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Abstract
This contribution aims to characterize and model the nonlinear elastic behav-
ior of cables for reliable simulations. To simulate the nonlinear elastic behavior
of cables, we use an iterative method, where at each step, an algorithmic local
bending stiffness constant is used and updated according to the current cable
state. We also formulate an inverse problem to determine the properties of real
cables. By solving the inverse problem, the nonlinear elastic behavior for given
measurement data is identified, yielding a curvature-dependent bending stiff-
ness characteristic. In addition, we propose an alternative method based on the
balance equations for rods in static equilibrium to identify the bending stiffness
characteristic. We apply both methods to experimental data, and the results are
compared and discussed.

1 INTRODUCTION

Flexible structures, such as cables and hoses, are widely used in the automotive industry [1]. The demand to reliably sim-
ulate such structures is, therefore, increased. Cosserat rod theory provides a suitable framework to model such flexible
structures in a geometrically exact way. Linn et al. [2, 3] described a robust and efficient framework, in which the static
equilibrium of the Cosserat rod is calculated by minimizing the potential energy. However, in these works, only linear
elasticity was considered. For cables with more complex structures and materials, nonlinear elasticity plays an important
role. We can observe such nonlinear elasticity in both pure bending tests [4] and MeSOMICS bending test [5]. In this
work, we use a curvature-dependent bending stiffness characteristic to represent the nonlinear elastic bending behav-
ior. To simulate such behavior, we presented an iterative method [6] based on the framework in Linn et al. [2]. In each
iteration, the static equilibrium is calculated byminimizing the potential energy for linear elastic behavior, where an algo-
rithmic local bending stiffness constant is included. The algorithmic local bending stiffness constant is updated according
to a given curvature-dependent bending stiffness characteristic, and the iteration is repeated until the convergence of the
cable state is achieved. Furthermore, we present two methods to determine the bending stiffness characteristics of real
cables: an inverse problem and a method based on the equilibrium equations of the Cosserat rod. Since only quasi-static
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F IGURE 1 Left: Continuous Cosserat rod in ℝ2. Right: Discrete Cosserat rod in ℝ2.

experiments were considered to date, dynamic effects such as damping are not considered in the simulations presented in
this work.

2 COSSERAT ROD IN TWO-DIMENSIONAL SPACE

In this section, we show a brief introduction of the Cosserat rod in two-dimensional space, which was introduced in our
previous works in Zhao et al. [6, 7].
The Cosserat rod in two-dimensional space (see Figure 1) consists of a centerline (𝑥(𝑠), 𝑦(𝑠))𝑇 ∈ ℝ2 and the rotation

angle 𝛼(𝑠) parametrizing the local frame with rotation matrix

𝖱(𝑠) =

(
cos(𝛼(𝑠)) − sin (𝛼(𝑠))

sin (𝛼(𝑠)) cos (𝛼(𝑠))

)
, (1)

where the curve parameter 𝑠 ∈ [0, 𝐿] is the arc length of the centerline in the reference configuration of the rod.
The curvature of the moving frame, which approximately corresponds to the curvature of the centerline, and the

material tangent vector, which contains the components of the centerline tangent vector w.r.t the local frame, are given
by

𝐾(𝑠) = 𝛼′(𝑠) and ΓΓΓ(𝑠) =

(
Γ1(𝑠)

Γ2(𝑠)

)
= 𝖱(𝑠)𝑇

(
𝑥(𝑠)

𝑦(𝑠)

)′

. (2)

The difference functions Δ𝐾(𝑠) = 𝐾(𝑠) − 𝐾̂0(𝑠) and ΔΓΓΓ(𝑠) = ΓΓΓ(𝑠) − ΓΓΓ0(𝑠) represent the deviation of𝐾(𝑠) andΓΓΓ(𝑠) from the
reference values 𝐾̂0(𝑠) and ΓΓΓ0 = (1, 0)𝑇 .
Following the work in Linn et al. [2], the static equilibrium state of the cables can be obtained by minimizing the

potential energy

𝑊 =
1

2 ∫
𝐿

0

ΔΓΓΓ𝑇(𝑠)𝖢ΓΓΓΔΓΓΓ(𝑠)𝑑𝑠 +
1

2 ∫
𝐿

0

[𝐸𝐼]Δ𝐾(𝑠)2𝑑𝑠, (3)

where the first term represents the shear and tension energy, and the second term represents the bending energy. The
effective tension stiffness [𝐸𝐴] and effective shear stiffness [𝐺𝐴] are assembled in the diagonal coefficient matrix 𝖢ΓΓΓ =
diag([𝐸𝐴], [𝐺𝐴]) and [𝐸𝐼] is the effective bending stiffness.
The discrete potential energy can be written as

