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Atomic Raman scattering: Third-order diffraction in a double geometry
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In a retroreflective scheme with an atom initially at rest, atomic Raman diffraction adopts some of the
properties of Bragg diffraction due to additional couplings to off-resonant momenta. As a consequence, double
Raman diffraction has to be performed in a Bragg-type regime, where the pulse duration is sufficiently long to
suppress diffraction into spurious orders. Taking advantage of this regime, double Raman allows for resonant
higher-order diffraction. We study theoretically the case of third-order diffraction and compare it to first order
as well as a sequence of first-order Raman pulses giving rise to the same momentum transfer as the third-order
pulse. Moreover, we demonstrate that interferometry is possible, and we investigate amplitude and contrast of a
third-order double Raman Mach-Zehnder interferometer. In fact, third-order diffraction constitutes a competitive
tool for the diffraction of ultracold atoms and interferometry based on large momentum transfer since it allows
one to reduce the complexity of the experiment as well as the total duration of the diffraction process compared
to a sequence, at the cost of higher pulse intensities.
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I. INTRODUCTION

Higher-order Bragg diffraction [1–5] in combination with
sequential pulses [6,7] has become a standard tool for
large-momentum-transfer (LMT) techniques to enhance the
sensitivity of light-pulse atom interferometers [8,9]. However,
with Raman diffraction [8,10,11], the other main mechanism,
only sequential pulses [12–14] have routinely been employed
so far. In this article, we extend Raman in a double-diffraction
geometry [15–17] to also allow for higher-order diffraction,
study the efficiency compared to a standard first-order se-
quence, and simulate a simple interferometer. Such a setup
retains the possibility of state-selective detection, while being
more efficient and less complex than a sequence of first-order
pulses for narrow momentum distributions.

Sequential pulses [6,7,12–14,18] and higher-order diffrac-
tion [1–5] are some of the most common techniques used for
LMT applications based on Bragg diffraction and are often
combined with Bloch oscillations [19–23]. They are comple-
mented by double diffraction [2,6,15–17], where an atom at
rest diffracts in two opposite directions from two counter-
propagating pairs of light fields, each involving two different
frequencies. It is particularly well suited for experiments
under microgravity conditions [24–30] or for horizontal ge-
ometries [31,32], where a vanishing initial momentum arises
naturally. Due to its symmetry, laser phases are not imprinted
on the two branches of the interferometer, and similar noise
sources are intrinsically suppressed [2,6,12]. Even though
many applications of double diffraction focus on Bragg, the
geometry was first pioneered for Raman and is still used to
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date as one of the few LMT techniques for Raman diffraction,
together with sequential pulses. However, one of the benefits
of double Raman diffraction has not been explored so far,
namely, the possibility to scatter into higher diffraction orders.

In contrast to single Raman, which can be described as
a closed two-level system, off-resonant couplings appear in
single Bragg diffraction [33,34], limiting the operation to
the Bragg regime with long pulse durations but at the same
time allowing for higher-order diffraction for sufficiently long
pulses [35]. The additional pair of light fields in double
diffraction induces further off-resonant transitions for both
Raman and Bragg diffraction. As a consequence, the applica-
tion of Raman diffraction is restricted to a Bragg-type regime
as well, where the pulses are so long that the effective Rabi
frequency is much smaller than the frequency associated with
the kinetic energy gained during the diffraction process [36].
In double Bragg diffraction resonant and off-resonant cou-
plings to the same momentum state appear, causing a more
complex diffraction behavior [2,37]. However, these features
do not arise in double Raman diffraction, which therefore
constitutes a simpler diffraction mechanism.

In this article we demonstrate that third-order double Ra-
man diffraction with high efficiency and interferometry based
on this mechanism are possible, although the process is more
velocity selective than its first-order counterpart. However,
for narrow momentum distributions like the ones associated
with Bose-Einstein condensates (BECs) it can be a competi-
tive alternative to a pulse sequence when the duration of the
beam splitting process is limited, at the cost of higher pulse
intensities.

In Sec. II we recall first-order double Raman diffraction
with a Gaussian pulse shape as well as sequential Doppler-
detuned single Raman diffraction with typical box-shaped
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pulses to calculate the efficiency of an LMT beam splitter.
Such a combination of Gaussian and box-shaped pulses con-
stitutes a good compromise between diffraction efficiency and
overall duration of the sequence. We then perform in Sec. III
an analysis of third-order double Raman beam splitters and
show that even though their efficiency is inherently worse than
a comparable first-order pulse, it can be better than that of
the sequence. In a similar manner, Sec. IV focuses on third-
order double Raman mirror processes, which turn out to be
less efficient than the beam splitters. Combining both mirror
and beam splitters to a simple Mach-Zehnder interferome-
ter, Sec. V demonstrates that third-order Raman diffraction
is a suitable tool for atom interferometry by calculating the
properties of interference signals and demonstrating phase
coherence. We conclude with a brief discussion in Sec. VI.
For completeness, the general set of differential equations for
double Raman diffraction is given in Appendix A, and energy
shifts that appear in third-order diffraction with box-shaped
pulses are detailed in Appendix B.

