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Abstract. Induced coherence in parametric down-conversion between two
coherently pumped nonlinear crystals that share a common idler mode can be
used as an imaging technique. Based on the interference between the two signal
modes of the crystals, an image can be reconstructed. By obtaining an expression
for the interference pattern that is valid in both the low- and the high-gain regimes
of parametric down-conversion, we show how the coherence of the light emitted by
the two crystals can be controlled. With our comprehensive analysis we provide
deeper insight into recent discussions about the application of induced coherence
to imaging in different regimes. Moreover, we propose a scheme for optimizing the
visibility of the interference pattern so that it directly corresponds to the degree
of coherence of the light generated in the two crystals. We find that this scheme
leads in the high-gain regime to a visibility arbitrarily close to unity.
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1. Introduction

Induced coherence without induced emission [1, 2] is a
remarkable phenomenon in which nonclassical features
seem to manifest themselves in ordinary interference
patterns instead of higher-order correlation functions.
The experiment consists of two nonlinear crystals
that share a common idler mode and are coherently
pumped. By placing an object into the idler mode
between the two crystals, its image can be obtained
from the interference of the two output signal modes.

In light of the application of nonlinear interferom-
eters to spectroscopy [3], the concept of induced co-
herence has been recently applied to quantum imag-
ing [4, 5], whereas the original experiment [1] focussed
on the physical principle behind the effect. The imag-
ing experiments have been performed in the low-gain
regime of parametric down-conversion, where a quan-
tum description and interpretation is the only possi-
bility. However, induced coherence is not restricted to
this regime [6] and also persists for higher gain [7]. In
particular, essential properties for imaging, such as the
the signal-to-noise ratio, improve for the latter [8].

In this article we provide a comprehensive
treatment of induced coherence, compare and contrast
different regimes of parametric down-conversion, and
outline how to optimize the properties of such a setup.

1.1. Setup and low-gain interpretation

The first experiments [1, 2] of induced coherence
without induced emission were performed with a
small parametric gain. In fact, only in the low-gain
regime induced emission is suppressed and an intuitive
quantum interpretation can be given. In this section
we recapitulate the setup used in [1] and explain
the results for low gain with the quantum-mechanical
arguments.

A simplified scheme of this experiment is shown
in figure 1. It consists of two nonlinear crystals A and
B optically pumped by a light wave obtained from the
same laser source. In the process of parametric down-
conversion, each crystal emits its own signal and idler
waves. The two signal waves, emitted into separate
modes 1′ and 2′, are brought to interference through
the use of a 50:50 beam splitter S2 and are detected
at the detectors D1 and D2. The two idler waves are
emitted into the same spatial mode such that crystal
A seeds the input idler mode of crystal B. By inserting
a filter S1 with intensity transmittance T into the
idler mode between the two crystals, one can control
the strength of the coupling caused by the idler wave
propagating from A to B. Obviously, for T = 0 the two
crystals emit independently and no coherence between
the two signal modes 1′ and 2′ can be observed when
they interfere after the beam splitter S2. However, for

a nonvanishing transmittance the wave transmitted by
S1 seeds crystal B and therefore establishes coherence
between the modes 1′ and 2′, which reflects itself in a
nonzero visibility in the interference pattern.
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Figure 1. Setup of an experiment to observe induced
coherence. Two second-order nonlinear crystals A and B are
pumped by the same coherent pump laser. Both crystals share
the same idler mode, whereas their two signal modes interfere
at a beam splitter S2 and are detected by two detectors D1

and D2. The coherence induced in crystal B can be controlled
by introducing a filter S1 into the idler mode between the two
crystals.

