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We discuss several relevant quantities for radiometry in a general manner, in particular the connec-
tion of the photon statistics of a quantized mode to the number of photons detected by a detector.
Further, we investigate the angular dependence of the intensity of down-converted light and the
approximation used for angular mode selection by a pinhole and the wavelength dependence of the
gain. Also, we describe the experimental setup in detail and discuss details of the data analysis for
both the spontaneous and the high-gain regime of parametric down-conversion. We finally prove
that the low-gain experiments have been performed in the spontaneous regime.

I. RADIOMETRY

Since the quantization of the electric field is usually
performed in plane-wave modes denoted by a wave vector
k, we express general radiometric quantities through the
photon number per plane wave mode N (k) of the field
under consideration. A detector cannot detect all of these
modes, and hence the detected photon-number density in
the quantization volume can be written as

ϱ =
1

(2π)3

∫
detector

d3kN (k) =

∫
∆λ

dλ

∫
∆Ω

dΩ
1

λ4
N (k), (S1)

where we used d3k = k2dkdΩ = (2π)3λ−4dλdΩ in the
last step. We neglect here the index of refraction of air
and assume that the detector has a bandwidth of ∆λ
and collects light from a solid angle ∆Ω. In the following
we introduce for a more convenient notation the Jacobian
D(λ) = (2π)3λ−4, which is proportional to the mode den-
sity. For a sufficiently small detector bandwidth around
the wavelength λ and a small solid angle around Ω, we
can perform the integration and find

ϱ(λ,Ω) ∼=
1

(2π)3
[∆λ∆Ω]D(λ)N (k), (S2)

where N (k) implicitly depends on λ and Ω through the
wave vector k. This quantity is closely related to the
spectral radiance ℏω(2π)−3cD(λ)N , which is the energy
per units of time, area of the source, solid angle and
bandwidth (in wavelength) of the detector [2].
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To calculate the total number of photons that are de-
tected, the density from eq. (S2) has to be integrated
over the volume of the source,

N(λ,Ω) =

∫
source

d3r ϱ(λ,Ω) ∼= (2π)−3[Ascτs][∆λ∆Ω]DN

(S3)
where in the last step we assumed that the source has a
surface area of As and emits light for a time duration τs.
We have not yet specified the photon distribution per

plane wave mode N . We do that in the next section and
show that the assumption of a small solid angle as well
as a small bandwidth of the detector is justified.

II. ANGULAR DISTRIBUTION OF
SPONTANEOUS PDC

The photon statistics per plane wave modeN for spon-
taneous PDC of a bulk crystal of length L with a nonlin-
earity χ(2) and illuminated by a plane wave pump with
a field amplitude Ep is

N = c−2
(
Lχ(2)Ep

)2 ωs

ns(ωs)

ωi

ni(ωi)
sinc2(∆κL/2),

(S4)
where ω and ωi are the frequencies of the signal and
idler photons, and ns and ni their respective indices
of refraction. The longitudinal wave vector mismatch
∆κ = kp − κs − κi is the difference of the wave vec-
tor kp of the pump and the longitudinal wave vectors
κs,i ≡

√
ks,i − qs,i. Here, the signal and idler photons

have the wave vectors ks and ki and the transverse wave
vectors qs and qi. Note that kj = ωjnj/c, with c the
speed of light and ωj the frequency of the signal, idler
and pump fields with j = s, i, p.
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With this notation, we find the expression

∆κ = kp − ks

(
κs/ks +

√
(ki/ks)2 − (qi/ks)

2
)
, (S5)

for the longitudinal wave vector mismatch. Since we as-
sume in (S4) a plane wave and monochromatic pump, we
have due to energy conservation ωi = ωp−ωs and due to
momentum conservation qs = −qi. Hence, our expres-
sion depends only on ωs and qs, which we can link to
quantities of the detected field, which are written with-
out a subscript. We find the connection ωs = 2πc/λ
when we express every quantity by the detected wave-
length λ. Moreover, introducing spherical coordinates,
we can define the polar angle θ of the detected field and
have cos θ = κs/ks and sin θ = qs/ks. The longitudinal
wave vector mismatch

∆κ = kp − ks

(
cos θ +

√
(ki/ks)2 − sin2 θ

)
(S6)

therefore depends only on λ and θ, as does equation (S4).
In eq. (S2) we approximated the integral of N over dλ

and dΩ = sin θdθdϕ by just multiplying the integration
intervals. This is of course only valid ifN depends weakly
on both λ and θ over the range of interest.
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FIG. S1. Numerically generated spectrum of spontaneous
PDC, plotting D(λ)N , for three different crystal tilt angles
Θ, with Θ1 corresponding to degenerate phase-matching in
the emission angle θ = 0. While N is the spectral density in
the k-space, D(λ)N corresponds to the spectral density in the
angular-wavelength representation, which is the measurement
basis of our spectrometer. The vertical axis is represented in
terms of the position in the far-field, using a concave mirror
of focal length f = 200mm. The semi-transparent white strip
is the angular filtering of a pinhole of size 0.5mm positioned
around θ = 0.

