Received: 24 August 2021

Revised: 26 April 2022

Accepted: 18 August 2023

DOI: 10.1002/for.3021

RESEARCH ARTICLE

WILEY

Stock picking with machine learning

Dominik Wolff*** © |

Deka Investment GmbH, Frankfurt,
Germany

*University of Applied Sciences,
Frankfurt, Germany

*Technical University Darmstadt,
Darmstadt, Germany

“Allianz Global Investors, Frankfurt,
Germany

Correspondence

Dominik Wolff, Technical University of
Darmstadt, Hochschulstrafie 1, 64289
Darmstadt, Germany.

Email: dominik.wolff@deka.de

Funding information
Deka Investment GmbH

1 | INTRODUCTION

Fabian Echterling*

Abstract

We analyze machine learning algorithms for stock selection. Our study builds
on weekly data for the historical constituents of the S&P500 over the period
from January 1999 to March 2021 and builds on typical equity factors, addi-
tional firm fundamentals, and technical indicators. A variety of machine learn-
ing models are trained on the binary classification task to predict whether a
specific stock outperforms or underperforms the cross-sectional median return
over the subsequent week. We analyze weekly trading strategies that invest in
stocks with the highest predicted outperformance probability. Our empirical
results show substantial and significant outperformance of machine learning-
based stock selection models compared to an equally weighted benchmark.
Interestingly, we find more simplistic regularized logistic regression models to
perform similarly well compared to more complex machine learning models.
The results are robust when applied to the STOXX Europe 600 as alternative
asset universe.

KEYWORDS

equity portfolio management, investment decisions, machine learning, neural networks,
stock picking, stock selection

In this study, we combine insights from ML and
finance research and analyze the potential of different

Machine learning (ML) gained immense importance
during the last decade mainly due to three reasons: the
availability of computational power, improvements in
ML algorithms, and the availability of large datasets,
which are required to train complex models. While ML
has increasingly attracted the attention of the asset man-
agement industry and the finance literature alike, the use
of ML methodologies in portfolio management is still
very limited.

The views expressed in this paper are those of the authors and do not
necessarily reflect those of Deka Investment GmbH or its employees.

ML algorithms for an important portfolio management
task: predicting the relative returns of individual stocks.
While earlier literature focuses on predicting equity
market returns, we analyze the weekly predictability of
the relative stock performance. More specifically, we
group stocks based on their weekly relative performance
and try to forecast outperforming versus underperform-
ing stocks in a binary classification task.'

Given the immense amount of data available and the
complex and potential nonlinear relations in the data,
ML models might be very well suited for that task. In
contrast to linear models, ML models can “learn” non-
linear relationships and even interactions between

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
© 2023 The Authors. Journal of Forecasting published by John Wiley & Sons Ltd.

Journal of Forecasting. 2024;43:81-102.

wileyonlinelibrary.com/journal/for 81

https://orcid.org/0000-0002-3518-9291
mailto:dominik.wolff@deka.de
https://doi.org/10.1002/for.3021
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/for

2 | WILEY

WOLFF and ECHTERLING

predictors without specifying the underlying model.
Therefore, in the presence of nonlinearities and the
availability of large training sets, ML approaches might
improve stock selection compared to linear models.
Because most ML models tend to do better on classifica-
tion problems rather than on regression problems, we
focus on the binary classification of stocks into outperfor-
mer and underperformer rather than on forecasting
returns of individual stocks as point estimates.

We empirically analyze deep neural networks
(DNNs), long short-term memory (LSTM) neural net-
works (NNs), random forest (RF), gradient boosting, and
regularized logistic regression. All models are trained on
stock characteristics to predict whether a specific stock
outperforms or underperforms over the subsequent
period. To obtain classes of equal size, we use the cross-
sectional median return as threshold to distinguish
between outperforming and underperforming stocks.

Our asset universe builds on the historical constitu-
ents of the S&P500 over the period from January 1999 to
March 2021. We rely on the insights from the asset-
pricing literature and include the typical equity factors
augmented by additional fundamental data and technical
indicators. We analyze the risk-adjusted performance of a
trading strategy that weekly picks stocks with the highest
predicted probability to outperform. Our empirical results
show a substantial and significant outperformance of
ML-based stock selection models compared to a simple
equally weighted benchmark. Moreover, we find more
simplistic regularized logistic regression models to per-
form similarly well compared to the more advanced ML
models gradient boosting, RF, DNN, and LSTM NN.

A number of related studies use ML models in an
asset-pricing framework to identify relevant factors for
explaining the cross section of stock returns. Coqueret
and Guida (2018) use regression trees to identify the most
important firm characteristics for explaining stock
returns. Chen et al. (2019) build a nonlinear asset-pricing
model for individual stock returns based on DNNs with
macroeconomic and firm-specific information. The deep
learning asset-pricing model outperforms out-of-sample
generating lower pricing errors. Similarly, Feng et al.
(2018) develop an automated factor search algorithm that
searches over firm characteristics with the objective of
minimizing pricing errors. Based on group least absolute
shrinkage and selection operator (LASSO), Freyberger
et al. (2018) find that only 13 out of 62 characteristics pro-
vide incremental information for the cross section of
expected stock returns. In a similar fashion, Han et al.
(2018) apply a forecast combination technique and show
that relatively few characteristics affect cross-sectional
value-weighted expected returns. Gu et al. (2019) develop
an autoencoder asset-pricing model that delivers far

smaller out-of-sample pricing errors compared to leading
factor models.

In addition to the abovementioned studies that use
ML for enhancing asset-pricing models, only a few
studies use ML for stock selection and apply it in an out-
of-sample trading strategy. Among those, Gu et al. (2020)
employ ML for a large set of stock-level data to predict
individual stock returns, which they subsequently
aggregate to index predictions with promising results.
Fischer and Krauss (2018) select stocks with ML based
on daily historical returns. Chinco et al. (2019) use
LASSO for rolling 1-min-ahead return predictions based
on the entire cross section of lagged returns. Avramov
et al. (2020) analyze stock selection with NNs and
generative adversarial networks (GANs) with realistic
investment restrictions. They conclude that realistic
investment restrictions dramatically reduce the profitabil-
ity of ML strategies. Choi et al. (2019) apply ML methods
to predict stock returns in 34 markets around the world
based on 12 variables, finding that complex ML models
outperform linear models and earn higher risk-adjusted
returns than the market. Cong et al. (2019) propose a
reinforcement learning-based portfolio management
model designed to improve over the traditional
Markowitz (1952) two-step portfolio construction approach.
Wolff and Neugebauer (2019) analyze tree-based ML
models and regularized regressions for predicting the
equity risk premium.

Almost all of the abovementioned studies use ML
models for monthly predictions based on monthly data.
In contrast, we analyze shorter term predictability and
focus on weekly data and weekly predictions. Analyzing
weekly predictions provides two major advantages: First,
the larger number of predictions and trades in an associ-
ated trading strategy provides higher statistical evidence
due to the larger sample size. Second, ML modes require
large training sets. Therefore, studies analyzing monthly
predictions require very long training sets of at least
10 years. Given the dynamics of financial markets and
the changing correlations in financial data over time, it
could be suboptimal to train ML models on very old data,
which is not any more relevant for today's financial world
due to changing market conditions. Because our study
builds on weekly data, we are able to reduce the length of
the training set to only 3 years while still having enough
observations for training complex ML models.

Moreover, in contrast to some of the abovementioned
studies, we focus on the practical relevance of our results
and apply ML on the liquid S&P500 constituents, thereby
excluding effects of non-tradable, illiquid stocks or micro-
caps. Moreover, we employ simple long-only, equally
weighted trading strategies ensuring investability for most
investors and preventing extreme portfolio positions.

WOLFF and ECHTERLING

WILEY_L_®

Our dataset includes well-known equity factors that
were documented to be important determinants of cross-
sectional asset returns in earlier studies
(e.g., Carhart, 1997, Fama & French, 2018; Frazzini &
Pederson, 2013) and also technical indicators that were
shown to contain meaningful information to predict the
overall equity market (e.g., Neely et al., 2014).

The remainder of this study is organized as follows.
First, we describe the data and the features in Section 2.
Section 3 presents the prediction models ranging from
linear predictive logistic regression models to nonlinear
ML approaches including tree-based models and NNs.
Section 4 presents the empirical results along with a vari-
ety of robustness checks. Section 5 concludes the study.

2 | DATA

Our dataset builds on the historical constituents of the
S&P500 (in total 1164 stocks) and includes weekly open
prices and fundamental data for all stocks. Based on the
availability of data, our study covers over 22 years of
weekly data ranging from January 1999 to March 2021.
Hence, our dataset includes more than 1.3 million stock-
week observations. We include typical equity factors as
well as additional fundamental data and technical indica-
tors to predict if a specific stock outperforms the market
in the subsequent period. We include 3-month lag for all
fundamental data to avoid any forward-looking bias.
All data are from Bloomberg.

The fundamental data can be grouped in the typical
equity factors size, value, quality, profitability, investment,
and growth that were documented to be important deter-
minants of cross-sectional asset returns in earlier studies
(e.g., Carhart, 1997; Fama & French, 2018; Frazzini &
Pederson, 2013). Panel A of Table 1 provides an overview
of the fundamental data. Based on open prices, we com-
pute a range of technical indicators summarized in Panel
B of Table 1. The technical indicators include moving
averages and momentum factors of different length, indi-
vidual stock betas and volatilities, relative strength indices
as indicators for short-term reversal, and a volume-based
signal. We account for nine-sector dummies based on the
Bloomberg Industry Classification (BIC) codes.

We do not include interactions between variables,
because ML models such as tree-based models and NNs
are able to model interactions in the data autonomously.
We replace missing values in the feature set by carrying
forward the last observation available. Any remaining
missing values are filled using simple cross-sectional
median imputation.

Our dataset builds on weekly observations using data
from each Wednesday, in order to avoid start-of-the-week

TABLE 1 Features.

Panel A: Fundamental data

Factor Variable

Size Market capitalization of equity

Value Book-to market ratio

Quality Earnings per share growth
Earnings variability (deviation from earnings
trend)

Financial leverage

Profitability Return on invested capital (ROIC)

Consensus earnings per share estimates for
the subsequent year (EPS)

Trailing 12M net income/market
capitalization of equity

Trailing 12M sales/enterprise value

Trailing 12M cash from operating activities/
market capitalization of equity

Trailing 12M free cash flow to equity/market
capitalization of equity

Trailing 12M free cash flow/enterprise value

Trailing 12M dividend yield

Trailing 12M operating margin

Trailing 12M profitability margin

Growth Asset growth

Trailing 12M cash from investing activity/
enterprise value

Employee growth

Trailing 12M sales growth

Sector Sector dummies (based on BIC codes)

Panel B: Technical indicators

Factor Variable

Momentum 12M

Momentum 6M

Momentum 1M

Relative share price momentum vs. index
(S&P500)

Momentum

Moving averages log(price/moving average 200D)
log(price/moving average 100D)

log(price/moving average 50D)

Risk Beta 12M
Volatility 12M
Volatility 6M
Volatility 1M

Short-term reversal ~ Relative strength index 14D
Relative strength index 9D
Relative strength index 3D
log(price/Bollinger upper band)
log(price/Bollinger lower band)

Lagged return (Return, _ ;, Return,)

Trading volume USD trading volume (stock price x trading

volume)

Note: The table reports the features used for the binary prediction
whether a specific stock outperforms or underperforms in the
subsequent week. All features are standardized. Accounting data are
lagged by 3 months to avoid any forward-looking bias.

