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Abstract

This work introduces a novel data-driven model-free modified nodal analysis

(MNA) circuit solver. The solver is capable of handling circuit problems featur-

ing elements for which solely measurement data are available. Rather than uti-

lizing hard-coded phenomenological model representations, the data-driven

MNA solver reformulates the circuit problem such that the solution is found

by minimizing the distance between circuit states that fulfill Kirchhoff's laws,

and states belonging to the measurement data. In this way, the formerly inevi-

table demand for model representations is eliminated, thus avoiding the intro-

duction of related modeling errors and uncertainties. The proposed solver is

applied to linear and nonlinear RC-circuits and to a half-wave rectifier.
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1 | INTRODUCTION

Circuit simulations play a key role in the design and optimization process of electrical devices. To solve circuit prob-
lems, two types of equations are needed. On the one hand, there are Kirchhoff's laws, which describe the current and
potential differences in a circuit. On the other hand, there are models that represent the actual element behavior, which
are essential in classical circuit solvers. Kirchhoff's circuit laws are derived from Maxwell's equations, either in the low-
frequency limit or under the assumption that the wavelength in the AC case is large compared with the circuit. Albeit
these assumptions, Kirchhoff's circuit laws are derived from first principles and the equations are accepted to be exact.1

In contrast, the models representing the lumped elements are mostly empirically known, thus introducing errors and
epistemic (model-form) uncertainties arising from the modeling process.2 Very commonly, these models are obtained
via data-fitting techniques, for example, based on physically motivated approaches3,4 or sophisticated machine learning
regression methods,5–7 to name a few options.

Nowadays, the availability of data increases steadily. For many circuit elements, the amount of behavioral data is
unprecedentedly high, raising the opportunity for novel data-driven modeling, and simulation methods. Under this
light, data-driven computation has emerged as and grown into a research area of its own in recent years. A model-free
data-driven approach was first proposed in Ref. 8,9 for elasticity-related problems. Since then, the so-called data-driven
computing framework has been extended to several other problem classes as well,10–14 including the authors'
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contributions in the field of magnetic field simulation.15–17 The original model-free data-driven formulation8 and its
derived works are characterized by a partial differential equation (PDE), which is either elliptic or parabolic.

A common aspect in all aforementioned works is that the data-driven computing framework eliminates the previ-
ously inevitable need for model representations, for example, regarding constitutive (material) laws. Instead, a double-
minimization problem is introduced to obtain the solution. Therein, the sought solution must simultaneously conform
to the first-principle equations and be as close as possible to the provided measurement data. In this way, the simula-
tion workflow is substantially reduced, as the problem at hand can be solved directly using the available measurement
data, rather than investing effort in the development of model representations, which, even if considered to be ade-
quate, remain empirical and inexact. Contrarily, using the data-driven computing framework, the modeling process
and the associated errors and uncertainties are bypassed altogether.

Emerging devices commonly demand for new model representations, which are classically obtained by using physi-
cal knowledge and measurement data to determine physically inspired parameters therein. This process is very cumber-
some and time-consuming, often taking several years to develop a robust physical model.18 To address this bottleneck,
this article extends data-driven computation to the case of circuit solvers, that is, the data-driven formulation is adapted
to differential algebraic equations (DAEs), respectively ordinary differential equations (ODEs). In particular, a novel
data-driven modified nodal analysis (MNA)19 solver is introduced, which is able to resolve circuit problems where only
data is available for certain circuit elements. Thereby, some circuit elements are assumed to be exactly known, while
only measurement data is available for the remaining elements. The MNA is then reformulated along the lines of the
data-driven computing framework, such that a double-minimization solver yields the states that conform to Kirchhoff's
laws, while also being as close as possible to the measurements. Three numerical experiments validate the data-driven
MNA method, which is able to recover reference solutions obtained with standard MNA solvers. As would be expected,
the solutions of the data-driven MNA solver become increasingly more accurate as the number of available measure-
ments increases.

The data-driven MNA solver developed in this work is substantially demarcated from other data-driven
approaches found in the literature. First of all, the presented data-driven approach should not be confused with
lookup table approaches,20 which are commonly available in electronic design automation (EDA) tools. Both
methods share that solely data is provided to the solver for certain elements. However, a model is generated by
interpolating the data in the lookup table approach. Contrarily, the proposed data-driven approach is model-free,
that is, there is no explicit or implicit modeling of the elements for which solely data is available. Other data-driven
approaches18,21,22 utilize measurement data to construct element models via machine learning (ML) techniques,
instead of following the traditional modeling approach where model equations are set up using expert knowledge
in semiconductor physics and subsequently calibrated based on the available measurement data. However, this
approach also involves several assumptions and is essentially a regression technique. This leads to the aforemen-
tioned introduction of modeling errors and epistemic uncertainties, both of which are avoided in the proposed
data-driven model-free approach.

