Angewandte amomaneme

Supporting Information

Discovery of a Potent Proteolysis Targeting Chimera Enables Targeting the Scaffolding Functions of FK506-Binding Protein 51 (FKBP51)

T. M. Geiger, M. Walz, C. Meyners, A. Kuehn, J. K. Dreizler, W. O. Sugiarto, E. V. S. Maciel, M. Zheng, F. Lermyte, F. Hausch*

Supplementary information

Contents

Supplementary figures and tables 5
Figure S1.1 Binding affinities to FKBP51, FKBP12 and FKBP52 derived from competitive FP assays. Values represent the mean of at least two replicates5
Figure S1.2 Systematic single point cooperativity screening assessed by fluorescence polarization-based VHL binding assay in the absence or presence of saturating FKBP concentrations 6
Figure S1.3 Degradation activity profile of PROTAC candidates in FKBP51-eGFP and FKBP12-eGFP reporter assays. FKBP51-eGFP and FKBP12-eGFP level compared the DMSO control after 48 h treatment at $10 \mu \mathrm{M}$ or $0.5 \mu \mathrm{M}$ (green: $>50 \%$ reporter degradation; yellow: 50-25 \% reporter degradation; red < 25%). Values represent the mean of normalized (eGFP/mCherry) ratios on the DMSO control derived from biological duplicates and correspond to Fig. 1C. 7
Figure S1.4 PROTAC-mediated FKBP51 degradation 8
Figure S1.6 Relative HTRF-based quantification of endogenous FKBP52 11
Figure S1.7 PROTAC mediated FKBP52 degradation 16
Figure S2.1 Degradation and affinity profile of 5a1-5a5 and 6a1-6a5. 17
Figure S2.2 Label free quantitative proteomics of MOLT-4 cell lysates after treatment (5 h) with $5 \mathrm{a} 1(1 \mu \mathrm{M})$. 18
Table S1 19
Table S2 Binding affinities and cooperativities of selected PROTACs binding to FKBP51FK1 19
Figure S3.1. A) Chemical structures of linker-branched 14b1 analogues and B) western blot analysis of FKBP51 degradation after 24 h treatment in HEK293T cells. Uncropped Western Blot images are depicted in Fig. S5.7 20
Figure S3.3 23
Figure S4.1.NanoBRET FKBP51 engagement assay 24
Figure S4.2 Label free quantitative proteomics of MOLT-4 cell lysates after treatment (5 h) SelDeg51 (1 $\mu \mathrm{M}$) 24
Figure S4.3. Degradation-inactive cis-SelDeg51 does not target FKBP51's scaffolding function 25
Table S3. Refinement statistics of VCB:SelDeg51:FKBP51FK1 and FKBP12:6a2 crystal structures. 26
Figure S5.1 Uncropped images of Western Blots in A Figure 1D, B Figure 1E 27
Figure S5.2 Uncropped images of Western Blots of SelDeg51-mediated FKBP51 and FKBP12 degradation after 24 h treatment. A) corresponds to Fig 3B, B) corresponds to Fig S3.2A, C) corresponds to Fig S3.2B 27
Figure S5.3 Uncropped images of Western Blots in A Figure 4A, B Figure 4B, C Figure 4C, and D Figure 4D 28
Figure S5.4 Uncropped images of Western Blots in Figure S1.2 29
Figure S5.5 Uncropped images of Western Blots in Figure S1.3. The red dotted boxes indicate bands that are shown in Figure S1.3C 30
Figure S5.6 Uncropped images of Western Blots in Figure S1.5. The red dotted boxes indicate bands that are shown in the respective subfigures S 1.5 37
Figure S5.7 Uncropped images of Western Blots in A Figure 3.2B, B Figure 3.2C, C Figure 3.2D, and D Figure 3.2E. Uncropped Western Blot images are depicted in Fig. S3.1 38
Figure S5.8 Uncropped images of Western Blots in Figure S4.3B 38
Chemistry methods 39

1. Synthesis of tosyl and azide derviatized linkers 39
2. Synthesis of a1-5 41
a1 41
a2 41
a3 42
a4 42
a5 42
3. Synthesis of b1-5 42
b1 43
b2 43
b3 43
b4 43
b5 44
4. Synthesis of c1-5 44
c1 44
c2 44
c3 45
c4 45
c5 45
5. Synthesis of alkyne 1, 5, 6, 7, 10, 11, 12 : 45
6. Synthesis of alkyne 2: 45
7. Synthesis of alkyne 3: 46
8. Synthesis of alkyne 4: 48
9. Synthesis of alkyne 8: 49
10. Synthesis of alkyne 9: 51
11. Synthesis of alkyne 13: 53
12. Synthesis of alkyne 14 : 54
13. Synthesis of alkyne 15: 57
14. Synthesis of PROTACs: 57
15. Synthesis of linker analogues 68
(S)-1-(((1-Azidopropan-2-yl)oxy)methyl)-4-methoxybenzene 69
(S)-1-Azidopropan-2-yl 4-methylbenzenesulfonate 69
(R)-1-(((1-Azidopropan-2-yl)oxy)methyl)-4-methoxybenzene 71
(R)-1-Azidopropan-2-yl 4-methylbenzenesulfonate 71
(R)-2-Azidopropyl 4-methylbenzenesulfonate 72
(S)-2-azidopropyl 4-methylbenzenesulfonate 73
3-azidopropyl 4-methylbenzenesulfonate 74
16. Synthesis of $b 1$ analogues 75
17. Synthesis of branched 14b1 PROTACs 79
14b1-(1R-Me) 79
14b1-(2R-Me) 80
14b1-(1S-Me) 80
14b1-(2S-Me) 81
18. Synthesis of SelDeg51 82
19. Synthesis of cis-SelDeg51 82
20. Synthesis of tracers 84
FKBP52-HTRF tracer 84
VHL-FP tracer 84
Biochemical methods 87
Mammalian cell culture 87
Selection process and generation of FKBP12-eGFP reporter cell line 87
FKBP12-eGFP Reporter Assay 87
FKBP51-eGFP Reporter Assay 88
Western Blot analysis 88
FKBP52-HTRF Quantification 89
GR activation reporter gene assay 89
GR activation qPCR assay 89
FKBP51 target engagement NanoBRET 90
Protein purification 90
Crystallography 90
Burrow surface area calculation 91
Single point cooperativity screening 91
Fluorescence polarization assay for FKBP binding 91
Fluorescence polarization assay for VCB binding 91
HTRF assay for FKBP51 binding 92
Label free proteomics Proteomics 92
LC-MS data analysis 93
Native MS 93
Reagents and Standards 93
Native mass spectrometry 93

Supplementary figures and tables

Figure S1.1 Binding affinities to FKBP51, FKBP12 and FKBP52 derived from competitive FP assays. Values represent the mean of at least two replicates.

alkyne	$\mathrm{n}=$	112	231	14	5		12	314	$4{ }^{5}$		$1{ }^{1} 2$	3	4	5
	E3-lig.	FKBP51				FKBP12				FKBP52				
1	a													
	b													
2	a													
	b													
3	a													
	b													
4	a													
	b													
5	a													
	b													
6	a													
	b													
7	a													
8	a													
	b													
9	a													
	b													
10	a													
	b													
11	a													
	b													
12	a													
	b													
13	a													
	b													
14	a													
	b													
15	a													
	b													
$\square>5$ \%		$\square>-5 \%$ and < 5\%						\%	$\square<$	-5	5%			

Additional displacement of VHL-binding tracer in presence of FKBP

Figure S1.2 Systematic single point cooperativity screening assessed by fluorescence polarization-based VHL binding assay in the absence or presence of saturating FKBP concentrations. Constant or differential VHL binding in presence of FKBP is indicative of positive (green $>5 \%$), no (yellow $>-5 \%$ and $<5 \%$) or negative (red $<-5 \%$) cooperativity. Grey: indicates not tested PROTACs

	Q(PROTAC)	$10 \mu \mathrm{M}$					$0.5 \mu \mathrm{M}$					$10 \mu \mathrm{M}$					$0.5 \mu \mathrm{M}$				
	$\mathrm{n}=$	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
alkyne	target	FKBP51										FKBP12									
1	a	1.03	1.00	1.04	1.04	1.0	. 04	1.11	1.04	1.03	1.04	0.96	0.97	0.95	0.85	0.8	0.69	0.57	0.53	0.28	0.25
	b	97	1.00	0.95	0.95	1.0	. 04	1.03	0.91	0.93	1.04	0.93	0.98	0.70	0.64	0.62	0.66	0.8	0.41	0.25	0.27
	c	1.13	1.04	1.04	1.03	1.0	1.05	1.08	1.07	1.03	1.02	0.82	0.70	0.71	0.55	0.40	0.67	0.60	0.58	0.46	0.38
2	a).99	1.00	1.00	0.97	0.9	. 05	1.07	1.08	1.03	1.0	0.09	0.39	0.39	0.38	0.60	0.07	0.16	0.27	0.21	0.40
	b	. 95	1.05	1.04	1.02	0.9	. 11	1.15	1.03	1.06	1.0	0.82	0.96	0.75	0.68	0.57	0.72	0.75	0.36	0.30	0.3
	c	97	0.98	1.04	. 03	. 3	. 03	1.05	1.12	1.24	1.14	0.68	0.46	0.41	0.22	0.23	0.47	0.44	0.41	0.25	0.25
3	a	1.01	1.01	1.12	1.11	1.12	04	1.03	1.14	1.08	1.16	0.87	1.04	0.9	0.51	0.48	0.39	0.8	0.45	0.09	0.0
	b	. 98	0.99	1.04	0.99	0.9	. 11	1.03	1.01	1.03	1.0	0.90	0.94	0.60	0.17	0.34	1.8.	0.9	0.45	0.25	0.19
	c	. 06	1.00	1.02	0.95	1.01	. 06	1.09	1.09	1.07	1.06	0.50	0.28	1.02	0.35	0.56	0.56	0.32	1.01	0.43	0.53
4	a	. 02	1.06	1.07	1.04	1.02	04	1.04	1.05	1.10	1.11	. 04	0.99	1.06	1.07	1.08	0.95	0.55	0.59	0.77	0.75
	b	. 08	1.00	0.97	0.99	0.9	. 07	1.10	1.04	1.06	1.05	0.95	0.68	0.68	0.81	0.8	0.94	0.50	0.79	0.94	0.73
	c	. 05	1.03	1.05	1.04	1.01	. 08	1.05	1.09	1.10	1.0	0.71	0.66	0.37	0.21	0.26	0.74	0.58	0.36	0.18	0.2
5	a	. 14	1.01	1.01	. 03	0.9	04	1.29	1.10	1.08	1.06	0.07	1.04	0.33	0.88	0.9	0.06	0.9	0.07	0.16	0.2
	b		0.9	0.87	0.95	0.9	1.12	1.14	1.12	1.07	0.96	0.66	0.22	0.14	0.19	0.25	1.02	0.20	0.15	0.12	0.1
	c	01	0.99	0.98	0.99	0.9	. 07	1.20	1.05	1.05	1.0	0.99	0.80	0.42	0.33	0.38	0.86	0.65	0.40	0.29	0.35
6	a	. 00	1.05	1.01	0.99	0.9	. 04	0.99	1.11	1.04	1.1	0.10	1.03	0.49	0.86	0.95	0.05	1.0	0.08	0.23	0.32
	b	. 90	0.99	0.85	0.84	0.8	. 07	1.11	1.05	0.76	0.7	0.80	0.33	0.25	0.11	0.10	. 0	0.21	0.13	0.08	0.07
	c	. 00	0.97	0.99	1.08	0.9	. 04	1.08	1.12	1.07	1.05	0.83	0.76	0.50	0.33	0.42	0.63	0.72	0.51	0.34	0.40
7	a	13	0.93	1.01	0.91	0.9	. 03	1.07	1.10	1.12	1.14	0.40	0.87	0.9	0.95	1.03	0.09	0.78	0.8	0.87	
	c	. 00	1.00	0.99	1.01	0.9	. 18	1.12	1.24	1.16	1.1	0.82	0.91	0.95	0.88	0.9	0.93	0.96	0.97	0.97	0. .
8	a	. 80	0.89	0.96	0.88	0.87	1.03	1.02	1.04	0.99	1.00	0.46	0.77	0.8	0.88	0.8	0.92	0.9	0.97	0.98	0.8
	b	. 96	0.94	1.00	. 00	0.9	1.07	. 3	1.06	1.04	1.05	0.57	0.53	0.73	0.74	0.7	0.97	0.8	0.95	0.97	
	c	0.93	0.98	0.99	0.98	0.9	. 01	1.02	1.04	1.01	1.22	0.89	0.74	0.89	0.93	0.9	0.97	0.9	0.98	0.99	0.9
9	a	0.69	1.11	0.88	0.78	0.84	0.82	0.91	0.97	0.89	0.8	0.17	0.46	0.47	0.41	0.52	0.16	0.13	0.25	0.38	0.32
	b	0.94	0.89	0.97	0.94	0.9	. 90	0.86	0.95	0.91	0.95	0.62	0.08	0.28	0.32	0.45	0.60	0.12	0.51	0.28	0.30
	c	9	0.99	0.97	0.96	0.9	. 0	0.9	1.02	1.03	1.0	0.31	0.19	0.24	0.29	0.23	0.39	0.22	0.32	0.46	0.34
10	a	8	0.73	0.72	0.72	0.7	. 81	0.75	0.58	0.58	0.48	0.19	0.23	0.44	0.22	0.42	0.29	0.30	0.7	0.20	0.4
	b	0.54	0.89	0.74	0.71	0.74	0.57	0.88	0.73	0.72	0.67	0.83	0.61	0.44	0.22	0.30	0.8	0.69	0.47	0.22	0.2
	c	1.01	1.02	0.97	0.98	0.9	1.02	1.02	1.10	1.00	1.0	0.88	0.36	0.61	0.36	0.35	0.8	0.52	0.70	0.47	0.45
11	a	. 93	0.89	0.80	0.82	0.8	0.97	0.93	1.04	0.8	0.92	0.61	0.43	0.52	0.52	0.72	0.71	0.41	0.60	0.58	0.68
	b	0.72	0.8	0.62	0.53	0.62	0.73	0.87	0.64	0.50	0.57	0.28	0.59	0.38	0.39	0.57	0.35	0.67	0.45	0.41	0.53
	c	0.88	0.78	0.91	0.92	0.8	. 93	0.86	0.94	0.93	0.9	0.25	0.26	0.22	0.20	0.18	0.29	0.32	0.31	0.29	0.29
12	a	94	0.81	0.84	0.84	0.8	0.98	0.95	0.88	0.94	0.9	0.68	0.45	0.32	0.22	0.34	0.82	0.53	0.37	0.28	0.27
	b	84	0.57	0.48	0.50	0.53	0.90	0.64	0.64	0.55	0.62	0.70	0.70	0.53	0.35	0.42	0.77	0.7	0.56	0.37	0.44
	c	83	0.77	0.89	0.87	0.8	0.89	0.83	0.91	0.95	1.0	0.07	0.15	0.22	0.22	0.23	0.12	0.21	0.30	0.30	0.3
13	a	. 9	0.92	0.9	0.99	1.1		0.74	0.85	0.91	0.96	0.55	0.58	0.56	0.60	0.50	0.42	0.44	0.42	0.41	0.45
	b	. 93	0.85	0.93	0.87	1.0	. 0	1.03	0.91	0.85	0.8	0.55	0.44	0.14	0.09	0.16	0.69	0.52	0.13	0.09	0.13
	c	. 04	1.03	1.06	1.18	1.11	1.01	1.04	1.04	1.03	1.04	0.72	0.56	0.56	0.50	0.41	0.76	0.59	0.43	0.36	0.3
14	a	0.87	0.81	0.90	1.06	0.8	0.78	0.9	0.93	0.95	1.8	0.43	0.63	0.40	0.33	0.52	0.46	0.59	0.32	0.2	0.24
	b	0.45	0.49	0.71	2.81	0.90	0.54	0.48	0.69	0.73	0.78	0.54	0.41	0.21	0.10	0.13	0.61	0.46	0.23	0.10	0.14
	c	05	1.04	1.04	1.02	1.01	1.06	1.02	1.03	1.07	1.05	0.66	0.49	0.47	0.59	0.22	0.8	0.56	0.73	0.62	0.43
15	a	. 04	1.00	1.01	. 03	1.0	. 07	1.08	1.24	1.04	1.07	0.91	1.02	1.01	0.99	1.0	0.96	1.0	1.01	1.01	1.03
	b	09	1.03	1.08	1.12	1.0	. 09	1.05	1.08	1.05	1.01	0.75	0.63	0.88	0.93	0.9	. 02	1.01	1.02	1.01	1.0
	c	. 01	0.99	1.17	1.01	1.08	1.03	1.02	1.05	1.06	1.08	. 02	1.01	1.01	1.00	1.0	1.01	1.01	1.02	1.01	1.0

Figure S1.3 Degradation activity profile of PROTAC candidates in FKBP51-eGFP and FKBP12-eGFP reporter assays. FKBP51eGFP and FKBP12-eGFP level compared the DMSO control after 48 h treatment at $10 \mu \mathrm{M}$ or $0.5 \mu \mathrm{M}$ (green: $>50 \%$ reporter degradation; yellow: 50-25 \% reporter degradation; red < 25%). Values represent the mean of normalized (eGFP/mCherry) ratios on the DMSO control derived from biological duplicates and correspond to Fig. 1C.

Figure S1.4 PROTAC-mediated FKBP51 degradation in HEK293 T cells after 24 h treatment. Uncropped Western blot images are depicted in Fig. S5.4.

Figure S1.5 PROTAC mediated FKBP12 degradation in HEK293 T cells after 24 h treatment. Uncropped Western Blot images are depicted in Fig. S5.5.

Figure S1.6 Relative HTRF-based quantification of endogenous FKBP52 levels after 24 h PROTAC treatment in HEK293T cell lysates. A homogeneous time-resolved FRET is observed between the fluorescent FKBP52-HTRF tracer (120 nM) Anti Rabbit IgG-Eu cryptate ($1,2 \mathrm{nM}$) in combination with a primary anti FKBP52 antibody ($1,25 \mathrm{nM}$) in the presence of FKBP52. HTRF-ratios in range of siRNA positive control indicate lower FKBP52 samples in the treated samples compared to the DMSO control and are indicative of active PROTACs. Bars and error bars represent mean and standard deviation of biological duplicates.

AN
AO

[7c2] nM	[7c3] nM
\% \% \% \% \% \% ¢	\%\% \% \% \%

AP

AQ

AS

Figure S1.7 PROTAC mediated FKBP52 degradation in HEK293 T cells after 24 h treatment. Uncropped Western Blot images are depicted in Fig. S5.6.

A

5a2: $n=2$
5a3: $n=3$
5a4: n=4
5a5: $n=5$

C

G

B

D

Figure S2.1 Degradation and affinity profile of $5 a 1-5 a 5$ and $6 a 1-6 a 5$. Chemical structures of A) 5a1-5a5 and B) 6a1-6a5. FKBP12_eGFP reporter degradation mediated by C) 5a1-5a5 and D) 6a1-6a5 after 48 hours treatment. Symbols and error bars represent mean and standard deviation of biological duplicates. E) FKBP12 binding affinities of 6a1-6a5 determined by competitive FP assays using a FKBP-FP tracer. Bars and error bars represent mean and standard deviation of duplicates. F) VCB binding affinities of $5 \mathrm{a} 1-5 \mathrm{a} 5$ and $6 \mathrm{a} 1-6 \mathrm{a} 5$ determined by competitive FP assays using a VHL-FP tracer. Bars and error bars represent mean and standard deviation of triplicates. G) Cooperativity (alpha) of 6a1-6a5 for binding to VCB.

Figure S2.2 Label free quantitative proteomics of MOLT-4 cell lysates after treatment (5 h) with 5 a 1 ($1 \mu \mathrm{M}$). FKBP12 (FKBP1A) is selectively degraded. +/- inf box (grey) contains proteins that were below detection level in all replicates of a specific treatment group.

Table S1 Binding affinities and cooperativities of PROTAC serias $5 a 1$ and $6 a$ binding to VCB. Binding constants in $\mathrm{nM} \pm$ standard deviation from three replicates. The binding affinities for the PROTACs were determined in a competitive FP assay using a VCB-FP tracer either with the PROTAC alone or in presence of an excess $(3 \mu \mathrm{M})$ of FKBP12.

PROTAC	$K_{D}(P R O T A C) / n M$	$K_{D}(P R O T A C: F K B P 12) / n M$	α
	97 ± 10	2.0 ± 0.3	47 ± 9
$5 a 2$	55 ± 3	436 ± 31	0.1 ± 0.01
$5 a 3$	22 ± 3	2.4 ± 0.5	9 ± 2
$5 a 4$	17 ± 3	7 ± 1	2.5 ± 0.6
$5 a 5$	17 ± 3	8.2 ± 0.9	2.1 ± 0.4
$6 a 1$	54 ± 9	6.0 ± 0.9	9 ± 2
$6 a 2$	55 ± 8	397 ± 27	0.1 ± 0.02
$6 a 3$	39 ± 7	2.3 ± 0.6	17 ± 5
$6 a 4$	14 ± 4	11 ± 2.0	1.2 ± 0.4
$6 a 5$	24 ± 7	6 ± 1	4 ± 1

Table S2 Binding affinities and cooperativities of selected PROTACs binding to FKBP51FK1. Binding constants in $\mathrm{nM} \pm$ standard deviation from three replicates. The binding affinities for selected PROTACs were determined in a competitive HTRF assay using a FKBP-HTRF tracer either with the PROTAC alone or in presence of an excess ($5 \mu \mathrm{M}$) of VCB.

PROTAC	$K_{D}(P R O T A C) / n M$	$K_{D}(P R O T A C: V C B) / n M$	α
$10 a 4$	56 ± 6	0.54 ± 0.08	104
$10 b 1$	23 ± 2	1.6 ± 0.1	14
$11 b 4$	31 ± 4	2.7 ± 0.2	11
$11 b 5$	23 ± 3	2.2 ± 0.2	10
$12 b 3$	8.7 ± 0.8	7.5 ± 0.7	1
$12 b 4$	23 ± 3	5.0 ± 0.5	5
$12 b 5$	21 ± 2	5.2 ± 0.4	4
$14 b 1$	26 ± 3	0.81 ± 0.06	32
14b2	40 ± 5	0.66 ± 0.08	61
SelDeg51	18 ± 2	0.78 ± 0.07	23
alkyne 14	22 ± 2	-	-

B

C

D

Figure S3.1 A) Chemical structures of linker-branched 14b1 analogues and B) western blot analysis of FKBP51 degradation after 24 h treatment in HEK293T cells. Uncropped Western Blot images are depicted in Fig. S5.7.

Figure S3.2 A), B) SelDeg51-mediated FKBP51 degradation after 24 h treatment. C) Quantitative analysis of the relative FKBP51 and GAPDH levels (Fig. 3B, Fig S3.2 A), B)), which are presented as ratios of FKBP51/GAPDH normalized to the DMSO-treated samples in the respective replicates. Bars and error bars represent mean and standard deviation of at least three replicates. Uncropped Western Blot images are depicted in Fig. S5.2.
A

$\sqrt[100]{|$| Native MS |
| :--- |
| Low-energy |
| Intact ternary complex |$}$

Molecular weight: ca. 57052 Da
Crystal Structure of the ternary complex

Figure S3.3 Native MS analysis of the FKBP51FK1:SelDeg51:VCB complex suggesting the presence in solution of a ternary complex similar to the obtained crystal structure. A) Native MS spectrum of the PROTAC-induced FKBP51:SelDeg51:VCB complex obtained under soft conditions to preserve the intact structure. The peaks represent the four most intense charge states of the intact ternary complex with a MW of ca. 57052 Da . Soft conditions were applied: Trap cell collision energy 10 V and Transfer cell collision energy 4 V . B) Tandem MS after isolating the most intense charge state of the FKBP51:SelDeg51:VCB complex (isolated peak highlighted in blue). Under harsh conditions (Trap cell collision energy 45 V ; Transfer cell collision energy 8 V), the intact complex structure was disrupted causing ejection of the subunits. This experiment confirms that the isolated complex contained FKBP51, SelDeg51, and subunits of the VCB complex. C) Collision cross section plot generated from native MS-IM experimental data. The highest point corresponds to a CCS value of $3480 \AA 2$. This experimentally-obtained CCS value is very close to the one derived from the crystal structure, further reinforcing the presence of the FKBP51:SelDeg51:VCB complex.

Figure S4.1 NanoBRET FKBP51 engagement assay. SelDeg51 engages FKBP51 in living HEK293 cells stably overexpressing FKBP51FK1-Nluc, although approx. ten-fold less efficient than its precursor SAFit2. Symbols and error bars represent mean and standard deviation of triplicates.

Figure S4.2 Label free quantitative proteomics of MOLT-4 cell lysates after treatment (5 h) SelDeg51 ($1 \mu \mathrm{M}$). FKBP51 (FKBP5) is selectively degraded. +/- inf box (grey) contains proteins that were below detection level in all replicates of a specific treatment group.

B

Figure S4.3 Degradation-inactive cis-SelDeg51 does not target FKBP51's scaffolding function. A) Chemical structure of cisSelDeg51; B) SelDeg51 but not cis-SelDeg51 degrades FKBP51 in HEK293T cells, and C) reactivates GR-signalling in GRreporter gene assays. Bars and error bars represent mean and standard deviation of biological quadruplicates. Uncropped Western Blot images are depicted in Fig. S5.8.

Figure S4.4 Quantitative analysis of the relative FKBP51 and GAPDH levels (Fig. 4D) which are presented as ratios of FKBP51/GAPDH normalized to the DMSO-treated samples in the respective replicates. Bars and error bars represent mean and standard deviation of two replicates.

Table S3 Refinement statistics of VCB:SelDeg51:FKBP51FK1 and FKBP12:6a2 crystal structures.

PDB entry	8PC2 VCB:SeIDeg51:FKBP51 FK1	$\begin{gathered} \text { 8PDF } \\ \text { FKBP12:6a2 } \end{gathered}$
Data collection		
Beamline	BESSY II (BL14.1)	BESSY II (BL14.2)
Wavelength	$\lambda=0.9184 \AA$	$\lambda=0.9184 \AA$
Space group	1121	C 121
Cell dimensions		
$a, b, c(\AA)$	138.65, 68.42, 159.26	65.99, 36.51, 44.22
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 114.45, 90	90, 102.19, 90
Resolution (\AA)	48.69-2.80 (2.94-2.80)	43.22-1.20 (1.22-1.20)
$R_{\text {merge }}$	0.088 (0.523)	0.055 (1.318)
$R_{\text {pim }}$	0.070 (0.409)	0.036 (0.892)
$1 / \sigma(1)$	12.0 (3.0)	11.7 (1.2)
CC1/2	0.997 (0.925)	0.999 (0.625)
Completeness (\%)	99.1 (92.5)	99.9 (100)
Redundancy	4.6 (4.7)	6.3 (6.0)
Refinement		
Resolution (\AA)	48.69-2.80	31.79-1.20
No. of reflections	33477	32324
$R_{\text {work }} / R_{\text {free }}$ (\%)	21.0/26.1	15.2/17.6
Total number of atoms	14339	1956
Average B, all atoms (\AA^{2})	79.0	21.0
R.m.s. deviations		
Bond lengths (\AA)	0.0092	0.0174
Bond angles (${ }^{\circ}$)	1.581	1.969
Ramachandran plot		
Favoured	862 (96\%)	102 (95\%)
Allowed	34 (4\%)	5 (5\%)
Outlier	2 (0\%)	0

Figure S5.1 Uncropped images of Western Blots in A Figure 1D, B Figure 1E

Figure S5.2 Uncropped images of Western Blots of SelDeg51-mediated FKBP51 and FKBP12 degradation after 24 h treatment. A) corresponds to Fig 3B, B) corresponds to Fig S3.2A, C) corresponds to Fig S3.2B.

Figure S5.3 Uncropped images of Western Blots in A Figure 4A, B Figure 4B, C Figure 4C, and D Figure 4D

Figure S5.4 Uncropped images of Western Blots in Figure S1.4

Figure S5.5 Uncropped images of Western Blots in Figure S1.5. The red dotted boxes indicate bands that are shown in Figure S1.5C.

Figure S5.6 Uncropped images of Western Blots in Figure S1.5. The red dotted boxes indicate bands that are shown in the respective subfigures S1.7.

Figure S5.7 Uncropped images of Western Blots in A Figure S3.1B, B Figure S3.1C, C Figure S3.1D, and D Figure S3.1E.

Figure S5.8 Uncropped images of Western Blots in Figure S4.3B

Chemistry methods

1. Synthesis of tosyl and azide derviatized linkers

1-3:

Cholonated ethylenglycoles of the length 1 to 3 (1.0 eq.), sodium azide (1.23 eq .), and sodium hydroxide (0.1 eq.) were stirred in water for 72 h at room temperature. Additional sodium azide (1.0 eq .) and sodium hydroxide (0.15 eq.) were added and stirred for 22 h . Sodium thiosulfate and brine were added and the solution was extracted with DCM. The organic phase was dried over MgSO_{4} and concentrated under reduced pressure.

1:
Yield: 0.7 g ($65 \%, 8.0 \mathrm{mmol})$.
Appearance: slightly yellow oil.
1H-NMR: (300 MHz , Chloroform-d): $\delta=2.25$ (s, 1H), $3.38-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.80(\mathrm{~m}, 2 \mathrm{H})$.
13C-NMR (75 MHz , Chloroform-d): $\delta=53.6$, 61.6 .
TLC: $\mathrm{Rf}=0.33$ (DCM: $\mathrm{MeOH}=50: 1$).

2 :

Yield: 1.6 g (98 \%, 12.2 mmol$)$.
Appearance: slightly yellow oil.
1H-NMR (500 MHz , Chloroform-d): $\delta=2.59(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{dd}, J=$ $5.3,3.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.64(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.74(\mathrm{~m}, 2 \mathrm{H})$.
13C-NMR (126 MHz , Chloroform- d): $\delta=50.7,61.7,70.0,72.5$.
TLC: $R f=0.53(C H: E A=1: 2)$.

3:

Yield: 2.1 g (97 \%, 12.0 mmol$)$.
Appearance: slightly yellow oil.
1H-NMR (500 MHz , Chloroform-d): $\delta=2.48-2.67(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.75(\mathrm{~m}, 10 \mathrm{H})$. 13C-NMR (126 MHz, Chloroform-d): $\delta=50.7,61.7,70.0,70.4,70.7,72.6$.
TLC: $R f=0.53(C H: E A=1: 2)$.

Ethylenglycoles of the length 4 to 5 (1.0 eq.), p-toluenesulfonyl chloride (1.0 eq .), silver oxide (1.5 eq .) and potassium iodide (0.2 eq.) were stirred in DCM for 90 min at $0^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature. The solution was filtered through celite, rinsed with DCM and concentrated under reduced pressure. The obtained product was purified by column chromatography

4:

Yield: 3.70 g (60 \%, 10.8 mmol$)$
Appearance: slightly yellow oil.
1H-NMR (300 MHz , Chloroform-d): $\delta=2.43$ (s, 3H), 2.53 (s, 1H), $3.56-3.65(\mathrm{~m}, 10 \mathrm{H}), 3.65-3.70(\mathrm{~m}$, $4 \mathrm{H}), 4.13-4.16(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$.
13C-NMR (75 MHz , Chloroform-d): $\delta=21.7,61.8,68.8,69.3,70.4,70.6,70.7,70.8,72.6,128.0,129.9$, 133.1, 144.9.

TLC: $\mathrm{Rf}=0.48$ (DCM: $\mathrm{MeOH}=20: 1$).
LC-MS: Mass (ESI), calculated $=349.4[\mathrm{M}+\mathrm{H}]+$, found $=349.4$.

5:

Yield: 3.6 g (51 \%, 9.2 mmol).
Appearance: slightly yellow oil.

1H-NMR (300 MHz , Chloroform-d): $\delta=2.44$ (s, 3H), 2.53-2.68 (m, 1H), 3.53-3.77 (m, 18H), $4.15(\mathrm{t}$, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
13C-NMR (75 MHz , Chloroform- d): $\delta=21.8,61.9,68.8,69.4,70.5,70.6,70.7,70.7,70.9,72.6,128.1$, 129.9, 133.2, 144.9.

TLC: $\mathrm{Rf}=0.40$ (DCM: $\mathrm{MeOH}=20: 1$).
LC-MS: Mass (ESI), calculated $=393.5[\mathrm{M}+\mathrm{H}]+$, found $=393.4$.

Tosylated ethylenglycoles of the length 4 to 5 (1.0 eq.) and sodium azide (2.0 eq.) were stirred in DMF for 40 h at room temperature. The solution was diluted with Brine and extracted with DCM. The combined organic phases were dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by column chromatography.

4:
Yield: 2.2 g (94 \%, 10.1 mmol$)$.
Appearance: slightly yellow oil.
1H-NMR (500 MHz , Chloroform- d): $\delta=2.74(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.58$ -3.65 (m, 10H), $3.65-3.68$ (m, 2H).
13C-NMR (126 MHz, Chloroform-d): $\delta=50.7,61.7,70.0,70.4,70.6,70.7,70.7,72.5$.
TLC: $\mathrm{Rf}=0.30$ (DCM: $\mathrm{MeOH}=20: 1$).
LC-MS: Mass (ESI), calculated $=220.2[\mathrm{M}+\mathrm{H}]+$, found $=220.2$.
5:
Yield: 2.3 g (97%, 8.9 mmol$)$.
Appearance: slightly yellow oil.
1H-NMR (500 MHz , Chloroform- d): $\delta=2.75(\mathrm{~s}, 1 \mathrm{H}), 3.30-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.76(\mathrm{~m}, 18 \mathrm{H})$.
13C-NMR (126 MHz , Chloroform- d) : $\delta=50.7,61.8,70.1,70.4,70.6,70.7,70.7,72.6$.
TLC: $\mathrm{Rf}=0.24$ (DCM: $\mathrm{MeOH}=20: 1$).
LC-MS: Mass (ESI), calculated $=264.2[\mathrm{M}+\mathrm{H}]+$, found $=264.2$.
Mass $(E S I)$, calculated $=281.2[\mathrm{M}+\mathrm{NH} 4]+$, found $=281.1$.
1-5:

Azide functionalized ethylenglycoles of the length 1 to 5 (1.0 eq.) and 4-toluenesulfonyl chloride (1.5 eq.) in DCM were cooled to $0^{\circ} \mathrm{C}$. Pyridine (2.0 eq.) was added and the mixture was stirred for 1 h at 0 ${ }^{\circ} \mathrm{C}$, followed by 70 h at room temperature. The mixture was concentrated under reduced pressure. The obtained crude product was purified by column chromatography.

1:
Yield: 1.18 g (60\%, 4.82 mmol$)$.
Appearance: colourless liquid.
1H NMR (300 MHz , Chloroform-d) $\delta 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77-7.87(\mathrm{~m}, 2 \mathrm{H})$.
13C NMR (75 MHz , Chloroform-d) $\delta 21.6,49.6,68.1,127.9,130.0,132.6,145.3$.
TLC: $R f=0.30(C H: E A=5: 1)$.
LC-MS: Mass (ESI), calculated $=242,3[\mathrm{M}+\mathrm{H}+]$, found $=242.3$.
2:
Yield: $2,54 \mathrm{~g}$ (82\%, 9.43 mmol$)$.
Appearance: colourless liquid.
1H NMR (300 MHz , Chloroform-d) $\delta 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.66-$ $3.76(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.23(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77-7.86(\mathrm{~m}, 2 \mathrm{H})$.
13C NMR (75 MHz , Chloroform- d) $\delta 21.6,50.6,68.7,69.1,70.1,128.0,129.8,132.9,144.9$.
TLC: $R f=0.75(C H: E A=1: 1)$.
LC-MS: Mass (ESI), calculated $=286,3[\mathrm{M}+\mathrm{H}+]$, found $=286.3$.
3:
Yield: $2,95 \mathrm{~g}(75 \%, 8.95 \mathrm{mmol})$.

