
PHYSICAL REVIEW A 99, 053823 (2019)

High-gain quantum free-electron laser: Emergence and exponential gain
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We derive an effective Dicke model in momentum space to describe collective effects in the quantum regime of
a free-electron laser (FEL). The resulting exponential gain from a single passage of electrons allows the operation
of a Quantum FEL in the high-gain mode and avoids the experimental challenges of an x-ray FEL oscillator.
Moreover, we study the intensity fluctuations of the emitted radiation, which turn out to be super-Poissonian.
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I. INTRODUCTION

The current trend of decreasing free-electron laser (FEL)
wavelengths down to the x-ray regime [1–3] leads inevitably
to a limit, where quantum effects emerge and at some point
determine the dynamics and the properties of the FEL. Since
there exist no high-quality cavities for exactly this part of
the spectrum, such a Quantum FEL [4–6] necessarily has to
be operated in the high-gain regime, where a many-electron
theory becomes mandatory [7].

As a consequence of this trend, many theoretical models
towards the Quantum FEL were developed in recent years
[5,6,8–22]. Besides investigating the emergence of quantum
features, it was studied how these effects alter the radiation
properties of an FEL. For example, it was predicted in Ref. [6]
that a Quantum FEL operating in the self-amplified sponta-
neous emission (SASE) mode emits light with a higher degree
of temporal coherence and with a narrower spectrum when
compared to its classical counterpart.

In contrast to a SASE FEL, the low-gain regime of opera-
tion has a well-defined cavity mode. In this case, the amplifi-
cation of the laser field is comparably small since the electrons
travel through a relatively short undulator [23]. Similar to an
ordinary laser [24] the cavity serves the purpose of storing the
laser field that is amplified during many passages of electrons.
This necessity for a cavity inhibits the operation of such an
“FEL oscillator” in the x-ray regime, where up to date no
high-quality mirrors exist.

Existing models [5,6] of the Quantum FEL focus mainly
on the opposite mode of operation, the high-gain FEL, where
the radiation grows exponentially along the length of a long
wiggler and a single passage of electrons is sufficient to obtain
a large laser intensity [23]—without any cavity. In this sense,
such a device is an “amplifier” rather than a “laser,” even
though the latter term is commonly used in literature.

At the beginning of the new century, FEL physics experi-
enced an immense leap forward with the first lasing of x-ray
FELs [25]. The associated decrease in wavelength leads to an

increased quantum-mechanical recoil of the electrons when
they scatter from the fields. Hence, an experimental realization
of the quantum regime, where this recoil dominates, is within
reach, despite still challenging constraints on the electron
beam and the undulator [26].

In this article we adjust the elementary approach of
Ref. [14] to the many-electron case by introducing suitable
collective operators. We observe an exponential growth of the
laser intensity with a possible start-up from vacuum and study
the photon statistics of the emitted radiation.

This article is organized as follows. We begin in Sec. II
by discussing the implications of a many-electron theory and
by extending our previous model for the Quantum FEL to the
collective case. In this context, we deduce the conditions for
the FEL dynamics to reduce to the two-level behavior dictated
by the Dicke Hamiltonian [27]. In Sec. III we then solve
the resulting equations of motion in the short-time limit and
observe an exponential gain of the laser intensity as well as a
super-Poissonian behavior of the corresponding fluctuations.
Moreover, we make use of the asymptotic method of canonical
averaging [28,29] to calculate higher-order corrections to the
deep quantum regime and we connect our results to the exist-
ing literature on the Quantum FEL [6]. Finally, we summarize
our main results and conclude in Sec. IV.

To keep this article self-contained we add Appendix A,
where we express the FEL Hamiltonian in terms of mo-
mentum jump operators and perform a transformation into
a rotating frame. In Appendix B we recall the method of
canonical averaging [29] and apply it to the FEL.

II. MANY-ELECTRON MODEL

We begin our studies of the high-gain Quantum FEL by
presenting the many-particle FEL Hamiltonian and investigat-
ing the emergence of collective effects due to the action of
this Hamiltonian on quantum states. Moreover, we introduce
collective momentum jump operators and derive the two-level
behavior in the quantum regime.
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A. One electron vs many electrons

In the following we discuss the fundamental differences
between a collective model of the FEL and our previous
single-electron approach [14].

1. Hamiltonian

The many-electron Hamiltonian describing the dynamics
of an FEL reads [30]

Ĥ =
N∑

j=1

p̂2
j

2m
+ h̄g

⎛
⎝âL

N∑
j=1

ei2kẑ j + â†
L

N∑
j=1

e−i2kẑ j

⎞
⎠, (1)

where we sum over the positions ẑ j and conjugate momenta p̂ j

of N electrons with mass m in the comoving Bambini-Renieri
frame [31,32]. This frame of reference is constructed such that
the wave numbers of the laser field and of the wiggler field, kL

and kW, respectively, coincide, that is, kL = kW ≡ k.
While we assume that the wiggler field is classical and

fixed due to its high intensity, we describe the laser field
by the photon annihilation and creation operators âL and
â†

L, respectively. The commutation relations of the involved
operators are given by [ẑ j, p̂ j] = ih̄ for the electron variables
[33], with h̄ denoting the reduced Planck constant, and by
[âL, â†

L] = 1 for the laser-field operators.
We note that the constant

g ≡ e2ALÃW

h̄m

that couples the dynamics of the electrons to the fields de-
pends on the product of the vacuum amplitude AL of the
vector potential for the laser field and the classical amplitude
ÃW of the vector potential for the wiggler field.

By considering the Bambini-Renieri frame we follow the
lines of a large part of the literature [30,34–36] on the
quantum theory of the FEL. We note, however, that such a
quantum theory can be also formulated in the laboratory frame
[4,19,37–42].

2. Low and high gain

If we assume that the relative change of the laser intensity
during one passage of a bunch with N electrons is much
smaller than unity, the equations of motion for the electrons
decouple from each other. In this case, we only solve the
dynamics of one electron interacting with the fields: This limit
is the low-gain regime of the FEL [23], which is a suitable
description of an FEL oscillator, where the high-intensity field
in the cavity does not vary much from one passage of electrons
to the next one.

In contrast, if the initial field is very small or even starts
from vacuum we certainly cannot consider the relative change
of the laser intensity as a small quantity. In this situation, we
have to solve the full many-particle Hamiltonian in Eq. (1).

In Fig. 1 we have illustrated the difference between the
single-electron (left) and the many-electron (right) approach.
Our previous model is based on the interaction of one electron
with the laser field and incorporates the effects of many
electrons by the simple multiplication with the number N of
electrons in one bunch.

N times

laser field

electron

laser field

N electrons

FIG. 1. Difference between the single-electron model for the
low-gain regime (left) and the many-electron model for the high-
gain FEL (right): In the low-gain regime we consider only a single
electron interacting with the laser field and simply multiply the
resulting change of the laser field with the number N of electrons
in the bunch. For the simultaneous interaction of all N electrons with
the laser field the motion of each electron influences the dynamics of
the laser field which in turn acts back on the motion of all electrons.
Hence, the electrons are indirectly coupled to each other due to their
common interaction with the laser field.

In the high-gain regime on the right-hand side of Fig. 1, we
additionally take collective effects into account that emerge
when all electrons simultaneously interact with the laser field:
The motion of one particular electron leads to a change of the
laser field which in turn influences the dynamics of the re-
maining electrons. In some sense, the electrons communicate
with each other via the laser field.

We emphasize that this collective effect must not be con-
fused with the direct Coulomb interaction of the electrons due
to space charge [43], which is neglected here in analogy to the
classical theory of a Compton FEL [44].

3. Entangled electron states

The richer dynamics of the collective model becomes evi-
dent, when we regard the action of the Hamiltonian, Eq. (1),
on the electron motion. For a single electron, that is, N = 1,
the momentum of the electron receives a kick by the recoil
q ≡ 2h̄k, when a photon is absorbed from the laser field
leading to the combined action

âLei2kẑ |n, p〉 ∝ |n − 1, p + q〉 (2)

of the momentum shift operator and the photon annihilation
operator. Here we assumed that the electron initially is in a
momentum eigenstate with momentum p. The laser field is
described by a Fock state with photon number n, that is, the
eigenstate of the photon-number operator n̂ ≡ â†

LâL with the
eigenvalue n.

