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Regimes of atomic diffraction: Raman versus Bragg diffraction in retroreflective geometries

Sabrina Hartmann,1,* Jens Jenewein ,1,† Enno Giese ,1 Sven Abend ,2 Albert Roura ,3

Ernst M. Rasel ,2 and Wolfgang P. Schleich 1,3,4

1Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST),
Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany

2Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
3Institute of Quantum Technologies, German Aerospace Center (DLR), Söflinger Straße 100, D-89077 Ulm, Germany

4Hagler Institute for Advanced Study and Department of Physics and Astronomy, Institute for Quantum Science and Engineering (IQSE),
Texas A&M AgriLife Research, Texas A&M University, College Station, Texas 77843-4242, USA

(Received 18 October 2019; revised manuscript received 10 March 2020; accepted 11 March 2020;
published 8 May 2020)

We provide a comprehensive study of atomic Raman and Bragg diffraction when coupling to a pair of
counterpropagating light gratings (double diffraction) or to a single one (single diffraction) and discuss the
transition from one case to the other in a retroreflective geometry as the Doppler detuning changes. In contrast
to single diffraction, double Raman loses its advantage of high diffraction efficiency for short pulses and has to
be performed in a Bragg-type regime. Moreover, the structure of double diffraction leads to further limitations
for broad momentum distributions on the efficiency of mirror pulses, making the use of (ultra)cold ensembles
essential for high diffraction efficiency.
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I. INTRODUCTION

Atoms diffracted by optical gratings in a retroreflective
setup display double diffraction in two directions if there is
no initial Doppler detuning [1–7]. Together with other large-
momentum transfer techniques [7–12], this process is not only
important for earth-bound light-pulse atom interferometers
[13–16] in the horizontal direction, as proposed for grav-
itational wave detectors with horizontal baselines [17–19],
but also for interferometers under microgravity conditions
[20–23]. Double-diffraction schemes can be implemented
with both Raman [1,13] and Bragg [3,24] processes that
require different components. The design of ambitious atom-
interferometric experiments, such as future space missions
[25–29], must therefore include specifications for the diffrac-
tion mechanism. We present in this article a detailed study
of Raman and Bragg diffraction with particular emphasis on
microgravity conditions or horizontal configurations based on
retroreflective setups.

In light-pulse atom interferometry beam splitters and mir-
rors are realized by the diffraction of (ultra)cold atoms from
light waves. Such interferometers constitute precise inertial
sensors that measure the atomic motion with respect to a
reference. In many setups the light wave is retroreflected
[30] by a mirror that constitutes such a reference. However,
because a pair of different frequencies is necessary in general
to diffract atoms of arbitrary velocities, such a geometry
naturally leads to two counterpropagating diffraction gratings.
Accelerations prior to the light-pulse, such as those due to
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gravity, cause a Doppler detuning with respect to one of the
gratings, and result in effectively single diffraction. How-
ever, in a horizontally aligned setup or under microgravity
conditions the result of such a smaller initial acceleration is
often more complex. For an insufficient Doppler detuning the
diffraction process changes drastically so that both gratings
are relevant and diffract in opposite directions. In this article
we therefore study the difference between Raman and Bragg
as well as their behavior in single and double diffraction [1–7].

To compare the different diffraction techniques we focus
on the efficiency, which is determined by the duration of the
pulse and the width of the atomic momentum distribution. The
pulse duration determines the regime of diffraction, which
is in turn connected to a particular velocity selectivity. In
principle Raman and Bragg diffraction can be operated in
different regimes, so that even thermal atoms [31,32] can be
diffracted by Raman, whereas sub-recoil-cooled atoms are
essential for Bragg. We compare the regimes of Raman and
Bragg as well as single and double diffraction, study the
resulting resonance width, and show which Doppler detunings
are necessary for single diffraction. We find that the border
between Raman and Bragg blurs depending on the parameter
regime.

We compare and contrast Raman and Bragg diffraction in
Sec. II and explain in Sec. III how to numerically solve the
corresponding differential equations. In Sec. IV, we discuss
the width of the resonance in momentum space. Further-
more, we calculate respectively the diffraction efficiency and
losses in Secs. V and VI. These losses can be substantially
high unless sufficiently narrow momentum distributions are
employed. In Sec. VII we show the effect of losses on the
amplitude of a Mach-Zehnder interferometer signal and its
contrast. Finally, in Sec. VIII we discuss the role of the
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FIG. 1. Schematic setup of single diffraction in a retroreflective
geometry, realized by a mirror and a λ/4 wave plate. The atom with
initial momentum p0 interacts with only one of the two counterprop-
agating optical gratings since the other one is Doppler detuned. Each
grating consists of two light fields with frequencies ωb and ωr , whose
corresponding wave numbers are kb and kr , respectively.

Doppler detuning in the transition from double to single
diffraction in a retroreflective setup. We conclude in Sec. IX
by briefly summarizing our results and providing an outlook.
Additionally, we provide in Appendix A the general differen-
tial equations which allow to describe a multitude of diffrac-
tion processes for arbitrary resonance conditions. Appendix B
gives the explicit expressions to calculate the main path of a
wave packet through a Mach-Zehnder interferometer.

II. RAMAN VERSUS BRAGG DIFFRACTION

An atom interacting with periodic light structures far de-
tuned from the atomic resonance is diffracted by photon
absorption and subsequent stimulated emission. In the fol-
lowing, we discuss two diffraction mechanisms: Raman and
Bragg. Their main difference is that in Raman diffraction the
internal state is changed during the two-photon process, while
in Bragg diffraction it remains unaffected. Consequently, the
two frequencies ωb and ωr that generate the diffraction grat-
ings have to be adjusted to drive the process and thus, their
difference �ω = ωb − ωr is mechanism dependent.

Conventionally, these two different counterpropagating
light fields with detuned frequencies are generated using a
retroreflective setup; see Fig. 1. They are usually derived from
the same source, guided through common optics to the setup
and retroreflected at the other side of the atomic sample. This
way, two optical lattices are formed that propagate in opposite
directions. To avoid spurious standing waves, orthogonal po-
larizations are chosen and turned upon retroreflection through
a λ/4 plate [1,3]. In general, one can distinguish between two
different diffraction geometries: (i) Single diffraction, where
only one of the two gratings dominates the dynamics, and
(ii) double diffraction, where both gratings are relevant for the
diffraction process. In the following, we discuss the difference
between both cases.

A. Single-diffraction geometry

For single diffraction in a retroreflective setup, the atom
has an initial momentum that is larger or in the order of
the recoil experienced during the diffraction process. In this
case, only one of the two counterpropagating gratings is
resonant, whereas the other one is strongly Doppler-detuned
and becomes irrelevant for the diffraction process. For an atom

FIG. 2. Single Raman versus single Bragg diffraction. The
schematic setup (a) shows an atom interacting with two counterprop-
agating light fields of frequencies ωb and ωr . A photon from a plane
wave with frequency ωb is absorbed, while a subsequent photon
with frequency ωr is emitted in the opposite direction causing a total
recoil of h̄K ≡ h̄(kb + kr ). During the process, the atom gains kinetic
energy h̄ωK , the recoil energy. The energy-momentum diagram for
single Raman diffraction (b) shows that this process is resonant if
the energy difference h̄(ωb − ωr ) between the light fields is equal to
the recoil energy in addition to the energy difference h̄ωeg between
the internal ground state |g〉 and excited state |e〉. For single Bragg
diffraction (c), the process is resonant if h̄(ωb − ωr ) is equal to
the recoil energy. The dashed lines denote off-resonant higher-order
transitions.

initially at rest, no Doppler detuning arises and double diffrac-
tion occurs. We show numerically in Sec. VIII the transition
from double to single diffraction by increasing the initial
momentum and by that the Doppler detuning of one grating,
while keeping the other resonant. If the setup is vertical and
therefore parallel to gravity in earth-based experiments, then
the atoms are naturally accelerated after the release from a trap
or launched upwards, e.g., in an atomic fountain, so that such
a situation conventionally leads to a Doppler-detuned grating.