II. FIRST-ORDER DIFFRACTION

A. Double Raman diffraction

An atom at rest interacts with two strongly detuned pairs of
light fields that move in opposite directions (with a detuning
much larger than the linewidth), each one generated by two
counterpropagating light fields of frequencies ωb and ωr; see
Fig. 1(a). The pairs can be distinguished by their combination
of polarization [12], so that within a retroreflective setup,
where both light fields are guided from one side to the atom
and retroreflected at the other side, the polarizations have
to be rotated by a λ/4 plate [6,12] to suppresses spurious
couplings. The diffraction process can be understood in terms
of absorbing a photon with frequency ωb and subsequently
emitting a photon with frequency ωr in the opposite direction
from each pair of light fields. This process causes a total
momentum recoil of ±h̄K for the two pairs of light fields, with
K ≡ (ωb + ωr )/c, and the atom gains kinetic energy h̄ωK , in
terms of the recoil frequency

ωK = h̄K2

2M
, (1)

where M is the atomic mass.
The diffraction process is determined by the transferred

energy, i.e., by the difference of the laser frequencies �ω ≡
ωb − ωr. A transition that is resonant for first-order diffraction
corresponds in Fig. 1(b) to the case where the solid arrows
start and end on a parabola describing the kinetic energy of
an internal state. This is possible if h̄�ω equals the kinetic
energy h̄ωK gained through recoil plus the energy difference
h̄ωeg between internal ground |g〉 and excited state |e〉:

�ω = ωeg + ωK . (2)

Since the AC Stark shift can in principle be compensated, we
refrain from including it in the subsequent discussion or the
resonance condition.

The two pairs of light fields allow simultaneous diffraction
in opposite directions but also enable spurious off-resonant
transitions to higher diffraction orders denoted by dashed
arrows. Additional couplings through polarization imperfec-

FIG. 1. Schematic setup with an atom at rest (p0 = 0) in a
retroreflective geometry built by a λ/4 plate and a mirror (a). The
atom diffracts from two counterpropagating pairs of light fields, each
consisting of two different frequencies (upper and lower pair), ab-
sorbs a photon with frequency ωb, and emits a photon with frequency
ωr in opposite direction from each laser pair. This process causes a
total recoil of ±h̄K with K = (ωb + ωr )/c and by that leads to a gain
of kinetic energy h̄ωK . The energy-momentum diagram in (b) shows
that such a process is resonant if the energy difference between the
light fields h̄�ω ≡ h̄(ωb − ωr ) equals the energy difference h̄ωeg

between the atomic ground |g〉 and excited state |e〉 in addition to the
recoil energy h̄ωK . Resonant processes start and end on the parabola
(solid arrows); off-resonant processes are denoted by dashed arrows.

tions are neglected throughout this article. Moreover, we
assume plane waves and neglect wave-front distortions.

The diffraction process depicted in Fig. 1(b) is described
by the truncated system of differential equations

ġ0 = i�(t )e−iωDt e1 + i�(t )eiωDt e−1, (3a)

ė±1 = i�(t )e∓iωDt e−i4ωKt g±2 + i�(t )e±iωDt g0, (3b)

coupling the ground state probability amplitudes gn ≡ g(p +
nh̄K ) for the momentum eigenstate |p + nh̄K〉 to the excited
state amplitudes en ≡ e(p + nh̄K ) with a (possibly time-
dependent) coupling parameter �(t ) that has a maximum
amplitude �0. The system of equations is derived from the
generalized version of the differential equations describing
double Raman diffraction presented in Appendix A. Rabi
oscillations take place between the probability amplitude g0

of the ground state and those of the excited state with two
different momenta, e1 and e−1. At the same time, the probabil-
ity amplitudes of the excited states e±1 couple off-resonantly
to g±2 indicated with a detuning 4ωK . These kind of tran-
sitions are prominent in the Raman-Nath (Kapitza-Dirac)
regime [35,38] where �0/ωK � 1, but are suppressed in the
Bragg-type regime with �0/ωK � 1 in which double Ra-
man is typically performed. Note that e±2 couples further
to higher diffraction orders, but these transitions are even
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more off-resonant and therefore suppressed. The Doppler fre-
quency ωD = pK/M corresponds to the deviation from the
resonant momentum p0 = 0 within a wave packet and acts
as a detuning to the resonant transition, leading to the effect
of velocity selectivity [10,11,39–41]. As coupling strength
�(t ) = �0 exp[−t2/(2�τ 2)] we consider a Gaussian func-
tion of width �τ .

The coupling strength is connected to the pulse area A via

A =
∫

dt
√

2 �(t ). (4)

An area of A = π/2 leads to the transition |g, 0〉 →
(|e, h̄K〉 + |e,−h̄K〉)/

√
2, creating a superposition of left-

and right-moving wave-packet components and therefore cor-
responds to a double Raman beam splitter.

1. Numerical treatment

We numerically solve the system of differential equations
Eq. (A1) using the corresponding resonance condition Eq. (2)
for 87Rb with MATLAB’s ODE45, a Runge-Kutta algorithm,
with relative accuracy 10−3 and absolute accuracy 10−6. We
calculate a transition function G�τ (pf , pi ) which connects the
initial and final momentum eigenstates [37]. The transition
function can be applied to the initial Gaussian wave packet
ψi(pi ) ∝ exp[−(pi − p0)2/(4�℘2)] with p0 = 0 to obtain the
final wave function

ψf (pf ) =
∫

d pi G�τ (pf , pi ) ψi (pi ). (5)

We truncate the range of momenta so that the solution for the
diffraction efficiency (discussed in the following paragraph)
obtained with nmax and nmax+1 is at most of the same magni-
tude as the solver accuracy.

2. Diffraction efficiency

We define the efficiency of an nth-order symmetric
diffraction process between the momenta |±n0 h̄K〉 and
|±(n0 + n)h̄K〉 as

En0±n =
∫ p+

p−
d pf |ψf (pf )|2 +

∫ −p−

−p+
d pf |ψf (pf )|2 (6)

with the integration range p± = (n0 + n ± 1/2)h̄K and
n, n0 ∈ N. Even though the expression works for arbitrary
initial momenta, we have restricted ourselves to integer mo-
menta p0 = n0 h̄K that are relevant for sequences of pulses.

