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The spectrum of vacuum fluctuations of the electromagnetic field is determined solely from first
physical principles and can be seen as a fundamental property that qualifies as a primary radiation
standard. We demonstrate that the amplitude of these quantum fluctuations triggering nonlinear
optical processes can be used as a reference for radiometry. In the spontaneous regime of photon
pair generation, the shape of the emitted spectrum is nearly independent of laboratory parameters.
In the high-gain regime, where spontaneous emission turns to stimulated emission, the shape of the
frequency spectrum is uniquely determined by the number of created photons. Both aspects allow
us to determine the quantum efficiency of a spectrometer over a broad range of wavelengths without
the need of any external calibrated source or detector.

The desire to understand thermal radiation helped lead
to the development of quantum mechanics. For its part,
quantum mechanics was crucial for the accurate descrip-
tion of electromagnetic radiation. As a consequence,
the black body—a perfect absorber at thermal equilib-
rium—remains to this day the primary source of light for
radiometry [1]. Currently, the only alternative is syn-
chrotron radiation, whose description relies on classical
electrodynamics and which requires costly and large fa-
cilities [2]. In our article, we exploit the quantum proper-
ties of nonlinear optical processes to introduce a primary
radiometric standard that is straightforwardly realized
with equipment available in most quantum optics labs.

The quantum-mechanical fluctuations of the electro-
magnetic vacuum, originating from the non-vanishing
bosonic commutation relation of the photons, exhibit a
unique frequency spectrum. At the same time, the rate
of spontaneous photon generation crucially depends on
the amplitude of those fluctuations. We use the spec-
trum of the vacuum, as well as its nonlinear amplifica-
tion, as a primary standard to infer the spectral response
and efficiency of an optical system. Parametric down-
conversion (PDC), a nonlinear optical process based on
three-wave mixing with only one input field, gives us di-
rect access to the bare spectrum of the vacuum. In fact,
the vacuum fluctuations are the dominant frequency-
dependent contribution to phase-matched spontaneous
PDC, resulting in a spectral shape that is nearly inde-
pendent of any laboratory parameters. In the high-gain
regime, the nonlinear amplification distorts this spectrum
in a specific way, allowing one to extract the number of
down-converted photons only from the spectral shape of
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the emission. Thus, the spectrum of the vacuum fluctua-
tions that leads to the creation of the biphoton field is a
standard that gives us access to a radiometric realization,
which is here the number of emitted photons.

Photon-pair generation lies at the heart of other radio-
metric calibration methods. Coincidence measurements,
for instance, have been used to determine the quantum
efficiency of photodetectors [3–6]. In another strategy,
which also relies on the brightness of the vacuum, the ra-
tio between seeded and unseeded PDC allows one to mea-
sure the spectral radiance of a light source [7–9]. How-
ever, in contrast to the latter, our method exploits the
spectrum of the vacuum itself, as well as its unique be-
haviour in the strong-coupling regime. In that respect,
the same radiometric principles pertaining to black-body
radiation can be applied to our source. Using these in-
sights, we determine the absolute quantum efficiency of
a spectrometer over a broad spectral range, without us-
ing any reference detector. As a first step, we obtain the
spectral response of the spectrometer using spontaneous
PDC—this is a relative calibration. Then, we deduce
the parametric gain and the spectral quantum efficiency
from the shape of high-gain PDC spectra. Our exper-
imental results compare well against the ones obtained
with a reference lamp, and the quantum efficiency agrees
with expected values, thereby demonstrating a promising
novel method to produce a primary radiation standard.

In general, a source can serve as a primary radiation
standard if, within a specified bandwidth centered on the
wavelength λ, the exact number of emitted photons N(λ)
is known. However, the number of counts M(λ) recorded
by a detector do not, usually, coincide with N(λ) due to
a non-perfect quantum efficiency η(λ) of the detecting
device. These quantities are simply connected through
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the relation

M(λ) = η(λ)N(λ). (1)

Measuring M(λ) while having a precise knowledge of
N(λ) allows the determination of η(λ), which is at the
heart of the absolute calibration of spectrometers. The
spectral efficiency η(λ) can be further separated into its
relative spectral shape R(λ), i.e. the response function of
the measurement device, and a wavelength-independent
proportionality constant α—through η(λ) = αR(λ).
While a relative calibration procedure gives R(λ), ob-
taining the full spectral quantum efficiency η(λ) requires
an absolute calibration. In the following we demonstrate
in a two-step procedure that both relative and absolute
calibration can be performed using PDC.

