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Abstract
Wegive a simple argument to obtainL𝑝-boundedness for
heat semigroups associated to uniformly strongly ellip-
tic systems on ℝ𝑑 by using Stein interpolation between
Gaussian estimates and hypercontractivity. Our results
give 𝑝 explicitly in terms of ellipticity. It is optimal at
the endpoint 𝑝 = ∞. We also obtain L𝑝-estimates for
the gradient of the semigroup, where 𝑝 > 2 depends on
ellipticity but not on dimension.
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1 INTRODUCTION

In dimension 𝑑 ⩾ 3, we consider uniformly strongly elliptic systems on ℝ𝑑 of 𝑁 ⩾ 1 equations in
divergence form

(𝐿𝑢)𝛼 = −(div(𝐴∇𝑢))𝛼 = −

𝑑∑
𝑖,𝑗=1

𝑁∑
𝛽=1

𝜕𝑖𝐴
𝛼,𝛽
𝑖,𝑗

𝜕𝑗𝑢
𝛽 (𝛼 = 1,… ,𝑁)

with bounded, measurable and complex coefficients, see Section 2 for precise definitions. This
gives rise to a contraction semigroup (e−𝑡𝐿)𝑡>0 in (L2)𝑁 ∶= L2(ℝ𝑑; ℂ𝑁). Surprisingly, little is
known about explicit L𝑝-estimates when no further regularity on the coefficients is imposed. For
systemswithminimally smooth coefficients, we refer, for example, to [8].More precisely, consider
the set

 (𝐿) ∶=
{
𝑝 ∈ (1,∞) ∶ e−𝑡𝐿 is bounded in L𝑝, uniformly for 𝑡 > 0

}
.
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By complex interpolation, it is an interval around 2, the endpoints of which are often denoted
by 𝑝±(𝐿). All of our results will be stable under taking adjoints. As 𝑝−(𝐿) = (𝑝+(𝐿

∗))′, we shall
concentrate on the upper endpoint 𝑝+(𝐿). It is known that 𝑝+(𝐿) > 2∗, where 2∗ ∶= 2𝑑∕(𝑑−2) is the
Sobolev conjugate of 2, and that the improvement 𝑝+(𝐿) − 2∗ can be arbitrarily small even when
𝑁 = 1 [12, section 2.2]. What seems to be missing though, are explicit lower bounds for 𝑝+(𝐿)

in terms of the data of 𝐿, such as ellipticity constants and dimensions, in particular when the
improvement is expected to be large or even covers𝑝+(𝐿) = ∞. Indeed, all results for systems (that
we are aware of) are perturbative from the general L2-theory and provide small, nonquantifiable
improvements [2, 3, 19]. In contrast, we proceed by interpolation from the L∞-theory for special
systems described further below. Our results are new also for elliptic equations (𝑁 = 1).
The number 𝑝+(𝐿) is related to the optimal ranges of various L𝑝-estimates for 𝐿, such as Riesz

transforms, boundary value problems and functional calculus, see the introduction of [4] for a
comprehensive account on the literature. Thus, improving lower bounds for 𝑝+(𝐿), as we shall do
here, leads to automatic improvements in all these topics.
All of our results are perturbative from the diagonal Laplacian system corresponding to 𝐴 =

𝟏(ℂ𝑁)𝑑 ∶= (𝛿𝛼,𝛽𝛿𝑖,𝑗)
𝛼,𝛽
𝑖,𝑗

but not necessarily on a small scale. This is in the nature of things, because
every uniformly strongly elliptic 𝐴 is an L∞-perturbation of 𝟏(ℂ𝑁)𝑑 of size smaller than 1 up to
normalization:

d(𝐴) ∶= min
𝑡⩾0

‖𝟏(ℂ𝑁)𝑑 − 𝑡𝐴‖L∞(ℝ𝑑;((ℂ𝑁)𝑑)) < 1.

The “distance” d(𝐴) is a well-known measure of ellipticity [14]. It can be bounded from above
and below in terms of the usual ellipticity constants and when 𝐴 = 𝐴∗, there is an easy formula
(Lemma 2.1). The dimensional constant

𝛿(𝑑) ∶=

(
1 +

(𝑑 − 2)2

𝑑 − 1

)−1
2

will play an important role in this paper. Our main result is as follows.

Theorem 1.1. The following three statements hold.

(i) If d(𝐴) ⩾ 𝛿(𝑑), then (with 2∗∕0 ∶= ∞)

𝑝+(𝐿) ⩾
2∗

1 − ln(d(𝐴))

ln(𝛿(𝑑))

.

(ii) If d(𝐴) < 𝛿(𝑑), then 𝑝+(𝐿) = ∞.
(iii) The result in (ii) is optimal in the sense that for each 𝜀 > 0 there is some𝐴𝜀 with d(𝐴𝜀) ⩽ 𝛿(𝑑) + 𝜀

and 𝑝+(𝐿𝜀) < ∞.

The dimensional constants in Theorem 1.1 are quite large in small dimensions and we collect
some values in Figure 1.
Part (ii) is proved in Section 3 by combining results of Koshelev [14], see also [15], with a char-

acterization of Gaussian estimates and Hölder regularity of the kernel associated with e−𝑡𝐿 due
to Auscher–Tchamitchian [5]. In fact, in Theorem 3.3 we shall not only prove that d(𝐴) < 𝛿(𝑑)

implies 𝑝+(𝐿) = ∞, but that e−𝑡𝐿 has a Hölder regular integral kernel with Gaussian decay. As
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F IGURE 1 Approximate constants in Theorem 1.1 in small dimensions. The third column contains the
ellipticity ratio 𝜚(𝐴) = 𝜆(𝐴)∕Λ(𝐴) ∈ (0, 1] that is sufficient for having d(𝐴) = 𝛿(𝑑) in the special case 𝐴 = 𝐴∗, see
Lemma 2.1.

𝛿(𝑑) > 1∕
√
𝑑, this disproves the conjecture in [5, chapter 1, section 1.4.6] that the best possible per-

turbation result would be d(𝐴) ∈ 𝑂(𝑑−1). The optimality statement in (iii) is almost classical, see
Proposition 3.5.
Part (i) is proved in Section 4. The idea is to rewrite d(𝐴) < 1 as 𝐴 = 𝜏(𝟏(ℂ𝑁)𝑑 − 𝐵), where‖𝐵‖∞ = d(𝐴) and 𝜏 > 0. We embed 𝐴 as 𝐴1 into an analytic family of elliptic matrices given by

𝐴𝑧 ∶= 𝜏(𝟏(ℂ𝑁)𝑑 − 𝑧𝐵),

where 𝑟 ⩽ |𝑧| ⩽ 𝑅with 0 < 𝑟 < 1 < 𝑅. Then, in the spirit of Stein interpolation,we estimate e−𝑡𝐿 =

e−𝑡𝐿1 by using the generic information 𝑝+(𝐿𝑧) ⩾ 2∗ on the outer circle |𝑧| = 𝑅 and 𝑝+(𝐿𝑧) = ∞ on
the inner circle |𝑧| = 𝑟 provided 𝑟 is small. This gives a lower bound for 𝑝+(𝐿1) that becomes the
larger, the closer 𝑧 = 1 is to the inner circle and the farther away it is from the outer one. Thus,
the best bound is achieved when 𝑟, 𝑅 are the largest possible and the optimal choice for 𝑟 comes
from (ii). We believe that this simple analytic perturbation argument is of independent interest
and has multiple applications to other types of L𝑝-estimates for divergence form operators.
Writing Theorem 1.1(i) as 1∕2∗ − 1∕𝑝+(𝐿) ⩾ ln(d(𝐴))∕2∗ ln(𝛿(𝑑)) =∶ 𝜀(𝑑, d(𝐴)), we see that

𝜀(𝑑, d(𝐴)) → 0 as 𝑑 → ∞. Inspired by Stein’s result [18] on dimensionless bounds for the
Riesz transform, we ask whether an improvement can be given independently of 𝑑. To this end,
it will be advantageous to consider

 (𝐿) ∶=
{
𝑝 ∈ (1,∞) ∶

√
𝑡∇ e−𝑡𝐿 is bounded in L𝑝, uniformly for 𝑡 > 0

}
,

instead of  (𝐿). It is again an interval around 2. The left and right endpoints of (𝐿) are denoted
by 𝑞±(𝐿) and it is a fact that 𝑞−(𝐿) = 𝑝−(𝐿) and 𝑝+(𝐿) ⩾ 𝑞+(𝐿)

∗, the Sobolev conjugate of 𝑞+(𝐿)
[2, section 3.4]. It follows that the improvement 𝑞+(𝐿) − 2 can be arbitrarily small. In the next
result, proved in Section 6, we improve 𝑞+(𝐿) in terms of d(𝐴) alone. Writing the conclusion as
1∕2 − 1∕𝑞+(𝐿) ⩾ 𝜀(d(𝐴)) gives the dimensionless improvement 1∕2∗ − 1∕𝑝+(𝐿) ⩾ 𝜀(d(𝐴)).

