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Bragg-diffraction-induced imperfections of the signal in retroreflective atom interferometers
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We present a detailed study of the effects of imperfect atom-optical manipulation in Bragg-based light-pulse
atom interferometers. Off-resonant higher-order diffraction leads to population loss, spurious interferometer
paths, and diffraction phases. In a path-dependent formalism, we study numerically various effects and analyze
the interference signal caused by an external phase or gravity. We compare first-order single and double Bragg
diffraction in retroreflective setups. In double Bragg diffraction, phase imperfections lead to a beating due to
three-path interference. Some effects of diffraction phases can be avoided by adding the population of the outer
exit ports of double diffraction.
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I. INTRODUCTION

Light-pulse atom interferometry [1,2] has demonstrated
a great potential for precision measurements in both funda-
mental physics and more practical applications [3]. In this
context, atomic Bragg diffraction has become a versatile
tool for enhancing the sensitivity of atom interferometers
through techniques like sequential pulses [4–6] as well as
double [7–9] and higher-order diffraction [10–13]. Because
its efficiency crucially depends on the pulse duration, Bragg
diffraction favors an intermediate regime where velocity se-
lectivity does not dominate, but spurious diffraction orders
may occur [14–17]. In this article, we study these effects in
single and double Bragg interferometry. We examine not only
deleterious interferometer paths [18–22] but also phase errors
induced by imperfect atom-optical elements.

Due to the finite momentum spread of the atomic wave
function, there is a varying Doppler detuning across the
momentum distribution, which implies a loss of diffraction
efficiency. This behavior is known as velocity selectiv-
ity [14,23,24] and its effects are suppressed for short pulse
durations. In contrast to Raman diffraction [1,25], however,
(single) Bragg diffraction [26,27] from an optical lattice is not
a perfect two-level system, especially in the so-called Raman-
Nath (or Kapitza-Dirac) regime [28,29]. Therefore, diffraction
into off-resonant higher-order momenta can become rele-
vant [16,17,21,22]. Since velocity selectivity and spurious
higher-order diffraction are two competing effects, an inter-
mediate regime is advised [28,30]. For a careful assessment of
such a regime, we not only focus on resonant first-order single
Bragg diffraction, but also study double Bragg diffraction
from two optical lattices propagating in opposite directions.
Both atom-optical diffraction mechanisms have three major
effects of imperfections: (i) the loss of population on desired
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interferometer paths, (ii) the emergence of spurious paths, and
(iii) additional phase errors.

Phases observed in an atom-interferometric signal that
arise from light-matter interaction and differ from those that
would be induced by ideal laser pulses are called diffrac-
tion phases. Any detuning introduces such phases, e.g., ac
Stark shifts in Raman diffraction [25] or couplings to ad-
ditional and off-resonant light fields causing the two-photon
light shift [31–33]. Resonant higher-order diffraction in large-
momentum transfer techniques also gives rise to additional
phases [11,28,34,35], since such a configuration constitutes
only an approximate two-level system and intermediate mo-
mentum states are relevant. Additional contributions to the
interferometer phase arise when atoms drop during the pulses.
These phase shifts depend on the pulse duration and grav-
ity [36–39] and can be calculated perturbatively in a two-level
system. In this context, they can be interpreted as pulse
imperfections and diffraction phases as well. Because even
resonant first-order Bragg diffraction is inherently not a two-
level system, population can be lost to higher off-resonant
diffraction orders [15,16,21,30]. Such processes are of partic-
ular relevance for double Bragg diffraction, where a central
path arises with significant population [40]. Consequently,
three-path interference [20,41] becomes important for dou-
ble Bragg diffraction, but is also observed in double Raman
diffraction [22]. While losses to higher diffraction orders in
double Bragg diffraction were at the focus of Ref. [15], the
study focused on the diffraction efficiency. Only contrast and
amplitude of two-path interference was studied and the effects
of diffraction phases were not discussed in detail.

We extend these studies by combining multiple sources of
errors to obtain a more complete picture. For first-order single
Bragg diffraction, we show that there is indeed loss of atoms,
but effectively no spurious paths contribute to the interference
signal of a Mach-Zehnder interferometer in an intermediate
regime. Due to the symmetry of the atom-optical interactions
in such an interferometer, all phase imperfections cancel out.
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Including a gravitational acceleration during the pulse, this
symmetry is broken and we observe phases that arise from the
finite pulse durations and acceleration. Similar to the Raman-
Nath regime [20,42], in double Bragg diffraction there is a
significant contribution of a third path to the interference and
a beating pattern arises. We observe an asymmetric phase shift
between the two outer exit ports (which has been experimen-
tally observed in Refs. [7,22]) and show that it cancels if
both populations are added. In first-order double diffraction,
effects of gravity cannot be trivially compensated by chirping,
since in retroreflection both lattices are accelerated in opposite
directions. One possible way to overcome these issues is to
add a third laser frequency [22,43], but at the cost of laser
phases contributing to the interference signal. In contrast,
double diffraction in a retroreflective geometry is independent
of laser phase noise to lowest order. However, it is limited
to microgravity or quasihorizontal configurations [7,44]. We
observe minimal gravitational effects in an experiment with
the mirror at the apex.

Our numerical simulations are built on a software suite
based on a path-dependent description of light-pulse atom
interferometry. It can be used to model atom interferometers
in linear gravity including finite pulse durations and arbitrary
pulse envelopes, velocity selectivity, as well as higher-order
diffraction.

The structure of the article is as follows: We introduce our
path-based approach to the description of light-pulse atom
interferometers in Sec. II. Excluding gravity from the discus-
sion, we investigate in Sec. III the population of the individual
paths of Mach-Zehnder interferometers that contribute to the
interference signal as well as the overlap of the wave functions
that propagated along the different paths. This way, we are
able to examine phase contributions that arise from imper-
fect beam splitters and mirrors, study the interference signal
and analyze the beating pattern that arises in double Bragg
diffraction. In Sec. IV, we extend our results to nonvanishing
gravitational acceleration and observe the effects of phase
errors on the interferometer signal. We conclude in Sec. V and
summarize in the Appendix the numerical approach involved
in describing the diffraction process.

II. MODEL

Light-pulse atom interferometers consist of a sequence of
light pulses inducing diffraction from optical gratings and
that sandwich the center-of-mass evolution in an external
potential. We describe the latter by the operator Û (t ) =
exp(−iĤ0t/h̄), where the Hamiltonian Ĥ0 = p̂2/(2M ) + Maẑ
includes the projection a of the gravitational acceleration on
the direction of the diffracting light beams. Here, M denotes
the atomic mass, as well as p̂ and ẑ its momentum and po-
sition, which obey the commutation relation [ẑ, p̂] = ih̄. The
jth diffraction process is described by the operator Ĝ( j) in an
interaction picture with respect to Ĥ0, initiated at the begin-
ning of the pulse. Throughout this article, we assume Gaussian
light pulses of width �τ that induce diffraction of the atomic
wave packets and solve numerically the Schrödinger equa-
tion describing different diffraction mechanisms. Details are
given in the Appendix.