Appearance: colourless liquid.
1H NMR (300 MHz, Chloroform-d) $\delta 2.45$ (s, 1H), 3.37 (t, J = $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.75(\mathrm{~m}, 4 \mathrm{H}), 4.12$ $4.22(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.85(\mathrm{~m}, 1 \mathrm{H})$.
13C NMR (75 MHz , Chloroform-d) $\delta 21.6,50.7,68.8,69.2,70.1,70.6,70.8,127.9,129.8,133.0,144.8$.
TLC: $\mathrm{Rf}=0.68$ (CH:EA = 1:1).
LC-MS: Mass $(E S I)$, calculated $=330.4[\mathrm{M}+\mathrm{H}+]$, found $=330.4$.

4:

Yield: 2,3 g (61\%, 6.1 mmol$)$.
Appearance: colourless liquid.
1H NMR (300 MHz , Chloroform-d) $\delta 2.43$ (s, 3H), 3.31 - 3.42 (m, 2H), $3.49-3.78$ (m, 14H), $4.10-4.20$ (m, 2H), $7.27-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.84(\mathrm{~m}, 2 \mathrm{H})$.
13C NMR (75 MHz, CDCl3) б 21.6, 50.7, 63.0, 68.7, 68.8, 69.2, 70.0, 70.6, 70.6, 70.7, 127.9, 129.8, 133.1, 144.8.

TLC: $\mathrm{Rf}=0.39$ (Cyclohexane: Ethylacetate $=1: 1$).
LC-MS: Mass (ESI), calculated $=374.4[\mathrm{M}+\mathrm{H}+]$, found $=374.4$

5:

Yield: $2,4 \mathrm{~g}$ (64\%, 5.7 mmol$)$.
Appearance: colourless liquid.
1H NMR (300 MHz , Chloroform-d) $\delta 2.43$ (d, $J=0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37 (dd, $J=5.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.54-3.75$ (m, 8H), $4.10-4.22(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.84(\mathrm{~m}, 1 \mathrm{H})$.
13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 21.6,50.7,68.7,69.2,70.0,70.5,70.6,70.7,70.7,76.6,77.0,77.5,127.9$, 129.8, 133.1, 144.7.

TLC: $\mathrm{Rf}=0.20$ (Cyclohexane:Ethylacetate =1:1).
LC-MS: Mass (ESI), calculated $=418.2[\mathrm{M}+\mathrm{H}+]$, found $=418.2$.

2. Synthesis of a1-5

Azidoacetic acids of the length 1 to 5 (1.0 eq.) in DCM were added to VH032 (1.0 eq.) in DCM. Afterwards HATU (1.3 eq.) and DIPEA (5.0 eq.) were added and the mixture was stirred for 16 h at room temperature. DCM was added and the mixture was washed with brine. The organic phase was dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by chromatography.
a1:
Yield: 583 mg (53 \%, 1.1 mmol).
Appearance: white foam.
1H-NMR (500 MHz , Chloroform- d): $\delta=0.95(\mathrm{~s}, 9 \mathrm{H}), 2.05-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 4 \mathrm{H}), 3.36-3.51(\mathrm{~m}$, 2H), $3.59-3.73(\mathrm{~m}, 3 \mathrm{H}), 3.92-4.04(\mathrm{~m}, 3 \mathrm{H}), 4.31(\mathrm{dd}, J=15.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.56(\mathrm{~m}, 3 \mathrm{H}), 4.71$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H})$. 13C-NMR (126 MHz, Chloroform-d): $\delta=16.1,26.5,35.2,36.2,43.3,50.8,56.8,57.4,58.7,70.2,70.6$, 128.2, 129.6, 130.9, 131.8, 138.3, 148.4, 150.5, 169.8, 171.0, 171.3.

TLC: $\mathrm{Rf}=0.45$ (DCM: $\mathrm{MeOH}=10: 1$).
LC-MS: Mass (ESI), calculated $=558.2[\mathrm{M}+\mathrm{H}+]$, found $=558.3$.
Mass $(E S I)$, calculated $=1115.4[2 \mathrm{M}+\mathrm{H}+]$, found $=1114.8$.
HPLC: [0-100 \% Solvent B, 20 min$]$: Rt $=10.4 \mathrm{~min}$.
a2:
Yield: 881 mg (73%, 1.5 mmol).
Appearance: white foam.
1H-NMR (500 MHz , Chloroform-d): $\delta=0.92-0.99(\mathrm{~m}, 9 \mathrm{H}), 2.03-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.51(\mathrm{~m}, 4 \mathrm{H})$, $3.36(\mathrm{td}, J=9.4,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-3.72(\mathrm{~m}, 8 \mathrm{H}), 3.90-4.03(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{dt}, J=11.6,4.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.44-4.55(\mathrm{~m}, 3 \mathrm{H}), 4.63-4.72(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.46(\mathrm{~m}, 1 \mathrm{H})$, 8.67 (s, 1H).

13C-NMR (126 MHz, Chloroform-d): $\delta=12.6,16.0,17.2,18.6,26.5,35.4,36.3,43.2,50.6,55.5,56.8$, $57.1,58.9,70.1,70.5,71.2,128.1,129.5,130.8,131.8,138.4,148.3,150.5,170.3,170.3,171.1$,
TLC: $\mathrm{Rf}=0.45$ (DCM: $\mathrm{MeOH}=10: 1$).
LC-MS: Mass (ESI), calculated $=602.3[\mathrm{M}+\mathrm{H}+]$, found $=602.2$.
Mass (ESI), calculated $=624.3[\mathrm{M}+\mathrm{Na}+]$, found $=624.2$.
HPLC: [0-100 \% Solvent B, 20 min$]: \mathrm{Rt}=10.4 \mathrm{~min}$.

a3

Yield: 967 mg (75%, 1.5 mmol).
Appearance: white foam.
1H-NMR (500 MHz , Chloroform-d): $\delta=0.94$ (s, 9H), $1.42-1.46$ (m, 2H), 2.06-2.13 (m, 1H), 2.44 (ddd, $J=12.9,7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.67(\mathrm{~m}, 12 \mathrm{H}), 3.94-4.03(\mathrm{~m}, 3 \mathrm{H})$, 4.33 (dd, $J=15.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{tt}, J=6.5,3.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.69(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.29(\mathrm{~m}$, $1 \mathrm{H}), 7.33(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H})$.
13C-NMR (126 MHz , Chloroform- d): $\delta=17.2,26.5,35.2,36.2,43.3,50.8,56.8,57.2,58.8,70.1,70.2$, $70.4,70.6,70.7,71.2,128.2,129.5,130.7,131.9,138.4,148.2,150.6,170.5,171.0,171.3$.
TLC: $\mathrm{Rf}=0.45$ (DCM: $\mathrm{MeOH}=10: 1$).
LC-MS: Mass (ESI), calculated $=646.3[\mathrm{M}+\mathrm{H}+]$, found $=646.2$.
Mass (ESI), calculated $=668.3[\mathrm{M}+\mathrm{Na}+]$, found $=668.2$.
HPLC: [20-80 \% Solvent $B, 20 \mathrm{~min}]: \mathrm{Rt}=8.5 \mathrm{~min}$.

a4:

Yield: 1030 mg (75 \%, 1.5 mmol).
Appearance: white foam.
1H-NMR (500 MHz , Chloroform-d): $\delta=0.94$ (s, 9H), 2.09 (ddt, $J=13.3,8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (ddd, $J=$ $12.9,7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.70(\mathrm{~m}, 16 \mathrm{H}), 3.90-4.04(\mathrm{~m}, 3 \mathrm{H}), 4.33$ (dd, $J=15.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.53(\mathrm{~m}, 3 \mathrm{H}), 4.69(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-$ $7.35(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H})$.
13C-NMR (126 MHz, Chloroform-d): $\delta=16.0,26.5,35.2,36.3,43.3,50.8,56.8,57.2,58.7,70.1,70.2$, $70.4,70.5,70.7,70.7,71.2,128.2,129.5,130.7,131.9,138.4,148.2,150.6,170.5,171.0,171.3$.
TLC: $\mathrm{Rf}=0.47$ (DCM: $\mathrm{MeOH}=10: 1$).
LC-MS: Mass (ESI), calculated $=690.3[\mathrm{M}+\mathrm{H}+]$, found $=690.3$.
Mass (ESI), calculated $=712.3[\mathrm{M}+\mathrm{Na}+]$, found $=712.2$.
HPLC: [20-80 \% Solvent $B, 20 \mathrm{~min}]: \mathrm{Rt}=8.4 \mathrm{~min}$.

a5

Yield: 330 mg (22 \%, 0.5 mmol$)$.
Appearance: yellow foam.
1H-NMR (300 MHz , Chloroform-d): $\delta=0.94$ (s, 9H), 2.09 (dd, $J=13.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41 (td, $J=7.9$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.72(\mathrm{~m}, 20 \mathrm{H}), 3.88-4.05(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{dd}$, $J=15.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.56(\mathrm{~m}, 3 \mathrm{H}), 4.68(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 4 \mathrm{H})$, 7.41 (t, J = 6.0 Hz, 1H), 8.69 (s, 1H).

13C-NMR (75 MHz, Chloroform-d): $\delta=16.0,26.5,35.2,36.3,43.2,50.7,56.8,57.2,58.8,70.0,70.1$, $70.3,70.4,70.6,70.6,70.7,71.2,128.1,129.5,130.7,131.9,138.4,148.2,150.5,170.5,171.1,171.2$. TLC: $\mathrm{Rf}=0.49$ (DCM: $\mathrm{MeOH}=10: 1$).
LC-MS: Mass (ESI), calculated $=734.4[\mathrm{M}+\mathrm{H}+]$, found $=734.4$.
Mass (ESI), calculated $=756.4[\mathrm{M}+\mathrm{H}+]$, found $=756.3$.
HPLC: [20-80 \% Solvent $B, 20 \mathrm{~min}]$: $\mathrm{Rt}=8.9 \mathrm{~min}$.

3. Synthesis of b1-5

VH032-cyclopropane-F ($0.70 \mathrm{~g}, 1,31 \mathrm{mmol}, 1.0 \mathrm{eq}$.), tosyl and azide derviatized linkers of the length 1 to 5 (1.35 eq.) and potassiumcarbonate (2.7 eq.) were stirred in DMF for 24 h . The mixture was diluted
with water and was extracted with DCM. The organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by chromatography.
b1:
Yield: 0.68 g ($86 \%, 1.13 \mathrm{mmol})$.
Appearance: colourless foam.
1H NMR (500 MHz , Chloroform-d) : $\delta=0.97$ (s, 8H), 1.25 - 1.42 (m, 4H), 2.10 (ddt, $J=13.1,8.2,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 0 \mathrm{H}), 3.65(\mathrm{dd}, J=11.2,3.9$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.68-3.79(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{dt}, J=11.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.46$ (dd, $J=15.0,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56(\mathrm{dt}, J=14.4,7.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.75(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 0 \mathrm{H}), 6.89(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.03 (td, $J=8.5,7.5,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H})$.

13C-NMR (125 MHz, Chloroform-d): $\delta=13.7,13.8,16.1,26.3,35.2,35.8,38.7,50.4,56.5,57.5,58.4$, $67.2,70.2,76.8,112.1,122.4,126.6,129.9,131.5,132.4,150.3,170.2,170.4,171.0$.
TLC: $\mathrm{Rf}=0.53(\mathrm{DCM}: \mathrm{MeOH}=10: 1)$.
LC-MS: Mass (ESI), calculated $=602.3[\mathrm{M}+\mathrm{H}+]$, found $=602.3$.
HR-MS: Mass (ESI), calculated $=602.25556[\mathrm{M}+\mathrm{H}+]$, found $=602.25554$

b2

Yield: 0.84 g (100%, 1.31 mmol$)$.
Appearance: colourless foam.
1H NMR (500 MHz , Chloroform- d) : $\delta=0.85$ (s, 0H), 0.97 (s, 9H), 1.08 (s, 0H), $1.25-1.42$ (m, 4H), 2.11 (ddt, $J=12.1,7.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (ddd, $\mathrm{J}=12.2,8.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~d}, \mathrm{~J}=4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{ddd}, \mathrm{J}=5.6,4.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{dd}, \mathrm{J}=11.3$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{hd}, \mathrm{J}=6.1,5.4,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{dt}, \mathrm{J}=11.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ $-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{dd}, \mathrm{J}=14.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.58(\mathrm{~m}, 3 \mathrm{H}), 4.72(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}$, $0 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.39(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~s}, 0 \mathrm{H}), 8.70(\mathrm{~d}, \mathrm{~J}=12.6$ $\mathrm{Hz}, 0 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H})$.
13C-NMR (125 MHz, Chloroform-d): $\delta=13.7,13.8,16.1,26.3,35.2,36.0,38.9,50.7,56.5,57.5,58.4$, $67.9,69.7,70.3,112.6,122.1,126.7,129.8,131.7,132.3,148.5,150.3,156.6,170.2,170.4,170.9$.
TLC: $\mathrm{Rf}=0.61$ (DCM: $\mathrm{MeOH}=10: 1$).
LC-MS: Mass (ESI), calculated $=646.3[\mathrm{M}+\mathrm{H}+]$, found $=646.3$.
HR-MS: Mass (ESI), calculated $=646.28175[\mathrm{M}+\mathrm{H}+]$, found $=646.28176$

b3

Yield: 0.78 g (87%, 1.14 mmol).
Appearance: colourless foam.
1H NMR (500 MHz , Chloroform- d) : $\delta=0.97(\mathrm{~s}, 8 \mathrm{H}), 1.06(\mathrm{~s}, 0 \mathrm{H}), 1.23-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 0 \mathrm{H})$, $2.03-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{ddd}, \mathrm{J}=13.5,7.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.85(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.34-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 0 \mathrm{H}), 3.62-3.77(\mathrm{~m}, 5 \mathrm{H}), 3.73-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.88-4.03(\mathrm{~m}, 3 \mathrm{H})$, $4.15-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.43-4.57(\mathrm{~m}, 4 \mathrm{H}), 4.62(\mathrm{~s}, 0 \mathrm{H}), 4.69(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.98 (dd, J = 7.6, 1.7 Hz, 1H), 7.04 (dd, J = 8.9, 3.5 Hz, 1H), $7.25-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, 1H), 8.69 (s, 1H).
13C-NMR (125 MHz , Chloroform- d) : $\delta=13.6,13.7,13.8,16.1,26.3,35.3,36.2,39.0,50.7,56.6,57.5$, $58.5,67.9,69.8,70.0,70.3,70.7,70.9,79.2,112.8,122.0,126.8,129.7,131.7,132.3,148.5,150.3$, 156.8, 170.1, 170.2, 170.5, 170.7.

TLC: $\mathrm{Rf}=0.50$ (DCM: $\mathrm{MeOH}=10: 1$).
LC-MS: Mass (ESI), calculated $=690.3[\mathrm{M}+\mathrm{H}+]$, found $=690.3$.
HR-MS: Mass (ESI), calculated $=690.30829[\mathrm{M}+\mathrm{H}+]$, found $=69030797$

b4

Yield: 0.81 g ($84 \%, 0.95 \mathrm{mmol})$.
Appearance: colourless foam.
1H NMR (500 MHz , Chloroform- d) : $\delta=0.76-0.84(\mathrm{~m}, 0 \mathrm{H}), 0.81(\mathrm{~s}, 0 \mathrm{H}), 0.88(\mathrm{~s}, 7 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=1.4$ $\mathrm{Hz}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 0 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 0 \mathrm{H}), 1.14-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.99-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.13(\mathrm{~m}$, 0 H), $2.16-2.24(\mathrm{~m}, 0 \mathrm{H}), 2.29-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 0 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 3.30$ ($\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.58(\mathrm{ddt}, \mathrm{J}=5.8,3.1,2.3 \mathrm{~Hz}, 7 \mathrm{H}), 3.60-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.66-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.86$ (tdd, J = 14.9, 6.4, 3.5 Hz, 3H), 4.13 (dddd, J = 24.2, 10.0, 5.7, 3.9 Hz, 2H), $4.33-4.45$ (m, 2H), $4.42-$ $4.57(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 0 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, \mathrm{J}=$ $7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=8.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.19(\mathrm{~m}, 0 \mathrm{H}), 7.19-7.30(\mathrm{~m}, 2 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H})$.
13C-NMR (125 MHz , Chloroform- d) : $\delta=13.6,13.6,13.7,16.1,26.2,26.3,35.5,36.4,39.0,50.7,56.6$, $57.4,58.6,68.0,69.6,70.0,70.2,70.6,70.7,70.8,76.8,77.0,77.3,79.1,112.8,122.0,126.8,129.7$, $131.7,132.3,148.5,150.3,156.8,169.9,170.6,170.6$.

TLC: $\mathrm{Rf}=0.47$ (DCM:MeOH = 10:1).
LC-MS: Mass (ESI), calculated $=734.4[\mathrm{M}+\mathrm{H}+]$, found $=734.4$.
HR-MS: Mass (ESI), calculated $=734.33481[\mathrm{M}+\mathrm{H}+]$, found $=734.33419$

b5

Yield: $0.67 \mathrm{~g}(66 \%, 0.86 \mathrm{mmol})$.
Appearance: colourless resin.
1H NMR (500 MHz, Chloroform- d) : $\delta=0.98(\mathrm{~s}, 8 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=18.7 \mathrm{~Hz}, 0 \mathrm{H}), 1.23-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.34$ (dddd, J = 17.2, 14.4, 8.1, 3.4 Hz, 3H), 1.85 (s, 1H), 2.14 (ddt, J = 13.4, 8.0, 2.0 Hz, 1H), 2.42 (ddd, J = $12.8,7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 0 \mathrm{H}), 3.61-3.75$ $(\mathrm{m}, 13 \mathrm{H}), 3.72-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.88-4.01(\mathrm{~m}, 3 \mathrm{H}), 4.20(\mathrm{ddd}, \mathrm{J}=10.2,6.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{ddd}, \mathrm{J}=$ $10.2,5.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.51-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, \mathrm{J}=8.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 0 \mathrm{H})$, $7.27-7.38(\mathrm{~m}, 3 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H})$.
13C-NMR (125 MHz , Chloroform-d): $\delta=13.6,13.7,13.7,16.2,26.3,35.5,36.4,39.1,50.7,56.5,57.5$, $58.6,68.0,69.6,70.0,70.3,70.5,70.7,70.8,79.1,112.8,122.0,126.8,129.8,131.7,132.3,148.5$, $150.3,156.8,169.9,170.1,170.6,170.7$.
TLC: $\mathrm{Rf}=0.51$ (DCM: $\mathrm{MeOH}=10: 1$).
LC-MS: Mass (ESI), calculated $=778.6[\mathrm{M}+\mathrm{H}+]$, found $=778.6$.
HR-MS: Mass (ESI), calculated $=778.36087[\mathrm{M}+\mathrm{H}+]$, found $=778.36040$

4. Synthesis of c1-5

Azidoacetic acids of the length 1 to 5 (1.0 eq.) were dissolved in DCM and DMF. The solution was cooled to $0^{\circ} \mathrm{C}$ and oxalyl chloride (1.3 eq .) was added slowly. The solution was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$, allowed to warm to room temperature and stirred for additional 2 h . The solution was concentrated under reduced pressure. The intermediate was dissolved in THF (20 mL) and pomalidomide (1.0 eq.) was added. The solution was stirred for 3 h at $80^{\circ} \mathrm{C}$ followed by 16 h at $70^{\circ} \mathrm{C}$. The solution was filtered and concentrated under reduced pressure. The obtained product was purified by chromatography.
c1:
Yield: 799 mg (99 \%, 2.0 mmol).
Appearance: yellow solid.
1H-NMR (300 MHz, DMSO-d6): $\delta=1.98-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.75(\mathrm{~m}, 3 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.77(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{dd}, J=13.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 10.35(\mathrm{~s}, 1 \mathrm{H}), 11.06(\mathrm{~s}, 1 \mathrm{H})$.
13C-NMR (75 MHz , DMSO-d6): $\delta=22.3,31.2,49.3,50.4,70.2,70.4,116.2,118.6,124.7,131.4,136.2$, 136.5, 166.8, 168.4, 169.0, 169.6, 172.8.

TLC: $\mathrm{Rf}=0.27$ (DCM:MTBE $=10: 1$).
LC-MS: Mass (ESI), calculated $=401.1[\mathrm{M}+\mathrm{H}+]$, found $=401.1$.
Mass (ESI), calculated $=418.1[\mathrm{M}+\mathrm{NH} 4+]$, found $=418.2$.
Mass (ESI), calculated $=823.2[2 \mathrm{M}+\mathrm{Na}+]$, found $=822.8$.
HPLC: [0-100 \% Solvent B, 20 min$]$: $\mathrm{Rt}=10.6 \mathrm{~min}$.
c2:
Yield: 660 mg (74 \%, 1.5 mmol$)$.
Appearance: yellow solid.
1H-NMR (300 MHz , DMSO-d6): $\delta=2.05-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.86-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.37$ $-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.85(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 5.19$ (dd, J $=12.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=8.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{dd}, J=8.5,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 10.40(\mathrm{~s}, 1 \mathrm{H}), 11.16(\mathrm{~s}, 1 \mathrm{H})$.
13C-NMR (75 MHz , DMSO-d6): $\delta=21.9,30.9,48.9,50.0,69.3,69.5,70.2,70.8,116.0,118.3,124.3$, 131.3, 135.9, 136.4, 166.6, 168.2, 169.2, 169.6, 172.6.

TLC: $\mathrm{Rf}=0.13$ (DCM: $\mathrm{MeOH}=50: 1$).
LC-MS: Mass (ESI), calculated $=445.1[\mathrm{M}+\mathrm{H}+]$, found $=445.3$.
Mass (ESI), calculated $=462.1[\mathrm{M}+\mathrm{NH} 4+]$, found $=462.2$.
HPLC: [0-100 \% Solvent B, 20 min$]: \mathrm{Rt}=11.2 \mathrm{~min}$.

c3:

Yield: 950 mg (97%, 1.9 mmol).
Appearance: yellow solid.
1H-NMR (300 MHz, DMSO-d6): $\delta=2.00-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.81-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.35$ (dd, $J=5.6,4.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.56(\mathrm{tt}, J=4.4,2.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.65-3.82(\mathrm{~m}, 4 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{dd}, J=$ $12.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{dd}, J=8.5,0.8 \mathrm{~Hz}$, 1H), 10.35 (s, 1H), 11.14 (s, 1H).
13C-NMR (75 MHz, DMSO-d6): $\delta=21.9,30.9,49.0,49.9,69.2,69.6,69.7,69.9,70.2,70.8,116.0$, 118.3, 124.4, 131.3, 135.9, 136.5, 166.6, 168.2, 169.3, 169.7, 172.7.

TLC: $\mathrm{Rf}=0.27$ (DCM:MeOH = 20:1).
LC-MS: Mass (ESI), calculated $=489.2[\mathrm{M}+\mathrm{H}+]$, found $=489.4$.
Mass (ESI), calculated $=506.2[\mathrm{M}+\mathrm{NH} 4+]$, found $=506.1$.
HPLC: [0-100 \% Solvent B, 20 min$]: \mathrm{Rt}=11.0 \mathrm{~min}$.
c4:
Yield: 503 mg (63 \%, 0.9 mmol).
Appearance: yellow solid.
1H-NMR (300 MHz, DMSO-d6): $\delta=2.08$ (ddd, $J=9.5,5.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.59(\mathrm{dt}, J=9.6,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71-2.97(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.62(\mathrm{~m}, 10 \mathrm{H}), 3.65-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.80(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 5.16$ (dd, $J=12.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 (dd, $J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.87 (dd, $J=8.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.73 (dd, $J=$ $8.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 10.36(\mathrm{~s}, 1 \mathrm{H}), 11.13(\mathrm{~s}, 1 \mathrm{H})$.
13C-NMR (75 MHz, DMSO-d6): $\delta=21.9,30.9,49.0,50.0,67.6,69.2,69.6,69.7,69.8,69.8,70.0,70.2$, 70.8, 116.1, 118.3, 124.4, 131.3, 135.9, 136.5, 166.6, 168.2, 169.4, 169.7, 172.7.

TLC: $\mathrm{Rf}=0.19$ (DCM:MeOH = 20:1).
LC-MS: Mass (ESI), calculated $=533.2[\mathrm{M}+\mathrm{H}+]$, found $=533.6$.
Mass (ESI), calculated $=550.2[\mathrm{M}+\mathrm{NH} 4+]$, found $=550.3$.
HPLC: [0-100 \% Solvent B, 20 min$]$: Rt = 11.0 min .

c5:

Yield: 807 mg (70%, 1.7 mmol).
Appearance: yellow solid.
1H-NMR (300 MHz, DMSO-d6): $\delta=2.08$ (ddt, $J=12.8,5.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.52-2.74$ (m, 2H), 2.90 (ddd, $J=17.3,14.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.60(\mathrm{~m}, 14 \mathrm{H}), 3.64-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{dt}, J=$ $4.8,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{dd}, J=12.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.93(\mathrm{~m}$, $1 \mathrm{H}), 8.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 10.36(\mathrm{~s}, 1 \mathrm{H}), 11.13(\mathrm{~s}, 1 \mathrm{H})$.
13C-NMR (75 MHz , DMSO-d6): $\delta=21.9,30.9,48.9,49.9,69.2,69.6,69.7,69.7,69.8,70.2,70.7,116.0$, 118.3, 124.3, 131.3, 135.9, 136.5, 166.6, 168.2, 169.3, 169.6, 172.6.

TLC: $\mathrm{Rf}=0.17$ (DCM: $\mathrm{MeOH}=20: 1$).
LC-MS: Mass (ESI), calculated $=577.2[\mathrm{M}+\mathrm{H}+]$, found $=577.4$.
Mass (ESI), calculated $=594.2[\mathrm{M}+\mathrm{NH} 4+]$, found $=594.2$.
HPLC: [0-100 \% Solvent B, 20 min$]: \mathrm{Rt}=11.0 \mathrm{~min}$.

5. Synthesis of alkyne 1, 5, 6, 7, 10, 11, 12:

Synthesis of alkyne $1,5,6,7,10,11$ and 12 was previously described in ${ }^{[1]}$.

6. Synthesis of alkyne 2:

Starting from (1S, 5S, 6R)-10-((3,5-Dichlorophenyl)sulfonyl)-5-(hydroxymethyl)-3-(pyridin-2-ylmethyl)-3,10- diazabicyclo[4.3.1]decan-2-one; Synthesis previously described in ${ }^{[2]}$.
(1S, $5 S, \quad 6 R)$-10-((3,5-Dichlorophenyl)sulfonyl)-5-(hydroxymethyl)-3-(pyridin-2-ylmethyl)-3,10-diazabicyclo[4.3.1]decan-2-one ($48 \mathrm{mg}, 99.1 \mu \mathrm{~mol}, 1.0$ eq.) was dissolved in DMF (dry, 5 mL) at $0^{\circ} \mathrm{C}$. Sodium hydride ($7.1 \mathrm{mg}, 297 \mu \mathrm{~mol}, 3.0$ eq.) was added and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. 3-Bromoprop-1-yne ($47 \mathrm{mg}, 396 \mu \mathrm{~mol}, 4.0$ eq.) and tetrabutylammonium iodide ($1.8 \mathrm{mg}, 5.0 \mu \mathrm{~mol}, 0.05$ eq.) were added and the mixture was was stirred for 18 h at $0^{\circ} \mathrm{C}$ to room temperature. Ammonium chloride (sat., aq, 30 mL) was added and the mixture was extracted with EA ($3 \times 30 \mathrm{~mL}$). The combined organic phases were dried over MgSO 4 and concentrated under reduced pressure. The obtained product was purified by column chromatography ($25 \mathrm{~g} \mathrm{SiO} 2, \mathrm{CH}: \mathrm{EA}=1: 1$).

Yield: $29 \mathrm{mg}(56 \%, 54.9 \mu \mathrm{~mol})$.
Appearance: white foam.
1H-NMR (500 MHz , Chloroform-d): $\delta=1.30$ (tdd, $J=13.3,6.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.44 (ddt, $J=14.3,9.5,4.7$ $\mathrm{Hz}, 71 \mathrm{H}), 1.50-1.66(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.24 (dd, $J=14.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{dd}, J=14.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-4.00$ $(\mathrm{m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=7.1$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.53$ (d, J = $4.9 \mathrm{~Hz}, 1 \mathrm{H})$.
13C-NMR (126 MHz, Chloroform-d): $\delta=15.7,28.2,28.3,44.5,49.7,52.9,56.3,57.2,58.5,70.5,75.2$, 79.3, 122.2, 122.6, 125.2, 132.8, 136.4, 137.3, 144.2, 149.2, 157.0, 170.5.

TLC: $R f=0.53$ (EA).
LC-MS: Mass (ESI), calculated $=522.1[\mathrm{M}+\mathrm{H}]+$, found $=522.6$.

7. Synthesis of alkyne 3:

Starting from (1S,5R,6R)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one; Synthesis previously described in: Pomplun, et al. Chemogenomic Profiling of Human and Microbial FK506Binding Proteins. J. Med. Chem. 2018, 61, 3660-3673.

3-Bromo-5-chlorobenzenesulfonyl chloride

3-Bromo-5-chloroaniline ($1.79 \mathrm{~g}, 8.67 \mathrm{mmol}, 1.0$ eq.) was dissolved in acetonitrinle (150 mL) and cooled to $0^{\circ} \mathrm{C}$. Hydrocloric acid (37%, aq, 3 mL), followed by sodium nitrite ($0.72 \mathrm{~g}, 10.4 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and water (5 mL) were added and the mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$. Thionyl chloride $(56.5 \mathrm{~mL}, 780$ $\mathrm{mmol}, 90$ eq.) in water was added and the mixture was stirred for 20 min at $0{ }^{\circ} \mathrm{C}$. Copper(II) chloride dihydrate ($0.74 \mathrm{~g}, 4.33 \mathrm{mmol}, 0.5 \mathrm{eq}$.) in water (5 mL) was added and the mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$. The aqueous solution was extracted with wit EA $(3 \times 300 \mathrm{~mL})$. The combined organic phases were dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by column chromatography ($100 \mathrm{~g} \mathrm{SiO} 2, \mathrm{CH}: \mathrm{EA}=9: 1$).

Yield: 1.57 g (63 \%, 5.41 mmol$)$.
Appearance: brown oil.
1H-NMR (300 MHz , Chloroform- d): $\delta=7.87(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{t}, \mathrm{J}=1.7$ Hz, 1H).
13C-NMR (75 MHz , Chloroform- d): $\delta=124.1,125.9,128.2,136.9,138.1$, 146.3.
TLC: $R f=0.25(\mathrm{CH})$.
HPLC: [0-100 \% Solvent B, 20 min$]$: $\mathrm{Rt}=16.7 \mathrm{~min}$.
82 \% purity (220 nm).

(1S, 5S, 6R)-10-((3-Bromo-5-chlorophenyl)sulfonyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

(1S, 5S, 6R)-3-(Pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one ($750 \mathrm{mg}, 2.76 \mathrm{mmol}$, 1.0 eq.), 3-bromo-5-chlorobenzenesulfonyl chloride ($1041 \mathrm{mg}, 3.59 \mathrm{mmol}, 1.3 \mathrm{eq}$.) and DIPEA (0.94 mL , $5.53 \mathrm{mmol}, 2.0$ eq.) were dissolved in acetonitrile (dry, 75 mL) and stirred for 18 h at room temperature
under argon. Brine (100 mL) was added and the mixture was extracted with DCM ($2 \times 100 \mathrm{~mL}$). The combined organic phases were dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by column chromatography ($100 \mathrm{~g} \mathrm{SiO} 2, \mathrm{CH}: \mathrm{EA}=1: 1$)

Yield: 710 mg ($1.35 \mathrm{mmol}, 49$ \%).
Appearance: white foam.
1H-NMR (300 MHz , Chloroform-d): $\delta=1.14-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.69(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.35(\mathrm{~m}, 1 \mathrm{H})$, 2.69 (dd, $J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (dd, $J=14.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-4.04(\mathrm{~m}, 2 \mathrm{H}), 4.66-4.76(\mathrm{~m}, 2 \mathrm{H})$, $4.85(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.69$ (ddd, $J=17.0,10.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (ddd, $J=7.5$, $4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{td}, \mathrm{J}=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{ddd}, J=4.9,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H})$.
TLC: Rf = 0.57 (EA).
LC-MS: Mass (ESI), calculated $=526.0[\mathrm{M}+\mathrm{H}]+$, found $=526.5$.
HPLC: [0-100 \% Solvent B, 20 min$]: \mathrm{Rt}=13.6 \mathrm{~min}$.
>99 \% purity (220 nm).
(1S, 5S, 6R)-10-((3-Chloro-5-((trimethylsilyl)ethynyl)phenyl)sulfonyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one
(1S, $5 S, \quad 6 R)$-10-((3-Bromo-5-chlorophenyl)sulfonyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo [4.3.1]decan-2-one ($710 \mathrm{mg}, 1.35 \mathrm{mmol}, 1.0 \mathrm{eq}$.), copper(I) iodide ($129 \mathrm{mg}, 0.68 \mathrm{mmol}, 0.5 \mathrm{eq}$.) and palladium-tetrakis(triphenylphosphine) $(786 \mathrm{mg}, 0.68 \mathrm{mmol}, 0.5 \mathrm{eq}$.) were dissolved in TMEDA $(350 \mathrm{~mL})$ under argon. Ethynyltrimethylsilane ($1.88 \mathrm{~mL}, 13.5 \mathrm{mmol}, 10.0$ eq.) was added and the mixture was stirred for 3 h at $90^{\circ} \mathrm{C}$. Brine (2 L) was added and the mixture was extracted with DCM $(4 \times 1 \mathrm{~L})$. The combined organic phases were dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by column chromatography ($150 \mathrm{~g} \mathrm{SiO} 2, \mathrm{CH}: \mathrm{EA}=2: 1 \rightarrow 1: 1$)

Yield: 510 mg ($0.94 \mathrm{mmol}, 70 \%$).
Appearance: white foam.
1H-NMR (500 MHz , Chloroform-d): $\delta=0.25$ (d, $J=2.0 \mathrm{~Hz}, 9 \mathrm{H}$), $1.16-1.35(\mathrm{~m}, 5 \mathrm{H}), 2.24-2.33(\mathrm{~m}$, $1 \mathrm{H}), 2.63-2.73(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=14.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-4.04(\mathrm{~m}, 2 \mathrm{H}), 4.70-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.84$ (dd, $J=15.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.99(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{dt}, J=9.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.76(\mathrm{~m}, 1 \mathrm{H}), 7.17$ (ddd, $J=7.5,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{td}, J=7.7,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.78(\mathrm{~m}, 1 \mathrm{H}), 8.51(\mathrm{ddd}, J=4.9,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H})$.
13C-NMR (126 MHz, Chloroform-d): $\delta=-0.2,15.7,26.5,27.6,49.2,52.2,54.9,56.3,57.0,99.2,101.4$, 116.9, 122.1, 122.5, 126.2, 126.5, 128.0, 135.5, 135.6, 137.0, 137.4, 143.2, 149.3, 157.1, 170.6.