𝑉 =
1

2

𝑁−1∑
𝑖=0

Δ𝑠𝑖+1∕2(ΔΓΓΓ𝑖+1∕2)
𝑇𝖢ΓΓΓΔΓΓΓ𝑖+1∕2 +

1

2

𝑁∑
𝑖=0

𝛿𝑠𝑖[𝐸𝐼]Δ𝐾
2
𝑖
, (4)
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F IGURE 2 Top-view of real bending experiment on cable 1. Left: Cable configuration (a), with applied displacement 𝑑. Middle: Cable
configuration (b), with applied displacement 2𝑑. Right: Cable configuration (c), with applied displacement 3𝑑.

where the index 𝑖 denotes vertex quantities at 𝑠𝑖 for 𝑖 = 0, … ,𝑁 and 𝑖 + 1∕2 denotes edge-centered quantities at 𝑠𝑖+1∕2 for
𝑖 = 0, … ,𝑁 − 1. More details about the derivation from the continuous case can be found in Linn et al. [2].

3 BENDING EXPERIMENTS

Real and virtual bending experiments are performed to study the bending behavior of cables.
The real experiments are performed on theMeSOMICSmeasurement machine [5]. As shown in Figure 2, the specimen

is clamped at both ends. Both clamping devices are inserted in (approximately) moment-free bearings. The left clamping
point is stepwise shifted towards the right clamping point, resulting in corresponding bending deformations. By moving
back to the start point, one bending cycle is achieved. Such cycle repeats five times, and here, we evaluate the fourth cycle.
Meanwhile, the resulting reaction force is measured at the right clamping point. For each configuration, the bending
deformations are recorded by a camera and the corresponding cable centerline is detected. Figure 2 shows the captured
bending deformation of a cable specimen (cable 1) with length 𝐿 = 181mm and diameter 𝑑 = 4.6mm (cross section as
shown in the left picture of Figure 3). The three images in Figure 2 show cable configurations (a), (b), and (c) with applied
displacements of 𝑑, 2𝑑, and 3𝑑, respectively. Furthermore, we perform the bending experiment on a high-voltage cable
specimen (cable 2), which has a length of 226mm and a diameter of 17.4mm, the cross section is as shown in the right
picture of Figure 3.
We also perform virtual bending experiments in a two-dimensional space by using the Cosserat rod model from Sec-

tion 2. The boundary conditions of the virtual experiment are the same as those for the real experiment. In the virtual
experiment, both ends are moment-free. By applying displacements to one end, the resultant forces on the other end
are computed.

4 SIMULATING NONLINEAR ELASTIC BEHAVIOR

To represent the nonlinear elastic bending behavior, we introduce a curvature-dependent bending stiffness characteristic
𝑓𝐸𝐼(𝜅). With that, the bending energy term is written as

𝑉𝐵,𝑛𝑙 =

𝑁∑
𝑖=0

𝛿𝑠𝑖 ∫
𝐾𝑖

𝐾̂0,𝑖
∫

𝜉

𝐾̂0,𝑖

𝑓𝐸𝐼(𝜅)𝑑𝜅𝑑𝜉. (5)

F IGURE 3 Left: Cross section of cable 1. Right: Cross section of cable 2.
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TABLE 1 Model parameters for virtual bending experiment.

𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫 𝑳 𝜿̂𝟎 𝜿̂𝟏 𝜿̂𝟐 ̂[𝑬𝑰]𝟎
̂[𝑬𝑰]𝟏

̂[𝑬𝑰]𝟐 𝑲̂𝟎,𝒊 𝑵 [𝑬𝑨] [𝑮𝑨]

𝐔𝐧𝐢𝐭 [m] [m−1] [m−1] [m−1] [Nm2] [Nm2] [Nm2] [m−1] − [N] [N]

𝐕𝐚𝐥𝐮𝐞 0.2 0 5 10 1 ⋅ 10−3 3 ⋅ 10−3 3.5 ⋅ 10−3 0 11 1000 1000

Using 𝑉𝐵,𝑛𝑙 as bending energy term, the energy minimization problem could be solved directly. However, this requires
expensive computations. To use the curvature-dependent bending stiffness characteristic with Cosserat rod in two-
dimensional space (as described in Section 2) whilemaintaining its efficiency, we use an iterativemethod. In each step, we
still consider linear elasticity and solve the static equilibrium by energyminimization.More precisely, an algorithmic local
bending stiffness constant is applied here. In the 𝑚th iteration step, a given cable state (𝑥𝑚

𝑖
, 𝑦𝑚

𝑖
), 𝑖 = 0, … ,𝑁 and 𝛼𝑚

𝑖+1∕2
,

𝑖 = 0, … ,𝑁 − 1 yields corresponding curvatures𝐾𝑚
𝑖
. The algorithmic local bending stiffness constant is updated according

to the given bending stiffness characteristic and the curvatures 𝐾𝑚
𝑖
. Then minimizing the potential energy leads to a new

equilibrium state (𝑥𝑚+1
𝑖

, 𝑦𝑚+1
𝑖

), 𝛼𝑚+1
𝑖+1∕2

and corresponding curvatures 𝐾𝑚+1
𝑖

. This process is repeated until the cable state

converges, that is,
∑𝑁

𝑖=0
𝛿𝑠𝑖 ⋅ |𝐾𝑚

𝑖
− 𝐾𝑚+1

𝑖
| < 𝑡𝑜𝑙 is fulfilled. More technical details regarding the iterative method can be

found in Zhao et al. [6].
We perform virtual bending experiments to demonstrate the iterative method. Here, the curvature-dependent bend-

ing stiffness characteristic is parametrized using a natural cubic spline with three control points, denoted by (𝜅̂0, ̂[𝐸𝐼]0),
(𝜅̂1, ̂[𝐸𝐼]1) and (𝜅̂2, ̂[𝐸𝐼]2). We also perform a virtual bending experiment with a direct solution for the bending energy
term in Equation (5) as reference solution to validate the iterative method. The model parameters are listed in Table 1.
The plots in Figure 4 show the discrete curvature 𝐾𝑖 over the arc length 𝑠𝑖 for the cable states in the single iteration

steps, while the boundary conditions are unchanged. One can observe that after six iterations, the curvature in the iterative
method converges to the curvature values of the reference solution (illustrated by the black dashed line). Figure 5 plots the
horizontal reaction force virtually measured at the fixed end point for a sequence of applied displacements. A very good
agreement is observed between the horizontal reaction force simulated by iterative method and the reference solution.
Moreover, the iterativemethod is computationally more efficient (in this example, approximately five times faster) than

directly solving the energy minimization problem with Equation (5).

5 IDENTIFICATION OF NONLINEAR ELASTIC BEHAVIOR

Above, we discussed how to utilize a bending stiffness characteristic, that is, nonlinear elastic behavior, in our cable
simulation. Now, our focus shifts to determining the bending stiffness characteristic from given measurement results.

F IGURE 4 Discrete curvatures in each iteration.
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F IGURE 5 Horizontal reaction force obtained at the fixed end point, resulting from varying displacements.

5.1 Inverse problem

To determine the bending stiffness characteristic, we formulate an inverse problem (see Zhao et al. [6, 7]). Our objective
is to determine a bending stiffness characteristic that allows the simulated horizontal reaction force and curvature of the
cable to closely align with the actual measured force and the cable curvature obtained from the bending tests.
As described in Section 4, the curvature-dependent bending stiffness characteristic is parametrized by a natural cubic

spline with three control points. For simplicity, we assume that 𝜅̂0, 𝜅̂1, and 𝜅̂2 are fixed, and consider only ̂[𝐸𝐼]0, ̂[𝐸𝐼]1, and
̂[𝐸𝐼]2 as optimization variables. Furthermore, we take into account the influence of the precurvature 𝐾̂0(𝑠) by including