The interference in [1] was observed in the
low-gain regime of spontaneous parametric down-
conversion, in which case the emission of photons in
crystals A and B seems to be completely uncorrelated.
If only a single pair of photons is detected, one can
argue that the quantum state of the system is a
superposition of single-photon state created in crystal
A and a single-photon state created in crystal B. The
visibility of the interference pattern in this regime
depends linearly on the amplitude transmittance

√
T

of the filter S1. The interference phenomenon in the
single-photon regime and the dependence on T was
explained in [1, 4] in terms of indistinguishability of
the photons emitted by the crystals A and B. Indeed,
for T = 1 it is impossible to determine which of
two crystals contributed the photon detected at D1

or D2. In the opposite limit of T = 0 it becomes in
principle possible to determine with absolute certainty
the origin of the detected photon, wiping out the
interference. This explanation is also used in more
recent and complicated applications, for example in [9].

1.2. Connection to previous work and outline

The experiment [1] has attracted great attention after
its publication [6, 10, 11, 12] and continues to influence
the quantum optics community to date [4, 8, 9]. We
shall mention here only a few papers that are closely
related to our analysis.

In [6] the experiment from [1] is analyzed for
arbitrary parametric gains in the two crystals and a
general expression for the visibility is obtained. The



Controlling induced coherence for quantum imaging 3

authors conclude that the interference effect observed
in [1] in the low-gain regime will persist in the
high-gain regime and pointed out that the visibility
becomes diminished if all the modes are seeded. With
a very similar treatment, [7] shows that the first-
order coherence function of the two modes 1′ and 2′

approaches unity in the high-gain regime.
In a recent experiment [4] the original idea from [1]

was generalized to a spatially multi-mode configuration
that allowed them to develop an imaging technique in
which the object is sensitive only to the frequency of
the idler, but not the one of the signal. The authors
were able to obtain an image by detecting the signal
photons, even though only the idler photons were
sensitive to the object. In [8] it was argued that almost
all features of the experiment [4] are present if crystal
A is pumped in the high-gain regime. In fact, some of
the imaging properties such as the signal-to-noise ratio
is improved in this limit even though the visibility of
the interference pattern is decreased.

In section 2 we investigate the interference pattern
and the visibility of the scheme from [1] for arbitrary
parametric gains of the two crystals similarly to [6].
Furthermore, we derive an expression for the coherence
of the two interfering modes 1′ and 2′ as suggested
by [7].

In section 3 we use the previously obtained
expressions to find the interference signal in the low-
gain regime [6], an intermediate regime in analogy to [8]
and the high-gain regime. The conclusion drawn in [8]
is that the visibility decreases when going from the
low-gain regime to a high gain of crystal A. The same
holds if both crystals are strongly pumped. However,
in general there are two reasons for deterioration of the
visibility in the interference pattern: (i) the intensities
of two interfering waves become increasingly different,
or (ii) the degree of coherence between these waves
deteriorates. Therefore, it is important to understand
which one of two reasons (if not both) is responsible
for deterioration of the visibility.

We discuss in detail both factors and determine
in section 4 an optimal value for the visibility in
the interference experiment as a function of the
transmittance T . We find that this optimal visibility
does not deteriorate with increasing parametric gain
of the crystal A but, on the contrary, improves.
Moreover, for high parametric gain and nonvanishing
transmittance this optimum visibility attains values
arbitrarily close to unity, as predicted in [7] by the
behavior of the coherence between the two signal waves
1′ and 2′.

Finally, we show in section 5 that the signal-to-
noise ratio improves for an increasing gain. Unless a
higher intensity would destroy the sample, there is no
benefit for the signal-to-noise ratio to work in the low-

gain regime, as already mentioned for the intermediate
regime [8]. We then conclude in section 6.

For completeness, we describe in Appendix A
each mode at every instance by bosonic creation
and annihilation operators and calculate the photon
number expectation values at the detectors D1,2.