The efficiency E0
±1 of the first-order double Raman beam-

splitter process sketched in Fig. 1(b) is shown in Fig. 2 as
a function of the pulse duration �τ and the width of the
initial wave function �℘. For short pulse durations (i.e., in
the Raman-Nath regime) diffraction into higher off-resonant
orders becomes important and the efficiency of the beam-
splitting process drops. For longer pulses, an efficiency close
to unity demonstrates that diffraction in the Bragg-type regime
leads to the targeted beam splitter. However, the longer the
pulse, the more dominant the Doppler detuning becomes,
which leads to velocity selectivity and the diffraction ef-
ficiency drops for broad momentum distributions. The red
dashed line denotes the optimal pulse duration �τopt at in-
termediate times [35] and with highest efficiency for a broad
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FIG. 2. Efficiency E0
±1 for a first-order double Raman beam split-

ter for 87Rb as a function of the width of the initial wave function �℘

and the pulse duration �τ for a Gaussian pulse shape. Higher-order
diffraction appears in the Raman-Nath regime (drop in efficiency
for small �τ ), for higher �τ losses are determined by velocity
selectivity. The dashed red line marks the optimal pulse duration.

range of different momentum widths �℘. For that, we de-
termine for each value �℘ the pulse duration at which the
maximal efficiency occurs and calculate the median over con-
sidered range of �℘, i.e., up to 0.2h̄K . This time therefore
describes the duration where the efficiency is good for various
initial wave functions; however, for one realization with a
particular momentum width a different value than �τopt can
be better. It will later be used for a comparison between
diffraction schemes.

B. Doppler-detuned Raman diffraction

Atoms in a retroreflective setup with initial momentum
p0 interact predominantly with only one of the two laser
pairs because the other pair is Doppler detuned by p0K/M.
Consequently, the double-diffraction process turns into a
single-diffraction process, shown by solid arrows in Fig. 3.
Note that if the atom is in a superposition of momenta ±p0,
two opposite but independent single-diffraction processes oc-
cur. However, the off-resonant Doppler-detuned transitions
(dashed arrows from |e,±h̄K〉 to |g, 0〉 in Fig. 3) are still
present and cause a shift of the addressed atomic energy levels
and by that detuned Rabi oscillations. A small detuning leads
to the two-photon light shift [42,43], while a large detun-
ing reduces the diffraction efficiency. In contrast to Bragg
diffraction, for Raman diffraction adiabatic elimination allows
one to identify the differential energy shift �E/h̄ for time-
independent pulse shapes [44]. For the momenta p0 = n0 h̄K
with n0 ∈ N that are of interest to our study of sequential
pulses, one obtains for the widely used box-shaped pulses
with Rabi frequency �0 the following differential energy
shift:

�E/h̄ ≡ ωKδ = ±�2
0

ωK

2n0 + 1

4n0(n0 + 1)
. (7)

The negative sign corresponds to transitions from |g, n0 h̄K〉 to
|e, (n0 + 1)h̄K〉, while the positive sign corresponds to transi-
tions from |e, n0 h̄K〉 to |g, (n0 + 1)h̄K〉. The detuning caused
by this shift can be compensated by modifying accordingly the
resonance condition from which �ω is obtained. Box-shaped
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FIG. 3. Energy-momentum diagram and resonant transitions for
an atom with initial momentum p0 = ±h̄K (solid arrows) and ini-
tially in the excited state. The Doppler detuning of the spurious pair
suppresses off-resonant transitions (dashed arrows), turning double
into single diffraction. The initial conditions are chosen so that
they correspond to a resonant sequential pulse following a double-
diffraction beam splitter.

pulses are commonly employed for sequential Raman pulses,
as they are easy to implement experimentally and have shorter
durations compared to Gaussian pulses, while they can main-
tain a high diffraction efficiency. Note that the overall duration
of a Gaussian pulse has to be truncated at a point which is
significantly longer than its Gaussian temporal width �τ , so
that the duration of a box-shaped pulse is small compared
to the overall length of a Gaussian pulse, which we assume
truncated to 8�τ .

To demonstrate this effect, we consider in the following
p0 = ±h̄K , depicted in Fig. 3, and p0 = ±2h̄K for box-
shaped pulses, i.e., �(t ) = �0. The resonance condition for
the transition |e,±h̄K〉 → |g,±2h̄K〉, i.e., p0 = ±h̄K , as de-
picted in Fig. 3 is given by

�ω = ωeg − 3ωK + �E/h̄ = ωeg − (3 − δ)ωK (8)

with δ = 3�2
0/(8ω2

K ).The system of differential equations in
an appropriate rotating frame reduces then to an effective two-
level system without light shifts:(

ė±1

ġ±2

)
= i�0

(
0 e∓iωDt

e±iωDt 0

)(
e±1

g±2

)
. (9)

Keeping in mind the differences between single and double
diffraction, we now investigate π pulses by choosing

A = π = 2 �0 τ. (10)

Equation (9) is analytically solvable, but to also calculate
loss to off-resonant states that inevitably appears beyond the
Bragg-type regime, we resort to a numerical treatment.