Theorem 1.2. It holds

𝑞+(𝐿) ⩾

⎧⎪⎨⎪⎩
2

1+ 𝜎−1

𝜎2
ln(d(𝐴))

if 1

4(𝜎−1)2
⩽ d(𝐴),

1

2
√
d(𝐴)

+ 1 if d(𝐴) ⩽ 1

4(𝜎−1)2
,

where 𝜎 ≈ 5.69061 is the unique real solution to

ln(2𝜎 − 2) =
𝜎(𝜎 − 2)

2(𝜎 − 1)
.
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For curiosity, let usmention that the first bound in Theorem 1.2 produces a larger improvement
for 𝑝+(𝐿) compared to Theorem 1.1(i) in dimension 𝑑 ⩾ 922100.
It would be interesting to know to what extent our results can be extended to more general

domains and boundary conditions. In case of Theorem 1.1, we provide an extension to bounded
C1-domains with Dirichlet boundary conditions in Section 5.
Implicit constants.We write X ≲𝑎 Y, if X ⩽ 𝑐Y for some 𝑐 = 𝑐(𝑎) > 0.

2 UNIFORMLY STRONGLY ELLIPTIC SYSTEMS

Let 𝑑 ⩾ 3,𝑁 ⩾ 1 and𝐴∶ ℝ𝑑 → ((ℂ𝑁)𝑑) bemeasurable.We assume that𝐴 is “uniformly strongly
elliptic”, that is,

𝜆(𝐴) ∶= essinf
𝑥∈ℝ𝑑

min|𝜉|=1
Re(𝐴(𝑥)𝜉 ⋅ 𝜉) > 0 & Λ(𝐴) ∶= ‖𝐴‖L∞(ℝ𝑑;((ℂ𝑁)𝑑)) < ∞.

Let 𝐿 = −div(𝐴∇⋅) be realized as an m-accretive operator in (L2)𝑁 via the sesquilinear form

𝑎(𝑢, 𝑣) ∶= ∫ℝ𝑑
𝐴∇𝑢 ⋅∇𝑣 d𝑥 =

𝑑∑
𝑖,𝑗=1

𝑁∑
𝛼,𝛽=1

∫ℝ𝑑
𝐴

𝛼,𝛽
𝑖,𝑗

𝜕𝑗𝑢
𝛽𝜕𝑖𝑣

𝛼 d𝑥 (𝑢, 𝑣 ∈ (W1,2)𝑁)

and let (e−𝑡𝐿)𝑡⩾0 be the associated contraction semigroup, see [13, chapter 6]. We use the “distance
function”,

d(𝐴) ∶= min
𝑡⩾0

‖𝟏(ℂ𝑁)𝑑 − 𝑡𝐴‖L∞(ℝ𝑑;((ℂ𝑁)𝑑)),

to measure ellipticity. By compactness, the minimum is attained in some 𝑡∗ ⩾ 0. Let us verify that
𝑡∗ > 0 and that d(𝐴) is an appropriate quantity to measure ellipticity.

Lemma 2.1. If 𝜚(𝐴) ∶= 𝜆(𝐴)∕Λ(𝐴) denotes the ellipticity quotient of 𝐴, then

1 − 𝜚(𝐴)

1 + 𝜚(𝐴)
⩽ d(𝐴) ⩽

√
1 − 𝜚(𝐴)2.

Furthermore, if 𝐴 = 𝐴∗, then the first inequality becomes an equality.

Proof. We have for all 𝑡 ⩾ 0, each normalized 𝜉 ∈ (ℂ𝑁)𝑑 and almost every 𝑥 ∈ ℝ𝑑 that

|𝜉 − 𝑡𝐴(𝑥)𝜉|2 = 1 − 2𝑡 Re(𝐴(𝑥)𝜉 | 𝜉) + 𝑡2|𝐴(𝑥)𝜉|2 ⩽ 1 − 2𝑡𝜆(𝐴) + 𝑡2Λ(𝐴)2.

We choose 𝑡 ∶= 𝜆(𝐴)∕Λ(𝐴)2 to get the upper bound for d(𝐴).
Now, fix 𝑡∗ > 0 such that ‖𝟏(ℂ𝑁)𝑑 − 𝑡∗𝐴‖∞ = d(𝐴). Then

Re(𝑡∗𝐴(𝑥)𝜉 | 𝜉) = 1 − Re((𝟏(ℂ𝑁)𝑑 − 𝑡∗𝐴(𝑥))𝜉 | 𝜉) ⩾ 1 − d(𝐴).

Hence, 𝑡∗𝜆(𝐴) ⩾ 1 − d(𝐴) > 0 and by the triangle inequality 𝑡∗Λ(𝐴) ⩽ 1 + d(𝐴). Rearranging
gives the lower bound for d(𝐴).



918 BÖHNLEIN and EGERT

For the second claim we take 𝑡 ∶= 2∕(Λ(𝐴)+𝜆(𝐴)). Then 𝟏(ℂ𝑁)𝑑 − 𝑡𝐴(𝑥) is a self-adjoint matrix for
almost every 𝑥 ∈ ℝ𝑑 with eigenvalues contained in

[1 − 𝑡Λ(𝐴), 1 − 𝑡𝜆(𝐴)] =
[
−Λ(𝐴)−𝜆(𝐴)

Λ(𝐴)+𝜆(𝐴)
, Λ(𝐴)−𝜆(𝐴)

Λ(𝐴)+𝜆(𝐴)

]
=
[
−

1−𝜚(𝐴)

1+𝜚(𝐴)
,
1−𝜚(𝐴)

1+𝜚(𝐴)

]
,

and thus

d(𝐴) ⩽
1−𝜚(𝐴)

1+𝜚(𝐴)

by the spectral radius formula. □

The next smoothing of the coefficients lemma will be important in Sections 3 and 5 to absorb
terms, which are a priori not finite for nonsmooth coefficients. We include the simple proof
for convenience. To this end, we let 𝜂 ∈ C∞

c (𝐵(0, 1)) be nonnegative with ∫
ℝ𝑑 𝜂 d𝑥 = 1 and put

𝜂𝑛(𝑥) ∶= 𝑛𝑑𝜂(𝑛𝑥) for 𝑛 ∈ ℕ and 𝑥 ∈ ℝ𝑑. We define the smoothed coefficients 𝐴𝑛 ∶= 𝐴 ∗ 𝜂𝑛.

Lemma 2.2. Let 𝑂 ⊆ ℝ𝑑 be open and bounded, 𝑢 ∈ W1,2(𝑂)𝑁 be a weak solution to 𝐿𝑢 = 0 in 𝑂

and 𝑢𝑛 ∈ W1,2(𝑂)𝑁 be the unique weak solution to

−div(𝐴𝑛∇𝑢𝑛) = 0 in 𝑂 & 𝑢 − 𝑢𝑛 ∈ W1,2
0

(𝑂)𝑁.

Then the following assertions are satisfied.