The behavior in Eq. (2) has enabled us in Ref. [14] to
expand the total state vector for the electron and the laser field
in terms of the scattering basis [34], |μ〉 ≡ |n + μ, p − μq〉.
The single quantum number μ simultaneously corresponds to
the number of scattered photons as well as to the change of
the electron momentum as integer multiple of the recoil q.

However, already for N = 2 electrons the situation changes
drastically: The sum in the Hamiltonian, Eq. (1), over the
different electrons leads to the entangled superposition state

(ei2kẑ1 + ei2kẑ2 ) |p1, p2〉 = |p1 + q, p2〉 + |p1, p2 + q〉 (3)
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p1 p1 + q

âL â†
W

p2

p2 + qp2

âL â†
W

p1

+N = 2

FIG. 2. Creation of entangled superposition states in the FEL
for N = 2 electrons: On the left-hand side, the first electron with
momentum p1 (above) absorbs a laser photon and emits a wiggler
photon which leads to the increased momentum p1 + q with q ≡ 2h̄k
denoting the discrete recoil. In contrast, the second electron (below)
does not scatter and thus maintains its initial momentum p2. The
second possible event is depicted on the right-hand side: Here the
first electron does not interact with the field and its momentum p1

stays unchanged, while the second electron is scattered from a laser
and a wiggler photon yielding the final momentum p2 + q. Super-
imposing these two possibilities leads us finally to the entangled
state in Eq. (3). For didactic reasons, we have used in this figure a
representation, where besides the laser mode, described by âL and
â†

L, also the wiggler field is quantized with the photon annihilation
and creation operators, âW and â†

W, respectively.

for the electrons. Here we used a product of two momentum
eigenstates with eigenvalues p1 and p2, respectively, as initial
state. The emergence of this superposition state becomes
clear in Fig. 2: Either the first electron scatters from the laser
and the wiggler field and receives a momentum kick, while
the second electron is unaffected by the interaction, or the
opposite process occurs, where the first electron maintains
its initial momentum p1 and the momentum of the second
electron changes from p2 to p2 + q due to the interaction
with the fields. By superimposing these two possible events
we arrive at the state vector in Eq. (3).

From the inspection of Eq. (3) it becomes obvious that an
expansion of the total state vector in terms of the scattering
basis is not convenient since we do not know which electron
has absorbed or emitted the photon.

This statement is of course also true for the more general
case of N electrons, where we find the expression

N∑
j=1

ei2kẑ j |p1, p2, . . . , pN 〉 =
N∑

j=1

|p1, . . . , p j + q, . . . , pN 〉 ,

(4)
if each electron is initially in a momentum eigenstate. The
form of this state vector is analogous to a Dicke state [27]
in the field of super-radiance and amplified spontaneous
emission.

However, we emphasize that the dynamics of an FEL in
general is richer than the one in the Dicke model, where
the state of each atom is limited to two levels, which would
correspond to two momenta p j and p j + q in Eq. (4). If the
sum in Eq. (1) acts a second time on a product of N = 2
momentum eigenstates we obtain for example the expression

(ei2kẑ1 + ei2kẑ2 )2 |p1, p2〉 = |p1 + 2q, p2〉 + |p1, p2 + 2q〉
+ 2 |p1 + q, p2 + q〉 ,

which in contrast to the Dicke-like state from Eq. (3) includes
three instead of only two momentum levels. Similarly, we find
for N electrons the state⎛
⎝ N∑

j=1

ei2kẑ j

⎞
⎠2

|p1, p2, .., pN 〉 =
N∑

j=1

|p1, . . . , p j + 2q, . . . , pN 〉

+
N∑

j �=k

|p1, . . . , p j + q, . . . , pk + q, . . . , pN 〉 ,

which describes two-photon as well as single-photon pro-
cesses. In the single-electron model, on the other hand, we
find only |p + 2q〉, that is, a definite momentum change of 2q.

Through the successive action of the collective operator∑
j exp (±i2kẑ j ) we would arrive at even more involved

expressions. Hence, we discard time-dependent state vectors
in the Schrödinger picture. Instead, we study in the following
the dynamics of operators in the Heisenberg picture.

B. Collective operators

Similarly to the collective variables [7,45] of the classical
theory and of the quantum theory [6] for high-gain FELs,
we investigate the dynamics of collective operators. However,
there is a crucial difference in our treatment of the Quantum
FEL to the one in Ref. [6]. While the authors of Ref. [6]
attempted to generalize the classical model of Refs. [7,45]
by introducing a bunching operator and a, symmetrically
ordered, momentum bunching operator, we refine the ideas
and concepts of our low-gain theory [14] of the Quantum FEL.
For this purpose, we introduce in the following collective
momentum jump operators.

1. Definition

We identify the quantum regime of the FEL as the limit,
where the infinite momentum ladder characterizing the elec-
tron dynamics reduces to only two resonant momentum levels.

In order to describe the momentum ladder of each electron
we introduce projection operators of the form

ϒ̂μ,ν ≡
N∑

j=1

σ̂ ( j)
μ,ν ≡

N∑
j=1

|p − μq〉( j) 〈p − νq| . (5)

Here we treat the momentum of the electron as a discrete
variable, visualized by the integer multiples μ and ν of the
recoil q, instead of a continuous one, since the Hamiltonian
of Eq. (1) allows only for these discrete jumps. We therefore
identify ϒ̂μ,ν as a collective momentum jump operator, while

σ̂ ( j)
μ,ν ≡ |p − μq〉( j) 〈p − νq| (6)

describes the jump of electron j.
Moreover, we note that the definition of ϒ̂μ,ν in Eq. (5) is

only reasonable if each electron has the same initial momen-
tum p j ≡ p which corresponds to an initial state of the form
|p, p, . . . , p〉.
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2. Operator algebra

The commutation properties of the collective jump opera-
tors are described by the expression

[ϒ̂μ,ν, ϒ̂ρ,η] = δν,ρϒ̂μ,η − δη,μϒ̂ρ,ν, (7)

which follows from the corresponding single-electron relation[
σ̂ ( j)

μ,ν, σ̂
( j)
ρ,η

] = δν,ρ σ̂
( j)
μ,η − δη,μσ̂ ( j)

ρ,ν (8)

and from the fact that operators corresponding to different
electrons commute, that is, [σ̂ ( j)

μ,ν, σ̂
(k)
ρ,η] = 0 for j �= k. We

note that we have used Kronecker deltas in Eqs. (7) and (8)
instead of Dirac delta functions, since we assume discrete
momentum ladders instead of a continuum and therefore
〈p − μq|p − νq〉 = δμ,ν .

The comparison of Eq. (7) to Eq. (8) reveals that the single-
electron jump operators and the collective operators commute
the same way. We emphasize that both sets of operators do not
obey the same algebra: An important difference arises when
we consider the product of two operators. For a single particle
with σ̂μ,ν ≡ σ̂

( j)
μ,ν and j = 1, we can write down the closed

expression σ̂μ,ν σ̂ρ,η = δν,ρ σ̂μ,η, which is impossible for the
collective case, that is, ϒ̂μ,νϒ̂ρ,η �= δν,ρϒ̂μ,η.

We exemplify this different behavior by the action of
ϒ̂2,1ϒ̂1,0 on the state |p, p〉 for N = 2 electrons. In the first
step we obtain the expression

ϒ̂2,1ϒ̂1,0 |p, p〉 = ϒ̂2,1(|p − q, p〉 + |p, p − q〉), (9)

where the first operator ϒ̂1,0 creates an entangled state in
analogy to the discussion for

∑
j exp (i2kẑ j ) in the preceding

section. In contrast to the single-electron case, where the
action of σ̂1,0 on |p〉 yields a definite momentum shift, that is,
the state |p − q〉, for two or more electrons the momentum of
a particular electron is shifted only with a certain probability.

