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1 DERIVATION OF OBJECTIVE

1.1 Objective

Given the data features X and class labels Y for n instances, the features and class label of the i-th
instance is xi and yi. The likelihood of a model is∏

i

P (yi|xi;ψ)

Model parameters are represented by ψ.

For the ease of optimization and the monotonicity of logarithm, we consider log-likelihood. The log-
likelihood (LL) objective is

LL(Y,X;ψ) =
∑
i

logP (yi|xi;ψ) (S1)

To maximize the log-likelihood, we get

MLL(Y,X;ψ) = max
ψ

∑
i

logP (yi|xi;ψ)

In general,

P (y|x;ψ) =
exp
(
ψ(y,x)

)∑
y′ exp

(
ψ(y′,x)

) (S2)

In order to leverage the privileged features which are not available during testing but available during
training, we propose the objective∑

i

(
logP (yi|xCF

i ;ψ)

− α ·KL
(
P (yi|xPF

i ;ψ′)||P (yi|xCF
i ;ψ)

))
(S3)

xCF
i ,xPF

i represents the normal features and privileged features of the i-th instance. ψ represents
parameters of the model on normal features. ψ′ represents parameters of the model on privileged features.
We find the model parameters ψ to not only maximize the log-likelihood of the model on normal features,
but also minimize the distance between probability distributions built on privileged features and normal
features. The model built on privileged features can provide richer information than mere class labels.
Hence the model on normal features learned under this objective is supposed to perform better.
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1.2 Gradient

For functional gradient boosting, we calculate derivative of Equation S1,

∂LL(Y,X;ψ)

∂ψ(yi,xi)
= ∂

∑
j

log
exp
(
ψ(yj ,xj)

)∑
y′ exp

(
ψ(y′,xj)

)/∂ψ(yi,xi)
= ∂ log

exp
(
ψ(yi,xi)

)∑
y′ exp

(
ψ(y′,xi)

)/∂ψ(yi,xi)
=
∂
(
ψ(yi,xi)− log

∑
y′ exp

(
ψ(y′,xi)

))
∂ψ(yi,xi)

= 1− ψ(yi,xi)∑
y′ exp

(
ψ(y′,xi)

)
= 1− P (yi|xi;ψ)

For binary classification, the derivative with regard to the positive class ψ(yi = 1,xi) of Equation S1 is

∂LL(Y,X;ψ)

∂ψ(yi = 1,xi)

=
∂
∑

j logP (yj |xj ;ψ)
∂ψ(yi = 1,xi)

=
∂ logP (yj |xj ;ψ)
∂ψ(yi = 1,xi)

=

∂

(
ψ(yi,xi)− log

(
exp
(
ψ(yi = 1,xi)

)
+ exp

(
ψ(yi = 0,xi)

)))
∂ψ(yi = 1,xi)

= I(yi = 1)−
exp
(
ψ(yi = 1,xi)

)
exp
(
ψ(yi = 1,xi)

)
+ exp

(
ψ(yi = 0,xi)

)
= I(yi = 1)− P (yi = 1|xi;ψ) (S4)
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To incorporate the guide for positive class from privileged features, we include additional KL divergence to
the objective. The derivative of KL divergence to ψ(yi = 1,xCF

i ),

∂KL
(
P (yi|xPF

i ;ψ′)||P (yi|xCF
i ;ψ)

)
∂ψ(yi = 1,xCF

i )

=
∂
∑

yi
P (yi|xPF

i ;ψ′)
[
logP (yi|xPF

i ;ψ′)− logP (yi|xCF
i ;ψ)

]
∂ψ(yi = 1,xCF

i )

= −
∂
∑

yi
P (yi|xPF

i ;ψ′) logP (yi|xCF
i ;ψ)

∂ψ(yi = 1,xCF
i )

= −
(∂P (yi = 1|xPF

i ;ψ′) logP (yi = 1|xCF
i ;ψ)

∂ψ(yi = 1,xCF
i )

+
∂P (yi = 0|xPF

i ;ψ′) logP (yi = 0|xCF
i ;ψ)

∂ψ(yi = 1,xCF
i )