In the experiment we place a pinhole in the far field of
the spontaneous PDC light to filter a small range of an-
gles. We show in the density plot of Fig. S1 the product
D(λ)N as a function of θ and λ and mark the size of our
pinhole by a semi-transparent white strip. This numeri-
cal result is based on the Sellmeyer equations of the three
fields for BBO [3]. We further assume that G is constant

in the wavelength range of interest, and we justify this as-
sumption in the next section. We work close to collinear
propagation, with θ ≈ 0, where the function D(λ)N does
not vary significantly across the pinhole area so that we
can perform the integration by just multiplying with the
solid angle. Similarly, the size of a pixel corresponds
roughly to a bandwidth of 0.063 nm. On this scale, the
function N does not change significantly. Hence, our ap-
proximation in eq. (S2) is valid for our setup.

Of course, an integration of the pinhole angle can be
performed as well to obtain an even more accurate re-
sult, but at some point the contribution of other crystal
properties such as its length L as well as the dispersion re-
lations of all the light fields will dominate. In the spirit of
an easy-to-implement calibration technique, we refrained
from this more complex analysis but emphasize that it
is possible. In a similar manner, one could include both
the frequency as well as the angular profile of the pump
in eq. (S4). However, on axis this would not lead to a
different result and our plane wave and monochromatic
assumption is well-justified for our laser system.

III. WAVELENGTH DEPENDENCE OF GAIN

In the main body of our article, we assumed that the
wavelength dependence of the gain function

G = c−1Lχ(2)Ep/
√
nsni (S7)

can be neglected. In this section, we investigate differ-
ent effects that could contribute to the wavelength de-
pendence in our experiment and demonstrate that they
do not vary much across the spectral region of interest.
In addition to the linear dispersion (ns(λ) and ni(λ))
as well as the nonlinear dispersion χ(2)(ωp, ωs, ωi), obvi-
ous from eq. (S7), other contributions arise from tilting
the angle of the crystal to scan different phase-matching
conditions. By tilting the crystal, the Fresnel coefficients
vary (for the pump or for the down-converted light) and
the effective length L of the nonlinear crystal (defined as
the length of propagation of the pump inside the crys-
tal) changes. The different Fresnel coefficients change
the intensity of the pump inside the crystal, as well as
how much of the down-converted light couples out of the
crystal. Using the Sellmeyer equations for BBO [3] and
Miller’s rule [1] (relating the first order and second order
susceptibilities), we estimate the impact of those contri-
butions, and show our results in Fig. S2. The largest
deviations are attributed to the dispersion in the nonlin-
ear susceptibility χ(2) and to the change in the effective
length of the nonlinear crystal upon tilting it. However,
over a spectral range of 300 nm around degeneracy, the
gain function G does not vary by more than 1%.
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FIG. S2. Wavelength dependence of G2, normalized to its
value at the degenerate frequency. Each phase-matched wave-
length λPM corresponds to a set of refractive indices ns, ni and
np (for the pump) that satisfy the phase-matching condition,
occurring at a certain tilt of the nonlinear crystal. The refrac-
tive indices also influence the nonlinearity χ(2), appearing as
well in eq. (S7), through Miller’s rule [1]. At a given energy
per pulse, the electric field amplitude of the pump scales with
n−1
p . We combined this contribution with 1/(nsni), which is

explicit in the expression for G2. The varying angle between
the pump propagation direction and the crystal leads to a dif-
ferent effective length L of the crystal. The Fresnel coefficients
depend on the incidence angle and on the refractive indices:
at the entrance facet the coefficients change how much of the
pump Ep is transmitted into the nonlinear medium; the exit
facet changes the amount down-converted light that couples
out. The solid black line is the product all these effects.
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FIG. S3. Experimental setup. The down-converted light
from the nonlinear crystal χ(2) is angularly filtered in the far
field by the pinhole ∆Ω. The plane of the pinhole is then
imaged onto the entrance of the imaging spectrograph, which
brings the grating-diffracted light onto the CCD camera.