The remaining of the article is structured as follows. In Section 2, we introduce the data-driven computing formula-
tions in the MNA framework and derive the data-driven MNA circuit solver. Several numerical investigations are pres-
ented and discussed in Section 3, namely for a linear RC-circuit, a nonlinear RC-circuit with a voltage-dependent
capacitor, and a nonlinear half-wave rectifier. A discussion on the computational cost of the data-driven MNA solver is
provided in Section 4. The article is concluded with Section 5, where we summarize our findings.

2 | METHODOLOGY

2.1 | Introductory example

To showcase the idea behind the data-driven model-free circuit solver, we start with an illustrative example. We
consider a circuit comprising a linear resistor, for which an exact model is available, in series with a diode, for
which a set of measurement data are given. The circuit is excited by a constant voltage source vsrc. Our goal is to
find the operating point of the diode, that is, we seek for a state vD, ið Þ�Z�ℝ2, where vD is the voltage at the diode
and i the current, respectively. Employing Kirchhoff's voltage law and the model description of the resistor, we obtain
as follows:
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iR¼ vsrc� vD: ð1Þ

Therein, R refers to the constant and known resistor model. Thus, the solution for vD, ið Þ is now found in the
reduced space K¼ vD, ið Þ�Z : iR¼ vsrc� vDf g. However, even the constrained set K, which is depicted by the black line
in Figure 1, contains an infinite number of solutions. Therefore, to find the operating point, information about the
behavior of the diode is needed.

In a conventional solver, the information is typically given in the form of a closed-form model representation. For
instance, in the case of the diode, a Shockley diode model3 can be employed, the coefficients of which are then found
by regression techniques using available measurement data. States fulfilling the model of the diode are then collected
in a set bD¼ vD, ið Þ�Z : i¼ f vDð Þf g, where f vDð Þ represents the (nonlinear) model of the diode. The model representa-
tion of the diode is depicted by the blue line in Figure 1. Consequently, in the conventional setting, the operating point
is found at the intersection of the two sets, that is, vD, ið Þ ? ¼K\ bD.

In the data-driven setting, however, a model representation for the diode is not available. Instead, the measurement
data are collected in a set D¼ vD, ið Þ1, vD, ið Þ2,…, vD, ið ÞN

� �
, where N refers to the number of measurements. The mea-

surement data points are shown with crosses in Figure 1. Contrarily to the conventional approach, the intersection of
both sets does not necessarily yield a solution. Instead, due to finite number of measurement data points, K\D¼; is
highly probable. Therefore, a relaxed formulation is introduced, in which we accept a solution that conforms with the
circuit equations, that is, to Kirchhoff's laws, while simultaneously being closest to the available measurement data.
The data-driven formulation then reads as follows:

vD, ið Þ¼ argmin
vD, ið Þ � K

F vD, ið Þ,Dð Þ, ð2Þ

where F vD, ið Þ,Dð Þ is a distance function that returns the closest distance of a state vD, ið Þ to the entire measurement
data set. Hence, the presented data-driven framework is sometimes also referred to as a distance-minimizing data-
driven computing framework. The data-driven solution for the discussed circuit is shown with a red circle in Figure 1.
Note that the data-driven solution can also be found within the set of states that conform to the circuit's equation (black
line in Figure 1). It is then left to the user to decide which solution, whether data-conforming or circuit-conforming, is
preferred.

FIGURE 1 ui phase-space with the constraint set K containing all states that fulfill the circuit law (black line). The blue line represents

the set bD as defined by the diode model. The conventional solution is found at the intersection of both lines. The set D comprising the

measurement data are shown by the crosses. The data-driven solution is defined by the state in the measurement data that is closest to K
(red circle).
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2.2 | Data-driven MNA solver

In this work, we consider circuits that contain passive elements, that is, resistors (G), capacitors (C) and inductors (L),
voltage sources (V), and current sources (I). Let AX �ℝ n�1ð Þ�nX denote the reduced incidence matrices of the circuit,
where n denotes the number of nodes and X � G,C,L,V,If g. Then, employing MNA, Kirchhoff's laws are formulated as
follows:

AGiG tð ÞþAC _qC tð ÞþALiL tð ÞþAViV tð Þ¼�AIisrc tð Þ, ð3aÞ

A >
G Φ tð Þ�vG tð Þ¼ 0, ð3bÞ

A >
C Φ tð Þ�vC tð Þ¼ 0, ð3cÞ

A >
L Φ tð Þ� _ΨL tð Þ¼ 0, ð3dÞ

A >
V Φ tð Þ�vsrc tð Þ¼ 0: ð3eÞ

Here, Φ�ℝn�1 denotes the potential differences between the nodes and the mass node and
iG �ℝnG ,iL �ℝnL , iV �ℝnV ,and isrc �ℝnsrc are the currents in branches with resistors, inductors, voltage sources, and
current sources, respectively. The changes in charges and fluxes are denoted as _qC �ℝnC and _ΨL �ℝnL respectively.