Similarly, the resonance condition for the transition
|g,±2h̄K〉 → |e,±3h̄K〉 with p0 = ±2h̄K takes the form

�ω = ωeg + (5 + δ)ωK (11)

with δ = −5�2
0/(24ω2

K ). It can be reduced to a two-level-
system between |g,±2h̄K〉 and |e,±3h̄K〉 similar to Eq. (9).
Using the resonance condition Eq. (8), we calculate the
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FIG. 4. Efficiency for Doppler-detuned box-shaped Raman
pulses for varying width of the initial wave function �℘ and
pulse duration τ . In panel (a) we display the process |e, ±h̄K〉 →
|g, ±2h̄K〉, and in panel (b) the process |g, ±2h̄K〉 → |e, ±3h̄K〉. In
the Raman-Nath regime both processes show transitions into other
diffraction orders that reduce for increasing p0, which makes the
pulse in panel (b) more efficient. The dashed red lines mark the
optimal pulse duration.

diffraction efficiency E1
±1 for the Doppler-detuned transition

|e,±h̄K〉 to |g,±2h̄K〉 and using the resonance condition
Eq. (11) to calculate the efficiency E2

±1 for the transition
|g,±2h̄K〉 and |e,±3h̄K〉 with an analogous numerical treat-
ment as discussed in Sec. II A 1. The only differences are the
modified resonance conditions and box-shaped pulses, i.e.,
�(t ) = �0. Moreover, the initial wave packet is a superpo-
sition of two Gaussians centered at ±p0 described by

ψi(pi ) ∝ exp

[
− (pi − p0)2

(4�℘2)

]
+ exp

[
− (pi + p0)2

(4�℘2)

]
. (12)

Figure 4(a) shows the efficiency for p0 = ±h̄K and
Fig. 4(b) the efficiency for p0 = ±2h̄K defined through
Eq. (6) as a function of the width of the initial wave function
�℘ and the pulse duration τ . Although using different pulse
shapes, we observe similar to Fig. 2 diffraction to spurious
orders in the Raman-Nath regime and therefore a significant
loss of efficiency for short pulses. Since the spurious pair of
light fields is increasingly off-resonant the larger the initial
momentum [37], the Raman-Nath regime is less important
for the transition |g,±2h̄K〉 → |e,±3h̄K〉 compared to the
transition |e,±h̄K〉 → |g,±2h̄K〉.

We compare in Fig. 5 the efficiency obtained with the
optimal pulse duration τopt

∼= 30.7 μs for the two effec-
tive single-diffraction pulses to that of the double-diffraction
beam splitter (i.e., the cuts along the red dashed lines in
Figs. 2 and 4). Since the Raman-Nath regime is suppressed
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FIG. 5. Diffraction efficiency for the three individual first-order
pulses and their sequential application, obtained with the optimal
pulse durations. The efficiency E0

±1 for the double Raman beam
splitter with Gaussian pulse shape corresponds to the cut along the
red dashed line in Fig. 2, and the efficiencies of the Doppler-detuned
and box-shaped single-diffraction mirror pulses E1

±1 and E2
±1 to the

cuts along the red dashed lines in the two panels of Fig. 4. They dif-
fer because of the different diffraction geometries (Doppler-detuned
single or double diffraction) as well as the pulse shape employed
(Gaussian or box). The efficiency Eseq of the sequential application
of the three pulses is lower than the efficiency of the individual
processes and obtained through the procedure explained in the text.

for Gaussian pulses, we observe that the double-diffraction
beam splitter has the best efficiency for all momentum widths.
Off-resonant couplings are suppressed by a Doppler detuning
that scales with the initial momentum [37] and therefore affect
the transition |e,±h̄K〉 → |g,±2h̄K〉 more than the subse-
quent process with higher initial momentum. Hence, the first
sequential pulse has the lowest efficiency of the individual
pulses. However, these two diffraction types (single versus
double diffraction) differ significantly in their geometry as
well as in the applied pulse shape, which makes a direct
comparison difficult.

C. Three sequential Raman pulses

In this section we use the diffraction processes discussed in
Secs. II A and II B to perform a Raman pulse sequence trans-
ferring population from the state |g, 0〉 to an equal-amplitude
superposition of |e,±3h̄K〉. Raman pulses in a double geom-
etry have already been experimentally realized, but only for
the transition from |0〉 to |±2h̄K〉 [12]. A double-diffraction
beam splitter with a Gaussian pulse shape transfers the ini-
tial wave function from |g, 0〉 to |e,±h̄K〉. Two subsequent
box-shaped and Doppler-detuned effective single-diffraction
Raman pulses transfer the population further to |g,±2h̄K〉 and
|e,±3h̄K〉; see Fig. 6. The combination of Gaussian and box-
shaped pulses in the sequence allows one to benefit from their
particular advantages regarding experimental duration and
transfer efficiency. Each pulse induces first-order diffraction
and requires an adjustment of the laser frequencies to fulfill
the corresponding resonance conditions from Eqs. (2), (8),
and (11). We use the optimal pulse durations �τopt

∼= 8.8 μs

FIG. 6. Energy-momentum diagram that shows the resonant
processes of a sequence consisting of a double-diffraction beam
splitter (green arrows) and two subsequent Doppler-detuned single-
diffraction pulses (blue and red arrows). The initial wave packet
is transferred from |g, 0〉 to |e, ±3h̄K〉 via the states |e, ±h̄K〉 and
|g, ±2h̄K〉.