The total number of photons N(λ) reaching the detec-
tor depends on the photon-number distribution N per
plane-wave mode characterizing the source, and on the
modes that are detected. Using standard radiometric
formalism, this fact translates to the expression [10]

N(λ) =
1

(2π)3

∫
source

d3r

∫
detector

d3kN

≈ [As c τs] [∆Ω∆λ]D(λ)N ,

(2)

where the first integral can be approximated by the trans-
verse area As of the source and the duration of the emis-
sion τs multiplied by the speed of light c. The second in-
tegral incorporates the modes that are detected and can
be approximated by the bandwidth ∆λ and solid-angle
∆Ω of the detector, if N does not vary significantly over
these quantities. In order to connect the plane waves to
the solid angle and the wavelength, which are the rele-
vant quantities for a spectrometer 1, we also introduced
the quantity D(λ) = (2π)3 λ−4, which is proportional
to the mode density [11]. If N is known, we have all
the necessary quantities for the absolute calibration of
a spectrometer. For black-body radiation, N is derived
from physical principles, namely the photon-distribution
at thermal equilibrium with a certain temperature.

During the three-wave mixing process of PDC, pump
photons (of frequency ωp) interact with the vacuum field

within a crystal with a χ(2) nonlinearity. This process
leads to the generation of pairs of photons known as the
signal and the idler. In the spontaneous regime (low
pump intensity), the photon distribution N , a function
of frequency and emission angle, depends on the ampli-
tude of the vacuum fluctuations, the profile of the pump
beam, the gain of the amplification process and a phase-
matching function. For a monochromatic plane wave
pump of amplitude Ep and a crystal of thickness L, the

1 In radiometry, the quantity cD(λ)(2π)−3 N (hc/λ) is the spectral
radiance, or the energy per units of time, area of the source, solid
angle and bandwidth (in wavelength) of the detector.
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FIG. 1. Physical principle and idealized setup. The shape
of the phase-matched photon-number distribution NPM in a
given direction depends on the amplitude of vacuum fluctu-
ations. a) Different tilt angles for the nonlinear crystal cor-
respond to different phase-matching conditions, altering the
spectrum N accordingly. NPM (solid black) is obtained by
taking the maximum of N for different phase-matching con-
ditions. b) The photon-number spectrum N(λ) is measured
with an angular filter (a pinhole in the far field selects a small
solid angle) and a spectrometer. The additional λ−4 factor
in N(λ) relates the plane-wave representation to the basis of
the spectrometer.

photon-number distribution of spontaneous PDC is given
by

N =
(
c−1 Lχ(2)Ep

)2 √
ωωi/(nni)

2
sinc2(∆κL/2) (3)

where n and ni are the signal and idler refractive in-
dices, and ∆κ = κp−κ−κi is the mismatch between the
longitudinal wave vectors of the pump, the signal, and
the idler, respectively [11, 12]. The frequency-dependent

factors
√
ω/n and

√
ωi/ni arise from the quantization of

the electric field for the signal and for the idler. In the
spontaneous regime of pair creation, those factors em-
body the amplitude of the vacuum fluctuations for the
biphoton field. To denote the coupling strength, we use
the gain parameter G = c−1 Lχ(2)Ep/

√
nni, which we

can assume to be constant over the frequency range of
interest [10].
The last factor of equation (3) is the well-known phase-

matching function of a bulk crystal. At exact phase-
matching, ∆κ vanishes and the phase-matching function
takes on the value unity. Thus, the phase-matched dis-
tribution takes its maximal value and reads

NPM = G2 ω(ωp − ω), (4)

where we assumed that photon energy is conserved in
the parametric process, such that ωi = ωp−ω. For abso-
lute calibration, we need a complete knowledge of NPM,
but it is difficult to determine G experimentally in the
spontaneous regime of PDC. However, we note that the
photon number for different phase-matching conditions
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NPM follows a parabola, as illustrated in Fig. 1a. Be-
cause ω(ωp − ω) does not depend on laboratory parame-
ters, we can make use of the shape of NPM and perform
a relative calibration [12].

