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Abstract: Dyskeratosis Congenita (DC) is a multisystem disorder intrinsically associated with telom-
ere dysfunction, leading to bone marrow failure (BMF). Although the pathology of DC is largely
driven by mutations in telomere-associated genes, the implications of gene fusions, which emerge
due to telomere-induced genomic instability, remain unexplored. We meticulously analyzed gene
fusions in RNA-Seq data from DC patients to provide deeper insights into DC’s progression. The
most significant DC-specific gene fusions were subsequently put through in silico assessments to
ascertain biophysical and structural attributes, including charge patterning, inherent disorder, and
propensity for self-association. Selected candidates were then analyzed using deep learning-powered
structural predictions and molecular dynamics simulations to gauge their potential for forming
higher-order oligomers. Our exploration revealed that genes participating in fusion events play
crucial roles in upholding genomic stability, facilitating hematopoiesis, and suppressing tumors.
Notably, our analysis spotlighted a particularly disordered polyampholyte fusion protein that exhibits
robust higher-order oligomerization dynamics. To conclude, this research underscores the potential
significance of several high-confidence gene fusions in the progression of BMF in DC, particularly
through the dysregulation of genomic stability, hematopoiesis, and tumor suppression. Addition-
ally, we propose that these fusion proteins might hold a detrimental role, specifically in inducing
proteotoxicity-driven hematopoietic disruptions.

Keywords: Dyskeratosis congenita; telomere disorders; bone marrow failure; genomic instability;
gene fusions; RNA-Seq; polyampholytes

1. Introduction

Dyskeratosis Congenita (DC) is a genetically heterogeneous, multisystem disorder
that presents a spectrum of clinical manifestations, with bone marrow failure (BMF) being
one of its most severe outcomes. Classically recognized by a tetrad of oral leukoplakia, nail
dystrophy, reticular skin pigmentation, and pulmonary fibrosis, DC has become emblematic
in the field of telomere biology [1].

The genetic underpinning of DC lies in its relationship with telomeres, the repetitive
nucleotide sequences and protein complexes that cap and protect the ends of eukaryotic
chromosomes. These telomeric regions safeguard the genome by preventing chromosomal
end-to-end fusions, exonucleolytic degradation, and aberrant recombination events. Mu-
tations in genes responsible for the synthesis, maintenance, and protection of telomeres
disrupt the usual equilibrium of telomere length homeostasis. Defects in genes encoding for
components of the telomerase complex, like TERT and TERC, or those encoding shelterin
proteins, like TINF2, or even Dyskerin, encoded by the DKC1 gene, have all been implicated
in DC. The resultant telomere dysfunction is central to the pathogenesis of DC, culminating
in the clinical phenotype of premature aging and organ dysfunction, with the bone marrow
often being the most critically affected organ [1,2]. Cytogenetic studies have also revealed
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that both structural and numerical chromosomal aberrations are common manifestations
in DC, playing a critical role in its pathology and influencing disease progression. These
aberrations are also suggested to promote genomic rearrangements [3–6].

While strides have been made in identifying the genetic culprits of DC and under-
standing their role in telomere biology, the downstream genetic repercussions, like the
occurrence of gene fusions due to genomic instability, remain relatively uncharted. In
the context of DC and its resultant bone marrow failure, could gene fusions arising from
telomere-induced genomic instability play a role in the pathogenesis? Recognizing and
mapping these gene fusions could provide profound insights into disease progression and
even potential therapeutic targets.

Here, we postulated that telomere dysfunction may induce genomic instability, leading
to chromosomal rearrangements, specifically gene fusions. These fusions, commonly
identified in diverse malignancies [7], might exacerbate the pathogenesis of BMF in DC. To
address this hypothesis, we adopted a multifaceted approach to explore gene fusions in
DC. By leveraging the power of next-generation sequencing and bioinformatic analyses,
we aimed to elucidate the landscape of gene fusions in DC and highlight the importance
of several high-confidence gene fusions potentially involved in BMF progression in DC.
Concurrently, this endeavor extends to modeling the conformational and self-association
dynamics of emergent highly disordered polyampholyte fusion proteins, probing their
potential role in proteotoxicity-mediated hematopoietic anomalies.

2. Results
2.1. Identification of Gene Fusions Associated with Dyskeratosis Congenita

In this work, an extensive analysis of gene fusions was undertaken to discern their
potential influence on Dyskeratosis Congenita (DC) pathogenesis. Utilizing next-generation
RNA sequencing data from 219 lung epithelial cell samples—encompassing both DC
patients and healthy individuals—280 novel, high-confidence gene fusions were identified
that might be implicated in the DC phenotype (Suppl. Table S1). Comprehensive listings of
gene fusion findings from DC patients (Suppl. Table S2) and healthy participants (Suppl.
Table S3) are provided in the supplementary tables. Subsequent refinement, considering
non-zero sequence coverages, split reads, and discordant mates, spotlighted 32 paramount
in-frame gene fusions, as detailed in Table 1.

Table 1. A comprehensive summary of DC-specific in-frame gene fusions.

Gene 1 Gene 2 Breakpoint 1 Breakpoint 2 Type Split
Reads 1

Split
Reads 2

Discordant
Mates

ABHD18 ZBTB38 4:128011700 3:141445718 translocation 15 22 19

AKAP13 ACSL3 15:85669830 2:222922708 translocation 4 2 1

AKAP13 NAA25 15:85645954 12:112039339 translocation 12 22 11

ARF4 UPF2 3:57575548 10:12035441 translocation 3 2 7

ARHGAP17 PPARA 16:24964197 22:46218263 translocation 2 9 4

C3ORF52 VIM 3:112093489 10:17236294 translocation 8 8 7

CAAP1 DAPK3 9:26884810 19:3969829 translocation 5 20 15

CUL1 RHEB 7:148767749 7:151467211 inversion 2 4 7

DNAJC11 CAMTA1 1:6701729 1:6820181 inversion 4 5 2

GOLGB1 SDR16C5 3:121722262 8:56309027 translocation 12 14 11

GRAMD2B FCHO2 5:126371567 5:72989427 duplication 8 8 14

HSF2 RP5-1148A21.4 6:122423686 6:63576436 duplication 1 3 13

KMO DPYD 1:241532498 1:97193248 inversion 1 4 4
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Table 1. Cont.