2. Interference signal and induced coherence

To find a convenient treatment for the whole setup,
we represent each mode j = 1, 2, 3, 4 as shown
in figure 1 in terms of annihilation and creation
operators âj and â†j so that the expectation value
of the corresponding photon number operator gives
the mean photon number of mode j. A description
of all annihilation operators at every instance of this
experiment can be found in Appendix A. We use these
results to obtain the photon numbers N̂ ′′

1,2 = â′′†1,2â
′′
1,2

that are detected by the detectors D1,2.
For a vacuum input, we find from (A.13) the

expression〈
N̂ ′′

1,2

〉
=

1

2
(VA + VB + VAVBT ) (1± V cos 2ϕ) (1)

for the expectation value in the two output ports. Here,
we defined the visibility

V = 2

√
(1 + VA)VAVBT

VA + VB + VAVBT
. (2)

as well as the phase

2ϕ ≡ arg (uAvAv
∗
B) (3)

of the interference fringes, in complete agreement with
the results of [6]. Note that uj and vj with Uj −
Vj ≡ |uj |2 − |vj |2 = 1 are the complex parameters of
the Bogoliubov transformation from (A.2) and (A.7)
describing the parametric process of crystal j =A,B
with an undepleted pump. Since the parameters uj

and vj can be represented by hyperbolic functions,
they scale exponentially with the parametric gain of
the respective crystal. Note that any phase shifter
introduced in the idler mode between the crystals or
in the signal modes shifts the phase of the interference
pattern.

As noted in [7], the ultimate limit of the visibility
is in fact given by the first-order coherence of the
two arms before the final beam splitter, which can be
quantified by the degree of coherence

γ12 ≡
∣∣∣〈â′†1 â′2〉∣∣∣/√⟨N ′

1⟩ ⟨N ′
2⟩. (4)

of the two signal modes 1′ and 2′, where we defined the
photon number operators N̂ ′

j = â′†j â
′
j . Note that this

parameter describes the coherence induced between the
two crystals, we will therefore refer to this quantity as
induced coherence. With the help of (A.1) and (A.8)
we arrive at the expressions∣∣∣〈â′†1 â′2〉∣∣∣ =√(1 + VA)VAVBT (5)
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as well as〈
N̂ ′

1

〉
= VA〈

N̂ ′
2

〉
= (1 + TVA)VB ,

(6)

where we again assumed a vacuum input state in
analogy to Appendix A. With this insight, we find

γ12 =

√
T

1 + VA

1 + TVA
(7)

for the induced coherence, in complete agreement
with [7]. Note that it is independent of VB , but changes
depending on the transmittance T and the gain in
crystal A, parameterized by VA.
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Figure 2. Dependence of the induced coherence γ12 on
the transmittance T for different values of VA. The coherence
approaches unity for increasing gain VAT ≫ 1 and vanishes for
T = 0. The smallest coherence is obtained in the low-gain regime
for VA ≪ 1 (black line).

We plot the dependence of the coherence on
T in figure 2 for different values of VA. We see
that the coherence increases with increasing gain and
approaches the value of unity for VAT ≫ 1, which
we show analytically in section 4. This fact has
been already pointed out in [7], but we discuss in
the following the connection to different cases in
the literature, explain the diminishing visibility in
the high-gain regime and find a way to optimize
the visibility to its maximum given by the induced
coherence.

3. Regimes of induced coherence

We derived a general expression for the visibility of
the interference signal and the induced coherence in
the preceding section, and discuss now three special
cases of interest: (i) The low-gain regime in which
the interpretation from section 1.1 is valid and the
experiments of [1, 2, 4] were performed. (ii) The case
of a high-gain source that is analyzed in [8], where
the gain of crystal A is strong, but the one of crystal
B is weak. (iii) We increase the gain in both crystals

simultaneously and find a deterioration of the visibility
for large transmittance in this high-gain regime.

3.1. Low-gain regime

The low-gain regime of spontaneous parametric down-
conversion is also contained in our description. We
obtain this regime in the limit of vanishing gain, that
is, for VA = VB ≪ 1, where in fact induced emission
is strongly suppressed [1]. In this case, we find from
(2) as well as (4), in complete agreement with [1, 2, 4],
that the visibility and induced coherence are related by

V(lg) =
√
T = γ

(lg)
12 . (8)

We notice that in this limit the induced coherence from
(7) coincides with the visibility, which means that the
coherence induced in the modes 1′ and 2′ is the only
limiting factor that reduces the visibility. As we shall
see later, this is not always the case.