By introducing a pinhole in the far-field of the crystal,
we can limit the emission solid-angle, thereby suppressing
the frequency content in the other angular modes [10]. A
spectrometer then disperses the light and images it onto
a CCD chip; see Fig. 1b. Since the position on the chip
corresponds to a particular wavelength, we expect a spe-
cific functional behavior that originates in the parabola
but is modified by the different mode density D(λ) [13].
However, any deviation of the phase-matched wavelength
from this function can be assigned to detector inefficien-
cies and therefore to R(λ).
Since R(λ) is proportional to the ratio between M(λ)

and the shape of N(λ), we can write

R(λ) ∝ M(λ)

D(λ)ω(ωp − ω)

∣∣∣∣
PM

, (5)

where ω = 2πc/λ and where we used the proportion-
ality symbol because G has yet to be determined. The
right-hand side is evaluated at the wavelength λPM that
satisfies the phase-matching condition.

In our experiment, we pump a BBO crystal with a
pulsed laser of wavelength 355 nm and acquire a large
number of spectra Mj corresponding to different phase-
matching conditions over a broad spectral range. The
phase-matched wavelengths are tuned by tilting the non-
linear crystal, as shown in the bottom panel of Fig. 1a.
We overlap all the measured spectra in Fig. 2 and high-
light three of them to show their twin-peak structure. Im-
portantly, the peak number of counts in a measured spec-
trum does not always occur at λPM. In fact, any nonzero
slope to R(λ) displaces the peak and a simple analysis
shows that it shifts in the order of Λ ≈ (dR/dλ)(σ2

λ/R),
where σλ is the standard deviation of the phase-matching
function, approximated by a Gaussian. We see that the
displacement from λPM increases for a steep R and a
wide phase-matching function. Hence, λPM can differ
significantly from the wavelength of the peak. However,
when overlapping different spectra, the maximum num-
ber of counts at one particular wavelength always yields
the phase-matched measurement Mj(λPM) which follows

directly from the fact that sinc2(∆κL/2) ≤ 1. We show
this effect in the inset of Fig. 2 and give more details on
the data analysis in the supplementary material [10].

We perform the experiment in the spontaneous regime
of PDC, where the number of generated photons scales
linearly with the pump intensity, in order to ensure the
validity of equation (3). We retrieve R(λ) directly from
the spectra by virtue of equation (5), where we find λPM

by taking the maximum of many spectra and we ap-
ply the arbitrary normalization R(2λp) = 1, such that
η(2λp) = α. The response function obtained from the
spontaneous PDC agrees very well with the response
function measured with a reference lamp (Fig. 3). The

500 550 600 650 750 800 850 900
0

200

400

2λp

λ [nm]

M
j
/
( D
ω
(ω

p
−
ω
)) [c

o
u
n
ts
]

845 865λPM

R(λPM)

FIG. 2. Extracting the response function R(λ) from the over-
lap of 411 measured spectra, in gray. The twin-peak struc-
ture in the orange-dotted and teal-solid spectra is a feature of
phase matching and energy conservation. For the red-dashed
curve, the second peak does not lie within our measurement
range. The maximum possible signal at a certain wavelength
λ is proportional to R(λ). To illustrate this method, the inset
shows several spectra (Fourier-filtered to suppress the noise)
from the box enclosing the right-hand peak of the teal curve.
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FIG. 3. Comparison of the response function R(λ) obtained
from spontaneous PDC (solid, red, normalized to unity at
2λp) and the response function measured with a reference
lamp (blue region enclosing the 5% error reported by the man-
ufacturer; scaled onto the PDC curves using a linear fit). To
obtain the curves in the bottom panel, we added a dichroic
filter to the spectrometer to induce rich spectral features into
the response function.