FIG. 1. (a) Transition function |G(p′, p)|2 of a SBD beam splitter
with pulse duration �τ = 20μs, connecting the initial momentum
p to the final momentum p′. Only transitions with a momentum
difference that is an integer multiple of h̄K occur, as indicated
by the antidiagonals with nonvanishing diffraction probability. It is
therefore possible to label the central momenta by integer numbers
k and l (blue axis labels), where |l − k| is proportional to the mo-
mentum transfer and denotes the diffraction order. (b) Schematic of
the diffraction process: Different incoming momenta denoted by k
correspond to different slopes in a space-time diagram and impinge
on an optical grating of duration τ (red). They are diffracted into
outgoing momenta l that become spatially separated over the course
of time.

The operator sequence ÛAI describing an atom interfer-
ometer with three pulses j = 1, 2, 3 reads in the Schrödinger
picture

ÛAI = Û (td)Û †(t3)Ĝ(3)Û (t3)Û †(t2)Ĝ(2)Û (t2)Û †(t1)Ĝ(1)Û (t1),
(1)

where td describes the time of detection and t j the beginning of
each pulse. All unitary transformations between different pic-
tures have been absorbed into the evolution operators Û (t j ).
The operator Û (td) leads to a global phase in momentum
representation and a momentum shift of the output by −Matd.
Since the detection is performed by measuring all atoms in a
certain exit port defined by a momentum interval, the phase
is irrelevant and the shift can be absorbed in the definition
of the exit port. Hence, we can ignore the action of Û (td) in
the following, but are restricted to momentum representation.
Calculating the output wave function ψout(p′) after diffraction
from an input ψin(p), we introduce in analogy to Ref. [15] the
transition function in momentum representation G( j)(p′, p) ≡
〈p′|Ĝ( j)|p〉 via

ψout(p′) =
∫

G( j)(p′, p) ψin(p) d p. (2)

In Fig. 1(a) we display as an example the probability for a
transition from input momentum p to output momentum p′
obtained from a numerical solution of single Bragg diffraction
described by the Schrödinger equation in the Appendix. The
clear structure of antidiagonals that are separated by the recoil
momentum h̄K shows distinct diffraction orders. We observe
resonant processes as indicated by the black arrow high-
lighting |0〉 → |h̄K〉, but also off-resonant ones |0〉 → |−h̄K〉
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FIG. 2. Diffraction mechanisms and interferometer geometries of SBD (top row) and DBD (bottom row). (a) Dispersion relations
associated with the diffraction process. If the frequency difference ωb − ωa = ωK between the blue and red counterpropagating lasers holds,
an atom at rest experiences resonant first-order diffraction as shown by the blue and red solid lines. The dashed lines indicate off-resonant
processes for SBD that correspond to higher diffraction orders. For DBD, two processes occur simultaneously in opposite directions. In
this case, the momenta associated with first order are now coupled resonantly and off-resonantly. (b) Space-time diagrams for an incoming
momentum k = 0. The blue lines show the resonant momenta, the dotted gray lines off-resonant higher-order diffraction. For SBD we expect
two outgoing resonant paths with l = 0 and l = 1. For DBD there are in principle three outgoing resonant paths with l = 1, l = 0, and l = −1.
However, for an ideal beam splitter, the central branch is not populated. (c) Mach-Zehnder interferometer sequences for a vanishing incoming
momentum with beam-splitter pulses at times t1 and t3 and a mirror pulse at time t2. The pulses have a duration of τ and are separated by a
time T . Each path through the interferometer is uniquely specified by a triple of diffraction indices (m, l, k), connected to different momenta.
The desired paths, which are generated by resonant first-order diffraction, are drawn with blue lines and spurious ones with dashed lines. Each
exit port is chosen via a spatially resolved measurement.

indicated by the gray arrow. The physical reason for this
discrete structure is explained in the context of Fig. 2.

When we calculate the momentum representation
〈p′|Û †(t j )Ĝ( j)Û (t j )|p〉 of the sandwiched transition operators
that arise in Eq. (1), we find

exp

(
i
p − p′

2h̄
at2

j + i
p′2 − p2

2Mh̄
t j

)
G( j)(p′ − Mat j, p − Mat j ).

(3)

Hence, the dropping of the atoms prior to diffraction is taken
into account by the argument p − Mat j .

Since input and output momenta are separated by multi-
ples of h̄K , we introduce p′ = p0 + l h̄K and p = p0 + kh̄K ,
where k, l ∈ Z. The integers l, k are also shown in Fig. 1(a)
on the top and right in blue. The difference |l − k| defines the
diffraction order. In general, the diffraction process produces
a superposition of momentum states which, in turn, leads to a
separation of atomic trajectories in position space upon time
evolution. Consequently, the space-time diagram in Fig. 1(b)
shows different diffraction orders.

Using the labels k, l , we rewrite Eq. (3) as

eiϕ( j)
l,k G( j)(p0 + l h̄K − Mat j, p0 + kh̄K − Mat j ), (4)

with phase

ϕ
( j)
l,k (p0) = (l2 − k2)ωKt j + (l − k)ωD(p0)t j + (k − l ) 1

2 Kat2
j .

(5)

Here, we introduced the Doppler detuning ωD(p0) = p0K/M
and the recoil frequency ωK = h̄K2/(2M ), respectively.

We now calculate the time evolution of the whole
interferometer sequence 〈p0 + mh̄K| ÛAI |p0〉 = Um(p0) in
momentum representation. Note that the index m denotes the
exit port. We arrive at the expression

Um(p0) =
∑
k,l

eiϕm,l,k G(3)
m,l (p0 − Mat3)

× G(2)
l,k (p0 − Mat2)G(1)

k,0(p0 − Mat1). (6)

The sum over k and l gives rise to a superposition of dif-
ferent paths that end in the same exit port m. We have
used the abbreviation G( j)

l,k (p0 − Mat j ) ≡ G( j)(p0 + l h̄K −
Mat j, p0 + kh̄K − Mat j ) to highlight the labels of the initial
and final momentum and introduced the phase

ϕm,l,k = ϕ
(3)
m,l + ϕ

(2)
l,k + ϕ

(1)
k,0 (7)

that is associated with a path.
We assign a wave function ψm,l,k (p0 + mh̄K ) to each path

(dropping +mh̄K in the argument in the following), which is
identified by the tuple (m, l, k) ∈ Z3 and has the form

ψm,l,k (p0) = eiϕm,l,k G(3)
m,l (p0 − Mat3)G(2)

l,k (p0 − Mat2)

× G(1)
k,0(p0 − Mat1)ψin(p0), (8)

where ψin(p0) denotes the initial wave function in momen-
tum representation. Throughout this article we assume for the
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initial wave function a Gaussian distribution

ψin(p0) ∼ exp[−(p0 − p̄0)2/(4�℘2)] (9)

of width �℘	 h̄K around the central momentum p̄0. The
function ψm,l,k (p0) is associated with the subsequent diffrac-
tion processes leading to accumulated momentum transfers
corresponding to k, l , and m, and describes the propagation
along a unique path through the interferometer. In fact, with-
out gravity and for an initially vanishing central momentum,
p̄0 = 0, the accumulated momentum transfer at each stage
coincides with the central momentum of the wave function
at that time.

