 69 1,480 2.80 1.30
ACL2020-test Dev 5 100 2.95 1.50
ACL2019 Test 16 320 2.56 1.76

Table 1: Dataset statistics. # CT is the number of C-
Tests per dataset. µ GS is the average gap size and σ
GS the respective standard deviation. Each C-Test has
20 gaps.

Data. We use two datasets in total:

ACL-2020 Lee et al. (2020) provided us with
their dataset for training our models.7 It con-
sists of 69 C-Tests we use for training, and 5
C-Tests (their test set) which we use as our de-
velopment set. The data was collected by their
university’s language learning center from stu-
dents taking language assessment tests and
consists of gap error rates for C-Tests gener-
ated with the static generation strategy.

ACL-2019 Lee et al. (2019) published 16 C-
Tests collected in their user study under a
creative commons license. This is the only
available data which contains gap error rates
for C-Tests deviating from the static gener-
ation strategy, generated by SEL and SIZE
(explained in the next section). We use this
dataset as the test set to identify the best model
for varying gap sizes and placements.

Table 1 shows the number of C-Tests, gaps (i.e.,
instances), and the data splits. We can see that the
ACL-2019 data differs substantially from the ACL-
2020 data as it has the smallest gap sizes on average
(µ GS), but the largest standard deviation (σ GS).

Experimental setup. We consider four differ-
ent model types for fθ. Linear regression models
(LR), support vector machines with a linear kernel
(SVM), multi-layer perceptrons (MLP), and gradi-
ent boosted trees (XGB). We further include more
recent models in our evaluation, namely, the base
and large versions of BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and DeBERTa (He
et al., 2021). Each of the LR, SVM, MLP, and
XGB models are trained to predict the gap error
rate given the 61 respective features as the input.
We evaluate three setups for the transformer-based
models, namely, a masked-regression (MR) setup,
a CLS-token setup, and a feature-enriched CLS-

7We received permission to use the data for training and
sharing our models (but not the data). We contacted authors of
other works but without success due to proprietary restrictions.

Model ↓ RMSE ↑ Pearson’s ρ

SVMLinear,c=0.01 1.846 −0.111
MLPReLU 1.113 0.099
MLPLinear 1.681 0.085
LR 2.949 −0.385
XGB 0.285 0.439

BERTbase 0.311 0.279
BERTlarge 0.319 0.174
RoBERTabase 0.324 0.159
RoBERTalarge 0.324 0.050
DeBERTav3-base 0.311 0.245
DeBERTav3-large 0.308 0.259

Table 2: Root mean squared error (RMSE) and Pear-
son’s correlation ρ for predicting the gap error rate on
our test data. Overall, we find that XGB performs best,
even outperforming large masked language models.

token setup (Appendix C.1). Following Beinborn
et al. (2014), we use the root mean squared error
(RMSE) and Pearson’s correlation ρ to evaluate
all models. We use an Intel Core™ i5-8400 CPU
with 6 x 2.80GHz for training the LR, SVM, MLP,
and XGB models and a single NVIDIA A100 with
80 GB for training the transformer-based models.
We provide details on the training parameters and
about hyperparameter tuning in Appendix C.2.

Results. Table 2 shows the results (averaged
across ten runs) on the test data for the best per-
forming models and transformer setup based on
our hyperparameter tuning. Overall, we find that
XGB performs best and is the only feature-based
model that handles the varying gap sizes and place-
ments well, as all other feature-based models show
substantially worse scores. An analysis reveals that
they may have overfitted on the training data, as
they perform substantially better on the develop-
ment data that closer matches the training data in
terms of average gap size and variance. We further
find a similar tendency for the feature-enriched
transformer models (Table 7). We conjecture that
XGB may be more robust to these changes due
to its tree structure and the ensembling performed
during training. Finally, we find a robust perfor-
mance for the transformer-based models trained
using only the CLS-token or in an MR manner;
with a worse performance than the feature-based
models on the development data, but a higher per-
formance on the test data. Conducting an error
analysis on the model with the best RMSE on the
test data (DeBERTav3-large) reveals that the model
performs better than XGB for small gap sizes (one
and three), but worse for gap sizes equal or larger
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than four. We provide the full results and a detailed
error analysis in Appendix C.3. We select the best
performing model (XGB) for our user study.

6 User Study

To evaluate our optimization model, we conduct
a user study where we ask our participants to
complete C-Tests. Our main goal is to evaluate the
following research hypothesis:

C-Tests that have been generated with our
approach have a smaller distance |τ − τ∗| (i.e.,
between the target difficulty τ and the observed dif-
ficulty τ∗ ) than C-Tests that have been generated
with other approaches.

For a single C-Test, the observed difficulty is
defined as:

τ∗ =
1

m · r
m∑

i=1

r∑

j=1

error(gi,j), (10)

where r is the number of individual responses for
the i-th gap and m the total number of gaps in
the C-Test. As before, error(gi,j) returns 1 if
gi,j was filled out incorrectly and 0 otherwise. We
focus on the observed difficulty τ∗, as our goal
is to evaluate the performance of the generation
strategies and not the difficulty prediction model,
which would require a different study setup (i.e., a
study centered around quantifying |τ̂ − τ∗|).

6.1 Setup

Following Lee et al. (2019), we generate C-Tests
with m = 20 gaps out of n = 40 possible words.
We select two target difficulties τ ∈ {0.1, 0.9}
as target difficulties that have been shown to be
either easy (τ = 0.1) or difficult (τ = 0.9) for the
baseline strategies to achieve (Lee et al., 2019).

Generation strategies. We compare our ap-
proach (MIP) against three generation strategies
based on gap placement (SEL), size (SIZE) (Lee
et al., 2019) and GPT-4 (OpenAI, 2023).8

SEL The gap placement strategy first estimates all
gap error rates for all g ∈ G in text T where
the second half of a word is turned into a gap.
It then iteratively selects the gaps with the

8To select strong baselines, we reimplemented SEL and
SIZE using the XGB model but found that the original models
performed better. We provide results and detailed descriptions
of all models in Appendix D.1.1.

smallest distance to τ ; alternating between
gaps that are easier and harder than τ .

SIZE The gap size strategy places gaps according
to the static generation strategy. For each gap,
the respective error rate is then computed and
a character is removed or added iteratively
until the target difficulty τ is reached. To in-
crease computational efficiency, two separate
models are trained on a reduced set of features
which predict the relative change in difficulty
for increasing or decreasing the gap size.

GPT-4 Finally, we use GPT-4 to generate C-Tests.
For a fair comparison, we only show the text
passage containing G to the model (hence, no
gaps are placed in the first and last sentence)
and use five instances from the ACL-2019
dataset as few-shot examples in our prompt.
We provide details on the few-shot example
selection, C-Test generation, and the full final
prompt in Appendix D.6.9

For MIP, we use Gurobi as a popular off-the-
shelf solver (Gurobi Optimization, LLC 2023) to
generate the C-Tests (with an average run time of
48.6 seconds). We provide a fine-grained analy-
sis with respect to run time in Appendix D.1.2
and devise further improvements (reducing the
average run time to 3.1 seconds) using different
formulations of the optimization objective in Ap-
pendix D.5.

Text selection. We select text passages from four
public domain books indexed at project Guten-
berg.10 Considering that all of our participants
have an academic background, we select books
with a high reading difficulty (Table 10). From
each book, we randomly sample passages that con-
tain at least three sentences and at least 40 words
that can be turned into a gap (e.g., words that
have at least two characters, do not contain any
numbers, etc). We further avoid passages that
contain dialogues. Data pre-processing (sentence
splitting and tokenization) is done using NLTK’s
sent_tokenize and word_tokenize func-
tions (Bird et al., 2009).

6.2 Design

Constructing the study with four texts T1–T4, two
target difficulties τ ∈ {0.1, 0.9}, and four genera-

9Note, that we cannot use the other datasets for GPT-4 due
to the signed non-disclosure agreements regarding the data.

10https://www.gutenberg.org/
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tion strategies results in 32 C-Tests (eight C-Tests
for each generation strategy and text). To prevent
participants from memorizing parts of the solution,
each participant can only receive C-Tests generated
from different texts, i.e., each participant is asked
to solve four C-Tests.

Groups. To decide upon the groups (consisting
of four C-Tests) to which our participants are as-
signed, we need to consider the respective config-
uration (i.e., which strategies and difficulties the
group is composed of). Even a fixed ordering of
the texts amounts to too many configurations to
cover all—especially, as we also require multiple
measurements for each C-Test to account for ran-
dom effects such as our participants’ individual
performance. To obtain stable estimates that al-
low us to compare different generation strategies
against each other, we construct our groups fol-
lowing a Latin Hypercube Experimental Design
principle (McKay et al., 1979). This ensures that
we select configurations with a minimal overlap
between all possible combinations of text, strategy,
and difficulty—with each text and strategy occur-
ring once, and each target difficulty twice in all
configurations (details in Appendix D.2.1).

Procedure. We implement and host a study in-
terface using Flask11 and SQLAlchemy12. On the
landing page, participants are asked to enter a self-
chosen study key of which we store the respective
hash (so that we cannot guess a participant from the
key). The key is only used in case a participant de-
cides to access, change, or delete their data after the
study. Upon registration, participants are informed
about the purpose of the study, the collected data,
and its use and are asked for their consent to partici-
pate in the study. Participants are further asked five
questions about their English proficiency and are
shown an example C-Test before being randomly
assigned to one of the eight groups. After each of
the four C-Tests, we ask our participants to provide
a self-assessment of the perceived difficulty of the
C-Test on a 5-point Likert scale and to estimate the
number of gaps filled-out correctly. Figs. 8 to 10
show the questionnaire, the study interface, and the
collected feedback to each C-Test, respectively.

11https://flask.palletsprojects.com/
12https://www.sqlalchemy.org/

|τ − τ∗| µ σ

GPT-4 0.45∗ 0.23
MIP 0.36 0.29
SEL 0.39∗ 0.27
SIZE 0.34◦ 0.29

Table 3: Average (µ) and standard deviation (σ) of
|τ − τ∗| for all generation strategies (lower is better).
The Wald test (Wald, 1943) shows that MIP performs
significantly better than GPT-4 and SEL (∗), but find
no significant differences to SIZE (◦).

6.3 Results

Overall, we recruited 40 volunteers for our study,
resulting in five responses for each of the 32 C-
Tests. All participants have at least B1 proficiency
on the CEFR scale (Council of Europe, 2001) with
a majority having C1 (16) or C2 (13) proficiency.
Most of our participants are native German speak-
ers (26) with the remainder distributed across 11
other languages.13 On average, participants spent
∼4.5 minutes per C-Test and ∼17 minutes to finish
all four C-Tests. Table 3 shows the average distance
(µ) between the target difficulty τ and observed dif-
ficulty τ∗ as well as the standard deviation (σ) and
variance (σ2).14 While we can observe substantial
differences between different generation strategies,
we also see high standard deviations (larger than
0.2), making it difficult to interpret the results.

Statistical significance. To test if the observed
differences with respect to the generation strategies
are statistically significant, we fit a generalized
additive mixed model (GAMM, Lin and Zhang
1999) on our collected data. This allows us to
concurrently model our response variable (τ∗) on
a continuous latent scale using multiple predictor
variables expressed as a sum of smooth functions
of covariates while accounting for random effects.
Using the GAMM fitted on our data, we can now
test for statistical significance between different C-
Test generation strategies using the Wald test (Wald,
1943). Overall, we find that all strategies signifi-
cantly outperform GPT-4 which has the highest
|τ − τ∗| (cf. Table 3). In addition, MIP and SIZE
significantly outperform SEL. Although MIP per-
forms slightly worse than SIZE, we find that the
differences are not statistically significant. Interest-

13We provide detailed statistics in Appendix D.3.1.
14We compute the observed difficulty as the C-Test error

rate, i.e., the fraction of incorrect gaps over all 20 gaps.
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ingly, we find that C-Tests generated using GPT-4
show a reverse tendency for τ∗, displaying a sig-
nificantly higher difficulty for τ = 0.1 than for
τ = 0.9 (p < 0.001). In other words, our partic-
ipants made significantly more errors on GPT-4-
generated C-Tests that were supposed to be easier
and vice versa.15

τ GPT-4 MIP SEL SIZE

0.1 4.3±0.56 2.6±0.97 3.5±0.74 3.0±1.16
0.9 4.0±0.56 3.9±0.70 4.2±0.60 3.8±0.83

Table 4: Average perceived difficulty on a 5-point Likert
scale between too easy (1) and too hard (5).

Perceived difficulty. Table 4 shows the average
estimates of the perceived C-Test difficulty on a 5-
point Likert scale (Likert, 1932) between too easy
(1) and too hard (5). Overall, we find the largest
difference in perceived difficulty for MIP (1.3; i.e.,
more than one rating), indicating that MIP gen-
erated C-Tests that were perceived substantially
easier (or harder) for τ = 0.1 (τ = 0.9). Whereas
we find similar tendencies for SEL and SIZE, C-
Tests generated with GPT-4 again show a reversed
tendency for the perceived difficulty (i.e., our par-
ticipants found presumably easy C-Tests harder
than the difficult ones). To check for statistical sig-
nificance, we fit a second GAMM for ordinal data
and find that MIP is again significantly better than
SEL and GPT-4 with no significant difference to
SIZE.16

6.4 Error Analysis

MIP vs. SIZE. Analyzing the C-Tests generated
by MIP reveals that the generation strategy may
struggle with assessing interdependencies between
gaps. For instance, we find that the C-Test gen-
erated from T1 with τ = 0.1 contains multiple
successive gaps (Fig. 2, left). This substantially
increases the difficulty compared to the SIZE strat-
egy that only places gaps at every second word
(Fig. 2, right). Intuitively, gaps that occur in suc-
cession should be harder to fill out—e.g., consider
a C-Test where a single sentence only contains
gaps versus a C-Test where the gaps are evenly
distributed. However, we find no patterns with re-
spect to the length and occurrences of successive

15Detailed statistics and the formular of the GAMM are
provided in Appendix D.3.2.

16We provide details on the second GAMM and box plots
for the perceived difficulties in Appendix D.3.3.

gaps for C-Tests with varying difficulties (Table 16).
We identify three causes for this shortcoming and
discuss potential solutions to be addressed in fu-
ture work. Each cause can either be attributed to
the difficulty prediction model fθ (i.e., the XGB
model) or to the optimization model (i.e., MIP).
First, fθ has only been trained on C-Tests gener-
ated by the static strategy which leads to a lack
of successive gaps during training; despite the de-
cent performance on the test data with different
gap sizes and placements. This work alleviates this
issue by providing data with varying gap sizes and
placements for training. Second, fθ only uses fea-
tures that implicitly capture the interdependency
such as the number of gaps in a sentence. This
could be tackled by explicitly modeling interdepen-
dencies; e.g., with a binary feature that indicates
if the previous word is a gap. Finally, MIP does
not specifically model interdependencies. One way
to better capture interdependencies could be to in-
troduce a weighting term in our objective (Eq. (1))
and increase the estimated gap error rate according
to the number of successive gaps.

τ T1 T2 T3 T4
# Gaps 0.1 205 20 202 202

0.9 29 25 37 22

µ Size 0.1 3.4 4.1 3.6 3.7
0.9 3.45 3.75 2.9 3.4

Table 5: Number of gaps and average size for C-Tests
generated by GPT-4. Superscripts denote the number
of required regenerations to obtain at least 20 gaps.

Shortcomings of GPT-4. The increasing use of
GPT-4 (and ChatGPT) in education was a key rea-
son to include it in the study (Zhang et al., 2023a),
making it even more concerning that the model per-
formed worst. Analyzing the C-Tests generated by
GPT-4 reveals that gaps are frequently clustered
at the beginning for τ = 0.9. Table 5 shows the
number of generated gaps per text (# Gaps) and
their average size (µ Size) after pruning to 20 gaps.
We find that the model generates substantially more
gaps for τ = 0.9, which shows that it lacks a no-
tion of gap-level difficulty and simply adds more
gaps to increase the difficulty. Moreover, the model
generates convincing (but incorrect) explanations
along with the exercise (cf. Appendix D.4), which
could be especially harmful in self-directed learn-
ing scenarios with only GPT-4 as the tutor. This
highlights the importance of approaches that better
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...As little_■ as the act of birth comes
into consideration in the who__■
proces_■ a__■ procedur_■ of heredit_■,
ju__■ as littl_■ is “being-conscious”
oppose_■ t_■ the instinctiv_■ in a__■
d_______■ sen__■; the grea___■ p___■ of
the consciou_■ thi_____■ of a
philosophe_■ i_■ secretly influenced by
his instincts...

...As lit___■ as t__■ act o_■ birth
com__■ into consider_____■ in t__■ whole
pro____■ and proc_____■ of here____■,
just a_■ little i_■ “being-conscious”
opposed to t__■ instinctive i_■ any
deci____■ sense; t__■ greater pa__■ of
t__■ conscious thin____■ of a
philo______■ is secr____■ influneced by
his instincts...

(a) C-test of T1 generated with MIP for τ = 0.1 (b) C-test of T1 generated with SIZE for τ = 0.1

Figure 2: MIP vs SIZE. Colored squares indicate the gap error rates (0.0 ■ ■ ■ ■ ■ ■ 1.0)

control the output of LLMs (Zhang et al., 2023b).

Tuning the prompt. To better understand the
extent of above issues, we explored more sophisti-
cated prompting strategies (after the study) with the
goal to improve GPT-4’s notion of C-Test difficulty.
First, we asked the model to generate multiple C-
Tests at once with both target difficulties. Second,
we provided corrective feedback while asking it
to increase or decrease the difficulty. First and
foremost, we find that GPT-4 has undergone sub-
stantial changes in the meantime, as it provides
very different responses. Most notably, the model
now prioritizes a modification of the gap size to
increase or decrease the C-Test difficulty. Despite
this improvement, the key issues remain as there
are still instances where whole words are turned
into gaps or where the model decreases the gap
size when prompted to increase the difficulty. Inter-
estingly, we find that GPT-3.5 provides responses
that are similar to those during study development;
with a model that mostly aims to control the diffi-
culty with the number of placed gaps. Overall, we
conclude that both models still struggle to follow
hard constraints and moreover, that they lack an
inherent notion of C-Test difficulty.

7 Conclusion

This work proposes a first constrained generation
strategy for C-Tests, a type of gap filling exercise.
We provide a general MIP formulation for C-Test
generation and specify the optimization problem
for a state-of-the-art model. A user study with 40
participants across four generation strategies shows
that our approach significantly outperforms two
baselines and performs on-par with the third. Our
approach further generates C-Tests that resonates
best with our participants in terms of perceived dif-
ficulty. This could be promising to investigate in
future work, as the perceived difficulty can substan-
tially impact a learner’s motivation. Finally, our

analysis reveals two further research directions for
future work; modeling interdependencies between
gaps and making LLMs usable for educational pur-
poses by better controlling their output.

8 Limitations

While our proposed approach performed reason-
ably well and is the only one that provides theoret-
ical guarantees to generate C-Tests that fulfill all
hard constraints, it suffers from three limitations.

Scaling. First, it cannot scale indefinitely to
larger models as the consumption of computational
resources scales exponentially with the increasing
model size in the worst case (cf. Appendix A.2).
Moreover, existing solving methods do not transfer
well to GPUs due to a limited parallelization. In
comparison, the gap size strategy scales linearly as
it is only limited by the number (and length) of the
words considered as potential gaps (but does not
provide any theoretical guarantees as its solutions
are approximate). We explore one possible way to
alleviate the scaling issues to some extent by inves-
tigating other, mathematically equal formulations
of the optimization objective in Appendix D.5 and
find that we can substantially reduce the run time.
Another, fundamentally different research direction
could be to only include the upper layers of a model
in the MIP; considering the output of lower layers
as fixed input features (as is done in this work).
This remains to be investigated in future work.

Other architectures. Second, more complex ac-
tivation functions such as Gaussian Error Linear
Units (GELU) are increasingly being used in recent
models, but their respective MIP formulations do
not provide any guarantees so far. This remains an
open research question.

GPT-4. Finally, we used GPT-4 instead of an
open source model such as BLOOM (BigScience
Workshop et al., 2023), considering the accessi-
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bility of models for teachers who are interested
in using LLMs to generate exercises. Following
this thought, we tried to keep the prompt as sim-
ple as possible and tuned it until the model was
capable of generating gaps properly (interestingly,
asking the model to generate the correct number
of blanks resulted in faulty responses). An evalua-
tion with teachers to gain more insights into how
domain experts interact with different C-Test gen-
eration systems is ongoing. This also includes a
prompting-specific training with methods such as
chain-of-thought prompting (Wei et al., 2022) and
role-play prompting (Kong et al., 2024).

9 Ethical Considerations

Data collection. The study fulfills all conditions
of our university’s guidelines for ethical research
and has been approved by a spokesperson of the
ethics committee of our university. To ensure a
GDPR-conform data collection, we do not collect
any personal data of our participants. Before par-
ticipation, every participant is informed about the
collected data, its usage, and instructed on how
their data can be accessed, edited, deleted post-
study. Participation is only possible upon consent;
if not provided, any collected data such as the hash
of the study key are immediately deleted. All our
participants were volunteers who participated out
of self-interest and received no compensation. Al-
though this made the recruitment of participants
more difficult, we conjectured that this would re-
sult in more motivated participants (and responses
of higher quality), in contrast to setups where their
main motivation is some form of compensation
(money, course credit, or something else). All data
is anonymized for publication.

Risks. Our findings with respect to GPT-4 show
that although the model struggles with fulfilling
hard constraints, it can still generate convincing
(but misleading) explanations. This emphasizes
that the use of LLMs in the educational domain
requires careful consideration, especially in the
context of self-directed learning where no teacher
is present. Finally, we note that the models we
investigate in this research are primarily developed
for English. While we provide a general formu-
lation of the optimization problem in Section 3,
this requires further adaptation to language-specific
models which may be difficult to obtain especially
for endangered languages. However, we note that
the considerable performance of the XGB model

with a rather small training dataset could provide
a chance; easing the adaptation of our approach to
other languages.
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A Introduction

A.1 Infeasibility of Brute Force

The large number of possible combinations makes
it infeasible to estimate the difficulty of every possi-
ble C-Test and to select the one that comes closest
to the target difficulty. For instance, only consider-
ing the gap placement without varying the gap size
results in

(
n
m

)
= n!

m!(n−m)! C-Tests (for placing m
gaps across n words). The average run time of the
200 multi-layer perceptrons (MLP) we evaluated
during our hyperparameter tuning (Appendix C.2)
is 1.06 ms for each gap and 22.36 ms for the whole
C-Test (using an Intel Core™ i5-8400 CPU with 6
x 2.80GHz). Consequently, trying out all possible
C-Test combinations for 20 out of 40 possible gaps
would already require approximately 97.74 years.

A.2 Primer on Mixed-Integer Programming

Similar to integer linear programming (ILP), the
goal of mixed-integer programming (MIP) is to
identify an optimal solution for a given problem
that is described by a mathematical model.17 The
model generally consists of three components (No-
cedal and Wright, 1999, p. 2). First, variables that
each need to be assigned some value to form a po-
tential solution. Second, an objective function of
the variables that needs to be minimized or maxi-
mized. Third, constraints that need to be satisfied;
represented by (in)equalities and functions contain-
ing the variables. In contrast to the output gener-
ated by LLMs, the global solution of MIPs provides
mathematical guarantees on the optimality of the
solution and the preservation of the constraints. In
other words, as long as the model is feasible (i.e.,
contains no contradicting constraints) the found so-
lution can be proven to be optimal and to satisfy all
constraints.

Methods. Commonly used methods for solving
MIP problems with above mathematical guarantees
are branch-and-bound (Land and Doig, 1960), cut-
ting planes (Gomory, 1960), and their combination
(branch-and-cut). These algorithms consider the
whole solution space of the problem but in a much
more efficient manner than brute force. They fur-
thermore ensure the optimality of the solution by
only taking feasible solutions into account. To re-
duce the solution space efficiently, they only search

17This section provides a brief introduction into MIP. For
more details, we refer the interested reader to Schrijver (1986)
and Wolsey and Nemhauser (1998).

for solutions that are better than the already found
ones. This is done by solving a relaxation at each
node that provides an estimate whether in the sub-
problem corresponding to the node, a better solu-
tion can be found. If not, the node is cut off; effec-
tively reducing the solution space. Although these
methods are usually much more efficient than brute
force, one substantial limitation is the worst-case
complexity.

Complexity. A key challenge of MIP is that en-
suring the mathematical guarantees also results in
NP-hard problems. As such, the general worst-
case complexity has been shown to be exponential
(see, e.g., Dash 2002) except for some cases with
a proven polynomial worst-case complexity (see,
e.g., Basu et al. 2023). Despite the high theoreti-
cal worst-case complexity, various methods have
been developed to ensure that practical instances
are solved in reasonable time. One such method
is presolving (Achterberg et al., 2020). Presolving
transforms the problem into one that is easier to
solve, but has the same properties (theoretically)
regarding feasibility and boundness; and further-
more, shares the same optimal solution. Presolv-
ing can substantially reduce the problem complex-
ity, making MIP practically feasible. To show the
practical feasibility of our approach, we provide
statistics on the problem size and the impact of
presolving, branch-and-bound, and cutting planes
in Appendix D.1.3. We further discuss the impor-
tance of the actual problem formulation and devise
alternate formulations to improve the run time of
MIP in Appendix D.5.

A.3 GPT-4: Prompt and Response (Fig. 1)
Fig. 3 shows the prompt and response we used to
generate a C-Test out of a short sentence. We find
that GPT-4 fails to follow all constraints for C-Test
generation; more specifically, that only parts of a
word should be turned into a gap. Interestingly, the
model provides a good explanation of the construc-
tion principle of C-Tests but cannot follow it.

B Task Instantiation

B.1 Feature description
Table 6 shows the full list of the features we used
to train our gap error rate prediction model fθ (cf.
Beinborn 2016, pp. 219–224 for a full description
of the features). Note, that the feature PositionOf-
Gap is described as “[t]he position of the gap (in-
dicated as the number of tokens)” (Beinborn 2016,
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Generate a C-Test with difficulty 0.1 and 3 gaps using following sentence:
The cat sat on the bench today.
A C-Test is a type of language proficiency test where words in a given text are partially deleted, and test-takers are asked to
complete the missing parts based on the context. The difficulty is often set by the number and choice of gaps.
For a difficulty of 0.1 with 3 gaps from the sentence "The cat sat on the bench today.", the C-test can be constructed as follows:
The c__ sat __ the b__ today.
The solutions are:
c__ = cat
__ = on
b__ = bench
Depending on the target audience, the difficulty might vary, but this provides a basic structure for a C-Test from the given
sentence.

Figure 3: Prompt (top) and response (bottom) of GPT-4 (OpenAI, 2023) for the request to turn a short sentence into
a C-Test. As can be seen, the word on is fully turned into a gap, showing that the model fails to follow all generation
constraints for C-Tests.

page 224). In other words, this is the index of the
respective token which is a constant that does not
depend on the placement of the other gaps. Origi-
nally, LengthOfSolutionInCharacters describes the
length of the word in characters that would remain
constant (Beinborn 2016, page 220). To provide
our model with a notion of the gap size, we change
this feature to the length of the gap in characters.
Both BERT-based features use the BERTbase model
(marked by ‡) and were proposed by Lee et al.
(2020).

C Gap Difficulty Model

C.1 Transformer-based Models

We evaluate three different setups for the
Transformer-based models (cf. Fig. 4).

MR Our first setup trains the model in a masked-
regression (MR) manner. For each gap in the
C-Test, we insert the [mask] token. We then
process the whole sentence as is; i.e., we tok-
enize it and feed resulting sequence into the
model which is then trained to predict the gap
error rate for each masked token. We further
use a special label (-100) with a modified loss
function to ensure that only the gaps are con-
sidered during training. An example is shown
in Fig. 4a.

CLS Our second setup only uses the [cls] to-
ken for gap error rate prediction. To do so, we
turn each of the gap into a sentence where only
the gap itself is masked and use the [cls] in
a sentence regression manner (cf. Fig. 4b).

CLS+F Finally, we additionally enrich the CLS
setting with the 59 features proposed by Bein-
born et al. (2014). For each gap we then con-
catenate the [cls] token with the feature

(a) Masked-regression.

(b) [CLS] token prediction.

(c) Feature-enriched [CLS] token prediction.

Figure 4: Transformer-based model setups.
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Index k Feature Size Placement Type

0 AvgSentenceLength - - Float
1 AvgWordLengthInCharacters - - Float
2 AvgWordLengthInSyllables - - Float
3 BigramSolutionRank - - Integer
4 COPCognate_Exists - - Binary
5 GapIsADJ - - Binary
6 GapIsADV - - Binary
7 GapIsART - - Binary
8 GapIsCONJ - - Binary
9 GapIsNN - - Binary
10 GapIsNP - - Binary
11 GapIsPP - - Binary
12 GapIsPR - - Binary
13 GapIsV - - Binary
14 IsAcademicWord - - Binary
15 IsCompound - - Binary
16 IsDerivedAdjective - - Binary
17 IsFunctionWord - - Binary
18 IsInflectedAdjective - - Binary
19 IsInflectedNoun - - Binary
20 IsInflectedVerb - - Binary
21 IsLemma - - Binary
22 IsWordWithLatinRoot - - Binary
23 LanguageModelProbability - - Float
24 LanguageModelProbabilityOfPrefix - - Float
25 LanguageModelProbabilityOfSolution - - Float
26 LeftBigramLogProbability - - Float
27 LeftTrigramLogProbability - - Float
28 LmRankOfSolution - - Float
29 MaxStringSimWithCandidate - - Float
30 NrOfBigramCandidates - - Integer
31 NrOfCandidates - - Integer
32 NrOfTrigramCandidates - - Integer
33 NrOfUbySenses - - Integer
34 NrOfUnigramCandidates - - Integer
35 NumberOfChunksPerSentence - - Float
36 OccursAsText - - Binary
37 PhoneticScore - - Float
38 PhoneticSimilarity - - Float
39 RightBigramLogProbability - - Float
40 RightTrigramLogProbability - - Float
41 TrigramLogProbability - - Float
42 TrigramSolutionRank - - Integer
43 TypeTokenRatio - - Float
44 Uby_XDiceScore - - Float
45 UnigramLogProbability - - Float
46 UnigramSolutionRank - - Float
47 VerbVariation - - Float
48 posProbability - - Float
49 ‡BERTbase-cased word prediction probability ✘ - Float
50 ‡BERTbase-cased entropy(softmax(top50)) ✘ - Float
51 NumberOfGapsInCoverSentence - ✘ Integer
52 NumberOfPrecedingGaps - ✘ Integer
53 NumberOfPrecedingGapsInCoverSentence - ✘ Integer
54 OccursAsGap - ✘ Binary
55 PositionOfGap - - Integer
56 IsCompoundBreak ✘ - Binary
57 IsReferentialGap ✘ - Binary
58 IsSyllableBreak ✘ - Binary
59 LengthOfSolutionInCharacters ✘ - Integer
60 LengthOfSolutionInSyllables - - Integer

Table 6: Features of our model fθ. ✘ marks a dependency of the feature on the size or placement of the gap. For
clarity, we use the same nomenclature as Beinborn (2016).
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vector to predict the gap error rate (cf. Fig. 4c).
Note, that we exclude both BERT-based fea-
tures in this setup, assuming that the mod-
els already have sufficient knowledge about
the respective prediction probabilities of the
masked gap.

