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Abstract
Non-standard finite element technologies, such as immersed boundary
approaches, are typically based on novel algorithms and advanced methods,
which require reliable testing of the implemented code. For this purpose, the
method of manufactured solutions (MoMS) offers a great framework, enabling
an easy and straightforward derivation of closed-form reference solutions. In
this contribution, the focus is kept on non-linear analysis via the finite cell
method (FCM), which is typically based on an unfitted geometry discretization
and higher-order shape functions. The code verification via MoMS generally
requires the application of boundary conditions to all boundaries of the sim-
ulation domain, which need to be enforced in a weak sense on the immersed
boundaries. To avoid this, we propose a novel way of deriving manufactured
solutions, for which the necessary constraints on the embedded boundaries are
directly fulfilled. Thus, weak boundary conditions can be eliminated from the
FCM simulation, and the simulation complexity is reduced when testing other
relevant features of the immersed code. In particular, we focus on finite strain
analysis of 3D structures with a Neo-Hookean material model, and show that
the proposed technique enables a reliable code verification approach for all load
steps throughout the deformation process.

1 INTRODUCTION

In immersed boundarymethods, such as the finite cell method (FCM) [1], the considered physical domainΩphys generally
has a complicated shape, such that a geometry-conforming spatial discretization is often cumbersome to achieve. To over-
come this, immersed approaches are based on embedding the region of interest into a larger domain of simple shape Ωe,
which is easy to discretize by Cartesianmeshes. However, this inevitably gives rise to a fictitious domainΩfict = Ωe⧵Ωphys
of theoretically zero stiffness and cells intersected by domain boundaries. The unfitted discretization approach of the FCM
is depicted in Figure 1 in the context of large deformations (see Section 2 for more context). The cut cells pose several chal-
lenges when it comes to accurate numerical integration, enforcement of boundary conditions, and conditioning of the
system. These issues become even more significant in non-linear analyses, where stability and computation time play a
crucial role [2–4].
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F IGURE 1 Simulation of large deformations using the finite cell method (reproduced from Ref. [2]).

For verification of the advanced methods needed to overcome numerical challenges posed by the cut cells in the FCM,
we see a great benefit using the method of manufactured solutions (MoMS), whose key idea can be summarized as fol-
lows [5, 6]: Instead of seeking a solution 𝒖 to a partial differential equation (PDE), the problem is reversed, and one
manufactures (assumes) 𝒖 with known spatial and temporal derivatives. This can be easily inserted into the PDE, which
then typically yields a source term (in our context a body load 𝒃). Then, if 𝒃 is applied to the numerical framework,
while also prescribing the manufactured solution as boundary conditions (either Dirichlet or Neumann), the numerical
solutions 𝒖h should yield an approximate reproduction of the manufactured one, provided that the code is implemented
correctly. Note that typically, all fields derived from 𝒖 are obtained analytically1, which makes global and local error
estimation exceptionally accurate and easy without the need for overkill FEM solutions, or rarely available analytical
reference solutions.

2 NON-LINEAR ANALYSIS IN THE CONTEXT OF FCM

2.1 Kinematics and constitutive relations

In this contribution, both geometrical and physical non-linearities are considered in the context of finite strain analysis
with a hyperelastic material based on a Neo-Hookean material model. Let 𝑿 and 𝒙 = 𝜑(𝑿) denote the position vectors
of a material point in the initial and current configurations, respectively, where 𝜑 is the deformation map based on the
displacement field 𝜑(𝑿) = 𝑿 + 𝒖(𝑿). Without derivation, all the relevant quantities regarding the kinematics and consti-
tutive relations are listed in Equations (1)–(7) [7]. Here,Grad(⋅) andDiv(⋅) stand for the gradient and divergence operators
w.r.t. 𝑿, and the material parameters are represented by the Lamé constants 𝜆 and 𝜇.

