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Machine Learning Assisted Monte Carlo Simulation:
Efficient Overlap Determination for Nonspherical Hard
Bodies

Saientan Bag,* Ayush Jha, and Florian Müller-Plathe

Standard molecular dynamics (MD) and Monte Carlo (MC) simulations deal
with spherical particles. Extending the standard simulation methodologies to
the nonspherical objects is non-trivial. To circumvent this problem,
nonspherical bodies are often treated as a collection of constituent spherical
objects. As the number of these constituent objects becomes large, the
computational burden to simulate the system also increases. Here, an
alternative way is proposed to simulate nonspherical rigid bodies having
pairwise repulsive interactions. This approach is based on a machine learning
(ML)-based model, which predicts the overlap between two nonspherical
bodies. The ML model is easy to train and the computation cost of its
implementation remains independent of the number of constituent spheres
used to represent a nonspherical rigid body. When used in MC simulation,
this method is faster than the standard implementation, where overlap
determination is based on calculating the distance between constituent
spheres. This proposed ML-based MC method produces similar structural
features (in comparison to the standard implementation) in both two and
three dimensions, and can qualitatively capture the isotropic to nematic
transition of rigid rods in three dimensions. It is believed that this work is a
step toward a time-efficient simulation of non-spherical rigid bodies.

1. Introduction

In the last 50 years, we have seen the development of classical
molecular simulation techniques, such as Molecular Dynamics
(MD) and Monte Carlo (MC) simulation.[1] These simulation
methodologies can quite successfully calculate the structural
and dynamical properties of a variety of systems.[2] However, the

S. Bag, A. Jha, F. Müller-Plathe
Eduard-Zintl-Institut für Anorganische und Physikalische Chemie
Technische Universität Darmstadt
Peter-Grünberg-Str. 8, 64287 Darmstadt, Germany
E-mail: s.bag@theo.chemie.tu-darmstadt.de

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adts.202300520

© 2023 The Authors. Advanced Theory and Simulations published by
Wiley-VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution-NonCommercial-NoDerivs License,
which permits use and distribution in any medium, provided the original
work is properly cited, the use is non-commercial and no modifications
or adaptations are made.

DOI: 10.1002/adts.202300520

standard MD and MC simulations are
mostly pertinent to systems of spherical par-
ticles. On the other hand, the simulation of
nonspherical particles is relevant in a great
variety of contexts, e.g., to study the effect of
crowding in various biological processes,[3]

or to understand the self-assembly of non-
spherical magnetic particles[4] for biotech-
nological applications.
Extending the MD and MC simulations

to nonspherical particles is not straight-
forward. Even for a very simple case of
a system of nonspherical particles with
pairwise hard repulsion, there exist no
simple simulation methodologies. Simula-
tion of such a system requires a method to
determine the overlap of two nonspherical
particles with arbitrary relative position
and orientation. Except for a few standard
cases, there is no exact way to determine
the overlap between two rigid bodies. For
example, for two rigid spherocylinders,
an analytical formula[5] for the overlap
determination can be written by consid-
ering the minimum distance between
two line segments. This problem (overlap

determination for nonspherical bodies) is often circumvented by
considering the rigid body as a collection of spherical particles[6]

(or disks in two dimensions) and calculating the overlap between
the spherical particles (or disk). However, this method of over-
lap calculation becomes expensive as the number of constituent
spheres (or disks) increases, making the simulation computa-
tionally demanding.
In this paper, we propose a data-driven approach to overcome

this problem. We trained different Machine Learning (ML) clas-
sifiers to determine if there is an overlap between two rigid bod-
ies given their position and orientation. After training, the over-
lap detection time is independent of the number of constituent
spheres (or disks), thus allowing longer simulations of large col-
lections of rigid bodies. We consider rigid, hard bodies of four
different 2D shapes (Circle, Triangle, Rod, and Star) and detail
the ML model building in two dimensions. We further perform
MC simulation with these MLmodels and compare the obtained
structural properties of the systems with the standard MC sim-
ulation. As a pilot study, we also extend our approach to three
dimensions and demonstrate the isotopic to nematic transition
of rigid rods. We believe that this will generate interest in the

Adv. Theory Simul. 2023, 6, 2300520 2300520 (1 of 12) © 2023 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH

http://www.advtheorysimul.com
mailto:s.bag@theo.chemie.tu-darmstadt.de
https://doi.org/10.1002/adts.202300520
http://creativecommons.org/licenses/by-nc-nd/4.0/


www.advancedsciencenews.com www.advtheorysimul.com

Figure 1. a–d) Rigid bodies (the blue background) of different geometric shapes modeled by a series of small disks (shown in red). The number of disks
required to represent the (a) circle, (b) triangle (c) rod, and (d) star is 67, 32, 9, and 31, respectively.

molecular simulation community as an alternative way to simu-
late collections of nonspherical rigid bodies.