TLC: $R f=0.50(C H: E A=1: 2)$.
LC-MS: Mass (ESI), calculated $=542.2[\mathrm{M}+\mathrm{H}]+$, found $=542.9$.
HPLC: [60-90 \% Solvent B, 20 min$]$: Rt = 5.9 min .
94 \% purity (220 nm).

(1S, 5S, 6R)-10-((3-chloro-5-ethynylphenyl)sulfonyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

(1S, 5S, 6R)-10-((3-Chloro-5-((trimethylsilyl)ethynyl)phenyl)sulfonyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one ($510 \mathrm{mg}, 0.94 \mathrm{mmol}, 1.0$ eq.) and potassium carbonate (130 mg , $0.94 \mathrm{mmol}, 1.0 \mathrm{eq}$) were dissolved in methanol (dry, 100 mL) and the mixture was stirred for 3 h at room temperature. The mixture was concentrated under reduced pressure and the obtained product was purified by column chromatography ($40 \mathrm{~g} \mathrm{SiO} 2, \mathrm{CH}: \mathrm{EA}=1: 1$).

Yield: 170 mg ($38 \%, 0.36 \mathrm{mmol}$).
Appearance: white solid.
1H-NMR (500 MHz , Chloroform-d): $\delta=1.18-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{tt}, \mathrm{J}=11.3,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.25-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{td}, J=9.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=14.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 1 \mathrm{H})$, $3.97-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.71-4.79(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dt}, J=17.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$ (dd, $J=10.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.71 (ddd, $J=17.0,10.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.31$ (dt, $J=7.9$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.52 (ddd, $J=4.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H})$.
13C-NMR (126 MHz, Chloroform-d): $\delta=15.7,26.5,27.7,49.2,52.2,55.0,56.4,57.0,80.5,81.2,116.9$, 122.2, 122.6, 125.5, 126.8, 128.2, 135.7, 135.9, 137.0, 137.4, 143.4, 149.4, 157.1, 170.6.

TLC: $R f=0.26$ (CH:EA = 1:1).
LC-MS: Mass (ESI), calculated $=470.1[\mathrm{M}+\mathrm{H}]+$, found $=470.8$.
HPLC: [0-100 \% Solvent B, 20 min$]: \mathrm{Rt}=13.0 \mathrm{~min}$.
[20-70 \% Solvent B, 20 min$]: \mathrm{Rt}=12.8 \mathrm{~min}$.
> 99 \% purity (220 nm).
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C} 24 \mathrm{H} 24 \mathrm{CIN} 3 \mathrm{O} 3 \mathrm{~S}=470.12997$; found $=470.13016$.

8. Synthesis of alkyne 4:

Starting from (1S,5R,6R)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one; Synthesis previously described in: Pomplun, et al. Chemogenomic Profiling of Human and Microbial FK506Binding Proteins. J. Med. Chem. 2018, 61, 3660-3673.

(1S, $5 S, \quad 6 R)$-10-((4-Bromo-3-chlorophenyl)sulfonyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

(1S, 5S, 6R)-3-(Pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one (750 mg, 2.76 mmol , 1.0 eq.), 4-bromo-3-chlorobenzenesulfonyl chloride ($1042 \mathrm{mg}, 3.59 \mathrm{mmol}, 1.3 \mathrm{eq}$.) and DIPEA (0.94 mL , $5.53 \mathrm{mmol}, 2.0$ eq.) were dissolved in acetonitrile (dry, 75 mL) and stirred for 18 h at room temperature under argon. Brine (100 mL) was added and the mixture was extracted with DCM $(2 \times 100 \mathrm{~mL})$. The combined organic phases were dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by column chromatography ($100 \mathrm{~g} \mathrm{SiO} 2, \mathrm{CH}: \mathrm{EA}=1: 1$)

Yield: 904 mg (62 \%, 1.72 mmol$)$.
Appearance: white foam.
1H-NMR (300 MHz, Chloroform-d): $\delta=1.15-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.69(\mathrm{~m}, 3 \mathrm{H}), 2.29(\mathrm{dq}, J=13.4,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.62-2.77(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{dd}, \mathrm{J}=14.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.07(\mathrm{~m}, 2 \mathrm{H}), 4.71-4.78(\mathrm{~m}, 2 \mathrm{H})$, $4.84(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-5.06(\mathrm{~m}, 2 \mathrm{H}), 5.62-5.78(\mathrm{~m}, 1 \mathrm{H}), 7.18$ (ddd, $J=7.6,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{dt}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.52$ (ddd, $J=4.9,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H})$.
13C-NMR (75 MHz , Chloroform- d): $\delta=15.5,26.4,27.5,49.0,52.1,54.8,56.2,56.9,116.8,122.0,122.4$, 125.5, 127.8, 128.2, 134.7, 136.0, 136.9, 137.3, 141.8, 149.2, 157.0, 170.4.

TLC: $\mathrm{Rf}=0.55$ (EA).
LC-MS: Mass (ESI), calculated $=526.0[\mathrm{M}+\mathrm{H}]+$, found $=526.3$.

(1S, 5S, 6R)-10-((3-Chloro-4-((trimethylsilyl)ethynyl)phenyl)sulfonyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

(1S, 5S, 6R)-10-((4-Bromo-3-chlorophenyl)sulfonyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo [4.3.1]decan-2-one ($702 \mathrm{mg}, 1.34 \mathrm{mmol}, 1.0$ eq.), copper(I) iodide ($128 \mathrm{mg}, 0.67 \mathrm{mmol}, 0.5 \mathrm{eq}$.) and palladium-tetrakis(triphenylphosphine) ($774 \mathrm{mg}, 0.67 \mathrm{mmol}, 0.5 \mathrm{eq}$.) were dissolved in TMEDA $(100 \mathrm{~mL})$ under argon. Ethynyltrimethylsilane ($1.86 \mathrm{~mL}, 13.4 \mathrm{mmol}, 10.0$ eq.) was added and the mixture was stirred at $90^{\circ} \mathrm{C}$ for 3 h . Brine (100 mL) was added and the mixture was extracted with DCM (2 x 100 mL). The combined organic phases were dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by column chromatography (150 g SiO2, $\mathrm{CH}: \mathrm{EA}=2: 1 \rightarrow$ 1:1)

Yield: 607 mg (1.12 mmol, 84 \%).
Appearance: slightly brown foam.
1H-NMR (300 MHz , Chloroform- d): $\delta=0.27$ ($\mathrm{s}, 9 \mathrm{H}$), $1.13-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.51(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~d}$, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.74(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=14.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=$ $3.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.91-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.59-5.77(\mathrm{~m}, 1 \mathrm{H}), 7.17$ (ddd, J=7.6, 4.8, 1.1 Hz, 1H), $7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.84(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{dt}, J=4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H})$.
13C-NMR (75 MHz , Chloroform-d): $\delta=-0.2,15.7,26.4,27.5,49.1,52.1,54.8,56.3,57.0,99.7,105.1$, 116.8, 122.1, 122.5, 124.3, 127.2, 127.5, 134.3, 137.0, 137.4, 137.4, 141.8, 149.3, 157.1, 170.6.

TLC: $R f=0.50(C H: E A=1: 2)$.
LC-MS: Mass (ESI), calculated $=542.2[\mathrm{M}+\mathrm{H}]+$, found $=542.8$.
[5-100 \% Solvent B, 20 min]: Rt = 15.1 min . 93 \% purity (220 nm).

(1S, 5S, 6R)-10-((3-Chloro-4-ethynylphenyl)sulfonyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

(1S, $5 S, \quad 6 R)$-10-((3-Chloro-4-((trimethylsilyl)ethynyl)phenyl)sulfonyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one ($130 \mathrm{mg}, 240 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) and potassium carbonate ($33 \mathrm{mg}, 240$ $\mu \mathrm{mol}, 1.0 \mathrm{eq}$) were dissolved in methanol (dry, 13 mL) and the mixture was stirred for 3 h at room temperature. Water $(30 \mathrm{~mL})$ was added and the mixture was extracted with EA $(3 \times 30 \mathrm{~mL})$. The combined organic phases were dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by preparative HPLC. The product was dried by lyophilisation.

Yield: $64 \mathrm{mg}(57 \%, 136 \mu \mathrm{~mol})$.
Appearance: white solid.
1H-NMR (300 MHz , Chloroform-d): $\delta=1.16-1.44$ (m, 2H), $1.51-1.64(\mathrm{~m}, 3 \mathrm{H}), 2.24(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.77(\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=9.6,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.59$ $-4.78(\mathrm{~m}, 2 \mathrm{H}), 5.07-5.22(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dt}, J=18.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-$ 7.77 (m, 4H), $7.87(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$.

13C-NMR (75 MHz , Chloroform-d) : $\delta=15.5,26.5,27.4,49.2,53.1,53.5,54.9,56.9,78.9,86.5,117.7$, 124.4, 124.5, 126.9, 127.3, 134.9, 136.5, 137.8, 142.1, 143.1, 144.2, 154.7, 171.7.

TLC: $\mathrm{Rf}=0.40$ (CH:EA = 1:2).
LC-MS: Mass (ESI), calculated $=470.1[\mathrm{M}+\mathrm{H}]+$, found $=470.1$.
[50-100 \% Solvent B, 2.7 min]: $\mathrm{Rt}=1.0 \mathrm{~min}$.
>99 \% purity (220 nm).
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C} 24 \mathrm{H} 24 \mathrm{CIN} 3 \mathrm{O} 3 \mathrm{~S}=470.12997$; found $=470.12999$.

Starting from (R)-1-(3-(2-(tert-Butoxy)-2-oxoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl (S)-piperidine-2-carboxylate; Synthesis previously described in: Gopalakrishnan R, Kozany C, Gaali S, Kress C, Hoogeland B, Bracher A, Hausch F: Evaluation of Synthetic FK506 Analogues as Ligands for the FK506-Binding Proteins 51 and 52. J. Med. Chem. 2012, 55:4114-4122.
And starting from (S)-2-(4-((tert-Butyldiphenylsilyl)oxy)-3,5-dimethoxyphenyl)-2-cyclohexylacetic acid; Synthesis previously described ${ }^{[3]}$.

(R)-1-(3-(2-(tert-Butoxy)-2-oxoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl (S)-1-((S)-2-(4-((tert-butyldiphenylsilyl)oxy)-3,5-dimethoxyphenyl)-2-cyclohexylacetyl)piperidine-2-carboxylate

(S)-2-(4-((tert-Butyldiphenylsilyl)oxy)-3,5-dimethoxyphenyl)-2-cyclohexylacetic acid (362 mg, 0.68 $\mathrm{mmol}, 1.0 \mathrm{eq}$.) and HATU ($176 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.1 \mathrm{eq}$.) were dissolved in DCM (2 mL) and DMF (3 mL). The mixture was cooled to $0^{\circ} \mathrm{C}$ and DIPEA ($356 \mu \mathrm{~L}, 2.04 \mathrm{mmol}, 3.0$ eq.) were added. The mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$. (R)-1-(3-(2-(tert-Butoxy)-2-oxoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl (S)-piperidine-2-carboxylate ($350 \mathrm{mg}, 0.68 \mathrm{mmol}$, 1.0 eq.) in DCM (4 mL) was added and the mixture was stirred for 18 h at room temperature. Additional HATU (1.1 eq.) and DIPEA (3.0 eq.) were added and the mixture was stirred for 5 h at room temperature. The solution was concentrated under reduced pressure and the obtained product was purified by column chromatography.

Yield: 643 mg (92 \%, 0.63 mmol).
Appearance: white foam.

1H-NMR (300 MHz , Chloroform- d) : $\delta=0.47-0.76(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.06-1.15(\mathrm{~m}$, $14 \mathrm{H}), 1.19-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.53-1.71(\mathrm{~m}, 7 \mathrm{H}), 1.79-2.11(\mathrm{~m}, 5 \mathrm{H}), 2.18-$ $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.62(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.79-3.89(\mathrm{~m}, 6 \mathrm{H}), 4.50(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.55-5.82(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.47-7.01(\mathrm{~m}, 6 \mathrm{H}), 7.08-7.45(\mathrm{~m}$, 10H), $7.60-7.73(\mathrm{~m}, 5 \mathrm{H})$.
13C-NMR (75 MHz , Chloroform- d) : $\delta=20.2,21.2$, 25.6, 26.1, 26.3, 26.4, 26.4, 26.7, 27.1, 28.2, 30.6, 31.1, 33.0, 38.2, 41.4, 43.7, 55.3, 55.6, 55.8, 56.1, 65.8, 65.9, 75.7, 82.4, 105.7, 111.5, 111.8, 113.4, $113.9,119.5,120.4,120.8,127.0,129.1,129.2,129.8,130.5,133.3,133.8,134.4,135.4,142.0,147.4$, 149.1, 151.0, 158.0, 168.1, 170.5, 172.6.

TLC: $R f=0.78(C H: E A=1: 1)$.
$R f=0.35(C H: E A=3: 1)$.
LC-MS: Mass (ESI), calculated $=1050.5[\mathrm{M}+\mathrm{H}]+$, found $=1050.6$.
HPLC: [80-100 \% Solvent B, 20 min$]$: Rt = 19.7 min .
75 \% purity (220 nm).
(R)-1-(3-(2-(tert-Butoxy)-2-oxoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl
(S)-1-((S)-2-cyclohexyl-2-(4-hydroxy-3,5-dimethoxyphenyl)acetyl)piperidine-2-carboxylate
(R)-1-(3-(2-(tert-Butoxy)-2-oxoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl (S)-1-((S)-2-(4-((tert-butyldiphenylsilyl)oxy)-3,5-dimethoxyphenyl)-2-cyclohexylacetyl) piperidine-2-carboxylate (643 mg , $0.63 \mathrm{mmol}, 1.0$ eq.) was dissolved in THF (dry, 11 mL) and cooled to $0^{\circ} \mathrm{C}$ under argon. TBAF (1 M in THF, 0.6 mL) was added and the mixture was stirred for 5 h at $0^{\circ} \mathrm{C}$ to room temperature. The reaction was quenched with water (15 mL) and the mixture was extracted with DCM ($3 \times 40 \mathrm{~mL}$). The combined organic phases were dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by column chromatography.

Yield: 420 mg ($84 \%, 0.53 \mathrm{mmol})$.
Appearance: white foam.
1H-NMR (300 MHz, Chloroform-d): $\delta=1.47(\mathrm{~s}, 9 \mathrm{H}), 1.56-1.70(\mathrm{~m}, 10 \mathrm{H}), 1.76-1.98(\mathrm{~m}, 4 \mathrm{H}), 2.03(\mathrm{~s}$, $2 \mathrm{H}), 2.25-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{td}, J=13.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ $-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.88(\mathrm{~m}, 12 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 5.45(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 2 \mathrm{H})$, 5.58 (dd, $J=7.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 2 \mathrm{H}), 6.58-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.69-6.86(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{t}, J=7.9 \mathrm{~Hz}$, 1H).
13C-NMR (75 MHz , Chloroform-d): $\delta=21.1,25.7,26.4,26.7,26.9,28.2,30.8,31.1,33.0,38.1,41.4$, 43.7, 52.2, 55.0, 56.0, 56.4, 56.7, 60.5, 65.8, 75.7, 82.4, 105.7, 111.4, 112.0, 113.4, 113.7, 119.5, 120.4, 129.1, 129.7, 133.7, 133.8, 141.9, 147.1, 147.4, 149.0, 158.0, 168.1, 170.7, 172.6.

TLC: $R f=0.42(C H: E A=2: 1)$.
LC-MS: Mass (ESI), calculated $=790.4[\mathrm{M}+\mathrm{H}]+$, found $=790.4$.
HPLC: [0-100 \% Solvent B, 20 min]: $\mathrm{Rt}=19.8 \mathrm{~min}$.
[70-100 \% Solvent B, 20 min]: $\mathrm{Rt}=7.1 \mathrm{~min}$.
81 \% purity (220nm).

2-(3-((R)-1-(((S)-1-((S)-2-Cyclohexyl-2-(3,5-dimethoxy-4-(prop-2-yn-1-yloxy)phenyl) acetyl)piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid

(R)-1-(3-(2-(tert-Butoxy)-2-oxoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl (S)-1-((S)-2-cyclohexyl-2-(4-hydroxy-3,5-dimethoxyphenyl)acetyl)piperidine-2-carboxylate ($420 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.0 \mathrm{eq}$), 3-bromoprop-1-yne ($76 \mathrm{mg}, 0.64 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and potassium carbonate ($732 \mathrm{mg}, 5.30 \mathrm{mmol}, 10.0 \mathrm{eq}$.) were stirred in acetone (5 mL) for 64 h at room temperature. The solution was filtered and concentrated under reduced pressure.

Appearance: colorless oil.
TLC: $\mathrm{Rf}=0.23$ ($\mathrm{CH}: E A=3: 1$).
LC-MS: Mass (ESI), calculated $=828.4[\mathrm{M}+\mathrm{H}]+$, found $=828.5$.
To crude (R)-1-(3-(2-(tert-butoxy)-2-oxoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl (S)-1-((S)-2-cyclohexyl-2-(3,5-dimethoxy-4-(prop-2-yn-1-yloxy)phenyl)acetyl)piperidine-2-carboxylate in DCM $(12 \mathrm{~mL})$ TFA (5 mL) was added and the mixture was stirred for 1 h at room temperature. The solution was diluted with NH 4 Cl (sat., aq, 20 mL) and extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic
phases were dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by column chromatography.

Yield: 220 mg (54 \% o2s, 0.29 mmol$)$.
Appearance: white solid.
1H-NMR (300 MHz , Chloroform- d) : $\delta=1.05-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.55-2.00(\mathrm{~m}, 10 \mathrm{H})$, $2.02-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{td}, J=13.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 5 \mathrm{H}), 3.85(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 9 \mathrm{H}), 4.03-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=10.5,3.6$ $\mathrm{Hz}, 4 \mathrm{H}$), $5.41-5.56(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 2 \mathrm{H}), 6.66(\mathrm{dd}, J=9.2,2.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.74-6.84(\mathrm{~m}, 2 \mathrm{H}), 7.16$ (t, J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H})$.
13C-NMR (75 MHz , Chloroform-d): $\delta=21.0,25.5,26.3,26.7,27.3,30.8,31.5,33.0,38.3,41.2,43.7$, $52.5,55.4,56.1,56.2,56.6,60.1,65.6,74.9,76.3,79.7,106.0,110.2,111.5,111.9,115.3,119.7,120.4$, 129.7, 133.5, 133.6, 134.7, 142.5, 147.5, 149.1, 153.3, 158.0, 170.1, 171.4, 173.2.

TLC: $R f=0.40(\mathrm{CH}: E A=1: 1,1 \% \mathrm{HCOOH})$.
HPLC: [0-100 \% Solvent B, 20 min$]$: $\mathrm{Rt}=18.1 \mathrm{~min}$.
[50-100 \% Solvent $B, 20 \mathrm{~min}]: \mathrm{Rt}=10.7 \mathrm{~min}$.
96 \% purity (220 nm).
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C} 44 \mathrm{H} 53 \mathrm{NO} 11=772.36914$; found $=772.36891$.

10. Synthesis of alkyne 9:

Starting from (R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl (S)-piperidine-2carboxylate; Synthesis previously described in: Gopalakrishnan R, Kozany C, Gaali S, Kress C, Hoogeland B, Bracher A, Hausch F: Evaluation of Synthetic FK506 Analogues as Ligands for the FK506Binding Proteins 51 and 52. J. Med. Chem. 2012, 55:4114-4122.
And starting from (S)-2-(4-((tert-Butyldiphenylsilyl)oxy)-3,5-dimethoxyphenyl)-2-cyclohexylacetic acid; Synthesis previously described in ${ }^{[3]}$.
(R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl
(S)-1-((S)-2-(4-((tert-butyldiphenylsilyl)oxy)-3,5-dimethoxyphenyl)-2-cyclohexylacetyl)piperidine-2-carboxylate
(S)-2-(4-((tert-Butyldiphenylsilyl)oxy)-3,5-dimethoxyphenyl)-2-cyclohexylacetic acid (MBA269, 218 mg , $0.41 \mathrm{mmol}, 1.0$ eq.) and HATU ($106 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.1 \mathrm{eq}$.) were dissolved in DCM (1 mL) and DMF $(2 \mathrm{~mL})$. The mixture was cooled to $0^{\circ} \mathrm{C}$ and DIPEA ($215 \mu \mathrm{~L}, 1.23 \mathrm{mmol}, 3.0 \mathrm{eq}$.) were added. The mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$. (R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl (S)-piperidine-2-carboxylate ($210 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in DCM $(3 \mathrm{~mL}$) was added and the mixture was stirred for 18 h at room temperature. Additional HATU (0.5 eq .) and DIPEA (1.5 eq .) were added and the mixture was stirred for 24 h at room temperature. The solution was concentrated under reduced pressure and the obtained product was purified by column chromatography.

Yield: 410 mg (97%, 0.40 mmol).
Appearance: orange solid.
1H-NMR (300 MHz , Chloroform- d) : $\delta=0.79-1.07(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}$, 9 H), $1.47-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.74-2.02(\mathrm{~m}, 5 \mathrm{H}), 2.04-2.40(\mathrm{~m}, 5 \mathrm{H}), 2.55(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (ddd, $J=22.7,11.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-3.09(\mathrm{~m}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 12 \mathrm{H}), 3.56(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.58-3.70(\mathrm{~m}$, $2 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 4.01-4.19(\mathrm{~m}, 8 \mathrm{H}), 4.24-4.53(\mathrm{~m}, 3 \mathrm{H}), 5.58-5.91(\mathrm{~m}, 1 \mathrm{H}), 6.50-6.79(\mathrm{~m}, 2 \mathrm{H})$, $6.84-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.66(\mathrm{~m}, 6 \mathrm{H}), 7.82-8.06(\mathrm{~m}, 4 \mathrm{H}), 8.24(\mathrm{~s}, 2 \mathrm{H})$.
13C-NMR (75 MHz , Chloroform- d): $\delta=20.5,21.5,26.8,27.1,30.9,31.7,33.3,37.0,38.5,38.8,41.9$, $44.4,53.0,54.2,55.6,55.8,56.3,56.3,57.9,61.9,65.0,66.5,76.6,106.2,112.4,112.8,113.4,114.6$, 119.7, 121.2, 127.5, 129.6, 129.7, 130.4, 131.0, 133.9, 134.5, 134.9, 135.8, 135.9, 142.5, 147.8, 149.4, 151.6, 158.9, 171.3, 174.0.

TLC: $\mathrm{Rf}=0.15(\mathrm{CH}: E A=1: 1)$.
LC-MS: Mass (ESI), calculated $=1027.5[\mathrm{M}+\mathrm{H}]+$, found $=1027.6$.
[5-100 \% Solvent B, 2.6 min]: $\mathrm{Rt}=1.9 \mathrm{~min}$.
91 \% purity (220 nm).
(R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl (S)-1-((S)-2-cyclohexyl-2-(4-hydroxy-3,5-dimethoxyphenyl)acetyl)piperidine-2-carboxylate
((R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl
(S)-1-((S)-2-(4-((tert-butyldiphenylsilyl)oxy)-3,5-dimethoxyphenyl)-2-cyclohexylacetyl)piperidine-2-carboxylate ($365 \mathrm{mg}, 355$ $\mu \mathrm{mol}, 1.0$ eq.) was dissolved in THF (dry, 7 mL) and cooled to $0^{\circ} \mathrm{C}$ under argon. TBAF (1 M in THF, $355 \mu \mathrm{~L}$) was added and the mixture was stirred for 5 h at $0^{\circ} \mathrm{C}$ to room temperature. The reaction was quenched with water (10 mL) and the mixture was extracted with DCM ($2 \times 40 \mathrm{~mL}$). The combined organic phases were dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by column chromatography ($25 \mathrm{~g} \mathrm{SiO} 2, \mathrm{EA}: \mathrm{MeOH}=20: 1$).

Yield: 197 mg (70%, $250 \mu \mathrm{~mol}$).
Appearance: white foam.
1H-NMR (300 MHz, Chloroform-d): $\delta=0.53-0.95(\mathrm{~m}, 2 \mathrm{H}), 1.29$ (dd, $J=15.3,5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{t}, J=$ $16.3 \mathrm{~Hz}, 5 \mathrm{H}), 1.80-2.12(\mathrm{~m}, 4 \mathrm{H}), 2.29(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.68(\mathrm{~m}, 6 \mathrm{H}), 2.72-2.98(\mathrm{~m}, 9 \mathrm{H})$, $3.31(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=20.9 \mathrm{~Hz}, 8 \mathrm{H}), 3.85(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 7 \mathrm{H}), 4.07(\mathrm{dt}, J=20.2,6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.25-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.85(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.69-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (s, 1H)
13C-NMR (75 MHz , Chloroform-d) : $\delta=21.1,25.7$, 26.4, 26.8, 26.9, 30.8, 31.3, 33.0, 38.0, 38.7, 41.4, $43.7,52.2,54.2,55.2,56.1,56.4,57.9,65.1,66.8,75.8,105.9,111.5,112.1,113.1,113.6,119.3,120.5$, 128.8, 129.5, 129.9, 133.8, 134.2, 141.9, 147.5, 149.0, 158.8, 170.9, 172.5.

TLC: Rf = 0.18 (EA).
$R f=0.42$ (EA:MeOH = 10:1).
LC-MS: Mass (ESI), calculated $=789.4[\mathrm{M}+\mathrm{H}]+$, found $=789.7$
HPLC: [30-100 \% Solvent B, 25 min]: Rt = 11.0 min .
96 \% purity (220 nm).
(R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl (S)-1-((S)-2-cyclohexyl-2-(3,5-dimethoxy-4-(prop-2-yn-1-yloxy)phenyl)acetyl)piperidine-2-carboxylate
(R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl (S)-1-((S)-2-cyclohexyl-2-(4-hydroxy-3,5-dimethoxyphenyl)acetyl)piperidine-2-carboxylate ($190 \mathrm{mg}, 240 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) ,$ 3-bromoprop-1-yne ($34.5 \mathrm{mg}, 290 \mu \mathrm{~mol}, 1.2$ eq.) and potassium carbonate ($332 \mathrm{mg}, 2.40 \mathrm{mmol}$, 10.0 eq.) were stirred in acetone (3 mL) for 18 h at room temperature. Additional 3-bromoprop-1-yne (0.3 eq.) and potassium carbonate (1 eq .) were added and the mixture was stirred for 24 h at room temperature. The solution was filtered and concentrated under reduced pressure. The obtained product was purified by column chromatography.
Yield: $105 \mathrm{mg}(53 \%, 127 \mu \mathrm{~mol})$.
Appearance: white foam.
1H-NMR (300 MHz , Chloroform-d): $\delta=1.13$ (ddd, $J=20.9,10.3,6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.19-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.51$ $-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.96-2.13(\mathrm{~m}, 4 \mathrm{H}), 2.25-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{dq}, J=4.9,2.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.76-2.80(\mathrm{~m}$, 9 H), $3.37(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=4.7 \mathrm{~Hz}, 5 \mathrm{H}), 3.81-3.86(\mathrm{~m}, 12 \mathrm{H}), 4.03-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.60$ (d, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.42-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=8.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 6.60-6.70(\mathrm{~m}, 4 \mathrm{H})$, $6.73-6.78(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.
13C-NMR (75 MHz , Chloroform-d): $\delta=20.0,24.5,25.2,25.6,25.8,29.6,30.0,31.8,37.0,37.6,40.4$, $42.6,51.0,53.1,54.0,54.9,55.1,56.6,59.0,64.7,65.9,73.7,74.6,78.6,104.8,110.3,110.8,112.0$, $112.7,117.5,119.3,128.5,132.5,133.3,133.6,140.8,146.3,147.8,152.2,157.6,169.5,171.3$.
TLC: $R f=0.38$ (EA).
LC-MS: Mass (ESI), calculated $=827.4[\mathrm{M}+\mathrm{H}]+$, found $=827.7$.
HPLC: [0-100 \% Solvent B, 20 min$]:$ Rt $=16.1 \mathrm{~min}$.
[40-70 \% Solvent B, 20 min$]: \mathrm{Rt}=13.9 \mathrm{~min}$.
96 \% purity (220 nm).
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C} 48 \mathrm{H} 62 \mathrm{~N} 2 \mathrm{O} 10=827.44772$; found $=827.44770$.

11. Synthesis of alkyne 13:

Starting from (R)-3-(3,4-Dimethoxyphenyl)-1-(3-methoxyphenyl)propan-1-ol; Synthesis previously described in: Gopalakrishnan R, Kozany C, Gaali S, Kress C, Hoogeland B, Bracher A, Hausch F: Evaluation of Synthetic FK506 Analogues as Ligands for the FK506-Binding Proteins 51 and 52. J. Med. Chem. 2012, 55:4114-4122.
And starting from (S)-1-((S)-2-Cyclohexyl-2-(3-hydroxy-4,5-dimethoxyphenyl)acetyl)piperidine-2carboxylic acid; Synthesis previously described in ${ }^{[3]}$.
(S)-1-((S)-2-Cyclohexyl-2-(3,4-dimethoxy-5-(prop-2-yn-1-yloxy)phenyl)acetyl)
piperidine-2carboxylic acid
(S)-1-((S)-2-Cyclohexyl-2-(3-hydroxy-4,5-dimethoxyphenyl)acetyl)piperidine-2-carboxylic acid (214 mg , $0.53 \mathrm{mmol}, 1.0$ eq.), 3-bromoprop-1-yne ($151 \mathrm{mg}, 1.27 \mathrm{mmol}, 2.4 \mathrm{eq}$.) and potassium carbonate (729 $\mathrm{mg}, 5.28 \mathrm{mmol}, 10.0$ eq.) were stirred in acetone (5 mL) for 18 h at room temperature. The solution was filtered and concentrated under reduced pressure.

Appearance: colorless oil.
TLC: $R f=0.33(C H: E A=3: 1)$.
To crude prop-2-yn-1-yl (S)-1-((S)-2-cyclohexyl-2-(3,4-dimethoxy-5-(prop-2-yn-1-yloxy)phenyl)acetyl)piperidine-2-carboxylate ($254 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.0$ eq.) in THF:water ($1: 1,10 \mathrm{~mL}$) lithium hydroxide ($127 \mathrm{mg}, 5.3 \mathrm{mmol}, 10 \mathrm{eq}$.) was added and the mixture was stirred for 4 d at $70^{\circ} \mathrm{C}$. The solution was diluted with hydrochloric acid (1 M , aq, 50 mL) and extracted with DCM ($3 \times 30 \mathrm{~mL}$).

The combined organic phases were dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by preparative HPLC. The product was dried by lyophilisation.

Yield: 180 mg (77% 02s, 0.41 mmol).
Appearance: white solid.
1H-NMR (300 MHz, Chloroform-d): $\delta=0.63-1.75$ (m, 14H), $1.76-1.93$ (m, 1H), 2.13 (dd, $J=61.4$, $12.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{dt}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dt}, J=84.2,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=71.7,9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.69-3.85(\mathrm{~m}, 6 \mathrm{H}), 3.92(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=9.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{q}, J=2.4 \mathrm{~Hz}$, 1H), $6.42-6.60(\mathrm{~m}, 2 \mathrm{H}), 10.69(\mathrm{~s}, 2 \mathrm{H})$.
13C-NMR (75 MHz , Chloroform- d): $\delta=20.9$, 25.3, 26.1, 26.2, 26.2, 26.5, 26.6, 30.7, 32.8, 41.1, 43.9, $55.2,56.1,57.0,61.0,75.6,78.7,106.4,108.8,132.8,137.8,150.6,153.3,173.8,176.0$.
TLC: $\mathrm{Rf}=0.30(\mathrm{CH}: E A=1: 1,1 \% \mathrm{HCOOH})$.
LC-MS: Mass (ESI), calculated $=444.2[\mathrm{M}+\mathrm{H}]+$, found $=444.2$
[5-100 \% Solvent B, 2.6 min$]: \mathrm{Rt}=2.0 \mathrm{~min}$.
>99 \% purity (220 nm).
(R)-3-(3,4-Dimethoxyphenyl)-1-(3-methoxyphenyl)propyl
(S)-1-((S)-2-cyclohexyl-2-(3,4-dimethoxy-5-(prop-2-yn-1-yloxy)phenyl)acetyl)piperidine-2-carboxylate
(S)-1-((S)-2-Cyclohexyl-2-(3,4-dimethoxy-5-(prop-2-yn-1-yloxy)phenyl)acetyl)piperidine-2-carboxylic acid ($78 \mathrm{mg}, 175 \mu \mathrm{mmol}, 1.0$ eq.) and 4 -pyrolidinopyridine ($104 \mathrm{mg}, 700 \mu \mathrm{~mol}, 4.0$ eq.) were weighted in a flask and flooded with argon. (R)-3-(3,4-Dimethoxyphenyl)-1-(3-methoxyphenyl)propan-1-ol (53 mg, $175 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) and toluene (dry, 15 mL) were added and the mixture was cooled to $0^{\circ} \mathrm{C} .1$-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ($37 \mathrm{mg}, 193 \mu \mathrm{~mol}, 1.1 \mathrm{eq}$.) was added and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ to room temperature. The solution was diluted with hydrochloric acid (1 M , aq, 10 mL) and brine $(40 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(2 \times 40 \mathrm{~mL})$. The combined organic phases were dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by preparative HPLC. The product was dried by lyophilisation.

Yield: $66 \mathrm{mg}(52 \%, 91 \mu \mathrm{~mol})$.
Appearance: white solid.
1H-NMR (500 MHz , Chloroform-d): $\delta=0.50-0.80(\mathrm{~m}, 1 \mathrm{H}), 0.82-1.02(\mathrm{~m}, 1 \mathrm{H}), 1.04-1.74(\mathrm{~m}, 8 \mathrm{H})$, $1.76-2.19(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.59(\mathrm{qdd}, \mathrm{J}=20.3,9.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.99(\mathrm{~m}, 1 \mathrm{H}), 3.40$ $(\mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.88(\mathrm{~m}, 15 \mathrm{H}), 3.95-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.78(\mathrm{~m}, 2 \mathrm{H}), 5.40-5.49(\mathrm{~m}, 1 \mathrm{H})$, $5.53-5.59(\mathrm{~m}, 1 \mathrm{H}), 6.39-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.55-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.73-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.97(\mathrm{~m}, 1 \mathrm{H})$, 7.22 (dt, J = 83.9, 7.9 Hz, 1H).

13C-NMR (126 MHz, Chloroform-d): $\delta=20.9,25.6,26.1,26.2,26.6,26.8,30.7,31.1,32.8,38.0,41.3$, $44.0,52.5,55.0,55.3,55.9,56.1,57.1,61.0,75.6,76.0,78.8,106.4,109.0,111.5,111.9,112.5,113.2$, $118.5,120.4,129.8,133.1,133.5,138.0,141.7,147.4,148.9,150.8,153.6,159.6,170.3,173.0$.
TLC: $R f=0.31(C H: E A=2: 1)$.
LC-MS: [5-100 \% Solvent $B, 2.6 \mathrm{~min}]: \mathrm{Rt}=2.3 \mathrm{~min}$.
> 99 \% purity (220 nm).
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C} 43 \mathrm{H} 53 \mathrm{NO} 9=728.37931$; found $=728.37947$.

