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Proper time in atom interferometers: Diffractive versus specular mirrors
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We compare a conventional Mach–Zehnder light-pulse atom interferometer based on diffractive mirrors with
one that uses specular reflection. In contrast to diffractive mirrors that generate a symmetric configuration,
specular mirrors realized, for example, by evanescent fields lead under the influence of gravity to an asymmetric
geometry. In such an arrangement the interferometer phase contains nonrelativistic signatures of proper time.
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I. INTRODUCTION

The redshift controversy [1] has triggered a lively debate
[2–7] about the role of proper time in atom interferometers.
Unfortunately, the discussion was focused solely on a light-
pulse Mach–Zehnder interferometer (MZI) where, due to the
symmetry of the interferometer, the proper-time difference
vanishes [8]. However, this symmetry depends crucially on
the way the mirrors change the atomic trajectory. In the
present article we propose an interferometer geometry called
the specular mirror interferometer (SMI) where the proper-
time difference does not vanish [8–10] due to the specific
nature of the mirror.1

Such configurations are crucial in studying proper-time
effects in atom interferometers [11] experimentally [12,13]2

and might be used for other tests of the foundations of physics
such as the equivalence principle [14,15].

A. The role of the mirror

The symmetry of an MZI is intrinsically linked to the
diffractive nature of the mirror pulses and has to be broken in
order to observe nonvanishing proper-time contributions to the
measured phase. One possibility is the use of Ramsey–Bordé-
type configurations [16,17], where diffractive beam splitters
are applied asymmetrically to both branches. Here, we pro-

*enno.a.giese@gmail.com
1The crucial role of mirrors in determining the phase was already

pointed out in Ref. [8]. Even though the claim that neutron inter-
ferometers [10] are operated with specular mirrors was challenged
by Lemmel in Ref. [9], the conclusion that specular mirrors lead to
a nonvanishing proper time is valid and underlined in the present
article.

2References [12,13] describe experiments where the effect of
proper-time differences between interferometer paths is simulated by
different magnetic gradients.

pose an alternative geometry that relies on specular mirrors
[18] inverting the incoming momentum. When combined with
the influence of gravity, the specular nature of the mirrors
leads to an asymmetry that causes a proper-time contribution
to the interferometer phase.

There exist several proposals to use specular reflection at
evanescent fields to build a cavity for atoms and in which
linear gravity is taken into account [19]. In contrast to these
ideas and Fabry–Pérot atom interferometers [20], in which
the atoms are localized over the length of the interferometer,
we use specular mirrors not to confine atoms but to inves-
tigate the output ports of a two-branch interferometer. For
an overview of specular mirrors based on evanescent fields,
we refer to Refs. [21,22]. As an alternative to evanescent
fields, strong magnetic mirrors and even permanent magnetic
structures can be used for atom optics [23,24].

B. Overview

Our analysis proceeds in three steps: (i) In Sec. II we
compare the MZI and SMI in a semiclassical description and
discuss the emergence of the total phase in the laboratory
frame as well as in a frame freely falling with the atoms. (ii)
We then resort in Sec. III to a representation-free description
[25,26] of both interferometers by introducing an operator
to describe the specular reflection. (iii) Finally, we study in
Sec. IV the reflection of a particle at an exponential potential
and identify our analytical results with the specular reflection
operator. We also discuss some of the challenges of such a
configuration in Sec. V before we conclude in Sec. VI. In the
appendix we use the operator formalism introduced in Sec. III
to calculate the interference pattern of an SMI.

II. SEMICLASSICAL DESCRIPTION

Following de Broglie [27] and the path integral formulation
of quantum mechanics [28], a particle accumulates the phase
� ≡ −mc2

∫
dτ/h̄ along its path, where m is the mass of
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the particle, c is the speed of light, and τ is the proper time.
In the nonrelativistic limit � reduces, up to a global phase
factor, to the classical action which can be interpreted as a
nonrelativistic signature of proper time [17,29]. In this sense,
the phase of an atom interferometer is a measure of the proper-
time difference between its branches.