Equation (8) is plotted in figure 3 as a black
line. This dependence on the transmittance has been
verified multiple times experimentally and was seen
as a quantum signature of the induced coherence.
However, in [8] it is pointed out that in this limit the
signal-to-noise ratio is very small. This is due to the
decreasing amplitude of the detected signal. In fact, we
find from (1) the following relation for the expectation
values〈
N̂ ′′

1,2

〉(lg) ∼= VA

(
1±

√
T cos 2ϕ

)
≪ 1, (9)

where we have to keep in mind that the number of
photons produced in one crystal corresponds to VA ≪ 1
and is extremely small in the spontaneous regime.

3.2. High-gain source

According to [8], increasing the gain in the source that
induces the coherence, that is, crystal A, leads to a
much better signal-to-noise ratio. For the remainder of
this article, we call this limit the regime of a high-gain
source. In fact, [8] refers to it as the classical regime
and contrasts it to the quantum regime of spontaneous
down-conversion discussed above.

We obtain the same results as [8] in the limit
1 ≪ VA and VB ≪ 1, where we arrive by (2) at the
expression

V(hgs) ∼= 2
√
VBT ≪ 1 (10)

for the visibility with a high-gain source. In this regime
it is small and, in a naive comparison of (8) with (10),
we in fact find V(hgs) ≪ V(lg). However, [8] points out
that the signal-to-noise ratio is better for a high gain
source in comparison to the low-gain case. This result
can be seen directly from the relation〈
N̂ ′′

1,2

〉(hgs) ∼= VA

2

(
1± 2

√
VBT cos 2ϕ

)
≫ 1, (11)



Controlling induced coherence for quantum imaging 5

where, when we identify VA ≫ 1 with the number of
photons created in crystal A, we find a large signal with
small visibility. We come back to this point when we
discuss the signal-to-noise ratio in section 5.

In contrast to the low-gain case, the visibility does
not correspond to the coherence between the two arms,
and, in particular, is significantly smaller than the
coherence function (for T ̸= 0).

3.3. High-gain regime

In this section we investigate the influence of increased
gain in both crystals. For that, we assume equal gain
in both crystals, that is, VA = VB , and find from (2)
that the visibility is given by

V(eg) = 2

√
(1 + VA)T

2 + VAT
. (12)

We plot this expression for the visibility with dotted
lines for different values of VA in figure 3.
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Figure 3. Visibility of the interference signals for different
regimes and different gain VA. The dotted lines show the
visibility V(eg), given by (12), for equal pumping (VA = VB),
the solid lines show the optimal visibility V(opt), defined in
(14). Note that the optimal visibility corresponds to the induced
coherence, that is, V(opt) = γ12, so that the solid lines are exactly
the same as in figure 2. The low-gain visibility V(lg) is obtained
for VA = 0 (black line).

For low transmittance and high gain we have a
behavior that is close to the induced coherence γ12 (the
respective solid lines) that corresponds to the optimal
visibility (see section 4), exceeding the low-gain
visibility (black line). However, for increasing gain and
higher transmittance, the visibility drops significantly
below the low-gain result. There is an intuitive
explanation for this fact: due to seeding by crystal
A, crystal B produces more photons than the first
one. Hence, both arms become unevenly populated
and the visibility drops for increasing gain. But if the
transmittance is sufficiently small, the seeding effect
is suppressed (since most photons from crystal A are
not transmitted) and both arms have roughly the same
intensity. This explains why the visibility follows the

coherence for a small transmittance and diminishes for
a large one.

4. Optimization

As pointed out in the previous section, the visibility
is limited not only by the induced coherence, but also
by the intensity difference in the two modes 1′ and 2′

before the second beam splitter. With the help of (6)
we find that for

VB =
VA

1 + VAT
(13)

the photon-number difference ⟨N̂ ′
1⟩−⟨N̂ ′

2⟩ vanishes. By
adjusting the pump of crystal B (varying VB) according
to the strength of the seed (which is determined by
T and VA), the photon number produced by crystal
B changes in such a way that it corresponds to the
photon number in the other arm of the interferometer.
In fact, with this choice of VB we arrive with (2) at the
visibility

V(opt) =

√
T

1 + VA

1 + TVA
= γ12, (14)

where we identified the optimized visibly with the
induced coherence from (7).

