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Light shifts in atomic Bragg diffraction
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Bragg diffraction of an atomic wave packet in a retroreflective geometry with two counterpropagating optical
lattices exhibits a light shift induced phase. We show that the temporal shape of the light pulse determines
the behavior of this phase shift: In contrast to Raman diffraction, Bragg diffraction with Gaussian pulses leads
to a significant suppression of the intrinsic phase shift due to a scaling with the third power of the inverse
Doppler frequency. However, for box-shaped laser pulses, the corresponding shift is twice as large as for Raman
diffraction. Our results are based on approximate but analytical expressions as well as a numerical integration of
the corresponding Schrödinger equation.
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In the realm of high-precision measurements, the success
of any method depends intimately on the suppression of
uncertainties intrinsic to the technique. For this reason the
phase shift caused by the light pulses forming an atom
interferometer [1–4] is crucial, especially in view of recent
ambitious projects as discussed in Refs. [5,6]. In this paper
we focus on atomic Bragg diffraction, derive approximate but
analytical expressions for the two-photon light shift, and show
that Gaussian light pulses lead to a significant suppression of
this effect. Moreover, our analysis demonstrates that a naive
translation of the results for Raman to Bragg diffraction might
lead to a serious over- and underestimation of the light shift,
depending on the pulse shape.

Nowadays, interferometers routinely employ a retroreflec-
tive mirror system with two running lattices to reduce the
influence of wave-front distortions and vibrations [7]. The
off-resonant pair of lasers in such a retroreflective setup [8]
causes a light shift which translates into a phase shift which in
turn depends on the initial atomic velocity. This so-called two-
photon light shift is of particular relevance for any ambitious
high-precision measurement employing retroreflected light
fields as beam splitters and the correct incorporation of the
phase shift is mandatory. Whereas this quantity has been
thoroughly studied in Raman diffraction [9–11], we are not
aware of a corresponding analysis for Bragg scattering [12,13],
the other major diffraction method for atoms [14]. To constitute
a competitive alternative to Raman, the light shifts in Bragg
diffraction have to be controlled on a similar level of accuracy,
especially since there is renewed interest [15–21] in this
scattering mechanism and current setups [22–24] employ a
retroreflective configuration.

In this paper we (i) derive approximate but analytical
expressions for the two-photon light shift and compare them
to the ones for Raman diffraction, (ii) confirm these results
by numerically integrating the corresponding Schrödinger
equation, and (iii) study the influence of the temporal shape
of the pulses. Our approach not only enables us to accurately
incorporate the phase contributions associated with the light

pulses in the error budget, which so far was only possible for
Raman diffraction, but also allows us to identify parameter
regimes where, in comparison to Raman, the effects can be
strongly suppressed.

Figure 1 shows the corresponding setup where two light
fields of frequencies ωb and ωr with orthogonal polarization
are guided by common optical elements, e.g., an optical fiber,
to an atomic sample and retroreflected on the opposite side.
Since the polarization of the reflected laser beams is changed,
the atom interacts effectively with two distinguishable [26]
pairs of lasers, as indicated in Fig. 1 by solid and dashed
lines. For an atom at rest the setup depicted in Fig. 1
is equivalent to the experimental configuration for double
Bragg diffraction [25,27–30]. However, if the atom has a
nonvanishing initial momentum p0, one laser pair can be
chosen to induce the scattering process by adjusting the
frequency difference �ω = ωb − ωr leading to effective single
Bragg diffraction in the retroreflective setup.