Gene 1 Gene 2 Breakpoint 1 Breakpoint 2 Type Split
Reads 1

Split
Reads 2

Discordant
Mates

LIPH TOMM20 3:185552423 1:235122372 translocation 3 6 6

LRRC31 LRRC34 3:169854813 3:169808745 deletion/
read-through 17 11 16

LRRFIP1 PTMA 2:237627740 2:231711348 duplication 2 6 5

MACF1 NUAK2 1:39388658 1:205311825 inversion 14 11 31

MAP7 YLPM1 6:136550342 14:74829213 translocation 5 9 5

METAP1 PNRC1 4:98995867 6:89083753 translocation 6 8 11

METAP1 PPA2 4:99043387 4:105399164 inversion 6 1 5

NAPA PSMB1 19:47514843 6:170549113 translocation 1 2 4

PALMD RB1CC1 1:99646362 8:52658976 translocation 2 1 3

QKI LEF1 6:163535125 4:108089257 translocation 8 14 15

RBMS3 FOXO3 3:29281756 6:108663455 translocation 7 11 6

RGS2 REV3L 1:192809181 6:111405630 translocation 5 1 2

RRM2B EBAG9 8:102212776 8:109550810 inversion 2 1 1

SEM1 USP38 7:96694798 4:143195716 translocation 2 2 1

TDRD3 ADGRV1 13:60467379 5:90756979 translocation 7 9 19

THBS1 LYSMD2 15:39587520 15:51725121 inversion 20 17 29

TMEM241 ESCO1 18:23437781 18:21540700 deletion 3 5 3

VPS13C CALM2 15:62044212 2:47170764 translocation 1 4 6

ZNF638 SCAPER 2:71350271 15:76665789 translocation 2 2 2

Column descriptions: Gene1 and Gene2: ‘Gene1’ represents the gene contributing the 5′ end of the transcript,
while ‘Gene2’ represents the gene contributing the 3’ end. Breakpoint1 and Breakpoint2: These columns display
the genomic coordinates where the breakpoints occur in ‘Gene1’ and ‘Gene2’, respectively. Type: This column
describes the kind of genomic event, inferred from the orientation of supporting reads and breakpoint coordinates.
Possible events include Translocation (occurring between different chromosomes), Duplication, Inversion, Dele-
tion, and Read-Through (deletions within intron size (<400 kb)). Split_reads1 and Split_reads2: These represent
the count of split fragments anchored in ‘Gene1’ or ‘Gene2’. The gene aligned with the larger segment of the split
read is termed the anchor. Discordant_mates: This column tallies the number of paired fragments, also known as
spanning or bridge reads, supporting the fusion event. For detailed explanations refer to Uhrig et al. (2021) [8].

2.2. Genes Engaged in Fusion Events Predominantly Govern Genomic Integrity, Hematopoiesis,
and Tumor Suppression

Interestingly, a significant portion of the genes implicated in fusion events (Table 1)
play roles in preserving genomic stability. These include CAMTA1 [9], ESCO1 [10,11],
FOXO3 [12–14], GOLGB1 [15], MAP7 [16], REV3L [17], RRM2B [18], USP38 [19], VIM [20],
and ZBTB38 [21]. They are involved in DNA replication, ensuring accurate genetic material
duplication, and DNA repair mechanisms that fix damage. These genes also maintain
chromosomal integrity and participate in wider genome maintenance tasks, including
chromatin organization and cell cycle regulation. A disruption in these genes’ function,
due to fusion events, can lead to genomic instability, a precursor to conditions like cancer.

Besides genomic stability, genes crucial for the homeostasis and function of platelets,
hematopoietic cells, and leukocytes were also identified. Notable among these are ARHGAP
17 [22], LEF1 [23], LRRFIP1 [24,25], METAP1 [26], PNRC1 [27], PTMA [28], and THBS1 [29].
These cells, each with a distinctive role, collectively maintain the body’s hemostatic home-
ostasis. When gene functions integral to the development, proliferation, or differentiation
of these cells are disrupted, particularly due to fusion events, the repercussions can be
profound. Such disruptions in key genes can skew the balance of hematopoiesis, derailing
the normal production and function of these cells. For instance, LRRFIP1 serves as a key



Int. J. Mol. Sci. 2024, 25, 1606 4 of 19

component of the platelet cytoskeleton, interacting with actin-remodeling proteins such as
Flightless-1 and Drebrin [25]. Moreover, THBS1 influences platelet activation by modulat-
ing inhibitory cyclic adenosine monophosphate signaling [29]. The disruption of LRRFIP1
and THBS1 protein expression through gene fusions in DC could lead to adverse effects on
platelet hemostasis, manifesting as dysregulated cytoskeletal architecture and impaired
activation of platelets. Over time, this can culminate in bone marrow failure, wherein
the marrow becomes unable to produce adequate numbers of vital blood cells, leading
to a myriad of health complications, ranging from increased susceptibility to leukemia/
myelodysplastic syndromes (MDS), immunodeficiency, infections, and anemia.