2. Results and Discussion

2.1. In Two Dimension (2-d)

We considered rigid bodies of four different shapes, namely cir-
cle, triangle, rod, and star (see Figure 1). To determine if there is
an overlap between the two bodies, the rigid bodies weremodeled
by constituent small disks of the same size as shown in Figure 1.
Different numbers of disks are required to represent bodies of
different shapes. As the size of the disk becomes smaller, they
trace more accurately the peripheral shape of the rigid body (see
Figure 1).
To determine if there is an overlap between two bodies, we cal-

culated the distance between all disk pairs with one disk belong-
ing to body A and the other belonging to body B (see Figure 2a).
If there are N constituent disks for a rigid body, then the overlap
determination requires N2 distance calculations. If any of these
N2 distances are smaller than the diameter of the disk, then we

treated bodies A and B as overlapping. Consequently, for largeN,
the computation time steeply increases. Therefore, we designed a
MLmodel to predict the overlap between the two bodies. It should
be noted that while it is certainly possible to devise a more ef-
ficient overlap detection technique with weaker N dependence
thanN2, it will always be dependent onN to some extent. On the
other hand, the overlap detection time for the ML model we de-
signed remains independent of N. The input and output of the
ML model are described in Figure 2b below.
It is worth mentioning that we could use the disks only to rep-

resent the periphery of the rigid body (keeping the central part va-
cant), which would require a lower number of constituent disks,
as shown in Figure S1 (Supporting Information). This kind of
construction would perform fine in two dimensions, but in three
dimensions, we would actually need the disk in the core of the
rigid bodies.
To generate the dataset for the ML model, we randomly kept

two rigid bodies at different random positions and orientations
and determined the overlap by calculating the distance between
the constituent disks representing them (see Figure 2). We kept
the x and y component of the distance vector (dx, dy) between 0
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Figure 2. a,b) Schematic diagram describing the input and output of a ML
classifier model to predict the overlap between two rigid bodies A and B
in two dimensions. a) The position and the orientation of the body are
represented by the center of geometry (shown as a red dot) and a vector A
attached with the rigid body. As the body moves and rotates the vector A
moves and rotates with it. b) The distance between the centers of geometry
and the relative angle between these body fixed vectors (A and B) are used
to determine whether there is an overlap between them.

and 10 (see Figure 2), with the diameters of the objects being ≈1.
The relative orientation (d𝜃) was chosen between 0 and 2𝜋. We
trained various ML classification models which take dx, dy and
d𝜃 as input and predict if there is overlap or not (see Figure 2b).
Therefore, this ML task is a binary classification problem. How-
ever, the use of this kind of ML classification model is justified
only if it accurately predicts the overlap in less computation time.
To find out the best possible ML models in terms of computa-
tion time, we scanned through a series of ML classifiers, namely
1) Nearest Neighbors Classifier,[7] 2) A support vector machine
(SVM) with Radial Basis Function (RBF) kernel,[8–10] 3) Adap-
tive Boosting[11] (AdaBoost), 4) Random Forest,[12] 5) Decision
Tree,[13] 6) Quadratic Discriminant Analysis (QDA),[14] 7) Gra-
dient Boosting Classifier,[15,16] and 8) Gaussian Naive Bayes.[17]

For extensive details on theory behind the ML classifier models,
see Refs.[7–17], for the Python implementation of the ML mod-
els, see Ref.[18], and for the exact codes used in this work see
our git-hub (https://github.com/saientan/overlap_non_circular/
tree/master) repository.
We generated rigid rods of varying sizes and determined the

overlap between them by explicitly calculating the distance of the
constituent disks and by training theMLmodels described in the
previous paragraph. All the calculations were repeated 10 times,
and their mean is presented in Figure 3, with the error bars being
their standard deviations. Figure 3 shows that the computation
time for the ML methods remains constant but increases almost
quadratically for the case of “Explicit distance calculation”. Four
of the eight ML models provide a computationally cheap estima-
tion of “overlap” in comparison to the “Explicit distance calcu-
lation” technique. Therefore, we selected these four ML models
(Decision Trees, QDA, Gradient Boosting, and Naive Bayes) for
further analysis. All the calculations described above were per-
formed in a single CPU of a local desktop computer.