Since in single diffraction only one of the gratings domi-
nates the process, a simplified model that highlights the rele-
vant physical principles is conventionally used to describe the
dynamics [33,34]. It consists only of one single optical grat-
ing, i.e., two counterpropagating laser beams; see Fig. 2(a).
If this corresponds to the experimental situation, then single
diffraction can be also performed for an atom initially at
rest with an initial momentum of p0 = 0. In the following,
we focus on this case, but we emphasize that a retroreflec-
tive setup with strong Doppler detuning leads to the same
results.

The two counterpropagating beams that form the relevant
diffraction grating have frequencies ωb and ωr; see Fig. 2(a).
The atom absorbs a photon with momentum h̄kb and emits a
photon with momentum −h̄kr in the opposite direction. Here,
kb and kr are the wave numbers of the corresponding light
fields. This two-photon process leads to a total momentum
transfer of h̄K ≡ h̄kb + h̄kr as a consequence of momentum
conservation. At the same time, the energy h̄�ω is absorbed.
Energy conservation gives rise to different resonance condi-
tions, depending on the diffraction mechanism. In the fol-
lowing, we discuss the two mechanisms and their respective
resonance conditions.
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1. Single Raman diffraction

In single Raman diffraction the internal state changes
during the two-photon process from the ground state |g〉 to the
excited state |e〉 or vice versa, see Fig. 2(b). Thus, the energy
difference h̄ωeg between these states influences the resonance
condition. A transition is resonant if it begins and ends on
one of the parabolae representing the kinetic energy of each
internal state. For a resonant process, energy and momentum
have to be conserved, which requires the energy difference
h̄�ω to be equal to the kinetic energy h̄ωK gained through the
momentum transfer plus the energy difference of the internal
states h̄ωeg. Hence, the resonance condition can be written as

�ω = ωK + ωeg + ωAC, (1)

with the AC Stark shift ωAC and the recoil frequency

ωK ≡ h̄K2

2M
, (2)

where M is the mass of the atom.
Since the AC Stark shift can be compensated, we choose

in the following ωAC = 0. In principle, the mean initial mo-
mentum of the atom enters the resonance condition as well
but we have chosen the initial momentum p0 = 0 for an atom
initially at rest. The choice of �ω compatible with p0 �= 0 will
be discussed in Sec. VIII.

Within the rotating wave approximation, only terms that
oscillate with a frequency significantly lower than the in-
volved optical frequencies have to be taken into account. By
appropriately choosing the laser frequencies, the large internal
frequency difference ωeg between the two states is canceled
following the resonance condition from Eq. (1). In addition,
higher-order transitions are strongly suppressed since they are
detuned by h̄ωeg and can be adiabatically eliminated [35–37]
as further discussed in Appendix A. Consequently, |g〉 and |e〉
couple like an effective two-level system which, according to
Ref. [38], is given by(

ġn

ėn+1

)
= i�(t )

(
0 e−i(ωD+2nωK )t

ei(ωD+2nωK )t 0

)(
gn

en+1

)
, (3)

where we already have used the resonance condition from
Eq. (1) and consider vanishing laser phases. A more general
form for all geometries and mechanisms can be found in
Appendix A. The differential equations are formulated in an
interaction picture with respect to the free evolution.

Equation (3) describes Rabi oscillations [35] between
the probability amplitudes gn ≡ g(p + nh̄K ) and en ≡ e(p +
nh̄K ) of the ground and excited state in momentum repre-
sentation. The coupling strength � = �(t ) depends on the
intensity and the pulse shape of the grating. The considered
momentum state is denoted by the index n. The process shown
in Fig. 2 is resonant for n = 0 so that the exponent nωK

vanishes. The Doppler frequency

ωD(p) = pK

M
(4)

acts as a detuning for a momentum distribution around a reso-
nant momentum p0 = 0. The distribution is diffracted more
efficiently the smaller ωD is, leading to velocity selectivity
[39–41]. The system of differential equations in Eq. (3) is
closed and can be solved analytically for box-shaped pulses.

2. Single Bragg diffraction

In single Bragg diffraction the internal state is not changed
during the process as depicted in Fig. 2(c), which requires the
modification of the resonance condition to

�ω = ωK , (5)

so that the transferred energy solely corresponds to the gained
kinetic energy.

The system of differential equations according to Ref. [5]
takes the form

iġn = −�(t ) e−iωDt gn+1 e−2inωK t

− �(t ) eiωDt gn−1 e2i(n−1)ωK t . (6)

In contrast to single Raman, higher-order diffraction is pos-
sible since these off-resonant transitions are detuned in the
order of ωK , and not by ωeg, which is more than five orders of
magnitude larger. Such transitions are denoted by dashed lines
in Fig. 2(c). These off-resonant higher orders are described
in Eq. (6) by terms which oscillate with nωK and disturb the
diffraction processes. They are prominent in the Raman-Nath
(Kapitza-Dirac) regime [33,42] where the pulse durations are
short and intensities are high, so that ε ≡ �/ωK � 1. These
effects can be understood as a manifestation of energy-time
uncertainty. For ε � 1 their effect decreases and they are
suppressed in the Bragg regime, where ε � 1. Within this
regime, the diffraction process can be treated as an effective
two-level system, that undergoes Rabi oscillations. However,
for other regimes off-resonant transitions are possible. Equa-
tion (6) is not closed anymore and analytical solutions cannot
be obtained, so we have to treat it numerically even for
box-shaped pulses. The Doppler frequency ωD leads again to
velocity selectivity [34].

B. Double-diffraction geometry

In a retroreflective setup and for an atom initially at rest
with initial momentum p0 = 0, both counterpropagating opti-
cal gratings are equally relevant for the diffraction process,
leading to double diffraction. This process is therefore of
particular relevance for space missions where the atoms can
be naturally released without an initial velocity. But also for
earth-based inertial sensing in horizontal direction orthogonal
to gravity, the atoms might have no initial momentum and ex-
hibit double diffraction [3,4]. As already mentioned, different
polarizations are used and rotated upon retroreflection by a
λ/4 plate [1,3,4] to distinguish the two gratings. The follow-
ing discussion focuses on perfectly orthogonal polarizations
and distinguishable gratings. Polarization imperfections lead
to additional couplings not discussed in this article.