Tumor suppressor genes are pivotal in regulating cell growth and preventing cancer.
However, when involved in gene fusions, they can produce aberrant chimeric proteins
that may lose their tumor-suppressing abilities, gain harmful functions, or exert dominant-
negative effects. Such disruptions can lead to uncontrolled cell growth and contribute
to cancer development [30]. Within the gene fusions identified in this research, many
genes have been linked to tumor-suppressing activities. These include ARHGAP17 [31],
CAMTA1 [32,33], DAPK3 [34], FOXO3 [35], HSF2 [36], LEF1 [37], PALMD [38], PNRC1 [39],
QKI [40], RB1CC1 [41], RBMS3 [42], RGS2 [43], and ZBTB38 [44]. In a twist of irony, while
tumor suppressor genes are designed to combat cancer, their participation in gene fusions
can inadvertently promote diseases like HNSCC (head and neck squamous cell carci-
noma), cSCC (cutaneous squamous cell carcinoma), and AML (acute myeloid leukemia),
as frequently observed in DC cases [45]. Supporting this, our overrepresentation network
analysis of genes from gene fusion hits of DC samples (Suppl. Table S1) revealed a signifi-
cant enrichment in specific TCGA cancer subtypes, including HNSCC and cSCC (Suppl.
Figure S1).

Furthermore, we investigated whether gene fusions specific to DC occur more fre-
quently near the chromosomal ends, proximal to telomeric regions, given the known
dysregulation of telomere end processing in DC patients. To explore this, we applied the
same evaluation strategy used in Supplementary Table S1 to the gene fusion data from
healthy samples. This analysis resulted in the creation of a high-confidence list of gene
fusion events, as presented in Supplementary Table S4. This fusion data was further plotted
in a Circos representation together with DC-specific data (Suppl. Table S1) for comparative
visualization of the genomic locations and frequency of gene fusions between these two sets.
The findings suggest that genomic rearrangements of both groups are highly heterogeneous
and do not show a significantly enriched frequency of gene fusions located at telomeric
regions in DC samples (Figure 1A).

Subsequently, a Gene Ontology analysis was conducted on the genes implicated in
fusion events within healthy samples. This analysis aimed to ascertain whether the genes
involved in DC-specific gene fusions are exclusively associated with roles in genomic sta-
bility, hematopoiesis, and tumor suppression. The results, illustrated in Figure 1B, revealed
a significant enrichment of genes associated with processes like calcium ion export, miRNA
processing, the steroid hormone pathway, developmental growth, mRNA splicing, neuron
projection development, striated muscle contraction, and fat cell differentiation. Intrigu-
ingly, the identified pathways are not directly related to genomic stability, hematopoiesis,
or tumor suppression, but are instead predominantly tissue-specific, involving the brain,
muscle, endocrine, and adipose tissues. This suggests that the gene fusion events ob-
served in healthy samples are likely non-specific to disease and lung tissue and may be
non-expressive or non-functional in this context due to their tissue-specific nature.
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Figure 1. Heterogenous nature of gene fusions. (A) A comparative Circos plot illustrating the gene
fusions identified in both DC-specific and healthy samples. (B) A Gene Ontology analysis of the gene
fusions found in healthy samples. FDR: False Discovery Rate.

In a recent study, Lin and colleagues introduced QTIP-iPOND (Quantitative Telomeric
Chromatin Isolation Protocol followed by Isolation of Proteins On Nascent DNA), a novel
methodology for analyzing the replicating telomere proteome. They employed TRF1/TRF2
immunoprecipitation to isolate the telomere proteome and implemented EdU treatment,
which labels nascent DNA at replication forks to specifically target the replicating telomere
proteome. This approach led to the identification of multiple proteins significantly enriched
in both telomeres and replicating telomeres [46]. Considering that DC is a Telomere Biology
Disorder (TBD), we sought to determine if there was any correlation between our RNA-
level gene fusion findings and this high-throughput proteomics data. We found that
the protein products of certain genes, which were identified in DC-specific gene fusions
(Table 1), show notable enrichment in telomeres. These genes include ARHGAP17, CUL1,
METAP1, PPA2, PSMB1, QKI, RRM2B, YLPM1, and ZNF638, all of which have a significant
presence in the telomere region (Figure 2A). Intriguingly, a subset of these genes, specifically
CUL1, METAP1, PPA2, PSMB1, and YLPM1, are also prevalent in replicating telomeres
(Figure 2B). Further analysis using the STRING database to explore known interactome
data has expanded our understanding significantly. This analysis revealed that multiple
genes implicated in DC-specific gene fusions are also associated with genes known to cause
DC/TBD (Figure 2C).
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Figure 2. Genes forming fusions in DC are enriched in telomeric proteome and associates with known
DC/TBD genes. (A) A volcano plot representation of the QTIP telomere proteome data from Lin
et al. (2021) [46], showcasing the enriched fusion genes identified in Table 1. (B) A volcano plot
representation of the QTIP-iPOND replicating telomere proteome data from Lin et al. (2021) [46],
also highlighting the enriched fusion genes from Table 1. (C) A protein–protein association network
analysis conducted using the STRING database, illustrating the connections between known DC/TBD
genes and the fusion genes listed in Table 1.

2.3. Chimeric Protein Proteotoxicity as a Potential Driver of BMF in DC

As a consequence of these gene fusions, there is a potential emergence of unstable,
disordered, and unfolded chimeric proteins. Such aberrant proteins can introduce pro-
teotoxic stress within cells, potentially disrupting normal cellular functions and leading to
pathological conditions [47]. Cellular proteostasis is essential for normal development, en-
vironmental stress resistance, infection management, and promoting healthy aging. Recent
studies suggest that diverse proteostasis mechanisms play a crucial role in hematopoiesis,
especially in erythropoiesis, and may function in a cell-type specific manner, particularly
within hematopoietic stem cells (HSCs) [48,49]. The proteotoxic consequences of these dis-
ordered chimeric proteins highlight the significance of gene fusions, suggesting a potential
molecular mechanism underlying the BMF observed in DC. To address this, CIDER was
used to compute charge patterning and the propensity for disorder, aiming to predict the
conformational and self-association behavior of the chimeric proteins resulting from the
gene fusions listed in Table 1. These predictions were complemented using the FuzDrop
and deePhase tools, which assess the propensity for phase separation, a characteristic fea-
ture of polyampholyte proteins—polymeric macromolecules with mixed cationic/anionic
groups. The results emphasized the chimeric protein LRRFIP1-PTMA exhibited strong
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disordered and polyampholytic properties. Notably, a high propensity for phase separation
is indicated by the FuzDrop and deePhase predictions (Table 2).