Applying a time-discretization scheme, for example, the backward Euler method, the time-discrete counterpart of
Equation (3) reads as follows:

AGi
nþ1
G þh�1ACqnþ1

C þALi
nþ1
L þAVi

nþ1
V ¼�AIi

nþ1
src þh�1ACqn

C, ð4aÞ

A>
G Φnþ1�vnþ1

G ¼ 0, ð4bÞ

A>
C Φnþ1�vnþ1

C ¼ 0, ð4cÞ

A>
L Φnþ1�h�1Ψnþ1

L ¼ h�1Ψn
L, ð4dÞ

A>
V Φnþ1�vnþ1

src ¼ 0, ð4eÞ

where h denotes the step size and f nþ1 ¼ f tþhð Þ, respectively, f n ¼ f tð Þ. To ease notation, we omit the superscript nþ1

in the following. We also consider the trapezoidal rule for time-discretization in our simulation. Although the deriva-
tion is straightforward, it is here omitted for brevity. In addition, it is worth mentioning that higher order backward
differentiation formulas (BDFs) can be considered and numerical experiments have confirmed the expected behavior.
Yet, to emphasize the novelty of the proposed approach, which is the implementation of the data-driven computing
framework into the existing MNA formulation, we employ only the lowest order BDF and the trapezoidal rule.

All states that conform to Kirchhoff's laws are collected in the set K¼ ζ : ζ ¼ Φ,iG,qC,Ψ,iL, iVð Þ�Z : 4ð Þf g, where Z
denotes the set of all possible states. For a traditional circuit solver, models for the circuit elements are needed to solve
Equation (4). The models' responses can be collected in a set eD, which we define as follows:

eD¼ �
e

i¼Ge vð Þvf g
n o

� �
e

q¼Ce vð Þvf g
n o

� �
e

Ψ¼Le ið Þif g
n o

, ð5Þ

where e refers to the branch that contains the considered element. The traditional solution is again determined
by ζ ? ¼K\ eD.

The need for model representations is circumvented when employing the data-driven MNA solver, within which
the information on some or all circuit elements is solely available through measurement data. The per-element
measurement data are collected in the sets as follows:
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DG,e ¼ v†G, i
†
G

� �
n

� �NG,e

n¼1
, ð6aÞ

DC,e ¼ v†C,q
†
C

� �
n

� �NC,e

n¼1
, ð6bÞ

DL,e ¼ Ψ†
L, i

†
L

� �
n

� �NL,e

n¼1
, ð6cÞ

which define the global measurement set as follows:

D¼ �
e
DX ,e

n o
X¼ G,C,Lf g

, ð7Þ

where the cardinality of D, that is, the total number of used measurement data points, is given by
N ¼P

eNG,eþ
P

eNC,eþ
P

eNL,e. However, searching for a solution similar to the conventional approach yields
ζ ¼K\D¼;, since only a finite number of measurement data points are available. Therefore, the data-driven frame-
work relaxes the condition K\D by accepting a solution that minimizes the distance between states that conform to
Kirchhoff's laws and states belonging to the measurement set D. We define the distance function for each element as
follows:

f G,e vG, iGð Þ,DG,eð Þ¼ min
v†G, i

†
Gð Þ � DG,e

vG, iGð Þ� v†G, i
†
G

� ��� ��2eG, ð8aÞ

f C,e vC,qCð Þ,DC,eð Þ¼ min
v†C,q

†
Cð Þ � DC,e

vC,qCð Þ� v†C,q
†
C

� ��� ��2eC , ð8bÞ

f L,e ΨL, iLð Þ,DL,eð Þ¼ min
Ψ†

L, i
†
Lð Þ � DL,e

ΨL, iLð Þ� Ψ†
L, i

†
L

� ��� ��2eL, ð8cÞ

with the weighted Euclidean distance k p,qð Þk2eX ¼PM
i¼1 1=2eXi

�1
p2i þ1=2eXiq2i

� �
, for p,q, eX�ℝM . Note that the

weighting factors eG,eC,eL are only of computational nature and do not represent the underlying element models.8,16 For
now, we only demand for constants that are bounded such that 0< eX <∞. The global distance function is then defined
as follows:

F ζ,Dð Þ¼FG vG, iGð ÞþFC vC,qCð ÞþFL iL,ΨLð Þ, ð9Þ

where the per-element distance functions sum over all elements, that is, FX ¼
P

ef X ,e for X � G,C,Lf g. For a given state
ζ, the distance function in Equation (9) returns the minimum distance of that state to the available measurement data.
To obtain a solution that fulfills Kirchhoff's laws, the minimization of Equation (9) simply needs to be constrained by
Equation (4), thus resulting in the constrained minimization problem as follows:

min
ζ

F ζ ,Dð Þ ð10Þ

subject to Equation (4), which is known as the data-driven formulation. The data-driven minimization problem in
Equation (10) is essentially a double-minimization problem, which can be formulated as follows:

ζ ¼ arg min
ζ ∘ � K

min
ζ� � D

ζ ∘ � ζ�k k2eG,eC,eL
n o	 


, ð11Þ

where k ζk2eG,eC,eL ¼k vG, iGð Þk2eGþk vC,qCð Þk2eCþk ΨL, iLð Þk2eL.
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To solve Equation (11), we split the double-minimization problem into two separate minimization problems, as
follows:

1. Projection on circuit state: Given a state ζ� �D, a new state ζ ∘ �K, which is compatible with Kirchhoff's laws
and closest to a measurement state is found by solving the following term:

ζ ∘ ¼ argmin
ζ � K

ζ� ζ�k k2eG,eC,eL, ð12Þ

subject to Equation (4).
The constrained minimization problem can be solved with the help of Lagrange multipliers and by replacing the

unknown voltages by potentials, which yields as follows:

ℒ¼ AΤ
GΦ,iG

� �� v�G, i
�
G

� ��� ��2eGþ AΤ
CΦ,qC

� �� v�
C ,q

�
C

� ��� ��2eCþ ΨL,iLð Þ� Ψ�
L , i

�
L

� ��� ��2eL
�η > AGiGþAC

qC�qn
C

h

� �
�η > ALiLþAViVþAIisrcð Þ

�λ >
L AΤ

LΦ�ΨL�Ψn
L

h

� �
�λ >

V A >
V Φ�vsrc

� �
:

ð13Þ

The minimum of Equation (13) with respect to Φ, iG,qC,Ψ,iL, iV is found by taking the derivatives with respect to
the unknowns, which results in a linear system of the form Mζ ¼ b. The system matrix M is given by:

AGeGA >
G þACeCA >

C 0 0 0 0 0 0 �AL �AV

0 eR 0 0 0 0 �A >
G 0 0

0 0 eK 0 0 0 �h�1A >
C 0 0

0 0 0 eL 0 0 �A >
L 0 0

0 0 0 0 eM 0 0 h�1 0

0 0 0 0 0 0 �A >
V 0 0

0 AG h�1AC AL 0 AV 0 0 0

A >
L 0 0 0 �h�1 0 0 0 0

A >
V 0 0 0 0 0 0 0 0

0

2
666666666666666664

3
777777777777777775

ð14Þ

and the right hand side reads

b¼

AGeGv�G þACeCv�
CeRi�GeKq

�
CeLi�LeMΨ�
L

0

h�1ACqn
C�AIisrc

�h�1Ψn
L

vsrc

2
666666666666666664

3
777777777777777775

: ð15Þ

Thus, a state ζ ∘ �K that is closest to a given state ζ� �D, is obtained by

ζ ∘ ¼PK ζ�ð Þ, ð16Þ

where PK denotes the closest point projection of a state ζ� �D to K.
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2. Projection on measurement state: Given a state ζ ∘ �K, a new state ζ� �D, which belongs to the measurement
set and is closest to ζ ∘ is found by solving the following equation:

ζ� ¼ argmin
ζ � D

ζ ∘ � ζk k2eG,eC,eL: ð17Þ

Problem (17) is essentially a nearest neighbor problem, which can be solved with brute-force methods or kd-tree
methods, to name but a few options.23 Note that the minimization Problem (17) is solved independently for each ele-
ment. Introducing the operator PD that denotes the closest point projection of a state ζ ∘ �K to D, a new state ζ� �D is
obtained through

ζ� ¼PD ζ ∘ð Þ: ð18Þ

Thus, for each solver iteration, the two minimization Problems (12) and (17) must be solved. Depending on the
initial value, the iteration scheme can be defined as follows:

ζ ∘
pþ1 ¼ Pℳ ∘PDð Þ ζ ∘

p

� �
, ð19Þ

respectively,

ζ�pþ1 ¼ PD ∘Pℳð Þ ζ�p
� �

, ð20Þ

which can be seen as a fixed-point iteration, as visually illustrated in Figure 2. This minimization procedure is carried
out until either ζ ∘

p and ζ�p do not change after two consecutive iterations or until a desired accuracy is reached. The
accuracy at iteration p can be measured in terms of the distance, equivalently, the mismatch between states conforming
to Kirchhoff's laws to states found in the measurement set. This mismatch is defined as follows:

ε2m,p ¼ ζ ∘
p � ζ�p

��� ���2eG,eC,eL, ð21Þ

which is essentially the weighted distance between the two states. Convergence is achieved when the change in the mis-
match (Equation (21)) between two consecutive iterations is below a user-defined tolerance δεm . Once the data-driven
solver has converged, we carry on with the next time step. The most recent data-driven solution is employed as starting
point in the new time step.