1. Double Raman diffraction

The atom interacts with two laser pairs and consequently
diffraction in both directions is possible as depicted in
Fig. 3(a). Compared to single diffraction, the resonance con-
dition does not change. The additional laser pair drives not
only a process in the opposite direction, but also off-resonant
transitions, which are denoted by the dashed lines in Fig. 3(a).
Similar to single Bragg diffraction, their detuning is in the
order of ωK and working in an appropriate regime is required
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FIG. 3. Energy-momentum diagrams for double Raman (a) and
double Bragg diffraction (b). The atom interacts with two pairs of
counterpropagating light fields and gains during this process the
momentum h̄K which can be associated with the recoil frequency
ωK . The two optical gratings allow transitions in opposite directions.
Higher-order diffraction is possible for both mechanisms, as shown
by dashed lines. They are off-resonant by integer multiples of the
recoil energy h̄ωK . Here, some of the transitions in Raman diffraction
have been omitted, as they are off-resonant by the energy difference
h̄ωeg between ground state |g〉 and excited state |e〉.

to suppress these transitions. The system of coupled equations
is given by

iġn = −�(t ) e−iωDt e−i2nωK t en+1

−�(t ) eiωDt ei2nωK t en−1, (7a)

iėn+1 = −�(t ) e−iωDt e−i(4+2n)ωK t gn+2

−�(t ) eiωDt ei2nωK t gn, (7b)

which is a generalized version of the truncated equations in
Ref. [43]. In contrast to single Raman, the system is not
closed and the equations show that it is possible to diffract
into both directions simultaneously. Like in single Bragg
diffraction, oscillatory factors in Eq. (7) can be identified
by their oscillation with frequency nωK . In the appropriate
regime, they are suppressed and Rabi oscillations with an
effective Rabi frequency of

√
2� are possible.

2. Double Bragg diffraction

Like in double Raman diffraction, a second laser pair in
Bragg also causes transitions in both directions. Since higher
orders are not suppressed by a hyperfine splitting, momenta
couple resonantly as well as off-resonantly, as shown in
Fig. 3(b). Additionally, higher-order processes of single Bragg
diffraction appear. Therefore, double Bragg diffraction shows
the highest complexity with respect to possible transitions.

Nevertheless, the off-resonant processes can be suppressed
when working in the Bragg regime. The system of differential
equations [5]

iġn = −�(t ) e−iωDt gn+1 [e−2i(n+1)ωK t + e−2inωK t ]

−�(t ) eiωDt gn−1 [e2inωK t + e2i(n−1)ωK t ] (8)

shows that each momentum state is coupled by two transitions
that oscillate at different multiples of ωK . For n = 0 and
ωD = 0, we see a simultaneous resonant (time-independent)
and off-resonant (oscillating) coupling. Like in double Raman
diffraction, Rabi oscillations with an effective Rabi frequency
of

√
2� are possible.

III. NUMERICAL TREATMENT

The systems of differential equations for Bragg and Ra-
man diffraction corresponding to Eqs. (6) and (3) as well
as Eqs. (7) and (8), are solved numerically with the help of
MATLAB’s ODE45 algorithm. The method is a Runge-Kutta-
type algorithm [44] and we use a relative accuracy of 10−3

as well as an absolute accuracy of 10−6. Since the systems
of differential equation are, with the exception of single
Raman, not closed, we have to truncate the range of momenta
[−(nmax + 1/2)h̄K, (nmax + 1/2)h̄K] for the numerical calcu-
lation to a finite value of the largest considered diffraction
order nmax. If for the computationally most challenging case
(i.e., smallest time, greatest detuning, or broadest momentum
width) the difference between the solution obtained with nmax

and with nmax + 1 is at least the same magnitude as the
accuracy of our solver algorithm, then we assume the effect
of the truncation to be negligible. Of course, pulse duration,
diffraction mechanism, detuning, and considered momentum
width influence the truncation.

Throughout the paper, with only one exception [the mo-
mentum eigenstates in Fig. 14(b)], we consider as initial state
a Gaussian wave packet ψi(pi ) ∝ exp [−(pi − p0)2/(4�℘2)]
with momentum width �℘ and mean momentum p0. In this
way, we calculate the transition function G(BS/M)

�τ (p f , pi ) con-
necting the initial wave function ψi(pi ) and the final wave
function ψf (p f ) as given in momentum representation by the
relation

ψf (p f ) =
∫

d pi G(BS/M)
�τ (p f , pi ) ψi(pi ). (9)

Here we have introduced the superscript BS for a beam splitter
and M for a mirror pulse, which in turn depend on the pulse
area,

A ≡
∫

dt �R(t ), (10)

where we have introduced the effective Rabi frequency,

�R(t ) ≡
{

2�(t ) for single diffraction,√
2�(t ) for double diffraction,

(11)

to take the different geometries into account [45]. The value
A = π/2 corresponds to a beam splitter and A = π to a mir-
ror. We chose the time-dependent coupling strength �(t ) ∝
exp [−t2/(2�τ 2)] to be a Gaussian function of width �τ .

In Fig. 4 we show the relevant part of the transition
function for a mirror pulse in single Bragg diffraction with
pulse duration �τ = 12.5μs, and connecting resonantly the
momentum states |0〉 and |h̄K〉. Indeed, for a momentum
distribution around pi = 0, there exists a high probability to
be diffracted to p f = h̄K as indicated by the green boxes.
The transition function also shows so-called quasiresonances
[5], i.e., second-order resonant processes between, e.g., pi =
−0.5h̄K and p f = 1.5h̄K displayed by the blue circles.

For short pulse durations such as �τ = 12.5μs,
off-resonant higher orders are also populated. We calculate
a diffracted momentum distribution with the help of G(M)

�τ

displayed in Fig. 4 and show in Fig. 5 how an initial Gaussian
momentum distribution of width �℘= 0.05h̄K around p = 0
(dashed) is diffracted. Most of the diffracted population
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FIG. 4. Transition function
∣∣G(M)

�τ (pf , pi )
∣∣2

for a single-Bragg
mirror pulse of a Gaussian width �τ = 12.5μs. The diagonals
denote the momentum transfer between pi and pf which is always an
integer multiple of h̄K . The process |0〉 → |h̄K〉 (green rectangles)
is resonant. The parameter regime is such that also second-order
processes |−0.5h̄K〉 → |1.5h̄K〉 (blue circles) have a nonvanishing
probability. The resonance width WS is defined through the FWHM
in Eq. (12a).

is centered around p = h̄K , but smaller contributions also
appear at other orders, and the initial state is not completely
depopulated.

IV. WIDTH OF RESONANCE

The transition function completely determines the diffrac-
tion process and contains the resonances, whose width is
caused by velocity selectivity. It depends on the parameter

FIG. 5. Momentum distribution after a single Bragg diffraction
mirror pulse of duration �τ = 12.5μs. The initial distribution |ψi|2
of width �℘= 0.05h̄K is diffracted to the final distribution |ψf |2.
In this process not only the resonant momentum state |h̄K〉 but
also spurious (i.e., nonresonant) momentum states such as |−h̄K〉
and |2h̄K〉 are populated. Moreover, some population remains in the
initial momentum state |0〉.