C.2 Hyperparameter Tuning
We mainly tune hyperparameters for the SVM and
MLP. For the SVM, we evaluate c ∈ {0.00001,
0.0001, 0.001, 0.01, 0.1, 1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048, 10000, 100000} and
find that c = 0.01 performs best. For the MLP,
we randomly generate 100 configurations where
we sample {1, 2} layers with {10, . . . , 100} hid-
den units and run each configuration twice, once
with Linear and once with ReLU activation func-
tions; using a batch size of 10. All neural mod-
els are further trained for 250 epochs with an ini-
tial learning-rate of 5e-5 using the AdamW opti-
mizer (Loshchilov and Hutter, 2019) and the mean
squared error (MSE) loss. The transformer-based
models are trained with a batch size of 5. We use
the development set (cf. Table 1) to select our
model for evaluation on the test set; i.e, we use the
model from the best performing epoch. The best
performing MLP configuration for the Linear acti-
vation function has two layers with 87 hidden units
in the first, and 91 in the second layer. The best
performing MLP configuration for the ReLU acti-
vation function has 31 hidden units in the first and
16 in the second layer (with a total of two layers).
We do not tune any hyperparameters for the XGB
model, using the default configuration. We use
Scikit-learn (LR and SVM, Pedregosa et al. 2011),
the XGBoost library (Chen and Guestrin, 2016),
and PyTorch (Paszke et al., 2019) with the trans-
formers library (Wolf et al., 2020) to implement
and train our models.

C.3 Results
Table 7 shows the full results of our gap difficulty
model experiments on the development and test
data. Overall, we find that XGB performs best on
the test set in terms of RMSE and Pearson’s ρ, and
has the highest Pearson’s ρ on the development set.
Whereas MLPLinear has a lower RMSE on the de-
velopment set, we find that the results substantially
worsen on the test set, indicating that the models
have overfitted on the training data. Interestingly,
the feature-enriched Transformer-models seem to
suffer from the same overfitting as the standard

feature-based models, as they perform substantially
worse on the test set. Finally, we find that the MR
setup performs surprisingly well, showing the over-
all best performance across all Transformer-based
setups, even outperforming the simpler CLS token
setup. This indicates that considering the gap inter-
dependencies (as done in the MR setup but not in
the CLS setup) provides crucial knowledge to the
model and should be investigated in more detail in
future work.

C.3.1 Error analysis of DeBERTav3-large

Fig. 5 shows box plots on the differences between
the predicted and true error rates (absolute values).
We can see that DeBERTav3-large performs better
than XGB for the gap sizes one and three, but worse
for gap sizes equal or larger than four. Plotting all
predicted error rates (Fig. 6) shows that XGB cov-
ers a larger range with minimum and maximum val-
ues at 0.07 and 0.74 in contrast to DeBERTav3-large
with minimum and maximum values at 0.07 and
0.61. We further find that DeBERTav3-large tends to
predict too low error rates for 61.56% of the gaps
whereas for XGB, this happens in only 57.81% of
the cases, indicating that DeBERTav3-large tends to
underestimate the difficulty of the gaps.

C.3.2 Feature Ablation for XGB
While the features proposed by Beinborn (2016)
are linguistically and pedagogically motivated, they
have not been evaluated using XGB as the model.
We thus conduct an ablation study to identify any
features that may be removed without affecting the
model’s performance. For ablation, we follow the
taxonomy of Beinborn (2016), who propose four
feature categories:

Readability Captures the difficulty of the overall
text. They are further categorized into surface-
level (k=0, 1, 2), lexical-semantic (k=43, 47),
and syntactic (k=35) features.

Word Difficulty Captures the individual diffi-
culty of a word which is comprised of fa-
miliarity (k=33, 45, 59, 60), morphology &
compound (k=15, 16, 18–21, 56, 58), syntax &
context (k=5–13, 17, 26, 39, 41, 48), L1 influ-
ence (k=4, 14, 22, 44), and spelling difficulty
(k=23–35, 36–38) features.

Candidate Ambiguity Considers ambiguity in-
troduced by possible solution candidates and
is divided into mirco-level (i.e., close-range;
k=3, 29–32, 34, 42, 46) and marco-level (i.e.,
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Dev Test

Model ↓ RMSE ↑ Pearson’s ρ ↓ RMSE ↑ Pearson’s ρ

SVM (Beinborn et al., 2014) 0.23 0.50 — —
SVM (Lee et al., 2019) 0.24 0.49 — —
MLP (Lee et al., 2019) 0.25 0.42 — —
BiLSTM (Lee et al., 2019) 0.24 0.49 — —

SVMLinear,c=0.01 0.270 0.485 1.846 −0.111
MLPReLU 0.242 0.518 1.113 0.099
MLPLinear 0.232 0.548 1.681 0.085
LR 0.239 0.559 2.949 −0.385
XGB 0.237 0.614 0.285 0.439

BERTMR
base 0.249 0.420 0.311 0.279

BERTMR
large 0.255 0.362 0.319 0.174

RoBERTaMR
base 0.258 0.388 0.324 0.159

RoBERTaMR
large 0.262 0.281 0.324 0.050

DeBERTaMR
v3-base 0.248 0.502 0.311 0.245

DeBERTaMR
v3-large 0.245 0.484 0.308 0.259

BERTCLS
large 0.263 0.270 0.708 0.006

BERTCLS
base 0.259 0.348 0.598 0.006

RoBERTaCLS
base 0.268 0.287 0.456 -0.031

RoBERTaCLS
large 0.262 0.284 0.573 0.014

DeBERTaCLS
v3-base 0.268 0.283 0.469 -0.022

DeBERTaCLS
v3-large 0.267 0.277 0.491 0.016

BERTCLS+Flarge 0.239 0.592 85.055 -0.001
BERTCLS+F

base 0.245 0.570 60.432 -0.030
RoBERTaCLS+F

base 0.239 0.587 100.689 -0.004
RoBERTaCLS+F

large 0.241 0.592 82.148 0.022
DeBERTaCLS+F

v3-base 0.243 0.579 72.880 0.012
DeBERTaCLS+F

v3-large 0.241 0.585 64.031 -0.015

Table 7: Root mean squared error (RMSE) and Pearson’s correlation ρ for predicting the gap error rate across
different models. The first four rows show the results reported in the respective work (hence, there are no results on
the test portion of our data); all other rows report the results of our experiments. All results are averaged over ten
runs with different random seeds. Overall, we find that XGB performs best on the test data.
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Figure 5: Absolute differences between the predicted to the true error rate (∆ gap error rate) sorted by gap size.

long-range; k=28) features.

Item Dependency Captures dependencies be-
tween different items by using position (k=51–
53, 55), neighbor (k=27, 40, 54), and referen-
tiality (k=57) features.

In addition, we conduct an extra ablation experi-
ment for the BERT-based (k=49, 50) features pro-
posed by Lee et al. (2020). Table 8 shows the
impact of removing a whole feature category or
individual feature subsets on the XGB model. Inter-
estingly, we can observe multiple instances where
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Dev Test

Feature ↓ RMSE ↑ Pearson’s ρ ↓ RMSE ↑ Pearson’s ρ

All 0.240 0.533 0.285 0.439

− Readability +0.023 +0.090 -0.051 -0.353
− Surface -0.006 -0.003 -0.044 -0.290
− Lexical-semantic -0.019 -0.052 -0.047 -0.480
− Syntactic -0.001 -0.006 -0.018 -0.089

−Word Difficulty -0.020 -0.154 -0.068 -0.285
− Familiarity -0.020 -0.106 -0.043 - 0.386
−Morphology

& Compounds +0.003 +0.056 -0.019 -0.089

− Syntax
& Context -0.013 +0.013 -0.030 -0.241

− L1 Influence -0.010 -0.100 -0.036 -0.307
− Spelling Difficulty -0.029 -0.123 -0.034 -0.265

− Candidate Ambiguity -0.011 -0.002 -0.092 -0.279
−Micro-level -0.034 -0.110 -0.044 -0.471
−Macro-level -0.010 -0.027 -0.104 -0.230

− Item Dependency - 0.005 +0.006 -0.053 -0.465
− Position +0.005 +0.022 -0.038 -0.350
− Neighbor Effects -0.004 +0.019 -0.052 -0.406
− Referentiality +0.006 +0.020 -0.038 -0.376

− BERT -0.015 -0.096 -0.052 -0.349

Table 8: Ablation study for different subsets of features using the XGB model. Interestingly, removing some of the
features improves the model’s performance on the development data but substantially deteriorates the performance
on the test data.
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Figure 6: Predicted gap error rates of XGB and
DeBERTav3-large. We find that XGB covers a larger
range of predicted error rates than DeBERTav3-large, es-
pecially with respect to the maximum predicted values
(0.74 vs 0.61).

removing a set of features improves the model’s
performance on the development data; especially
the removal of all readability features that improves
the rooted mean squared error (RMSE) by 0.023
and Pearson’s ρ by 0.09. Moreover, their impact
on the performance seems to be interdependent, as
their individual removal decreases both scores. We
can also see that the removal of item dependency
features (and subsets) consistently improves Pear-

son’s ρ. In contrast, we observe substantial drops
especially in terms of Pearson’s ρ on the test set
which deviates from the commonly used static C-
Test format present in the training and development
sets. We thus conclude that the features proposed
by Beinborn (2016) and Lee et al. (2020) substan-
tially assist the model in generalizing to different
gap sizes and placements.

D User Study

D.1 Setup

This section provides further details with respect to
the setup of our user study.

D.1.1 Reimplementing SEL and SIZE

Given the high performance of the XGB model,
reimplementing the SEL and SIZE strategies with
the XGB model may result in better C-Tests. We
thus reimplement both strategies using the XGB
model and estimate the performance between dif-
ferent generation strategies by measuring the vari-
ability in terms of edit distance of the resulting
C-Test (i.e., the total number of characters turned
into a gap).
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Figure 7: Edit distance (total gap size per C-Test); aver-
aged across 100 C-Tests for different target difficulties.

Original baselines. Lee et al. (2019) define SEL
and SIZE as follows:

SEL estimates the difficulty of all n = 40 candi-
date gaps using an SVM trained on the 59
hand-crafted features defined by Beinborn
(2016). All gaps are then divided into two
sets; each set only consists of gaps that are
easier (or harder) than the target difficulty τ .
Each set is then sorted according to the dif-
ference (i.e., the distance) between a gap’s
difficulty and τ . Finally, the C-Test is gener-
ated by selecting the gaps closest to τ from
each set in an alternating manner, until the
final number of gaps m = 20 have been se-
lected. In the reimplementation, we replace
the original model with our XGB model.

SIZE estimates the gap difficulty of all default
gaps (using the same model as in SEL). In ad-
dition, Lee et al. (2019) train two SVMs that
predict the relative change in difficulty if the
gap was increased (decreased) by one charac-
ter. To reduce the time required for feature
processing, both models only use six features
that least degrade the performance (identified
in an ablation study). Using these models, the
gap size is then either increased (decreased)
until the target difficulty τ is achieved. For
the reimplementation, we replace the relative
prediction model with our XGB model and di-
rectly predict the difficulty of a gap that is in-
creased (or decreased) by one character. This
is made possible due to some improvements
(in terms of run time efficiency) we added
to the feature pipeline provided by Beinborn
(2016).18 As in the original algorithm, we do

18We obtained permission to share an executable .jar file
of the improved pipeline under an open source license.

this until we achieve a gap difficulty of larger
(smaller) than τ .

Experimental setup. Note, that we cannot use
our test data as it has been generated by the very
same generation strategies (SEL and SIZE) we
aim to evaluate and would distort the results. For
the experiments, we randomly sample 100 passages
from the GUM corpus (Zeldes, 2017). As this cor-
pus was designed as an educational corpus for ped-
agogical use, we conjecture that it better fits our use
case than other open corpora comprised of news
articles or Wikipedia articles. We further investi-
gate the helpfulness of varying the BERT features
(k = 49 and k = 50) as recomputing them leads to
the highest overhead in terms of computation time
(see Appendix D.1.2).

Results. Fig. 7 shows the results of our approach
with (MIPBERT) and without (MIPno-BERT) varying
the BERT features, SEL and SIZE as proposed
by Lee et al. (2019), and our reimplementation
using the XGB model (SELXGB and SIZEXGB).
Overall, we find that varying the BERT features
leads to a higher variability with smaller edit dis-
tances for lower target difficulties, and larger edit
distances for higher target difficulties. We further
find that SEL results in substantially smaller edit
distances for lower difficulties than SIZEXGB; in-
dicating that the relative difficulty model proposed
by Lee et al. (2019) may lead to better C-Tests
especially for easy ones. We do not see major dif-
ferences between SEL and SELXGB, but find that
SEL results in slightly lower minimum edit dis-
tances. For the study, we thus use the SEL and
SIZE implementations without any changes, as
they display a higher variability, and hence, are
stronger baselines.

D.1.2 Run time of MIP, SEL, and SIZE
While the optimality of the solution found by MIP
is ensured by algorithm design (cf. Appendix A.2),
one frequent limitation of constraint optimization
approaches are their potentially long run times until
finding a feasible solution. To show the feasibility
of our approach, we measure the run time of the gap
variability experiments conducted in the previous
section (Appendix D.1.1). All experiments were
conducted using an Intel Core™ i5-8400 CPU with
6 x 2.80GHz.

Results. For MIPBERT, the solver requires 22.5
seconds on average to find an optimal solution. We
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further find that not varying the BERT features
can lead to a substantial speedup by 16.9 seconds;
reducing the run time of the solver to 5.6 seconds.
In addition, computing the varying BERT features
without a GPU leads to an additional overhead
of 25.5 seconds. In total, not varying the BERT
features thus reduces the run time by 42.4 seconds
due to the smaller number of decision variables
(2 · 20) and static BERT features. Nonetheless, we
find that the 48.6 seconds of MIPBERT against the
6.2 seconds of MIPno-BERT still remains within an
acceptable range; especially when considering the
better results of MIPBERT. The run times of SEL
and SIZE are on average 14.6 seconds and 15.3
seconds, respectively; resulting in a difference of
∼ 30 seconds between MIP and the baselines.19

Discussion. Although the difference of ∼ 30 sec-
onds may seem substantial at first, MIP has two
inherent advantages over SIZE (SEL). First, the
theoretical guarantees that come with the mixed-
integer formulation ensure that under a given model
fθ, it is guaranteed that the resulting C-Test is op-
timal. Same cannot be considered for all other
baselines, as the solution space is reduced approxi-
matively for SIZE (SEL). Moreover, selecting or
excluding specific words as well as limiting the
gap size can be done by simply adding constraints
while the very same guarantees are being kept (i.e.,
the resulting solution is optimal for model fθ). For
instance, turning a word at position i into a gap of
size j only requires adding the constraint si,j = 1.
Second, MIP considers the whole solution space
during generation. Consequently, this allows us
to add constraints across the whole solution space.
In contrast, changing the gap placement in SIZE
(gap size in SEL) would require a manual assess-
ment and adaptation of the C-Test as the placement
(gap size) is not considered during generation. Be-
sides the improvements in terms of optimization
objective we propose in Appendix D.5, the run
time—especially for the feature generation—could
be further improved by incorporating more efficient
models such as TinyBERT (Jiao et al., 2020) in ad-
dition with other methods that improve inference

19While we cannot provide run time measurements for
GPT-4 due to too many instabilities regarding the latency,
we provide some estimates based on Llama-2 (Touvron et al.,
2023). We find that our prompts would consist of 1277.75
input tokens (on average). Using the model and the inference
speed reported by Touvron et al. (2023, p. 48), then results in
an approximate run time of 1277.75 tokens ·25 ms

token ≈ 31.9
seconds on eight NVIDIA A100 GPUs with 80 GB RAM.

µ ± σ

Model Statistics

Rows 4,413.95 ± 4.02
Columns 179,491.45 ± 24.06
Nonzeros 179,486.50 ± 566.61

Constraints 21,887.62 ±1,484.86

Variables (before presolve)

Continuous 6,563.00 ± 0.00
Integer 172,928.45 ± 24.06
Binary 172,928.45 ± 24.06

Presolved

Rows 8,854.53 ± 749.26
Columns 6,852.54 ± 550.05
Nonzeros 46,695.43 ±5,788.68

Variables (after presolve)

Continuous 1,248.73 ± 101.67
Integer 5,603.81 ± 459.85
Binary 5,496.23 ± 455.90

Cutting Planes 4,823.34 ±3,219.46

B & B Nodes 2,336.07 ±5,916.47

Table 9: Average (µ) statistics about the optimization
model, number of constraints, and variables. Presolving
consistently and substantially reduces the number of
variables. Most affected by the individual problem com-
plexity are the the number of visited nodes and cutting
planes with a high standard deviation (σ).

efficiency (Treviso et al., 2023). This remains to be
investigated in future work.

D.1.3 Empirical Complexity of MIP

As discussed in Appendix A.2, the employed meth-
ods do not affect the worst-case complexity and
the problem itself remains NP-hard. However, an-
alyzing the actual complexity of the experiments
conducted in Appendix D.1.1 reveals that practi-
cal instances are being solved in reasonable time.
As can be seen in Table 9, the standard deviations
with respect to the model statistics, the number
of constraints, and variables are low; indicating a
stable level of problem complexity. Moreover, we
find that presolving consistently and substantially
reduces the problem complexity. Finally, we can
observe that the individual problem complexity pri-
marily affects the final steps of solving the problem;
i.e., the number of cutting plane cuts and visited
branch-and-bound (B & B) nodes. In practice, all
our experiments terminated and in feasible time
(cf. Appendix D.5).
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T Metric µ σ C-Test

T1 ARI 21.04 8.49 34.21 ✗
Coleman-Liau 12.65 1.87 12.84 ✓

DaleChallIndex 11.26 0.98 11.97 ✓
FleschReadingEase 38.58 23.02 10.37 ✗

GunningFogIndex 22.24 6.95 33.08 ✗
Kincaid 17.28 6.97 27.88 ✗

LIX 64.52 17.59 93.02 ✗
RIX 10.35 4.90 18.33 ✗

SMOGIndex 16.96 3.69 21.71 ✗

T2 ARI 10.3 3.85 14.12 ✓
Coleman-Liau 9.43 2.21 10.63 ✓

DaleChallIndex 9.64 0.94 9.54 ✓
FleschReadingEase 69.26 15.77 57.86 ✓

GunningFogIndex 12.87 3.32 16.43 ✗
Kincaid 8.69 3.39 11.90 ✓

LIX 41.93 8.91 51.44 ✗
RIX 4.42 1.90 6.60 ✗

SMOGIndex 11.27 2.19 13.68 ✗

T3 ARI 14.96 6.14 21.07 ✓
Coleman-Liau 10.33 1.77 8.67 ✓

DaleChallIndex 10.12 0.80 9.30 ✗
FleschReadingEase 57.85 16.36 54.60 ✓

GunningFogIndex 17.16 4.99 21.70 ✓
Kincaid 12.4 4.96 16.76 ✓

LIX 51.52 12.31 62.63 ✓
RIX 6.52 2.84 8.00 ✓

SMOGIndex 13.71 2.67 14.29 ✓

T4 ARI 14.98 5.19 15.92 ✓
Coleman-Liau 11.14 1.51 10.45 ✓

DaleChallIndex 10.24 0.77 9.87 ✓
FleschReadingEase 53.85 14.27 55.65 ✓

GunningFogIndex 17.33 4.27 17.91 ✓
Kincaid 12.65 4.22 13.23 ✓

LIX 52.52 10.99 55.22 ✓
RIX 6.94 2.83 7.50 ✓

SMOGIndex 14.19 2.37 14.29 ✓

Table 10: Readability scores of T1–T4 on eight different
metrics.

D.1.4 Text Selection
As we expect most of our participants to have at
least a college degree, we focus on books that pre-
sumable have a higher reading difficulty. The se-
lected books are (in alphabetical order):

T1 Beyond Good and Evil (Friedrich Nietzsche)

T2 Crime and Punishment (Fyodor Dostoevsky)

T3 Emma (Jane Austen)

T4 Pride and Prejudice (Jane Austen)

To evaluate how well the randomly sampled pas-
sages in the study represent each book, we conduct
an analysis with respect to their reading difficulty
and compare each passage against all possible pas-
sages that follow our selection criteria (cf. Text
selection in Section 6). Table 10 shows the scores

for eight reading difficulty metrics that were com-
puted using a respective python package.20 For
each text (T ), we show the average (µ) and stan-
dard deviation (σ) for the reading difficulty of all
paragraphs and the one used in the study (C-Test).
The last column indicates if the paragraph used in
the study falls within (✓) or outside (✗) the bound-
ary of µ ± σ. Overall, we see that all selected
text passages have a high reading difficulty satisfy-
ing our criteria of college graduate level or higher
reading difficulty. Moreover, we see that the text
passages (except T1) fall within the boundary of
average and standard deviation across a majority of
metrics, indicating that they represent the text well
in terms of reading difficulty.

D.2 Design

D.2.1 Group Configurations
Table 11 shows the eight configurations used in
our study where each participant solves C-Tests
generated from each model M, text T , and two
target difficulties τ .

T1 T2 T3 T4
M τ M τ M τ M τ

1 M1 0.1 M4 0.9 M2 0.1 M3 0.9
2 M1 0.9 M2 0.1 M4 0.9 M3 0.1
3 M2 0.1 M1 0.9 M3 0.9 M4 0.1
4 M2 0.9 M1 0.1 M3 0.1 M4 0.9
5 M3 0.1 M2 0.9 M4 0.1 M1 0.9
6 M3 0.9 M4 0.1 M1 0.9 M2 0.1
7 M4 0.1 M3 0.9 M2 0.9 M1 0.1
8 M4 0.9 M3 0.1 M1 0.1 M2 0.9

Table 11: Configurations used in our user study. As can
be seen, all generation strategies M and target difficul-
ties τ are evenly distributed. Our models are: GPT-4
(M1), MIP (M2), SEL (M3), and SIZE (M4).

D.2.2 Study Examples and Questionnaire
Fig. 8 shows all questions participants were asked
to answer upon registration. An example C-Test
is provided in Fig. 9. Fig. 10 shows the feedback
our participants were asked to provide after each
C-Test.

D.3 Results

This section provides a detailed analysis about our
study participants and their responses in the ques-
tionnaire, as well as details about the GAMM for-
mulation and the resulting p-values.

20https://pypi.org/project/readability/

93



Q1: Please estimate your current language
proficiency in English
A1: # Beginner (A1) # Elementary (A2)
# Intermediate (B1) # Upper Intermediate (B2)
# Advanced (C1) # Proficient (C2)

Q2: I studied English for about years.

Q3: How often do you practice or speak English?
A3: # Never # Monthly # Weekly # Daily

Q4: What is your native language?
A4:

Q5: Have you tried learning languages (other than
English)? If yes, than which ones?
A5: # Yes, . # No.

Figure 8: Study questionnaire.

D.3.1 Participants

The study was distributed across our university and
took place between the 21st of August 2023 and
8th of September 2023. All our participants are
volunteers (and received no compensation) with
an academic background with at least one college
degree. They have achieved at least B1 proficiency
in English based on the common European frame-
work of references for languages (CEFR, Council
of Europe 2001). Overall, two participants stated
to have a B1 proficiency, nine a B2 proficiency, and
16 and 13 a C1 and C2 proficiency, respectively.
On average, our participants have used English for
10 (±6.5) years; mostly on a daily (27) or weekly
(8) basis. Only two participants use English on a
monthly basis, while three responded with never.
Most of our participants are native German speak-
ers (26). Other native languages were Chinese (3),
Russian (2), Turkish (2), Arabic, Croatian, Italian,
Hindi, Korean, Kyrgyz (together with Russian),
Spanish, and Vietnamese (1 each). Finally, the
majority (36) of our participants have attempted
to learn a different language—on average 1.97 lan-
guages excluding English. Fig. 11 and Fig. 12 show
the average scores and time taken for each partici-
pant, sorted by their provided CEFR self-estimate.
Interestingly, we do not find any significant dif-
ferences between the proficiency, score, and time
taken, indicating that our participants actually had
a similar English proficiency. This is in line with
our observations from the GAMM analysis that
indicates that none of our smooth terms play a sig-
nificant role for modeling (cf. Appendix D.3.2).

D.3.2 GAMM Details for τ̂
We formulate our GAM model for the actual diffi-
culty τ̂ as follows:

τ̂ =M + τ + f1(T ) · Z1 + f2(CEFR) · Z2

+ f3(User) · Z3 + f4(Years)

+ M · τ + ϵ,

(11)

where M represents the generation strategy and τ
the target difficulty. T , CEFR, User, and Years
are terms for categorical values of text, language
proficiency, participant, and number of years partic-
ipants have been using English, modeled as smooth
terms f(·) with a random effect Z.21 Finally, M · τ
models the interaction between generation strategy
and target difficulty and ϵ is an unknown vector of
random errors.

We use the mgcv (Wood et al., 2016) imple-
mentation available in R (R Core Team, 2022).
Fig. 16 show the p-values between different genera-
tion strategies computed using the Wald test (Wald,
1943). Analyzing our GAMM shows that the
model’s explanatory power is substantial with
R2 = 0.59. Table 12 shows the F-test statis-
tics (Bruning and Kintz, 1987) of the GAM model
with respect to the parametric fixed terms. We
find that all fixed terms are statistically signifi-
cant. Besides M which has been discussed in the
main paper, we further find that τ has a significant
and positive effect on the response variable τ̂ with
β = 0.14, 95%CI[0.05, 0.23] and p = 0.002. Inter-
estingly, we find that all modeled smooth terms are
not significant as shown in Table 13. This however,
is in line with our findings that indicate that our
participants’ CEFR self-estimate and their number
of years using English do not substantially impact
the score. Finally, the underlying text as well as
the participant (User) do not substantially impact
the score and thus, can be excluded as confounding
factors in our observations.22

D.3.3 Perceived Difficulty
Fig. 19 and Fig. 20 show the box plots of our par-
ticipant’s responses for the perceived difficulty. We
can see that MIP generated C-Tests that were per-
ceived easiest by our participants. In addition, we
again find a clear tendency that the easy C-Tests
generated by GPT-4 were also perceived as more

21Note, that we do not require a random effect for the years
as they are quantifiable numeric values.

22Note, that this only applies to this specific study; in future
studies, all these factors may impact the outcomes.
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Figure 9: Example C-Test showing the interface used in our user study.

Figure 10: Collected feedback after each C-Test.
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Figure 11: Average score for each participant sorted
by their CEFR self-estimate. Shaded areas indicate
the maximum and minimum scores.
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Figure 12: Average time taken for each participant
sorted by their CEFR self-estimate. Shaded areas
indicate the maximum and minimum time taken.

difficult than the hard C-Tests. Finally, conducting
Wald tests (Wald, 1943) using our GAMM shows
that MIP significantly outperform SEL and GPT-4
and performs on-par with SIZE (cf. Fig. 17). Note,
that GPT-4 again performs significantly worse

than all other generation strategies.

GAMM statistics. Table 14 and Table 15 show
the analysis of our GAM model with respect to the
perceived difficulty. We observe similar trends as
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Figure 13: CEFR self-estimates of our participants.
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Figure 14: Frequency our participants use English.
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Figure 15: Number of years our participants have been using English.

τ̂ df F p-value

M 3.00 19.87 1.53e-10∗

τ 1.00 9.57 0.00246∗

M · τ 3.00 9.96 6.47e-06∗

Table 12: F-test statistics for the parametric fixed terms
of the GAMM. df denotes the degrees of freedom. All
terms are statistically significant.

for τ̂ with an even higher substantial explanatory
power R2 = 0.81.

D.4 Error Analysis

Details MIP vs SIZE. Table 16 show the number
of occurrences of successive gaps (i.e., multiple
gaps that occur in succession). Although it seems
reasonable that successive gaps should be more

τ̂ edf Ref.df F p-value

f1(T ) 1.7013 4.00 0.983 0.990
f2(CEFR) 0.8445 1.00 131.858 0.997
f2(User) 27.3925 40.00 4.396 0.998
f2(Years) 1.0000 1.00 0.013 0.908

Table 13: F-test statistics for the smooth terms of the
GAM model. With edf denoting the effective degrees of
freedom, and Ref.df the reference degrees of freedom.
None of the terms are statistically significant, indicating
that they do not have any impact on τ̂ .

difficult to fill out as less words provide context, we
do not see substantial differences between C-Tests
generated with τ = 0.1 and τ = 0.9. This indicates
that the XGB model may not have a good notion
about how successive gaps impact the overall C-
Test difficulty.
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Figure 16: P-values of the Wald test between different
C-Test generation strategies for τ̂ . As can be seen, all
strategies significantly outperform GPT-4, and MIP
significantly outperforms SEL. We find no significant
differences between MIP and SIZE.
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Figure 17: P-values of the Wald test between different
C-Test generation strategies for the perceived difficulty.
As can be seen, all strategies significantly outperform
GPT-4, and MIP significantly outperforms SEL. We
find no significant differences between MIP and SIZE.

Feedback df F p-value

M 3.00 21.698 2.16e-11∗

τ 1.00 23.871 3.07e-06∗

M · τ 3.00 9.269 1.39e-05∗

Table 14: F-test statistics for the parametric fixed terms
of the GAMM. df denotes the degrees of freedom. All
terms are statistically significant.

Feedback edf Ref.df F p-value

f1(T ) 2.825e+00 4.00 39.469 0.843
f2(CEFR) 1.817e-06 4.00 0.000 1.000
f2(User) 2.062e+01 40.00 1.313 0.991
f2(Years) 2.771e+00 3.05 0.920 0.457

Table 15: F-test statistics for the smooth terms of the
GAM model, with edf denoting the effective degrees of
freedom, and Ref.df the reference degrees of freedom.
None of the terms are statistically significant, indicating
that they do not have any impact on the perceived diffi-
culty.

