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Perturbative operator approach to high-precision light-pulse atom interferometry
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Light-pulse atom interferometers are powerful quantum sensors, however, their accuracy for example in tests
of the weak equivalence principle is limited by various spurious influences like stray magnetic fields or blackbody
radiation. Improving the accuracy therefore requires a detailed assessment of the size of such deleterious effects.
Here we present a systematic operator expansion to obtain phase shift and contrast analytically in powers of a
perturbation potential. The result can either be employed for robust straightforward order-of-magnitude estimates
or for rigorous calculations. Together with general conditions for the validity of the approach, we provide a
particularly useful formula for the phase including wave-packet effects.
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I. INTRODUCTION

Since their first implementation [1] in 1991 the accuracy of
light-pulse atom interferometers has been improved consid-
erably, which led to high-precision applications in gravime-
try [2,3], gradiometry [4–6], tests of fundamental physics
such as the weak equivalence principle [7–10], measure-
ments of the fine-structure constant [11,12], and proposals for
gravitational-wave detection [13]. However, as the accuracy is
pushed further, an increasing number of formerly negligible
influences such as magnetic field gradients, blackbody radi-
ation inducing a spatially dependent ac Stark shift [14,15],
or gravitational fields of the laboratory environment have to
be included into the error budget. In this article we present a
systematic approach to account for such spurious effects.

Although phase shifts caused by the corresponding in
general anharmonic potential shifts can be small, they might
nevertheless be non-negligible which calls for a systematic
perturbative approach. Over the years, several powerful an-
alytic methods for the calculation of phase and contrast of
light-pulse atom interferometers have been developed based
on the Feynman path integral [16,17], descriptions in phase
space [18,19], as well as in the form of representation-free
descriptions on the operator level for linear gravity [20],
path-independent quadratic Hamiltonians [21,22], or within
a local-harmonic [23,24] approximation. Within the latter
approach, it was also possible to obtain wave-packet effects
to lowest order [25]. However, these methods are either ap-
plicable to at most quadratic potentials or lack a comprehen-
sive discussion of consistency in the case of more general
applications.

In this article we derive a systematic perturbative descrip-
tion for phase and contrast including effects due to wave-
packet dynamics based on two formal series, the Magnus
[26–29] and the cumulant [30] expansion. They have already
been applied in the context of light-pulse atom interferometry
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[28] to determine the quality of magnetic shielding [31] and
to calculate relativistic effects for interferometric redshift tests
[32]. Recently, the Magnus expansion was furthermore used
to take into account the effect of finite pulse duration [33]. In
this article we extend the work of Ref. [28] with particular em-
phasis on general conditions for the validity of the approach,
characterizing the magnitude of the perturbations.

In Sec. II we outline our main results and put them into
context. Subsequently, in Sec. III we introduce our path-
dependent model and derive the perturbative expansion. The
conditions under which our method is valid will be discussed
in Sec. IV. Finally in Sec. V, as a simple example, we apply
the formalism to the cubic potential appearing in the Taylor
expansion of the gravitational potential of Earth.

II. BRANCH-DEPENDENT DESCRIPTION

Light-pulse atom interferometers consist of a sequence of
light pulses which coherently split the initial wave packet and
subsequently direct the atoms along the two branches of the
interferometer. After recombination by a final laser pulse, the
number of atoms at each exit port displays an interference pat-
tern from which the relative phase accumulated between the
branches of the interferometer can be inferred. In this work we
assume that the Hamiltonian describing the motion through
the interferometer can be decomposed into a dominant part
(linear gravity, laser pulses) and a weak perturbation (e.g.,
gravity gradients, blackbody radiation, etc.). As illustrated
by the Mach-Zehnder (MZ) gravimeter shown in Fig. 1, the
two branches of the interferometer are mainly caused by the
dominant part of the Hamiltonian (thick solid lines in the
figure). These trajectories are only slightly disturbed by the
perturbation potentials (leading to the thin dashed lines in the
figure), which can in general be different for each branch and
time dependent. The hypothetical interferometer sequence
with vanishing perturbation will be referred to in the following
as unperturbed interferometer.

Neglecting wave-packet effects, it has been shown
[16,23,25,28] that the phase φ of such an interferometer can
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FIG. 1. Mach-Zehnder gravimeter. Initially released from an
atomic trap, the free fall of the atoms is interrupted by a π/2
pulse at t = ti = 0 to split the wave packet into two components
transferring a momentum of h̄k to one of them, which gains the
recoil velocity vr = h̄k/m. After a time T both components are
redirected by a π pulse at t1 = T and finally recombined by a
second π/2 pulse at t2 = 2T . At the detection time td the number
of particles is measured at one of the exit ports, which forms an
interference pattern dependent on the relative phase accumulated
between the two branches. The unperturbed branches (thick solid
lines) are determined by the analytic expressions shown next to them,
where g is the local gravitation acceleration. The perturbation V (α)

slightly disturbs the atoms, leading to the deviating branches of the
actual interferometer (thin dashed lines).