FIG. 6. Resonance width W , defined by Eq. (12), of single Ra-
man (SRD), double Raman (DRD), single Bragg (SBD) and double
Bragg (DBD) diffraction for Gaussian mirror pulses with a varying
pulse duration �τ . In general, single diffraction shows always a
larger width than double diffraction. For short times, Raman and
Bragg differ: Bragg diffraction has a richer structure in this regime,
especially double Bragg diffraction. For short pulse durations the
initially distinct peaks of the quasiresonances present in double
Bragg start to merge with the central peak causing a large variation
of W . For W/(h̄K ) larger than unity, the width of the resonance
exceeds the separation of the resonant momentum states.

regime, i.e., the pulse duration �τ and the pulse area A. To
characterize these resonances, we calculate the full width at
half maximum (FWHM) of the transition function around the
resonant momenta marked in Fig. 4 by the green brace. The
efficiency of the diffraction process is partially determined by
the width.

To study the influence of the duration �τ , we calculate the
resonance width

WS ≡ FWHMp
[∣∣G(M)

�τ (p + h̄K, p)
∣∣2]

(12a)

for single and

WD ≡ FWHMp
[∣∣G(M)

�τ (p + h̄K, p − h̄K )
∣∣2]

(12b)

for double diffraction through the FWHM in p around the
maximum at p ≈ 0.

The results for all mechanisms, that is Raman and Bragg,
and geometries, that is single and double diffraction, are
shown in Fig. 6 for mirror pulses with varying �τ . We note
that the resonance for double diffraction is narrower than
that for single diffraction. This is a feature of the generalized
Rabi oscillations for a three-state system simultaneously
driven by the two pairs of counterpropagating laser beams in
a double-diffraction setup. As one considers initial momenta
slightly away from resonance, the amplitude of the target state
for a mirror pulse starts to decrease and this happens faster
as a function of the detuning than in single diffraction. This
fact is mainly due to an increasing amplitude of diffraction
to the intermediate state |p + 0 h̄K〉 rather than an increasing
amplitude of undiffracted atoms in the initial state, as it
would be the case for single diffraction. These losses to the
intermediate state will be discussed in detail in Sec. VI.

In general, both mechanisms (Raman and Bragg) behave
the same, but W depends on the geometry even though all
cases display the same scaling. However, for short durations
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FIG. 7. Diffraction efficiency E defined by Eq. (13) for single (top) and double (bottom) Raman (left) and Bragg (right) mirror pulses.
In all four figures we vary the pulse duration �τ and the momentum width �℘ of the initial state. The efficiency decreases with increasing
width and increasing pulse duration. One can see that single Raman diffraction (a) exhibits a high efficiency for the widest parameter range.
For single Bragg (b) and double Raman (c) off-resonant higher orders lead to a decrease of efficiency for small �τ . Additional off-resonant
couplings lead to a further decrease for double Bragg diffraction (d), while quasiresonances improve the efficiency for particular durations.
The vertical and horizontal dotted lines denote cuts through the three-dimensional distributions and the corresponding curves are presented in
Fig. 8.

there are differences between the two diffraction mechanisms:
especially for Bragg diffraction, off-resonant higher orders
and quasiresonances are far more pronounced in this regime
leading to a richer structure. The initially distinct peaks of
the quasiresonances begin to merge with the central peak
for decreasing pulse durations and therefore influence the
FWHM, so that jumps of W appear. In this case W is cal-
culated over all peaks. For small �τ , off-resonant transitions
cannot be neglected and couple additionally to the resonant
states. Double-Bragg beam-splitter pulses exhibit the same
qualitative (but not quantitative) behavior as mirror pulses.

V. DIFFRACTION EFFICIENCY

Next, we analyze the efficiency of the diffraction process
defined as

E ≡
∫ 3h̄K/2

h̄K/2
d p f |ψf (p f )|2, (13)

by integrating over the diffracted momentum distribution [46]
around the target momentum h̄K . In contrast to Ref. [34],
which focused on Bragg diffraction, we do not compute the

fidelity and thus neglect phases. We perform the simulation
for different widths �℘ of the initial Gaussian momentum
distribution as well as different pulse durations �τ . Although
we present here only the results for mirror pulses, we have
found that beam-splitter pulses behave similarly.

Figure 7 shows the efficiency E as a function of �℘ and �τ

for both diffraction mechanisms and geometries. For all cases,
an increase of the pulse duration �τ leads to a decrease of W ,
and thus to a decrease of the efficiency. Moreover, increasing
the width of the initial state �℘ also leads to a decrease of the
efficiency since the width of the distribution becomes larger
than the width of the resonance.

Figure 7 compares the efficiency E of Raman (left) to
Bragg (right) and single (top) to double diffraction (bottom).
Single Raman in Fig. 7(a) allows the most efficient diffraction
for the broadest parameter range. In particular, no efficiency
is lost for short pulse durations and Raman diffraction can be
performed efficiently in all regimes, even beyond the Bragg-
type regime. By comparing the single geometries in Figs. 7(a)
and 7(b), we observe for small �τ a substantial decrease
of efficiency in Bragg diffraction. This effect is caused by
higher-order diffraction, already discussed in Sec. II A 2 and
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FIG. 8. Diffraction efficiency E defined by Eq. (13) for single and double Raman (SRD and DRD) as well as single and double Bragg
(SBD and DBD) mirror pulses. In panel (a) we use the pulse duration �τ = 37.5μs, vary the momentum width �℘ and note that the
diffraction geometry governs the behavior. In panel (b) we chose �τ = 25μs, where the efficiency of double Bragg spikes, see Fig. 7(d),
due to quasiresonances. Thus, its efficiency approaches the single-diffraction efficiency for broad distributions. In panel (c) the pulse duration
�τ is varied, while the momentum width of the initial state is kept at �℘= 0.1h̄K . Except for single Raman, off-resonant higher orders
decrease the efficiency for small �τ .

presented schematically in Fig. 2(c). Since off-resonant higher
orders appear in double Raman diffraction as well, it is not
surprising that we find a similar behavior in Fig. 7(c). In
contrast, additionally to higher-order processes, off-resonant
couplings are possible in double Bragg diffraction. Figure 7(d)
confirms this effect since the efficiency decreases faster. How-
ever, for small �τ in double Bragg diffraction we find regions
where the efficiency increases due to quasiresonances.

In this analysis we have defined the pulse area directly in
terms of the coupling strength �. However, whenever spurious
diffraction orders become relevant, i.e., for parameters beyond
the Bragg regime and especially for double Bragg diffraction,
the effective Rabi frequency changes [5]. Hence, our choice
of pulse area might not necessarily lead to the most efficient
diffraction. In fact, optimizing the pulse area for each duration
and momentum width will increase the efficiency.

For a closer inspection we show in Fig. 8 three different
cuts through the density plot, denoted by the dotted red
horizontal and vertical lines in Fig. 7. In Fig. 8(a) we fix
the pulse duration to �τ = 37.5μs, where the efficiency for
double Bragg does not display a rich structure, and vary the
width of the initial state. Raman and Bragg behave similarly
and the geometry governs the behavior.

In Fig. 8(b) we choose the pulse duration �τ = 25μs.
For this duration the efficiency for double Bragg diffraction
assumes a maximum as shown in Fig. 7(d). We observe that
the diffraction efficiency for double Bragg is larger than for
double Raman diffraction if we consider medium and large
�℘. This spike is caused by the quasiresonances discussed
previously. They generate side-maxima around the main peak
of the transition function and become important for decreasing
pulse duration until they merge with the main peak. If the side
maxima are large enough, then they lead to an increase of W ,
which can also be seen in Fig. 6. Consequently, broad momen-
tum distributions are diffracted more efficiently, making dou-
ble Bragg diffraction a possible alternative for thermal atoms.