GPT-4 shortcomings. Fig. 21 shows the C-
Tests generated by GPT-4 for T3 with τ = 0.1 and
τ = 0.9. As the lower gap error rates indicate, the
more difficult C-Test is comprised of easier gaps,
including five gaps of gap size one (compared to
two for the easier C-Test). We can further observe
that the gaps are primarily clustered around the
beginning of the C-Test. In addition, we find that
GPT-4 generates misleading explanation about its
notion of difficulty, for instance:

Based on the provided examples and the desired
difficulty, we’ll try to generate a C-Test with 20
gaps and a difficulty of 0.1. This means that about
10% of the gaps should be moderately challenging
to fill in.

Although the explanation is convincing, consid-
ering the fact that the model simply tries to add (re-
move) gaps to increase (decrease) the difficulty of
the resulting C-Test makes it clear that the models
does not have a notion of gap-level difficulty. How-
ever, the provided explanation may even mislead
students to believe that they are actually solving a
C-Test of a specific difficulty, resulting in a wrong
self-assessment.

Gap size vs gap placement. Motivated by the
substantial differences between SEL and SIZE, we
conduct an analysis to see if their differences can
be attributed to either one; gap size or gap place-
ment. To better assess the differences between

97



0.2 0.4 0.6 0.8

0
.2

0
.3

0
.4

0
.5

0
.6

tau

d
if
fi
c
u
lt
y

fi
tt

e
d

 v
a

lu
e

s
, 

e
x
c
l.
 r

a
n

d
o

m

mip

gpt4

sel

size

Figure 18: Linear regression curves for each generation strategy and difficulty. As can be seen, GPT-4 is the only
strategy that shows a negative slope; indicating that the model as an inverted notion of difficulty.
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Figure 19: Perceived difficulty for τ = 0.1 (∼very
easy).
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Figure 20: Perceived difficulty for τ = 0.9 (∼very
hard).

τ = 0.1

# Succ. T1 T2 T3 T4
1 3 5 10 6
2 5 1 1 1
3 1 - 1 1
4 1 - - 1
5 - - 1 1
6 - 1 - -
7 - 1 - -
8 - - - -
9 - - - -

10 - - - -

τ = 0.9

# Succ. T1 T2 T3 T4
1 4 6 7 3
2 4 2 2 2
3 - 2 - 1
4 2 1 1 -
5 - - 1 -
6 - - - -
7 - - - -
8 - - - -
9 - - - -

10 - - - 1

Table 16: Number of occurrences for successive gaps (# Succ.) in C-Tests generated by MIP for τ = 0.1 (left) and
τ = 0.9 (right).
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...From t__■ expense of the child,
how____■, he was so__■ relieved. The
bo_■ had, wit_■ the add_______■
softening cl___■ of a lin______■ illness
of his mo____■’s, been the me___■ of a
so__■ of reconciliations; and Mr. and
Mrs. Ch_______■, having no ch______■ of
their ow_■, nor any ot___■ young
cr______■ of equal ki_____■ to care for,
offered to ta__■ the whole ch____■ of
the little Fr___■ soon after...

...From t__■ expense o_■ the ch___■,
how____■, he w__■ soon rel_____■. The
bo_■ had, with t__■ addit_____■
soften___■ claim o_■ a ling_____■
illness o_■ his mo____■’s, be__■ the
me___■ of a so__■ of recon_________■;
and M_■. and M__■. Churchill, having
no children of their own, nor any other
young creature of equal kindred to care
for, offered to take the whole charge of
the little Frank soon after...

(a) C-test of T3 generated with GPT-4 for τ = 0.1 (b) C-test of T3 generated with GPT-4 for τ = 0.9

Figure 21: GPT-4 generated C-Tests. Colored squares indicate the gap error rates (0.0 ■ ■ ■ ■ ■ ■ 1.0)

different strategies, we use the static generation
strategy (STAT) as a common denominator to com-
pare different C-Tests. Table 17 shows the differ-
ences in terms of gap size (i.e., the number of char-
acters) compared to STAT. Interestingly, we find
that SIZE is most similar to STAT whereas MIP
is most dissimilar to STAT. Table 18 furthermore
shows that MIP has the highest overlap (consis-
tently around 50%) to all other strategies in terms
of gap placement. Considering that SIZE and MIP
show no significant differences but significantly
outperform SEL and GPT-4, we conclude that we
cannot attribute the differences in performance to
solely a difference gap size or placement. More-
over, our analysis suggests that C-Tests with differ-
ent gap sizes and placements can be equally good,
highlighting the importance of considering interde-
pendencies between gaps.

GPT-4 MIP SEL SIZE

∆ 77 96 0 62
µ 9.6 12.0 0.0 7.8

Table 17: Gap size differences compared to the static
generation strategy. We show the total number of differ-
ences (∆) across all eight C-Tests as well as the average
difference per C-Test (µ).

GPT-4 MIP SEL STAT SIZE

GPT-4 100.0 - - - -
MIP 48.1 100.0 - - -
SEL 43.1 51.3 100.0 - -
STAT 40.6 49.4 45.6 100.0 -
SIZE 40.6 49.4 45.6 100.0 100.0

Table 18: Overlap of the gap placements when com-
pared to the static (STAT) generation strategy (in %).
STAT and SIZE use the same gap placements.

D.5 Importance of Problem Formulation

As discussed in Appendix A.2, the actual problem
formulation can make a substantial difference in
terms of run time. To investigate if the run time
of MIP can be further improved, we evaluate two
alternative formulations of our optimization objec-
tive (|τ − τ̂ |). We especially focus on the absolute
value function | · |, as this can be done in multi-
ple ways of which some are feasible and others
are not.23 We evaluate three different optimization
objectives in this work:

Min/Max Using the minimum and maximum
functions: |τ − τ̂ | = max{τ, τ̂}−min{τ, τ̂}.

Indicator Using indicator constraints (i.e., if-
else constructs):

|τ − τ̂ | =
{
τ − τ̂ , if τ > τ̂ ,

τ̂ − τ, otherwise.

PWL Using piecewise linear functions:
|τ − τ̂ | = a(·) + b(·) + c(·) + d(·), with

a(x) = τ , ∀x ≤ 0

b(x) = τ − τ̂ , ∀0 < x ≤ τ

c(x) = τ̂ − τ , ∀τ < x ≤ 1

d(x) = 1− τ , ∀1 < x.

For evaluation, we repeat the MIPBERT run time
experiments from Appendix D.1.1 using 6 Cores
of an AMD EPYC™ 7742 processor with 2.25GHz
each. To reduce noise from other components in
the code (e.g., feature extraction or data loading)
we only measure the time required for solving the
optimization objective. Table 19 shows the average
time (µ) and standard deviation (σ) as well as the
minimum (min) and maximum (max) run times
for each formulation. Interestingly, we find that
the optimization objective has a higher impact on

23For instance,
√

(τ − τ̂)2 equally describes |τ − τ̂ | but
introduces a quadratic term, resulting in an infeasible model.
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Method µ σ max min

Min/Max 32.02 61.52 656.12 1.33
Indicator 3.12 1.34 7.17 0.95
PWL 72.91 370.60 11,481.52 1.15

Table 19: Run time of MIPBERT using different formu-
lations of our optimization objective (in seconds). We
show the average (µ), standard deviation (σ), maximum
(max), and minimum (min) run times.

the actual run time than the difference in hardware.
For instance, the Min/Max formulation that was
used throughout this work has a run time of ∼32
seconds; requiring only 10.5 seconds longer on the
AMD hardware compared to using an Intel Core™
i5-8400 CPU with 6 x 2.80GHz (22.5 seconds;
cf. Appendix D.1.2). In contrast, using a different
optimization objective results in substantially
different run times, namely ∼3 seconds for the
indicator objective and ∼73 seconds for PWL.
The differences become especially large for the
worst-case (max) run times, as the Min/Max
formulation requires ∼11 minutes and PWL even
up to 3 hours and 12 minutes. In contrast, the
worst-case run time of the indicator constraint
remains low at only ∼7 seconds. Overall, the
indicator formulation substantially closes the gap
of MIP to SIZE and SEL (with a total run time of
∼15 seconds) and will be published along with the
code to alleviate future research.

D.6 GPT-4 Example
Fig. 22 shows the prompt we use to construct C-
Tests using GPT-4. For the few-shot examples, we
select the instances from the ACL-2019 dataset
with the highest (0.655) and lowest (0.09) difficulty
and randomly sample one instance per text (Lee
et al. 2019 use four texts in total). Fig. 23 shows
the respective response we received after five tries.
We regenerated the response if the model produced
a C-Test with less than 20 gaps. If the model gen-
erated more than 20 gaps, we selected the first 20
gaps. All prompts and responses are provided in
the published data.

100



C-Tests are gap-filling exercises where each only the latter part of a word is made into a gap. A C-Test is generated by placing
gaps in an input text. The difficulty of a C-Test is the percentage of errors a student makes across all gaps. Each C-Test
consists of 20 gaps. Gaps are indicated by ’_’ . Here are some examples:
Example 1:
Input Text 1:
The Serge Prokofieff whom we knew in the United States of America was gay, witty, mercurial, full of pranks and bonheur –
and very capable as a professional musician. These qualities endeared him to both the musicians and the social-economic
haute monde which supported the concert world of the post-World War 1, era.
C-Test 1:
The Se_ Prokofieff wh_ we kn_ in the United States of America was g_ , wi_ , merc_ , full of pra_ a_ bon_ – and very cap_ as
a profes_ musi_ . Th_ qual_ ende_ h_ to bo_ the musi_ and the social-economic ha_ mo_ which supported the concert world
of the post-World War 1 , era .
Difficulty 1: 0.655
Example 2:
Input Text 2:
It is being fought, moreover, in fairly close correspondence with the predictions of the soothsayers of the think factories. They
predicted escalation, and escalation is what we are getting. The biggest nuclear device the United States has exploded
measured some 15 megatons, although our B-52s are said to be carrying two 20-megaton bombs apiece.
C-Test 2:
It i_ being fough_ , moreover , i_ fairly clos_ correspondence wit_ the prediction_ of t_ soothsayers o_ the thin_ factories .
The_ predicted escalatio_ , and escalatio_ is wha_ we ar_ getting . T_ biggest nuclea_ device t_ United State_ has explode_
measured som_ 15 megatons , although our B-52s are said to be carrying two 20-megaton bombs apiece .
Difficulty 2: 0.09
Example 3:
Input Text 3:
Here was a man with an enormous gift for living as well as thinking. To both persons and ideas he brought the same delighted
interest, the same open-minded relish for what was unique in each, the same discriminating sensibility and quicksilver
intelligence, the same gallantry of judgment.
C-Test 3:
Here w_ a man w_ an e_ gift f_ living a_ well a_ thinking . T_ both per_ and id_ he bro_ the s_ delighted inte_ , the s_
open-minded relish f_ what w_ unique i_ each , t_ same d_ sensibility a_ quicksilver i_ , the same gallantry of judgment .
Difficulty 3: 0.43
Example 4:
Input Text 4:
The Serge Prokofieff whom we knew in the United States of America was gay, witty, mercurial, full of pranks and bonheur –
and very capable as a professional musician. These qualities endeared him to both the musicians and the social-economic
haute monde which supported the concert world of the post-World War 1, era.
C-Test 4:
The Se_ Prokofieff wh_ we kn_ in t_ United Sta_ of Ame_ was g_ , witty , merc_ , full o_ pranks a_ bonheur – a_ very cap_
as a profes_ musician . Th_ qualities ende_ him t_ both t_ musicians a_ the social-economic ha_ monde wh_ supported the
concert world of the post-World War 1 , era .
Difficulty 4: 0.3425
Example 5:
Input Text 5:
St. Louis sits in the center of a relatively slow-growing and in some places stagnant mid-continent region. Slackened regional
demand for St. Louis goods and services reflects the region’s relative lack of purchasing power. Not all St. Louis industries, of
course, have a market area confined to the immediate neighborhood.
C-Test 5:
St. Louis si_ in t_ center o_ a relatively slow-growing a_ in so_ places stag_ mid-continent region . Slac_ regional dem_ for
St. Lo_ goods a_ services refl_ the reg_ ’s relative la_ of purch_ power . N_ all St. Lo_ industries , o_ course , ha_ a market
ar_ confined t_ the immediate neighborhood .
Difficulty 5: 0.295
Now generate a C-Test with 20 gaps and a difficulty of <τ>
Input Text:
<Text containing all words w>

Figure 22: The prompt used for C-Test generation using GPT-4. We first explain the concept of a C-Test and provide
five examples selected from the data collected by Lee et al. (2019). We then add an instruction to generate a C-Test
of our target difficulty τ and finally, provide the text passage that contains all words w. All C-Tests used in the study
are generated using the same five few-shot examples.
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Now generate a C-Test with 20 gaps and a difficulty of 0.1
Input Text:
As little as the act of birth comes into consideration in the whole process and procedure of heredity, just as little is
"being-conscious" opposed to the instinctive in any decisive sense; the greater part of the conscious thinking of a philosopher
is secretly influenced by his instincts, and forced into definite channels.
C-Test:
As litt_ as the a_ of birth com_ into consider_ in the w_ process a_ procedure o_ heredity , jus_ as litt_ is " being - conscious "
opp_ to the inst_ in any dec_ sense ; the gre_ part o_ the cons_ thinking of a philo_ is sec_ influenced by h_ instincts , and
for_ into def_ channels.
Difficulty: 0.1
(Note: This C-Test is generated with a target difficulty of 0.1, but the actual difficulty experienced by a test taker might differ
based on their familiarity with the content and context.)

Figure 23: A C-Test generated by GPT-4 for T1 and τ = 0.1 (last row). Note, that this is the fifth regneration, as
previous responses of the model contained less than 20 gaps.
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Abstract

Recent work in natural language processing
(NLP) has yielded appealing results from
scaling model parameters and training data;
however, using only scale to improve per-
formance means that resource consumption
also grows. Such resources include data, time,
storage, or energy, all of which are naturally
limited and unevenly distributed. This mo-
tivates research into efficient methods that
require fewer resources to achieve similar re-
sults. This survey synthesizes and relates cur-
rent methods and findings in efficient NLP.
We aim to provide both guidance for con-
ducting NLP under limited resources, and
point towards promising research directions
for developing more efficient methods.

1 Introduction

Scaling has become a key ingredient in achieving
state-of-the-art performance in NLP (Figure 1),
as recent research suggests that some capabilities
only emerge once models grow beyond a certain
size (Wei et al., 2022b). However, despite the
merits of scaling, it poses key challenges to mak-
ing these breakthroughs accessible in resource-
constrained environments (Ahmed and Wahed,
2020), in having a non-negligible environmental
impact (Strubell et al., 2019; Schwartz et al.,
2020a; Derczynski, 2020; Patterson et al., 2021;
Wu et al., 2022a), and in complying with hard-
ware constraints (Thompson et al., 2020). To

∗Equal contribution. marcos.treviso@tecnico.pt.

tackle these limitations, there has been renewed
focus around research that seeks to improve model
efficiency.

Definition Efficiency is characterized by the
relationship between resources going into a sys-
tem and its output, with a more efficient system
producing the same output with fewer resources.
Schwartz et al. (2020a) formalize efficiency as
the cost of a model in relation to the results it
produces: Cost(R) ∝ E · D · H, i.e., the Cost(·)
of producing a certain NLP (R)esult as propor-
tional to three (non-exhaustive) factors: (1) The
cost of model execution on a single (E)xample,
(2) the size of the (D)ataset, and (3) the number
of training runs required for (H)yperparameter
tuning. Here we take a different approach, and
consider the role that efficiency plays across the
different steps in the NLP pipeline, by providing
a detailed overview of efficiency methods spe-
cific to NLP (Figure 2).

Scope of this Survey We address this work to
two groups of readers: (1) Researchers from all
fields of NLP working with limited resources; and
(2) Researchers interested in improving the state
of the art of efficient methods in NLP. Each sec-
tion concludes with a discussion of limitations,
open challenges, and possible future directions
of the presented methods. We start by discussing
methods to increase data efficiency (Section 2),
and continue with methods related to model design
(Section 3). We then consider efficient methods
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Figure 1: Exponential growth in the number of param-
eters in pre-trained language models. Adapted from
Lakim et al. (2022).

for the two typical training setups in modern
NLP: pre-training (Section 4) and fine-tuning
(Section 5). We then discuss methods for mak-
ing inference more efficient (Section 6). While we
mainly focus on algorithmic approaches, we pro-
vide appropriate pointers regarding hardware that
are connected to the scale at which we expect to
deploy a model (Section 7). We then discuss how
to quantify efficiency and what factors to consider
during evaluation (Section 8), and, finally, how
to efficiently decide upon the best suited model
(Section 9).

To guide the reader, Figure 3 presents a typol-
ogy of efficient NLP methods considered in this
survey.

2 Data

Data efficiency is improved by using fewer train-
ing instances, or by making better use of avail-
able instances. Fixed compute budgets motivate
balancing model size and training data size, es-
pecially during pre-training (Hoffmann et al.,
2022).

2.1 Filtering

Improving data quality can boost performance
while reducing training costs during pre-training
and fine-tuning. For instance, Lee et al. (2022b)
showed that removing duplicates in pre-training
increases training efficiency, giving equal or even
better model performance compared to using
all data. Zhang et al. (2022) used MinhashLSH
(Leskovec et al., 2020) to remove duplicates while
developing OPT. De-duplication can lead to sub-
stantially reduced computation cost, especially in

cases with abundant pre-training data but limited
compute budget (Hoffmann et al., 2022).

Similar observations have been made for fine-
tuning. For instance, Mishra and Sachdeva (2020)
found—via adversarial filtering (Zellers et al.,
2018)—a subset of only ∼2% of the SNLI data
(Bowman et al., 2015) that leads to performance
comparable to using the full corpus. While such
filtering approaches are useful for mitigating bi-
ases (Le Bras et al., 2020), they may not always
serve as tools to filter existing datasets, as these
often suffer from insufficient training data.

2.2 Active Learning
Active learning aims to reduce the number of
training instances. In contrast to filtering, it is
applied during data collection (instead of after)
to only annotate the most helpful or useful in-
stances for training (Settles, 2012; Ren et al.,
2021b). To assess usefulness of an instance with-
out knowing its actual label, one can use the
model uncertainty—assuming that labeling in-
stances with the highest uncertainty is most help-
ful (Lewis and Gale, 1994; Tang et al., 2002;
Gal et al., 2017; Yuan et al., 2020); instance
representativeness—to maximize diversity of sam-
pled instances while avoiding outliers (Bodó et al.,
2011; Sener and Savarese, 2018; Gissin and
Shalev-Shwartz, 2019); or a combination of both
criteria (Kirsch et al., 2019; Ash et al., 2020;
Margatina et al., 2021; Siddiqui et al., 2021;
Agarwal et al., 2022). Active learning has been
successfully applied in machine translation (MT;
Liu et al. 2018), language learning (Lee et al.,
2020), entity linking (Klie et al., 2020), and coref-
erence resolution (Li et al., 2020a; Yuan et al.,
2022). Despite its advantages, some open ques-
tions make active learning difficult to apply in
practice. It remains unclear how model-based sam-
pling impacts the performance of models us-
ing architectures different from that in sampling
(Lowell et al., 2019; Ein-Dor et al., 2020). Also,
selecting ‘‘difficult’’ instances may increase anno-
tation cost and difficulty (Settles et al., 2008; Lee
et al., 2022a). Finally, it is prone to selection bi-
ases and can favor outliers (Cortes et al., 2008;
Karamcheti et al., 2021).

2.3 Curriculum Learning
Curriculum learning aims to find a data order-
ing that reduces the number of training steps re-
quired to achieve a target performance (Elman,
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Figure 2: Schematic overview of the efficient NLP stages covered in this paper, starting with data collection
and model design, followed by training and inference, and ending with evaluation and model selection. Notably,
the training stage is divided into two parts: pre-training, which aims to learn generalizable parameters, and fine-
tuning, which optimizes these parameters for specific downstream tasks.

Figure 3: Typology of efficient NLP methods.

1993; Bengio et al., 2009). This method does
not reduce dataset size, but does improve its uti-
lization. Hence, it is a common approach for
improving training efficiency in both pre-training
and fine-tuning. Many curriculum learning meth-
ods order instances by difficulty, using heuristics
such as sentence length. This has yielded improve-
ments for transformer pre-training (Press et al.,
2021; Agrawal et al., 2021) as well as fine-tuning
on tasks such as question answering (Tay et al.,
2019), MT (Zhang et al., 2019), and others (Xu
et al., 2020).

A major challenge in curriculum learning is
determining pace, i.e., when to progress to more

difficult instances. If not chosen carefully, cur-
riculum learning can waste compute on ‘‘easy’’
instances. To tackle this, work has investigated
adaptive ordering strategies based on current
model state, called self-paced learning (Kumar
et al., 2010). This has been successfully applied to
improve performance in MT using model and data
uncertainty (Wan et al., 2020; Zhou et al., 2020;
Zhao et al., 2020), and in dialog generation with
knowledge distillation (Zhu et al., 2021). How-
ever, self-paced learning involves large training
costs, and disentangling instance ordering from
factors such as optimizer choice and batch size is
non-trivial (Dodge et al., 2020).
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2.4 Estimating Data Quality

In an era of ever larger datasets, auditing and es-
timating the quality of data is increasingly chal-
lenging. Datasets frequently present high levels of
noise and misaligned instances (Kreutzer et al.,
2022). Estimating data quality encompasses re-
search efforts which propose better uncertainty
estimates (Baldock et al., 2021; D’souza et al.,
2021; Ethayarajh et al., 2022) as well as analytical
tools such as dataset cartography (Swayamdipta
et al., 2020). Qualitative tools include documen-
tation for datasets and model attributes (Gebru
et al., 2021).

3 Model Design

Efficient model design covers architectural
changes and adding new modules to accelerate
training.

3.1 Improving Attention in Transformers

The transformer’s self-attention mechanism has a
quadratic dependency on sequence length which
is not fully utilized by existing models (Hassid
et al., 2022). To reduce computational costs, ef-
ficient attention mechanisms for long sequences
have been proposed (Tay et al., 2022). Existing
strategies include better using already-processed
segments via recurrence to connect multiple seg-
ments (Dai et al., 2019), learning a network to
compress a longer-term memory (Rae et al., 2020),
separately modeling global and local attention
(Ainslie et al., 2020), and modeling long inputs as
a continuous-time signal (Martins et al., 2022b).
Another line of research uses fixed attention pat-
terns, where tokens attend to their immediate
context (local attention) and possibly to a few
global positions (global attention; Beltagy et al.,
2020; Zaheer et al., 2020; Child et al., 2019).
Compared to using the full self-attention matrix,
such approaches can scale linearly with the input
length.

Some methods learn attention sparsity patterns
directly from data, e.g., by grouping tokens into
buckets, leading to a more accurate yet more ex-
pensive approximation of the full attention matrix
(Kitaev et al., 2020; Daras et al., 2020; Roy et al.,
2021). Instead of seeking better attention pat-
terns, some strategies modify the attention mech-
anism and derive low-rank approximations to
the query-key matrices via reverse application of
the kernel trick, resulting in linear time attention

(Katharopoulos et al., 2020; Choromanski et al.,
2021; Peng et al., 2020; Zhai et al., 2021). Re-
cently, IO-aware attention mechanisms have been
proposed, decreasing reads and writes to the at-
tention matrix to GPU high-bandwidth memory
(Dao et al., 2022b).

Despite various improvements in attention
mechanisms, most of them struggle with very long
sequences (Tay et al., 2021). S4 (Gu et al., 2022b),
and its successors (Gupta et al., 2022; Mehta et al.,
2023; Gu et al., 2022a), suggest an alternative to
transformers that alleviates the short memory
problem and the quadratic bottleneck cost of self-
attention by discretizing state space representa-
tions through parameterization of the state matrix.
More recently, Mega (Ma et al., 2023) replaced
the multi-headed transformer attention mechanism
with a single-headed mechanism that receives
contextualized vectors from a multidimensional
exponential moving average module, and then
splits the input into multiple fixed-length chunks
to reduce the computation cost. Both S4 and Mega
strongly outperform attention-based methods on
all tasks of the Long Range Arena benchmark
(Tay et al., 2021), while increasing training speed
by approximately 5x and reducing memory cost
by about 15% when compared to a standard trans-
former. This success is attributed to their con-
volutional structure, which emphasizes nearby
tokens and has a parameter count that grows
sub-linearly with sequence length (Li et al.,
2022b).

3.2 Sparse Modeling

To leverage sparsity for efficiency, many mod-
els follow the mixture-of-experts (MoE) concept
(Jacobs et al., 1991; Shazeer et al., 2017; Fedus
et al., 2022a), which routes computation through
small subnetworks instead of passing the input
through the entire model. Relevant works on
this line include GShard (Lepikhin et al., 2021),
Switch Transformer (Fedus et al., 2022b), and
ST-MoE (Zoph et al., 2022), which replace the
feed-forward layers in transformers with MoE
layers. More recently, Rajbhandari et al. (2022)
scaled transformers up by compressing and opti-
mizing the usage of MoE. Overall, MoE models
have been shown to achieve strong performance
across several NLP tasks while reducing the over-
all resource consumption (Section 8). For in-
stance, GLaM (Du et al., 2022) used only ∼ 1

3
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of GPT-3’s energy consumption (with additional
hardware-based optimization), while Rajbhandari
et al. (2022) reached a 5x reduction in terms of
training cost. However, MoE models have also
exhibited training instabilities in practice, and
may require architecture-specific implementation
(Zoph et al., 2022; Mustafa et al., 2022).

Another promising direction for exploiting
sparse modeling is Sparsefinder (Treviso et al.,
2022), which extends the Adaptively Sparse
Transformer (Correia et al., 2019) to allow a
more efficient attention mechanism by identify-
ing beforehand the sparsity pattern returned by
entmax attention—a sparse alternative to (dense)
softmax attention (Peters et al., 2019). Finally,
sparsity can also be induced via modularity, e.g.,
by encapsulating task-specific parameters (Ponti
et al., 2022).

3.3 Parameter Efficiency

Methods that reduce parameter count can reduce
computational costs and memory usage. One such
approach is to share weights across layers of a
model while maintaining the downstream task
performance (Dehghani et al., 2019; Lan et al.,
2019). Besides sharing weights, Perceiver (Jaegle
et al., 2021) also minimizes the computational
cost of self-attention on long sequences by map-
ping the input to a small latent vector. ALBERT
(Lan et al., 2019) further uses matrix decompo-
sition to reduce the size of the embedding layer,
which is one of the largest consumers of model
parameters. Finally, Reid et al. (2021) studied
ways to share weights in transformers, showing
that sharing only the middle layers of the model
outperforms the alternatives.

3.4 Retrieval-Augmented Models

Parametric models can be combined with retrieval
mechanisms for text generation, leading to semi-
parametric models (Gu et al., 2018; Lewis et al.,
2020b; Li et al., 2022a). This typically amounts
to trading model size with the number of database
entries. For instance, RETRO (Borgeaud et al.,
2022) matched the performance of models 25
times larger by retrieving chunks of tokens from
a 2 trillion token database. At inference time,
the model retrieves tokens / phrases / sentences
from a database, which are used by the model
through a combination of probability distributions
(Khandelwal et al., 2020), gating mechanisms

(Yogatama et al., 2021), or attention (Borgeaud
Borgeaud et al., 2022).

These models also have good generalization
properties: By retrieving from domain-specific
databases, they can be applied to new domains,
reducing the need for domain-specific fine-tuning
(Khandelwal et al., 2020, 2021). That is, hav-
ing an explicit ‘‘memory’’ also allows retrieval-
augmented models to be adapted post-training.
Although they may yield slow running speeds
since the retrieval time grows as the datastore
scales, recent work proposed strategies to alleviate
this, such as pruning the database (He et al., 2021),
having smaller input-dependent databases (Meng
et al., 2022), reducing the representation dimen-
sion (Martins et al., 2022a), and clustering data
points (Wang et al., 2021b; Alon et al., 2022). In
particular, Martins et al. (2022c) have shown that
carefully constructing a database not only leads
to better translations than fine-tuning, but can
also reduce the total translation time (inference +
online adaptation).

3.5 Model Design Considerations
Despite considerable advances, one major chal-
lenge is modeling long sequences in many real-
world documents. For instance, sustainability
reports have on average 243.5 pages (Manes-Rossi
et al., 2018), which substantially exceeds the max-
imum length (16k tokens) found in Path-X from
Long Range Arena (Tay et al., 2021). In fact,
the ability of a model to handle longer sequences
than those seen during training may depend on
design choices, such as the attention mechanism
(Dubois et al., 2020) and the positional encod-
ing (Shaw et al., 2018; Press et al., 2022). The
effect of this behavior when using transformers
with sub-quadratic attention, sparse modeling ap-
proaches, or parameter efficient models is not
yet well understood.

While sparse modeling approaches like MoE
can substantially reduce inference and training
costs, they require additional model parameters
for retraining specialized modules and have in-
stability issues during training (Zoph et al., 2022).
Models that rely on built-in sparse transforma-
tions, such as entmax (Peters et al., 2019), have
achieved strong results without stability issues,
but have not yet fully realized competitive effi-
ciency gains. Combining MoE with built-in sparse
functions may be a promising research direction,
e.g., by using entmax in the routing layer.
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In retrieval-augmented models, the quality of
the retrieval component is critical to performance,
and the tradeoff between storing information in
model parameters vs. external resources needs to
be better understood, especially when deploying
models in low-resource settings like edge devices.
Finally, while new model designs improve effi-
ciency through different means, further improve-
ments can emerge from combining approaches,
such as making MoE more efficient using quanti-
zation (Section 6.3) and using parameter-efficient
models for distillation (Section 6.2).

4 Pre-training

Modern transfer learning approaches in NLP
typically involve pre-training a model in a self-
supervised fashion on large amounts of text before
fine-tuning it on specific tasks (Section 5). Im-
proving the pre-training procedure of a model can
significantly reduce the cost of hyperparameter
tuning and increase data efficiency for fine-tuning
(Peters et al., 2018; He et al., 2019; Neyshabur
et al., 2020).

4.1 Optimization Objective

The choice of the task can determine the suc-
cess of the pre-trained model on downstream
tasks. Left-to-right language models, such as GPT
(Radford et al., 2019; Brown et al., 2020) and
PaLM (Chowdhery et al., 2022), are trained with
the causal language modeling (CLM) objective,
which involves predicting the next token given a
context. BERT (Devlin et al., 2019) uses a masked
language model (MLM) task, which involves fill-
ing randomly masked tokens.

