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Abstract
In recent years, the development of lattice Boltzmannmethods (LBMs) for solids
has gained attention. Fracture mechanics as a viable application for these meth-
ods has been presented before, albeit formode III cracks in the context of an LBM
for antiplane shear deformation. The performance of the LBM itself is promis-
ing, while the usage of a regular lattice simplifies the modelling of fractures
significantly. Recent advancements in LBMs for solids, especially the descrip-
tion of Dirichlet- and Neumann-type boundary conditions, nowmake it possible
to extend the LBM simulation of crack propagation to the plane strain case with
modes I and II crack opening, including growth with non-uniform speed in arbi-
trary directions. For this, the configurational force acting on a crack tip is utilised.
The definition of the moments of the LBM, which are based on the balance laws
of continuummechanics, render the evaluation of macroscopic fields in the con-
figuration straightforward. In this work, the general in-plane case of dynamic
crack propagation is shown and necessary considerations for the implementa-
tion are discussed. Lastly, numerical examples showcase the capabilities of the
proposed method to model dynamic fractures and establish a proof-of-concept.

1 INTRODUCTION

Fractures are regarded in a multitude of different fields of science and engineering. The most general case, propagating
cracks under dynamic loading, is difficult to describe analytically and also present a demanding task for simulations.
The change in topology during the runtime of simulations typically requires either a remeshing of the computational

domain in a standard finite elementmethod (FEM) ormore specialised discretizationmethods, such as the extended FEM
(X-FEM) or scaled boundary FEM (SB-FEM). Free fracture models [3] can solve the problem of crack growth, such as the
phase field method, due to the regularisation of the crack interface, or the increasingly popular peridynamics. However,
for these methods, the numerical performance can be an issue.
With regards to the computational performance, the lattice Boltzmannmethod (LBM) is rather promising, as it is easily

parallelised and scales well [4]. While the method was initially conceived for fluid dynamics, it is also actively developed
to be applied in solid mechanics. Recent advancements describe a numerical method [5] for plane strain deformation of
elastic solids, which is inherently dynamic. Furthermore, newly developed implementations of boundary conditions [1]
now allow the extension of the initial modelling of crack propagation to the more general case of mixed-mode loading.
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F IGURE 1 The D2Q9-lattice scheme, connecting the central point with rest velocity to its eight neighbours. The definition of the
discrete velocities 𝒄𝛼 , defined in relation to the lattice speed 𝑐 =

1√
3

Δ𝑥

Δ𝑡
, ensures that information, that is, the distribution functions, travels

between points within one time step.

In addition to its computational performance, the LBM also offers the simple geometrical modelling of its underlying
regular lattice. This is also favourable for the simulation of cracks. An LBM for solids has already been applied to crack
propagation [6, 7], where the proof-of-concept was given for mode III cracks, albeit in rather reduced mechanical and
numerical setting. The same algorithm is used now with modifications due to the different boundary conditions.

2 NUMERICALMETHOD

An in-depth description of the principles underlying the numerical method would greatly surmount the scope of this
work. The reader is referred to textbooks [8, 9] and previous publications [1] and references therein. This section restricts
itself to those definitions, that are necessary for understanding the crack propagation algorithm presented in Section 3.
The LBM as a method resorts to approaches from statistical mechanics – solving transport problems via Boltzmann’s

equation [10] – by regarding the evolution of probability distributions in phase space. This is modelled as a relaxation
towards a local equilibrium state, through collisions of (fictitious) particles, with a subsequent streaming of distributions,
facilitating the exchange of information about the configuration throughout the lattice. Thus the LBM works on a meso-
scopic scale. The connection to the macroscopic scale, that is, continuum mechanics, is given by a decomposition into
moments of a probability distribution [11], where the moments are identified with mechanical quantities.
The discretisation of the continuous domain is undertaken with a regular lattice (lattice spacing Δ𝑥). Additionally, a set

of discrete velocities is needed, which is defined by the lattice scheme, see Figure 1, in relation to the lattice velocity 𝑐. In
the method presented in his work, a D2Q9 lattice scheme is used with 𝑐 =

1√
3

Δ𝑥

Δ𝑡
, where Δ𝑡 is the time step and velocities

are numbered with index 𝛼 ∈ {0, … , 8}. This connects each lattice point to its eight surrounding neighbours. Note that the
zeroth component resides at the lattice point.

