
Stability of longitudinal bunch length feedback for heavy-ion synchrotrons

D. Lens*

Institute of Automatic Control, Control Theory and Robotics Laboratory, Technische Universität Darmstadt,
Landgraf-Georg-Straße 4, D-64283 Darmstadt, Germany

H. Klingbeil†

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany‡

(Received 7 October 2012; published 12 March 2013)

In heavy-ion synchrotrons such as the SIS18 at Helmholtzzentrum für Schwerionenforschung, Helmholtz

Centre for Heavy Ion Research (GSI), coherent oscillations of the particle bunches are damped by rf

feedback systems to increase the stability and to improve the beam quality. In the longitudinal direction,

important modes are the coherent longitudinal dipole and quadrupole oscillation. In this paper we present a

new and rigorous approach to analyze the longitudinal feedback to damp these modes. The results are

applied to the rf feedback loop at GSI that damps the quadrupole mode. The stability analysis is compared

with simulations and is in good agreement with results of a beam experiment. Finally, we summarize

practical implications for the operation of the feedback system regarding performance and stability.
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I. INTRODUCTION

To obtain high quality beams that are provided reliably
for experiments, many efforts are made to refine and
optimize accelerator components to prevent beam oscilla-
tions or instabilities. Feedback systems are an indispens-
able tool to stabilize the beam and to damp oscillations
that occur steadily during operation. One large new accel-
erator complex that is currently built is the Facility for
Antiproton and Ion Research, called FAIR. This center will
expand the facilities of the GSI Helmholtzzentrum für
Schwerionenforschung GmbH. The existing heavy-ion
synchrotron SIS18 at GSI will be used as a preaccelerator
for a new synchrotron ring with a circumference of about
1084 m [1]. For FAIR, new digital feedback systems based
on field programmable gate arrays (FPGA) and digital
signal processors (DSP) are planned to stabilize the beam
in the longitudinal direction. The main goal of the feedback
is to prevent oscillations of the shape of these bunches, as
these oscillations lead to a degradation of the beam quality
[2]. Beam oscillations are usually classified in different
modes. This standard theory has been developed in [3–5].

This paper deals with longitudinal oscillations of the
bunch length. This type of oscillation is usually classified
as the quadrupole mode with mode numbers m ¼ 2 and

n ¼ 0. Early investigations of feedback for this mode are
found in Refs. [6,7]. Since then, considerable progress of
digital hardware such as FPGAs has been made and most
of the newly developed feedback systems rely on digital
hardware. Recent works for the damping of the quadrupole
mode are Refs. [8–10] for electron machines, Ref. [11] for
a proton synchrotron, Ref. [12] for a heavy-ion collider,
and Ref. [13] at GSI for a heavy-ion synchrotron.
The new contribution of this paper is a rigorous approach

for the modeling and analysis of the feedback loop, taking
into account also nonlinearities due to the accelerating rf
voltage. The structure of the paper is as follows. Section II
describes the single-particle longitudinal dynamics in
heavy-ion synchrotrons and basic notations. The bunch
shape oscillations are defined and the control problem is
formulated. In Sec. III, a feedback model for the bunch
length oscillations is derived. The modeling approach is
based on moments and is applicable for quite general non-
linear accelerating voltages. Because the moments are not
readily available for measurements, it is shown how they
can be obtained from the measured beam current signal.
The presented results are used to derive the closed-loop
dynamics of a specific setup for the heavy-ion synchrotron
SIS18 at GSI. The stability and performance of the feed-
back is analyzed in Sec. IV. The analytical calculations are
compared with nonlinear macro particle tracking simula-
tions (cf. [14–16]) and experimental measurements. A
tuning rule for the feedback is presented in Sec. V, the
practical implications of the results are discussed in
Sec. VI, and a conclusion is given in Sec. VII.

II. NOTATION AND BEAM DYNAMICS

In the following, a single-harmonic rf voltage is assumed
with the (angular) frequency!RF. The reference revolution
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frequency is denoted by !R ¼ 2�=TR and the harmonic
number is h ¼ !RF=!R. Every particle in the bunch is
characterized by its time delay � at the cavity and its
energy deviation �W, both with respect to the reference
frame R. For the sake of clarity, we will focus on the
stationary case, i.e., the reference voltage UR is assumed
to be zero and the reference period TR is constant. The
longitudinal equations of motion can be written as [16]

� _WkðtÞ ¼ Q

TR

fURF½��kðtÞ� �URg; (1a)

� _�kðtÞ ¼ ��2
tr � ��2

R

�2
RWR

�WkðtÞ; (1b)

where ��k and �Wk are the time delay and the energy
deviation of particle or ion kwith respect to R,Q> 0 is the
charge per ion, TR is the reference period for one turn, UR

is the reference voltage, �R and �R are relativistic Lorentz
factors,WR is the reference energy, and �tr is the transition
gamma.

The rf voltage at the cavity is chosen as a sinusoidal
function

URFð��k; u1; u2Þ ¼ Û0ð1þ u1Þ sinð!RF½�R þ��k� � u2Þ;
(2)

where Û0 denotes the target rf amplitude, !RF is the rf
frequency, �R is the reference arrival time at the cavity, and
the amplitude and phase modulations u1 and u2 can be used
as inputs to control the beam. In this paper, the stationary
case with UR ¼ 0 V, �R ¼ 0 s, and �R <�tr is consid-
ered. Figure 1 shows the trajectories in the phase plane
ð��;�WÞ for this case. The origin of this plane is the
reference R. It has to be noted that the calculations may
be extended to the more general acceleration case below or
above the transition gamma �tr and also to Q< 0.