and τopt
∼= 30.7 μs obtained in Secs. II A and II B for the

individual pulses.
To calculate the overall efficiency, we use the initial wave

function of width �℘ and apply a first-order double Raman
beam splitter. The diffracted wave function resulting from
Eq. (5) is used as initial condition for the next effective
single-diffraction pulse. The obtained wave function, again
calculated with the help of Eq. (5) and the adjusted transfer
function Gτopt , is diffracted by the final pulse, and the effi-
ciency of the whole sequence is calculated through Eq. (6)
by integrating over the population in the states |e,±3h̄K〉 de-
termined by the final momentum distribution. This sequence
of optimal pulses leads to a momentum transfer of ±3h̄K and
its efficiency Eseq is shown in Fig. 5. Because the diffracted
wave function after the first pulse has narrowed in momentum
due to velocity selectivity so that diffraction with the next
pulse is performed for an effectively colder sample, the ef-
ficiency is slightly larger than the product of the individual
efficiencies E0

±1E1
±1E2

±1 calculated for perfect Gaussian initial
wave functions. In any case, compared to the three individual
pulses shown in the figure, the efficiency of the sequence Eseq

is lower. In fact, it is mainly limited by the lowest efficiency
E1

±1 of the first sequential pulse.

III. THIRD-ORDER DIFFRACTION

Instead of three sequential Raman pulses we focus in this
section on only one pulse that relies on third-order diffrac-
tion to achieve the same momentum transfer of ±3h̄K . As
Fig. 7 shows, the two laser pairs with frequencies ωb and ωr

induce a six-photon diffraction process and transfer the popu-
lation from |g, 0〉 to |e,±3h̄K〉. The intermediate two-photon
processes are off-resonant and thus, the states |e,±h̄K〉 and
|g,±2h̄K〉 are only virtually populated.

A. Resonance condition and pulse area

In such a third-order process, the atom gains due to its
quadratic dispersion relation a kinetic energy of 9h̄ωK , which
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FIG. 7. Energy-momentum diagram for a double Raman six-
photon diffraction process. Two laser pairs (red an blue arrows)
induce the transition. The first and second scattering process, each a
two-photon process, are off-resonant. Thus, the transition from |g, 0〉
to |e, ±3h̄K〉 occurs by populating the states |e, ±h̄K〉 and |g, ±2h̄K〉
only virtually.

leads for p0 = 0 to the following modified resonance condi-
tion:

�ω = ωeg + (9 + δ)ωK . (13)

Here we included the factor ωKδ to compensate for possible
energy shifts similar to the Doppler-detuned diffraction pro-
cesses in Sec. II B. Since the pulses are time-dependent, we
perform a numerical optimization of the efficiency and refer to
Appendix B for a brief discussion of the analytical expression
for box-shaped pulses.

Because it is a third-order process and based on the results
for box-shaped pulses, we expect the pulse area to scale with
the third power of the Rabi frequency and the detuning with
the second order. Hence, we obtain the energy shifts

ωKδ = β
�2

0

ωK
(14)

as well as the connection to the modified Rabi frequency and
pulse area

A =
∫

dt α
�3(t )

ω2
K

(15)

through a numerical optimization of the diffraction efficiency
with the MATLAB function fminsearch by determining the
optimization parameters β and α. For our range of initial
momentum widths and pulse durations, we find that β ∈
[−0.75,−0.42] and α ∈ [0.025, 0.072] do not deviate much
from the corresponding analytical value for box-shaped pulses
given by Eqs. (B5) and (B6).

B. Comparison to first-order and sequential pulses

We recall in Fig. 8(a) the efficiency of the first-order
beam-splitter pulse E0

±1 from Fig. 2 and compare it to the
corresponding third-order beam splitter efficiency E0

±3 in
Fig. 8(b) for different widths of the initial wave function �℘

and pulse durations �τ . As expected, third-order diffraction
requires longer pulse durations, or, higher intensities for an
efficient transfer since the population has to overcome two
intermediate and off-resonant states. Moreover, velocity se-
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FIG. 8. Comparison of the efficiency for a first-order double
Raman beam splitter E0

±1 (a) and a third-order beam splitter E0
±3

(b) for different widths of the initial wave function �℘ and pulse
durations �τ . Panel (a) recalls the results for the first-order efficiency
for times up to 60 μs from Fig. 2, and panel (b) shows the simulated
efficiency for third-order diffraction on the same time scale. While
first-order diffraction is more efficient for a broad range of pulse
durations in a Bragg-type regime, third-order diffraction is limited by
two main effects: In the Bragg-type regime, higher-order diffraction
is intrinsically limited by velocity selectivity, while for small pulse
durations losses into intermediate states appear. The dashed red lines
mark the optimal pulse duration.

lectivity increases with the order of the diffraction process.
Indeed, for nth-order diffraction the velocity spread associ-
ated with velocity-selectivity effects is proportional to 1/n
because the effective Doppler detuning is given in that case
by nωD = npK/M. For small pulse durations losses into the
intermediate states appear, especially into |g,±2h̄K〉 since it
is the least off-resonant intermediate state as shown by Fig. 7,
while for larger pulse durations the loss of the efficiency of
the diffracted population is mainly caused by velocity selec-
tivity. Again, there exists a pulse duration �τopt at which the
atoms are diffracted most efficiently (red dashed line). When
comparing these graphs, it seems that third-order diffraction
is less efficient than the first-order pulse.