Overall, the double-minimization problem is a challenging non-convex optimization problem characterized by
numerous local minima. However, numerical experiments in several works8,24 have demonstrated that the data-driven
solution remains a reliable approximation of the conventional solution even when the global minimum cannot be
reached. The non-convexity relaxes if adaptively adjusted weighting factors are utilized,16,25 which increases the solu-
tion accuracy and reduces both statistical dispersion and computational time. In principle, it is possible to locate the

FIGURE 2 Illustration of the fixed-point iteration.
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global minimum through the application of mixed-integer programming,26 irrespective of the chosen weighting factor.
However, this method becomes computationally infeasible when handling large datasets or a high number of degrees
of freedom. Finally, the original method8 has been proven to converge toward the conventional solution under specific
conditions related to the measurement set.27 This convergence result remains consistent regardless of the chosen phase-
space norm. This proof has been originally established for elliptic PDEs, however, we expect a seamless transition to
our use case as it has been shown that circuits can be translated into PDEs.28

It is customary that most of the elements in a circuit are well-known and model representations are available. In
this case, various approaches combining exactly known models with data-driven computing have been proposed by the
authors in Ref. 15, in the context of magnetic field simulation. We consider the least intrusive approach, where the min-
imization (Equation (17)) is now performed to the known model representation. In addition, the weighting factors in
Equations (14) and (15) are chosen according to the known model coefficients. Furthermore, it has been shown by the
authors that, for elements featuring a strongly nonlinear response and/or data-starved or unevenly filled measurement
sets, constant weighting factors hinder the convergence rate of the data-driven solver.16 Therefore, we follow the
approach developed in Ref. 16 and choose the weighting factors to be the local tangent of the current state with respect
to the surrounding states in the measurement set.

The data-driven MNA solver is summarized in Algorithm 1.

3 | NUMERICAL EXPERIMENTS

In the following, we consider different circuit configurations. To validate the data-driven solver, we generate synthetic
measurement data sets of increasing cardinality, for each of which the circuit is solved. At every time step tk,k¼ 1,…,K,
and at a specific element X � G,C,Lf g, we calculate the mismatch of the data-driven solution to a reference solution,
for example, obtained with a traditional MNA solver utilizing the “true” circuit elements. The mismatch error is defined
as follows:

ε2
M,eX tð Þ¼ pref ,qrefð Þ� p,qð Þk k2eX





t
: ð22Þ

Furthermore, we define the root mean square (RMS) error over the entire time interval as follows:

ε
RMS,eX ¼

Z T

t0

ε2
M,eX tð ÞdtZ T

t0

k pref ,qrefð Þk2eX
� �

dt

0
BBB@

1
CCCA

1
2

≈

PK
k¼0

ε2
M,eX tkð Þ

PK
k¼0

k pref ,qrefð Þk2eX
� �





tk

0
BBB@

1
CCCA

1
2

: ð23Þ

ALGORITHM 1 Data-driven model-free MNA solver. The time axis has been discretized into K
time steps.

Randomly initialize measurement states ζ� �D
for k¼ 1,…,K do

while j εm,p� εm,p�1 j > δεm do
solve linear system Mζ ∘

p ¼ b
find ζ�p in D adjacent to ζ ∘

p with (17)
compute εm,p with (21)

end while
end for

8 of 16 GALETZKA ET AL.



The weighting factors in Equations (22) and (23) correspond to the actual model parameters, which are used for the
reference solution.

We note that the presented convergence results are only meaningful under the assumption that the conven-
tional solution serves as the ground truth. However, this assumption does not hold in real-world scenarios where
empirical models are constructed from actual measurement data. In such cases, it is indeed difficult to establish
a meaningful error norm between the data-driven and the conventional approach, primarily because the true
behavior of the elements is unknown, thus making unclear what should be considered as the definitive reference
point or ground truth.17 Furthermore, the required level of accuracy is highly dependent on the specific use case.
In addition to errors stemming from finite data, there are numerous other error sources to consider, such as time-
discretization, mathematical modeling of the physical problem, and general numerical approximations, to name
but a few.

3.1 | Introductory example revisited

Before considering time-dependent ODE problems, we revisit the pure algebraic problem introduced in Section 2.1. The
associated minimization problem reads as follows:

min
vD

min
v�D, i

�
Dð Þ �eDF vD, eD� �

¼ min
vD

min
v�D, i

�
Dð Þ �eD eRD

vsrc
R

� vsrc
R

� i�D
� �2

þ eGD vD� v�D
� �2	 


, ð24Þ

where eRD ¼ 1=eGD refers to the weighting factor. In the following discussion, our focus is on analyzing the impact of the
initial value in the fixed-point iteration scheme on its solution. Figure 3A illustrates the iterative process for two distinct
initial starting points. We can clearly observe that two distinct solutions are obtained, depending on the starting value.
However, both solutions are in close proximity to the actual solution. This is due to the adaptively adjusted weighting
factor, which balances the two summation terms in Equation (24) and additionally mitigates the inherent non-
convexity of Equation (24). To further illustrate this effect, Figure 3B depicts the normalized loss of the minimization
problem in Equation (24) for both an adaptively adjusted weighting factor and different choices of constant weighting
factors. One can clearly observe that, if a constant weighting factor is utilized, several minima occur. Depending on the
initial point, the fixed-point iteration can become stuck in a local minimum. Conversely, when employing an adaptively
adjusted weighting factor, the minimization problem exhibits a smoother response surface, making it easier to identify
the global optimum.