it as an optimization variable. This is necessary, because on one hand, the cable specimen under investigation is not
perfectly straight in the absence of applied loading, but instead slightly bent. On the other hand, the precurvature can also
approximate the impact of the plastic curvature due to (cyclic) bending. This additional plastic curvature only occurs in
regions of strong bending curvature. So in general, the precurvature 𝐾̂0(𝑠) can explicitly depend on the arc length 𝑠 and vary
along the cable. However, in thiswork, we consider the precurvature as constant, denoted as 𝐾̂0. Using such a precurvature
𝐾̂0(𝑠) as an optimization variable can capture the plastic effect to a certain extent, albeit in a rough approximation. The
optimization is performed using a Levenberg–Marquardt method in MATLAB [8].
We apply the real bending experiment data to the inverse problem and aim to find the characteristic 𝑓𝐸𝐼(𝜅) for a real

cable. The bending experiment and the cable used in test is detailed in Section 3.
The identified bending stiffness characteristic for cable 1 is shown in Figure 6. The blue dashed line represents the solu-

tion of the inverse problem without consideration of the precurvature, that is, with a priori defined precurvature 𝐾̂0 = 0.

F IGURE 6 Identified bending stiffness characteristic (with set 𝐾̂0 = 0 and 𝐾̂0 as optimization variable) for cable 1.
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F IGURE 7 Measured and simulated force for cable 1 (blue: with dashed blue characteristic and 𝐾̂0 = 0; orange: with solid orange
characteristic and identified 𝐾̂0).

The solid orange line shows the solution of the inverse problem obtained when the precurvature is considered as an
optimization variable (identified precurvature 𝐾̂0 ≈ 3.1m−1). Looking at the corresponding simulated forces in Figure 7
(orange and blue dashed lines), both characteristics lead to good matches with the measured forces (black dashed line).
However, comparing the two identified characteristics (see Figure 6), the solution without consideration of the precurva-
ture exhibits negative values for low curvatures, while considering the precurvature as an optimization leads to a more
realistic bending stiffness characteristic. This indicates that it is important to include precurvature in the optimization.
Furthermore, the solution of the inverse problem with consideration of precurvature (see Figure 6) shows an almost
constant bending stiffness, which is plausible due to the simple structure of this cable.
Furthermore, we evaluated the cable 2, which has amore complex structure. The identified bending stiffness character-

istic is shown in Figure 8 (identified precurvature≈ 3.9m−1). It is clear that for this cable, the bending stiffness varies with
its curvature. Moreover, as shown in Figure 9, the simulated force using the identified characteristic and the precurvature
is in good agreement with the measured value.
Overall, when applied to experimental data, solving the inverse problem yields physically plausible bending

stiffness characteristics.

F IGURE 8 Identified bending stiffness characteristic for cable 2.
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F IGURE 9 Measured and simulated force for cable 2.

5.2 Balance equations and (𝜿, 𝒇𝑬𝑰(𝜿))-graph

In order to evaluate the bending stiffness characteristic determined as a solution of the inverse problem, we introduced
an alternative approach in Zhao et al. [7], which is based on the balance equations for a Cosserat rod.
First, we summarize such a observables-based method as described in Zhao et al. [7].
In the absence of external body forces and moments acting on the Cosserat rod, the equilibrium equations are given by

𝜕𝑠𝐟 = 𝟎, (6)

𝜕𝑠𝐦 + 𝜕𝑠𝜑𝜑𝜑 × 𝐟 (𝑠) = 𝟎, (7)

where𝜑𝜑𝜑(𝑠) = (𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠))𝑇 ∈ ℝ3 is the centerline of the rod, 𝐟 (𝑠) = (𝑓𝑥(𝑠), 𝑓𝑦(𝑠), 𝑓𝑧(𝑠))𝑇 ∈ ℝ3 is the force vector, and
𝐦(𝑠) = (𝑚𝑥(𝑠),𝑚𝑦(𝑠),𝑚𝑧(𝑠))𝑇 ∈ ℝ3 is the moment vector. Equations (6) and (7) hold independent of the constitutive
behavior of the rod [9].
Integrating Equations (6) and (7) leads to

𝐟 (𝑠) = 𝐟 , (8)