We checked the accuracy of these four ML models in predict-
ing the overlap between rigid bodies of four different shapes (see
Figure 1). As presented in Figure 1, the circle, triangle, rod, and
star-shaped objects were modeled by 67, 32, 9, and 31 disks, re-
spectively. Using the strategy described previously, we generated
120 000 data for the ML models to be trained for each case. Of
the 1 20 000 data, we kept 20 000 data points (test data) to ver-
ify the accuracy of the ML model, while the remaining 100 000
data points (training data) were used to train it. To generate the
learning curve for the ML models, we increased the number of
data points in the training data set (maximum number of avail-
able training data points 1 00 000) in steps of 25 and trained aML
model. The trained MLmodel was used to predict the overlap for
the test data points, and the predictions were compared with the
actual values to calculate the prediction accuracy.
In both the training and test data sets, we kept an equal num-

ber of data of two categories (overlap and no overlap). The learn-
ing curves (model prediction accuracy on the test dataset as a
function of number of data in the training set) for the four ML
models are shown in Figure 4.
Figure 4 shows that with the increase of training data, the ML

models initially get better, resulting in an increase in prediction
accuracy (in the test dataset). After an optimal number of train-
ing data, the accuracy of the MLmodels stops improving and the
learning curve reaches a plateau. The prediction accuracy of the
MLmodels at this stage is the best that we can achieve, and we re-
port this accuracy to be the prediction accuracy of the ML model
further in this manuscript.
Among the four ML models studied, the gradient boosting

classifier shows the best accuracy for all four types of rigid bod-
ies. The performance of the gradient boosting classifier is the best
for the “circle” case with 98% accuracy, which is expected because
the ML model can simply learn the distance between the centers
of geometry to determine if there is overlap or not. However, as
the rigid body becomes more circular, the accuracy of the gradi-
ent boosting classifier decreases, with 86% accuracy for the “rod”
case (see Figure 4c). The results of the “star” and “triangle” cases
lie in between the “rod” case, with prediction accuracy (for the
gradient boosting classifier model) values of ≈95% and ≈92%,
respectively. The “star,” which is more circularly symmetric than
“triangle,” generates a better gradient-boosting classifier model
compared to “triangle”. In the circular case, the other three mod-
els (Naive Bayes, QDA, and Decision Tree) show similar perfor-
mance with a maximum accuracy of 92%. In the cases of trian-
gle, rod, and star, the performance of Decision Tree is the worst
among all the four MLmodels, and the performance of QDA and
Naive Bayes is between the Gradient boosting (best performing)
and decision tree (worst performing). We also trained the ML
models and generated the learning curves for the cases where
only the outlines of the rigid bodies were represented by the disks
(Figure S1, Supporting Information). We found similar learning
curves in this case too, as shown in Figure S2 (Supporting Infor-
mation).
To understand the predictions of the gradient boosting classi-

fier (the best-performing ML model) more deeply, we calculated
the confusion matrix (of the best ML model) for the test predic-
tions with 2000 test data points (1000 in each category) shown in
Figure 5. In the case of a circle, the gradient boosting classifier
categorizes the “Overlap” and “No Overlap” with ≈98% accuracy.
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Figure 3. Single overlap calculation time between two rigid bodies as a function of the number of disks used to represent them. Eight different types
of ML models and the explicit distance (calculation of the distances between the constituents disks) calculation techniques were used to determine the
overlap. The calculation time increases quadratically with the number of disks when the overlap was determined using “explicit distance” calculation
while the corresponding times in the case of the ML models remain constant.

Figure 4. Overlap (between two rigid bodies) prediction accuracy in test dataset as a function of number of data in the training data set for rigid bodies
of four different shapes (a) Circle, (b) Triangle, (c) Rod, and (d) Star. The number of disks used to represent each object is shown in Figure 1. The
overlap predictions were done using 4 different ML models: Decision Tree, Quadratic Discriminant Analysis (QDA), Naive Bayes classifier, and Gradient
Boosting (Grad Boost) classifier. a,b,d) In the case of circles, stars, and triangles all four models reach a maximum accuracy of more than 90% to predict
the overlap between two bodies. c) For the rod case the Gradient Boosting performs the best with ≈86%maximum accuracy while Decision Tree is worst
with only a maximum accuracy of ≈72%.
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Figure 5. a–d) Confusion matrices for the gradient boosting classifier model in prediction of the 2000 test data points having 1000 points in each
category: “Overlap” and “No Overlap”. a) In the case of a circle, the gradient boosting classifier categorizes the “Overlap” and “No Overlap” with ≈98%
accuracy. In this case, the classifier showed slightly better performance in predicting “No Overlap” in comparison to “Overlap”. b–d) In all other three
cases, “Overlap” is predicted better than “No overlap” which is more often wrongly predicted as “Overlap”.

