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Abstract
The local stability of unsymmetric laminated structures is significantly affected
by bending-extension coupling and the comparatively low transverse shear stiff-
nesses, which have to be included in the structural analysis. If such structures
have flat surfaces in segments, they can be investigated with the discrete plate
analysis. In this analysis, the individual segments are considered as plates with
rotational restraints that represent the supporting effect of the surrounding struc-
ture. The aim of this work is to improve the analytical stability of laminated
plates. Therefore, Lévy-type solutions for the buckling load of the mentioned
laminated plates are considered and refined. This offers exact solutions for
unsymmetrical cross-ply laminates aswell as antisymmetric angle-ply laminates.
In order to show the influence of shear deformations, the solutions for classi-
cal laminated plate theory (CLPT), first-order shear deformation theory (FSDT),
and third-order shear deformation theory (TSDT) are worked out and compared
to each other. In the context of TSDT, a new formulation for the rotational elas-
tic restraint is presented, which affects the rotation and the warping of the plate
cross-section. This investigation presents the influence of shear deformations on
different laminates and classifies the benefits of the different laminated plate the-
ories with respect to the stability behaviour under different boundary conditions.
In addition, the influence of bending-extension coupling on different fibre angles
and layer sequences is analysed.

1 INTRODUCTION

Fibre-reinforced composites are typically used for lightweight structures because of their low density and high strength
and stiffness properties. The plate-like layered composites consist of very strong and stiff fibres and a comparatively flexible
plastic matrix. Due to the in-plane fibres, the so-called laminates have a low transverse stiffness compared to the in-plane
stiffnesses. Therefore, the transverse shear deformations depend significantly on the transverse shear stiffness in addition
to the laminate thickness. There are different laminated plate theories available for describing the cross-sectional deforma-
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F IGURE 1 Lévy-type boundary conditions with two simply supported edges under a compressive load 𝑁0
𝑥𝑥 and two arbitrarily

supported edges. The considered laminated plate has the length 𝑎 and the width 𝑏.

tion. The most common is the classical laminated plate theory (CLPT), which neglects the transverse shear deformations,
that is, the cross-section remains flat and perpendicular to the mid-plane, see [1]. This is fulfilled in a good approximation
only for thin laminates. First-order shear deformation theory (FSDT) makes the assumption of constant transverse shear
deformations and gives realistic results even for thicker laminates, see [2–4]. Third-order shear deformation theory (TSDT)
describes cubic cross-sectional deformations and thus satisfies the stress boundary condition at the surface layers, which
is a more realistic model, see [5, 6]. Therefore, the TSDT is also suitable for very thick laminates as well as for laminates
with low transverse shear stiffnesses.
Due to the high stiffness and strength properties of laminates, their lightweight construction generally leads to thin-

walled structures. One of the requirements for such structures is that they have to be investigated and designed in terms
of their stability, whichmeans that linear buckling analyses are performed. One way to do this analytically is the so-called
discrete plate analysis, in which the structure is divided into individual plates and the surrounding structure is modelled
with rotational elastic restraints. The stiffness of the restraints can be calculated, for example, as in [7]. These calculations
can be performed efficiently with analytical methods.
Besides closed-form analytical methods, the so-called Lévy-type solutions are suitable for this purpose. These consider

orthotropic laminates with two simply supported edges and two arbitrarily supported edges, as shown in Figure 1. With
respect to the stability of plates, uniaxial compression or biaxial compression can be considered. In the context of sym-
metric laminates, flange buckling of I-beams has been studied in [8, 9], where Lévy-type solutions are presented in the
context of CLPT. The cross-ply laminates considered have a rotational elastic restraint and a free edge in addition to the
two simply supported edges. Further Lévy-type solutions for CLPT, FSDT, and TSDT are presented in [10, 11]. These pro-
vide a direct solution method of the coupled differential equation system and consider the boundary conditions simply
supported, fully clamped and free edges. In the framework of TSDT, the publication [12] uses the so-called state space
approach to solve the system of differential equations. The approach reduces the system of differential equations to first
order and increases the dimension.
For unsymmetric laminates, in addition to the plate differential equations, the coupled in-plane displacement differen-

