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Abstract: Objective: The aim of the present work is to study the microstructure, wear behavior,
physical properties, and micro-hardness of the aluminum matrix AA6061 reinforced with TiC and
B4C nanoparticles with different concentrations of 2.5, 5, 7.5, 10, and 12.5 wt.%. Methodology: Al/B4C
and Al/TiC nanocomposites were fabricated with a powder metallurgy route. A dry sliding wear
test was performed with a pin-on-disc machine. The wear test was performed at the applied loads of
3, 6, 9, 12, and 15 N at a constant time for about 10 min. The microstructural analysis of the fabricated
nanocomposites was examined via field emission scanning electron microscopy (FESEM) and X-ray
diffraction (XRD) analysis. The obtained data: The results of this work show that increasing the
applied load leads to a decrease in the wear rate of the aluminum matrix and its nanocomposites.
The wear rate of the aluminum matrix without any additives is about 7.25 × 10−7 (g/cm), while
for Al/TiC and Al/B4C, it is 5.1 × 10−7 (g/cm) and 4.21 × 10−7 (g/cm), respectively. An increment
in B4C percent increases the actual density, while an increment in TiC percent minimizes the actual
density at 2.90 g/cm3 and 2.51 g/cm3, respectively. An increment in B4C percent decreases by 4.61%,
while the porosity slightly increases with increases in TiC percent of 6.2%. Finally, the micro-hardness
for Al/B4C is about 92 (HRC), and for Al/TiC, it is about 87.4 (HRC). Originality: In the present work,
nanocomposites were fabricated using a powder metallurgy route. Fabricated nanocomposites are
important in engineering industries owing to their excellent wear resistance, low thermal distortion,
and light weight compared with other nanocomposites. On the other hand, Al/B4C and Al/TiC
nanocomposites fabricated with a powder metallurgy route have not previously been investigated in
a comparative study. Therefore, an investigation into these nanocomposites was performed.

Keywords: nanocomposites; powder metallurgy; microstructure; physical properties; micro-hardness;
wear

1. Introduction

Nanocomposite materials are defined as advanced materials containing multiphases;
one of them is known as a matrix while the other is known as a reinforcement material. The
reinforcement materials are nano-sized and can be incorporated as nanoparticles, nanorods,
nanofibers, or nanoplatelets [1].

The matrix can be used as a metal, ceramic, or polymer with additive nano-sized
materials to produce nanocomposites. Nanocomposites have been manufactured via a
solid state such as a powder metallurgy route or a liquid state such as a casting route to
achieve special characteristics for advanced engineering applications [2]. The manufactured
nanocomposite has a new microstructure owing to the rearrangement of the constituent
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elements, which in turn improves the physical, thermal, electrical, mechanical, wear, and
corrosion resistance. The properties of the manufactured nanocomposite are different
compared with the original materials, either the properties of the matrix or the properties
of the additive nano-sized materials. In recent years, great attention has been paid to
the manufacturing of metal matrix nanocomposites with different types of reinforcement
materials, mainly ceramic nanomaterials [3,4].

Commonly, aluminum and aluminum alloys are used as metal matrixes because of
their exceptional characteristics, such as low density, low cost, high strength, and high
wear resistance. These characteristics create new properties for the produced nanocom-
posites, which can be used in many advanced engineering applications, such as in the
aerospace, automotive, and marine industries [5,6]. Currently, hybrid nanocomposites
have been produced for many multifunctional applications, such as in the communication,
renewable energy, optical, and medical sectors. In hybrid nanocomposites, there are many
reinforcement materials that can be used at the same time to improve the desired properties.
There are many parameters affecting the properties of hybrid nanocomposites, such as the
size and shape of the reinforcement materials and the weight percentage of the additive
materials. Also, the properties of the matrix, the created binding between the matrix and
reinforcement materials, and the route used for producing the hybrid nanocomposites are
directly affected by the final properties of the hybrid nanocomposites. Commonly, the
hybrid nanocomposites have been produced with solid-state or liquid-state routes [7–10].