We depict V(opt) (and by that the induced
coherence γ12) for different gain values in figure 3
(solid lines) and see that it always exceeds the low-
gain limit of spontaneous parametric down-conversion
(black line) as well as the visibility for equal pumping,
that is, V(ep) ≤ V(opt) = γ12. In fact, we achieve
almost perfect visibility in the high-gain regime, which
is apparent when we expand (14) for TVA ≫ 1 giving
rise to

V(opt) ∼= 1− 1− T

2

1

TVA
+O

(
1

T 2V 2
A

)
. (15)

It is remarkable to note that in the low-gain regime
a low transmittance limits the visibility, whereas the
optimized version in the high-gain regime approaches
unity even for small T . This fact can be used to
enhance the distinction between two slightly different
small values of T and perform high-contrast imaging
of objects with low transmittance.

However, we obtain not only the optimal visibility
close to unity, but also find an increased signal. Using
again the adjusted VB from (13) in (1), we arrive at〈
N̂ ′′

1,2

〉(opt)
= VA

(
1±

√
T

1 + VA

1 + VAT
cos 2ϕ

)
. (16)

Therefore, the overall amplitude of the interference
signal also scales with the number of photons produced
by crystal A.

To investigate how the transmittance T affects the
coherence of the two crystals we compare it to a more
general setup. For that, we introduce an additional
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beam splitter with transmittance T2 in the mode 2′

after crystal B. By setting either T or T2 to unity, we
can switch between two different situations: (i) a non-
unity transmittance after crystal B to attenuate the
population of mode 2′ and (ii) a transmittance between
the crystal that controls the induced coherence.

Performing exactly the same analysis with an
additional beam splitter of transmittance T2 in the
output signal mode of crystal B leads to the same
expectation value from (1), where only VB is replaced
by T2VB . Hence, the condition for optimal visibility
reads

T2VB =
VA

1 + VAT
(17)

in analogy to (13) and can be easily interpreted:
equal intensities in both arms cannot only be found
by adjusting the gain of crystal B, but also by
modulating the output of crystal B with the help of the
transmittance T2. Hence, using the additional beam
splitter only introduces a second parameter to control
this photon number.

5. Signal-to-noise ratio

Considering that the effect of induced coherence
without induced emission was used in [4] as an imaging
technique, not only the visibility is essential, but
also the signal-to-noise ratio. In fact, it was pointed
out in [8] that for a high-gain source the signal-to-
noise ratio is improved in comparison to the low-gain
regime. In this section we extend this discussion to the
optimized scheme as well as the high-gain regime and
show that in both cases the signal-to-noise ratio is even
higher.

5.1. General expression

Since in the imaging experiment of [4] the image was
obtained from the difference of the two output signals
N̂− ≡ N̂ ′′

1 − N̂ ′′
2 , we restrict our treatment to the same

quantity. The signal-to-noise ratio can be defined as
the square of the expectation value divided by the
variance, that is,

SNR− =
〈
N̂−
〉2/〈

∆N̂2
−
〉
. (18)

From (1) it is easy to see that the expectation value of
the photon number difference takes the form〈
N̂−
〉
= 2
√

(1 + VA)VAVBT cos 2ϕ. (19)

With the operators obtained in Appendix A we find
after a straightforward, but cumbersome, calculation
that

SNR− =

〈
N̂−
〉2

〈
N̂−
〉2

+ VA + VB + VAVB(2− T )
(20)

for the vacuum expectation value. In the following we
investigate this expression in the different regimes.

