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Abstract: Natural gas pipelines represent a critical infrastructure for most countries and thus their
safety is of paramount importance. To report potential risks along pipelines, several steps are taken
such as manual inspection and helicopter flights; however, these solutions are expensive and the
flights are environmentally unfriendly. Deep learning has demonstrated considerable potential in
handling a number of tasks in recent years as models rely on huge datasets to learn a specific task.
With the increasing number of satellites orbiting the Earth, remote sensing data have become widely
available, thus paving the way for automated pipeline monitoring via deep learning. This can result
in effective risk detection, thereby reducing monitoring costs while being more precise and accurate.
A major hindrance here is the low resolution of images obtained from the satellites, which makes
it difficult to detect smaller changes. To this end, we propose to use transformers trained with
low-resolution images in a change detection setting to detect pipeline risks. We collect PlanetScope
satellite imagery (3 m resolution) that captures certain risks associated with the pipelines and present
how we collected the data. Furthermore, we compare various state-of-the-art models, among which
ChangeFormer, a transformer architecture for change detection, achieves the best performance with a
70% F1 score. As part of our evaluation, we discuss the specific performance requirements in pipeline
monitoring and show how the model’s predictions can be shifted accordingly during training.

Keywords: transformer; PlanetScope; pipeline monitoring; change detection

1. Introduction

Natural gas plays a critical role in the infrastructure of Germany, as well as numerous
other countries. As of 2023, natural gas accounted for a significant portion of Germany’s
energy production, serving as a vital energy source for millions of households and powering
industrial production. Given its importance, it is imperative for pipeline operators to
actively monitor their pipeline networks to ensure their operational integrity, enhance
safety, and mitigate potential risks.

Various monitoring tools are employed to track essential parameters such as pipeline
pressure, flow rates, and temperature, enabling the detection of corrosion, leakages, and
other irregularities [1,2]. Gas pipelines are typically buried beneath the surface, which
also exposes them to potential risks from human interference. For instance, construction
activities involving digging or the accumulation of soil and heavy loads nearby can poten-
tially damage the pipelines. Therefore, it is essential to monitor such external influences.
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Additionally, by law, pipeline operators must be aware of possible hazardous conditions
near the pipeline that may cause damage. In the future, this will also be important for
hydrogen pipelines, which are currently being developed and have the same monitoring
needs as gas pipelines [3].

Presently, the monitoring of potential pipeline incidents is reliant on the utilization of
helicopters, which conduct monthly flights along the pipeline. During these flights, human
observers are responsible for identifying and documenting any observable alterations.
However, this approach has several drawbacks, including high costs, environmental con-
cerns, and the limited frequency of flights. Moreover, the pilots’ estimations regarding the
location of their findings lack precise GPS coordinates and are prone to human error. The
considerable time gap between flights, coupled with the extended length of the pipeline,
makes it challenging to accurately recall the pipeline’s appearance from the previous month.
Consequently, some potential incidents may go unnoticed.

In recent years, access to remote sensing data has become easier. More providers have
entered the market, and the number of satellites orbiting Earth keeps growing. Satellite
imagery has become increasingly more cost-effective, and the temporal resolution has
increased. When a satellite passes over an area of interest, it acquires an image that can
be monitored, with the exception of adverse weather conditions, which may impact the
availability of new images. The growing amount of available data paves the way for
the use of deep learning techniques for automated pipeline monitoring. This automated
approach reduces the financial burden of helicopter flights and mitigates the need for
substantial human involvement, thereby reducing potential errors and environmental
impact. Furthermore, the regular updates provided by remote sensing imagery enable
accurate tracking of changes over time. For example, during the construction phase, it
becomes feasible to report various stages of building development or effectively monitor
field growth and harvest cycles.

Change detection (CD) is a common task in remote sensing, where a model has to
learn to detect relevant changes, given a pair of co-registered images. CD finds applications
in diverse domains, including flood detection [4], monitoring glacier development [5],
and urban changes [6]. Over the last decades, various models have been employed for
CD [7] among which are convolutional neural networks. Recent advancements have shown
promising outcomes with deep learning models based on the transformer architecture [8],
particularly for high-resolution data (0.5 m) [9,10]. It is apparent that with higher image
resolution, it is easier to detect changes. Unfortunately, with current satellite constellations,
acquiring high-resolution data remains expensive, and updates are less often available
than low-resolution data (3 m), making it less attractive for commercial use. (We use high-
resolution for 0.5 m and low-resolution for 3 m imagery. In the literature, these definitions
vary and change over time as the resolution increases with better sensors).

Problem Statement: We want to address the problems of the accuracy, costs, and en-
vironmental impact of helicopter flights for pipeline monitoring through automatic
pipeline monitoring utilizing satellite imagery.

We propose to formulate the problem of pipeline monitoring as a CD task and present
how ChangeFormer [9], a state-of-the-art transformer-based architecture for CD, can detect
pipeline risks effectively. We collect a pipeline risk dataset using 3 m resolution PlanetScope
satellite imagery, showing that transformer-based architectures can achieve good results
even when working with low-resolution data. We also illustrate how ChangeFormer
predicts risks and how its predictions can be tailored to meet the requirements of automated
pipeline monitoring by adjusting for costs.