12. Synthesis of alkyne 14:

Using (S)-2-Cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetic acid; Synthesis previously described in ${ }^{[4]}$.
(E)-3-(3,4-Dimethoxyphenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one

3,4-Dimethoxybenzaldehyde ($6.65 \mathrm{~g}, 40.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and 1-(4-hydroxyphenyl)ethanone (5.45 g , $40.0 \mathrm{mmol}, 1.0$ eq.) were dissolved in $\mathrm{EtOH}(100 \mathrm{~mL})$. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and potassium hydroxide ($8.98 \mathrm{~g}, 160 \mathrm{mmol}, 4.0$ eq.) in water (30 mL) was slowly added. The mixture was stirred for 18 h at $0^{\circ} \mathrm{C}$ to room temperature. Additional potassium hydroxide ($9.0 \mathrm{~g} 160 \mathrm{mmol}, 4.0$ eq.) was added and the mixture was stirred for 24 h at room temperature. The solvent was removed under reduced pressure. Ice (100 mL) was added and a pH value of $5-6$ was set by the addition of hydrochloric acid. The mixture was extracted with DCM ($3 \times 200 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by recrystallization in methanol.

Yield: 8.9 g (78 \%, 31.3 mmol).
Appearance: yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, Chloroform-d): $\delta=3.74$ (d, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.80(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.82-6.89(\mathrm{~m}$, $2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=15.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-8.05(\mathrm{~m}, 2 \mathrm{H}), 10.31(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz , Chloroform-d): $\delta=55.6,55.7,110.6,111.5,115.3,119.7,123.6,127.8,129.4,131.1$, 143.2, 149.0, 151.0, 162.0, 187.1.

TLC: $R_{f}=0.38(C H: E A=1: 1)$
LC-MS: Mass (ESI), calculated $=285.1[\mathrm{M}+\mathrm{H}]^{+}$, found $=285.2$.
[$5-100 \%$ Solvent $B, 3.0 \mathrm{~min}$]: $R_{t}=1.7 \mathrm{~min}$.
>99 \% purity (220 nm).

3-(3,4-Dimethoxyphenyl)-1-(4-hydroxyphenyl)propan-1-one

(E)-3-(3,4-Dimethoxyphenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one ($6.55 \mathrm{~g}, 23.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and ammonium chloride ($123 \mathrm{~g}, 2.30 \mathrm{~mol}, 100 \mathrm{eq}$) were dissolved in ethanol:water (2:1, 900 mL). Zn powder $(4.5 \mathrm{~g}, 69.0 \mathrm{mmol}, 3.0 \mathrm{eq})$ was slowly added over 1 h . After complete addition ethanol was removed under reduced pressure. The mixture was extracted with DCM ($3 \times 300 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: $1.89 \mathrm{~g} \mathrm{(29} \mathrm{\%} 6.60 \mathrm{mmol}$,$) .$
Appearance: white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, Chloroform-d): $\delta=2.87(\mathrm{dd}, J=8.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.04-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=$ $3.9 \mathrm{~Hz}, 6 \mathrm{H}), 6.66(\mathrm{dd}, J=2.8,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.73-6.79(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.77(\mathrm{~m}, 2 \mathrm{H}), 9.46(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(74 \mathrm{MHz}$, Chloroform-d): $\delta=30.0,40.0,55.7,55.9,111.4,111.9,115.4,120.2,128.7,130.4$, 130.7, 134.1, 147.2, 148.8, 162.1, 197.9.

TLC: $\mathrm{R}_{\mathrm{f}}=0.28(\mathrm{CH}: \mathrm{EA}=2: 1)$
LC-MS: Mass (ESI), calculated $=287.1[\mathrm{M}+\mathrm{H}]^{+}$, found $=287.2$.
[5-100 \% Solvent B, 3.0 min]: $R_{t}=1.7 \mathrm{~min}$.
96 \% purity (220 nm).

(R)-4-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenol

3-(3,4-Dimethoxyphenyl)-1-(4-hydroxyphenyl)propan-1-one ($410 \mathrm{mg}, 1.43 \mathrm{mmol}, 1.0$ eq.) was dissolved in iso-propanole (20 mL) and degassed by argon. $\mathrm{RuCl}_{2}[(\mathrm{~S})$-dm-segphos $®][(S)$-daipen] ($36 \mathrm{mg}, 0.03$ $\mathrm{mmol}, 0.02$ eq.) was added and the mixture was sparged with H_{2}. Potassium tert-butoxide ($481 \mathrm{mg}, 4.29$ $\mathrm{mmol}, 3.0 \mathrm{eq}$.$) was added and the mixture was stirred for 18 \mathrm{~h}$ at room temperature. The mixture was concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 266 mg (64 \%, 0.92 mmol$)$.
Appearance: white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.93-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.71(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.91(\mathrm{~m}, 6 \mathrm{H})$,
$4.63(\mathrm{dd}, J=7.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.84(\mathrm{~m}, 1 \mathrm{H}), 7.21-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (126 MHz , Chloroform-d): $\delta=136.9,134.6,127.6,120.4,115.5,112.0,111.5,73.7,56.1$, 56.0, 40.6, 31.9.

TLC: $R_{f}=0.21(C H: E A=1: 1)$.

$$
\left.\mathrm{R}_{\mathrm{f}}=0.41 \text { (DCM: } \mathrm{MeOH}=20: 1\right) .
$$

LC-MS: Mass (ESI), calculated $=289.1[\mathrm{M}+\mathrm{H}]^{+}$, found $=271.2$.
[$5-100 \%$ Solvent $B, 2.6 \mathrm{~min}$]: $R_{t}=1.6 \mathrm{~min}$.
88 \% purity (220 nm).

(R)-3-(3,4-Dimethoxyphenyl)-1-(4-(prop-2-yn-1-yloxy)phenyl)propan-1-ol

(R)-4-(3-(3,4-Dimethoxyphenyl)-1-hydroxypropyl)phenol ($1.38 \mathrm{~g}, 4.79 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , 3-bromoprop-1-$ yne ($684 \mathrm{mg}, 5.75 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and potassium carbonate ($6.62 \mathrm{~g}, 47.9 \mathrm{mmol}, 10.0$ eq.) were stirred in acetone (50 mL) for 18 h at room temperature. The solution was filtered and concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 1.23 g (79 \%, 3.89 mmol$)$.
Appearance: white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, Chloroform-d): $\delta=1.91-2.19(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (tdt, $J=13.9$, $9.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 6 \mathrm{H}), 4.62(\mathrm{dd}, J=7.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.68-$ 6.81 (m, 3H), $6.92-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.31(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz , Chloroform-d): $\delta=31.7,40.5,55.8,55.9,55.9,73.4,75.6,78.6,111.4,111.9,114.9$, 120.2, 127.2, 134.4, 137.7, 147.2, 148.9, 157.0.

TLC: $R_{f}=0.45(\mathrm{CH}: E A=1: 1)$.
LC-MS: Mass (ESI), calculated $=349.2[\mathrm{M}+\mathrm{Na}]^{+}$, found $=349.2$.
[$5-100 \%$ Solvent $B, 3.0 \mathrm{~min}$]: $R_{t}=1.9 \mathrm{~min}$.
[30-100 \% Solvent $B, 2.6 \mathrm{~min}]: R_{t}=1.3 \mathrm{~min}$.
$>99 \%$ purity (220 nm).

1-((9H-Fluoren-9-yl)methyl) 2-((R)-3-(3,4-dimethoxyphenyl)-1-(4-(prop-2-yn-1yloxy)phenyl)propyl) (S)-piperidine-1,2-dicarboxylate

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid ($21 \mathrm{mg}, 61 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) ,$ 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ($14 \mathrm{mg}, 74 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$.) and 4-dimethylaminopyridine ($2.2 \mathrm{mg}, 18 \mu \mathrm{~mol}, 0.3$ eq.) were cooled to $0^{\circ} \mathrm{C}$ under argon. DCM (dry, 1 mL) was added. (R)-3-(3,4-Dimethoxyphenyl)-1-(4-(prop-2-yn-1-yloxy)phenyl)propan-1-ol ($20 \mathrm{mg}, 61 \mu \mathrm{~mol}$, 1.0 eq.) was added and the mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ followed by 18 h at room temperature. The solution was concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 23 mg (58 \%, $35 \mu \mathrm{~mol})$.
Appearance: white foam.
TLC: $R_{f}=0.65$ (CH:EA = 1:1).
LC-MS: Mass (ESI), calculated $=682.3[\mathrm{M}+\mathrm{Na}]^{+}$, found $=682.0$.
[$5-100 \%$ Solvent $B, 3.0 \mathrm{~min}$]: $R_{t}=2.6 \mathrm{~min}$.
99 \% purity (220 nm).

(R)-3-(3,4-Dimethoxyphenyl)-1-(4-(prop-2-yn-1-yloxy)phenyl)propyl (S)-piperidine-2-carboxylate

1-((9H-Fluoren-9-yl)methyl) 2-((R)-3-(3,4-dimethoxyphenyl)-1-(4-(prop-2-yn-1-yloxy)phenyl)propyl) (S)-piperidine-1,2-dicarboxylate ($60 \mathrm{mg}, 91 \mu \mathrm{~mol}, 1.0$ eq.) and 4-methylpiperidine ($44 \mu \mathrm{~L}, 373 \mu \mathrm{~mol}, 4.1 \mathrm{eq}$) were dissolved in DCM $(400 \mu \mathrm{~L})$ and the mixture was stirred for 3 h at room temperature. The obtained product was purified by by flash chromatography.

Yield: 30 mg (75 \%, $69 \mu \mathrm{~mol})$.
Appearance: yellow oil.
TLC: $R_{f}=0.26$ (CH:EA = 1:1, 3 \% TEA).
LC-MS: Mass (ESI), calculated $=438.2[\mathrm{M}+\mathrm{H}]^{+}$, found $=438.0$.
[$5-100 \%$ Solvent $B, 3.0 \mathrm{~min}$]: $R_{t}=1.6 \mathrm{~min}$.
99 \% purity (220 nm).
(S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylic acid ($32 \mathrm{mg}, 105 \mu \mathrm{~mol}$, 1.0 eq.) and HATU ($27 \mathrm{mg}, 116 \mu \mathrm{~mol}, 1.1$ eq.) were dissolved in DCM (1.2 mL) and DMF (1.8 mL). The mixture was cooled to $0^{\circ} \mathrm{C}$ and DIPEA ($55 \mu \mathrm{~L}, 315 \mu \mathrm{~mol}, 3.0$ eq.) was added. The mixture was stirred for 15 min at $0{ }^{\circ} \mathrm{C}$. (R)-3-(3,4-Dimethoxyphenyl)-1-(4-(prop-2-yn-1-yloxy)phenyl)propyl (S)-piperidine-2carboxylate ($46 \mathrm{mg}, 105 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) in DCM (3 mL) was added and the mixture was stirred for 18 h at $0^{\circ} \mathrm{C}$ to room temperature. The solution was concentrated under reduced pressure and the obtained product was purified by preparative HPLC. The product was dried by lyophilisation.

Yield: 68 mg (89%, $93 \mu \mathrm{~mol}$).
Appearance: white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=0.70-0.81(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{qd}, \mathrm{J}=12.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.07-1.47$ ($\mathrm{m}, 6 \mathrm{H}$), $1.51-2.17(\mathrm{~m}, 10 \mathrm{H}), 2.25-2.69(\mathrm{~m}, 5 \mathrm{H}), 3.38(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.88(\mathrm{~m}, 17 \mathrm{H}), 3.96$ (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dd}, J=18.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=7.7,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.47(\mathrm{~d}, J=62.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.59-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.82(\mathrm{~m}, 4 \mathrm{H}), 6.96-7.02(\mathrm{~m}, 0 \mathrm{H}), 7.29-$ 7.36 (m, 1H).
${ }^{13} \mathrm{C}-$ NMR (126 MHz, Chloroform-d): $\delta=20.8,25.6,26.0,26.1,26.5,30.6,31.0,32.7,37.7,41.2,43.9$, $52.2,55.0,55.7,55.8,55.9,56.1,56.3,60.8,75.5,105.7,111.3,111.8,114.6,120.2,127.8,133.0$, 133.4, 137.0, 147.3, 148.8, 153.2, 157.2, 170.2, 172.6.

TLC: $R_{f}=0.31$ (CH:EA = 2:1).
LC-MS: [5-100 \% Solvent B, 3.0 min]: $R_{t}=2.5 \mathrm{~min}$.
[50-100 \% Solvent $B, 2.6 \mathrm{~min}]: R_{t}=1.9 \mathrm{~min}$.
99 \% purity (220 nm).
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{43} \mathrm{H}_{53} \mathrm{NO}_{9}=728.37931$; found $=728.38039$.

13. Synthesis of alkyne 15:

Starting from (S)-2-Cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetic acid; Synthesis previously described in ${ }^{[4]}$.

Prop-2-yn-1-yl (S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate

(S)-1-((S)-2-Cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylic acid ($250 \mathrm{~g}, 596 \mu \mathrm{~mol}$, 1.0 eq.), 3-bromoprop-1-yne ($213 \mathrm{mg}, 1788 \mu \mathrm{~mol}, 3.0$ eq.) and DIPEA ($507 \mu \mathrm{~L}, 2980 \mu \mathrm{~mol}, 5.0$ eq.) were stirred in acetonitrile (dry, 6 mL) for 18 h at room temperature. The solution was concentrated under reduced pressure. The obtained product was purified by preparative HPLC. The product was dried by lyophilisation.

Yield: $259 \mathrm{mg}(95 \%, 566 \mu \mathrm{~mol})$.
Appearance: white solid.
TLC: $\mathrm{R}_{\mathrm{f}}=0.50$ (CH:EA = 1:1).
LC-MS: Mass (ESI), calculated $=458.3[\mathrm{M}+\mathrm{H}]^{+}$, found $=458.2$.
[5-100 \% Solvent $B, 2.6 \mathrm{~min}]: R_{t}=2.1 \mathrm{~min}$.
[30-100 \% Solvent $B, 2.6 \mathrm{~min}]: R_{t}=1.8 \mathrm{~min}$.
95 \% purity (220 nm).

14. Synthesis of PROTACs:

Azides (1.0 eq.) and alkynes (1.0 eq.) were dissolved in tert-butanol, water and DMSO (1:1:10). The solution was degassed by argon. Copper(II) sulfate pentahydrate (1 M in water, 0.4 eq .) and (+)-sodium L-ascorbate (1 M in water, 0.4 eq.) were added. The solution was stirred for 18 h at room temperature. DCM was added and the mixture was washed with brine. The organic phase was dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by chromatography and dried by lyophilisation.

Table 2.: Characterization of first generation PROTACs.

	linker length	1	2	3	4	5
alkyne	E3 ligand					
A1	a	Yield: 9.0 mg (58 \%, $8.7 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.08$ (DCM:MeOH $=$ 10:1). HPLC: [0-100 \% Solvent B, 20 min]: $R_{t}=12.1 \mathrm{~min}$. [20-80 \% Solvent B, 20 min]: $\mathrm{R}_{\mathrm{t}}=$ 10.2 min . > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{48} \mathrm{H}_{56} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{8} \mathrm{~S}_{2}=1035.31738$; found $=1035.31674$.	Yield: $6.5 \mathrm{mg}(40 \%, 6.0 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.08$ (DCM:MeOH $=$ 10:1). HPLC: [0-100 \% Solvent B, 20 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=12.3 \mathrm{~min}$. [30-60 \% Solvent B, 20 min]: $\mathrm{R}_{\mathrm{t}}=$ 11.0 min . > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{9} \mathrm{~S}_{2}=1079.34360$; found $=1079.34353$.	Yield: 12.0 mg (71 \%, $10.7 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.08$ (DCM:MeOH $=$ 10:1). HPLC: [0-100 \% Solvent B, 20 min]: $R_{t}=12.4 \mathrm{~min}$. [30-100 \% Solvent B, 20 min]: $R_{t}=$ 7.8 min . 96 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{52} \mathrm{H}_{64} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{10} \mathrm{~S}_{2}=1123.36981$; found $=1123.37016$.	Yield: 12.0 mg ($69 \%, 10.3 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.08$ (DCM:MeOH $=$ 10:1). HPLC: [0-100 \% Solvent B, 20 $\min]: R_{t}=12.4 \mathrm{~min}$. [30-60 \% Solvent B, 20 min]: $\mathrm{R}_{\mathrm{t}}=$ 11.3 min . 96 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{54} \mathrm{H}_{68} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{11} \mathrm{~S}_{2}=1189.37797$; found $=1189.37857$.	Yield: 10.4 mg (57 \%, $8.6 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.08$ (DCM:MeOH $=$ 10:1). HPLC: [0-100 \% Solvent B, 20 $\mathrm{min}]: R_{t}=12.3 \mathrm{~min}$. [20-80 \% Solvent B, 20 min$]$: $\mathrm{R}_{\mathrm{t}}=$ 11.4 min . > 99 \% purity. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{56} \mathrm{H}_{72} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{12} \mathrm{~S}_{2}=1211.42224$; found $=1211.42163$.
	b	Yield: $10.2 \mathrm{mg}(94 \%, 9.4 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.11$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=0.7 \mathrm{~min}$. > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{50} \mathrm{H}_{57} \mathrm{Cl}_{2} \mathrm{FN}_{10} \mathrm{O}_{8} \mathrm{~S}_{2}=1079.32361$; found $=1079.32534$.	Yield: 5.0 mg (44 \%, $4.4 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.11$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=0.9 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{52} \mathrm{H}_{61} \mathrm{Cl}_{2} \mathrm{FN}_{10} \mathrm{O}_{9} \mathrm{~S}_{2}=1123.34983$; found $=1123.35172$.	Yield: 4.5 mg ($39 \%, 3.9 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.10$ (DCM:MeOH $=$ 10:1). LC-MS: [30-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.6 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{54} \mathrm{H}_{65} \mathrm{Cl}_{2} \mathrm{FN}_{10} \mathrm{O}_{10} \mathrm{~S}_{2}=1167.37604$; found $=1167.37653$.	Yield: 4.3 mg ($35 \%, 3.5 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.10$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.7 $\min]: R_{t}=1.1 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{56} \mathrm{H}_{69} \mathrm{Cl}_{2} \mathrm{FN}_{10} \mathrm{O}_{11} \mathrm{~S}_{2}=1211.40226$; found $=1211.40402$.	Yield: 7.2 mg ($57 \%, 5.7 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.10$ (DCM:MeOH $=$ 10:1). LC-MS: [30-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.6 \mathrm{~min}$. [50-100 \% Solvent B, 2.7 min$]: R_{t}=$ 1.0 min . > 99 \% purity (220 nm). HRMS (ESI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{58} \mathrm{H}_{73} \mathrm{Cl}_{2} \mathrm{FN}_{10} \mathrm{O}_{12} \mathrm{~S}_{2}=1255.42847$; found $=1255.43025$.
	C	Yield: 10.0 mg ($76 \%, 11.4 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.28$ (DCM:MeOH $=$ 20:1). HPLC: [0-100 \% Solvent B, 20 $\min]: R_{t}=12.1 \mathrm{~min}$. [30-60 \% Solvent B, 20 min]: $\mathrm{R}_{\mathrm{t}}=$ 9.9 \& 10.1 min (diastereromers). > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{~N}_{9} \mathrm{O}_{9} \mathrm{~S}=878.18848$; found $=878.18695$.	Yield: 12.5 mg ($91 \%, 13.5 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.29$ (DCM:MeOH $=$ 20:1). HPLC: [0-100 \% Solvent B, 20 $\min]: R_{t}=12.4 \mathrm{~min}$. [30-60 \% Solvent B, 20 min]: $\mathrm{R}_{\mathrm{t}}=$ $10.7 \& 10.8 \mathrm{~min}$ (diastereomers). $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{Cl}_{2} \mathrm{~N}_{9} \mathrm{O}_{10} \mathrm{~S}=922.21469$; found $=922.21361$.	Yield: 13.0 mg (90%, $13.4 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.25$ (DCM:MeOH $=$ 20:1). HPLC: [0-100 \% Solvent B, 20 min]: $R_{t}=12.6 \mathrm{~min}$. [30-60 \% Solvent B, 20 min]: $\mathrm{R}_{\mathrm{t}}=$ 11.1 min. 97 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{Cl}_{2} \mathrm{~N}_{9} \mathrm{O}_{11} \mathrm{~S}=966.24091$; found $=966.23813$.	Yield: 9.0 mg (59 \%, $8.9 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.22$ (DCM:MeOH $=$ 20:1). HPLC: [0-100 \% Solvent B, 20 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=12.6 \mathrm{~min}$. [20-80 \% Solvent B, 20 min$]$: $\mathrm{R}_{\mathrm{t}}=$ 11.5 min . 96 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{45} \mathrm{H}_{49} \mathrm{Cl}_{2} \mathrm{~N}_{9} \mathrm{O}_{12} \mathrm{~S}=1010.26712$; found $=1010.26580$.	Yield: 15.0 mg (95%, $14.2 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.21$ (DCM:MeOH $=$ 20:1). HPLC: [0-100 \% Solvent B, 20 $\mathrm{min}]: R_{t}=12.8 \mathrm{~min}$. [20-80 \% Solvent B, 20 min]: $\mathrm{R}_{\mathrm{t}}=$ 11.7 min . 97 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{47} \mathrm{H}_{53} \mathrm{Cl}_{2} \mathrm{~N}_{9} \mathrm{O}_{13} \mathrm{~S}=1054.29334$; found $=1054.29483$.
A2	a	Yield: 12.8 mg (79%, $11.9 \mu \mathrm{~mol}$). Appearance: white solid.	Yield: 5.7 mg ($34 \%, 5.1 \mu \mathrm{~mol}$). Appearance: white solid.	Yield: 11.5 mg ($66 \%, 9.8 \mu \mathrm{~mol})$. Appearance: white solid.	Yield: 14.1 mg (77%, $11.6 \mu \mathrm{~mol}$). Appearance: white solid.	Yield: 10.6 mg ($57 \%, 8.4 \mu \mathrm{~mol})$. Appearance: white solid.

		$\begin{aligned} & \text { LC-MS: }[50-100 \% \text { Solvent B, } 2.7 \\ & \text { min]: } R_{\mathrm{t}}=1.2 \mathrm{~min} \\ & 98 \% \text { purity }(220 \mathrm{~nm}) . \\ & \mathrm{HRMS} \text { (ESI) } \mathrm{m} / \mathrm{z}: \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{52} \mathrm{H}_{60} \mathrm{CIFN}_{10} \mathrm{O}_{8} \mathrm{~S}_{2}=1071.37823 ; \\ & \text { found }=1071.37582 . \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LC-MS: [50-100 \% Solvent B, } 2.7 \\ & \text { min]: } \mathrm{R}_{\mathrm{t}}=1.0 \mathrm{~min} \\ & >99 \text { \% purity }(220 \mathrm{~nm}) . \\ & \text { HRMS (ESI) m/z: } \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{54} \mathrm{H}_{64} \mathrm{CIFN}_{10} \mathrm{O}_{9} \mathrm{~S}_{2}=1115.40445 \text {; } \\ & \text { found }=1115.40269 . \end{aligned}$	$\begin{aligned} & \text { LC-MS: [50-100 \% Solvent B, } 2.7 \\ & \text { min]: } R_{\mathrm{t}}=1.1 \mathrm{~min} \\ & 95 \% \text { purity }(220 \mathrm{~nm}) . \\ & \mathrm{HRMS} \text { (ESI) } \mathrm{m} / \mathrm{z}: \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{56} \mathrm{H}_{68} \mathrm{CIFN}_{10} \mathrm{O}_{10} \mathrm{~S}_{2}=1159.43066 \text {; } \\ & \text { found = } 1159.43165 . \\ & \text { Vindr. } 107 \mathrm{ma} \text {. } 11 \text { ? } \end{aligned}$		$\begin{aligned} & \text { LC-MS: }[50-100 \% \text { Solvent } \mathrm{B}, 2.7 \\ & \text { min]: } \mathrm{R}_{\mathrm{t}}=1.2 \mathrm{~min} \\ & >99 \% \text { purity }(220 \mathrm{~nm}) . \\ & \mathrm{HRMS} \text { (ESI) } \mathrm{m} / \mathrm{z}: \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{60} \mathrm{H}_{76} \mathrm{CIFN} \mathrm{ClO}_{12} \mathrm{O}_{12} \mathrm{~S}_{2}=1247.48309 ; \\ & \text { found }=1247.47983 . \\ & \text { Vindr. } 121 \mathrm{ma} \text {. } \end{aligned}$
	C	Yield: $8.8 \mathrm{mg}(68 \%, 10.1 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.28$ (DCM:MeOH $=$ 20:1). LC-MS: [50-100 \% Solvent B, 2.7 $\min]: R_{t}=0.6 \mathrm{~min}$ 96 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{41} \mathrm{H}_{40} \mathrm{ClN}_{9} \mathrm{O}_{9} \mathrm{~S}=870.24310$; found $=870.24396$.	Yield: 10.1 mg ($74 \%, 11.0 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.26$ (DCM:MeOH $=$ 20:1). LC-MS: [50-100 \% Solvent B, 2.7 $\min]: R_{t}=0.6 \mathrm{~min}$ > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{ClN}_{9} \mathrm{O}_{10} \mathrm{~S}=914.26931$; found $=914.27007$.	Yield: 10.7 mg ($75 \%, 11.2 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.25$ (DCM:MeOH = 20:1). LC-MS: [50-100 \% Solvent B, 2.7 $\min]: R_{t}=0.7 \mathrm{~min}$ 98 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{45} \mathrm{H}_{48} \mathrm{ClN}_{9} \mathrm{O}_{11} \mathrm{~S}=958.29553$; found $=958.29647$.	Yield: 9.0 mg ($60 \%, 9.0 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.24$ (DCM:MeOH $=$ 20:1). LC-MS: [30-100 \% Solvent B, 2.2 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min}$ $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{47} \mathrm{H}_{52} \mathrm{CIN}_{9} \mathrm{O}_{12} \mathrm{~S}=1002.32174$; found $=1002.32255$.	Yield: 13.4 mg ($85 \%, 12.8 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.24$ (DCM:MeOH $=$ 20:1). LC-MS: [50-100 \% Solvent B, 2.7 $\min]: R_{t}=0.8 \mathrm{~min}$ 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{ClN}_{10} \mathrm{O}_{8} \mathrm{~S}_{2}=1046.34796$; found $=1046.34976$.
	a	Yield: 6.4 mg ($89 \%, 6.2 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.11$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\min]: R_{t}=1.8 \mathrm{~min}$. 96 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{CIN}_{10} \mathrm{O}_{8} \mathrm{~S}_{2}=1027.37201$; found $=1027.37209$.	Yield: $6.8 \mathrm{mg}(91 \%, 6.3 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.10$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.8 \mathrm{~min}$. 97 \% purity (220 nm). HRMS (ESI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{52} \mathrm{H}_{63} \mathrm{CIN}_{10} \mathrm{O}_{9} \mathrm{~S}_{2}=1071.39822$; found $=1071.39822$.	Yield: 2.2 mg (28 \%, $2.0 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.10$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.8 \mathrm{~min}$. > 99% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{54} \mathrm{H}_{67} \mathrm{CIN}_{10} \mathrm{O}_{10} \mathrm{~S}_{2}=1115.42443$; found $=1115.42399$.	Yield: 4.7 mg ($58 \%, 4.1 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.09$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.8 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{56} \mathrm{H}_{71} \mathrm{ClN}_{10} \mathrm{O}_{11} \mathrm{~S}_{2}=1159.45065$; found $=1159.44975$.	Yield: 4.9 mg ($58 \%, 4.1 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.09$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\min]: R_{t}=1.8 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{58} \mathrm{H}_{75} \mathrm{CIN}_{10} \mathrm{O}_{12} \mathrm{~S}_{2}=1203.47686$; found $=1203.47595$.
A4	b	Yield: 2.2 mg (29 \%, $2.1 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.10$ (DCM:MeOH = 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min}$. 97% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{52} \mathrm{H}_{60} \mathrm{CIFN}_{10} \mathrm{O}_{8} \mathrm{~S}_{2}=1071.37823$; found $=1071.37928$.	Yield: 5.1 mg ($65 \%, 4.6 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.10$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min}$. 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{54} \mathrm{H}_{64} \mathrm{CIFN}_{10} \mathrm{O}_{9} \mathrm{~S}_{2}=1115.40445$; found $=1115.40662$.	Yield: 5.3 mg ($65 \%, 4.6 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.09$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min}$. > 99 \% purity (220 nm). HRMS (ESI) m/z: [M+H] ${ }^{+}$calculated for $\mathrm{C}_{56} \mathrm{H}_{68} \mathrm{CIFN}_{10} \mathrm{O}_{10} \mathrm{~S}_{2}=1159.43066$; found $=1159.43337$.	Yield: 5.9 mg (70 \%, $4.9 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.09$ (DCM:MeOH = 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min}$. 96 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{58} \mathrm{H}_{72} \mathrm{CIFN}_{10} \mathrm{O}_{11} \mathrm{~S}_{2}=1203.45688$; found $=1203.45942$.	Yield: 6.9 mg (79 \%, $5.5 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.09$ (DCM:MeOH = 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min}$. 98 \% purity (220 nm). HRMS (ESI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{60} \mathrm{H}_{76} \mathrm{CIFN}_{10} \mathrm{O}_{12} \mathrm{~S}_{2}=1247.48309$; found $=1247.48621$.
	C	Yield: $4.9 \mathrm{mg}(80 \%, 5.6 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.22$ (DCM:MeOH $=$ 20:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.3 \mathrm{~min}$.	Yield: 5.4 mg ($84 \%, 5.9 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.20$ (DCM:MeOH $=$ 20:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.3 \mathrm{~min}$.	Yield: $6.5 \mathrm{mg}(97 \%, 6.8 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.19$ (DCM:MeOH $=$ 20:1). LC-MS: [5-100 \% Solvent B, 2.7 $\min]: R_{t}=1.4 \mathrm{~min}$.	Yield: 2.2 mg ($31 \%, 2.2 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.19$ (DCM:MeOH $=$ 20:1). LC-MS: [5-100 \% Solvent B, 2.7 $\min]: R_{t}=1.4 \mathrm{~min}$.	Yield: 7.1 mg ($97 \%, 6.8 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.18$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\min]: R_{t}=1.4 \mathrm{~min}$.

		$\begin{aligned} & 97 \% \text { purity }(220 \mathrm{~nm}) . \\ & \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{41} \mathrm{H}_{40} \mathrm{CIN} \mathrm{~N}_{9} \mathrm{O}_{9} \mathrm{~S}=870.24310 \text {; } \\ & \text { found }=870.24374 \text {. } \end{aligned}$	$\begin{aligned} & \text { > } 99 \text { \% purity (} 220 \mathrm{~nm} \text {). } \\ & \text { HRMS (ESI) m/z: } \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{43} \mathrm{H}_{44} \mathrm{CIN} \mathrm{~N}_{9} \mathrm{O}_{10} \mathrm{~S}=914.26931 \text {; } \\ & \text { found }=914.26943 . \end{aligned}$	$\begin{aligned} & 95 \% \text { purity }(220 \mathrm{~nm}) . \\ & \text { HRMS (ESI) } \mathrm{m} / \mathrm{z}: \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{45} \mathrm{H}_{48} \mathrm{CIN} \mathrm{~N}_{9} \mathrm{O}_{11} \mathrm{~S}=958.29553 ; \\ & \text { found }=958.29545 \text {. } \end{aligned}$	```99 % purity (220 nm). HRMS (ESI) m/z: [M+H]+ calculated for C found = 1002.32214.```	95 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{ClN}_{9} \mathrm{O}_{13} \mathrm{~S}=1046.34796$; found $=1046.34806$.
A5	a	TLC [DCM:MeOH 93:7]: $\mathrm{Rf}=0.29$. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=14.74$ min, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 984.3058 $[\mathrm{M}+\mathrm{H}]+$, calculated 984.3058 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: Rf = 0.33. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=14.81 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1028.3323 $[\mathrm{M}+\mathrm{H}]+$, calculated 1028.3327 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: Rf = 0.26. HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=14.79 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1072.3588 [$\mathrm{M}+\mathrm{H}]+$, calculated 1072.3589 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: Rf = 0.26. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=14.79 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1116.3859 $[\mathrm{M}+\mathrm{H}]+$, calculated 1116.3851 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: Rf = 0.21. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=14.78 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1160.4113 $[\mathrm{M}+\mathrm{H}]+$, calculated 1160.4113 $[\mathrm{M}+\mathrm{H}]+$
	b	Yield: 9.6 mg ($93 \%, 9.3 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.14$ (DCM:MeOH $=$ 10:1). LC-MS: [30-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.8 \mathrm{~min}$. > 99% purity (220 nm). HRMS (ESI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{47} \mathrm{H}_{56} \mathrm{Cl}_{2} \mathrm{FN}_{9} \mathrm{O}_{8} \mathrm{~S}_{2}=1028.31271$; found $=1028.30930$.	Yield: 9.6 mg ($90 \%, 9.0 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.13$ (DCM:MeOH $=$ 10:1). LC-MS: [30-100 \% Solvent B, 2.6 $\min]: R_{t}=1.9 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{49} \mathrm{H}_{60} \mathrm{Cl}_{2} \mathrm{FN}_{9} \mathrm{O}_{9} \mathrm{~S}_{2}=1072.33893$; found $=1072.33752$.	Yield: 11.0 mg (98%, $9.8 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.12$ (DCM:MeOH $=$ 10:1). LC-MS: [30-100 \% Solvent B, 2.6 $\min]: R_{t}=1.9 \mathrm{~min}$. 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{51} \mathrm{H}_{64} \mathrm{Cl}_{2} \mathrm{FN}_{9} \mathrm{O}_{10} \mathrm{~S}_{2}=1116.36514$; found $=1116.36245$.	Yield: 11.5 mg ($99 \%, 9.9 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.12$ (DCM:MeOH $=$ 10:1). LC-MS: [30-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.9 \mathrm{~min}$. > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{53} \mathrm{H}_{68} \mathrm{Cl}_{2} \mathrm{FN}_{9} \mathrm{O}_{11} \mathrm{~S}_{2}=1160.39136$; found $=1160.38912$.	Yield: $10.0 \mathrm{mg}(82 \%, 8.2 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.12$ (DCM:MeOH $=$ 10:1). LC-MS: [30-100 \% Solvent B, 2.6 $\mathrm{min}]: R_{t}=1.9 \mathrm{~min}$. 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{55} \mathrm{H}_{72} \mathrm{Cl}_{2} \mathrm{FN}_{9} \mathrm{O}_{12} \mathrm{~S}_{2}=1204.41757$; found $=1204.41453$.
	C	TLC [DCM:MeOH 97:3]: Rf = 0.36. HPLC [50-100\% Solvent B, 20 $\mathrm{min}]: \mathrm{Rt}=6.49 \mathrm{~min}$, purity (254 $\mathrm{nm})=96 \%$. HRMS: m/z: found 827.17767 $[\mathrm{M}+\mathrm{H}]+$, calculated 827.17758 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 97:3]: $\mathrm{Rf}=0.32$. HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=15.67$ min, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 871.2043 $[\mathrm{M}+\mathrm{H}]+$, calculated 871.2038 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 97:3]: $\mathrm{Rf}=0.30$. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=15.57 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 915.22996 $[\mathrm{M}+\mathrm{H}]+$, calculated 915.23001 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 97:3]: $\mathrm{Rf}=0.24$. HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=15.61 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 959.25696 [$\mathrm{M}+\mathrm{H}]+$, calculated 959.25622 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 97:3]: $\mathrm{Rf}=0.26$. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=15.51 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1003.28266 $[\mathrm{M}+\mathrm{H}]+$, calculated 1003.28244 $[\mathrm{M}+\mathrm{H}]+$
A6	a	TLC [DCM:MeOH 93:7]: Rf = 0.29. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=14.94$ min, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 998.3224 $[\mathrm{M}+\mathrm{H}]+$, calculated 998.3221 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: Rf = 0.30. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=15.05 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1042.3485 [$\mathrm{M}+\mathrm{H}]+$, calculated 1042.3483 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: Rf = 0.23. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=15.12 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1086.3753 [$\mathrm{M}+\mathrm{H}]+$, calculated 1086.3746 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: Rf = 0.17. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=15.07 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1130.4008 $[\mathrm{M}+\mathrm{H}]+$, calculated 1130.4008 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: Rf = 0.21. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=15.08 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1174.4276 $[\mathrm{M}+\mathrm{H}]+$, calculated 1174.4270 $[\mathrm{M}+\mathrm{H}]+$
	b	Yield: 7.2 mg ($69 \%, 6.9 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.2 $\mathrm{min}]$: $\mathrm{R}_{\mathrm{t}}=1.3 \mathrm{~min}$. 97 \% purity (220 nm). HRMS (ESI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{48} \mathrm{H}_{58} \mathrm{Cl}_{2} \mathrm{FN}_{9} \mathrm{O}_{8} \mathrm{~S}_{2}=1042.3284$; found $=1042.3305$.	Yield: 7.0 mg ($64 \%, 6.4 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.14$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.2 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.3 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{50} \mathrm{H}_{62} \mathrm{Cl}_{2} \mathrm{FN}_{9} \mathrm{O}_{9} \mathrm{~S}_{2}=1086.3546$; found $=1086.3564$.	Yield: 7.0 mg ($64 \%, 6.4 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.14$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.2 $\min]: R_{t}=1.4 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{52} \mathrm{H}_{66} \mathrm{Cl}_{2} \mathrm{FN}_{9} \mathrm{O}_{10} \mathrm{~S}_{2}=1130.3808$; found $=1130.3822$.	Yield: 8.5 mg (72 \%, $7.2 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.13$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.2 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.4 \mathrm{~min}$. > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{Cl}_{2} \mathrm{FN}_{9} \mathrm{O}_{11} \mathrm{~S}_{2}=1174.4070$; found $=1174.4089$.	Yield: 7.6 mg ($62 \%, 6.2 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.13$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.2 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.4 \mathrm{~min}$. > 99% purity (220 nm). HRMS (ESI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{56} \mathrm{H}_{74} \mathrm{Cl}_{2} \mathrm{FN}_{9} \mathrm{O}_{12} \mathrm{~S}_{2}=1218.4332$; found $=1218.4350$.