(A) (B)

FIGURE 3 (A) Fixed-point iteration for the resistor-diode circuit. States that fulfill the circuit law are shown by the black line, whereas

the measurement data points of the diode are indicated by the purple crosses. The results have been computed utilizing an adaptive

weighting factor and show the iterative process for two distinct initial values. (B) Normalized loss of the minimization problem for the

resistor-diode circuit. The loss is shown for different choices of the weighting factor, including an adaptive weighting factor.
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3.2 | Linear RC-circuit

For a first test, we consider an RC-circuit, with resistor R and capacitor C in series. The circuit acts as an academic test
case and allows us to discuss the error sources appearing within the data-driven solver. In order to use the analytical
solution as a reference, we consider only linear elements. The circuit is excited by a constant voltage source, with the
initial value qC t¼ 0ð Þ¼ 0. We employ a data-driven solver combined with the backward Euler scheme and the trapezoi-
dal rule, where for the resistor and capacitor only measurement data are available. In addition, solutions for different
step sizes h, equivalently, numbers of time steps, are computed.

Figure 4A shows the RMS error for solutions obtained with the backward Euler method and the trapezoidal rule for
different numbers of time steps. Furthermore, the RMS error for a traditional MNA solver is shown. The results show
that the accuracy of the data-driven solution improves as more measurement data are employed. However, for certain
combinations of employed measurement data and number of time steps, the convergence stagnates. To analyze this
behavior, we consider the overall error of a state p,qð Þ to the reference solution. The error is given as

ε¼ pref ,qrefð Þ� p,qð Þk k2eX ,
¼ pref �ptrad,qref �qtradð Þ� p�ptrad,q�qtradð Þk k2eX ,
≤ pref ,qrefð Þ� ptrad,qtradð Þk k2eX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

εtime

þ p,qð Þ� ptrad,qtradð Þk k2eX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
εdata

,
ð25Þ

where ptrad,qtradð Þ is a state computed with a traditional MNA solver. Hence, the overall error can be decomposed into
an error stemming from the time-discretization scheme and an error attributed to the finite measurement data. This
decomposition can be clearly observed in Figure 4A. The figure shows several cases where extending the measurement
set does not lead to an improvement in the accuracy. In those cases, the time-discretization error εtime is dominant and
the accuracy of the data-driven solver stagnates at the accuracy level of the traditional solver. Hence, to avoid unneces-
sary computational costs, the time-discretization scheme and the number of employed measurement data points should
preferably be chosen according to one another. In cases where the time-discretization error εtime is negligible, for exam-
ple, for K ¼ 1000 time steps and the trapezoidal rule, the data-driven solver achieves a linear convergence rate with
respect to the employed measurement data.

Next, we focus on the error attributed to the limited measurement data. Therefore, the circuit is simulated using the trap-
ezoidal rule and K ¼ 1000 time steps. The reference solution vC as well as data-driven solutions for measurement data

(A) (B)

FIGURE 4 Linear RC-circuit: (A) RMS error at the capacitor C over number of measurements. The horizontal lines mark the time-

discretization errors for a traditional MNA circuit solver. (B) Voltage vC at the capacitor over time. The plot shows the analytical reference

solution, as well as data-driven solutions for an increasing number of measurement data points.
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sets of increasing size are depicted in Figure 4B. We can already qualitatively observe that, if the measurement data set
is not sufficiently large, for example, for N ¼ 102, the solution of the data-driven solver captures the behavior of the cir-
cuit, albeit a large error to the analytic solution remains. Furthermore, the figure shows that, due to the discrete data,
the solution is not continuous and exhibits jumps at certain time steps. More precisely, due to the finite data, the solver
might select the same measurement state in consecutive time steps or migrate to a new measurement state in a next
time step. However, as more data becomes available, these discontinuities are reduced. Figure 5 shows the mismatch to
the reference solution over time for measurement sets of increasing cardinality. The figure clearly shows that the solu-
tion accuracy increases with the number of measurement data points. Furthermore, we observe that the error varies in
time, which is attributed to the change in the circuit's operating point over time by constant measurement set. That is,
in certain time steps, the available measurement data suit better to the operating point than in others.

3.3 | Nonlinear RC-circuit

We revisit the RC-circuit, yet this time we consider a voltage-dependent capacitor C vC tð Þð Þ. The response of the capaci-
tor as well as the charge over the applied voltage is shown in Figure 6A. This nonlinear response is the typical behavior

FIGURE 5 Linear RC-circuit: Error at the capacitor C over time. The error is shown for an increasing number of measurement data

N � 102,103,104,105,106f g. The dashed line shows the voltage vC.