Since proper time is determined [30] by the metric ten-
sor, and therefore by gravity, it is mandatory to exclude
electromagnetic contributions from the definition of proper
time. Consequently, the proper-time difference in an MZI
vanishes [8], and the interferometer phase is determined solely
by a laser contribution [25,31]. As we demonstrate in the
following, the SMI has a fundamentally different behavior.

A. Phase contributions

In a semiclassical description, the phase ϕ of a closed
atom interferometer is determined by the action integral S ≡∮
dtL along the classical trajectories of the atoms,3 that is,

ϕ ≡ S/h̄. The Lagrangian L ≡ Ekin − Vgrav − Vlp of a typi-
cal configuration consists of three contributions [25]: (i) the
kinetic energy Ekin ≡ mv2(t )/2, where m is the mass of the
atom and v = v(t ) its velocity component parallel to gravity;
(ii) the gravitational potential Vgrav ≡ mgz(t ), where g is the
gravitational acceleration and z = z(t ) is the vertical position
of the atom; and (iii) the potential applied by the laser pulses
Vlp ≡ −∑

j (±1)j h̄[kz(t ) + φt ]δ(t − tj ), where (±1)j , tj , k,
and φt denote the direction, time, effective wave vector of the
two-photon Raman transition,4 and phase of the j th pulse,
respectively.

We emphasize that Vlp is a branch-dependent potential
and represents an essential part of the action, because it
modifies the trajectories by applying momentum kicks ±h̄k

to the atomic wave packet.5 Indeed, the decomposition Vlp =
Vkick + Vphase underlines that

Vkick ≡ −
∑

j

(±1)j h̄kz(t )δ(t − tj ) (1a)

transfers the momentum and

Vphase ≡ −
∑

j

(±1)j h̄φt δ(t − tj ) (1b)

3For potentials up to quadratic order in the position, this phase
coincides with that obtained from a full quantum description of the
interferometer.

4The two-photon Raman transition is driven by two counterpropa-
gating waves so that the effective momentum transfer h̄k corresponds
to the sum of their single-photon momenta.

5We assume that the laser is aligned with gravity so that the
momentum is transferred only parallel or antiparallel to the gravita-
tional field. In this case, the orthogonal directions become separable
and are irrelevant for the phase of the interferometer. Hence, a
one-dimensional theory is sufficient, and we refer in the remainder
of this article only to the position and the momentum or velocity
components parallel to gravity.

imprints the phase of the laser on a particular branch.6 Each
of these four energies contributes to the total phase of the
interferometer, ϕ = (Skin + Sgrav + Skick + Sphase)/h̄.

B. Mach–Zehnder interferometer

An MZI [32] consists of a π/2 laser pulse that acts as a
beam splitter, free propagation for a time T in the gravitational
field, a π laser pulse to redirect the two branches, followed by
another free propagation for a time T , and a final π/2 laser
pulse to recombine the two branches, as indicated in Table I on
the left. In this arrangement, both Skin and Sgrav have the same
magnitude h̄ϕg ≡ h̄kgT 2, but opposite signs [25]. Hence, the
proper-time difference proportional to Skin + Sgrav vanishes.
In this sense, the phase ϕMZI of the MZI is determined by
the laser contributions Skick + Sphase. We emphasize that these
results are independent of the initial position or velocity of the
atom.

With the discrete second derivative �φ ≡ φ0 − 2φT + φ2T

of the laser phase, we find [25]

ϕMZI ≡ �φ − ϕg. (2)

The different contributions at the various stages are listed in
Table I on the left.7

C. Specular mirror interferometer

Next, we consider the SMI configuration in which the π

laser pulse in the MZI sequence is replaced by a mirror that
inverts the momentum of the atoms. Contrary to the diffractive
mirror pulses in an MZI, which always transfer a momentum
kick ±h̄k, this mirror is truly specular.

On the right side of Table I we showcase the SMI where at
t = T the momentum is inverted. Moreover, the positions ζe

and ζg of the two mirrors are chosen in such a way that the
interferometer is closed in phase space. The figure also shows
that such a geometry is symmetric with respect to the specular
mirror: immediately after the final π/2 laser pulse, the atom
returns to its initial height.