Finally, in Fig. 8(c) we consider the initial momentum
width �℘= 0.1h̄K and vary the pulse duration. Raman and
Bragg behave again similarly, but for small �τ off-resonant

higher orders start to play a role for double diffraction and
change the behavior.

VI. DIFFRACTION LOSSES

In this section, we investigate why mirrors in double
diffraction have a lower efficiency than in single diffraction.
We consider as the initial state a Gaussian momentum dis-
tribution with a width �℘= 0.1h̄K and calculate the final
population which is neither in the initial nor in the target state.
In the following, we refer to this quantity as “losses” L and
define it as

L ≡ 1 −
∫
I

d p f |ψf (p f )|2, (14)

where the choice of the integration interval I depends on the
process under consideration.

We define a beam splitter as a pulse that creates an
equal superposition of two momentum states. More specif-
ically, a single-diffraction beam splitter is given by |0〉 →
(|0〉 + |h̄K〉)/

√
2 and we choose the integration interval I =

[−h̄K/2, 3h̄K/2]. However, a double-diffraction beam splitter
is given by |0〉 → (|−h̄K〉 + |h̄K〉)/

√
2 with an integration

interval I = [−3h̄K/2, 3h̄K/2]. Hence, L describes losses to
off-resonant higher orders and not losses that arise from a
small resonance width and velocity selectivity.

Losses for beam-splitter processes are shown in Fig. 9(a).
As expected, in single Raman diffraction they are negligible.
We find for single Bragg as well as double Raman again
higher-order losses for small pulse durations �τ and in double
Bragg diffraction additionally off-resonant couplings. This
behavior changes drastically when we consider mirror pulses
in the following.

We recall that a single-diffraction mirror pulse is given
by the resonant transition |0〉 → |h̄K〉 with the integration
interval I = [−h̄K/2, 3h̄K/2] and a double mirror by the
transition |−h̄K〉 → |h̄K〉 with the integration interval I =
[−3h̄K/2,−h̄K/2] ∪ [h̄K/2, 3h̄K/2], i.e., around the initial
and final state. Figure 9(b) shows the losses for mirror pulses.
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FIG. 9. Diffraction losses L defined by Eq. (14) as a function of
the pulse duration �τ displayed for fixed momentum width �℘=
0.1h̄K and for the four diffraction processes [single Raman: SRD
(light orange dashed), single Bragg: SBD (light green solid), double
Raman: DRD (dark red dashed), and double Bragg: DBD (dark blue
solid)] discussed in this article. For beam splitters (a), losses are only
relevant for �τ < 20μs except for single Raman, which experiences
no losses at all. For mirror pulses (b), diffraction losses appear in the
case of single Bragg diffraction for small �τ . However, in double
diffraction we find additional losses for �τ > 20μs.

Off-resonant higher-order losses appear again for small �τ

except for single Raman. For larger �τ , the losses decrease
for single Bragg, but this is no longer the case for double
diffraction. These additional losses substantially reduce the
efficiency of double-diffraction mirrors for broad momentum
distributions. Off-resonant higher orders can only be popu-
lated for small �τ and thus, they have to be caused by another
effect, which we discuss next.

A double-diffraction mirror can be regarded as a sequence
of two resonant processes |−h̄K〉 → |0〉 → |h̄K〉. However,
as one considers initial momenta slightly away from reso-
nance, the amplitude of the target state for a mirror pulse starts
to decrease. This fact is mainly due to an increasing amplitude
of diffraction to the intermediate state close to |0〉 rather than
an increasing amplitude of undiffracted atoms in the initial
state, as it would be the case for single diffraction. This is a
feature, in presence of a small detuning, of the generalized
Rabi oscillations for a three-state system that arise in double
diffraction.

In Fig. 10 we compare the population of the states |−h̄K〉,
|0〉, |h̄K〉 and off-resonant higher orders for different widths
of the input state. Raman is presented at the top, Bragg at
the bottom. For a width �℘= 0.1h̄K shown in Figs. 10(a)
and 10(c) we observe that only for short pulse durations

higher-order momentum states are populated. For longer pulse
durations the decrease of efficiency is mainly caused by losses
to the intermediate state |0〉.

For sufficiently narrow momentum distributions such as
�℘= 0.01h̄K illustrated in Figs. 10(b) and 10(d) these losses
to the intermediate state can be significantly suppressed be-
cause the dynamics reduces to a resonant three-level system.
For momentum eigenstates it was already shown that the pop-
ulation of the intermediate state can be avoided [5]. Whereas
narrow distributions such as Bose-Einstein condensates can
be diffracted with a high efficiency, broader distributions like
thermal atoms suffer from significant losses.

Large-momentum transfer techniques of sequential pulses
can be conveniently combined with double diffraction, where
after an initial beam-splitter pulse, sequential π pulses are
used to increase the momentum splitting even further [31]. For
such sequential π pulses, losses are less important because
they act like single diffraction, see Fig. 9(b), on each arm
separately due to a Doppler detuning. However, the efficiency
of the corresponding composite mirror pulse is still lim-
ited by the central double-diffraction mirror, highlighting the
need for alternative diffraction schemes for broad momentum
distributions.

VII. INTERFEROMETRIC CONTRAST

Since the effect of losses and an imperfect efficiency
potentiate for a sequence of pulses, an interferometer is even
more affected by the processes described above. Additionally,
imperfect beam splitters and mirrors lead to more than two
paths. Some of the spurious paths might end up in the detected
exit port, leading to a loss of contrast through a beating
of multiple interference signals or a background signal. In
our discussion, we focus on a Mach-Zehnder interferometer
consisting of a sequence of beam-splitter, mirror, and beam-
splitter pulses separated by a time T as shown for both single
and double diffraction in Figs. 11(a) and 11(b).

Whereas in a realistic interferometer additional spurious
paths (dashed) might end in the considered exit port, we focus
in our discussion only on the two main paths (solid) and
disregard the spurious ones (indicated by blocked paths in the
figures). Hence, the signal will not be affected by the beating
of multiple interference signals or a background signal, even
though such effects can in principle be obtained from our
results as well. Instead, here we only investigate the effect of
the loss of efficiency.

In double Raman diffraction some of the spurious paths can
be removed by means of suitable blow-away pulses [30], but
in general spurious paths can play a relevant role in certain
regimes of Bragg and Raman diffraction. In fact, building up
on methods introduced in Ref. [47], it is possible to develop a
code that fully takes into account the contributions of spurious
paths and can be applied to arbitrarily long interferometer
times. This will be presented in some future publication,
whereas here we will only consider the two main paths
depicted in Fig. 11.