We begin by presenting how we collected our dataset and explain which changes are
relevant for pipeline risk detection (Section 2). Next, we introduce the detection model
(Section 3), provide quantitative and qualitative evaluations, and compare the model
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against other deep learning architectures (Section 4). Before concluding, we touch upon the
related work (Section 5).

2. Risks of Natural Gas Pipelines

Our dataset comprises image pairs from the PlanetScope API, taken at different
timesteps from the same location and their corresponding ground truth (GT) annotations.
Figure 1 shows a sample from this dataset. In Germany, there are 540,000 km of pipelines
providing households and factories with energy [11]. Typically, pipelines are located
beneath the ground, although they may also be above ground or underwater. To collect
the dataset, we initially determined the targeted coverage areas, focusing on mainland
pipelines in Germany, where the external influence of human activities is the greatest.

After + GTBefore After

Figure 1. A new construction site: Shown are satellite images before and after a new construction
started. The task is to produce a binary map indicating the change, i.e., the ground truth (GT), which
is shown here as a red overlay over the after image.

We proceeded to identify the relevant types of changes for pipeline monitoring. As
a starting point, we had access to the reports from helicopter flights used previously to
monitor the pipelines. Construction sites comprised the majority of the changes observed,
with various agricultural changes, such as farmers piling up the harvest, following closely.
Drawing from these helicopter reports, we compiled a comprehensive list of all previously
observed changes. Additionally, we acknowledge the existence of other changes a human
can detect that are not on the list. For these, we rely on human expertise to decide if they
can pose a risk.

Using this list, we searched for changes seen at varying resolutions including on
high-resolution (0.5 m) images. Pipelines in cities often branch to connect households,
while larger direct pipelines link different cities. Our dataset includes rural and urban
areas, so a model can learn to capture changes in both. To achieve this, we randomly
selected patches from central and southern Europe, focusing on Germany, covering various
landscapes and changes. We used Google Earth (we utilized Google Earth Pro for desktop
(earth.google.com)) and its timestep function to locate the changes. For each identified
change on Google Earth, we recorded the time of its first appearance and obtained two
images at the same location from the PlanetScope API, with a resolution of 3 m. The first
image (before image) does not include the change, while the second one (after image) does.
A human annotator created a binary change mask for each change as the GT. We gathered
1372 before and after pairs and their binary masks and randomly split them into 80% for
training, 10% for validation, and 10% for testing.

Collecting data for pipeline monitoring poses a challenging task since precisely spec-
ifying relevant changes is non-trivial. For instance, variations in sun exposure may lead
to visible changes caused by reflected light from buildings or cars, which are no risk to
the pipeline. Additionally, sensor degradation and other effects can subtly alter the pixel
values of the spectral images [12], which should not impact the model’s predictions.

Defining the exact start of construction sites presents another challenge, as construc-
tion typically involves multiple stages such as vegetation or existing building removal,
construction progress, and ultimately, the completion of the roof. Consequently, human an-
notators must determine when observed changes are noteworthy, leading to noisy labeling
based on human judgment.

earth.google.com
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Another challenge is that small objects might not be visible on 3 m resolution images.
For example, in the helicopter reports, there was a fallen perch next to a pipeline. Even
for humans, detecting such a change on a 3 m resolution will be extremely challenging.
Looking at higher-resolution images to find changes and then finding them at a lower
resolution helped us cover smaller changes in the dataset. In general, though, the bigger
the change, the higher its risk potential; therefore, we assume that all noteworthy changes
can be seen with a 3 m resolution.

Finally, the PlanetScope API offers 8-band multispectral images dating back to 2020,
which aligns with the time interval covered by our dataset [13]. However, we leave the
utilization of 8-band data for future work. It is important to note that the dataset and
helicopter flight reports are proprietary and thus cannot be made public. After establishing
the data-gathering process, we next introduce the ChangeFormer model for CD.

3. Change Detection with Transformers

In CD, a model takes as input two co-registered images and produces a binary map
indicating the change. During training, the model has to learn to differentiate between
relevant changes, e.g., constructions, and non-relevant changes, e.g., seasonal changes or
reflections. In this work, we use a state-of-the-art deep-learning-based CD model, Change-
Former [9], shown in Figure 2. This section aims to give insights into the intermediate
representations of ChangeFormer and how its attention mechanism is used for CD. For a
more in-depth explanation of the computations carried out by each module, we refer to the
original work of [9]. ChangeFormer consists of three stages:

1. Feature extraction via four downsampling and transformer blocks (blue);
2. Feature comparison using four difference modules (red);
3. A decoder stage with a multilayer perceptron (MLP) and upsampling (yellow).
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Before Image

After Image

Binary Change Map

Figure 2. The ChangeFormer model adapted from [9]: Four transformer modules produce features
on different scales for the input images. The features from both images serve as input to the difference
modules. These modules produce comparison features, which are forwarded through a multilayer
perceptron (MLP) and upsampling module to output the binary change map.