When we calculate the different contributions to the inter-
ferometer phase, we find in Table I on the right that Skin +
Sgrav = −2h̄ϕg is in fact nonvanishing. Here, we have chosen
the initial vertical momentum mv(0) ≡ h̄k/2 and the initial
position z(0) ≡ 0.

Hence, the total phase ϕSMI acquired in an SMI reads

ϕSMI ≡ φ+ − 2ϕg, (3)

where the contribution φ+ ≡ φ0 + φ2T arises from the initial
and final π/2 laser pulses [33]. Apart from replacing �φ by
φ+, ϕSMI differs by a factor of two in ϕg from the phase ϕMZI

of an MZI.

6This decomposition distinguishes between the dynamics of the
atomic sample caused by a time-dependent linear potential, and a
phase offset which does not affect the dynamics but nonetheless
contributes to the total phase of the interferometer.

7Since the laser pulses change the trajectories, they are an essential
part of the potential contributing to the action. Hence, separating
them from the proper-time difference is somewhat arbitrary.
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TABLE I. Comparison of Mach–Zehnder (MZI, left) and specular mirror interferometer (SMI, right) in the laboratory and in the freely
falling frame (top and bottom). We depict the MZI and SMI geometries in time-space diagrams and show the individual phase contributions
during the interferometer sequence in the tables below. The beam splitters at t = 0 and t = 2T are conventional Raman pulses connecting
ground and excited states |g〉 and |e〉 in the MZI and SMI. For the MZI, a mirror Raman pulse is applied at t = T . The SMI has two specular
mirrors; for example, realized by strongly detuned evanescent fields, that at t = T invert the momenta of each branch. The initial vertical
momentum is chosen to be h̄k/2 for both the MZI and the SMI. Whereas Skin + Sgrav vanishes in all frames for the MZI, the SMI always has
Skin + Sgrav = −2h̄ϕg, where we have defined ϕg ≡ kgT 2.

D. Freely falling frame

To gain a deeper understanding of the appearance of the
nonvanishing proper-time difference and the factor of two, we
discuss both the MZI and the SMI in a freely falling frame,
shown in Table I on the bottom. In this particular frame the
MZI is symmetric and the proper-time difference vanishes.
The laser phase is modified to φf(t ) ≡ φt − kgt2/2 in the
freely falling frame; that is the laser is accelerated with respect

to the atomic trajectories. Again, only the laser leads to a
phase contribution.

In contrast to the MZI, the SMI is asymmetric in the
freely falling frame because the specular mirror is accelerated:
the reflection at an accelerated surface gives an additional
momentum kick and the proper-time difference determined by
Skin + Sgrav is nonvanishing.
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III. REPRESENTATION-FREE DESCRIPTION

Next we discuss both interferometers in a representation-
free manner following Refs. [25,26,31]. In such a description,
we do not rely on classical trajectories or the path-integral
formalism, but instead use displacement operators to model
the momentum transfer, the parity operator to model specular
reflection, and time-evolution operators for the dynamics of
the wave packet in the gravitational potential. This treatment
is independent of any representation and therefore does not
imply a particular interpretation.

A. Mach–Zehnder interferometer

For simplicity, we assume that the laser drives two-photon
Raman transitions in an effective two-level system between
the internal states |e〉 and |g〉 of energy difference h̄ω. We
therefore describe the time evolution between the beam split-
ter pulses and the mirrors by the usual canonical Hamiltonian

Ĥ ≡ h̄ω

2
(|e〉 〈e| − |g〉 〈g|) + p̂2

2m
+ mgẑ, (4)

which leads us directly to the time-evolution operator
Û (t ) ≡ exp(−iĤ t/h̄).

The action of a Raman pulse on the atom follows from the
operator

R̂
(j )
± (t ) ≡ cos θj1int − i sin θj [e

±i(kẑ+φt ) |e〉 〈g| + H.c.], (5)

where 1int ≡ |e〉〈e| + |g〉〈g| and j = B with θB = π/4 for a
beam splitter pulse, or j = M with θM = π/2 for a mirror
pulse.