To make better use of available data, various
masking strategies have been investigated. Mask-
ing objects and content words only rather than
random tokens (Bitton et al., 2021), or masking
more tokens (Wettig et al., 2022), has led to higher
task performance and more efficient use of the
available data. ELECTRA (Clark et al., 2020) and
DeBERTa (He et al., 2023) tried replaced token
detection (RTD), an objective that uses a small
generator model to replace input tokens, and con-
verges more quickly to better performance. A
limitation of the MLM and RTD objectives is
that they work with single token replacements.
T5 (Raffel et al., 2020) and BART (Lewis et al.,
2020a) overcome this by adopting a denoising
sequence-to-sequence objective to pre-train an

encoder-decoder model, allowing the decoder to
predict a span of tokens for masked positions. In
practice, this allows training on shorter sequences
without losing task performance, which helps to
reduce training costs.

4.2 Pre-training Considerations

Despite increases in the size of pre-trained models
(cf. Figure 1), many pre-training efficiency gains
come from improving model design (Section 3)
and selection (Section 9) as well as making more
efficient use of the available data (Section 2).
These factors have had a greater impact on model
performance than the pre-training objective it-
self (Alajrami and Aletras, 2022). However, pre-
training is usually computationally expensive,
requiring significant amounts of GPU memory
and computational power (Rae et al., 2021), and
may require large amounts of quality data, which
can be difficult to acquire and curate (Kaplan
et al., 2020). Surprisingly, as demonstrated by
Chinchilla (Hoffmann et al., 2022), decreasing
model size to account for the amount of avail-
able data not only leads to better performance,
but also reduces computational cost and improves
model applicability to downstream tasks. Contin-
ued focus on the role of data in efficient pre-
training is a promising direction, such as recent
work studying the role of (de-)duplication of ex-
amples in large-scale pre-training corpora (Lee
et al., 2022b). While transformers have been the
dominant architecture in pre-trained models, more
efficient modeling methods such as state space
representations and MoEs (Section 3.1) have the
potential to overcome some challenges of pre-
training transformers.

5 Fine-tuning

Fine-tuning refers to adapting a pre-trained
model to a new downstream task. While some ap-
proaches explicitly aim to make the fine-tuning
process more efficient, in this survey, we use a
broader definition of fine-tuning that includes any
method used to apply a pre-trained model to a
downstream task.

5.1 Parameter-Efficient Fine-Tuning

Gradient-based fine-tuning typically involves
training all model parameters on a downstream
task. Hence, fine-tuning a pre-trained model on
a new task creates an entirely new set of model
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parameters. If a model is fine-tuned on many
tasks, the storage requirements can become oner-
ous. Adapting a pre-trained model to downstream
tasks by training a new classification layer and
leaving the rest of the parameters fixed (a.k.a.
feature extraction; Peters et al., 2018) updates dra-
matically fewer parameters than training the full
model but has been shown to produce worse per-
formance and has become less common (Devlin
et al., 2019).

Several approaches have been proposed to adapt
a model to a new task while only updating or
adding a relatively small number of parameters—
up to four orders of magnitude fewer parameters
than full-model fine-tuning—without sacrificing
(and in some cases improving) performance.
Adapters (Houlsby et al., 2019; Bapna and Firat,
2019; Rebuffi et al., 2017; Pfeiffer et al., 2020)
inject new trainable dense layers into a pre-trained
model, while leaving the original model parame-
ters fixed. They have recently been improved by
the Compacter method (Karimi Mahabadi et al.,
2021), which constructs the adapter parameter
matrices through Kronecker products of low-rank
matrices. While adapters can reduce training time
due to a reduced number of trained parameters,
and mitigate some deployment costs due to re-
duced storage requirements, one shortcoming is
increased inference time due to more parameters
(Rücklé et al., 2021). To mitigate this, Moosavi
et al. (2022) proposed training an additional layer
selector to only use adapter layers necessary for
a given task.

As an alternative to adding new layers,
parameter-efficiency can be achieved by directly
modifying activations with learned vectors, ei-
ther by concatenation (Liu et al., 2021a; Li and
Liang, 2021; Lester et al., 2021), multiplication
(Liu et al., 2022a), or addition (Ben Zaken et al.,
2022). Two notable approaches are prefix-tuning
(Li and Liang, 2021) and prompt-tuning (Lester
et al., 2021), which fine-tune continuous prompts
as an alternative to engineering discrete prompts
(cf. Section 5.3). Although they are conceptu-
ally similar to adapters, He et al. (2022b) show
that they are equivalent to a parallel insertion,
whereas adapters are inserted sequentially. Alter-
natively, rather than adding new parameters or
changing the computational graph, it is possible
to make sparse (Sung et al., 2021; Guo et al.,
2021) or low-rank (LoRA, Hu et al., 2022) up-
dates. Finally, optimization can be performed in a

low-dimensional subspace (Li et al., 2018), which
leads to parameter-efficient updates (Aghajanyan
et al., 2021b). Although low-rank approaches mit-
igate the issue of increased inference time, they
require an additional optimization step to iden-
tify the best rank. To mitigate this, Valipour et al.
(2022) proposed a dynamic solution that substan-
tially reduces training time compared to LoRA.
Lastly, Wang et al. (2022b) devised AdaMix to
combine different parameter efficient fine-tuning
techniques together via routing and showed that
their approach can even outperform full fine-
tuning.

5.2 Multi-Task and Zero-Shot Learning
While traditional transfer learning includes fine-
tuning, there are other paradigms that allow for
immediate application of a pre-trained model to a
downstream task of interest. Multi-task learning
(Caruana, 1997; Ruder, 2017) aims to train a sin-
gle model that can perform a wide variety of tasks
out of the box. Typically, this is done by fine-
tuning on data from all downstream tasks of in-
terest. Multi-task models can improve fine-tuning
performance (Raffel et al., 2020; Aghajanyan
et al., 2021a; Aribandi et al., 2022; Liu et al.,
2022a). In certain cases, a multi-task model works
on new tasks without any fine-tuning, also referred
to as zero-shot generalization (Sanh et al., 2022;
Wei et al., 2022a). Radford et al. (2017, 2019) and
Brown et al. (2020) demonstrated that language
models trained with an unsupervised objective
can perform a variety of tasks out-of-the-box.
While it can circumvent the need for fine-tuning,
zero-shot ability depends on model size and only
becomes competitive at a certain scale (Wei et al.,
2022b).

5.3 Prompting
Inspired by models like GPT-3 (Brown et al.,
2020), prompting refers to casting a task as a tex-
tual instruction to a language model (Liu et al.,
2023). In general, prompts can be either crafted
manually or automatically using fill-in templates
for token, span, and sentence-level completion
(Petroni et al., 2019; Brown et al., 2020; Shin et al.,
2020). This makes prompting applicable to more
challenging NLP tasks, such as QA, MT, and sum-
marization (Schick and Schütze, 2021). Although
prompting eliminates the need for any fine-tuning,
identifying good prompts can be difficult (Liu
et al., 2021a). Hence, recent work investigates the
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automated creation of suitable prompts, albeit with
additional training cost (Bach et al., 2022).

5.4 Fine-Tuning Considerations

An emerging problem with large language models
is the universally high cost of fully fine-tuning
them (Chen et al., 2021). Although prompting
(without fine-tuning) can alleviate this issue,
designing prompts can be tedious—even with au-
tomated help. One promising direction for effi-
ciently introducing new knowledge into models
is to combine existing methods for efficient fine-
tuning. This could involve methods such as that
used by Karimi Mahabadi et al. (2022), who pro-
posed task-specific adapters to avoid generating
prompts, and achieved considerable speed ups
while tuning under 1% of parameters. Another
challenge in adopting large pre-trained models for
fine-tuning is the complexity in interpreting the
final model, due in part to the use transformers.
To gain a better understanding of these mod-
els while still leveraging efficiency, a promis-
ing direction is to combine techniques such as
sparse modeling and parameter-efficient methods
(Correia et al., 2019; Treviso et al., 2022).

6 Inference and Compression

Inference involves computing a trained model’s
prediction for a given input. Inference can be
made more efficient by accelerating the process
for time efficiency (latency), or by compressing
the model to reduce memory requirements.

6.1 Pruning

Proposed by LeCun et al. (1989), pruning removes
irrelevant weights from a neural network to reduce
computation, and furthermore, decreases memory
capacity and bandwidth requirements. Pruning
can be applied at different stages of the NLP
pipeline (Figure 2). For instance, Gordon et al.
(2020) found that up to ∼40% of BERT can be
pruned at pre-training without affecting its per-
formance. Others proposed pruning methods that
work as regularizers and can be applied to pre-
training and fine-tuning (Louizos et al., 2018;
Wang et al., 2020b). Finally, work has inves-
tigated pruning during fine-tuning (Han et al.,
2015; Sanh et al., 2020) or dynamically during
inference (Fan et al., 2020).

Pruning was initially introduced at the indi-
vidual weight level (unstructured pruning), but

more recent approaches prune larger components
of the network (structured pruning). Examples
of the latter include removing attention heads
(Voita et al., 2019; Michel et al., 2019), weak
attention values (Ji et al., 2021; Qu et al., 2022),
and even entire hidden layers (Dong et al., 2017;
Sajjad et al., 2023). In particular, Xia et al. (2022)
found that pruning all these components yields
more accurate and efficient models. When com-
paring the two pruning approaches, unstructured
pruning is often found to better preserve a mod-
el’s performance (Gale et al., 2019; Ahia et al.,
2021), but existing hardware often cannot ex-
ploit the resulting sparsity. In contrast, structured
pruning methods often lead to a higher improve-
ment in terms of inference speed (Hoefler et al.,
2021). The increasing popularity of pruning meth-
ods has further raised the question of how to
quantify and compare them (Gale et al., 2019;
Blalock et al., 2020; Tessera et al., 2021; Hoefler
et al., 2021) and motivated work that combines
pruning with other efficiency methods such as
adapters (Rücklé et al., 2021) and distillation
(Zafrir et al., 2021).

While early pruning (e.g., during pre-training)
can further reduce training costs, it increases the
risk of over-pruning: removing nodes essential
for downstream task performance (Gordon et al.,
2020). Although this can be mitigated by ‘‘re-
growing’’ pruned weights (Mostafa and Wang,
2019), this increases training costs. Other pruning
downsides include additional costs for hyperpa-
rameter tuning such as the number of preserved
weights.

6.2 Knowledge Distillation

The process of knowledge distillation uses super-
vision signals from a large (teacher) model to train
a smaller (student) model (Hinton et al., 2015),
and often leads to the student outperforming a
similarly sized model trained without this su-
pervision. While early work focused on distilling
task-specific models (Kim and Rush, 2016), recent
work focuses on distilling pre-trained models that
can then be fine-tuned on specific downstream
tasks (Sanh et al., 2019; Liu et al., 2020; Jiao
et al., 2020; Sun et al., 2020; Gou et al., 2021).
The downsides of distillation include the added
cost of tuning student hyperparameters and the
potential for reduced performance and generaliza-
tion capability (Stanton et al., 2021). Recently,
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Zhu et al. (2022) discovered that some perfor-
mance loss is due to undistillable classes and sug-
gested ways to address this.

6.3 Quantization

Mapping high-precision data types to low-
precision ones is referred to as quantization.
Quantization can be applied at different stages in
the NLP model-building pipeline to reduce train-
ing and inference costs. Various research has
shown that low-precision data format can reduce
memory consumption by 4x–24x and improve
the throughput by 4.5x compared to 32-bit float-
ing point format. Various studies targeted specific
precision-levels such as integers (Kim et al.,
2021), 8-bit (Quinn and Ballesteros, 2018; Zafrir
et al., 2019; Bhandare et al., 2019; Prato et al.,
2020; Dettmers et al., 2022a), ternary (Zhang et al.,
2020; Ji et al., 2021; Zadeh et al., 2022), and even
binary representations (Bai et al., 2021).

Different components may have different sen-
sitivities regarding their underlying precision, so
there is a body of work on mixed-precision quanti-
zation. Shen et al. (2020) showed that embedding
layers require more precise parameter represen-
tations than the attention layer, while Kim et al.
(2021) showed that nonlinear functions require
more bits than the general matrix multiplication.
Others defined quantization as a constrained opti-
mization problem to automatically identify layers
where lower precision is sufficient (Hubara et al.,
2021). Finally, several studies proposed quantiza-
tion during training to make them robust against
performance loss after quantization (Zafrir et al.,
2019; Kim et al., 2021; Stock et al., 2021). For
instance, Bai et al. (2021) and Zhang et al. (2020)
proposed using knowledge distillation to maintain
the accuracy of binarized and ternarized models.
These show that component-customized quanti-
zation can preserve accuracy while improving
efficiency. To maximize the benefit from quan-
tization, one should also consider the available
underlying hardware and associated specialized
kernels compatible with different bit representa-
tions (Noune et al., 2022; Kuzmin et al., 2022).

6.4 Inference Considerations

While efficiency during pre-training and fine-
tuning focuses on the computational resources and
time required to train and optimize a model, infer-
ence efficiency is focused on how well a learned

model can perform on new input data in real-world
scenarios. Moreover, inference optimization is
ultimately context-specific and the requirements
vary according to the use-case. Therefore, there
is no one-size-fits-all solution to optimizing in-
ference, but instead a plethora of techniques. For
instance, while Wu et al. (2022b) combine several
methods to achieve utmost model compression,
other works improve task-specific mechanisms
such as beam-search in MT (Peters and Martins,
2021). Parallelism can also be leveraged to in-
crease inference efficiency, but its effective-
ness may depend on the hardware available
(Rajbhandari et al., 2022). Dynamic computation
techniques, such as early-exit (Schwartz et al.,
2020b; Xin et al., 2020) and MoE (Section 3.1),
can improve inference efficiency by selectively
performing computation only on the parts of the
model that are needed for a given input. However,
current dynamic computation methods often use
eager execution mode, which can prevent them
from low-level optimization, as noted by Xu and
McAuley (2023). Work focusing on inference
efficiency should carefully report the exact tar-
get setting (hardware, eager vs. static execution
framework). Accordingly, promising directions
for optimizing inference efficiency might consider
tighter integration across or more general purpose
approaches with respect to algorithm, software,
and hardware. One recent such example is neural
architecture search for hardware-specific efficient
transformers (Wang et al., 2020a).

7 Hardware Utilization

Many hardware-specific methods focus on re-
ducing GPU memory consumption, a major bot-
tleneck in transformer models. Others leverage
specialized hardware, co-design of hardware, and
adaptations targeted to edge devices. Many tech-
niques can be combined and applied across dif-
ferent stages of training and inference (Figure 2)
for further efficiency.

7.1 Reducing Optimizer Memory

Optimizers that track gradient history incur a
memory cost. Libraries like DeepSpeed (Ren
et al., 2021a) allow gradient history to be off-
loaded from GPU to CPU RAM where computa-
tion is performed via efficient AVX instructions.
bitsandbytes (Dettmers et al., 2022b) uses
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dynamic block-wise quantization to reduce mem-
ory pressure. It splits tensors into blocks and quan-
tizes each block individually. This reduces memory
consumption by 75% and improves training times
due to reduced inter-GPU communication.

7.2 Specialized Hardware
Specialized NLP hardware has been built using
Application Specific Integrated Circuits or Field
Programmable Gate Arrays, though it is not yet
broadly available. These designs use dedicated
units for efficient operations like quantization and
pruning (Section 6). For example, Zadeh et al.
(2020, 2022), Li et al. (2021), and Qu et al. (2022)
support ultra-low-bit and mixed precision compu-
tation that cannot be done on CPUs/GPUs; Ham
et al. (2020, 2021) and Wang et al. (2021a) de-
sign hardware that predicts and prunes redundant
heads/tokens and weak attention values in trans-
formers. Qu et al. (2022) present a design that
balances the workload to alleviate the irregular-
ity in the pruned attention. Others develop new
types of processors and memories optimized for
transformer components: Lu et al. (2020) and Liu
et al. (2021b) implemented dedicated hardware
for softmax and layer normalization respectively,
and Tambe et al. (2021) used embedded Re-
sistive RAM—a nonvolatile memory with low
latency and energy consumption—to store word
embeddings.

7.3 Co-design
Some work optimizes hardware, software, and al-
gorithms jointly, which historically has been a
common way to realize efficiency gains (Hooker,
2021). For instance, Lepikhin et al. (2021) demon-
strated that improving the underlying compiler
can substantially improve parallelization and en-
able scaling. Other examples for co-design focus
on hardware-aware mixture of experts models
and attention mechanisms to produce substantial
speedups (He et al., 2022a; Rajbhandari et al.,
2022; Dao et al., 2022b). Barham et al. (2022)
proposed a gang-scheduling approach with paral-
lel asynchronous dispatch that leads to substantial
efficiency gains. Finally, Hinton (2022) sug-
gested ‘‘mortal computation’’, an extreme form
of co-design, where by training a model that is
tailored to a specific hardware, the need to gua-
rantee consistent software behavior across dif-
ferent hardware is reduced, potentially saving
computation.

7.4 Edge Devices

Tight compute and memory constraints on edge
devices motivate a separate set of efficiency
solutions. SqueezeBERT (Iandola et al., 2020) in-
corporates group convolutions into self-attention
to improve efficiency on mobile devices. Edge-
Former (Ge et al., 2022) interleaves self-attention
layers with lightweight feed-forward layers and
an encoder-heavy parameterization to meet edge
memory budgets. GhostBERT (Huang et al., 2021)
uses ghost modules built on depth-wise sepa-
rable convolutions used in MobileNets (Howard
et al., 2017). LiteTransformer (Wu et al., 2020)
uses long-short range attention to encode local
context by convolutions for MT in resource-
constrained settings. Through quantization llama
.cpp1 runs a 7B-parameter LLM on recent mo-
bile phone hardware. Finally, ProFormer (Sankar
et al., 2021) reduces runtime and memory via
locality sensitive hashing and local projection
attention layers.

7.5 Hardware Considerations

To deliver more computational power, vendors
pack denser computational units into domain-
specific hardware, such as tensor cores in Intel
FPGAs, Xilinx AI Engines, and matrix processors
in the Google TPU. However, irregularities in the
transformer, like sparsity and mixed data types,
restrict the use of these resources. We suggest
focusing on adapting efficient transformers to ex-
isting specialized hardware platforms, including
using hardware-optimized data formats like block
floating point, and exploring sparsity on dense
tensor units.

8 Evaluating Efficiency

Evaluating efficiency requires establishing which
computational aspect one aims to minimize. We
discuss the two most prominent aspects (FLOP/s
and power consumption), and list open challenges.

8.1 Evaluation Measures

Pareto Optimality When improving efficiency,
multiple factors often need to be traded off.
For instance, longer training time can increase
task performance, but simultaneously increase

1https://github.com/ggerganov/llama.cpp,
20 March 2023.
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resource consumption. A principled way to char-
acterize trade-offs is to identify Pareto-optimal
solutions (Pareto, 1896), those for which no other
system reaches a better or equal task perfor-
mance with lower resource consumption. As there
may be several Pareto-optimal solutions, final
choice depends on the application context; a small,
average-quality model and a large, higher-quality
model can both be optimal. Thus, as long as a
model contributes to or extends the Pareto-optimal
curve for a given problem and measurement space,
it it worthwhile—even if other solutions may use
less resources or produce higher quality scores.

Advancing NLP by pushing Pareto barriers
is an established practice (Kim et al., 2019;
Bogoychev et al., 2020; Behnke and Heafield,
2021). For instance, the WNGT 2020 MT shared
task (Birch et al., 2020) considers the Pareto
frontier between real time taken, system or GPU
memory usage, and model size, as well as BLEU
score. Puvis de Chavannes et al. (2021) included
power consumption as a trade-off against per-
plexity to explore Pareto-efficient hyperparame-
ter combinations for transformer models. Finally,
Liu et al. (2022b) examined Pareto efficiency for
a number of tasks in an attempt to narrow model
selection search space.

FLOP/s A frequently reported efficiency mea-
sure is the number of floating point operations
(FLOPs) and floating points per second (FLOP/s).
While these discrete metrics seem well defined
in terms of what the hardware does, there is
some variation at multiple stages of the stack,
adding uncertainty. For example, different opera-
tions may count as a FLOP on different hardware;
non-floating-point operations are not considered;
and hardware is rarely 100% utilized and achiev-
ing this productively is a challenge, so theoretical
FLOP/s performance cannot be multiplied with
time elapsed to yield the amount of computing
performed. Still, FLOP/s per unit power can indi-
cate which hardware choices have the potential to
offer Pareto-efficient trade-offs (Hsu et al., 2005).

Power Consumption There exist various ways
to measure power consumption, for instance, by
using specific hardware such as an electricity me-
ter. While this can provide precise figures with
a high temporal accuracy, it cannot provide a
fine-grained estimate for individual computers in
a network. Moreover, it does not cover external

energy costs such as cooling or networking. An-
other way is to use software tools such as MLCO2
(Luccioni et al., 2019). Some tools even provide
a real-time breakdown of the power consump-
tion of different components within a machine
(Henderson et al., 2020) or local machine API-
reported figures to stop training early if prudent
(Anthony et al., 2020). Finally, Hershcovich et al.
(2022) introduced a model card for NLP systems
that encourages researchers to document effi-
ciency in a consistent manner.

Measuring power consumption programmati-
cally comes with a number of caveats. First, sam-
pling frequency is often restricted at various levels
of the stack and may result in a lag in measure-
ment start. Consequently, shorter experiments
may log an energy use of zero, and there will
almost always be energy demand that is missed.
Second, inefficiencies such as heat loss are not
reported by current APIs and hence do not cover
cooling and other system management activities.
Third, not all architectures and operating systems
are supported. For instance, power consumption
under macOS is difficult to manage, and di-
rect figures for TPU power consumption are not
available.

Carbon Emissions Carbon emissions are usu-
ally computed using the power consumption and
the carbon intensity of the marginal energy gener-
ation used to run the program. Thus, low-energy
does not mean low-carbon, and high-energy
models can—in the right region and with some
care—be zero-carbon in terms of point energy
consumption impact, if executed at the right time
(i.e., when the energy mix is low-carbon inten-
sity; Dodge et al., 2022). For estimating the CO2

emissions from a specific program execution,
APIs such as ElectricityMap2 provide real-time
access to carbon intensity for many regions. How-
ever, as carbon intensity varies and is affected by
other factors like the power usage efficiency in a
data center, it is often a poor basis for comparison;
in fact, Henderson et al. (2020) recommended
using multiple runs for a stable estimate. Fur-
thermore, one needs to consider that zero-carbon
program executions still consume energy, and that
efficiency does not intrinsically guarantee a re-
duction in overall resource consumption, as the
resulting cost reduction may lead to an increase

2https://electricitymap.org.
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in demand counteracting any gains, an effect
known as Jevons’ paradox (Jevons, 1866).

8.2 Open Challenges in Measuring Efficiency

Hardware choice can lead to pronounced differ-
ences in certain efficiency measurements such as
latency and thoroughput (Lee-Thorp et al., 2022).
Properly measuring efficiency remains a major
challenge (Cao et al., 2020).

Separating Different Stages It is important to
characterize efficiency of pre-training and fine-
tuning stages separately (Sections 4 and 5). Mod-
els may present different memory requirements
during training yet result in trained models with
comparable inference memory consumption. This
is because training often involves design choices
that increase the memory overhead of backward
propagation. Further, some optimizers may re-
quire substantially more memory than others.
Similarly, parameter sharing techniques may show
few benefits during training but show memory im-
provements at inference (Dehghani et al., 2022).
Finally, while larger models run more slowly than
smaller ones, they converge faster and better com-
press using methods like pruning and quantiza-
tion (Li et al., 2020c).

Disagreement Between Cost Factors As par-
tially discussed in Section 7.2, cost indicators
may disagree with each other. For instance, MoEs
increase the overall parameter count, but improve
the trade-off between quality and FLOPs, as they
minimize the per-data cost by routing to sub-
sections of the model (Rajbhandari et al., 2022).
Conversely, unstructured sparsity techniques can
significantly minimize the overall number of
FLOPs, yet in practice, they introduce low-level
operations that can lead to far higher memory re-
quirements to store the indices that indicate what
part of the matrix is sparse (Qu et al., 2022). Fi-
nally, Chen et al. (2022) and Dao et al. (2022a)
found specific sparsity patterns that achieve more
predictable speedups with current hardware.

Trade-offs with Other Desiderata One major,
but seldom studied, concern when improving ef-
ficiency are trade-offs with other desiderata such
as fairness and robustness. For instance, Hooker
et al. (2020), Renduchintala et al. (2021), and
Silva et al. (2021) found that compression tech-

niques such as pruning can amplify existing bi-
ases; Mohammadshahi et al. (2022) and Ogueji
et al. (2022) further explored these trade-offs in
a multilingual setting. So far, only a few studies
investigated preserving a model’s fairness when
increasing its efficiency. To quantify such effects,
Xu et al. (2021) proposed a novel metric called
loyalty, which measures the resemblance of pre-
dicted distributions made by teacher and student
models. Hessenthaler et al. (2022) established that
many approaches for increasing fairness in NLP
models also increase computation, and jointly
with work like Wang et al. (2022a) showed that
distillation can decrease model fairness. Xu and
Hu (2022) studied these effects more systemati-
cally, with mixed conclusions. While more pos-
itive insights have been found with respect to other
desiderata such as out-of-distribution (OOD) gen-
eralization (Ahia et al., 2021; Iofinova et al., 2022;
Ogueji et al., 2022) and model transfer (Gordon
et al., 2020), more work is needed to better un-
derstand and benchmark the impact of efficiency
beyond accuracy.

9 Model Selection

Finally, we discuss lines of research that opt to
efficiently select a well-performing model variant.

9.1 Hyperparameter Search

The performance of machine learning methods
can be improved by choosing hyperparameters
carefully. Model-based techniques such as Bayes-
ian optimization (BO; Snoek et al., 2012; Feurer
et al., 2015) and graph-based semi-supervised
learning (Zhang and Duh, 2020) use surrogate
models to search efficiently for optimal hy-
perparameters, avoiding inefficient grid search
or manual tuning. Complementary approaches
are successive halving (SHA; Jamieson and
Talwalkar, 2016) and its massively parallel vari-
ant, asynchronous SHA (ASHA; Li et al., 2020b),
which test multiple hyperparameter settings in
parallel for a fixed number of training iterations,
then discard the half of the settings with the worst
validation set performance.

The SMAC3 library (Lindauer et al., 2022)
implements several BO strategies, including a
budget-limited variant for expensive deep learning
tasks, and is integrated into auto-sklearn (Feurer
et al., 2022) and auto-pytorch (Zimmer et al.,
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2021). However, with limited computational bud-
gets, both BO and ASHA may fail to identify
good settings (Liu and Wang, 2021). It is unclear
whether these methods can be used to choose
random initial weights or to order training sam-
ples, which also affect model performance (Dodge
et al., 2020).

9.2 Hyperparameter Transfer

To minimize the number of trials needed to find
optimal hyperparameter settings, one can trans-
fer knowledge from other datasets or tasks—
similar to how an ML engineer might select
reasonable settings by hand. Transferring hyper-
parameters can be especially beneficial during
expensive stages in the NLP pipeline, such as
pre-training. Transfer neural processes (Wei et al.,
2021) provide a way to transfer observations, pa-
rameters, and configurations from previous tasks
using Bayesian optimization with a neural process
as the surrogate model. This can lead to more
accurate models with fewer trials than conven-
tional BO approaches, but has yet to be tested
for large NLP models. Finally, the cost of train-
ing can be reduced using μTransfer (Yang et al.,
2021), which tunes a small model, then transfers
the hyperparameters to a larger model.

9.3 Model Selection Considerations

While identifying an optimal model is crucial in
deployment, it raises several challenges around
reporting practices (Reimers and Gurevych, 2017;
Agarwal et al., 2021) and hyperparameter tun-
ing (Bouthillier and Varoquaux, 2020; Gundersen
et al., 2022).3 A first step towards improved
comparability could be to fix the hyperparame-
ter tuning budget (Dodge et al., 2019; Hoffmann
et al., 2022), or consider the full search space
(Bell et al., 2022).

10 Conclusion

This survey provides a broad overview of con-
siderations for increasing efficiency in modern
NLP models, identifying both immediate suc-
cesses and remaining challenges. Most progress
so far has been in model design, typically tar-
geted at a specific computational budget and hard-

3For example, when considering compute budget varia-
tion when comparing new model development to baselines.

ware paradigm. Key challenges include better
understanding and modeling trade-offs between
end-task performance and resource consumption,
and the dependency between hardware choices
and software implementations. Furthermore, we
note that efficiency in NLP has many definitions
and can be achieved in many different ways, but
is also subject to various open challenges, and
cannot be measured by a single metric. We out-
line several promising research directions aligned
with overcoming these challenges, ranging from
approaches that make better use of available data,
strategies for reducing the cost of pre-training
and fine-tuning large models, to prioritizing the
importance of interactions between algorithms,
software, and hardware.

Impressive advances in NLP enabled primarily
by scaling computation have produced remarkable
progress in a short span of time. However, in order
to realize the full potential of this technology for
a broader swath of society, we must reduce the
amount of computation that is required to achieve
these remarkable results. We hope that this survey
can serve to accelerate advances in this important
area of research with great potential for impact
both within our field and for society as a whole.
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Abstract

Existing approaches to active learning maxi-
mize the system performance by sampling un-
labeled instances for annotation that yield the
most efficient training. However, when active
learning is integrated with an end-user appli-
cation, this can lead to frustration for partic-
ipating users, as they spend time labeling in-
stances that they would not otherwise be inter-
ested in reading. In this paper, we propose
a new active learning approach that jointly
optimizes the seemingly counteracting objec-
tives of the active learning system (training
efficiently) and the user (receiving useful in-
stances). We study our approach in an edu-
cational application, which particularly bene-
fits from this technique as the system needs to
rapidly learn to predict the appropriateness of
an exercise to a particular user, while the users
should receive only exercises that match their
skills. We evaluate multiple learning strate-
gies and user types with data from real users
and find that our joint approach better satisfies
both objectives when alternative methods lead
to many unsuitable exercises for end users.1

1 Introduction

State-of-the-art machine learning approaches re-
quire huge amounts of training data. But for many
NLP applications, there is little to no training data
available. Interactive NLP systems are a viable
solution to alleviate the cost of creating large train-
ing datasets before a new application can be used.
Such systems start with no or few labeled instances
and acquire additional training data based on user
feedback for their predictions. Active learning (Set-
tles, 2012) is a frequently used technique to quickly
maximize the prediction performance, as the sys-
tem acquires user feedback in each iteration for

1Our code and simulated learner models are avail-
able on Github: https://github.com/UKPLab/
acl2020-empowering-active-learning

those instances that likely yield the highest per-
formance improvement (e.g., because the system
is yet uncertain about them). Active learning has
been shown to reduce the amount of user feed-
back required while improving system performance
for interactive NLP systems (P.V.S and Meyer,
2017; Gao et al., 2018) and to reduce the anno-
tation costs in crowdsourcing scenarios (Fang et al.,
2014). However, outside the typical annotation
setup, it can be boring or frustrating for users to pro-
vide feedback on ill-predicted instances that hardly
solve their needs. Consider a newly launched web
application for learning a foreign language, which
aims at suggesting exercises that match the user’s
proficiency according to Vygotsky’s Zone of prox-
imal development (Vygotsky, 1978). The under-
lying machine learning system starts without any
data, but employs active learning to select an exer-
cise the system cannot confidently predict. Then, it
adjusts its model interactively based on the user’s
feedback. While the system is still uncertain, the
users often receive inappropriate (e.g., too hard or
too easy) exercises. Thus, they get the impression
that the system does not work properly, which is
especially harmful during the inception phase of
an application, as the community opinion largely
defines its success.