Powder technology is widely used to manufacture metal matrix composites because
of its exceptional properties to fabricate engineering components with exact dimensions. In
recent decades, powder technology has been greatly applied to produce metal matrix com-
posites compared to casting techniques. The engineering parts manufactured with powder
technology have excellent properties such as high strength, good wear, and corrosion
resistance. With this technique, the reinforcement materials are uniformly distributed in
the matrix with a small amount of porosity, improving many of the properties. Compared
with the casting technique, the reinforcement materials are aggregated and create a weak
binding with the matrix [11]. The aluminum AA6061 alloy is commonly used for many
applications, like automobile parts, marine technology, aerospace technology, aeronautical
technology, and electronics, which need special characteristics like high thermal, electrical,
and mechanical properties. To enhance these properties, the Al alloy must be reinforced by
many materials such as metals, polymers, and ceramics (carbides, nitrides, and oxides) to
obtain aluminum nanocomposites (ANCs) [12]. Aluminum nanocomposites (ANCs) are
a mixture of many component phases, in which aluminum metal is a matrix reinforced
by ceramic materials such as Al2O3, Fe2O3, MgO, TiO2, TiC, SiC, B4C, etc. However, these
additive materials improve mechanical, physical, and thermal properties [13,14]. Therefore,
improving the mechanical properties of Al alloys by adding reinforcing materials such as
ceramics creates many difficulties through the working or machining of the synthesized
nanocomposites. Therefore, ceramic additives must be introduced at a high accuracy of
concentration to improve the mechanical and thermal characteristics of ANCs. Aluminum
nanocomposites have been produced with many different methods, such as liquid-phase
and solid-phase methods. Liquid-phase methods include casting and stir casting, while
solid-phase methods include powder metallurgy [15]. Also, these processing methods
involve many imperfections, like impurities, dislocations, brittle inclusions, and porosity,
which make the ceramic nanoparticles heterogeneously dispersed in an aluminum alloy.
At the same time, dislocations form in ANCs, perhaps owing to the differences in the
thermal properties of aluminum and the additive nanoparticles [16]. These inclusions
minimize wear resistance and strength, and in turn, diminish the performance of ANCs
during the service. Moreover, the low wettability on the interfacial Al matrix and ceramic
nanoparticles leads to diminished interface bindings between the Al matrix and the ceramic
nanoparticles, hence limiting the usage of ANCs. AA6061 is an important alloy owing
to its unique properties such as high strength, high resistance to corrosion and wear, low
density, and high creep resistance. Therefore, this alloy can be used in various applications
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at elevated temperatures when reinforced by ceramic nanoparticles. The characteristics of
ANCs are widely defined by the microstructure and chemical composition of aluminum
alloys. The reinforcement additive materials are distinguished by their weight percentages
and dispersion, which are extremely affected by the physical and mechanical properties,
the cost of nanocomposites, and their performance [17].