The Raman pulse not only drives transitions between the
internal states, but at the same time transfers as a consequence
of the operators exp(±i[kẑ + ϕt ]) in Eq. (5) momentum to
the atom and imprints a phase shift on the atom. To realize an
SMI, we have to reverse the momentum transfer of the final
Raman pulse, which we denote by the index ±.

When we express the sequence of an MZI in terms of Û

and R̂+, the output postselected on the excited state is∣∣ψ (e)
MZI

〉 = 〈e|R̂(B )
+ (2T )Û (T )R̂(M )

+ (T )Û (T )R̂(B )
+ (0)|�in〉,

(6)

where the initial state |�in〉 contains both the internal and the
external degrees of freedom of the atom.8

For an atom initially in the excited state |e〉 and in the
state |ψ〉 describing the external degree of freedom, i.e.,
|�in〉 ≡ |e〉 |ψ〉, the probability P

(e)
MZI ≡ 〈ψ (e)

MZI|ψ (e)
MZI〉 of the

atom exiting the interferometer in the excited state takes the
form [25]

P
(e)
MZI = 1

2 (1 + cosϕMZI), (7)

and depends on the phase ϕMZI given by Eq. (2).

8In this equation and in the remainder of the article we assume that
the internal state is associated with one specific momentum class and
therefore with a semiclassical trajectory.

B. Specular mirror interferometer

To describe the SMI, we introduce the parity operator [34]

�̂(ζ ) ≡
∫

dpei2pζ/h̄ |−p〉 〈p| , (8)

which inverts the vertical momentum at a position ζ and
assumes that a specular mirror acts like this operator on
one particular branch. Since we require reflecting the lower
and upper branches independently, we need two specular
reflections and define the operator

M̂ (ζe, ζg ) ≡ −�̂(ζe ) |e〉 〈e| − �̂(ζg ) |g〉 〈g| . (9)

Here ζe and ζg correspond to the positions of the upper and
the lower mirror, which can be associated in our geometry
with the excited and ground state of the atom [33]. We specify
the positions later.

For a proper comparison to the MZI, we need to project
on the ground state rather than the excited state, because in
the SMI we only have two instead of three pulses changing
the internal state. The momentum transfer of the final beam
splitter at time 2T has to be reversed, as indicated by the
subscript “−,” so that the atoms exiting the interferometer in
the ground state are associated with an upward momentum.
We emphasize that these subtleties can be avoided by using
Bragg diffraction.

Hence, the state corresponding to atoms exiting the SMI in
the ground state reads

∣∣ψ (g)
SMI

〉 = 〈g|R̂(B )
− (2T )Û (T )M̂

(
ζe, ζg

)
Û (T )R̂(B )

+ (0)|�in〉.
(10)

In the appendix we use the explicit forms of the operators
corresponding to beam splitter, mirror, and time-evolution to
show that the probability P

(g)
SMI ≡ 〈ψ (g)

SMI|ψ (g)
SMI〉 takes the form

P
(g)
SMI = 1

2 + 1
4 〈ψ | e−2iωT eiϕ̃SMIe2i(p̂−mgT )Z/h̄ |ψ〉 + c.c.

(11)

and depends on the initial state, where we have used
the same initial condition as above. Here, we have de-
fined the distance Z ≡ ζe − ζg − h̄kT /m, and the phase
ϕ̃SMI ≡ φ+ − ϕg + 2kζg + h̄k2T/m is different from Eq. (3).

The phase −2ωT arises from the propagation in different
internal states, and appears together with φ+ in the inter-
ference pattern like in conventional Ramsey spectroscopy.
Ideally, one would operate the interferometer at the Ramsey
resonance, which might be experimentally challenging. How-
ever, since in our article we do not focus on this clock phase,
we omit the phase −2ωT in the following but emphasize
that we could have performed the complete analysis by using
Bragg diffraction, where the atom is always in the same
internal state and, therefore, the clock phase vanishes.