For convenience, the coordinates ��k and �Wk are
replaced by

xk � !RF��k ¼ h!R��k;

wk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h½��2

R � ��2
tr �

QÛ0�
2
RWR

vuut �Wk:

This leads, with the assumptions of the stationary case, to
the single-particle dynamics

_xk ¼ �!syn;0wk; (3a)

_wk ¼ !syn;0ð1þ u1Þ sinðxk � u2Þ: (3b)

For small oscillation amplitudes��k, the dynamics may be
linearized and this leads for �R < �tr to a harmonic oscil-
lation with the synchrotron frequency

!syn;0 ¼ 2�

Tsyn;0

¼ !R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hQÛ0½��2

R � ��2
tr �

2��2
RWR

vuut :

At GSI, this frequency is typically in the range of a few
hundred Hz, whereas the revolution frequency!R is larger
by 2–3 orders of magnitude.
For larger amplitudes, the oscillation is nonlinear and for

the stationary case, the synchrotron frequency is given by

!synðx̂kÞ ¼ !syn;0

�

2K½sinðx̂k=2Þ� ; (4)

where KðkÞ denotes the complete elliptic integral of the
first kind, and x̂k is the maximum oscillation amplitude on
axis x of particle k. Qualitatively speaking, the frequency
decreases monotonically and tends to zero for x̂k ! �. It is
necessary to distinguish between the motion of single
particles with individual synchrotron frequencies !synðx̂kÞ
and the coherent motion of the whole bunch with corre-
sponding coherent frequencies. In a real beam, each bunch
may consist of 109–1012, or even more, ions. Figure 1
shows a bunch with a matched shape, i.e. its shape is
compatible with the trajectories. The individual particles
in the bunch will perform synchrotron oscillations with
frequencies !synðx̂kÞ, but the bunch shape itself will be

stationary.
A different situation is shown in Fig. 2 by means of a

macroparticle tracking simulation. In this figure, the parti-
cle density is visualized with a color scale, where red
corresponds to higher densities and blue to lower densities.
An ensemble of about 2:5� 105 macroparticles is simu-
lated in the phase plane. At time t1, the bunch is assumed to
be mismatched. In addition to the phase plane, Fig. 2 also
shows the corresponding beam current signal Ibð��Þ,
which is the projection of the phase space density on the
axis ��. Because of repetitive circulation of the beam in
the ring and the slow variation of the bunch shape, the
beam current signal may be regarded as being periodic and
can be written as a Fourier series

Ibð��Þ ¼ I0 þ
X1
k¼1

Ik cosðk!RF��þ ’kÞ; (5)

with dc I0, higher harmonic amplitudes Ik, and phases ’k.
The mismatch in Fig. 2 leads to an oscillation of the bunch
length, also called quadrupole or breathing mode. At time
t2 ¼ Tsyn;0=4, the bunch shape has rotated by about 90� in

FIG. 1. Longitudinal phase plane with single-particle trajec-
tories and a matched bunch.
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the phase plane and the signal Ib has become higher and
more narrow. Obviously, the bunch shape will regain its
original shape approximately after half a synchrotron pe-
riod, thus the coherent oscillation frequency !bl of the
bunch length is roughly 2!syn;0; cf. [2]. For increasing

bunch sizes, an increasing amount of particles in the bunch
will oscillate with a synchrotron frequency !syn <!syn;0

and it can be expected that therefore!bl < 2!syn;0 holds. A

further effect of the nonlinearity of the rf voltage is the
filamentation of the bunch. This filamentation is already
visible at time t2 and will finally lead to a new stationary
distribution as shown in Fig. 2 for a large time t3.
Filamentation leads to an emittance increase and a dete-
rioration of the beam quality. One goal of the feedback will
be to prevent an excessive emittance increase by introduc-
ing additional damping.

III. THEORYAND CALCULATIONS: MODELS
OF BUNCH SHAPE OSCILLATIONS

Typically, bunches in heavy-ion synchrotrons are not
short compared to the rf period TRF. Therefore, the non-
linearity of the rf voltage should be taken into account
during the feedback analysis or design. To the authors’
knowledge, existing feedback analyses in this field are
based on simplified models that linearize the rf voltage
and are thus valid only for very short bunches. Therefore,
Sec. III A introduces an approach based on moments.
Because beam moments are not accessible for a direct
measurement, Sec. III B discusses their relation to the
beam current. Section IVA finally deploys the feedback

model for a specific setup at the heavy-ion synchrotron
SIS18 at GSI.

A. Models of bunch shape oscillations

Moments have been used for the simulation of beam
dynamics in accelerators, for example, by the authors of
[17,18]. It will be shown in the following that a similar
technique can be used to derive feedback models. Assume
a particle ensemble with N particles. The center of gravity
of this ensemble in phase space can be estimated by

�x � 1

N

XN
k¼1

xk; �w � 1

N

XN
k¼1

wk;

whereas raw moments %n;m and central moments �n;m of

total order nþm may be defined as

%n;m � 1

N

XN
k¼1

xnkw
m
k ;

�n;m � 1

N

XN
k¼1

½xk � �x�n½wk � �w�m:

In particular, �x ¼ �1;0 and �w ¼ �0;1. The uniqueness theo-

rem as given in [19] states that under mild assumptions, a
probability density function and its moment sequence are
uniquely determined by each other. The requirement
that the bunch shape and thus the particle density in the
phase plane should be stationary therefore implies that the
moments should be stationary as well. If the moment

FIG. 2. Example of a quadrupole mode at three different times t1, t2 ¼ Tsyn;0=4, and t3 � t2 in the longitudinal phase space. The
diagrams show the corresponding beam current Ib as projection on �� (solid line) and the first two Fourier components with
amplitudes I0 and I1 (dashed line).
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dynamics are known, the control problem is a stabilization
problem.