experiment was repeated with an additional dichroic fil-
ter to demonstrate that the method resolves rich and
rapidly varying spectral features. For a proper compari-
son, it is crucial that the light from spontaneous PDC and
from the reference lamp undergo the exact same transfer
function. Thus, deviations stem from chromatic aberra-
tion, non-perfect polarization filtering as well as inaccu-
racies in the reference spectrum of the lamp.
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To improve the precision of our method, one could in-
clude the frequency dependence of G if the linear and
nonlinear dispersion relations of the crystal are known.
In this case, it is also straightforward to generalize equa-
tion (3) so that it incorporates the spatial and temporal
profiles of the pump beam [14]. Since we want to stress
the simplicity of our procedure, we refrain from apply-
ing these corrections, but nonetheless obtain excellent re-
sults. With a knowledge of R(λ)—the form of η(λ)—we
can accurately measure the shape of any spectrum. In the
following, we perform the second step of our calibration
procedure, the establishment of an absolute calibration
method. In particular, we extract the number of photons
from the shape of high-gain PDC spectra, based on our
previous measurement of R.
For an arbitrary value of the gain, the photon-number

distribution under phase matching and for a monochro-
matic, plane-wave undepleted pump, becomes

NPM = sinh2
(
G
√
ω(ωp − ω)

)
, (6)

which reduces to equation (4) in the spontaneous regime,
i.e., for G ≪ 1 [11]. In the high-gain regime, the
phase-matched photon-number spectrum is therefore a
distorted parabola, whose spectral shape (curvature) and
photon number are uniquely determined by the gain pa-
rameter G. In complete analogy to equation (5) we obtain
the relation

α sinh2
(
G
√
ω(ωp − ω)

)
=

M(λ)

R(λ)D(λ) Γ

∣∣∣∣
PM

, (7)

where we introduced, for a more convenient notation, the
constant Γ = ∆Ω∆λAscτs for the emission and detection
parameters. Note that, in contrast to equation (5), we
now have an equality. Except for α, all the quantities
are known: we obtained R(λ) from spontaneous PDC,
and the shape of the phase-matched spectrum uniquely
determines G. We approximate As by the transverse area
of the pump beam, and τs by mτp, with τp being the
pump pulse duration and m the number of pulses during
an acquisition time. Further, we calculate the solid angle
∆Ω from the pinhole size in the far field of the crystal,
and obtain ∆λ from the bandwidth associated with a
pixel of the spectrometer’s camera. The only remaining
free parameter, α, is obtained via fitting.

The experimental procedure for absolute calibration
with high-gain PDC is very similar to the one for sponta-
neous PDC. We acquire a large number of densely packed
spectraMj(λ) for different crystal tilt angles with a much
higher pump energy per pulse to reach a large paramet-
ric gain. After taking the maxima of these dense spectra,
we perform a bivariate curve fit using the free parameter
α and the pump-normalized gain G/Ep, a quantity that
allows us to suppress the pulse energy drift of our pump
laser over the acquisition time, and where a relative mea-
surement of Ep is sufficient. We then obtain the spectral
quantum efficiency by taking the product η(λ) = αR(λ),

with R inferred from the spontaneous measurement and
α from the high-gain regime.
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FIG. 4. Maxima of densely packed high-gain spectra (right-
hand side of equation (7)) in black and their fit (left-hand
side of equation (7)) in red and orange, displayed in the fre-
quency domain to highlight the distortion of the parabola.
The fit parameters for the orange curve were obtained with
the second-to-top measurement. To demonstrate their accu-
racy, we used the same fit parameters to draw the red curves.
The fitting curves are noisy because fluctuations in the pump
energy are taken into account.

In the absolute calibration measurement, we use a
pump energy four times higher than in the spontaneous
configuration. We show the maxima of the spectra and
the fit (orange curve) in Fig. 4. The quantum efficiency
at λ = 2λp, extracted from fitting, is α = 0.42 ± 0.04,
where the error is mainly due to our uncertainty in the
pulse duration and transverse profile of the pump. Note
that α includes all the losses in the optical setup, from the
nonlinear crystal to the detector. The estimated quan-
tum efficiency of the experimental setup, based on the
efficiency of each optical component, is α = 0.38 ± 0.07.
The largest source of loss is the diffraction grating of the
spectrometer, with an efficiency of 60% at 2λp, as re-
ported by the manufacturer. In addition, we tested the
consistency of the fit parameters by repeating the mea-
surement with other pump energies. Using the previously
obtained value of α, and estimating the gain from G/Ep

