
Efficiency Analysis of the Discrete Element
Method Model in Gas-Fluidized Beds

The efficiency and accuracy of the Euler-Lagrange/discrete element method model
were investigated. Accordingly, the stiffness coefficient and fluid time step were
changed for different particle numbers and diameters. To derive the optimum
parameters for simulations, the obtained results were compared with the measure-
ments. According to the results, the application of higher stiffness coefficients
improves the simulation accuracy slightly, however, the average computing time
increases exponentially. For time intervals larger than 5 ms, the results indicated
that the average computation time is independent of the applied fluid time step,
while the simulation accuracy decreases extremely by increasing the size of the
fluid time step. Nevertheless, using time steps smaller than 5 ms leads to negligible
improvements in the simulation accuracy, though to an exponential rise in the
average computing time.
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1 Introduction

Nowadays, fluidized beds are employed in a variety of applica-
tions such as chemical, mineral, pharmaceutical, food, and oth-
er sectors because of their great heat and mass transfer proper-
ties [1, 2]. Commercial-scale reactors are developed and
designed primarily on the basis of experimental measurements,
usually at the lab scale [3].

Due to the complex interactions between gas, particles, and
walls results from experimental measurements are limited in
understanding the details of mixing, heat transfer, and chemi-
cal reactions which occur in beds. Because of the difficulty of
obtaining microscopic gas-solid behaviors through experi-
ments, numerical simulations could be used as tools for model-
ing and predicting fluidized-bed transfer phenomena. The
application of numerical simulations played an important role
in both scientific research and engineering [4, 5].

The computational fluid dynamics (CFD) predictions gener-
ally agreed with measurements in many studies, but it is inevi-
table that there will be differences between simulations and
experiments in some cases as well [6, 7]. A number of critical
submodels have been evaluated in order to improve CFD pre-
dictions [8–10]. There has been a great deal of reliance on
Eulerian-Eulerian methods in the past, specifically the two-flu-
id model in fluidized-bed studies [11–13]. The CFD-discrete
element method (CFD-DEM) exhibits more advantages for
predicting binary solid mixing in a fluidized bed than the
Eulerian-Lagrangian methods and can provide critical informa-
tion at the level of individual particles, such as particle trajec-
tory, forces acting on individual particles, and the property
changes of particles [14, 15].

To study the details of transport phenomena that occur in
fluidized beds at the particle level, CFD-DEM has been mainly
employed [16–18]. Although CFD-DEM is generally used to
model fluidized beds, its computational costs limit its applica-
tion to a relatively small scale. In order to increase the efficien-
cy of the calculations, coarse-grained CFD-DEM or other
optimization methods were proposed due to their ability to sig-
nificantly reduce the number of particles tracked numerically
[19, 20].

In recent years, extensive research has been conducted on
the impact of different factors on fluidized beds, including
model parameters [21–23]. According to Chen et al. [24], bio-
mass gasification in a bubbling fluidized bed can be influenced
by drag models. The results revealed that the prediction of
composition was improved by using a bubble-based energy
minimization multiscale resistivity model. In addition, an
investigation of gas-solid hydrodynamics in a spouted bed was
conducted by Hu et al. [25] by the CFD-DEM method. The
spouted bed’s macroscopic characteristics were significantly
affected by collision parameters other than the particle-wall
restitution coefficient, as indicated by the results.
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Zhao et al. [26] carried out a CFD-DEM analysis of super-
critical water biomass gasification in fluidized beds. Gasifica-
tion was studied by examining the effects of the operating
conditions, including flow rates, bed heights, and wall tempera-
tures. A recent research by Xie et al. [27] examined coal com-
bustion in a fluidized bed using a comprehensive 3D model
that couples CFD-DEM with chemical reactions including fuel
pyrolysis and char and volatile combustion. Lu et al. [28] em-
ployed CFD-DEM to understand the rapid pyrolysis of biomass
particles that are not spherical in the fluidized bed. Although
they explored the particle shape in some detail, they did not
evaluate its effects on particle motion and gasification behavior.