2.1 LBM for elastodynamics

The aim is to describe the dynamic behaviour of linear-elastic solids, which can be modelled through the Navier–Lamé
equation

𝜌 𝜕2𝑡 𝑢𝑖 = (𝜆 + 𝜇) 𝜕𝑖𝜕𝑗 𝑢𝑗 + 𝜇 𝜕2
𝑗
𝑢𝑖 (1)

for the displacement field 𝑢𝑖 , where 𝜆 and 𝜇 are the Lamé parameters, characterising the material.
Themethod is based onMurthy et al. [12], using crystallographic lattices, and Escande et al. [5], who developed this fur-

ther for themore commonD2Q9 lattice. Subsequently, boundary conditions have been extended [1], with some additional
modifications to the method.
The starting point is a chain of balance equations from continuum mechanics

𝜕𝑡𝜌 + d𝑖𝑝𝑖 = 0, (2)
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𝜕𝑡𝑝𝑖 + d𝑗𝑃𝑖𝑗 = 𝑆𝑖, (3)

for the mass density 𝜌, the linear momentum density 𝒑, and a constitutive law for a stress measure 𝑷,

𝜕𝑡𝑃𝑖𝑗 + d𝑘

(
𝜇

𝜌0

(
𝑝𝑖𝛿𝑗𝑘 + 𝑝𝑗𝛿𝑘𝑖 + 𝑝𝑘𝛿𝑖𝑗

))
= 0. (4)

Spatial derivatives d𝑖 are taken with respect to the reference configuration.
Equations (2)–(4) are then modelled as a chain of moments of probability distributions 𝑓,

𝜌 =
∑
𝛼

𝑓𝛼, (5)

𝑝𝑖 =
∑
𝛼

𝑓𝛼 𝑐𝑖
𝛼 +

1

2
Δ𝑡 𝑆𝑖, (6)

𝑃𝑖𝑗 =
∑
𝛼

𝑓𝛼 𝑐𝑖
𝛼𝑐𝑗

𝛼, (7)

where

𝑆𝑖 = 𝜌0𝑏𝑖 +
𝜇 − 𝜆

𝜌0
d𝑖𝜌 (8)

describes a source term,
where the gradient is obtained from second-order finite differences and

𝑃𝑖𝑗 = −𝜎𝑖𝑗 − (𝜇 − 𝜆)d𝑘𝑢𝑘 𝛿𝑖𝑗 (9)

is called the Poisson stress tensor. Both 𝑺 and 𝑷 contain contributions that vanish for a Poisson material, that is, materials
with 𝜆 ≡ 𝜇, giving Poisson’s ratio as 𝜈 = 0.25. In that case, 𝑆𝑖 only consists of external body forces 𝒃 and 𝑷 reduces to the
(negative) Cauchy stress 𝝈.
The evolution of the probability distributions 𝑓 is given by the Lattice–Boltzmann equation

𝑓𝛼(𝒙 + 𝑐𝛼Δ𝑡, 𝑡 + Δ𝑡) = 𝑓𝛼(𝒙, 𝑡) −
Δ𝑡

𝜏

(
𝑓𝛼
eq (𝒙, 𝑡) − 𝑓𝛼(𝒙, 𝑡)

)
+ Δ𝑡

(
1 −

Δ𝑡

2𝜏

)
1

𝑐2
𝑤𝛼𝑐𝑖

𝛼𝑆𝑖, (10)

which includes the source term 𝑆𝑖 with weights 𝑤𝛼 per velocity 𝑐𝑖𝛼. The equilibrium state is determined by distributions

𝑓𝛼
eq = 𝑤𝛼

(
𝜌 +

1

𝑐2
𝑐𝛼
𝑖
𝑝𝑖 +

1

2𝑐4

(
𝑃𝑖𝑗 − 𝜌𝑐2 𝛿𝑖𝑗

)(
𝑐𝛼
𝑖
𝑐𝛼
𝑗
− 𝑐2 𝛿𝑖𝑗

))
, (11)

which are defined in terms of the moments 𝜌, 𝒑 and 𝑷.
As a post-processing step, the deformation 𝒖 is computed from the momentum 𝒑 = 𝜌0𝒖̇ via time integration