The phenomenon of Bragg scattering itself is a consequence
of energy-momentum conservation, as illustrated by Fig. 2.
We start from an atom which is initially in the ground state |g〉
with momentum p0 and discuss the interaction with the pair
of lasers represented in Fig. 1 by solid lines. First, the atom
absorbs a photon of energy �ωb and is excited to an ancilla state
|a〉. In this process it acquires the momentum �kb of a photon.
Since the transition is highly detuned from the ancilla state,
the counterpropagating light field of energy �ωr stimulates
the emission of a photon in the opposite direction, leading
to an additional recoil of �kr . Thus, the total momentum
transfer is �K ≡ �kb + �kr , whereas the energy transferred by
this two-photon process corresponds to the energy difference
��ω. Hence, energy-momentum conservation is guaranteed
for �ω = ωK + νK , where we have defined the recoil and
Doppler frequency by the expressions

ωK ≡ �K2

2M
and νK (p0) ≡ p0K

M
, (1)

respectively. Here, M denotes the mass of the atom.

2469-9926/2016/94(6)/063619(6) 063619-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.063619


GIESE, FRIEDRICH, ABEND, RASEL, AND SCHLEICH PHYSICAL REVIEW A 94, 063619 (2016)

FIG. 1. Retroreflective setup for atomic Bragg diffraction. Two
light fields of frequency ωb and ωr (light blue and red) with orthogonal
polarization are guided by common optical elements, e.g., an optical
fiber, to the atom. The polarization is changed by a quarter-wave-plate
when the beams are reflected at the opposite side, leading to two
distinguishable pairs of lasers represented by dashed and solid arrows.
The degeneracy of the interaction between the two laser fields and the
atom is lifted by an initial nonvanishing momentum p0 of the atom,
thus preventing double Bragg diffraction [25].

We emphasize that in the remainder of this paper every
expression involving the Doppler frequency νK (p0) has an
implicit dependence on the initial momentum p0. However,
we shall suppress this dependency for brevity of notation.

The previously described resonant process is illustrated in
Fig. 2 by thick solid lines. As indicated by the thin solid lines,
diffraction into the momenta p0 − �K and p0 + 2�K as well
as higher orders is also possible. However, transitions to these
momentum states violate energy conservation. Nevertheless,
they may lead to energy shifts of the involved resonant states
even if the population of the higher momentum states can
be neglected. Since these shifts are symmetric for one pair
of lasers this effect cancels out and a phase contribution
introduced by the two-photon light shift cannot be observed
for Bragg diffraction when performed without retroreflection.

However, the situation changes drastically when we con-
sider the additional spurious pair of light fields (dashed arrows)
in the retroreflective setup of Fig. 1. Here, the two colors of
the light fields are exchanged, creating a whole variety of
additional transitions illustrated in Fig. 2 by the thin dashed

FIG. 2. Changes of energy (kinetic and internal) and momentum
during a Bragg scattering process. Due to the absorption from or
emission into the four laser fields shown in Fig. 1, the light blue (red)
lasers lead to a momentum transfer of ±�kb(r) and an energy change
of ±�ωb(r), denoted by light blue (red) arrows. Because of energy
and momentum conservation, the transition from p0 to p0 + �K with
K = kb + kr , induced by the solid pair of lasers in Fig. 1, is resonant
(thick solid arrows). We draw the off-resonant transitions with thin
lines and illustrate their deviation from the resonant energy. The
dashed off-resonant transitions are induced by the second pair of
lasers (depicted in Fig. 1 by dashed arrows).

lines. Because all of these transitions are off-resonant, they
may lead to a shift of the relevant energy levels and thus
induce a phase difference between the two momentum states.
In the remainder of this paper we discuss this phase shift for
π/2 pulses.

In Raman scattering the large energy difference between
the two relevant ground states allows us to neglect some of
the off-resonant transitions [31] in the spirit of a rotating-wave
approximation [32].

Therefore, a perturbative treatment of the interaction of the
atom with the laser fields leads [8,9] us to the expression

δφ
(R)
± ∼= ± �

4νK

ωK ± νK

2ωK ± νK

(2)

for the light shift for Raman diffraction. Here, � denotes the
effective two-photon Rabi frequency, which depends on the
intensity of the laser beams and the detuning from the ancilla
state.