The powder metallurgy technique is the best processing method to synthesize ANCs
due to the easy-to-manufacture nanocomposites and it is suitable for producing different
nanocomposites that cannot be produced in the liquid phase. On the other hand, it is
used to produce nanocomposites with precision dimensions and can be used for many
different alloys. Furthermore, it has good wettability at the interfaces between reinforcing
nanoparticles and the Al matrix [18]. Many investigations have been made about Al alloys
reinforced with ceramic nanoparticles. Wang et al. prepared an Al/Al2O3 composite
material by powder technology. The effect of Al2O3 and different sintering temperatures
(550 ◦C and 650 ◦C) on the mechanical properties and wear characteristics of ANCs have
been investigated. Al2O3 has been incorporated by weight percentage at 20 wt.%. The
results of this investigation show improvements in sintered density, micro-hardness, and
wear resistance at 650 ◦C. This leads to strong interfacial bindings between Al2O3 particles
and the Al matrix. The images of the SEM examination show a uniform dispersion of Al2O3
into the Al matrix [19]. B. Venkatesh and B. Harish studied the mechanical characteristics
of Al alloy reinforcing with SiCp nanoparticles manufactured by the powder technology
method. The resultant data of this investigation show that SiCp particles are uniformly
dispersed into the Al matrix with low porosities and enhance mechanical properties such
as strength and micro-hardness [20]. A. Thangarasu et al. investigated the microstructure,
wear characteristics and mechanical properties of Al/TiC composite manufacturing by
friction stir processing (FSP). The obtained resultant data from this work show enhance-
ments in wear and mechanical characteristics such as the strength and hardness of the
fabricated composites [21]. Manohar et al. have studied the effect of graphite and SiC
on the microstructure and mechanical characteristics of the hybrid nanocomposite. SiC
was added by a constant volume percent of 2 vol.%, while graphite was incorporated by
different volume percentages at 2, 4, 6, 8, and 10 vol.%. These additive reinforcing materials
will improve mechanical characteristics such as micro-hardness and compressive strength.
The manufactured hybrid nanocomposites were produced by powder technology under
applied pressure at 430 MPa, while the sintering process was carried out in an electrical fur-
nace at 550 ◦C under an argon atmosphere to prevent the oxidation of the specimens. The
results of this work show that the reinforcement materials were homogeneously dispersed
in the aluminum matrix, which in turn improved the mechanical characteristics [22]. Negin
Ashrafi et al. manufactured the hybrid nanocomposites Al/Fe3O4/SiC via the powder tech-
nology method. This investigation has studied the effect of Fe3O4 and SiC on their physical
and mechanical properties. Fe3O4 was incorporated by 15 wt.% and 30 wt.%, while SiC
was added by a constant percent of 20 wt.%. Magnesium stearate was added as an activator
material to prevent the accumulation of the reinforcement nanomaterials during the mixing
process. SEM photomicrographs show that Fe3O4 and SiC are homogeneously distributed
into the aluminum matrix. The preferred density and micro-hardness for Al/30 wt.%
Fe3O4/20 wt.% SiC after the sintering process were 2.69 g/cm3 and 91 HV, respectively.
Moreover, the wear rate decreased from 0.601 to 0.412 and the corrosion resistance from
90.91% to 99.83%, respectively [23]. Gang Li and Bowen Xiong have produced aluminum
reinforced by graphene nanosheets using powder technology. Graphene nanosheets were
introduced into the aluminum matrix by 0.25 wt.%, 0.5 wt.% and 1.0 wt.%. The effect of
graphene nanosheets on microstructure and mechanical properties was investigated. The
results of scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission
electron microscopy (TEM) examinations show a homogeneous dispersion of graphene
nanosheets into the aluminum matrix. Additionally, XRD examination shows that the
Al4C3 phase was created at the interfaces between graphene nanosheets and aluminum
atoms. Also, the results show an improvement in mechanical properties such as micro-
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hardness, yield strength, and tensile strength with the addition of graphene nanosheets.
This study emphasizes that the referred portion of graphene nanosheets is 0.25 wt.% [24].
A. Makkia et al. studied the physical properties, mechanical properties, and microstructure
of aluminum nanocomposite manufactured by powder metallurgy. Nickel ferrite (NiFe2O4)
nanoparticles at 35 nm have been incorporated at different percents (0 wt.%, 1 wt.%,
2.5 wt.%, 5 wt.%, and 10 wt.%). The mechanical and magnetic properties of the manufac-
tured nanocomposites were defined. The microstructural analysis for the manufactured