In this paper, we distinguish the system objec-
tive of maximizing the prediction performance with
minimal labeled instances and the user objective
of providing useful instances for the user’s current
needs. For the first time, we propose an active learn-
ing approach that jointly optimizes these seemingly
counteracting objectives and thus trades off the de-
mands of system and user.

The users of educational applications can partic-
ularly benefit from this, as they can learn most if
they receive appropriate learning material while the
underlying system requires considerable training
to reach acceptable performance. We employ our
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Figure 1: Overview of our interactive approach. We go beyond previous work on optimizing the system objective
(blue) by modeling the user objective (green) and jointly optimizing these seemingly counteracting goals (gold).

new approach in a language learning platform for
C-tests (i.e., cloze tests, in which the second half
of every second word is replaced by a gap). Our
system successfully learns how to predict the dif-
ficulty of a C-test gap (system objective) and how
to provide a C-test that is neither too easy for the
current user, which would cause boredom, nor too
hard, which would create frustration (user objec-
tive). Predicting the difficulty of an exercise and
correspondingly selecting exercises that match a
user’s proficiency are important steps towards self-
directed language learning and massive open online
courses (MOOCs) on language learning. Though
we focus on this educational use case in this paper,
our approach may also yield new insights for other
problems that suffer from seemingly counteract-
ing system and user objectives, for example, inter-
actively trained recommender systems for books,
movies, or restaurants.

2 Related Work

Active learning. Active learning aims to reduce
the amount of training data by intelligently sam-
pling instances that benefit the model most (Settles,
2012). A distinct characteristic of active learning
is that labels for sampled instances are unknown
and provided by an oracle after sampling. Vari-
ous works investigate the use of active learning for
crowdsourcing, where the oracles (i.e., the crowd-
workers) may provide noisy labels (Snow et al.,
2008; Laws et al., 2011). Within the educational
domain, active learning research is scarce.2 One
example is the work by Rastogi et al. (2018), who
propose a threshold-based sampling strategy utiliz-
ing the prediction probability and achieve a con-
siderable speed-up without any significant perfor-
mance drop. Hastings et al. (2018) find that ac-

2Note, that in education, active learning often refers to a
teaching paradigm which is unrelated to active learning in
machine learning.

tive learning can be used to efficiently train a sys-
tem for providing feedback on student essays using
teachers as oracles. Horbach and Palmer (2016) re-
port mixed results for employing active learning in
short-answer grading. While all of these works fo-
cus on improvements of the proposed system, users
only benefit after training. In contrast, our work
explicitly models the user objective, such that users
already benefit while labeling training instances.

Adaptive learning. Many systems provide user
adaptation, and research has shifted from pre-
defined sets of rules for adaptation to data-driven
approaches. Several works investigate adaptive
methods to provide exercises which are neither too
hard nor too boring. For instance, Missura and
Gärtner (2011) model learning in a game-theoretic
sense where the goal is to adjust the difficulty to
neither being too easy nor too hard. Other works in-
vestigate adaptation in the context of testing (Zheng
and Chang, 2015; Wang et al., 2016; Chaimongkol
et al., 2016) and propose methods for an adaptive
selection of appropriate tests for better assessing
a student’s proficiency. In a large survey, Truong
(2016) discusses how to integrate different learning
styles, modeling categorical student behavior, into
an adaptive learning environment and emphasizes
the need for more sophisticated methods.

Despite much research in adaptive and active
learning, none of the previous works consider
jointly modeling and optimizing both the system
and user objectives which may retain a user’s mo-
tivation and keep them from leaving the platform
due to boredom or frustration.

3 Approach

Figure 1 shows our proposed interactive learning
setup. The active learning component iteratively
samples instances from a pool of unlabeled data
and asks the user for a label that can be used to
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train the machine learning system. Previous work
on active learning focused on optimizing the system
objective (blue). That is, only the system provides
feedback to the active learning component (e.g.,
how certain it is about the predicted label of an
instance). In our work, we first model the user
objective (green) and propose sampling strategies
that maximize the user satisfaction based on the
user’s feedback (e.g., the user’s label for an in-
stance). Finally, we study our novel joint optimiza-
tion strategies (gold) that trade off the demands
of the system and the users. Whereas we distin-
guish between the user’s feedback (exercise-level)
and labeled instances (gap-level) in our work, our
proposed approach can easily be adapted to more
specific cases where the (implicit) user feedback
and the provided label are the same.3

In the remainder of this section, we introduce
sampling strategies that select which instance
should be presented to the user next. We use the
following notation: Let X be the pool of unlabeled
instances. In every iteration of the application (e.g.,
when a user requests a new exercise), the sampling
strategy s(v) returns an instance x ∈ X for user
v. The user then provides a label y for instance x,
potentially with additional feedback on the user’s
satisfaction. The active learning component finally
removes x from its poolX and adds (x, y) to the set
of labeled instances, before the system is retrained
with the increased labeled training set.

The simplest sampling strategy that we use as
a baseline is random sampling srand(v), which se-
lects an x ∈ X uniformly at random, regardless
of the user. In the following subsections, we dis-
cuss more advanced strategies that optimize the
system or user objective as well as our new joint
optimization strategies.

3.1 System optimization

To optimize the system objective, we consider un-
certainty sampling (Lewis and Gale, 1994). Uncer-
tainty sampling assumes that instances for which
the model is least certain during prediction pro-
vide the most information for the model once their
labels are known. The sampled instance is thus

sunc(v) = argmax
x∈X

U(x) (1)

3Note, that from a single answer which is either correct or
wrong, we cannot deduce a fine-grained gap label. To obtain
these in a real-world setting, one either may assume querying
groups of users or asking them for an explicit label.

where U : x 7→ [0, 1] returns the uncertainty of
predicting a label for instance x. Like random
sampling, sunc(v) is independent of the current
user v. A model’s uncertainty can be measured
in multiple different ways, for example, by the
prediction probability of the predicted label (Lewis
and Gale, 1994), as the difference in probabilities
between the first and second most probable labels
(Scheffer et al., 2001), and based on the Shannon
entropy (Shannon, 1948) that considers all possible
labels (Settles and Craven, 2008). We instantiate
U for our educational application in section 4.

3.2 User optimization
The objective of users is to receive instances that
meet their demands. We therefore define a new
user-oriented sampling strategy as

susr(v) = argmax
x∈X

A(x, v) (2)

where A : (x, v) 7→ [0, 1] returns the degree of ap-
propriateness of instance x for the user v. In our
educational application, we consider an exercise
appropriate if it is neither too easy nor too difficult,
as this maximizes the user’s learning gain. To quan-
tify A, we measure the error between the predicted
label f(x) and the user’s demand φ(v) as

A(x, v) = 1− err[f(x), φ(v)] (3)

with an error function err ∈ [0, 1] (cf., section 4).

3.3 Joint optimization
We propose two novel strategies to jointly optimize
the user and system objectives.

Combined sampling. Our first strategy

scomb(v) = argmax
x∈X

U(x)A(x, v) (4)

combines uncertainty sampling and user-oriented
sampling by preferring appropriate instances for
user v (as in susr), but among them returns the one
the system is most uncertain about (as in sunc).

Trade-off sampling. For our second strategy, we
aggregate both objectives into a single function

stos(v) = argmax
x∈X

{
(1− λ) A(x, v) (5)

+ λ U(x)
}

which is the weighted sum of user-oriented and
uncertainty sampling. The weight parameter λ ∈
[0, 1] can be used to adjust the learning towards the
system objective or the user objective.
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4 Instantiation

We consider our jointly optimized active learning
particularly beneficial for educational applications,
since (1) the users of such a system may fail to
achieve their learning goals with inappropriate exer-
cises. Additionally, (2) it is difficult to acquire large
difficulty-annotated datasets for training, as actual
users are required for producing realistic training
data and existing learner datasets can hardly be
shared due to privacy concerns. We therefore in-
stantiate our approach for a language learning plat-
form that predicts the difficulty of exercises and
learns to provide appropriate (neither too easy nor
too hard) exercises to its users.

C-tests. For our experiments, we use the setup of
the C-test difficulty prediction task as investigated
by Beinborn (2016). C-tests are gap filling exer-
cises proposed by Klein-Braley and Raatz (1982).
In their proposed gap scheme, every second word
is turned into a gap by removing the latter half of
its characters. In contrast to cloze tests, C-tests do
not require any distractors, since the first half of the
word remains as a hint. Solving C-tests requires
orthographic, morphologic, syntactic, and semantic
competencies as well as general vocabulary knowl-
edge (Chapelle, 1994). C-tests can be easily created
automatically by choosing an arbitrary text and in-
troducing the gaps as described above. Because of
the context and the kept word prefixes, C-test gaps
typically only allow for a single solution (given
by the original text) and therefore do not require
manual correction. The biggest challenge, however,
lies in controlling the difficulty of the text and the
derived C-test with its gaps as we have shown in
previous work (Lee et al., 2019).

System objective. Given a large pool X of C-
tests x ∈ X with n gaps gi ∈ x, 1 ≤ i ≤ n,
the system objective is to learn a classifier d(g) ∈
LD to judge the gap difficulty of gaps g ∈ x with
minimal training data. As the difficulty classes LD,
we use the four labels very easy, easy, hard, and
very hard proposed by Beinborn (2016). These
four classes are based on the mean error rates e(g)
of a gap g observed across all users. Figure 2 shows
the mapping between the mean error rates e(g) and
the four gap difficulty classes LD.

Data. For our experiments, we obtained 3,408
solutions to English C-tests from our university’s
language center. Each participant solved five C-

very easy easy hard very hard 

[0, 0.25[ [0.25, 0.5[ [0.5, 0.75[ [0.75, 1] 

Figure 2: Gap difficulty classes and error rate ranges

tests with 20 gaps each (i.e., 100 gaps per solution).
The five C-tests vary across the participants based
on a set of 74 different C-tests in total. We filter out
answers from 22 participants who either did not
provide any correct answer or only filled out the
first of the five C-tests. Based on this dataset, we
derive the ground-truth labels for the gap difficulty
classification d(g) based on figure 2.

Aggregated instances. In contrast to Beinborn’s
(2016) work, a particular challenge of our setup
is the need to aggregate instances. The active
learning strategies s(v) always sample entire C-
tests x ∈ X and judge their appropriateness for a
user v based on A(x, v). The underlying classifier
d(g), however, operates at the level of gaps g ∈ x
within a C-test. Similarly complex setups can be
found in multiple other real-world tasks, including
educational applications (e.g., providing reading
recommendations at book or chapter level, but esti-
mating appropriateness at word or sentence level)
and product recommendation tasks (e.g., training
a classifier for cast, plot, and action aspects, but
recommending entire movies).

For our instantiation, we measure the classifier’s
uncertainty using the Shannon entropy

H(g) = −
∑

`∈LD
P (` | g) logP (` | g) (6)

across the four difficulty classes LD of a gap g.
P (` | g) denotes the probability of the classifier d
to assign the difficulty class ` to gap g. We then
aggregate the resulting scores similar to the total to-
ken entropy proposed by Settles and Craven (2008):

Uent(x) =
1

n

n∑

i=1

H(gi)

Hmax
(7)

where Hmax is the maximum achievable Shan-
non entropy, which serves as a normalization term.
Hmax can be pre-computed as:

Hmax = −
|LD|∑

i=1

1

|LD|
log

1

|LD|
(8)

User objective. To model the demands of the
users, we define five proficiency levels LP =
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Level 1 2 3 4 5

Score (%) 0–54 55–64 65–74 75–84 85–100
Users 814 607 724 769 472

Table 1: Proficiency levels, corresponding scores (%
correctly filled gaps), and number of users per level.

{1, 2, 3, 4, 5} based on the users’ ability to solve
C-tests. The user representation φ(v) ∈ LP of user
v thus returns a proficiency level between 1 and 5
with 5 indicating the highest proficiency.

In our experiments, we use the C-test dataset
introduced above to obtain φ(v). Note that in this
dataset, each user solved exactly five C-tests. We
therefore map their score (i.e., the percentage of
correctly filled gaps) to a proficiency level that
roughly corresponds to the language courses of-
fered by the university language center. Table 1
shows the five levels with their corresponding score
ranges and the number of users in the dataset.

We estimate the proficiency level of a C-test
x = g1, g2, . . . , gn with

f(x) = ψ

(
1

n

n∑

i=1

c(gi)

)
(9)

where c : g 7→ {0, 1} is an indicator function to
predict if gap gi will be correctly (1) or incorrectly
(0) answered and ψ maps the percentage of correct
answers to the corresponding proficiency level ac-
cording to Table 1. For our experiments, we define

c(g) =

{
1 if k < j
0 otherwise

(10)

where k ∼ U( `−1|LP | ,
`
|LP |) and j ∼ U(0, 1) are uni-

formly sampled random variables and ` = d(g).
Based on our estimation f(x) ∈ LP , we can now
define the error function err as the normalized dis-
tance of f(x) to the required proficiency:

err[f(x), φ(v)] =
1

|LP |
|f(x)− φ(v)| (11)

5 Experimental Setup

System setup. We initialize our system with an
empty set of labeled instances. In every iteration,
we sample a C-test consisting of 20 gaps from the
pool of unlabeled instances X using one of the
sampling strategies introduced in the previous sec-
tion. Then, we obtain labels based on how the user
solved the test, which contributes (1) to the over-
all difficulty prediction for each gap and (2) to the
representation of the current user’s proficiency.

Our approach can be used with any underlying
classifier d(g). In this paper, we train a multi-
layer perceptron (MLP) to predict the four diffi-
culty classes for a C-test gap. To represent the
input of the MLP, we use the 59 features previ-
ously proposed by Beinborn (2016). We further-
more introduce two novel features computed from
BERT (Devlin et al., 2019): We hypothesize that
the masking objective of BERT which masks in-
dividual words during training is very similar to
a gap filling exercise and thus, a model trained in
such a way may provide useful signals for assessing
the difficulty of a gap. For each gap, we generate
a sentence where only the gap is replaced by the
masking token and fetch its predictions from the
BERT model. From these predictions we take the
prediction probability of the solution as the first fea-
ture and the entropy of the prediction probabilities
of the top-50 predicted words as the second feature
in concordance with findings by Felice and Buttery
(2019) who show that entropy strongly correlates
with the gap difficulty. Adding both features to the
59 features proposed by Beinborn (2016) increases
the accuracy of our MLP from 0.33 to 0.37.4

While Beinborn successfully used support vector
machines (SVM) in her work, we find that MLPs
perform on par with SVMs (for the old and new
features) and that they are more robust regarding
the choice of the first sampled instance. More-
over, in our initial experiments with little train-
ing data, SVMs and Logistic Regression classifiers
were only able to predict the majority class.

Our MLP has a single hidden layer consisting
of 61 hidden units. We train the neural network
for 250 epochs with early stopping after 20 epochs
without any improvement and use Adam (Kingma
and Ba, 2015) as our optimizer. Note that our main
interest is in the analysis of the novel active learn-
ing approach, which is why we do not systemati-
cally study the underlying classifier, but use a setup
comparable to the state-of-the-art results reported
by Beinborn (2016).

We run experiments for each of our sampling
strategy. We select five C-tests without any overlap
between users, texts, and their corresponding user
answers to create an independent test set and put
the remaining 69 C-tests into the pool of unlabeled
data. In the first iteration, we use the randomly
initialized weights of our neural network to select

4The results are averaged across ten runs with different
random initializations.
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the starting example. To provide comparable re-
sults between different runs, we keep the parameter
initialization of our neural network fixed when com-
paring different sampling strategies. We limit each
experimental run to 8 · 5 = 40 iterations, as the
five proficiency levels are not evenly distributed
with the smallest class having only eight C-tests.
At each iteration, we train our model on 80% of the
already labeled data and use the remaining 20% as
our validation set (split randomly). We use the best-
performing model on the validation set for testing
and store it as our model initialization for the next
iteration. On an Intel Core i5-4590, a single run
with 40 iterations takes less than four minutes.

Learner behavior. To study the benefit of our
approach for different types of learners,5 we de-
rive four prototypical learner behaviors from our
C-test dataset. To prepare this, we first compile
a probabilistic model for the learners of each pro-
ficiency group as described in Table 1 to obtain
learner-specific gap error rates e(g, v). The learner-
specific gap error rates are computed by binning
all learners into the specific groups and then com-
puting the error rate by averaging for each gap. If
there is no error rate for a given gap and learner in
our dataset, we use the averaged gap error rate of
the corresponding proficiency group to simulate an
answer.

Using these learner-specific gap error rates, we
predict whether an answer to a C-test gap g is cor-
rect or incorrect similar to Equation (10):

ĉ(g) =

{
1 if e(g, v) < j
0 otherwise

(12)

In contrast to Equation (10), we do not sample k,
but use the learner-specific error rates e(g, v) for
gap gi from the proficiency level φ(v). Again, j ∼
U(0, 1) is a uniformly sampled random variable.

For a language learning platform, it is likely that
motivated learners who continually practice im-
prove their proficiency over time. Less motivated
learners or learners who suffer from distractions,
interruptions, or frustration, however, may show
different paces in their learning speed or even de-
teriorate in their proficiency. Therefore, we study
four prototypical types of learner behavior:

– Static learners (STAT) do not improve their
skills over the course of our experiments. In-
stead, they provide answers constantly at the

5Henceforth, we use learner to refer to the users of an edu-
cational application rather than to a machine learning system.

same, pre-defined proficiency level. This mod-
els learners with a slow progress or with little
motivation overall.

– Motivated learners (MOT) continually improve
their language proficiency throughout our ex-
periments with a fixed step size of t1 C-tests.
That is, we simulate that their proficiency level
φ(v) increases by one every t1 iterations.

– Interrupted learners (INT) experience a drop
in their proficiency during our experiments.
Such cases occur, for example, if a learner has
to interrupt their learning process for a longer
time. For our simulation, we start with the
motivated learner setup, constantly increasing
the proficiency every t1 iterations. However,
this learner experiences a sudden increase (t2)
and drop (t3) in the proficiency level by one.
After recovering from the drop (t4) the pro-
ficiency will again increase according to the
motivated learner (t5).

– Artificially decreasing learner. (DEC) Finally,
our last group of simulated learners displays
a constant drop in their proficiency during our
simulation. Although such cases rarely occur
in the real world, we use this learner to evalu-
ate all sampling strategies in the case of con-
stant drop. Similar to the motivated learner,
we start with the highest possible proficiency
and decrease it by one every t1 iterations.

For our experiments, we assume a static learner
that remains at proficiency level φ(v) = 3. For
motivated learners, we set the initial proficiency
level to 1 and use a step size of t1 = 8, so that
they traverse all proficiency levels throughout a
single run. For interrupted learners, we also use
t1 = 8 with an additional increase after t2 = 12,
a drop after t3 = 16, and a recovery (increase)
after t4 = 20. Starting from t5 = 24, interrupted
learners behave the same as motivated learners.

Like Beinborn (2016), we cannot publish the
C-test data due to data privacy reasons, but we
provide our code and simulated learner models on
GitHub.6

6 Experiments

We present and discuss our results for Uent and A
as defined in section 4. For each strategy we run
our experiments ten times with different weight

6https://github.com/UKPLab/
acl2020-empowering-active-learning
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initializations and report the averaged scores. For
random sampling, we do ten runs with different
random seeds for each weight initialization to pro-
vide more stable results. We set λ = 0.5 for our
trade-off sampling strategy.

6.1 Evaluation metrics

As our system and user objectives have different
scopes (gap-level vs. exercise-level), we quantify
both differently. To measure the system objective,
we report the accuracy of our model for predict-
ing the individual gap difficulties of the test data
after each iteration. As our training data increases
by 20 gaps after each iteration, we provide plots
for all experiments from the first to the last (40-
th) iteration. For quantifying the user objective,
we evaluate all sampling strategies across all 40
iterations, i.e., how well our sampling strategies
were able to satisfy the user’s needs after the whole
set of exercises. Instead of accuracy, we take the
distance-based metric mean absolute error (MAE).
As users explicitly query a C-test of a specific pro-
ficiency level at each iteration, suggesting a C-test
which deviates by two levels from the requested
proficiency has a worse impact on the user’s learn-
ing experience than a C-test which only deviates
by one level. For better interpretability, we do not
normalize the MAE as we do for our error function
err, i.e., a MAE of 1 means that on average, the
difficulty of the sampled instances was off by a
whole proficiency level from the queried ones.

6.2 Results

Since the interrupted learner experiences both a
drop and increase in proficiency in a less constant
manner than the motivated or decreasing learners,
we conduct further analysis of our sampling strate-
gies for the interrupted learner.

System objective. Figure 3 shows the system ob-
jective for Uent after each iteration. Vertical blue
lines indicate increases in the learner’s proficiency
whereas the vertical yellow line indicates a drop.
We observe that although random sampling per-
forms rather well in the early iterations, all our pro-
posed strategies as well as the uncertainty sampling
baseline are able to outperform it in the later iter-
ations. Moreover, all proposed strategies perform
similar to uncertainty sampling. This is surprising,
especially for the user-oriented sampling strategy
as it inherently does not optimize the system ob-
jective. One reason for this may be the similarity
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Figure 3: Accuracy on the test data for Uent.

STAT MOT INT DEC

tos .344 .338 .339 .327
comb .343 .340 .341 .327
usr .338 .331 .334 .328
unc .332 .331 .331 .331
rand .325 .325 .325 .325

Table 2: Averaged accuracy over all iterations for Uent

of the user-oriented sampling strategy to curricu-
lum learning (Bengio et al., 2009), which opts to
organize model training in a meaningful way. As
we sample instances the model is most confident
in (i.e., have the highest prediction confidence) this
leads to instances which are easier to learn and may
especially be helpful in low-data scenarios.

To better quantify our results, we compare the av-
eraged accuracy scores across all iterations, shown
in table 2 and conduct Wilcoxon signed-rank tests
(Wilcoxon, 1992) on the active learning curves for
system and model objectives to test for statistical
significance. We can observe that for the static,
motivated, and interrupted learners both our joint
sampling strategies outperform all baselines signif-
icantly (p < 0.05), but show no significant differ-
ence between each other.7 Only for the decreasing
learner all strategies show no significant difference
at all. In concordance with our observations for
the user-oriented sampling which may benefit from
first sampling easy-to-learn instances, jointly op-
timizing system and user objective seems to ben-
efit from curriculum learning and active learning
paradigms.

User objective. Table 3 shows the MAE for all
strategies using Uent. We can observe that all strate-

7The system performance of random sampling remains the
same for all learner types as it is averaged across all runs.
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STAT MOT INT DEC

tos 0.98 0.65 0.93 0.75
comb 0.98 0.63 0.88 0.65
usr 0.85 0.58 0.65 0.75
unc 1.17 1.33 1.35 1.72
rand 1.16 1.22 1.82 1.24

Table 3: MAE for Uent
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Figure 4: Sampled instances for the interrupted learner.

gies which consider a separate user objective sam-
ple instances which significantly better fit the cur-
rent user proficiency.8 Furthermore, the combined
sampling approach which puts more emphasis on
the user objective outperforms our trade-off sam-
pling for all learner behaviors and even manages to
outperform the user-oriented sampling strategy for
the decreasing learner.

We further investigate how well our approaches
react to changes in the user objective by plotting
the mean difficulty φ(v) of sampled instances after
each step for all our strategies modeling the user
objective. As figure 4 shows, all sampling strate-
gies are able to match the queried C-test difficulties
well, as they do not deviate much from the queried
difficulty (in black).

Adaptive choice of λ. We furthermore investi-
gate how the choice of λ affects our trade-off sam-
pling strategy. As the system predictions may not
be very accurate in early iterations, it is reasonable
to put more emphasis on the system objective in the
beginning, but focus on providing suited C-tests
(user objective) in later iterations. We thus define
λ as an adaptive function λ = f(i) = 1√

i
= i−0.5

which highly emphasizes the system objective in
early stages and anneals with an increasing number

8Statistical testing was again conducted using a Wilcoxon
signed-rank test for p < 0.05.
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Figure 5: Accuracy of tos for annealed and fixed λ.

Acc STAT MOT INT DEC

tosλ .333 .346 .347 .314
tos .334 .338 .339 .327

MAE STAT MOT INT DEC

tosλ 0.85 0.53 0.48 0.53
tos 0.98 0.65 0.93 0.75

Table 4: Averaged accuracy scores and MAE with an
annealed λ for Uent.

of iterations i.
Figure 5 shows the system performance of our

trade-off sampling strategy averaged across ten dif-
ferent runs. The colored areas show the correspond-
ing upper and lower quartiles. As shown in table 4,
we can see that our annealed λ leads to consider-
able improvements for system and user objective,
leading to a significant increase in average accu-
racy from 0.339 to 0.347 and a decrease in the
MAE from 0.93 to 0.48 for the interrupted learner,
outperforming all other sampling strategies.

Further findings. We observe similar results for
system and user objectives for the other learner
types. Investigating the stability of all sampling
approaches furthermore shows that our joint opti-
mization strategies perform better and more stable
in early iterations.

Due to averaging, Uent cannot distinguish be-
tween C-tests with only a few highly uncertain
gaps and C-tests which have a higher number of
less uncertain gaps. However, in preliminary exper-
iments with a different aggregation function which
is more robust to C-tests with only a few highly un-
certain gaps, we come to similar findings across all
sampling strategies and learner types. Detailed re-
sults for our other learner behaviors, the stability of
our sampling strategies, and the results of our pre-
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liminary experiments with a different aggregation
function are provided in the paper’s appendix.

Limitations. Although our setup with simulated
learners may seem artificial compared to an evalua-
tion study with real-world learners, to conduct such
a study in an ethical way, we need to ensure that
participants are not hurt in their learning process.
Thus, strategies which can be evaluated in user
studies are limited to those which consider the user
objective. In contrast, the use of simulated learn-
ers allows us to compare our proposed strategies
against common active learning strategies which
do not consider the user objective at all.

Another limitation is how to estimate a learner’s
current proficiency given that we do not know the
true difficulty of a C-test. This raises the general
question of using relative or absolute difficulties
for the selection of suited exercises. In this work,
we assumed absolute proficiency levels and imple-
mented according learner behaviors to provide a
more controlled environment for our experiments.
In the case of absence of any absolute (true) diffi-
culty estimations for C-tests, we see several direc-
tions for future work:

a) As a simple baseline, a normalized version of
ψ(x) may be applied on a learner’s previously
filled-out C-tests. However, this assumes that
all C-tests are equally difficult which may lead
to unsuited C-tests.

b) Training an additional model for assessing a
learner’s proficiency given their results on a
C-test with the gap-difficulty predictions from
our model serving as additional input.

c) Instead of using the absolute difficulty, one
may define an optimal error margin as a zone
of proximal development (Vygotsky, 1978).
This requires an adaptation of the user ob-
jective to the relative difficulties of exercises
for individual learners, but may be an impor-
tant step in achieving highly personalized user
models without any absolute labels.

7 Conclusion

In this work, we investigated how we can incor-
porate user feedback into existing active learning
approaches without hurting the user’s actual needs.
We formalize both system (active learning) and user
objectives and propose two novel sampling strate-
gies which aim to maximize both objectives jointly.

We evaluate our sampling strategies for the task
of selecting suited C-tests, a type of fill-the-gap
exercise, which fit the current proficiency of a hu-
man learner. We create simulated learners for five
different proficiency levels from real-world data
and use them to define different learning behaviors.
Our experiments show that both our novel sam-
pling strategies are successfully selecting instances
which lead to a better model training while not hurt-
ing a learner’s progress by selecting too easy or too
difficult C-tests. Although system and user objec-
tive at first seem counteracting, our experiments
indicate that they complement each other as jointly
optimizing them outperforms optimizing only one
of the goals. Additional experiments with an adap-
tive λ for our trade-off sampling strategy show that
properly balancing system and user objective can
lead to considerable improvements in performance
for both objectives.

Our findings open up new opportunities for train-
ing models on low-resource scenarios with implic-
itly collected user feedback while jointly serving
the user’s actual needs. Additional use cases like
the training of personalized recommendation mod-
els as well as the use of reinforcement learning
to find a good trade-off between system and user
objective remain to be investigated in future work.
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1809–1815, Québec, Canada.

Mariano Felice and Paula Buttery. 2019. Entropy as a
proxy for gap complexity in open cloze tests. In Pro-
ceedings of the International Conference Recent Ad-
vances in Natural Language Processing (RANLP),
pages 323–327, Varna, Bulgaria.

Yang Gao, Christian M Meyer, and Iryna Gurevych.
2018. APRIL: Interactively Learning to Summarise
by Combining Active Preference Learning and Re-
inforcement Learning. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4120–4130, Brussels, Bel-
gium.

Peter Hastings, Simon Hughes, and M. Anne Britt.
2018. Active learning for improving machine learn-
ing of student explanatory essays. In Carolyn Pen-
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A Appendices

A.1 Results of Uent for other learner types
Figure 6 shows our results for the static, motivated,
and artificially decreasing learner. As with the
interrupted learner, blue (yellow) vertical lines indi-
cate an increase (drop) in the learner’s proficiency.
Similar to the results for the interrupted learner,
all strategies outperform random sampling in later
iterations.

A.2 An outlier-invariant variation of U
Due to averaging, Uent cannot distinguish between
C-tests with only a few highly uncertain gaps and C-
tests which have a higher number of less uncertain
gaps. We investigated another aggregation function
Usoft in preliminary experiments, which measures
the entropy across all gaps and thus, is more robust
to C-tests with only a few highly uncertain gaps.