The different signs reflect the fact that the resonance
condition of the scattering process can be adjusted such that
the atom is scattered either towards the retroreflective mirror
or away from it. In fact, while we have chosen �ω = ωK + νK

during the previous discussion leading to a resonant coupling
between the momenta p0 and p0 + �K , we can alternatively
choose �ω = ωK − νK which corresponds to diffraction into
the opposite direction, i.e., a coupling of the momenta p0 and
p0 − �K . In Raman diffraction the analog feature is usually
employed [33,34] to compensate for systematic errors.

Since in Bragg diffraction the internal state of the atom is
not changed, more off-resonant transitions have to be taken
into account, which makes a perturbative treatment more
challenging. If we describe an atom in the ground state
and momentum eigenstate |p0 + n�K〉 by the probability
amplitude gn, an adiabatic elimination of the ancilla state
leads [28] to the system [35]

ġn = i
�

2

(
e−iθ e2i(nωK+νK )t + eiθ e2i(n−1)ωKt

)
gn−1

(3)

+ i
�

2

(
eiθ e−2i[(n+1)ωK+νK ]t + e−iθ e−2inωK t

)
gn+1

of differential equations describing the diffraction process.
Here, θ denotes the phase difference of the two counterpropa-
gating laser fields.

The phase caused by the light shift can be found by solving
Eq. (3) and determining the phase of the complex-valued ratio
g1/g0 for �t = π/2. We therefore apply, in complete analogy
to Ref. [36], the resonance conditions �ω = ωK ± νK and
perform the method of averaging [37]. We then calculate the
argument of g1/g0 for �t = π/2 in a similar manner as in
Ref. [38] resulting in the approximate expression

δφ
(B)
± ∼= �

4

2

ωK ± νK

± �

4νK

ω2
K

(2ωK ± νK )(ωK ± νK )
(4)

for the phase induced by light shifts in Bragg diffraction with
box-shaped laser pulses.

Strictly speaking, Eq. (4) is only valid for νK being an
integer multiple of ωK since only then the time-dependent
coupling in Eq. (3) leads to a clear separation of two different
frequency scales, as required by the method of averaging.
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FIG. 3. Scaling of the two-photon light shift δφ+ with respect to the initial momentum p0 (a), and relative deviation of the analytic
expressions from the numerical simulation (b). In panel (a) we exhibit three cases: (i) Raman diffraction [(R), solid green], (ii) Bragg diffraction
with box-shaped pulses [(B), dashed blue], and (iii) Bragg diffraction with Gaussian pulses [(ad), dotted red]. We scale δφ+ in terms of the
amplitude 
[�] defined [40] by Eq. (7) and use Eq. (1) to obtain νK/ωK = 2p0/(�K). Whereas the light shift in Bragg with box-shaped pulses
is twice the size of the Raman case, but scales identically with increasing Doppler detuning, it is largely suppressed for adiabatically tuned
pulses. The solid lines represent the analytical solution; the dashed and dotted lines are numerical simulations, respectively. To illustrate the
order of magnitude of the effect we compare the two-photon light shift to the phase uncertainty in two state-of-the-art experiments [22,41],
indicated by the horizontal dotted lines [42]. Panel (b) shows that the numerical solution for box pulses (solid blue) oscillates within 2% of the
corresponding analytical solution and coincides with it for integer values of νK/ωK . For Gaussian pulses (dashed red) the analytical solution
provides an estimate for the light shift and we observe an agreement with the theoretical prediction to within 4%, which decreases further
with higher initial momenta p0. However, since the light shift for Gaussian pulses is highly suppressed for large initial momenta the absolute
deviation is significantly smaller than in the case of box pulses.

However, when we compare our approximate result in Fig. 3
to a numerical solution of Eq. (3), we find that it is exact
at integer values of νK/ωK and between them the relative
deviation oscillates within 2%.