In light-pulse atom interferometers, the momentum trans-
fer is typically induced by diffraction from optical light fields.
For single Bragg diffraction (SBD), one optical grating con-
sisting of two counterpropagating lasers causes diffraction
as shown in the top of Fig. 2(a): For instance, the atom
absorbs light from a blue laser beam of frequency ωb = ckb

and experiences an associated momentum kick h̄kb. The coun-
terpropagating (red) laser beam leads to stimulated emission
of frequency ωa = cka and a decay back to the ground state.
A momentum kick h̄ka in the same direction is associated
with this transition. Hence, the overall momentum h̄K ≡
h̄kb + h̄ka is transferred. The frequency difference between
the lasers ωb − ωa = �ω determines the resonant diffraction
order based on energy and momentum conservation. Here,
we focus on resonant first-order diffraction. Depicted is a
resonant transition between the momentum states |0〉 and
|h̄K〉. The corresponding resonance condition �ω = ωK for
such a first-order process shows that the absorbed energy
corresponds exactly to the gained kinetic energy. The resonant
momenta are connected by solid arrows, whereas the off-
resonant higher-order diffraction is drawn as dashed arrows.
This effective two-photon process is discussed in more detail
in the Appendix that also contains the corresponding set of
differential equations.

The same principle applies to double Bragg diffraction
(DBD) induced by adding a second optical grating, for which
the direction of the two lasers is reversed [7–9]. Both gratings
lead to diffraction into opposite directions, as shown in the
lower part of Fig. 2(a). Each pair induces a resonant coupling
of two momenta in one direction, whereas the opposite mo-
mentum is coupled off-resonantly. The respective differential
equations for DBD are also provided in the Appendix.

The resonance condition directly defines the preferred in-
coming and outgoing momenta, for which we use the labels
k and l . The choice �ω = ωK depicted in the top of Fig. 2(a)
for SBD corresponds for an incoming momentum k = 0 to
diffraction into the orders l = 0, 1, as shown in the top of
Fig. 2(b) by blue lines. Dashed gray lines denote off-resonant
higher diffraction orders. The same resonance condition in
DBD gives rise to resonant momenta; the incoming momen-
tum k = 0 is resonantly connected to l = ±1, 0, depicted in
the lower part of Fig. 2(b). Off-resonant higher-order pro-
cesses such as l = ±2 are suppressed.

If off-resonant orders can be neglected, SBD can be inter-
preted as an effective Rabi oscillation between two resonant
momenta. The duration, i.e., the pulse area of the interac-
tion determines whether an equal superposition of momenta
is generated, or the population of the momentum states is

inverted. The former is referred to as beam splitter or π/2
pulse, the latter as mirror or π pulse. In contrast, the effective
Rabi oscillations in DBD are those of a three-level system. A
beam splitter corresponds to the generation of a superposition
of momenta ±1. A mirror corresponds to the transition from
k = ±1 to l = ∓1. The definition of the pulse area is provided
in the Appendix.

With these atom-optical elements we build a Mach-
Zehnder atom interferometer, which consists of a π/2 pulse
that generates a superposition of two paths, a redirecting mir-
ror pulse, and a final π/2 pulse that recombines the two paths
to observe interference. Figure 2(c) shows such an interfer-
ometer for both SBD (top) and DBD (bottom). The resonant
paths are drawn by blue lines. The most relevant off-resonant
diffraction orders are denoted by dashed gray lines.

The figure shows many off-resonant paths exiting the in-
terferometer with m = 0. To prevent the detection of most of
those paths, we place a detector at a certain position after
the detection time td, as highlighted by the detector symbol.
This combination of momentum-dependent and position-
dependent detection at intermediate times leads to a cleaner
signal. However, since the paths that end in the detector can be
associated with a tuple (m, l, k), we can still use the formalism
developed above, where we ignored Û (td). The final wave
function is a superposition of all the wave functions ψm,l,k

that end in the detector in the figure. Since no state labeling
is possible for Bragg, in contrast to Raman [18], we assume
a spatially resolved measurement of the exit ports. Thus, all
interfering wave functions are defined by m as well as l + k,
which respectively characterize the central momentum and the
central position after the last beam splitter. The interferometer
times T that we are primarily interested in will typically guar-
antee that the spatial separation between wave functions with
different values of l + k, which is proportional to (h̄K/M )T , is
larger than the size of the atomic cloud. Moreover, the possible
overlap of one of the main ports and a spurious port with a
momentum differing by a multiple of h̄K can be avoided by
adjusting the time until detection, but would in any case give
no coherent contribution to the interferometric signal.

For SBD, the upper resonant path reads (0,0,1) and the
lower resonant path (0,1,0) which are indicated by blue lines
in the top of Fig. 2(c). For example, the gray dotted off-
resonant paths (0,−1, 2) and (0, 2,−1) are also detected
(since m = 0 and l + k = 1) and a result of the imperfect
nature of higher-order diffraction. We now introduce the times
t j = ( j − 1)(T + τ ) for j = 1, 2, 3, where τ is the overall
duration of the diffracting pulses and T the interrogation time
of the interferometer. We find with the help of Eq. (7) the
phase difference

ϕ0,0,1 − ϕ0,1,0 = −Ka(T + τ )2 (10)

associated with the two resonant paths. It can be connected
to the usual phase measured by gravimeters. However, note
that the transition functions G( j)

l,k may introduce additional
phases to ψm,l,k that might depend on the momentum. We will
analyze their effect in the sections below.

In DBD, the two resonant paths are (0,−1, 1) and
(0, 1,−1), as shown in the bottom of Fig. 2(c). The phase
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difference associated with these paths is

ϕ0,−1,1 − ϕ0,1,−1 = −2Ka(T + τ )2, (11)

but further contributions may arise due to the phases of the
transition functions G( j)

l,k . This phase difference captures one
feature of DBD: the enhancement of sensitivity caused by the
factor of two compared with SBD. Off-resonant paths m = 0
and m + l + k = 0 are also detected, for example (0,−2, 2)
and (0, 2,−2). Moreover, the detected center path (0,0,0)
plays a special role. Even though in an ideal and resonant
three-level system it is not populated, it still has to be con-
sidered a quasiresonant path.

III. EFFECTS FOR VANISHING GRAVITY

To simplify the discussion, we first study the interfer-
ence signal generated by resonant first-order diffraction for
vanishing gravity, that is a = 0. Already in this case, we
observe some key features of imperfect diffraction and main
differences between SBD and DBD. We solve the transition
functions in momentum representation based on the differ-
ential equations provided in the Appendix for both SBD and
DBD. For that, we assume Gaussian pulses of variable tempo-
ral width �τ that is the same for all three diffracting pulses.
For all simulations, we use initial momentum widths �℘ that
are comparatively large for experiments with Bose-Einstein
condensates and are detailed in the respective figures. How-
ever, it is wide enough to observe significant effects from
velocity selectivity.