Given an initial momentum eigenstate, the phase accumu-
lated due to free evolution between two laser pulses in one
arm is exp{−i[p2/(2m h̄)] T }, where p is the corresponding
momentum in that segment. In addition, in interferometers
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FIG. 10. Population in states |−h̄K〉, |0〉, |h̄K〉 and off-resonant higher orders |other〉 after a mirror pulse for double Raman (top) and
double Bragg (bottom). For a broad momentum distribution �℘= 0.1h̄K , shown in panels (a) and (c), a significant part of the population is
lost to the intermediate state |0〉 and off-resonant higher orders are only populated for short pulse durations. Whereas the latter is also true for
narrow momentum distributions with �℘= 0.01h̄K , illustrated in panels (b) and (d), we see for intermediate times an almost perfect transfer
of the population and a suppression of the losses to the intermediate state.

involving Raman pulses, and hence changes of the internal
state, an extra phase exp(−iωegT ) is accumulated in those
segments where the atoms are in the excited state. Disre-
garding possible contributions from spurious paths simplifies

FIG. 11. Resonant (solid blue and dashed green) and spurious
(dashed gray) paths in a Mach-Zehnder atom interferometer configu-
ration for single (a) and double (b) diffraction. Through a phase scan,
we are able to obtain an interference signal I (δφ) in panel (c) with
amplitude A and contrast C.

significantly the computation of the state evolution through
the atom interferometer. Indeed, in the Mach-Zehnder inter-
ferometer with double-diffraction pulses of Fig. 11(b), the
internal state is at any time the same for the two arms and p2 =
(−p)2 as well. Therefore, the contributions of the associated
phases to the phase shift δφ between the two arms of the
interferometer cancel out. Similarly, in the Mach-Zehnder
interferometer with single-diffraction pulses of Fig. 11(a), the
phase accumulated in one arm between the first and second
pulses is identical to the phase accumulated between the
second and third pulses in the other arm and vice versa, so that
these phase-shift contributions also cancel out. Moreover, the
same cancelations hold for an arbitrary initial wave packet,
which can always be regarded as a linear superposition of
momentum eigenstates.

Thus, to obtain the interference signal at each exit port,
it is sufficient to multiply specific elements of the transition
functions G(M/BS)

�τ , as shown in Appendix B, when considering
the evolution of the initial wave packet ψi(p) along each
interferometer arm. In addition, we include an extra phase
δφ in one of the two arms which can account, for instance,
for the effects of a uniform gravitational field. Indeed, when
transforming to a freely falling frame, the dynamics of the
atomic wave packets reduces to that depicted in Fig. 11 and
one simply gets an additional phase-shift contribution δφ =
keffgT 2 from the transformation of the laser phases to the
freely falling frame [48] plus terms of order (�τ/T ) due
to the finite pulse duration [49–51]. Here g corresponds to
the projection of the gravitational acceleration onto the beam
direction in the laboratory frame and the effective momentum
transfer h̄keff is given by keff = K for single and keff = 2 K for
double diffraction.
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FIG. 12. Amplitude A of a simple Mach-Zehnder interferometer as a function of the momentum width �℘of the initial wave packet and
the pulse duration �τ . We observe for single Raman (a), single Bragg (b), double Raman (c), and double Bragg (d) how the imperfections of
the diffracting pulses influence the interference signal. In particular, the effect of the Bragg regime as well as quasiresonances are reflected in
the amplitude of the signal.

Even though the aforementioned phase caused by linear
accelerations arises for both single and double diffraction, it
does not account for the detuning associated with the shift
of the momentum distribution experienced in the laboratory
frame between the pulses. For single diffraction along the
vertical direction the gravitational acceleration quickly leads
to a substantial deviation from the resonance condition given
by Eq. (1) or Eq. (5), and it is necessary to chirp the frequency
difference �ω at a certain rate α so that it stays close to
resonance. The phase shift becomes then δφ = keff(g − α)T 2,
and one can scan the phase shift δφ by slightly varying the
chirping rate around the resonance value α = g [30].

However, for double diffraction in a retroreflective geom-
etry such a chirping is impossible due to the symmetry of
the setup. Nevertheless, this problem can be circumvented by
using three laser frequencies as experimentally demonstrated
for Raman [2]. Alternatively, for nearly horizontal beams the
projection of the gravitational acceleration onto the beam
direction can be small enough so that it results into almost
no deviation from resonance. Slightly changing the angle
between the beam and the horizontal direction can then be
employed to scan the phase shift δφ as done in Ref. [3].

By multiplying the respective elements of the transition
function, as indicated in Appendix B, we obtain the wave
functions ψup and ψlow that have been propagated along the

upper and lower arm, respectively. The interference signal
then takes the form

I (δφ) =
∫ h̄K/2

−h̄K/2
d p f |ψup(p f ) eiδφ + ψlow(p f )|2

= A

2
(1 + C cos δφ), (15)

where A and C denote the amplitude and contrast of the signal,
and the expressions for ψup(p f ) and ψlow(p f ) are given by
Eqs. (B2) and (B3) for the two diffraction mechanisms. The
amplitude A characterizes losses to spurious paths, but in
general it can also be influenced by contributions of spurious
paths to the same exit port. However, the contrast 0 � C � 1
may decrease due to imbalances in the diffraction efficiencies
for the two arms and to unequal distortions of the atomic wave
packets caused by the laser pulses as they evolve along both
arms. Full contrast (C = 1) is recovered when these effects are
negligible.

In our simulations, we scan the phase shift δφ from 0
to 2π for different pulse durations and momentum widths
of the initial distribution. A typical interference signal is
shown in Fig. 11(c). From these signals, we obtain the am-
plitude through A = max[I (δφ)] + min[I (δφ)] and present
the results in the density plots of Fig. 12 for both single
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FIG. 13. Interferometric contrast C of a double-Bragg Mach-
Zehnder interferometer as a function of the momentum width �℘

of the initial wave packet and the pulse duration �τ . The contrast is
close to unity except for parameters where quasiresonances dominate
the behavior, where it drops to 0.5. However, because of the im-
practicality of blow-away pulses for Bragg, additional contributions
from spurious paths, which are not included in this treatment, may
dominate the contrast.

and double as well as Raman and Bragg diffraction. In these
plots we can directly infer the influence of imperfect beam
splitters and mirrors on the interference signal and observe
effects similar to those obtained for the individual diffracting
elements: single Raman has the largest amplitude over the
widest range of parameters, double Raman and single Bragg
have to performed in a Bragg-type regime, and for double
Bragg quasiresonances lead to an increase of amplitude for
specific parameters. Since double-diffraction mirrors intro-
duce a significant loss of population to the intermediate state
for broad momentum distributions, they also limit the overall
signal. However, the amplitude of single diffraction is not
limited by such effects and is therefore higher even for broad
momentum distributions.

In our framework the contrast is given by C =
(max[I (δφ)] − min[I (δφ)])/A and is reduced by asymmetric
wave packed distortions on the two main paths caused by
imperfect diffraction. Since such distortions are small for all
cases except for double Bragg, no loss of contrast can be
observed throughout the range of investigated parameters. Al-
though the quasiresonances increase the efficiency of double
Bragg diffraction, they also lead to an asymmetry between the
wave packets and by that to a significant loss of contrast for
the double Bragg case. We show the contrast as a function
of pulse duration and momentum width in Fig. 13 and see
that it drops significantly in the parameter regime where
quasiresonances are dominant. In fact, we observe a drop in
contrast to about 0.5 for broad distributions. Note that we
have restricted in this plot the range of pulse durations to the
quasi-Bragg regime.