and a new measurement of Ep, we obtain the red curves
(Fig. 4), which also show excellent agreement with ex-
perimental data.
We note that equation (6) is based on a theoretical

description where the pump is a monochromatic plane
wave. The validity of this model in the context of a
pulsed laser has been discussed [15] and verified exper-
imentally by looking at the exponential increase in the
number of photons with the pump power [13, 16–19].
To our knowledge, the results presented in Fig. 4 are
the first experimental demonstrations of the distortion
of the phase-matched spectral shape of light generated
by a pulsed laser for increasing gain, and as such provide
additional support for this description of PDC.
In contrast to the relative calibration, the absolute cali-
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bration using high-gain PDC cannot be straightforwardly
generalized to arbitrary pump beams. Corrections to the
model could be implemented, for instance by taking into
account the spatial profile and frequency spectrum of the
pump as well as the frequency dependence of G. How-
ever, our results demonstrate that even without a more
sophisticated treatment, which would require the deter-
mination of many additional laboratory parameters and
solving Heisenberg’s equations of motion numerically, we
measure the quantum efficiency accurately.

In summary, our work is based on the spontaneous
generation of photon pairs triggered by the fluctuations
of the joint vacuum field associated with the biphoton.
We demonstrated that the amplitude of vacuum fluctu-
ations and its parametric amplification can serve as a
primary radiation standard, and we used this insight to
completely characterize a spectrometer. As a first step,
we used spontaneous PDC to correct for the instrument
response function of a spectrum-measuring apparatus.
Then, we retrieved the spectral quantum efficiency of
the apparatus using the gain-dependent frequency spec-
trum of PDC in the high-gain regime. The spectrum
of our biphoton source is based on fundamental physical
principles and is therefore comparable to Planck’s law
of radiation. In fact, the absolute calibration based on
black-body radiation is also a two-step process, since the
temperature must be accurately determined as well, of-
ten involving another measuring protocol such as filter
radiometry [1]. In contrast to that, our two-step process
is based solely on PDC and can therefore be performed
with only one measuring apparatus, which could improve
the accuracy, reliability, and reproducibility of metrolog-
ical measurements.

Methods. The third harmonic (355 nm wavelength,
29.4 ps pulse duration, 50Hz repetition rate, 100µJ pulse

energy in the spontaneous regime, up to 500µJ in the
high-gain regime) of a pulsed Nd:YAG laser is the pump
for PDC from a nonlinear crystal (β-BBO, 3-mm thick-
ness, type-I phase-matching, uncoated, cut for degener-
ate PDC) whose phase-matching frequencies are tuned
using a motorized rotation mount. A set of dichroic mir-
rors remove the pump after the crystal. The pump en-
ergy drift over time is monitored using a photodiode. A
concave mirror of focal length 200mm is used to bring
the down-converted light to the far field, where a pinhole
(0.5mm diameter) selects a small solid angle. To ensure a
fixed polarization, a broadband polarizing beam splitter
is placed before the pinhole. A pair of lenses is used to im-
age the pinhole onto the entrance slit of the spectrometer.
The spectrometer is an imaging spectrograph (Acton SP-
2558) with a CCD camera (PIXIS:100BR eXcelon, pixels
of size 20 µm× 20 µm). Transverse binning is enabled, so
that the signal at a certain wavelength is the sum of the
photoelectron counts over all the pixels that correspond
to that wavelength. The integration time for each of the
411 spectra is 500ms. Each spectrum spans the range
from 450 nm to 900 nm. To cover this range, we need
to repeat the acquisition for different angular positions
of the grating (600 grooves per mm, 500-nm blaze). To
reduce errors, we filter out the noise (rapidly fluctuat-
ing signal) in each spectrum with an algorithm based on
fast-Fourier-transform. The spectrometer is calibrated in
wavelength using a neon-argon lamp along with Prince-
ton Instruments Intellical system. The reference lamp
(an LED-stack with a diffuser, Princeton Instruments) is
introduced at the crystal plane. Its spectrum is acquired
using the same experimental settings.
The datasets generated during and/or analysed during

the current study are available from the corresponding
author on reasonable request.
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