(i) For all 𝑛 ∈ ℕ, it holds 𝜆(𝐴𝑛) ⩾ 𝜆(𝐴), Λ(𝐴𝑛) ⩽ Λ(𝐴), d(𝐴𝑛) ⩽ d(𝐴) and 𝑢𝑛 is smooth in 𝑂.
(ii) Along a subsequence 𝑢𝑛 → 𝑢 in L2(𝑂)𝑁 and a.e. on 𝑂.

Proof. As 𝐴𝑛 is smooth, so is 𝑢𝑛 by elliptic regularity theory, for example, [10, section 6.3.1,
Theorem 3] adapted to systems. The rest of (i) follows from

𝐴𝑛(𝑥)𝜉 ⋅ 𝜁 = ∫ℝ𝑑
𝜂𝑛(𝑦)𝐴(𝑥 − 𝑦)𝜉 ⋅ 𝜁 d𝑦 (𝜉, 𝜁 ∈ (ℂ𝑁)𝑑).

For instance, to prove that d(𝐴𝑛) ⩽ d(𝐴), we let 𝑡 > 0 be such that ‖𝟏(ℂ𝑁)𝑑 − 𝑡𝐴‖∞ = d(𝐴) and
use ∫

ℝ𝑑 𝜂𝑛(𝑦) d𝑦 = 1 twice in order to get for all 𝜉 ∈ (ℂ𝑁)𝑑 that

|(𝟏(ℂ𝑁)𝑑 − 𝑡𝐴𝑛(𝑥))𝜉| = ||||∫ℝ𝑑
𝜂𝑛(𝑦)(𝜉 − 𝑡𝐴(𝑥 − 𝑦)𝜉) d𝑦

|||| ⩽ d(𝐴)∫ℝ𝑑
𝜂𝑛(𝑦) d𝑦 = d(𝐴).

To prove (ii), let us show in a first step that (𝑣𝑛)𝑛 ∶= (𝑢𝑛 − 𝑢)𝑛 ⊆ W1,2
0

(𝑂)𝑁 is bounded. Indeed,
as

−div(𝐴𝑛∇𝑣𝑛) = div(𝐴𝑛∇𝑢) in 𝑂,

this follows from the Lax–Milgram lemma and (i). Thus, we can find a subsequence (𝑣𝑘)𝑘, and
some 𝑣 ∈ W1,2

0
(𝑂)𝑁 such that 𝑣𝑘 → 𝑣 weakly inW1,2

0
(𝑂)𝑁 . By compactness, we can additionally

assume 𝑣𝑘 → 𝑣 strongly in L2(𝑂)𝑁 and a.e. on𝑂. Put𝑤 ∶= 𝑣 + 𝑢. In particular, 𝑢𝑘 → 𝑤 in L2(𝑂)𝑁

and a.e. on 𝑂, and ∇𝑢𝑘 → ∇𝑤 weakly in L2(𝑂)𝑑𝑁 . We claim that 𝑤 = 𝑢. To this end, we fix some
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𝜑 ∈ C∞
c (𝑂)𝑁 . Then

0 = ∫𝑂
𝐴𝑘∇𝑢𝑘 ⋅∇𝜑d𝑥 = ∫𝑂

∇𝑢𝑘 ⋅ 𝐴
∗
𝑘
∇𝜑 d𝑥 ⟶ ∫𝑂

∇𝑤 ⋅ 𝐴∗∇𝜑 d𝑥 = ∫𝑂
𝐴∇𝑤 ⋅ 𝜑 d𝑥,

using also strong L2-convergence 𝐴∗
𝑘
∇𝜑 → 𝐴∗∇𝜑, which follows from dominated convergence.

This proves that 𝑤 solves

𝐿𝑤 = 0 in 𝑂 & 𝑤 − 𝑢 ∈ W1,2
0

(𝑂)𝑁,

hence 𝑤 = 𝑢. □

Remark 2.3. If 𝐴 would be only defined on 𝑂, then we can extend it to ℝ𝑑 without changing
the “distance”: Simply let 𝑡∗ > 0 be such that ‖𝟏(ℂ𝑁)𝑑 − 𝑡∗𝐴‖L∞(𝑂) = d(𝐴) and extend 𝐴 to ℝ𝑑 by
(𝑡∗)−1𝟏(ℂ𝑁)𝑑 . Hence, we can always assume that 𝐴 is defined on ℝ𝑑.

3 NEW THOUGHTS ON OLD RESULTS OF KOSHELEV

In a series of articles, culminating in the monograph [14], Koshelev studied qualitative (Hölder)
regularity of weak solutions to elliptic systems. In this section, we explain how they lead us to
an optimal perturbation result for Gaussian estimates for heat semigroups, when reinterpreted
appropriately as quantitative statements.

Definition 3.1. Let 𝑂 ⊆ ℝ𝑑 be open. We call a function 𝑢 ∈ W1,2(𝑂)𝑁 𝑳-harmonic in 𝑂, if we
have for all 𝜑 ∈ C∞

c (𝑂)𝑁 that

∫𝑂
𝐴∇𝑢 ⋅∇𝜑d𝑥 = 0.

The appropriate setting to study regularity of𝐿-harmonic functions turns out to be the following
“weighted Morrey spaces” H𝛼(𝑂)

𝑁 , 𝛼 ∈ ℝ, which are defined as the spaces of all 𝑢 ∈ W1,2(𝑂)𝑁

modulo ℂ𝑁 for which the norm

‖𝑢‖H𝛼(𝑂)
∶= sup

𝑥0∈𝑂
‖𝑢‖H𝛼,𝑥0

(𝑂), where ‖𝑢‖H𝛼,𝑥0
(𝑂) ∶=

(
∫𝑂

|∇𝑢|2|𝑥 − 𝑥0|𝛼 d𝑥)
1
2

,

is finite. For 𝛼 > 𝑑 − 2 sufficiently close to 𝑑 − 2 and 𝜀 > 0 small enough we have

𝑐(𝛼, 𝑑, 𝜀) ∶=

(
1 +

𝛼(𝑑 − 2)

𝑑 − 1
+ 𝜀

) 1
2
(
1 −

𝛼(𝛼 − (𝑑 − 2))

2(𝑑 − 1)
− 𝜀

)−1

> 0. (3.1)

This quantity will play an important role. In fact, 𝑐(𝛼, 𝑑, 𝜀) → 𝛿(𝑑)−1 in the limit as 𝛼 → 𝑑 − 2 and
𝜀 → 0. From now on we shall assume d(𝐴) < 𝛿(𝑑).
We begin by looking at 𝐿-harmonic functions on the unit ball 𝐵. Let 𝑡 > 0. Guided by the per-

turbation principle in Lemma 2.1, it begins with writing the equation 𝐿𝑢 = 0 in 𝐵 in the weak
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sense as

−Δ𝑢 = −div(𝐹) with 𝐹 ∶= (𝟏(ℂ𝑁)𝑑 − 𝑡𝐴)∇𝑢.

Due to technical reasons, we replace 𝐴 by 𝐴𝑛 and 𝑢 by 𝑢𝑛 as defined in Lemma 2.2 and call the
term on the right-hand side −div(𝐹𝑛). In addition, we choose 𝑡 > 0 such that d(𝐴𝑛) = ‖𝟏(ℂ𝑁)𝑑 −

𝑡𝐴𝑛‖∞.
Temporarily, fix 𝑥0 ∈ 1

4
𝐵. To derive optimal Morrey estimates for the solutions 𝑢𝑛, Koshelev

considers two variational integrals

𝑋′(𝑢𝑛, 𝑣𝑛) ∶= ∫ 1
4
𝐵
∇𝑢𝑛 ⋅∇𝑣𝑛 d𝑥,

𝑌′
−𝛼(𝑣𝑛) ∶= ∫ 1

4
𝐵
|∇𝑣𝑛|2|𝑥 − 𝑥0|𝛼 d𝑥,

where 𝛼 > 𝑑 − 2 is as above and 𝑣𝑛 is an ingeniously chosen test function for the equation on
1

4
𝐵

that they constructs from 𝑢𝑛 using spherical harmonics [14, eq. (2.3.2)]. The precise formula for
𝑣𝑛 is not needed here – it suffices to use the estimates below “off-the-shelf”. In fact, this specific
𝑣𝑛 dates back to Giaquinta and Nečas [16]. Koshelev goes on by proving in [14, Corollary 2.3.1] the
bounds

𝑋′(𝑢𝑛, 𝑣𝑛) ⩾

(
1 −

𝛼(𝛼 − (𝑑 − 2))

2(𝑑 − 1)
− 𝜀

)‖𝑢𝑛‖2H−𝛼,𝑥0
( 1
4
𝐵)

− 𝐶(𝛼, 𝑑, 𝜀)‖∇𝑢𝑛‖2L2( 1
4
𝐵)
,

𝑌′
−𝛼(𝑣𝑛) ⩽

(
1 +

(𝑑 − 2)𝛼

𝑑 − 1
+ 𝜀

)‖𝑢𝑛‖2H−𝛼,𝑥0
( 1
4
𝐵)

+ 𝐶(𝛼, 𝑑, 𝜀)‖∇𝑢𝑛‖2L2( 1
4
𝐵)
.