A. Exit port contribution of individual paths

To characterize the influence of the individual paths
through the interferometer, we define the contribution Pm,l,k

of path (m, l, k) to port m by

Pm,l,k =
∫

|ψm,l,k (p)|2d p. (12)

The limits of integration are chosen ±h̄K/2 around the center
of the wave packet ψm,l,k from Eq. (8). For the case of SBD,
we observe in Fig. 3(a) a decreasing population for increasing
durations �τ , i.e., in the Bragg regime. The parameters for our
simulations are provided in the Appendix. The reason for this
decrease is velocity selectivity: the atoms on the wings of the
momentum distribution are Doppler detuned from resonance,
an effect more prominent for decreasing Rabi frequencies. On
the other hand, small times correspond to the Raman-Nath
regime, where the diffraction is governed by loss to higher
orders. Moreover, we observe P0,1,0 = P0,0,1 so that both paths
contribute equally to the signal. Population of higher-order
paths P0,−1,2 and P0,2,−1 as indicated by the dotted lines in
Fig. 2(a) is completely negligible. The reason is obvious: to
end in the exit port, more than one subsequent higher-order
diffraction process is necessary, which drastically reduces its
probability. Therefore, only the two resonant paths lead to a
relevant contribution, if the interrogation time T as well as the
detection time td are sufficiently large to separate different exit
ports.

For DBD, we observe in Fig. 3(b) qualitatively the
same behavior for small and large times. However, in the

FIG. 3. Population Pm,l,k for each individual path that ends in exit
port m. The legends on the top right show the respective color-coded
path and can be identified with the indices shown in Fig. 2(c). The
desired paths are drawn with continuous lines, spurious paths with
dashed lines. Panel (a) shows that for SBD only the two resonant
paths contribute to the interference signal and they have the same
population. For short times (in the Raman-Nath regime), population
is lost to spurious paths which, however, do not end in the exit port.
For long times (in the deep Bragg regime), population is lost due
to velocity selectivity. Panel (b) shows that the situation differs for
DBD. While both desired branches are symmetrically populated and
again show a decreasing population in the Bragg regime, the behavior
is richer in the Raman-Nath regime. Moreover, velocity selectivity
leads to a significant population of the central path (dotted line) that
ends in the central exit port. For these simulations we use an initial
Gaussian momentum width of �℘= 0.05h̄K and an interferometer
time of T = 0.1 s.

quasi-Bragg regime at intermediate durations where the off-
resonant coupling of resonant states becomes increasingly
important, a richer structure emerges. Nevertheless, the con-
tributions of the resonant paths to port m = 0 are still the
same, i.e., P0,−1,1 = P0,1,−1. For the outer exit ports m = ±1
(not shown in the figure), the contribution of the upper path
to the lower port is equal to the contribution of the lower
path to the upper port P1,−1,1 = P−1,1,−1. Similarly, we find
P−1,−1,1 = P1,1,−1. This effect is a direct consequence of ve-
locity selectivity: For example, the upper path ending in the
upper exit port has three changes of momentum, whereas the
lower path only has two changes in momentum, each one
associated with a velocity selection.

The contributions P0,−2,2 and P0,2,−2 of spurious paths to
the central exit port are negligible for the same reason as in
SBD: two higher-order processes are necessary, as indicated
in Fig. 2(c) by dotted lines. However, in contrast to SBD,
the contribution P0,0,0 of the central path is significant and
must be included. This path is not off-resonant, but only
depopulated, since it is part of the three-level system.
However, for long velocity-selective pulses, an increasingly
important population remains on the central path, as shown in
Fig. 3(b) by the dotted line. As a consequence, there are three
paths contributing to the interference signal.
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B. Overlap of individual paths

The interference signal in the exit ports is not only deter-
mined by their contribution, but also by the overlap of the
individual wave functions ending in a particular exit port. In
SBD, we saw that only two paths yield significant population.
To observe a phase variation in the signal, we artificially
imprint the external phase ±ϑext/2 onto each one of them.
Furthermore, we assume no gravity, so Eq. (10) [and Eq. (11)]
vanish. Hence, the wave function in momentum representation
takes the form


m(p) = eiϑext/2ψm,0,1 + e−iϑext/2ψm,1,0. (13)

Thus, we write the interference signal Im = ∫ |
m(p)|2d p in
exit port m as

Im = Pm,1,0 + Pm,0,1 + Am cos (ϑext − αm), (14)

with the populations from Eq. (12) discussed above. Here, we
define the overlap between two paths∫

ψ∗
m,0,1ψm,1,0 d p = 1

2
Am exp (iαm), (15)

with amplitude Am that leads to contrast Am/(Pm,1,0 + Pm,0,1).
The phase of the overlap αm will be discussed in the sec-
tion below. As we see in Fig. 4(a), the amplitude of the overlap
decreases due to velocity selectivity and is the same in both
exit ports, i.e., A0 = A1. When we recall from Fig. 3(a) in
addition that P0,1,0 = P0,0,1, it is evident that the contrast is the
same in both exit ports. Because velocity selectivity acts both
on Am and Pm,1/0,0/1, the contrast for port 0 is unity throughout
all regimes.

As shown above, in DBD three paths contribute sig-
nificantly to the exit ports. We again introduce a varying
interference signal by adding a phase factor to the outer paths,
but none to the central path. Hence, a superposition


m(p) = eiϑext/2ψm,−1,1 + ψm,0,0 + e−iϑext/2ψm,1,−1 (16)

is detected and leads to the signal

Im = Pm,−1,1 + Pm,0,0 + Pm,1,−1 + Am cos (ϑext − αm)

+ B(+1)
m cos

(
ϑext

2
− β (+1)

m

)
+B(−1)

m cos

(
ϑext

2
+β (−1)

m

)
.

(17)

Due to the three-path nature, it features two additional beating
terms compared with SBD. The overlap of outer paths that
correspond to the ideal situation arises in analogy to SBD and
is defined as∫

ψ∗
m,−1,1ψm,1,−1d p = 1

2
Am exp (i αm). (18)

The overlap of the central spurious path with the outer paths
is given by∫

ψ∗
m,∓1,±1ψm,0,0 d p = 1

2
B(±1)

m exp
[

i β (±1)
m

]
, (19)

where B(±1)
m is the respective amplitude and β (±1)

m its phase,
discussed in the section below.

For a vanishing population of the central path (e.g., caused
by some type of blow-away scheme), only the first line of

FIG. 4. Moduli Am and B(±1)
m of the overlap in each exit port m

of the wave functions that propagated along different paths. While
Am corresponds to the overlap of the two desired paths, B(±1)

m is the
overlap between one spurious and one desired path. The legend on
the right connects each overlap to those two paths and to an exit port
through a color code. The gray lines give the overlap of other panels
for reference. Panel (a) shows that the overlap of the two paths in
both exit ports is the same for SBD. Similar to the populations from
Fig. 3, we observe effects of the Raman-Nath regime and velocity
selectivity. Panel (b) shows an analog behavior for the overlap of the
two desired paths in DBD. Note that the modulus of the overlaps in
the outer exit ports is the same, i.e., A−1 = A1. However, in DBD we
also observe a significant overlap between the central and the outer
paths in the outer exit ports; see panels (c) and (d). Such spurious
overlaps are strongly suppressed in the central exit port, see panel (e).
For these simulations we use an initial Gaussian momentum width of
�℘= 0.05h̄K and an interferometer time of T = 0.1 s.

Eq. (17) with Pm,0,0 = 0 gives rise to the signal. We ob-
serve in Fig. 4(b) that the amplitudes Am display the typical
velocity-selective behavior for long durations and loss to
higher diffraction orders for short durations. Moreover, the
overlap in the outer exit ports is the same, i.e., A1 = A−1. In
analogy to SBD, we also observe A0 ≈ A1 + A−1, where de-
viations occur primarily in the Raman-Nath regime. It already
gives a first hint that the sum of both outer exit ports plays
the role of the second exit port in SBD, as one would naively
expect from a three-level system.