𝑢𝑖(𝒙, 𝑡 + Δ𝑡) = 𝑢𝑖(𝒙, 𝑡) + Δ𝑡
1

𝜌0
𝑝𝑖(𝒙, 𝑡 + Δ𝑡). (12)

2.2 Boundary conditions

The general problem of boundary handling in LBMs must be considered in relation to missing distribution functions.
There cannot be a streaming of information across the boundary of the domain. Thus, for certain lattice points 𝒙𝐵 at
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F IGURE 2 The principle of the bounce-back boundary condition, regarding the blue boundary lattice point close to the boundary. The
solid is to the left of the dotted line, which marks the (geometrical) boundary. The boundary of the computational domain is approximated by
straight lines, halfway between lattice points. Green points are neighbours of the blue point within the domain, while grey points lie outside
the domain. The outgoing distribution functions (blue arrows) are send back along the opposite direction (grey arrows).

the boundary of the lattice without a full set of neighbours, the values of some incoming distributions need to be deter-
mined from the prescribed boundary conditions. Here, (anti-) bounce back rules are used, with modifications for moving
boundaries, compare Figure 2 for details. Outgoing distributions 𝑓𝛼 are send back along opposite direction 𝛼̄:

𝑓𝛼̄(𝒙𝐵, 𝑡 + Δ𝑡) = (−)𝑓𝛼(𝒙𝐵, 𝑡) + 𝜒(𝜌, 𝒑∗, 𝑷∗), (13)

where𝜒 is an exchange term, compare Faust et al. [1] for details, which cannowbeused to emulateDirichlet- orNeumann-
type boundary conditions, given by the prescribed values of themoments𝒑∗ and𝑷∗. This is the connection ofmacroscopic
quantities at the boundary and the mesoscopic distribution functions at the lattice points. For the Neumann boundary
conditions, the prescribed traction vector is translated to the Poisson stress tensor 𝑷∗. For Dirichlet boundary conditions,
the momentum 𝒑∗ needs to be prescribed, which follows from the time derivative of a given displacement 𝒖∗.

3 CRACK PROPAGATION ALGORITHM

The approach to handle themodelling of crack propagationwas published inMüller et al. [6], see alsoMüller et al. [7]. This
algorithm is used here without significant changes. In fact, the implementation is more straightforward due to the link-
wise boundary conditions, compare Section 2.2, in comparison to the global interpolation matrix needed for the antiplane
shear LBM [13].

3.1 Outline of the algorithm

The problem of crack growth is handled as the last part within one time step, after the configuration, that is, the deforma-
tion field, of the solid is updated. The general approach makes use of the lattice structure, but is otherwise independent
of the discretisation. The crack itself is modelled as a polygonal chain by tracking the position of the crack tip. The new
segment for one time step is obtained by shifting the crack tip along a direction with a fixed speed, thus defining the
increment. The fracture problem is coupled back to the elastodynamics via boundary handling, since a crack acts as a
boundary within the domain.
The algorithm essentially performs three steps:

1. The fracture criterion is evaluated. This step needs the information about the elastic fields, which couples the fracture
problem to the elastodynamical problem. Assuming a growing crack, the increment is computed from the speed of
growth and the direction. These can be given by user-input or derived from the criterion.

2. The lattice links intersecting the new segment need to be severed, thus inhibiting the exchange of information between
lattice points across the crack. InMüller et al. [6], an algorithm is described, that checks the links between lattice points
in the vicinity of the crack tip. Only a very small number of points need to be checked.

3. Those points with intersected links need to be treated as boundary lattice points. In the present case, only very simple
geometric information in relation to the boundary is needed.
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In the next time step, the algorithm for the LBMwill now apply boundary conditions accordingly, thus coupling the crack
propagation algorithm back to the LBM.