IV. EXPERIMENTAL SETUP

The third harmonic (355 nm wavelength, 29.4 ps pulse
duration, 50Hz repetition rate) of a pulsed Nd:YAG laser
is prepared to serve as the pump for PDC: a pair of dis-
persive prisms suppresses the spurious frequencies from
the laser; a half-wave plate and α-BBO Glan-Laser po-
larizer set the polarization; a pair of lenses (focal lengths
f1 = 300mm and f2 = 100mm, separated by the dis-

tance f1+f2) bring the diameter of the laser beam down
to approximately 0.6mm; a pinhole of size 100 µm is in-
troduced between the lenses at the beam focus (distance
f1 from the first lens) to spatially filter the beam; and
another α-BBO Glan-Laser polarizer confirms the polar-
ization of the beam.
The remainder of the experimental setup is shown in

Fig. S3. Parametric down-conversion is generated from
the interaction of the pump beam with a nonlinear crys-
tal χ(2) (β-BBO, 3-mm thickness, type-I phase-matching,
uncoated, cut for degenerate PDC with a 355-nm pump)
on a motorized rotation mount. The wavelengths that
satisfy the phase-matching condition are tuned by vary-
ing the angle between the optic axis of the crystal and
the wavevector of the pump. Two dichroic mirrors (DM)
suppress the pump after the crystal and reflect the pump
light onto a photodiode (PD) to monitor its intensity. A
concave mirror (M1) of focal length 200mm is used to
bring the down-converted light to the far field, where a
pinhole ∆Ω (0.5mm diameter) selects a small solid an-
gle. A broadband polarizing beam spliter PBS placed
before the iris is set to transmit the polarization of the
down-converted light. A pair of lenses of (L1) and (L2)
of focal lengths 200mm and 150mm are used to image
the iris onto the entrance slit (1-mm wide) of the spec-
trometer, with a magnification of 4/3. The spectrometer
is an imaging spectrograph (Acton SP-2558) with a CCD
camera (PIXIS:100BR eXcelon, 1340× 100 pixels of size
20 µm×20 µm). The integration time for each spectrum is
500ms. Transverse hardware binning (summing the pho-
toelectron count for the 100 transverse pixels) is enabled.
Each spectrum spans the range from 450 nm to 900 nm.
To cover this range, we need to repeat the acquisition for
different angular positions of the grating (600 grooves per
mm, 500-nm blaze). The experiment is automated: af-
ter each acquisition by the spectrometer, the motorized
holder rotates the crystal through an angle of about 0.01°,
up to a total change of approximately 8°. The pump en-
ergy measured at the photo-diode is recorded for each po-
sition of the crystal. The wavelength of the spectrometer
is calibrated using a neon-argon lamp along with Prince-
ton Instruments Intellical system. After the experiment
a reference lamp is introduced at the crystal plane. Its
spectrum is acquired using the same experimental set-
tings. The reference response function that we use to
verify our method is obtained by comparing the mea-
sured spectrum of a calibration lamp (LED-stack with a
diffuser for relative intensity calibration) and a reference
spectrum provided by Princeton Instruments.

V. DETAILS ON THE DATA ANALYSIS

Our calibration method relies on the comparison of the
measured phase-matched number of counts M(λPM) to
the expected number of phase-matched photons N(λPM).
We therefore acquire a large number of spectra Mj cor-
responding to different phase-matching conditions over
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a broad spectral range. However, the peak number of
counts in a measured spectrum does not correspond, in
general, to M(λPM). Instead, we can extract the re-
sponse function from the properties of N . From the main
text, we know that

N ∼ ω(ωp − ω) sinc2(∆κL/2) ≤ ω(ωp − ω), (S8)

where the inequality becomes equality only for phase
matching ∆κ = 0. We denote the wavelength of phase
matching with λPM. With eq. (5) from the main text we
find the inequality

R(λ) ≥ R(λ) sinc2
∆κL

2
∝ Mj(λ)

D(λ)ω(ωp − ω)
(S9)

with an equality sign for λ = λPM. If we approximate
the phase matching function by a Gaussian, i.e.,

sinc2(∆κL/2) ∝ exp[−(λ− λPM)2/(2σ2
λ)], (S10)

it is easy to show that the peak of the product
R(λ) sinc2(∆κL/2) shifts to the wavelength

λ̃ = λPM +
1

R

dR

dλ

∣∣∣∣
λ̃

σ2
λ. (S11)

Hence, the shift between phase-matched wavelength and
peak increases, the steeper the slope of the response func-
tion or the wider the peak is. Since the response func-
tion is not known but is the result of the calibration
procedure, eq. (S11) cannot be used to determine the
phase-matching wavelength. However, eq. (S9) directly
gives a method to determine the response function de-
spite the shift: when we acquire a large number of spec-
tra Mj , each with a slightly varying λPM, the amplitude
of Mj/[Dω(ωp − ω)] at one particular wavelength is the
largest if the wavelength corresponds to λPM. Hence, we
obtain the response function from

R(λ) = max
j

[
Mj(λ)

D(λ)ω(ωp − ω)

]/
max

j

[
4Mj(2λp)

D(2λp)ω2
p

]
,

(S12)
where we normalize the response function to unity at
the degenerate wavelength λ = 2λp. To reduce errors in
the analysis according to eq. (S12), we suppress for each
Mj(λ) spectrum the high-frequency content, filtered out
via a fast-Fourier-transform procedure.