As 𝑣𝑛 is a test function for the equation for 𝑢𝑛 in
1

4
𝐵, we have

𝑋′(𝑢𝑛, 𝑣𝑛) = ∫ 1
4
𝐵
(𝟏(ℂ𝑁)𝑑 − 𝑡𝐴𝑛)∇𝑢𝑛 ⋅∇𝑣𝑛 d𝑥

and the Cauchy–Schwarz inequality along with the bound d(𝐴𝑛) ⩽ d(𝐴) in Lemma 2.2(i) yields

|𝑋′(𝑢𝑛, 𝑣𝑛)| ⩽ d(𝐴)‖𝑢𝑛‖H−𝛼,𝑥0
( 1
4
𝐵)
𝑌′
−𝛼(𝑣𝑛)

1
2 .

Combining the previous three estimates and recalling the definition of 𝑐(𝛼, 𝑑, 𝜀) leads to

‖𝑢𝑛‖2H−𝛼,𝑥0
( 1
4
𝐵)

⩽ d(𝐴)‖𝑢𝑛‖H−𝛼,𝑥0
( 1
4
𝐵)

[
(𝑐(𝛼, 𝑑, 𝜀)‖𝑢𝑛‖H−𝛼,𝑥0

( 1
4
𝐵)

+𝐶(𝛼, 𝑑, 𝜀)‖∇𝑢𝑛‖L2( 1
4
𝐵)

]
+ 𝐶(𝛼, 𝑑, 𝜀)‖∇𝑢𝑛‖2L2( 1

4
𝐵)
,

where𝐶(𝛼, 𝑑, 𝜀) varies from line to line. The smoothing of the coefficients guarantees that the first
summand on the right-hand side is finite and this is the very reason why we have to include this
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argument. By Young’s inequality, it follows that

‖𝑢𝑛‖2H−𝛼,𝑥0
( 1
4
𝐵)

⩽ (𝑐(𝛼, 𝑑, 𝜀) + 𝜀) d(𝐴)‖𝑢𝑛‖2H−𝛼,𝑥0
( 1
4
𝐵)

+ 𝐶(𝛼, 𝑑, 𝜀)‖∇𝑢𝑛‖2L2( 1
4
𝐵)
.

As d(𝐴) < 𝛿(𝑑), we can fix 𝜀 small and 𝛼 close to 𝑑 − 2 depending only on dimension and d(𝐴)

such that the first term on the right can be absorbed. This is the key point and the result is

‖𝑢𝑛‖H−𝛼,𝑥0
( 1
4
𝐵)

≲𝑑,d(𝐴) ‖∇𝑢𝑛‖L2( 1
4
𝐵)
.

After taking the supremum over all 𝑥0 ∈ 1

4
𝐵, we arrive at

‖𝑢𝑛‖H−𝛼(
1
4
𝐵)

≲𝑑,d(𝐴) ‖∇𝑢𝑛‖L2( 1
4
𝐵)
.

Then, Koshelev proves in [14, Theorem 2.1.1] that the left-hand side controls theHölder seminorm
of order 𝜇 = (𝛼−𝑑+2)∕2 on 1

4
𝐵. Applying Caccioppoli’s inequality on the right-hand side eventually

leads to

[𝑢𝑛]
(𝜇)
1
4
𝐵
∶= sup

𝑥,𝑦∈ 1
4
𝐵,𝑥≠𝑦

|𝑢𝑛(𝑥) − 𝑢𝑛(𝑦)||𝑥 − 𝑦|𝜇 ≲𝑑,d(𝐴) ‖𝑢𝑛‖L2(𝐵).
Finally, we invoke Lemma 2.2(ii) in order to deduce

[𝑢]
(𝜇)
1
4
𝐵
⩽ lim sup

𝑛→∞
[𝑢𝑛]

(𝜇)
1
4
𝐵
≲𝑑,d(𝐴) ‖𝑢‖L2(𝐵).

This estimate holds for any 𝐿-harmonic function on the unit ball. As we have

d(𝐴) = d(𝐴∗) & d(𝐴) = d(𝐴(𝑥0 + 𝑟 ⋅))

for each 𝑥0 ∈ ℝ𝑑 and 𝑟 > 0, a scaling argument shows that the outcome of revisiting Koshelev’s
results is the following proposition.

Proposition 3.2. Suppose d(𝐴) < 𝛿(𝑑). There are 𝜇 ∈ (0, 1] and 𝐶 > 0, both depending only on 𝑑

and d(𝐴), such that we have for all balls 𝐵 = 𝐵(𝑥, 𝑟) ⊆ ℝ𝑑 and every 𝐿- or 𝐿∗-harmonic 𝑢 in 𝐵 that

𝑟𝜇[𝑢]
(𝜇)
1
4
𝐵
⩽ 𝐶𝑟−

𝑑
2 ‖𝑢‖L2(𝐵).

The quantitative Hölder estimate in Proposition 3.2 appeared much later in a different context.
Namely, Auscher and Tchamitchian [3, 5] called it property (H) and proved that it implies that
e−𝑡𝐿 has a kernel with pointwise Gaussian bounds. If we combine their Theorem 10 in [5, chapter
1, section 1.4.1] with Proposition 3.2, then we obtain the following result for Gaussian estimates.
It can be seen as a perturbation result from the Laplacian.

Theorem 3.3. Suppose d(𝐴) < 𝛿(𝑑). The kernel of (e−𝑡𝐿)𝑡>0 is represented by a Hölder regular
function (𝐾𝑡)𝑡>0, which admits pointwise Gaussian estimates: There are 𝑐, 𝑎 > 0 and 𝜇 ∈ (0, 1) such
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that

|𝐾𝑡(𝑥, 𝑦)| ⩽ 𝑐𝑡−
𝑑
2 e−𝑎

|𝑥−𝑦|2
𝑡 ,

|𝐾𝑡(𝑥, 𝑦) − 𝐾𝑡(𝑥
′, 𝑦′)| ⩽ 𝑐𝑡−

𝑑
2
−

𝜇

2 (|𝑥 − 𝑥′| + |𝑦 − 𝑦′|)𝜇
for all 𝑡 > 0 and 𝑥, 𝑥′, 𝑦, 𝑦′ ∈ ℝ𝑑 . The constants 𝑐, 𝑎, 𝜇 depend only on 𝑑, d(𝐴), 𝜆(𝐴) and Λ(𝐴).

From Young’s inequality for convolutions, we obtain:

Corollary 3.4. If d(𝐴) < 𝛿(𝑑), then 𝑝+(𝐿) = ∞.