To incorporate the nonlinear particle dynamics (3), the
polynomial approximation

_w k ¼ fðxk; u1; u2Þ �
Xp
l¼0

flðu1; u2Þxlk (6)

is made, where p <1 is the maximum order in xk.
By using the trigonometric theorem sinðx� u2Þ ¼
sinx cosu2 � cosx sinu2 and Taylor series for sinx and
cosx, Eq. (3b) can be rewritten in this form and this leads to

flðu1; u2Þ ¼
8<
:!syn;0ð1þ u1Þ ð�1Þ1þl=2

l! sinu2; l even

!syn;0ð1þ u1Þ ð�1Þðl�1Þ=2
l! cosu2; l odd

with l 2 N0.
The differentiation of �x with respect to time leads to

_�x¼ 1

N

XN
k¼1

_xk¼�!syn;0

1

N

XN
k¼1

wk¼�!syn;0 �w�f1;0ð �wÞ;

(7)

where Eq. (3a) was used. Accordingly, using Eq. (6)
leads to

_�w ¼ 1

N

XN
k¼1

_wk � 1

N

XN
k¼1

Xp
l¼0

flðu1; u2Þxlk

¼ Xp
l¼0

flðu1; u2Þ 1N
XN
k¼1

xlk ¼
Xp
l¼0

flðu1; u2Þ%l;0:

Rawmoments %n;m may be substituted by central moments

�k;l by [19]

%n;m ¼ Xn
k¼0

Xm
l¼0

�
n

k

��
m

l

�
�k;l �x

n�k �wm�l;

which finally leads to

_�w ¼ f0;1ð �x; �w;�2;0; . . . ; �0;p; u1; u2Þ; (8)

i.e. the dynamics depend on central moments up to the
order p. The dynamics of the central moments are derived
in the same way. This results in nonlinear functions

_�n;m ¼ fn;mð �x; �w;�2;0; . . . ; �0;nþmþp�1; u1; u2Þ: (9)

The moment dynamics (7)–(9) for a maximum order
nþm � nmax represent a closed set of differential equa-
tions for p ¼ 1 only. In case of p > 1, the resulting system
dynamics can be written in vector notation as

_x ¼ fðx; x	; u1; u2; pÞ: (10)

This is a system of nonlinear first-order ordinary differen-
tial equations with the vector x containing the moments up
to order nmax and the vector x	 containing the additional
moments of higher order. In this paper, the center of gravity
and the length of the bunch are of interest and the state
vectors are chosen as

x ¼ �x �w �2;0 �1;1 �0;2

� �
T;

x	 ¼ �3;0 �3;1 . . . �0;pþ1

� �
T;

with nmax ¼ 2. To obtain a closed system, a truncation
method is necessary that establishes a relation

x 	 ¼ gtruncðxÞ: (11)

Introducing this into (10) finally leads to the moment
dynamics

_x ¼ f truncðx; u1; u2; pÞ (12)

that describe the shape of the bunch.
We propose the assumption that the bunch density in the

phase plane ðx; wÞ is approximately a Gaussian density
distribution with ellipsoidal contour lines. This can be
verified by the measurements presented in Sec. IV. This
normalized distribution can be written in its most general
form as

�ðx; wÞ �
8<
:

1
2��x�w

e�ð1=2Þ½x�r�TRTSR½x�r�; x 2� � �;��
0; else

(13)

with vectors and matrices

x ¼ x
w

� �
; r ¼ x0

w0

� �
;

R ¼ cos� sin�
� sin� cos�

� �
; S ¼ ��2

x 0
0 ��2

w

� �
:

The bunch is shifted in the phase plane by ðx0; w0Þ and has
the orientation �. The standard deviations of its half-axes
are denoted by �x and �w. The density function is defined
on a finite domain that is exactly one rf period.
The higher order moments of this density function may

be calculated as

�n;m ¼
Z 1

�1

Z 1

�1
½x� �x�n½w� �w�m�ðx; wÞdxdw:

Under the assumption that the density is small outside of
the defined domain, i.e. � 
 1 for both x > � and
x <��, this calculation can be performed analytically.
This simplification will be assumed implicitly in the fol-
lowing. An obvious result is that the bunch center is

�x ¼ x0; �w ¼ w0:

Furthermore, all moments with nþm> 2 may be ex-
pressed as functions of the moments of second order

�2;0 ¼ �2
xcos

2�þ �2
wsin

2�; (14a)

�1;1 ¼ ð�2
x � �2

wÞ cos� sin�; (14b)

�0;2 ¼ �2
xsin

2�þ �2
wcos

2�: (14c)

For example, �4;0 ¼ 3�2
2;0 holds. This establishes the

necessary truncation relation (11).
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Because of the assumption of a Gaussian density, the
complex dynamical process of filamentation will not be
included and the obtained approximate model (12) will not
incorporate Landau damping. In the stability analysis, this
will lead to conservative results with smaller stability
domains. Therefore, Landau damping will be modeled
approximately by an additional damping term.