Abbreviations: BIC, Bloomberg Industry Classification; USD, US dollar.

“ | WILEY

WOLFF and ECHTERLING

and end-of-the-week effects. If a Wednesday in the sam-
ple is a non-trading day, we use data of the next trading
day available. We standardize all features as will be
explained in Section 3.1.

3 | METHODOLOGY

In this section, we provide a brief summary of the ML
algorithms used in our analysis and the data-splitting
approach for generating training and test sets.

3.1 | Organization of training and
test sets

To prevent any overfitting, we strictly divide the dataset
into training, validation, and test sets. While the training
set is used for fitting the models, the validation set is used
to choose optimal “tuning parameters” and the test set is
used only for model evaluation and to run a trading strat-
egy. A critical aspect is the choice of the training window
length. On the one hand, the training window should not
be too short in order to obtain enough observations for
training complex models; on the other hand, training
windows that are too long bear the risk of not sufficiently
reflecting structural breaks and changing relationships in
the financial market data. Because we combine cross-
sectional (500 stocks) and weekly time series data, we
can train ML models robustly on a relatively short data
history of only 3 years of data (156 weeks). This results in
a training set size of 77,500 observations.® Because our
dataset begins in January 1999, we train the initial
models using data from 1999 to 2001 and then apply the
initial models to the next 52 weeks (1 year) of data for
the period from January to December 2002.

Iteratively, all models are re-trained on a yearly basis
at the beginning of each calendar year based on the pre-
vious 3 years of data and applied on the subsequent
year.* Similar to Fischer and Krauss (2018), we decided
to yearly re-train all models to better account for possible
structural breaks and changing relationships in financial
market data. Therefore, our out-of-sample evaluation
period covers over 19 years from January 2002 to March
2021. To prevent any survivorship bias, we rely on the
historical constituents of the S&P (in total 1164 stocks)
and build our analysis on stocks, which are included in
the S&P500 at the end of each training period. Figure 1
illustrates the organization of data in training and
test sets.

All ML models are trained on the label whether a spe-
cific stock outperforms (1) or underperforms (0) the
median cross-sectional stock return in the subsequent

156 weeks 52 weeks
) J—

1 Training Test V

2 Training Test |

3 Triaining Test |

5 Trjaining Test !

6 | Tréining Test

: : : - : : >
18 Jan 99 \Jar; 02 Je;n 03 Ja:n 04 Jan 05 Jan 06...2021

FIGURE 1 Organization of training and test sets. The figure

illustrates the organization of training and test sets. Each training
set includes 3 years of data (156 weeks); 20% of the training sets are
used as validation set for hyperparameter search. Each test set
includes 1 year of data (52 weeks). The out-of-sample evaluation
period covers over 19 years from January 2002 to March 2021.

week. All features are standardized based on the mean
and the standard deviation of each feature in each train-
ing set. Next, we provide an overview on the ML models
and the hyperparameter choice used in our analysis.

3.2 |
choice

Cross-validation and parameter

ML algorithms rely on the choice of “tuning parameters.”
Tuning parameters include the penalization parameter in
a ridge regression or the number of trees or the tree depth
in RF and boosting. To prevent overfitting, we follow the
usual approach of “time series cross-validation.” From a
grid of candidate tuning parameters, the tuning parame-
ters that minimize the mean squared forecast error
(MSFE) over the validation sets are used in the final
model. For principal component analysis (PCA), regular-
ized logistic regression, and tree-based ML models, we
implement fivefold cross-validation and select the “tun-
ing parameters” via grid search. More specifically, from a
grid of candidate tuning parameters, we select the “tun-
ing parameters” that minimize prediction error over five
validation sets.® For NNs, the tuning parameters include
the number of layers, the number of neurons in each
layer, the regularization technique (e.g., L1, L2, dropout,
and batch normalization), the batch size, and the learn-
ing rate. This results in a large grid of candidate models
with each model being computationally demanding,
making a full grid search infeasible with limited compu-
tational power. Therefore, for NNs, we select tuning
parameters based on the first training set only by individ-
ually tuning each parameter while holding all other
parameters constant at their default values. While this
approach is computationally sparse and a very effective
way of tuning models in our setting, it may result in a

WOLFF and ECHTERLING

WILEY_L_®

rather conservative performance evaluation of ML
models because a tuning based on a full grid of hyper-
parameters and a re-tuning in each calendar year might
yield in superior parameter combinations and in a higher
model performance. We provide an overview of all model
hyperparameters and the associated value used in grid
search in Appendix A.

3.3 | Regularized logistic regressions and
principal component regressions (PCRs)

The most simple ML model for classification is a linear
logistic regression model. Typically, when the number of
features is large and the dataset includes partly irrelevant
and correlated features, regularized regressions or PCRs
are superior compared to ordinary least squares (OLS).
Hoerl and Kennard (1970) introduced the ridge regres-
sion estimator as an alternative to the OLS estimator in
the presence of multi-collinearity. Ridge regression is a
regularization technique, which performs linear regres-
sion with a penalty term on the coefficient estimates.
Instead of just minimizing the residual sum of squares,
an additional penalty on the coefficients is included. The
minimization problem is given by

min " log(1+exp(—px 3+ 4B (1)

where 1 is a regularization parameter that controls for
the level of shrinkage, x is the vector of lagged features,
and y is the prediction target, in our case the information
whether a stock outperforms (1) or underperforms (0) in
the subsequent week. In ridge regression, coefficient esti-
mates are shrunk towards 0, but coefficients are usually
never exactly 0. Hence, ridge regression cannot perform
variable selection. In contrast, LASSO regression
(Tibshirani, 1996) shrinks some regression coefficients to
exactly 0 and thereby performs variable selection. LASSO
regression is very similar to ridge regression, with the dif-
ference that LASSO uses the absolute beta coefficients as
penalty term rather than the squared coefficients.

min " log(1+exp(—fx)+l (2

If predictors are not on the same scale, penalization
in ridge and LASSO is unequal for different regressors.
As for all models, we center and scale all features based
on the full training set. The regularization parameter 1 is
determined directly from the data using fivefold cross-
validation, so that the MSFE is minimized in the valida-
tion set. For higher values of A, more shrinkage is

employed and more coefficients are set to 0. While ridge
and LASSO regressions are very similar, the coefficient
estimates for both models can be very different. While
LASSO provides the advantage of a higher interpretabil-
ity, both models usually perform similarly well. As a
shortcoming of LASSO, it usually selects one variable out
of a group of correlated variables and ignores the others.

Zou and Hastie (2005) combine the ideas of LASSO
and ridge regressions in the “elastic net” (ENet) combin-
ing the absolute and squared penalties. Zou and Hastie
(2005) show that the ENet often outperforms LASSO for
real-world data as well as in simulations, while being
similarly sparse. In addition to ridge and LASSO
regressions, we employ the ENet approach and use five-
fold cross-validation for estimating the regularization
parameters.’

In contrast to regularized regression, the idea of PCR
is to reduce the feature set to a set of uncorrelated latent
factors (principal components) that capture the common
information (co-movements). Then the regression runs
on these first principal components:

min 3", log(1+ exp(~4'F-y)) 3

where F is a matrix containing the first k principal com-
ponents. PCR reduces model complexity and filters noise
in the predictive variables, reducing the risk of overfitting
(Ludvigson & Ng, 2007; Neely et al., 2014). We compute
principal components based on standardized predictor
variables. A critical issue is the selection of the optimal
number of principal components to include in the predic-
tive regression. We determine the optimal number of
principal components to include in the PCR forecast
directly from the data based on fivefold cross-validation.
More specifically, we split the training set in five ran-
domly selected subsets from which k — 1 is used for esti-
mation of the PCR with the first N principal components
and use the remaining subsets for measuring the MSFE
for each PCR model.” The number of principal compo-
nents that minimize MSFE over the k validation sets is
used in the final model.

3.4 | RF and boosting

Tree-based models such as RFs and boosting are based
on the idea of splitting the target variable into binary
groups with the highest possible intra-group homogene-
ity. Breiman et al. (1984) propose the classification and
regression tree (CART) algorithm choosing the splits in a
top-down fashion: At the beginning of the tree, the fea-
ture that allows the highest gain in homogeneity of the

“ | WILEY

WOLFF and ECHTERLING

target variable is chosen for splitting. The tree grows by
sequentially adding variables for splitting and obtaining
increasingly homogenous groups. The tree grows until a
predefined tree depth or until group homogeneity does
not improve over a predefined threshold. On a stand-
alone basis, decision trees generally provide a low predic-
tive power, because they tend to overfit the data. Breiman
(1986) proposes a bootstrap aggregation approach (“bag-
ging”), which averages predictions from a collection of
trees where each tree is generated from random subsam-
ples of the training data. Bagging alleviates the overfitting
problem and wusually substantially enhances out-
of-sample predictions. As a drawback, the interpretability
of decision trees is lost, but the importance of features for
the final prediction can be extracted based on the fre-
quency of features appearing in each tree in the forest.
Bagging itself is extended by the RF approach (Friedman
et al.,, 2001) where only a random subset of features is
included in each tree. RF usually improves over bagging
because it enhances the variability of trees and the domi-
nance of single predictors is alleviated. Typically, for clas-
sification problems, the number of randomly allowed
predictors is the square root of the number of all features
in the dataset. We leave the number of predictors at this
default value. We choose the “tuning parameters,” “num-
ber of trees,” “maximum tree depth” (number of vari-
ables included in each tree), and “node size” (minimum
number of observations in each node) based on a grid of
candidate parameters provided in Appendix A with five-
fold cross-validation.

While RF relies on the majority vote of multiple
trees trained on random sets of features and random
subsamples of the training set, boosting algorithms, in
contrast, try to minimize the prediction error by itera-
tively adjusting the tree in such a way that each tree
aims at correcting the errors of the previous trees. This
is achieved by re-weighting observations adaptively,
putting higher weight on observations that were previ-
ously misclassified. Boosting was implemented by
Freund and Schapire (1997) in the “AdaBoost” algo-
rithm, which we include in our analysis. We employ
the “AdaBoost” algorithm with 1000 iterations and
choose the “maximum tree depth,” “node size,” and the
additional boosting parameters based on a grid of can-
didate parameters provided in Appendix A with fivefold
cross-validation.

3.5 | Feedforward NNs

Feedforward NNs consist of neurons, which are orga-
nized in layers. A shallow NN consists of one input layer,
which takes the feature values as an input, typically one

or two hidden layers, and one output layer.® The input
features are fed into the input layer, whereas each hidden
layer takes the output from the previous layer as input.
Each neuron in the NN works similar to a logistic regres-
sion: Each neuron processes a vector of input data X,
computes the activation a as the sum of weighted inputs
with w being the weighting vector, adds a constant
b (bias term), and feeds the activation a into a nonlinear
activation function. The weights w and the bias b are ini-
tialized randomly, leading to stochastic and unreasonable
outputs in the first iteration. The last layer—the output
layer—produces the output of the NN where the predic-
tion error made by the network is measured with the loss
function L. Weights w and biases b are then updated in
the back-propagation step based on stochastic gradient
descent (SGD). Basically, the gradients of the loss func-
tion with respect to weights w and biases b are used to
shift weights and biases towards more optimal values,
thereby reducing prediction error (loss) made by the net-
work. The network is trained over many iterations, pre-
senting random subsamples (batches) of the data in each
iteration. The number of iterations required until the
complete training set is passed through the network is
called “epoch.” The training of the network stops after a
predefined number of epochs or when the loss does not
decrease over a couple of epochs (early stopping).