We shall see next that the “radius” 𝑟 = 𝛿(𝑑) is optimal for the conclusion in Corollary 3.4 and
hence also for the one in Theorem 3.3. Again this is implicit in Koshelev’s work and relies on a
counterexample due to De Giorgi.
Let 𝑐 > 0 and 𝐷 ⩾ (𝑐2+1)∕(𝑑−2)𝑐. Define for 𝑥 ∈ ℝ𝑑 ⧵ {0} the elliptic system with coefficients

(𝐴DG(𝑥))
𝛼,𝛽
𝑖,𝑗

∶=

(
𝑐𝛿𝑖𝑗 + 𝐷

𝑥𝑖𝑥𝑗|𝑥|2
)(

𝑐𝛿𝛼𝛽 + 𝐷
𝑥𝛼𝑥𝛽|𝑥|2

)
(𝑖, 𝑗, 𝛼, 𝛽 = 1,… , 𝑑).

Then 𝑢(𝑥) ∶= 𝑥∕|𝑥|𝑏 with

𝑏 =
𝑑

2
−

(
𝑑2

4
−

𝑑(𝑑 − 1)𝑐𝐷 + (𝑑 − 1)𝐷2

1 + (𝑐 + 𝐷)2

) 1
2

∈ [1, 𝑑∕2)

solves the elliptic system −div(𝐴DG∇𝑢) = 0 in the weak sense in 𝐵(0, 1), see [14, section 2.5]
or [11]. Note that 𝑏 = 1 if and only if 𝐷 = (𝑐2+1)∕(𝑑−2)𝑐. Koshelev continues in [14, section 2.5] by
showing that for this choice of 𝐷 they can pick 𝑐 = 𝑐(𝑑) > 0 such that d(𝐴DG) = 𝛿(𝑑). As d(𝐴DG)

depends continuously on𝐷 and 𝑐, we can pick these parameters for any given 𝜀 > 0 in such a way
that

𝑏 > 1 & d(𝐴DG) < 𝛿(𝑑) + 𝜀. (3.2)

Now we use a localization argument from [5, chapter 1, section 1.3] to prove:

Proposition 3.5. For any 𝜀 > 0 there is 𝐴 such that d(𝐴) < 𝛿(𝑑) + 𝜀 and 𝑝+(𝐿) < ∞.

Proof. We pick 𝐴 = 𝐴DG as in (3.2) and set 𝑢(𝑥) ∶= 𝑥∕|𝑥|𝑏. Let 𝜙 ∈ C∞
c be such that 𝟏𝐵(0,1∕2) ⩽ 𝜙 ⩽

𝟏𝐵(0,1). Then 𝑣 ∶= 𝜙𝑢 ∈ 𝖣(𝐿) can be seen as follows: using the equation for 𝑢, we deduce

𝐿𝑣 = −div(𝐴(∇𝜙 ⊗ 𝑢)) − div(𝜙𝐴∇𝑢) = −div(𝐴(∇𝜙 ⊗ 𝑢)) − ∇𝜙 ⊙ (𝐴∇𝑢).

Our notation should be interpreted as what comes out from the product rule. The only thing
that matters is that ∇𝜙 vanishes near the origin and hence 𝐿𝑣 ∈ (C∞

c )𝑁 . If we had 𝑝+(𝐿) = ∞,
then according to [2, Proposition 5.3] we would get 𝑣 ∈ (L𝑞)𝑁 for every 𝑞 ∈ (2∗,∞). However,|𝑣(𝑥)| = |𝑥|1−𝑏 in a neighborhood of 0 cannot belong to L𝑞 for 𝑞 ⩾ 𝑑∕(𝑏−1). □
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4 THE INTERPOLATION ARGUMENT

We come to the proof of our main result, Theorem 1.1, for the case d(𝐴) ⩾ 𝛿(𝑑). We will use basic
properties of semigroups and vector-valued holomorphic functions. For further background, we
refer to [1].
We begin with a Stein-type interpolation principle tailored to our needs (taking care of implicit

constants in particular). We write

S𝛿 ∶= {𝑧 ∈ ℂ ∶ −𝛿 < Re(𝑧) < 1 + 𝛿} & S ∶= S0.

For amatrix𝐴 = 𝐴𝑧 depending on a parameter 𝑧, we let 𝑎𝑧 be the sesquilinear form corresponding
to 𝐿𝑧 ∶= −div(𝐴𝑧∇⋅).

Proposition 4.1. Let 𝛿 > 0. Suppose that {𝐴𝑧}𝑧∈S𝛿 ⊆ L∞(ℝ𝑑;((ℂ𝑁)𝑑)) are uniformly strongly
elliptic matrices such that:

(i) there are 0 < 𝜆 ⩽ Λ with 𝜆(𝐴𝑧) ⩾ 𝜆 and Λ(𝐴𝑧) ⩽ Λ for all 𝑧 ∈ S;
(ii) we have 𝑐 ∶= sup𝑡∈ℝ d(𝐴i𝑡) < 𝛿(𝑑);
(iii) for all 𝑢, 𝑣 ∈ (W1,2)𝑁 the map 𝑧 ↦ 𝑎𝑧(𝑢, 𝑣) is holomorphic in S𝛿 .

Then for 𝜃 ∈ [0, 1], we have 𝑝+(𝐿𝜃) ⩾ 2∗∕𝜃.

Proof. Fix 𝑡 > 0 and 𝜃 ∈ [0, 1]. Let us defineΦ(𝑧) ∶= e−𝑡𝐿𝑧 for 𝑧 ∈ S𝛿. As an((L2)𝑁)-valuedmap,
Φ is bounded by 1, holomorphic on S𝛿 and in particular continuous on S. This follows from (iii),
see [20]. Now, we estimate Φ on the boundary of S. Let 𝑓 ∈ (L2)𝑁 .
(A) Estimate on the left boundary. Let 𝑧 ∈ S with Re(𝑧) = 0. Due to (ii) and Theorem 3.3
we have Gaussian estimates for the kernel (𝐾𝑡,𝑧)𝑡>0 of (e−𝑡𝐿𝑧 )𝑡>0 at our disposal. By (i), implicit
constants depend only on 𝑑, 𝑐, 𝜆 and Λ. Young’s inequality for convolutions yields

‖ e−𝑡𝐿𝑧 𝑓‖∞ ≲𝑑,𝑐,𝜆,Λ 𝑡−
𝑑
4 ‖𝑓‖2.

(B) Estimate on the right boundary. Let 𝑧 ∈ S with Re(𝑧) = 1. By holomorphy of the semi-
group it follows that e−𝑡𝐿𝑧 𝑓 ∈ (W1,2)𝑁 . Thus, by a Sobolev embedding, (i) andHölder’s inequality,
we get

‖ e−𝑡𝐿𝑧 𝑓‖22∗ ≲𝑑 ‖∇e−𝑡𝐿𝑧 𝑓‖22
≲𝜆 |𝑎𝑧(e−𝑡𝐿𝑧 𝑓, e−𝑡𝐿𝑧 𝑓)|
= |(𝐿𝑧 e−𝑡𝐿𝑧 𝑓 | e−𝑡𝐿𝑧 𝑓)2|
⩽ ‖𝐿𝑧 e−𝑡𝐿𝑧 𝑓‖2‖ e−𝑡𝐿𝑧 𝑓‖2.

The semigroup is contractive on (L2)𝑁 in the sector {𝑧 ∈ ℂ ∶ | arg(𝑧)| < 𝜑}, where tan(𝜑) = 𝜆∕Λ.
In particular, ‖ e−𝑡𝐿𝑧 𝑓‖2 ⩽ ‖𝑓‖2 and by Cauchy’s formula for the complex derivative

‖𝐿𝑧 e−𝑡𝐿𝑧 𝑓‖2 =
‖‖‖ 1

2𝜋i ∫𝜕𝐵(𝑡,𝑟)

e−𝑤𝐿𝑧 𝑓

(𝑤 − 𝑡)2
d𝑤

‖‖‖2 ≲𝜆,Λ 𝑡−1‖𝑓‖2
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with 𝑟 = 𝑡 sin(𝜑). Altogether, this gives

‖ e−𝑡𝐿𝑧 𝑓‖2∗ ≲𝑑,𝑐,𝜆,Λ 𝑡−
1
2 ‖𝑓‖2.