Table 2. Predictions of charge patterning, intrinsic disorder, and phase separation propensity for
in-frame fusion proteins.

Gene Fusion Length
(aa) κ

FCR
(≥0.35) NCPR Hydropathy Disorder

Promoting
Plot

Region(≥3)
FuzDrop

PLLPS

deePhase
(≥0.5)

ABHD18-ZBTB38 242 0.162 0.273 0.033 3.867 0.599 2 0.2472 0.37

AKAP13-ACSL3 1714 0.162 0.239 −0.077 3.973 0.714 1 1.0000 0.83

AKAP13-NAA25 1584 0.163 0.238 −0.07 4.032 0.704 1 1.0000 0.84

ARHGAP17-
PPARA 536 0.208 0.276 0.011 4.146 0.597 2 0.2019 0.31

C3ORF52-VIM 131 0.196 0.244 −0.092 4.292 0.603 1 0.9178 0.26

CUL1-RHEB 391 0.141 0.274 −0.008 3.925 0.614 2 0.2704 0.24

DNAJC11-
CAMTA1 1682 0.197 0.205 −0.006 4.014 0.672 1 0.9994 0.86

GOLGB1-SDR16C5 370 0.192 0.259 −0.043 4.144 0.643 2 0.6604 0.53

HSF2-RP5-
1148A21.4 423 0.223 0.267 −0.054 3.884 0.619 2 0.5350 0.67

KMO-DPYD 229 0.239 0.227 0.009 4.381 0.581 1 0.1621 0.16

LIPH-TOMM20 120 0.261 0.242 −0.008 4.413 0.617 1 0.1939 0.19

LRRC31-LRRC34 747 0.203 0.216 −0.017 4.326 0.564 1 0.1573 0.57

LRRFIP1-PTMA 128 0.417 0.562 −0.328 2.505 0.852 3 0.9949 0.66

MACF1-NUAK2 5828 0.148 0.276 −0.036 3.945 0.654 2 0.9924 0.81

MAP7-YLPM1 114 0.164 0.412 −0.009 3.366 0.772 3 0.3332 0.35

METAP1-PNRC1 185 0.152 0.238 0.065 3.76 0.649 1 0.5152 0.52

METAP1-PPA2 334 0.195 0.254 −0.003 3.996 0.626 2 0.2324 0.38

NAPA-PSMB1 236 0.128 0.246 0 4.363 0.619 1 0.2091 0.089

PALMD-RB1CC1 1046 0.117 0.324 −0.056 3.81 0.649 2 0.7123 0.81

QKI-LEF1 443 0.16 0.26 0.029 3.718 0.677 2 0.9907 0.73

RBMS3-FOXO3 491 0.277 0.167 −0.012 3.879 0.676 1 0.9996 0.85

RGS2-REV3L 3032 0.197 0.254 0.012 3.847 0.647 2 0.9999 0.84

SEM1-USP38 826 0.213 0.215 −0.044 4.185 0.61 1 0.6913 0.8

TDRD3-ADGRV1 2459 0.199 0.193 −0.053 4.562 0.593 1 0.6100 0.57

TMEM241-ESCO1 74 0.31 0.203 0.014 4.526 0.5 1 0.1198 0.17

VPS13C-CALM2 196 0.179 0.316 −0.133 4.032 0.612 2 0.1353 0.1

ZNF638-SCAPER 1003 0.198 0.2 0.011 4.086 0.616 1 0.8597 0.77

For this analysis, fusion hits with low-quality breakpoint peptide sequences were excluded to enhance the accuracy
and true positivity of the results. For a comprehensive description of the parameters and plot regions, please
consult Das and Pappu (2013) and Holehouse et al. (2017) [50,51].

The N-terminal segment (1–32 aa) of the fusion gene is derived from the LRRFIP1
gene, encoding the namesake protein, LRRFIP1. This protein plays a crucial role in the
inflammatory stress response and mediates platelet activity [24,25,52]. Conversely, the
PTMA gene, which encodes Prothymosin-A and comprises a significant portion of the
fusion gene (33–128 aa), is also implicated in the inflammatory stress response. Further
functions of Prothymosin-A include facilitation of the nuclear transport of proteins, ex-
hibition of anti-apoptotic functions, and association with various cancers due to its cell
growth-promoting activities [53].

Given the absence of resolved structures for the unique LRRFIP1-PTMA fusion protein,
its in silico self-association behavior must be evaluated using computationally generated
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higher-order oligomer structures. To achieve this, we employed AlphaFold 2 (AF2) mul-
timer modeling, currently heralded as one of the most advanced methods for complex
prediction. Its accuracy significantly surpasses traditional docking techniques, lending
credibility to the resulting structures as better models for the protein’s natural complex
formation [54]. However, historically limited accuracy of docking algorithms implies that
newer and superior methods might offer only relative improvements. Nevertheless, the
complexes depicted in Figure 3A,B align with anticipated characteristics of the fusion
protein. The computational folding of incrementally added LRRFIP1-PTMA units yields a
structure consistent with an intrinsically disordered protein complex. This complex features
an alpha-helical core structure, with the remainder of the protein remaining unstructured.
While the overall prediction scores are not exceptionally high, the score distribution remains
consistent across all complexes. A medium-low pLDDT score, ranging between 30 and 40,
characterizes the structured core, with the flexible regions scoring lower. These computa-
tional findings hint at the potential for further addition of LRRFIP1-PTMA units. However,
it is noted that the accuracy of complexes generated by AF2 tends to decrease with an
increasing number of subunits, even for homo-oligomers [54]. Consequently, beyond a
certain subunit threshold, it becomes counterproductive to continue complex prediction.
This study halted predictions upon reaching a decamer. Intriguingly, the overall score did
not diminish as markedly as anticipated.