Note that the equations above as well as in the
remainder of this section describe the signal-to-noise
ratio for a single mode. However, our treatment can
be generalized to the measurement of multiple modes,
for example to many pump pulses in analogy to [8]. In
fact, we can define the normalized multi-pulse photon-
number difference for p pulses (where the previously
obtained photon numbers are now labelled by an
additional index for the jth pulse). Its expectation
value corresponds to the one obtained for a single pulse,
namely〈
N̂

(p)
−
〉
=

1

p

p∑
j=1

〈
N̂ ′′

1 (j)− N̂ ′′
2 (j)

〉
=
〈
N̂−
〉
. (21)

Note that we assumed equal gain for all pulses and
thus the summation can be performed trivially. We
see that the normalized difference of the two output
signals remains unchanged and equal to Eq. (19). In
the same way, multiple pulses increase the number of
photons produced if the signals of the two detectors are
not subtracted. However, the visibility per pulse—by
definition normalized to unity—is independent of the
number of pulses p.

In contrast to this result, we find for the multi-
pulse variance〈
∆N̂

(p) 2
−

〉
=

1

p

〈
∆N̂2

−
〉

(22)

and therefore

SNR
(p)
− = p SNR−. (23)

Hence, the signal-to-noise ratio is increased by (and
proportional to) the number of pulses p. In the
following we discuss only the signal-to-noise ratio of
a single pulse. We will see that it does not exceed
unity and can take very small values. However, we
emphasize that our results can be easily generalized to
a multi-pulse treatment by multiplying them with the
number of pulses. This way, values larger than unity
can be experimentally achieved.

5.2. Low-gain regime

When we take the low-gain limit in both crystals
(VA = VB ≪ 1) we arrive with the help of (19) and
(20) at the expression

SNR
(lg)
− ∼= 2TVA cos2 2ϕ ≪ 1 (24)

for the signal-to-noise ratio in accordance with [8].
Because the overall amplitude scales with the number
of photons generated in one crystal, the signal-to-
noise ratio in the low-gain limit is very small. We

see this effect when we plot SNR
(lg)
− as a function

of τ = T cos2 2ϕ in figure 4 (dashed thick line) for
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VA = 0.01. The fact that τ depends on two parameters
ϕ and T accounts for the possible application in phase
and absorption imaging.

10−3 10−2 10−1 100
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= 100
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= 100

opt
VA
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1

τ = T cos2 2φ

S
N
R

−

Figure 4. Signal-to-noise ratio of the difference of photon
numbers in the two exit ports. The dependence on τ = T cos2 2ϕ
reflects the fact that this setup can be used for phase and
absorption imaging. We see that the low-gain approximation
(lg, dashed thick line) scales with the parameter VA. The ratio
increases for an increasing gain in crystal A (hgs, dotted thin
lines), where we used the low-gain value of VB = 0.01. It is even
better if the gain is optimized and the crystals are operated in
the high-gain regime, as we see for different values of VA (opt,
solid lines).

5.3. High-gain source

In contrast to the low-gain regime, a high-gain source
gives

SNR
(hgs)
− ∼= 4(1 + VA)VBT cos2 2ϕ

1 + 4(1 + VA)VBT cos2 2ϕ
(25)

in the limit of VB ≪ 1 and VA ≫ 1 using (19) and (20).
This result, as well as (24), were already obtained

in [8], where it was demonstrated that SNR
(hgs)
− is

larger than SNR
(lg)
− . We show this effect in figure 4,

where we plot SNR
(hgs)
− for different gain values and

depending on τ = T cos2 2ϕ. In fact, the low-gain
result for VA = 0.01 (dashed thick line) is smaller in
comparison to the high-gain source (thin dotted lines)
for VB = 0.01 and different VA. Thus, increasing the
gain of crystal A is beneficial for imaging, as already
implied in section 3.2 and pointed out by [8].

5.4. Optimized gain

Since our treatment is general enough to include the
high-gain regime for both crystals, we demonstrate
that this limit is even more beneficial from the point
of view of the signal-to-noise ratio. For that, we first
discuss the case of an optimized gain following the
results from section 4.