B. Observation of oscillations

The moments of the bunch are not readily accessible for
measurements. However, as shown in [20], the center of
gravity x and the variance �2;0 can be recovered from the

beam current signal

IbðxÞ ¼ !RFQbunch

Z 1

�1
�ðx; wÞdw:

Here, Qbunch is the total charge of the bunch. As illustrated
in Fig. 2, this corresponds to the projection of the phase
plane density � on the axis x ¼ !RF��. For the Gaussian
density, this leads to

IbðxÞ �
8<
: I0

ffiffiffiffiffiffiffi
2�
�2;0

q
e�ð1=2Þ½x�x0�2=�2;0 for x 2� � �;��

0 else;

with the dc component I0 ¼ Qbunch=TRF and the variance
�2;0. The calculation of the spectrum (5) leads to the

relations

�x ¼ �’1; �2;0 ¼ 2 ln

�
2I0
I1

�
:

To obtain a feedback system, the dynamics (12) have to be
completed with a so-called output vector. This vector con-
tains all quantities of the state vector x that are measured
and that can be used for feedback. In case of the beam
feedback, the measurement consists of the phase ’1 and
amplitude I1 of the main harmonic of Ib:

y ¼ ’1

I1

� �
¼ � �x

2I0e
�ð1=2Þ�2;0

� �
: (15)

Altogether, Eqs. (12) and (15) describe the nonlinear dy-
namics of the bunch shape.

C. Linearized dynamics

The calculation for a specific approximation order p can
be performed using a computer algebra system such as
MATHEMATICA. For zero inputs, the nonlinear system (12)

and (15) has the equilibrium

xe ¼ 0 0 �2;0e 0 �0;2e

� �
T; (16a)

ye ¼ 0 I1e
� �

T ¼ 0 2I0e
�ð1=2Þ�2;0e

h i
T
: (16b)

This means that the shape of a stationary or matched bunch
is a Gaussian density with ellipsoidal contour lines cen-
tered in the origin of the phase plane ðx; wÞ and with
variances �2;0e and �0;2e . With Eq. (14) this implies that

x0, w0, and � are zero and

�2;0e ¼ �2
x; �0;2e ¼ �2

w:

The parameter �x has a strong physical significance, be-
cause the bunch length is usually defined in terms of the
standard deviation, e.g. as 2�x or 4�x. Therefore, �x will
occasionally be used instead of the variance �2;0e in the

following.
In general, large p > 1 are desirable to obtain dynamics

(12) with low approximation errors. The comparison for
different p showed that for pþ 1> 14, the relative change
of the oscillation frequencies of the bunch center and
bunch length with respect to pþ 1 ¼ 14 is less then 2%
for �x < �=2. These frequencies will be introduced in the
following. Therefore, pþ 1 ¼ 14 is chosen in the follow-
ing and this yields the condition

�0;2eð�2;0eÞ ¼ �2;0e þ
X6
n¼1

ð�1Þn
2 � 4 � 6 � . . . � ð2nÞ�

nþ1
2;0e

:

This shows that for very small bunches with�2;0e 
 1, the

variances are equal and the matched shape of the contour
lines are circles. This is in agreement with the fact that,
provided that the axes are scaled accordingly, the trajecto-
ries in the phase plane are circles in the linear regime near
the origin; cf. Fig. 1. For larger bunch sizes, the variance
�0;2e is smaller than �2;0e . This corresponds to the flat-

tening of the shape of the trajectories towards the
separatrix.
A linearization of the nonlinear dynamics (12) around

the equilibrium (16) leads to the system of linear ordinary
differential equations of first order

� _x ¼ d

dt

�x

�w

��2;0

�1;1

��0;2

2
666666664

3
777777775

¼ !syn;0

� �w

a1 � ð �x� u2Þ
�2�1;1

a2��2;0 � ��0;2 þ b1u1

a3�1;1

2
666666664

3
777777775

(17a)

�y ¼ ’1

�I1

" #
¼ � �x

�I0e
�ð1=2Þ�2

x��2;0

" #
; (17b)

with small deviations �x ¼ x� xe and �y ¼ y� ye from
the matched shape. The linearized system falls apart into
two single-input single-output systems. First, the dynamics
of the bunch center �x

d

dt

�x
�w

� �
¼ Abc

�x
�w

� �
þ bbcu2

with the input u2 and

A bc ¼ !syn;0
0 �1
a1 0

� �
; bbc ¼ !syn;0

0
�a1

� �
;

and second, the dynamics of the bunch length �2;0

STABILITY OF LONGITUDINAL BUNCH LENGTH . . . Phys. Rev. ST Accel. Beams 16, 032801 (2013)

032801-5



d

dt

��2;0

�1;1

��0;2

2
64

3
75 ¼ Abl

��2;0

�1;1

�0;2

2
64

3
75þ bblu1; (18)

with input u1 and

A bl ¼ !syn;0

0 �2 0
a2 0 �1
0 a3 0

2
64

3
75; bbl ¼ !syn;0

0
b1
0

2
64

3
75:

This is also the case for the nonlinear equations that will
not be listed here explicitly due to space restrictions. The
coefficients ai and b1 are polynomials in �x:

a1 ¼ 1þ X6
n¼1

ð�1Þn
n!2n

�2n
x ¼ �0;2e

�2;0e

; (19a)

a2 ¼ 1þ X6
n¼1

ð�1Þnðnþ 1Þ
n!2n

�2n
x ; (19b)

a3 ¼ 2a1 ¼ 2
�0;2e

�2;0e

; (19c)

b1 ¼ �2
x þ

X6
n¼1

ð�1Þn
n!2n

�2ðnþ1Þ
x ¼ �0;2e : (19d)

It is possible to derive a transfer function directly from the
representation (18); cf. [21]:

GblðsÞ ¼ cTblðsI�AblÞ�1bbl;

where cbl ¼ 1 0 0
� �

T is the output vector and I de-

notes the unit matrix with appropriate dimension. For the
bunch length deviation ��2;0, the transfer function

GblðsÞ ¼ ��2;0ðsÞ
u1ðsÞ ¼ s

s
� �2!2

syn;0b1

s2 þ!2
syn;0½2a2 þ a3�

(20)

is obtained. One pole and zero at s ¼ 0 cancel; this is due
to an invariant in the system, namely, the bunch area. This
follows from a comparison of the third and fifth row of
(17a), which shows that the relation

��0;2

��2;0
¼ � a3

2
) ��0;2

�0;2e

¼ ���2;0

�2;0e

holds, i.e. a relative increase in the variance of one axis
implies the same relative decrease in the other axis.