)
= −

(
P (yi = 1|xPF

i ;ψ′)
∂ logP (yi = 1|xCF

i ;ψ)

ψ(yi = 1,xCF
i )

+ P (yi = 0|xPF
i ;ψ′)

∂ logP (yi = 0|xCF
i ;ψ)

∂ψ(yi = 1,xCF
i )

)
We substitute the derivatives by result from Equation S4,

= −
(
P (yi = 1|xPF

i ;ψ′) ·
(
1− P (yi = 1|xCF

i ;ψ)
)
+

P (yi = 0|xPF
i ;ψ′) ·

(
−P (yi = 1|xCF

i ;ψ)
))

= P (yi = 1|xCF
i ;ψ)− P (yi = 1|xPF

i ;ψ′) (S5)

Combining the result from Equation S4, we can get the derivative of the objective in Equation S3 with
regard to ψ(yi = 1,xCF

i ),

I(yi = 1)− P (yi = 1|xCF
i ;ψ)

− α ·
(
P (yi = 1|xCF

i ;ψ)− P (yi = 1|xPF
i ;ψ′)

)
(S6)

1.3 Hessian

To make the objectives work for XGBoost (Chen and Guestrin, 2016), we need to calculate the second-
order derivative, hessian. From Equation S4, the second-order derivative of the log-likelihood is,

∂(I(yi = 1)− P (yi = 1|xi;ψ))
∂ψ(yi = 1,xi)

= −∂P (yi = 1|xi;ψ)
ψ(yi = 1,xi)
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Substitute P (yi = 1|xi;ψ) by Equation S2,

= −

[
exp
(
ψ(yi = 1,xi)

)
exp
(
ψ(yi = 1,xi)

)
+ exp

(
ψ(yi = 0,xi)

)−
(

exp
(
ψ(yi = 1,xi)

)
exp
(
ψ(yi = 1,xi)

)
+ exp

(
ψ(yi = 0,xi)

))2]
= −

[
P (yi = 1|xi;ψ)−

(
P (yi = 1|xi;ψ)

)2]
= −P (yi = 1|xi;ψ)

(
1− P (yi = 1|xi;ψ)

)
(S7)

From Equation S5, the second-order derivative of KL divergence

∂
(
P (yi = 1|xCF

i ;ψ)− P (yi = 1|xPF
i ;ψ′)

)
∂ψ(yi = 1,xCF

i )

=
∂P (yi = 1|xCF

i ;ψ)

∂ψ(yi = 1,xCF
i )

Similar as hessian of log-likelihood in Equation S7

= P (yi = 1|xCF
i ;ψ)

(
1− P (yi = 1|xCF

i ;ψ)
)

(S8)

Combine the hessian of log-likelihood and KL divergence, the hessian of the new objective

− P (yi = 1|xCF
i ;ψ)

(
1− P (yi = 1|xCF

i ;ψ)
)
−

α · P (yi = 1|xCF
i ;ψ)

(
1− P (yi = 1|xCF

i ;ψ)
)

= −(1 + α) ·
[
P (yi = 1|xCF

i ;ψ)
(
1− P (yi = 1|xCF

i ;ψ)
)]

Since XGBoost takes loss function as objective and its gradient and hessian, a negative sign needs to be
added to gradient and hessian of our objective.

2 ALGORITHMS

Algorithm 1 describes the learning of the baseline NF model. Lines 2 to 8 follow the procedure of learning
gradient boosted decision trees regarding the objective in Equation S1, with early-stopping strategy in
Algorithm 2.