(A) (B)

FIGURE 6 Nonlinear RC-circuit: (A) Voltage-dependent capacitor C vCð Þ and charge qC vCð Þ over applied voltage vC. (B) Voltage vC at

the capacitor over time. The plot shows the analytical reference solution, as well as data-driven solutions for an increasing number of

measurement data N � 102,103,104f g.
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of multilayer ceramic capacitors, for which the capacitance drops rapidly for moderate voltages to a nearly constant
value.29,30

The data-driven solver treats the resistor as a known element. Contrarily, only measurement data is available for
the voltage-dependent capacitor. To validate the results obtained with the data-driven solver, we generate measurement
data sets of increasing cardinality. Both the reference solver and the data-driven solver employ the trapezoidal rule for
time-discretization. Figure 6B shows the capacitor voltage over time. Similar to the linear case, the data-driven solution
shows large jumps between the time steps if the number of measurement data points is not sufficiently large. As the
number of measurements increases, the data-driven solution becomes increasingly smoother and eventually identical
to the conventional MNA solution. This is also evident by the results shown in Figure 7A regarding the RMS error over
time for an increasing number of measurement data points. Similar to the linear RC-circuit, a linear convergence rate
with respect to the number of measurement points is observed. The mismatch over time and for measurement sets of
increasing cardinality is shown in Figure 7B. Again, the figure clearly shows that the solution accuracy increases with
the number of measurement data points. We also observe that the error in time is slightly larger in the strongly
nonlinear region, that is, for t<0:5, respectively for vC < 4.

3.4 | Half-wave rectifier

The next test case considers a half-wave rectifier circuit, depicted in Figure 8A. The circuit elements are RC ¼ 1,
RD ¼ 10, C¼ 100 and vsrc ¼ 5sin ωtð Þ, where ω¼ 2πf and f ¼ 100. The diode is modeled using the Shockley diode
model,3 such that

i tð Þ¼ is e
vD tð Þ
nvT �1

� �
, ð26Þ

where vD is the voltage at the diode, is ¼ 2:52 nA is the saturation current, vT ¼ 25:85 mV is the thermal voltage, here
for T¼ 300 K, and n¼ 1:752 is the ideality factor. The initial value is qC t¼ 0ð Þ¼ 0 As.

We assume that the resistors and the capacitor are known elements, whereas the diode is only known by measure-
ment data. The parasitic resistor RD is part of the circuit model in the NGSPICE simulation.31 Hence, the measurement
data are generated from the diode model including the parasitic resistor RD. The data-driven solutions are compared
with a reference solution obtained with NGSPICE. For both the reference and the data-driven solutions, K ¼ 400 time steps
are used. The data-driven solver is based on the trapezoidal rule. Figure 8B shows the output voltage vC of the half-wave
rectifier. The figure clearly shows that the data-driven solution becomes more accurate if more measurement data
points are employed. However, we also observe that a rather large number of measurement data points are needed to
achieve an adequately accurate solution. This behavior can also be seen in Figure 9A, which shows the mismatch over
time, as well as in Figure 9B, which shows the RMS error at the capacitor. The reduced convergence rate can be

(A) (B)

FIGURE 7 Nonlinear RC-circuit: (A) RMS error at the capacitor C over number of measurements. (B) Error at the capacitor C over

time. The error is shown for an increasing number of measurement data N � 102,103,104,105f g. The dashed line shows the voltage vC.
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explained by the switching behavior of the diode. That is, the distance-minimizing data-driven solver faces problems in
the regime where the current of the diode remains almost constant, that is, for vD � vfv, where vfv is the forward thresh-
old voltage.

Although out of scope for this work, the aforementioned problem could be tackled by employing hybrid models for
the diode.32 In that case, the diode's phase-space would be partitioned into two segments: one employing a conventional
model and the other utilizing solely measurements. The data-driven solver would then switch between these models
based on a specified threshold. By that, the part of the phase-space where it is difficult to find a suitable model is treated
using the data-driven formulation, thus mitigating the aforementioned errors. In the particular case of the diode, a
linear model could be employed for vD � vfv.

4 | COMPUTATIONAL COST

In the following, we briefly discuss the computational cost of the data-driven MNA solver. A more detailed discussion
on the computational complexity of data-driven solvers is available in the authors' prior works.16,17

In each data-driven iteration, we have to solve a linear system of size NM ¼ 2n�2þnGþnCþ3nLþ2nV, which
amounts to O N3

M

� �
if standard direct linear system solvers a used. Afterwards, Ndd�elem nearest neighbor problems

must be solved, where Ndd�elem refers to the number of data-driven elements, that is, to elements represented solely by
measurement data. Furthermore, in the considered cases, each nearest neighbor problem is of dimension 2 and the
available measurement data set is of cardinality N . Utilizing line search, also referred to as the brute-force approach,

(A)

(B)

FIGURE 8 Half-wave rectifier: (A) Circuit. (B) Voltage vC at the capacitor over time. The plot shows the reference solution obtained

with NGSPICE and data-driven solutions for an increasing number of measurement data N � 105,106f g.