Overfitting is a common problem in NNs. That means
that NNs adopt too well to the training set and do not
perform well out of sample. A couple of strategies were
proposed to reduce overfitting of NNs. The most promi-
nent among these are dropout, batch normalization, and
L1 and L2 regularization. Dropout was proposed by Sri-
vastava et al. (2014) and means that a predefined number
of neurons are randomly dropped in each iteration. L1
and L2 regularization in NNs is similar to regularized
LASSO and ridge regressions (Tibshirani, 1996) described
above. With regularization, the loss function does include
not only the prediction error of the network but also a
penalty term on the weights (L1 regularization: absolute
weights; L2 regularization: squared weights) in the net-
work, leading to sparse weights.

Based on the first training set (first 3 years of data) in
which we test different model architectures, we imple-
ment a feedforward NN with three hidden layers having
20, 10, and 5 neurons per layer. We train the network
with 100 epochs and early stopping of 10, meaning that
the training stops if the network does not improve over
10 episodes.

In line with Avramov et al. (2020), we employ batch
regularization and L1 regularization in each hidden layer
with regularization parameter of 0.0001. We rely on the
RMSprop optimizer with a learning rate of 0.001.°
The RMSprop optimizer was proposed by Hinton (2012)

WOLFF and ECHTERLING

WILEY_L_#

and is one of the most popular optimization algorithms
in deep learning.

3.6 | Recurrent NNs (RNNs) and
LSTM NNs

Feedforward NNs discussed above consider all input fea-
tures as independent observations, and therefore, tempo-
ral effects—usually present in time series data—can only
be addressed by feeding in past observations as separate
features. Unlike feedforward networks, RNNs have cyclic
connections, making them powerful for modeling time
dependencies in the data, by processing both current
observations and the output of the previous time step.
However, while RNNs are able to model short-term time
dependencies, they are not very well in accounting for
longer term dependencies due to the vanishing
(or exploding) gradient problem (Bengio et al., 1994; Sak
et al., 2014). An established approach for considering
short- and long-term dependencies is LSTM NN, a special
form of RNNs developed by Hochreiter and Schmidhuber
(1997). LSTM NNs are applied in many fields ranging
from speech recognition, machine translation, and text
and handwriting detection to time series prediction for
financial data (see also Jozefowicz et al., 2015).

LSTM NNs do rely not only on current inputs but also
on short-term and long-term memory derived from previ-
ous inputs. An LSTM NN consists of an input layer, one
or several hidden layers, and an output layer. The input
and output layers consist of “regular” neurons. In the
input layer, the number of neurons is equal to the num-
ber of input features. The hidden layer consists of LSTM
NN cells. Each LSTM NN cell controls memory with
three “control switches” an input gate that decides
which information is added to the cell memory, a forget
gate that decides which information is removed from the
memory, and an output gate that defines which informa-
tion from the cell memory is used as output. The control
switches use sigmoid activation functions to efficiently
learn how to weigh current observations against long-
term versus short-term memory, and hyperbolic tangent
activation functions are used for processing the data. This
architecture makes the LSTM NN cell robust when deal-
ing with long-term dependencies and also for capturing
non-stationarity (Chen et al., 2019). One may argue that
the architecture of an LSTM NN cell is rather heuristic
and many alternative architectures with alternative
activation functions and gates are possible. However,
Jozefowicz et al. (2015) empirically analyze the perfor-
mance of LSTM NNs compared to 10,000 different RNN
architectures, finding that LSTM NNs work well in many
applications outperforming competing models.

Based on the first training set (first 3 years of data) in
which we test different LSTM NN architectures, we use
an LSTM NN with one hidden layer containing 30 cells
and a softmax activation function in the output layer for
the binary output. In line with the DNN, we train the
network with 100 episodes and early stopping of 10. As
for DNN, we use the RMSprop optimizer (Hinton, 2012)
with a learning rate of 0.001.

3.7 | Combined forecast

Combining forecasts across different prediction models
may result in forecasts superior to all individual forecasts
(Bates & Granger, 1969). If individual forecasts are not
perfectly correlated, the combined forecasts are less vola-
tile and usually provide lower fluctuation in prediction
accuracy over time (Hendry & Clements, 2004;
Timmermann, 2006). The simplest form of combining
individual forecasts is simply averaging over several
models. Several studies showed that a more sophisticated
weighting scheme of individual forecasts, such as mini-
mizing the historical MSFE, usually does not perform
better than the simple average (Clemen, 1989; Stock &
Watson, 2004)."° We compute an ensemble model that
combines all models by simply averaging over all
forecasts.

4 | EMPIRICAL RESULTS

In this section, we present our empirical results. In
Section 4.1, we analyze the classification accuracies and
the distribution and correlation of predictions across dif-
ferent models. In Section 4.2, we analyze investment
strategies based on ML models. Then, we analyze the
optimal portfolio size for the ML models (Section 4.3),
the ML portfolio performance during different economic
cycles (Section 4.4), and the exposures of the ML portfo-
lios to common risk factors (Section 4.5). In Section 4.6,
we analyze feature importance metrics to shed light on
how ML models arrive at their decisions. In Section 4.7,
we re-run all models on the STOXX 600 index constitu-
ents as robustness check.

4.1 | Analysis of predictions

We start with the analysis of prediction accuracy and the
associated sensitivity and specificity measures for the
different models and present the results in Table 2.
The overall classification accuracy measures are not very
impressive ranging from 50.4% for the PCA model to

* | WILEY

WOLFF and ECHTERLING

TABLE 2 Model accuracies.

Accuracy

(full sample) Sensitivity Specificity
PCA 50.43%*** 52.21% 48.65%
Ridge 50.63%*** 54.41% 46.86%
LASSO 50.53%*** 55.45% 45.62%
ENet 50.55%*** 55.36% 45.75%
RF 50.69%*** 53.04% 48.35%
Boosting 50.61%*** 50.74% 50.48%
DNN 50.59%*** 52.63% 48.56%
LSTM neural 50.64%*** 51.98% 49.30%

network

Ensemble 50.81%*** 53.29% 48.33%

McNemar Accuracy 10% Accuracy 5% Accuracy 1%

p-value highest- highest- highest-
(sig. level) lowest lowest lowest

ok 51.11%*** 51.45%*** 51.58%***
bt 51.93%*** 51.80%*** 52.06%***
ok 51.89%*** 51.72%*** 51.92%***
g 51.87%*** 51.72%*** 51.03%***
ok 52.00%*** 52.15%*** 51.79%***
poi 52.36%*** 52.68%*** 53.77%***
kK 51.37%*** 51.51%*** 51.18%***
pei 51.83%*** 52.24%*** 53.48%***
ok 52.56%*** 52.84%*** 53.37%***

Note: The table reports accuracy measures for the binary predictions whether a specific stock outperforms or underperforms in the subsequent week and the

associated sensitivity and specificity measures for the different models.

Abbreviations: DNN, deep neural network; ENet, elastic net; LASSO, least absolute shrinkage and selection operator; LSTM, long short-term memory; PCA,

principal component analysis; RF, random forest.

*Significant at the 5% level for the null hypothesis that the accuracy is below or equal to 50%.
**Significant at the 1% level for the null hypothesis that the accuracy is below or equal to 50%.
***Significant at the 0.1% level for the null hypothesis that the accuracy is below or equal to 50%.

50.8% for the ensemble model. However, the classifica-
tion accuracies for all models are highly statistically sig-
nificant larger than the no information rate (50%). The
associated McNemar p-values are close to 0, indicating
high statistical significance.

The sensitivity measures presented in Table 2 are
larger than 50% for all models, stating that all models
identify outperforming stocks with higher accuracy than
the no information rate (guessing). In contrast, the speci-
ficity measures are below 50% for all models except for
gradient boosting, indicating that ML models do worse in
correctly identifying underperforming stocks than in cor-
rectly identifying outperforming stocks. As mentioned
above, we define outperforming (underperforming)
stocks as stocks performing better (worse) than the
median return during a specific week, ensuring equal
class size.

Figure 2 plots the distribution of predictions for each
model pooling time series and cross-sectional predictions
and illustrates that predictions are approximately sym-
metrically distributed with center at around 0.5. Interest-
ingly, the standard deviation of predictions differs
substantially for different models. The outperformance
probability predictions capture additional information
that is not reflected in the simple accuracy measure. The
accuracy measure classifies all stocks with an outperfor-
mance probability predictions larger than 50% as outper-
formers. However, a stock with a higher outperformance
probability predictions, for example, of 80%, is more

likely to outperform compared to a stock with an outper-
formance probability prediction of only 51%.

Therefore, we compute accuracies for the stocks with
the 10% (5%, 1%) largest and lowest outperformance
probability predictions and present the results in the last
three columns of Table 2. The results illustrate that
higher outperformance probability predictions corre-
spond to higher prediction accuracies. More specifically,
the accuracy monotonously increases if the stock picking
is applied more aggressively (in most of the cases). This
motivates a trading strategy of investing only in N stocks
with the largest predicted outperformance probabilities.

Next, we analyze the correlation of predictions across
different models pooling predictions over time and for
different stocks. The results presented in Table 3 show
that predictions of related models are highly correlated,
while predictions of different model families are rela-
tively uncorrelated. For instance, predictions of the regu-
larized regression models ridge, LASSO, and ENet are
highly correlated with correlation coefficients of 0.95 or
larger. Predictions of the tree-based models RF and gradi-
ent boosting generate moderately correlated predictions
with a correlation coefficient of 0.49. The PCA predic-
tions are moderately correlated to the other regression-
based models ridge, LASSO, and ENet. DNNs and LSTM
NNs are relatively uncorrelated to the other models with
correlations being below 0.45. Also, the predictions of
tree-based models are relatively uncorrelated to predic-
tions of regularized regressions and to predictions of

WOLFF and ECHTERLING

WILEY_L_*®

Ridge

LASSO
ENet

Boosting
DNN
LsTh

B Ensemble

FIGURE 2
series and cross-sectional predictions. The figure highlights the different standard deviations of different models. DNN, deep neural network;

Distribution of pooled predictions. The figure shows the distribution of predictions for the different models pooling time

ENet, elastic net; LASSO, least absolute shrinkage and selection operator; LSTM, long short-term memory; PCA, principal component
analysis; RF, random forest.

TABLE 3 Correlations of pooled predictions across different models.
LSTM neural
PCA Ridge LASSO ENet RF Boosting DNN network
PCA et
Ridge 0.52%%* TH
LASSO 0.53%#* 0.95%#* ek
ENet 0.52%%* 0.95%** 0.98*** I
RF 0.45%#* 0.55%#* 0.56%** 0.55%** ek
Boosting 0.12%%* 0.25%** 0.26*** 0.25%** 0.49%%* 1k
DNN 0.22%#% 0.4%%* 0.427%+* 0.477%+* 0.43%#* 0.3%k ek
LSTM neural network 0.10%** 0.25%** 0.26*** 0.26*** 0.37#%* 0.37%%* 0.45%%* 1k

Note: The table displays the correlations of predictions of different models pooling time series and cross-sectional predictions. The table highlights that
predictions of related models are highly correlated, while predictions of different model families are relatively uncorrelated.

Abbreviations: DNN, deep neural network; ENet, elastic net; LASSO, least absolute shrinkage and selection operator; LSTM, long short-term memory; PCA,
principal component analysis; RF, random forest.

*Significant at the 5% level for the null hypothesis that a specific correlation coefficient is equal to 0.

**Significant at the 1% level for the null hypothesis that a specific correlation coefficient is equal to 0.

***Significant at the 0.1% level for the null hypothesis that a specific correlation coefficient is equal to 0.

NNs. Overall, predictions of different models are rela-
tively uncorrelated. This motivates an ensemble strategy
that averages predictions across different models for
diversifying over different models.