CFD-DEM modeling in fluidized beds has been rarely stud-
ied in the aforementioned works because most of them focus
on comparing experimental results and simulations [29, 30]. To
study the efficiency and accuracy of the CFD-DEM simulation
in the fluidized bed, parameter studies were developed. Simula-
tion results from CFD-DEM models were compared with
experiments and the discrepancies between them are discussed.
A detailed computational analysis of the CFD-DEM model is
presented in this study, which will enable qualitative and quan-
titative evaluation of the application of CFD-DEM models in
fluidized-bed simulation.

2 Experiment and Numerical Method

2.1 Model Description

This approach has been introduced first by Cundall and Strack
as the DEM [31]. They successfully employed the DEM model
to simulate the hydrodynamic behavior of dense gas-solid flow
in a fluidized bed. The translational and rotational motions of
the solid phase are calculated by the integration of Newton’s
equations of motion [32, 33]:
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where ~up and ~wP are the particle translational and rotational
velocity, mP is the particle mass, and ~Fi presents the forces act-
ing on the particle. The normal contact force results from the
sum of the elastic force ~Fn

ela and the damping force ~Fn
dam and is

described by the differential equation of the spring-damper sys-
tem:

~Fn
con;ij ¼ mij

d~un
ij

dt
¼ �kndn~nij|fflfflfflfflffl{zfflfflfflfflffl}

~Fn
ela

� hn~un
ij|ffl{zffl}

~Fn
dam

(3)

where kn is the normal stiffness coefficient, hn is the normal
coefficient of damping, mij is the reduced mass (effective mass),
and dn and ~un

ij represent the displacement and the relative
velocity in the normal direction.

Using a parallel spring, dashpot, and damper as a model of
particle interaction, they proposed modeling the contact force
as a spring. This model explains perfectly elastic collisions with
springs, whereas inelastic collisions with dashpots and dampers
dissipate energy during time-dependent deformation. The
damping parameter in the normal direction, which represents
the dissipation of energy during an inelastic collision, is deter-
mined by the following expression:

hn ¼ aDam enð Þ
ffiffiffiffiffiffiffiffiffiffiffi
mijkn

p
dnð Þ; case en „ 0

2
ffiffiffiffiffiffiffiffiffiffiffi
mijkn

p
dnð Þ; case en ¼ 0

�
(4)

where the symbol en denotes the coefficient of restitution in the
normal direction.

The momentum exchange corresponds to the impact of the
solid on the fluid phase. It is defined by the change of particle
velocities along their trajectories for each control volume based
on all particles crossing this volume during a time interval
between two consecutive fluid time steps. According to the
third Newtonian axiom, the exerted force from the solid phase
on the fluid phase~FP fi f is defined as follows:

~FP fi f ¼ b
XNCV

i¼1

~uf �~uið Þ
" #

VCV (5)

where NCV represents the number of particles in the fluid cell,
~uf is the fluid velocity of the considered control volume, and~ui

is the velocity of the particle i that exists in the control volume.
The symbol b denotes the interphase momentum transfer coef-
ficient (resistance coefficient). However, the application of one
model is only possible for a defined area of porosity and parti-
cle Reynolds number. The selection of a model requires there-
fore that the porosity and the particle Reynolds number have
to be known in the control volumes. The particle Reynolds
number is defined as:

ReP ¼
ef rf ~uf � �~uP

�� ��dP

mf
(6)

The symbols �~uP and dP represent the average particle veloci-
ty and the particle diameter (monodisperse) or the equivalent
particle diameter (polydisperse) in the considered control vol-
ume, respectively.

2.2 Simulation Setup

According to this procedure, the initially positioned particles
have zero initial kinetic energies. The particles are then left to
drop freely into the test rig. The particles experience the
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iterative processes of moving and dropping under gravity. Dur-
ing this phase, the mass flow rate is set equal to zero. In other
words, the particles undergo only volume and short-range
forces including the contact force. The aerodynamic forces that
result from the interaction with the fluid phase are not consid-
ered in this stage.

Furthermore, the numerical simulation results obtained by
ANSYS-FLUENT based on the two-fluid formulation and the
software Barracuda (CPFD-Barracuda) based on the Euler-
Lagrange/multiphase particle-in-cell (MP-PIC) formulation is
presented for the purpose of comparison. The comparison is
achieved with the aid of the visual observation of solid distribu-
tion, the absolute bed height, and the equivalent bubble diame-
ter. Furthermore, the quantitative comparison of vertical parti-
cle velocity profiles is also evaluated.