The second operator ϒ̂2,1 now acts on the entangled state
in Eq. (9) and we finally arrive at

ϒ̂2,1ϒ̂1,0 |p, p〉 = |p − 2q, p〉 + |p, p − 2q〉 .

This expression differs from the corresponding result
σ̂2,1σ̂1,0 |p〉 = |p − 2q〉 for a single electron and therefore
constitutes a collective effect.

3. Rewriting the Hamiltonian

We continue by transforming the original Hamiltonian
from the Heisenberg picture such that the free part of the
dynamics is included in the phases of the interaction term,
analogously to the interaction picture. As a consequence,
we identify the important time scales of the FEL dynamics
directly in the Hamiltonian. For this purpose, the expansion
of Ĥ in terms of the projection operators ϒ̂μ,ν proves to be
helpful.

This reformulation of the Hamiltonian and the transfor-
mation into the rotating frame are presented in detail in
Appendix A. There, we derive the expression, Eq. (A3),

Ĥ ′(τ ) = ε

(
âL

∑
μ

ei2μτ ϒ̂μ,μ+1 + H.c.

)
− 	 n̂ (10)

for the Hamiltonian, where we have defined the dimen-
sionless coupling ε ≡ g/ωr and the dimensionless time τ ≡

ωrt . Moreover, we have recalled from Ref. [14] the recoil
frequency

ωr ≡ 1

h̄

q2

2m
(11)

and have introduced the relative deviation

	 ≡ p − q/2

q/2
(12)

of the initial momentum p of the electrons from p = q/2. The
deviation 	 will play the role of a detuning since we later
identify q/2 with the resonant momentum in the quantum
regime.

Because we consider time-dependent operators, we have to
solve the Heisenberg equation of motion, Eq. (A4),

i
d

dτ
Ô′(τ ) = [Ô′(τ ), Ĥ ′(τ )] (13)

subject to the Hamiltonian Ĥ ′ in Eq. (10), in order to obtain
the time evolution of an operator Ô′.

The comparison of Ĥ ′ in Eq. (10) to Ĥ in Eq. (1) reveals
that we do not sum over the different electrons anymore, but
over different momenta which are integer multiples of the
recoil q. The collective effect of all electrons on the laser field
is now fully contained in the jump operators ϒ̂μ,ν .

C. Dicke Hamiltonian

In Ref. [14] we have found that for a large recoil mul-
tiphoton transitions are suppressed and only the two reso-
nant momentum levels p = q/2 and −q/2 are of importance
similarly to atomic Bragg diffraction [46]. This reduction to
the interaction of a two-level system with a quantized field
mode has led us to the analogy of the Quantum FEL to the
Jaynes-Cummings model [47].

The natural generalization for the many-particle case is
the Dicke model [27], where many two-level atoms simul-
taneously interact with the field mode. In the following we
establish this analogy for the many-electron model.

1. Relevant time scales

We first separate the slowly varying dynamics from the
rapid oscillations. For that we make use of the canonical
variant [29] of the method of averaging, in which we directly
work with the Hamiltonian instead of the equations of motion.
To employ this technique, we decompose Ĥ ′(t ), Eq. (10), into
a Fourier series

Ĥ ′(τ ) ≡ ε
∑

μ

Ĥμei2μτ (14)

with

Ĥ0 ≡ âLϒ̂0,1 + â†
Lϒ̂1,0 − 	

ε
n̂,

Ĥμ ≡ âLϒ̂μ,μ+1 + â†
Lϒ̂−μ+1,−μ

(15)

denoting the Fourier components.
The inspection of the Fourier series in Eq. (14) reveals that

there are contributions which are oscillating with multiples
of the recoil frequency, that is, 2μτ = 2μωrt . In addition,
the component Ĥ0 is independent of time. If the recoil is
large, the oscillations with the recoil frequency are rapidly
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varying terms and we neglect them in a rotating-wave-like
approximation [48]. Hence, the dynamics is determined by the
time-independent part

Ĥeff = εĤ0 = ε(âLϒ̂0,1 + â†
Lϒ̂1,0) − 	 n̂, (16)

which we identify with the effective Hamiltonian in lowest
order of the method of averaging [29], that is, Ĥeff ≡ εĤ (1)

eff .
If we interpret ϒ̂1,0 and ϒ̂0,1 as collective spin-flip operators,
we observe that the expression for the effective Hamiltonian
in Eq. (16) is indeed equivalent to the Dicke Hamiltonian with
an additional detuning 	 [49].

The dynamics of each electron in the quantum regime is
thus described by the resonant scattering from the excited
state, in the vicinity of the resonant momentum p = q/2, to
the ground state p ∼= −q/2. All two-level systems collectively
interact with the radiation field.

2. Conditions for the quantum regime

We have to make sure that the approximation leading to
Eq. (16) is allowed. For that, the corresponding asymptotic
expansion has to converge when we consider higher orders
of the method of averaging. Therefore, we require that ε|Ĥμ|
is small [29], that is, ε|Ĥμ| 	 1. Estimating |Ĥμ| ∼ √

N
we obtain the fundamental condition αN ≡ ε

√
N 	 1 for the

Quantum FEL, where we have recalled the quantum parame-
ter αN [14].

This parameter describes the ratio

αN = g
√

N

ωr
	 1 (17)

of the two important frequency scales of the FEL dynamics,
that is, the coupling strength g

√
N and the recoil frequency

ωr, Eq. (11). Thus, we are in the quantum regime, if the recoil
exceeds the coupling.

Moreover, we require a small deviation 	 from resonance,
that is, 	 	 1, as well as a small initial photon number.
Otherwise, the magnitude of the second term of Ĥeff would be
larger than the first term which scales with αN and we cannot
perform an asymptotic expansion in powers of the quantum
parameter.

In reality, the ensemble of electrons is not described by
the same initial momentum, but each electron has a different
one. Hence, the electrons move on momentum ladders which
are shifted with respect to each other due to these different
starting points. The different initial momenta p1, p2, . . . , pN

are distributed according to a statistics which is characterized
by a certain characteristic width 	p. A small deviation 	

from resonance thus translates to a constraint for the width
	p of the momentum distribution. From 	 < 1 we deduce
the requirement

	p < q (18)

for realistic electron beams in analogy to Refs. [10,14].

III. EXPONENTIAL GAIN

A key feature of a classical FEL in the high-gain regime
is the exponential growth of the laser intensity for short
times [7,23]. By solving the dynamics of an FEL in the deep

quantum regime, dictated by the Dicke Hamiltonian within
a parametric approximation [52,53], we obtain this high-gain
behavior also for a Quantum FEL.

A. Deep quantum regime

In the following, we derive expressions for the mean
photon number, the gain length, the gain function, and the
variance of the photon number of a high-gain Quantum FEL
in the exponential-gain regime. For the time being we restrict
ourselves to the two-level approximation, that is, the Dicke
Hamiltonian from Eq. (16).

1. Parametric approximation

In analogy to the Pauli spin matrix σ̂z we define the
operator

ϒ̂z ≡ ϒ̂0,0 − ϒ̂1,1

as the difference of ϒ̂0,0 corresponding to the excited state p ∼=
q/2 and ϒ̂1,1 corresponding to the ground state p ∼= −q/2. If
all electrons are in the excited state, the expectation value of
ϒ̂z is maximized and simply equals the number N of electrons,
that is, 〈ϒ̂z〉 = N . In contrast, if all electrons are in the ground
state the mean value is minimized to 〈ϒ̂z〉 = −N . Thus, we
can interpret ϒ̂z as an effective inversion operator.

For short interaction times, only a few electrons have
changed from the excited state to the ground state. Hence,
we assume that ϒ̂z has not changed very much and we can
treat it as a constant. This procedure is known as “parametric
approximation” [53] since we obtain the equations of motion
for a parametric amplifier [52].