When we choose ζe − ζg = h̄kT /m, which corresponds to
the classical separation of the two mirrors, we have Z = 0
and thus the interferometer closes in phase space [35]. In this
case, the dependence on the momentum operator in Eq. (11)
disappears, and the expectation value reduces to a phase
factor.
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Hence, we find a perfect visibility and the interference
pattern for an atom initially in the excited state reduces to

P
(g)
SMI = 1

2 (1 + cos ϕ̃SMI). (12)

When we set the position of the lower mirror to ζg =
−h̄kT /(2m) − gT 2/2, which corresponds to its classical po-
sition for z(0) = 0 and v(0) = h̄k/(2m), the interferometer
phase ϕ̃SMI reduces to ϕ̃SMI = φ+ − 2ϕg ≡ ϕSMI, in complete
agreement with our semiclassical result from Eq. (3) obtained
for the same initial conditions.

C. Freely falling frame

To compare and contrast the two interferometers in the
freely falling frame, we introduce the displacement operator

D̂(ζ, ℘) ≡ exp [i(℘ẑ − ζ p̂)/h̄], (13)

which shifts the position of a given state by ζ and its momen-
tum by ℘.

Moreover, we recall the decomposition (see, e.g. Ref. [36])

Û (t ) = D̂(ζt , ℘t ) exp[−ip̂2t/(2mh̄)] exp[img2t3/(12h̄)],

(14)

corresponding to the motion in the gravitational field with
ζt ≡ −gt2/2 and ℘t ≡ −mgt . Hence, the time-evolution op-
erator Û is, up to a phase factor cubic in t [37], a displacement
along the trajectories ζt and ℘t multiplied by the time evolu-
tion in the freely falling frame.

The displacement operator D̂ shifts the laser pulses and
the mirror of the interferometer sequences to the freely
falling frame. In fact, the transformation R̂(j )

± (t ) = D̂†(ζt , ℘t )
R̂

(j )
± (t )D̂(ζt , ℘t ) of the Raman transition leads only to a

replacement of φt in Eq. (5) by φf(t ) = φt + kζt as a man-
ifestation of the acceleration of the laser with respect to the
atoms.

Applying the identical transformation to the mirror oper-
ator, M̂f(ζe, ζg ) = D̂†(ζt , ℘t )M̂ (ζe, ζg )D̂(ζt , ℘t ), shows that
the parity operators in the definition of M̂f(ζe, ζg ) are also
transformed and take the form

�̂f(ζ ) =
∫

dpe2i(p+℘t )(ζ−ζt )/h̄ |−p − 2℘t 〉 〈p| . (15)

Here, the position ζ of the mirror is shifted by ζt .
Moreover, an additional momentum transfer −2℘t to the

atom upon reflection arises from the acceleration of the mir-
ror. Due to the unitary nature of the displacement operators
generating the transformation to the freely falling frame and
the decomposition from Eq. (14), the output probability is
identical to Eq. (12).

IV. REFLECTION AT AN EXPONENTIAL POTENTIAL

Specular mirrors for atom optics based on a strongly
detuned evanescent electromagnetic field have already been
realized experimentally in the context of the atom trampoline
[18,38–40] and used to simulate the Fermi accelerator [41,42].
Potentials enabling specular reflection of matter waves
have also been implemented by means of magnetic fields
[24,43–45] based on either current carrying wires, magnetic

surfaces or permanently magnetized microstructures. More-
over, recently there have been significant advances in Stern–
Gerlach interferometry with atoms [23], which has been
a long-standing challenge [46–51], leading to yet another
method for facilitating an exponential potential. However,
due to the experimental requirement for an optical access in
direction of the atomic motion we focus in the following on
an evanescent field mirror.

In previous implementations of evanescent-field mirrors
for atomic wave packets only the lower mirror has been con-
structed [52,53].9 Nevertheless, these experiments show that
our assumption of an instantaneous inversion of the momen-
tum at time T is an idealized assumption and the reflection
has to be realized by a steep potential with a nonvanishing
interaction time, leading to additional phase contributions.