Originally, transformer models were introduced for natural language processing
tasks [14] but have been adapted to work with images (cf. vision transformer [15]) and
perform equally as well on visual tasks as architectures based on convolutional neural
networks (CNNs). Transformers take as input a sequence of tokens. In the computer
vision context, images are split into patches, which serve as the transformer input tokens.
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Unlike in the vision transformer, ChangeFormer, features are extracted by convolutions that
downsample and extract features from overlapping patches in the input image. Afterwards,
a positional encoding is added to the feature maps using another CNN and MLP step.
Figure 3 shows how these feature maps are used as tokens for the transformer blocks. Each
pixel in the feature map corresponds to one token with length C, which corresponds to the
feature dimension. Together, all tokens (i.e., pixels) make up the input sequence for one
transformer block.

At the heart of every transformer is an attention mechanism applied in the transformer
block. Attention mechanisms produce a vector that weighs up which parts of the input
sequence are essential for solving the specific task. The ChangeFormer model uses the
scaled self-attention mechanism from [8]:

Attention(Q, K, V)) = So f tmax(
QKT
√

dhead
V) (1)

W/4

H/4

W

3

H

C

C

1

Input image Feature map Token

Figure 3. Extracting tokens: In ChangeFormer, a convolutional neural network (CNN) produces C
feature maps of size H/4 × W/4 from the input image. A token corresponds to one pixel along the
feature map dimension C (marked in red).

In self-attention, every input token can look at features from the same sequence of
input tokens. K, Q, and V are all linear transformations of the input sequence. Every token
emits features to find changes via its key K. The query Q binds to these features, and
together, QK can be seen as the affinity of every token with each other. By multiplying
by the value V, we obtain the aggregation of all important tokens for every token. The
tokens are then enriched with the attention features, which is repeated for three rounds
of attention.

There are four transformer blocks that apply downsampling and the attention mecha-
nism, and the attention-enriched feature maps from the previous block serve as the input for
the next block. Intuitively, these attention-enriched feature maps contain features from each
pixel and features from other pixels, which contain valuable information for the specific
pixel. Furthermore, we can look for changes on different scales as all transformer blocks
together extract hierarchical features on four different scales. Figure 4 shows attention
maps on four scales after the first round of attention for the before image.

In the next step, each difference module compares concatenated features from both
images with the same scaling. Consecutive difference modules also receive the output of
previous difference modules. The difference module is a CNN that learns the differences
during training. The last module is the decoder, which produces the binary change map
shown on the right side of Figure 2. All features outputted by the difference modules
on all scales are fed through an MLP and are upsampled. A softmax layer outputs the
binary change map, including a change and non-change class. Note that the model can be
easily extended to work with multiple change classes [16], e.g., vegetation and construction
changes. Providing the model with semantic knowledge would certainly improve the
performance and would be a fruitful direction for further research.
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64*64 32*32 16*16 8*8

Figure 4. Attention maps: ChangeFormer produces attention maps on different scales. Here, the
mean attention map of all feature dimensions is shown after the first round of attention. The four
scales correspond to the four transformer blocks shown in Figure 2. Areas containing houses are
considered more on the 64 × 64 scale. On the lower scales, more high-level features are considered as
the resolution decreases.

In our scenario, we use RGB remote sensing imagery. At the end of Section 1, we
mentioned that hyperspectral data would be an interesting future research direction. The
ChangeFormer architecture could be extended for hyperspectral data by changing the
input channels and number of feature maps C to align with the hyperspectral bands. We
argue that scaling the model to 12-band PlanetScope hyperspectral data should increase
the memory footprint of the model as well as inference times but would likely be computa-
tionally feasible. In some cases, though, hyperspectral data come with considerably more
bands, where these adjustments would not be feasible anymore, and other techniques are
necessary. Lastly, empirical validation has to show whether such adjustments are sufficient
and whether there will be a benefit of using them.

Trading precision for recall: In pipeline risk detection, our primary concern is
capturing all relevant changes (recall) while keeping the number of false positives, also
called false alarms, low (precision). It is hard to pinpoint what is more unacceptable:
missing a change or predicting a non-existent one. A missed change could lead to severe
power outages. On the other side, false positives must be checked on-site by the pipeline
provider, which can also be costly. Weighing these against each other suggests that we do
not want to miss a change but can tolerate some false positives. Moreover, a human in
the loop can filter out false positives by comparing the model’s predicted change on the
before and after images. Therefore, in this work, we prioritize higher recall and are willing
to accept lower precision, although we would like to point out that models with a good
balance between precision and recall are most desirable.

In [9], the loss function used to train ChangeFormer was the cross-entropy loss, which
trades recall and precision equally. As argued, we can tolerate a lower precision if our
recall is high enough. Thus, to shift predictive performance towards the recall, we can train
ChangeFormer with the weighted cross-entropy defined as:

LWeightedCrossEntropy = −αy log(ŷ)− (1 − y) log(1 − ŷ) (2)

with weighting parameter α, ground truth y, and prediction ŷ. The first part of the equation
(y log(ŷ)) is the entropy of the change class and the second part ((1 − y) log(1 − ŷ)) is the
entropy of the non-change class, both of which we want to minimize. During training, the
weighting parameter α shifts how much a missed change contributes relative to a false
alarm towards the total loss. A value of one means an equal contribution. Selecting a value
larger than one would lead to a bigger loss when a change is not detected, e.g., the model
is trained more not to miss a change rather than to avoid false alarms. Vice versa, if we
want to reduce the number of false alarms and are okay to miss some of the changes, we
can pick a value smaller than one.