To perform this approximation, we first scale the involved
jump operators in the following way:

Ŷ1,0 ≡ 1√
N

ϒ̂1,0,

Ŷz ≡ 1

N
ϒ̂z

(19)

where 〈Ŷz〉 is bounded by −1 � 〈Ŷz〉 � 1.
The Heisenberg equations of motion from Eq. (13) of the

rescaled operators read

i
d

dτ
Ŷ1,0 = −αN âLŶz, (20a)

i
d

dτ
Ŷz = αN

N/2
(âLŶ0,1 − â†

LŶ1,0), (20b)

i
d

dτ
âL = −	âL + αN Ŷ1,0, (20c)

where we have recalled the quantum parameter αN from
Eq. (17) and have used the commutation relation from Eq. (7)
for the jump operators as well as the one for the laser-field
operators.

Moreover, we assume that the state of the combined system
of laser field and electrons in the rotating frame is given by the
product

|� ′(τ )〉 = e−i	n0τ e−iN (	+1/2)2τ |n0〉 ⊗ |p, p, . . . , p〉 (21)

consisting of a Fock state with n0 laser photons and of
momentum eigenstates for the electrons. Here each electron

053823-5



PETER KLING et al. PHYSICAL REVIEW A 99, 053823 (2019)

has the same initial momentum p [30,54] that represents the
excited state in the vicinity of the resonance p = q/2. In
addition, the photon number should be much smaller than the
number of electrons, that is, n0 	 N . Otherwise, the following
linearization procedure would break down since âL is not
small when compared to Ŷz. We note that the additional phase
factors in Eq. (21) have emerged since we have performed
a transformation into a time-dependent picture according to
Eq. (A2).

We now apply the parametric approximation by assuming
that Ŷz is constant and replacing it by its expectation value at
τ = 0, which is given by 〈Ŷz〉 = 1. Hence, we arrive at the
linear set of differential equations

i
d

dτ

(
Ŷ1,0

âL

)
=
(

0 −αN

αN −	

)(Ŷ1,0

âL

)
(22)

for the dynamics of electrons and laser field in a high-gain
Quantum FEL.

If only a comparatively small number of photons is emit-
ted, the right-hand side of the original equation of motion,
Eq. (20b), for Ŷz is suppressed with 1/N . In this case, we are
allowed to use the linearized equation of motion in Eq. (22).

However, for longer times the photon number n grows
and the parametric approximation breaks down [53]: At some
point we have n ∼ N and the right-hand side of Eq. (20b) is
of the order of αN . Hence, the rate for the change of Ŷz scales
the same as for âL and Ŷ1,0, Eqs. (20a) and (20c), and thus we
cannot approximate Ŷz as a constant any longer. We postpone
the investigation of this long-time behavior to a future article
and restrict ourselves here to the linearized dynamics.

2. Mean photon number and gain length

The linearized differential equation, Eq. (22), can be
straightforwardly solved with the ansatz ∼e−iλτ . This proce-
dure leads to two solutions,

λ± = −	

2
± iαN

√
1 − κ

2

4
, (23)

of the resulting quadratic equation. Here κ ≡ 	/αN denotes
the deviation from resonance normalized to the quantum pa-
rameter αN . Since we assume p in the vicinity of the resonant
momentum p = q/2, quantified by the condition 	 ≡ καN 	
1, we require that κ is maximally of the order of unity, that is,
κ ∼ O(1).

The inspection of Eq. (23) reveals that λ possesses a
nonzero imaginary part for −2 < κ < 2. Hence, we expect
that the field grows exponentially in time with the increment
Imλ+. For resonance, this growth is characterized by αNτ ≡
L/(2Lg), where L ≡ ct denotes the wiggler length while Lg

describes the typical length scale of the gain.
After solving Eq. (22) for âL and Ŷ1,0 we can calculate

expectation values of the involved operators with respect to
the state in Eq. (21). For example, we obtain the expression

〈n̂(L)〉 = (nsp(L) + 1) 〈n̂(0)〉 + nsp(L) (24)

for the expectation value of the photon-number operator n̂ ≡
â†

LâL as a function of the wiggler length L [55].

2 4 6 8

0.1

10

103

L/Lg

〈n̂
〉

Δ = 0

Δ = αN

Δ = 1.5 αN

Δ = 1.9 αN

FIG. 3. Exponential gain of a high-gain Quantum FEL for short
times: We have drawn the mean photon number 〈n̂〉 = nsp emerging
from spontaneous emission, Eq. (25), as a function of the wiggler
length L in multiples of the gain length Lg, Eq. (26). We, moreover,
study the behavior of 〈n̂〉 for four different values of the deviation
	, Eq. (12), from resonance. Besides the start-up from vacuum, that
is, from 〈n̂(0)〉 = 0, we observe that the growth of the mean photon
number is decreased for increasing values of 	.

If the field starts from vacuum, that is, 〈n̂(0)〉 = 0, only the
term

nsp(L) = 1

1 − κ
2/4

sinh2

[
L

2Lg

√
1 − κ

2

4

]
(25)

corresponding to spontaneous emission is present. For a
seeded FEL, however, the first term in Eq. (24) dominates.
Since this contribution is proportional to the initial number of
photons 〈n̂(0)〉, it describes stimulated emission.

In Fig. 3 we have drawn 〈n̂〉 against L for different values of
	. For this purpose, we have restricted ourselves to the start-
up from vacuum. Indeed, we observe an exponential growth
of the photon number. The typical length scale of this growth,
at least for resonance κ = 0, is given by the gain length [56]

Lg ≡ c

2g
√

N
, (26)

which is consistent with the expression for L′
g in Ref. [6].

We recognize that the gain length Lg in the quantum regime
differs from the corresponding classical quantity [23], which
reads

L(cl)
g ≡ 1√

3

c

(g2Nωr/2)1/3
, (27)

in the Bambini-Renieri frame [57] and which emerges by
solving a cubic characteristic equation [7]. The comparison
of Lg from Eq. (26) to L(cl)

g from Eq. (27) yields the relation

Lg

L(cl)
g

=
√

3

24/3

1

α
1/3
N

.

Due to αN 	 1 the gain length in the quantum regime is
longer than predicted by a classical theory, which can be
interpreted as a quantum effect.

3. Gain function

Coming back to Fig. 3, we observe not only that the mean
photon number grows exponentially but also that this growth
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FIG. 4. Gain functions in the classical and in the quantum
regime: We have drawn the increments Imλ+ for the intensity growth
in a classical FEL (top) and in a Quantum FEL (bottom), respectively,
both as functions of the momentum p divided by the recoil q. For the
former case we numerically solve the cubic characteristic equation
from Ref. [7] for αN = 10, while we use our analytic expression
from Eq. (28) for the latter case with αN = 0.2. The classical curve
reaches its maximum at p = 0 and is a smooth and broad function
that covers many multiples of q. In contrast, its quantum counterpart
is sharply peaked at the quantum resonance, p = q/2, and is very
narrow, covering a range of momenta which is smaller than q. Hence,
the gain bandwidth in a Quantum FEL is much smaller than in a
classical FEL.

decelerates when we move away from resonance, that is, for
increasing values of 	.

We quantify this effect by the positive imaginary part [58]

Imλ+ = αN

√
1 − κ

2

4
(28)

of λ which is half the increment of 〈n̂〉. We recognize from
Eq. (28) that for increasing values of κ the growth of 〈n̂〉
decreases while it is maximized for resonance, κ = 0. Hence,
we identify Imλ+ as the gain function of a high-gain Quantum
FEL. This definition is analogous to the classical regime, with
the difference that there Imλ+ emerges by solving a cubic
characteristic equation [7] instead of a quadratic one [21,58]
in the quantum regime.

In Fig. 4 we compare the gain function of a classical
high-gain FEL (top) with the one, Eq. (28), of a Quantum FEL
(bottom), both drawn against the initial momentum p of the
electrons. While the classical gain is maximized at p = 0, the
maximum gain in the quantum domain is located at p = q/2.

Moreover, we observe that the gain function in the classical
case is a smooth curve which covers a wide range of momenta
over many multiples of the recoil q. In contrast, the Quantum
FEL is characterized by a sharp resonance with a width in
momentum space that is smaller than q.