nanocomposites was conducted by FESEM, XRD, and DSC examinations, while the mag-
netic properties were defined by VSM examination. The results of this investigation show
that the increasing weight percent (5 wt.%) of NiFe2O4 ceramic nanoparticles will increase
yield strength, tensile strength, and micro-hardness. FESEM images show a homogeneous
dispersion of NiFe2O4 ceramic nanoparticles into the aluminum matrix and then improve
the density of nanocomposites for green compacts and sintered specimens. Moreover,
increasing NiFe2O4 to 0 wt.% will increase the magnetization, and compressive strength
and decrease the elongation of the produced nanocomposite specimens [25]. U. Soy et al.
studied the friction and wear behavior of the aluminum alloy AA360 reinforced with SiC,
B4C, and SiC/B4C particles using the pressured infiltration method. Dry sliding wear
behavior was carried out by a pin-on-disc machine under applied loads of 10, 20, and 30 N
and sliding speeds of about 0.5, 1.0, and 1.5 ms−1. The results of this investigation showed
that the wear rates for Al/17 wt.% B4C, Al/17 wt.% SiC/B4C and Al/17 wt.% SiC are about
49, 79, and 160 percent, respectively. The friction coefficient of the manufactured composites
is about 25–30 percent lower than the original aluminum alloy. The manufactured com-
posites for the present work are important in many industrial applications owing to their
lightweight and low wear rate. Microstructural analysis was defined by scanning electron
microscopy and energy dispersion spectroscopy [26]. N. Altinkok et al. investigated the
effect of Al2O3/SiC particles incorporated into an Al matrix manufactured via the stir-
casting route. Hybrid ceramic powder Al2O3 + SiC was introduced at 10 wt.% and different
particle sizes. The mixture of Al2O3 and SiC was introduced into the AA332 aluminum
matrix and followed by heating at 1200 ◦C in inert gas. Dry sliding wear behavior was
carried out using a pin-on-disc machine. The results of this study showed that the hybrid
materials decreased wear rate, especially for coarse SiC particle sizes. This is attributed to
the ability of coarse SiC to carry larger applied loads. Also, the hybrid mixture of ceramic
Al2O3 and SiC will improve the hardness. The microstructural analysis was conducted
using an optical microscope, which revealed a homogeneous distribution of Al2O3 and SiC
in the AA332 matrix [27]. Serdar Salman et al. investigated the effect and characterization
of ceramic coating on cast iron bases. In this work, three kinds of ceramic coating were used
(Al2O3, ZrO2, and Cr2O3), which are precipitated on cast iron by plasma spraying. Plasma
spraying was conducted using a thermal shock test with a thermal torch according to an
international standard. The result of this study showed that ZrO2 coating has excellent
properties compared with Al2O3 and Cr2O3, which enable it to be used for many engine
parts [28]. M. Abbasi et al. studied the effect of each friction stir vibration processing (FSVP)
as a new process to enhance the microstructure and mechanical properties of metal surface
AA5052 and compared it with traditional friction stir processing (FSP). The metal surface of
AA5052 was incorporated by SiC nanoparticles and then vibrated normally to the process-
ing line through friction stir processing. Rotation and transverse motion of the shoulder
are performed simultaneously with the vibration movement of the specimen. The results
of this work show that the vibration motion during friction stir processing (FSP) leads to
the refining grain size at the stirring zone and then creates a homogeneous distribution of
nanoparticles at the surface of the AA5052 alloy. Also, the results reveal that the strength
and ductility of FSVP are greater than those of FSP [29]. Moreover, many investigations
have been published in friction stirring welding with SiC particles. M. Abbasi et al. added
SiC to the Mg matrix. SiC particles were added during stirring to improve the strength
and ductility of AZ31 magnesium alloy [30]. Mustafa Dadaei investigated the effect of
SiC/Al2O3 during the friction-stirring processing of the AZ91 magnesium alloy. The results
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of this work show that SiC particles are more effective than Al2O3 in improving mechanical
properties. This is owing to the good dispersion of SiC particles on the welding surface and
the refining of the particles in the welding zone [31]. Amin Abdollahzadeh et al. studied
the effect of SiC particles in the joining of aluminum and copper sheets during friction
stir spot welding (FSSW). The results of this work show an improvement in mechanical
properties such as strength to the good formation of CuAl2, CuAl, Al4Cu9 and refining of
the grains at the welding surfaces between Al and Cu sheets [32].