	c	TLC [DCM:MeOH 97:3]: Rf = 0.36. HPLC [0-100\% Solvent B, 20 min]: $R t=15.56 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 841.19396 $[\mathrm{M}+\mathrm{H}]+$, calculated 841.19323 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 97:3]: Rf = 0.26. HPLC [0-100\% Solvent B, 20 min]: $R t=15.83 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 885.21874 [M+H]+, calculated 885.21944 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 97:3]: Rf = 0.30. HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=15.81$ min, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 929.24548 [$\mathrm{M}+\mathrm{H}]+$, calculated 929.24566 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 97:3]: Rf = 0.24. HPLC [0-100\% Solvent B, 20 min]: $R \mathrm{R}=15.82 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 973.27224 [M+H]+, calculated 973.27187 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 97:3]: $\mathrm{Rf}=0.24$. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=15.87 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1017.29857 [M+H]+, calculated 1017.29809 $[\mathrm{M}+\mathrm{H}]+$
A7	a	TLC [DCM:MeOH 93:7]: Rf = 0.29. HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=15.04 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 998.32293 $[\mathrm{M}+\mathrm{H}]+$, calculated 998.32213 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: Rf = 0.33. HPLC [0-100\% Solvent B, 20 min$]$: Rt $=15.11$ min, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1042.34904 $[\mathrm{M}+\mathrm{H}]+$, calculated 1042.34835 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: Rf = 0.29. HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=15.12 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1086.37535 $[\mathrm{M}+\mathrm{H}]+$, calculated 1086.37456 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: Rf = 0.21. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=15.12 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1130.39944 $[\mathrm{M}+\mathrm{H}]+$, calculated 1130.40078 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: Rf = 0.24. HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=15.10 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1174.42451 $[\mathrm{M}+\mathrm{H}]+$, calculated 1174.42699 $[\mathrm{M}+\mathrm{H}]+$
	C	TLC [DCM:MeOH 97:3]: Rf = 0.39. HPLC [0-100\% Solvent B, 20 min]: $\mathrm{Rt}=15.71$ min, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 841.19364 $[\mathrm{M}+\mathrm{H}]+$, calculated 841.19323 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 97:3]: $\mathrm{Rf}=0.32$. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=15.93 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 885.21980 [$\mathrm{M}+\mathrm{H}]+$, calculated 885.21944 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 97:3]: Rf = 0.33. HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=15.90 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 929.24586 [$\mathrm{M}+\mathrm{H}]+$, calculated 929.24566 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 97:3]: $\mathrm{Rf}=0.27$. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=15.92 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 973.27295 $[\mathrm{M}+\mathrm{H}]+$, calculated 973.27187 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 97:3]: Rf = 0.27. HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=15.88 \mathrm{~min}$, purity $(254 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1017.29876 [$\mathrm{M}+\mathrm{H}]+$, calculated 1017.29809 $[\mathrm{M}+\mathrm{H}]+$
A8	a	Yield: 14.5 mg (73 \%, $10.9 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.11$ (DCM: $\mathrm{MeOH}=10: 1$, 1 \% HCOOH). LC-MS: [50-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.9 \mathrm{~min}$. 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{70} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{~S}=665.30923$; found $=665.30995$.	```Yield: 14.0 mg (68 \%, \(10.2 \mu \mathrm{~mol}\)). Appearance: white solid. TLC: \(\mathrm{R}_{\mathrm{f}}=0.11\) (DCM: \(\mathrm{MeOH}=10: 1\), 1 \% HCOOH). LC-MS: [50-100 \% Solvent B, 2.7 \(\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.9 \mathrm{~min}\). 99 \% purity (220 nm). HRMS (ESI) m/z: \([\mathrm{M}+2 \mathrm{H}]^{2+}\) calculated for \(\mathrm{C}_{72} \mathrm{H}_{92} \mathrm{~N}_{8} \mathrm{O}_{17} \mathrm{~S}=687.32233\); found \(=687.32312\).```	$\begin{aligned} & \text { Yield: } 11.7 \mathrm{mg}(55 \%, 8.3 \mu \mathrm{~mol}) . \\ & \text { Appearance: white solid. } \\ & \text { TLC: } \mathrm{R}_{\mathrm{f}}=0.11 \text { (DCM:MeOH = 10:1, } \\ & 1 \% \text { HCOOH). } \\ & \text { LC-MS: }[50-100 \% \text { Solvent B, } 2.7 \\ & \text { min]: } \mathrm{R}_{\mathrm{t}}=2.0 \text { min. } \\ & 99 \% \text { purity }(220 \mathrm{~nm}) . \\ & \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+} \text { calculated for }} \\ & \mathrm{C}_{74} \mathrm{H}_{96} \mathrm{~N}_{8} \mathrm{O}_{18} \mathrm{~S}=709.33544 \text {; found } \\ & =709.33577 \text {. } \end{aligned}$	Yield: 21.4 mg (98 \%, $14.6 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.10$ (DCM: $\mathrm{MeOH}=$ 10:1, 1 \% HCOOH). LC-MS: [50-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$. 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{76} \mathrm{H}_{100} \mathrm{~N}_{8} \mathrm{O}_{19} \mathrm{~S}=731.34855$; found $=731.34905$.	$\begin{aligned} & \text { Yield: } 18.3 \mathrm{mg}(81 \%, 12.2 \mu \mathrm{~mol}) \text {. } \\ & \text { Appearance: white solid. } \\ & \text { TLC: } \mathrm{R}_{\mathrm{f}}=0.10 \text { (DCM:MeOH = } \\ & \text { 10:1, } 1 \% \mathrm{HCOOH}) \text {. } \\ & \text { LC-MS: }[50-100 \% \text { Solvent } \mathrm{B}, 2.7 \\ & \text { min]: } \mathrm{R}_{\mathrm{t}}=2.0 \text { min. } \\ & 99 \% \text { purity }(220 \mathrm{~nm}) \text {. } \\ & \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+} \text { calculated for }} \\ & \mathrm{C}_{78} \mathrm{H}_{104} \mathrm{~N}_{8} \mathrm{O}_{20} \mathrm{~S}=753.36166 \text {; found } \\ & =753.36246 \text {. } \\ & \hline \end{aligned}$
	b	```Yield: 10.2 mg (\(74 \%, 7.4 \mu \mathrm{~mol})\). Appearance: white solid. TLC: \(\mathrm{R}_{\mathrm{f}}=0.12\) (DCM:MeOH \(=\) 10:1, 1 \% HCOOH). LC-MS: [50-100 \% Solvent B, 2.2 \(\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min}\). 96 \% purity (220 nm). HRMS (ESI) m/z: \([\mathrm{M}+\mathrm{H}]^{+}\)calculated for \(\mathrm{C}_{72} \mathrm{H}_{89} \mathrm{FN}_{8} \mathrm{O}_{16} \mathrm{~S}=1373.61740\); found \(=1373.61759\).```	$\begin{aligned} & \text { Yield: } 11.9 \mathrm{mg}(84 \%, 8.4 \mu \mathrm{~mol}) . \\ & \text { Appearance: white solid. } \\ & \text { TLC: } \mathrm{R}_{\mathrm{f}}=0.12 \text { (DCM:MeOH = } \\ & \text { 10:1, } 1 \% \mathrm{HCOOH}) . \\ & \text { LC-MS: }[50-100 \% \text { Solvent } \mathrm{B}, 2.2 \\ & \text { min]: } \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min} \text {. } \\ & >99 \% \text { purity }(220 \mathrm{~nm}) . \\ & \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{74} \mathrm{H}_{93} \mathrm{FN} \mathrm{~N}_{8} \mathrm{O}_{17} \mathrm{~S}=1417.64362 \text {; } \\ & \text { found }=1417.64346 \text {. } \end{aligned}$	```Yield: 12.2 mg (\(84 \%, 8.4 \mu \mathrm{~mol})\). Appearance: white solid. TLC: \(\mathrm{R}_{\mathrm{f}}=0.11\) (DCM: \(\mathrm{MeOH}=10: 1\), 1 \% HCOOH). LC-MS: [50-100 \% Solvent B, 2.2 \(\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min}\). > 99 \% purity (220 nm). HRMS (ESI) m/z: \([\mathrm{M}+\mathrm{H}]^{+}\)calculated for \(\mathrm{C}_{76} \mathrm{H}_{97} \mathrm{FN}_{8} \mathrm{O}_{18} \mathrm{~S}=1461.66983\); found \(=1461.66976\).```	$\begin{aligned} & \text { Yield: } 10.9 \mathrm{mg}(73 \%, 7.3 \mu \mathrm{~mol}) . \\ & \text { Appearance: white solid. } \\ & \text { TLC: } \mathrm{R}_{\mathrm{f}}=0.10 \text { (DCM:MeOH = } \\ & \text { 10:1, } 1 \% \mathrm{HCOOH}) . \\ & \text { LC-MS: }[50-100 \% \text { Solvent } \mathrm{B}, 2.2 \\ & \mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min} \text {. } \\ & >99 \% \text { purity (} 220 \mathrm{~nm} \text {). } \\ & \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{78} \mathrm{H}_{101} \mathrm{FN}_{8} \mathrm{O}_{19} \mathrm{~S}=1505.69605 \text {; } \\ & \text { found }=1505.69640 . \end{aligned}$	$\begin{aligned} & \text { Yield: } 14.8 \mathrm{mg}(95 \%, 9.5 \mu \mathrm{~mol}) . \\ & \text { Appearance: white solid. } \\ & \text { TLC: } \mathrm{R}_{\mathrm{f}}=0.10 \text { (DCM:MeOH = } \\ & \text { 10:1, } 1 \% \mathrm{HCOOH}) \text {. } \\ & \text { LC-MS: }[50-100 \% \text { Solvent B, } 2.2 \\ & \text { min]: } \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min} \text {. } \\ & >99 \% \text { purity }(220 \mathrm{~nm}) . \\ & \mathrm{HRMS} \text { (ESI) m/z: } \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{80} \mathrm{H}_{105} \mathrm{FN}_{8} \mathrm{O}_{20} \mathrm{~S}=1549.72226 \text {; } \\ & \text { found }=1549.72245 . \\ & \hline \end{aligned}$
	C	$\begin{aligned} & \text { Yield: } 7.0 \mathrm{mg}(60 \%, 6.0 \mu \mathrm{~mol}) \text {. } \\ & \text { Appearance: white solid. } \\ & \text { TLC: } \mathrm{R}_{\mathrm{f}}=0.22 \text { (DCM:MeOH = } \\ & \text { 20:1, } 1 \% \mathrm{HCOOH} \text {). } \end{aligned}$	$\begin{aligned} & \text { Yield: } 1.4 \mathrm{mg}(12 \%, 1.2 \mu \mathrm{~mol}) \text {. } \\ & \text { Appearance: white solid. } \\ & \text { TLC: } \mathrm{R}_{\mathrm{f}}=0.20 \text { (DCM:MeOH = } \\ & 20: 1,1 \% \mathrm{HCOOH}) \text {. } \end{aligned}$	$\begin{aligned} & \text { Yield: } 6.2 \mathrm{mg}(49 \%, 4.9 \mu \mathrm{~mol}) \text {. } \\ & \text { Appearance: white solid. } \\ & \text { TLC: } \mathrm{R}_{\mathrm{f}}=0.19 \text { (DCM:MeOH = } \\ & 20: 1,1 \% \mathrm{HCOOH}) \text {. } \end{aligned}$	Yield: 7.1 mg ($55 \%, 5.5 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.18$ (DCM:MeOH $=$ 20:1, $1 \% \mathrm{HCOOH}$).	$\begin{aligned} & \text { Yield: } 8.9 \mathrm{mg}(66 \%, 6.6 \mu \mathrm{~mol}) \text {. } \\ & \text { Appearance: white solid. } \\ & \text { TLC: } \mathrm{R}_{\mathrm{f}}=0.18 \text { (DCM:MeOH = } \\ & 20: 1,1 \% \mathrm{HCOOH}) \text {. } \end{aligned}$

		$\begin{aligned} & \text { LC-MS: }[50-100 \text { \% Solvent } \mathrm{B}, 2.7 \\ & \text { min]: } \mathrm{R}_{\mathrm{t}}=1.9 \mathrm{~min} \\ & >99 \% \text { purity }(220 \mathrm{~nm}) . \\ & \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for } \mathrm{C}_{61} \mathrm{H}_{69} \mathrm{~N}_{7} \mathrm{O}_{17}} \\ & =1172.48227 \text {; found }= \\ & 1172.48239 \text {. } \end{aligned}$	$\begin{aligned} & \text { LC-MS: }[50-100 \% \text { Solvent } \mathrm{B}, 2.7 \\ & \text { min]: } \mathrm{R}_{\mathrm{t}}=1.9 \mathrm{~min} \\ & >99 \% \text { purity }(220 \mathrm{~nm}) . \\ & \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for } \mathrm{C}_{63} \mathrm{H}_{73} \mathrm{~N}_{7} \mathrm{O}_{18}} \\ & =1216.50848 \text {; found }= \\ & 1216.50858 \text {. } \end{aligned}$	$\begin{aligned} & \text { LC-MS: [50-100 \% Solvent B, } 2.7 \\ & \text { min]: } R_{\mathrm{t}}=2.0 \mathrm{~min} \\ & >99 \% \text { purity }(220 \mathrm{~nm}) . \\ & \text { HRMS (ESI) m/z: } \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for } \mathrm{C}_{65} \mathrm{H}_{77} \mathrm{~N}_{7} \mathrm{O}_{19}} \\ & =1260.53470 \text {; found }= \\ & 1260.53456 . \end{aligned}$	$\begin{aligned} & \text { LC-MS: [50-100 \% Solvent B, } 2.7 \\ & \text { min]: } R_{t}=2.0 \text { min } \\ & >99 \% \text { purity }(220 \mathrm{~nm}) . \\ & \text { HRMS (ESI) m/z: } \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for } \mathrm{C}_{67} \mathrm{H}_{81} \mathrm{~N}_{7} \mathrm{O}_{20}} \\ & =1304.56091 \text {; found }= \\ & 1304.56107 \text {. } \end{aligned}$	$\begin{aligned} & \text { LC-MS: [50-100 \% Solvent B, } 2.7 \\ & \text { min]: } \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min} \\ & >99 \text { \% purity }(220 \mathrm{~nm}) . \\ & \mathrm{HRMS} \text { (ESI) m/z: } \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for } \mathrm{C}_{69} \mathrm{H}_{85} \mathrm{~N}_{7} \mathrm{O}_{21}} \\ & =1348.58713 \text {; found }= \\ & 1348.58628 \text {. } \end{aligned}$
A9	a	Yield: 4.8 mg ($58 \%, 3.5 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.08$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.0 \mathrm{~min}$. > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{74} \mathrm{H}_{97} \mathrm{~N}_{9} \mathrm{O}_{15} \mathrm{~S}=692.84852$; found $=692.84859$.	Yield: 6.6 mg ($77 \%, 4.6 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.07$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.7 $\min]: R_{t}=1.0 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{76} \mathrm{H}_{101} \mathrm{~N}_{9} \mathrm{O}_{16} \mathrm{~S}=714.86163$; found $=714.86206$.	Yield: 5.8 mg ($66 \%, 3.9 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.07$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.0 \mathrm{~min}$. 98 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{78} \mathrm{H}_{105} \mathrm{~N}_{9} \mathrm{O}_{17} \mathrm{~S}=736.87473$; found $=736.87515$.	Yield: 6.4 mg ($70 \%, 4.2 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.06$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.7 $\mathrm{min}]$: $\mathrm{R}_{\mathrm{t}}=1.0 \mathrm{~min}$. 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{80} \mathrm{H}_{109} \mathrm{~N}_{9} \mathrm{O}_{18} \mathrm{~S}=758.88784$; found $=758.88805$.	Yield: 6.2 mg ($66 \%, 4.0 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.06$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.0 \mathrm{~min}$. > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{82} \mathrm{H}_{113} \mathrm{~N}_{9} \mathrm{O}_{19} \mathrm{~S}=780.90095$; found $=780.90105$.
	b	Yield: 11.3 mg ($79 \%, 7.9 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.08$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.7 \mathrm{~min}$. > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{76} \mathrm{H}_{98} \mathrm{FN}_{9} \mathrm{O}_{15} \mathrm{~S}=1428.69599$; found $=1428.70331$.	Yield: $9.5 \mathrm{mg}(65 \%, 6.5 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.08$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=1.7 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{78} \mathrm{H}_{102} \mathrm{FN}_{9} \mathrm{O}_{16} \mathrm{~S}=1472.72220$; found $=1472.72922$.	Yield: 8.0 mg ($53 \%, 5.3 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.08$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=1.7 \mathrm{~min}$. > 99% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{80} \mathrm{H}_{106} \mathrm{FN}_{9} \mathrm{O}_{17} \mathrm{~S}=1516.74842$; found $=1516.75723$.	Yield: $7.8 \mathrm{mg}(50 \%, 5.0 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.07$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.7 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{82} \mathrm{H}_{110} \mathrm{FN}_{9} \mathrm{O}_{18} \mathrm{~S}=780.89095$; found $=780.89167$.	Yield: 10.1 mg ($63 \%, 6.3 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.07$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.7 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{84} \mathrm{H}_{114} \mathrm{FN}_{9} \mathrm{O}_{19} \mathrm{~S}=802.90406$; found $=802.90462$.
	c	Yield: 3.9 mg ($53 \%, 3.2 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.19$ (DCM:MeOH $=$ 20:1). LC-MS: [50-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=0.9 \mathrm{~min}$. 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{80} \mathrm{H}_{109} \mathrm{~N}_{9} \mathrm{O}_{18} \mathrm{~S}=1227.56085$; found $=1227.55794$.	Yield: 3.7 mg (49 \%, $2.9 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.19$ (DCM:MeOH = 10:1). LC-MS: [50-100 \% Solvent B, 2.7 $\min]: R_{t}=1.0 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{67} \mathrm{H}_{82} \mathrm{~N}_{8} \mathrm{O}_{17}$ $=1271.58707$; found $=$ 1271.58356.	Yield: 4.2 mg ($53 \%, 3.2 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.18$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.7 $\min]: R_{t}=1.0 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{69} \mathrm{H}_{86} \mathrm{~N}_{8} \mathrm{O}_{18}$ $=1315.61328$; found $=$ 1315.61925.	Yield: 4.1 mg ($50 \%, 3.0 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.18$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.1 \mathrm{~min}$. > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{71} \mathrm{H}_{90} \mathrm{~N}_{8} \mathrm{O}_{19}$ = 1359.63950; found $=$ 1359.63559.	Yield: 3.4 mg ($61 \%, 2.4 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.17$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.1 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{73} \mathrm{H}_{94} \mathrm{~N}_{8} \mathrm{O}_{20}$ $=1403.66571$; found $=$ 1403.67120.
A10	a	TLC [DCM:MeOH 95:5]: Rf = 0.25. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=17.4 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 99\%. HRMS: m/z: found 1285.62133 $[\mathrm{M}+\mathrm{H}]+$, calculated 1285.62135 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: Rf = 0.24. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=17.6 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 99\%. HRMS: m/z: found 1329.64806 $[\mathrm{M}+\mathrm{H}]+$, calculated 1329.64756 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: Rf = 0.24. HPLC [30-100\% Solvent B, 20 $\mathrm{min}]: \mathrm{Rt}=17.4 \mathrm{~min}$, purity $(220$ $\mathrm{nm})=99 \%$. HRMS: m/z: found 1373.67337 [$\mathrm{M}+\mathrm{H}]+$, calculated 1373.67378 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: Rf = 0.29. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=17.6 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 99\%. HRMS: m/z: found 1417.69922 $[\mathrm{M}+\mathrm{H}]+$, calculated 1417.69999 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: Rf = 0.23. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=17.5 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 98\%. HRMS: m/z: found 1461.72591 $[\mathrm{M}+\mathrm{H}]+$, calculated 1461.72621 $[\mathrm{M}+\mathrm{H}]+$

	b	Yield: 6.7 mg (72 \%, $5.0 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.18$ (DCM: $\mathrm{MeOH}=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{71} \mathrm{H}_{89} \mathrm{FN}_{8} \mathrm{O}_{14} \mathrm{~S}=1329.62758$; found $=1329.62725$.	Yield: 7.2 mg (75 \%, $5.2 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.18$ (DCM: $\mathrm{MeOH}=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{73} \mathrm{H}_{93} \mathrm{FN}_{8} \mathrm{O}_{15} \mathrm{~S}=1373.65379$; found $=1373.65357$.	Yield: 6.6 mg ($67 \%, 4.7 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.17$ (DCM:MeOH = 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min}$. 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{75} \mathrm{H}_{97} \mathrm{FN}_{8} \mathrm{O}_{16} \mathrm{~S}=1417.68000$; found $=1417.67861$.	Yield: 7.2 mg ($71 \%, 4.9 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.16$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min}$. 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{77} \mathrm{H}_{101} \mathrm{FN}_{8} \mathrm{O}_{17} \mathrm{~S}=1461.70622$; found $=1461.70535$.	Yield: 8.0 mg ($76 \%, 5.3 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.16$ (DCM:MeOH = 10:1). LC-MS: [5-100 \% Solvent B, 2.7 $\mathrm{min}]$: $\mathrm{R}_{\mathrm{t}}=1.5 \mathrm{~min}$. 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{79} \mathrm{H}_{105} \mathrm{FN}_{8} \mathrm{O}_{15} \mathrm{~S}=1505.73243$; found $=1505.73167$.
	C	TLC [DCM:MeOH 95:5]: Rf = 0.57. HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=18.5 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 99\%. HRMS: m/z: found 1128.49272 $[\mathrm{M}+\mathrm{H}]+$, calculated 1128.49244 $[\mathrm{M}+\mathrm{H}]+$	$\begin{aligned} & \text { TLC [DCM:MeOH 95:5]: Rf = } 0.52 . \\ & \text { HPLC [30-100\% Solvent B, } 20 \\ & \text { min]: Rt = } 15.8 \text { min, purity (} 220 \\ & \mathrm{~nm} \text {) } \geq 99 \% \text {. } \\ & \text { HRMS: m/z: found } 1172.51994 \\ & {[\mathrm{M}+\mathrm{H}]+\text {, calculated } 1172.51866} \\ & {[\mathrm{M}+\mathrm{H}]+} \end{aligned}$	TLC [DCM:MeOH 95:5]: $\mathrm{Rf}=0.50$. HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=18.6 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 98\%. HRMS: m/z: found 1216.54470 [M+H]+, calculated 1216.54487 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: Rf = 0.50 . HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=18.5 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 99\%. HRMS: m/z: found 1260.57118 [$\mathrm{M}+\mathrm{H}]+$, calculated 1260.57109 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: Rf = 0.31. HPLC [0-100\% Solvent B, 20 min]: $R \mathrm{t}=18.5 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 99\%. HRMS: m/z: found 1304.59712 $[\mathrm{M}+\mathrm{H}]+$, calculated 1304.59730 $[\mathrm{M}+\mathrm{H}]+$
	a	TLC [DCM:MeOH 93:7]: $\mathrm{Rf}=0.38$. HPLC [0-100\% Solvent B, 20 min]: $R \mathrm{t}=17.73 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 99\%. HRMS: m/z: found 1285.62041 $[\mathrm{M}+\mathrm{H}]+$, calculated 1285.62135 [M+H]+	TLC [DCM:MeOH 93:7]: $\mathrm{Rf}=0.30$. HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=17.91 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 97\%. HRMS: m/z: found 1329.64738 [$\mathrm{M}+\mathrm{H}]+$, calculated 1329.64756 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: $\mathrm{Rf}=0.30$. HPLC [0-100\% Solvent B, 20 min$]$: Rt $=17.96 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 97\%. HRMS: m/z: found 1373.67431 [$\mathrm{M}+\mathrm{H}]+$, calculated 1373.67378 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 93:7]: $\mathrm{Rf}=0.28$. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=17.89 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 99\%. HRMS: m/z: found 1417.69865 $[\mathrm{M}+\mathrm{H}]+$, calculated 1417.69999 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 90:10]: Rf = 0.56 . HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=17.88 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 95\%. HRMS: m/z: found 1461.72644 [M+H]+, calculated 1461.72621 $[\mathrm{M}+\mathrm{H}]+$
A11	b	Yield: $11.3 \mathrm{mg}(85 \%, 8.5 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.13$ (DCM: $\mathrm{MeOH}=$ 10:1). LC-MS: [60-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.0 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{71} \mathrm{H}_{89} \mathrm{FN}_{8} \mathrm{O}_{14} \mathrm{~S}=1329.62758$; found $=1329.62524$.	Yield: 12.4 mg ($91 \%, 9.1 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.12$ (DCM:MeOH = 10:1). LC-MS: [60-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.0 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{73} \mathrm{H}_{73} \mathrm{FN}_{8} \mathrm{O}_{15} \mathrm{~S}=1373.65379$; found $=1373.65473$.	Yield: 13.0 mg ($92 \%, 9.2 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.12$ (DCM:MeOH = 10:1). LC-MS: [60-100 \% Solvent B, 2.7 $\min]: R_{t}=1.0 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{75} \mathrm{H}_{97} \mathrm{FN}_{8} \mathrm{O}_{16} \mathrm{~S}=1417.68000$; found $=1417.67842$.	Yield: 13.7 mg (94%, $9.4 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.11$ (DCM:MeOH = 10:1). LC-MS: [60-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.0 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{77} \mathrm{H}_{101} \mathrm{FN}_{8} \mathrm{O}_{17} \mathrm{~S}=1461.70622$; found $=1461.70402$.	Yield: $13.3 \mathrm{mg}(89 \%, 8.9 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.11$ (DCM:MeOH = 10:1). LC-MS: [60-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.0 \mathrm{~min}$. > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{79} \mathrm{H}_{105} \mathrm{FN}_{8} \mathrm{O}_{18} \mathrm{~S}=1505.73243$; found $=1505.73207$.
	C	TLC [DCM:MeOH 95:5]: Rf = 0.40. HPLC [0-100\% Solvent B, 20 min]: $R \mathrm{t}=18.42 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 95\%. HRMS: m/z: found 1128.49199 $[\mathrm{M}+\mathrm{H}]+$, calculated 1128.49244 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: Rf $=0.42$. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=18.55 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 98\%. HRMS: m/z: found 1172.51801 $[\mathrm{M}+\mathrm{H}]+$, calculated 1172.51866 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: Rf $=0.30$. HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=18.49 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 98\%. HRMS: m/z: found 1216.54526 $[\mathrm{M}+\mathrm{H}]+$, calculated 1216.54487 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: Rf = 0.27. HPLC [30-100\% Solvent B, 20 $\min]: R t=15.86 \mathrm{~min}$, purity $(220$ $n m) \geq 99 \%$. HRMS: m/z: found 1260.57145 $[\mathrm{M}+\mathrm{H}]+$, calculated 1260.57109 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: Rf $=0.41$. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=18.47$ min, purity $(220 \mathrm{~nm})=$ 98\%. HRMS: m/z: found 1304.59619 [M+H]+, calculated 1304.59730 $[\mathrm{M}+\mathrm{H}]+$
A12	a	$\begin{aligned} & \text { TLC [DCM:MeOH 90:10]: Rf = } \\ & 0.49 \text {. } \end{aligned}$	TLC [DCM:MeOH 90:10]: Rf = 0.57 .	$\begin{aligned} & \text { TLC [DCM:MeOH 90:10]: Rf = } \\ & 0.57 . \end{aligned}$	$\begin{aligned} & \text { TLC [DCM:MeOH 90:10]: Rf = } \\ & 0.61 . \end{aligned}$	$\begin{aligned} & \text { TLC [DCM:MeOH 90:10]: Rf = } \\ & 0.58 . \end{aligned}$

		HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=17.73 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 97\%. HRMS: m/z: found 1285.6204 [M+H]+, calculated 1285.62135 [$\mathrm{M}+\mathrm{H}]+$	HPLC [0-100\% Solvent B, 20 min]: $\mathrm{Rt}=17.85 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 99\%. HRMS: m/z: found 1329.64624 [M+H]+, calculated 1329.64756 [$\mathrm{M}+\mathrm{H}$] +	HPLC [0-100\% Solvent B, 20 min]: $\mathrm{Rt}=17.91 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 96\%. HRMS: m/z: found 1373.67136 [M+H]+, calculated 1373.67378 $[\mathrm{M}+\mathrm{H}]+$	HPLC [0-100\% Solvent B, 20 min]: $\mathrm{Rt}=17.84 \mathrm{~min}$, purity $(220 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1417.70127 [M+H]+, calculated 1417.69999 [$\mathrm{M}+\mathrm{H}$]+	HPLC [0-100\% Solvent B, 20 min$]$: $\mathrm{Rt}=17.82 \mathrm{~min}$, purity $(220 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1461.72733 [M+H]+, calculated 1461.72621 $[\mathrm{M}+\mathrm{H}]+$
	b	Yield: $10.6 \mathrm{mg}(80 \%, 8.0 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.13$ (DCM:MeOH $=$ 10:1). LC-MS: [60-100 \% Solvent B, 2.7 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=0.9 \mathrm{~min}$. > 99% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{71} \mathrm{H}_{89} \mathrm{FN}_{8} \mathrm{O}_{14} \mathrm{~S}=1329.6276$; found $=1329.6291$.	Yield: 11.3 mg ($82 \%, 8.2 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.12$ (DCM:MeOH = 10:1). LC-MS: [60-100 \% Solvent B, 2.7 $\min]: R_{t}=1.0 \mathrm{~min}$. > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{73} \mathrm{H}_{93} \mathrm{FN}_{8} \mathrm{O}_{15} \mathrm{~S}=1373.65379$; found $=1373.65102$.	Yield: $10.0 \mathrm{mg}(70 \%, 7.0 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.12$ (DCM:MeOH $=$ 10:1). LC-MS: [60-100 \% Solvent B, 2.2 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.0 \mathrm{~min}$. > 99% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{75} \mathrm{H}_{97} \mathrm{FN}_{8} \mathrm{O}_{16} \mathrm{~S}=1417.68000$; found $=1417.67846$.	Yield: $12.2 \mathrm{mg}(84 \%, 8.4 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.11$ (DCM:MeOH = 10:1). LC-MS: [60-100 \% Solvent B, 2.2 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.0 \mathrm{~min}$. > 99% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{77} \mathrm{H}_{101} \mathrm{FN}_{8} \mathrm{O}_{17} \mathrm{~S}=1461.7062$; found $=1461.7084$.	Yield: $10.1 \mathrm{mg}(67 \%, 6.7 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.11$ (DCM:MeOH $=$ 10:1). LC-MS: [60-100 \% Solvent B, 2.2 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=0.9 \mathrm{~min}$. > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{79} \mathrm{H}_{105} \mathrm{FN}_{8} \mathrm{O}_{18} \mathrm{~S}=1505.7324$; found $=1505.7366$.
	c	TLC [DCM:MeOH 95:5]: $\mathrm{Rf}=0.42$. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=18.36 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 97\%. HRMS: m/z: found 1128.49125 [$\mathrm{M}+\mathrm{H}]+$, calculated 1128.49244 [$\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: Rf = 0.31. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=18.48 \mathrm{~min}$, purity $(220 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1172.51505 $[\mathrm{M}+\mathrm{H}]+$, calculated 1128.49244 $[\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: Rf $=0.36$. HPLC [0-100\% Solvent B, 20 min] $R \mathrm{t}=18.44 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 98\%. HRMS: m/z: found 1216.54480 $[\mathrm{M}+\mathrm{H}]+$, calculated 1216.54487 [$\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: Rf = 0.35. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=18.39 \mathrm{~min}$, purity $(220 \mathrm{~nm}) \geq$ 99\%. HRMS: m/z: found 1260.57131 [$\mathrm{M}+\mathrm{H}]+$, calculated 1260.57109 [$\mathrm{M}+\mathrm{H}]+$	TLC [DCM:MeOH 95:5]: $\mathrm{Rf}=0.33$. HPLC [0-100\% Solvent B, 20 min$]$: $R \mathrm{t}=18.41 \mathrm{~min}$, purity $(220 \mathrm{~nm})=$ 97\%. HRMS: m/z: found 1304.5975 [$\mathrm{M}+\mathrm{H}]+$, calculated 1304.5973 $[\mathrm{M}+\mathrm{H}]+$
A13	a	Yield: 3.5 mg ($69 \%, 2.7 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.16$ (DCM:MeOH $=$ 10:1). LC-MS: [30-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.9 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{69} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{14} \mathrm{~S}=1285.62135$; found $=1285.62040$.	Yield: 5.0 mg ($94 \%, 3.8 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.16$ (DCM:MeOH = 10:1). LC-MS: [30-100 \% Solvent B, 2.6 $\min]: R_{t}=1.9 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{71} \mathrm{H}_{92} \mathrm{~N}_{8} \mathrm{O}_{15} \mathrm{~S}=1329.64756$; found $=1329.64704$.	Yield: 3.5 mg ($64 \%, 2.5 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (DCM:MeOH = 10:1). LC-MS: [30-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.9 \mathrm{~min}$. 98 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{73} \mathrm{H}_{96} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{~S}=1373.67378$; found $=1373.67526$.	Yield: 4.1 mg ($72 \%, 2.9 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.14$ (DCM:MeOH = 10:1). LC-MS: [30-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.9 \mathrm{~min}$. 98 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{75} \mathrm{H}_{100} \mathrm{~N}_{8} \mathrm{O}_{17} \mathrm{~S}=1417.69999$; found $=1417.70019$.	Yield: 4.7 mg ($81 \%, 3.2 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.14$ (DCM:MeOH = 10:1). LC-MS: [30-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.9 \mathrm{~min}$. 95 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{77} \mathrm{H}_{104} \mathrm{~N}_{8} \mathrm{O}_{18} \mathrm{~S}=1461.72621$; found $=1461.72623$.
	b	Yield: 4.9 mg ($92 \%, 3.7 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.13$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.6 $\min]: R_{t}=1.8 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{71} \mathrm{H}_{89} \mathrm{FN}_{8} \mathrm{O}_{14} \mathrm{~S}=1329.62758$; found $=1329.62804$.	Yield: $4.7 \mathrm{mg}(85 \%, 3.4 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.12$ (DCM:MeOH = 10:1). LC-MS: [50-100 \% Solvent B, 2.6 $\min]: R_{t}=1.8 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{73} \mathrm{H}_{93} \mathrm{FN}_{8} \mathrm{O}_{15} \mathrm{~S}=1373.65379$; found $=1373.65448$.	Yield: 5.0 mg ($88 \%, 3.5 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.12$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.8 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{75} \mathrm{H}_{97} \mathrm{FN}_{8} \mathrm{O}_{16} \mathrm{~S}=1417.68000$; found $=1417.67944$.	Yield: 5.1 mg ($88 \%, 3.5 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.11$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.6 $\min]: R_{t}=1.8 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{77} \mathrm{H}_{101} \mathrm{FN}_{8} \mathrm{O}_{17} \mathrm{~S}=1461.70622$; found $=1461.70634$.	Yield: 4.8 mg ($80 \%, 3.2 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.11$ (DCM:MeOH $=$ 10:1). LC-MS: [50-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=1.8 \mathrm{~min}$. $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{79} \mathrm{H}_{105} \mathrm{FN}_{8} \mathrm{O}_{18} \mathrm{~S}=1505.73243$; found $=1505.73201$.
	c	Yield: 2.9 mg ($64 \%, 2.6 \mu \mathrm{~mol}$). Appearance: white solid.	Yield: $4.6 \mathrm{mg}(98 \%, 3.9 \mu \mathrm{~mol})$. Appearance: white solid.	Yield: $4.8 \mathrm{mg}(98 \%, 3.9 \mu \mathrm{~mol})$. Appearance: white solid.	Yield: 4.1 mg ($82 \%, 3.3 \mu \mathrm{~mol}$). Appearance: white solid.	Yield: $4.8 \mathrm{mg}(92 \%, 3.7 \mu \mathrm{~mol})$. Appearance: white solid.