Deformation gradient ∶ 𝑭 = 𝟏 + Grad(𝒖) (1)

Right Cauchy-Green tensor ∶ 𝑪 = 𝑭T𝑭 (2)

1 All quantities regarding the manufactured solution in the contribution are derived using the computer algebra systemWolframMathematica.
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Green-Lagrange strain tensor ∶ 𝑬 = 1

2
(𝑪 − 𝟏) (3)

Jacobian ∶ 𝐽 =
√
det(𝑪) = det(𝑭) (4)

Strain energy functional (Neo-Hooke mat.) ∶ 𝑊 =
𝜇

2
(tr(𝑪) − 3) +

𝜆

4
(𝐽2 − 1) −

(
𝜆

2
+ 𝜇

)
ln(𝐽) (5)

Second Piola-Kirchoff stress tensor ∶ 𝑺 = 2 𝜕𝑊
𝜕𝑪

=
𝜆

2
(𝐽2 − 1)𝑪−1 + 𝜇(𝟏 − 𝑪−1) (6)

First Piola-Kirchoff stress tensor ∶ 𝑷 = 𝑭𝑺 (7)

In the static case, the equilibrium in the initial configuration is defined by Equation (8), where 𝒃(𝑿) denotes the body
loads. Furthermore, as depicted in Figure 1, the boundary is composed by the Dirichlet and Neumann boundaries, on
which prescribed displacements 𝒖̄ and tractions 𝒕̄ are defined, according to Equations (9) and (10). Here, 𝒏0 denotes the
outward pointing surface normal in the initial configuration, while ΓD

0
and ΓN

0
are the associated boundary pieces in the

initial configuration.

𝒃 = −Div(𝑷) in Ω (8)

𝒖 = 𝒖̄ on ΓD
0

(9)

𝒕̄ = 𝑷𝒏0 on ΓN
0

(10)

In this contribution, for simulating finite strains, we follow the total Lagrangian formulation. Without derivation, the
non-linear weak form of equilibrium in the initial configuration reads [3, 7]

𝐺𝛼e = ∫
Ωe

𝛼 𝑺 ⋅ 𝛿𝑬 d𝑿 − ∫
Ωe

𝛼 𝒃 ⋅ 𝛿𝒖 d𝑿 − ∫
ΓN
0

𝒕̄ ⋅ 𝛿𝒖 d𝑿 = 0 , (11)

which in the context of FCM, is formulated over Ωe. Thus, the standard weak form is extended by the indicator function
𝛼(𝑿) defined as 𝛼 = 1 inΩphys and 𝛼 << 1 inΩfict, to suppress the energy contribution of the fictitious domain. The first
term in Equation (11) considers the internal virtual work, while the second term corresponds to the virtual work of the
external forces. Furthermore, 𝛿𝒖 refers to the variation of displacements, and 𝛿𝑬 is the variation of the Green-Lagrange
strain tensor. Due to the highly non-linear nature of Equation (11), it is typically solved iteratively with the help of a
Newton-Raphson scheme. After taking the directional derivative of 𝐺𝛼e , the linearized weak form reads

∫
Ωe

𝛼 (Grad(Δ𝒖) 𝑺 ⋅ Grad(𝛿𝒖) + 𝛿𝑬 ⋅ ℂΔ𝑬 ) d𝑉 = ∫
Ωe

𝛼 𝒃 ⋅ 𝛿𝒖 d𝑿 + ∫
Γ𝑁0

𝒕̄ ⋅ 𝛿𝒖 d𝐴 − ∫
Ωe

𝛼 𝑺 ⋅ 𝛿𝑬 d𝑉. (12)

where Δ𝒖 and Δ𝑬 define the increment of the displacement vector and the Green-Lagrange strain tensor, respectively.

2.2 Discretization of the weak form in the initial configuration

The linearized weak form over Ωe in Equation (12) can now be discretized in the initial configuration using a Cartesian
mesh consisting of 𝑛c finite cells, as depicted in Figure 1. The discretized problem results in

𝑲𝑖
T
[𝒖𝑖] Δ𝒖𝑖+1 = Λ𝑗𝑭ext − 𝑭

𝑖
int
[𝒖𝑖] , (13)

where 𝑲𝑖
T
refers to the global tangent stiffness matrix, furthermore, 𝑭𝑖

int
and 𝑭𝑖ext correspond to the global internal and

external load vectors, respectively. Note that the former two depend on the current value of the displacement field. The
parameterΛ𝑗 ∈ [0, 1] defines a load factor at the load increment 𝑗. The equation system in Equation (13) is solved at every
Newton-Raphson iteration 𝑖 for obtaining Δ𝒖𝑖+1. The global quantities in Equation (13) are obtained by the assembly of
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(A) (B)