3.2 Fracture criterion

For the evaluation of a fracture criterion, an extension of the well-known 𝐽-integral [14] is used. Here, 𝑘 is a vector-
quantity representing the configurational force acting on a crack tip [2]. The following formalism is used, starting with
the total (Hamiltonian) energy density  and the Eshelby stress tensor Σ𝑖𝑗 , defined in terms 𝜌, 𝑝𝑖 and 𝜎𝑖𝑗 , derived from
the LBM,

𝜀𝑖𝑗 =
1

2

(
𝑢𝑖,𝑗 + 𝑢𝑗,𝑖

)
(14)

 =
1

2𝜌
𝑝𝑖𝑝𝑖 +

1

2
𝜎𝑖𝑗𝜀𝑖𝑗 (energy density), (15)

Σ𝑖𝑗 =  𝛿𝑖𝑗 − 𝑢𝑘,𝑖 𝜎𝑘𝑗 (Eshelby stress), (16)

ℊ𝑗 = Σ𝑖𝑗,𝑖 (material force density), (17)

𝓅𝑗 = −
1

𝜌
𝑝̇𝑗,𝑖 𝑝𝑖 + 𝑢𝑗,𝑖 𝑝̇𝑖 (dynamical force density), (18)

𝑘 = ∫(ℊ𝑘 + 𝓅𝑘) d𝑉. (19)

In comparison to the classical (static) 𝐽-integral,𝑘 has an additional contribution from the timederivative of the canonical
momentum, thus taking dynamical effects into account.
As a fracture criterion, the maximum energy release rate (MERR) [15] is used, where the energy release rate  is given

by the absolute value | |. Propagation happens, when the criterion | | ≡  > 𝐶 , for some critical value 𝐶 , is fulfilled.
Moreover, the preferred direction of propagation is given by − .
The growth rate 𝑎̇ can be evaluated from the energy release rate as well. Starting with the general relation [16]

dyn = 𝑔(𝑎̇)stat, 𝑔(𝑎̇) = 1 − 𝑎̇∕𝑐𝑅, (20)

between the dynamical and stationary value, where 𝑐𝑅 is the Rayleigh velocity. Assuming, that stat ≡ 𝐶 , the growth rate
can be approximated via the linearized overshoot of  over 𝐶 , by

𝑎̇ = 𝑐𝑅(∕𝐶 − 1). (21)

Additionally, a regularised growth rate can be used, which is ensured to be bounded by the Rayleigh velocity,

𝑎̇ = 𝑐𝑅 tanh (𝑘(∕𝐶 − 1)), (22)

with an empirical scaling factor 𝑘.
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F IGURE 3 The geometries for (A) the angle of deflection and (B) the dynamic loading. (C) Shows the prescribed boundary values over
time.

3.3 Remarks on the implementation

Equations (15)–(19) are evaluated on each point of a domain  around the crack tip. The integral in Equation (19) is
assumed to be path-independent. However, in contrast to the more common path-integral over 𝚺 for the 𝐽-integral, a
volume integral over is employed, which is easily implemented on a regular lattice. is defined as a rectangle, moving
with the crack tip, wherein each point is assigned a volume of (Δ𝑥)2. This also agrees with the staircase approximation of
the boundary conditions.
All gradients and divergences are computed from finite differences, which, again, is readily realised on a regular lattice.
Lastly, no rules for self-contact of the crack faces are implemented. Thus, the closing of cracks cannot be handled yet.

4 EXAMPLES

The numerical examples here are meant to exemplify the capabilities of the crack propagation algorithm. However, they
do not represent a validation of themethod. Two rather simple test cases are considered: quasi-stationarymode II opening
and a mode I crack under dynamic loading. In both cases (non-dimensional), material parameters are chosen to achieve
a Poisson ratio of 𝜈 = 0.223, thus slightly deviating from a Poisson material.
For both cases, a square of size 2𝐿 by 2𝐿 is chosen for the domain, where 𝐿 is an arbitrary length scale. The domain

around the crack tip is chosen to be 0.125𝐿 by 0.125𝐿. The initial crack runs from the left edge in 𝑥-direction, see Figure 3.
The crack faces are traction free via the assigned boundary conditions.
Since the aim here is only a proof-of-concept, any parameters defining the numerical model, such as the critical value,

are chosen arbitrarily.