The poles of (20) are given by

sbl ¼ �j!syn;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 þ a3

p � �j!bl:

For �2;0e 
 1, the bunch shape oscillates with twice the

synchrotron frequency !syn;0, since a1 ¼ 1, a2 ¼ 1,

a3 ¼ 2 holds. For larger bunch sizes, the frequency de-
creases. These results are in agreement with the qualitative
considerations of Sec. II.

In a similar way, the poles of the transfer function of the
bunch center are obtained as

sbc ¼ �j!syn;0

ffiffiffiffiffi
a1

p � �j!bc;

and due to (19), the coherent frequencies of the feedback
model (17) are thus given by

!bcð�xÞ ¼ !syn;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X6

n¼1

ð�1Þn
n!2n

�2n
x

vuut ; (21a)

!blð�xÞ ¼ 2!syn;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X6

n¼1

ð�1Þnðnþ 2Þ
n!2nþ1

�2n
x

vuut : (21b)

Figure 3 shows these oscillation frequencies of the bunch
center and length as functions of the bunch size. In addi-
tion, they are compared to the frequency

!syn;eff � !syn;0

�

2K½sinð�xÞ� (22)

that is obtained from Eq. (4) for the amplitude x̂k ¼ 2�x,
i.e. this is the synchrotron frequency at twice the standard
deviation of the bunch. It is similar to the coherent fre-
quencies (21), as can be seen from Fig. 3, and will therefore
be called the effective synchrotron frequency. Figure 3 also
shows the coherent frequencies obtained from tracking
simulations. For very large bunches (�x > 1), the deviation
between theory and simulation increases. This is due to the
simplifying assumption that was made in Sec. III, i.e., a
small particle density for jxj>�.
As mentioned above, the transfer function (20) does not

include inherent damping (Landau damping), because fil-
amentation has been neglected due to truncation (11) with
the assumption of a Gaussian density. A more general
transfer function with damping is given by

FIG. 3. Oscillation frequencies of the bunch shape: coherent
frequencies [black line; cf. (21)], effective frequency [blue line;
cf. (22)], and nonlinear tracking simulations (�).
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Gbl;dðsÞ ¼
�2!2

syn;0b1

ð1� d2Þs2 þ ð2d!bl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p
Þsþ!2

bl

(23)

with the damping coefficient d 2 ½0; 1�. For d ¼ 0, trans-
fer function (20) is obtained. The poles are given by

sbl;d ¼ � dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p !bl � j!bl;

i.e. the oscillation frequency is !bl, independent of d.
Transfer function (23) can also be written as

��2;0ðsÞ=�2;0e

u1ðsÞ
¼ �2!2

bc

ð1� d2Þs2 þ ð2d!bl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p Þsþ!2
bl

;

and this shows that the relative voltage modulation u1 leads
to a relative bunch length modulation.

Figure 4 shows simulation results comparing transfer
function (23) with a nonlinear tracking simulation. The
black curve shows the tracking result with about 4:8� 105

macroparticles. The bunch is initially matched at a voltage

amplitude Û0 of 5 kV with a bunch size of�x ¼ 1:135 rad;
this corresponds to a bunch length of 4�x ¼ 19:6 m. At
t ¼ 0, the voltage is raised to 10 kV to induce bunch length
oscillations. Without filamentation, i.e., assuming a con-
stant bunch area, the new equilibrium would be

~� x ¼
�
5 kV

10 kV

�
1=4 � �x ¼ 0:954 rad:

Using these values, the initial value

��2;0ðt ¼ 0Þ ¼ �2
x � ~�2

x

is obtained and the resulting response of the linear system
��2;0ðtÞ leads to the bunch length

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2
x þ��2;0ðtÞ

q
;

which is shown as the blue curve in Fig. 4. Because of
filamentation, the result of the tracking simulation has a
4% larger final bunch length ~�x;track ¼ 0:991 rad. This

difference in the final value is of minor importance for
the feedback analysis, because the feedback loop rejects
the dc component. The comparison with transfer function
(23) shows a good agreement for a damping factor of d ¼
0:15. The damping factor has been chosen such that similar
envelopes are obtained for both curves. Note that both the
damping and the frequency of the nonlinear simulation
increase with time and are thus time dependent. This is a
clear demonstration of the fact that filamentation is a non-
linear process. All necessary simulation parameters are
given in Table I; the bunch sizes are summarized in
Table II.

IV. RESULTS

A. RF setup of SIS18

A simplified scheme of control loops in the heavy-ion
synchrotron SIS18 at GSI is shown in Fig. 5. A complete
description of the rf systems is given in [22]. An amplitude
modulator drives the accelerating cavity that produces the

voltage URF with amplitude Û0 and amplitude and phase
modulations u1 and u2; cf. (2). The voltage determines the
longitudinal dynamics of the beam. A beam position moni-
tor is used to measure the beam current Ib.
In the control loop for the stabilization of the beam

phase, the phase difference �x� u2 between the bunch

TABLE I. Parameters for simulation and experiment.