		$\begin{aligned} & \text { TLC: } R_{f}=0.30 \text { (DCM:MeOH = } \\ & \text { 20:1). } \\ & \text { LC-MS: [5-100 \% Solvent B, } 2.6 \\ & \text { min]: } R_{t}=2.2 \text { min. } \\ & \text { [} 50-100 \% \text { Solvent } B, 2.6 \text { min]: } R_{t} \\ & =1.6 \text { min. } \\ & 97 \% \text { purity }(220 \mathrm{~nm}) . \\ & \text { HRMS (ESI) m/z: } \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{60} \mathrm{H}_{69} \mathrm{~N}_{7} \mathrm{O}_{15}=1128.49244 \text {; found = } \\ & 1128.49277 \text {. } \end{aligned}$	```TLC: \(\mathrm{R}_{\mathrm{f}}=0.28\) (DCM:MeOH = 20:1). LC-MS: [5-100 \% Solvent B, 2.6 \(\min]: R_{t}=2.2 \mathrm{~min}\). [50-100 \% Solvent B, 2.6 min]: \(R_{t}\) \(=1.7 \mathrm{~min}\). \(>99 \%\) purity (220 nm). HRMS (ESI) m/z: \([\mathrm{M}+\mathrm{H}]^{+}\)calculated for \(\mathrm{C}_{62} \mathrm{H}_{73} \mathrm{~N}_{7} \mathrm{O}_{16}=1172.51866\); found \(=\) 1172.51918.```	$\begin{aligned} & \text { TLC: } R_{f}=0.27 \text { (DCM:MeOH = } \\ & \text { 20:1). } \\ & \text { LC-MS: [5-100 \% Solvent B, } 2.6 \\ & \text { min]: } R_{t}=2.2 \text { min. } \\ & \text { [50-100 \% Solvent B, } 2.6 \text { min]: } R_{t} \\ & =1.6 \text { min. } \\ & >99 \% \text { purity }(220 \mathrm{~nm}) . \\ & \text { HRMS (ESI) m/z: } \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{64} \mathrm{H}_{77} \mathrm{~N}_{7} \mathrm{O}_{17}=1216.54487 \text {; found = } \\ & 1216.54524 \text {. } \end{aligned}$	$\begin{aligned} & \text { TLC: } \mathrm{R}_{\mathrm{f}}=0.26 \text { (DCM:MeOH = } \\ & \text { 20:1). } \\ & \text { LC-MS: [5-100 \% Solvent B, } 2.6 \\ & \text { min]: } \mathrm{R}_{\mathrm{t}}=2.2 \text { min. } \\ & \text { [50-100 \% Solvent B, } 2.6 \mathrm{~min}]: \mathrm{R}_{\mathrm{t}} \\ & =1.6 \text { min. } \\ & \text { > } 99 \% \text { purity }(220 \mathrm{~nm}) . \\ & \text { HRMS (ESI) m/z: } \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{66} \mathrm{H}_{81} \mathrm{~N}_{7} \mathrm{O}_{18}=1260.57109 \text {; found = } \\ & 1260.57124 \text {. } \end{aligned}$	$\begin{aligned} & \text { TLC: } \mathrm{R}_{\mathrm{f}}=0.26 \text { (DCM:MeOH = } \\ & \text { 20:1). } \\ & \text { LC-MS: [5-100 \% Solvent B, } 2.6 \\ & \text { min]: } \mathrm{R}_{\mathrm{t}}=2.2 \text { min. } \\ & \text { [50-100 \% Solvent } \mathrm{B}, 2.6 \mathrm{~min}]: \mathrm{R}_{\mathrm{t}} \\ & =1.6 \text { min. } \\ & 98 \% \text { purity }(220 \mathrm{~nm}) . \\ & \mathrm{HRMS} \text { (ESI) m/z: } \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {calculated for }} \\ & \mathrm{C}_{68} \mathrm{H}_{85} \mathrm{~N}_{7} \mathrm{O}_{19}=1304.59730 \text {; found = } \\ & 1304.59795 \text {. } \end{aligned}$
A14	a	Yield: 9.0 mg ($70 \%, 7.0 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.16$ (DCM:MeOH = 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.1 \mathrm{~min}$. [50-100 \% Solvent $B, 2.6$ min]: R_{t} $=1.5 \mathrm{~min}$. 98 \% purity (220 nm). HRMS (ESI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{69} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{14} \mathrm{~S}=1285.62135$; found $=1285.62228$.	Yield: 10.1 mg ($76 \%, 7.6 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.16$ (DCM:MeOH = 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.1 \mathrm{~min}$. [50-100 \% Solvent $B, 2.6$ min]: R_{t} $=1.5 \mathrm{~min}$. 97 \% purity (220 nm). HRMS (ESI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{71} \mathrm{H}_{92} \mathrm{~N}_{8} \mathrm{O}_{15} \mathrm{~S}=1329.64756$; found $=1329.64684$.	Yield: 9.7 mg (71 \%, $7.1 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (DCM:MeOH = 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.1 \mathrm{~min}$. [50-100 \% Solvent $B, 2.6 \mathrm{~min}]: R_{t}$ $=1.5 \mathrm{~min}$. 96 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{73} \mathrm{H}_{96} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{~S}=1373.67378$; found $=1373.67298$.	Yield: $10.0 \mathrm{mg}(71 \%, 7.1 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (DCM:MeOH = 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.1 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min$]: R_{t}$ $=1.5 \mathrm{~min}$. 97 \% purity (220 nm). HRMS (ESI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{75} \mathrm{H}_{100} \mathrm{~N}_{8} \mathrm{O}_{17} \mathrm{~S}=1417.69999$ found $=1417.69950$.	Yield: $9.8 \mathrm{mg}(67 \%, 6.7 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.14$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.1 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: R_{t} $=1.5 \mathrm{~min}$. 94 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{77} \mathrm{H}_{104} \mathrm{~N}_{8} \mathrm{O}_{18} \mathrm{~S}=1461.72621$; found $=1461.72587$.
	b	Yield: 11.1 mg ($83 \%, 8.3 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.13$ (DCM: $\mathrm{MeOH}=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.1 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: R_{t} $=1.6 \mathrm{~min}$. 98 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{71} \mathrm{H}_{89} \mathrm{FN}_{8} \mathrm{O}_{14} \mathrm{~S}=1329.6309$; found $=1329.6296$.	Yield: 11.7 mg ($85 \%, 8.5 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.12$ (DCM: $\mathrm{MeOH}=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.1 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: R_{t} $=1.6 \mathrm{~min}$. 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{73} \mathrm{H}_{93} \mathrm{FN}_{8} \mathrm{O}_{15} \mathrm{~S}=1373.6538$; found $=1373.6532$.	Yield: 13.0 mg ($92 \%, 9.2 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.12$ (DCM:MeOH = 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.1 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: R_{t} $=1.6 \mathrm{~min}$. > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{75} \mathrm{H}_{97} \mathrm{FN}_{8} \mathrm{O}_{16} \mathrm{~S}=1417.6800$; found $=1417.6798$.	Yield: 12.8 mg ($88 \%, 8.8 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.11$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.1 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: R_{t} $=1.6 \mathrm{~min}$. > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{77} \mathrm{H}_{101} \mathrm{FN}_{8} \mathrm{O}_{17} \mathrm{~S}=1461.7062$; found $=1461.7065$.	Yield: 13.3 mg ($88 \%, 8.8 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.11$ (DCM:MeOH = 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.1 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: R_{t} $=1.6 \mathrm{~min}$. 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{79} \mathrm{H}_{105} \mathrm{FN}_{8} \mathrm{O}_{18} \mathrm{~S}=753.3699$; found $=753.3701$.
	C	Yield: 5.2 mg ($46 \%, 4.6 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.30$ (DCM: $\mathrm{MeOH}=$ 20:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.1 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: R_{t} $=1.5 \mathrm{~min}$. 98 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for	Yield: 9.1 mg ($78 \%, 7.8 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.28$ (DCM: $\mathrm{MeOH}=$ 20:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.1 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: R_{t} $=1.5 \mathrm{~min}$. 98 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for	Yield: $10.6 \mathrm{mg}(87 \%, 8.7 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.27$ (DCM:MeOH = 20:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.1 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min$]: R_{t}$ $=1.5 \mathrm{~min}$. 97 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for	Yield: $8.1 \mathrm{mg}(64 \%, 6.4 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.26$ (DCM:MeOH $=$ 20:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.1 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min$]: R_{t}$ $=1.5 \mathrm{~min}$. 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for	Yield: 11.2 mg ($86 \%, 8.6 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.25$ (DCM:MeOH = 20:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.1 \mathrm{~min}$. [50-100 \% Solvent $B, 2.6 \mathrm{~min}]: R_{t}$ $=1.5 \mathrm{~min}$. 98 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for

		$\begin{aligned} & \mathrm{C}_{60} \mathrm{H}_{69} \mathrm{~N}_{7} \mathrm{O}_{15}=1128.49244 ; \text { found }= \\ & 1128.49311 . \end{aligned}$	$\begin{aligned} & \mathrm{C}_{62} \mathrm{H}_{73} \mathrm{~N}_{7} \mathrm{O}_{16}=1172.51866 ; \text { found }= \\ & 1172.51949 . \end{aligned}$	$\begin{aligned} & \mathrm{C}_{64} \mathrm{H}_{77} \mathrm{~N}_{7} \mathrm{O}_{17}=1216.54487 \text {; found }= \\ & 1216.54567 . \end{aligned}$	$\begin{aligned} & \mathrm{C}_{66} \mathrm{H}_{81} \mathrm{~N}_{7} \mathrm{O}_{18}=1260.57109 ; \text { found }= \\ & 1260.57244 . \end{aligned}$	$\mathrm{C}_{68} \mathrm{H}_{85} \mathrm{~N}_{7} \mathrm{O}_{19}=1304.59730 ; \text { found }=$ $1304.59794 .$
A15	a	Yield: 7.7 mg ($75 \%, 7.5 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.18$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.0 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: $\mathrm{R}_{\mathrm{t}}=$ 1.1 min . > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{52} \mathrm{H}_{70} \mathrm{~N}_{8} \mathrm{O}_{11} \mathrm{~S}=1015.49575$; found $=1015.49512$.	Yield: 8.0 mg ($75 \%, 7.5 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.18$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: $\mathrm{R}_{\mathrm{t}}=$ 1.1 min . > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{54} \mathrm{H}_{74} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}=1059.52197$; found $=1059.52209$.	Yield: 7.9 mg ($72 \%, 7.2 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.17$ (DCM:MeOH = 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: $\mathrm{R}_{\mathrm{t}}=$ 1.1 min . > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{56} \mathrm{H}_{78} \mathrm{~N}_{8} \mathrm{O}_{13} \mathrm{~S}=1103.54818$; found $=1103.54811$.	Yield: 8.7 mg ($76 \%, 7.6 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.16$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: $\mathrm{R}_{\mathrm{t}}=$ 1.1 min . > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{58} \mathrm{H}_{82} \mathrm{~N}_{8} \mathrm{O}_{14} \mathrm{~S}=1147.57440$; found $=1147.57469$.	Yield: 7.7 mg ($65 \%, 6.5 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.16$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min$]: R_{t}=$ 1.2 min . > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{60} \mathrm{H}_{86} \mathrm{~N}_{8} \mathrm{O}_{15} \mathrm{~S}=1191.60061$; found $=1191.60022$.
	b	Yield: 9.1 mg ($86 \%, 8.6 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.16$ (DCM:MeOH $=$ 20:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.0 \mathrm{~min}$. [30-100 \% Solvent B, 2.6 min]: $R_{t}=$ 1.8 min . 98 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{54} \mathrm{H}_{71} \mathrm{FN}_{8} \mathrm{O}_{11} \mathrm{~S}=1059.50198$; found $=1059.50206$.	Yield: $9.4 \mathrm{mg}(85 \%, 8.5 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (DCM:MeOH $=$ 20:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$. [30-100 \% Solvent B, 2.6 min]: $\mathrm{R}_{\mathrm{t}}=$ 1.8 min . 98 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{56} \mathrm{H}_{75} \mathrm{FN}_{8} \mathrm{O}_{12} \mathrm{~S}=1103.52820$; found $=1103.52878$.	Yield: $10.3 \mathrm{mg}(90 \%, 9.0 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (DCM:MeOH $=$ 20:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$. [30-100 \% Solvent B, 2.6 min]: $\mathrm{R}_{\mathrm{t}}=$ 1.8 min . > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{58} \mathrm{H}_{79} \mathrm{FN}_{8} \mathrm{O}_{13} \mathrm{~S}=1147.55441$; found $=1147.55490$.	Yield: $10.5 \mathrm{mg}(88 \%, 8.8 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.14$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$. [30-100 \% Solvent B, 2.6 min]: $R_{t}=$ 1.8 min . $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{60} \mathrm{H}_{83} \mathrm{FN}_{8} \mathrm{O}_{14} \mathrm{~S}=1191.58063$; found $=1191.58131$.	Yield: 11.9 mg ($96 \%, 9.6 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.14$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$. [30-100 \% Solvent B, 2.6 min$]: R_{t}=$ 1.8 min . > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{62} \mathrm{H}_{87} \mathrm{FN}_{8} \mathrm{O}_{15} \mathrm{~S}=1235.60684$; found $=1235.60729$.
	C	Yield: 5.1 mg (59 \%, $5.9 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.34$ (DCM:MeOH $=$ 20:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: $R_{t}=$ 1.0 min . 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{~N}_{7} \mathrm{O}_{12}=858.36685$; found $=$ 858.36666.	Yield: 5.2 mg ($58 \%, 5.8 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.32$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: $\mathrm{R}_{\mathrm{t}}=$ 1.0 min . > 99 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{45} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{O}_{13}=902.39306$; found $=$ 902.39298.	Yield: 8.9 mg ($94 \%, 9.4 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.30$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: $\mathrm{R}_{\mathrm{t}}=$ 1.1 min . 98 \% purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{47} \mathrm{H}_{59} \mathrm{~N}_{7} \mathrm{O}_{14}=946.41928$; found $=$ 946.41926.	Yield: 5.0 mg ($51 \%, 5.1 \mu \mathrm{~mol}$). Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.29$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\min]: R_{t}=2.0 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: $R_{t}=$ 1.1 min . $>99 \%$ purity (220 nm). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{49} \mathrm{H}_{63} \mathrm{~N}_{7} \mathrm{O}_{15}=990.44549$; found $=$ 990.44627.	Yield: 9.4 mg ($91 \%, 9.1 \mu \mathrm{~mol})$. Appearance: white solid. TLC: $\mathrm{R}_{\mathrm{f}}=0.28$ (DCM:MeOH $=$ 10:1). LC-MS: [5-100 \% Solvent B, 2.6 $\mathrm{min}]: \mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$. [50-100 \% Solvent B, 2.6 min]: $\mathrm{R}_{\mathrm{t}}=$ 1.0 min . 98 \% purity (220 nm). HRMS (ESI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{49} \mathrm{H}_{63} \mathrm{~N}_{7} \mathrm{O}_{15}=1034.47171$; found $=$ 1034.47225.

15. Synthesis of linker analogues

Ethyl (S)-2-((4-methoxybenzyl)oxy)propanoate

(-)-Ethyl L-lactate (11.8 g, $100 \mathrm{mmol}, 1.0$ eq.) and 1-(chloromethyl)-4-methoxybenzene (23.5 g , $150 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) , DIPEA (27.9 \mathrm{~mL}, 160 \mathrm{mmol}, 1.6$ eq.) and sodium iodide ($1.5 \mathrm{~g}, 10 \mathrm{mmol}, 0.1 \mathrm{eq}$.) were stirred at $150^{\circ} \mathrm{C}$ for 2 h under argon. Water (100 mL) was added and the mixture was extracted with DCM ($3 \times 100 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 16.6 g (70%, 69.7 mmol$)$.
Appearance: colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, Chloroform- d): $\delta=1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.99-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{qd}, J=7.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84-6.94(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (75 MHz , Chloroform- d): $\delta=14.3,18.7,55.2,60.8,71.6,73.7,113.8,129.6,159.4,173.3$.
TLC: $R_{f}=0.18$ (CH:EA = 9:1).
LC-MS: Mass (ESI), calculated $=261.1[\mathrm{M}+\mathrm{Na}]^{+}$, found $=261.2$.
[5-100 \% Solvent B, 3.0 min]: $R_{t}=2.0 \mathrm{~min}$.
83 \% purity (220 nm).

(S)-2-((4-Methoxybenzyl)oxy)propan-1-ol

Ethyl (S)-2-((4-methoxybenzyl)oxy)propanoate ($5.0 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was dissolved in THF (50 mL , dry) under argon. The mixture was cooled to $0^{\circ} \mathrm{C}$ and LAH (1 M in THF, $23.1 \mathrm{~mL}, 23.1 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added slowly. The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ to room temperature. Sodium hydroxide (aq, $1 \mathrm{M}, 1 \mathrm{~mL}$) and water (5 mL) were added. The solution was filtered and rinsed with DEE. The filtrate was washed with Brine (30 mL) and the organic phase was dried over MgSO_{4} and concentrated under reduced pressure.

Yield: 4.1 g (quant., 21.0 mmol).
Appearance: colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, Chloroform-d): $\delta=1.19(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 1 \mathrm{H}), 3.46-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (75 MHz , Chloroform-d): $\delta=15.9,55.3,66.3,70.5,75.3,113.9,129.4,130.5,159.3$.
TLC: $R_{f}=0.18(C H: E A=2: 1)$.
LC-MS: [30-100 \% Solvent $B, 3.2 \mathrm{~min}]: R_{t}=1.5 \mathrm{~min}$.
>99 \% purity (220 nm).
(S)-2-((4-methoxybenzyl)oxy)propyl 4-methylbenzenesulfonate

(S)-2-((4-Methoxybenzyl)oxy)propan-1-ol(1000 mg, $5.1 \mathrm{mmol}, 1.0$ eq.), triethylamine (3.0 eq.) and 4dimethylaminopyridine (0.2 eq.) were dissolved in DCM and cooled to $0{ }^{\circ} \mathrm{C}$. p-Toluenesulfonyl chloride (1.5 eq.) was added and the mixture stirred for 2 h at $0^{\circ} \mathrm{C}$ to room temperature. Water was added and the mixture was extracted with DCM. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 1780 mg (99 \%, 5.1 mmol).
Appearance: slightly yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, Chloroform-d): $\delta=1.17(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.77$ (td, $J=6.1,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{dd}, J=5.3,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.20-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.85(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (75 MHz , Chloroform-d): $\delta=16.8,21.7,55.3,71.0,72.0,72.8,113.8,128.0,129.3,129.9$, 130.1, 144.8, 159.2.

TLC: $R_{f}=0.35(C H: E A=3: 1)$.
LC-MS: [5-100 \% Solvent B, 3.0 min$]: R_{t}=2.2 \mathrm{~min}$.
> 99 \% purity (220 nm).
(S)-1-(((1-Azidopropan-2-yl)oxy)methyl)-4-methoxybenzene
(S)-2-((4-methoxybenzyl)oxy)propyl 4-methylbenzenesulfonate ($3.10 \mathrm{~g}, 8.9 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and sodium azide ($1.16 \mathrm{~g}, 17.8 \mathrm{mmol}, 2.0$ eq.) were dissolved in DMF (90 mL). The mixture was stirred for 18 h at $70^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure. The crude product was dissolved in DCM and filtered through Celite. The solvent was removed under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 1.71 g ($87 \%, 7.7 \mathrm{mmol})$.
Appearance: slightly yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.22(\mathrm{dd}, J=12.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$ (dd, $J=12.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{td}, J=6.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.52(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}$, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.95(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Chloroform-d): $\delta=17.5,55.3,55.8,70.7,73.8,113.9,129.3,130.3,159.3$.
TLC: $R_{f}=0.72(C H: E A=1: 1)$.
LC-MS: [5-100 \% Solvent B, 3.0 min]: $\mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$.
87 \% purity (220 nm).
(S)-1-Azidopropan-2-yl 4-methylbenzenesulfonate

(S)-1-(((1-Azidopropan-2-yl)oxy)methyl)-4-methoxybenzene ($1.65 \mathrm{~g}, 7.45 \mathrm{mmol}, 1.0$ eq.) was dissolved in DCM:TFA (9:1, 100 mL). The mixture was stirred for 30 min at room temperature. Water (50 mL) was added and the solution was extracted with DCM ($3 \times 50 \mathrm{~mL}$). combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure.
TLC: $\mathrm{R}_{\mathrm{f}}=0.32(\mathrm{CH}: E A=1: 1)$
Crude (S)-1-azidopropan-2-ol ($0.75 \mathrm{~g}, 7.45 \mathrm{mmol}, 1.0 \mathrm{eq}$), triethylamine ($3.1 \mathrm{~mL}, 22.4 \mathrm{mmol}, 3.0 \mathrm{eq}$.) and 4-dimethylaminopyridine ($182 \mathrm{mg}, 1.49 \mathrm{mmol}, 0.2$ eq.) were dissolved in DCM (75 mL) and cooled to $0^{\circ} \mathrm{C}$. p-Toluenesulfonyl chloride ($2.13 \mathrm{~g}, 11.2 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added and the mixture was stirred for 18 h at $0{ }^{\circ} \mathrm{C}$ to room temperature. Water (80 mL) was added and the solution was extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 274 mg (14 \% o2s, 1.1 mmol).
Appearance: slightly yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.34(\mathrm{dd}, \mathrm{J}=6.4,1.0 \mathrm{~Hz}, 3 \mathrm{H})$, $2.47(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.41(\mathrm{~m}, 2 \mathrm{H})$, 4.70 (pd, $J=6.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-7.86$ (m, 2H).
${ }^{13}$ C-NMR (126 MHz , Chloroform-d): $\delta=18.4,21.7,55.1,77.3,127.8,129.9,133.8,145.0$.
TLC: $R_{f}=0.40$ ($C H: E A=2: 1$).
LC-MS: Mass (ESI), calculated $=273.1\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found $=273.2$.
[$5-100 \%$ Solvent $B, 3.0 \mathrm{~min}$]: $R_{t}=2.0 \mathrm{~min}$.
99 \% purity (220 nm).

Ethyl (R)-2-((4-methoxybenzyl)oxy)propanoate

(-)-Ethyl D-lactate ($12.5 \mathrm{~g}, 106 \mathrm{mmol}, 1.0$ eq.) and 1-(chloromethyl)-4-methoxybenzene (25.0 g , $160 \mathrm{mmol}, 1.5 \mathrm{eq}$.), DIPEA ($29.6 \mathrm{~mL}, 170 \mathrm{mmol}, 1.6 \mathrm{eq}$.) and sodium iodide ($1.6 \mathrm{~g}, 10.6 \mathrm{mmol}, 0.1 \mathrm{eq}$.) were stirred for 2 h at $150^{\circ} \mathrm{C}$ under argon. Water (100 mL) was added and the mixture was extracted with DCM ($3 \times 100 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 8.9 g (35%, 37.4 mmol).
Appearance: colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.81(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 3 \mathrm{H}), 4.05(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{qq}, J=6.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (75 MHz , Chloroform- d): $\delta=14.3,18.7,55.3,60.8,71.6,73.7,113.8,129.7,159.4,173.4$.
TLC: $R_{f}=0.18$ (CH:EA = 9:1).
LC-MS: Mass (ESI), calculated = $261.1[\mathrm{M}+\mathrm{Na}]^{+}$, found $=261.2$.
[5-100 \% Solvent $B, 3.0 \mathrm{~min}]: R_{t}=2.0 \mathrm{~min}$.
85 \% purity (220 nm).

(R)-2-((4-Methoxybenzyl)oxy)propan-1-ol

Ethyl (R)-2-((4-methoxybenzyl)oxy)propanoate ($8.80 \mathrm{~g}, 37.0 \mathrm{mmol}, 1.0$ eq.) was dissolved in THF (80 mL , dry) under argon. The mixture was cooled to $0^{\circ} \mathrm{C}$ and LAH in THF ($1 \mathrm{M}, 41.0 \mathrm{~mL}, 41.0 \mathrm{mmol}$, 1.1 eq.) was added slowly. The mixture was allowed to warm to room temperature and was stirred for 2 h. Sodium hydroxide (aq, $1 \mathrm{M}, 2 \mathrm{~mL}$) and water (10 mL) were added. The solution was filtered and rinsed with DEE. The filtrate was washed with Brine (50 mL) and the organic phase was dried over MgSO_{4} and concentrated under reduced pressure.

Yield: 7.30 g (quant., 37.0 mmol).
Appearance: slightly yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.18$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.27-2.47$ (m, 1H), 3.50 (ddd, J=11.0, $7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.67$ (ddq, $J=10.1,7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.44$ (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (126 MHz , Chloroform- d): $\delta=15.9,55.3,66.3,70.5,75.3,113.9,129.4,130.6,159.3$.
TLC: $R_{f}=0.18(C H: E A=2: 1)$
LC-MS: Mass (ESI), calculated $=219.1[\mathrm{M}+\mathrm{Na}]^{+}$, found $=219.0$.
[$5-100 \%$ Solvent $B, 2.6 \mathrm{~min}]: R_{t}=1.2 \mathrm{~min}$.
85 \% purity.
(R)-2-((4-methoxybenzyl)oxy)propyl 4-methylbenzenesulfonate

(R)-2-((4-Methoxybenzyl)oxy)propan-1-ol (7.3 g, $37.0 \mathrm{mmol}, 1.0$ eq.), triethylamine (3.0 eq.) and 4dimethylaminopyridine (0.2 eq.) were dissolved in DCM and cooled to $0^{\circ} \mathrm{C}$. p-Toluenesulfonyl chloride (1.5 eq.) was added and the mixture stirred for 2 h at $0^{\circ} \mathrm{C}$ to room temperature. Water was added and the mixture was extracted with DCM. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 9.5 g ($73 \%, 27.0 \mathrm{mmol})$.
Appearance: slightly yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform- d$): \delta=1.17(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.82$ (d, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.96-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.41-4.51(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, Chloroform-d): $\delta=16.8,21.7,55.3,71.0,72.0,72.8,113.8,128.0,129.3,129.9$, 130.2, 133.0, 144.8, 159.3.

TLC: $R_{f}=0.35(C H: E A=3: 1)$.
LC-MS: Mass (ESI), calculated $=373.1[\mathrm{M}+\mathrm{Na}]^{+}$, found $=373.0$.
[5-100 \% Solvent B, 3.0 min]: $R_{t}=2.2 \mathrm{~min}$.
98 \% purity (220 nm).
(R)-1-(((1-Azidopropan-2-yl)oxy)methyl)-4-methoxybenzene

(R)-2-((4-Methoxybenzyl)oxy)propyl 4-methylbenzenesulfonate ($3.50 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and sodium azide ($1.30 \mathrm{~g}, 20.0 \mathrm{mmol}, 2.0$ eq.) were dissolved in DMF (50 mL). The mixture was stirred for 18 h at $70^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure. The crude product was dissolved in DCM and filtered through Celite. The solvent was removed under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 1.82 g (82 \%, 8.2 mmol).
Appearance: colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.22(\mathrm{dd}, J=12.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$ (dd, $J=12.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (126 MHz , Chloroform- d): $\delta=17.5,55.3,55.8,70.7,73.8,113.9,129.3,130.3,159.3$.
TLC: $R_{f}=0.72(\mathrm{CH}: E A=1: 1)$.
LC-MS: Mass (ESI), calculated $=244.1[\mathrm{M}+\mathrm{Na}]^{+}$, found $=244.0$.
[5-100 \% Solvent B, 3.0 min]: $\mathrm{R}_{\mathrm{t}}=2.0 \mathrm{~min}$.
98 \% purity (220 nm).
(R)-1-Azidopropan-2-yl 4-methylbenzenesulfonate

(R)-1-(((1-Azidopropan-2-yl)oxy)methyl)-4-methoxybenzene ($1.82 \mathrm{~g}, 8.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) was dissolved$ in DCM:TFA (9:1, 100 mL). The mixture was stirred for 30 min at room temperature. Water (50 mL) was added and the solution was extracted with DCM $(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure.
TLC: $\mathrm{R}_{\mathrm{f}}=0.27(\mathrm{CH}: E A=2: 1)$.
Crude (R)-1-Azidopropan-2-ol ($0.83 \mathrm{~g}, 8.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), triethylamine ($3.4 \mathrm{~mL}, 24.6 \mathrm{mmol}, 3.0 \mathrm{eq}$.) and 4-dimethylaminopyridine ($195 \mathrm{mg}, 1.6 \mathrm{mmol}, 0.2$ eq.) were dissolved in DCM (75 mL) and cooled to $0^{\circ} \mathrm{C} . p$-Toluenesulfonyl chloride ($\left.2.35 \mathrm{~g}, 12.3 \mathrm{mmol}, 1.5 \mathrm{eq}.\right)$ was added and the mixture was stirred for 18 h at $0{ }^{\circ} \mathrm{C}$ to room temperature. Water (80 mL) was added and the solution was extracted with DCM ($3 \times 80 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by preparative HPLC. The product was dried by lyophilisation.

Yield: 711 mg (34 \% o2s, 2.8 mmol).
Appearance: yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.29-1.34(\mathrm{~m}, 3 \mathrm{H}), 2.43-2.47(\mathrm{~m}, 3 \mathrm{H}), 3.28-3.38(\mathrm{~m}, 2 \mathrm{H})$, 4.68 (pdd, $J=6.3,4.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{dq}, J=8.6,2.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (126 MHz , Chloroform-d): $\delta=18.3,21.6,55.0,77.4,127.8,129.9,133.7,145.1$.
TLC: $R_{f}=0.41$ (CH:EA = 2:1).
LC-MS: Mass (ESI), calculated $=273.1\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found $=273.2$.
[5-100 \% Solvent B, 3.0 min]: $R_{t}=2.0 \mathrm{~min}$.
98 \% purity (220 nm).

Ethyl (S)-2-(tosyloxy)propanoate

(S)-2-hydroxypropanoate (1.44 g, $12.2 \mathrm{mmol}, 1.0$ eq.), triethylamine (3.0 eq.) and 4dimethylaminopyridine (0.2 eq.) were dissolved in DCM and cooled to $0^{\circ} \mathrm{C}$. p-Toluenesulfonyl chloride (1.5 eq.) was added and the mixture stirred for 2 h at $0^{\circ} \mathrm{C}$ to room temperature. Water was added and the mixture was extracted with DCM. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 2.37 g (71 \%, 8.7 mmol$)$.
Appearance: colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.21$ (q, $J=6.9,6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.45(\mathrm{~d}, \mathrm{~J}$ $=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.12(\mathrm{p}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (126 MHz , Chloroform- d): $\delta=13.9,18.4,21.6,61.8,74.2,128.0,129.8,133.4,145.1,169.0$.
TLC: $R_{f}=0.41$ (CH:EA = 3:1).
LC-MS: Mass (ESI), calculated $=273.1[\mathrm{M}+\mathrm{H}]^{+}$, found $=273.2$.
[$5-100 \%$ Solvent $B, 3.0 \mathrm{~min}]: R_{t}=2.0 \mathrm{~min}$.
93 \% purity (220 nm).

(S)-1-Hydroxypropan-2-yl 4-methylbenzenesulfonate

Ethyl (S)-2-(tosyloxy)propanoate ($1.90 \mathrm{~g}, 7.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and lithium chloride ($0.69 \mathrm{~g}, 16.3 \mathrm{mmol}, 2.3$ eq.) were dissolved in THF:EtOH (1:2, dry, 60 mL) under argon. The mixture was cooled to $-5{ }^{\circ} \mathrm{C}$ and sodium borohydride ($0.62 \mathrm{~g}, 16.3 \mathrm{mmol}, 2.3 \mathrm{eq}$.) was added slowly. The mixture was allowed to warm to room temperature and was stirred for 18 h . Chloroform (150 mL) and sodium sulfate (sat., aq, 150 mL) were added and the mixture was stirred for 1 h . The solution was filtered and rinsed with chloroform. The filtrate was washed with Brine (100 mL) and the organic phase was dried over MgSO_{4} and concentrated under reduced pressure.