tial equations must now be considered. In the framework of CLPT, a method is presented in [13] that reduces the problem
to one higher order differential equation. In [14] a solution for antisymmetric angle-ply laminates is presented in the
framework of FSDT. In [15] solutions for CLPT, FSDT and TSDT are presented for antisymmetric cross-ply laminates that
use the state space approach.
All the methods mentioned for unsymmetric laminates investigate the boundary conditions simply supported, fixed

clamped and free edges. This investigation extends the considerations to rotational elastic restraints. The presented
method provides a Lévy-type solution of the critical load and considers unsymmetric cross-ply and antisymmetric angle
laminates with rotational elastic restraints in the framework of CLPT, FSDT, and TSDT. The presented method is a short
version of [16], detailed information about the method can be found there.

2 LÉVY-TYPE SOLUTION

In order to investigate the influence of the transverse shear deformation, the Lévy-type solutions in the laminated plate
theories CLPT, FSDT, and TSDT are considered. These theories differ essentially in their displacement field, which is
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shown in Equation (1). In CLPT, the assumption is made that the cross-section always remains flat and perpendicular to
themid-plane, even in the deformed state. This means that transverse shear deformation is not considered in the analysis.
The FSDT, conversely, enables the cross-sectional rotation in the form of a variable. In the TSDT, a cubic deformation of
the cross-section is permitted, which allows the cross-section to rotate and warp at the same time:

CLPT ∶ 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤0(𝑥,𝑦)

𝜕𝑥
,

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0(𝑥,𝑦)

𝜕𝑦
,

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦).

FSDT ∶ 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜓𝑥(𝑥, 𝑦),

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜓𝑦(𝑥, 𝑦),

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦).

TSDT ∶ 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜓𝑥(𝑥, 𝑦) −
4𝑧3

3𝑡2

(
𝜓𝑥(𝑥, 𝑦) +

𝜕𝑤0(𝑥,𝑦)

𝜕𝑥

)
,

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜓𝑦(𝑥, 𝑦) −
4𝑧3

3𝑡2

(
𝜓𝑦(𝑥, 𝑦) +

𝜕𝑤0(𝑥,𝑦)

𝜕𝑦

)
,

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦).

(1)

The constitutive laws are shown in Equation (2). Compared to the CLPT, the FSDT offers the shear force fluxes in addition
to the force fluxes and moment fluxes. The TSDT also has warping moment and higher warping moment fluxes:

CLPT:

[
𝑁

𝑀

]
=

[
𝐴 𝐵

𝐵 𝐷

][
𝜀(1)

𝜅

]

FSDT:

⎡⎢⎢⎢⎣
𝑁

𝑀

𝑄

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝐴 𝐵 0

𝐵 𝐷 0

0 0 𝐾𝐴
S

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜀(1)

𝜀(2)

𝛾(1)

⎤⎥⎥⎥⎦ (2)

TSDT:

⎡⎢⎢⎢⎢⎢⎢⎣

𝑁

𝑀

𝑃

𝑄

𝑅

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐴 𝐵 𝐸 0 0

𝐵 𝐷 𝐹 0 0

𝐸 𝐹 𝐻 0 0

0 0 0 𝐴
S

𝐷S

0 0 0 𝐷S 𝐹S

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜀(1)

𝜀(2)

𝜀(3)

𝛾(1)

𝛾(2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The present method describes the buckling shape and buckling load of laminates under compressive load, which
have the boundary conditions shown in Figure 1. Out of these, the following two boundary conditions are investi-
gated in more detail. Both laminates are loaded in compression and are simply supported at the loaded edges. The first
laminate has additionally rotational elastic restraints at the two unloaded edges and is denoted as SRSR. The second
laminate has one free and one rotational restrained edge, this laminate is labelled as SFSR. Furthermore, two different
laminate types are considered in this study. Due to the fact that the unsymmetrical cross-ply laminates (CP) and the
antisymmetrical angle-ply laminates (AP) have different bending-extension couplings, different in-plane boundary con-
ditions must be established for the purely analytical description of the problem. The boundary conditions for these two
cases are given below for the three laminated plate theories considered. At the boundary, 𝑥 = 0, 𝑎 applies to the simple
support (S):

CP: 𝑁0
𝑥𝑥 = 𝑣0 = 0,

AP: 𝑁0
𝑥𝑦 = 𝑢0 = 0,

}⎧⎪⎨⎪⎩
CLPT: 𝑤0 = 𝑀0

𝑥𝑥 = 0.