Ion species 40Argon18þ
Kinetic energy per nucleon Wkin 11.4 MeV

Relativistic Lorentz factor �R 1.01224

Relativistic Lorentz factor �R 0.15503

Transition energy �tr 5.45

Orbit length LR 216.72 m

Harmonic number h 8

Revolution period TR 4:66293� 10�6 s
Revolution frequency !R 2� � 214:457 kHz
rf !RF 2� � 1:715659 MHz
rf voltage amplitude Û0 5 kV ! 10 kV
Synchrotron frequency !syn;0 @ 10 kV 2� � 3312:29 kHz
dc beam current I0 2 mA

Time delay Td 10 �s

TABLE II. Bunch sizes: simulation (S) in Sec. III C and ex-
periment (A, B, C).

Before voltage step After voltage step

Run �x (rad) �2�x ( m) ~�x (rad) �2~�x (m) !bl=!syn;0

S 1.135 19.6 0.954 16.5 1.400

A 1.065 18.4 0.896 15.5 1.463

B 1.148 19.8 0.965 16.6 1.388

C 1.146 19.8 0.963 16.6 1.390

FIG. 4. Simulation: Comparison of a nonlinear tracking
simulation (black line) with the linear system (23) with damping
d ¼ 0:15 (blue line) and equilibrium ~�x ¼ 0:954 rad.
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and the voltage URF is determined. The controller consists
of a finite impulse response (FIR) filter that is implemented
on a FPGA. The time delay introduced by this digital
hardware is modeled as the time delay Td. A direct digital
synthesizer is used to produce the analog phase modulation
signal u2 and can be modeled as an integrator with negative
sign as described in [23]. The control loop for the bunch
length has a similar structure. The only difference is that
the amplitude I1 of the first harmonic is used and instead of
the direct digital synthesizer, an integral controller is in-
cluded in addition to the FIR filter. The amplitude is
normalized by its equilibrium I1e ; cf. (16b).

In the following analysis we will focus on the control
loop for the bunch length. Using (15) and (16b) yields

�I1=I1e ¼ ���2;0e=2;

and using (23) leads to the linearized control loop as shown
in Fig. 6. The loop contains a FIR filter

yfirðtÞ ¼
� 1

4 I1ðtÞ þ 1
2 I1ðt� 1=2fpassÞ � 1

4 I1ðt� 1=fpassÞ
I1e

:

This FIR filter was first designed and implemented on
FPGA for the bunch phase loop [23]. It rejects the dc
component of the measurement and has a bandpass char-
acteristic at the frequency fpass, which is typically chosen

close to the frequency of the bunch shape oscillation.
Because of the dc rejection, it is possible to use the
small-signal variable �I1 in Fig. 6.

For the implementation of the filter, a DSP system
is used consisting of analog narrowband preprocessing,

automatic gain control, analog-to-digital converters,
FPGA, DSPs, and digital-to-analog converters. More de-
tails on this hardware can be found in [22], p. 6. The FIR
filter is realized on a DSP system with floating point
arithmetic, enabling almost arbitrary coefficients.
The filter transfer function is

GfirðsÞ ¼ � 1

4
þ 1

2
e�s=2fpass � 1

4
e�s=fpass :

Thus, the feedback loop is a linear time-delay system [24].
The frequency response of the filter is

Gfirðj!Þ ¼ 1

2
e�jð!=2fpassÞ

�
1� cos

�
!

2fpass

��
;

and this is a bandpass filter with a first maximum at ! ¼
2�fpass. The phase at this frequency is ��. In the time

domain, the total length of the filter is 1=fpass. This corre-

sponds to a discrete filter length (total number of taps) of
Nfir ¼ fsamp=fpass with the sampling frequency fsamp ¼
375:44 kHz. Because the length Nfir is an even integer,
the filter frequency fpass is discrete as well and this will

become apparent for the simulation results in the next
section; cf. Fig. 9.
Two parameters are available for the tuning of the feed-

back. On the one hand, the integrator gain KI determines
the open loop gain. On the other hand, the filter frequency
fpass, i.e., the filter length, changes the open-loop phase by

�!=2fpass and the gain.

To obtain the stability domain depending on the degrees
of freedom fpass andKI, a Nyquist-type stability criterion is

used. The open-loop frequency response is given by

Golðj!Þ ¼
�KI;norm½1� cosð !

2fpass
Þ�e�j!ðTdþ1=2fpassÞ

j !
!bl

f½1� ð1� d2Þ !2

!2
bl

� þ j !
!bl

2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p g
with the normalized gain

KI;norm ¼
�
!syn;0

!bl

�
3 b1
2

KI

!syn;0

: (24)

Its Bode plot is shown in Fig. 7 for KI;norm ¼ �0:1425,
fpass ¼ 9 kHz, Td ¼ 10 �s, d ¼ 0:15, and !bl ¼
28:9 kHz. This corresponds to the settings of experiment
C, cf. Table II, and a ratio of 1.95 between filter frequency
and bunch oscillation frequency. The amplitude margin of
the feedback loop equals 14.9 dB.
A necessary condition for a transition between stability

and instability is the crossing of the Nyquist plot with the
critical point �1:

jGolðj!crÞj ¼ 1; ∡Golðj!crÞ ¼ �p�;

where!cr denotes the critical frequency at the crossing and
p 2 f1; 3; 5; . . .g is an odd integer. The gain at the crossing
will be denoted by Kcr. In the following, boundaries
Kcr > 0 and Kcr < 0 will be determined such that stabilityFIG. 6. Control loop of the bunch length.