Formulation. For our second formulation of U ,
we use a different aggregation method. Due to
the mean, Uent is unable to distinguish between
C-tests where the system is highly uncertain for
only a few gaps and C-tests where all gaps are less,
but more equally uncertain. We propose to use the
softmax function σ for normalizingH(gi) and then
to compute the entropy across all gaps gi. Usoft

thus considers the distribution of gap-uncertainties
and favours C-tests with equally distributed gap-
uncertainties over C-tests with only a few highly
uncertain gaps.

Usoft(x) = γ [−
n∑

i=1

σi(H(gi)) log σi(H(gi))]

(13)
As the squashing of the individual gap entropy val-
ues removes the information about their magnitude,
we furthermore scale the resulting value by the
normalized mean entropy

γ =
1

n log n

n∑

i=1

H(gi)

Hmax
(14)

for all gaps gi in the C-test.

Results. Figure 11 shows similar tendencies as
we already found for Uent in section 6. Again, we
can observe that random sampling performs bet-
ter in early iterations, while the other sampling
strategies outperform it in latter iterations. Aver-
aging the accuracy across all iterations (table 5)
shows that both our joint sampling strategies tos
and comb again perform in average better than the
other sampling strategies for the static, motivated,
and interrupted learners. However, conducting a
Wilcoxon signed-rank test with p < 0.05 shows
that the active learning curves only significantly
differ for the static learner.
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Figure 8: Sampled instances for the interrupted learner
using Usoft.

For the user objective (also shown in table 5)
we observe that all strategies which include a user
objective significantly outperform rand and unc,
but there is no clear favorite amongst them. This
can also be seen in figure 8 where all strategies
manage to sample instances close to the queried
difficulty (in black).
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Figure 6: Accuracy scores for the static, motivated, and artificially decreasing learners using Uent.
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Figure 7: Accuracy on the test data for Usoft.
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A.3 Impact of the aggregation function

Figure 9 compares both our aggregation functions
Uent and Usoft against each other on the interrupted
learner for uncertainty, combined, and trade-off
sampling. Although Uent and Usoft differ to some
regard, directly comparing both aggregation func-
tions and the respective aggregated scores (cf., ta-
ble 5 shows that there is no clear favourite between
both. Extensive work with respect to both aggre-
gation functions as well as additional aggregation
strategies remains to be investigated in future work.
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Figure 9: Comparing Uent and Usoft for the interrupted
learner.

A.4 Stability of system objective

To provide estimates how stable our approaches
are across different randomly initialized weights,
we compute the upper and lower quartiles for each
sampling strategy across all runs. Figures 10 and
11 show our results for the interrupted learner.

Overall, we observe that user-oriented sampling
has lower deviations across different runs for both
our aggregation functions Uent and Usoft. One rea-
son for this may be that in contrast to uncertainty
sampling, we query instances with highly certain
predictions in our user-oriented sampling approach.
This leads to sampled instances which are easier
to learn resulting in a higher training stability with
small data. Comparing the user-oriented against
our joint sampling strategies shows that especially
in the earlier iterations, our proposed sampling
strategies perform better and provide more stable
training.

A.5 Further investigation of λ
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Figure 12: Accuracy of trade-off sampling for annealed
and fixed λ using Usoft for the interrupted learner.

To further validate our findings for an annealed λ,
we conduct the same experiments with our novel
aggregation function Usoft. As with Uent, we ob-
tain significant improvements for our trade-off sam-
pling strategy (figure 12) for the motivated and in-
terrupted learner, but also a significant decrease for
the static and decreasing learner. With respect to
the user objective, we do not see any significant dif-
ferences at all, indicating that Usoft does not benefit
at all from the emphasised user objective in later
iterations.

Table 5 (including the previous results for better
comparability) shows the results for all learner be-
haviours and both our aggregation functions Uent
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Figure 10: Upper and lower quartiles for the interrupted learner using Uent.

Uent Usoft

Accuracy MAE Accuracy MAE

STAT MOT INT DEC STAT MOT INT DEC STAT MOT INT DEC STAT MOT INT DEC

tosλ .333 .346 .347 .314 0.85 0.53 0.48 0.53 .331 .345 .347 .316 0.86 0.64 0.59 0.70
tos .334 .338 .339 .327 0.98 0.65 0.93 0.75 .345 .336 .338 .327 0.91 0.64 0.62 0.70
comb .343 .340 .341 .327 0.98 0.63 0.88 0.65 .344 .338 .340 .326 0.93 0.63 0.62 0.66
usr .338 .331 .334 .328 0.85 0.58 0.65 0.75 .337 .331 .334 .328 0.92 0.63 0.59 0.70
unc .332 .331 .331 .331 1.17 1.33 1.35 1.72 .336 .336 .336 .335 1.24 1.32 1.31 1.72
rand .325 .325 .325 .325 1.16 1.22 1.82 1.24 .325 .325 .325 .325 1.16 1.22 1.82 1.24

Table 5: Averaged accuracy and MAE for all strategies (including the annealed λ strategy) for Uent and Usoft.

and Usoft. As can be seen, using an annealed λ
(tosλ) leads to the best results with respect to the
user objective for Uent but fails to improve the re-
sults for Usoft.
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Figure 11: Upper and lower quartiles for the interrupted learner using Usoft.
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TexPrax: A Messaging Application for
Ethical, Real-time Data Collection and
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Abstract

Collecting and annotating task-oriented dialog
data is difficult, especially for highly specific
domains that require expert knowledge. At
the same time, informal communication chan-
nels such as instant messengers are increas-
ingly being used at work. This has led to a
lot of work-relevant information that is dis-
seminated through those channels and needs
to be post-processed manually by the employ-
ees. To alleviate this problem, we present Tex-
Prax, a messaging system to collect and anno-
tate problems, causes, and solutions that occur
in work-related chats. TexPrax uses a chatbot
to directly engage the employees to provide
lightweight annotations on their conversation
and ease their documentation work. To comply
with data privacy and security regulations, we
use an end-to-end message encryption and give
our users full control over their data which has
various advantages over conventional annota-
tion tools. We evaluate TexPrax in a user-study
with German factory employees who ask their
colleagues for solutions on problems that arise
during their daily work. Overall, we collect
202 task-oriented German dialogues contain-
ing 1,027 sentences with sentence-level expert
annotations. Our data analysis also reveals that
real-world conversations frequently contain in-
stances with code-switching, varying abbrevi-
ations for the same entity, and dialects which
NLP systems should be able to handle.1

1 Introduction

The lack of annotated data—especially in lan-
guages other than English—is one of the key
open challenges in task-oriented dialogue process-
ing (Razumovskaia et al., 2022). This becomes
even more challenging for very task-specific ap-
plication domains with only a small number of
experts that are sufficiently qualified to generate

∗Equal contribution
1Code and data are published under an open source license:

https://github.com/UKPLab/TexPrax

Figure 1: Overview of TexPrax. All users as well as the
chatbot communicate via chatrooms that are hosted on
a Synapse server instance. All messages are end-to-end
encrypted using the Matrix communication protocol.

dialogue data or provide annotations (Sambasivan
et al., 2021). At the same time, using informal com-
munication channels such as instant messengers at
work has become increasingly popular (Rajendran
et al., 2019; Newman and Ford, 2021). Although
this can accelerate troubleshooting, most of the
knowledge that is communicated informally may
be lost without an additional error tracking process;
which in turn increases documenting work for em-
ployees (Müller et al., 2021a). Whereas this could
be alleviated by NLP-based assistance systems—
that for instance automatically identify problems,
their cause, and their solution—they cannot be built
without any annotated data. Our goal is to provide
an application (TexPrax) to bridge the gap between
the lack of annotated task-oriented dialogue data
and the increasing need for NLP-based document-
ing assistance.

Figure 1 provides a high-level overview of Tex-
Prax and all involved parties. Our system commu-
nicates as a chatbot that acts as the user interface
and recording service at the same time. For the
server that hosts the messaging application, the bot



server that hosts the messaging application, the bot
appears as an additional user and hence, inherits all
privileges and restrictions a user can have; includ-
ing (1) reading any messages written in a chatroom,
(2) being invited and removed by the chatroom
moderator, and (3) being able to send messages in
chatrooms it was invited to. We use privilege (3) to
provide label suggestions from a pre-trained model
and collect annotations via a reaction mechanism
(Figure 5b); attaining a lightweight annotation pro-
cess with minimal overhead. We also integrate
TexPrax via the REST web API into an internal
dashboard to automatically store recognized errors
as a first step of the error documentation process.

Directly involving employees in data annota-
tion and curation introduces four key advantages
over previous approaches that involve crowdsourc-
ing (Crowston, 2012) or use expert annotation tools
such as INCEpTION (Klie et al., 2018). First, they
are the very domain experts that hold qualified con-
versations which concern exactly the target-domain.
This allows us to directly collect the dialog data
instead of having to generate it semi-automatically
or asking crowdworkers who can only provide lim-
ited expertise (Raghu et al., 2021). Second, the
employees have an immediate benefit from annotat-
ing and improving the recommendation model as a
dashboard integration saves time they would other-
wise have to spend on documenting errors later on
(hence, an intrinsic motivation). Third, they have
full control over their own data which saves time
for NLP practitioners as it alleviates research data
management. Finally, the use of an end-to-end en-
cryption protocol ensures that only parties selected
by the employees will have access to the data even
if the server is breached.2 Our contributions are:

1. An application for collecting and annotating
dialogues in real-time to assist employees dur-
ing their work. To comply with data privacy
and safety regulations such as the GDPR (EU,
2016), TexPrax further has received full clear-
ance by the ethics committee and staff council
of TU Darmstadt.

2. A German dataset with 202 dialogues, consist-
ing of 591 turns, and 1,027 annotated sen-
tences collected from a highly specific do-
main, namely an assembly line in a factory.

2Upon creating a chat room, they will explicitly be asked
if our chatbot is allowed to join the chatroom (opt-in).

Figure 2: Information flow and privileges between
users, server, and chatbot. While staying in a chatroom,
the chatbot can decrypt all messages and stores them
locally. Messages passed via the server are always en-
crypted.
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Figure 3: Workstations and machines in the Center for
Industrial Productivity (CiP).

2 Use Case

In this work, we focus on assisting employees
on the shop floor (the production area in a fac-
tory). Our goal is to improve shop floor manage-
ment (Hertle et al., 2017); a systematic approach
for solving processing problems. To efficiently
solve such problems, shop floor management de-
fines performance indicators which are used to de-
tect deviations and identify problems which are
also used to quantify their successful rectification.

2.1 Production Environment

Our working environment is the learning factory
Center for Industrial Productivity (CiP) at the Tech-
nical University of Darmstadt (TUDa). The factory
consists of various assembly stations, machines,
and demonstrators (cf. Figure 3) and is run and
maintained by ∼15 research assistants and 40 stu-
dent assistants (Müller et al., 2021b). One sub-
stantial challenge is the on-site support in case of
problems that occur during their daily work, for in-
stance, if a machine suddenly stops working. Usu-
ally, workers then ask their co-workers, technical
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support support, or the supervising research assis-
tant (who may not be present) for assistance, often
via informal communication channels. While this
leads to a quick fix of the issue, the knowledge of
how to resolve such errors is not explicitly stored
and hence, can be forgotten or lost over time.

2.2 Preliminary Survey

To assess the need of an NLP-based assistance sys-
tem, we rely upon the analysis from a previous
survey that was conducted at the CiP (Müller et al.,
2021a). In this survey, they identify eight key is-
sues and challenges from an employee’s perspec-
tive. (1) The most frequently used communication
channel are emails. (2) Most questions are an-
swered fast, but in case of a slow return-rate it takes
very long to receive an answer which leads to a sub-
stantial delay of the assembly line. (3) There are no
platforms that pool already encountered problems
and solutions. Thus, there is a high demand for
such a system. (4) Most employees would use such
an application only for work communication. (5)
A majority of employees are convinced that such
an application could help in substantially reducing
the required time to find a solution. (6) Most em-
ployees are fine with using such an application on
their private phone. (7) All employees agreed to
have a chatbot in a group chat monitoring the chat-
room, but most stated that this would influence their
communication behavior. (8) The most important
benefit would be the improvement of knowledge
management.

For companies, they identify three important cri-
teria. (1) A high level of data security is essential to
avoid any leakage of information outside the com-
pany (i.e., the application should be self-hostable).
(2) No personal data may be processed to avoid le-
gal complications. (3) The most important benefit
would be the improvement of error-reporting and
-monitoring processes.

3 System Description

As shown in Figure 1, TexPrax involves three key
parties: the users (employees), the chatbot and the
server (e.g., hosted by a company). Users commu-
nicate via chatrooms; each chatroom including at
least two (for a private conversation) or more (for
a group conversation) users. Every message a user
sends into a room can be read by any other user
in the same room. The server is responsible for
handling new incoming messages and the distri-

Figure 4: Information flow between the user, chatbot,
and the underlying model.

bution of outgoing messages, as well as keeping
track of currently active conversations and users.
Finally, the chatbot is responsible for monitoring
conversations, suggesting labels, and storing the
relevant data (locally or in an external database).

3.1 Interaction and Privileges

A key focus of TexPrax lies within giving users full
control over their data and when their conversation
should be monitored. We thus provide them with
the option to remove the chatbot from a conversa-
tion at any time. Moreover, the matrix communi-
cation protocol allows users to modify and remove
their messages which are then propagated to other
participants in a chatroom including the chatbot.
This provides a safer communication space to users
as they have full control over what messages are
stored. To comply with GDPR regulations (EU,
2016), we further implement a feature to obtain the
informed consent of the users for each chatroom.

Upon being invited to a chatroom, the chatbot
automatically sends an introductory message and
explicitly asks if this room shall be recorded (Fig-
ure 5a). The user can then respond to the question
with one of the provided reactions. If no reaction is
selected but a message is sent, the chatbot will as-
sume that the invitation was not intended and leaves
the chatroom automatically without recording any
message. Only upon acceptance, the chatbot will
notify the user and start monitoring and reacting to
new messages (Figure 5b). Note, that the chatbot
can be removed by the user at any time and invited
back in later. Due to the end-to-end encryption, the
chatbot will not be able to read any messages that
have been sent while it was not present.

Annotations are then made by the user by accept-
ing the suggested label, or providing a correction.3

Only when a reaction is provided, the message and
its class are stored in the internal database.

3We also investigated labeling messages using free-text
replies; however, users asked for an easier way of interaction.
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(a) Introductory message after a new room has been created. If
at least one user is against recording, the bot will leave the room. (b) Label suggestion for a recognized cause.

Figure 5: Example messages of TexPrax.

3.2 Server
The server is based on the Synapse implementation
of the matrix protocol4; an open-source privacy-
centric messaging protocol that enables end-to-
end encrypted communication while allowing the
server to be hosted on custom hardware (Ermoshina
et al., 2016). This guarantees that all messages
that are passed between users (and the chatbot) re-
main encrypted on the server and thus, cannot be
read even if the server is breached. The usage of
Synapse further allows users to use different client
applications such as Element5 across different plat-
forms (i.e., mobile, desktop, and browser) to send
and receive messages. For the study and debugging
purposes, we further extended the existing imple-
mentation to automatically send an invitation to
the chatbot every time a new chatroom is created
(users will still be asked for their consent before
recording any messages). TexPrax is setup on a
virtual machine with 4 CPU cores, 8 GB RAM,
and 50 GB of storage.

3.3 Chatbot
The chatbot is based on the nio project6—a client
library for the matrix protocol—written in Python.
As soon as the user allows the chatbot to record
messages, it will store every new message includ-
ing the annotation into a local database. Processing
messages can freely be extended; for instance, it is
also possible to send the messages to an external
instance via HTTP instead storing them locally. To
provide the system with additional flexibility, the
chatbot can be hosted completely separate from the
server. It is thus possible to run different chatbots
for each chatroom on different hardware, which

4https://matrix.org/docs/projects/
server/synapse

5https://element.io/
6https://matrix.org/docs/projects/sdk/

matrix-nio

can be helpful to better comply with data privacy
regulations. As shown in Figure 4, we utilize a
pre-trained model to provide users with label sug-
gestions. The chatbot will then react to a message
with a label suggestion and ask the user to confirm
or correct the notification (they can also just ig-
nore the message). All user annotations are stored
separately from the model’s suggestion.

4 Data Collection

In contrast to our previous work that investigates
expert-annotated named entity recognition (Müller
et al., 2021b), our goal is to provide a first solution
for collecting annotated data and providing assis-
tance with a minimal effort for users. We thus focus
on sentence-level annotations that can be easily pro-
vided using message reactions and are suitable for
existing shop floor management processes.

4.1 Annotation Task
Following existing workflows for shop floor man-
agement that are currently done on paper, we iden-
tify three crucial classes for our use case:

1. Problem (P): The description of a deviation
from an expected target state, e.g., machine
breakdowns, material delays, incorrect pro-
duction processes etc. (often formulated as a
question).

2. Cause (C): The assumed cause of a problem.

3. Solution (S): The action to eliminate the root
cause of the problem or to help in finding the
possible causes and countermeasures.

4. Other (O): None of the above classes (e.g.,
unrelated messages).

To train an initial label suggestion model, we re-
annotated the existing dataset with sentence-level
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Part Dialogues (D) Turns (T) T/D Problem Solution Cause Other Total Sents/D

P1 81 246 3.04 127 74 50 302 553 6.83 ± 3.82
P2 97 309 3.19 117 56 114 145 432 4.45 ± 2.11
P3 24 36 1.50 23 12 1 6 42 1.75 ± 0.66

Total 202 591 2.60 267 142 165 453 1,027 5.08 ± 3.28

Table 1: The number of dialogues, turns, and their ratio (left) and the class distribution on a sentence-level (right).

annotations.7 This was done by three of the au-
thors that are responsible for managing the CiP.
Each of them annotated one third of the dataset and
cross-examined all other annotations for possible
errors or disagreement. Upon disagreeing on a la-
bel, all annotators discussed the respective instance
to agree upon the best suited one.

4.2 Participants

All participants were student assistants, technical
support staff, or researchers that worked in the CiP
and are employed at the university; receiving pay-
ment according to the official wages (above Ger-
man minimum wage). They were informed about
the purpose of the study in advance, and provided
their informed consent before participation. They
further received instructions about how to use the
application including the features allowing them to
modify and remove already sent messages. Partic-
ipation was strictly voluntary and anonymous; to
further obfuscate the identity of our participants,
we created a pool of user accounts from which an
account was randomly assigned to each user. For
data publication we obfuscate the user accounts by
hashing the ID of each user. Overall, our study had
a total number of 10 participants over the whole
duration (October 2021 to July 2022).

4.3 Data Analysis

Table 1 shows the statistics of the collected data.
We split the data into three parts; first, the re-
annotated dataset that was used to train the label
suggestion model (cf. Section 5), second, data col-
lected between October 2021 and June 2022, and
third, the data collected in July 2022 to evaluate the
our final system which we also use as the test data
for our experiments. The second and third batch of
data was each collected in a separate chatroom. An
overview of the dialogue properties can be found
in Table 1. Overall, the dataset consists of 202 dia-
logues with 591 turns and 1,027 sentences. A close

7Deploying TexPrax without any suggestion model does
not affect the number of reactions provided by users.

inspection of the data reveals interesting properties
(e.g., grammatically incorrect language, abbrevi-
ations, etc.). Despite that, we want to emphasize
that there was no single case where our participants
could not understand a message.

Distributional shifts. Table 1 shows varying
class distributions across all three splits. One rea-
son for this may be the amount of expertise in cha-
trooms across different periods of data collection.
For instance, between the first and second part of
the data collection which were ∼10 months apart,
there had been a partial change of staff in work
force. With new people joining the CiP, we find
a higher number of responses looking for poten-
tial causes of a problem, but with less success (i.e.,
less solutions). We further find that the more ac-
quainted workers in the first data collection tend to
provide longer explanations and engage themselves
more in chitchat which is reflected in the substan-
tially higher number of Other class sentences and
a higher sentence-per-dialog ratio (Sents/D).

Slang. We find various occurrences of text mim-
icking spoken language involving grammatically in-
correct expressions. For instance, our participants
frequently used ne instead of eine (Eng.: a/an) or
as the short form of nein (Eng.: no).

Abbreviations. We find that our participants
tend to communicate in short messages that in-
volve abbreviations. While some are easily under-
standable for native German speakers—e.g., vllt.
for vielleicht (Eng.: maybe)—others such as V8
for Variante 8 (a product type) or wimi for wis-
senschaftliche Mitarbeitende (Eng.: researcher) are
highly dependent on the domain.

Filler words. Similar to in-person conversations,
we also find an abundance of filler words such as
ah, hmm, and oh.

Code switching. We find that participants some-
times tend to code switch from German to En-
glish (Scotton and Ury, 1977); especially for short,
one word responses (e.g., Nice!, Sorry!).
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5 Experiments

We conduct experiments to gain first insights on
how well recent models can perform for providing
label suggestions for our use case in future studies.

5.1 Experimental Setup
We evaluate two models that are capable of pro-
cessing German texts as our baselines. First, the
XLMR-base model (Conneau et al., 2020) provided
by Huggingface (Wolf et al., 2020) that has been
shown to have a solid performance across various
languages (Malmasi et al., 2022). Second, a Ger-
man version of BERT (GBERT, Chan et al. 2020).
This has been shown to work well for German
tweets that have a similar format (i.e., short, Ger-
man sentences containing informal language) as
our messages (Beck et al., 2021). For sentence
classification, we use the [CLS] token to predict if
a given sentence states a problem (P), a cause (C),
a solution (S), or other (O). Across all experiments,
we train our models for 10 epochs with a learning
rate of 2e−5 and weight decay of 0.01, and a batch
size of 16. We use the parts 1 and 2 as presented
in Table 1 for training and use part 3 as the most
recently collected dataset for testing.

P1 P2 P1 + P2

Model Acc F1 Acc F1 Acc F1

XLMR 0.357 0.216 0.524 0.315 0.476 0.269
GBERT 0.405 0.267 0.310 0.237 0.429 0.361

Table 2: Accuracy and macro-averaged F1 scores of
both models trained on different temporal datasplits.

5.2 Results
Table 2 shows the results of both models on the
P3 data (cf. Table 1). Both models are not able
to achieve a marco-averaged F1 score higher than
0.4, showing that even recent language-specific
models struggle for sentence classification when
applied to a very specific domain and little training
data (432–553 sentences). Interestingly, GBERT
outperforms XLMR when trained on P1 data as
well and when trained on P1 + P2 data in terms
of F1 score. Although we initially conjectured
that XLMR may be capable of better handling the
code switched data, this does not seem to be the
case. We further find that the suggested labels from
the GBERT model (trained on P1 data) during the
collection of P2 achieved an accuracy of 0.683.
While this is a moderately high performance, this

also implies that 31.7% of the labels needed to be
corrected by our participants.

5.3 Usability

To ensure that this did not substantially impact the
usability of TexPrax, we asked our voluntary partic-
ipants to answer the system usability scale (SUS)
questionnaire (Brooke, 1996) upon finishing the
final round of data collections (P3). SUS quantifies
the relative usability with respect to existing bench-
marks and ranges from A+ (84.1–100 SUS) to F
(0–51.6 SUS) (Lewis and Sauro, 2018). Overall,
seven users participated in the usability study. On
average, TexPrax receives a system usability scale
score of 81.76 with a standard deviation of 5.46,
which indicates an A level (80.8–84.0 SUS) usabil-
ity. We thus conclude that TexPrax achieves a high
usability despite the label corrections.

6 Conclusion

We presented TexPrax, a system for collecting an-
notations and assisting employees by directly en-
gaging them as domain-experts during their daily
work. TexPrax allows users to exchange, modify,
and delete end-to-end encrypted messages at any
time, and an opt-in chatbot to ensure a high level of
data privacy and security. We evaluate TexPrax in
an assembly line at a learning factory (CiP) where
we find that daily work communication is noisy,
but efficient and very problem-oriented. While ex-
isting models still have difficulties to provide the
correct label suggestion, TexPrax still maintains a
high usability. We conjecture that TexPrax could
be especially beneficial to collect data and build
assistance systems in domains with a high share of
remote work, such as in software development. For
future work, we plan to extend TexPrax to identify
and suggest solutions for recognized problems and
adapt it to new domains, such as our institute’s read-
ing group chat where researchers discuss papers
relevant for their research.
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Ethics Statement

The collection of data from group- and private-
chats requires careful consideration about what
kind of data is to be expected and how users can
control it. To ensure an ethical data collection and
usage, we worked closely together with the respec-
tive bodies of our university (TUDa) for developing
our final workflow. We want to emphasize that such
data should never be collected without the explicit
and informed consent of the users. Our participants
voluntarily participated in this study and further-
more, had an active interest in the system as they
could directly benefit from it.

Pre-study clearance from respective bodies.
After defining our data collection workflow and
annotation task, we hence asked the ethics commit-
tee of our university for ethical clearance.8 To fur-
ther ensure the (mental) safety of our participants
who were employees of TU Darmstadt, we further
asked our university’s staff council for their clear-
ance.9 Both bodies provided their full clearance to
conduct this study after minor modifications of the
initial workflow involving the account distribution
to participants (cf. Section 4.2). Both clearance
letters for the final study setup can be shared upon
request (in German).

Informed consent. All our participants were
fully informed about the data collection processes,
for what purpose the data was collected, and how
it will be used and released (including the surveys).
They all provided their informed consent before re-
questing an anonymous user account for participa-
tion in the study (this was a mandatory requirement
from the ethics committee and staff council).

Limitations

Interactive assistance. In this work, we focused
on data collection and annotation from workers in
a factory environment. Although the integration of
TexPrax into their existing dashboard10 alleviates
their daily work, additional assistance could be
provided by automatically suggesting solutions for
identified problems.

Other use cases. While TexPrax received clear-
ance by our university’s ethics committee and staff

8https://www.intern.tu-darmstadt.de/
gremien/ethikkommisson/index.en.jsp

9https://www.personalrat.tu-darmstadt.
de/personalrat_1/index.de.jsp

10https://www.sfmsystems.de/

council, it must be noted that this does not auto-
matically transfer to new use cases or even similar
ones at different universities/factories. It is crucial
to get at least clearance of the respective staff coun-
cil before deploying TexPrax to avoid any legal
issues that may otherwise arise. Moreover, for the
collected data to be of use for the NLP community,
the company (or a respective organization) must be
willing to share their data publicly. This however
implies that deploying TexPrax in organizations
that handle sensitive data (e.g., security-related or
personal user data) can alleviate the work of em-
ployees, but will not result in datasets that can be
publicly shared.

Different annotation tasks. The current version
of TexPrax is designed as a tool for collecting data
and annotations on a sentence-level. Explicitly ask-
ing for free-text responses could be one solution to
tackle different kinds of annotations such as iden-
tifying named entities—for instance, a user could
reply to a message containing a named entity by
repeating it—however, this may hurt usability and
lead to a less frequent usage of the application. To
extend TexPrax to different annotation tasks one
thus first needs to find a good way to interact with
the user.

Propagating dataset changes in trained models.
Finally, a last limitation is updating the training
data that is implicitly stored in the trained model.
The lack of efficient methods to update only spe-
cific information in trained models can lead to a
substantial overhead when implementing changes
in the data made by a user as the whole model
needs to be retrained.
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Annotation studies often require annotators to familiarize themselves with the task, its annota-
tion scheme, and the data domain. This can be overwhelming in the beginning, mentally taxing,
and induce errors into the resulting annotations; especially in citizen science or crowdsourcing
scenarios where domain expertise is not required. To alleviate these issues, this work proposes
annotation curricula, a novel approach to implicitly train annotators. The goal is to gradually
introduce annotators into the task by ordering instances to be annotated according to a learning
curriculum. To do so, this work formalizes annotation curricula for sentence- and paragraph-
level annotation tasks, defines an ordering strategy, and identifies well-performing heuristics
and interactively trained models on three existing English datasets. Finally, we provide a
proof of concept for annotation curricula in a carefully designed user study with 40 voluntary
participants who are asked to identify the most fitting misconception for English tweets about
the Covid-19 pandemic. The results indicate that using a simple heuristic to order instances can
already significantly reduce the total annotation time while preserving a high annotation quality.
Annotation curricula thus can be a promising research direction to improve data collection. To
facilitate future research—for instance, to adapt annotation curricula to specific tasks and expert
annotation scenarios—all code and data from the user study consisting of 2,400 annotations is
made available.1

1. Introduction

Supervised learning and, consequently, annotated corpora are crucial for many down-
stream tasks to train and develop well-performing models. Despite improvements of
models trained in a semi- or unsupervised fashion (Peters et al. 2018; Devlin et al.
2019), they still substantially benefit from labeled data (Peters, Ruder, and Smith 2019;
Gururangan et al. 2020). However, labels are costly to obtain and require domain experts
or a large crowd of non-expert annotators (Snow et al. 2008).

Past research has mainly investigated two approaches to reduce annotation cost
and effort (often approximated by annotation time); namely, active learning and label
suggestions. Active learning assumes that resources for annotating data are limited and
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1 https://github.com/UKPLab/annotation-curriculum.
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aims to reduce the number of labeled instances by only annotating those that contribute
most to model training (Lewis and Gale 1994; Settles 2012). This often results in sampled
instances that are more difficult to annotate, putting an increased cognitive load on
annotators, and potentially leading to a lower agreement or an increased annotation
time (Settles, Craven, and Friedland 2008). Label suggestions directly target annotators
by providing them with suggestions from a pre-trained model. Although they are
capable of effectively reducing the annotation time (Schulz et al. 2019; Klie, Eckart de
Castilho, and Gurevych 2020; Beck et al. 2021), they bear the risk of biasing annotators
toward the (possibly erroneous) suggested label (Fort and Sagot 2010). Both these
shortcomings render existing approaches better suited for domain-expert annotators
who are less burdened by difficult annotation instances and are less prone to receiving
erroneous label suggestions than non-expert annotators. Overall, we can identify a lack
of approaches that (1) are less distracting or biased than label suggestions and (2) can
also ease the annotation process for non-expert annotators. Especially, the increasing
popularity of large-scale, crowdsourced datasets (Bowman et al. 2015; Sakaguchi et al.
2021) further amplifies the need for training methods that can also be applied in non-
expert annotator scenarios (Geva, Goldberg, and Berant 2019; Nie et al. 2020; Rogers
2021).