4. Experimental Evaluation

In this section, we demonstrate that ChangeFormer is a viable choice for detecting
pipeline risks and compare it to other models. We first examine examples qualitatively and
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then perform a quantitative evaluation of our collected data. The aim of our experimental
evaluation is to answer the following questions:

Q1: Can ChangeFormer capture visual properties of relevant changes?
Q2: How good is ChangeFormer at detecting relevant changes?
Q3: Can we adjust for higher recall without significantly sacrificing precision?

We present the precision, recall, and F1 scores on a pixel- and object-based level to
compare the models concerning the change class. Additionally, we report the Intersection
over Union (IoU) at the pixel level to measure the prediction’s overlap with the GT. The
mean and standard deviation are shown over five runs for every model. In the pixel-based
metrics, the class of each pixel is checked. For the object-based metrics, we group pixel
blobs by selecting all connected pixels of the change class, as they usually belong to a
single change. A pixel blob is a true positive if it overlaps with any GT blob by more
than four pixels; otherwise, it is a false positive. To avoid favoring models with many
minor predictions, two prediction blobs overlapping the same GT blob are counted as one
true positive. The object-based metric is helpful for pipeline monitoring since our primary
focus is detecting wherever there was a change rather than precisely determining its exact
boundaries.

Models: We test the vanilla ChangeFormer with randomly initialized weights. Addi-
tionally, we provide the results of ChangeFormer with pretrained weights from training on
the LEVIR-CD dataset [17], which we call ChangeFormer-pt. LEVIR is a high-resolution CD
dataset that focuses on building changes and is close to our setting. We use the weighted
cross-entropy loss (Section 3) to allow for higher recall in exchange for precision. Different
values for the weighting parameter α (2, 4, 8) are considered to punish missed changes
more than false alarms and we call these cost-adjusted variants ChangeFormer-ca. A value
of 2 imposes twice the penalty for missed changes compared to a false alarm, whereas a
value of 8 imposes an even more severe penalty for missed changes. As our baseline, we
compare with other state-of-the-art transformer-based models and a CNN model, which
was the best-performing CNN on the LEVIR dataset in [9].

• FC-Siam-conc [18] is a CNN-based Siamese network. It consists of an encoder pro-
ducing features for both input images and a decoder that takes the concatenation
of features on different scales as input to produce the output binary map. In [18],
the authors also proposed FC-Siam-diff, which uses the difference of features in the
decoder. We could not produce any predictions using this model, so we did not
include it in our comparison.

• Bitemporal Image Transformer (BIT) [10] relies on a transformer encoder and decoder
to enrich tokens obtained from a CNN. The tokens are then projected back to pixel
space, where their difference is computed via subtraction, and another CNN is used
to produce the binary change map.

• DTCDSCN [6] combines a change detection module with two semantic segmentation
modules, which are trained together. Image segmentations and the binary change
mask are provided as labels during training. This addition helps the model to focus
more on object-level features and improves the performance on the evaluated task
of building change detection. Note that in this work, we only use the CD part of
the network, which involves, similar to the other BIT and ChangeFormer, obtaining
features via convolutional layers and enriching them via attention.

• TinyCD [19] is again a Siamese structure that uses the attention mechanism over
features extracted from a CNN. The main difference is in its size. While the current
state-of-the-art models have millions of parameters, such as ChangeFormer with over
41 million, TinyCD only has a fraction with 280k parameters and still can achieve good
performance on benchmark CD datasets. For a thorough comparison, we refer to the
TinyCD paper [19].

Training: All models are trained for 200 epochs, and we use the AdamW optimizer
and, as mentioned before, the cross-entropy loss with different weightings α for Change-
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Former. We use the default hyperparameters (batch size of 16, learning rate is 0.0001 with
a linear decay to zero) from [9] as they produce the best results and apply the same data
augmentation during training. The same applies to the baselines, where we use the default
parameters, loss functions, and data augmentation. We select the best-performing model
on the validation split and report its performance on the unseen test set.

Q1. Qualitative evaluation: Figure 5 shows examples of six satellite images from the
collected dataset. We observe that the ChangeFormer predictions overlap well with the GT.
When the GT comprises more complex shapes, the model loses some details but obtains the
right overall form. In two cases, the model predicts small blobs not in the GT (red circles).
In Figure 6, ChangeFormer is compared with the baselines on our running example from
Figure 1. All models detect the changes here but make another false prediction, except
DTCDSCN, which only predicts one object. Qualitatively, ChangeFormer, TinyCD, and
DTCDSCN match the GT the best, while the FC-Siam-Conc model predicts a significant
change that is not in the GT. These results indicate that ChangeFormer learns the correct
features to predict relevant changes. In some cases, it lacks some details but obtains the right
overall shape of the GT. Table 1 shows the pixel-based performance. Here, we can observe
that ChangeFormer and TinyCD have the highest IoU, which aligns with our qualitative
observations—almost every second predicted pixel overlaps with the GT. FC-Siam-Conc
and the BIT perform worse with ~13% less IoU.
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Figure 5. Qualitative results: Shown from the top to bottom row are the before and after images, the
prediction, and the GT from the ChangeFormer model [9]. The model can detect almost all changes
represented in the GT, even in the case of three changes in one image, as in the fourth column. In
some images, it predicts false positives (red circles). The last column again shows a false positive as it
predicts the field being harvested as a change, but it also misses a small construction being started
(yellow circle).