Given the moderate scores of the generated complexes and the general declining
accuracy of AF2 modeling, a Molecular Dynamics (MD) simulation was executed to explore
the dynamics of the created octamer structure. By incorporating this protein complex into
a simulation box filled with explicit water and conducting an all-atom MD simulation, a
refined physics-based simulation tool is employed. In this setting, a wholly unrealistic
complex structure would likely not remain stable, thereby invalidating the constructed
model. While a stable outcome in an MD simulation does not affirm the model’s absolute
accuracy, it does serve as a preliminary investigation pathway. This strategy circumvents
the need for computationally demanding free-energy simulations and has been previously
effective in distinguishing native structures from decoy structures [55].

Figure 3C,D showcase the results of the conducted MD simulation. Three frames,
representing the start, midpoint, and end of the simulation, are depicted in Figure 1C to
portray the dynamic behavior. Here, the alpha-helical core remains intact, undergoing
minor reorganization, as depicted in Figure 3D, but largely retaining its initial form. In con-
trast, other protein segments exhibit significant flexibility, especially within the disordered
charged regions, aligning well with anticipated behaviors for these sections.

While the simulation cannot conclusively demonstrate aggregation or phase separation
behaviors for this protein, it suggests the modeled higher-order oligomer structure is
stable. The observed dynamic behavior—featuring a stable core and flexible arms—aligns
seamlessly with the inherently disordered nature of this complex.

Figure 3E quantitatively presents the pLDDT score for each chain against its residue
ID. The protein is segmented into N-terminal, core, and C-terminal sections, determined by
a pLDDT threshold of around 30. The MD simulation-derived per-residue fluctuation is
similarly visualized in Figure 3F, depicting the RMSF for each chain. Here, RMSF values
are lowest within the core region and peak in the C-terminal side of the structure, housing
the elongated disordered regions.

Standard metrics utilized for assessing protein stability within MD simulations,
namely, RMSD and the radius of gyration Rg, are highlighted in Figure 1G and 1H, respec-
tively. The different curves visible for both metrics are due to calculating the respective
metrics for the entire complex versus only for the N-terminal, Core or C-terminal part of the
complex. Evidently, the core region exhibits the highest stability, with overall fluctuations
dominated by movements in the C-terminal region.

These analyses indicate that within the simulation, the core region, encompassing the
fusion breakpoint site, adopts an alpha-helical conformation conducive to self-association.
This observation emphasizes the complex’s intrinsic stability and dynamic behavior,
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aligning with the anticipated properties derived from the fusion protein’s pronounced
polyampholyte characteristics. This might propel a unique fusion breakpoint-induced self-
association, which could pose challenges to the cellular proteostasis mechanisms through
potential aggregation, amyloidogenic fibril formation, or aberrant phase separation. Such
disruptions are known to instigate hematopoietic abnormalities and an array of rare genetic
disorders [56–58].
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Figure 3. Self-association of LRRFIP1-PTMA fusion protein. (A) The topmost row categorizes the
complexes from dimer to decamer with each chain uniquely colored, elucidating the assembly of the
complexes. (B) In the subsequent row, the identical structures are portrayed, but they are colored
based on their pLDDT scores, highlighting the well-structured helical core amidst the predominantly
disordered protein. (C) The visualization presents three frames from the MD simulation of the
octamer complex. The alpha-helical structured core is centrally located, with the notably flexible
disordered regions dynamically adjusting around it. The individual chains of the complex determine
the color scheme. (D) To further emphasize the minimal deviations of the ordered core from its initial
state, compared to the more variable disordered regions, the trajectory exclusively showcases the
ordered core. (E) The subfigure displays the pLDDT score for each residue of the predicted structure,
plotted against the residue IDs. Instead of representing the entire structure, individual curves for
each chain within the octamer are illustrated. Utilizing a pLDDT threshold of 30, the alpha-helical
core structure, as depicted in Figure 1B, is demarcated. (F) The plot presents the Root Mean Square
Fluctuation (RMSF) from the MD simulation, separated by chains. The analysis reveals that the
structured region of the complex exhibits the least fluctuation. (G) The subfigure presents the Root
Mean Square Deviation (RMSD) of the trajectory plotted against time. The trajectory is segmented
into the overall structure (purple line), regions to the N-terminal (blue line) and C-terminal (green
line) of the core, and the structured core (yellow line) itself. The RMSD for each segment is delineated,
emphasizing a notably stable and less varied RMSD value for the core region in contrast to other
parts of the structure. (H) The plot illustrates the radius of gyration (Rg) for these defined segments.
Notably, the curve representing the core region remains the most consistent with minimal variation.
In both Figure 1G,H, it is evident that the structural dynamics of the C-terminal region dominate the
time evolution, closely mirroring the trends observed when evaluating RMSD and radius of gyration
for the entire structure.
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3. Materials and Methods
3.1. Dyskeratosis Congenita RNA-Seq Data

Pulmonary fibrosis is a well-documented manifestation of Dyskeratosis Congenita
(DC), presenting significant clinical challenges [59–62]. To comprehensively address the
genomic and pathological burdens associated with DC, our study focused on analyzing
data obtained from lung epithelial cells. The dataset comprised 143 single-cell RNA-Seq
samples obtained from lung epithelial cells, including 48 samples from patients with DC
and 95 samples from healthy individuals [63]. RNA-Seq raw data were sourced from the
Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information
(NCBI). To retrieve the associated Sequence Read Archive (SRA) files, the GEO accession
number GSE83501 was referenced. Subsequently, these SRA files were converted to the fastq
format using the fasterq-dump command from the SRA Toolkit. Prior to any downstream
processing, the quality of the fastq files was assessed with FastQC to ensure data robustness.