The gain curve is different from zero for −2 < κ < 2,
which corresponds to a width of 2αN q in momentum space.
We identify this width of the gain function as the gain
bandwidth of a high-gain Quantum FEL [10], since only
electrons with momenta that are within this region resonantly
interact with the fields, an effect which is known as velocity
selectivity [46,59,60]. For an electron beam with the initial
momentum spread 	p we thus deduce the condition

	p < 2αN q

for efficiently amplifying the laser field. We note that this
requirement is stricter than the fundamental one 	p < q from
Eq. (18) due to αN 	 1.

We emphasize that an analogous behavior of the gain func-
tion is discussed in Refs. [6,61]. However, we here present
a simple interpretation through the analogy to the Dicke
Hamiltonian. Moreover, we write down an explicit analytic
expression in Eq. (28) for the gain function.

4. Variance of photon number

Solving the Heisenberg equation of motion gives us the
time dependency of the field in terms of the operator âL.
Hence, this solution enables us to calculate not only the mean
photon number 〈n̂〉 but also its higher moments.

As an example, we consider in the following the variance

	n2(L) ≡ 〈n̂2(L)〉 − 〈n̂(L)〉2

of the photon number.
We straightforwardly derive the expression

	n2(L) = (nsp(L) + 1)2	n2(0) + nsp(L) 〈n̂(L) + 1〉 (29)

in terms of the initial variance 	n2(0), where we have recalled
〈n̂〉 and nsp from Eqs. (24) and (25), respectively. Since nsp

grows exponentially and all terms in Eq. (29) are larger than
or equal to zero, the variance 	n2 becomes larger than the
mean value 〈n̂〉, that is, 	n2 > 〈n̂〉. Hence, we obtain a super-
Poissonian photon statistics for a high-gain Quantum FEL in
the exponential-gain regime which even moves farther away
from a Poissonian behavior with 	n2 = 〈n̂〉 for increasing
values of L.

If the field starts from vacuum, where 〈n̂(0)〉 = 0, we find
the expression

	n2(L) = 〈n̂(L)〉 〈n̂(L) + 1〉 , (30)

that is, the field obeys thermal statistics [52,62]. In addition,
the relation in Eq. (30) holds true, if the field starts in a
thermal state, that is, a thermal state maintains its nature
during interaction.

On the other hand, we derive for an initial Fock state the
asymptotic behavior

	n2(L)

〈n̂(L)〉
∼= 〈n̂(L)〉 + 1

〈n̂(0)〉 + 1
, (31)
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FIG. 5. Variance 	n2, Eq. (29), of the photon number normal-
ized to the expectation value 〈n̂〉, Eq. (24), as a function of the length
L of the wiggler in units of the gain length Lg, Eq. (26), for exact
resonance p = q/2. We compare the situations in which the field
is initially in (i) a Fock state (blue line), (ii) a coherent state (red
line), and (iii) a thermal state (green line), with each of them being
described by the same mean photon number, that is, 〈n̂(0)〉 = 100.
In all cases we observe a super-Poissonian behavior of the photon
statistics which moves away from a Poisson statistics with 	n2 = 〈n̂〉
(dotted line) for increasing values of L. We find the largest deviation
from a Poissonian for an initially thermal field, while the case of an
initial Fock state shows the smallest deviation.

for L → ∞. Since 〈n̂〉 increases with L we easily deduce
from Eq. (31) a super-Poissonian behavior of the laser field.
However, for relatively large values of the initial photon
number 〈n̂(0)〉 the field clearly deviates from a thermal state
like in Eq. (30).

Indeed, we observe in Fig. 5 that a field which is initially
described by a thermal state clearly deviates more from a
Poissonian statistics with 	n2 = 〈n̂〉 than the corresponding
case of a Fock state. If the field is initially in a coherent state,
we find that the normalized variance 	n2/ 〈n̂〉 lies in between
the two extremes of a thermal and a Fock state, respectively.

B. Higher-order corrections

So far, we have focused on the deep quantum regime
defined by the Dicke Hamiltonian, Eq. (16). However, in
order to prove that this two-level approximation is valid, we
consider corrections to this limit which have to be suppressed
for αN 	 1. In the following, we perform this proof by
calculating higher orders of the method of canonical averaging
[29] and by linearizing the resulting equations of motion in the
exponential-gain regime. Moreover, we connect to the results
of Ref. [6].

1. Canonical averaging

We present here only the main ideas and results of our
approach. However, the interested reader may find the details
of these calculations in Appendix B. There, we show that the
dynamics of an operator Ô′ is dictated by the equation of
motion

i
d

dτ
Ô′ = ε

[
Ô′, Ĥ (1)

eff

]+ ε2
[
Ô′, Ĥ (2)

eff

]+ ε3
[
Ô′, Ĥ (3)

eff

]
,

up to third order in ε. We identify the lowest-order contribu-
tion Ĥ (1)

eff with the Dicke Hamiltonian, Eq. (16), of the deep
quantum regime, while the higher-order terms Ĥ (2)

eff and Ĥ (3)
eff

are given by Eqs. (B16) and (B17), respectively.
In short, this asymptotic expansion emerges by separating

the slowly varying dynamics from the rapid oscillations and
expanding the occurring terms in powers of ε. The effective
Hamiltonian is then determined by considering in each order
only contributions that are independent of time τ , in order to
avoid secular terms [29]. We note that the rapid oscillations,
neglected in lowest order, do have an averaged influence in the
higher-order contributions of Ĥeff which emerge from cross
terms, where the time-dependent phases cancel.

2. Linearization

Similarly to the parametric approximation in the deep
quantum regime, we linearize the equations of motion with
the Hamiltonian from Eqs. (16), (B16), and (B17), by setting
ϒ̂0,0

∼= N and by considering only contributions which are lin-
ear in âL

∼= δâL and in ϒ̂μ,ν
∼= δϒ̂μ,ν , except for μ = ν = 0.

This procedure, described in Appendix B, yields the linearized
set of equations

i
d

dτ

(
δŶ1,0

δâL

)
= M

(
δŶ1,0

δâL

)
,

with the matrix, Eq. (B21),

M ≡
⎛
⎝ 0 −αN

(
1 − α2

N
8

)
αN

(
1 − α2

N
8

)
−αN

(
κ + αN

2 − κα2
N

4

)
⎞
⎠

coupling the dynamics of δâL to the one of δŶ1,0 ≡
δϒ̂1,0/

√
N .

By assuming again a solution of the form ∼e−iλτ we
arrive at a quadratic equation for λ which is straightforwardly
solved. The positive imaginary part of this solution reads

Imλ+ ∼= αN

√
1 − κ

2

4

[
1 − κ/2

1 − κ
2

4

αN

4

− 5 − 3κ
2 + κ

4/2(
1 − κ

2

4

)2

α2
N

32

]
, (32)

where we have kept only terms up to third order in αN . We
note that going to second order of the expansion, Eq. (32),
would not be sufficient to observe corrections for the resonant
case κ = 0. The first nonzero term emerges in third order and
scales with 5α2

N/32 compared to first order.

3. Discussion of results

Indeed, we recover in Eq. (32) the result from the deep
quantum regime, Eq. (23), plus higher-order corrections
which scale with powers of the quantum parameter αN . Since
we require αN 	 1, we can neglect these higher-order cor-
rections in the deep quantum regime, which completes our
proof to justify the two-level approximation, at least in the
exponential-gain limit.

In addition, the expression in Eq. (32) enables us to com-
pare our result with existing FEL literature. In Ref. [6], for

053823-8



HIGH-GAIN QUANTUM FREE-ELECTRON LASER: … PHYSICAL REVIEW A 99, 053823 (2019)

example, the cubic equation

(λ2 − 1)(λ + 1 + καN ) − 2α2
N = 0, (33)

which is written in the scaling of the present paper, was
derived.