When we choose VB according to (13) so that the
visibility is optimal, we arrive with (19) and (20) at

the expression

SNR
(opt)
− =

2VAT cos2 2ϕ

1 + 2VAT cos2 2ϕ
, (26)

which we plot as function of τ = T cos2 2ϕ in figure 4
for increasing values of VA. We see that it approaches

unity for VAτ ≫ 1 and that SNR
(opt)
− (solid lines) is

even larger than SNR
(hgs)
− (thin dotted lines). Note

further that this equation reduces to SNR
(lg)
− for VA ≪

1. In fact, for small parametric gain we obtain the low-
gain limit from section 5.2 (the thick dashed and the
black solid line are on top of each other).

5.5. High-gain regime

One could imagine that the signal-to-noise ratio is
better for an optimized visibility compared to the high-
gain regime with an equal pumping in both crystals,
where the visibility deteriorates. However, we shall
show in the following that this reasoning is misleading.

For that, we assume equal gain in both crystals,
set VA = VB in (19) and (20), and arrive at

SNR
(eg)
− =

2VAT cos2 2ϕ

1 + 2VAT cos2 2ϕ− TVA/(2 + 2VA)
. (27)

When we now consider the ratio

SNR
(opt)
−

SNR
(eg)
−

= 1− TVA

2(1 + VA)(1 + 2VAT cos2 2ϕ)
≤ 1,(28)

we see that even though the visibility is optimized,

SNR
(opt)
− is always smaller when compared to an equal

gain in both crystals for T ̸= 0. This can be understood
by the fact that the overall signal is smaller if crystal
B is adjusted for optimal visibility. However, we see
from (28) that this difference vanishes in the high-
gain regime (VAT cos2 2ϕ ≫ 1). Since the behavior is
almost exactly the one of (26), we refrain from plotting
additional curves but emphasize that the respective
lines would follow closely the solid ones in figure 4.

6. Conclusions

In this article we have shown that the effect of
induced coherence persists in different regimes of
parametric gain for two crystals. Whereas in
the low-gain regime of spontaneous parametric-down
conversion with suppressed induced emission the
induced coherence is limited by the transmittance in
the idler mode between two crystals, and, therefore, by
the distinguishability of the two sources, it approaches
unity in the high-gain regime [7]. However, due to
intensity difference of two signal waves before the final
beam spitter, the visibility deteriorates with increasing
gain. This effect can be compensated by adjusting the
gain in the second crystal.
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Induced coherence can be used to perform
imaging [4], but the signal-to-noise ratio is small in the
low-gain regime [8]. It can be improved by operating
crystal A with high parametric gain and even more
when both crystals are operated in this regime.

Our results can be generalized to the case where a
nonvanishing classical field seeds the input of one of the
crystals, which we plan to address in the future. Let
us note that we considered in this article a classical
pump neglecting depletion. Using such a strong pump
field leads necessarily to higher-order photon creation
in both crystals. Therefore, a seeding effect of crystal
B by an idler photon from crystal A can never be
excluded, even in the low-gain regime, where these
events are extremely rare.

Our results represent a comprehensive treatment
of the effect of induced coherence with a classical pump,
explain different regimes discussed in the literature [6,
7, 8] and show the potential for possible applications
for imaging in the high-gain regime. In this regime,
we observe a better signal-to-noise ratio and can
optimize the visibility such that the contrast for small
transmittance is enhanced.

Acknowledgments

We thank M. Lahiri for fruitful discussions. MIK ac-
knowledges partial financial support by the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 665148 (QCUM-
bER). He also thanks the Max Planck Centre for
Extreme and Quantum Photonics, University of Ot-
tawa, where part of this work was accomplished, for
its hospitality during his stay. SL, RF, and RWB
gratefully acknowledge support by the Canada Excel-
lence Research Chairs program and the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC). RF acknowledges the support of the Bant-
ing postdoctoral fellowship of the NSERC and SL
the financial support from Le Fonds de Recherche du
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Appendix A. Heisenberg picture

We shall consider the scheme of figure 1 in the
Heisenberg representation and describe each mode
j = 1, 2, 3, 4 of the nonlinear interferometer in terms
of annihilation and creation operators âj and â†j ,
obeying standard single-mode commutations relations,
[âj , â

†
k] = δj,k, and normalized so that ⟨N̂j⟩ = ⟨â†j âj⟩

gives the mean photon number in the corresponding
mode j. This description is in analogy to [6, 7].