In the previous section we observed that the central path
becomes important for long durations, due to an increase of
velocity selectivity. When we include it in the description, two
additional terms arise that oscillate with ϑext/2 and lead to
a beating with 4π periodicity, see Eq. (17). This periodicity
has also been observed in Ref. [22]. Even though there is a
massive increase in Pm,0,0 for long durations, Figs. 4(c)–4(e)
shows the overlap between the spurious central path and the
intended outer paths displays no such behavior. It can be
explained as follows: the population not diffracted by the first
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FIG. 5. Moduli of overlaps C (±)
n including the higher-order paths

ψ0,∓2,±2 and ending in exit port 0 on a logarithmic scale and in the
Raman-Nath regime. The diagrams on the right connect each plot to
the corresponding two paths and exit port through a color code. Panel
(a) shows the overlap of the higher-order paths with desired ones,
while panel (b) shows those with the central path. In contrast, panel
(c) shows the overlap of both higher-order paths. The overlap of the
two desired paths are drawn in gray for comparison. As expected,
all overlaps including higher-order paths are magnitudes smaller
outside the Raman-Nath regime. Thus, in the Bragg regime, their
contribution can be neglected. We used �℘= 0.05h̄K and T = 0.1s.

pulse in the interferometer stems from the outer wings of the
momentum distribution. When the diffracted parts of the res-
onant paths are brought to interference with the central path,
they have different momenta. Therefore, they do not overlap.
As a consequence, the central path predominantly acts as a
background population Pm,0,0 to the exit ports and acts similar
to an incoherent contribution. As such, it leads to a loss of
contrast. To remove such a background, one could project on
narrower momentum intervals defining the exit port, or apply
some sort of blow-away scheme.

Even though much smaller than the background popula-
tion, the overlap of the spurious path is not vanishing. We
observe in Figs. 4(c) and 4(d) that the amplitude of the beating
in the outer exit ports is larger than the one in the central
port, shown in Fig. 4(e). For the central exit port, the spurious
amplitudes are small but symmetric, e.g., B(+1)

0 = B(−1)
0 . This

phenomenon does not occur in the outer exit ports, where the
amplitudes displayed in Fig. 4(d) differ slightly from those
shown in Fig. 4(c) for short durations.

We define in analogy to Eq. (19) the overlap of higher-
order paths with the resonant ones as∣∣∣∣

∫
ψ∗

0,∓2,±2ψ0,−n,n d p

∣∣∣∣ = 1

2
C(±)

n , (20)

where again m = 0 denotes the exit port and n = 0,±1,±2.
Figure 5 shows the results on a logarithmic scale where we

focus on the Raman-Nath regime, i.e., short pulse durations.
We compare the overlaps of higher-order paths to those of the
desired paths from Fig. 4(b), which is displayed as a gray line.
The overlaps of higher-order paths with the desired ones are
all of the same order, as can be seen in Figs. 5(a) and 5(b). The
overlap between both higher-order paths is shown in Fig. 5(c)

FIG. 6. Phase θl,k of the transition function Gl,k (p = 0). The top
row [panels (a) and (b)] shows the results of the relevant transition
elements of a beam splitter, while the bottom row [panels (c) and (d)]
shows the results for a mirror pulse. The colors can be identified with
the matrix elements for resonant Rabi oscillations of a two-level sys-
tem in SBD given in the top right corners, which corresponds to the
elements Gl,k (0) with l, k = 0, 1. For DBD the colors are identified
with the matrix elements for generalized resonant Rabi oscillations of
a three-level system, which corresponds to the elements Gl,k (0) with
l, k = −1, 0, 1. We observe for large pulse durations, i.e. in the deep
Bragg regime, that the phases converge to those expected from res-
onant Rabi oscillations in a two- or three-level system, respectively.
There are, however, deviations in the Raman-Nath regime.

and orders of magnitude smaller, as expected from our discus-
sion of Sec. III A. However, all those overlaps only contribute
significantly for extremely short pulse durations, i.e., in the
Raman-Nath regime. Consequently, they can be ignored for
an operation with pulses in the Bragg and quasi-Bragg regime
as highlighted by the logarithmic plot.

C. Influence of phase imperfection

So far, we regarded only the modulus of the overlap to
describe visibility and beating. However, the phase induced
by imperfect mirrors and beam splitters may also influence the
signal. For the case of SBD, it is encoded into αm. However,
as we see in Fig. 7(a), the phase of the overlap in the exit
ports 0 and 1 is independent of the regime. Moreover, the
phase between the exit ports is only shifted by α0 − α1

∼= π as
expected from an ideal two-level system. In fact, no spurious
phase is observed in a SBD Mach-Zehnder interferometer that
arises from beam-splitter imperfections.

To explain this observation, we study the phase imprinted
by the individual diffracting elements. For that, we consider
the phase

θl,k ≡ arg{Gl,k (p = 0)} (21)
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FIG. 7. Phase of αm and β (±1)
m of the overlap in exit port m.

They correspond to phase difference accumulated during the prop-
agation along different paths. While αm corresponds to the phase
difference between two desired paths, β (±1)

m is the phase difference
between one spurious and one desired path. The diagrams on the
right connects each phase difference to the corresponding two paths
and exit port through a color code. Panel (a) shows that in SBD
the phase difference between the two paths is independent of the
duration of the pulse. Moreover, both ports are phase shifted by
π as expected. While one also observes in panel (b) an expected
phase shift of π between the central exit port and the outer ones in
DBD in the Bragg regime, additional but symmetric phases arise in
the Raman-Nath regime. The phases that arise from an interference
with the spurious central path are shown in panels (c)–(e) and show
that additional phase contributions have to be taken into account in
the beating contributions. For these simulations we used an initial
Gaussian momentum width of �℘= 0.05h̄K .

of the transition function Gl,k for p = 0. For a SBD beam
splitter, the phases are plotted in Fig. 6(a), for a mirror in
Fig. 6(c). The elements of an ideal beam splitter and mir-
ror matrix are shown in the top right of each panel and are
encoded by the same color as the phase extracted from the
numerical simulations. For long pulse durations (i.e., in the
Bragg regime), we recover the ideal phases from a perfect
two-level system and observe the phase π/2 when diffracted.
In the Raman-Nath regime, we see deviations. However, the
phases of the off-diagonal elements always agree and so do
those of the diagonal elements. For exit port 0 of a Mach-
Zehnder interferometer, the upper path is diffracted by the
lower left matrix element and by the mirror. The lower path is
diffracted by the mirror and by the upper right matrix element.
Because the same phases are imprinted on the off-diagonal,
both paths acquire the same spurious phase so that it cancels
in the interference signal. A similar observation is made for
p 
= 0, so that averaging over all momenta does not lead to an
additional phase or loss of contrast.

In DBD, the phases of the matrix elements in Figs. 6(b)
and 6(d) still converge to those of a perfect three-level system

in the Bragg regime and display some symmetry. On the upper
path, a blue beam splitter, a purple mirror and a green beam
splitter diffract into the central exit port. The same is true for
the lower branch. As a result, we expect no observed spurious
phase shift in the interference signal, which coincides with
α0 = 0 in all regimes from the numerical simulation of the
overlap in Fig. 7(b).