Figure 6. Qualitative comparisons: In our running example (Figure 1), all models detect the
construction site in the GT but miss its exact shape. Additionally, some models predict another
change in the upper left corner that is not in the GT.
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Table 1. ChangeFormer variants achieve the best performance: On the pixel-based metrics, we
can see that the ChangeFormer-pretrained (abbreviated pt) model achieves the highest F1 score
and Intersection over Union (IoU). The FC-Siam-Conc model achieves comparable precision but
has a lower recall. The BIT performs similarly to FC-Siam-Conc but favors the recall. Adjusting
ChangeFormer for costs (abbreviated ca) can help us achieve higher recall while maintaining good
precision. Color coding: best, 2nd-best, 3rd-best.

Method Precision Recall IoU F1

FC-Siam-conc 64.38 ± 2.11 41.06 ± 6.14 33.24 ± 3.69 49.78 ± 4.15
Bitemporal Image Transformer 46.39 ± 2.96 52.23 ± 2.61 32.54 ± 1.82 49.07 ± 2.11

DTCDSCN 65.32 ± 2.07 57.69 ± 2.27 44.10 ± 0.99 61.20 ± 0.95
TinyCD 68.99 ± 3.08 61.01 ± 2.13 47.80 ± 1.22 64.67 ± 1.11

ChangeFormer 65.61 ± 1.56 62.18 ± 2.67 46.89 ± 1.93 63.82 ± 1.80
ChangeFormer-pt 65.39 ± 2.01 63.27 ± 2.90 47.33 ± 1.42 64.24 ± 1.31

ChangeFormer-ca (×2) 61.47 ± 1.91 67.36 ± 2.34 47.30 ± 0.56 64.22 ± 0.51
ChangeFormer-ca (×4) 56.14 ± 2.13 73.97 ± 1.59 46.83 ± 0.87 63.78 ± 0.80
ChangeFormer-ca (×8) 49.19 ± 1.90 78.71 ± 0.85 43.39 ± 1.29 60.51 ± 1.26

Q2. Model performance: On the pixel-based comparison in Table 1, we observe that
TinyCD and ChangeFormer perform the best by a considerable margin compared with the
BIT and FC-Siam-Conc baseline. The recall and precision of ChangeFormer are balanced.
TinyCD has the best precision values and slightly worse recall values than ChangeFormer.
FC-Siam-Conc achieves competitive precision values but has a lower recall, and DTCDSCN
has slightly worse performance than the best-performing models.

Table 2 depicts the object-based performance. Here, DTCDSCN has the best F1 score
followed by ChangeFormer. ChangeFormer detects approximately 80% of the changes,
with a reasonably high precision exceeding 60%. Overall, most values are higher as this
metric only considers wherever there was a change rather than how good predictions
overlap with the GT. The considerable gap in recall between the metrics suggests that the
models can locate changes well, but they occasionally do not perfectly overlap with the GT.

Table 2. The cost-adjusted ChangeFormer strikes the right balance between precision and recall:
The object-based metric provides us with a more accurate understanding of the number of changes
we failed to capture. Again, ChangeFormer variants achieve ~80% and higher recall while having
precision values of more than 49%. Adjusting for costs helps the transformer reach 88% recall. Color
coding: best, 2nd-best, 3rd-best.

Method Precisionobj Recallobj F1obj

FC-Siam-conc 64.79 ± 2.18 60.82 ± 8.80 62.27 ± 3.97
Bitemporal Image Transformer 51.84 ± 4.71 75.61 ± 2.38 61.34 ± 3.25

DTCDSCN 68.27 ± 1.38 78.57 ± 1.41 73.05 ± 1.21
TinyCD 62.49 ± 4.48 79.80 ± 3.57 69.92 ± 2.50

ChangeFormer 62.03 ± 2.62 80.61 ± 0.85 70.06 ± 1.44
ChangeFormer-pt 60.82 ± 2.37 82.04 ± 1.27 69.80 ± 1.16

ChangeFormer-ca (×2) 58.74 ± 1.14 81.73 ± 1.86 68.32 ± 0.38
ChangeFormer-ca (×4) 54.90 ± 3.51 84.18 ± 1.02 66.38 ± 2.20
ChangeFormer-ca (×8) 47.93 ± 1.88 88.27 ± 1.48 62.11 ± 1.73

Comparing the standard deviation of the models, we see that most have a 1-2%
standard deviation. The results of the FC-Siam-conc, BIT, and TinyCD baselines could be
more consistent regarding their initialization, which favors ChangeFormer and DTCDSCN.
High standard deviation values come from our dataset’s small number of samples and can
be reduced by further data collection.