be obtained from the classical trajectories through

φ = �S/h̄ + φs, (1)

where �S = S(u) − S(l ) is the classical action difference be-
tween the upper and lower branch (superscripts u and l) in
combination with a separation phase φs in case the classical
trajectories do not coincide upon detection. In this case we
refer to the interferometer as open. The calculation of the
phase via Eq. (1) therefore consists of (i) solving the dif-
ferential equation for the classical trajectories including all
perturbations and (ii) evaluating the action difference. In the
case of weak perturbing potentials, however, this approach is
unfavorable for the following reasons: In general, analytic ex-
pressions for the trajectories including the perturbation do not
exist. Therefore, the trajectories can be solved iteratively to
desired order in the perturbation [23] and are then substituted
into Eq. (1), possibly resulting in cumbersome expressions,
whereas a direct perturbative expansion in powers of the weak
perturbing potential would be much more convenient. Further-
more, if the perturbation is only available numerically, in an
integration of Eq. (1) one has to account for both the dominant
contribution as well as the perturbation, which can be difficult
numerically since they likely differ in size by multiple orders
of magnitude. Finally, the validity of Eq. (1) is premised
on negligible wave-packet effects. However, in the presence
of anharmonic perturbation potentials the two components
of the wave packet will experience different local expansion
dynamics along the branches, leading to a slight mismatch
and therefore resulting in additional phase contributions upon
detection. Consequently, it is a priori not obvious if these
phases are negligible compared to those of Eq. (1) originating
from the perturbation. The approach presented in this article

is based on a systematic operator expansion derived from a
full quantum-mechanical description of the interferometer to
overcome these problems. It allows formulating conditions
for its validity determining exactly when wave-packet effects
are negligible or, in turn, calculating their value to desired
accuracy.

Denoting the perturbation potential on the upper and lower
branch by V (u) and V (l ), respectively, we will find for a closed
unperturbed interferometer sequence

φ = φ0 − 1

h̄

∮
dt V (t ) − 1

2h̄

∮
dt Vi j (t ) 〈 ˆ̄ri(t )ˆ̄r j (t )〉 (2)

for the phase including the leading-order phase shifts from
the perturbation, where repeated indices are summed over.
In Eq. (2) we defined φ0 as the phase of the unperturbed
interferometer which can be calculated for example with
the general formula provided in Ref. [34]. The perturbation
potential V (t ) = V (α)(r(α)

0 (t )) might be different on the upper
(α = u) and lower branch (α = l) and is evaluated at the
unperturbed trajectories r(α)

0 (t ). The integrals run from the
initial time ti, where the atoms are released from the trap, up
to the detection time td on the upper branch and return along
the lower branch back to ti. We stress that the perturbation
potential and its second derivative Vi j = ∂i∂ jV are evaluated at
the two unperturbed trajectories, which obviates the solution
of a possibly involved differential equation. The initial con-
ditions for the trajectories are r0(ti ) = 〈r̂〉 and ṙ0(ti ) = 〈p̂〉/m,
where the expectation value is taken with respect to the initial
wave packet. In Eq. (2) we furthermore defined the operator
describing the free evolution of the wave packet

r̂(t ) = r̂ − 〈r̂〉 + p̂ − 〈p̂〉
m

t . (3)

Consequently, 〈 ˆ̄ri(t )ˆ̄r j (t )〉, where the indices label the com-
ponent of the vectors, provides a measure for the width of
the wave packet for vanishing perturbation as detailed further
below. Solving the classical trajectories and the integral in
Eq. (1) to first order in the perturbation, the first two con-
tributions to Eq. (2) can also be derived [35] directly from
Eq. (1). The third contribution, however, describes wave-
packet effects which are not taken into account by Eq. (1). In
neutron interferometry small perturbations can also be taken
into account to first order in a WKB-like treatment [36].

III. PERTURBATIVE TREATMENT

We now derive Eq. (2) from a full quantum-mechanical
description. In order to calculate the phase measured by a
light-pulse atom interferometer, one has to start from the mul-
tilevel Hamiltonian including the virtual states necessary for
the diffraction process. However, after adiabatic elimination
of the auxiliary states [37,38], neglecting atom-atom interac-
tions, and assuming infinitely short laser pulses, the evolution
can be reduced to a branch-dependent description [20,28] in
which the phase φ and contrast C of the interferometer after
projection on one exit port is defined by the expectation value
of the overlap operator

〈Û (l )†Û (u)〉 = Ceiφ, (4)
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with respect to the initial wave function, where Û (α) generates
the time evolution along branch α. In this article we assume
that the Hamiltonian for each branch allows the decomposi-
tion

Ĥ (α) = Ĥ (α)
0 + V (α)(r̂, t ). (5)

The perturbation potential V (α)(r̂, t ) only slightly disturbs
the dominant part of the evolution which is caused by the
unperturbed Hamiltonian

Ĥ (α)
0 = p̂2

2m
+ mgẑ + V (α)

em (r̂, t ) (6)

describing the motion of an atom with mass m in the linear
gravitational field, where g is the local gravitational accelera-
tion. The interaction with the laser pulses is modeled by the
potentials

V (α)
em (r̂, t ) = −h̄

∑
�

[
k(α)

� r̂ + ϕ
(α)
�

]
δ(t − t�), (7)

which transfer the momentum h̄k(α)
� on branch α at time t =

t� and imprint the laser phase ϕ
(α)
� evaluated at the time of

the pulse on the wave packet. In this article we assume that
the unperturbed interferometer is closed, translating into the
condition

Û (l )†
0 Û (u)

0 = eiφ0 , (8)

where Û (α)
0 is the time-evolution operator with respect to

Eq. (6). The phase of the unperturbed interferometer φ0 is
merely a c-number, implying perfect wave-packet overlap at
the end of the unperturbed interferometer sequence. However,
the interferometer including the perturbation is in general not
closed.