FIG. 5. Control loops of SIS18. DDS: direct digital synthesis;
AM: amplitude modulator; BPM: beam position monitor.
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corresponds to Kcr <KI;norm <Kcr. Using the normalized

variables

� ¼ !cr

!bl

; 	 ¼ fpass

fbl

leads to the condition

jKcrj ¼
j�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�d ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d2
p Þ2 þ ½1� ð1� d2Þ�2�2

q
1� cosð��	 Þ

(25)

for the amplitude. Considering only positive frequencies
!cr > 0, the phase condition can be written as

0 ¼

8>>>>>>>>><
>>>>>>>>>:

�
�
pþ 1

2

	
� 
1 � 
2 for � < 1ffiffiffiffiffiffiffiffiffi

1�d2
p ; Kcr > 0

�
�
p� 1

2

	
� 
1 � 
2 for � < 1ffiffiffiffiffiffiffiffiffi

1�d2
p ; Kcr < 0

�
�
p� 1

2

	
� 
1 þ 
2 for � > 1ffiffiffiffiffiffiffiffiffi

1�d2
p ; Kcr > 0

�
�
pþ 1

2

	
� 
1 þ 
2 for � > 1ffiffiffiffiffiffiffiffiffi

1�d2
p ; Kcr < 0

with � > 0 and the abbreviations


1 ¼
�
!blTd þ �

	

�
�; 
2 ¼ arctan

�
2�d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p

1� ð1� d2Þ�2

�
:

For the special case d ¼ 0, the phase condition can be
solved explicitly for � and introduced into (25) to obtain
Kcr as a function of � and different p. The stability limit for
a specific � is then the smallest absolute gain with respect

to p. This analysis was used in [23,25] to obtain stability
diagrams. It turns out that for a specific �, the feedback is
only stable for either positive values of KI;norm up to a

certain maximum or for negative values up to a minimum
value. The distinction of these two cases can be easily
made by analyzing the direction of traverse of the
Nyquist plot or by calculating the net angle that is circum-
scribed by the Nyquist plot with respect to the critical
point �1.
For d � 0, a numerical evaluation is necessary. In addi-

tion, stability for a specific � is now possible for both
positive and negative gain values. The stability borders
are again obtained by finding the smallest absolute gain
with respect to different p. The result is shown in Fig. 8. As
could be expected, a nonzero damping coefficient d in-
creases the stability domain.
Because of the modeling assumptions and the lineariza-

tion, a comparison of the previous results with nonlinear
tracking simulations is useful. To evaluate the feedback
performance, the settling time Tsettling of the closed loop is

calculated. This settling time is defined as the time for
which the bunch length �2;0ðtÞ finally remains inside a

10% tube around its equilibrium value �2;0e , i.e.







�2;0ðtÞ ��2;0e

�2;0e









<0:1 for all t > Tsettling

holds, where �2;0e was chosen as the mean of �2;0ðtÞ.
Figure 9 shows the result of a simulation scan based on
nonlinear tracking with a simulation length of 400 turns.
The parameters of the simulation are again given in Table I.
The performance is visualized with a color scale from blue
(unstable, no settling) to red (stable, smallest settling time).

FIG. 8. Stability depending on the feedback gain KI;norm and
the filter frequency fpass for d ¼ 0 (dark shading) and d ¼ 0:15

(light shading). Settings of beam experiment run C (� ).

FIG. 7. Bode plot of the open-loop frequency response.
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The beam experiment with largest damping (run C; cf.
Sec. IVB) is indicated by a � and is inside the region of
best performance of the tracking simulations. In addition,
Fig. 9 shows the experimental results of 14 additional
operating points. It can be observed that the nonlinear
simulations and most experimental results agree well
with the stability limits for d ¼ 0:15.

B. Beam experiment

A beam experiment will be used in this section to verify
the newly developed theory and the simulation results. The
experimental setup is described in detail in [25]. The
parameters of the experiment dated October 24, 2007, are
identical with Table I. During the experiment, several runs
were performed (cf. Fig. 9). Three runs will be analyzed in

more detail in this section and they will be denoted by A,
B, and C. Run A represents the open-loop case, where only
Landau damping is present. During run B, the bunch length
feedback was switched on, and during run C both the
bunch position and bunch length feedback were active.

The bunch sizes of the three runs have minor variations

that are summarized in Table II. One reason for these

variations are fluctuations in the ion source that cannot

be avoided completely. The bunches initially have the

equilibrium size �x. At time t ¼ 0, the rf voltage ampli-

tude Û0 is doubled stepwise to induce bunch length oscil-

lations. This leads to the new equilibrium sizes ~�x that are

summarized in Table II.
Figure 10 shows the beam current signal Ib for run C at

the time instants t1 ¼ �0:2 ms, t2 ¼ 0:112 ms, and t3 ¼
0:6 ms. As initial conditions of the simulations, particle

ensembles with Gaussian densities as (13) are used. The

size �x is obtained by fitting the density to the measure-

ment of the beam current Ib at t ¼ �0:2 ms. The size �w

follows then from (19d) and the fact that �0;2e ¼ �2
w. The

comparison between measurement and simulation at t1
shows that the assumption of Gaussian densities is approxi-

mately justified. The simulation results for t > t1 are ob-

tained by nonlinear tracking simulations using the initial

particle ensemble. A good agreement for both the ampli-

tude I1 and beam current Ib can be observed.
The measured amplitude I1ðtÞ is shown in Fig. 11 for all

three runs. A closed-loop frequency domain graph of I1 can
be found in [13]. In addition, the measurements are com-

pared to the corresponding nonlinear tracking simulations.