One key element that has so far not been investigated in annotation studies is
the use of a curriculum to implicitly teach the task to annotators during annotation.
The learning curriculum is a fundamental concept in educational research that pro-
poses to order exercises to match a learner’s proficiency (Vygotsky 1978; Krashen
1982) and has even motivated training strategies for machine learning models (Bengio
et al. 2009). Moreover, Kelly (2009) showed that such learning curricula can also be
used to teach learners implicitly. Similarly, the goal of annotation curricula (AC) is
to provide an ordering of instances during annotation that is optimized for learning
the task. We conjecture that a good annotation curriculum can implicitly teach the
task to annotators—for instance, by showing easier annotation instances before more
difficult ones—consequently reducing the cognitive strain and improving annotation
speed and quality. In contrast to active learning, which may result in only sampling
instances that are difficult to annotate, they explicitly emphasize the needs of a human
annotator and gradually familiarize them with the annotation task. Compared to label
suggestions, they are less distracting as they do not bear the risk of providing erroneous
suggestions from imperfect models, making them well-suited for non-expert annotation
scenarios. Furthermore, AC do not require study conductors to adapt existing annotator
training processes or annotation guidelines and hence, can complement their annotation
project. To provide a first assessment for the viability of such annotation curricula, we
investigate the following three research questions:

RQ1. Does the order in which instances are annotated impact the annotations in terms
of annotation time and quality?

RQ2. Do traditional heuristics and recent methods for assessing the reading difficulty
already suffice to generate curricula that improve annotation time or quality?

RQ3. Can the generation of annotation curricula be further alleviated by interactively
trained models?

We first identify and formalize two essential parts to deploy AC: (1) a “strategy”
that defines how instances should be ordered (e.g., by annotation difficulty) and (2) an
“estimator” that ranks them accordingly. We instantiate AC with an “easy-instances-
first” strategy and evaluate heuristic and interactively trained estimators on three
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English datasets that provide annotation time which we use as an approximation of
the annotation difficulty for evaluation. Finally, we apply our strategy and its best
estimators in a carefully designed user study with 40 participants for annotating English
tweets about the Covid-19 pandemic. The study results show that the ordering in which
instances are annotated can have a statistically significant impact on the outcome. We
furthermore find that annotators who receive the same instances in an optimized order
require significantly less annotation time while retaining a high annotation quality. Our
contributions are:

C1. A novel approach for training non-expert annotators that is easy to implement
and is complementary to existing annotator training approaches.

C2. A formalization of AC for sentence- and paragraph-labeling tasks with a strategy
that orders instances from easy to difficult, and an evaluation for three heuristics
and three interactively trained estimators.

C3. A first evaluation of AC in a carefully designed user study that controls for
external influences including:

a) An implementation of our evaluated annotation curriculum strategies and
2,400 annotations collected during our human evaluation study.

b) A production-ready implementation of interactive AC in the annotation
framework INCEpTION (Klie et al. 2018) that can be readily deployed.

Our evaluation of different heuristics and interactively trained models further re-
veals additional factors—such as the data domain and the annotation task—that can
influence their aptitude for AC. We thus appeal to study conductors to publish the
annotation order and annotation times along with their data to allow future studies
to better investigate and develop task- and domain-specific AC.

2. Related Work

Most existing approaches that help with data collection focus on either active learning
or label suggestions. Other researchers also investigate tackling annotation task within
the context of gamification and introduce different levels of difficulty.

Active Learning. Active learning has widely been researched in terms of model-oriented
approaches (Lewis and Gale 1994; Roy and McCallum 2001; Gal, Islam, and Ghahra-
mani 2017; Siddhant and Lipton 2018; Kirsch, van Amersfoort, and Gal 2019), data-
oriented approaches (Nguyen and Smeulders 2004; Zhu et al. 2008; Huang, Jin, and
Zhou 2010; Wang et al. 2017) or combinations of both (Ash et al. 2020; Yuan, Lin, and
Boyd-Graber 2020). Although several works investigate annotator proficiency—which
is especially important for crowdsourcing—their main concern is to identify noisy labels
or erroneous annotators (Laws, Scheible, and Schütze 2011; Fang et al. 2012; Zhang and
Chaudhuri 2015) or distribute tasks between workers of different proficiency (Fang,
Yin, and Tao 2014; Yang et al. 2019). Despite the large amount of research in active
learning, only a few studies have considered annotation time as an additional cost
variable in active learning (Settles, Craven, and Friedland 2008) and even found that
active learning can negatively impact annotation time (Martínez Alonso et al. 2015).
Other practical difficulties for deploying active learning in real annotation studies stem
from additional hyper-parameters that are introduced, but seldom investigated (Low-
ell, Lipton, and Wallace 2019). In contrast, AC also work well with simple heuristics,
allowing researchers to pre-compute the order of annotated instances.
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Label Suggestions. Label suggestions have been considered for various annotation tasks
in NLP, such as in part-of-speech tagging for low-resource languages (Yimam et al.
2014), interactive entity-linking (Klie, Eckart de Castilho, and Gurevych 2020) or iden-
tifying evidence in diagnostic reasoning (Schulz et al. 2019). Especially for tasks that
require domain-specific knowledge such as in the medical domain, label suggestions
can substantially reduce the burden on the annotator (Lingren et al. 2014). However,
they also inherently pose the risk of amplifying annotation biases due to the anchoring
effect (Turner and Schley 2016). Whereas domain experts may be able to reliably identify
wrong suggestions and provide appropriate corrections (Fort and Sagot 2010), this
cannot be assumed for non-experts. This renders label suggestions a less viable solution
to ease annotations in non-expert studies where incorrect label suggestions may even
distract annotators from the task. In contrast, changing the ordering in which instances
are annotated by using AC is not distracting at all.

Annotation Difficulty.. Although difficulty estimation is crucial in human language learn-
ing, for instance, in essay scoring (Mayfield and Black 2020) or text completion exer-
cises (Beinborn, Zesch, and Gurevych 2014; Loukina et al. 2016; Lee, Schwan, and Meyer
2019), it is difficult to achieve in annotation scenarios due to the lack of ground truth,
commonly resulting in a post-annotation analysis for model training (Beigman Kle-
banov and Beigman 2014; Paun et al. 2018). To consider the difficulty of annotated
instances, a concept that has recently been explored for (annotation) games with a
purpose, is progression. It allows annotators to progress through the annotation study
similar to a game—by acquiring specific skills that are required to progress to the next
level (Sweetser and Wyeth 2005). Although several works have shown the efficiency
of progression in games with a purpose (Madge et al. 2019; Kicikoglu et al. 2020) and
even in crowdsourcing (Tauchmann, Daxenberger, and Mieskes 2020), this does not
necessarily benefit individual workers, as less-skilled workers are either filtered out
or asked to “train” on additional instances. Moreover, implementing progression poses
a substantial burden on researchers due to the inclusion of game-like elements (e.g.,
skills and levels), or at minimum, the separation of the data according to difficulty and,
furthermore, a repeated evaluation and reassignment of workers. In contrast, reordering
instances of a single set according to a given curriculum can already be achieved with
low effort and can even be implemented complementary to progression.

3. Annotation Curriculum

We first specify the type of annotation tasks investigated in this work, and then for-
malize AC with the essential components that are required for generating appropriate
annotation curricula. Finally, we instantiate an easy-instances-first strategy and define
the estimators that we use to generate a respective curriculum.

3.1 Annotation Task

In this work, we focus on sentence- and paragraph-level annotation tasks that do not
require any deep domain-expertise and hence are often conducted with non-expert
annotators.2 Such annotation tasks often use a simple annotation scheme limited to
a small set of labels, and have been used to create datasets across various research

2 We discuss AC strategies that may be better suited for domain experts in Section 6.
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Figure 1: Annotation curricula. First, we define a strategy for ordering instances by
annotation difficulty (i.e., easy-first). We then implement estimators that perform the
ordering. Estimators can either be non-adaptive (e.g., heuristics) or adaptive (trained
models). Finally, annotators receive instances according to the resulting curriculum.

areas, for instance, in sentiment analysis (Pak and Paroubek 2010), natural language
inference (Bowman et al. 2015), and argument mining (Stab et al. 2018).

Task Formalization. We define an annotation task as being composed of a set of unlabeled
instances x ∈ U that are to be annotated with their respective labels y ∈ Y . We focus on
instances x that are either a sentence or a paragraph and fully annotated by an annotator
a. Note that for sequence labeling tasks such as named entity recognition, y is not a
single label but a vector composed of the respective token-level labels. However, in
such tasks, annotations are still often collected for a complete sentence or paragraph at
once to provide annotators with the necessary context (Tomanek and Hahn 2009).

3.2 Approach

Figure 1 provides a general overview of AC. Given a set of unlabeled instances x ∈ U ,
we define a strategy S that determines the ordering in which annotated instances should
be presented (easy-instances-first). We then specify “adaptive” and “non-adaptive”
estimators f(·) that approximate the true annotation difficulty. In this work, we focus on
task-agnostic estimators that can easily be applied across a wide range of tasks and leave
the investigation on task-specific estimators—which may have higher performance but
also require more implementation effort from study conductors—for future work.3

Depending on the estimator, we then order the annotated instances either beforehand
(non-adaptive), or select them iteratively at each step based on the predictions of an
interactively trained model (adaptive).

Formalization. Ideally, an annotation curriculum that optimally introduces annotators
to the task would minimize (1) annotation effort and (2) error rate (i.e., maximize
annotation quality). As the annotation error can only be obtained post-study, we can
only use annotation effort, approximated by annotation time, for our formalization;
however, we conjecture that minimizing annotation time may also have a positive
impact on annotation quality (given that the annotators remain motivated throughout
their work). To further reduce noise factors during evaluation, we focus on annota-

3 We discuss some ideas for task-specific estimators in Section 6.
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tion studies that involve a limited number of instances (in contrast to active learning
scenarios that assume an abundance of unlabeled data). We thus formalize annotation
curriculum as the task of finding the optimal curriculum C∗ out of all possible curricula
C (i.e., permutations of U) for a finite set of unlabeled instances U that minimizes the
total annotation time T ; namely, the sum of individual annotation times ti ∈ R+ for all
instances xi ∈ U with i denoting the i-th annotated instance:

C∗ = arg min
C

|U|∑

i=1

ai(xi|x0 . . . xi−1) (1)

where ai : U → T describes the annotator after annotating i− 1 instances.

Strategy. Due to the large number of n! possible curricula C resulting from n = |U|
instances, solving Equation 1 is intractable for large n even if a(·) was known. We can
furthermore only assess the true effectiveness of a curriculum C post-study, making it
impossible to find the optimal curriculum C∗ beforehand. We hence require a strategy
S ∼ C∗ that specifies how instances of U should be ordered optimally. Similar to educa-
tional approaches, we rely on estimating the “difficulty” of an instance to generate our
curriculum (Taylor 1953; Beinborn, Zesch, and Gurevych 2014; Lee, Schwan, and Meyer
2019). In this work, we investigate an easy-instances-first strategy that has been shown
to be a reasonable strategy in previous work (Tauchmann, Daxenberger, and Mieskes
2020); thereby sorting instances in ascending order according to their difficulty. Our C∗
is thus approximated by the ordered set S = {x1, . . . , xn|∀x1≤i≤n ∈ S : f(xi) ≤ f(xi+1)}
with f(·) being the difficulty estimator.

Non-adaptive Estimators. We define non-adaptive estimators as heuristics or pre-trained
models that are not updated interactively. The respective annotation curriculum can
thus be pre-computed and does not impose any additional changes to the underlying
annotation platform. To estimate the annotation difficulty, non-adaptive estimators de-
fine a scoring function fā : U → R. In this work, we evaluate non-adaptive estimators
that are commonly used in readability assessment to score the reading difficulty of
a text (Xia, Kochmar, and Briscoe 2016; Deutsch, Jasbi, and Shieber 2020). Although
they are not capable of capturing any task-specific difficulties, they have the advantage
of being applicable to a wide range of tasks with low effort for study conductors.
The following heuristics and pre-trained models are investigated to obtain difficulty
estimations for the easy-instances-first curriculum:

Sentence Length (sen) The number of tokens in a sentence averaged across the whole
document (i.e., the number of tokens for single sentence instances).

Flesch-Kincaid (FK) A readability score based on the number of words, syllables,
and sentences (Kincaid et al. 1975).

Masked Language Modeling Loss (mlm) As shown in recent work, the losses of a
masked language model may be used to obtain an assessment of text complex-
ity (Felice and Buttery 2019). We use the implementation of Salazar et al. (2020).

Adaptive Estimators. While simple heuristics or annotator-unaware models allow us to
pre-compute annotation curricula, they do not consider any user-specific aspect that
may influence the difficulty estimation (Lee, Meyer, and Gurevych 2020). Consequently,
the resulting curriculum may not provide the optimal ordering for a specific annotator.
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To select the instance with the most appropriate difficulty for an annotator ai(·) at the
i-th iteration, we use a model θi(·) ∼ ai(·) that is updated with an increasing number of
annotated instances. We conjecture that using θ(·) to predict the relative difficulty—in
contrast to non-adaptive estimators that provide an absolute difficulty estimation—may
be more robust to task-specific influences as they are inherited in all instances annotated
by a(·). When training adaptive estimators, we use annotation time to approximate the
difficulty of a specific instance due to its availability in any annotation scenario. At itera-
tion i, we thus train the model θi : L → T ⊆ R+ to predict the annotation times t ∈ T for
all labeled instances x̂ ∈ L. Similar to active learning, we now encounter a decreasing
number of unlabeled instances and an increasing number of labeled instances. The
resulting model is then used to estimate the annotation time for all unlabeled instances
x ∈ U . The resulting scoring function is now defined as fa : θi,U → R+. Finally, we
select instance x∗ ∈ U with the minimal rank according to fa.

x∗ = arg min
fa

θi(x) (2)

Following our strategy S, this results in selecting instances for annotation that have the
lowest predicted annotation time. We specifically focus on regression models that can
be trained efficiently in-between annotation and work robustly in low-data scenarios.
We choose Ridge Regression, Gaussian Process Regression, and GBM Regression.

4. Evaluation with Existing Datasets

To identify well-performing non-adaptive and adaptive estimators, we first evaluate AC
on existing datasets in an offline setting. We focus on datasets that provide annotation
time which is used to approximate the annotation difficulty during evaluation (to
address the lack of gold labels in actual annotation scenarios). Following Settles, Craven,
and Friedland (2008), we conjecture that instances with a higher difficulty require
more time to annotate. For comparison, we then compute the correlations between
different orderings generated according to our easy-instances-first strategy using text
difficulty heuristics (non-adaptive) and interactively trained models (adaptive) with
the annotation time (approximated annotation difficulty). We evaluate our estimators
in two setups:

Full We evaluate how well adaptive and non-adaptive estimators trained on the
whole training set correlate with the annotation time of the respective test set
(upper bound).

Adaptive We evaluate the performance of adaptive estimators in an interactive learn-
ing scenario with simulated annotators and an increasing number of training
instances.

4.1 Datasets

Overall, we identify three NLP datasets that provide accurate annotation time for
individual instances along with their labels:

Muc7T Tomanek and Hahn (2009) extended the MUC7 corpus that consists of anno-
tated named entities in English Newswire articles. They reannotated the data with
two annotators A and B while measuring their annotation time per sentence.
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SigIE is a collection of email signatures that was tagged by Settles, Craven, and
Friedland (2008) with twelve named entity types typical for email signatures such
as phone number, name, and job title.

SPEC The same authors (Settles, Craven, and Friedland 2008) further annotated
sentences from 100 English PubMed abstracts according to their used language
(speculative or definite) with three annotators.

Name Task |D| |Dtrain| |Ddev| |Dtest| µ|D| σ|D| µt σt

Muc7T A ST 3,113 2,179 467 467 133.7 70.8 5.4 3.9
Muc7T B ST 3,113 2,179 467 467 133.7 70.8 5.2 4.2
SigIE ST 251 200 - 51 226.4 114.8 27.0 14.7
SPEC Cl 850 680 - 170 160.4 64.2 22.7 12.4

Table 1: Annotation task (ST for sequence tagging, Cl for classification) and the number
of instances per dataset and split. µ|D| denotes the average instance length in characters
and µt the average annotation time. σ|D| and σt denotes the standard deviation, respec-
tively. Across all datasets, annotation time is reported for annotating the whole instance
(i.e., not for individual entities).

Table 1 provides an overview of the used datasets. It can be seen that Muc7T is the
largest corpus (|D|); however, it is also the one that consists of the shortest instances
on average (µ|D|). Furthermore, Muc7T also has the lowest annotation times (µt) and a
low standard deviation (σt). Comparing the number of entities per instance between
Muc7T (news articles) and SigIE (email signatures) shows their differences with respect
to their domains with an average number of 1.3 entities (σ = 1.4) in Muc7T and 5.3
entities (σ = 3.0) in SigIE. Moreover, we find that the SigIE corpus has a higher ratio of
entity tokens (40.5%) than Muc7T (8.4%), which may explain the long annotation time.
Interestingly, the binary sentence classification task SPEC (“speculative” or “definite”)
also displays a substantially longer annotation time compared to Muc7T (on average,
more than four times) which may also indicate a higher task difficulty or less proficiency
of the involved annotators.

Data Splits. For Muc7T, we focus on the annotations of the first annotator Muc7T A; using
Muc7T B yields similar results. For SPEC, we use ALL.DAT for our experiments. None
of the aforementioned datasets provide default splits. We hence create 80-20 train-test
splits of SPEC and SigIE for our experiments. To identify the best hyperparameters of
our adaptive estimators, we split the largest corpus (Muc7T) into 70-15-15 train-dev-test
splits. All splits are published along with the code and data.

4.2 Experimental Setup

Our goal is to evaluate how well the ordering generated by an estimator correlates with
the annotation time provided in the respective datasets.

Evaluation Metrics. We evaluate all estimators by measuring Spearman’s ρ between the
true and generated orderings of all instances in the test data. We obtain the generated
ordering by sorting instances according to the predicted annotation time. For our adap-
tive estimators that explicitly learn to predict the annotation time, we further report the
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Name Features MAE RMSE R2 ρ t

RR(α = 0.5 ) BOW 1.85 2.96 0.47 0.73 0.42
RR(α = 0.5 ) S-BERT 1.92 2.84 0.51 0.79 0.04
RR(α = 1 ) BOW 1.80 2.91 0.49 0.74 0.41
RR(α = 1 ) * S-BERT 1.89 2.82 0.52 0.79 0.04
GP(kernel=Dot + White) BOW 1.82 2.93 0.48 0.74 257.67
GP(kernel=Dot + White) * S-BERT 1.80 2.76 0.54 0.81 14.35
GP(kernel=RBF(1.0) BOW 5.33 6.71 -1.73 -0.12 300.38
GP(kernel=RBF(1.0) S-BERT 5.33 6.71 -1.73 -0.12 32.66
GBM BOW 2.07 3.26 0.36 0.68 0.25
GBM * S-BERT 1.83 2.83 0.52 0.79 2.98

Table 2: Hyperparameter tuning for adaptive estimators. We train on Muc7T A and
evaluate on its development set. t denotes the total time for training and prediction on
the whole dataset. Best parameters are marked by * and the best scores are highlighted
in bold. We report the mean absolute error (MAE), the rooted mean squared error
(RMSE), Spearman’s ρ, and the coefficient of determination (R2).

mean absolute error (MAE), the rooted mean squared error (RMSE), and the coefficient
of determination (R2).

Models and Features. For an effective deployment in interactive annotation scenarios,
we require models that are capable of fast training and inference. We additionally
consider the amount of computational resources that a model requires as they pose
further limitations for the underlying annotation platform. Consequently, fine-tuning
large language models such as BERT is infeasible as they require long training times
and a large amount of computational resources.4 Instead, we utilize a combination of
neural embeddings obtained from a large pre-trained language model combined with
an efficient statistical model. As our goal is to predict the total time an annotator requires
to annotate an instance (i.e., a sentence or a paragraph), we further require a means
to aggregate token- or subtoken-level embeddings that are used in recent language
models (Sennrich, Haddow, and Birch 2016). One such solution is S-BERT (Reimers and
Gurevych 2019) which has shown a high performance across various tasks. Moreover,
Reimers and Gurevych (2019) provide S-BERT for a variety of BERT-based models,
allowing future study conductors to easily extend our setup to other languages and
specific tasks. For computational efficiency, we use the paraphrase-distilroberta-base-v1
model, which utilizes a smaller, distilled RoBERTa model (Sanh et al. 2019). As a
comparison to S-BERT, we further evaluate bag-of-words (BOW) features for all three
models (cf. Table 2). For the Ridge Regression (RR), Gaussian Process Regression (GP),
and GBM Regression (GBM) models, we use the implementations of Pedregosa et al.
(2011) and Ke et al. (2017).

Hyperparameter Tuning. We use the full experimental setup to identify the best perform-
ing parameters for our experiments using simulated annotators. We evaluate different

4 Note that using such models would require an annotation platform to either deploy an own GPU or buy
additional computational resources from external providers.
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Name Model MAE RMSE R2 ρ t

RR 1.87 2.68 0.56 0.80 0.15
Muc7T A GP 1.79 2.66 0.57 0.82 7.23

GBM 1.95 2.97 0.47 0.75 3.40

RR 2.19 3.42 0.44 0.79 0.02
Muc7T B GP 2.08 3.37 0.46 0.81 8.85

LGBM 2.13 3.50 0.41 0.75 2.90

RR 7.96 9.50 0.46 0.73 0.00
SigIE GP 7.62 9.60 0.44 0.70 0.08

GBM 8.22 10.84 0.29 0.55 0.14

RR 9.63 13.86 -0.14 0.50 0.03
SPEC GP 7.63 12.07 0.14 0.51 0.73

GBM 8.05 12.50 0.07 0.35 1.70

Table 3: Performance of the best performing adaptive estimators on the four datasets
(Muc7T provides annotation times from two different annotators A and B) trained on
the respective train and evaluated on their test splits. We report the mean absolute error
(MAE), the rooted mean squared error (RMSE), the coefficient of determination (R2)
and Spearman’s ρ.

values for regularization strength (α) for RR and we evaluate different kernel functions
for GP. To ensure that the required training of our adaptive estimators does not neg-
atively affect the annotations due to increased loading times and can be realistically
performed during annotation, we further measure the overall training time (in seconds).
We use the development split of Muc7T A to tune our hyperparameters for all models
used across all datasets. Considering the small number of training instances in both
datasets, we do not tune SigIE- or SPEC-specific hyperparameters. All experiments were
conducted using an AMD Ryzen 5 3600. Table 2 shows the results of our hyperparameter
tuning experiments. Overall, we find that S-BERT consistently outperforms BOW in
terms of Spearman’s ρ. As the result of the hyperparameter tuning, we use S-BERT
embeddings as input features and evaluate GP with a combined dot- and white-noise
kernel and RR with α = 1 in our adaptive experiments.

4.3 Experimental Results

We first report our experimental results for the full and adaptive setup. For conducting
our experiments with simulated annotators, we use the best performing models from
our hyperparameter tuning of the respective models on the Muc7T dataset and report
the results of the best performing models.

Full Results. Table 4 shows the results for the heuristic estimators and regression models
evaluated on the test split of each dataset. We find that heuristics that mainly consider
length-based features (sen and FK) are not suited for the SigIE data that consist of email
signatures. One reason for this may be the different text type of email signatures in
comparison to Newswire articles and PubMed abstracts. More specifically, analyzing
the ratio between non-alphabetical or numeric characters (excluding @ and . ) and other
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characters shows that SigIE contains a substantial number of characters that are used
for visually enhancing the signature (some are even used in text art). Overall, 29.9% of
the characters in SigIE are non-alphabetical or numeric, in contrast to 16.7% in SPEC
and 19.9% in Muc7T.5 Considering that only 1.7% of them appear within named entities
in SigIE (such as + in phone numbers) most of them rather introduce noise especially
for length based-features such as sen and FK. On Muc7T and SPEC, all three heuristics
produce an ordering that correlates with annotation time to some extent. On average,
mlm is the best performing and most robust heuristic across all three datasets. For our
adaptive estimators, RR and GP both similarly outperform GBM in terms of Spearman’s
ρ. However, we can find that GP consistently outperforms RR and GBM in terms of
MAE and RMSE, as well as in terms of R2 on Muc7T and SPEC. We report the extensive
results in Table 3.

Dataset sen FK mlm RR GP GBM

Muc7T A 0.60 0.37 0.57 0.80 0.82 0.75
Muc7T B 0.60 0.38 0.55 0.79 0.81 0.75
SigIE 0.08 0.01 0.59 0.73 0.70 0.55
SPEC 0.63 0.38 0.32 0.50 0.51 0.35

Average 0.48 0.29 0.52 0.71 0.71 0.60

Table 4: Spearman’s ρ between test data and the orderings generated by the evaluated
heuristics and adaptive models.

Adaptive Results. To evaluate the performance of adaptive estimators with increasing
numbers of annotated instances, we perform experiments with simulated annotators.
At each iteration, we use a model trained on the already-annotated data to select the
instance with the lowest predicted annotation time (randomly in the first iteration).
The simulated annotator then provides the respective gold annotation time, which is
then added to the training set. Finally, the model is re-trained and evaluated on the
test data. These steps are repeated until all instances are annotated. Figure 2 shows the
Spearman’s ρ performance of all three models after each iteration across all datasets. We
can observe that all models display a rather steep learning curve after training on only a
few examples, despite suffering from a cold start in early iterations. Moreover, we find
that GP and RR are capable of outperforming mlm consistently after 100–500 instances.
GBM shows the weakest performance and is consistently outperformed by the other
models for Muc7T and SPEC while being rather noisy. Although we find that non-
adaptive estimators can suffice especially in early iterations, our experiments also show
the potential of adaptive estimators with an increasing number of annotations. This
indicates that hybrid approaches that combine non-adaptive and adaptive estimators
could be an interesting direction for future work. For instance, one may consider using
non-adaptive estimators in early stages until a sufficient number of annotated instances
are available to train more reliable adaptive estimators. Another approach could be to
combine the rankings of different estimators, for instance, via Borda count (Szpiro 2010)
or learn a weighting of the individual estimators.

5 The Twitter data we introduce in Section 5 consists of 20.7% non-alphabetical or numeric characters.
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(a) Muc7T A

(b) SigIE

(c) SPEC

Figure 2: Experimental results of our adaptive estimators with simulated annotators.
Horizontal lines show the performance of the respective non-adaptive estimators.
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5. Human Evaluation

To evaluate the effectiveness of our easy-instances-first AC with real annotators, we
conduct a user study on a classification task for English tweets and analyze the resulting
annotations in terms of annotation time and annotation quality. We design the study to not
require domain-expertise and conduct it with citizen science volunteers.6

Hypothesis. We investigate the following hypothesis: Annotators who are presented
with easy instances first and then with instances that gradually increase in terms of
annotation difficulty require less annotation time or have improved annotation quality
compared with annotators who receive the same instances in a random order.

5.1 Study Design

A careful task and data selection are essential to evaluate AC, as our goal is to measure
differences that solely result from a different ordering of annotated instances. We also
require instances with varying difficulty, further restricting our study design in terms
of task and data.

Data Source. To avoid compromising the study results due to noisy data, we use an
existing corpus that has been carefully curated and provides gold labels for evaluating
the annotation quality. To involve non-expert annotators, we further require data that do
not target narrow domains or require expert knowledge. As such, tasks such as iden-
tifying part-of-speech tags would substantially reduce the number of possible study
participants due to the required linguistic knowledge. We identify COVIDLies (Hossain
et al. 2020) as a suitable corpus due to the current relevance and the high media-
coverage of the Covid-19 pandemic; ensuring a sufficient number of participants who
are well-versed with the topic. The corpus consists of English tweets that have been
annotated by medical experts with one out of 86 common misconceptions about the
Covid-19 pandemic. Each instance consists of a tweet-misconception pair and if the
tweet “agrees”, “disagrees”, or has “no stance” toward the presented misconception.

Annotation Task. Using the COVIDLies corpus as our basis, we define a similar task that
is better suited for lay people and that allows us to explicitly control the annotation dif-
ficulty. We restrict the task to identifying the most appropriate misconception out of six
possible choices. Furthermore, we only include tweets that agree with a misconception
(i.e., we do not ask for a stance annotation) to avoid interdependencies between stance
and misconception annotations that may introduce additional noise to the results and
put an unnecessary burden on the participants.7 To exclude further sources of noise
for our study, we manually check all tweets and remove all duplicates (possibly due to
retweets) and hyperlinks to increase readability and avoid distractions. We also remove
all tweets that were malformed (i.e., ungrammatical or containing several line breaks) or
linked to misconceptions with less than five semantically similar candidates that could
serve as distractors.8 For the final selection, we choose the 60 shortest tweets.

6 We provide a statement regarding the conduct of ethical research after the conclusion.
7 We experimented with including stance annotations (positive, negative, or neutral) during early stages of

our study setup but removed them due to a substantially increased overall annotation difficulty.
8 The sets of similar misconceptions were manually created as explained in the next paragraph.
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Distractor Selection. The goal of the study is to observe effects that solely result from
the ordering of instances with varying annotation difficulty. Hence, we need to ensure
that annotated instances correspond to specific difficulties and are balanced equally for
each participant. To control the annotation difficulty, we construct five possible sets of
misconceptions for each instance that are presented to the annotator; each correspond-
ing to a respective difficulty-level ranging from “very easy” to “very difficult”. Each set
consists of the expert-selected misconception and five additional misconceptions that
serve as distractors which are commonly used in cloze-tests (Taylor 1953). Following
existing research on automated cloze-test generation, we focus on semantic similarity
to generate distractor subsets (Agarwal and Mannem 2011; Mostow and Jang 2012;
Yeung, Lee, and Tsou 2019) and manually create one set of five semantically dissimilar
and one set of five semantically similar misconceptions for each misconception.9 As
semantically dissimilar distractors are much easier to identify than semantically similar
ones (Mostow and Jang 2012), we can manipulate annotation difficulty by adapting the
number of semantically similar distractors; that is, starting from the set of dissimilar
(very easy) misconceptions, we can gradually increase the difficulty by replacing a
dissimilar misconception with a similar one until only the set of similar (very difficult)
misconceptions remains. Figure 3 shows a tweet from our user study with its respective
easy and difficult misconception sets. As can be seen, the difficult misconception set
consists of two more semantically similar misconceptions. Especially notable is the third
misconception, which states the opposite of the tweet’s misconception but with a similar
wording.

5.2 Study Setup

We set up our evaluation study as a self-hosted Web application that is only accessible
during the study (one week). Participants can anonymously participate with a self-
chosen, unique study key that allows them to request the deletion of their provided
data at a later point. Upon registration, they are informed about the data presented and
collected in the study, its further use, and the purpose of the study. Before collecting any
data, participants are explicitly asked for their informed consent. Overall, we recruited
40 volunteers who provided their informed consent to participate in our study and
annotated 60 instances each.