Pretraining ChangeFormer on the LEVIR-CD dataset [17] barely improves the F1 score
on the pixel-based metric and even shows a slight decline in performance on the object-based
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evaluation. Generally, pretraining does not make much of a difference in this setting. We
still argue that pretraining might be helpful in cases where little data are available, as in our
study, or when a similar dataset can be used, preferably obtained from the same satellite.

TinyCD and DTCDSCN perform the best on the pixel- and object-based metrics, respec-
tively, followed by ChangeFormer, which places second on both metrics. Additionally,
ChangeFormer has the best overall recall values, which is the most important metric for
pipeline monitoring. Still, each of these three models would be suitable candidates as their
performance differences are minor. In a deployment case in particular, the TinyCD model
could be a good alternative to ChangeFormer due to its small model size, which could lead
to savings in training the model.

Q3. Adjusting for higher recall: In Tables 1 and 2, we observe that adjusting for
higher recall yields positive results for both the pixel-based and object-based metrics and
scales with higher values of α. At the ×8 scaling, we can achieve above 88% recall on the
object-based metric while maintaining reasonably high precision at approximately 50%.
Initially, adjusting for costs benefits the F1 score and IoU, but with higher α values, we
notice a small negative effect. In summary, using the weighted cross-entropy loss is a
simple but effective way to adjust the model to the performance requirements of pipeline
monitoring.

Key takeaway: ChangeFormer has the highest recall and overall good performance,
making it preferable for pipeline monitoring, where recall is the most critical metric.

5. Related Work

Change detection is an integral field in remote sensing with applications to various
domains such as flood detection [4], glacier observation [5], and urban changes [6]. Given
a pair of co-registered images, a model has to find the differences between them. What a
change is depends on the specific task. As the taken images usually come with non-relevant
changes, such as sensor degradation [12], a model has to learn which changes are of interest.
Other works utilize a series of images to track changes over time rather than using a single
pair of before and after images [20].

Over the last decades, the whole bandwidth of machine learning models has been used
for CD in remote sensing [7]. In recent years, though, with the successes of deep learning,
the focus has shifted towards these methods, and they have received much interest in the
remote sensing community [21]. Various works focus on CD via deep learning [22], and
CNNs especially are often applied for CD. With the rise of transformer architectures in
natural language processing [8] and computer vision [15], these models have been deployed
for remote-sensing tasks as well [23].

Transformers for CD: Multiple works [9,10,24–26] tackle CD with transformer-based
architectures using some variation of the attention mechanism used in [8]. All of these
works employ a Siamese-like structure that takes as input two images to produce a binary
change map. Due to the successes of the vision transformer, there is an ongoing debate
on whether to use CNNs or vision transformer-based methods for vision tasks [27]. In
remote sensing, these principles are often seen in a combined way: The Bitemporal Image
Transformer [10] uses a hybrid approach combining CNN features with the attention
mechanism. ChangeFormer [9] employs a hierarchical transformer on different scales
and learns a difference module. It applies the attention mechanisms to features extracted
from a CNN. Works introducing transformer-based architectures have performed well on
high-resolution data, while little work has been carried out on low-resolution data.

Pipeline monitoring is a broad field spanning many engineering disciplines. Many
methods have been developed for monitoring the internal state of a pipeline [1,2] to detect
abnormalities such as corrosion or leakages. To the best of our knowledge, methods for
tracking external influences that can be harmful, such as construction sites next to a pipeline,
are unexplored as of yet. The authors of [28] evaluate the potential use of technologies for
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construction site progress monitoring using remote sensing technologies. A related field is
urbanization tracking, which is the closest to our setting [29].

Various CD datasets exist for urbanization tracking [17,30–32]. These datasets are
benchmarks in various state-of-the-art CD models [9,10], and they all contain high-resolution
images. One exception is the OSCD dataset covering low-resolution images with 10–60 m
resolution [33]. Furthermore, the time interval varies among these datasets. Generally, there
are longer intervals between the before and after images compared to our dataset, where
time intervals are around one week. In the LEVIR-CD dataset [17], for example, many
before images show undeveloped land, while the after images show finished settlements. In
contrast, our dataset includes after images with recently started construction sites.

6. Conclusions

In conclusion, our exploration of the ChangeFormer architecture has showcased its
great potential in risk detection through automated pipeline monitoring. With an evaluation
conducted on a dataset encompassing pipeline risks, we illustrate that ChangeFormer
exhibits impressive performance even with low-resolution images.

Among the many pipeline risks, construction sites and agricultural changes emerge
as the most significant contributors. The cost-adjusted ChangeFormer accurately detected
88% of these risks, presenting a compelling alternative to previously utilized helicopter
flights for monitoring purposes. The model’s capabilities could be further enhanced by
incorporating hyperspectral data. Moreover, expanding the dataset to include a broader
range of samples would empower the model to generalize better and handle a wider set
of scenarios in the real world. Furthermore, formulating the task of CD over not just one
pair of images but rather a series of images could be of great potential for more accurate
monitoring. In addition, providing the model with diverse change classes would enable it
to understand the semantics of the underlying changes more effectively and is a fruitful
research direction.