However, in exit port +1, the upper branch is diffracted
by a blue beam splitter, a purple mirror and a purple beam
splitter again, whereas the lower branch is diffracted by a blue
beam splitter, a purple mirror and an orange beam splitter.
In this case, spurious phases are not imprinted symmetrically
anymore, which can be observed in Fig. 7(b). Consequently,
the influence of the spurious phase should reflect itself in the
outer exit port. For exit port −1 the role of the last beam
splitter is inverted, so we expect an opposite phase in com-
plete agreement with Fig. 7(b). In fact, we find α+1 = −α−1,
which implies that the interference patterns of the outer exit
ports are shifted in opposite directions. Moreover, we find
α+1 − α−1

∼= 2π in the Bragg regime which shows that the
average differential phase of the outer exit port is shifted by π

with respect to the central one.
For the spurious paths and the three-path interference

pattern, similar considerations apply. Whereas the central
path is symmetric with β

(+1)
0 = β

(−1)
0 (similar to α0 = 0) as

shown in Fig. 7(e), for other parts we observe the contribution
β

(±1)
+1 − β

(±1)
−1

∼= π in the Bragg regime, which is plotted in
Figs. 7(c) and 7(d).

D. Mach-Zehnder interference signal

With the discussion of the amplitude and the phase of the
overlap, we are in the position to describe the whole inter-
ference signal generated by resonant first-order diffraction.
For SBD, only two paths contribute to the signal and no
beating arises. Moreover, the observed pattern experiences
no phase shift caused by imperfect diffraction. Even though
loss caused by velocity selectivity in the Bragg regime leads
to a decreased number of detected particles, the contrast is
not affected and remains almost perfect. However, in DBD
the background stemming from the central path leads to a
degrading contrast.

In Fig. 8 we display the interference signal as a function of
the external phase ϑext ∈ {0, 4π}. Figure 8(a) shows two-path
interference, for example realized by blow-away pulses with
B(±1)

m = B0 = 0 = Pm,0,0. As expected from α0 = 0, the pat-
tern I0 shows no spurious phase shift. However, the patterns of
the outer ports I±1 are shifted in opposite direction as implied
by α+1 + α−1 = 0. Because in addition the amplitudes are the
same, the sum I+1 + I−1 is of opposite phase to I0 and exhibits
no spurious phase shifts. Indeed, from Eq. (17) we find the
relation

I1 + I−1 =
∑

m=±1

(Pm,−1,1 + Pm,0,0 + Pm,1,−1)

+ (A1 + A−1) cos
α1 − α−1

2
cos

(
ϑext − α1 + α−1

2

)

+ (A−1 − A1) sin
α1 − α−1

2
sin

(
ϑext − α1 + α−1

2

)
,

(22)
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FIG. 8. Interference signal of a DBD Mach-Zehnder interferom-
eter, where an external phase ±ϑext/2 was imprinted symmetrically
on both resonant arms. The legends on the top right show the respec-
tive color-coded paths that interfere in each exit port, the dashed line
shows the sum of the two outer ports. Panel (a) displays the signal
that arises from two-path interference where we assume ψ0,0,0 = 0.
We observe in all exit ports perfect visibility. Moreover, there is a
phase shift between the outer exit ports which, if the populations
are added, cancels out. Panel (b) shows the signal for three-path
interference of DBD. Due to the spurious central path, we observe
a loss of contrast. The main contribution arises from the background
population of the central path ending in the central exit port. The
nonvanishing overlap gives rise to an additional beating and a 4π

periodicity, which can be observed more prominently in the outer
two exit ports. The horizontal dotted lines indicate the different
amplitudes of this periodicity. For these simulations we used �τ =
62.5μs, �℘= 0.05h̄K , and an interferometer time of T = 0.1 s.

where the trigonometric identities for the sum and differ-
ence of cosine functions have been used and all contributions
proportional to B(±1)

m = 0 have been neglected. Moreover,
the phase correction of the remaining cosine term vanishes
because α+1 + α−1 = 0 in the Bragg regime. Similarly, the
prefactor that is a cosine reduces to −1 in the regime, where
α+1 − α−1

∼= 2π .
For three-path interference, the situation is more subtle,

as shown in Fig. 8(b). In addition to the effects that occur
for two-path interference, the interference patterns exhibit a
beating with phase ϑext/2 and a 4π periodicity, as implied
by Eq. (17). Because the overlap is larger for the outer exit
ports, we observe a more prominent beating in I±1. However,
based on symmetries of phases and amplitudes, the beating of
the sum I−1 + I+1 is suppressed in the Bragg regime, where
also no spurious phase shifts occur, similar to the interference
signal in I0. This feature underlines the benefits of treating
I−1 + I+1 as a joint exit port, as expected in a dressed state
picture for three-level systems [45]. It is one of the reasons
why both exit ports were added in the experimental imple-
mentation of double Bragg interferometry [7].

E. Effects of Doppler detuning

An initial momentum p̄0 introduces a Doppler shift that
acts similar to a detuning of diffraction processes. Because of

FIG. 9. Effects of Doppler detuning on the sum of the DBD
interference patterns of both outer exit ports. In principle a richer
structure in the pattern arises for a nonvanishing difference A1 − A−1,
see Eq. (22). We display this difference in panel (a) and observe that
it is primarily dominated by the duration and vanishes in the Bragg
regime, as expected. Similarly, panel (b) shows the phase difference
α1 − α−1 of both exit ports that leads to a loss of contrast. It only
differs from 2π in the Raman-Nath regime and does not exhibit a big
dependence on the initial momentum. The sum α1 + α−1 is plotted
in panel (c), which shifts the interference fringe. We also observe a
dependence on the Doppler detuning, but only for short durations,
while outside this regime it rapidly vanishes as discussed in the
section above. As a consequence, we expect no further effects from
imperfect pulses in the regime usually used for atom interferometry.
In these simulations we used T = 0.1 s and �℘= 0.05h̄K .

its symmetry, DBD has to be performed with ideally vanishing
initial velocity. Hence, we focus only on small values that de-
viate from this resonance and disturb the process. Such values
can be a consequence of imperfect preparation and release in a
microgravity environment or of a misalignment of horizontal
configurations on ground. Such a Doppler detuning can be
mitigated in SBD by adjusting the laser frequencies. However,
this treatment is not possible for DBD using counterprop-
agating gratings in a retroreflective geometry, because both
lattices are accelerated in opposite directions. We therefore
study the effect of nonvanishing initial p̄0 in DBD and whether
the symmetries identified in the sections above still persist in
Fig. 9, where we show the results of our study.

In fact, we observe in Fig. 9(a) A1 
= A−1 in the Raman-
Nath regime and for increasing p̄0, so that in principle the
last line of Eq. (22) contributes and gives rise to a richer
interference pattern. However, there is no observable effect
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in the Bragg regime. This additional contribution is further
suppressed for small α1 − α−1. We plot this phase difference
in Fig. 9(b) and observe that it is in fact small, with only
contributions that arise in the Raman-Nath regime. While it
has a dependence on the Doppler detuning, the effect only
arises for short pulse durations outside the Bragg regime.
The phase error α1 + α−1 that shifts a fringe even without
beating is shown in Fig. 9(c). Similar to the phase difference,
it is primarily a feature of the regime rather than the Doppler
detuning, although one observes a dependence on p̄0. As a
consequence, the sum of both exit ports shows no significant
beating or phase errors even for Doppler-detuned DBD in the
Bragg regime.