4.2 | Performance of ML-based trading
strategies

Next, we analyze a trading strategy that picks stocks with
the highest outperformance probability prediction. Each
week, the strategy invests in the stocks (equally

weighted) with the highest predictions. Table 4 reports
the strategy performance for different ML models for
portfolio sizes of 50 (Panel A), 100 (Panel B), and
200 stocks (Panel C). As benchmarks, we include the
value-weighted S&P500 index and compute an equally
weighted portfolio including all constituents of the
S&P500. Figure 3 plots the performance of ML strategies
(portfolio size of 50) and the equally weighted bench-
mark (dashed line) over time.

Table 4 shows that all ML models generate substan-
tially higher returns than the S&P500 index and the
equally weighted benchmark. Interestingly, tree-based

WOLFF and ECHTERLING

» | WILEY

%L0"0
%80°0
BIT0
%S0°0
%000

N/T sADLd
%Y1°0
%01°0
%01°0
%80°0
%ST°0
%CT°0
BET'0
BLT0
%S0°0
%000

N/T sADLd
BLT0O
%110
BIT0
%L0°0
%91°0
%10
%61°0
%ST0
BLT0
%00°0

N/T sADLd

LTI
vl
€01
6'6
80

‘e'd 39A0UaN],
Ve
L'9C
0've
'8¢
9Vl
VLT
T'LT
R 48
a4t
80

‘ed I9A0uIN],
8'8¢C
T'TE
0'8¢C
8'T¢
L'81
661
7’61
P91
VLT
80

‘e'd 10A0UIN],

+L0°0
+L0°0
+L0°0
+50°0
+50°0
000
‘erd eydye 9-44
AN
w10
#0T°0
010
#x60°0
+£60°0
#0T°0
010
#90°0
500
000
‘e'd eydpe 9-44
xS 10
#5+E1°0
AR
#0T°0
w110
#3170
wET0
#2170
+80°0
+50°0
000
‘e'd eqdre 9-44

#+90°0
++90°0

#+90°0

#+50°0

00

000

‘e'd eydre NV
#40T°0

48070

48070

#4800

48070

w+L0°0

48070

#4800

#+90°0

00

000

‘e'd eydie WdvD
#kC L0

#0T°0

#60°0

++80°0

#:460°0

#ex1T°0

w070

#2x1T°0

#8070

+00

000

e'd eydie WdVD

%t or—
%T Ly~
%S LY~
%61~
%8YS—
%0b'SS—
UMOPMEIP WINWIXEA
%EEY—
%9t~
%ESH—
%L LY—
%Ly~
%S TH—
%S TH—
%EEY—
%ETS—
%8YS—
%0V’ SS—
UMOPMEBIP WINWIXBIA
%8 ¥y~
%105~
%YTS—
%ISS—
%905~
%E Y —
%S 9p—
%TSY—
%T8Y—
%8YS—
%0b'SS—

UMOPMEIP WINTIIXEIAI

S9'0
S9'0
990
S9'0
LGS0
(0 40)
‘ed adreys
6L0
L0
1L°0
IL°0
SL0
89°0
0L0
L0
90
LGS0
or'0
‘ed adreys
80
1L°0
L9°0
€9°0
SL0
9L'0
€L’0
LLO
0L0
LSO
or'o
‘e-d adaeys

%1°0C
%1°0C
%T 0T
%S'8T
%€'61
%0L'9T
‘ed A1meoA
%S°CC
%8'CC
%¥CT
%¥"CT
%6°0C
%T'TT
%1°CC
%1°CC
%9°61
%¢€'61
%0L9T
‘e'd e
%8¥C
%9°ST
%6°'ST
%Y ¥C
%L'TC
%S'ST
%S°ST
%1°ST
%1 1C
%E 61
%0L9T
‘ed fmejoA

%0°€T
BLET
%EET
%T'CL
%L TT
%09°9
‘e'd uanyoy
%L'LT
%E 9T
%091
%6'ST
%9°ST
%T'ST
%9°ST
%6'ST
%9°C1
%L TT
%099
‘erd wIinyoy
%8°0C
%181
%T LT
%S°ST
%691
%61
%9°81
%Y'61
%81
%TTT
%09°9
‘e°d wamyoy

1ONH

OSSV'T

a3pry

vOod

(N/T) Yrewryouag
(005d78S) 19BN

002 JO 9ZIS o1joJ1I0d :D [oued
S[quiesuy

SI0M)3U [BINSU NLST
NNd

Sunsoog

Jd

1ONH

OSSV'1

a3pry

vod

(N/T) STewgousg
(00Sd2S) 193 1BN

00T JO 9ZIs o1joj}10d :g [oued
J[quiasuy

JI0MI9U [RINSU NLST
NN

Sunsoog

ok

1ONH

OSSV'1

a3pry

vod

(N/T) Mrewrgouag
(00Sd2S) 193 1BN

0S JO 9ZIS OI[oJI0d VY [dukd

‘Sunyord 50)s 10§ S[opo SUTUILS] SUTYIBW JUSIIP JO dUBULIONdd & HTIV L

WOLFF and ECHTERLING

WILEY_L_*

(Continued)

TABLE 4

BTC vs. 1/N

0.15%
0.09%
0.07%
0.10%
0.11%

Turnover p.a.

FF-6 alpha p.a.

0.08**

CAPM alpha p.a.

0.07#**
0.07***
0.06***
0.07***
0.07#**

Maximum drawdown

—46.1%
—47.0%
—47.3%
—46.0%
—44.7%

Sharpe p.a.
0.72
0.73
0.68
0.73
0.73

Volatility p.a.

19.6%
20.5%
20.2%
20.5%
20.5%

Return p.a.
14.1%
15.0%
13.7%
14.9%
15.0%

Panel C: Portfolio size of 200

10.1

21.1

0.09**

Boosting
DNN

17.8

0.08**

19.6

0.09**

LSTM neural network

174

0.09**

Ensemble

Note: The table shows the performance of a trading strategy investing in the 50 (100, 200) stocks (equally weighted) with the largest predictions based on the machine learning models specified in the first column for

the full sample from 2002 to 2021.
Abbreviations: BTC, break-even transaction cost; CAPM, capital asset-pricing model; DNN, deep neural network; ENet, elastic net; FF-6, Fama and French (2018) six-factor model; LASSO, least absolute shrinkage

and selection operator; LSTM, long short-term memory; PCA, principal component analysis; RF, random forest.

*Significant at the 5% level for the null hypothesis that the alpha of a trading strategy is equal to 0.

**Significant at the 1% level for the null hypothesis that the alpha of a trading strategy is equal to 0.

***Significant at the 0.1% level for the null hypothesis that the alpha of a trading strategy is equal to 0.

ML models (RF and boosting) and NNs (DNN and LSTM
NN) achieve similar returns and Sharpe ratios as regular-
ized logistic regression models (ridge, LASSO, and ENet)
for portfolio sizes of 100 and 200. The PCA model shows
the lowest and the ensemble model the highest returns
for all portfolio sizes (50, 100, and 200 stocks). Table 4
shows that returns decline with increasing portfolio size,
which is in line with Table 2 stating that for smaller port-
folio sizes, only stocks with the highest outperformance
probabilities are selected and accuracies being higher for
more confident predictions.

Table 4 also shows that volatility declines with
increasing portfolio size. This is because the level of
diversification increases and idiosyncratic risk declines
with portfolio size. Consequently, the Sharpe ratio opti-
mal portfolio size is a trade-off of outperformance proba-
bility and diversification. We analyze the optimal
portfolio size in the next section. Comparing the risk-
adjusted performance of different ML models, we find
that the ensemble model achieves the highest Sharpe
ratios of 0.84 (portfolio size of 50), 0.79 (portfolio size of
100), and 0.73 (portfolio size of 200), substantially outper-
forming the equally weighted benchmark portfolio,
which yields a Sharpe ratio of 0.57 and the S&P500 index
of 0.40.

All ML-based stock selection models substantially
enhance portfolio returns. While the equally weighted
benchmark earned 11.1% p.a (the value-weighted S&P500
index yielded 6.4% p.a.), the ensemble model earned
20.8% p.a. and the ridge regression 19.4% p.a. (portfolio
size of 50). Compared to the equally weighted bench-
mark, the ML strategies are more risky with volatilities
ranging from 21.1% (PCA) to 25.9% (DNN) compared to
19.3% benchmark volatility.

However, the maximum drawdown is smaller for all
ML-based stock-picking strategies compared to both
benchmarks. Most importantly, Table 4 shows that all
ML strategies generate positive, statistically significant,
and economically relevant risk-adjusted returns with
Jensen alphas ranging from 8% p.a. (PCA) to 12%
p.a. (ensemble model). In addition, when controlling for
the six Fama and French (2018) factors, positive and
statistically significant alphas remain ranging from 8%
p-a. (PCA) to 12% p.a. (ensemble model). This result
shows that the performance of the ML models cannot be
explained by exposures to known risk factors.

Table 4 also presents the portfolio turnover for each
strategy. The turnover ranges from 9.9 (PCA) to 31.1
(LSTM NN), stating that the portfolio value is traded 9.9
to 31.1 times on average each year (one-sided turnover),
depending on the model and the portfolio size. In line
with Avramov et al. (2020), we find that ML strategies
rely on a large turnover. In the last column of Table 4, we

2 | WILEY

WOLFF and ECHTERLING

LASSO

| N O Y S N S N B BN BN N B B B B |

Jan 08 2014

Jan 08 2020 Jan 09 2002 Jan 02 2008 Jan 08 2014 Jan 08 2020

Boosting

e i

b
TR

PCA Ridge
20 a0 30
25 25 25
20 20 20
15 15 15
- W/—P/ oo
“
5 e s 5
AT
L I I B B B | T rrr r 1111 rrrn
Jan 092002 Jen022008 Jan 082014 Jan 08 2020 Jan092002 Jan 02 2008
ENet RF
30 30 30
25 25 25
20 20 20
15 15 15
10 0 10
“
5 Ldapnps? 5 5
__—.~,-h-.«*“-' S
r—rrrr o+ 1+ 1+ 1 r 11+ 11 rrrn r T T 71 1717 1T
Jan092002 Jan0232008 Jan082014 Jan 08 2020 Jan 022002 Jan 02 2008
DNN LSTM

“
p e
bW e

e

Jan 08 2014 Jan 08 2020 Jan 09 2002 Jan 02 2008 Jan 08 2014 Jan 08 2020

Ensemble

“
- -
o o P T

FYCE ba e c—gi= A o BN TR b

T

T T T T T T T T rrrn | S B B |

Jan 09 2002 Jan 02 2008 Jan 08 2014 Jan 08 2020 Jan 09 2002 Jan 02 2008

FIGURE 3

LIS I I SO B S 1 | N S S S S S E B B B B B B B B |

Jan 08 2014 Jan 08 2020 Jan 09 2002 Jan 02 2008 Jan 08 2014 Jan 08 2020

Performance of machine learning-based trading strategy versus 1/N benchmark (dashed line). The figure displays the

performance of the trading strategies investing in the 50 stocks (equally weighted) with the largest predictions (based on the different
machine learning models) for the full sample from 2002 to 2021 compared to a benchmark portfolio that equally invests in all stocks (1/N
benchmark). DNN, deep neural network; ENet, elastic net; LASSO, least absolute shrinkage and selection operator; LSTM, long short-term

memory; PCA, principal component analysis; RF, random forest.

present the break-even transaction costs (BTCs). The
BTCs state the level of variable transaction costs until
which the strategy is beneficial over the benchmark 1/N
strategy. The BTCs range from 5 (PCA) to 21 (ENet) basis
points. For the ensemble model, the BTCs are 17 basis
points, highlighting that transaction costs have to be low
in order to exploit the ML models.