The gradient boosting classifier performs slightly better at pre-
dicting “No Overlap” in comparison to “Overlap”. In all the other
three cases (triangle, rod, and star), the gradient boosting clas-
sifier model mistakenly identifies “No Overlap” to be “Overlap”
more frequently than “Overlap” as being “No Overlap”. Thus, the
gradient boosting classifier model tends to overpredict “overlap”,
with inaccuracy increasing as the object deviates from the circu-
lar shape: circle < star < triangle < rod.
So far, we have established that ML classifiers can be trained

to accurately detect the overlap between two nonspherical rigid
bodies and that these ML models can also be computationally ef-
ficient. However, it is still not clear what the implications of these
MLmodels are in actual simulations where one needs to perform
many overlap calculations between many pairs. To estimate the
effect of the ML models in an actual simulation in terms of com-
putational time and in predicting the structure of the system, we
performed MC simulations with the following details. We took a
system of 64 rigid bodies of the same type and randomly arranged
them in a square simulation box. The system was prepared with
an area fraction of 0.20, which corresponds to a number density
(n) of 0.31, 0.64, 0.66, and 2.92 for circle, triangle, star, and rod,
respectively. The simulation box was periodic in both x and y di-
rections. During the random arrangement, we made sure that
the rigid bodies did not overlap. We randomly picked a rigid body
and proposed a MCmove. A MCmove is a combination of trans-
lation (of amount tx and ty in x and y direction, respectively) and
a rotation (of amount r𝜃) of the rigid body. Here, tx and ty were
chosen to be a random number between −0.4 and +0.4, while r𝜃

is randomly chosen between−10° and 10°. If the rigid body’s new
position and orientation overlapped with the other rigid bodies,
then we discarded this move, keeping the body at its previous po-
sition and orientation. In the case of “No overlap”, the move was
accepted. We repeated this move and performed a simulation of
105 MC steps. MC simulations were done by using the ML mod-
els to determine the overlap. As a reference, we also performed
MC simulations by explicitly calculating the distance between the
constituent disks to determine overlap. We repeated the above
MC simulations for all four different types of rigid bodies and
compared the simulation time in Table 1.
As expected, the simulation time for the ML models remains

almost unchanged for the four shapes, while in the case of the
reference calculation, it largely varies as the total number of disks
(used to represent the rigid body) changes. In the case of “circle”,
ML classifiers allowMC simulations to be≈25 times faster. In the
case of “star” and “triangle”, theMLmodel-guidedMC is roughly
six times faster. In the rod case, they are of the same order, but it
is beneficial to use “Decision Trees”, “QDA”, and “Naive Bayes”
as ML models when considering the computational time. Now,
it is quite clear that using the ML-based overlap determination
provides a benefit in terms of computational time. It is important
to note that we could speed up theMC simulation by constructing
a neighbor and a cell list. In general, this would, however, speed
up both the ML-assisted MC and the standard MC by the same
factor.
We further checked how comparable the MC-generated struc-

tures of the systems are in these two cases: ML-based overlap
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Table 1. Comparison of time taken on a single CPU to perform 105 MC steps with 64 rigid bodies. All calculations were repeated 10 times and the average
of these 10 calculation times are presented here with the standard deviation of these 10 values as the error bar.

Rigid Body Type Total number of disks
required to represent
the 64 rigid body

Time taken (single CPU)
for 105 MC steps: Explicit
Distance Calculation

Time taken (single CPU) for 105 MC steps: ML models

Decision Trees QDA Naive Bayes Gradient Boosting

Circle 4288 24 945 ± 828 s 389 ± 86 s 636 ± 126 s 650 ± 170 s 1144 ± 210 s

Triangle 2048 6058 ± 160 s 475 ± 86 s 655 ± 118 s 771 ± 148 s 1173 ± 236 s

Rod 576 708 ± 34 s 460 ± 79 s 685 ± 114 s 627 ± 78 s 1288 ± 216 s

Star 1984 5717 ± 196 s 486 ± 71 s 695 ± 135 s 782 ± 163 s 1309 ± 235 s

determination versus standard calculation deciding the overlap.
The comparison is presented in Figure 6. All the calculations
were repeated 10 times, and their mean is presented in Figure 6,
with the error bars being their standard deviations. Here, we
only show the results with the Gradient Boosting classifier as a
ML model. The results with all four computationally cheap ML
models are shown in Figure S3 (Supporting Information). From
the generated MC trajectory, we calculated the pair correlation
function[19] g(r), defined as

g (r) = 1
2𝜋rNn

⟨
N∑
i

N∑
j

𝛿
(
r − rij

)⟩
(1)