3.2. Gene Fusion Analysis

For the identification and assessment of gene fusions in the DC RNA-Seq dataset,
Arriba was employed, a streamlined and accurate RNA-seq aligner and fusion detector [8].
Initially, FastQC was used to assess the quality of raw sequencing reads. Following this,
Trimmomatic was utilized to trim the reads for both quality and adapter sequences. These
quality-controlled reads were mapped to the human reference genome (GRCh38) using the
STAR aligner. Arriba was executed alongside STAR, taking advantage of STAR’s capability
to process spliced alignments for enhanced fusion identification. The output from Arriba
was curated to retain only high-confidence fusions, discarding artifacts and fusions with
insufficient read support through its integrated filtering script. These retained fusions
were annotated using the Ensembl database, providing details about the implicated genes
and anticipated protein derivatives. Finally, high-confidence fusions were scrutinized by
considering non-zero split read and discordant mate counts to minimize potential false-
positive results. Visualization of the gene fusions was performed using the shinyCircosV2
tool [64].

3.3. Gene Ontology Analysis

To elucidate the functional consequences of the gene fusions, a Gene Ontology (GO)
analysis utilizing the PANTHER (Protein ANalysis THrough Evolutionary Relationships)
classification system, an online bioinformatics resource, was conducted [65]. This involved
uploading the compilation of unique genes implicated in the fusions, as detected by the
Arriba tool, to the PANTHER server. The analysis focused on the Biological Process category
of the GO terms, which were then systematically annotated to our dataset. The primary
objective was to assess the enrichment of these GO terms in our gene set relative to a baseline
reference, which encompassed the entire human gene repertoire. This comparative analysis
was statistically validated using the False Discovery Rate correction applied to Fisher’s
exact test results, thereby refining the p-values for accuracy. GO terms that exhibited an
adjusted p-value below the threshold of 0.05 were deemed to be significantly enriched,
indicating a notable overrepresentation in our gene fusion dataset.

3.4. Overrepresentation and Network Analyses

An overrepresentation analysis (ORA) of the Web-based Gene Set Analysis Toolkit
(WebGestalt) was employed to elucidate the potential functional enrichments of genes
involved in gene fusions [66]. WebGestalt was configured to conduct the ORA against the
predefined gene sets of TCGA RNA-Seq hierarchical co-expression modules, specifically
focusing on the hallmark gene sets which encompass a defined set of studied cancer types.
The parameters were set to employ the hypergeometric test for statistical significance and
the Benjamini–Hochberg procedure was utilized for the correction of multiple testing with
a false discovery rate (FDR) threshold of 0.05. The networks of overrepresented gene sets
were plotted using the integrated network visualization tool within WebGestalt.
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3.5. Protein–Protein Association Network Analysis

The protein–protein association network was analyzed using the STRING database
v12.0, a comprehensive resource compiling known and predicted protein interactions [67].
Our gene list, including the known DC/TBD (Dyskeratosis Congenita and related Telomere
Biology Disorders) genes [68] together with identified DC-specific fusion genes (Table 1),
was inputted with a confidence score threshold set at medium (0.4) to ensure interaction
significance. STRING generated an interaction network, where nodes represent proteins
and edges denote interactions, with edge thickness indicating the strength of data support.

3.6. Disorder, Polyampholyte, and Self-Association Propensity Analysis

For the analysis of intrinsically disordered regions (IDRs) and their polyampholyte
propensity in gene fusions associated with DC, the CIDER (Classification of Intrinsically
Disordered Ensemble Regions) bioinformatics tool was employed. This tool provided an
in-depth assessment based on charge patterning within the IDRs. Gene fusion sequences,
curated from the DC-associated dataset, were input into the CIDER webserver v2.0 or
localCIDER v0.1.20. The software generated the Das–Pappu diagram by computing kappa,
the fraction of charged residues, the net charge per residue, hydropathy, and disorder-
promoting descriptors to elucidate potential polyampholyte behavior [50,51].

The FuzDrop webserver was utilized to estimate the likelihood of liquid–liquid phase
separation (LLPS), characteristic of polyampholyte proteins [69–71]. This prediction is
grounded in a machine learning algorithm trained with experimental datasets from se-
quence features of proteins documented to exhibit LLPS. High scores correspond to an
increased predisposition toward LLPS behavior [70]. To strengthen the LLPS prediction, we
also used the deePhase tool. This tool leverages machine learning models through neural
network-based sequence analysis, taking into account both biophysical and sequence-
specific characteristics of phase-separating proteins [72].

3.7. Prediction of Fusion Protein Tertiary Structure

For the fusion protein Lrrfip1-Ptma, homo-oligomer structures were generated using
multimer modeling in AlphaFold version 2.3 (AF2) [73]. Complexes were systematically
assembled in increments, ranging from dimers to decamers. The date cutoff parameter was
set to 24 May 2022, ensuring that structures available in the PDB up to this date were utilized
as input templates. From each AF2 multimer run, 25 models were generated, of which only
the top-ranked model was selected. These chosen structures were subsequently aligned
with each other for visualization purposes, employing the PyMol software v2.5.0. [74]

3.8. Molecular Dynamics Simulations and Analysis

A Molecular Dynamics (MD) simulation spanning 400 ns was conducted on the
LRRFIP1-PTMA fusion protein octamer generated by AF2 using the GROMACS plat-
form [75–82], employing the CHARMM36 force field [83]. The protein was positioned
within a dodecahedron, subject to periodic boundary conditions, and ions were introduced
to neutralize its overall charge. The MD simulation protocol followed steps 0 to 5 as
delineated at https://github.com/carlocamilloni/labtools/tree/main/mdps/atomistic
(accessed between September and October 2023).