The approach in Ref. [6] leading to Eq. (33) was based
on the introduction of a collective bunching operator and a,
properly ordered, momentum bunching operator in analogy
to classical FEL theory [7]. The corresponding equations of
motion were first linearized and solved by the ansatz e−iλτ .
From Eq. (33) it was then possible to asymptotically find the
correct classical limit by setting αN � 1. The opposite case,
that is, αN 	 1, was then identified as the quantum regime.

We emphasize that our approach takes the opposite route:
We first searched for a quantum regime by identifying the two
important time scales directly in the Hamiltonian, Eq. (10),
and reduced it in lowest order of αN to the Dicke Hamil-
tonian. We then solved the simplified equations of motion
and obtained the analytic result, Eq. (23), for the growth
rate of the laser intensity, as well as the expression including
higher-order corrections, Eq. (32).

In Fig. 6 we have drawn the gain function of a Quantum
FEL, that is, Imλ+ depending on p, for αN = 0.1 (top) and
αN = 0.5 (bottom), respectively. Moreover, we compare our
results, that is, Eq. (23) from the two-level approximation, as
well as the third-order expression, Eq. (32), to the numerical
solution of the cubic equation, Eq. (33), from Ref. [6].

We make two important observations from Fig. 6.
(i) The maximum of the gain function for the deep quantum

regime always occurs at p = q/2. In contrast, the maximum
of the higher-order result is located slightly on the left of q/2.
This shift already indicates the transition from the quantum
resonance p = q/2 to the classical one p = 0 apparent in
Fig. 4. We note that an analogous effect occurs in the field
of atomic diffraction, where it is known as “light shift” [63].

(ii) In the deep quantum regime, exemplified by αN = 0.1,
we observe three very similar curves with an almost perfect
agreement between our third-order solution and the result
of Ref. [6]. Increasing the quantum parameter to αN = 0.5,
however, leads to a growing deviation of the latter two curves
to Eq. (23) describing the two-level approximation. This result
is not surprising since we are outside the deep quantum regime
and we do not expect that the two-level approximation gives
us here a perfectly correct description of the FEL dynamics.
The higher-order result as well as the solution [6] of the cubic
equation, however, still show a good agreement apart from a
small deviation. We interpret this small shift as an effect from
higher orders in αN than the third one.

We deduce from Fig. 6 that the two different approaches,
the method of averaging of the present paper and the pro-
cedure in Ref. [6], lead to equivalent results [64] in the
asymptotic limit αN 	 1.

IV. CONCLUSIONS

In this article we have used collective jump operators and
a rotating-wave-like approximation to establish the analogy
of a high-gain Quantum FEL to the Dicke model of standard
quantum optics. By performing a parametric approximation,
we have derived analytic expressions for the mean photon
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FIG. 6. Gain function of a high-gain Quantum FEL including
higher-order corrections: We have drawn the increment Imλ+ for the
growth of the mean photon number against the initial momentum
p of the electrons divided by the recoil q for two different values
of the quantum parameter, that is, αN = 0.1 (top) and αN = 0.5
(bottom). In both plots, we have compared the first-order solution
(black line), Eq. (23), corresponding to the two-level approximation
and the expression Eq. (32), in third order (red line) to the numerical
solution of the cubic equation (blue dashed line), Eq. (33), from
Ref. [6]. In the deep quantum regime, αN = 0.1, we observe that all
three curves approximately agree with a nearly perfect matching of
the third-order solution, Eq. (32), with the result of Ref. [6]. If we
increase the quantum parameter to αN = 0.5, the two-level approxi-
mation significantly differs from the other two curves. However, the
third-order solution and the result from Ref. [6] still agree very well
despite a small shift that originates from even higher orders of αN .
Moreover, while the two-level approximation leads to a maximized
gain at p = q/2, the maximum in third order has moved to the left
for increasing values of αN . This behavior is consistent with the
transition of the quantum resonance at p = q/2 to the classical one,
p = 0, in Fig. 4.

number, the gain length, the gain function, and the gain
bandwidth in this regime. Moreover, we have obtained a
super-Poissonian photon statistics of the emitted radiation.

With the help of the method of canonical averaging we
have proven the two-level behavior of the electron dynamics
in a rigorous manner. In this context, the quantum parameter
αN occurs as the expansion parameter of the corresponding
asymptotic series. We, moreover, have embedded our ap-
proach into a broader context by showing that our results are
consistent with existing literature [6] on the Quantum FEL. In
contrast to these earlier approaches, we identify the two-level
limit of the FEL dynamics directly in the Hamiltonian with
the benefit of simple analytic results.
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In an upcoming article we plan to extend the present theory
by leaving the exponential-gain regime and investigating the
long-time behavior of the dynamics. Moreover, we will dis-
cuss the experimental requirements for a high-gain Quantum
FEL based on the predictions of our intuitive approach and on
the detailed study in Ref. [26].

Although our elementary model explains the fundamental
effects of a Quantum FEL and provides us with important
scaling laws it is still not a complete theory of such a de-
vice. Therefore, one has to consider at least two additional
effects. To understand which parts of the electron beam really
communicate with each other through the laser field one has
to take the slippage of the radiation pulse over the electrons
[67] into account. In addition, decoherence effects like space
charge [43] or spontaneous emission into all modes [68] can
negatively affect the Quantum FEL dynamics [26].

Indeed, today’s technological possibilities prevent the op-
eration of a low-gain Quantum FEL oscillator and we have to
consider the high-gain regime for an experimental realization.
However, first concepts [69] have emerged to construct high-
quality mirrors in the x-ray regime and to operate x-ray FEL
oscillators. The resulting implications for a possible Quantum
FEL oscillator will be discussed elsewhere.

ACKNOWLEDGMENTS

We thank P. Anisimov, W. Becker, M. Bussmann, A. De-
bus, R. Endrich, A. Gover, Y. Pan, P. Preiss, K. Steiniger, and
S. Varró for many fruitful discussions. W.P.S. is grateful to
Texas A&M University for a Faculty Fellowship at the Hagler
Institute of Advanced Study at Texas A&M University, and
Texas A&M AgriLife Research for the support of his work.
Research at the Center for Integrated Quantum Science and
Technology, Universität Ulm is financially supported by the
Ministry of Science, Research and Arts Baden-Württemberg.

APPENDIX A: TRANSFORMATION OF THE
HAMILTONIAN IN TERMS OF JUMP OPERATORS

In this Appendix we derive the transformed Hamiltonian,
Eq. (10), which we employ for our analysis of the quan-
tum regime, from the original Hamiltonian, Eq. (1), in the
Heisenberg picture. Therefore, we first express the occurring
operators in terms of the collective jump operators ϒ̂μ,ν . In
the next step we perform the transition into a rotating frame
analogous to the interaction picture.

1. Expressing terms with jump operators

The Hamiltonian, Eq. (1), consists of sums of single-
electron operators Ô j which can be written as

N∑
j=1

Ô j =
N∑

j=1

∑
μ,ν

( j) 〈p − μq| Ô j |p − νq〉( j) σ̂
( j)
μ,ν,

where we have assumed that the infinite momentum ladder
for one electron constitutes a complete set of basis states and
have introduced the single-electron jump operators σ̂

( j)
μ,ν from

Eq. (6).
Because all electrons shall possess the same initial state,

that is, |p, p, . . . , p〉, and with the help of the definition,
Eq. (5), for the collective operators ϒ̂μ,ν we straightforwardly

derive the identities
N∑

j=1

p̂2
j =

∑
μ

(p − μq)2ϒ̂μ,μ,

N∑
j=1

ei2kẑ j =
∑

μ

ϒ̂μ,μ+1,

N∑
j=1

e−i2kẑ j =
∑

μ

ϒ̂μ+1,μ

for each term of the Hamiltonian, Eq. (1).
In terms of the jump operators the total Hamiltonian

Ĥ ≡ Ĥ0 + Ĥ1

is given by

Ĥ0 =
∑

μ

(
	 + 1

2
− μ

)2

ϒ̂μ,μ,

which denotes the free motion of the electrons, and by

Ĥ1 ≡ ε

(
âL

∑
μ

ϒ̂μ,μ+1 + â†
L

∑
μ

ϒ̂μ+1,μ

)
,

which describes the interaction of the electrons with the laser
field. Here we have introduced the dimensionless coupling
ε ≡ g/ωr with the recoil frequency ωr, Eq. (11), and the
relative deviation 	, Eq. (12), of the momentum p from
p = q/2.