However, especially for double Bragg diffraction the in-
terference signal will be dominated by other spurious effects
that are neglected in our treatment. Because no blow-away

pulses can be applied to Bragg (and single Raman), atoms
that remain unaffected by all three pulses will lead to a third
path that ends in the exit port under consideration. If this wave
packet has no overlap in momentum space with the diffracted
components of the main paths (for example the atoms that are
unaffected due to velocity selectivity), then it will lead to a
background population that alters the value of A and signifi-
cantly reduces the contrast. However, if this contribution has
an overlap in momentum with the main paths, then it leads
to a beating of three interferograms and the signal will be
more complex so that it cannot be characterized by a simple
amplitude and contrast anymore. Since we have neglected
spurious paths in the present simulation, such effects, which
can actually dominate the signal for double Bragg in certain
parameter regimes, are not included in our analysis, but will
be discussed in future work.

VIII. FROM DOUBLE TO SINGLE DIFFRACTION

As discussed in Sec. I, single diffraction is convention-
ally performed in a retroreflective setup where one Doppler-
detuned grating can be neglected and the process can be
modeled by the interaction with a single grating. In this
section, we demonstrate the transition from double to single
diffraction in a retroreflective setup as the Doppler detuning
increases for one grating while keeping the other one resonant.

In fact, for a momentum p0 �= 0 one of the two transi-
tions becomes Doppler detuned. For small detunings, double
diffraction is asymmetric and for large detunings, one of the
two transitions is completely suppressed. Even though in this
case the off-resonant transitions lead to no diffraction, and the
efficiency resembles the one of single diffraction, they can
nevertheless have an effect on the phase of the atom, through
two-photon light shifts [52–55].

We show the transition from double to single diffraction in
a retroreflective geometry by increasing the initial momentum
p0 from 0 to h̄K . For each momentum, we adjust the reso-
nance condition to

�ω = ωeg + ωK + p0K/m (16)

for Raman and

�ω = ωK + p0K/m (17)

for Bragg.
We see in Fig. 14(a) for the case of Bragg that the

additional Doppler detuning in the resonance condition is
necessary to resonantly connect the momentum states |p0〉
and |p0 + h̄K〉. We use these resonance conditions and
the differential equations for double diffraction given in
Appendix A.

Since the Rabi frequencies of single and double diffraction
differ by a factor of

√
2, we use the definition of the pulse

area for single diffraction to obtain numerically the area Aopt

for which the resonant momentum eigenstate |p0〉 is diffracted
most efficiently to |p0 + h̄K〉. These pulse areas for Raman
and Bragg are presented in Fig. 11(b) for a pulse duration of
�τ = 37.5μs. As expected, for no initial momentum the opti-
mal area is π/

√
2, which corresponds to a double-diffraction

beam splitter. For p0/h̄K � 0.1 the optimal area reaches π

which corresponds to a single-diffraction mirror process. Even
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FIG. 14. Energy-momentum diagram for double Bragg diffraction (a) for an initial momentum offset p0 resonantly connected to p0 + h̄K .
Pulse area Aopt defined for single diffraction (b) leading to an optimal diffraction efficiency for an initial momentum eigenstate |p0〉 and a pulse
duration �τ = 37.5μs, comparing Raman and Bragg diffraction. We compute the efficiency for different initial momenta and Gaussian widths
�℘ and show in panel (c) the results for Bragg diffraction with a pulse duration of �τ = 37.5μs using the optimal pulse area from panel (b).
For p0 = 0 and small �℘ we observe an efficiency of 0.5 corresponding to a double-diffraction beam-splitter process. For increasing p0, the
efficiency approaches unity and thus a single-diffraction mirror process emerges. We also display the resonance width W of the diffraction
process as a function of p0 in this density plot (orange line) and observe that it is one limiting factor of the efficiency. The straight line p0 = �℘

(see dashed pink line) in the plot demonstrates that a significant fraction of the atoms undergo double instead of single diffraction whenever
the momentum distribution has significant overlap with the degenerate momentum (p0 = 0), i.e., �℘> p0, as long as the resonance is wide
enough. The corresponding behavior for Raman diffraction is similar. Effects on phases, caused for example by two-photon light shifts, cannot
be observed in the efficiency.

though Bragg diffraction has a richer structure than Raman
diffraction due to simultaneous resonant and off-resonant
transitions, the optimal pulse areas behave very similar [56].

With these optimal pulse areas Aopt (p0) we calculate for
each p0 the diffraction efficiency of initial distributions of dif-
ferent widths �℘ centered around p0 where the integration in-
terval is modified accordingly. The only noteworthy difference
in efficiency between Raman and Bragg appears in the region
p0/h̄K < 0.2 as well as small �℘ and is below 5%. Therefore
in Fig. 14(c), we show only the Bragg case. We observe that
for a sufficiently narrow distribution the efficiency approaches
unity already for small Doppler detunings p0/h̄K � 0.1, even
though the explicit transition from double to single depends on
the pulse duration �τ . As expected the efficiency decreases
for increasing �℘.

To get an intuitive understanding of the dominant effect,
and in analogy to Sec. VI, we calculate the resonance width
W of the diffraction process through the FWHM of the
transition function as a function of p0. We present the result
in the density plot of Fig. 14(c) (see orange line). If the
momentum distribution is wider than the resonance width,
then the efficiency decreases rapidly. However, for small p0

the efficiency seems to be bounded by another quantity: The
straight line p0 = �℘ (dashed pink line) demonstrates that if
the momentum distribution has overlap with the degenerate
momentum (p0 = 0), i.e., �℘> p0, and the resonance is suffi-
ciently broad, then a significant fraction of the atoms undergo
double instead of single diffraction, leading to a decrease of
efficiency.

Fig. 14(b) also reveals that the optimal pulse area for the
Doppler-detuned atomic sample is slightly larger than π . This
effect shows that for a pulse duration of �τ = 37.5μs spuri-
ous diffraction orders change the effective Rabi frequency [5].

IX. CONCLUSIONS

Our article provides a detailed study of single and double
diffraction for both mechanisms, Raman and Bragg. In par-
ticular, we have shown that single and double diffraction can
both be realized in a retroreflective setup, and that already a
Doppler detuning corresponding to a momentum � 0.1 h̄K is
sufficient to suppress the effect of a second grating, turning
double into single diffraction. Alternatively, chirping of the
laser frequencies together with finite speed-of-light effects can
also lift the degeneracy of the double diffraction process and
lead to a preferred direction of diffraction [57].

Moreover, we have compared the diffraction efficiencies
of both mechanisms for the same parameters and observed
that for single Bragg as well as for double diffraction in
general it is not possible to realize a Bragg-type regime with
short pulse durations. In this sense, single Raman diffraction
has the unique property that it can be performed also for
intense pulses without a significant loss of efficiency. How-
ever, beyond these short pulse durations we have observed no
significant difference between Raman and Bragg diffraction
for a wide range of the parameter regime.

These insights have consequences for the velocity selec-
tivity of the pulses: in principle, the resonance width of
the process increases for shorter times, until one leaves the
Bragg-type regime (except for single Raman). Hence, for
each momentum width there exists a unique optimal pulse
duration with a pulse area of π . Double Bragg constitutes
an exception, as quasiresonances arising for particular pulse
durations allow to increase the diffraction efficiency of broad
momentum distributions significantly.