Fig. 1 illustrates the construction of a 3D fluidized bed model.
The model has a height of 150 cm, a width of 15 cm, and a depth
of 20 cm. The air is supplied through a centrally placed nozzle,
while the outlet is completely opened. A block-structured fluid
grid with a number of nodes: 64 (W) ·80 (D) ·640 (H) is gener-
ated. Besides the fine fluid grid, three increasingly coarser mul-
tigrids are built. In the first level coarse grid, the number of cells
is reduced to 409 600. For the second and third level coarse
grids the numbers of cells are further decreased to 51 200 and
6400 with a number of nodes, respectively.

The calculation of the particle phase is carried out on the
particle grid with a resolution of 409 600 cells. The determinis-
tic detection of the particle collisions is performed on the parti-
cle search grid, a total of 256 000 cells. The monodisperse par-
ticles have glass properties. The particle number is varied
between 100, 101, 102, 103, 104, 105, and 106. Furthermore, the
particle diameter is varied between 3.5, 2.5, 1.5, and 0.5 mm.

Depending on the solid loading, the mass flow used in the effi-
ciency study varies in the range between 0.01 and 0.5 kg s–1, so
the bubble flow regime is observed. The forces acting on the
particles are the gravitational, buoyancy, drag, pressure, Saff-
man, Magnus, and contact forces.

3 Results

The Euler-Lagrange/DEM model is evaluated in terms of effi-
ciency and accuracy by varying parameters, such as stiffness
coefficient and fluid time step, under a variety of solid loadings
and particle diameters.

3.1 Effect of Stiffness Coefficient

In Tab. 1, the normal and tangential stiffness coefficients are
calculated for identical spherical particles with different diame-
ters under the consideration of properties. It should be noted
that the normal stiffness coefficient kn was defined by Di Renzo
and Di Maio [34] and the calculation of the tangential stiffness
coefficient kt was carried out by Link [35]. The determined
stiffness coefficients have high orders of magnitude and vary in
the range between 108 and 109 N m–1 depending on the diame-
ter of collision partners.

If the stiffness coefficients are defined according to Tab. 1
and the particle time step is calculated, the unphysical penetra-
tions between the particles and the particles/walls are avoided.
However, the use of realistic stiffness coefficients results in a
very small particle time step and thus extreme computational
time. Therefore, it is a fact that the stiffness coefficients are set
lower than their real values. With decreasing the stiffness coef-
ficients and hence increasing the particle time step, larger pene-
tration depths can occur between the collision partners.

At a high relative velocity of collided particles, there is a risk
to arise unrealistic penetrations. This leads to a continuous
decline in the number of particles during the Euler-Lagrange/
DEM simulations. In Tab. S1 (Supporting Information), the
penetration depth is calculated depending on the stiffness coef-
ficients for different diameters of the collision partner and a
maximum relative velocity of 10 m s–1.

By selecting smaller stiffness coefficients (e.g., 103 N m–1), the
normal penetration depth can reach up to 24 times the particle
diameter. Previous numerical studies of the DEM model such
as in [31] showed that the variation of stiffness coefficient over
several orders of magnitude has only a minor influence on the
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Figure 1. Schematic diagram of the test rig used for the efficien-
cy study.

Table 1. Calculation of realistic normal and tangential stiffness
coefficients.

Stiffness
coefficients

Particle diameters

0.5 1.5 2.5 3.5

kn 5.5 ·108 9.6 ·108 1.2 ·109 1.47 ·109

kt 2.1 ·109 3.7 ·109 4.9 ·109 5.8 ·109

Research Article 110



results. Therefore, a stiffness coefficient of 800 N m–1 is recom-
mended by Tsuji [31], which was employed by several other au-
thors. Di Renzo and Di Mario [34] have found that the pro-
posed value of 800 N m–1 for the applied material properties
and the simulation parameters causes a normal penetration
depth of up to 74 times the particle diameter. The underesti-
mating of the stiffness coefficients produces not only unphysi-
cal penetrations but also leads in a steady-state case to the
shrinkage of the entire bed volume. According to the results in
[36], the entire bed volume for 36 500 spherical glass particles
(monodisperse) with a diameter of 2.5 mm in simulation mode
was reduced by about 10 % compared to the experimental
mode in the stiffness coefficient by four orders of magnitude
(from 102 to 106 N m–1).