Author Contributions: All authors were involved in the conceptualization, methodology, and
validation of the project. Data curation: D.O., K.W., and S.B.; formal analysis, investigation, software
and visualization: D.O.; writing—original draft preparation: D.O.; writing—review and editing:
D.S.D., K.W., and K.K.; supervision: D.S.D. and K.K.; project administration: K.W. and S.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the ESA InCubed program “Automated satellite-based
system for pipeline monitoring” (Project Nr. 4000134395/21/I-NS-bgh), the ICT-48 Network of AI
Research Excellence Center “TAILOR” (EU Horizon 2020, GA No 952215), and the Collaboration Lab
with Nexplore “AI in Construction” (AICO). It also benefited from the BMBF Competence Center
KompAKI and the HMWK cluster project “The Third Wave of AI”.

Data Availability Statement: The dataset and helicopter flight reports are proprietary and, unfortu-
nately, cannot be made public.

Conflicts of Interest: Authors Karsten Wiertz and Sebastian Bußmann were employed by the
company SuperVision Earth. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict of
interest.

Abbreviations
The following abbreviations are used in this manuscript:

CD change detection
GT ground truth
CNN convolutional neural network
MLP multilayer perceptron
IoU Intersection over Union
ca cost-adjusted
pt pretrained



Remote Sens. 2024, 16, 266 12 of 13

References
1. Varela, F.; Tan, M.Y.; Forsyth, M. An overview of major methods for inspecting and monitoring external corrosion of on-shore

transportation pipelines. Corros. Eng. Sci. Technol. 2015, 50, 226–235. [CrossRef]
2. Adegboye, M.A.; Fung, W.K.; Karnik, A. Recent Advances in Pipeline Monitoring and Oil Leakage Detection Technologies:

Principles and Approaches. Sensors 2019, 19, 2548. [CrossRef] [PubMed]
3. Tsiklios, C.; Hermesmann, M.; Müller, T. Hydrogen transport in large-scale transmission pipeline networks: Thermodynamic and

environmental assessment of repurposed and new pipeline configurations. Appl. Energy 2022, 327, 120097. [CrossRef]
4. Longbotham, N.; Pacifici, F.; Glenn, T.; Zare, A.; Volpi, M.; Tuia, D.; Christophe, E.; Michel, J.; Inglada, J.; Chanussot, J.; et al.

Multi-Modal Change Detection, Application to the Detection of Flooded Areas: Outcome of the 2009–2010 Data Fusion Contest.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 331–342. [CrossRef]

5. Xie, Z.; Haritashya, U.K.; Asari, V.K.; Young, B.W.; Bishop, M.P.; Kargel, J.S. GlacierNet: A deep-learning approach for debris-
covered glacier mapping. IEEE Access 2020, 8, 83495–83510. [CrossRef]

6. Liu, Y.; Pang, C.; Zhan, Z.; Zhang, X.; Yang, X. Building Change Detection for Remote Sensing Images Using a Dual-Task
Constrained Deep Siamese Convolutional Network Model. IEEE Geosci. Remote Sens. Lett. 2021, 18, 811–815. [CrossRef]

7. Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inform. 2019, 12, 143–160.
[CrossRef]

8. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In
Proceedings of the Annual Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
Volume 30, pp. 5998–6008.

9. Bandara, W.G.C.; Patel, V.M. A Transformer-Based Siamese Network for Change Detection. In Proceedings of the IEEE Interna-
tional Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 207–210.

10. Chen, H.; Qi, Z.; Shi, Z. Remote Sensing Image Change Detection With Transformers. IEEE Trans. Geosci. Remote Sens. 2022,
60, 1–14. [CrossRef]

11. Deutscher Verein des Gas- und Wasserfaches. Available online: https://www.dvgw.de/themen/sicherheit/technische-sicherheit-
gas (accessed on 20 July 2022).

12. Wen, J.; Wu, X.; You, D.; Ma, X.; Ma, D.; Wang, J.; Xiao, Q. The main inherent uncertainty sources in trend estimation based on
satellite remote sensing data. Theor. Appl. Climatol. 2023, 151, 915–934. [CrossRef]

13. Tu, Y.H.; Johansen, K.; Aragon, B.; El Hajj, M.M.; McCabe, M.F. The radiometric accuracy of the 8-band multi-spectral surface
reflectance from the planet SuperDove constellation. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103035. [CrossRef]

14. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Virtual, 16–20 November 2020; pp. 38–45.

15. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold,
G.; Gelly, S.; et al. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale. In Proceedings of the 9th
International Conference on Learning Representations, Virtual, 3–7 May 2021.

16. Toker, A.; Kondmann, L.; Weber, M.; Eisenberger, M.; Camero, A.; Hu, J.; Hoderlein, A.P.; Senaras, Ç.; Davis, T.; Cremers, D.; et al.
DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation. In Proceedings of the Conference
on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 21126–21135.