The time-evolution operator with respect to Hamiltonian
(5) can be decomposed into

Û (α) = Û (α)
0 Û (α)

I (9)

by transforming into the interaction picture with respect to
Ĥ (α)

0 so that the operator

Û (α)
I = T exp

{
− i

h̄

∫ td

ti

dt V̂ (α)
I (t )

}
(10)

only includes the potential V̂ (α)
I (t ) = V (α)[r̂(α)(t ), t] which is

a function of r̂(α)(t ) = Û (α)†
0 r̂Û (α)

0 , the solution of the Heisen-
berg equations of motion generated by Ĥ (α)

0 . An explicit
expression for the solution is straightforwardly obtained for
our form of Ĥ (α)

0 , resulting in r̂(α)(t ) = r̂ + p̂t/m + r̃(α)
0 (t ).

Here r̃(α)
0 (t ) are the classical trajectories caused by the unper-

turbed Hamiltonian (6) with the initial conditions r̃(α)
0 (ti ) = 0

and ˙̃r(α)
0 (ti ) = 0 since the Schrödinger and Heisenberg picture

coincide at t = ti.
Inserting the decomposition shown in Eq. (9) into the

overlap operator in Eq. (4) then yields

Û (l )†Û (u) = Û (l )†
I Û (l )†

0 Û (u)
0 Û (u)

I = eiφ0Û (l )†
I Û (u)

I . (11)

Recalling Eq. (8), we identified the phase of the closed unper-
turbed interferometer and moved the exponential exp(iφ0) to

FIG. 2. Time contour. To merge the two time-evolution opera-
tors corresponding to the two branches of the interferometer, we
introduce the time contour depicted in the figure over which all
integrals extend. Starting at ti the integrals run to the detection time
td over the perturbation potential corresponding to the upper branch
and subsequently return along the lower branch back to the initial
time ti.

the left as it is only a c-number. Writing the two interaction
picture time-evolution operators explicitly

Û (l )†
I Û (u)

I = T exp

{
i

h̄

∫ td

ti

dt V̂ (l )
I

}
T exp

{
− i

h̄

∫ td

ti

dt V̂ (u)
I

}
,

(12)

we note that the time-ordering operator T orders times (read-
ing from right to the left) from the initial time ti to the
final time td while the anti-time-ordering operator T orders
from td back to ti. Thus, we merge the two time-evolution
operators to one path-ordered exponential by introducing the
path-ordering operator Tp so that we obtain

Û (l )†Û (u) = eiφ0Tp exp

{
− i

h̄

∮
dt V̂I(t )

}
. (13)

Resorting to the concept of path ordering, initially introduced
by Schwinger and Keldysh [39,40] in the context of thermal
field theory, Tp orders time along the contour illustrated in
Fig. 2. On this contour we define V̂I(t ) = V̂ (u)

I (t ) for t on the
upper path and V̂I(t ) = V̂ (l )

I (t ) for t on the lower path. With
these definitions in mind, we disregard the explicit labeling
(α) of the branch if not necessary.

In order to associate the operator r̂(t ) with the unperturbed
trajectory of the atoms, the initial mean momentum and
position can be included by introducing r0(t ) = r̃0(t ) + 〈r̂〉 +
〈p̂〉t/m so that

r̂(t ) = r0(t ) + r̂(t ) (14)

for each branch, where r̂(t ) was defined in Eq. (3). Conse-
quently, with Eq. (13) the overlap operator can be written as
a path-ordered exponential in which the perturbation potential
is evaluated at the classical unperturbed trajectory plus an op-
erator part with vanishing expectation value. The expectation
value 〈 ˆ̄r j (t )2〉 = �r2

j + �p2
jt

2/m2, where �r j , �p j are the
initial position and momentum widths of the wave packet in
the jth direction, is therefore a measure for the width of the
expanding wave packet as long as any distortion effects from
the perturbation potential are negligible. Note that we disre-
garded for the moment possible initial correlations between
r̂ and p̂. Thus, if the change of the potential over the size of
the wave packet on each interferometer branch is sufficiently
small, the Taylor expansion around the classical trajectory
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r0(t ),

V̂I(t ) = V + Vir̂i + 1
2Vi j r̂ir̂ j + · · · , (15)

where indices of the potential again denote derivatives, accu-
rately approximates the potential by taking into account only
a few terms. Note that we omitted the time dependence on the
right-hand side for the sake of readability and again use the
summation convention.

The overlap operator from Eq. (13) still contains the
formal path-ordering operator Tp, prohibiting any further
manipulation of the contour-ordered exponential. To remove
the former, we apply the Magnus expansion, detailed in
Appendix A, facilitating an exponential representation of a
time-ordered exponential in terms of a formal series, namely

Û (l )†Û (u) = eiφ0+iφ̂ = exp

{
i

∞∑
n=0

φ̂n

}
, (16)

where φ̂ = ∑∞
n=1 φ̂n. For a more convenient notation, the

operator φ̂0 is in fact defined as the phase of the unperturbed
interferometer φ0, i.e., a c-number. The other contributions
φ̂n for n > 0 are determined by the Magnus expansion. In
Appendix A we provide the terms explicitly to third order;
and in general φ̂n contains n nested integrals along the time
contour over nested commutators of order n − 1 between the
potential evaluated at different times.