In order to obtain the minimal normal stiffness coefficient
that prevents the unphysical penetration, a condition should be
defined. A penetration depth is unrealistic if the maximum
penetration depth is greater than the particle radius
(dn

max > rP). In Tab. S2, the minimal normal stiffness coeffi-
cients are calculated at different particle diameters, diverse rela-
tive velocities of the collision partners, and a maximum pene-
tration depth (dn

max ¼ rP). Independent of the particle
diameter, the resulting minimal stiffness coefficient values have
a range between 5 ·104 and 5 ·106 N m–1 and depend mainly
on the relative velocity of collision partners.

The influence of the stiffness coefficient variation on the
computation time at different particle numbers and diverse
particle diameters is presented in Tab. 2. For the first simula-
tion series, the number of particles is set constant equal to 100

at different particle diameters, while the stiffness coefficient is
varied from 101 to 109 N m–1. The number of particles is

changed to 101, the entire simulations are repeated again, and
so on. All other parameters and numerical methods were the
same in the simulations. For each case, ten steps were simulat-
ed and the average computing time per time step was then
determined through the division of the entire simulation time
by the number of calculation steps.

In Fig. 2, the effects of the stiffness coefficient variation on
the average computing time per time step at different particle
numbers and different particle diameters are illustrated. It can
be seen that an increase in the stiffness coefficient values leads
to an exponential rise in the average computing time. This is
evident from the order of magnitude 103 N m–1, where a jump
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Table 2. Simulation parameters for the stiffness coefficient vari-
ation.

Variable
parameters

Stiffness
coefficients

101, 102, 103, 104, 105, 106,
107, 108, 109

Particle numbers 100,101, 102, 103, 104, 105, 106

Particle diameters 0.5, 1.5, 2.5, 3.5

Fixed parameters Fluid time step 2

Number of
calculation steps

10

Number of
decompositions

9

Grids Fluid multigrid Activated

Particle grid Activated
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Figure 2. Influence of stiffness coefficient variation on the average computing time per time step at different
particle diameters and various particle numbers.
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in the stiffness coefficient by two orders of magnitude results in
an increase in the simulation time by one order of magnitude.
The flattening of the curves at the stiffness coefficient values
below 103 N m–1 is caused due to the fact that a certain part of
the computing time is required for the calculation of the fluid
phase. For stiffness coefficients with high orders of magnitude,
this part is not significant in percentage terms; however, it takes
very low stiffness coefficients into account.

The particle diameter has a relevant influence on the average
computation time. The reason for this is that the size of the
particle time step is a function of the particle diameter, and
thus smaller particle diameters lead to finer particle time steps
for an identical stiffness coefficient value. From the logarithmic
plots, a power function can be obtained for the average com-
puting time T and the stiffness coefficient as:

T ¼ A
ffiffiffiffiffi
kn
p

» knð Þ1=2; (7)

where the symbol A represents the slope of the curve. In order
to understand explicitly the influence of the particle diameter
on the average computing time per time step, the previously
obtained results are replotted again (Fig. S1). For various parti-
cle numbers, the stiffness coefficient is varied from 101 to
109 N m–1 at different particle diameters. The obtained curves
behave almost the same, whereas the average computation time
rises exponentially with increasing stiffness coefficient. As it is
expected, the average computing time escalates considerably
for higher solid loadings. This can be explained by the applica-
tion of the DEM model, where the computational effort
depends on the particle number and the particle time step.