The aim of the present work is to produce Al/TiC and Al/B4C using powder technol-
ogy routes and make comparisons between them to define which one is preferred. The
preferred nanocomposite was defined by studying the mechanical properties, physical
properties and wear behavior. The difference between the present work and the previous
study is that it uses two different types of carbide nanomaterials (TiC and B4C).

2. Materials and Processing Methods
2.1. Raw Materials

Al powder type AA6061 was used at a particle size of 120 µm, while the reinforcing
additives were B4C and TiC at 40 nm in particle size. Tables 1 and 2 demonstrate the
chemical composition of AA6061 powder [33]. Table 3 shows the physical and mechanical
characteristics of B4C and TiC [34].

Table 1. The components of aluminum alloy in wt.% [33].

Mg Si Fe Cr Cu Zn Ti Mn Al

0.81 0.59 0.21 0.19 0.19 0.08 0.08 0.018 Rem.

Table 2. Physical and mechanical characteristics of aluminum alloy [33].

Tensile Strength
(MPa)

Micro-Hardness
(HB-500)

Modulus of Elasticity
(GPa)

Density
(gm/cm3)

Poisson’s
Ratio

115 30 70–80 2.7 0.33

Table 3. Physical and mechanical characteristics of B4C and TiC [34].

Substance
Tensile

Strength
(MPa)

Micro-
Hardness

(MPa)

Poisson’s
Ratio

Modulus of
Elasticity

(GPa)

Melting
Point (◦C)

Density
(g/m3)

B4C 261–569 3810 0.18–0.21 362–472 2350 2.5

TiC 258 3200 0.18–0.19 448–451 3160 4.93

2.2. Samples Preparing

The samples were produced using the powder metallurgy route, first mixing the raw
materials with zinc stearate as an activator. The mixing process was conducted using a
mixer (planetary ball mill QM-ISPO4) supplemented with steel balls for milling (1 cm in
diameter) and rotating at 245 rpm for 3.5 h. After the mixing process, the powder mixture
was pressed in uni-axial pressing at room temperature according to ASTM-D 618 [35] to
obtain a green sample, and then the weight of the specimens was measured by a sensitive
electronic balance to define the density of the green sample after the pressing process. After
pressing, the specimens were sintered using an electrical furnace at 500 ◦C for 3.5 h, which
was supplied by inert gas (argon) to inhibit the oxidation of the specimens. Afterwards, the
density of sintered specimens was measured as well as the density of green samples.

2.3. Examination of the Microstructure

In the beginning, the specimens of AA6061/B4C nanocomposites and AA6061/TiC
were ground by grinding papers at particle sizes of 380 and 500 µm. Afterward, the samples
were polished using a polishing apparatus with diamond paste at particle size 0.5 µm for
10 min, and then the specimens were etched with 1% Keller material for 0.5 min.
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2.4. X-ray Diffraction Analysis

X-ray diffraction analysis was carried out for the nanocomposite samples (Al/TiC,
Al/B4C) to define the phases as a result of the powder metallurgy route. Furthermore,
X-ray examination was used to study the effect of ceramic nanomaterials (TiC, B4C) on the
created phases of the prepared nanocomposites.