The Magnus expansion therefore leads to an operator ex-
pansion in powers of the perturbation potential V . If small as
defined in the following section, the Magnus expansion can
be truncated at desired order and we have already succeeded
in finding an approximate exponential representation of the
overlap operator. However, according to Eq. (4), it is still
necessary to evaluate the expectation value of this operator. In
case of a path-independent harmonic potential it can be shown
[22] that the exponent of the overlap operator depends only
linearly on r̂ and p̂, making the calculation of the expectation
value straightforward. However, in general such a simple
representation does not exist and the overlap operator will
contain various powers of r̂ and p̂. In this case, a suitable
approach lies in the cumulant expansion, a formal series,
casting the expectation value of an exponential operator into
the form

〈eiφ̂〉 = exp

{ ∞∑
n=1

κn

n!

}
, (17)

where the cumulants κn, defined in Appendix B, are functions
of the first n moments of φ̂. Consequently, the phase of an
interferometer can at least formally be expressed in powers of
the perturbation potential.

Truncating the series at some desired order, however, re-
quires a detailed assessment of conditions characterizing the
magnitude of the potential and the size of wave-packet effects.
These conditions for the validity of our approach will be
discussed in the subsequent section.

For the moment let us assume that these conditions are
satisfied, allowing a truncation of the Magnus and cumu-
lant expansion at first order. Consequently, with the help of
Eqs. (16) and (B6) the phase is φ = φ0 + 〈φ̂1〉. Inserting the
Taylor polynomial of the potential up to quadratic order into

FIG. 3. Comparison between different scales. (a) Perturbation
potential evaluated at the two unperturbed trajectories spanning
the interferometer as a function of time (blue and orange curve).
Whereas �V corresponds to the maximal potential difference probed
by the atoms, δV is the maximal potential difference between the
branches of the interferometer, which is generally smaller. (b) The
space-time diagram of a given interferometer sequence determines
the domain of the potential probed by the atoms (colored in bright
red). The suppression factor of consecutive terms in the Magnus
expansion as well as wave-packet effects are crucially dependent
on the value of ξ which is the length scale on which the potential
changes. If we assign a wave number to the oscillatory behavior of
the potential shown in the figure, ξ is given by its inverse (colored
in darker red). In contrast, in the case of a simple polynomial form
of the potential, the value of ξ would scale with the extent of
the interferometer itself. A third length scale is determined by the
characteristic size of the wave-packet d .

Eq. (A2) and recalling that 〈r̂〉 = 0, we arrive at Eq. (2), the
main result of our article.

IV. CONDITIONS FOR VALIDITY

We now derive conditions for the validity of the pertur-
bative treatment presented in the section above. First, we
introduce a characteristic length scale ξ with

�V ∼ ξ n�V (n), (18)

where �V is the difference between the extremal values of
the potential probed by the atoms over the course of the
interferometer. Furthermore, �V (n) is the typical value of
the nth derivative of the potential. For example, in case of
a power-law dependence of the potential, ξ corresponds to
the size of the atomic fountain in which the experiment is
performed while for oscillating potentials the value of ξ can
be much smaller. The parameters �V and ξ are visualized in
Fig. 3 together with further quantities defined below.

First, a perturbative treatment is only valid, if the deviation
of the unperturbed trajectories caused by the perturbation
potential is small compared to the characteristic length scale
ξ on which the potential varies. Therefore, identifying an ac-
celeration a ∼ −�V/(mξ ) of the atom due to the perturbation
potential, where �V/ξ ∼ �V (1), we require that the distance
aT 2 is much smaller than the characteristic length ξ , that is

ε = �V T 2

ξ 2m
� 1, (19)

where T denotes the characteristic interferometer time which
can be chosen to be equal to the interrogation time of the
interferometer. As shown more rigorously in Appendix D, the
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TABLE I. Explicit values for ξ , ε, d/ξ , and ηd/ξ for different sources of the perturbation. In the table we show that all these examples
satisfy the conditions for the validity of our approach. The parameters �V , δV , and ξ used for the calculation of ε and η are estimated from
the potentials stated in the references. The width of the wave packet is assumed to be d = 50 μm.

Gravity gradients [41] Magnetic field gradients [31] Blackbody radiation [15] Mass defect in quantum clocks [32]

ξ (m) 0.1 0.1 0.01 10
ε 10−8 10−11 10−5 10−12

d/ξ 5 × 10−4 5 × 10−4 5 × 10−3 5 × 10−6

ηd/ξ 10−4 10−9 10−3 10−9

parameter ε constitutes the factor by which subsequent orders
of the Magnus expansion are suppressed.

We now consider the leading-order correction to the unper-
turbed phase, which is the second term on the right-hand side
of Eq. (2). This term can be estimated to be of the size

η = δV T

h̄
, (20)

where δV is the maximal potential difference between the
branches at one instance of time, which can be much smaller
than �V , the difference between the two extremal values of
the potential probed by the atoms during the course of the
interferometer.

In Eq. (15) we Taylor expanded the potential about the
unperturbed trajectory over the size of the wave packet repre-
sented by the operator r̂. Heuristically replacing the position
operators by the wave-packet width d , the Taylor expansion
can be truncated after a few terms if �V (n)dn � �V which
translates with the help of Eq. (18) into

d/ξ � 1. (21)

Finally, if this condition holds, the leading-order operator-
valued term in φ̂ is due to the first-order term in the Taylor
expansion of the potential, taking the form

∮
dtVir̂i/h̄. To

guarantee the validity of the cumulant expansion, which is
a function of the moments of φ̂, this term should be much
smaller than unity. This requirement can be expressed by

ηd/ξ � 1 (22)

after again replacing the operator r̂ by d , the integration
in time by the characteristic interferometer time T , and by
making use of Eq. (18). A more rigorous derivation of these
conditions can be found in Appendix D.