Yield: $1.09 \mathrm{~g} \mathrm{(68} \mathrm{\%} 4.73 \mathrm{mmol}$,$) .$
Appearance: colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.19-1.25(\mathrm{~m}, 3 \mathrm{H}), 2.43(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.58-3.64(\mathrm{~m}$,
2 H), 4.66 (tdd, $J=9.0,4.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, Chloroform-d): $\delta=16.9,21.6,65.4,80.6,127.8,129.9,133.8,144.9$.
TLC: $R_{f}=0.15(C H: E A=2: 1)$.
$R_{f}=0.45(C H: E A=1: 1)$.
LC-MS: [5-100 \% Solvent B, 3.0 min$]: R_{t}=1.6 \mathrm{~min}$.
> 99 \% purity (220 nm).
(R)-2-Azidopropyl 4-methylbenzenesulfonate

(S)-1-Hydroxypropan-2-yl 4-methylbenzenesulfonate ($100 \mathrm{mg}, 434 \mu \mathrm{~mol}, 1.0$ eq.) and sodium azide (56 $\mathrm{mg}, 868 \mu \mathrm{~mol}, 2.0 \mathrm{eq}$.) were dissolved in DMF (5 mL). The mixture was stirred for 18 h at $70^{\circ} \mathrm{C}$. Brine $(30 \mathrm{~mL})$ was added and the solution was extracted with DCM $(2 \times 40 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure.
TLC: $R_{f}=0.29(C H: E A=2: 1)$.
Crude (R)-2-azidopropan-1-ol ($44 \mathrm{mg}, 434 \mu \mathrm{~mol}, 1.0$ eq.), triethylamine ($181 \mu \mathrm{~L}, 1302 \mu \mathrm{~mol}, 3.0 \mathrm{eq}$.) and 4-dimethylaminopyridine ($11 \mathrm{mg}, 87 \mu \mathrm{~mol}, 0.2$ eq.) were dissolved in DCM (5 mL) and cooled to 0 ${ }^{\circ} \mathrm{C}$. p-Toluenesulfonyl chloride ($124 \mathrm{mg}, 651 \mu \mathrm{~mol}, 1.5 \mathrm{eq}$.) was added and the mixture stirred at $0{ }^{\circ} \mathrm{C}$ to room temperature for 3 h . Water (5 mL) was added and the solution was extracted with DCM (3×10 mL). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 24 mg (22 \% o2s, $94 \mu \mathrm{~mol})$.
Appearance: colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.01-1.06(\mathrm{~m}, 3 \mathrm{H}), 2.24-2.30(\mathrm{~m}, 3 \mathrm{H}), 3.54$ (ddd, $\mathrm{J}=11.0$, $5.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.85(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{td}, \mathrm{J}=5.8,2.7 \mathrm{~Hz}$, 2H).
${ }^{13}$ C-NMR (126 MHz, Chloroform-d): $\delta=15.7,21.7,55.6,72.1,127.9,130.0,132.5,145.3$.
TLC: $R_{f}=0.44(C H: E A=2: 1)$.
LC-MS: Mass (ESI), calculated $=273.1\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found $=273.2$.
[5-100 \% Solvent $B, 3.0 \mathrm{~min}]: R_{t}=2.0 \mathrm{~min}$.
99 \% purity (220 nm).

Ethyl (R)-2-(tosyloxy)propanoate

(R)-2-hydroxypropanoate ($1.44 \mathrm{~g}, \quad 12.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), triethylamine (3.0 eq.) and 4dimethylaminopyridine (0.2 eq.) were dissolved in DCM and cooled to $0^{\circ} \mathrm{C}$. p-Toluenesulfonyl chloride (1.5 eq.) was added and the mixture stirred for 2 h at $0^{\circ} \mathrm{C}$ to room temperature. Water was added and the mixture was extracted with DCM. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 1.67 g ($50 \%, 6.1 \mathrm{mmol})$.
Appearance: colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$, $4.05-4.11(\mathrm{~m}, 3 \mathrm{H}), 4.89(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (126 MHz , Chloroform-d): $\delta=13.9,18.4,21.6,61.8,74.2,128.0,129.8,133.4,145.1,169.0$.
TLC: $R_{f}=0.41(\mathrm{CH}: E A=3: 1)$.
LC-MS: Mass (ESI), calculated $=273.1[\mathrm{M}+\mathrm{H}]^{+}$, found $=273.2$.
[5-100 \% Solvent B, 3.0 min]: $R_{t}=2.0 \mathrm{~min}$.
98 \% purity (220 nm).
(R)-1-hydroxypropan-2-yl 4-methylbenzenesulfonate

Ethyl (R)-2-(tosyloxy)propanoate ($1.67 \mathrm{~g}, 6.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and lithium chloride ($0.78 \mathrm{~g}, 18.4 \mathrm{mmol}, 3.0$ eq.) were dissolved in THF:EtOH (1:2, dry, 60 mL) under argon. The mixture was cooled to $-5^{\circ} \mathrm{C}$ and sodium borohydride ($0.70 \mathrm{~g}, 18.4 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added slowly. The mixture was allowed to warm to room temperature and was stirred for 18 h . Chloroform (150 mL) and sodium sulfate (sat., aq, 150 mL) were added and the mixture was stirred for 1 h . The solution was filtered and rinsed with chloroform. The filtrate was washed with Brine (100 mL) and the organic phase was dried over MgSO_{4} and concentrated under reduced pressure.

Yield: 0.84 g (59 \%, 3.6 mmol).
Appearance: colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.24(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.66(\mathrm{~m}, 2 \mathrm{H}), 4.63$
$-4.73(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, Chloroform-d): $\delta=16.9,21.6,65.5,80.7,127.8,129.9,133.9,144.9$.
TLC: $R_{f}=0.45$ (CH:EA = 1:1).
LC-MS: Mass (ESI), calculated $=248.1\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found $=248.2$.
[$5-100 \%$ Solvent $B, 3.0 \mathrm{~min}$]: $R_{t}=1.6 \mathrm{~min}$.
>99 \% purity (220 nm).
(S)-2-azidopropyl 4-methylbenzenesulfonate

(R)-1-hydroxypropan-2-yl 4-methylbenzenesulfonate ($837 \mathrm{mg}, 3.6 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and sodium azide ($473 \mathrm{mg}, 7.3 \mu \mathrm{~mol}, 2.0$ eq.) were dissolved in DMF (30 mL). The mixture was stirred for 18 h at $70^{\circ} \mathrm{C}$. Brine $(100 \mathrm{~mL})$ was added and the solution was extracted with DCM $(2 \times 100 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The solvent was removed under reduced pressure.
TLC: $R_{f}=0.29(C H: E A=2: 1)$.
Crude (S)-2-azidopropan-1-ol ($367 \mathrm{mg}, 3.6 \mathrm{mmol}, 1.0 \mathrm{eq}$.), triethylamine ($1.5 \mathrm{~mL}, 10.9 \mathrm{mmol}, 3.0 \mathrm{eq}$.) and 4-dimethylaminopyridine ($89 \mathrm{mg}, 0.7 \mathrm{mmol}, 0.2$ eq.) were dissolved in DCM (40 mL) and cooled to $0^{\circ} \mathrm{C}$. p-Toluenesulfonyl chloride ($1039 \mathrm{mg}, 5.5 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added and the mixture stirred at 0 ${ }^{\circ} \mathrm{C}$ to room temperature for 18 h . Water (40 mL) was added and the solution was extracted with DCM (3 x 400 mL). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 187 mg (20 \% o2s, 0.7 mmol).
Appearance: colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.25(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.94$ (dd, $J=10.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=10.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{dd}, J=8.6,1.9$ Hz, 2H).
${ }^{13} \mathrm{C}-$ NMR (126 MHz, Chloroform-d): $\delta=15.9,21.8,55.7,72.1,128.1,130.1,132.7,145.3$.
TLC: $R_{f}=0.44$ (CH:EA = 2:1).
LC-MS: Mass (ESI), calculated $=273.1\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found $=273.2$.
[5-100 \% Solvent B, 3.0 min$]$: $R_{t}=1.9 \mathrm{~min}$.
99 \% purity (220 nm).

Propane-1,3-diyl bis(4-methylbenzenesulfonate)

TsO \sim OTs
Propane-1,3-diol ($510 \mu \mathrm{~L}, 7.0 \mathrm{mmol}, 1.0$ eq.), triethylamine ($5.9 \mathrm{~mL}, 42.0 \mathrm{mmol}, 6.0 \mathrm{eq}$.) and 4-dimethylaminopyridine ($340 \mathrm{mg}, 2.8 \mathrm{mmol}, 0.4$ eq.) were dissolved in DCM (60 mL) and cooled to $0^{\circ} \mathrm{C}$. p-Toluenesulfonyl chloride ($4.00 \mathrm{~g}, 21.0 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added and the mixture stirred for 2 h at $0{ }^{\circ} \mathrm{C}$ to room temperature. Water (60 mL) was added and the solution was extracted with DCM $(3 \times 100 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 1.84 g (68 \%, 4.8 mmol$)$.
Appearance: white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=2.02(\mathrm{p}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 6 \mathrm{H}), 4.08(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 4 \mathrm{H})$, 7.37 (d, J = 7.9 Hz, 4H), 7.76 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, Chloroform-d): $\delta=21.8,28.8,66.0,128.0,130.1,132.7$, 145.2.
TLC: $R_{f}=0.71$ (CH:EA = 1:1).
LC-MS: Mass (ESI), calculated $=385.1[\mathrm{M}+\mathrm{H}]^{+}$, found $=385.0$.
[5-100 \% Solvent B, 3.0 min]: $R_{t}=2.1 \mathrm{~min}$.
> 99 \% purity (220 nm).

3-azidopropyl 4-methylbenzenesulfonate
$\mathrm{N}_{3} \simeq \mathrm{OT}$

Propane-1,3-diyl bis(4-methylbenzenesulfonate) ($1.84 \mathrm{~g}, 4.7 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and sodium azide (0.30 \mathrm{~g}$, $4.7 \mathrm{mmol}, 1.0$ eq.) were dissolved in DMF (40 mL). The mixture was stirred for 18 h at $70^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure. The crude product was dissolved in DCM and filtered through Celite. The solvent was removed under reduced pressure. The obtained product was purified by flash chromatography.

Yield: 295 mg (25 \%, 1.2 mmol$)$.
Appearance: colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=1.89(\mathrm{p}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.11(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}$ (126 MHz, Chloroform- d): $\delta=21.6,28.4,47.3,67.1,127.9,130.0,132.7,145.1$.
TLC: $R_{f}=0.46$ (CH:EA = 2:1).
LC-MS: Mass (ESI), calculated $=278.1[\mathrm{M}+\mathrm{Na}]^{+}$, found $=278.0$.
[$5-100 \%$ Solvent $B, 2.6 \mathrm{~min}]: R_{t}=1.7 \mathrm{~min}$.
72 \% purity (220 nm).

16.Synthesis of b1 analogues

(2S,4R)-N-(2-(((R)-1-Azidopropan-2-yl)oxy)-4-(4-methylthiazol-5-yl)benzyl)-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide

VH032-cyclopropane-F ($53 \mathrm{mg}, 100 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$), (S)-1-Azidopropan-2-yl 4-
methylbenzenesulfonate ($34 \mathrm{mg}, 135 \mu \mathrm{~mol}, 1.35 \mathrm{eq}$) and potassium carbonate (2.7 eq .) were dissolved in DMF. The mixture was stirred for 18 h at $70^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure. The obtained product was purified by flash chromatography.

Yield: $48 \mathrm{mg}(78 \%, 78 \mu \mathrm{~mol})$.
Appearance: white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, Chloroform- d): $\delta=0.95(\mathrm{~s}, 9 \mathrm{H}), 1.20-1.36(\mathrm{~m}, 5 \mathrm{H}), 1.38(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.02$ $-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 4 \mathrm{H}), 3.48(\mathrm{dd}, J=12.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=12.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (dd, $J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{dt}, J=11.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=15.1,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51$ (dd, $J=15.1,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.54-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{tt}, J=6.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}$, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (75 MHz , Chloroform- d): $\delta=13.7,16.1,17.2,26.3,35.6,36.0,38.8,55.6,56.6,57.4,58.6$, $70.1,73.2,79.1,113.3,122.2,127.3,129.8,131.7,132.1,148.5,150.4,154.9,170.1,170.2,170.7$.

TLC: $R_{f}=0.23$ (EA).
LC-MS: Mass (ESI), calculated $=616.3[\mathrm{M}+\mathrm{H}]^{+}$, found $=616.2$.
[5-100 \% Solvent $B, 10.5 \mathrm{~min}$]: $\mathrm{R}_{\mathrm{t}}=6.7 \mathrm{~min}$.
[5-100 \% Solvent B, 3.0 min]: $\mathrm{R}_{\mathrm{t}}=1.9 \mathrm{~min}$.
98 \% purity (220 nm).
(2S,4R)-N-(2-(((S)-1-Azidopropan-2-yl)oxy)-4-(4-methylthiazol-5-yl)benzyl)-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide

VH032-cyclopropane-F ($53 \mathrm{mg}, 100 \mu \mathrm{~mol}, 1.0$ eq.), (R)-1-Azidopropan-2-yl 4methylbenzenesulfonate ($34 \mathrm{mg}, 135 \mu \mathrm{~mol}, 1.35 \mathrm{eq}$) and potassium carbonate (2.7 eq .) were dissolved in DMF. The mixture was stirred for 18 h at $70^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure. The obtained product was purified by flash chromatography.

Yield: $51 \mathrm{mg}(82 \%, 82 \mu \mathrm{~mol})$.
Appearance: white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=0.98$ (s, 9H), $1.25-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.12$ (ddt, $J=13.5,8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=12.8,7.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 3.49$ (dd, $J=12.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=13.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (dd, $J=11.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dt}, J=$ $11.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.59(\mathrm{~m}, 4 \mathrm{H}), 4.64(\mathrm{tt}, J=6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J$ $=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=9.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (126 MHz, Chloroform-d): $\delta=13.7,13.8,16.1,17.4,26.3,35.4,36.0,38.7,55.6,56.6,57.4$, $58.6,70.2,73.4,79.1,113.3,122.3,127.3,129.9,131.6,132.3,148.5,150.4,155.0,170.3,170.6$, 170.8.

TLC: $R_{f}=0.23$ (EA).
LC-MS: Mass (ESI), calculated $=616.3[\mathrm{M}+\mathrm{H}]^{+}$, found $=616.2$.
[5-100 \% Solvent $B, 10.5 \mathrm{~min}]: R_{t}=6.7 \mathrm{~min}$.
[5-100 \% Solvent $B, 3.0 \mathrm{~min}]: R_{t}=1.9 \mathrm{~min}$.
98 \% purity (220 nm).
(2S,4R)-N-(2-((R)-2-Azidopropoxy)-4-(4-methylthiazol-5-yl)benzyl)-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide

VH032-cyclopropane-F ($53 \mathrm{mg}, 100 \mu \mathrm{~mol}, 1.0$ eq.), (R)-2-azidopropyl 4-methylbenzenesulfonate ($34 \mathrm{mg}, 135 \mu \mathrm{~mol}, 1.35 \mathrm{eq}$) and potassium carbonate (2.7 eq .) were dissolved in DMF. The mixture was stirred for 18 h at $70^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure. The obtained product was purified by flash chromatography.

Yield: $41 \mathrm{mg}(66 \%, 66 \mu \mathrm{~mol})$.
Appearance: white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=0.96$ (s, 9H), 1.28 (td, $J=9.9,9.3,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.29-1.36$ (m, $3 \mathrm{H}), 1.37-1.41(\mathrm{~m}, 3 \mathrm{H}), 2.09(\mathrm{ddt}, J=13.1,8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 4 \mathrm{H}), 3.66(\mathrm{dd}, J=11.2,4.0 \mathrm{~Hz}$, 1 H), $3.93-4.07(\mathrm{~m}, 4 \mathrm{H}), 4.43(\mathrm{dd}, J=15.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.61(\mathrm{~m}, 3 \mathrm{H}), 4.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz , Chloroform- d): $\delta=13.7,16.1,16.2,26.3,35.6,36.1,38.6,56.5,56.6,57.4,58.7$, $70.1,71.7,79.1,112.1,122.3,126.6,129.6,131.6,132.2,148.6,150.4,155.9,170.1,170.7,170.9$.

TLC: $R_{f}=0.25$ (EA).
LC-MS: Mass (ESI), calculated $=616.3[\mathrm{M}+\mathrm{H}]^{+}$, found $=616.2$.
[5-100 \% Solvent $B, 10.5 \mathrm{~min}$]: $R_{t}=6.8 \mathrm{~min}$.
[5-100 \% Solvent B, 3.0 min]: $\mathrm{R}_{\mathrm{t}}=1.9 \mathrm{~min}$.
> 99 \% purity (220 nm).
(2S,4R)-N-(2-((S)-2-azidopropoxy)-4-(4-methylthiazol-5-yl)benzyl)-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide

VH032-cyclopropane-F ($53 \mathrm{mg}, 100 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.), (S)-2-azidopropyl 4-methylbenzenesulfonate ($34 \mathrm{mg}, 135 \mu \mathrm{~mol}, 1.35 \mathrm{eq}$) and potassium carbonate (2.7 eq .) were dissolved in DMF. The mixture was stirred for 18 h at $70^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure. The obtained product was purified by flash chromatography.

Yield: $52 \mathrm{mg}(83 \%, 83 \mu \mathrm{~mol})$.
Appearance: white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=0.96$ (s, 9H), 1.28 (td, $J=9.9,9.3,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.29-1.36$ (m, 3 H), $1.37-1.41(\mathrm{~m}, 3 \mathrm{H}), 2.09(\mathrm{ddt}, J=13.1,8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 4 \mathrm{H}), 3.66(\mathrm{dd}, \mathrm{J}=11.2,4.0 \mathrm{~Hz}$,

1H), $3.93-4.07(\mathrm{~m}, 4 \mathrm{H}), 4.43$ (dd, $J=15.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.61(\mathrm{~m}, 3 \mathrm{H}), 4.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (75 MHz , Chloroform- d): $\delta=13.7,16.1,16.2,26.3,35.6,36.1,38.6,56.5,56.6,57.4,58.7$, $70.1,71.7,79.1,112.1,122.3,126.6,129.6,131.6,132.2,148.6,150.4,155.9,170.1,170.7,170.9$.

TLC: $R_{f}=0.24$ (EA).
LC-MS: Mass (ESI), calculated $=616.3[\mathrm{M}+\mathrm{H}]^{+}$, found $=616.2$.
[5-100 \% Solvent $B, 10.5 \mathrm{~min}]: R_{t}=6.8 \mathrm{~min}$.
[5-100 \% Solvent B, 3.0 min]: $\mathrm{R}_{\mathrm{t}}=1.9 \mathrm{~min}$.
> 99 \% purity (220 nm).
(2S,4R)-N-(2-(3-Azidopropoxy)-4-(4-methylthiazol-5-yl)benzyl)-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide

VH032-cyclopropane-F ($53 \mathrm{mg}, 100 \mu \mathrm{~mol}, 1.0$ eq.), 3-azidopropyl 4-methylbenzenesulfonate (34 mg , $135 \mu \mathrm{~mol}, 1.35 \mathrm{eq}$) and potassium carbonate (2.7 eq .) were dissolved in DMF. The mixture was stirred for 18 h at $70^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure. The obtained product was purified by flash chromatography.

Yield: $40 \mathrm{mg}(65 \%, 65 \mu \mathrm{~mol})$.
Appearance: white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta=0.91(\mathrm{~s}, 9 \mathrm{H}), 1.23-1.35(\mathrm{~m}, 4 \mathrm{H}), 2.02-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.09-$ $2.15(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 4 \mathrm{H}), 3.52-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.94(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{td}, J=6.0,4.2 \mathrm{~Hz}, 2 \mathrm{H})$, 4.39 (dd, $J=14.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.56(\mathrm{~m}, 3 \mathrm{H}), 4.71(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.95 (dd, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (dd, $J=9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (dd, $J=12.6,6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 8.67 (s, 1H).
${ }^{13} \mathrm{C}-\mathrm{NMR}$ (126 MHz, Chloroform- d): $\delta=13.8,16.2,26.4,28.8,35.6,35.8,38.8,48.3,56.6,57.5,58.6$, $64.9,70.2,79.2,112.1,121.9,126.3,129.7,131.8,132.4,148.6,150.5,156.5,170.2,170.5,171.1$.

TLC: $R_{f}=0.24$ (EA).
LC-MS: Mass (ESI), calculated $=616.3[\mathrm{M}+\mathrm{H}]^{+}$, found $=616.2$.
[5-100 \% Solvent B, 3.0 min]: $\mathrm{R}_{\mathrm{t}}=1.9 \mathrm{~min}$.
93 \% purity (220 nm).
(2S,4S)-N-(2-(3-azidopropoxy)-4-(4-methylthiazol-5-yl)benzyl)-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide

Cis-VH032-cyclopropane-F ($24 \mathrm{mg}, 44 \mu \mathrm{~mol}, 1.0$ eq.) which was synthesized according to the procedures described for VH032-cyclopropane-F [5], 3-azidopropyl 4-methylbenzenesulfonate (1.35 eq.) and potassium carbonate (2.7 eq.) were stirred in DMF for 24 h . The mixture was diluted with water and was extracted with DCM. The organic phases were dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by chromatography.

Yield: 12 mg (44 \%, $19 \mu \mathrm{~mol})$.
Appearance: white solid.
1H-NMR (300 MHz , Chloroform-d): $\delta=0.91(\mathrm{~s}, 9 \mathrm{H}), 1.23-1.35(\mathrm{~m}, 4 \mathrm{H}), 2.06-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.51(\mathrm{~s}$, 3H), $3.51-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.99-3.74(\mathrm{~m}, 3 \mathrm{H}), 4.08-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.48(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.64(\mathrm{~m}$, $2 \mathrm{H}), 4.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.79-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H})$.
13C-NMR (75 MHz , Chloroform-d): $\delta=13.8,16.2,26.4,28.8,35.6,35.8,38.8,48.3,56.6,57.5,58.6$, $64.9,70.2,79.2,112.1,121.9,126.3,129.7,131.8,132.4,148.6,150.5,156.5,170.2,170.5,171.1$.
TLC: $R_{f}=0.24$ (EA).
HRMS: (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calculated for C 29 H 39 FN7O5S $=616.2711$; found $=616.27185$.

17.Synthesis of branched 14b1 PROTACs

14b1-(1R-Me)

(R)-3-(3,4-Dimethoxyphenyl)-1-(4-((1-((R)-1-(2-(($2 S, 4 R)$-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamido)methyl)-5-(4-methylthiazol-5-yl)phenoxy)propan-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)propyl (S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate

Yield: 11.8 mg (88 \%, $8.8 \mu \mathrm{~mol}$).
Appearance: white solid.
TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (DCM: $\mathrm{MeOH}=10: 1$).
LC-MS: [30-100 \% Solvent B, 3.0 min$]: R_{t}=2.2 \mathrm{~min}$.

$$
>99 \text { \% purity }(220 \mathrm{~nm}) \text {. }
$$

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{72} \mathrm{H}_{91} \mathrm{FN}_{8} \mathrm{O}_{14} \mathrm{~S}=1343.64323$; found $=1343.64382$.

14b1-(2R-Me)

(R)-3-(3,4-Dimethoxyphenyl)-1-(4-((1-((R)-2-(2-(($2 S, 4 R)$-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamido)methyl)-5-(4-methylthiazol-5-yl)phenoxy)propyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)propyl \quad (S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate

Yield: 12.3 mg (92 \%, $9.2 \mu \mathrm{~mol})$.
Appearance: white solid.
TLC: $R_{f}=0.15$ (DCM: $\mathrm{MeOH}=10: 1$).
LC-MS: [30-100 \% Solvent B, 3.0 min$]: R_{t}=2.2 \mathrm{~min}$.
> 99 \% purity (220 nm).
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{72} \mathrm{H}_{91} \mathrm{FN}_{8} \mathrm{O}_{14} \mathrm{~S}=1343.64323$; found $=1343.64367$.

14b1-(1S-Me)

(R)-3-(3,4-dimethoxyphenyl)-1-(4-((1-((S)-1-(2-(($(2 S, 4 R)$-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamido)methyl)-5-(4-methylthiazol-5-yl)phenoxy)propan-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)propyl (S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate

Yield: 10.4 mg (78 \%, $7.8 \mu \mathrm{~mol})$.
Appearance: white solid.
TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (DCM: $\mathrm{MeOH}=10: 1$).
LC-MS: [30-100 \% Solvent B, 3.0 min$]$: $R_{t}=2.2 \mathrm{~min}$.
> 99 \% purity (220 nm).
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{72} \mathrm{H}_{91} \mathrm{FN}_{8} \mathrm{O}_{14} \mathrm{~S}=1343.64323$; found $=1343.64370$.

14b1-(2S-Me)

(R)-3-(3,4-Dimethoxyphenyl)-1-(4-((1-((S)-2-(2-(($2 S, 4 R)$-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamido)methyl)-5-(4-methylthiazol-5-yl)phenoxy)propyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)propyl \quad (S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate

Yield: 9.0 mg ($67 \%, 6.7 \mu \mathrm{~mol})$.
Appearance: white solid.
TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (DCM: $\mathrm{MeOH}=10: 1$).
LC-MS: [30-100 \% Solvent $B, 3.0 \mathrm{~min}]: R_{t}=2.2 \mathrm{~min}$.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{72} \mathrm{H}_{91} \mathrm{FN}_{8} \mathrm{O}_{14} \mathrm{~S}=1343.64323$; found $=1343.64376$.

18. Synthesis of SelDeg51

(R)-3-(3,4-Dimethoxyphenyl)-1-(4-((1-(3-(2-(($2 S, 4 R)$-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamido)methyl)-5-(4-methylthiazol-5-yl)phenoxy)propyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)propyl \quad (S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate

According to the PROTAC synthesis procedure, the SelDeg51 has been obtained after a click reaction.

Yield: 10.0 mg ($75 \%, 7.5 \mu \mathrm{~mol})$.
Appearance: white solid.
TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (DCM: $\mathrm{MeOH}=10: 1$).
LC-MS: [30-100 \% Solvent B, 3.0 min$]$: $R_{t}=2.2 \mathrm{~min}$.
$>99 \%$ purity (220 nm).
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{72} \mathrm{H}_{91} \mathrm{FN}_{8} \mathrm{O}_{14} \mathrm{~S}=1343.64323$; found $=1343.64340$.

19.Synthesis of cis-SelDeg51

(R)-3-(3,4-dimethoxyphenyl)-1-(4-((1-(3-(2-(((2S,4S)-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamido)methyl)-5-(4-methylthiazol-5-yl)phenoxy)propyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)propyl (S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate

According to the PROTAC synthesis procedure, the cis-SelDeg51 has been obtained after a click reaction.

Yield: 22 mg ($82 \%, 16 \mu \mathrm{~mol}$).
Appearance: white solid.
TLC: $\mathrm{Rf}=0.20$ (DCM: $\mathrm{MeOH}=10: 1$).
HPLC: [30-100 \% Solvent B, 25 min$]: \mathrm{Rt}=19.19 \mathrm{~min}$.
[30-100 \% Solvent B, 3 min]: $R t=2.2 \mathrm{~min}$. 97% purity (220 nm).
HRMS (ESI) m/z: [M+H]+ calculated for C72H92FN8O14S = 1343.64323; found = 1343.64574.

20.Synthesis of tracers

FKBP52-HTRF tracer

1-(6-((3-(4-(($5 S$)-10-((3,5-Dichlorophenyl)sulfonyl)-2-oxo-5-vinyl-3,10-diazabicyclo[4.3.1]decan-3-yl)methyl)-1H-1,2,3-triazol-1-yl)propyl)amino)-6-oxohexyl)-2-((1E,3E)-5-((E)-3,3-dimethyl-5-sulfo-1-(3-sulfopropyl)indolin-2-ylidene)penta-1,3-dien-1-yl)-3-methyl-3-(4-sulfobutyl)-3H-indol-1-ium-5-sulfonate

1-(6-((3-Azidopropyl)amino)-6-oxohexyl)-2-((1E,3E)-5-((E)-3,3-dimethyl-5-sulfo-1-(3-
sulfopropyl)indolin-2-ylidene)penta-1,3-dien-1-yl)-3-methyl-3-(4-sulfobutyl)-3H-indol-1-ium-5-sulfonate $(2.9 \mathrm{mg}, 3.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) in DCM was added to alkyne $5(1.3 \mathrm{mg}, 3.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) in DCM. Afterwards$ HATU (1.3 eq.) and DIPEA (5.0 eq.) were added and the mixture was stirred for 16 h at room temperature. DCM was added and the mixture was washed with brine. The organic phase was dried over MgSO4 and concentrated under reduced pressure. The obtained product was purified by chromatography.
To determine the purity absorption of a $5 \mu \mathrm{M}$ solution at 647 nm and 650 nm was detected and compared to its theoretical values. This showed a purtiy of over 99%.

Yield: 2.0 mg ($48 \%, 1.4 \mu \mathrm{~mol})$.
Appearance: blue solid.
TLC: $\mathrm{R}_{\mathrm{f}}=0.19$ (DCM: $\mathrm{MeOH}=2: 1$).
HRMS (ESI) m/z: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{59} \mathrm{H}_{74} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{~S}_{5}=691.16745$; found $=691.16817$.

VHL-FP tracer

2-(6-(Dimethylamino)-3-(dimethyliminio)-3H-xanthen-9-yl)-5-(((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2yl)carbamoyl)benzoate

A mixture of (2S,4R)-1-((S)-2-amino-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5$\mathrm{yl})$ benzyl)pyrrolidine-2-carboxamide (VH032) ($2.6 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.), TEA ($8.4 \mu \mathrm{~L}, 60.0 \mu \mathrm{~mol}$, 10.0 eq.) and TAMRA-NHS ($3.2 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) in DCM:DMF ($1: 1,400 \mu \mathrm{~L}$) was stirred for 90 h at room temperatue and concentrated under reduced pressure. The obtained product was purified by chromatography ($2 \mathrm{~g} \mathrm{SiO} 2, \mathrm{DCM}: \mathrm{MeOH}=15: 1 \rightarrow 5: 1$). The obtained product was purified by preparative HPLC. The product was dried by lyophilisation.

Yield: 4.2 mg ($5.0 \mu \mathrm{~mol}, 83 \%$).
Appearance: pink solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, Chloroform- $d)$: $\delta=1.09(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 9 \mathrm{H}), 1.25-1.37$ $(\mathrm{m}, 6 \mathrm{H}), 2.14$ (ddd, $J=13.2,9.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.84(\mathrm{~m}, 1 \mathrm{H})$, 3.91 (dd, $J=11.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.61(\mathrm{~m}, 2 \mathrm{H})$, $4.64(\mathrm{dd}, J=9.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=9.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20$ (dd, $J=9.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40-7.52(\mathrm{~m}, 5 \mathrm{H}), 8.16(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H})$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.22$ (DCM: $\mathrm{MeOH}=10: 1$).
HPLC: [30-50 \% Solvent B, 20 min$]: \mathrm{R}_{\mathrm{t}}=10.8 \mathrm{~min}$.
95 \% purity (220nm).
HRMS (ESI) m/z: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}=843.35345$; found $=843.35360$

FKBP-HTRF tracer

(1S,5R,6R)-10-((3,5-dichlorophenyl)sulfonyl)-5-((prop-2-yn-1-yloxy)methyl)-3-((S)-1-(pyridin-2-yl)ethyl)-3,10-diazabicyclo[4.3.1]decan-2-one

$18^{(\mathrm{S}-\mathrm{Me})}{ }^{[6]}\left(15 \mathrm{mg}, 0.030 \mathrm{mmol}, 1.0\right.$ eq.) was dissolved in 1.3 mL dry THF and cooled to $0^{\circ} \mathrm{C}$ under Ar atmosphere. NaH (60% in mineral oil, $8.33 \mathrm{mg}, 0.211 \mathrm{mmol}, 7.0$ eq.) was added, followed by proparglybromide ($80 \mathrm{wt} \%$ in toluene, $34 \mathrm{uL}, 0.301 \mathrm{mmol}, 10.0 \mathrm{eq}$.). The reaction was stirred at rt overnight. The reaction was quenched with brine and little water and the crude product was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by prep. HPLC.

Yield: 14 mg (87\%)
Appearance: colourless solid

NMR:

1H NMR (500 MHz, Chloroform-d) $\delta 8.83(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.05$ (td, J = 7.9, 1.6 Hz, 1H), 7.69 (d, J $=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.68(\mathrm{~m}, 1 \mathrm{H})$, $4.15(\mathrm{~s}, 2 \mathrm{H}), 4.04-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{dd}, \mathrm{J}=14.5,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dt}, \mathrm{J}=12.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}$, $3 H), 1.64-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 1 \mathrm{H})$.
13C NMR (126 MHz, CDCI3) $\delta 170.80,157.85,145.42,143.86,141.58,136.46,132.93,125.11$, $124.20,123.98,79.20,75.23,70.25,58.66,57.19,55.80,52.78,45.38,45.29,28.30,28.14,15.63$, 15.26.

HR-MS: (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}=536.11721$; found $=536.11740$
3-(6-((3-(4-(((1S,5R,6R)-10-((3,5-dichlorophenyl)sulfonyl)-2-oxo-3-((S)-1-(pyridin-2-yl)ethyl)-3,10-diazabicyclo[4.3.1]decan-5-yl)methoxy)methyl)-1H-1,2,3-triazol-1-yl)propyl)amino)-6-oxohexyl)-2-((1E,3E)-5-((E)-3,3-dimethyl-5-sulfo-1-(3-sulfopropyl)indolin-2-ylidene)penta-1,3-dien-1-yl)-3-methyl-1-(3-sulfopropyl)-3H-indol-1-ium-5-sulfonate

(1S,5R,6R)-10-((3,5-dichlorophenyl)sulfonyl)-5-((prop-2-yn-1-yloxy)methyl)-3-((S)-1-(pyridin-2-yl)ethyl)-3,10-diazabicyclo[4.3.1]decan-2-one ($1.14 \mathrm{mg}, 2.13 \mathrm{umol}, 1.0 \mathrm{eq}$.) and Alexa647-azide (Jenabioscience, $2.0 \mathrm{mg}, 2.13 \mathrm{umol} 1.0 \mathrm{eq}$.) was dissvoled in 1000 uL DMSO, 100 uL tert-butanol and 100 uL water under Ar atmosphere. CuSO_{4} (0.1 M aqueus solution, $21 \mathrm{uL}, 2.1 \mathrm{umol} 1.0 \mathrm{eq}$.) and Na-Lascorbate (0.1 M aqueous solution, $21 \mathrm{uL}, 2.1 \mathrm{umol}, 1.0 \mathrm{eq}$.) were added and the reaction was stirred at rt overnight. The crude product was directly purified by prep. HPLC.

Yield: 2.1 mg (68\%)
Appearance: blue solid
HR-MS: (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{64} \mathrm{H}_{80} \mathrm{Cl}_{2} \mathrm{~N}_{9} \mathrm{O}_{17} \mathrm{~S}_{5}=1476.36473$; found $=1476.36400$

Biochemical methods

Mammalian cell culture

Human embryonic kidney 293 (HEK293T) cells, the HEK293T FKBP12-eGFP reporter cell line and Hela AZ-GR cells ${ }^{[7]}$ were maintained in Dulbecco's modified Eagle's medium (DMEM) (Gibco) supplemented with 10\% fetal bovine serum (Gibco) + 1\% Penicillin-Streptomycin (Gibco) and in case of the FKBP12-eGFP and Hela AZ-GR reporter cell lines with $200 \mu \mathrm{~g} / \mathrm{mL}$ Hygromycine B (Roth) at $37{ }^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ unless indicated otherwise.

Selection process and generation of FKBP12-eGFP reporter cell line

Abstract

10^{6} HEK293T cells were seeded in a 10 cm plate and left to attach overnight. On the next day, the medium was aspirated and 9 mL fresh medium was added to the cells. $8 \mu \mathrm{~g} \mathrm{pcDNA} 3.1(\mathrm{H}+)$-FKBP12-eGFP-IRES2-mCherry plasmid was mixed with $22,5 \mu \mathrm{~g} \mathrm{PEI}$ in 1 mL Opti-MEM (Gibco), incubated for 30 min at room temperature and added to the plate. Following overnight incubation, the medium was exchanged and after 48 hours the culture medium was replaced by selection medium (DMEM $+10 \%$ FBS + 1\% P/S + $900 \mu \mathrm{~g} / \mathrm{mL}$ Hygromycin B) for 14 days. The medium was exchanged every 2-3 days. To obtain monoclonal populations the cells were washed, trypsinized and subcloned into 96 well plates at a density of 1 cell/well. After expansion, cells were screened for simultaneous expression of FKBP12eGFP and mCherry.