3 PARAMETERS

The values of α for KbPIB are Heart 0.016, Car 0.036, Spam 0.048, N2b a 0.198, N2b b 0.764, NS
0.001, Rare 0.615, Adult 0.936, Diab. 0.173, Dutch 0.719, Bank 0.158, Credit 0.035, COMP. 0.147, C. V.
0.584, Comm. 0.345, St. M. 0.065, St. P. 0.198, OUL. 0.42, KDD 0.067. The values of α for JPIB are
Heart 0.018, Car 0.736, Spam 0.078, N2b a 0.854, N2b b 0.986, NS 0.001, Rare 0.653, Adult 0.01, Diab.
0.141, Dutch 0.213, Bank 0.07, Credit 0.239, COMP. 0.960, C. V. 0.379, Comm. 0.216, St. M. 0.066, St. P.
0.028, OUL. 0.013, KDD 0.039. Thresholds used for precision and recall can be found in source code files.
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Algorithm 1 NF: Normal (Classifier) Features
Input: Training data Xtrain, Ytrain; validation data Xval, Yval
Parameter: Number of trees N , early-stop patience P
Output: Learned model ψ

1: Initialize model ψ0 = 0, counter C = 0, score R, best number of trees index j
2: for i = 1 to N do
3: ∆i ← ComputeGradient(Xtrain, Ytrain, ψi−1) {Eq. S4}
4: ∆̂i ← FitRegressionValue(Xtrain,∆i)
5: ψi ← ψi−1 + ∆̂i
6: Rval← Evaluate(Xval, Yval, ψi)
7: j, R, C ← EarlyStop(i, j, R, Rval, C, P ) {Alg. 2}
8: end for
9: return ψj

Algorithm 2 EarlyStop
Input: i, j, R, Rv, C, P
Output: j, R, C

1: if i = 1 then
2: R← Rv, j ← 1
3: else if Rv ≤ R then
4: C ← C + 1
5: else
6: C ← 0, R← Rv, j ← i
7: end if
8: if C = P then
9: break

10: end if
11: return j, R, C

4 RESULTS

The AUC ROC results with standard deviation of NF, KbPIB, JPIB and SVM+ are in Table S1.
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Table S1. AUC ROC. KbPIB and JPIB outperform the baseline NF in nearly all the datasets. ”-” indicates out-of-memory error.

Dataset NF KbPIB JPIB SVM+
Heart 0.792 0.810 0.798 0.746

±0.0754 ±0.0776 ±0.0713 ±0.0788
Car 0.845 0.846 0.846 0.841

±0.0284 ±0.0276 ±0.0283 ±0.0226
Spam 0.961 0.961 0.962 0.934

±0.0076 ±0.0082 ±0.0075 ±0.0109

N2b a 0.658 0.656 0.684 0.690
±0.0757 ±0.0699 ±0.0810 ±0.0638

N2b b 0.643 0.652 0.655 0.641
±0.0486 ±0.0504 ±0.0636 ±0.0777

NS 0.989 0.989 0.989 0.5
±0.0248 ±0.0248 ±0.0248 ±0.0

Rare 0.531 0.614 0.560 0.667
±0.2015 ±0.0954 ±0.1904 ±0.1241

Adult 0.714 0.725 0.719 -
±0.0202 ±0.0484 ±0.0260 -

Diab. 0.562 0.561 0.566 -
±0.0061 ±0.0106 ±0.0063 -

Dutch 0.744 0.763 0.764 -
±0.0319 ±0.0334 ±0.0318 -

Bank 0.681 0.696 0.714 -
±0.0292 ±0.0408 ±0.0230 -

Credit 0.701 0.703 0.703 -
±0.0122 ±0.0163 ±0.0175 -

COMP. 0.618 0.627 0.643 0.698
±0.0360 ±0.0343 ±0.0455 ±0.0174

C. V. 0.567 0.596 0.609 0.703
±0.0901 ±0.0669 ±0.0492 ±0.0302

Comm. 0.893 0.883 0.899 0.919
±0.0587 ±0.0588 ±0.0552 ±0.0453

St. M. 0.959 0.974 0.975 0.959
±0.0257 ±0.0204 ±0.0202 ±0.0209

St. P. 0.908 0.921 0.914 0.914
±0.0773 ±0.0432 ±0.0521 ±0.0365

OUL. 0.523 0.532 0.523 0.534
±0.0179 ±0.0235 ±0.0143 ±0.0213

KDD 0.889 0.890 0.890 -
±0.0046 ±0.0042 ±0.0046 -

6


	Derivation of objective
	Objective
	Gradient
	Hessian

	Algorithms
	Parameters
	Results