Here, rij is the distance between the center of geometry of two
rigid bodies i and j, N is the total number of rigid bodies, and n
is the number density of the system.
We also show simulation snapshots (see bottom panels of

Figure 6a–d) after the 105 MC steps in both cases. In the cir-
cular case, the gradient boosting classifier is quite accurate (see
Figures 4a and 5a) at predicting the overlap. Therefore, the ML-
assisted MC simulation yields very similar g(r) (see Figure 6a)
and the equilibrated snapshots as the reference MC simulation.
In the triangular case, the gradient boosting classifier predicts
the overlap with 92% accuracy (see Figure 4b), which allows the
particles to overlap a little (snapshots in Figure 6b). This over-
lap causes the amplification of the first peak in g(r) for the ML
case. In the rod case, the imperfect (86% accuracy) ML classi-
fier causes the rod to frequently overlap, as seen in the snapshots
(highlighted in green in Figure 6c). With the star-shaped particle,
we observe the amplification of the first peak of g(r) for the ML
case (in comparison to the reference calculation), which is very
similar to what we see (Figure 4b) with the triangle shaped parti-
cle. This similarity is expected because the accuracy (see Figure 4)
of theML classifier is very similar for the star and triangle-shaped
particles. When compared with the star and triangle, we find that
the rod generates better g(r) (Figure 6) in spite of having the worst
(among the four shapes studied) ML classifier. This might be be-
cause the rod is relatively more circular compared to the other
four shapes, potentially leading to a reduced influence of overlap
on g(r) in this scenario. It is worth noting that we performed the
MC simulations and evaluated the pair correlation functions at a
fixed area fraction of 0.2. To verify the effects of particle density
on the pair correlation function, we also repeated theMC simula-
tion with another area fraction of 0.09 for the rod case where the
MLmodel performed the worst. We find that at this area fraction

too the pair correlation functions match well with the reference
calculation as shown in Figure S4 (Supporting Information).
The pair-correlation functions computed in the previous para-

graph did not have any information regarding the orientation of
the rigid bodies. To see how the orientation of the bodies is corre-
lated, we further evaluated the orientational correlation between
two rigid bodies in the systems. We first identified all the pairs
of rigid bodies that are separated (distance between the center of
geometry) by distance r and then calculated Pearson’s correlation
coefficient (R(r)) between the orientational angles of the pairs.
We further averaged the R(r) values over the snapshots gener-

ated from the MC simulations. All the calculations (MC simula-
tions and computations ofR(r) with theMCgenerated snapshots)
were repeated 10 times, and their mean is presented in Figure 7,
with the error bars being their standard deviations.
The vanishing R(r) values in the case of a circle (see Figure 7a),

triangle (see Figure 7b), and star (see Figure 7d) indicate an ab-
sence of any correlation between particle orientations, irrespec-
tive of their proximity. In contrast, when examining rod-like par-
ticles, a positive correlation emerges, evident by the positive R
values, but only when they are within a distance of 0.5 between
their center of geometry. This positive correlation arises because
closely positioned rod pairs tend to maintain parallel alignment,
as illustrated in Figure S5 (Supporting Information). It is im-
portant to note that this alignment constraint does not apply
to other shapes with more circular characteristics. Notably, the
angle-angle correlation derived from the ML-assisted MC simu-
lation coincides with the findings from the standard MC simula-
tion across all four cases.

2.2. Extension to Three Dimensions (3-d)

We generalized our approach in three dimensions (3-d). To
uniquely represent the orientation of a rigid body in 3-d, we used
the three Euler angles (𝛼, 𝛽, and 𝛾) of the principal axis (corre-
sponding to the largest eigenvalues of the gyration tensor) of the
rigid body with respect to three mutually orthogonal directions
(x, y, and z) of the Cartesian coordinate system. The position of
the rigid bodywas represented by its center of geometry. The rigid
bodies were modeled with several constituent small spheres of
the same size. To determine the overlap between the two bodies,
we followed the same protocol as the 2-d cases, replacing the role
of the disks with spheres. As above, we generated the dataset for
the ML models (to predict the overlap) by keeping two rigid bod-
ies at different random relative positions and orientations and
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Figure 6. a–d) Pair correlation function (g(r), top panels) and the equilibrated simulation snapshots (bottom panels) obtained from 105 steps of MC
Simulation with 64 rigid bodies. MC simulations were performed alternatively using the ML model (Gradient Boosting classifier) for overlap determina-
tion or using explicit distance calculation. a) In the case of the circle, the two types of MC simulations (ML assisted and standard) generated identical
g(r) and equilibrated simulation snapshots because of the very accurate ML classifier. b) In the case of the triangle, the ML model allows the particle to
overlap a little, which is reflected in the simulation snapshot (highlighted in green) as well as the first peak of g(r) gets amplified for the ML case. c) The
rods frequently overlap (highlighted in green) as seen in the snapshots because of the imperfect ML model. Although the resultant g(r) are very similar.
d) The snapshots and g(r) for the star-shaped particle show similar behavior as the triangle-shaped particle.