For an identical stiffness coefficient as well as a constant par-
ticle diameter, the particle time step remains unaltered. With
increasing the solid loading, the number of equations to be
solved is higher, and consequently the simulation time
increases. Contrary to expectations, the particle diameter plays
a crucially important role concerning the computational effort.
The computing time per time step increases sharply with
reducing the particle diameter. At constant particle diameter
(e.g., 106), a reduction in the particle diameter from 3.5 to
0.5 mm results in an increase in the simulation time by two
orders of magnitude. 7

In order to investigate the influence of the stiffness coeffi-
cient variation on the simulation accuracy, the numerical mod-
el of a quasi-2D fluidized bed is simulated and the obtained
results are compared with the measured data. For the simula-
tion, 36 500 identical glass particles with a diameter of 2.5 mm
are used. The simulation parameters, the applied boundary
conditions, and the grid resolutions are identical for all simula-
tion cases, while the stiffness coefficient is set to 102, 103, 104,
105, and 106 N m–1. In Figs. 3 and S2, the simulated bed heights
at different stiffness coefficients are compared with the experi-
ments over time (500 ms).

The application of stiffness coefficients with low orders of
magnitude has the benefit of a low computational effort, but
the accuracy of the Euler-Lagrange/DEM model declines
sharply. This can be clearly detected in the case of applying
stiffness coefficients with values of 102 and 103 N m–1. Here,
the simulated bed heights at mass flow rates of 0.006 and
0.005 kg s–1 deviate from the measured data with maximum rel-
ative errors of 20 % and 45 %, respectively. On the other hand,
stiffness coefficients with a high order of magnitude are related
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Figure 3. Influence of stiffness coefficient variation on the simulation accuracy of the Euler-Lagrange/DEM mod-
el. The number of particles is 36 500 and the particle diameter is 2.5 mm for a mass flow rate of 0.006 kg s–1.
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to an extreme computation time, but they result in high simu-
lation accuracy.

Moderate stiffness coefficients in the range between 5 ·104

and 5 ·106 N m–1 show a very good compromise between an
acceptable computing time and a good accuracy. Although the
application of stiffness coefficients with moderate values causes
normal penetration depths up to the particle radius (see
Tab. S1), they still show good final results. So they are recom-
mended to apply for the simulation of the fluidized bed espe-
cially since the maximum relative velocities of collision part-
ners in this system are smaller than 10 m s–1.

3.2 Effect of Fluid Time Step

As mentioned, the fluid time step can be selected arbitrarily
and is set constant during the simulation. Generally, the fluid
time step was set large and accordingly consists of several parti-
cle time steps. The size of the particle time step depends
directly on the applied stiffness coefficient. In Tab. 3, the parti-
cle time steps are determined at different stiffness coefficients
and particle diameters. The calculated particle time step
decreases with increasing the stiffness coefficient and reducing
the particle diameter. Independent of the particle diameter, an
increase in the stiffness coefficient by four orders of magnitude
leads to a decrease in the particle time step of 100 times. At
constant stiffness coefficient, a reduction in the particle diame-
ter from 3.5 to 0.5 mm results in a decrease in the particle time
step by 26 times.

The detailed simulation parameters for the following series
of simulations can be found in Tab. 4. For each fluid time step,
ten steps are simulated and the average computing time per
time step is then determined through the division of total sim-
ulation time by the number of calculation steps.

The influence of the fluid time step variation on the compu-
tational time is investigated. Here, the stiffness coefficient is set
constant equal to 5 ·105 N m–1, which represents a compromise
between a realistic simulation result and an acceptable simula-
tion time. While the resulting particle time step is constant
depending on the particle diameter and the stiffness coefficient
used, the fluid time step size is varied in the range between 0.1
and 105 ms. The effect of the particle diameter and the particle
number variation on the average computing time is also exam-
ined.

In Fig. 4, the effects of the fluid time step variation on the
average computing time per time step at different particle
numbers and particle diameters are displayed. It is assumed
that for identical simulation duration an increase in the size of
the fluid time step accelerates the simulation. Fig. 4 indicates
that this relationship is not necessarily correct. An enlargement
of the fluid time step in the range between 10 and 105 ms does
not accelerate the Euler-Lagrange/DEM calculation, i.e., it leads
to an increase in the average computing time per time step.
This is due to the fact that the ratio of the fluid time step to the
particle time step is bigger than 1. This means, during one fluid
time step several particle time steps must be carried out. The
number of particle time steps depends on the stiffness coeffi-
cient and the particle diameter used as well as on the size of the
fluid time step. Subsequently, the computation time to calculate
the particle phase has a significantly larger proportion of the
total simulation time than the computational effort of the fluid
phase.