To discuss such phases, we investigate the reflection of
an incoming wave from an exponentially increasing potential
located at s. The corresponding Schrödinger equation reads

− d2

dz2
ψ (z) + κ2e2(z−s)/λψ (z) =

(
p

h̄

)2

ψ (z), (16)

where κ ≡ √
2mV0/h̄ is the normalized strength of the mir-

ror potential, p is the incoming momentum of the wave,
m denotes the mass of the particle, and V0 is the potential
strength. We note that this simple description is only valid at
positions z < s which are sufficiently [40] distant from the
physical location s of the glass plate used in the generation
the evanescent field potential.10 The parameter λ is the decay
length of the evanescent electromagnetic field and describes
the steepness of the potential.

The solution of Eq. (16) is given [54,55] by Bessel func-
tions, which reduce in the limit z → −∞ due to the vanishing
potential to a superposition

ψ (z) ∝ eipz/h̄ − e2iθ e−ipz/h̄ (17)

of incoming and outgoing plane waves.
Thus, the asymptotic limit of the solution of Eq. (16) gives

the phase

θ = ϑ (p) − [ln (κλ/2) − s/λ]pλ/h̄, (18)

where ϑ (p) ≡ arg�(1 + ipλ/h̄) depends on the incoming
momentum p and � denotes the Euler–Gamma function.

Expanding the phase θ around the momentum p0 allows us
to write Eq. (17) as

ψ (z) ∝ 〈z|[1 − e2iθ0�̂(ζ )]|p〉, (19)

which is identical to the mirror operator introduced in Eq. (8).
Therefore, we find in first order an effective position

ζ = h̄ϑ ′(p0) − λ ln [κλ/2] + s of the mirror that depends on

9It is interesting to note that recently a specular mirror was a crucial
ingredient in the excitation of neutron wave packets [52,53] moving
in the gravitational field of the Earth.

10If the atomic wave packet probes the vicinity of the glass plate
during the reflection process the description in Eq. (16) has to be
amended. As pointed out by Henkel et al. in Ref. [40] in a first step
additional terms due to the finite height of the potential, multiple
atomic levels participating in the reflection of the atom, and surface
interactions have to be taken into account.
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FIG. 1. Phase shift θ (p) imprinted onto the outgoing momen-
tum distribution. The curves are a result of the analytic solution
of the scattering problem given by Eq. (16) for an incident wave
packet. For a suitably narrow momentum distribution whose width
�p0 fulfills θ ′′(p0)�p2

0 
 1, the first-order expansion of the phase,
2(θ0 + ζp/h̄) (orange dashed line), is sufficient. In this regime, we
can use the parity operator �̂ to describe the reflection. The second-
order expansion 2θ (2)(p) is depicted by a green dashed-dotted line.
The inset shows a detailed view of the imprinted phase shift over the
width of the wave packet. The parameters of the exponential potential
used are a potential strength of V0 = 20E0, where E0 = p2

0/(2m) is
the initial kinetic energy of the atoms, a decay length of λ = 10−8 m
for the evanescent wave field and the location s = 0 for simplicity.
For the atoms we use 87Rb and an incident momentum of ten single-
photon recoil momenta prec for the central wave packet component
with respect to the D2-line, that is p0 = 10prec. The width of the
atomic wave packet is set at �p0 = 0.05prec.

the position s of the exponential potential and on the derivative
ϑ ′(p0), while θ0 ≡ θ (p0) − ζp0/h̄ is a constant. The trunca-
tion of the expansion at second order and the replacement of
θ with its truncated Taylor expansion is only admissible if the
second derivative of ϑ is small over the spread �p2

0 of an
incoming wave packet; that is, θ ′′(p0)�p2

0 
 1.
The generalization of the previous treatment to wave pack-

ets consisting of a superposition of plane waves leads in
momentum representation to ψ (p) ∝ ψin(p) − ψout(p). In
Fig. 1 we depict the phase shift imprinted on the outgoing
momentum distribution as implied by the analytic asymptotic
solution of Eq. (16). In particular, Fig. 1 shows the phase
difference 2θ ≡ argψout − argψin between incoming and out-
going momentum components as a function of momentum
and verifies our approximation by a linear function for
sufficiently narrow momentum distributions. Here, we have
chosen the parameters p0/h̄ = 10prec/h̄ = 8.05 × 107 m−1,
λ = 10−8 m, κ = √

20p0/h̄, and �p0 = 0.05prec so that the
incoming momentum is ten times the single-photon recoil
prec of 87Rb atoms in a typical Raman setup, and the decay
length of the exponential potential λ ∼= 10−8 m is significantly
smaller than the spatial extension of such an interferometer.
The momentum width is of the order of typical experiments
with ultracold quantum gases. For the sake of simplicity, we
use the coordinate system where s = 0.