To summarize our results so far, we find that ML
models are able to identify outperforming stocks but rely
on a high level of turnover. These findings are in line with
Avramov et al. (2020). Therefore, capitalizing on ML
models requires efficient trading with low transaction costs,
preferably below 5 basis points of the trading volume.

4.3 | Analysis of the optimal
portfolio size

In the previous section, we analyzed arbitrarily chosen
portfolio sizes of 50, 100, or 200 stocks, respectively. In
this section, we explore the optimal portfolio size for
implementing the ML strategies. As seen in the previous
section, if portfolio size declines, only stocks with the

highest outperformance potential are selected, yielding in
higher returns. Figure 4 plots the average annualized
returns of the ML strategies depending on the portfolio
size and confirms that portfolio returns decline with port-
folio size. This corroborates the finding reported in
Table 2 that accuracy improves with higher predictions.
While smaller portfolio sizes provide higher expected
returns, they are subject to higher idiosyncratic risk due
to lower level of diversification. Hence, a Sharpe ratio
optimal portfolio size is a trade-off of outperformance
probability and diversification. Figure 5 plots the Sharpe
ratio for varying portfolio sizes.

Figure 5 shows that the Sharpe ratio optimal portfolio
size depends on the ML model but is around 50 for most
models. Therefore, we continue our analysis with a port-
folio size of 50.

4.4 |
cycles

Performance in different economic

Next, we analyze the performance of ML strategies
over time. To analyze whether the outperformance of

WOLFF and ECHTERLING

WILEY_L_*

Return_p.a.

PCA
Ridge
LASSO
ENet

RF
Boosting
DNN

= LSTM

® Ensemble

Trading Size

FIGURE 4 Average annualized returns of machine learning strategies for different portfolio sizes. The figure illustrates the annualized

return of the trading strategies for different portfolio sizes N. The trading strategies weekly invest in the N stocks (equally weighted) with the
largest predictions. DNN, deep neural network; ENet, elastic net; LASSO, least absolute shrinkage and selection operator; LSTM, long short-

term memory; PCA, principal component analysis; RF, random forest.

0.8
|

Sharpe.Ratio_p.a.

PCA
Ridge
LASSO
ENet

RF
Boosting
DNN

= LST™

= Ensemble

FIGURE 5

300 400 500

Trading Size

Sharpe ratios of machine learning strategies for different portfolio sizes. The figure illustrates the Sharpe ratios of the trading

strategies for different portfolio sizes N. The trading strategies weekly invest in the N stocks (equally weighted) with the largest predictions.
DNN, deep neural network; ENet, elastic net; LASSO, least absolute shrinkage and selection operator; LSTM, long short-term memory; PCA,

principal component analysis; RF, random forest.

ML models is stable over time and whether it is pre-
sent during sub-periods, we split the full evaluation
period into four sub-periods based on the National
Bureau of Economic Research (NBER) recession indi-
cator. Table 5 presents the sub-period showing that all

ML strategies outperform the S&P500 index (market)
during all sub-periods. Moreover, all ML models
achieve a higher or at least the same return compared
to the equally weighted benchmark during all sub-
periods.

924 WOLFF and ECHTERLING
* | WILEY. an

TABLE 5 Sub-period returns: NBER recession dummies.

January 2002/November December 2007/June July 2009/February March 2020/March

2007 expansion 2009 recession 2020 expansion 2021 recession
S&P500 0.9% —6.6% 2.7% 5.0%
Benchmark (1/N) 2.3% —4.9% 3.3% 6.4%
PCA 3.4% —4.3% 3.8% 7.9%
Ridge 5.8% —1.9% 3.5% 11.4%
LASSO 5.7% —1.7% 3.3% 11.0%
ENet 5.8% —1.7% 3.4% 11.4%
RF 4.7% —3.3% 3.9% 6.4%
Boosting 3.6% —1.2% 3.3% 10.0%
DNN 3.5% —2.3% 3.8% 13.5%
LSTM neural network 3.5% 0.4% 3.8% 12.7%
Ensemble 4.5% 0.1% 4.3% 13.0%

Note: The table shows the performance of a trading strategy investing in the 50 stocks (equally weighted) with the largest predictions based on the machine
learning models specified in the first column for different sub-periods. Bold values indicate a higher performance than the 1/N benchmark portfolio.
Abbreviations: DNN, deep neural network; ENet, elastic net; LASSO, least absolute shrinkage and selection operator; LSTM, long short-term memory; NBER,
National Bureau of Economic Research; PCA, principal component analysis; RF, random forest.

TABLE 6 Full-sample factor regressions.

Alpha MKT SMB HML RMW CMA MOM BaB Adj. R?

PCA Coeff 0.002 0.996 0.029 0.443 —0.554 —0.186 —0.395 0.381 0.592
t value 1.6 29.8%** -1.1 1.8 —1.8 —2.3% -1.1 7.3%F*

Ridge Coeff 0.002 0.967 0.039 0.412 —0.344 —0.583 —0.076 0.435 0.539
t value 2.8%* 25.8%F* —0.2 5.4k —3.5%% —4.0%%* —2.3% 5.6%%*

LASSO Coeff 0.001 0.974 0.034 0.430 —0.370 —0.564 —0.078 0.442 0.540
t value 2.5% 25.5%%* —-0.5 5.0%%* —4.0%* —3.8%** -1.9 5.6%%*

ENet Coeff 0.002 0.975 0.029 0.433 —0.344 —0.585 —0.067 0.423 0.545
t value 2.7%* 25.4%%* —0.3 5.3k —4.0%%* — 4k —-1.8 5.6%%*

RF Coeff 0.002 0.921 0.018 0.249 —0.387 —0.225 —0.258 0.330 0.584
t value 2.5% 30.1%* -0.7 4.8%%% —2.8%* —2.7%* -14 5.8%%*

Boosting Coeff 0.002 0.918 —0.004 0.191 —0.410 —0.052 —0.322 0.331 0.584
t value 2.3* 27.5%%* 1.8 5.2k —2.4* —0.7 —8.9%** 5.1

DNN Coeff 0.002 0.897 0.002 0.231 —0.572 —0.169 —0.323 0.306 0.589
t value 2.5% 25.3%%* 2.2% 5.6%%* —4.6%%* —2.6%* —6.0%** 5.8%%

LSTM neural network Coeff 0.002 0.909 0.051 0.210 —0.486 —0.163 —0.338 0.285 0.610
t value 3.1%* 26.2%%* 0.1 3.4%* —5.9%* 0.1 —9.0%** 4.3%%%

Ensemble Coeff 0.002 0.930 0.015 0.276 —0.467 —0.285 —0.213 0.313 0.568
t value 3.4%* 26.9%F* 0.2 4.6%** — 4. 2% —2.4%* —4. 7 Sk

Note: The table displays coefficient estimates and the respective ¢ values for factor regressions when regressing the performance of an ML-based trading strategy
on common equity factors including the market (“MKT”), size (“SMB”), value (“HML"), quality (“RMW™), investment (“CMA”), momentum (“MOM”), and
betting-against-beta (“BaB”) factors. The trading strategy invests in 50 stocks (equally weighted) with the largest predictions based on the ML models specified
in the first column.

Abbreviations: DNN, deep neural network; ENet, elastic net; LASSO, least absolute shrinkage and selection operator; LSTM, long short-term memory; ML,
machine learning; PCA, principal component analysis; RF, random forest.

*Significant at the 5% level for the null hypothesis that the respective coefficient is equal to 0.

**Significant at the 1% level for the null hypothesis that the respective coefficient is equal to 0.

***Significant at the 0.1% level for the null hypothesis that the respective coefficient is equal to 0.

WOLFF and ECHTERLING

WILEY_L *

4.5 | Factor attribution

An essential question is whether the performance of the
ML strategies is attributable to common factors and
whether factor exposures of the models are stable over
time. Therefore, we run full-sample and rolling factor
regressions of ML strategy returns on a common
factor set. We rely on the Fama and French (2018) six-
factor model (FF-6) augmented by the betting-
against-beta factor (“BaB”) proposed by Frazzini and
Pederson (2013)."" Hence, our factor regressions control
for the market risk factor (“MKT”), the size factor
(“SMB”), the value factor (“HML”), the quality factor
(“RMW?”), the investment factor (“CMA”), the momen-
tum factor (“MOM”), and the betting-against-beta factor
(“BaB”).

Table 6 presents the results of the full-sample factor
regressions and shows that all ML strategies have a sig-
nificant exposure to the market factor, which is natural
given that they are long-only strategies. Moreover, all
strategies except for PCA have significant positive expo-
sures to the value factor (“HML”) and the betting-
against-beta factor (“BaB”) and a significant negative

(Intercept)
0.015 0.015
0.010 0.010
0.005 0.005
0.000 0.000
£0.005 -0.005
T T T T T T T T T T T T T T T T T
Jan 08 2002 Jan 04 2006 Jan 07 2009 Jan 04 2012 Jan 07 2015 Jan 032018 Jan 06 2021
SMB
2 2
1 1
0 MWM :
-1 -1
T T T T T T T T T T T T T T T T T
Jan 08 2002 Jan 04 2006 Jan 07 2009 Jan 04 2012 Jan 072015 Jan 022018 Jan 08 2021
RMW
1 1
0 0
-1 -1
T T T T T T T T T T T T T T T T m
Jan 08 2002 Jan 04 2006 Jan 07 2009 Jan 042012 Jan 072015 Jan022018 Jan 06 2021
Mom
1 1
0 JJ\/WW 0
-1 -1
r T T T T T T T T T T T T T T T T T T
Jan 028 2003 Jan 04 2006 Jan 07 2009 Jan 042012 Jan 07 2015 Jan 032018 Jan 06 2021
FIGURE 6

exposure to the quality factor (“RMW?). Interestingly, the
momentum factor (“MOM”) is only significant for boost-
ing and NNs, highlighting the differences in the different
models. The size factor is insignificant for almost all
models, stating that size does not play a major role in
stock selection of the ML models.

Most importantly, Table 6 shows that after controlling
for the common risk factors, a positive and statistically
significant alpha remains of around 10-20 basis points
per week for all models. Hence, while the outperfor-
mance of the ML strategies is partly attributable to
known risk factors, after controlling for these factors, a
statistically and economically significant alpha remains
for all models.

Finally, we analyze rolling factor exposures of the
ensemble model to derive insights whether the strategy's
factor exposures are stable or fluctuating over time.
Figure 6 presents 52-week (one calendar year) rolling
factor exposures of the ensemble model and shows that
factor exposures substantially fluctuate over time, indi-
cating that the ML strategy does not follow a certain
factor strategy but rather performs implicit factor
timing.