Moreover this comparison shows that Eqs. (2) and (4) are
only good approximations for sufficiently large νK , since for
vanishing initial momentum the diffraction process changes
drastically to double diffraction, and hence our identification
of the resonant momentum states is not appropriate anymore.
Indeed, the poles in the analytic result, i.e., Eq. (4), as well as
the deviation of the numerical simulation from the analytical
results for the phase shift for small νK/ωK , apparent in Fig. 3,
are due to a modified diffraction mechanism. Each of the poles
in Eq. (4) can be attributed to a specific case [36] of double
or degenerate diffraction. Moreover, we note that an analog
analytical treatment can be performed [36] to obtain the light
shift where these equations diverge.

Of particular interest for this paper is the scaling behavior
of the phase shift δφ(B)

± for a large Doppler detuning, that is, for
ωK/νK � 1. We note that the asymptotic behavior of Eq. (4),
in lowest order, is determined entirely by the first term [39]
providing us with the scaling

δφ
(B)
± ∼= ± �

2νK

∼= 2δφ
(R)
± , (5)

which is twice the light shift phase of Raman diffraction. The
asymptotic behavior and the comparison to the Raman case
are also illustrated by Fig. 3.

Even though there are more relevant transitions in Bragg
diffraction, the overall scaling of the light shift does not change
significantly. This behavior is due to the intricate combination
and cancelation effects [36] between the individual shifts of
the energy levels due to the additional off-resonant transitions
indicated in Fig. 2.

In fact, in Fig. 2 the momentum p0 is connected to p0 + �K

not only by the solid resonant lasers but also by the dashed
Doppler-detuned pair of lasers. This interaction leads to a
change of the population which makes a contribution to
the phase induced by the light shift. Indeed, this population
contribution is the origin of the first addend in Eq. (4).

Since this effect is suppressed for time-dependent adiabatic
pulses [43], the level shifts induced by the various off-resonant
transitions cancel out partially and the phase shift is dominated
by the second term in Eq. (4). To acquire an intuition for
adiabatic pulses we consider Gaussian pulses and neglect the
first contribution to the phase shift in Eq. (4). Hence, we
conjecture the expression

δφ
(ad)
± ∼= 
[�]

ω3
K

±νK (2ωK ± νK )(ωK ± νK )
(6)

for the phase induced by the two-photon light shift of an
adiabatic Gaussian pulse. Here, we have introduced the
dimensionless amplitude


[�(t)] ≡
∫

�2(t) dt

4ωK

∫
�(t) dt

, (7)

and have replaced [40] the two-photon Rabi frequency � by
its time-dependent analog �(t).

In order to verify our conjecture, we solve Eq. (3) numeri-
cally for a time-dependent Gaussian pulse and determine the
phase of the complex-valued ratio g1/g0 for a pulse area of∫

�(t) dt = π/2. Figure 3 demonstrates that the light shift as
predicted by our analytical expression Eq. (6) captures the
main features of the numerical solution and can therefore
serve as an estimate for the light shift with a Gaussian
pulse. In particular, we observe a relative deviation in the
order of 4%, which decreases further with increasing initial
momentum. Furthermore, by expanding Eq. (6) in lowest order
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for ωK/νK � 1 we obtain the scaling law

δφ
(ad)
± ∼= ±
[�]

(
ωK

νK

)3

, (8)

which has a completely different scaling from that of Eq. (5),
leading to a suppression of the phase shift with the third
power of the inverse Doppler frequency. This behavior is a
significant benefit for large initial momenta as demonstrated by
Fig. 3.

We are now in the position to summarize our key results,
compare the magnitude of the two-photon light shift to the
typical phase sensitivity of state-of-the-art measurements,
and provide an outlook for future work. For this purpose
we first recall one more time the motivation of our study,
which also underscores its relevance for experiments. For
high-precision measurements with atom interferometers using
Bragg diffraction the form and magnitude of the phase
induced by the two-photon light shift are essential for both
the error estimation as well as possible mitigation strategies,
based on measurements performed with a reversed momentum
transfer or appropriately chosen laser intensities [34]. There-
fore, the approximate but analytical expression provided in
our paper constitutes a vital part of the analysis of phase
contributions in Bragg interferometers and is of relevance
for any ambitious experiment employing this diffraction
technique.