In Fig. 9 we compare the efficiencies with optimal pulse
duration for the first-order (�τopt

∼= 8.8 μs) and third-order
beam splitter (�τopt

∼= 13.3 μs), as well as the Raman se-
quence introduced in Sec. II C as a function of the widths
of the initial wave function �℘. As already observed above,
the first-order beam splitter has a higher efficiency than its
third-order counterpart, which can be understood in terms of
velocity selectivity and loss to intermediate states. However, if
the targeted states are |e,±3h̄K〉, the third-order pulse has to
be compared to the sequence of three first-order pulses rather
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FIG. 9. Efficiency at optimal pulse duration for different widths
of the initial wave function �℘ for the first- and third-order beam
splitter as well as the sequence. Due to different regimes of pulse
durations the first-order beam splitter is less velocity selective than
its third-order counterpart. For small �℘ the third-order pulse is more
efficient than the sequence, which makes it an interesting alternative
for the diffraction of narrow wave packets like BECs.

than just the initial beam splitter. Indeed, the third-order pulse
shows high efficiency for small momentum distributions,
which exceeds the efficiency of the sequential application
of three individual pulses. Even though the efficiency of
the sequence could be improved by using Gaussian pulses
throughout the sequence instead of only for the initial beam
splitter, this would come at the cost of an even longer duration
of the whole sequence. Consequently, third-order diffraction
might be an interesting tool for the diffraction of wave packets
with a narrow momentum distribution like BECs, since it
allows one to reduce the complexity of the experiment. In
general, each transition of a sequence might introduce spu-
rious phase contributions [45], and using fewer pulses may
facilitate the suppression of some uncertainties connected to
frequency chirps [46–48]. Furthermore, the overall duration of
a single pulse can become shorter than that of a corresponding
sequence of pulses, which might be particularly appealing for
very compact setups [49] intended for real-world applications
[50].

IV. MIRROR PROCESSES

So far we have focused on the discussion of third-order
beam splitters and saw that they can be an alternative to
sequential Raman pulses. However, double-diffraction mirror
processes generally suffer higher losses to the intermediate
momentum state around vanishing momentum compared to
their single-diffraction counterpart so that their efficiency
drops significantly for broad momentum distributions [37].

To study the effect of a third-order double-diffraction
mirror pulse, we center the initial wave packet around the
momentum p0 = −3h̄K and define the efficiency through the
population in the interval around +3h̄K :

E (M) =
∫ 7h̄K/2

5h̄K/2
d pf |ψf (pf )|2. (16)
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FIG. 10. Efficiency E (M) for a third-order double-diffraction mir-
ror as a function of the width of the initial wave function �℘ and the
pulse duration �τ for a Gaussian pulse shape. The dashed line shows
the optimal duration used for the following analysis.

Moreover, we adjust the pulse area to a mirror pulse by
choosing A = π and perform the optimization in analogy to
Sec. III A. The resulting efficiency is shown in Fig. 10 as a
function of duration and initial momentum width.

While we observe again the effects of the Raman-Nath
regime for a short duration and velocity selectivity for a long
one, the details of the behavior are different from a beam
splitter. This fact becomes more obvious when we again deter-
mine the optimal duration �τ

(M)
opt = 17.97 μs (dashed line in

the figure) and compare for different momentum widths the
efficiency of beam splitter and mirror with their respective
optimal durations; see Fig. 11. Note that in our averaging
procedure to obtain �τ

(M)
opt large �℘ contribute equally so that

they are overemphasized. As a consequence, for a particular
width a different duration is preferable. Nevertheless, the mir-
ror process is significantly less efficient over the whole range
of investigated momenta and, similar to first-order diffraction,
most of the population is lost to the state around vanishing
momentum. Since these losses are similar to velocity selec-
tivity, first-order double-diffraction mirrors are more efficient
than their third-order implementation.

0.05 0.10 0.15 0.20
0.20

0.40

0.60

0.80

1.00

Δ℘/(�K)

E (M)

E3
±3

FIG. 11. Efficiency at optimal pulse duration for different widths
of the initial wave function �℘ for a third-order mirror (dashed
orange) compared to a beam splitter (solid blue). The mirror process
has a significantly lower efficiency than the beam splitter.
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FIG. 12. Space-time diagram of a third-order double Raman
Mach-Zehnder interferometer (a) and two corresponding interfer-
ence signals (b). The resonant paths through the interferometer are
represented by solid lines, the dashed off-resonant paths are removed,
e.g., by blow-away pulses. The wave-packet component ψup that has
propagated along the upper path is phase shifted by δφ with respect
to the component ψlow that propagated along the lower path, before
both interfere in the central exit port. The two exemplary interference
signals in panel (b) are simulated with a width �℘= 0.05h̄K and
generated by individually optimized beam-splitter and mirror pulses
(solid blue line) or by only optimizing the beam-splitter efficiency
(orange dashed line), using the same duration and set of optimization
parameters (α, β ) also for the mirror pulse, solely doubling the pulse
area. In the first case the amplitude A of the signal is larger, whereas
the contrast C is well below unity; see the numerical values in the
figure. In the second case, the preferable one, the amplitude drops,
but the contrast remains unity.

V. INTERFERENCE SIGNAL

The third-order beam splitters and mirrors described so far
have shown a higher velocity selectivity than their first-order
counterparts, even with the optimization of the pulse pa-
rameters (α, β ) discussed above. To investigate the potential
and applicability of such processes for atom interferometry,
we analyze as an example the idealized double-diffraction
Mach-Zehnder interferometer shown in Fig. 12(a), where
the spurious (dashed) paths associated with off-resonant
diffraction orders are disregarded, e.g., by the application
of blow-away pulses. Although off-resonant paths that result
from spurious first-order double Raman diffraction cannot be

trivially eliminated by blow-away pulses, they do not con-
tribute significantly to the interference signal, and we neglect
them in our approach. We therefore study solely the effect
of velocity selectivity and imprinted phases on the resonant
diffraction orders, while we neglect the overlap with spurious
paths in the exit port. The individual pulses are separated
by a time T during which both arms accumulate the phase
exp{−i[p2/(2mh̄) + ωeg]T }, where the first contribution de-
scribes the kinetic part and the latter accounts for the internal
degree of freedom. For double Raman diffraction, the phase is
the same for both arms and therefore cancels out.