IV. INFLUENCE OF GRAVITY

To analyze the influence of gravity, we introduce a gravita-
tional acceleration a into the simulations that has three effects:
(i) It introduces a phase difference between the arms of the
interferometer that is measured by gravimeters and included
in Eqs. (10) and (11). (ii) Between pulses, the atoms gain
momentum that ideally has to be compensated for by adjusting
the resonance condition. (iii) The atoms accelerate during the
pulses and drop out of resonance, which leads to a decreased
diffraction efficiency.

In applications with SBD, deleterious effects can be miti-
gated by a frequency chirp [46]. This technique also serves to
read out gravity by finding the zero fringe as a function of the
chirping rate and locking it to the acceleration [39]. When the
diffraction lasers are chirped, their instantaneous frequency
difference is adjusted to match the resonance condition. In
practice, the instantaneous frequency difference φ̇(t ) between
both light fields takes the form

φ̇(t ) = ωb(t ) − ωa(t ) = �ω + γ t, (23)

where γ denotes the linear chirping rate and �ω the frequency
difference that encodes resonant diffraction at t = 0.

Integrating Eq. (23), we obtain the time-dependent laser
phase difference

φ(t ) = φ0 + �ωt + γ t2/2, (24)

with an offset laser phase φ0. We include this laser phase in
the set of differential equations provided in the Appendix.
They are given in an interaction picture that encodes the
acceleration of the atoms during the pulse as a time-dependent
exponential. It is straightforward to see that, for γ = −Ka, the
effects of gravity cancel.

Alternatively, the close relation between the phases due
to the gravitational acceleration and to the frequency chirp
can be understood by considering the transformation from the
laboratory frame to a freely falling one [47]. Indeed, in a freely
falling frame the effect of gravitational acceleration results
in a frequency chirp rate Ka. Therefore, the associated laser
phases can be compensated with a suitable chirp rate of the
injected laser frequencies γ = −Ka. In practice, however, γ

will only coincide approximately with −Ka and some residual
phase contributions may remain.

In contrast to SBD, the effects of gravity cannot be miti-
gated in DBD when the two counterpropagating gratings are
connected by retroreflection because chirping the frequency

FIG. 10. Interference signal of a DBD Mach-Zehnder interfer-
ometer induced by gravity. The legends on the top right show the
respective color-coded paths that interfere in each exit port, the
dashed line shows the sum of the outer two ports. Panel (a) dis-
plays the signal that arises from two-path interference, while panel
(b) shows the signal for three-path interference of DBD. The phase
is varied by changing the interferometer time T and the offset phase
is φ0 = 50π which corresponds to T = 0.60 s. We observe a qual-
itative behavior similar to Fig. 8. For these simulations we used
�τ = 62.5μs, a = 10μm/ s2 and �℘= 0.05h̄K .

difference will accelerate them in opposite directions (so that
only one of the two diffraction processes remains resonant
while the one in the opposite direction becomes increasingly
Doppler detuned). Therefore, its use is restricted to micro-
gravity conditions or nearly horizontal configurations where
small angles of the order of microradians lead to a projected
gravitational acceleration of order 10−5 m/s2 or less.1 On
the other hand, the effects of gravity can be compensated in
interferometers based on DBD and employing retroreflected
laser beams by injecting a third frequency component [43], but
then laser phase noise is no longer entirely common to both
interferometer arms. Interestingly, through a suitable choice of
the three injected frequencies the contribution of laser phase
noise cancels out in a differential acceleration measurement
for two different atomic species [44].

To minimize deleterious effects of gravity, we study a
setup similar to an atomic fountain, where the mirror pulse
is resonant at the apex, even though we work with much
smaller accelerations than conventional fountain experiments.
For that, we chose the initial momentum of the wave function
such that it compensates the drop due to gravity and is on
resonance at the center of the mirror pulse. In this case both
beam splitters are off-resonant but symmetric. Our treatment
could be also applied to other initial conditions more common
for small accelerations.

In this setup, we perform DBD simulations for different
interrogation times T in microgravity conditions or horizontal
configurations, where we use a projected gravitational accel-
eration of 10μm/ s2 . This way, we scan the interferometer
phase ϕ0 + ϑg = 2KaT 2 over a 4π interval with an offset

1In both cases it is possible to have SBD rather than DBD, even for
vanishing initial velocities, by simultaneously chirping both injected
frequencies at a sufficiently high rate and exploiting the extra time of
flight for the retroreflected components [48]. Alternatively, it is also
possible to avoid DBD by considering magnetically sensitive states
and suitable laser polarizations [49].
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FIG. 11. Phase difference between the two desired paths in the
central exit port of DBD caused by the finite pulse duration and
gravity, and compared with SBD. In panel (a) we plot α0 − KaT 2

for SBD, while panel (b) shows α0 − 2KaT 2 for DBD. We see that
the phases differ by a factor of two in the Bragg regime. The scale
of the color coding of panel (a) is indicated above the color bar,
whereas the scale of panel (b) is indicated below the color bar. For
these simulations, we used an initial Gaussian momentum width of
�℘= 0.01h̄K and an interferometer time of T = 0.01 s.

of ϕ0 = 50π . The role of the external phase is now played
by gravity and included in our simulations. Using the same
derivation of Eqs. (16) and (17) with ϑext = 0, we observe
similar features as before: Two-path interference induces a
small phase shift between the outer exit ports as observed
in Fig. 10(a) and three-path interference induces an offset of
decreased visibility as well as a beating as seen in Fig. 10(b).

As discussed above, the two-path interference pattern I0

shown in Fig. 10(a) exhibits no beating, but of course depends
on the gravity- and pulse-duration dependent phase shift. The
sum of the ports I1 + I−1 exhibits an analogous behavior.

Gravity breaks the symmetries pointed out above, so
that additional phase shifts during diffraction arise. These
effects are expected for two-level systems, where residual
acceleration during a pulse deteriorates the quality of the Rabi
oscillations [50,51]. The influence of finite pulse durations
has been studied in the context of single Raman diffrac-
tion [37,38], but can be transferred to SBD assuming that
higher-order diffraction can be neglected.

In contrast with the case of box-shaped pulses with analyt-
ical expressions, we numerically study Gaussian pulses and
start with a discussion of SBD. For that, we show in Fig. 11(a)
the phase difference α0 − KaT 2 acquired during the pulse as
a function of �τ and a. The phase α0 is calculated by sub-
tracting the phase imprinted on the upper path from the phase
of the lower path, thus the positive sign of the gravitational
phase. As expected, for higher pulse durations and gravity,
the phase shift increases. For short pulses in the Raman-Nath
regime, diffraction cannot be described by a two-level system
anymore. However, since in this regime the atoms do not have
the time to experience a considerable acceleration, all effects

of gravity are suppressed. Moreover, we always observe a
phase difference α1 − α0 = π for SBD, such that both exit
ports are opposite in phase, taking finite pulse durations into
account.