Indeed we have shown that for box-shaped laser pulses the
phase induced by the two-photon light shift is roughly twice
as large as in Raman diffraction. Apart from this factor of
2, it is of the same form, and thus the methods [34] used to
compensate for this shift can be directly applied.

Adiabatic pulse shapes are a convenient way in Bragg
diffraction to prevent scattering into higher momentum
states [25,44] and thus are employed by most experiments.
We have shown that by using such pulses the light shifts
are suppressed, an effect that has no direct correspondence in
Raman diffraction. In contrast, for Bragg diffraction, the phase
shift for adiabatic Gaussian laser pulses scales favorably with
the third power of the inverse Doppler frequency. On top of the
benefits from this new scaling behavior, our results suggest that
the conventional mitigation strategies [34] can also be applied.

Our analysis shows that in a Mach-Zehnder interferometer
with an initial momentum but no acceleration, the contri-
butions of the first and final light pulse cancel exactly as
the same phase is imprinted on both interferometer arms.
However, in current gravimeters where atoms are released
from a trap, the light shifts will not compensate each other
due to the acceleration of the atomic wave packets between
the pulses. Moreover, for small initial momenta, the light-shift
contribution to the phase is dominated by the first pulse. Hence,
with a delayed start of the interferometer sequence, the atoms
can be accelerated and the superior scaling behavior of Bragg
diffraction with Gaussian pulses can be exploited, leading to a
smaller overall light shift.

In contrast to that, in a fountain experiment the light shifts
caused by the beam splitters do not cancel due to the reversed
momentum of the atom. A suppression of the phase shift then
only results from the different scaling behavior and a large

initial momentum, which can be applied to minimize the light-
shift phase [45].

When we compare our results to state-of-the-art experi-
ments in Fig. 3(a), we see that the magnitude of the effect
due to the different scaling behavior is less important than in
Raman diffraction, but might not be negligible in all cases.
The horizontal dotted lines show the phase uncertainty of
Refs. [22,41] scaled with 
[�] performed with a retroreflec-
tive setup using Raman and Bragg diffraction, respectively. For
every specific setup—especially in gravimetric applications—
relevant parameters for the determination of the phase shift are
the pulse shape, pulse duration, pulse sequence, interrogation
time, acceleration, initial momentum, atomic species, and
more. Thus, the comparison provided above might only be seen
as a rough estimate of the order of magnitude for the light shift.
However, when designing new experiments, a more detailed
analysis is called for which can be obtained straightforwardly
for an individual setup from our results [42].

Whereas in this paper we have focused on phase shifts
caused by the spurious pair of lasers, we investigate in Ref. [36]
the diffraction in a retroreflective setup itself without solely
focusing on light shifts. There, we not only derive analytical
expressions for the diffraction incorporating the spurious pair
of lasers (which can be used to obtain the expressions for
the phase shift) but also perform extensive numerical studies
of box-shaped Bragg pulses for different initial momenta. In
particular, we discuss the transition to double Bragg diffraction
for momenta where Eq. (4) diverges. Moreover, we employ
different adiabatic pulse shapes to verify the analytical result,
that is, Eq. (6).

Our numerical analysis can easily be generalized to shed
light on the two-photon light shift for a broad momentum
distribution of the atom [46] or higher-order Bragg diffraction.
Moreover, we admit that in a strict sense our analysis is
only valid for perfectly orthogonal polarization. Since in an
experiment effects of imperfect polarization can be determined
and, if possible, minimized [9] we plan to investigate the effect
of polarization on the light shift.

The final judgment of any physical theory is experiment and
high-precision measurements are a key ingredient in probing
the foundations of physics. In this spirit we hope that an
increased accuracy of Bragg interferometers made possible
by our expressions paves the road to novel applications and a
verification of fundamental physical theories and concepts.
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