FSDT: 𝑤0 = 𝑀0
𝑥𝑥 = 𝜓𝑦 = 0.

TSDT: 𝑤0 = 𝑀0
𝑥𝑥 = 𝜓𝑦 = 𝑃𝑥𝑥 = 0.

(3)
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At the edges 𝑦 = 0, 𝑏, the following applies for the simple support with the rotational restraint (R):

CP: 𝑁0
𝑦𝑦 = 𝑢0 = 0,

AP: 𝑁0
𝑥𝑦 = 𝑣0 = 0,

}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CLPT: 𝑤0 =

⎧⎪⎨⎪⎩
[
−𝑀0

𝑦𝑦 − 𝑘0
𝜕𝑤0

𝜕𝑦

]
𝑦=0

= 0.[
𝑀0

𝑦𝑦 − 𝑘𝑏
𝜕𝑤0

𝜕𝑦

]
𝑦=𝑏

= 0.

FSDT: 𝑤0 = 𝜓𝑥 =

⎧⎪⎨⎪⎩
[
−𝑀0

𝑦𝑦 + 𝑘0𝜓𝑦
]
𝑦=0

= 0.[
𝑀0

𝑦𝑦 + 𝑘𝑏𝜓𝑦
]
𝑦=𝑏

= 0.

TSDT:

𝑤0 = 𝜓𝑥

=
[

4

3𝑡2
𝑃𝑦𝑦 + 𝑘0

(
−

2

15
𝜓𝑦 +

1

5

𝜕𝑤0

𝜕𝑦

)]
𝑦=0

=
[
−

4

3𝑡2
𝑃𝑦𝑦 + 𝑘𝑏

(
−

2

15
𝜓𝑦 +

1

5

𝜕𝑤0

𝜕𝑦

)]
𝑦=𝑏

=
[
−𝑀0

𝑦𝑦 +
4

3𝑡2
𝑃𝑦𝑦 + 𝑘0

(
8

15
𝜓𝑦 −

2

15

𝜕𝑤0

𝜕𝑦

)]
𝑦=0

=
[
𝑀0

𝑦𝑦 −
4

3𝑡2
𝑃𝑦𝑦 + 𝑘𝑏

(
8

15
𝜓𝑦 −

2

15

𝜕𝑤0

𝜕𝑦

)]
𝑦=𝑏

= 0.

(4)

At the edge 𝑦 = 𝑏 for the free edge (F) the following applies:

CP, AP:

𝑁0
𝑦𝑦 = 𝑁0

𝑥𝑦 = 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

CLPT: 𝑀0
𝑦𝑦 = 𝑄̂𝑦 = 0.

FSDT: 𝑀0
𝑦𝑦 = 𝑀0

𝑥𝑦 = 𝑄𝑦 = 0.

TSDT:

⎧⎪⎨⎪⎩
𝑀0

𝑦𝑦 −
4

3𝑡2
𝑃𝑦𝑦 = 𝑃𝑦𝑦 = 𝑀0

𝑥𝑦 −
4

3𝑡2
𝑃𝑥𝑦

=
4

3𝑡2

(
𝜕𝑃𝑦𝑦

𝜕𝑦
+ 2

𝜕𝑃𝑥𝑦

𝜕𝑥

)
+ 𝑄𝑦 −

4

𝑡2
𝑅𝑦 = 0.

(5)

The governing partial differential equation (PDE) system is given in matrix notation in Equation (6). In the CLPT
framework, two in-plane displacement PDEs and one plate PDEdescribe the problem. The higher laminated plate theories
have additionally two PDEs with respect to the two cross-sectional rotations and the full set consists of five coupled PDEs:

𝐿𝑖𝑗Φ𝑖 = 0,

⎧⎪⎨⎪⎩
𝑖, 𝑗 = 1, 2, 3 for CLPT
𝑖, 𝑗 = 1, … , 5 for FSDT

and TSDT
with Φ𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑢0(𝑥, 𝑦)

𝑣0(𝑥, 𝑦)

𝑤0(𝑥, 𝑦)