In the simulations, a time constant of Tcav ¼ 20 �s is taken

into account for the voltage jump of Û0. This time constant

is due to the cavity and its low level radio frequency

system. The feedback gain in the simulations equals

KI;norm ¼ �0:1425 and the filter frequency is fpass ¼
9 kHz, which corresponds to 	 ¼ 1:95. This point is

marked in Fig.s 8 and 9 by a � and is clearly in the stable

region.

FIG. 10. Beam current Ib for three different instants of time for run C (solid line: measurement; dotted line: simulation).

FIG. 9. Settling time of the feedback for nonlinear tracking
simulations compared to beam experiment run C (�) and other
stable (h), marginally stable ( ), and unstable (j) operating

points.
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V. TUNING RULE

For future automatic operation for experiments with
different ion species and bunch sizes, a tuning rule is
necessary for the adjustment of the feedback parameters
fpass and KI. Based on tracking simulations, the tuning rule

fpass

2fsyn;0
� 1:1;

KI

!syn;0

� �0:5~��4
x (26)

is proposed for bunch sizes ~�x ¼ 0:4 . . . 1:1 rad, which
corresponds to a �2� bunch length between 90� and
250�. The central control room may deliver the synchro-
tron frequency fsyn;0 and an estimation of the bunch length

~�x. For the normalized variables of the stability diagram,
this implies

	 ¼ 2:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 þ a3

p ; KI;norm ¼ �b1

4 ~�4
xð2a2 þ a3Þ3=2

:

Table III compares the tuning rule to the optimum of three
tracking simulation scans for different bunch sizes. The
tracking results for scan 1 are shown in Fig. 12 with the
Nyquist stability limits for d ¼ 0:045.

As an alternative to the tuning rule, the linear feedback
model of Fig. 6 can be used to obtain a good estimate for
the optimum settings. To show this, the linear feedback
model was discretized with respect to time, which leads to
a linear model of higher order that includes the delays of
the FIR filter. The eigenvalues of the resulting system
matrix for a given filter can be calculated numerically
and the distance of the largest eigenvalue to the unit circle
is an estimate for the damping of the closed loop. This
distance is shown in Fig. 13 for scan 1, where red is the
most stable configuration and dark blue is unstable. The
result is in very good agreement with the Nyquist stability
limits. It can also be observed that the optimum of Fig. 13
is very close to the optimum of Fig. 12. The optima of the

FIG. 12. Settling time for the nonlinear tracking simulations
of scan 1 with stability margins for d ¼ 0:045 (white line).

FIG. 13. Eigenvalue analysis of the discrete-time linear model
of scan 1 and stability margins (white line).

FIG. 11. Amplitude I1 of the three runs A (open loop), B
(bunch length feedback), and C (bunch position and bunch
length feedback) of the measurement and the corresponding
simulations.

TABLE III. Tuning rule and linear model performance.

Scan 1 Scan 2 Scan 3

Bunch length (�), �2� 120 180 240

Bunch length ~�x (rad) 0.523 0.785 1.04

Optimum 	 1.22 1.35 1.68

KI;norm �0:14 �0:11 �0:06
Tuning rule 	 1.22 1.4 1.69

KI;norm �0:14 �0:08 �0:06
Linear model 	 1.22 1.25 1.18

KI;norm �0:14 �0:11 �0:08
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linear model for all scans are given in Table III. For very
large bunch sizes (scan 3), the estimate of the linear model
becomes less precise, whereas the tuning rule is quite
accurate for all scans.

VI. DISCUSSION

In Fig. 11 the first maximum of run A occurs at t �
0:11 ms. Taking into account also the time constant Tcav,
this implies an oscillation period of about 2 � 0:11 ms�
20 �s ¼ 0:2 ms. According to the developed model and
the given bunch size in Table II, the frequency of the bunch
length oscillation is !bl ¼ 1:463 �!syn;0. This implies a

period of 0.206 ms, which is close to the observed value.
The feedback algorithm consisting of the FIR filter and

the integral controller is implemented in a discrete way on
a combined DSP/FPGA system [13]. From (24) and (26),
the discrete integral gain

KI;discr ¼ KI

fsamp

¼ � !syn;0

2fsamp ~�
4
x

is obtained, where fsamp ¼ 375:44 kHz is the sampling

time of the feedback loop.
Figure 9 shows that the stability limits for d ¼ 0:15

agree very well with the nonlinear tracking simulations.
This verifies that Landau damping may approximately be
described by an exponential damping term. Expectedly, the
effect of this damping is a considerably larger region of
stability. An important practical implication of (26) is that
the open-loop gain depends on the bunch size. It is thus
necessary to adapt the gain to this parameter or to provide a
sufficient stability margin.

VII. CONCLUSIONS

A new approach for the modeling of bunch length
oscillations in synchrotrons has been proposed based on
a moment method. With an additional damping term, the
obtained models are valid also for bunches with a large
length compared to the period of the rf voltage. The models
generalize existing models in literature that are typically
based on linearized single-particle dynamics. The analysis
in this paper shows how the oscillation frequencies of the
bunch modes decrease for larger bunch sizes.

The models have been used to analyze the stability of an
rf feedback setup at GSI. Experimental results are in
agreement with the simulations and the developed theory.
The proposed approach is useful for further optimizations
of the rf feedback loops. In particular, the models can be
used for the design of more complex feedback algorithms
or the robustness analysis of the existing feedback with
respect to changing parameters during the acceleration
of the beam. In this paper, only the stationary case with
a single-harmonic rf voltage has been studied, but the
approach may be applied for the acceleration case and
for the case of more complex rf voltages.
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