We simulate the interferometer in analogy to Ref. [37] and
sequentially calculate the diffracted wave-packet components
ψup(p) and ψlow(p) evolving along the upper and lower path
by using Eq. (5) and the corresponding transition functions
G�τ (pf , pi ) for a beam splitter, a mirror, and a beam splitter.
Introducing a phase shift δφ, the interference signal in the
central exit port can be expressed as

I (δφ) =
∫ h̄K/2

−h̄K/2
d pf |ψup(pf ) eiδφ + ψlow(pf )|2

= A
2

(1 + C cos(δφ))

(17)

with the amplitude A and the contrast C. The amplitude
reflects spurious diffraction and can be derived through
A = max[I (δφ)] + min[I (δφ)], whereas the contrast C =
(max[I (δφ)] − min[I (δφ)])/A is determined by the asymme-
try of the wave-packet components that evolved along the
upper and lower path and asymmetrically imprinted phases.

We show in Fig. 12(b) an interference signal where we
used the optimal duration of the mirror and the optimal du-
ration of the beam-splitter pulses together with a momentum
width of �℘= 0.05h̄K (solid blue line). As expected from
using the respective optimal durations, we observe a signal
of large amplitude, although below unity. However, the con-
trast is imperfect, which we attribute to momentum-dependent
phases imprinted asymmetrically across each wave-packet
component. These phases occur because we use different
optimization parameters (α, β ) and durations for mirror and
beam-splitter pulses. Indeed, when performing the same anal-
ysis by using �τopt and the parameters (α, β ) obtained from
the optimization of the beam splitter also for the mirror,
only doubling the pulse area, the interference signal has per-
fect contrast; see the dashed orange line in in Fig. 12(b).
Unfortunately, the amplitude drops significantly, since these
parameters are not optimal for the mirror process, but other-
wise no phases are imprinted asymmetrically. To overcome
this issue, we do not perform an individual optimization of
beam splitter and mirror, but optimize the amplitude of the
interference signal using only one set of parameters (α, β ) for
both types of pulses that have the same duration and differ
only in their pulse area by a factor of two. The resulting am-
plitude is shown in Fig. 13 as a function of pulse duration and
momentum width. Even though below unity, the amplitude
reaches respectable values for a broad range of parameters.
Moreover, when we calculate the contrast C, we see that it is
unity for all durations and widths up to numerical precision.
Hence, this simple interferometer simulation demonstrates
that is it possible to preserve phase coherence and to observe
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FIG. 13. Amplitude A of the interference signal obtained from
the joint optimization of beam splitters and mirror with one set of
parameters (α, β ) and the same pulse duration. We observe for each
setting perfect contrast.

a perfect interference pattern, where only the atom number in
the exit ports of the interferometer is reduced due to velocity
selectivity and diffraction into off-resonant orders.

VI. CONCLUSIONS

Double Raman diffraction allows in principle for reso-
nant diffraction of odd orders, i.e., of order 2n + 1 with
n = 0, 1, 2, . . . . Higher diffraction orders come along with a
higher velocity selectivity than first-order pulses. Moreover,
higher intensities are necessary to overcome the intermediate
states to achieve the optimal diffraction efficiency. However,
when comparing third-order diffraction with a sequence con-
sisting of three first-order pulses we find that third-order
pulses diffract narrow momentum distributions like the ones
associated with BECs more efficiently. The efficiency of our
sequence, consisting of one Gaussian and two box-shaped
pulses, could be improved by using Gaussian pulses only but
at the cost of a significantly higher duration of the sequence.

In contrast to double Bragg, double Raman diffraction al-
lows a straightforward application of blow-away pulses, since
the atom changes its internal state for a momentum transfer
which is an odd multiple of h̄K . Besides this drawback, we
expect that a third-order double Bragg beam splitter shows
in principle a similar behavior of the diffraction efficiency.
However, due to issues caused by the additional couplings
inherent to double Bragg diffraction, it is reasonable to assume
that the overall efficiency will be lower than for its Raman
counterpart.

Third-order Raman mirrors can also be realized but suffer
further limitations like losses into the central state |g, 0〉, a
feature intrinsic to double-diffraction mirrors [37]. Since dou-
ble Raman mirrors do not change the internal state similar
to Bragg, one could in principle replace the mirror pulse
through Bragg diffraction of sixth order from a standing wave
to overcome such difficulties.

However, using already different pulse parameters for a
Raman mirror and beam splitters leads to a loss of contrast
caused by momentum-dependent phases imprinted asym-
metrically on both wave-packet components, so that the
replacement of a Raman mirror by Bragg diffraction in an in-

terferometer, besides the additional experimental complexity,
is subtle and requires a careful analysis. Nevertheless, using
the same pulse parameters for Raman mirror and beam split-
ters gives rise to a third-order double Raman Mach-Zehnder
interferometer with respectable signal and good contrast.

In addition to the possibility of higher-order diffraction,
the symmetry of double Raman pulses suppresses laser
phase noise. Thus, it can be applied within LMT sequences
together with Bragg diffraction or combined with Bloch
oscillations.

Hence, double Raman diffraction is a versatile tool for
LMT techniques with the same flexibility and limitations as
double Bragg diffraction. Not only does it occur naturally in
microgravity or horizontal setups, it can also be combined
perfectly with other LMT applications [23] to enhance the
sensitivity of atom interferometers.
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APPENDIX A: GENERAL EQUATIONS

In the following we discuss the differential equations for
double Raman diffraction in their most general form; i.e., we
do not focus on a specific resonance condition. A truncated
version can also be found in Ref. [51].