𝜓𝑥(𝑥, 𝑦)

𝜓𝑦(𝑥, 𝑦)

⎤⎥⎥⎥⎥⎥⎥⎦
. (6)

The ansatz functions are given in Equation (7) and contain the abbreviation 𝛽 = 𝑚𝜋∕𝑎. A distinction is made between
the CP and AP approaches because the different bending-extension coupling leads to different PDE systems:

ΦCP
𝑖

=

⎡⎢⎢⎢⎢⎢⎢⎣

cos (𝛽 𝑥)𝑈(𝑦)

sin (𝛽 𝑥)𝑉(𝑦)

sin (𝛽 𝑥)𝑊(𝑦)

cos (𝛽 𝑥)𝑋(𝑦)

sin (𝛽 𝑥)𝑌(𝑦)

⎤⎥⎥⎥⎥⎥⎥⎦
, ΦAP

𝑖
=

⎡⎢⎢⎢⎢⎢⎢⎣

sin (𝛽 𝑥)𝑈(𝑦)

cos (𝛽 𝑥)𝑉(𝑦)

sin (𝛽 𝑥)𝑊(𝑦)

cos (𝛽 𝑥)𝑋(𝑦)

sin (𝛽 𝑥)𝑌(𝑦)

⎤⎥⎥⎥⎥⎥⎥⎦
. (7)
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Due to the fact that the shown approaches from Equation (7) fulfil the boundary conditions and the PDE system from
Equation (6) with respect to the variable 𝑥, the problem is reduced to an ordinary differential equation (ODE) system
which only depends on the variable 𝑦. This system is transformed into a first-order system and written in matrix notation
in Equation (8), which has a different size depending on the laminated plate theory:

𝜕𝑍𝑖(𝑦)

𝜕𝑦
= 𝐶𝑖𝑗𝑍𝑖(𝑦) = 0,with 𝑖, 𝑗 = 1, … , 𝑘

⎧⎪⎨⎪⎩
𝑘 = 8 for CLPT
𝑘 = 10 for FSDT
𝑘 = 12 for TSDT.

(8)

For the first order ODE system from Equation (8) the following solution can be written

𝑍(𝑦) = e
𝐶 𝑦

𝐾 with e
𝐶 𝑦

= 𝐿

⎡⎢⎢⎣
e𝜆1𝑦 0

⋱

0 e𝜆𝑘𝑦

⎤⎥⎥⎦ 𝐿−1. (9)

Herein, 𝐾 is the vector of constants that could be defined by the boundary conditions. The quantities 𝜆𝑖 are the eigen-
values of 𝐶 and L is the matrix of the corresponding eigenvectors. Substituting the approach from Equation (9) into the
corresponding boundary conditions from Equations (3, 4, 5) leads to the following homogeneous system of equations:

𝑀𝐾 = 0. (10)

For the non-trivial solution of the system of Equations (10), the determinant of the coefficient matrix M must vanish.
This requirement represents the so-called buckling condition and, in the context of Lévy-type solutions, represents a
transcendental equation with respect to the critical buckling load 𝑁cr, as shown in Equation (11). This means that the
buckling load can only be represented implicitly. For the presentation of the results, this equation is solved iteratively
with a numerical roots search:

det
(
𝑀
)
= 0. (11)

However, it turns out that Equation (11) is an ill-conditioned problem. Therefore, the following equivalent substitute
problem is considered. In the solution from Equation (9), the component 𝐾 is substituted, as shown in Equation (12):

𝑍(𝑦) = 𝐿

⎡⎢⎢⎣
e𝜆1𝑦 0

⋱

0 e𝜆𝑘𝑦

⎤⎥⎥⎦𝐿−1 𝐾⏟⏟⏟
𝐾

(12)

Inserting the approach from (12) into the boundary conditions results in𝑀𝐾 = 0. The determinant of 𝑀 gives the new
buckling condition, which can be split into a fraction𝑀 and 𝐿, as shown in Equation (13).

det(𝑀) = det(𝑀 𝐿−1) =
det(𝑀)

det(𝐿)
= 0 (13)

This substitute problemavoids the calculation of𝐿−1 andhas a better condition than the original one. The results presented
below use the substitute problem.