Theoretical and actual densities for (AA6061/TiC and AA6061/B4C) were calculated
by Archimedes principles depending on (ASTM C20-00) using the equations [36]:

For (Al/TiC) ρc =
1

wA1
ρA1

+ wTiC
ρTiC

(1)

For (Al/B4C) ρC =
1

wA1
ρA1

+ wB4C
ρB4C

(2)

Equations (1) and (2) were used to measure theoretical density, while the actual density
for all the sintered specimens was measured using the equation [36]:

ρs =
ma × ρw

ma − mw
(3)

The percentage of porosity in the samples was measured using the following formula:

porosity % = 1 − Ps
Pth

(4)

2.5. Micro-Hardness Testing

Micro-hardness testing was carried out using Rockwell micro-hardness device type
(TESCAN MIRA3 FEG-SEM, Queensland, Australia), using scale type (B) with loading
at 100 kg for the indenter. This testing was conducted for all the compacted and sintered
specimens. At least four readings were taken to obtain the average diameter (dave) of the
indenter for each specimen.

2.6. Wear Testing

Wear testing was conducted using a pin-on-disc machine for all the samples after
sintering, depending on the ASTM-G99 standard. Wear testing was conducted on the
samples at (2 cm in length and 1 cm in diameter). The wear testing was performed by
applying loading at (3, 6, 9, 12 and 15 N) and a constant time of 10 min. The wear rate of
the samples was measured by the weighing method. This method depends on measuring
the losses in weight for all samples with a sensitive electronic balance of about (0.01 mg)
accuracy. Figure 1 shows the schematic diagram of the wear-testing machine. Afterward,
the wear rate was calculated using the formula [37]:

wear rate =
∆w

2πrnt
(5)

∆w = w1 − w2 (6)

S.D. = 2π · r · n · t

where:
∆w: Change in weight (g).
w1 and w2: Weight of the specimen prior and after testing (gm).
r: Radius of the rotating disc (mm).
n: Number of the disc rotating’s (rpm).
t: Testing time (min).
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Figure 1. Schematic diagram of wear testing machine [26].

3. The Obtained Data and Their Discussion
3.1. Results of Microstructure Examination

Figure 2 shows the photomicrographs of the field emission scanning electron mi-
croscope (FESEM) for the AA6061 aluminum matrix and the fabricated nanocomposites
Al/B4C and Al/TiC with different percents of B4C and TiC. The photomicrographs show
that B4C and TiC nanoparticles are diffused at the grain boundaries between the B4C,
TiC and Al matrix. Owing to the thermal reaction and diffusion mechanism created in
the sintering process, strong bindings have been created at the grain boundaries between
the ceramic nanoparticles B4C, TiC and Al matrix. It can be revealed that B4C and TiC
nanoparticles may be wetted by aluminum matrix through the sintering process. Owing to
the aggregation in a specific region, a homogeneity of B4C and TiC in the Al matrix cannot
be created in some specimens. Also, the difference in thermal properties between the Al
matrix and B4C and TiC nanoparticles plays a great role in the dispersion of B4C and TiC
nanoparticles into the Al matrix and then affects the wetting between the B4C and TiC
nanoparticles and the Al matrix.

3.2. Analysis of X-ray Diffraction Results

The phases of the manufactured samples were defined using the X-ray diffractometer
4lab model (XRD-6000) of SHIMADZU Europe with CuKα radiation and wavelength
(1.54056 A◦) for each sample. Figure 3a shows the X-ray diffraction peaks for (Al/B4C)
nanocomposites with different wt.% of B4C (2.5 wt.%, 5 wt.%, 7.5 wt.%, 10 wt.% and
12.5 wt.%). Figure 3b shows the X-ray diffraction peaks for (Al/TiC) nanocomposites with
different wt.% of TiC (2.5 wt.%, 5 wt.%, 7.5 wt.%, 10 wt.% and 12.5 wt.%).