𝜕𝑠𝐦 + 𝜕𝑠𝜑𝜑𝜑 × 𝐟 (𝑠) = 𝟎, (9)

here 𝐟 and are constant along the rod.
In two-dimensional space, for the rod in the x–y plane (see Figure 1), it holds 𝜑𝜑𝜑(𝑠) = (𝑥(𝑠), 𝑦(𝑠), 0)𝑇,

𝐟 (𝑠) = (𝑓𝑥(𝑠), 𝑓𝑦(𝑠), 0)𝑇 , and𝐦(𝑠) = (0, 0,𝑚(𝑠))𝑇 . Thus, Equation (9) can be written as

𝑚(𝑠) + 𝑥(𝑠)𝑓𝑦 − 𝑦(𝑠)𝑓𝑥 = , (10)

where is a constant scalar.
For our bending experiment (see Figure 2), at both simply supported end points, the bending moment fulfills𝑚(0) = 0

and 𝑚(𝐿) = 0. Since the relative displacement of the boundary conditions is applied along the x-axis and both ends are
moment-free, the reaction force in y-direction vanishes, that is, 𝑓𝑦 = 0. Moreover, we choose the origin, such that = 0,
that is, such that 𝑦(0) = 0. Thus, Equation (10) simplifies to𝑚(𝑠) = 𝑦(𝑠)𝑓𝑥, which represents the bending moment at arc
length 𝑠.
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F IGURE 10 Simulated bending configurations (a), (b), and (c).

When [𝐸𝐴] and [𝐺𝐴] are relatively large (see Table 1), the Cosserat model can be approximated as an inextensible
Kirchhoff model. Therefore, the curvature of the bending line can be further calculated using 𝐾(𝑠) = 𝑑𝜃(𝑠)

𝑑𝑠
, where 𝜃(𝑠) =

arctan(
𝑑𝑦

𝑑𝑥
). The state-dependent bending stiffness for curvature 𝐾(𝑠) can be obtained by 𝑑𝑚(𝜅)

𝑑𝜅
|𝜅=𝐾(𝑠) =∶ 𝑓𝐸𝐼(𝐾(𝑠)).

Therefore, given the measured horizontal reaction force and the optically detected bending line, we can determine the
bending stiffness 𝑓𝐸𝐼(𝐾(𝑠)) at curvature 𝐾(𝑠). Since our bending experiment results in a range of curvatures in the rod,
we obtain a (𝐾(𝑠), 𝑓𝐸𝐼(𝐾(𝑠)))-graph for each configuration.
The experimental data of cable 1, which are applied to the inverse problem, are further used to generate (𝜅, 𝑓𝐸𝐼(𝜅))-

graphs.
Figure 10 displays the (𝐾(𝑠), 𝑓𝐸𝐼(𝐾(𝑠)))-graphs for configurations (a), (b), and (c) (see Figure 11), which correspond

to the pictures in Figure 2. We observe good consistency among the three identified graphs, indicating the potential to
combined them into one single bending stiffness characteristic. However, when comparing the results with those from
the inverse problem (the red line in Figure 10), we observe clear deviations. While the order of magnitude is similar, there
are clear qualitative discrepancies. Investigating the source of such discrepancies is a topic of our current research.

F IGURE 11 (𝐾(𝑠), 𝑓𝐸𝐼(𝐾(𝑠)))-graphs determined by method based on balance equations, together with the 𝑓𝐸𝐼(𝜅) identified via the
inverse problem.



9 of 9

6 SUMMARY AND OUTLOOK

In this work, we presented two aspects related to investigating the simulation of nonlinear elastic behavior in cables.
First, the iterative method demonstrates that we can correctly and efficiently simulate the nonlinear elastic behavior.
Additionally, the corresponding inverse problem allows us to access the experimentally observed nonlinear elastic behav-
ior of cables. The identified characteristic including the influence of the precurvature yields physical plausible results. The
observables-based method offers the potential to directly identify the bending stiffness characteristic from the optically
detected bending line and measured reaction force. Nevertheless, there are discrepancies between the results from the
inverse problem and the observables-based (𝐾(𝑠), 𝑓𝐸𝐼(𝐾(𝑠)))-graphs, the further comparison of these results remains of
interest. Our next step is to understand the source of such discrepancies.
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