For further clarity, the initial protein configuration underwent three sequential min-
imization steps. The process began with the steepest descent method, a straightforward
minimization technique. This was succeeded by the conjugate gradient and LBFSG mini-
mization methods [84,85], which are comparatively more sophisticated. Beginning with a
basic minimizer and feeding its output into the subsequent advanced minimizers offers a
heuristic approach to achieving a more optimized state for the preparatory equilibration
steps preceding the actual simulation. A set of relaxation and preparatory phases com-
mences from the minimized configuration, culminating in the production run utilizing a
modern method that facilitates more direct simulation in the NPT ensemble [86]. The NPT
ensemble defines the thermodynamic conditions, dictating that the number of particles (N),

https://github.com/carlocamilloni/labtools/tree/main/mdps/atomistic
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pressure (P), and temperature (T) remain constant. Notably, the NPT simulation operated
at a temperature of 300 K and a pressure of 1 bar, standard conditions for MD simulations,
and also the conditions under which force field parameterization occurs.

To analyze the resulting MD simulation, a specialized Python script, underpinned by
the biotite library [87,88], was employed. This script facilitated the calculation of metrics
such as the Root Mean Square Deviation (RMSD), radius of gyration (Rg), and the Root
Mean Square Fluctuation (RMSF) based on the simulation trajectory. Additionally, the
pLDDT score of the input structure was graphically represented, highlighting the structured
core contingent on a pLDDT score threshold. This analytical tool is also extensively
dependent on the Scipy [89], NumPy [90], and matplotlib [91] libraries.

4. Discussion

A hallmark of DC at the cellular level is telomere dysfunction and subsequent telomere
shortening. Telomeres, the protective end caps of chromosomes, play a crucial role in
maintaining chromosomal integrity and stability. When these telomeres are shortened, as
seen in DC, they lose their protective capability, leading to the fusion of chromosomal ends,
genomic instability, and heightened risk of cell cycle arrest or cell death. This genomic
instability due to telomere shortening in DC is believed to be a significant contributing factor
to the increased susceptibility to cancers, bone marrow failure, and other degenerative
disorders often observed in affected individuals [92].

Genomic instability, marked by an enhanced susceptibility to genetic modifications, is
instrumental in a vast array of diseases. Within the hematopoietic system, the bone marrow
stands as the chief location for blood cell generation, creating intricate connections between
genomic instability and BMF. Fundamentally, hematopoietic stem cells (HSCs) situated in
the bone marrow birth all blood cell categories. Any disruptions in their genomic structure
can critically hinder their growth and differentiation potentials. A notable feature of DC is
the dysfunction and reduction in telomeres, which act as primary contributors to genomic
instability in the marrow. As time progresses, this instability can give rise to chromosomal
irregularities, genetic reshufflings, DNA mutations, and defective DNA repair mechanisms
in hematopoietic cells. In acute instances, these anomalies can instigate clonal proliferation
that poses the threat of progressing into blood disorders like MDS or AML. In our research,
we pinpointed several genes that result in gene fusions (Table 1). These genes, in their
original states, predominantly serve to uphold genomic stability and ensure the equilibrium
of platelet and lymphocyte activities. Their dysregulation or inhibition can wreak havoc,
influencing a plethora of crucial pathways and mechanisms. These include DNA damage
triggered by hypertranscription or via ATM-P53 axis, arrest in G1 and S-phase of the
cell cycle, HR and NHEJ defects due to the suppression of BRCA1-RAD51 and HDAC1
activation, instigating T-cell acute lymphoblastic leukemia by modifying the NOTCH1,
PTEN-PI3K-AKT, and MYC pathways, curtailing platelet function by impacting cyclic
nucleotide pathways, undermining hemostasis by inhibiting platelet clumping through
the reduction in αIIbβ3 expression, obstructing DNA replication due to changes in the
RBBP6/ZBTB38/MCM10 axis, and imbalancing the proliferation-to-apoptosis ratio of
lymphocytes, among others [9,12–29].

Tumor suppressor genes, pivotal in controlling cell growth and preventing malig-
nant transformations, often experience alterations leading to cancer development. One
intriguing phenomenon is their involvement in gene fusions that can disrupt the normal
functioning of tumor suppressors and propel cancer progression. This interplay between
tumor suppressor genes and gene fusions forms a crucial nexus in malignant transfor-
mation, offering novel avenues for research and therapeutic interventions. Within this
study, the identified functions of these tumor suppressor genes span a range of cellular
processes: they regulate the WNT/β-CATENIN pathway, activate the STING pathway,
inhibit epithelial-to-mesenchymal transition, enhance the efficacy of immunotherapy via
the PYK2/TAZ/PDL1 pathway, oversee ribosomal RNA maturation, and control tumor
growth through the RBMS3/TWIST1/MMP2 pathway [31–44]. These multifaceted roles
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emphasize the clinical significance of comprehending the molecular mechanisms of these
genes. Notably, in DC patients, the dysregulation of these genes due to gene fusion events
could potentially drive the onset of BMF-associated malignancies.

Genomic mapping of the rearrangements of both healthy and DC groups revealed a
highly heterogeneous distribution of gene fusion events with no significant enrichment
at telomeric regions in DC samples (Figure 1A). This observation is initially surprising.
Given the known role of telomere dysfunction in driving genomic instability, one might
expect an increased frequency of genomic rearrangements, particularly at telomeric regions,
as a hallmark of the disease. However, the nature of DC and its developmental context
offer a plausible explanation for these findings. DC, being a congenital genetic disorder,
implies that the genomic instabilities associated with telomere dysfunction could manifest
differently compared to acquired telomere diseases. In early developmental stages, such as
in the embryo, telomere dysfunction might indeed drive enriched genomic rearrangements
at telomeric regions. However, in later stages of DC (as in this study), the disease’s
congenital aspect could mean that these rearrangements occur in a more distributed manner
across the genome. The escalation of genomic instability over the course of development not
only shortens telomeres; it also involves the alteration of genes responsible for maintaining
genomic stability (Table 1). This includes genes involved in DNA repair, replication, and
chromatin remodeling. The malfunctioning of these critical pathways could lead to a more
generalized form of genomic instability, rather than one localized to telomeric regions.