Participants. Our volunteers come from a variety of university majors, native languages,
English proficiency, and annotation experience backgrounds. All participants provided
a rather high self-assessment of English proficiency, with the lowest proficiency being
intermediate (B1) provided by only one participant. Seventy percent of the participants
stated an English proficiency-level of advanced (C1) or proficient (C2). Most partici-
pants have a higher level of education and are university graduates with either a Bach-
elor’s or Master’s degree; however, none of them have a medical background, which
may have given them an advantage during the annotation study. Upon completing the
annotations, all participants received a questionnaire including general questions about
their previous annotation experience and perceived difficulty of the task (cf. Section 5.5).

9 Initially, we also investigated the use of recent automated approaches to create those subsets (Gao,
Gimpel, and Jensson 2020). However, the resulting subsets rather targeted syntactic instead of semantic
similarity. One reason for this may be that approaches to generate cloze-tests consider only single-token
gaps whereas the misconceptions consist of several words that form a descriptive statement.
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(a) Easy Example

(b) Difficult Example

Figure 3: Example tweet from the user study with an easy misconception set (used in
the study) and a difficult misconception set.

Ordering Strategy. All participants are randomly assigned to one out of four groups
(ten participants per group), each corresponding to a strategy that leads to a different
ordering of annotated instances. We investigate the following strategies:

Random is the control group that consists of randomly ordered instances.
ACmlm uses the masked language modeling loss. It is a pre-computed, heuristic esti-

mator and had (on average) the highest and most stable correlation to annotation
time in our experiments with simulated annotators.

ACGP uses a Gaussian Process that showed the highest performance on the sentence-
labeling task (SPEC) in our simulated annotator experiments (cf. Table 4). It is
trained interactively to predict the annotation time. We train a personalized model
for each annotator using S-BERT embeddings of the presented tweet.

ACgold consists of instances explicitly ordered from very easy to very difficult using
the pre-defined distractor sets. Although such annotation difficulties are unavail-
able in real-world annotation studies, it provides an upper-bound for the study.
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Control Instances. To provide a fair comparison between different groups, we further
require participants to annotate instances that quantify the difference with respect to
prior knowledge and annotation proficiency. For this, we select the first ten instances
and present them in the same order for all annotators. To avoid interdependency effects
between the control instances and the instances used to evaluate AC{∗}, we selected
instances that have disjoint sets of misconceptions.

Balancing Annotation Difficulty. We generate instances of different annotation difficulties
using the sets of semantically similar and dissimilar misconceptions that serve as our
distractors. We randomly assign an equal number of tweet-misconception pairs to each
difficulty-level ranging from very easy to very difficult. The resulting 50 instances for
our final study span similar ranges in terms of length as shown in Table 5 which is
crucial to minimize the influence of reading time on our results. Overall, each of the
five difficulty-levels consists of ten (two for the control instances) unique tweets that
are annotated by all participants in different order.

# Chars very easy easy medium difficult very difficult

T 219 211 183 217 194
T & MC 638 603 599 586 593

Table 5: Average number of characters per tweet (T) and tweet and misconception (T &
MC) across all difficulty-levels of annotated items.

Study Process. The final study consists of 50 instances that are ordered corresponding
to the group a participant has been assigned to. Each instance consists of a tweet and
six possible misconceptions (one expert-annotated and five distractors) from which the
participants are asked to select the most appropriate one. The lists of the six presented
misconceptions are ordered randomly to prevent that participants learn to annotate
a specific position. Finally, we ask each participant to answer a questionnaire that
measures the perceived difficulty of the annotated instances.

5.3 General Results

In total, each of the 40 participants has provided 60 annotations, resulting in 400 an-
notations for the ten control instances (100 per group) and 2,000 annotations for the 50
final study instances (500 per group). In terms of annotation difficulty, each of the five
difficulty-levels consists of 80 annotations for the control instances and 400 annotations
for the final study. To assess the validity of AC{∗}, we require two criteria to be fulfilled:

H1 The participant groups do not significantly differ in terms of annotation time or
annotation quality for the control instances.

H2 AC{∗} shows a significant difference in annotation time or annotation quality
compared to Random or each other.

Outliers. Across all 2,400 annotations, we identify only two cases where participants
required more than ten minutes for annotation and are apparent outliers. To avoid
removing annotations for evaluation, we compute the mean and standard deviation
of the annotation time across all annotations (excluding the two outliers) and set the
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maximum value to tmax = µ+ 5σ = 156.39 seconds. This results in ten annotations that
are set to tmax for Random, three for ACmlm, one for ACGP, and zero for ACgold. Note
that this mainly favors the random control group that serves as our baseline.

Σt µt σt 25% 50% 75%

Random 1,852.9 27.3 27.2 12.9 18.2 29.5
ACmlm 1,273.4 23.2 19.4 11.7 18.6 27.4
ACGP 1,324.3 26.4 19.0 14.9 20.7 30.8
ACgold 1,059.6 21.2 12.8 12.6 18.0 26.5

Table 6: Mean, standard deviation, and 25%, 50%, and 75% percentiles of annotation
(in seconds). Σt denotes the total annotation time an annotator of the respective group
required to finish the study (on average).

Annotation Time. Table 6 shows the results of the final study in terms of annotation
time per group. Overall, annotators of ACgold required on average the least amount of
time per instance and had the lowest standard deviation. We also observe a substantial
decrease in the maximum annotation time, as shown in the 75th percentile for ACgold.
Conducting a Kruskal–Wallis test (Kruskal and Wallis 1952) on the control instances
across all participant groups results in a p-value of p = 0.200 < 0.05.10 Hence, we can-
not reject the null-hypothesis for the control instances, and conclude that all groups
initially do not show statistically significant differences in terms of annotation time
for the control instances, thereby satisfying H1. Next, we conduct the same test on the
evaluation instances and observe a statistically significant p-value of p = 4.53−6 < 0.05.
For a more specific comparison, we further conduct pairwise Welch’s t-test (Welch 1951)
for each strategy with a Bonferroni-corrected p-value of p = 0.05

6 = 0.0083 to account
for multiple comparisons (Bonferroni 1936). Overall, ACgold performs best, satisfying
H2 with statistically significant improvements over Random (p = 7.28−6) and ACGP

(p = 3.79−7). Although the difference to ACmlm is substantial, it is not statistically signif-
icant (p = 0.0502). The best performing estimator is ACmlm which performs significantly
better than Random (p = 0.0069) and substantially better than ACGP (p = 0.0084). Be-
tween ACGP and Random, we cannot observe any statistically significant differences
(p = 0.5694).

µacc σacc 25% 50% 75%

Random 84.7 4.22 82.0 86.0 88.0
ACmlm 83.6 5.32 80.0 84.0 86.0
ACGP 83.6 2.95 82.0 86.0 86.0
ACgold 85.6 3.01 84.0 84.0 88.0

Table 7: Mean, standard deviation, and 25%, 50%, and 75% percentiles of annotation
quality (in percent accuracy).

10 In general, ANOVA (analysis of variance) is a more expressive test that does not require pairwise
comparisons that are necessary for the less expressive Kruskal–Wallis test. However, we cannot apply
ANOVA in our case due to violated conditions on normality and homoscedasticity of the collected data.
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Annotation Quality. We evaluate annotation quality by computing the accuracy for each
participant, that is, the percentage of misconceptions that they were able to correctly
identify out of the six presented ones. Table 7 shows our results in terms of accuracy.
Although ACgold has the highest mean accuracy, the most differences lie within the
range of 2% accuracy, which is equivalent to only a single wrongly annotated instance.
Conducting Kruskal–Wallis tests for the control instances shows that the difference in
terms of accuracy is not statistically significant (p = 0.881), satisfying H1. However, the
same test shows no statistically significant difference for the final study (p = 0.723). One
reason for this may be our decision to conduct the study with voluntary participants
and their higher intrinsic motivation to focus on annotation quality over annotation
time (Chau et al. 2020). In contrast to crowdsourcing scenarios where annotators are
mainly motivated by monetary gain—trying to reduce the amount of time they spend
on their annotation at the cost of quality—voluntary annotators are more motivated to
invest additional time to provide correct annotations; even more so in a setup with a
low number of 60 instances.
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Figure 4: Annotation time (in seconds)
grouped by difficulty level.
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Figure 5: Accuracy per annotator grouped
by difficulty level.

Difficulty Evaluation. To validate our generation approach with distractors, we further
evaluate all annotation instances in terms of their annotation difficulty. As Figures 4
and 5 show, one can observe non-negligible differences in terms of annotation time as
well as accuracy across instances of different difficulties. Conducting pairwise Welch’s
t-tests with a Bonferroni corrected p-value of p = 0.05

10 = 0.005 shows that in terms of
accuracy, only very easy and easy instances do not express a statistically significant
difference (p = 0.25), showing that participants had more trouble in identifying the cor-
rect misconception for difficult instances.11 For all other instances, we observe p-values
smaller than 1e−6, as shown in Figure 6. In terms of annotation time, the differences are
not as apparent as in annotation accuracy. We find statistically significant differences in
only four out of ten cases showing that the annotation difficulty does not necessarily
impact the annotation time. Overall, we still observe that instances express significant
differences in terms of either annotation time or quality (or both), showing that our
approach using distractor sets to control the annotation difficulty worked well.

11 Overall, we require n(n−1)
2 pairwise comparisons resulting in 10 comparisons with n = 5.
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Figure 6: P-values for time (in seconds) and accuracy between different difficulty levels.

5.4 Error Analysis

µt σt 25% 50% 75%

MAE 12.4 6.1 8.5 10.4 14.3
RMSE 17.2 9.1 11.1 13.9 20.3
R2 0.0 0.0 -0.1 0.0 0.0
ρ -0.1 0.2 -0.3 -0.1 0.1

Table 8: Leave-one-out cross validation results on annotation times, grouped by user
and averaged.

Model Performance. While ACmlm and ACgold both outperform the random baseline
significantly, ACGP does not. To analyze how well the used GP model performs for
individual annotators, we perform leave-one-user-out cross validation experiments
across all 40 participants. Table 8 shows the mean absolute error (MAE), the rooted
mean squared error (RMSE), the coefficient of determination (R2), and Spearman’s ρ
of our experiments. Overall, we find a low correlation between the predicted and true
annotation time and high standard deviations across both errors. Further analyzing the
performance of ACGP for interactively predicting the annotation time (cf. Figure 7)
shows that the model adapts rather slowly to additional data. As can be observed,
the low performance of the model (MAE between 10− 20 seconds) results in a high
variation in the annotation time of the selected instances between subsequent iterations;
further experiments strongly suggest this is due to the model suffering from a cold start
and the small amount of available training data as also discussed below.

Correlation with ACgold. A second shortcoming of ACGP becomes apparent when ob-
serving the difficulty of the sampled instances across all iterations, shown in Figure 8.
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We observe a low Spearman’s ρ correlation to ACgold of 0.005, in contrast to ACmlm

(ρ = 0.22). Only Random has a lower correlation of ρ = −0.15. This shows that model
adaptivity plays an important role especially in low-data scenarios such as in early
stages during annotation studies. We plan to tackle this issue in future work using
more sophisticated models and combined approaches that initially utilize heuristics and
switch to interactively trained models with the availability of sufficient training data.

5.5 Participant Questionnaire

After completing the annotation study, each participant answered a questionnaire
quantifying their language proficiency, previous annotation experience, and perceived
difficulty of the annotation task.

Language Proficiency. In addition to their CEFR language proficiency (Council of Europe.
2001), we further asked participants to provide optional information about their first
language and the number of years they have been actively speaking English. On av-
erage, our participants have been actively speaking English for more than 10 years.
Overall, they stated a language proficiency of: B1 (1), B2 (11), C1 (17), and C2 (11).
Most of our participants stated German as their first language (30). Other first languages
include Vietnamese (4), Chinese (3), Russian (1), and Czech (1).12

Annotation Experience. We further collected data from our participants regarding their
previous experience as study participants as well as study conductors. In general, about
50% of our participants (18) had not participated in annotation studies before. Nineteen
had participated in a few (one to three) studies, and only three in more than three
studies. Even more participants had not previously conducted a study (24) or only a
few (12). In total, four participants stated that they had setup more than three annotation
studies.

Confounding Factors. We identify the language proficiency and previous experience with
annotation studies as potential confounding factors (VanderWeele and Shpitser 2013).

12 One participant decided not to disclose any additional information except English proficiency.

20

190



Lee, Klie, Gurevych Annotation Curricula

CEFR Annotator Conductor
ρ p-value ρ p-value ρ p-value

Time -0.307 0.054 -0.134 0.409 0.085 0.600
Accuracy 0.319 0.044 -0.060 0.711 -0.211 0.191

Table 9: Spearman’s ρ correlation analysis for three potential confounding factors.

Confounding factors are variables that are difficult to control for, but have an influence
on the whole study and can lead to a misinterpretation of the results. Especially in
studies that include a randomized setup such as in ours—due to the random assignment
of our participants into the four groups—it is crucial to investigate the influence of
potential confounding factors. In our analysis, we focus on variables for which all
participants provided an answer, namely, their CEFR level and their experience as
participants in and conductors of annotation studies (some of our participants were
researchers). Table 9 shows the results of a Spearman’s ρ correlation analysis for all
three variables against annotation time and accuracy. As we can see, the participants’
experiences as annotators (Annotator) or study conductors (Conductor) only yields
a low, non-significant correlation with time and accuracy and consequently, can be
excluded as confounding factors. The influence of their language proficiency (CEFR) is
more interesting, as it shows a small negative correlation for annotation time and a small
positive correlation for annotation accuracy with p-values around 0.05, meaning that
participants with a lower CEFR level required less time, but also had a lower accuracy.
To investigate the influence of a participant’s language proficiency on our results, we
conduct a Kruskal–Wallis test for the distribution of different language proficiency
levels across the four groups and find that they do not differ significantly with a p-value
of p = 0.961. Nonetheless, we find that the CEFR level is an important confounding
factor that needs to be considered in future study setups.

Perceived Difficulty. To quantify if there exists any difference between the actual difficulty
and the perceived difficulty, we further asked our participants the following questions:

PQ1: How difficult did you find the overall annotation task?
PQ2: Did you notice any differences in difficulty between individual tweets?
PQ3: Would you have preferred a different ordering of the items?

Figure 9 shows the distribution of answers (from very easy to very difficult) to PQ1
across all four groups. Interestingly, whereas participants of the ACmlm group did re-
quire less time during their annotation compared to ACGP, more people rated the study
as of medium difficulty than participants of ACGP. This may be an indicator that ACGP

may—although not measurable in terms of annotation time—alleviate the perceived
difficulty for participants, hence, still reducing the cognitive burden. We will investigate
this in further studies that also include an item specific difficulty annotation, that is, by
explicitly asking annotators for the perceived difficulty.13 Overall, only four out of 40
participants (two for ACGP and one for ACmlm and ACgold each) did state to not have
noticed any differences in terms of difficulty between different instances; showing that
the selected distractors resulted in instances of noticeably different annotation difficulty

13 We excluded this additional annotation in the study as one pass already required ∼ 45− 60 minutes.
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Figure 9: Accumulated perceived difficulty answers across all groups.

(PQ2). For PQ3, we find that 33 participants did not wish for a different ordering of
instances (but were still allowed to provide suggestions), four would have preferred
an “easy-first”, one a “difficult-first”, and two an entirely different ordering strategy.
From the 14 free-text answers and feedback via other channels, we identify three general
suggestions that may be interesting for future research:

S1: Grouping by word rarity.
S2: Grouping instances by token overlap.
S3: Grouping instances by topic (tweet or alternatively, misconception) similarity.

Further analyzing the free-text answers together with the pre-defined answers (“no”,
“easy-first”, “difficult-first”, and “other”) shows that the participants disagree on the
preferred ordering strategy. For instance, the participants that suggested S3, disagreed
if instances should be grouped by topic similarity to reduce the number of context
switches or be as diverse as possible to provide some variety during annotation. An-
other five participants (two from Random and one from the other groups each) even
explicitly supported a random ordering in the free-text answer. The disagreement upon
the ordering strategy shows the importance of interactively trained estimators that are
capable of providing personalized annotation curricula.

6. Limitations and Future Work

We evaluated AC with an easy-instances-first strategy in simulations as well as in a
highly controlled setup using a finite, pre-annotated data set and task-agnostic esti-
mators to minimize possible noise factors. To demonstrate the viability of AC with a
sufficient number of voluntary annotators, we further chose a dataset that covers a
widely discussed topic and manually controlled the annotation difficulty to make it
accessible for non-experts. To evaluate AC with more generalizable results in a real-
world scenario, we discuss existing limitations that should be considered beforehand
that can also serve as promising research directions for future work.

Difficulty Estimators. Due to novelty of the proposed approach and the lack of well-
established baselines, we focused on task-agnostic annotation difficulty estimators such
as reading difficulty and annotation time, which can easily be applied to a wide range of
tasks. Although our study results show that they work to some extent, our evaluation
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with existing datasets also shows that especially non-adaptive estimators, which ap-
proximate the absolute task-difficulty, are sensitive to the data domain and annotation
task (cf. the low performance of length-based estimators on the SigIE data in Section 4).
Such issues could be addressed by implementing estimators that are more task-specific.
For named entity annotations, a general improvement may be achieved by considering
the number of nouns within a sentence that can be obtained from a pre-trained part-of-
speech tagger. One may even consider domain-specific word frequency lists to provide
a difficulty estimate for entities. For instance, among the annotated named entities in
Muc7T “U.S.” (occurs 72 times) may be easier to annotate than “Morningstar” (occurs
only once); simply based on a word frequency analysis. Other, more sophisticated
approaches from educational research such as item response theory (Baker 2001) and
scaffolding (Jackson et al. 2020) may also lead to better task-agnostic estimators. Such
approaches and combinations of task-agnostic with task-specific estimators remain to
be investigated in future work.

Annotation Strategies. In this work, we focused on developing and evaluating a strategy
for our non-expert annotation scenario. Although it proved to be effective in our user
study, we also find that our annotators disagree in their preferences with respect to
the ordering of instances—which indicates that investigating annotator-specific strategies
could be a promising line for future work. Another shortcoming of the evaluated
strategy is that it does not consider an annotator’s boredom or frustration (Vygotsky
1978). Especially when considering larger annotation studies, motivation may become
an increasingly important factor with non-expert annotators as they further progress
in a task and become more proficient. Such a strategy may also be better suited for
annotation scenarios that involve domain experts to retain a high motivation by avoid-
ing boredom—for instance, by presenting them with subsequent instances of varying
difficulty or different topics. Domain experts who do not require a task-specific training
may also benefit from strategies that focus on familiarizing them with the data domain
early on to provide them with a good idea of what kind of instances they can expect
throughout their annotations. To implement strategies that consider annotator-specific
factors such as motivation and perceived difficulty, adaptive estimators may have an
advantage over non-adaptive ones as they can incorporate an annotator’s preference on
the fly. We will investigate more sophisticated adaptive estimators (also coupled with
non-adaptive ones) and strategies in future work and also plan to evaluate AC with
domain expert annotators.

Larger Datasets. While using a finite set of annotated instances was necessary in our
user study to ensure a proper comparability, AC is not limited to annotation scenarios
with finite sets. However, deploying AC in scenarios that involve a large number of
unlabeled instances requires additional consideration besides an annotator’s motiva-
tion. In scenarios that only annotate a subset of the unlabeled data (similar to pool-
based active learning), an easy-instances-first strategy may lead to a dataset that is
imbalanced toward instances that are easy to annotate. This can hurt data diversity and
consequently result in models that do not generalize well to more difficult instances. To
create more diverse datasets, one may consider introducing a stopping criterion (e.g., a
fixed threshold) for the annotator training phase and moving on to a different sampling
strategy from active learning. Other, more sophisticated approaches would be to utilize
adaptive estimators with a pacing function (Kumar, Packer, and Koller 2010) or sam-
pling objectives that jointly consider annotator training and data diversity (Lee, Meyer,
and Gurevych 2020). Such approaches are capable of monitoring the study progress and
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can react accordingly, which may result in more diverse datasets. However, they also
face additional limitations in terms of the computational overhead that may require
researchers to consider an asynchronous model training in their setup.

Implementation Overhead. Finally, to apply AC in real-world annotation studies, one
needs to consider the additional effort for study conductors to implement it. Whereas
the task-agnostic estimators we provide can be integrated with minimal effort, devel-
oping task- and annotator-specific estimators may not be a trivial task and requires a
profound knowledge about the task, data, and annotators. Another open question is
how well the time saving of approximately 8–13 minutes per annotator in our study
translates to large-scale annotation studies. If so, then AC could also be helpful in
annotation studies with domain experts by resulting in more annotated instances within
a fixed amount of time—however, if not, this would simply lead to a trade-off between
the time investment of the study conductor and annotators. Overall, we find that de-
veloping and evaluating further strategies and estimators to provide study conductors
with a wide range of choices to consider for their annotation study will be an interesting
task for the research community.

7. Conclusion

With annotation curricula, we have introduced a novel approach for implicitly training
annotators. We provided a formalization for an easy-instances-first strategy that orders
instances from easy to difficult by approximating the annotation difficulty with task-
agnostic heuristics and annotation time. In our experiments with three English datasets,
we identified well-performing heuristics and interactively trained models and find that
the data domain and the annotation task can play an important role when creating an
annotation curriculum. Finally, we evaluate the best performing heuristic and adaptive
model in a user study with 40 voluntary participants who classified English tweets
about the Covid-19 pandemic and show that leveraging AC can lead to a significant
reduction in annotation time while preserving annotation quality.

With respect to our initial research questions (cf. Section 1), our results show that
the order in which instances are annotated can have a statistically significant impact in
terms of annotation time (RQ1) and that recent language models can provide a strong
baseline to pre-compute a well-performing ordering (RQ2). We further find that our
interactively trained regression models lack adaptivity (RQ3), as they perform well
on existing datasets with hundreds or more training instances, but fall behind non-
adaptive estimators in the user study.

We conclude that annotation curricula provide a promising way for more efficient
data acquisition in various annotation scenarios—but that they also need further in-
vestigation with respect to task-specific estimators for annotation difficulty, annotator-
specific preferences, and applicability on larger datasets. Our analysis of existing work
shows that, unfortunately, the annotation ordering as well as annotation times are
seldomly reported. In the face of the increasing use of AI models in high-stake do-
mains (Sambasivan et al. 2021) and the potentially harmful impact of biased data (Pa-
pakyriakopoulos et al. 2020), we ask dataset creators to consider including individual
annotation times and orderings along with a datasheet (Gebru et al. 2021) when pub-
lishing their dataset. To facilitate future research, we share all code and data and provide
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a ready-to-use and extensible implementation of AC in the INCEpTION annotation
platform.14

14 https://inception-project.github.io/
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The authors of this work discovered an incorrect inequality symbol in section 5.3 (page 360). The
paper stated that the differences in the annotation times for the control instances result in a p-
value of 0.200 which is smaller than 0.05 (p = 0.200 < 0.05). As 0.200 is of course larger than
0.05, the correct inequality symbol is p = 0.200 > 0.05 , which is in line with the conclusion
that follows in the text. The paper has been updated accordingly.
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Chapter 12

Conclusion And Future Work

12.1 Conclusion

While globalization and immigration increasingly drive the necessity of second language
acquisition, there still exists a large disparity in terms of methods that can alleviate
the work of teachers and advance self-directed learning. In this thesis, we have devised
multiple methods to alleviate existing gaps with respect to exercise generation and
selection on the use case of C-Tests.

In Chapter 6, we have devised new methods that are capable of generating C-Tests with
varying gap size or gap placement. To make these approaches feasible, we have further
performed careful ablation experiments that resulted in six features which we used to
train efficient models. Finally, in a user study with 60 participants and 16 C-Tests, we
show that both strategies succeed in generating C-Tests that are significantly better.

In subsequent work in Chapter 7, we further addressed existing shortcomings of our
generation strategies; i.e., their incapability to consider the whole space of possible
C-Tests and their inability to adhere to hard constraints that may be posed by a teacher.
We propose to address the C-Test generation problem as a mixed-integer programming
problem and devise a method that addresses both shortcomings. In a user study with 40
participants and 32 C-Tests, we show that our approach significantly outperforms two of
our baseline approaches, one of which is GPT-4 (OpenAI, 2023) and performs similar to
the third.

In Chapter 8, we surveyed the current state of methods that aim to improve efficiency
in NLP. We especially focused on data efficiency, providing an overview on existing
approaches related to filtering, active learning, and curriculum learning; highlighting
advantages and shortcomings. Finally, we discussed open challenges and provided pointers
for future research.

In Chapter 9, we have addressed the problem of adaptive exercise selection. Taking the
lack of learner-annotated data as our motivation, we proposed to utilize active learning
to adaptively train a selection model. To make active learning suitable for educational
scenarios—i.e., to prevent hurting the learner’s progress—we formalized user and model
objective (i.e., the active learning objective) and proposed sampling strategies to select
C-Tests that jointly optimize both. In our experiments with simulated learners that
behave according to four different patterns across five different proficiency levels, we have
shown that our proposed sampling strategies yield the best results.
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To transfer our joint optimization approach to other use cases, we then implemented
a novel, interactive data collection system in Chapter 10. We have shown that the
messaging system which is accompanied by a chatbot alleviates the documentation of
errors, their causes, and their solution during work. In three studies with factory workers,
we have showcased that the system can be used to collect data on-the-fly and that
label suggestions are helpful—but that appropriate correction mechanisms are equally
important.

In Chapter 11, we have investigated if there exists a learning process in annotation studies.
For this, we first proposed a formal framework to apply different ordering strategies
during annotation which we coined annotation curricula. We conducted experiments
with existing datasets to identify models that are well suited to rank instances according
to their annotation time. We then carefully designed a novel annotation task based
on an existing dataset and controlled the annotation difficulty by generating according
distractor sets, taking inspiration from cloze tests. In our user study, we found that
ordering instances according to their annotation difficulty can significantly decrease the
annotation time.

12.2 Future Work
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Figure 12.1: Number of parameters in pre-
trained models. Adapted from
Treviso et al. (2023).

Recent advances in NLP have led to the
development of increasingly large mod-
els (cf. Figure 12.1). Although such
LLMs have shown astonishing perfor-
mances across a plethora of tasks (Gao
et al., 2023), the growing need for com-
putational resources that are required to
pre-train and fine-tune LLMs has led to
a growing disparity in the research com-
munity (Lee et al., 2023). At the same
time, the increasing popularity of LLMs
has surfaced four increasingly critical issues
that need to be addressed. First, LLMs
suffer from hallucination—i.e., generated
text that is “nonsensical, or unfaithful to
the provided source input” (Ji et al., 2023)—leading them to provide factually incorrect,
but convincing statements (cf. Figure 12.2).1 Second, they are susceptible to pick up
spurious patterns in the data during training which can lead them to make unfair decisions
that reflect societal biases on gender, race, or religion (Gallegos et al., 2023). Third, they
require an increasing amount of computational resources for training and deployment,
further aggravating climate change (Schwartz et al., 2020) and excluding researchers
who do not have access to large GPU clusters (Lee et al., 2023). Finally, the increasing

1Date of conversation with ChatGPT (GPT-3.5): 16.01.2024
URL: https://chat.openai.com/share/6f37abd8-ab30-46bd-8b32-bf52e9bb8a42
50th Academy Awards: https://www.oscars.org/oscars/ceremonies/1978
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entanglement of powerful LLMs such as GPT-4 (OpenAI, 2023) and Gemini (Anil et al.,
2023) with other tools and existing infrastructure has stoked fears about their potential
risks and possibilities of misuse (Wiener, 1960); raising the question of how to align them
to human values (Russell, 2019, p. 137).

Figure 12.2: GPT-3.5 claiming that George Lucas did receive an Academy Award for the
movie Star Wars (left). However, the records of 50th Academy Awards show
that he was nominated but not presented with the award (right). The visual
effects award referred by the model actually went to the art directors and
costume designers of the movie Star Wars.

12.2.1 Interactive Machine Learning

Despite the advent of in-context learning (ICL; Radford et al. 2019), there exist clear
limitations on how much LLMs can “learn” only from the input (Liu et al., 2022, 2023).
Interactively adapting LLMs after pre-training is thus necessary to scale them to an
arbitrary number of use cases; a paradigm also known as interactive machine learning
(IML; Fails and Olsen 2003). In this thesis, we have devised various methods that may
be investigated in future work to alleviate above issues via IML.

First, adaptivity is a key component that is required to build IML systems. Our work
on joint sampling (Chapter 9) could be adapted to reduce the amount of necessary
feedback and efficiently align LLMs with a user’s goals and values. Our methods could
further be used to alleviate existing bottlenecks in data acquisition and to improve
data quality (Kreutzer et al., 2022). Second, mathematical guarantees can also improve
the quality of IML systems by eliminating the need for unnecessary user interaction.
Moreover, whereas such guarantees would be necessary to safely deploy LLMs in critical
domains, we are currently far from achieving them. For instance, our work done in
Chapter 7 may allow us to integrate trained models into constrained optimization; but
we currently lack strong bounds for activation functions that go beyond ReLU (Anderson
et al., 2020) and moreover, cannot scale solvers to billions of parameters. As a first step
to integrate larger models into constrained optimization, we propose to utilize concept
bottleneck models (Koh et al., 2020) that induce interpretable upper layers in models.
These would allow us to split the model effectively into upper layers (that would be used
for constrained optimization) and lower layers which would be kept frozen. The feature
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layer would then allow us to pose specific constraints in the input which are directly
relatable to a specific feature.

12.2.2 Second Language Acquisition

Finally, we identify various open issues and challenges that need to be resolved to meet
the increasing demand of second language acquisition tools.

First, there still exists a huge lack of annotated data that is often caused by data privacy
or proprietary usage agreements. Despite incentives to collect more data—for instance
using games with a purpose (Poesio et al., 2013; Madge et al., 2019; Kicikoglu et al., 2020)
or utilizing crowdsourcing (Lyding et al., 2022)—data collection remains difficult. A first
step to address the lack of data could be to build common resources that are shared
across the various platforms that aim to collect educational data (Haring et al., 2021;
Heck and Meurers, 2022; Chan et al., 2022; Bitew et al., 2023). Second, similar to other
NLP areas, we find a huge disparity in terms of educational resources in languages other
than Chinese, English, French, German, or Spanish. While extending existing incentives
that target language diversity to educational data can be a starting point (Siminyu and
Freshia, 2020; Salesky et al., 2023), they would require a high grade of adaptation towards
language-specific properties. This brings us to the third and final issue that needs to be
addressed; the development of models with sufficient multi-lingual capabilities. This is
especially important as second language acquisition resources ideally should be served in
a learners first language (Beinborn et al., 2014b). While multi-lingual models would not
resolve all existing issues, we conjecture that they could serve as a solid foundation to
scale the development of educational resources and tools to new languages.
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