From the curves illustrated in Fig. 4 it can be supposed that
fluid time steps smaller than 10 ms could not cause any sub-
stantial increase in the computational time. Finer fluid time
step sizes produce more accurate simulation results, which are
aimed at practical applications. An excessive reduction of the
fluid time step leads, however, to a considerable increase in the
computational effort. It raises the question, at which ratio of
fluid to particle time step a reduction in the size of fluid time
step will not cause a significant increase in computational time.
By decreasing the fluid time step until the size of the particle
time step, the independent correlation between the fluid time
step and the computational time is not valid anymore.

Fig. 4 demonstrates that the particle numbers have a major
impact on the computational time. At a constant fluid time
step, the computational effort is substantially raised by increas-
ing the solid loading. This can easily be explained by the reason
for the DEM model used. Here, each particle has a set of equa-
tions to be solved. Furthermore, the computational effort of
collision detection is correlated with the number of investigated
particles. At the defined particle diameter, an increase in the
particle numbers from 105 to 106 causes a jump in the simula-
tion time by one order of magnitude. The obtained results
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Table 3. Calculation of particle time step for glass collision,
partners at different particle diameters.

Stiffness
coefficients

Particle time steps

dP = 0.5 dP = 1.5 dP = 2.5 dP = 3.5

kn = 102 0.1 ·10–2 0.7 ·10–2 1.5 ·10–2 2.6 ·10–2

kn = 104 0.1 ·10–3 0.7 ·10–3 1.5 ·10–3 2.6 ·10–3

kn = 106 0.1 ·10–4 0.7 ·10–4 1.5 ·10–4 2.6 ·10–4

kn = 108 0.1 ·10–5 0.7 ·10–5 1.5 ·10–5 2.6 ·10–5

Table 4. Simulation parameters for the fluid time step variation.

Variable
parameters

Fluid time steps 0.1, 0.3, 0.5, 1, 2, 5, 10, 15,
30, 45, 60, 75, 90, 105

Particle numbers 100,101, 102, 103, 104, 105, 106

Particle diameters 0.5, 1.5, 2.5, 3.5

Fixed parameters Number of
calculation steps

10

Stiffness
coefficient

5 ·105

Number of
decompositions

9

Grids Fluid multigrid Activated

Particle grid Activated
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indicate that the average computing time depends highly on
the particle diameter. This is due to the fact that the variation
of the particle diameter has a relevant influence on the deter-
mined size of the particle time step.

In order to understand the effect of the particle diameter on
the average computing time per time step, the previously
obtained results are replotted again (Fig. S3). For different par-
ticle numbers, the fluid time step is varied from 0.1 to 105 ms
at various particle diameters. At constant particle numbers, the
average computational time rises considerably with decreasing
particle diameter. This significant increase in the computing
time results from the decrease in the particle time step which
is a function of the stiffness coefficient and the particle diame-
ter. Since the stiffness coefficient is set constant equal to
5 ·105 N m–1 in these series of simulations, the particle time
step is then related to the particle diameter (see Tab. 4). At low-
er particle numbers, the flattening in curves is caused due to
the fact that a part of the computing time is required for the
calculation of the fluid phase. This part is negligibly small for
higher numbers of particles (105 and 106), but it takes low
particle numbers into account.

The consideration of the average computing time as a func-
tion of the fluid time step is not informative in terms of the effi-
ciency analysis. Therefore, the computation time per simulated
millisecond is displayed in Figs. S4 and S5 at different solid
loadings and various particle diameters. For large fluid time
steps, the average computing time per one millisecond is
remained almost constant depending on the particle number
and the particle diameter. At particle diameter 1.5 mm, e.g., the
average computing time per one millisecond is about 1000 s and
10 000 s for particle numbers 105 and 106, respectively. An expo-

nential increase in the average computing time per simulated
millisecond appears when finer fluid time steps are applied.

From Fig. S5 a fluid time step of about 5 ms ensuring the effi-
ciency of simulations can be extracted. A further increase in
the size of the fluid time step of more than 5 ms is not corre-
lated with any efficiency gain, but the fluid phase is resolved
temporally from bad to worse. A reduction in the fluid time
step of less than 5 ms in order to achieve higher temporal reso-
lutions leads to a significant loss in efficiency since the comput-
ing time per simulated millisecond increases exponentially. The
variation of particle numbers has almost no influence on the
efficient size of the fluid time step.