F IGURE 2 Various fields of the manufactured solution depicted in a problem domain and along a cut line.

the cell-specific local quantities following the standard Bubnov-Galerkin approach. The tangential stiffness matrix 𝒌𝑐,𝑖
T
,

the internal load vector 𝒇𝑐,𝑖
int
, and the external load vectors 𝒇𝑐,𝑖

body
and 𝒇𝑐,𝑖

surf
of the cell 𝑐 at the Newton iteration step 𝑖 are

defined as

𝒌
𝑐,𝑖
T
= ∫
Ω𝑐

𝛼 (𝑩Tℂ
V
𝑩 + 𝑮T𝑺V𝑮) d𝑿, 𝒇

𝑐,𝑖
int
= ∫
Ω𝑐

𝛼 𝑩T𝑺V d𝑿, 𝒇
𝑐,𝑖
body

= ∫
Ω𝑐

𝛼𝑵T𝒃 d𝑿, 𝒇
𝑐,𝑖
surf

= ∫
ΓN
0

𝑵T 𝒕̄ d𝑿 (14)

Here,ℂV and 𝑺V are the elasticity and second Piola-Kirchoff stress tensors in Voigt notation, respectively. Furthermore,
𝑵 is a matrix containing the shape functions, 𝑮 corresponds to the discrete gradient operator and 𝑩 is the strain operator.

3 AMANUFACTURED SOLUTION FOR NON-LINEAR FCM SIMULATIONS

3.1 Problem statement

Let us now consider a rectangular plate of size 4 × 4 × 1with a cylindrical holeΩvoid of radius 𝑅 = 2 in its lower left corner
as depicted in Figure 2A.We formulate themanufactured solution in cylindrical coordinates, where a radial displacement
field is assumed

𝒖 =

⎡⎢⎢⎣
𝑢r(𝑟, 𝜃, 𝑧)

𝑢𝜃(𝑟, 𝜃, 𝑧)

𝑢z(𝑟, 𝜃, 𝑧)

⎤⎥⎥⎦ ⟶ 𝒖 =

⎡⎢⎢⎣
𝑢r(𝑟)

0

0

⎤⎥⎥⎦ . (15)

Here, the framework of the MoMS allows for an arbitrary choice for 𝑢r. For the current manufactured solution, we
define

𝑢r = Λ𝑗 (𝑟 − 𝑅)
2

⏟⎴⏟⎴⏟
𝑢̂r

, (16)

where 𝑢̂r provides the qualitative shape of the displacement field dependent on 𝑟. Additionally, we also include the load
increment Λ𝑗 as an additional parameter. The displacement field is depicted in Figures 2A and 2B2 for Λ𝑗 = 1. Note that

2 Here, 𝑢𝑟 is magnified by a factor of 100 for visualization purposes.
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𝑢r is constructed, such that

𝑢r(𝑟 = 𝑅) = 0 and
d𝑢r
d𝑟

||||𝑟=𝑅 = 0 , (17)

for all values of Λ𝑗 , which will be relevant later for Equation (21). Below, two important facts regarding the current
manufactured solution are highlighted:

1. Following from the radial displacement field, when expressed in cylindrical coordinates, all the derived tensors are of
the simple forms given below3

𝑭 =

⎡⎢⎢⎣
𝐹rr 0 0

0 𝐹𝜃𝜃 0

0 0 1

⎤⎥⎥⎦ , 𝑬 =

⎡⎢⎢⎣
𝐸rr 0 0

0 𝐸𝜃𝜃 0

0 0 0

⎤⎥⎥⎦ , 𝑷 =

⎡⎢⎢⎣
𝑃rr 0 0

0 𝑃𝜃𝜃 0

0 0 𝑃zz

⎤⎥⎥⎦ , 𝒕 =

⎡⎢⎢⎣
𝑡r
0

0

⎤⎥⎥⎦ , 𝒃 =

⎡⎢⎢⎣
𝑏r
0

0

⎤⎥⎥⎦ . (18)