In this regime, the mirror operator from Eq. (9) can be
applied if we use the effective position of the mirror defined
by parameters of the potential. The effective position of the

potential can be adjusted by changing the physical position s

such that the condition for a closed interferometer is fulfilled.
We note that there is an additional constant phase offset
2θ0, which we can choose to be the same for both arms by
adjusting the potential strength and position.

V. CHALLENGES

When implementing a specular mirror for wave packets by
an exponential potential, defects in the mirror may cause a loss
of coherence [56]. In addition, wavefront distortions arise in
the quasispecular regime [57] and are in an SMI intrinsically
caused by gravity. To minimize this effect, the amplitude of
the exponential potential needs to be much larger than the
gravitational potential difference across the wave packet. At
the same time, this condition limits the expansion time of the
atomic cloud and, therefore, the time that the atoms spend in
the SMI.

To perform the experiment by using initially located wave
packets with narrow momentum distributions, it might be
beneficial to resort to Bose–Einstein condensates, and to
Bragg diffraction which has the additional advantage that the
clock phase −2ωT in Eq. (11) vanishes. In addition, a Bragg
configuration would allow for a superposition of two internal
states on each branch as proposed in Ref. [11].

Furthermore, employing large-momentum-transfer tech-
niques [58] rather than two-photon beam splitters would en-
able longer interferometer times and higher relative velocities
with respect to the mirrors at reflection. In fact, their use is
crucial to prevent the upper wave packet from starting to fall
down before it has been completely reflected, and to minimize
wave-packet distortions due to gravity during the reflection
process.

VI. CONCLUSIONS

We have proposed a geometry for atom interferometers
with specular mirrors, where in contrast to an MZI the nonrel-
ativistic signature of proper time is nonvanishing. This effect
is directly related to an asymmetry in the action of the specular
mirrors on the atoms, and is independent of their specific
implementation. Indeed, a specular mirror and a diffractive
momentum transfer give two different phase contributions.
In this sense, the action of the mirror plays an integral part
of the interferometer. Finally, we have introduced a mirror
operator and we have shown that it can be associated with the
asymptotic reflection of a particle from an evanescent field.

Because the effective visibility is the observable in
Ref. [11], a good signal-to-noise ratio as well as a closed
geometry together with a nonvanishing proper-time difference
is of particular importance. Since the SMI is both closed in
phase space and has no intrinsic loss of particles like other
configurations [16], it is an ideal test bed to measure proper-
time effects in atom interferometers.
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APPENDIX: INTERFERENCE PATTERN IN THE
SPECULAR MIRROR INTERFEROMETER

According to Eq. (10), the external degree of freedom of
the atoms exiting an SMI in the ground state can be described
by the state∣∣ψ (g)

SMI

〉 = 〈g|R̂(B )
− (2T )Û (T )M̂

(
ζe, ζg

)
Û (T )R̂(B )

+ (0)|�in〉,
(A1)

where the explicit form

R̂
(B )
± (t ) ≡ 1√

2

[
1int − i(e±i(kẑ+φt ) |e〉 〈g| + H.c.)

]
(A2)

of the Raman beam splitter can be found from Eq. (5).
We assume that the atom is initially in the state |�in〉 ≡

|e〉 |ψ〉, where |ψ〉 describes the external degree of freedom
and |e〉 denotes the excited state of the atom. When we
calculate the action of the first beam splitter on the excited
state, we find

R̂
(B )
+ (0) |e〉 = 1√

2

[ |e〉 − ie−i(kẑ+φ0 ) |g〉 ]
. (A3)

Because we postselect on the population in the ground state,
we also make use of the product

〈g| R̂(B )
− (2T ) = 1√

2

[ 〈g| − iei(kẑ+φ2T ) 〈e| ]. (A4)

With these two relations it is easy to see that the final state

∣∣ψ (g)
SMI

〉 = i

2

[〈g|Û (T )�̂(ζg )Û (T )|g〉e−i(kẑ+φ0 )

+ ei(kẑ+φ2T )〈e|Û (T )�̂(ζe )Û (T )|e〉]|ψ〉 (A5)

of the atom exiting the interferometer in the ground state
consists of a superposition of the atom traveling along the
lower path in the ground state and the upper path in the excited
state.