Moreover, for broad momentum distributions we have
demonstrated that all double-diffraction mirrors are less
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efficient than their single-diffraction counterparts irrespec-
tively of the diffraction mechanism, because there is a con-
siderable loss of atoms into the intermediate momentum state,
a feature that does not exist in single diffraction.

Throughout our article we have focused on the num-
ber of diffracted atoms as a measure of the quality of
the diffraction process. However, for increasingly sensitive
ground experiments as well as future space missions with
atom-interferometric capabilities the influence of diffraction
regimes, geometries and mechanisms on the phases are cru-
cial. For this reason these topics are part of our future research
program.
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APPENDIX A: FULL EQUATIONS

In this Appendix we present the differential equations
describing the four diffraction processes discussed in our
article. Here, we do not focus on a particular resonance
condition but consider the general case. Indeed, by choosing
an appropriate frequency difference �ω between the lasers,
one can implement other resonant transitions.

The derivation of these equations uses the rotating wave
approximation [58] and the adiabatic elimination of the opti-
cally excited state [35–37]. The dynamics is in an interaction
picture with respect to the free evolution of the atoms, and we
assume vanishing laser phases.

The equations [38]

iġn = −� e−iωDt e−i[ωeg−�ω+ωAC+(1+2n)ωK ]t en+1 (A1a)

and

iėn+1 = −� eiωDt e−i[−ωeg+�ω−ωAC−(1+2n)ωK ]t gn, (A1b)

for single Raman diffraction with the probability amplitudes
gn ≡ g(p + nh̄K ) and en ≡ e(p + nh̄K ) of the ground state
and excited state in momentum representation form a closed
system of coupled differential equations.

The intensity and the pulse shape of the grating determine
the coupling strength � = �(t ). The frequency difference of
the two internal states is given by ωeg. The AC Stark shift is
denoted by ωAC and the recoil frequency by ωK . The Doppler
frequency ωD acts as a detuning.

An appropriate choice of �ω, as given by Eq. (1), allows
us to neglect the second exponent in Eq. (A1) for resonant
transitions while off-resonant transitions oscillate with multi-
ples of ωK . In this way the dependence on ωeg drops out of the
exponent. Note, however, that terms with frequencies involv-
ing higher multiples of ωeg have been neglected in Eqs. (3)
and (A1) as a result of the rotating wave approximation.
This is justified in our case because we typically have ωeg ∼
2π × 7 GHz and even for the shortest pulses considered here,
with �τ ∼ 1μs, the condition ωeg�τ � 1 is amply fulfilled.

Similarly, single Bragg diffraction is described by the
recurrence relation [5]

iġn = −� e−iωDt ei[�ω−(2n+1)ωK ]t gn+1

−� eiωDt e−i[�ω−(2n−1)ωK ]t gn−1, (A2)

which in contrast to single Raman diffraction, given by
Eq. (A1), is not closed.

The double-Raman equations contain the terms of Eq. (A1)
and contributions corresponding to the additional laser pairs
for perfect orthogonal polarizations. The resulting coupled
differential equations

iġn = −� e−iωDt e−i[ωeg−�ω+ωAC+(1+2n)ωK ]t en+1

−� eiωDt e−i[ωeg−�ω+ωAC+(1−2n)ωK ]t en−1 (A3a)

and

iėn+1 = −� e−iωDt e−i[−ωeg+�ω−ωAC+(3+2n)ωK ]t gn+2

−� eiωDt e−i[−ωeg+�ω−ωAC−(1+2n)ωK ]t gn (A3b)

show that simultaneous diffraction in both directions is now
possible. A truncated version of these equations can be found
in Ref. [43].

Simultaneous diffraction in both directions also occurs for
double Bragg diffraction which is described by the equations
[5]

iġn = −� e−iωDt [e−i[�ω+(2n+1)ωK ]t + ei[�ω−(2n+1)ωK ]t ] gn+1

−� eiωDt [ei[�ω+(2n−1)ωK ]t + e−i[�ω−(2n−1)ωK ]t ] gn−1.

(A4)

Here, states can simultaneously couple both resonantly and
off-resonantly.
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APPENDIX B: WAVE PACKET COMPONENTS IN AN
INTERFEROMETER EXIT PORT

We present in this Appendix the calculation of the
wavepacket components in the exit port of a Mach-Zehnder
interferometer. For that, we assume that the initial wave packet
ψi is centered around the momentum p0 = 0. As explained in
Sec. VII, for the interferometers shown in Fig. 11 the phases
associated with the free evolution and changes of internal state
(for Raman transitions) along the two arms cancel out and
will not be included here. For Raman diffraction the transition
between the internal states |g〉 and |e〉 as well as the momen-
tum transfer are described in momentum representation by the
operator

Ĝ(BS/M)
�τ (p f , pi ) =

∑
j,l∈{e,g}

G(BS/M)
�τ, jl (p f , pi ) | j〉 〈l| . (B1)

However, for Bragg it reduces to the diagonal elements
proportional to |g〉 〈g| that directly describe the transition
function defined in Sec. III. For a state that is prepared and
detected in |g〉, the evolution along each interferometer arm
is then obtained by multiplying the respective elements of
the transition functions G(BS/M)

�τ, jl (p f , pi ). Neglecting spurious
paths, in single diffraction we find for the upper arm

ψup(p f ) =
∫ h̄K/2

−h̄K/2
d p2

∫ h̄K/2

−h̄K/2
d p1

∫ 3h̄K/2

h̄K/2
d pi G(BS)

�τ,gg(p f , p2)

× G(M)
�τ,ge(p2, p1) G(BS)

�τ,eg(p1, pi ) ψi(pi ) (B2a)

where the respective transition elements are chosen by the
limits of the integrals. Similarly, the lower arm can be cal-
culated by

ψlow(p f ) =
∫ h̄K/2

−h̄K/2
d p2

∫ 3h̄K/2

h̄K/2
d p1

∫ h̄K/2

−h̄K/2
d pi G(BS)

�τ,ge(p f , p2)

× G(M)
�τ,eg(p2, p1) G(BS)

�τ,gg(p1, pi ) ψi(pi ). (B2b)

For double diffraction, the same line of reasoning leads to

ψup(p f ) =
∫ h̄K/2

−h̄K/2
d p2

∫ −h̄K/2

−3h̄K/2
d p1

∫ 3h̄K/2

h̄K/2
d pi G(BS)

�τ,ge(p f , p2)

× G(M)
�τ,ee(p2, p1) G(BS)

�τ,eg(p1, pi ) ψi(pi ) (B3a)

for the upper arm and to

ψlow(p f ) =
∫ h̄K/2

−h̄K/2
d p2

∫ 3h̄K/2

h̄K/2
d p1

∫ −h̄K/2

−3h̄K/2
d pi G(BS)

�τ,ge(p f , p2)

× G(M)
�τ,ee(p2, p1) G(BS)

�τ,eg(p1, pi ) ψi(pi ) (B3b)

for the lower one. In Bragg diffraction there is no internal
transition and thus G(BS/M)

�τ, jl (p f , pi ) → G(BS/M)
�τ,gg (p f , pi ).
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