The dynamics of an operator Ô in the Heisenberg picture
is dictated by the equation of motion

i
d

dτ
Ô(τ ) = [Ô(τ ), Ĥ0] + [Ô(τ ), Ĥ1], (A1)

where the time τ ≡ ωrt is written in a dimensionless form.

2. Transformation in the rotating frame

Similarly to the transformation to the interaction picture,
we move to a frame where the dynamics corresponding to the
free motion, that is, Ĥ0, is removed from the total Hamilto-
nian, but its effect is accounted for by time-dependent phases.
Moreover, we avoid the appearance of contributions including
the deviation 	 from q/2 in the phases of the Hamiltonian,
since they correspond to slowly varying dynamics, that is,
	 	 1.

Hence, we perform the transformations

Ô′(τ ) ≡ e−iτ (Ĥ0+	n̂)Ôeiτ (Ĥ0+	n̂),

Ĥ ′(τ ) ≡ e−iτ (Ĥ0+	n̂)Ĥ1eiτ (Ĥ0+	n̂), (A2)

|� ′(τ )〉 ≡ e−iτ (Ĥ0+	n̂) |�(τ )〉
from the Heisenberg picture to the rotating frame. This
procedure finally leads with the help of Eq. (A1) and the
commutation relation Eq. (7) to the transformed Hamiltonian

Ĥ ′(τ ) = ε

(
âL

∑
μ

ei2μτ ϒ̂μ,μ+1 + H.c.

)
− 	 n̂, (A3)

which, together with the equation of motion

i
d

dτ
Ô′(τ ) = [Ô′(τ ), Ĥ ′(τ )], (A4)
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forms the basis of our approach towards the high-gain
Quantum FEL.

We emphasize that this transformation is only useful if all
contributions of Ĥ ′ are of comparable order of magnitude, that
is, 	 ∼ ε and 〈n̂〉 initially is small. Hence, our discussion is
restricted to a seeded FEL with a small seeding or to the SASE
mode of operation.

APPENDIX B: CANONICAL AVERAGING

In this Appendix we present the asymptotic method of
canonical averaging [28,29] which we use to derive the lin-
earized equations of motions in the deep quantum regime as
well as for higher orders, that is, Eqs. (23) and (32), respec-
tively. For this purpose, we begin with a general description of
the method, before we apply it on the FEL and finally linearize
the resulting equations of motion.

1. Description of method

The method of averaging is based on the distinction be-
tween slowly and rapidly varying contributions of the dynam-
ics. Hence, we first perform a transformation which separates
these two parts and derive a formal expression for an effective
Hamiltonian corresponding to the slowly varying dynamics.
The explicit form of this Hamiltonian is then found by a
perturbative expansion with the constraint that the effective
Hamiltonian is in each order independent of time. By this
procedure we avoid secularly growing terms which would
occur in ordinary perturbation theory. We explicitly perform
this asymptotic expansion up to terms in third order.

a. Slowly and rapidly varying terms

We start by considering a Hamiltonian which can be writ-
ten as the Fourier series

Ĥ ′(τ ) = ε
∑

μ

Ĥμei2μτ (B1)

with ε 	 1. This Hamiltonian leads to rapid oscillations with
multiples of τ . However, due to the term with μ = 0 or
possible cross terms, where the time-dependent phases cancel,
also slowly varying contributions to the dynamics emerge.

Therefore, we assume that the time evolution of an operator

Ô′(τ ) ≡ e−F̂ (τ )χ̂ (τ ) eF̂ (τ )

can be separated into a slowly varying and a rapidly varying
part, χ̂ and F̂ , respectively. In Ref. [29] an analogous proce-
dure was carried out for the density operator ρ̂.

From the Heisenberg equation, Eq. (13), for Ô′ we derive
the transformed equation of motion

i
d

dτ
χ̂ (τ ) = [χ̂ (τ ), Ĥeff]

for the slowly varying part χ̂ with the effective Hamiltonian

Ĥeff = eF̂ (τ )Ĥ ′(τ ) e−F̂ (τ ) − i
d eF̂ (τ )

dτ
e−F̂ (τ ). (B2)

In the course of this derivation we have made use of the
relation

de−F̂ (τ )

dτ
= −e−F̂ (τ ) deF̂ (τ )

dτ
e−F̂ (τ ),

which straightforwardly follows from the derivative of an
inverse operator.

With the help of the Baker-Campbell-Hausdorff formula
[70] we write the first term in Eq. (B2) as

eF̂ (τ )Ĥ ′(τ ) e−F̂ (τ ) =
∞∑
j=0

1

j!
[F̂ (τ ), Ĥ ′(τ )] j, (B3)

where the nested commutators

[Â, B̂] j ≡ [Â, [Â, B̂] j−1]

for j �= 0 and

[Â, B̂]0 ≡ B̂

are defined in a recursive way.
According to Ref. [29] we cast the second term of Eq. (B2)

into the form

deF̂ (τ )

dτ
e−F̂ (τ ) =

∞∑
j=0

1

( j + 1)!

[
F̂ (τ ),

dF̂ (τ )

dτ

]
j

. (B4)

An elegant proof of this identity can be found in Ref. [71]. We
emphasize that we have not done any approximation up to this
point and the expressions in Eqs. (B2), (B3), and (B4) are still
exact.

b. Perturbative expansion and avoiding secular terms

When we assume that ε|Ĥμ| 	 1 [29] we are allowed to
perform perturbative expansions for the rapidly varying terms,
that is,

F̂ (τ ) = εF̂ (1)(τ ) + ε2F̂ (2)(τ ) + ε3F̂ (3)(τ ) + . . . , (B5)

and for the effective Hamiltonian, that is,

Ĥeff = εĤ (1)
eff + ε2Ĥ (2)

eff + ε3Ĥ (3)
eff + . . . , (B6)

both in powers of ε.
The main difference of the method of averaging to ordinary

perturbation theory is given by the constraint

Ĥ (k)
eff �= Ĥ (k)

eff (τ ), (B7)

which means that the effective Hamiltonian does not contain
any time-dependent term, but includes all time-independent
terms in each order of the expansion. In contrast, if F̂ had any
time-independent contribution, as is the case in ordinary per-
turbation theory, we would observe secularly growing terms
which are unphysical. Moreover, we note that the slowly vary-
ing dynamics, dictated by the effective Hamiltonian, has to be
solved in a nonperturbative way. Otherwise, we would have
gained nothing in comparison to standard perturbation theory.

c. First order

Inserting the expression, Eq. (B1), for the full Hamiltonian
into the relation, Eq. (B2) together with Eqs. (B3) and (B4),
for the effective one and keeping only first-order terms of the
expansions, Eqs. (B5) and (B6), yields the relation

Ĥ (1)
eff = Ĥ0 +

⎛
⎝∑

μ �=0

Ĥμei2μτ − i
dF̂ (1)(τ )

dτ

⎞
⎠

︸ ︷︷ ︸
=0

. (B8)
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In order to satisfy the constraint, Eq. (B7), we identify the first
term in Eq. (B8) as the lowest-order contribution

Ĥ (1)
eff = Ĥ0 (B9)

to the effective Hamiltonian, which is simply the time-
independent part of the full Hamiltonian, Eq. (B1).

Moreover, we require that the time-dependent terms in
parentheses vanish, which means that they have to be ab-
sorbed in F̂ (1). Hence, we obtain

F̂ (1)(τ ) = −
∑
μ �=0

ei2μτ

2μ
Ĥμ, (B10)

where we have integrated over time τ .

d. Second order

From Eqs. (B2), (B3), and (B4) as well as from the expan-
sions, Eqs. (B5) and (B6), we find the expression

Ĥ (2)
eff =

⎡
⎣F̂ (1)(τ ),

∑
μ=0

Ĥμei2μτ

⎤
⎦− i

dF̂ (2)(τ )

dτ

− 1

2

[
F̂ (1)(τ ), i

dF̂ (1)(τ )

dτ

]
, (B11)

where we have considered only terms which are quadratic
in ε.