In Table I we give approximate values for ξ , ε, and ηd/ξ

for some experiments or recent proposals. As shown in the
table, the accuracy achieved by truncation of the Magnus
expansion at first order often is already sufficient and our
formalism is well suited to be applied to these situations.

Obviously a scaling such as in Eq. (18) cannot be guaran-
teed in general. For this case we apply the Magnus expansion
to the Taylor polynomial of the perturbation potential explic-
itly in Appendix C from which the scaling of phase shifts can
be inferred. However, for many applications a parameter ξ

does exist, satisfying Eq. (18) at least approximately, which
is sufficient for an order-of-magnitude estimation of the size
of phase shifts beyond Eq. (2).

V. EXAMPLE: GRAVITATIONAL POTENTIAL

In this section we illustrate the formalism derived in the
previous sections by the example of an MZ-interferometry ex-
periment conducted in the Newtonian gravitational potential
of Earth

V (r) = −G
mM

r
, (23)

where G is Newton’s constant and M is the mass of Earth.
Choosing the z axis of a new coordinate system in direction
of Earth’s radius R, we Taylor expand the potential around a
point on Earth’s surface in powers of R−1. This calculation
yields

V (r) = mgz + 1
2 m�

(1)
i j rir j + 1

6 m�
(2)
i jl rir jrl + O(R−3) (24)

after omitting the irrelevant constant. The only nonvanishing
components of the fully symmetric first and second gravity-
gradient tensors �(1) and �(2) then are given by

�(1)
xx = �(1)

yy = g

R
, �(1)

zz = −2
g

R
, (25)

and (including all possible permutations)

�(2)
xxz = �(2)

yyz = −3
g

R2
, �(2)

zzz = 6
g

R2
, (26)

where we identified g = GM/R2. Phase corrections caused by
the first gradients (described by �(1)) have been calculated to
all orders in �(1) [22,42]. However, note that phase contribu-
tions to second order in �(1) and to first order in �(2) both
scale with R−2 and may therefore be of the same size, making
the calculation inconsistent when disregarding �(2).

In this example we focus on the second gravity gradients
(described by �(2)). Phase shifts from this contribution have
been calculated before [23] but here we will additionally
include the contribution of wave-packet effects. Furthermore,
we stress how straightforward the calculation becomes with
our formalism and put particular emphasis on the application
of the conditions for the validity of a perturbative description.

A. Check of conditions for validity

First we check condition (19) for the validity of the Magnus
expansion. Because of the polynomial form of the potential, ξ

is given by the total extent of the interferometer. Assuming
the recoil velocity vr = h̄k/m, where h̄k is the effective mo-
mentum transfer of the lasers as well as the initial velocity
of the atoms vi to be much smaller than gT , the size of the
interferometer scales with ξ = gT 2/2 and we choose �V =
m�(2)ξ 3, where T is half of the interferometer time (see
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Fig. 1). Consequently, with the help of Eq. (19),

ε = �(2)gT 4 ≈ 10−12 (27)

for T ≈ 1 s. Consecutive terms in the Magnus expansion
corresponding to the same power of the operators r̂ and p̂ are
therefore suppressed by this factor and a consideration to first
order is sufficient. Next we calculate the potential difference
between the interferometer branches by inserting the analytic
expressions for the unperturbed trajectories from Fig. 1 into
the potential so that

δV ∼ m�(2)[(vrT − gT 2/2)3− (−gT 2/2)3] ∼ m�(2)g2vrT
5,

(28)

where we replaced t ∼ T . Consequently, the leading-order
phase shift from the second gravity gradients is of the order
of

η = �(2) mg2vrT 6

h̄
= �(2)kg2T 6 ≈ 10−4, (29)

where, as the momentum transfer stems from a two-photon
process, the value k = 4π/(780 nm) of the effective wave
number corresponds to twice the wave length of the D2 line
of rubidium 87.

Finally, it is left to examine condition (22) for the validity
of the cumulant expansion. Note that in principle one should
consider operator-valued contributions in the overlap operator
from the first and second gravity gradients but for the sake
of a simple presentation we restrict the discussion to latter.
Assuming a maximal size d = 200 μm of the wave packet,
we find

ηd/ξ ≈ 10−9 (30)

so that Eq. (2) can be confidently applied.

B. Calculation of phase

We now consider a general interferometer sequence, but
for simplicity we assume the laser pulses to be aligned with
the direction of linear gravity so that the classical unperturbed
trajectories take the form r0 j (t ) = z0(t )δz j . Insertion of the
perturbing potential into Eq. (2) then yields for the phase shift
due to �(2),

1

h̄

∮
dt V (t ) = m

6h̄
�(2)

zzz fφ (31)

and

1

2h̄

∮
dt Vi j (t ) 〈 ˆ̄ri(t )ˆ̄r j (t )〉

= 1

2h̄
�

(2)
zi j

[
m〈r̂i r̂ j〉c frr + 〈r̂i p̂ j + p̂ j r̂i〉c fr p + 1

m
〈p̂i p̂ j〉c fpp

]
,

(32)

where we recalled Eq. (3) and defined the central expectation
value 〈·〉c with respect to the initial state but displaced by 〈r̂〉
and 〈p̂〉 to the origin of phase space so that, e.g., 〈r̂i r̂ j〉c =
〈(r̂i − 〈r̂i〉)(r̂ j − 〈r̂ j〉)〉. In Eqs. (31) and (32) we made further-
more use of the symmetry of �(2). The chosen interferometer
sequence only enters the expression through the functions fφ ,
frr , fr p, and fpp defined in Appendix E and also explicitly