In order to estimate the effect of the fluid time step variation
on the Euler-Lagrange/DEM model accuracy, a numerical
model of a quasi-2D fluidized bed with 36 500 identical glass
particles (diameter: 2.5 mm) is simulated. In Fig. 5, the simulat-
ed bed height and the bubble size are compared with the
experiments over time (500 ms). At finer fluid time steps below
5 ms, a very good agreement between the simulated bed expan-
sion and the experimentally observed bed height and area can
be detected regarding the mass flow rate of 0.006 kg s–1.

A close comparison between the simulated bed height as well
as the equivalent bubble diameter at fluid time step 0.5 and
2 ms shows almost exact characteristics. This suggests that a
further decrease in the fluid time step below 0.5 ms will not
result in an improvement in the Euler-Lagrange/DEM model
accuracy. At this point, the discrepancy with measurements is
related to other factors. At the fluid time step of 10 ms, the bed
starts expanding about 200 ms later compared to the model
with a 2-ms fluid time step. For coarser fluid time steps, the
bed did not move and remained almost unchanged.
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Figure 4. Influence of fluid time step variation on the average computing time per time step at different particle
diameters and various particle numbers.
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On the basis of the above discussion together with the com-
parison illustrated in Fig. 5 it can be concluded that the applica-
tion of larger fluid time steps (more than 10 ms) displays a neg-
ative impact on the Euler-Lagrange/DEM results, although the
computational effort remains unaltered. On the other hand,
finer fluid time steps (less than 1 ms) lead to a negligible
improvement in the Euler-Lagrange/DEM accuracy, but a con-
siderable increase in the computing time. Fluid time steps in
range the between 1 and 5 ms provide a reasonable compro-
mise between the required accuracy and simulation efficiency.
Therefore, they are recommended to apply for the simulation
of the fluidized bed independent of the solid loading and the
particle diameter.

4 Conclusion

The aim of this study was to investigate the efficiency and accu-
racy of Euler-Lagrange/DEM models. The stiffness coefficient
and the fluid time step were changed under various solid load-
ing conditions, particle numbers, and particle diameters. A
comparison between Euler-Lagrange/DEM simulation results
and measured data is conducted to determine the optimum
parameters. As a consequence of the exponential increase in
computation time, it is not possible to apply realistic stiffness
coefficients.

Taking into account efficiency and accuracy, 5 ·105 N m–1

stiffness coefficient is recommended, as it offers a good com-
promise. However, even though the simulation accuracy
improves slightly with greater stiffness coefficients (more than
5 ·105 N m–1), the average computing time also increases expo-
nentially. As a result of the obtained results, it can be concluded
that fluid time steps (greater than 5 ms) cannot drastically
accelerate the simulation, but they do lead to worse temporal
resolution of the fluid phase. As reduced fluid time steps to less
than 5 ms result in less efficiency and a negligible increase in
simulation accuracy, decreasing the fluid time steps to less than
5 ms reduces the simulation efficiency.
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Symbols used

d [mm] diameter
e [–] coefficient of restitution
~F [N] force
I [kg m2] moment of inertia
k [N m–1] stiffness coefficient
m [kg] mass
M [N m] moment
N [–] number of particles
r [m] radius
Re [–] Reynolds number
~T [N m] moment of a torque
t [s] time
~u [m s–1] velocity
V [m3] volume

Greek letters

b [–] restitution coefficient in the
tangential direction

d [m ] depth of penetration or
displacement

r [kg m–3] density
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Figure 5. Influence of fluid time step variation on the simulation accuracy of the Euler-Lagrange/DEM
model. The number of particles is 36 500 and the particle diameter is 2.5 mm for a mass flow rate of
0.006 kg s–1.

Research Article 115



m [N s m–2] dynamic viscosity
e [%] porosity
hn [Ns m–1] normal coefficient of damping

Subscripts and superscripts

Con contact
CV control volume
dra drag
ela elastic
ele electrostatic
f fluid
g gas
gra gravitational
i, k component or particle index
mag Magnus
n normal component
P particle
s solid
saf Saffman
sta static
t tangential component
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