Combining (A) and (B), Stein’s interpolation theorem [17, Theorem 1] implies that

‖ e−𝑡𝐿𝜃 𝑓‖ 2∗

𝜃

≲𝑑,𝑐,𝜆,Λ,𝜃 𝑡
𝑑

2⋅2∗∕𝜃
− 𝑑

4 ‖𝑓‖2.
In the language of L𝑝 − L𝑞-estimates, this means that (e−𝑡𝐿𝜃 )𝑡>0 is L2 − L2∗∕𝜃-bounded. A gen-
eral principle for these estimates [2, Proposition 3.2] implies ‖ e−𝑡𝐿𝜃 𝑓‖𝑞 ≲𝑑,𝑐,𝜆,Λ,𝑞 ‖𝑓‖𝑞 for all
𝑞 ∈ (2, 2∗∕𝜃) as claimed. □

Proof of Theorem 1.1 (i). Let 𝐴 be elliptic such that d(𝐴) ∈ [𝛿(𝑑), 1). Fix 𝜀 ∈ (0, 1 − d(𝐴)) and
𝑡∗ > 0 such that ‖𝟏(ℂ𝑁)𝑑 − 𝑡∗𝐴‖∞ = d(𝐴). We abbreviate 𝐵 ∶= 𝟏(ℂ𝑁)𝑑 − 𝑡∗𝐴, which means 𝐴 =

(𝑡∗)−1(𝟏(ℂ𝑁)𝑑 − 𝐵). As sketched in the introduction, we perturb 𝐵 by multiplication with complex
numbers from a suitable annulus. However, it will be convenient to parameterize these numbers
via an analytic function 𝐹 defined on S.
Let 0 < 𝑟 < 1 < 𝑅 to be chosen. We embed 𝐴 into the analytic family

𝐴𝑧 ∶= (𝑡∗)−1(𝟏(ℂ𝑁)𝑑 − 𝐹(𝑧)𝐵), where 𝐹(𝑧) ∶= 𝑟1−𝑧𝑅𝑧 = 𝑟 e𝑧 ln(𝑅∕𝑟) .

Note that 𝐹 is entire, bounded by 𝑟−𝛿𝑅1+𝛿 in any strip S𝛿, and maps S onto {𝑧 ∈ ℂ ∶ 𝑟 ⩽ |𝑧| ⩽ 𝑅}.
At this point, we choose

𝑟 ∶=
𝛿(𝑑)

d(𝐴) + 𝜀
& 𝑅 ∶=

1

d(𝐴) + 𝜀
.

Let us show that for 𝑧 in a strip S𝛿 with sufficiently small 𝛿 > 0 we can define the interpolating
operators 𝐿𝑧 = −div(𝐴𝑧∇ ⋅), where𝐴𝑧 is still elliptic by Lemma 2.1. Indeed, for 𝛿 > 0 sufficiently
small our choice of 𝑅 delivers

sup
𝑧∈S𝛿

‖𝐴𝑧‖∞ ⩽ (𝑡∗)−1(1 + 𝛿(𝑑)−𝛿𝑅 d(𝐴)) & sup
𝑧∈S𝛿

d(𝐴𝑧) ⩽ 𝛿(𝑑)−𝛿𝑅 d(𝐴) < 1.

This also proves (i) in Proposition 4.1. Part (iii) follows immediately and our choice of 𝑟 yields

sup
𝑡∈ℝ

d(𝐴i𝑡) ⩽ sup
𝑡∈ℝ

‖𝐹(i𝑡)𝐵‖∞ = 𝑟 d(𝐴) < 𝛿(𝑑),

which is (ii). Now, pick 𝜃 ∈ (0, 1) such that 1 = 𝑟1−𝜃𝑅𝜃. Then 𝐿 = 𝐿𝜃 and Proposition 4.1 implies
that 𝑝+(𝐿) ⩾ 2∗∕𝜃. Finally, we notice that

𝜃 = 1 −
ln(𝑅)

ln(𝑅∕𝑟)
⟶ 1 −

ln(d(𝐴))

ln(𝛿(𝑑))
as 𝜀 ↘ 0.

□

Remark 4.2. In Proposition 4.1, we assume that 𝑧 ↦ 𝑎𝑧(𝑢, 𝑣) is holomorphic in a larger strip for
convenience to get continuity of 𝑧 ↦ e−𝑡𝐿𝑧 up to S. If this holds true for any other reason, it is
enough to suppose that 𝑧 ↦ 𝑎𝑧(𝑢, 𝑣) is holomorphic in S.
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Remark 4.3. The proof of Theorem 1.1 reveals that the same results hold for divergence form
operators with form domain 𝑉 on general open sets 𝑂 ⊆ ℝ𝑑, provided that Theorem 3.3 holds
true with implicit constants depending only on geometry, ellipticity and dimension, and that we
have additionally

‖𝑢‖L2∗ (𝑂) ≲ ‖∇𝑢‖L2(𝑂) (𝑢 ∈ 𝑉),

which was used in (B) above.

5 EXTENSION TO BOUNDED 𝐂𝟏-DOMAINS

Let us extend Theorems 1.1 and 3.3 to bounded C1-domains with Dirichlet boundary con-
ditions. The divergence form operator 𝐿 = −div(𝐴∇ ⋅) with uniformly strongly elliptic 𝐴 ∈

L∞(Ω;((ℂ𝑁)𝑑)) is now realized in L2(Ω)𝑁 as the m-accretive operator associated to the form

𝑎(𝑢, 𝑣) ∶= ∫Ω
𝐴∇𝑢 ⋅∇𝑣 d𝑥 (𝑢, 𝑣 ∈ W1,2

0
(Ω)𝑁).

We fix our geometric setup.

Assumption 5.1. Throughout this section, Ω ⊆ ℝ𝑑, 𝑑 ⩾ 3, is a bounded domain with C1-
boundary. This means that there is some 𝑀 > 0 such that for each 𝑥0 ∈ 𝜕Ω there is an open
neighborhood 𝑈 of 𝑥0 and a C1-diffeomorphism 𝜙∶ 𝑈 → 𝐵(0, 1), 𝜙(𝑥) = (𝑥′, 𝜓(𝑥′) − 𝑥𝑑) such
that 𝜙(𝑈 ∩ Ω) = 𝐵(0, 1) ∩ ℝ𝑑

+ and ‖𝐷𝜓‖∞ ⩽ 𝑀.

We can choose𝑀 arbitrarily small by choosing the neighborhoods small enough. This is exactly
the reason, why we assume that the boundary is C1 and not just Lipschitz.

Theorem 5.2. In the setting above suppose that d(𝐴) < 𝛿(𝑑). Then the kernel of (e−𝑡𝐿)𝑡>0 is
represented by a measurable function (𝐾𝑡)𝑡>0 for which there are 𝑐, 𝑎 > 0 and 𝜇 ∈ (0, 1) such that

|𝐾𝑡(𝑥, 𝑦)| ⩽ 𝑐𝑡−
𝑑
2 e−𝑎

|𝑥−𝑦|2
𝑡 ,

|𝐾𝑡(𝑥, 𝑦) − 𝐾𝑡(𝑥
′, 𝑦′)| ⩽ 𝑐𝑡−

𝑑
2
−

𝜇

2 (|𝑥 − 𝑥′| + |𝑦 − 𝑦′|)𝜇
for all 𝑡 > 0 and 𝑥, 𝑥′, 𝑦, 𝑦′ ∈ Ω. The constants 𝑐 and 𝑎 depend only on 𝑑, d(𝐴), 𝜆(𝐴), Λ(𝐴)

and geometry.

Proof. The proof is very similar to the one of Theorem 3.3. We abbreviate

Ω(𝑥, 𝑟) ∶= Ω ∩ 𝐵(𝑥, 𝑟).