To describe the time evolution of the atom in the gravita-
tional field, we make use of the fact that the internal degree
of freedom is separable from the external one. We therefore
introduce the operator

Û ≡ exp{−i[p̂2/(2m) + mgẑ]T/h̄} (A6)

that acts on the latter and use the phase factor exp[∓iωT /2]
when the atom propagates in the excited or ground state,
respectively.

With this notation, the final state reads

∣∣ψ (g)
SMI

〉 = i

2

[
e−i(φ0−ωT )Û�̂(ζg )Ûe−ikẑ

+ ei(φ2T −ωT )eikẑÛ�̂(ζe )Û
] |ψ〉 . (A7)

From this expression we find the interference pattern de-
scribed by the probability P

(g)
SMI ≡ 〈ψ (g)

SMI|ψ (g)
SMI〉 and arrive at

P
(g)
SMI = 1

2 + 1
4e

i(φ+−2ωT )〈ψ |Ô|ψ〉 + c.c., (A8)

where we have introduced the operator

Ô ≡ eikẑÛ †�̂†(ζg )Û †eikẑÛ�̂(ζe )Û . (A9)

To simplify Ô, we decompose the time-evolution opera-
tor from Eq. (A6) with the help of the Baker–Campbell–
Hausdorff and Zassenhaus identities into the two equivalent
formulae

Û = e−imgẑT /h̄e−ip̂2T/(2mh̄)eigT 2p̂/(2h̄)e−img2T 3/(6h̄) (A10a)

and

Û = e−ip̂2T/(2mh̄)e−igT 2p̂/(2h̄)e−imgẑT /h̄e−img2T 3/(6h̄). (A10b)

We calculate the operator product Û�̂(ζ )Û and sandwich
the parity operator between the representations of the time
evolution given in Eqs. (A10a) and (A10b). The action of the
momentum operators on the momentum representation of the
parity operator, see Eq. (8), can be performed trivially and
the operators exp[−imgT ẑ/h̄] lead to an additional shift in
momentum. In total, the product takes the form

Û�̂(ζ )Û =
∫

dp exp

[
− i

h̄

(
p2T

m
+ pgT 2 − 2pζ

)]

× |−p − mgT 〉 〈p + mgT | e−i
mg2T 3

3h̄ (A11)

in momentum representation.
We evaluate the second part of the operator Ô given

by the product eikẑÛ †�̂†(ζg )Û †eikẑ by taking the Hermitian
conjugate of Eq. (A11) and shifting the momentum with
the operators exp[ikẑ]. Hence, the projection operator in the
integral reads |p + mgT + h̄k〉〈−p − mgT − h̄k|.

Multiplying these two operator sequences and using the
scalar product of the two projection operators, the operator
Ô reduces to

Ô =
∫

dpei( h̄k2T
m

+2kζg−kgT 2+ pZ

h̄
) |p + mgT 〉 〈p + mgT | ,

(A12)

where we have defined the classical separation Z ≡ ζe − ζg −
kT /m of the two mirrors.

Shifting the variable of integration by mgT , introducing
the momentum operator p̂, and making use of the complete-
ness relation

∫
dp |p〉〈p| = 1ext of the momentum eigenstates,

the operator

Ô = ei(h̄k2T/m+2kζg−kgT 2 )ei2(p̂−mgT )Z/h̄ (A13)
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consists of phase factors and an additional displacement oper-
ator in position. When we substitute Eq. (A13) into Eq. (A8),

we find exactly the form of the interference pattern used in
Eq. (11) in the main part of the article.
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