LHoe o awm
L e awm

Jan 08 2003 Jan 04 2006 Jan 07 2009 Jan 04 2012 Jan 07 2015 Jan 03 2018 Jan 06 2021
HML
1 1
0 0
-1 -1
r T T T T T T T T T T T T T T T T T
Jan 08 2002 Jan 04 2006 Jan 07 2009 Jan 042012 Jan 07 2015 Jan 032 2018 Jan 06 2021
CMA
1 1
0 0
-1 1
r T T T T T T T T T T T T T T T T T
Jan 08 2003 Jan 04 2008 Jan 07 2009 Jan 042012 Jan 07 2015 Jan 03 2018 .Jan 06 2021

LowRisk

Jan 08 2002 Jan 04 2008 Jan 07 2009 Jan 042012 Jan 07 2015 Jan03 2018 Jan 06 2021

Rolling factor exposures of the ensemble model. The figure displays 52-week rolling coefficient estimates when regressing

the performance of the ensemble strategy on common equity factors including the market (“MKT"), size (“SMB”), value (“HML”), quality
(“RMW”), investment (“CMA”), momentum (“MOM”), and betting-against-beta (“BaB”) factors. The trading strategy invests in 50 stocks
(equally weighted) with the largest predictions based on the ensemble machine learning model.

s | WILEY

WOLFF and ECHTERLING

4.6 | Feature importance

Next, we analyze feature importance to shed light on
how ML models arrive at decisions. More specifically, we
analyze the relative importance of different stock features
for a model's decision to classify a stock as either an
underperformer or an outperformer. For our relatively
short prediction horizon of only 1 week, one may argue
that technical features are more important than the
underlying fundamental firm characteristics. We address
this question twofold: First, we compute feature
importance measures based on Shapley values. Second,
we compute the performance of our ML strategies when
trained only with fundamental data or only with techni-
cal indicators.

A recent approach to determine feature importance
for ML models was developed by Lundberg and Lee
(2017). Their approach builds on the theoretical concept
of Shapley values from game theory (Shapley, 1953),
which quantifies the contribution of each player in a
game to the game's outcome. Analogously, the SHapley

Fundamental Data

Additive exPlanations (SHAP) value of a feature reflects
the contribution of the feature to the prediction of a
model. Figure 7 illustrates the feature importance
(SHAP values) for the different features for each ML
model. Darker coloring corresponds to a higher feature
importance. The upper half of Figure 7 presents the
fundamental stock data summarized in Panel A of
Table 1. The lower half of Figure 7 illustrates technical
indicators presented in Panel B of Table 1. Figure 7
shows darker coloring for the technical indicators for all
models visualizing that for the relatively short prediction
horizon of 1 week, technical indicators play a larger role
than fundamental data in classifying a stock as underper-
former or outperformer. Particularly, momentum (1, 6,
and 12 months) plays an important role in the logistic
regression models, whereas the relative strength index
(3 days) (reversal) seems to be the most important feature
for NNs (DNN and LSTM NN). In contrast, by construc-
tion, tree-based ML modes RF and boosting account
more evenly for fundamental data and technical indica-
tors (only a random subset of features is allowed when

Uslities &1

Technciogy t1

Incusttal 1

Financial t1

Enemy t1

Congumer, Noncyclical &1
Consumer. Cyclical 1
Commurications t-1

Basic Matedais t1

TRAILING 12M Sales GROWTH 1
EMPL GROWTH &1

TRAL 12M PROF MARGN &1
TRAL 12M OPER MARGNt1
TRAL 12M CASH FROM CPER1
RETURN ON INV CAPITAL t-1
ENCL LVRG 1

R SQUARED BAS EPS BEF XOt1
EPS GROWTH

TRAL 12M CASH FROM INV ACT1
ASSET GROWTH 1

HISTORICAL MARKET CAP &1
TRAL 12M COM DVDt1

TRALING 12 MONTH FCF TO EQUITY &1
TRAL 12M FREE CASH FLOW 1
TRAL 12M NET SALES t1

TOT COMMON EQY t1

TRAL 12M NET INCt1

Technical Indicators

W

PCR
Ridge
ENet
RF

LASSO

FIGURE 7

HatRetum &1

BesEPS 181
, ReiMomentum t-1
Betas t1
MOMTM t-1
MOMEM t-1
MOM12M &1
VoiaiM e
VOiaEM &1
Voia1zm e
BollLower t-1
BollUpger -1
MASO &1
MAT00 &1
MAZ00 &1
RSOt
RSB 1

ing

=
=
o

LSTM

Boost

Feature importance. The figure illustrates the feature importance (SHAP values) for the different features for each machine

learning model. Darker coloring corresponds to a higher feature importance. DNN, deep neural network; ENet, elastic net; LASSO, least
absolute shrinkage and selection operator; LSTM, long short-term memory; PCA, principal component analysis; RF, random forest.

WOLFF and ECHTERLING

WILEY_L_ ¥

TABLE 7
Panel A: Fundamental
data
Market (S&P500)
Benchmark (1/N)

PCA

Ridge

LASSO

ENet

RF

Boosting

DNN

LSTM neural network
Ensemble

Panel B: Technical
indicators

Market (S&P500)
Benchmark (1/N)
PCA

Ridge

LASSO

ENet

RF

Boosting

DNN

LSTM neural network
Ensemble

Panel C: Fundamental
and technical

Market (S&P500)
Benchmark (1/N)
PCA

Ridge

LASSO

ENet

RF

Boosting

DNN

LSTM neural network

Ensemble

Return
p-a.
6.60%
11.1%
15.5%
17.2%
19.8%
18.2%
15.9%
16.3%
11.5%
13.3%
16.3%
Return
p-a.
6.60%
11.1%
11.2%
15.5%
13.2%
13.8%
12.9%
15.6%
21.4%
18.1%
19.3%
Return
p-a.
6.60%
11.1%
14.8%
19.4%
18.6%
19.3%
16.9%
15.5%
17.2%
18.1%
20.8%

Performance for different feature groups.

Volatility
p-a.
16.70%
19.3%
21.3%
23.0%
24.6%
24.4%
22.2%
22.6%
24.3%
24.0%
23.2%
Volatility
p-a.
16.70%
19.3%
22.1%
24.3%
24.8%
25.2%
23.7%
22.1%
27.4%
24.4%
24.2%
Volatility
p-a.
16.70%
19.3%
21.1%
25.1%
25.5%
25.5%
22.7%
24.4%
25.9%
25.6%
24.8%

Sharpe
p-a.
0.40
0.57
0.73
0.75
0.81
0.75
0.72
0.72
0.47
0.56
0.70
Sharpe
p.a.
0.40
0.57
0.51
0.64
0.53
0.55
0.55
0.71
0.78
0.74
0.80
Sharpe
p.a.
0.40
0.57
0.70
0.77
0.73
0.76
0.75
0.63
0.67
0.71
0.84

Maximum
drawdown

—55.40%
—54.8%
—48.6%
—54.6%
—48.1%
—54.3%
—52.3%
—45.7%
—57.6%
—51.2%
—47.1%

Maximum
drawdown

—55.40%
—54.8%
—63.4%
—43.9%
—44.8%
—44.1%
—47.8%
—49.7%
—40.7%
—54.6%
—36.4%

Maximum
drawdown

—55.40%
—54.8%
—48.2%
—45.2%
—46.5%
—46.3%
—50.6%
—55.1%
—52.4%
—50.1%
—44.8%

CAPM
alpha p.a.

0.00
0.04*
0.08***
0.097#**
0.117%**
0.08**
0.08**
0.04
0.05*
0.08**

CAPM
alpha p.a.

0.00
0.04*
0.05
0.08*
0.06
0.07
0.06
0.08**
0.13%**
0.10%**
0.117%**

CAPM
alpha p.a.

0.00
0.04*
0.08**
0.17%**
0.10**
0.17%**
0.09%**
0.08**
0.09**
0.10**
0.12%#*

FF-6

alpha p.a.

0.00
0.05*
0.1%*
0.11**
0.14%*
0.12%*
0.1**
0.12%*
0.07*
0.08*
0.11**
FF-6

alpha p.a.

0.00
0.05*
0.06
0.11**
0.08*
0.09*
0.08*
0.10**
0.18%**
0.13%**
0.15%**
FF-6

alpha p.a.

0.00
0.05*
0.08*
0.14%%*
0.13**
0.14%%*
0.11**
0.10**
0.12%*
0.13%**
0.15%**

Turnover BTC
p-a. vs. 1/N
0.8 0.00%
6.03 0.36%
8.65 0.35%
12.58 0.35%
11.03 0.32%
10.91 0.22%
21.59 0.12%
22.04 0.01%
23.75 0.05%
20.64 0.13%
Turnover BTC
p.a. vs. 1/N
0.8 0.00%
21.0 0.00%
24.1 0.09%
27.2 0.04%
28.3 0.05%
27.9 0.03%
39.2 0.06%
36.5 0.14%
37.2 0.09%
36.7 0.11%
Turnover BTC
p.a. vs. 1/N
0.8 0.00%
17.4 0.11%
16.4 0.25%
194 0.19%
19.9 0.21%
18.7 0.16%
32.8 0.07%
28.0 0.11%
31.1 0.11%
28.8 0.17%

Note: The table shows the performance of the different ML trading strategies based on either fundamental data or technical indicators or both (base case).
Abbreviations: BTC, break-even transaction cost; CAPM, capital asset-pricing model; DNN, deep neural network; ENet, elastic net; FF-6, Fama and French
(20138) six-factor model; LASSO, least absolute shrinkage and selection operator; LSTM, long short-term memory; ML, machine learning; PCA, principal

component analysis; RF, random forest.

*Significant at the 5% level for the null hypothesis that the alpha of a trading strategy is equal to 0.

**Significant at the 1% level for the null hypothesis that the alpha of a trading strategy is equal to 0.
***Significant at the 0.1% level for the null hypothesis that the alpha of a trading strategy is equal to 0.

* | WILEY

WOLFF and ECHTERLING

growing each tree, forcing more features to be included
in trees). For boosting, particularly the earnings per
share growth and the cash flow-to-price ratio play an
important role for classifying stocks in underperformer
or outperformer.

Next, we explore the relative importance of funda-
mental and technical features for the performance of the
ML-based trading strategies. Panel A of Table 7 presents
the performance of ML models when only relying on
fundamental data and sector dummies. Panel B of
Table 7 provides the same performance measures when
ML models are trained only with technical indicators.
For comparison, Panel C of Table 7 provides the original
results for the full feature set. Table 7 provides an
interesting insight: Regression-based and tree-based
models provide a superior performance with fundamen-
tal data compared to technical indicators.

In contrast, for NNs (DNN and LSTM NN), we find
an opposed picture: These models provide a superior
performance for technical indicators, and adding funda-
mental data does not improve model performance. This
might be due to the high dynamic in technical
indicators and the strength of LSTM NNs to process
long- and short-term dependencies. Hence, a promising
strategy might be to rely on an LSTM NN, employing
further technical indicators and a longer history of data,
feeding not only the last two observations into the
model but a longer sequence. We leave this idea to fur-
ther research.

4.7 | Alternative asset universes

To check the robustness of our results, we apply the ML
models on the constituents of the STOXX Europe 600 as
an alternative asset universe. The STOXX Europe 600 rep-
resents large, mid, and small capitalization companies
across 17 European countries."> We do not conduct any
new feature search but simply apply the models designed
for the S&P500 on the STOXX 600. Due to availability of
data, our analysis for the STOXX 600 starts 3 years later
than for the S&P500 with the out-of-sample evaluation
period covering the years from January 2005 to March
2021." Table 8 and Figure 8 present the performance of
the ML strategies for the constituents of the STOXX 600.
In line with the S&P500, we set the portfolio size to
50 stocks. The results for the STOXX 600 confirm our
results for the S&P500. We find that all ML models out-
perform an equally weighted benchmark portfolio with
the ensemble model providing the highest raw and risk-
adjusted returns. In line with the results for the S&P500,
for the STOXX Europe 600, regularized logistic regression
models (ridge, LASSO, and ENet) work slightly better
than the more complex models (boosting, DNN, and
LSTM NN). Overall, the results for the STOXX 600 con-
firm our finding that ML models successfully select
attractive stocks and that a stock-picking strategy based
on ML adds value over a passive index investment and
over the 1/N benchmark. The findings for the STOXX
600 provide an important robustness check because the

TABLE 8 Performance of machine learning models for alternative asset universe (STOXX 600).