Weuse again elliptic estimates for 𝐿-harmonic functions due to Koshelev, this time also in the half
space after localization and transformation. The kernel estimates will then follow from [6, Theo-
rem 12] provided we can check what they call property (D)† for 𝐿 and 𝐿∗. By the easy argument
in [5, p. 37] it suffices to show a property similar to Proposition 3.2 and formulated as follows:

†Note carefully that the boundedC1-domainΩ falls into class (II) in [6]. In this case, and aswe considerDirichlet boundary
conditions, the properties (D) and (Dloc) in [6] coincide by definition.
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There are 𝐶 > 0 and 𝛾 ∈ (0, 1) such that for all 𝑥0 ∈ Ω, 𝑟 ⩽ 𝜌0 and 𝑢 ∈ W1,2
0

(Ω)𝑁 with 𝐿𝑢 = 0

or 𝐿∗𝑢 = 0 in Ω(𝑥0, 𝑟) it holds

𝑟𝜇[𝑢]
(𝜇)

Ω(𝑥0,𝛾𝑟)
⩽ 𝐶𝑟−

𝑑
2 ‖𝑢‖L2(Ω(𝑥0,𝑟))

. (5.1)

Here 𝜌0 ⩽ 1 is chosen small as explained in [6, p. 20].
In view of d(𝐴) = d(𝐴∗), we stick to the case of 𝐿-harmonic functions. When 𝑥0 ∈ Ω and

𝐵(𝑥0, 𝑟) ⊆ Ω, this estimate has already been obtained in Section 3 with 𝛾 = 1∕4. By a case dis-
tinction (whether or not 𝐵(𝑥0, 𝑟∕2) intersects 𝜕Ω) it suffices to treat in addition the case 𝑥0 ∈

𝜕Ω.
So, let 𝑟 ⩽ 𝜌0 and𝑢 ∈ W1,2

0
(Ω)𝑁 with𝐿𝑢 = 0 inΩ(𝑥0, 𝑟). Let 𝑡 > 0 andpick𝜌 ≃𝑀 𝑟 small enough

such that 𝜙−1(𝐵(0, 𝜌)) ⊆ 𝐵(𝑥0, 𝑟). Put 𝐵+ ∶= ℝ𝑑
+ ∩ 𝐵, where 𝐵 is again the unit ball, and write

𝑢𝜙,𝜌 ∶= (𝑢◦𝜙−1)(𝜌 ⋅). A change of coordinates implies that 𝑢𝜙,𝜌 ∈ W1,2(𝐵+)
𝑁 is a weak solution

of

−div
(
(𝐷𝜙)𝜙,𝜌𝐴𝜙,𝜌(𝐷𝜙)⊤

𝜙,𝜌
∇(𝑢𝜙,𝜌)

)
= 0 in 𝐵+

that vanishes on 𝜕ℝ𝑑
+ ∩ 𝜕𝐵+.

Next,weuse a smoothing procedure as in Section 3.We let𝐴𝑛 and𝑢𝑛 be defined as in Lemma2.2
with 𝐴 replaced by (𝐷𝜙)𝜙,𝜌𝐴𝜙,𝜌(𝐷𝜙)⊤

𝜙,𝜌
(see also Remark 2.3). Then the same lemma assures that

𝑢𝑛 → 𝑢𝜙,𝜌 in L2(𝐵+)
𝑁 and a.e. along a subsequence. In addition, we have 𝑢𝑛 ∈ C∞(3

4
𝐵+)

𝑁 by
elliptic regularity [10, section 6.3.1, Theorem 5]. As in Section 3, we write −div(𝐴𝑛∇𝑢𝑛) = 0 as

−Δ𝑢𝑛 = −div(𝐹𝑛) with 𝐹𝑛 ∶= (𝟏(ℂ𝑁)𝑑 − 𝑡𝐴𝑛)∇𝑢𝑛

and 𝑡 > 0 is chosen such that ‖𝟏(ℂ𝑁)𝑑 − 𝑡𝐴𝑛‖∞ = d(𝐴𝑛). Note that

‖𝟏(ℂ𝑁)𝑑 − 𝑡𝐴𝑛‖∞ ⩽ d((𝐷𝜙)𝜙,𝜌𝐴𝜙,𝜌(𝐷𝜙)⊤
𝜙,𝜌

) ⩽ 𝑀2 + (1 +𝑀)2d(𝐴), (5.2)

where the first inequality is due to Lemma 2.2 (i) and the second one follows by definition of 𝜙.
Koshelev proves in [14, (2.4.13)] for each 𝑥0 ∈ 1

4
𝐵+ that

‖𝑢𝑛‖H−𝛼,𝑥0
( 1
4
𝐵+)

⩽ 𝑐(𝛼, 𝑑, 𝜀)‖𝐹𝑛|𝑥 − 𝑥0|−𝛼
2 ‖

L2( 1
4
𝐵+)

+ 𝐶(𝛼, 𝑑, 𝜀)
[‖∇𝑢𝑛‖L2( 1

4
𝐵+)

+ ‖𝐹𝑛‖L2( 1
4
𝐵+)

]
,

provided that the right-hand side is finite, and 𝑢𝑛 and 𝑓𝑛 are sufficiently smooth, which is the
case thanks to our smoothing procedure. Here, 𝑐(𝛼, 𝑑, 𝜀) is as in (3.1), where 𝛼 > 𝑑 − 2 and 𝜀 > 0

are chosen such that 𝑐(𝛼, 𝑑, 𝜀) is positive and finite. By definition of 𝐹𝑛 and (5.2), we derive the
estimate

‖𝑢𝑛‖H−𝛼,𝑥0
( 1
4
𝐵+)

⩽
(
(1 + 𝑀)2d(𝐴) +𝑀2

)
(𝑐(𝛼, 𝑑, 𝜀) + 𝜀)‖𝑢𝑛‖H−𝛼,𝑥0

( 1
4
𝐵+)

+ 𝐶(𝛼, 𝑑, 𝜀,𝑀)‖∇𝑢𝑛‖L2( 1
4
𝐵+)

.
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As d(𝐴) < 𝛿(𝑑), we can pick 𝜀 > 0, 𝛼 > 𝑑 − 2 and𝑀 > 0 depending only on 𝑑 and d(𝐴) such that
the first term on the right can be absorbed in order to obtain

‖𝑢𝑛‖H−𝛼(
1
4
𝐵+)

≲𝑑,d(𝐴) ‖∇𝑢𝑛‖L2( 1
4
𝐵+)

.

As in Section 3, we deduce

[𝑢𝜙,𝜌]
(𝜇)
1
4
𝐵+

≲𝑑,d(𝐴) ‖𝑢𝜙,𝜌‖L2(𝐵+)
,

where 𝜇 ∶= (𝛼−𝑑+2)∕2.
Transforming back gives (5.1) for some 𝛾 = 𝛾(𝑀) ∈ (0, 1). □

At this point, we are in the same situation as on ℝ𝑑 and we can derive the following statement.

Corollary 5.3. In the setup of this section, the following assertions hold true.

(i) If d(𝐴) > 𝛿(𝑑), then

𝑝+(𝐿) ⩾
2∗

1 − ln(d(𝐴))

ln(𝛿(𝑑))

.

(ii) If d(𝐴) ⩽ 𝛿(𝑑), then 𝑝+(𝐿) = ∞.
(iii) Part (ii) is sharp in the sense that for all bounded C1-domainsΩ ⊆ ℝ𝑑 and for each 𝜀 > 0 there

is some 𝐴𝜀 with d(𝐴𝜀) ⩽ 𝛿(𝑑) + 𝜀 and 𝑝+(𝐿𝜀) < ∞.

Proof. The estimates for 𝑝+(𝐿) follow as before, see also Remark 4.3. As for the sharpness of
the radius d(𝐴) = 𝛿(𝑑) we can, after translation, assume 0 ∈ Ω. We take the same coefficients
𝐴 = 𝐴DG as in the proof of Proposition 3.5 and localize 𝑢 to a ball contained in Ω. As before, this
produces some 𝑣 ∈ 𝖣(𝐿) with 𝑣 ∉ (L𝑞)𝑁 for 𝑞 large but 𝐿𝑣 ∈ (C∞

c )𝑁 . Arriving at a contradiction
with 𝑝+(𝐿) = ∞ requires a different (and in fact simpler) argument compared to the caseΩ = ℝ𝑑.
By ellipticity and Poincaré’s inequality, there is some 𝜃2 > 0 such that 𝐿 − 𝜃2 is still m-accretive.