As shown in Figure 3a XRD peaks for the samples (Al/B4C) nanocomposites con-
taining (2.5 wt.%, 5 wt.%, 7.5 wt.%, 10 wt.% and 12.5 wt.%) B4C, the peaks occurring at
2θ ranging about 20.2031◦, 22.5658◦, 24.209◦, 35.6016◦, 37.9378◦, 54.6941◦, 64.2011◦ and
66.1823◦ with an hkl of about (101), (003), (012), (104), (021), (205), (125) and (220). Also,
there are four peaks for Al occurred at 2θ ranging about 38.3011◦, 45.2120◦, 65.1901◦ and
79.0402◦ with an hkl of about (111), (200), (220) and (311), respectively. These peaks have
emphasized that B4C nanoparticles were distributed homogeneously in the Al matrix.
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While Figure 3b shows XRD peaks for the samples (Al/TiC) nanocomposites con-
taining (2.5 wt.%, 5 wt.%, 7.5 wt.%, 10 wt.% and 12.5 wt.%) TiC, the peaks occurred at
2θ ranging about 36.32◦, 41.83◦, 61.07◦ and 75.81◦ with an hkl of about (111), (200), (220)
and (311). In addition, there are four peaks for Al appearing at 2θ ranging about 38.3011◦,
45.2120◦, 65.1901◦ and 79. 0402◦ with an hkl of about (111), (200), (220) and (311), respec-
tively. These peaks indicate that TiC nanoparticles were distributed homogeneously in the
Al matrix.

Each of the B4C and TiC phases is strongly with Al particles due to the good wettability
between them, improving their physical and mechanical properties.
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3.3. Mechanisms of Pressing and Sintering Processes

For the pressing process, the addition of B4C nanoparticles increases the density
after compacting because of the condensation process during the compacting process,
as shown in Figure 4a. Afterward, all nanoparticles will close together owing to the
increase in pressing force. For the sintering process, necking will be created between
all nanoparticles of raw powders and the additive nanoparticles owing to the welding
between them, which then causes shrinkage of the samples and increases the density of
the sintered samples [38]. The temperature of the sintering process will create strong
bindings at the interfaces between aluminum particles and the additive nanoparticles and
then enhance the mechanical characteristics such as young modulus, ultimate strength,
and micro-hardness. Therefore, binding forces have an extremely negative effect on the
wear behavior of nanocomposites, and then increase the dislocations by interlocking and
forming loops close to the reinforcing nanoparticles, which inhibit the movement of the
dislocations [33]. The increment in the concentrations of B4C reinforcing nanoparticles will
increase the density of manufactured nanocomposites, as illustrated in Figure 4a. This
leads to an increase in the wettability at the interfaces between the B4C nanoparticles
and Al particles. Moreover, much porosity can be formed at the interfacial regions of TiC
nanoparticles and Al particles, decreasing the density of Al/TiC nanocomposites, as shown
in Figure 4b. On the other hand, the porosity decreases with increasing B4C and increases
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with increasing TiC, and then the porosity of Al/B4C nanocomposites is lower than for
Al/TiC, as demonstrated in Figure 5.
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Figure 4. (a) Show the experimental and (b) Show the experimental and theoretical densities vs. wt.%
of B4C and theoretical densities vs. wt.% of TiC.
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Figure 5. Show the porosity (%) vs. wt.% of B4C and TiC.

3.4. Wear Testing

The wear rate for Al/B4C and Al/TiC nanocomposites is extremely dependent on the
reinforcing nanoparticles and their concentrations. The increase in wt.% of B4C and TiC
leads to decreased wear rate (increasing wear resistance), this is due to the bindings at the
interfaces between the reinforcing nanoparticles and Al particles, and then creating thermal
stresses at their interfaces because of the differences in melting points of the reinforcing
nanoparticles and aluminum particles, and then these thermal stresses will increase the
dislocations interlocking.