By inserting F̂ (1) from Eq. (B10) into Eq. (B11) and
applying the prescription in Eq. (B7) we straightforwardly
derive the second-order contributions

Ĥ (2)
eff = −1

2

∑
ν �=0

1

2ν
[Ĥν, Ĥ−ν] (B12)

and

F̂ (2)(τ ) = 1

2

∑
μ, ρ �=0
μ �=ρ

ei2ρτ

4μρ
[Ĥμ, Ĥρ−μ]

+
∑
μ �=0

e2iμτ

4μ2
[Ĥμ, Ĥ0] (B13)

to the effective Hamiltonian and the rapidly varying dynamics,
respectively.

e. Third order

In third order of ε we obtain

Ĥ (3)
eff =

⎡
⎣F̂ (2)(τ ),

∑
μ=0

Ĥμe2iμτ

⎤
⎦+ 1

2

⎡
⎣F̂ (1)(τ ),

⎡
⎣F̂ (1)(τ ),

∑
μ=0

Ĥμei2μτ

⎤
⎦
⎤
⎦− i

dF̂ (3)(τ )

dτ
− 1

2

[
F̂ (1)(τ ), i

dF̂ (2)(τ )

dτ

]

− 1

2

[
F̂ (2)(τ ), i

dF̂ (1)(τ )

dτ

]
− 1

6

[
F̂ (1)(τ ),

[
F̂ (1)(τ ), i

dF̂ (1)(τ )

dτ

]]
,

which leads with the help of Eqs. (B10) and (B13) as well as with the condition Eq. (B7) to the expression

Ĥ (3)
eff = −1

3

∑
μ,ρ �=0
μ+ρ �=0

1

4μ(μ + ρ)
[Ĥ−(μ+ρ), [Ĥμ, Ĥρ]] − 1

2

∑
μ �=0

1

4μ2
[Ĥμ, [Ĥ−μ, Ĥ0]], (B14)

for the effective Hamiltonian.

2. Application to the Quantum FEL

We now apply the equations from the method of averaging, which we have derived in the previous section, to the FEL
Hamiltonian, Eq. (14). After that, we linearize the resulting equations of motion, which enables us to obtain higher-order
corrections to the gain of the deep quantum regime, Eq. (23).

a. Effective Hamiltonian

The Fourier components of the FEL Hamiltonian, Eq. (14), are given by Eq. (15):

Ĥ0 = âLϒ̂0,1 + â†
Lϒ̂1,0 − 	

ε
n̂,

Ĥμ = âLϒ̂μ,μ+1 + â†
Lϒ̂−μ+1,−μ

By inserting these components into Eqs. (B9) and (B12) and by employing the commutation relations for the jump operators,
Eq. (7), and for the laser-field operators we obtain

Ĥ (1)
eff = âLϒ̂0,1 + â†

Lϒ̂1,0 − 	

ε
n̂ (B15)

and

Ĥ (2)
eff = 1

2
(n̂ + 1)

∑
μ �=0

1

μ
(ϒ̂μ+1,μ+1 − ϒ̂μ,μ) −

∑
μ �=0

1

μ
ϒ̂μ+1,μϒ̂μ,μ+1 (B16)

for the effective Hamiltonian in first and second order of the method of averaging, respectively.
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An analogous procedure leads with the help of Eq. (B14) to the effective Hamiltonian

Ĥ (3)
eff = Ĥ (3)

lin + Ĥ (3)
cub + Ĥ (3)

	 (B17)

in third order, where

Ĥ (3)
lin = âL

4

⎡
⎢⎣∑

μ �=0
μ �=−1

ϒ̂2μ+2,2μ+1ϒ̂μ,μ+2

μ(μ + 1)(2μ + 1)
− 1

2

∑
μ �=0

1

μ2
(ϒ̂μ+1,μ+1 − ϒ̂μ,μ)ϒ̂0,1 + 3

2
(ϒ̂0,−1ϒ̂−1,1 − ϒ̂0,2ϒ̂2,1) + 1

2
ϒ̂0,1

⎤
⎥⎦+ H.c.

denotes the term linear in the field operators âL and â†
L, while

Ĥ (3)
cub = 1

4 â3
Lϒ̂−1,2 − 1

4

(
â†

Lâ2
L + â2

Lâ†
L

)
ϒ̂0,1 + H.c.

contains cubic combinations of the field operators and

Ĥ (3)
	 = 	

4ε

⎡
⎣(n̂ + 1)

∑
μ �=0

1

μ2
(ϒ̂μ+1,μ+1 − ϒ̂μ,μ) −

∑
μ �=0

1

μ2
ϒ̂μ+1,μϒ̂μ,μ+1

⎤
⎦

is the contribution arising from a nonzero deviation 	 from
resonance p = q/2.

b. Linearization procedure

In order to obtain the time evolution of an operator Ô′ ∼= χ̂

we have to solve the Heisenberg equation of motion

i
d

dτ
Ô′ ∼= ε

[
Ô′, Ĥ (1)

eff

]+ ε2
[
Ô′, Ĥ (2)

eff

]+ ε3
[
Ô′, Ĥ (3)

eff

]
(B18)

with the effective Hamiltonian given in Eqs. (B15), (B16),
and (B17). Unfortunately, Eq. (B18) corresponds to a set of
nonlinearly coupled differential equations for noncommuting
operators. To find an analytic solution we linearize Eq. (B18)
in analogy to the parametric approximation [53] for the Dicke
Hamiltonian.

In more detail, we assume that initially all electrons
populate the same level p ∼ q/2 and that for short times
only a few electrons jump to different levels. Hence, we
can replace the operator ϒ̂0,0 by its expectation value at
τ = 0, that is, ϒ̂0,0

∼= N � 1. In contrast, we treat âL
∼=

δâL and ϒ̂μ,ν
∼= δϒ̂μ,ν (except for ϒ̂0,0) as small quantities.

Thus, we only keep contributions linear in these operators,
while we discard quadratic or higher-order combinations of
them. We emphasize, however, that the validity of this pro-
cedure is restricted to comparatively short interaction times,
where we can treat ϒ̂0,0 as constant.

In first order of the method of averaging we derive the
linearized commutators[

ϒ̂1,0, Ĥ (1)
eff

] ∼= −NâL (B19)

and [
âL, Ĥ (1)

eff

] = ϒ̂1,0 − 	

ε
âL

for ϒ̂1,0 and âL, respectively, with Ĥ (1)
eff from Eq. (B15), where

we have employed the commutation relation, Eq. (7), for the
jump operators.

Analogous procedures yield the relations[
ϒ̂1,0, Ĥ (2)

eff

] ∼= − 1
2 ϒ̂1,0

and

[
âL, Ĥ (2)

eff

] ∼= − 1
2 NâL

for second order, as well as

[
ϒ̂1,0, Ĥ (3)

eff

] ∼= −N2

8
âL + 	

4ε
ϒ̂1,0

and

[
âL, Ĥ (3)

eff

] ∼= N

8
ϒ̂1,0 − 	

4ε
âL (B20)

for third order, where we have used Eqs. (B16) and (B17),
respectively.

After rescaling ϒ̂1,0 via the prescription

Ŷ1,0 = 1√
N

ϒ̂1,0

in analogy to Eq. (19) and inserting the relations Eqs. (B19)
and (B20) into Eq. (B18) we obtain the linearized set of
equations

i
d

dτ

(
δŶ1,0

δâL

)
= M

(
δŶ1,0

δâL

)
(B21)

for âL
∼= δâL and Ŷ1,0

∼= δŶ1,0, where the matrix

M ≡
(

0 −αN
(
1 − α2

N
8

)
αN
(
1 − α2

N
8

) −αN
(
κ + αN

2 − κα2
N

4

)
)

includes contributions up to third order in the quantum
parameter αN ≡ ε

√
N .
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