The differential equations are derived within a rotating
wave approximation [52] and the optically excited state is
eliminated by adiabatic elimination [53–55]. Moreover, the
equations are in an interaction picture with respect to the free
evolution of the atoms, and we assume that the laser phases
vanish. They read

ġn = i�(t ) e−i[ωD+ωeg−�ω+ωAC+(1+2n)ωK]t en+1

+ i�(t ) e−i[−ωD+ωeg−�ω+ωAC+(1−2n)ωK]t en−1, (A1a)

ėn+1 = i�(t ) e−i[ωD−ωeg+�ω−ωAC+(3+2n)ωK]t gn+2

+ i�(t ) e−i[−ωD−ωeg+�ω−ωAC−(1+2n)ωK]t gn. (A1b)
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Hence, the probability amplitudes of the ground state gn ≡
g(p + nh̄K ) and excited state en ≡ e(p + nh̄K ) form a system
of coupled differential equations. The coupling strength �(t )
is determined by the laser intensity and the pulse shape. The
frequency difference between ground state and excited state
is given by ωeg while the Doppler frequency ωD denotes the
deviation from a resonant momentum within a wave packet
and, thus, acts as a detuning. The recoil frequency is given by
ωK and the AC Stark effect by ωAC. The adjustment of the
laser frequency difference �ω allows one to perform resonant
transitions between certain momentum states. Inserting the
resonance condition Eq. (2) into Eq. (A1) leads for example
to first-order diffraction as discussed in Sec. II. A feature
of double compared to single diffraction is the possibility to
diffract into two directions simultaneously.

APPENDIX B: ENERGY SHIFTS
FOR BOX-SHAPED PULSES

Whereas we focus in the main body of our article on the
compensation of energy shifts for Gaussian pulses, we discuss
here briefly energy shifts that appear for third-order Bragg
diffraction performed with box-shaped pulses. While energy
shifts for higher-order single Bragg diffraction can be derived
through conventional adiabatic elimination of the intermedi-
ate states, the two counterpropagating pairs of light fields in
double Raman diffraction prevent a straightforward applica-
tion of the procedure [56], even though the technique can be
generalized [57] to our case using Floquet theory. Similarly,
we apply the method of averaging [58,59] that has already
proven useful for double Bragg diffraction [2] to provide the
modified pulse area and energy shifts for box-shaped pulses.

Inserting the resonance condition from Eq. (13) into the
system of differential equations given by Eq. (A1), leads with
v ≡ (. . . , en−1, gn, en+1, gn+2, . . .) and ωAC = 0 = ωD to the
coupled system

v̇ = i�0

(
H0 +

∑
ν �=0

eiν2ωKtHν

)
v, (B1)

that, for time-independent �(t ) = �0, consists of the first-
order contribution H0 and off-resonant couplings. The method
of averaging constitutes an approach to systematically elimi-
nate the time-dependent contributions Hν order by order of
the adiabaticity parameter �0/ωK to find an effective coupling
between the desired states. Since we are interested in third-
order processes, we have to perform this elimination up to
third order.

The internal states in v alternate and we find the dimen-
sionless coupling matrices

(Hν )n,m = eiδωKt (δn+1, mδ4−n, ν + δn−1, mδ4+n, ν )δ�, 0

+ e−iδωKt (δn+1, mδn+5, −ν + δn−1, mδn−5, ν )δ�, 1

(B2)

with the Kronecker symbol δn,m and � the remainder of
dividing n by two. The first line describes the transition
from the ground state to the excited state, while the sec-
ond line the transition from the excited state to the ground
state. The first order of the method of averaging, i.e., �0H0,
vanishes for the states of interest and the second given by
�2

0

∑
ν �=0 H−νHν/(2νωK ) vanishes as well for these transi-

tions. However, the third order can be calculated through

− �3
0

12ω2
K

∑
ν,σ �=0
ν+σ �=0

1

ν(ν + σ )
[H−ν−σ , [Hν,Hσ ]]

− �3
0

8ω2
K

∑
μ �=0

1

μ2
[Hμ, [H−μ,H0]] (B3)

and contributes. With Eq. (B3) it is possible to find an effective
model that directly couples g0 and e±3 through⎛

⎜⎜⎜⎝
ė−3

ġ0

ė+3

⎞
⎟⎟⎟⎠ = iωK

⎛
⎜⎜⎝

δ + 5�2
0

16ω2
K

− �3
0

32ω3
K

0

− �3
0

32ω3
K

− �2
0

4ω2
K

− �3
0

32ω3
K

0 − �3
0

32ω3
K

δ + 5�2
0

16ω2
K

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

e−3

g0

e+3

⎞
⎟⎟⎟⎠,

(B4)
where we have transformed into an interaction picture by
introducing a phase factor exp(iδωKt ) to the elements e±3.
We see an effective coupling −�3

0/(32ω2
K ) between different

states that causes transitions and corresponds to the effective
Rabi frequency. However, due to the asymmetry of the entries
on the diagonal that effectively correspond to energy shifts,
the Rabi-like oscillations are detuned. This detuning can be
compensated by adjusting the resonance condition through

δ = − 9�2
0

16ω2
K

. (B5)

If these shifts are compensated and the oscillation is resonant,
we find due to the three-level nature the pulse area

A =
√

2�3
0

32ω2
K

τ. (B6)
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