17. Chen, H.; Shi, Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection.
Remote Sens. 2020, 12, 1662. [CrossRef]

18. Daudt, R.C.; Saux, B.L.; Boulch, A. Fully Convolutional Siamese Networks for Change Detection. In Proceedings of the IEEE
International Conference on Image Processing, Athens, Greece, 7–10 October 2018; pp. 4063–4067.

19. Codegoni, A.; Lombardi, G.; Ferrari, A. TINYCD: A (not so) deep learning model for change detection. Neural Comput. Appl. 2023,
35, 8471–8486. [CrossRef]

20. Woodcock, C.E.; Loveland, T.R.; Herold, M.; Bauer, M.E. Transitioning from change detection to monitoring with remote sensing:
A paradigm shift. Remote Sens. Environ. 2020, 238, 111558. [CrossRef]

21. Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B. Deep learning in remote sensing applications: A meta-analysis and review.
ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [CrossRef]

22. Khelifi, L.; Mignotte, M. Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-
Analysis. IEEE Access 2020, 8, 126385–126400. [CrossRef]

23. Aleissaee, A.A.; Kumar, A.; Anwer, R.M.; Khan, S.; Cholakkal, H.; Xia, G.; Khan, F.S. Transformers in Remote Sensing: A Survey.
Remote Sens. 2023, 15, 1860. [CrossRef]

24. Guo, Q.; Zhang, J.; Zhu, S.; Zhong, C.; Zhang, Y. Deep Multiscale Siamese Network With Parallel Convolutional Structure and
Self-Attention for Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [CrossRef]

25. Zhang, C.; Wang, L.; Cheng, S.; Li, Y. SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection. IEEE
Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

26. Wang, G.; Li, B.; Zhang, T.; Zhang, S. A Network Combining a Transformer and a Convolutional Neural Network for Remote
Sensing Image Change Detection. Remote Sens. 2022, 14, 2228. [CrossRef]

http://doi.org/10.1179/1743278215Y.0000000013
http://dx.doi.org/10.3390/s19112548
http://www.ncbi.nlm.nih.gov/pubmed/31167413
http://dx.doi.org/10.1016/j.apenergy.2022.120097
http://dx.doi.org/10.1109/JSTARS.2011.2179638
http://dx.doi.org/10.1109/ACCESS.2020.2991187
http://dx.doi.org/10.1109/LGRS.2020.2988032
http://dx.doi.org/10.1007/s12145-019-00380-5
http://dx.doi.org/10.1109/TGRS.2021.3095166
https://www.dvgw.de/themen/sicherheit/technische-sicherheit-gas
https://www.dvgw.de/themen/sicherheit/technische-sicherheit-gas
http://dx.doi.org/10.1007/s00704-022-04312-0
http://dx.doi.org/10.1016/j.jag.2022.103035
http://dx.doi.org/10.3390/rs12101662
http://dx.doi.org/10.1007/s00521-022-08122-3
http://dx.doi.org/10.1016/j.rse.2019.111558
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.015
http://dx.doi.org/10.1109/ACCESS.2020.3008036
http://dx.doi.org/10.3390/rs15071860
http://dx.doi.org/10.1109/TGRS.2021.3131993
http://dx.doi.org/10.1109/TGRS.2022.3160007
http://dx.doi.org/10.3390/rs14092228


Remote Sens. 2024, 16, 266 13 of 13

27. Maurício, J.; Domingues, I.; Bernardino, J. Comparing Vision Transformers and Convolutional Neural Networks for Image
Classification: A Literature Review. Appl. Sci. 2023, 13, 5521. [CrossRef]

28. Moselhi, O.; Bardareh, H.; Zhu, Z. Automated Data Acquisition in Construction with Remote Sensing Technologies. Appl. Sci.
2020, 10, 2846. [CrossRef]

29. Zhu, Z.; Zhou, Y.; Seto, K.C.; Stokes, E.C.; Deng, C.; Pickett, S.T.; Taubenböck, H. Understanding an urbanizing planet: Strategic
directions for remote sensing. Remote Sens. Environ. 2019, 228, 164–182. [CrossRef]

30. Liu, J.; Ji, S. A Novel Recurrent Encoder-Decoder Structure for Large-Scale Multi View Stereo Reconstruction From an Open
Aerial Dataset. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June
2020; pp. 6049–6058.

31. Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A deeply supervised image fusion network for change
detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [CrossRef]

32. Shi, Q.; Liu, M.; Li, S.; Liu, X.; Wang, F.; Zhang, L. A Deeply Supervised Attention Metric-Based Network and an Open Aerial
Image Dataset for Remote Sensing Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [CrossRef]

33. Daudt, R.C.; Saux, B.L.; Boulch, A.; Gousseau, Y. Urban Change Detection for Multispectral Earth Observation Using Convolu-
tional Neural Networks. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain,
22–27 July 2018; pp. 2115–2118.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app13095521
http://dx.doi.org/10.3390/app10082846
http://dx.doi.org/10.1016/j.rse.2019.04.020
http://dx.doi.org/10.1016/j.isprsjprs.2020.06.003
http://dx.doi.org/10.1109/TGRS.2021.3085870

	Introduction
	Risks of Natural Gas Pipelines
	Change Detection with Transformers
	Experimental Evaluation
	Related Work
	Conclusions
	References