3 RESULTS

The results of the present method are compared with FEA to show that plausible results are obtained. Secondly, different
laminate and geometry parameters are investigated. In Figure 2 the non-dimensional buckling load 𝑁cr is plotted with
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F IGURE 2 The non-dimensional buckling load 𝑁cr is given as a function of the non-dimensional rotational restraint stiffnesses 𝑘𝑖 for
axial compression, different relative widths 𝑏∕𝑡 (5,10,100) and the boundary conditions SRSR and SFSR with the aspect ratio of 𝑎∕𝑏 = 10. (A)
Cross-ply laminate [(0◦∕90◦)2] and (B) Angle-ply laminate [(45◦∕ − 45◦)2].

the non-dimensional rotational elastic restraints 𝑘𝑖 for different relative widths 𝑏∕𝑡. In the plots, the upper three curves
are the results for the SRSR plate and the lower three are those for the SFSR plate. It can be shown that for very thin
plates (𝑏∕𝑡 = 100) all laminated plate theories agree with the results of FEA, which uses elements based on the kine-
matics of FSDT. For smaller relative widths, the CLPT results clearly overstate the buckling loads due to the assumption
of neglecting transverse shear rotations. The CLPT curves remain on the upper curve in the non-dimensional presen-
tation. The solutions according to FSDT and TSDT become flatter on the one hand and deliver significantly smaller
non-dimensional buckling loads, on the other hand. The antisymmetric cross-ply laminates and angle-ply laminates
provide good agreement with the FEA.
In Figure 3 further parameters are investigated including the ply repetition 𝑛 of the antisymmetric laminate. In

Figure 3A the cross-ply laminate showed good agreement for laminates with a high degree of asymmetry (𝑛 = 1) as well
as for symmetrical laminates (𝑛 = ∞). The change of the aspect ratio 𝑎∕𝑏 shows that themode change to higher half-wave
numbers is well reproduced. Themaximumdeviations between FEA and Levy-type TSDT solutions are -3.7 % for the SRSR
plate and -1.4 % for the SFSR plate. These errors both occur at 𝑛 = 1 and for plates at 𝑎∕𝑏 = 0.6 and 𝑎∕𝑏 = 1 respectively.
In Figure 3B, the fibre angle 𝜃 is investigated in addition to 𝑛. The agreements of the Lévy-type solution within the TSDT
and FEA are very good related to 𝜃, this is valid for the whole range of ply repetitions. For the SRSR plate, the largest devi-
ation of –3.8% occurs at 𝑛 = 1 for a 𝜃 = 50◦. Here it can be observed that the location of the largest error occurs directly
behind a mode change, recognisable by the kink in the curve. The SFSR plate shows no mode change in the considered
range of 𝜃 = 0◦, … , 90◦ and the error is only –2.2% but at the same location as before.

4 CONCLUSION

For the antisymmetrical cross-ply laminate, the changes in buckling modes that occur with increasing plate length are
reproduced very accurately. For the antisymmetric angle-ply laminates, a very reliable prediction of the buckling load can
be given. The individual fibre angles can be represented very well over the range of 0◦, … , 90◦. The same applies to ply
repetitions, which means for a high degree of asymmetry, up to symmetric laminates. For antisymmetrical cross-ply and
angle-ply laminates, the FE results agree very well with the Lévy-type solutions.
The comparison of the theories shows a clear overestimation of the buckling load in the framework of the CLPT for

small relative widths. The FSDT and TSDT also reproduce small relative widths very well and show comparable results
for the critical load in the context of the buckling analysis in the present investigation.
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F IGURE 3 Axial compressive loaded laminate with the relative width of 𝑏∕𝑡 = 10 and the ply repetitions 𝑛 = 1, 2,∞ for the boundary
conditions SRSR and SFSR with the rotational elastic restraints 𝑘0 = 𝑘𝑏 = 105 N and 𝑘0 = 104 N, respectively. (A) Cross-ply laminate
[(0◦∕90◦)𝑛]: The non-dimensional buckling load 𝑁cr is given in terms of the aspect ratio 𝑎∕𝑏. (B) Angle-ply laminate [(𝜃∕ − 𝜃)𝑛]: The
non-dimensional buckling load 𝑁cr is given in terms of the ply angle 𝜃.
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