The reinforcing nanoparticles will inhibit the movement of dislocations and increase
wear resistance (decreasing wear rate). Figure 6 shows that the increment of B4C will
decrease the wear rate more than TiC, which is in line with [33]. The increment in applied
loading at a constant time will increase the wear rate of Al/B4C and TiC. Increasing the
friction between the sample (Al/B4C, Al/TiC) and the disc will increase the temperature
and then create thin oxidized films. Afterwards, thin oxidation film will be fragmented and
grooved at worn surfaces; this is in agreement with [39]. Figure 6 depicts the relationships
between wear rate and applied loading for different wt.% of nanoparticles. The increment in
applied loading will increase the wear rate for all samples. The wear rate of nanocomposites
reinforcing by B4C is lower than for TiC and pure Al particles as a matrix for many reasons
mentioned previously.
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Figure 6. Show wear rate vs. applied loading.

The surface topography of nanocomposites was analyzed by an ordinary optic micro-
scope (OM), as shown in Figure 7, which depicts the grooves of the surfaces for Al/B4C
and Al/TiC nanocomposites. The grooves of Al/B4C nanocomposites are finer than the
grooves of Al/TiC nanocomposites because the B4C nanoparticles are harder than the TiC
nanoparticles. Adhesive and abrasive wear are created for all the specimens. At lower
loads, abrasive wear is the main wear mechanism, while at higher loads, adhesive wear
is the major wear mechanism. For Al/B4C nanocomposites and Al/TiC nanocomposites,
there are adhesive wear and abrasive wear will be created. This agrees with [27].
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3.5. Micro-Hardness Characteristics

The microhardness of the synthesized nanocomposites extensively depends on the
particle size of theadditive nanoparticles and their concentrations. The increment in the
weight percentages of B4C will increase the dislocation interlocking more than for TiC and
then improve the microhardness. The microhardness of Al/B4C nanoparticles is higher
than that of Al/TiC nanoparticles; hence, the B4C reinforcing nanoparticles create stronger
bonds with Al particles than the TiC reinforcing nanoparticles, which then inhibit the
movement of the dislocations and in turn increase the microhardness, as shown in Figure 8.
Moreover, the microhardness values of Al/B4C and Al/TiC nanocomposites are normally
affected by compacting pressure, sintering temperature, and the weight percent of B4C
and TiC. The microhardness increases with increasing weight percents of B4C and TiC.
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This is due to the higher hardness of each B4C and TiC matrix than the Al matrix. Finally,
the micro-hardness test is a valuable route to define the microstructure and mechanical
properties of nanocomposites. As shown in Figure 8, the values of micro-hardness for
Al/B4C nanocomposites and Al/TiC are 92 (HRC) and 87.4 (HRC), respectively.
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4. Conclusions

The effect of B4C and TiC nanoparticles on the microstructure and mechanical prop-
erties of the AA6061 aluminum alloy was investigated in the present work. Al/B4C and
Al/TiC were manufactured using a powder metallurgy route. The images of field emission
scanning electron microscopy (FESEM) showed a homogeneous dispersion of B4C and TiC
into the AA6061 matrix. The results showed that Al/B4C specimens 92 (HRC) had higher
micro-hardness with respect to Al/TiC specimens 87.4 (HRC). For the same concentration
of B4C and TiC nanoparticles, the effect of B4C nanoparticles on the enhancement of mi-
crostructure and mechanical properties was higher than that for TiC ones. Additionally,
it was indicated that the wear rate of Al/B4C and Al/TiC increased as the applied load
increased. It was shown that the wear rates of Al/B4C and Al/TiC were 4.21 × 10−7 (g/cm)
and 5.1 × 10−7 (g/cm), respectively. The increment of B4C nanoparticles percents increased
the actual density, while the increment of TiC nanoparticles percents slightly decreased the
actual density. Also, the increment of B4C nanoparticles percent decreased the porosity by
(4.61%), while the increment of TiC nanoparticles percent increased the porosity by (6.2%).
Finally, the powder metallurgy route to produce Al/B4C and Al/TiC nanocomposites is
recommended to enhance the microstructure and wear properties of the AA6061 alloy.
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