Hence, 𝐿 is invertible in (L2)𝑁 and the semigroup enjoys the exponential bound ‖ e−𝑡𝐿 𝑓‖2 ⩽

e−𝜃2𝑡 ‖𝑓‖2 for all 𝑡 > 0 and 𝑓 ∈ (L2)𝑁 . By interpolation with the uniform bound on (L𝑝)𝑁 for
some 𝑝 > 𝑞, we get ‖ e−𝑡𝐿 𝑓‖𝑞 ≲ e−𝜃𝑞𝑡 ‖𝑓‖𝑞 with some 𝜃𝑞 > 0. But then the formula

𝐿−1𝑓 = ∫
∞

0
e−𝑡𝐿 𝑓 d𝑡,

valid in (L𝑞 ∩ L2)𝑁 by the exponential estimate, implies that 𝐿−1 maps (L𝑞 ∩ L2)𝑁 into itself, in
contradiction with the properties of 𝑣. □

6 DIMENSIONLESS IMPROVEMENTS

Here, we prove Theorem 1.2. For 1 < 𝑝 < ∞ we denote by (Ẇ1,𝑝)𝑁 the space of all ℂ𝑁-valued
tempered distributions modulo ℂ𝑁 for which the distributional gradient belongs to (L𝑝)𝑑𝑁 . We
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endow this space with the norm ‖∇ ⋅ ‖𝑝 and denote by (Ẇ−1,𝑝)𝑁 the anti-dual space of (Ẇ1,𝑝′
)𝑁 .

We define

−div 𝐴∇∶ (Ẇ1,𝑝)𝑁 → (Ẇ−1,𝑝)𝑁, ⟨−div 𝐴∇𝑢 | 𝑣⟩ ∶= ∫ℝ𝑑
𝐴∇𝑢 ⋅∇𝑣 d𝑥. (6.1)

By Hölder’s inequality, this is a bounded map.
We denote by 𝑐(𝑝) the operator norm of the Riesz transform 𝑅 ∶= ∇(−Δ)−1∕2 (defined via a

Fourier multiplication operator with symbol −i
𝜉|𝜉| ⊗ 𝟏ℂ𝑁 ) from (L𝑝)𝑁 to (L𝑝)𝑑𝑁 . By Plancherel’s

theorem we have 𝑐(2) = 1.

Proposition 6.1. Let 𝑝 > 2. Then 𝑐(𝑝) < 1∕
√
d(𝐴) implies 𝑞+(𝐿) ⩾ 𝑝.

Proof. By the characterization of 𝑞+(𝐿) in [4, section 13.3], it suffices to prove that the map in (6.1)
is invertible and that the inverse is compatible with the one for 𝑝 = 2.
We borrow an idea from [2, Lemma 3.4]. Fix 𝑡∗ > 0 such that d(𝐴) = ‖𝟏(ℂ𝑁)𝑑 − 𝑡∗𝐴‖∞ and put

𝐵 ∶= 𝟏(ℂ𝑁)𝑑 − 𝑡∗𝐴. Then we can factorize

−div 𝐴∇ = (𝑡∗)−1(−Δ) + (𝑡∗)−1 div 𝐵∇

= (𝑡∗)−1(−Δ)
1
2 (𝟏 + 𝑅∗𝐵𝑅)(−Δ)

1
2 .

As

‖𝑅∗𝐵𝑅𝑓‖𝑝 ⩽ 𝑐(𝑝)2d(𝐴)‖𝑓‖𝑝
for 𝑓 ∈ (L𝑝 ∩ L2)𝑁 , it suffices that 𝑐(𝑝) < 1∕

√
d(𝐴) to invert

(𝟏 + 𝑅∗𝐵𝑅)−1 =

∞∑
𝑛=0

(−𝑅∗𝐵𝑅)𝑛,

in (L𝑝)𝑁 . The inverse is compatible because the same Neumann series converges also in (L2)𝑁

owing to 𝑐(2) = 1. Next, as (−Δ)1∕2 ∶ (Ẇ𝑠,𝑝)𝑁 → (Ẇ𝑠−1,𝑝)𝑁 is an isomorphism for 𝑠 = 0, 1 and
all 𝑝 ∈ (1,∞), it follows that also −div 𝐴∇∶ (Ẇ1,𝑝)𝑁 → (Ẇ−1,𝑝)𝑁 is invertible with compatible
inverse. □

The constant 𝑐(𝑝) has a long history and that 𝑐(𝑝) is controlled from above by a dimensionless
constant goes back to Stein [18]. Its exact value remains unknown to date. The best known esti-
mates can be used to determine an improvement for 𝑞+(𝐿) − 2 explicitly. Dragičević and Volberg
have shown in [9, Corollary 0.2] that

𝑐(𝑝) ⩽ 2(𝑝 − 1) (𝑝 ⩾ 2). (6.2)

(Note that their short argument appliesword-by-word toℂ𝑁-valued functions.)However, this does
not give 𝑐(2) = 1, suggesting that their bound can be improved by interpolation for 𝑝 > 2 not too
far away from 2. In fact, this is the case we are most interested in and we include the proof of the
following elementary lemma. A similar argument for the Ahlfors–Beurling transform is found
in [7].
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Lemma 6.2. If 𝜎 ≈ 5.69061 is the unique real solution to

ln(2𝜎 − 2) =
𝜎(𝜎 − 2)

2(𝜎 − 1)
,

and 2 ⩽ 𝑝 ⩽ 𝜎, then

𝑐(𝑝) ⩽

(
e

𝜎2

𝜎−1

) 1
2
− 1

𝑝

⩽ 2(𝑝 − 1). (6.3)

Proof. Fix 𝑞 ⩾ 𝑝. Riesz–Thorin interpolation and the fact that 𝑐(2) = 1 yields

𝑐(𝑝) ⩽ 𝑐(𝑞)𝜃 with 1

𝑝
=

1 − 𝜃

2
+

𝜃

𝑞
.

We insert this value of 𝜃 and use (6.2) to get

𝑐(𝑝) ⩽

(
(2(𝑞 − 1))

2𝑞

𝑞−2

) 1
2
− 1

𝑝

=

(
e

2𝑞

𝑞−2
ln(2𝑞−2)

) 1
2
− 1

𝑝

.

As 1∕2 − 1∕𝑝 > 0, we have tominimize the expression 2𝑞

𝑞−2
ln(2𝑞 − 2) over 𝑞 ⩾ 𝑝. A straightforward

calculation shows that the minimum over 𝑞 ⩾ 2 is attained in 𝑞 = 𝜎. As 𝑝 ⩽ 𝜎, this must also be
the global minimum over 𝑞 ⩾ 𝑝 and the first estimate in (6.3) follows. The second estimate in (6.3)
follows simply because 𝑞 = 𝑝 cannot give a better bound. □

Proof of Theorem 1.2. Let

Φ∶ [2,∞) → [1,∞), Φ(𝑝) ∶=

⎧⎪⎨⎪⎩
(
e

𝜎2

𝜎−1

) 1
2
− 1

𝑝

(𝑝 ⩽ 𝜎),

2(𝑝 − 1) (𝑝 > 𝜎).

Note that Φ is continuous, bijective and 𝑐(𝑝) ⩽ Φ(𝑝) for all 𝑝 ⩾ 2, see (6.2) and (6.3). Hence,
Proposition 6.1 yields

𝑞+(𝐿) ⩾ sup
{
𝑝 > 2 ∶ Φ(𝑝) < 1∕

√
d(𝐴)

}
= Φ−1

(
1∕
√
d(𝐴)

)
.

Inverting Φ leads to

𝑞+(𝐿) ⩾

⎧⎪⎨⎪⎩
2

1+ 𝜎−1

𝜎2
ln(d(𝐴))

if 1

4(𝜎−1)2
⩽ d(𝐴),

1

2
√
d(𝐴)

+ 1 if d(𝐴) ⩽ 1

4(𝜎−1)2
,

which proves the theorem. □
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