FIG. 4. Plot of phase shifts caused by the gravitational field of
Earth. As shown in the figure, the dominant contribution kgT 2 to
the phase (blue line) is due to the unperturbed interferometer. The
phase shift caused by the first gravity gradients [41] scales with R−1

(purple line). Phase contributions from the second gravity gradients
scale with R−2 and can be divided into the first term inside the bracket
in Eq. (33) (orange line) and the second term which originates from
wave-packet effects (yellow line). For this figure the parameters are:
The radius of Earth is R � 6 × 106 m, the effective wave vector is
given by k = 4π/(780 nm), an interferometer time of T = 1 s is
assumed, the initial trapping frequency is ω = 2π × 60 Hz, and a
mass corresponding to rubidium 87 is chosen.

evaluated for the MZ geometry depicted in Fig. 1. In order
to keep the expressions compact, we assume the initial po-
sition r0 j (ti ) = ziδ jz without an initial velocity. If necessary,
however, a more general calculation is straightforward. As
shown in Appendix E, the phase then depends on the initial
position zi of the state. This result is a direct consequence of
the operator-valued form of the overlap operator. In contrast,
if the interferometer is closed, the overlap operator reduces
to a c-number and its expectation value is independent of the
wave function and therefore of the initial conditions.

To obtain compact explicit expressions for the phase shift
due to wave-packet effects, we assume that the first laser
pulse acts right after releasing the atoms from the trap. Thus,
assuming the initial state as the ground state of a harmonic
trap with frequency ωi in the ith direction results in 〈r̂i r̂ j〉c =
δi j h̄/(2mωi ) and 〈p̂i p̂ j〉c = δi j h̄mωi/2 as well as vanish-
ing correlations between momentum and position operators.
Specifying further ω ≡ ωx = ωy = 2ωz, the final result for the
lowest-order correction due to the cubic potential is

φ = φ0 − g

R2

[
m

h̄
fφ + vrT 2

ω

(
3

2
− 7

8
(ωT )2

)]
. (33)

Interestingly, if the atoms expanded out of a symmetric
harmonic trap, the wave-packet induced contributions would
vanish.

In Fig. 4 we illustrate Eq. (33) for reasonable experimental
parameter values. In the figure we compare the phase of the
unperturbed interferometer sequence (blue line) and the phase
due to �(1) (purple line) [41] to the phase shift calculated in
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Eq. (33) from the cubic contribution of the Taylor expansion
(orange line). The effect of phase shifts caused by �(1) are
generally relevant in state-of-the-art precision measurements
[41]. As a consequence, such phase contributions either have
to be included into the analysis, or have to be compensated
through differential schemes [8] (for example used for test
of the weak equivalence principle) and mitigation techniques
[43]. Phase shifts originating from second gradients �(2),
however, are of the order of magnitude to possibly limit
future spaceborne missions if not appropriately accounted for.
Finally, the phase shift originating from different expansion
dynamics along the branches (yellow line) is beyond any
accessible value for light-pulse atom interferometric experi-
ments in the mid future. Such phases, however, can be much
larger when taking into account the inhomogeneous gravita-
tional field of the laboratory environment.

VI. DISCUSSION AND CONCLUSION

Obviously Hamiltonian (5) does not account for atom-atom
interactions. However, state-of-the-art atom interferometers
employ Bose-Einstein condensates as highly coherent atom
sources which are intrinsically interacting many-body sys-
tems. Nonetheless, numerical propagation of the initial mean-
field state with the help of the Gross-Pitaevskii equation,
including release from the trap and possibly magnetic lensing
[44], shows that due to the dynamical expansion, the strength
of interactions quickly decreases. Thus, if the initial expansion
time before the first laser pulse is sufficiently large, any further
evolution will be accurately described by the Schrödinger
equation and our formalism is valid from this instance of time.
Then, the state right before the first laser pulse is used as
input [24] and the expectation value of the overlap operator is
calculated with respect to this state. Even more if interactions
are negligible during the whole experiment, we include the
time between release and first laser pulse into the unperturbed
trajectories so that the influence of the perturbation on the
wave packet during this initial expansion time is automatically
accounted for. It then suffices to calculate expectations values
with respect to the ground state of the trap.

In our article we have restricted the discussion to per-
turbations which only depend on the position operator r̂. A
generalization, however, of our results for the application to
p̂-dependent perturbations, present for example in rotating
frames, is straightforward.

The application of the Magnus expansion to the overlap
operator has resulted in nested contour integrals whose an-
alytical evaluation becomes cumbersome for large orders of
the expansion. Even though the integrals can be reordered
[28] to streamline analytical calculations, the loop structure
of the integral is particularly useful in a numerical implemen-
tation. Here the perturbation potential (and its derivatives) are
discretized exactly on the time contour so that a numerical
integration algorithm will automatically account for the loop
properties of the integrals.

Our approach is applicable to a variety of situations with
different sources of the perturbation, including, e.g., black-
body radiation, gravity gradients, inhomogeneities in the grav-
itational potential of the laboratory environment, magnetic

field gradients, relativistic effects, violation parameters of the
universality of free fall, and finite laser pulse lengths.