2. Furthermore, due to including Λ𝑗 in 𝑢r, all the derived quantities are also functions of Λ𝑗 , that is, the analytical state
of the manufactured problem is known for every load step. Note, however, that due to the non-linear expressions in
Equations (2)–(7), the dependency is no longer linear. This is the case for the body load field as well

𝒃 = 𝒃(𝑿,Λ𝑗) , (19)

which contains higher powers of Λ𝑗 . Due to the analytically derived expression being very lengthy for the body load,
we do not include it in its full detail in this contribution, but we can provide the Mathematica script upon request.

Our aim is to manufacture the displacement field 𝒖, such that tractions on the hole’s boundary 𝜕Ωvoid are vanishing.
Following from Equation (18), and from the fact that 𝒏0 = −[1, 0, 0]T for 𝜕Ωvoid, Equation (10) reduces to the simple 1D
condition

𝑡𝑟(𝑟) = 𝑃rr(𝑟) = 0 for 𝑟 = 𝑅 . (20)

The analytical expression for 𝑃rr(𝑟) based on a displacement field of the form 𝑢r(𝑟) = Λ𝑗𝑢̂r(𝑟) term reads

𝑃rr(𝑟) =
1

2

(
1 + Λ𝑗

d𝑢̂r
d𝑟

)⎛⎜⎜⎜⎜⎝
𝜆 + 2𝜇 +

Λ𝑗𝜆𝑢̂r(2𝑟 + Λ𝑗𝑢̂r)

𝑟2
−

𝜆 + 2𝜇(
1 + Λ𝑗

d𝑢̂r
d𝑟

)2
⎞⎟⎟⎟⎟⎠
, (21)

which, based on Equation (17), indeed vanishes at 𝑟 = 𝑅 due to the second bracket-term evaluating to zero. In fact, for the
current choice of 𝑢r, 𝑃rr(𝑟 = 𝑅) = 0 for all values ofΛ𝑗 , that is, Equation (20) is fulfilled throughout the entire deformation
process. Thus, the appropriate boundary conditions with a combination of 𝒃 ensure that manufactured solution can be
reproduced by the FCM approach for all load steps without the need for weak boundary conditions. The values of 𝑃rr and
𝑏r over 𝑟 are depicted in Figure 2B. Note that field values are not smooth for 𝑟 < 𝑅, however, we are not interested in the
results within the fictitious domain.

3.2 Results

Let us now reproduce the manufactured solution of Figure 2A using the FCM framework, as depicted in Figure 3A. On
the two faces highlighted in blue, the manufactured displacement field is prescribed to the numerical solution 𝒖h = 𝒖.
The cylindrical void region’s boundary is treated as a free boundary due to Equation (20), while on all the remaining

3 Following from Equations (2) and (3), and from the fact that 𝑢z = 0 for the current problem, 𝐸zz = 0 in 𝑬.
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F IGURE 3 Simulation of the manufactured solution in the context of the FCM. The red region indicates the cut cells intersected by
𝜕Ωvoid. FCM, finite cell method.

(A) (B)

F IGURE 4 Global accuracy of the FCM simulation when reproducing the manufactured solution. FCM, finite cell method.

faces, 𝒖h is restricted in the normal direction. Furthermore, the material properties are chosen as 𝐸 = 50 and 𝜈 = 0.34.
Note that the simulation is conducted in Cartesian coordinates, thus, when applying the prescribed displacements and
body loads, an appropriate transformation of the coordinates is required. For the numerical integration of Equation (14)
in the cut cells (red cells in Figure 3A), several approaches could be applied that were shown to yield reliable results even
for non-linear analysis [2, 3]. In this example, however, due to the cylindrical shape of the void region, we use the smart
octree numerical integration scheme based on integration sub-cells, that are perfectly aligned to the curved boundary via
blending functions [8]. Thus, the integration error is basically eliminated from the current problem. For the integration
points within the fictitious domain, 𝛼 = 10−12 is used.
We perform convergence studies for 𝑝 = 1 and 2 (Serendipity family), while using a uniform discretization by 32, 52, 72,