For DBD, the phase difference α0 − 2KaT 2 is associated
with phases acquired for finite pulse durations between both
desired paths. It behaves similar to the single Bragg case, see
Fig. 11(b), and differs exactly by a factor two in the Bragg
regime. This behavior can be attributed to doubled momentum
transfer.

As mentioned above and shown in Fig. 10(b), a beating
arises for three-path interference. A Fourier analysis of the
beating pattern of I+1 + I−1 (and I0) reveals that it consists of
two components. The first one originates from the two desired
paths and is observed in two-path interference. The other
component is suppressed and differs by a factor of one half, in
complete analogy to the external phase of Sec. III D. A similar
analysis can be performed in experimental applications.

V. CONCLUSIONS

We have analyzed the contributions of interferometer paths
to specific exit ports of a Mach-Zehnder interferometer based
on first-order Bragg diffraction and concluded that higher-
order contributions are not relevant in SBD if spurious ports
can be spatially resolved at detection. In contrast, for DBD
the central path always contributes. Even though atom-optical
phase imperfections also arise in SBD, they cancel out in a
Mach-Zehnder interferometer due to its intrinsic symmetry.
The only surviving phases stem from a finite pulse duration
under the influence of gravity. In DBD on the other hand,
the non-negligible spurious central path gives rise to a beat-
ing pattern due to three-path interference. The three relevant
momentum states lead to a spurious phase shift between the
outer exit ports caused by phase errors. We demonstrated that
the sum of their populations gives rise to a signal without such
deleterious effects.

For the Mach-Zehnder interferometers we analyzed the
spurious central path that can lead to contrast reduction
in DBD, whereas no loss of contrast arises in SBD (pro-
vided that the effects of gravity are entirely compensated
through a suitable chirp of the laser frequency difference).
Nevertheless, in actual experiments a reduction of interfer-
ometer contrast can also be caused by other effects such
as technical detection noise, wavefront distortions and fi-
nite beam size. In addition, rotations and gravity gradients
lead to relative displacements between the interfering wave
packets and result in contrast losses that can be particu-
larly significant for long interferometer times [52]. However,
these losses can be avoided thanks to effective mitigation
techniques existing for both rotations [53–55] and gravity
gradients [52,56,57].

The approach can in principle be applied to double Ra-
man diffraction too, where the Raman-Nath regime does not
show such a rich structure [15], but higher-order diffraction
is possible as well [58]. Furthermore, since the cancela-
tion of diffraction phases was caused by the symmetry of
the Mach-Zehnder interferometer, it might be worthwhile
to check whether other geometries like Ramsey-Bordé-type
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setups display similar symmetries [35]. Possible options to
mitigate diffraction phases in DBD could be double-diamond
(or butterfly) geometries [59,60] with two central π pulses,
which are however insensitive to time-dependent linear ac-
celerations. Here, we have considered perfect plane waves
as diffracting beams, but effects from beam shapes lead to
additional contributions [16,61,62].

Throughout this article, we focused on resonant first-
order diffraction. However, resonant higher-order diffrac-
tion [7,11,14,19] leads to more spurious interferometer paths
that affect the signal as well [30]. We hope to stimulate further
studies which focus on higher diffraction orders. Like off-
resonant effects for first order, such off-resonant diffraction
should be suppressed and a discussion similar to the one above
seems possible. However, resonant higher-order diffraction re-
quires an operation in the quasi-Bragg regime [28] with fairly
short pulse durations, which means that off-resonant effects
become in general more relevant. Extending our study to res-
onant higher-order diffraction seems to be a necessary step for
the analysis of large-momentum-transfer [10,12,13,63] atom
interferometry and can, in principle, be performed with the
techniques presented in this article.
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APPENDIX: CALCULATION OF THE TRANSITION FUNCTION

We solve the effective Schrödinger equation in momentum representation which, after the rotating wave approximation [64],
takes the form

dψn(p0, t )

dt
= i�(t − t j )[e

−iωD(t−t j )eiKa(t−t j )2/2eiφ(t )e−i(2n+1)ωK (t−t j ) ψn+1(p0, t )

+ eiωD(t−t j )e−iKa(t−t j )2/2e−iφ(t )ei(2n−1)ωK (t−t j ) ψn−1(p0, t )] (A1)

for SBD and
dψn(p0, t )

dt
= i�(t − t j ) eiωD(t−t j )e−i 1

2 Ka(t−t j )2
[eiφ(t )ei(2n−1)ωK (t−t j ) + e−iφ(t )ei(2n−1)ωK (t−t j )]ψn−1(p0, t )

+ i�(t − t j ) e−iωD(t−t j )ei 1
2 Ka(t−t j )2

[e−iφ(t )e−i(2n+1)ωK (t−t j ) + eiφ(t )e−i(2n+1)ωK (t−t j )]ψn+1(p0, t ) (A2)

for DBD [9]. It emerges after the adiabatic elimination of
an auxiliary state [65–67] and is derived in an interaction
picture with respect to the center-of-mass motion. The respec-
tive unitary transformation takes the form exp{−i[ p̂2/(2M ) +
Maẑ](t − t j )/h̄}. The starting time of the pulse is denoted
by t j . Hence, each pulse is calculated in its own interac-
tion picture that is initialized at this time. Based on the
momentum representation ψ (p) of the center-of-mass wave
function of the atom in the ground state, we have defined
ψn(p0, t ) = ψ (p0 + nh̄K ) and the Doppler frequency ωD =
p0K/M. Hence, the different diffraction orders are denoted by
the index n.

To obtain the transition function G(p′, p), we solve the
set of differential equations numerically and for an initial
condition ψn(p0, t j ) = 1 and rearrange the solutions in matrix
form. For the numerical solution, we resort to MATLAB’s [68]
ODE45 which is a Runge-Kutta-type solver [69]. For the
simulations in Figs. 3, 4, 6, 7, and 11 we introduce a cutoff for
n = ±9, which corresponds to ±9.5h̄K in momentum space
and divide the interval [−h̄K/2, h̄K/2] in 501 equally spaced
grid points. For the simulations in Figs. 8 and 10 we introduce

a cutoff for n = ±4, which corresponds to ±4.5h̄K in mo-
mentum space and divide the interval [−h̄K/2, h̄K/2] in 201
equally spaced grid points. The relative numerical propagation
error of MATLAB’s ODE toolbox was 10−3 and the absolute
error 10−6.

For all simulations, we use a Gaussian envelope of the
pulse that gives rise to the time-dependent Rabi frequency
�(t ) = �0 exp[−(t − 4�τ )2/(2�τ 2)]. Here, �0 denotes the
peak two-photon Rabi frequency. The pulses are cut off at
±4�τ . A Gaussian is a smooth function that minimizes nona-
diabatic effects stemming from rapid changes in frequency.
Also, it constitutes a compromise between short pulse dura-
tion and an adiabatic envelope. The pulse area A is defined
as

A =
∫

dtN�(t ), (A3)

where N = 2 for SBD and N = √
2 for DBD. Beam splitters

are generated via A = π/2 and mirrors as A = π .
Since rubidium 87 is one of the most common species

employed in atom interferometry, we use its values for
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our simulations [70]. To be precise, we use its mass
M = 1.4432 × 10−25 kg and the wave number K = 1.6106 ×

107 m−1 associated with the D2 transition, resulting in the
recoil (angular) frequency ωK = 2π × 15.0839 kHz.
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