(A) (B)

FIGURE 9 Half-wave rectifier: (A) Error at the capacitor C over time. The error is shown for an increasing number of measurement

data N � 103,104,105,106f g. The dashed line shows the output voltage vC. (B) RMS error at the capacitor C over number of measurements.
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the computational demand of all nearest neighbor problems amounts to O 2Ndd�elemNð Þ¼O Ndd�elemNð Þ. These costs
can be reduced by considering space partitioning techniques, for example, k-d trees, where the query's complexity
reduces to O Ndd�elem logNð Þ.33 Note that for small data sets, the brute-force approach is superior, since the space par-
titioning techniques require training time. Furthermore, adaptively adjusted weighting factors do not comply well with
space partitioning techniques, as a retraining would be necessary. Further research in the field of data-driven comput-
ing suggested approximate nearest neighbor algorithms in combination with efficient data structures to accelerate the
search algorithm.34 Furthermore, an approach based on hierarchical multi-level data sets has been proposed.35 As
the focus of this work is to showcase that the original data-driven computing framework8 adapts to ODEs, respectively
DAEs, we utilize the line search approach for the nearest neighbor problem, however, with adaptively adjusted
weighting factors.

The number of data-driven iterations is strongly connected to the number of employed measurement data. Further-
more, strongly nonlinear element responses demand for more data-driven iterations. In the case of the linear RC-
circuit, the number of data-driven iterations per time step vary from 5 (for N = 102) to 45 (for N = 106). For the
nonlinear RC-circuit, the number of iterations depends on the current operation point in the uC,qCð Þ phase-space. In
the region where the relation is almost linear, the number of data-driven iterations is similar to the one of the linear
RC-circuits. If the operation point is in a strongly nonlinear region, the iterations range from 20 (for N= 102) to 140 (for
N= 106). In comparison, the traditional solver must solve the nonlinear problem at each time step, which resulted in
12 iterations on average in the case of the nonlinear RC-circuit. Note that the required number of iterations varies
depending on the specific problem at hand. The reported values give only a rough estimate of the order of magnitude.
A comparison of the data-driven solver and the conventional solver in terms of measured computational time is given
in Table 1. The results show the aggregated computational time over the first 100 time steps for the nonlinear RC-
circuit, when employing the trapezoidal rule. The results clearly show that the conventional approach is superior
against the data-driven approach. Furthermore, the computational time for the data-driven approach increases heavily
as larger data sets are employed. However, we emphasize that the most naive approach has been used to solve the
nearest neighbor problem and consequently many improvements can be implemented in future works. Considering
only a few elements and measurement sets of moderate size, the computational costs of the nearest neighbor Prob-
lem (17) can be neglected. However, as more elements are taken into account or as the measurement set becomes
larger, the nearest neighbor problem becomes the dominant factor.

Overall, the data-driven MNA solver in its current implementation still needs up to ten times more simulation time.
This is the price to pay for the benefit of not requiring models for the circuit elements. It is expected that progress in
data-processing will further decrease the gap between traditional and data-driven MNA solvers. Last, we note that the
aforementioned remarks on the computational cost of the traditional and the data-driven MNA solvers only take into
account the aspect of computational complexity in terms of linear system size, system solutions, and solver iterations.
That is, this discussion does not include the effort that is usually needed to identify and construct model representations
to be used within traditional MNA solvers. While this element modeling effort is difficult to assess, it must be under-
lined that the modeling step is bypassed altogether when the data-driven solver is employed.

5 | CONCLUSION

This article developed a data-driven MNA solver which combines Kirchhoff's laws with measurement data for the ele-
ments instead of traditional element models. The solver was first applied to a linear RC-circuit, where an investigation
on the different approximation errors concluded that the available measurement data and the time stepping size
employed in the time integration method should match one another in order to avoid unnecessary computational costs.

TABLE 1 Computational time needed to solve the nonlinear RC-circuit. Both methods use the trapezoidal rule with a time stepping

width of h¼ 0:2. The results show the time for the first 100 time steps.

Method

Computation time in s

N ¼ 102 N ¼ 103 N ¼ 104 N ¼ 105

Data-driven 3.6 5.0 20.9 29.9

Conventional 1.8
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The solver was additionally applied to a nonlinear RC-circuit with a voltage-dependent capacitor and to a half-wave rec-
tifier with a data-driven diode. In the former case, the solver achieves a linear convergence rate with respect to the
number of measurement data points. This convergence rate is not observed in the latter case, where the switching
behavior of the diode model, in particular the regime before the threshold voltage, hinders solver convergence and
demands for comparatively large data sets.

The numerical results have shown that the data-driven MNA solver is capable of solving basic circuit problems. Yet,
this work acts only as a proof of concept. Several open questions need to be addressed on future research, before a reli-
able EDA tool can be deployed. These questions include the handling of elements with switching behavior, such as the
considered diode, noisy measurement data, temperature dependency, sensitivity and yield analysis, statistical variation
for design validation, and the handling of multi-terminal elements, to name but a few. Several problems have already
been addressed in the data-driven computing framework for PDEs,9,34,36 and need to be adapted to circuit problems.
However, despite the currently still unresolved challenges, the data-driven and model-free approach remains highly
promising, primarily owing to its capacity to mitigate modeling errors and uncertainties while expediting the simulation
process for novel components lacking appropriate models.
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