FKBP12-eGFP Reporter Assay

HEK293T cells stably expressing FKBP12-eGFP and mCherry (pcDNA3.1(H+)-FKBP12-eGFP-IRES2mCherry stably incorporated) were seeded at 10^{4} cells/well in black PLL coated 96 well plates and left to attach overnight. The medium was aspirated and $50 \mu \mathrm{~L}$ fresh medium (without Hygromycin B) was added. PROTAC solutions at 2-fold concentration were prepared in medium (without Hygromycin B) and $50 \mu \mathrm{~L}$ were added to the respective wells. After 48 h , the cells were washed with DPBS (Gibco) and lysed in $50 \mu \mathrm{~L}$ NETN buffer ($100 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ Tris-CI, 0.5 mM EDTA, 0.5% (v / v) Nonidet P-40, pH 8.0) + proteasome inhibitor (Roche) on ice for 30 minutes. The eGFP and mCherry fluorescence was measured using a Tecan Spark (mCherry: Ex: 580 nm, Em:620 nm; eGFP: Ex: 485 nm Em: 525 nm). Following, eGFP to mCherry ratios were calculated and normalized to the eGFP/mCherry ratio of the DMSO control.

For dose-response experiments the data was analysed with GraphPad Prism 8 and fitted by a four parameter IC_{50} fit.

FKBP12-eGFP reporter sequence:

MGVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGWEEGVAQ MSVGQRAKLTISPDYAYGATGHPGIIPPHATLVFDVELLKLEEDPPVATMVSKGEELFTGVVPILVELDG DVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSA MPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADK QKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFV TAAGITLGMDELYK

FKBP51-eGFP Reporter Assay

2×10^{6} HEK293T cells were seeded in a 10 cm plate and left to attach overnight. The medium was replaced with 9 mL fresh medium and the cells were transiently transfected by adding a previously incubated (30 min , room temperature) mixture of $5 \mu \mathrm{~g}$ pEGFP-N-FKBP51-IRES2-mCherry plasmid and $22,5 \mu \mathrm{~g}$ PEl in 1 mL Opti-MEM reduced serum medium (Gibco). Following overnight incubation, the cells were washed, trypsinized and 2×10^{4} transiently transfected cells in 50μ medium were added to each well of a black PLL coated 96 well plate. Additionally, PROTAC solutions were prepared at 2-fold concentration in medium and added to the respective wells. After 48 h , the cells were washed with DPBS (Gibco) and lysed in $50 \mu \mathrm{~L}$ NETN buffer ($100 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ Tris-CI, 0.5 mM EDTA, 0.5% (v/v) Nonidet P-40, pH 8.0) + proteosome inhibitor (Roche) on ice for 30 minutes. The eGFP and mCherry fluorescence was measured using a Tecan Spark (mCherry: Ex: 580 nm, Em: 620 nm; eGFP: Ex: 485 nm Em: 525 nm). Following, eGFP to mCherry ratios were calculated and normalized to the eGFP/mCherry ratio of the DMSO control.

FKBP51-eGFP reporter sequence:

Abstract

MTTDEGAKNNEESPTATVAEQGEDITSKKDRGVLKIVKRVGNGEETPMIGDKVYVHYKGKLSNGKKFD SSHDRNEPFVFSLGKGQVIKAWDIGVATMKKGEICHLLCKPEYAYGSAGSLPKIPSNATLFFEIELLDFK GEDLFEDGGIIRRTKRKGEGYSNPNEGATVEIHLEGRCGGRMFDCRDVAFTVGEGEDHDIPIGIDKAL EKMQREEQCILYLGPRYGFGEAGKPKFGIEPNAELIYEVTLKSFEKAKESWEMDTKEKLEQAAIVKEK GTVYFKGGKYMQAVIQYGKIVSWLEMEYGLSEKESKASESFLLAAFLNLAMCYLKLREYTKAVECCDK ALGLDSANEKGLYRRGEAQLLMNEFESAKGDFEKVLEVNPQNKAARLQISMCQKKAKEHNERDRRIY ANMFKKFAEQDAKEEANKAMGKKTSEGVTNEKGTDSQAMEEEKPEGHVEDPPVATMVSKGEELFTG VVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHM KQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYN SHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEK RDHMVLLEFVTAAGITLGMDELYK

Western Blot analysis

2×10^{5} HEK293 T cells per well were seeded in PLL coated 12 well plates and cultured over night. Cells were treated with indicated concentrations of PROTACs and/or compounds for 24 h unless indicated otherwise. After the incubation period, the PROTAC/compound containing medium was aspirated, the cells were washed with $500 \mu \mathrm{~L} 4^{\circ} \mathrm{C}$ DPBS and lysed on ice in $100 \mu \mathrm{~L} /$ well NETN buffer (100 mM NaCl , 20 mM Tris-Cl, 0.5 mM EDTA, 0.5% (v/v) Nonidet P-40, pH 8.0) + proteasome inhibitor (Roche). MLN4924 and Carfilzomib were obtained from Cell Signaling Technology.

Following lysis, lysates were transferred to 1.5 mL Eppendorf tubes, spun down for 15 minutes at $4^{\circ} \mathrm{C}$ and $15000 \mathrm{~g} .60 \mu \mathrm{~L}$ supernatant was mixed with $20 \mu \mathrm{~L} 4 \times$ Lämmli-buffer containing β-mercaptoethanol and heated to $95^{\circ} \mathrm{C}$ for 10 minutes. The proteins were separated on a SDS-page and transferred to Nitrocellulose membrane (Amersham) using Semi-Dry Rapid Blotting System (Bio-Rad). After blocking the membrane in 5% milk powder (Roth) in TBS buffer for 30 minutes, the membrane was cut at heights of 45 kDa and 20 kDa . Protein levels were probed overnight with the respective primary antibodies (FKBP51: A301-430 (Bethyl); FKBP52: A301-427A (Bethyl); FKBP12: ab24373 (Abcam); GAPDH: 14C10 (CST)). The membranes were washed 3 times for 5 minutes in TBS buffer and the FKBP51, FKBP52 and FKBP12 blots were probed with secondary antibody (A120-112P (Bethyl)) for 2 h . All blots were washed 3 times for 5 minutes in TBS buffer. Proteins levels were visualized using Immobilon Western Chemiluminescent HRP Substrate (Millipore) and LAS-3000 (Fujifilm) device.

Western blots were quantified using (Fiji) is just Image J software.

FKBP52-HTRF Quantification

3.5×10^{4} HEK293T cells/well were seeded in PLL coated 24 well plates and left to attach overnight. Cells in two wells/plate were transiently transfected (Lipofectamin 2000) with 20 pmol/well anti-FKBP52 siRNA (Silencer Validated siRNA siRNA ID: s50, ThermoFisher). After overnight incubation, the medium of all wells was exchanged to medium containing PROTAC or DMSO for 24 hours. Then the cells were washed with $500 \mu \mathrm{~L} /$ well cold DBPS (Gibco) and lysed in lysis buffer ($150 \mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM}$ Tris-Cl, 200 mM KF, 0.5% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, $5 \%(\mathrm{w} / \mathrm{v})$ BSA, supplemented with protease inhibitor cocktail (Roche) and 1 mM PMSF, pH 8.0) on ice for 30 min . The lysates were transferred to 1.5 mL Eppendorf tubes and spun down for 20 min at 18000 g at $4^{\circ} \mathrm{C} .16 \mu \mathrm{~L}$ lysate were transferred to ProxiPlates (Revvity) and $4 \mu \mathrm{~L}$ (600 nM FKBP52-HTRF tracer, $6,25 \mathrm{nM}$ primary FKBP52 antibody (A301-427A (Betyhl) and 6 nM secondary pAB Anti Rabbit IgG-Eu cryptate (61PARKLA (Revvity)) in lysis buffer were added. After overnight incubation at $4^{\circ} \mathrm{C}$, the HTRF signal was measured with a Tecan Spark (Ex.: $320 \mathrm{~nm}, ~ E m .: ~ 620 \mathrm{~nm}$ and 665 nm , lag time: $150 \mu \mathrm{~s}$, integration time: $500 \mu \mathrm{~s}$).

GR activation reporter gene assay

2×10^{4} Hela AZ-GR ${ }^{[7]}$ cells per well were seeded in PLL coated 96 well plate. After overnight incubation, the medium was aspirated and replaced with $50 \mu \mathrm{l}$ medium supplemented with 2 -fold Dexamthesone and $50 \mu \mathrm{~L} 2$-fold PROTAC in medium. In case of competition experiments, $50 \mu \mathrm{~L}$ 2-fold Dexamthesone, $25 \mu \mathrm{~L} 4$-fold PROTAC and $25 \mu \mathrm{~L} 4$-fold compound containing medium was added. After 48 hours incubation, the cells were washed with $50 \mu \mathrm{~L} 4^{\circ} \mathrm{C}$ DPBS and lysed on ice in $60 \mu \mathrm{~L}$ passive lysis buffer (Promega) for 30 minutes. $20 \mu \mathrm{~L}$ lysate were transferred to a white 96 well half area plate (Greiner) and $20 \mu \mathrm{~L}$ per well Bio-Glow Substrate (Promega) was added. After 5 minutes incubation at room temperature the luminescence was assessed using a Tecan Spark device. Fold-induction was calculated in reference to the unstimulated control and significance was tested by One-way Anova tests using GraphPad Prism 8.

GR activation qPCR assay

6*10 ${ }^{5}$ A549 cells per 6 cm dish were seeded and immediately co-treated (64 h) with dexamethasone (25 nM) and with DMSO or compounds as indicated. Afterwards, the cells were washed with cold $\left(4^{\circ} \mathrm{C}\right)$ DPBS (Gibco) and the RNA was isolated using PureLink ${ }^{\text {TM }}$ RNA Mini Kit from (Invitrogen, Thermos Fisher Scientific) according to the manufactures instructions. $1 \mu \mathrm{~g}$ RNA was transcribed in cDNA using standard reverse transcription (according to NEB standard first strand cDNA synthesis protocol using ProtoScript II RT (NEB \#M0368), Oligo d(T)23VN ($50 \mu \mathrm{M}$, NEB\#S1327S), Murine RNase Inhibitor (NEB\#M0314L) and dNTP mix (NEB\#N0447S). FKBP5, GILZ and GAPDH were quantified using commercially available PowerUP ${ }^{\text {TM }}$ SYBR ${ }^{\text {T }}$ Green Master Mix (Thermos Fisher Scientific), QuantStudio 5 qPCR machine (Thermos Fisher Scientific), and the following primers.

FKBP5: fw: 5'-AAATCCAAACGAAGGAGCAA-3' ${ }^{[8]}$, rev: 5^{\prime}-GCCACATCTCTGCAGTCAAA-3' ${ }^{[8]}$
GILZ: fw: 5'-ACCGAAATGTATCAGACCCCCA-3' ${ }^{[8]}$, rev: $5^{\prime}-$ CGATCTTGTTGTCTATGGCCACC- ${ }^{\prime}{ }^{[8]}$
GAPDH: fw: $5^{\prime}-A A G A A G G T G G T G A A G C A G G C-3^{\prime[9]}$, rev: $5^{\prime}-$ ACCACCCTGTTGCTGTAGCCAA -3’ ${ }^{[10]}$
FKBP5 and GILZ levels were normalized to the corresponding GAPDH levels and afterwards FKBP5 and GILZ induction was calculated in reference to the unstimulated (no Dex, no compounds) control.

FKBP51 target engagement NanoBRET

Abstract

A FKBP ligand/ PROTAC dilution series was performed at a 100-fold concentration of the final sample in DMSO. Following, the ligand/PROTAC was diluted to a 2-fold concentration in Opti-MEM reduced serum medium (Gibco) and $20 \mu \mathrm{~L}$ were transferred to a white non-binding 384 well plate (Greiner). HEK293T cells stably expressing FKBP51FK1-Nluc fusion were adjusted to a concentration of 9.05 x 10^{5} cells $/ \mathrm{mL}$. The fluorescent tracer 2 c from ${ }^{[11]}$ was diluted to $3.2 \mu \mathrm{M}$ (8-fold) in Opti-MEM reduced serum medium. A 2-fold cell-tracer mixture was prepared by mixing 3 parts detached cells with one part of the 8 -fold tracer dilution and 800 nM MLN4924 (CST). $20 \mu \mathrm{~L} /$ well of the 2 -fold tracer-cell mixture were added on top of the PROTAC/compound solution and the plate was briefly spun down, sealed with aluminium foil and incubated for 2 h at $37^{\circ} \mathrm{C} .20 \mu \mathrm{~L} /$ well $6.6 \mu \mathrm{M}$ hydrolysed hikarazine (compound 26 dl , ${ }^{[12]}$) and $7.5 \mu \mathrm{M}$ extracellular Nluc inhibitor (compound 43, ${ }^{[13]}$) were added on top to the assay plate. For BRET detection, the donor (445-470 nm) and acceptor (610-700 nm) emissions were measured for 1 s using a Tecan Spark in well-wise measuring mode. The IC50 values were determined by a four parameter IC_{50} fit using GraphPad Prism 8.

Protein purification

VCB complex

The codon optimized gene for VHL amino acids 54-213 was cloned behind a SUMO tag and transformed in E. coli BL21 (DE3) cells bearing a plasmid for the co-expression of EloB and EloC. The plasmid encoding for EloB and EloC was a kind gift of Alessio Ciulli. A single colony was used to inoculate 50 ml LB medium supplemented with $50 \mu \mathrm{~g} / \mathrm{ml}$ kanamycin and $33 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin and incubated at $37^{\circ} \mathrm{C}$ overnight. For the main culture, 1 L LB medium supplemented with $50 \mu \mathrm{~g} / \mathrm{ml}$ kanamycin and $33 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin was inoculated to an OD600 of 0.1 and incubated at $37^{\circ} \mathrm{C}$ and 180 rpm until an OD600 of 0.6 was reached. The culture was cooled to $25^{\circ} \mathrm{C}$, induced by addition of 0.5 mM isopropyl 1-thio-Dgalactopyranoside and further incubated for additional 16 hours.

Cells were harvested by centrifugation ($13,000 \times \mathrm{g}, 15 \mathrm{~min}, 4^{\circ} \mathrm{C}$) and the cell pellet was solubilized in lysis buffer (20 mM HEPES, $500 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 8$) supplemented with 1 mM PMSF, 1 mM TCEP, $2 \mathrm{mg} / \mathrm{ml}$ lysozyme, and $0.1 \mathrm{mg} / \mathrm{ml}$ DNase I. After incubation for 1 hour, the cells were lysed using sonication and cellular debris were removed by centrifugation $\left(20,000 \times \mathrm{g}, 30 \mathrm{~min}, 4^{\circ} \mathrm{C}\right)$. The supernatant was loaded on a Nickel-NTA (Machery Nagel) column equilibrated with lysis buffer. The column was washed with 10 column volumes of washing buffer (20 mM HEPES, $300 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ imidazole pH 8) and the protein was eluted with elution buffer (20 mM HEPES, $300 \mathrm{mM} \mathrm{NaCl}, 300 \mathrm{mM}$ imidazole pH 8). Target protein containing fractions were dialyzed against 20 mM HEPES, $300 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM} \mathrm{TCEP}, \mathrm{pH} 8$ and the His-SUMO tag was cleaved by addition of recombinant Ulp1. The cleaved His-SUMO tag was removed by passing the protein mixture through a Nickel-NTA column. The VCB containing flow-through was finally purified by size exclusion chromatography using a HiLoad® 16/600 Superdex® 75 pg column (Cytiva) equilibrated with 20 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.5$. The pure protein was concentrated to $17 \mathrm{mg} / \mathrm{ml}$ using an Amicon® Ultra 2 mL centrifugal filter, flash frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$.

Crystallography

For crystallization trials the ternary complex was formed by mixing $3614 \mu \mathrm{l} 20 \mathrm{mM}$ HEPES, 150 mM $\mathrm{NaCl}, \mathrm{pH} 7.5,50 \mu \mathrm{l}$ of FKBP51 (16-140, A19T, C103A, C107I) at $31 \mathrm{mg} / \mathrm{ml}, 100 \mu \mathrm{l}$ of SelDeg51 at 1 mM in DMSO and $236 \mu \mathrm{l}$ of VCB at $17 \mathrm{mg} / \mathrm{ml}$, yielding 4 ml complex at $1.3 \mathrm{mg} / \mathrm{ml}(23.6 \mu \mathrm{M})$. This solution was concentrated to $400 \mu \mathrm{l}$ using an Amicon® Ultra 2 mL centrifugal filter and purified by size exclusion
chromatography using a 10/300 GL Superdex® Increase 75 column (Cytiva) equilibrated with 20 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.5$. The fraction containing all components of the protein complex was concentrated to $10-13 \mathrm{mg} / \mathrm{ml}$ and used directly for crystallization trials. Crystallization was performed at $4^{\circ} \mathrm{C}$ using the sitting drop vapour-diffusion method by equilibrating mixtures of $0.5 \mu \mathrm{l}$ protein complex with $0.5 \mu \mathrm{l}$ reservoir solution against $30 \mu \mathrm{l}$ reservoir solution containing 15% PEG3350, 0.2 M tri-sodium citrate, 0.1 M HEPES-NaOH pH 7.5 and 10% glycol. Crystals were fished and flash frozen in liquid nitrogen.

The complex of FKBP12 and PROTAC 6a2 was prepared by mixing FKBP12 (C22V) at $25.6 \mathrm{mg} / \mathrm{ml}$ formulated in 20 mM HEPES pH 8.0 and 20 mM NaCl with a slight molar excess of ligand previously dissolved at 20 mM in DMSO. Crystallization was performed at room temperature using the hanging drop vapour-diffusion method, equilibrating mixtures of $1 \mu \mathrm{l}$ protein complex and $1 \mu \mathrm{l}$ reservoir against $500 \mu \mathrm{l}$ reservoir solution. Crystals were obtained from reservoir solutions containing $1.36 \mathrm{Na} / \mathrm{K}$ tartrate, 0.2 M ammonium citrate and $0.1 \mathrm{M} \mathrm{MES} \mathrm{pH} \mathrm{6.5} .\mathrm{Crystals} \mathrm{were} \mathrm{fished} ,\mathrm{cryoprotected} \mathrm{with} \mathrm{LV} \mathrm{CryoOil}{ }^{\text {TM }}$ (Jena Bioscience) and flash frozen in liquid nitrogen.

The crystallographic experiments were performed on the BL14.1 and BL14.2 beamlines at the Helmholtz-Zentrum BESSY II synchrotron, Berlin, Germany ${ }^{[14]}$. Diffraction data were integrated with XDS and further processed with the implemented programs of the CCP4i and CCP4i2 interface [15,16]. The data reduction was conducted with Aimless [16,17]. Crystal structures were solved by molecular replacement using Phaser ${ }^{[18]}$. Iterative model improvement and refinement were performed with Coot and Refmac5 ${ }^{[19]}$. The dictionaries for 6 a 2 and SelDeg51 were generated wit PRODRG implemented in CCP4i ${ }^{[20]}$.

Burrow surface area calculation

Interface areas were calculated PISA ${ }^{[21]}$.

Single point cooperativity screening

In order to quickly screen for positive cooperativity competitive fluorescence polarization assays were carried out. Therefore, 200 nM of the respective PROTAC in 20 mM HEPES $\mathrm{pH} 8.0,150 \mathrm{mM} \mathrm{NaCl}$ and 0.002% Triton X-100 was placed in a 384-well assay plate and incubated with 8 nM VCB complex and 1 nM VHL tracer alone or in the presence of $1 \mu \mathrm{M}$ of FKBP12, FKBP51FK1 or FKBP52FK1. After incubation for 30 min at room temperature, the fluorescence polarization was measured with a Tecan Spark (Ex.: 535 nm , Em.: 595 nm). The obtained results for each 4 replicates were normalized with respect to the maximal binding signal and the additional tracer displacement upon FKBP addition was determined.

Fluorescence polarization assay for FKBP binding

For the dertermination of the binding affinity of PROTACs to FKBP proteins competitive fluorescence polarization assays using a FKBP-FP tracer were carried out as described earlier ${ }^{[2,3]}$.

Fluorescence polarization assay for VCB binding

The influence of FKBP12 binding on the binding of PROTACs to VCB was investigated using a competitive fluorescence polarization assay. A serial dilution of the respective PROTAC in 20 mM

HEPES $\mathrm{pH} 8.0,150 \mathrm{mM} \mathrm{NaCl}$ and 0.002% Triton $\mathrm{X}-100$ alone or supplemented $2 \mu \mathrm{M} \mathrm{FKBP} 12$ was placed in a 384-well assay plate and incubated with 8 nM VCB complex and 1 nM VHL-FP tracer. After incubation for 30 min at room temperature, the fluorescence polarization was measured with a Tecan Spark (Ex.: 535 nm , Em.: 595 nm). The obtained results for each 3 replicates were normalized with respect to the maximal binding signal and the data was fitted using a competitive binding model as described by Wang ${ }^{[22]}$.

HTRF assay for FKBP51 binding

For the determination of the binding affinity of PROTACs alone or in complex with VCB to FKBP51 competitive HTRF assays were performed. Therefore, a serial dilution of the respective PROTAC in 20 mM HEPES $\mathrm{pH} 8.0,150 \mathrm{mM} \mathrm{NaCl}, 5 \%$ PEG3350 and 0.002% Triton X-100 alone or supplemented 5 $\mu \mathrm{M}$ VCB was placed in a white 384-well PROXiPlate Plus (Revvity) and incubated with 2.5 nM Histagged FKBP51FK1, 5 nM FKBP-HTRF tracer and MAb Anti-6HIS TB cryptate Gold as recommended by the supplier (Revvity). After incubation for 30 min at room temperature, the HTRF signal was measured with a Tecan Spark (Ex.: 320 nm , Em.: 620 nm and 665 nm , lag time: $150 \mu \mathrm{~s}$, integration time: $500 \mu \mathrm{~s})$. The obtained results for each 3 replicates were normalized with respect to the maximal binding signal and the data was fitted using a competitive binding model as described by Wang. ${ }^{[22]}$

Label free proteomics Proteomics

MOLT4 cells were treated with DMSO or $1 \mu \mathrm{M}$ of 5 a 1 or SelDeg51 for 5 hr and cells were harvested by centrifugation at $4^{\circ} \mathrm{C}$ before snap freezing in liquid nitrogen. Cells were lysed by addition of lysis buffer (8 M Urea, $50 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM} 4$-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (EPPS) pH 8.5, Protease and Phosphatase inhibitors) and homogenization by bead beating (BioSpec) for three repeats of 30 seconds at 2400 . Bradford assay was used to determine the final protein concentration in the clarified cell lysate. $50 \mu \mathrm{~g}$ of protein for each sample was reduced, alkylated and precipitated using methanol/chloroform as previously described ${ }^{[23]}$ and the resulting washed precipitated protein was allowed to air dry. Precipitated protein was resuspended in 4 M Urea, 50 mM HEPES pH 7.4, followed by dilution to $<1 \mathrm{M}$ urea with the addition of 200 mM EPPS, pH 8 . Proteins were digested with LysC (1:50; enzyme:protein) and trypsin (1:50; enzyme:protein) overnight at $37^{\circ} \mathrm{C}$. Sample digests were acidified with formic acid to a pH of 2-3 prior to desalting using C 18 solid phase extraction plates (SOLA, Thermo Fisher Scientific). Desalted peptides were dried in a vacuum-centrifuged and reconstituted in 0.1% formic acid for LC-MS analysis.

Data were collected using a TimsTOF Pro2 (Bruker Daltonics, Bremen, Germany) coupled to a nanoElute LC pump (Bruker Daltonics, Bremen, Germany) via a CaptiveSpray nano-electrospray source. Peptides were separated on a reversed-phase C_{18} column ($25 \mathrm{~cm} \times 75 \mu \mathrm{~m} \mathrm{ID}, 1.6 \mu \mathrm{M}$, IonOpticks, Australia) containing an integrated captive spray emitter. Peptides were separated using a 50 min gradient of $2-30 \%$ buffer B (acetonitrile in 0.1% formic acid) with a flow rate of $250 \mathrm{~nL} / \mathrm{min}$ and column temperature maintained at $50^{\circ} \mathrm{C}$.

DDA was performed in Parallel Accumulation-Serial Fragmentation (PASEF) mode to determine effective ion mobility windows for downstream diaPASEF data collection (Meier et al., 2020). The ddaPASEF parameters included: 100\% duty cycle using accumulation and ramp times of 50 ms each, 1 TIMS-MS scan and 10 PASEF ramps per acquisition cycle. The TIMS-MS survey scan was acquired between $100-1700 \mathrm{~m} / \mathrm{z}$ and $1 / \mathrm{k} 0$ of $0.7-1.3 \mathrm{~V} . \mathrm{s} / \mathrm{cm}^{2}$. Precursors with $1-5$ charges were selected and those that reached an intensity threshold of 20,000 arbitrary units were actively excluded for 0.4 min . The quadrupole isolation width was set to $2 \mathrm{~m} / \mathrm{z}$ for $\mathrm{m} / \mathrm{z}<700$ and $3 \mathrm{~m} / \mathrm{z}$ for $\mathrm{m} / \mathrm{z}>800$, with the m / z between 700-800 m/z being interpolated linearly. The TIMS elution voltages were calibrated linearly with three points (Agilent ESI-L Tuning Mix lons; 622, 922, 1,222 m/z) to determine the reduced ion mobility
coefficients $\left(1 / K_{0}\right)$. To perform diaPASEF, the precursor distribution in the DDA m / z-ion mobility plane was used to design an acquisition scheme for DIA data collection which included two windows in each 50 ms diaPASEF scan. Data was acquired using sixteen of these 25 Da precursor double window scans (creating 32 windows) which covered the diagonal scan line for doubly and triply charged precursors, with singly charged precursors able to be excluded by their position in the m / z-ion mobility plane. These precursor isolation windows were defined between $400-1200 \mathrm{~m} / \mathrm{z}$ and $1 / \mathrm{k} 0$ of $0.7-1.3 \mathrm{~V} . \mathrm{s} / \mathrm{cm}^{2}$.

LC-MS data analysis

The diaPASEF raw file processing and controlling peptide and protein level false discovery rates, assembling proteins from peptides, and protein quantification from peptides was performed using library free analysis in DIA-NN $1.8{ }^{[24]}$. Library free mode performs an in silico digestion of a given protein sequence database alongside deep learning-based predictions to extract the DIA precursor data into a collection of MS2 spectra. The search results are then used to generate a spectral library which is then employed for the targeted analysis of the DIA data searched against a Swissprot human database (January 2021). Database search criteria largely followed the default settings for directDIA including: tryptic with two missed cleavages, carbomidomethylation of cysteine as a fixed modification, and oxidation of methionine as a variable modification and precursor Q-value (FDR) cut-off of 0.01 . Precursor quantification strategy was set to Robust LC (high accuracy) with RT-dependent cross run normalization. Proteins with low summed abundance across the treatments ($<16 k$) were excluded from further analysis and proteins with missing values were imputed by random selection from a gaussian distribution either with a mean of the non-missing values for that treatment group or with a mean equal to the median of the background (in cases when all values for a treatment group are missing). Protein abundances were scaled using in-house scripts in the R framework (R Development Core Team, 2014). The resulting data comparisons (treatment vs control groups) were filtered to include only proteins that had a minimum of 2 abundance counts per protein in at least 4 replicates followed by statistical analysis using the limma package within the R framework ${ }^{[25]}$.

Native MS

Reagents and Standards

Analytical-grade reagents and solvents were all acquired from Merck (Darmstadt, DE). The PROTACinduced complex sample was prepared at a concentration of $40 \mu \mathrm{M}$ in 200 mM aqueous ammonium acetate (pH 6.8). Before starting the MS-based experiments, the solution was desalted with a 10 k molecular weight cut-off Zeba spin column (Thermo Fisher Scientific, Waltham, MA, USA). This step is crucial to get rid of non-volatile salts that may interfere with the MS measurement.

Native mass spectrometry

Approximately $7 \mu \mathrm{~L}$ of sample solution was loaded into in-house pulled glass needles and then sprayed through direct infusion with a nanoESI source coupled to a Synapt XS ion mobility-mass spectrometer (Waters, Milford, MA, USA). The glass needles were pulled with a P97 micropipette puller (Sutter Instruments, Novato, CA, USA). A spray voltage of 1.3 kV was applied using a stainless steel wire inserted into the distal end of the glass needle. A sampling cone potential of 30 V and a source temperature of $30^{\circ} \mathrm{C}$ were used. For the measurements under gentle conditions in S3.2A, we used Trap and Transfer collision energies of 10 and 4 V , respectively. For the harsh conditions in S 3.2 B , these values were changed to 45 V and 8 V , and a broad precursor window centered at $4000 \mathrm{~m} / \mathrm{z}$ was selected in the quadrupole. Additional MS parameters were kept at default values. Data processing was
performed with MassLynx 4.2. For acquisition of the ion mobility data, three different calibrants were used: bovine serum albumin, myoglobin, and cytochrome c. IM-MS data were acquired with a wave height of 40 V and wave velocities of 800,1000 , and $1200 \mathrm{~m} / \mathrm{s}$. A logarithmic function was applied to calculate the collision-cross section (CCS). ${ }^{[26]}$ To compare the obtained values, we calculated CCS values based on the crystal structure of the complex using two software packages: IMPACT ${ }^{[27]}$ and DrifScope v3.0.

Supplementary references

[1] T. Mao, PhD Thesis, Technical University Darmstadt, Germany, 2020.
[2] S. Pomplun, C. Sippel, A. Hähle, D. Tay, K. Shima, A. Klages, C. M. Ünal, B. Rieß, H. T. Toh, G. Hansen, H. S. Yoon, A. Bracher et al., J. Med. Chem. 2018, 61, 3660.
[3] M. Bauder, C. Meyners, P. L. Purder, S. Merz, W. O. Sugiarto, A. M. Voll, T. Heymann, F. Hausch, J. Med. Chem. 2021, 64, 3320.
[4] S. Gaali, A. Kirschner, S. Cuboni, J. Hartmann, C. Kozany, G. Balsevich, C. Namendorf, P. Fernandez-Vizarra, C. Sippel, A. S. Zannas, R. Draenert, E. B. Binder et al., Nat. Chem. Biol. 2015, 11, 33.
[5] W. Farnaby, M. Koegl, M. J. Roy, C. Whitworth, E. Diers, N. Trainor, D. Zollman, S. Steurer, J. Karolyi-Oezguer, C. Riedmueller, T. Gmaschitz, J. Wachter et al., Nat. Chem. Biol. 2019, 15, 672.
[6] J. M. Kolos, S. Pomplun, S. Jung, B. Rieß, P. L. Purder, A. M. Voll, S. Merz, M. Gnatzy, T. M. Geiger, I. Quist-Løkken, J. Jatzlau, P. Knaus et al., Chem. Sci. 2021, 12, 14758.
[7] A. Novotna, P. Pavek, Z. Dvorak, Eur. J. Pharm. Sci. 2012, 47, 842.
[8] M. van Zuiden, E. Geuze, H. L. D. M. Willemen, E. Vermetten, M. Maas, C. J. Heijnen, A. Kavelaars, Am. J. Psychiatry. 2011, 168, 89.
[9] J. Liu, M. Zhang, C. Niu, Z. Luo, J. Dai, L. Wang, E. Liu, Z. Fu, PLoS One 2013, 8, e60705.
[10] C. Du, X. Weng, W. Hu, Z. Lv, H. Xiao, C. Ding, O.-A. K. Gyabaah, H. Xie, L. Zhou, J. Wu, S. Zheng, J Exp. Clin. Cancer Res. 2015, 34, 67.
[11] M. T. Gnatzy, T. M. Geiger, A. Kuehn, N. Gutfreund, M. Walz, J. M. Kolos, F. Hausch, Chembiochem 2021, 22, 2257.
[12] E. P. Coutant, G. Gagnot, V. Hervin, R. Baatallah, S. Goyard, Y. Jacob, T. Rose, Y. L. Janin, Chemistry 2020, 26, 948.
[13] J. R. Walker, M. P. Hall, C. A. Zimprich, M. B. Robers, S. J. Duellman, T. Machleidt, J. Rodriguez, W. Zhou, ACS Chem. Biol .2017, 12, 1028.
[14] M. Gerlach, U. Mueller, M. S. Weiss, JLSRF 2016, 2.
[15] a) Acta Crystallogr D Biol Crystallogr 1994, 50, 760; b) E. Potterton, P. Briggs, M. Turkenburg, E. Dodson, Acta Crystallogr D Biol Crystallogr 2003, 59, 1131; c) M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. W. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov et al., Acta Crystallogr D Biol Crystallogr 2011, 67, 235.
[16] L. Potterton, J. Agirre, C. Ballard, K. Cowtan, E. Dodson, P. R. Evans, H. T. Jenkins, R. Keegan, E. Krissinel, K. Stevenson, A. Lebedev, S. J. McNicholas et al., Acta crystallographica. Section D, Structural biology 2018, 74, 68.
[17] a) P. R. Evans, G. N. Murshudov, Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1204; b) P. R. Evans, Acta Crystallogr. D Biol. Crystallogr 2011, 67, 282.
[18] A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read, Journal of applied crystallography 2007, 40, 658.
[19] a) A. A. Vagin, R. A. Steiner, A. A. Lebedev, L. Potterton, S. McNicholas, F. Long, G. N. Murshudov, Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2184; b) P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Acta Crystallogr. D Biol .Crystallog.r 2010, 66, 486; c) G. N. Murshudov, P. Skubák, A. A. Lebedev, N. S. Pannu, R. A. Steiner, R. A. Nicholls, M. D. Winn, F. Long, A. A. Vagin, Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 355; d) R. A. Nicholls, F. Long, G. N. Murshudov, Acta Crystallogr. D Biol. Crystallogr. 2012, 68, 404; e) G. N. Murshudov, A. A. Vagin, E. J. Dodson, Acta Crystallogr. D Biol. Crystallogr. 1997, 53, 240; f) M. D. Winn, G. N. Murshudov, M. Z. Papiz, Methods Enzymol. 2003, 374, 300.
[20] D. M. van Aalten, R. Bywater, J. B. Findlay, M. Hendlich, R. W. Hooft, G. Vriend, J. Comput. Aided Mol. Des .1996, 10, 255.
[21] E. Krissinel, K. Henrick, Journal of molecular biology 2007, 372, 774.
[22] Z. X. Wang, FEBS Lett. 1995, 360, 111.
[23] K. A. Donovan, J. An, R. P. Nowak, J. C. Yuan, E. C. Fink, B. C. Berry, B. L. Ebert, E. S. Fischer, Elife 2018, 7:e38430.
[24] V. Demichev, C. B. Messner, S. I. Vernardis, K. S. Lilley, M. Ralser, Nat. Methods 2020, 17, 41.
[25] M. E. Ritchie, B. Phipson, Di Wu, Y. Hu, C. W. Law, W. Shi, G. K. Smyth, Nucleic Acids Res. 2015, 43, e47.
[26] M. F. Bush, Z. Hall, K. Giles, J. Hoyes, C. V. Robinson, B. T. Ruotolo, Anal. Chem. 2010, 82, 9557.
[27] E. G. Marklund, M. T. Degiacomi, C. V. Robinson, A. J. Baldwin, J. L. P. Benesch, Structure 2015, 23, 791.