Return Volatility Sharpe Maximum CAPM FF-6 Turnover BTC vs.

p-a. p-a. p-a. drawdown alpha p.a. alpha p.a. p.a. 1/N
Market (STOXX 600) 3.4% 17.7% 0.19 —59.1% 0.00 0.00
Benchmark (1/N) 8.9% 20.0% 0.44 —59.1% 0.05*** 0.04 0.83 0.00
PCA 11.4% 26.1% 0.44 —65.8% 0.08* 0.08 25.94 0.05%
Ridge 18.5% 24.5% 0.76 —45.0% 0.14%%* 0.13%* 27.38 0.18%
LASSO 18.3% 24.7% 0.74 —45.1% 0.14%+* 0.13%* 28.08 0.17%
ENet 17.6% 24.0% 0.73 —43.9% 0.13%** 0.12** 28.57 0.16%
RF 18.7% 23.4% 0.80 —53.1% 0.14%%* 0.13%* 25.84 0.20%
Boosting 14.4% 24.5% 0.59 —59.4% 0.11%** 0.1* 33.85 0.08%
DNN 14.8% 24.1% 0.61 —49.7% 0.177%** 0.11* 30.31 0.10%
LSTM neural network 15.3% 23.9% 0.64 —48.6% 0.11%** 0.1* 31.45 0.10%
Ensemble 19.6% 24.3% 0.81 —45.5% 0.15%** 0.14%* 31.01 0.18%

Note: The table shows the performance of the different ML trading strategies for the alternative STOXX 600 universe.
Abbreviations: BTC, break-even transaction cost; CAPM, capital asset-pricing model; DNN, deep neural network; ENet, elastic net; FF-6, Fama and French
(2018) six-factor model; LASSO, least absolute shrinkage and selection operator; LSTM, long short-term memory; ML, machine learning; PCA, principal

component analysis; RF, random forest.

*Significant at the 5% level for the null hypothesis that the alpha of a trading strategy is equal to 0.
**Significant at the 1% level for the null hypothesis that the alpha of a trading strategy is equal to 0.
***Significant at the 0.1% level for the null hypothesis that the alpha of a trading strategy is equal to 0.

WOLFF and ECHTERLING

PCA Ridge

P Pl
con i

LASSO

LI S B B S B B B B B EE B N N B R

| B B B B R

Jan 05 2005 Jan 06 2010 Jan 07 2015 Jan 02 2020 Jan 05 2005 Jan 06 2010

ENet RF

LI I B B S B N B N B B B N B N R | I S I S —

Jan 05 2005 Jan 06 2010 Jan 07 2015 Jan 02 2020 Jan 05 2005 Jan 06 2010

DNN LSTM

| N I B B S D N B D N N B RN S S | |

Jan 05 2005 Jan 06 2010 Jan 07 2015 Jan 02 2020 Jan 05 2005 Jan 08 2010

FIGURE 8

10 10 10
5 5 5
- - fl-f
T T T T T T T T T r T T T T T T T T T T T T T T T T
Jan 07 2015 Jan 02 2020 Jsn 052005 Jan062010 Jan072015 Jan 02 2020
Boosting
15 15 15
10 10 10
5 - 5
“”'_“"-«-\--‘.r
T T
Jan 072015 Jan 02 2020 Jan 052005 Jan082010 Jan 072015 Jan 02 2020
Ensemble
15 15 15
10 10 10
5 5 5
Lo | oo = 1= =]
i ‘—c--l-"
T T T T T T T T mn T T T T T T T T T T T T T T T T T
Jan 07 2015 Jan 02 2020 Jan 052005 Jan062010 Jan 072015 Jan 022020

Model performance for STOXX 600 universe versus 1/N benchmark (dashed line). The figure displays the performance of

the trading strategies compared to a benchmark portfolio that equally invests in all stocks (1/N benchmark) for the alternative STOXX

600 universe. DNN, deep neural network; ENet, elastic net; LASSO, least absolute shrinkage and selection operator; LSTM, long short-term

memory; PCA, principal component analysis; RF, random forest.

ML models were originally designed for the S&P500 and
were then applied on a completely new dataset without
adjusting the model's architecture.'*

5 | CONCLUSION
In this study, we use ML models for stock selection and
empirically analyze the performance of DNNs, LSTM
NNs, RF, boosting, and regularized logistic regression.
We train the models on stock characteristics including
the typical equity factors as well as additional fundamen-
tal data and technical indicators to predict whether a spe-
cific stock outperforms the market over the subsequent
week. Our asset universe builds on the historical constit-
uents of the S&P500 over the period from January 1999
to March 2021. We analyze the risk-adjusted performance
of a trading strategy that picks stocks with the highest
predictions to outperform. Our empirical results show a
substantial and significant risk-adjusted outperformance
of ML-based stock selection models compared to a simple
equally weighted benchmark.

The higher returns of ML-based stock selection
models are not fully explained by the common risk

factors, and positive and statistically significant alphas
remain after controlling for the six Fama and French
(2018) factors and the betting-against-beta factor
(Frazzini & Pederson, 2013). The sub-period analysis
indicates that the outperformance cannot be attributed to
a single short time period but is present in all four sub-
periods including periods of expansion and recession.
Moreover, our analysis of rolling factor exposures shows
that ML strategies do not follow a traditional static factor
strategy but exhibit dynamic and fluctuating factor expo-
sures, which can be interpreted as implicit factor timing
strategies.

Our analysis of different portfolio sizes shows that, on
the one hand, lower portfolio sizes generally yield higher
returns because only stocks with the highest predicted
outperformance potential are selected. On the other
hand, lower portfolio sizes lead to higher idiosyncratic
risk due to lower diversification and higher portfolio vol-
atility. Therefore, the Sharpe ratio optimal portfolio size
is a trade-off of outperformance potential and diversifica-
tion. Empirically, we find that for our trading strategy,
the optimal portfolio size is around 50 stocks. Our results
are robust when applied on the STOXX Europe 600 as
alternative asset universe.

w_ | WILEY

WOLFF and ECHTERLING

ACKNOWLEDGEMENTS

We would like to thank Professor Thomas Dangl and Dr
Ulrich Neugebauer for their helpful comments and the
participants of the World Finance and Banking Confer-
ence 2021, the Inquire Practitioners Conference, and the
Deka Investment Research Seminar. Open Access fund-
ing enabled and organized by Projekt DEAL.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are avail-
able from Bloomberg. Restrictions apply to the availabil-
ity of these data, which were used under license for this
study. Data are available from the author(s) with the per-
mission of Bloomberg.

ORCID
Dominik Wolff ® https://orcid.org/0000-0002-3518-9291

ENDNOTES

! We also tested ternary predictions by defining three classes of
equal size (outperformer, neutral, and underperformer). The
empirical results were very similar to binary predictions.

8]

We rely on open prices to ensure that the models can be
implemented in practice. Trading can be executed a couple of
minutes after markets open when the models ran. As robustness
check, we also used close prices and obtained very similar
results.

w

Three years with 52 weeks each multiplied with 500 stocks in the
cross section. For prediction purposes, one observation is lost
due to the lag between features and target.

IS

Due to limited computational power, we re-train all ML models
only once a year.

w

The list of candidate tuning parameters is available in
Appendix A.

=)

For ridge, LASSO, and ENet, we perform a grid search to find
the best parameters based on fivefold cross-validation. The grid
includes 500 values for 4 on a logarithmic scale ranging from
0.0001 to 10,000; for the combination parameter a, we use
20 values between 0 and 1.

NI

To accelerate the computation, we only include up to N principal
components, with N being the elbow point.

®

In contrast to shallow NNs, DNNs have usually three or more
hidden layers. Cybenko (1989) shows that a single-hidden-layer
network with a finite number of neurons is capable of approxi-
mating any continuous function (universal approximation theo-
rem). However, DNNs usually approximate the same function
with less neurons compared to NNs with only one hidden layer,
thereby working more efficient.

©

For sparsity, due to limited computational power, we choose the
architecture of the DNN, as well as the learning rate and regular-
ization parameter based on cross-validation for the first training
set only (i.e., the first 3 years of data). This provides a conserva-
tive evaluation of the performance of DNNs, because for recent
data, another architecture might be superior.

10 This stylized fact is termed the “forecast combining puzzle”
because, in theory, it should be possible to improve upon simple
combination forecasts.

"' Fama-French factor data are from Kenneth French website:
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html, and betting-against-beta factor (“BaB”) data are
from the AQR website: https://www.aqr.com/Insights/Datasets/
Betting-Against-Beta-Equity-Factors-Daily.

12 Austria, Belgium, Denmark, Finland, France, Germany, Ireland,
Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal,
Spain, Sweden, Switzerland, and the UK.

13 Our training dataset for the STOXX 600 starts in January 2002.
Due to the unavailability of trading volume data, we had to
exclude the variable PX_Volume for the STOXX 600.

14 As for the S&P500, the ML models were trained once a year
based on the previous 3 years of data and model parameters were
tuned using the same grid search approach as for the S&P500.

REFERENCES

Avramov, D., Cheng, S., & Metzker, L. (2020). Machine learning
versus economic restrictions: Evidence from stock return pre-
dictability. Working paper.

Bates, J. M., & Granger, C. W. J. (1969). The combination of fore-
casts. Operational Research Quarterly, 20(4), 451-468. https://
doi.org/10.1057/jors.1969.103

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term
dependencies with gradient descent is difficult. IEEE Transac-
tions on Neural Networks, 5, 157-166. https://doi.org/10.1109/
72.279181

Breiman, L. (1986). Bagging predictors. Machine Learning, 24(2),
123-140. https://doi.org/10.1007/BF00058655

Breiman, L., Friedman, J., Stone, J. C., & Olshen R. A. (1984).
Classification and The Wadsworth &
Brooks/Cole Statistics/Probability Series. Taylor & Francis
Group. https://www.taylorfrancis.com/books/mono/10.1201/
9781315139470/classification-regression-trees-leo-breiman

Carhart, M. M. (1997). On persistence in mutual fund performance.
The Journal of Finance, 52, 57-82. https://doi.org/10.1111/j.
1540-6261.1997.tb03808.x

Chen, L., Pelger, M., & Zhu, J. (2019). Deep learning in asset
pricing. Working paper.

Chinco, A., Clark-Joseph, A. D., & Ye, M. (2019). Sparse signals in
the cross-section of returns. Journal of Finance, 74, 449-492.
https://doi.org/10.1111/jofi.12733

Choi, D. Jiang, W., & Zhang, C. (2019). Alpha go everywhere: Machine
learning and international stock returns. Working paper.

Clemen, R. T. (1989). Combining forecasts: A review and annotated
bibliography. International Journal of Forecasting, 5(4), 559-
583. https://doi.org/10.1016/0169-2070(89)90012-5

Cong, L. W., Tang, K., Wang, J., & Zhang, Y. (2019). AlphaPortfolio
and interpretable AI for finance. Working paper.

Coqueret, G., & Guida, T. (2018). Stock returns and the cross-
section of characteristics: A tree-based approach. Working
paper.