determined the overlap by calculating the distance between the
constituent spheres. The relative position (dx, dy, and dz) be-
tween the two bodies was kept between 0 and 10 in x, y, and
z direction, respectively. The relative orientation was described
by the difference (d𝛼, d𝛽, and d𝛾) in Euler angles of the princi-

pal axis of two bodies. For the training data generation, d𝛼, d𝛽,
and d𝛾 were randomly chosen between 0 and 2𝜋, 0 and 𝜋, and
0 and 2𝜋, respectively. ML classification models were trained to
predict the overlap between two bodies with their relative posi-
tion (dx, dy, and dy) and orientation (d𝛼, d𝛽, and d𝛾) as input
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Figure 7. a–d) Pearson’s correlation coefficient (R(r)) between the orientational angle of the rigid bodies as a function of the distance between their
center of geometries.

to the ML models. To demonstrate this ML-based overlap calcu-
lation technique in 3-d, we considered, as an example, rods that
are easy to model as a collection of spheres. In addition, rigid rod
models are relevant in studying various physical systems of inter-
est, like rod-like virus particles,[20] long liquid crystalline polymer
chains,[21] etc. As in the 2-d case, the rigid rods were modeled by
nine constituted spheres (see Figure 1c). Therefore, the length
(L) to diameter (D) ratio for the rods was eight.
We trained four different ML models (decision tree, Gaussian

naive Bayes, quadratic discriminant analysis, gradient boosting)
for the overlap of rigid rods and then used those trained mod-
els to perform MC simulations. The learning curves for the ML
classifiers are shown in Figure 8.
As shown in Figure 8, the QDA, Naive Bayes classifier, and

Gradient Boosting classifier show very similar performance with
a maximum accuracy of ≈75%, while Decision Tree performs
slightly worse than (maximum accuracy of 73%) the other three.
A comparison of the learning curves (see Figure 4c) of the 2-d
cases reveals that the performance of the best ML classifier (77%
accuracy) in the 3-d case is worse than that of the best classifier
obtained (85% accuracy) in the 2-d case. This result is unsurpris-
ing given that in 3-d cases, rods have more degrees of freedom,
making the task of the ML classifier more difficult.
In order to study the liquid crystalline behavior, we then ar-

ranged 64 rigid rods in a 3-d simulation box in the isotropic phase
with a number density of 0.25 which corresponds to a volume
fraction (𝜌) of 0.001 and a reduced density (𝜌∗) of 0.012. The
volume fraction (𝜌) is defined as the ratio of the volume occu-

Figure 8. Overlap (between two rigid rods) prediction (by the ML classi-
fiers) accuracy in the test dataset as a function of the number of data in
the training data set. Four different ML models, namely, Decision Tree,
Quadratic Discriminant Analysis, Naive Bayes classifier, and Gradient
Boosting classifier were used to determine the overlap.

pied by the rods (modeled as spherocylinders constructed by a
string of 9 nonoverlapping spheres) to the total volume of the sys-
tem. The reduced density (𝜌∗) of the system is defined[22] as 𝜌∗ =
𝜌

𝜌cp
.Here, 𝜌cp is the density of regular close-packing spherocylin-

ders (with Length L and diameter D), which can be calculated as:
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Figure 9. a) Nematic order parameter for a system of 64 rigid rods as a function of reduced density. The nematic order parameters were calculated using
the conformations generated by Monte Carlo (MC) simulation. Four Different mahine learning (ML) models were used to calculate the overlap between
the rigid bodies during the MC simulations. Results are compared with the standard MC implementation where the distances between the constituted
spheres of the rods were explicitly calculated to determine the overlap (between the rods). b–f) Simulation snapshots at two different reduced densities
(0.05 and 0.35) obtained from the MC simulation with explicit distance calculation and four different ML models: Decision Tree, Quadratic Discriminant
Analysis (QDA), Naive Bayes, and Gradient Boost. Both the top (left) and side view (right) of the simulation boxes are shown.