We have also found that the protein products of genes involved in DC-specific gene
fusions are significantly enriched in telomeres, and more specifically, some in replicating
telomeres (Figure 2A,B). This evidence implies that gene fusion events could potentially
disrupt these genes’ inherent role in telomere protection and replication. Further interac-
tome analysis has shown that a number of genes implicated in DC-specific gene fusions
are linked with genes known to be associated with DC/TBD (Figure 2C). This correlation
not only reinforces our hypothesis but also highlights the critical nature of these genes in
maintaining telomere integrity and in regulating essential DC/TBD-causing genes through
direct interactions.

Given that the LRRFIP1 and PTMA genes are situated at the distal end of the q
arm of chromosome 2, and considering that telomere dysfunction and shortening are
defining characteristics of DC, it is conceivable that these chromosomal regions in DC
patients are highly susceptible to rearrangements as a consequence of telomere dysfunction-
driven genomic instability. Moreover, the LRRFIP1 and PTMA genes have previously been
identified in fusion events with various genes, playing roles in the pathogenesis of several
malignancies. Specifically, in leukemias, PTMA has been reported in fusion with OAZ1
and CXCR4. LRRFIP1 has been implicated in 8p11 myeloproliferative syndrome through
its fusion with FGFR1, in inflammatory myofibroblastic tumors with ALK and in atypical
Spitz tumors with MET [27,93–96].

Further computational analyses shed light on the structural and biophysical attributes
of the LRRFIP1-PTMA fusion protein, revealing it to be a predominantly disordered yet
potent polyampholyte (Table 2). Deep learning-based protein structure prediction and
molecular dynamic simulations substantiated its propensity to form higher-order oligomers
via self-association (Figure 3). Given prior research indicating Prothymosin-A’s inherent
disorderliness and inclination to form amyloidogenic fibrils in acidic environments [97,98],
it is reasonable to deduce that the LRRFIP1-PTMA fusion, composed predominantly by
Prothymosin-A, could elicit proteotoxic effects. This could manifest either as the formation
of amyloidogenic fibrils or aberrant phase-separated biomolecules, contingent upon the
cellular context. Such exacerbated proteotoxic challenges, by perturbing proteostasis, might
jeopardize the vitality and efficacy of hematopoietic cells, potentially culminating in BMF
and related malignancies.

In summary, our work suggests that the central feature of DC, telomere dysfunction
and shortening, can lead to a severe risk of genomic instability, which in turn can disrupt
the regulation of key genes responsible for genomic stability, hematopoiesis, and tumor
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suppression. Such disturbances can pave the way for BMF, genomic alterations, and
increased genomic instability, further elevating the risk of malignant transformations due
to compromised tumor suppressor genes. Additionally, gene fusions arising from genomic
instability-induced rearrangements can result in the creation of distinct fusion proteins.
These proteins, with their potential for proteotoxic stress via self-association, can further
contribute to BMF risks (Figure 4). Developing small molecules or biologics that precisely
target the breakpoints of fusion genes, or the self-association regions of the ensuing fusion
proteins, could attenuate their detrimental impact. When integrated with bone marrow
transplantation or androgen therapy, such strategies may offer a synergistic approach to
decelerate disease progression.
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etic challenges in DC. The figure depicts the cascade from telomere shortening and genomic instability
to gene rearrangements, emphasizing the dysregulation of crucial genes through the emergence of
fusion genes, and their potential inhibitory and proteotoxic implications resulting in detrimental
consequences such as BMF and malignant transformation.

However, recognizing the importance of discussing the limitations of our methodolo-
gies and analyses is crucial for providing a balanced and comprehensive understanding of
our study. In our analysis, we utilized the Arriba tool for gene fusion detection in RNA-Seq
data [8]. Arriba has demonstrated high efficiency in detecting true positive gene fusions, as
evidenced by its favorable performance in a recent comprehensive gene fusion detection
benchmark analysis [99]. However, it is important to acknowledge that no analytical tool is
without limitations. A notable limitation of Arriba, shared by many gene fusion detection
tools, is the disparity in coverage calculations, which include duplicates, as opposed to
supporting reads that do not. Consequently, the coverage values and supporting read
counts are only approximately comparable, particularly in scenarios where a high number
of duplicates is anticipated, such as with targeted sequencing libraries or in the case of
highly expressed genes [8]. To mitigate this and enhance the true detection efficiency in our
analysis, we applied a lower threshold value (≥1) for split reads, discordant mates, and
coverage in the evaluation of Arriba’s gene fusion output. Additionally, Arriba shows a
deficiency in accurately detecting deletions, which are often indistinguishable from normal
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splicing in RNA-Seq data. This challenge could potentially be addressed by integrating
RNA-Seq data with whole-genome sequencing or by employing additional algorithms that
focus on differential exon expression and indel detection.

While acknowledging the significance and utility of computational analyses in pre-
dicting high-confidence gene fusion candidates, their associated pathways, and resultant
fusion proteins, along with their potential roles in disease progression—thereby streamlin-
ing the identification of key candidates and reducing potential experimental workload—it
is imperative to experimentally verify these detected gene fusion events and their protein
products. Such experimental validation is essential not only for confirming the accuracy of
computational predictions but also for gaining insights into the functional relevance of these
fusions, establishing their exact links with the DC disease mechanisms, and identifying
possible therapeutic targets.
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