We start by noting that the transformation

â′1 = uAâ1 + vAâ
†
3

â′3 = uAâ3 + vAâ
†
1

(A.1)

describes the photon annihilation operators in the
output modes 1′ and 3′ of crystal A for an undepleted
classical pump. Here, â1 and â3 describe the
photon annihilation operators for the two input modes
according to figure 1. Note that this transformation
corresponds to a unitary Bogoliubov transformation
with

1 = |uA|2 − |vA|2 ≡ UA − VA. (A.2)

Furthermore, uA and vA are in general complex and
UA and VA can be represented by respective hyperbolic
functions.

The transmittance in the idler modes between the
crystals A and B leads to the transformation

â′′3 = tâ′3 + râ4

â′4 = tâ4 − râ′3
(A.3)

for the annihilation operators in the output modes 3′′

and 4′ of the beam splitter S1. Here, we assumed
t, r ∈ R, which fulfil the relation

1 = t2 + r2 ≡ T +R, (A.4)

where T and R denote the transmittance and
reflectivity of the intensity. The annihilation operators
â′3 and â4 represent the input modes of the beam
splitter. Since â′3 is the output of crystal A, we find
from (A.1) the expression

â′′3 = tvAâ
†
1 + tuAâ3 + râ4. (A.5)

The transformation

â′2 = uB â2 + vB â
′′†
3

â′′′3 = uB â
′′
3 + vB â

†
2

(A.6)

describes the action of crystal B and fulfils, in analogy
to (A.2), the relation

1 = |uB |2 − |vB |2 ≡ UB − VB . (A.7)

Since crystal B is seeded by one of the output modes
of beam splitter S1, we find with the help of (A.5) the
expression

â′2 = tv∗AvB â1 + uB â2 + tu∗
AvB â

†
3 + rvB â

†
4, (A.8)

where ∗ denotes the complex conjugate.
So far, we have obtained the expression for the

annihilation operators in the modes 1′ and 2′, which
only depend on the input modes 1, 2, 3 and 4. These
two modes interfere at the final beam splitter S2, which
we assume to be a 50:50 beam splitter, and thus fulfil
the relation

â′′1 = (â′1 + â′2) /
√
2

â′′2 = (â′1 − â′2) /
√
2

(A.9)



Controlling induced coherence for quantum imaging 9

describing the two output modes 1′′ and 2′′. With
(A.1) and (A.8) we therefore arrive at

â′′1,2 =
1√
2

[
(tv∗AvB ± uA) â1 + uB â2

+ (tu∗
AvB ± vA) â

†
3 + rvB â

†
4

] (A.10)

for the annihilation operators before detection.
With these results we are able to calculate the

expectation values of the photon numbers N̂ ′′
1,2 =

â′′†1,2â
′′
1,2 in the two exit ports and arrive at

N̂ ′′
1,2 =

1

2

[
|tv∗AvB ± uA|2 N̂1 + UBN̂2 +RVB

(
N̂4 + 1

)
+ |tu∗

AvB ± vA|2
(
N̂3 + 1

)
+ combinations of input modes

]
.

(A.11)

Since the crystals is not seeded, we assume a vacuum
input with ⟨â†j âk⟩ = 0 for all combinations j, k =
1, 2, 3, 4. With this insight and the definition

tuAvAv
∗
B ≡

√
TUAVAVB exp(i2ϕ) (A.12)

we use (A.2), (A.4), as well as (A.7) to find from (A.11)
the expectation values〈
N̂ ′′

1,2

〉
=

1

2

[
(VA + VB + TVAVB)

± 2
√
TUAVAVB cos(2ϕ)

] (A.13)

for the photon number at the detector D1 and D2.
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