𝜌cp =
2√

2+(L∕D)
√
3
. To performMC simulation with this system we

randomly chose a rigid body and proposed its MC move. A MC
move is a combination of translation (of amount tx, ty, and tz in
x, y, and z direction, respectively) and a rotation. The rotational
move is a combination of random change in the Euler angles 𝛼

and 𝛾 (of amount r𝛼, r𝛾) along with a random change in cos(𝛽)
(of amount rcos(𝛽)) rather than in 𝛽 itself. The MC moves were
designed to obey the detailed balance condition as prescribed by
Allen and Tildesley.[23] This MC move was accepted if this new
position and orientation of the body did not overlap with the
other rigid bodies. Otherwise, the MC move was discarded, and
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Table 2. Comparison of CPU time taken to perform 105 MC steps with 64 rigid rods in 3-d.

Time taken (single CPU) for 105

MC steps: Explicit Distance
Calculation

Time taken (single CPU) for 105 MC steps: ML models

Decision Trees QDA Naive Bayes Gradient Boosting

1034 357 s 1119 s 565 s 1028 s

the body remained at its previous position and orientation. Here,
tx, ty, and tz were chosen to be a random number between −dt
and +dt, while r𝛼 and r𝛾 were randomly chosen between −𝛿 and
+𝛿 degrees and rcos(𝛽) was randomly chosen between −dcos(𝛽)
and +dcos(𝛽). To determine the optimal values of the dt, 𝛿 and
dcos(𝛽), we started with high values of 0.5, 70, and 0.34 for dt, 𝛿
and dcos(𝛽), respectively, and measured the acceptance percent-
age of the proposed MCmove. We continued to decrease the val-
ues of, 𝛿 and dcos(𝛽) until the acceptance exceeded 50%.With this
optimal value of, 𝛿, and dcos(𝛽), we performed MC simulations
of 105 steps. After 105 MC steps, the simulation box was com-
pressed equally in all three directions such that reduced density
increased by 0.018. With this system, we again performed a MC
simulation of 105 steps. We repeated this consecutive box com-
pression and MC simulation 20 times up to a reduced density of
0.35 andmeasured the structural order of the rigid rods in the sys-
tem. To characterize the orientational order of the rods in the sys-
tem, we calculated the nematic order parameter[22,24–27] defined
by S = ⟨ 3

2
cos2𝜃 − 1

2
⟩. Here, 𝜃 is the angle between the director

of the nematic phase and the long axis of the rod. The direction
of the director was defined as the average direction of the long
axes of the rods in the nematic liquid crystalline phase observed
at reduced density (𝜌∗) of greater than 0.3. The “⟨ ⟩” symbol was
used to indicate ensemble average. The complete phase diagram
of the hard spherocylinder as a function of the shape anisotropy
(ratio of length (L) and diameter (D)) has been previouslymapped
by Bolhuis et al.[22] using MC simulations. For a L/D ratio of >
3.7, an isotropic to nematic transition of the spherocylinders was
reported as the system was compressed. Our system, having an
L/D ratio of 8, should exhibit this transition. To capture this tran-
sition, we calculated the nematic order parameter of the system as
we compressed it. The entire simulation routine described above
was repeated using different ML models to calculate the overlap
between the rods during the MC simulation. The results from
all these simulations are summarized (see Figure 9) and com-
pared with the results from the standard MC simulation, where
the overlap calculations were done by explicitly calculating the
distance between the constituent spheres of the rigid body.
In the case of standard MC simulation for a low reduced den-

sity, the rods are found to be in an isotropic phase with a nematic
order parameter of ≈0.1. The order parameter starts increasing
at a reduced density of ≈0.2, indicating the onset of the transi-
tion to the nematic phase. At the reduced density of ≈0.3, the
nematic order parameter reaches ≈0.5, indicating the end of the
isotropic to nematic transition. The behavior of the order param-
eter as a function of the reduced density is qualitatively similar
to that found by Bolhuis et al.[22] and others,[24,25,28–30] who find
the isotropic to nematic transition at reduced densities between
≈0.5 and ≈0.6. However, instead of a very sharp transition (in-
dicative of first-order phase transition) to the nematic phase, we
find a rather gradual transition to the nematic phase. This grad-