4.1 Angle of deflection under mode II crack opening

Pure mode II crack opening is a typical test case in fracture mechanics [17]. The initial crack has a length of 1𝐿, compare
Figure 3A. The lattice is rather coarse with a spacing of 2−8𝐿, giving 512 × 512 = 262 144 lattice points in total and the
domain  is 32 by 32 lattice points. The specimen is held fixed at the bottom edge. The left edge, above the crack, is
pushed inwards via a Dirichlet boundary condition. Additionally, a slight pull upwards is applied, in order to counter out
any penetration of the crack faces. The crack faces, thus, slide relative to each other, resulting in mode II crack opening.
This push is applied quasi-statically, thus suppressing dynamical effects, that is, elastic waves.
Eventually, the crack starts to propagate. It grows at an angle, which is measured against the direction of the initial

crack, that is, the 𝑥-axis in this example. This angle is given in literature [17] as approximately −70◦, depending on the
fracture criterion.
For this example, the regularised growth rate, Equation (22), is used with 𝑘 = 1, since dynamical effects let the strain

around the crack tip rise quickly, once the first lattice connection is severed. However, this cannot be handled correctly by
the algorithm at this point. Therefore, the growth rate is limited and only the initial crack propagation is considered here
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F IGURE 4 Result of the example for the angle of deflection: The path of the mode II crack with a line indicating the expected angle of
−70◦. The inset shows a magnification of the path.

F IGURE 5 Results of the example under dynamic loading: (A) the path of the mode I crack, (B) the energy release rate , the growth
rate 𝑎̇ and the total length 𝑎 of the crack for the mode I example.

for the evaluation of the deflection angle. After the onset of crack propagation – and under increased loading – additional
effects play an increasing role. The crack path can deviate considerably from the static expectation.
Figures 4 shows the crack path resulting from this simulation. The crack propagates at an angle of −48◦ at first, then

kinks towards a steeper angle of approximately−72◦ and eventually starts to curve rather straight towards the bottomedge.

4.2 Dynamic loading of mode I crack

For this example, the specimen is held fixed at the right edge. The crack has an initial length of 0.75𝐿. The lattice spacing
is 2−7𝐿, giving 256 × 256 = 65 536 lattice points in total and a domain of 16 by 16 lattice points. The loading is applied as
shearing forces on the left edge, pulling the crack apart, compare Figure 3B. The traction is modulated in time with a sine
function, where 𝜎𝑢 lasts for one period, whereas 𝜎𝑙 lasts for two periods, thus introducing an asymmetry in the loading.
Here, the unregularised growth rate according to Equation (21) is used.
During a first phase, under symmetric loading, a lenticular opening travels towards the crack tip and pulls the crack

apart. This eventually results in crack growth in the 𝑥-direction, which halts at some point, compare Figure 5. During a
second phase, the loading is asymmetric, since loading is only applied on the lower left edge. Crack growth starts again,
but now following a curved path.
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5 CONCLUSIONS

The numerical examples show plausible results. The angle of deflection of the – initially – pure mode II loading scenario
and the subsequent crack path fits the expectations. However, these results depend on the chosen parameters for the
loading and fracture resistance.
Eventually, it can be concluded, that dynamic crack propagation is indeed possible with a method based on an LBM.

While this was already undertaken in a previous work [6], the approach presented there has now been extended to in-
plane crack openingmodes I and II. This extension also includes arbitrary directions of growth and thus allows for curved
cracks. This is based on a rather general framework utilising configurational forces.
However, the work on crack propagation is far from finished. Due to the dynamics of the deformation, the growth

becomes unstable and an effective control of the growth rate is not possible. This can quickly results in unphysical
behaviour. The results of these example were specifically chosen to avoid this. However, additional effects, such as crack
branching or the contact of the crack faces, should be included to inhibit some of the unphysical behaviour.
Furthermore, thorough validations of the principles and results are needed, including comparisons with more estab-

lished methods for fracture mechanics. Studies on the influence of different parameters, notably the size of the domain
in conjunction with the lattice spacing, need to be undertaken as well, since the curvature of the crack could impact the
applicability of the configurational force. Also, the lack of boundary rules, that are able to handle the contact of crack faces
limits the viability of themethod and can lead to unphysical results, especially in the case of dynamic simulations. Further-
more, this method could be extended to incorporate such phenomena as crack nucleation, branching or the interaction
of multiple cracks.
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CODE AVAILAB IL ITY
The source code [18], input files for the examples and additional Python modules for the post-processing of simulation
data [19] are available under an open license.
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