In this work we proposed a perturbative tool to assess small
phases due to spurious influences for light-pulse atom inter-
ferometers. Making use of a path-dependent description for-
malized by the introduction of the path-ordering operator, we
emphasized how the method solves the problems of previous
results. Based on two formal series, the Magnus and cumulant
expansion, we derived Eq. (2) for the leading-order phase
shifts originating from the perturbation including wave-packet
effects and obtained detailed conditions for the validity of our
approach which are stated in Eqs. (19), (21), and (22). Finally,
we commented on straightforward generalizations and the
numerical implementation in case analytic calculations are not
possible.
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APPENDIX A: MAGNUS EXPANSION

The Magnus expansion [26–28] is a formal series for the
exponential representation of a time-ordered exponential

Û = T exp

{
− i

h̄

∫ td

ti

dt Ĥ (t )

}
= exp

{
i

∞∑
n=1

φ̂n

}
, (A1)

where Ĥ (t ) is a time-dependent Hamiltonian. Applied to the
path-ordered exponential in Eq. (13), we obtain for the first
three elements of the series in Eq. (16),

φ̂1 = −1

h̄

∮
dt V̂I(t ), (A2)

φ̂2 = i

2h̄2

∮
dt

∮ t

dt ′ [V̂I(t ), V̂I(t
′)], (A3)

φ̂3 = 1

6h̄3

∮
dt

∮ t

dt ′
∮ t ′

dt ′′ ([V̂I(t ), [V̂I(t
′), V̂I(t

′′)]]

+ [V̂I(t
′′), [V̂I(t

′), V̂I(t )]]). (A4)

In general, φ̂n consists of n nested integrals over (n − 1)th-
order commutators between the potential evaluated at dif-
ferent times. The perturbation potential is a function of the
solution of the Heisenberg equations of motion r̂(t ) generated
by the unperturbed Hamiltonian.

APPENDIX B: CUMULANT EXPANSION

The cumulant expansion [30,45] is a formal series for
an exponential representation of the expectation value of an
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exponential operator which is defined by

〈eiφ̂ζ 〉 = exp

{ ∞∑
n=1

κn

n!
ζ n

}
, (B1)

where one introduces a formal expansion parameter ζ , which
is set to unity after the calculation, and the coefficients κn

are referred to as cumulants. By taking the logarithm on both
sides, we find the definition of the cumulants as

κn = dn

dζ n
ln〈eiφ̂ζ 〉|ζ=0, (B2)

where the nth cumulant is function of the first n moments of
φ̂. Here we state explicitly the first three cumulants

κ1 = i〈φ̂〉, (B3)

κ2 = −〈φ̂2〉 + 〈φ̂〉2, (B4)

κ3 = −i[〈φ̂3〉 − 3〈φ̂2〉〈φ̂〉 + 2〈φ̂〉3]. (B5)

Since φ̂ = ∑∞
n=1 φ̂n is calculated from the overlap operator

by Magnus expansion and is therefore Hermitian, we separate
Eq. (B1) into phase and amplitude. By comparing to Eq. (4),
we find the phase φ of the interferometer

φ = φ0 + 〈φ̂〉 − 1
6 [〈φ̂3〉 − 3〈φ̂〉2〈φ̂〉 + 2〈φ̂〉3] + · · · , (B6)

where we included the phase of the unperturbed interferome-
ter φ0 from Eq. (16), and the contrast C is

lnC = − 1
2 (〈φ̂2〉 − 〈φ̂〉2) + · · · . (B7)

APPENDIX C: PHASE TO SECOND ORDER

In this Appendix we apply the Magnus expansion to second
order to the overlap operator. To this end, we insert the Taylor
series of the potential into Eq. (16), where φ̂n is determined
by the Magnus expansion. Making use of the commutator

[ˆ̄ri(t ) , r̂ j (t
′)] = ih̄

m
(t ′ − t )δi j, (C1)

where δi j is the Kronecker symbol, we obtain with the help of
Eqs. (A2) and (A3)

φ̂0 = φ0, (C2)

φ̂1 = −1

h̄

∮
dt

{
V + Vir̂i + 1

2
Vi j r̂ir̂ j + 1

6
Vi jk r̂ir̂ j r̂k

+ 1

24
Vi jkl r̂i r̂ j r̂k r̂l + · · ·

}
, (C3)

φ̂2 = − 1

2h̄m

∮
dt

∮ t

dt ′ (t ′ − t )

{
ViV

′
i + ViV

′
i j r̂

′
j + V ′

i Vi j r̂ j

+1

2
V ′

i Vi jk r̂ j r̂k + 1

2
VikV

′
k j (r̂

′
j r̂i + r̂i r̂

′
j )

+1

2
ViV

′
i jk r̂

′
j r̂

′
k + · · ·

}
. (C4)

Note that all quantities depend on time t or t ′. If dependent
on the latter, this dependence is abbreviated by a prime on the
respective quantity.

APPENDIX D: DERIVATION OF CONDITIONS FOR
VALIDITY

In order to complement the validity discussion of Sec. IV,
we proceed in two steps. First, we derive the factor ε by which
subsequent terms in the Magnus expansion are suppressed.
Second, we investigate the scaling of different orders in the
cumulant expansion.