ual transition may be a result of the very small system size (64
rods) studied here. Since our main goal was to compare the ML
classifier to the standard calculation, we did not find it neces-
sary to simulate a larger system at present. All ML models except
the “Decision Tree” show the isotropic to nematic transition, but
the onset and end of transition differed from the standard calcu-
lation. The QDA, Grad Boost, and Naive bias classifiers predict
the onset of the transition early and end somewhat late, making
the transition less sharp in comparison to the actual calculation.
They all show an artefact around the transition density, namely
a shoulder-like profile instead of an uninterrupted increase. This
deviation is understandable because these three MLmodels have
similar accuracy (see Figure 8) in predicting the overlap. The sim-
ulation snapshots at different reduced densities from the MC
simulations are presented in Figure 9b–f. In the case of Decision
Tree, where isotropic-nematic transitions are not seen shows that
rods are aligned (see Figure 9c) with each other even at a reduced
density of 0.05. The snapshots for Standard MC (see Figure 9b),
QDA (see Figure 9d), Naive bias (Figure 9e), and Grad Boost (see
Figure 9f) show that at a reduced density of 0.05, the rods are
more isotropically arranged while at a reduced density of 0.35,
we see the alignment of the rod indicative of Nematic phase.
We again estimated the simulation time (see Table 2) for the

105 MC steps with overlap (between two rigid bodies) calculated
using different ML models and compared the simulation time of
standard MC implementation.
Table 2 shows that the Naive Bayes and Decision Tree provide

cheaper simulation time in comparison to standard implemen-
tation. Based on the preceding discussion, we conclude that the
performance of the ML classifier for the rod case is not very in-
spiring, both in terms of computation time and prediction accu-
racy. Additionally, the ML classifiers performed the worst for the
rod case in 2-d (see Figures 4 and 5), while it was relatively better
for the other shapes. In the future, it will be interesting to see
how the ML classifiers work for other 3-d shapes.
It is very important to note that the CPU times reported in

this manuscript strongly depend on the software library used for
the ML models as well as the hardware used to run the codes.
The time comparison might change in case the ML model was
hardwired in C or Fortran, rather than using very general Python
libraries. Therefore, we havementioned complete details of hard-
ware and software libraries in Supporting Information.

3. Conclusion

Simulating nonspherical particles is relevant in a variety of phys-
ical situations to predict the correct structural and dynamic prop-
erties of a system. In the context of coarse-grained molecular
dynamics simulation, the shape anisotropy of the particles is
sometimes captured by considering ellipsoidal beads with the
anisotropic Gay–Berne[31] potential or Kern-Fenkel[32] potential
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between them. For more complex shapes, representing the non-
spherical bodies as a collection of spheres is the state of the art.[6]

As mentioned earlier, one of the pitfalls of this method is the
higher computational costs due to the increase of total number
of degrees of freedom in the system. This has been addressed
in the past by designing parallel and scalable algorithms that are
already available in the standard MD package like LAMMPS.[6]

On the contrary, our ML model (after training) works with the
nonspherical particles themselves, causing no increase in the de-
grees of freedom of the system. As a proof of concept, we de-
veloped various ML models (to detect overlap between two non-
spherical bodies) for hard repulsive interaction between the rigid
bodies and used those in MC simulations to calculate the struc-
tural properties of the systems. We scanned through a series of
ML models and found that the Gradient Boosting Classifier is
generally the best to determine the overlap in two dimensions.
Moreover, within the limited set of nonspherical shapes studied
in this paper, we find that our ML-based MCmethod, reproduces
the structural features generated from the traditional approach
well. So far, we have not attempted to parallelize our codes in dif-
ferent hardware architectures. Therefore, using ourML approach
along with the most efficient parallelization algorithms available
in the literature[6] seems to be the best choice at the moment to
simulate nonspherical rigid bodies.We have also conducted a test
in three dimensions on fluids of rod-like spherocylinders. Here,
Naive Bayes is performing best in reproducing the nematic or-
der parameter. Speedwise, the ML models in three dimensions
range from equal to the standard reference MC calculation to
three times as fast.
In the granular matter physics community, there has also

been interest in the simulation of non-spherical particles in the
presence of friction. In this context, Discrete Element Method
(DEM) simulation[33–36] is commonly done by modeling the non-
spherical particles as a collection of spherical beads or as a poly-
gon mesh. To make the DEM simulation computationally more
affordable, Spellings et al.[37] have previously designed a GPU-
accelerated version of themethods. OurMLmodel is still not use-
ful in this context since it only predicts the overlap between the
particles. In the future, we are planning to extend our ML model
to predict the amount of overlap, which can be useful to perform
DEM simulations with friction. Our ML models can be straight-
forwardly generalized by converting the classification problem to
a regression one where the output of theMLmodel is the amount
of overlap.
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