92 and 112 finite cells in the 𝒆1–𝒆2-plane, and 2 finite cells in the 𝒆3-direction5. In all cases, 20 load steps are used. Figure 3B
depicts the highly deformed deformation state at the last load step using the finest discretization and 𝑝 = 2. Already here,
basically vanishing radial displacements at the hole’s boundary can be observed6, indicating a highly accurate solution. In
Figure 4A, the strain energy is depicted over the different load steps for 𝑝 = 1 and 2. In both cases, the numerical results
correspond to a discretization by 3 × 3 × 2 finite cells. Figure 4A reveals that already for 𝑝 = 2, the manufactured solution

4 The chosen values correspond to 𝜆 = 28.846153846153847 and 𝜇 = 19.230769230769230.
5 Knowing that the manufactured displacement we are seeking to reproduce is 0 in the depth-direction, a fine discretization along 𝒆3 is not required.
6 Note that the true displacement value at 𝜕Ωvoid is also dependent on the post-processing resolution in the cut cells.
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F IGURE 5 Contour plots for evaluating the local deviation of the numerical solution from the manufactured one.

is very well reproduced, not only at the end of the simulation, but throughout the entire deformation process. This is due
to the fact, that owing to Equation (19), the hole’s boundary is traction-free for all values of Λ𝑗 . For further validation of
the approach, the relative error of the displacement field in the 𝐿2-norm is evaluated

𝜖 =
||𝒖 − 𝒖h||𝐿2||𝒖||𝐿2 × 100% with ||𝒇||𝐿2 =

⎛⎜⎜⎜⎝ ∫
Ωphys

𝒇 ⋅ 𝒇 d𝑿

⎞⎟⎟⎟⎠

1∕2

(22)

for the last deformation step. On the right, the 𝐿2-norm for an arbitrary vector field 𝒇 is defined. Furthermore, ||𝒖 −
𝒖h||𝐿2 is computed on the FCM mesh, while the reference value ||𝒖||𝐿2 is evaluated analytically using Mathematica.
The corresponding results are depicted in Figure 4B, where the theoretical algebraic convergence rates are obtained, as
indicated by the black lines.7,8
Finally, in Figure 5, the local errors are investigated by evaluating the absolute deviations |𝑢r − 𝑢hr | and |𝑃rr − 𝑃hrr| for the

last solution step computed with the finest discretization and 𝑝 = 2. Figure 5A reveals, that while the biggest deviations
occur at the immersed boundary, even these are negligibly small, which is in good agreement with Figure 3B. Similarly,
in Figure 5B, very low errors at the free boundary can be observed.

4 CONCLUSION

In this contribution, the MoMS was presented as a fast and reliable code verification approach for immersed boundary
methods, such as the FCM. We have shown, that with some additional care, analytical manufactured solutions can be
derived even for non-linear analyses, such that boundary conditions on the immersed boundaries are readily fulfilled
throughout the entire deformation process. Thus, a weak imposition of Dirichlet boundary conditions can be completely
avoided in the simulation. Furthermore, the derived manufactured solution is available in a closed-form for load steps,
enabling a highly accurate and simple error estimation of the entire non-linear FCM simulation. Finally, we have shown
that with the carefully derived body loads, the reference solution can be indeed reproduced, and theoretical convergence

7 Since the manufactured displacement is zero in 𝒆3-direction, and the mesh is refined only in the 𝒆1–𝒆2-plane, the obtained theoretical convergence
rates correspond to a 2D case, although the simulation is performed in 3D.
8 Note that although 𝑢̂r(𝑟) is a quadratic function of 𝑟, when expressed in Cartesian coordinates by 𝑟 =

√
𝑋2
1
+ 𝑋2

2
, the square root term cannot be fully

eliminated from the displacement field. Thus 𝑢̂r(𝑟) cannot be exactly approximated by the polynomial Ansatz space of the FCM simulation.
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rates when performing various ℎ-refinements can be obtained. This indicates not only an error-free implementation of
the non-linear FCM code, but also the suitability of the proposed code verification framework itself.
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