A similar idea can be used for absolute calibration. For
an arbitrary G, the photon distribution per plane-wave
mode assuming a monochromatic plane wave pump can
be written as [4]

N (HG) =
G2Q2

G2Q2 − (∆κL/2)2
sinh2

√
G2Q2 − (∆κL/2)2,

(S13)
where Q2 ≡ ω(ωp − ω), and the superscript (HG) high-
lights that we are using this equation to describe the
high-gain regime of PDC. Since the maximum of this
function occurs for phase matching (∆κ = 0), we find

N (HG) ≤ sinh2(GQ) ≡ N (HG)
PM (S14)

where we defined the phase-matched photon distribution

N (HG)
PM that has the well-known hyperbolic form of para-

metric amplification and is used in the main body of our
article. Note further that for GQ ≪ 1 we recover the
low-gain result.
The quantum efficiency at the degenerate wavelength

α = η(2λp) is

α = Mj(λ)/[R(λ)N(λ)] (S15)

with the definitions from the main body of the article.
With that, we find from eq. (S14) and with the help of
eq. (S3) the inequality

α sinh2 GQ ≥ Mj(λ)/[R(λ)D(λ)∆Ω∆λAscτs], (S16)

where again the equal sign is valid for λ = λPM. Hence,
we find, similarly to the low-gain method,

α sinh2 GQ = max
j

[
Mj(λ)

R(λ)D(λ)∆Ω∆λAscτs

]
(S17)

as an exact equality if the spectra are sufficiently dense.
Taking the maximum of all recorded spectra, each one of
them divided by R(λ)D(λ) and a numerical factor that
depends on laboratory parameters (spatial dimensions
and bandwidths), we can fit the data to the function
α sinh2 GQ with two fitting parameters α and G. Note
that we do not need to measure the exponential increase
of the generated photons with increasing pump intensity,
but determine both parameters from the distortion of the
spectral shape of the maximum of all spectra. With this
fitting procedure, one can not only determine the quan-
tum efficiency η(λ) = αR(λ), but also the gain G.
Even though we do not use the exponential increase

with the pump power for our calibration method, we still
record the intensity while scanning different phase match-
ing functions. We do this to correct for drifts and fluctua-
tions during the course of one measurement. We are then
able to perform the fitting procedure using G/Ej , where
Ej is the pump field amplitude during measurement cor-
responding to the the jth phase-matching condition.
The α obtained using our method for absolute cali-

bration is compared to an estimated quantum efficiency
based on the properties of each optical component in the
experimental setup, listed in table I. The efficiency of
uncoated components is estimated from the Fresnel co-
efficients, while the efficiency of coated components is
taken from the manufacturers.

VI. SPONTANEOUS REGIME OF
PARAMETRIC DOWN-CONVERSION

As shown in the section above in eq. (S13), the photon-
number distribution grows exponentially with the inten-
sity of the pump. In the low-gain regime, where the
photon pairs are generated spontaneously, the number
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TABLE I. Contribution of each optical component to the total
quantum efficiency of the experimental setup. The parenthe-
ses denote the number of components. The total efficiency is
obtained by multiplying all the contributions and propagat-
ing the uncertainties accordingly.

Optical component Efficiency

Crystal output facet (1) 0.94± 0.01

Dichroic mirror (2) 0.95± 0.01

Dielectric mirrors (6) 0.99± 0.01

Polarizing beam splitter (1) 0.98± 0.01

Uncoated lens (2) 0.92± 0.01

Diffraction grating (1) 0.60± 0.02

Spectrometer camera (1) 0.95± 0.02

Total 0.38± 0.07
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FIG. S4. PDC spectral density as a function of the pump
energy per pulse. The number of counts was extracted at the
phase-matched wavelength λ = 690 nm. The error bars are
obtained from the amplitude of the noise in the spectrum.
The acquisition time is 5 seconds, for a total of 250 pulses.

of photons grows linearly with the intensity which can
be seen from the expansion

N (HG)
PM = sinh2 GQ ∼= G2Q2 = G2ω(ωp − ω) = NPM,

(S18)
where NPM is the low-gain photon distribution for phase
matching. To obtain the response function R(λ), we do
not need to know the exact value of G but rely on the fact
that the first-order expansion above is valid. Note that
G2 is proportional to the intensity of the pump Ip [4]. To
verify that we work in the spontaneous regime of PDC,
we measure the number of counts for a single wavelength
and increase the pump intensity. The results are shown in
Fig. S4. We see, that we are well in the linear regime up
to roughly 150 µJ. We performed the relative calibration
experiment at a pump intensity of 100 µJ, while the high-
gain part of the experiment used a more intense pump,
around 200 µJ and higher.
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