For the sake of simplicity, in the following we choose
one typical direction x and suppress the time dependence of
x̂(t ) except when appearing in the commutator. Within this
simplification we replace the potential and its derivatives in
Eq. (15) by their typical size and use Eq. (18) to find V̂I ∼
�V

∑
k

ˆ̄xk/ξ k . With the help of this form of the potential, the
commutator becomes

[V̂I(t ), V̂I(t
′)] ∼ �V 2h̄T

mξ 2

∑
k

ˆ̄xk

ξ k
, (D1)

where we replaced the time difference in Eq. (C1) by the char-
acteristic interferometer time T and suppressed any numerical
factors. This result is easily generalized to the (n − 1)th order
nested commutator (which contains the potential evaluated at
n different times) as

[V̂I(t ), [V̂I(t
′), [...]]]n−1 ∼ �V h̄n−1

T n−1
εn−1

∑
k

ˆ̄xk

ξ k
, (D2)

where ε is given in Eq. (19). According to Appendix A the
nth-order term φ̂n of the Magnus expansion contains (n −
1)th-order commutators, a factor 1/h̄n, and n integrals over
time which we replace by T n. Hence, together with Eq. (D2)
one again obtains an infinite series

φ̂n ∼
∑

k

ckn ˆ̄xk, (D3)

where

ckn ∼ ηεn−1

ξ k
(D4)

and η was defined in Eq. (20). Note that, since the final integral
in the nested sequence extends along the whole contour, we
replaced one factor of �V by the maximal potential differ-
ence over the separation of the branches δV . Consequently,
consecutive terms in the Magnus expansion corresponding to
the same power of x̂ are suppressed by ε independently of
the power. Hence, if ε � 1, the Magnus expansion can be
truncated as the prefactors ckn quickly decrease order by order
of n.

After performing the Magnus expansion, it remains to
calculate the expectation value of the overlap operator. Be-
cause this is in general not possible in an exact manner, we
resort to the cumulant expansion for which expectation values
of powers of r̂ j at different times have to be evaluated. To
estimate the size of such expectation values independently of
the explicit form of the initial wave function, we truncate the
corresponding probability density outside some region with
characteristic width d where the probability to find a particle
is vanishing. This approximation will allow us to express any
moment in terms of the finite width d of the wave function.
Note that calculating phase and contrast with the help of the
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Magnus and cumulant expansions might lead to divergent
series but there will exist a finite number of terms after which
truncating the formal series leads to the best approximation in
the spirit of an asymptotic expansion.

In order to estimate the expectation value of powers of
r̂ j (t ), we define the centered wave function |ψc〉, the ini-
tial state displaced by 〈r̂〉 and 〈p̂〉 to the origin of phase
space. Equally, evolving with the free time-evolution opera-
tor Û (t ) = exp[−i p̂2t/(2mh̄)], the freely expanding centered
wave function is denoted by |ψc(t )〉. Thus,

〈 ˆ̄xk (t )〉 = 〈ψc|(x̂ + p̂t/m)k|ψc〉
= 〈ψc|Û†(t )x̂kÛ (t )|ψc〉 = 〈ψc(t )|x̂k|ψc(t )〉

=
∫

d3r|ψc(r, t )|2xk = xd (t )k ∼ dk . (D5)

First, we removed the expectation values 〈r̂〉 and 〈p̂〉 appearing
in the definition of r̂(t ), see Eq. (3), by calculating the expec-
tation value with respect to centered wave function rather than
the actual initial state. In the third line we used the mean-value
theorem of integration [46] to find the number xd (t ) within
the set where the wave function is nonvanishing, subsequently
estimated by the maximal size d of the wave function. Thus,
the expectation value of any power of x̂(t ) can indeed be
expressed in terms of the width d .

However, expectation values of the commutators in the
Magnus expansion or higher-order terms of the cumulant
expansion involve products between powers of x̂ evaluated
at different times. The expectation value of such expressions
can be calculated for example in Wigner phase space, where
one has to take care of the correct operator ordering [47,48].
Nevertheless, the scaling with the size of the wave packet
remains similar so that we will, e.g., assume

〈 ˆ̄xl (t ) ˆ̄xk (t ′)〉 ∼ dl+k . (D6)

With the help of Eqs. (D3) and (D4) we therefore find

〈φ̂n〉 ∼ ηεn−1
∑

k

(
d

ξ

)k

(D7)

for the expectation value of the nth order of the Magnus
expansion.

We now investigate the behavior of the cumulant expansion
by considering only the dominant operator-valued term in the
overlap operator which is due to n = 1 and k = 1 in Eq. (D3)
provided ε � 1 and d/ξ � 1. As explained in Appendix B
the lth order of the cumulant expansion is a function of the
first l moments which consequently scales as (ηd/ξ )l and we
therefore require

η
d

ξ
� 1, (D8)

which is condition (22). If satisfied, we also truncate the
cumulant expansion at first order and obtain (considering only
terms up to harmonic order in the Taylor expansion of the
potential) Eq. (2), the main result of this article after recalling
〈r̂(t )〉 = 0.

APPENDIX E: GRAVITATIONAL POTENTIAL

In this Appendix we give the explicit form of the functions
fφ , frr , fr p, and fpp defined in Sec. V to calculate the phase
and wave-packet effects arising from �(2). For an arbitrary
pulse sequence encoded in the unperturbed trajectory z0(t ),
the coefficients take the form

fφ =
∮

dt z0(t )3, frr =
∮

dt z0(t ), (E1)

fr p =
∮

dt z0(t )t, fpp =
∮

dt z0(t )t2. (E2)

Using the explicit form of z0(t ) for the MZ interferometer
sequence shown in Fig. 1 with the initial conditions r0 j (ti ) =
ziδ jz and ṙ0 j (ti ) = 0, we therefore find

fφ = 31g2vrT
6/20 − vrgT 4(14zi + 9vrT )/4

+ vrT
2
(
v2

r T 2 + 3vrT zi + 3z2
i

)
, (E3)

frr = vrT
2, fr p = vrT

3, fpp = 7
6vrT

4. (E4)
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