Cybenko, G. (1989). Approximation by superpositions of a sigmoi-
dal function. Mathematics of Control, Signals, and Systems, 2(4),
303-314. https://doi.org/10.1007/BF02551274

regression trees.

https://orcid.org/0000-0002-3518-9291
https://orcid.org/0000-0002-3518-9291
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://www.aqr.com/Insights/Datasets/Betting-Against-Beta-Equity-Factors-Daily
https://www.aqr.com/Insights/Datasets/Betting-Against-Beta-Equity-Factors-Daily
https://doi.org/10.1057/jors.1969.103
https://doi.org/10.1057/jors.1969.103
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1007/BF00058655
https://www.taylorfrancis.com/books/mono/10.1201/9781315139470/classification-regression-trees-leo-breiman
https://www.taylorfrancis.com/books/mono/10.1201/9781315139470/classification-regression-trees-leo-breiman
https://doi.org/10.1111/j.1540-6261.1997.tb03808.x
https://doi.org/10.1111/j.1540-6261.1997.tb03808.x
https://doi.org/10.1111/jofi.12733
https://doi.org/10.1016/0169-2070(89)90012-5
https://doi.org/10.1007/BF02551274

WOLFF and ECHTERLING

WILEY_|l ™

Fama, E. F., & French, K. R. (2018). Choosing factors. Journal of
Financial Economics, 128(2), 234-252. https://doi.org/10.1016/j.
jfineco.2018.02.012

Feng, G., Polson, N. G., & Xu, J. (2018). Deep learning factor alpha.
Working paper.

Fischer, T., & Krauss, C. (2018). Deep learning with long short-term
memory networks for financial market predictions. European
Journal of Operational Research, 270(2), 654-669. https://doi.
0rg/10.1016/j.ejor.2017.11.054

Frazzini, A., & Pederson, L. H. (2013). Betting against beta. Journal
of Financial Economics, 111(1), 1-252. https://doi.org/10.1016/j.
jfineco.2013.10.005

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generali-
zation of on-line learning and an application to boosting. Jour-
nal of Computer and System Sciences, 55(1), 119-139. https://
doi.org/10.1006/jcss.1997.1504

Freyberger, J., Neuhierl, A., & Weber, M. (2018). Dissecting charac-
teristics nonparametrically. Working paper.

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of sta-
tistical learning. Springer.

Gu, S., Kelly, B., & Dacheng, X. (2019). Autoencoder asset pricing
models. Working paper.

Gu, S., Kelly, B., & Dacheng, X. (2020). Empirical asset pricing via
machine learning. The Review of Financial Studies, 33,
2223-2273. https://doi.org/10.1093/rfs/hhaa009

Han, Y., He, A., Rapach, D., & Zhou, G. (2018). What firm charac-
teristics drive US stock returns? Working paper.

Hendry, D. F., & Clements, M. P. (2004). Pooling of forecasts. The
Econometrics Journal, 7(1), 1-31. https://doi.org/10.1111/j.
1368-423X.2004.00119.x

Hinton, G. (2012). Neural networks for machine learning—Lecture
slides. https://www.cs.toronto.edu/~tijmen/csc321/slides/
lecture_slides_lec6.pdf

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/
neco.1997.9.8.1735

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased esti-
mation for nonorthogonal problems. Technometrics, 12(1970),
55-67. https://doi.org/10.1080/00401706.1970.10488634

Jozefowicz, R., Zaremba, W., & Sutskever, 1. (2015). An empirical
exploration of recurrent network architectures. In Proceedings
of the 32nd International Conference on Machine Learning,
PMLR (Vol. 37, pp. 2342-2350).

Ludvigson, S. C., & Ng, S. (2007). The empirical risk-return rela-
tion: A factor analysis approach. Journal of Financial
Economics, 83(1), 171-222. https://doi.org/10.1016/j.jfineco.
2005.12.002

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpret-
ing model predictions. Advances in Neural Information Proces-
sing Systems, 30, 4765-4774.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance,
7(1), 77-91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

Neely, C. J., Rapach, D. E., Tu, J., & Zhou, G. (2014). Forecasting
the equity risk premium: The role of technical indicators. Man-
agement Science, 60(7), 1772-1791. https://doi.org/10.1287/
mnsc.2013.1838

Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory
based recurrent neural network architectures for large vocabu-
lary speech recognition. arXiv preprint arXiv:1402.1128.

Shapley, L. S. (1953). A value for n-person games. In H. Kuhn &
A. Tucker (Eds.), Contributions to the theory of games (AM-28)
(Vol. 2, pp. 307-317). Princeton University Press. https://doi.
0rg/10.1515/9781400881970-018

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I, &
Salakhutdinov, R. (2014). Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine Learning
Research, 15(56), 1929-1958.

Stock, J. H., & Watson, M. W. (2004). Combination forecasts of out-
put growth in a seven-country data set. Journal of Forecasting,
23(6), 405-430. https://doi.org/10.1002/for.928

Tibshirani, R. (1996). Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society: Series B: Methodo-
logical, 58(1), 267-288. https://doi.org/10.1111/j.2517-6161.
1996.tb02080.x

Timmermann, A. (2006). Chapter 4 Forecast combinations. In
Handbook of economic forecasting (Vol. 1, pp. 135-196).
Elsevier. https://doi.org/10.1016/S1574-0706(05)01004-9

Wolff, D., & Neugebauer, U. (2019). Tree-based machine learning
approaches for equity market predictions. Journal of Asset Man-
agement, 20, 273-288. https://doi.org/10.1057/s41260-019-
00125-5

Zou, H., & Hastie, T. (2005). Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society,
67(2005), 301-320. https://doi.org/10.1111/j.1467-9868.2005.
00503.x

AUTHOR BIOGRAPHIES

Dominik Wolff is Professor of Finance at the
Frankfurt University of Applied Sciences, Assistant
Professor of Finance at Darmstadt University of Tech-
nology, and Head of Quant Research at Deka Invest-
ment GmbH. His research focuses on machine
learning approaches for stock market forecasting,
machine learning approaches for stock selection, nat-
ural language processing (NLP) in finance, and tacti-
cal and strategical allocation strategies. He received
his PhD in Finance from the Justus Liebig University
of Giessen (summa cum laude) and studied Business
Administration with a focus on Finance at the Uni-
versity of Mannheim. He also holds a certificate in
data science from Harvard University and is a certi-
fied data scientist specialized in deep learning from
the Fraunhofer Society.

Fabian Echterling is a Quantitative Solutions Ana-
lyst of the Investment Platform Equity at Allianz
Global Investors and previously worked in the Funda-
mental Fund Management & CIO Division of Deka
Investment GmbH as well as in corporate finance
advisory. His focus is on quantitative research and
methods applied in fundamental portfolio manage-
ment. He holds a PhD (summa cum laude) in the field

https://doi.org/10.1016/j.jfineco.2018.02.012
https://doi.org/10.1016/j.jfineco.2018.02.012
https://doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/10.1016/j.jfineco.2013.10.005
https://doi.org/10.1016/j.jfineco.2013.10.005
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1093/rfs/hhaa009
https://doi.org/10.1111/j.1368-423X.2004.00119.x
https://doi.org/10.1111/j.1368-423X.2004.00119.x
https://www.cs.toronto.edu/%7Etijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/%7Etijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/%7Etijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1016/j.jfineco.2005.12.002
https://doi.org/10.1016/j.jfineco.2005.12.002
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1287/mnsc.2013.1838
https://doi.org/10.1287/mnsc.2013.1838
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1002/for.928
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1016/S1574-0706(05)01004-9
https://doi.org/10.1057/s41260-019-00125-5
https://doi.org/10.1057/s41260-019-00125-5
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x

© | WILEY

WOLFF and ECHTERLING

of corporate finance and company valuation from the How to cite this article: Wolff, D., & Echterling,
University of Bamberg where he studied Business F. (2024). Stock picking with machine learning.
Administration with a focus on Finance, Accounting, Journal of Forecasting, 43(1), 81-102. https://doi.
and Statistics, and he is a certified data scientist spe- org/10.1002/for.3021

cialized in deep learning from the Fraunhofer Society.

APPENDIX A

TABLE A1 Model hyperparameter.

Model
PCA
Ridge
LASSO
ENet

RF

Boosting

DNN

LSTM neural network

Hyperparameter

PCA factors n € [1, ..., N] where N is the number of PCA factors explaining 90% of feature variance
Penalty parameter A: 500 values on a logarithmic scale ranging from 0.0001 to 10,000

Penalty parameter A: 500 values on a logarithmic scale ranging from 0.0001 to 10,000

Combination parameter for combining absolute and squared penalties () € [0, 0.05, ..., 1]

Penalty parameter A: 500 values on a logarithmic scale ranging from 0.0001 to 10,000

Number of trees € [100, 250, 500, 1000]

Maximum tree depth € [3, 5, 7, 10, 15, 20]

Minimal node size € [1, 3, 5, 10]

Number of randomly allowed predictors in each node: Round off square root of the number of predictors
Number of iterations: 1000

Maximum tree depth € [3, 5, 7, 10, 15, 20]

Minimal node size (child weight) € [1, 3, 5, 10]

Step size shrinkage parameter (1) € [0.01, 0.05, 0.1, 0.3]

Subsample (subsample ratio of the training instances used in each iteration): 0.5 (default)
Colsample_bytree (subsample of predictors used in each tree) € [0.5, 0.7, 0.8, 0.9, 1]

Minimum loss reduction for additional node of the tree (y) € [0, 0.001, 0.01, 0.1] (default = 0)

Number of hidden layers: 3, neurons per hidden layer: (20, 10, 5)
[Tested alternatives: (10, 5, 5), (10, 10, 5), (15, 10, 5), (20, 10, 10)]

Activation function: ReLU, output layer: Softmax

Learning parameter: Loss function = binary cross-entropy, learning rate: 0.001, decay = 0
Optimizer: RMSprop, 100 epochs, early stopping = 10

Regularization parameter: L1 regularization € [0.0001, 0.001, 0.01, 0.1], batch normalization
Dropout rate € [0, 0.1, 0.2, 0.3, 0.4, 0.5]

Number of hidden LSTM neural network layers: 1, neurons in layer [10, 20, 25, 30, 35]

Learning parameter: Loss function = binary cross-entropy, learning rate: 0.001, decay = 0
Optimizer: RMSprop, 100 epochs, early stopping = 10

Regularization parameter: Dropout rate € [0, 0.1, 0.2, 0.3, 0.4, 0.5]

Note: The table reports the tuning parameters required to train each machine learning model. For PCA, ridge, LASSO, and ENet, the parameters are estimated
via grid search for each training (and validation) set using cross-validation. For RF, boosting, DNN, and LSTM neural network, we determine the tuning
parameters based on the first training (and validation) set via grid search. Bold parameters highlight the final parameters chosen in the grid search.
Abbreviations: DNN, deep neural network; ENet, elastic net; LASSO, least absolute shrinkage and selection operator; LSTM, long short-term memory; PCA,
principal component analysis; RF, random forest.

https://doi.org/10.1002/for.3021
https://doi.org/10.1002/for.3021

	Stock picking with machine learning
	1 INTRODUCTION
	2 DATA
	3 METHODOLOGY
	3.1 Organization of training and test sets
	3.2 Cross-validation and parameter choice
	3.3 Regularized logistic regressions and principal component regressions (PCRs)
	3.4 RF and boosting
	3.5 Feedforward NNs
	3.6 Recurrent NNs (RNNs) and LSTM NNs
	3.7 Combined forecast

	4 EMPIRICAL RESULTS
	4.1 Analysis of predictions
	4.2 Performance of ML-based trading strategies
	4.3 Analysis of the optimal portfolio size
	4.4 Performance in different economic cycles
	4.5 Factor attribution
	4.6 Feature importance
	4.7 Alternative asset universes

	5 CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT

	ENDNOTES
	REFERENCES
	APPENDIX A

